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ABSTRACT

Operational oceanography is understood as the constant endeavor of observing seas and

oceans, collecting, interpreting and disseminating the measured data, in order to design

methods  for  analyzing  behavior  and  predicting  future  conditions.  Consequently,  ocean

modelling is one of the most important activities developed within this context, as it helps

to understand the aspects and phenomena of those ecosystems. In this scenario, the goal of

this  work  is  to  build  a  simulation  management  system,  programmed  in  the  Python

language,  for  coastal  hydrodynamic  models  made  in  MOHID  modelling  system

environment.  MOHID  is  a  three-dimensional  model  with  numerical  tools  to  solve

governing equations that describe the fluid flow and to reproduce several processes of the

marine environment. Python allows the rapid creation of sophisticated algorithms for all

types of tasks, having the necessary resources to perform the most essential function in

simulation management: the control of the inputs and outputs of a model. The management

system used SOMA as the application example. SOMA is the operational validated high

resolution hydrodynamic model of the Algarve coast based on MOHID. In this setup it is

necessary to manage two distinct simulation cycles: the daily runs or forecast simulations,

and weekly runs, which initialize the model for a new week cycle. The main body of the

program was divided into two basic layers, one to process the corresponding forcing data

and other to manage the simulations.  The algorithm was designed to work with a pre-

determined generic structure of folders and file nomenclature. MOHID’s keyword feature

was also adopted to specify the parameters to configure the tool. SOMA has become the

first  model  to  be  controlled  by  the  tool  and  still  keeps  its  forecast  cycles  active,

nevertheless, due to its generic feature, the simulation management system presented in

this work is prepared to manage any other MOHID based model in operational mode.

Keywords:  operational  oceanography,  MOHID  modelling  system,  Python,  simulation

management system, SOMA, Algarve coast.
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RESUMO

Os oceanos desempenham um papel de extrema importância na manutenção da vida no

planeta.  Eles  são  responsáveis  por  regular  o  clima  e  temperatura  globais,  reciclar

nutrientes, gerar oxigênio, absorver dióxido de carbono da atmosfera entre outros. Para a

humanidade, este ambiente possui ainda uma relevância extremamente elevada em relação

a aspectos econômicos, servindo principalmente como fonte de alimentos e de exploração

de  recursos  fósseis,  via  de  transporte,  desenvolvimento  de  atividades  turísticas  e

recreativas, geração de energia. Por esses motivos, torna-se essencial compreender suas

características  e  os  diversos  fenômenos  que  nele  se  desenvolvem.  Dessa  maneira,  a

oceanografia operacional é entendida como a atividade constante de observação, coleta,

interpretação e divulgação dos dados medidos, a fim de projetar métodos de análise de

comportamento e previsão de condições futuras.

A modelação oceânica é uma das atividades mais importantes desenvolvidas no âmbito

da  oceanografia  operacional.  Um  modelo  consiste  na  representação  matemática  de

fenômenos,  que  neste  caso  são  equações  para  descrever  a  dinâmica  dos  fluidos  nos

oceanos. O conjunto de expressões matemáticas que representam o movimento dos fluidos

forma um sistema de equações diferenciais, que são construídas respeitando os princípios

fundamentais de conservação da física, dando origem às equações de transporte. Uma vez

que essas equações não têm solução analítica, elas têm de ser resolvidas usando métodos

de  modelação  matemática.  Para  isso  as  equações  são  discretizadas  usando  métodos

numéricos e transformadas em código computacional para avançar ou iterar o estado do

oceano no tempo.

 As equações de transporte representam o movimento do fluido e descrevem, cada uma, a

conservação de uma propriedade. Elas são, portanto, formadas pelas equações de Navier-

Stokes,  que  correspondem  à  conservação  de  massa  e  momentum,  mais  o  balanço  de

energia e as equações de estado, que correlacionam propriedades termodinâmicas e fazem

o vínculo entre temperatura e salinidade com a densidade. Em modelos oceânicos, elas são

frequentemente  discretizadas  no espaço pelo método de volumes finitos  na abordagem

euleriana, que consiste na avaliação da conservação de propriedades dentro de um volume

de controle, enquanto um fluxo de água passa por ele. O sistema de equações é resolvido
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individualmente para cada um destes elementos que juntos constituem a malha do domínio

do modelo, de forma que cada iteração expressa a conservação em cada um deles.

Embora já  seja  um negócio muito valioso,  estima-se que a  economia oceânica ainda

possa dobrar nos próximos anos, à medida que a população cresce nos centros urbanos

próximos  às  áreas  costeiras.  Assim,  crescimento  azul  é  o  termo  criado  para  designar

práticas que visam o crescimento econômico, mas que também garantem a preservação

desse  ambiente  para  as  gerações  futuras.  A busca  pelo  desenvolvimento  sustentável

provoca uma demanda crescente por conhecimento em relação aos oceanos, especialmente

em regiões  costeiras,  fazendo  com que  os  dados  gerados  na  oceanografia  operacional

sejam essenciais para as atividades socioeconômicas do crescimento azul. Sendo assim,

este  trabalho  tem  como  objetivo  desenvolver  um  sistema  de  gestão  de  simulações,

programado  na  linguagem  Python,  para  modelos  hidrodinâmicos  costeiros  que  sejam

construídos no ambiente do sistema de modelação MOHID.

O sistema MOHID é uma ferramenta numérica capaz de reproduzir diversos processos

do ambiente marinho. Ele é um modelo hidrodinâmico tridimensional que soluciona os

sistemas de equações de transporte para escoamentos incompressíveis, em que o equilíbrio

hidrostático  e  a  aproximação  de  Boussinesq  são  assumidos.  A discretização  espacial

vertical é realizada por meio de coordenadas genéricas, em que a coluna de água pode ser

dividida em vários subdomínios para melhor se adequar as regiões heterogêneas de todo o

domínio. A discretização temporal é processada por um algoritmo ADI semi-implícito com

dois níveis de tempo por iteração.

O código do MOHID está escrito em ANSI FORTRAN 95, que permite a programação

por meio do paradigma da orientação por objetos. Logo, o sistema possui uma arquitetura

modular, de forma que cada módulo representa uma classe responsável por gerir um tipo

específico de informação. Este “design” possibilita a simulação simultânea de modelos

aninhados e, consequentemente, o uso da metodologia de redução de escala, sendo cada

domínio  uma  nova  instância  de  classes  individuais.  Alguns  dos  módulos  requerem

informações extras para serem executados corretamente. Esses parâmetros são fornecidos

através de um sistema de palavras-chave escrito em formato de texto ASCII em um arquivo

específico para cada um. O conjunto desses arquivos de entradas caracteriza um modelo no

ambiente MOHID.
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O Python é uma linguagem de programação multiplataforma de código aberto e licença

gratuita  que  se  tem  tornado  cada  vez  mais  popular.  Ela  é  construída  usando  uma

abordagem orientada por objetos, baseado em classes, possuindo uma vasta biblioteca de

módulos  versáteis,  nativos  e  externos,  que  permitem  a  criação  rápida  de  algoritmos

sofisticados para todos os tipos de tarefas. Devido às suas características o Python também

tem sido amplamente adotado no domínio científico.  Em modelação oceânica ele possui

ferramentas  para  lidar  com formatos  de  dados  mais  comuns,  suporte  para  OPeNDAP,

métodos para realizar análise harmônica de marés e de visualização científica. A linguagem

também possui os recursos necessários para realizar a tarefa mais essencial  durante os

ciclos de previsão, que é o controle das entradas e saídas de um modelo.

O  sistema  de  gestão  foi desenvolvido  utilizando como  base  a  operacionalização  do

Sistema  de  Modelação  e  Monitorização  Operacional  do  Algarve,  ou  SOMA,  modelo

hidrodinâmico validado de alta resolução da costa algarvia que utiliza como base o sistema

de modelação MOHID. Desta forma, a ferramenta faz a gestão de dois ciclos de simulação

distintos: as corridas diárias,  que equivalem às simulações de previsões contínuas, e as

semanais,  que  inicializam  o  modelo  para  gerar  novas  condições  iniciais  menos

deterioradas.  Além disso,  foi preciso desenvolver  também operações  para  processar  os

dados de forçamento correspondentes. Por esse motivo, o corpo principal do programa foi

dividido  em  duas  camadas,  uma  para  os  dados  de  fontes  externas  e  outra  para  gerir

simulações.

A gestão de simulações  consiste  basicamente em coordenar  a  execução de diferentes

operações e o manuseamento de arquivos. Por esse motivo, o algoritmo do programa foi

concebido de forma a trabalhar em cima de uma estrutura genérica pré-determinada de

pastas e de nomenclatura de arquivos. Esta arquitetura foi sendo aprimorada à medida que

os padrões de uma rotina de simulação realizada pelo MOHID eram identificados. Além

disso,  foi  adotado  o  método  de  leitura  de  palavras-chave  para  a  especificação  dos

parâmetros  para  executar cada  modelo.  Depois  de  adaptado  a  estas  normas,  o  SOMA

passou a ser o meio para testar as versões da ferramenta. Consequentemente, este modelo é

primeiro a ser controlado por ela, razão pela qual foram criados módulos para processar

dados oceânicos do Mercador e atmosféricos do Skiron.
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O uso da linguagem de programação orientada por objetos contribuiu para simplificar o

código do programa, uma vez que foram construídos métodos para serem usados mais de

uma vez em diferentes situações, evitando assim a escrita repetitiva de partes iguais do

código. Além disso, módulos que desenvolvem tarefas fora do contexto de simulações,

como formatação de resultados ou processamento de dados de forçamentos, deram origem

a outras funcionalidades já que poderiam ser acessados de forma independente. Porém, da

forma como foi  projetado e  em conjunto  com a  estrutura de  pastas  imposta,  a  grande

limitação do programa de gestão é de ainda não permitir a operacionalização de modelos

que tenham mais do que um subdomínio definido para o mesmo nível. Além disso, quando

o  código  divide  a  execução  do  programa  em  para  realizar  tarefas  simultâneas,  as

mensagens  impressas  de  cada  módulo  em  execução  surgem  simultâneas na  janela  de

prompt, tornando-se confusas para o usuário. Estas são algumas das melhorias que se irão

efetuar no futuro próximo.

Apesar das limitações apresentadas o sistema de gestão de simulação apresentado neste

trabalho está preparado para converter modelos no modo operacional. Ainda assim, sua

construção  é  um  processo  contínuo,  logo,  ele  continuará  a  passar  por  atualizações  e

aperfeiçoamentos. Neste sentido, as opções para executar operações independentes, como

formatação  de  resultados  e  o  processamento  de  dados  de  forçamento,  já  estão  sendo

programadas e em breve serão integradas ao programa. Considerando ainda que Python

possui uma vasta biblioteca embutida e diversas outras ferramentas externas, que oferecem

uma  ampla  gama  de  recursos,  também  como  trabalhos  futuros,  ir-se-á  optimizar  a

paralelização de tarefas e até mesmo construção de uma interface gráfica para melhorar a

visualização das mensagens. Além disso, o programa tem espaço para crescer com novos

módulos  para  outras  fontes  de  forçamento  e  até  com  o  desenvolvimento  de  novas

funcionalidades.

Palavras-chave:  oceanografia  operacional,  sistema  de  modelação  MOHID,  Python,

sistema de gestão de simulações, SOMA, costa algarvia.
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1 INTRODUCTION

Mankind still has a lot to learn about the oceans, however it is already well known that

they are of extremely importance in the Earth’s ecosystem. It is an environment that plays a

key role in the planet's climate, being a determining factor for regional climates affecting

the distribution of rainfall, droughts, floods. Also, since ancient times, the seas are of great

relevance for humanity being used as a source of food, recreation, transportation and for

extraction of valuable fossil resources.

Due to their importance, oceans various physical, chemical and biological phenomena are

constantly investigated and studied through continuous observation, in order to produce

helpful tools for their exploitation. In this context, the area of operational oceanography

includes  making,  disseminating  and interpreting  measurements  of  the  seas  and  oceans

properties that will  compose a set  of historical data of this  environment.  These can be

further applied in numerical models that will help to assess and to understand their states

so that it would be possible to make predictions of their future state.

Operational  oceanography  is  always  facing  improvement  challenges,  especially  those

related to shallow waters. The hydrodynamic processes of these sites are complex due to

rapid changes induced by the most  dynamic variations caused by winds,  waves,  tides,

sediment  transport,  human  activity.  In  view of  this  difficulty,  the  Algarve  Operational

Modelling and Monitoring System (SOMA) has emerged as a high-resolution operational

model, aiming to provide future conditions of the sea state in the coastal region of south

Portugal.

The objective of this work is to develop a coastal simulation management system and use

SOMA as the means to test it, since the last is a validated model and is enabled to predict

Algarve's coast hydrodynamic behavior and its water properties. The system created in this

work is here named as SMS-Coastal.  It is built for the Windows operating system and

programmed using the open-source,  high-level  and object-oriented language Python,  in

order  to  manage  daily  simulations  of  the  operational  model.  Additionally,  SOMA’s

numerical calculation is made by the hydrodynamic model MOHID, therefore it should be

a pillar  of the SMS-Coastal main structure. Furthermore, this work had been developed

within the scope of the Coastal Environmental Observatory of the Southwest (OCASO)
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project. Thus, once completed, the tool should be able to manage the Algarve’s coastal

model forecast data, making it available in a specific format as a product under the project

for state alerts.

SMS-Coastal should also be able to handle any other coastal model with equivalent data

structure  as  SOMA and  that  uses  MOHID  system  for  the  numerical  solution  of  the

hydrodynamic equations. For that reason, its structure shall be generic enough to receive

user input, such as simulation date, number of levels, forecast days range, simulation step

time and others, download and convert corresponding external forcing data files, manage

the  simulation itself,  generate  monitoring reports  and make result  files  available  to  be

interpreted by a graphic interface. This universal architecture shall make forecast processes

possible  and fully  automatic,  keeping the models  running,  checking the availability  of

initial and boundary conditions and attesting the success of the simulations.

Besides this introduction, this document was divided into five more chapters. The second

chapter makes a state of the art review of subjects related to this work, starting with the

definition  of  operational  oceanography.  Then,  it  briefly  presents  the  concept  of  ocean

modelling and also describes the hydrodynamic model MOHID, the numerical tool used to

simulate the models managed by SMS-Coastal. Finally, the basic concepts of Python are

presented, the programming language used to write the algorithm of the application of this

work, as well as its use as a management tool. The third chapter describes the methodology

adopted  to  build  the  management  system,  which  was  based  on  the  SOMA system

operationalization. Chapter four explains SMS-Coastal general aspects, its requirements to

properly work and its operations sequence. It also presents some aspects related to its use

to  keep  SOMA operational.  In  the  fifth  chapter,  the  main  features  of  the  program's

operation are discussed,  and the sixth,  consists  of the general conclusions of the work

done. The SMS-Coastal's Python algorithm is presented in the appendices section, each of

which corresponding to a module of the program.
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2 STATE OF THE ART

2.1 Operational Oceanography

The oceans are an extremely important environment for the planet and humanity. They

were the birthplace for the origin of life and still are the home to countless species. Due to

the  occurrence  of  various  phenomena,  they  develop  a  fundamental  role  in  the  Earth’s

ecosystem,  being  responsible  to  regulate  global  climate  and  temperature,  to  recycle

nutrients,  to  generate  oxygen  and  to  absorb  carbon  dioxide  of  the  atmosphere.  This

environment has equally unlimited relevance in economic aspects: it is one of the main

sources of food, it is the most widely used means of transportation in global trade, provides

more than 30% of the global supply of fossil hydrocarbons and offers great potential for

renewable energy production (Bari, 2017).

The use of marine resources by man began still  in remote times of prehistory, which

made  possible  to  blossom  some  understanding  regarding  tides,  currents  and  waves

(Schiller, 2011). However, oceanography as the area that studies all aspects of the seas,

from their physical description to the interpretation of the phenomena that occur in them

and their interaction with the continents and the atmosphere, only began to be significant in

the  great  discoveries  era,  period  between  the  15th  and  17th  centuries.  The  maritime

expansion, motivated by the intercontinental business, contributed to the development of

knowledge in cartography and of ocean’s surface.

After the great expansion, according to  Schiller (2011), scientific journeys began to be

realized,  primarily  to  produce  a  more  precise  mapping  of  the  continents,  but  also  to

improve oceanography knowledge. The first scientific texts regarding sea currents, depth

of the ocean and meteorological data began to come out as expeditions with the same

purpose  increased  in  late  18th  century.  Nevertheless,  a  large-scale  expedition  was  not

possible until 1872, when a 4-year mission was made specifically to collect a wide range of

ocean properties such as temperature, chemical  variables of seawater, currents and even

soil  geology.  That  was  a  landmark  in  modern  oceanography  and  thus  soon  enough,

observed phenomena could be quantitatively described.
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As the number of scientific expeditions increased, there were entirely specialized vessels

for oceanographic studies. The technological instrumentation used has undergone intense

improvements since the 20th century,  especially during World War II  that  boosted this

evolution, once knowing  more about a region was strategically advantageous and could

mean a victory against the enemy. At that time the first sonars capable of mapping the

seabed emerged.

Now that the techniques of collecting ocean data were intensified and improved, a large

amount of ocean data was available. That combined with previously formulated theories

enabled  the  development  of the  first  mathematical  models  that  would  describe

hydrodynamic processes in the oceans. By the end of the last century, these models already

could be implemented in computational environments and oceanographic tools began to be

produced to carry out forecasts states (Böning & Semtner, 2001).

As  new numerical  models  have  emerged,  the  need for  more  sea  properties  data  has

triggered the development of  in-situ and remote collection equipment to provide almost

real-time information of temperature, salinity, velocity on the surface. That created a cycle

of information data in a way that these and other measures are used in operational models

to provide an integrated description of the state of the ocean and allowing the rising of new

monitoring  and  forecasting  techniques  (Le  Traon,  2011).  The  last,  in  turn,  play  a

fundamental  role  in  understanding  the  dynamics  and  physical  processes  of  this

environment.

Operational oceanography is therefore understood as the constant activity of observing,

collecting, interpreting and disseminating the measured data, in order to design methods

for analyzing behavior and predicting future conditions  (Prandle, 2000). The information

generated by this activity is very important for scientific community in the sense of always

boosting the development of marine sector technology (She et al., 2016).

2.1.1 Observation Methods

The  activities  related  to  operational  oceanography  help  to  develop  new  ways  of

understanding and predicting ocean behavior and climate evolution. Consequently, there

will always be a growing need for information from this environment  (Robinson, 2010a;
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von  Schuckmann  et  al.,  2016).  In  this  manner,  one  of  the  pillars  of  the  operational

oceanography are the observations systems, that make the ocean data acquisition to feed

operational models to produce forecasts and other products (Dombrowsky, 2011).

For  operational  systems to  describe  oceans’ physical  state  they  require,  among other

properties,  primarily  information  regarding  temperature,  salinity,  density  and  absolute

currents (Send, 2006). Biogeochemical models need other state variables such as nutrients,

oxygen,  chlorophyll,  phytoplankton  and  zooplankton  biomass.  The  perfect  method  to

acquire  all  that  data  would  be  one  on  which  measurements would  cover  all  three-

dimensional space and time. However, there is no single ideal way to do this and therefore

observations systems combine techniques that  can be divided basically  into two types:

locally measurements (in-situ) and remotely.

2.1.1.1 In-situ methods

In-situ instruments record mainly physical sea properties and each one of them has its

capacity in terms of spatial and temporal resolution (Ravichandran, 2011). The operational

network of those data recording mechanisms is non-trivial and requires a great deal of

combined effort  and coordinated  actions,  since  tasks  such as  sensor  lifetime and their

coverage area mapping are critical to avoid measuring gaps.  In-situ methods can be yet

classified into those which are based on fixed points and those whose location varies with

time. According to Ravichandran (2011) and Send (2006) most common are:

Profiling floats

Generally used to make temperature and salinity profiles in a water column. The idea is

to  build  a  long  lifetime,  low  cost  device,  with  light-weight  and  low  electric  power

consumption sensors, that sends all the data to satellite systems when at the surface. They

passively follow the horizontal currents flow and make buoyancy changes to cover the

water column. Biogeochemical properties can also be measured. 2.1 shows an example of

profiling float from Argo program, in which the location of the sensors for  conductivity-

temperature-depth (CTD),  oxygen (O2), acidity or basicity (pH) and nitrates (NO3) were

pointed out.
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Figure 2.1 - Navis BGC Argo float. From:
(Roemmich et al., 2019)

Surface drifters

Buoys connected to a drogue (2.2) that allows passively following the ocean horizontal

flow. They mainly measure sea surface temperature (SST) and air pressure, but can also

give information about surface currents if their position is tracked.

Ships

Ships may collect and distribute data in a non operational rate, still  they are of great

importance in ocean research. Despite being an expensive construction, research vessels

are built entirely specialized for oceanography and can be used to collect water samples for

biochemical  analysis.  Furthermore,  they  are  the  means  of  transportation  and  have

mechanisms to launch more complex, bigger and heavier instrumentation. These vessels

can also be used as ships of opportunity, mainly to deploy expendable temperature probes

(XBT) along their route to their own operations. It is also possible to use merchant vessels

as  volunteer  observing  ships  (VOS)  which  allow  researchers  to  lunch  measurement

equipment and to collect underway sampling. However, mostly all of the routes will be
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commercial  ones and there is always the possibility for the ship operator to change to

others not planned.

Figure 2.2 - Surface drifter common
structure. Adapted from: (Wu et al., 2019)

Moorings and fixed platforms

Normally they are fixed buoys that may be equipped with several different sensors (2.3),

that record with a high temporal resolution timeseries of a wide range of properties. It is

also possible to get samples  along the water column in the position  where it is fixed, as

well as some atmospheric properties at the surface. Other more robust instruments can be

installed  to  make  measurements  of  radiation,  oxygen,  carbon dioxide,  chlorophyll  and

other biogeochemical variables. A network of moorings enables the possibility to use a

method called acoustic tomography, in which a long distance profile of temperature or

currents are obtained as a function of the time it takes an acoustic signal to travel from one

instrument  to  another.  In  general  moorings  have  a  high  cost  to  build  and  for  the

maintenance, therefore they are used in low quantity and in places of great interest, where

critical ocean processes occurs.
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Figure 2.3 - Diagram of coastal moorings.  From:
(Bailey et al., 2019)

Gliders and autonomous underwater vehicles (AUV)

Vehicles in shape of small submarines that can be programmed to collect samples for a

specific mission track. The movement inside water is done actively by propellers in AUV

(2.4) and passively by buoyancy changes and wings in gliders. They usually perform an

up/down  trajectory  (sawtooth  pattern)  to  get  physical  and  also  some  biogeochemical

variables  in  different  depths.  Their  main weakness  are  regarding total  weight,  systems

energy consumption and limited depth operation.

Radars

High-frequency (HF) radar land-based installations in coastlines can detect sea surface

currents providing operational data primarily for ship routing, pollutant transport forecast,

algal blooms. Regardless their limited coverage, until 300 km offshore, they have good

spatial and temporal resolution. 2.5 shows a diagram of the basic operating principle of the

HF radars. The antennas emit electromagnetic signals with a frequency between 6 and 30

MHz on  the  water  surface.  The  signals  scattered  back  by  ocean  waves  with  half  the
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wavelength of the first are received, and then the surface currents are assessed with the

doppler shift of the reflected signals.

Figure 2.4 - Oceanscan light autonomous underwater vehicle used by the
research center CIMA at University of Algarve.  

Figure 2.5 - HF radar basic operating principle. From: (Medclic, 2020)

All  the  data  collected  by  these  in-situ methods  are  applied  in  countless  operational

models  that  use  a  wide  variety  o  variables  (Pouliquen,  2006).  In  view  of  that  need,

observation systems progressively try to increase the spatial and temporal resolution of
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their measures. This is the case of the Argo program, which consists of a global array of

profiling floats deployed regularly in a large number to provide almost real-time ocean data

essential  in oceanographic researches  (Mittal  & Delbridge,  2019).  There are over 3900

active free-drifting floats reporting CTD profiles, salinity and velocity of the upper ocean.

They have a spacial sampling between 200 and 400 km and can go down to until 2000 m

depth.  New floats are already under development that can go further than that and even

make biogeochemical measurements  (Roemmich et al., 2019). For all of its features the

project is unique in some aspects and its data is being used to study previously unreachable

process such as submarine volcanism  (Mittal & Delbridge, 2019) and the Weddell Gyre

(Reeve et al., 2019). The black dots in  2.6 represent the position of active Argo floats in

May of 2020.

Figure 2.6 - Positions of active Argo floats in May of 2020. From: (Argo Program, 2020)

2.1.1.2 Remote sensing

The other way to collect ocean data is by remote sensing. Mostly done by satellites, it

consists of getting, analyze and interpret sea surface electromagnetic signals. Although the

sensors are  located far  away from the data  source,  this  method reveled to  be of great

importance in operational oceanography considering it gives nearly real time information

about valuable ocean properties. Remote acquired data is being used since 1980’s and have

helped  discovering  previously  unknown  aspects  of  the  sea  (Robinson,  2010a).  The

technique  is  able  to  cover  areas  of  thousands  of  kilometers  with,  however,  a  spacial

resolution capable of providing information from mesoscale to coastal events  (Le Traon,
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2011). It also has a high temporal resolution and its long-term data accumulation is used to

understand ocean variability and to profile the occurrence of extreme events.

Remote instruments are capable of monitor parameters such as SST, sea surface height

(SSH), ocean circulation, ice, waves, winds and more recently sea surface salinity. They

can  also  detect  ocean  colour  that  gives  information  about  biological  properties.

Occasionally, to get the desired horizontal distribution and temporal resolution of given

surface variable it is necessary a simultaneously operation of several satellites (Le Traon,

2011). The radiation origin received by the sensors classify them into passive and active:

the first one collect reflected electromagnetic waves from the sun on the sea, or emitted

from the last, and the second emits its own pulses and analyses those reflected back to it

from the surface, they operate in the radar frequency band (Robinson, 2006).

When using satellite information, the final user must be aware of the type of data which

is provided by the product made available by a system. Essentially they are assorted into

levels as follows (Robinson, 2010b):

• Level 0 (L0): raw data in binary form.

• Level 1 (L1): calibrated multi channel signal in scan-line coordinates.

• Level 2 (L2): geolocated ocean data product.

• Level 3 (L3): global gridded data set.

• Level 4 (L4): global analysed gridded data set.

In operational oceanography there is no unique way of collecting data. Remote and in-

situ sensing are complementary measure techniques between them and inside each one. A

variable  evaluated  in  different  manners  generates  calibration  and  validation  tools  for

sensors and ocean models. Only with the integration of different measurement methods

will  ocean  data  have  better  coverage  and  resolution.  The  graphic  in  2.7 shows  the

resolution aspects of in-situ and remote observation systems. For operational applications

the best quality data will be the one that combines in the most efficient way information

from different sources (Send, 2006).
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Figure 2.7 - Spacial and temporal resolution at the sea
surface of in-situ and satellites observation techniques.

From: (Send, 2006).

2.1.2 Observation Network

The quantity and quality of data required in operational oceanography is obtained by a

well set network of different measurement instruments. Those, however, have high cost

and demand a great amount of effort to get them into right spatial coverage. That is why

most of the time research centers alone cannot afford them, and for that reason, programs

such as The Global Ocean Observing System (GOOS) are created to help build a solid data

collection and dissemination framework (Summerhayes, 2002). 

When GOOS started, its main activity was the maintenance of the buoys array in Tropical

Ocean Global Atmosphere (TOGA) program and of the VOS network. Now, it plays an

essential role in operational oceanography, coordinating activities to monitor, describe and

predict  ocean state  on  a  global  scale,  including living  resources  (Malone et  al.,  2014;

Summerhayes, 2002). The program provides ocean observations using an integrated data

management and communications system. Furthermore, it works to improve the control of

marine and coastal resources, to reduce damage caused by pollution and natural disasters

and promote  scientific  research.  The observing system was one  of  the  responsible  for

creating the concept of Essential Ocean Variables (EOVs) (von Schuckmann et al., 2016),

which  are  physical  and  biochemical  measurable  properties,  like  currents,  salinity,

temperature,  nutrients,  phytoplankton  biomass,  oxygen  and  others,  that  give  enough

information to describe ocean state (Capet et al., 2020).
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In order to fulfill  all  its purpose,  the implementation of GOOS is being done by the

GRAs (GOOS Regional  Alliances).  There  are  already  13 well-defined GRAs and  two

under  development,  so  that  each  one  consists  of  an  alliance  between  nations  and/or

institutions responsible for developing observations systems at regional and coastal scale

(Malone et al., 2010). In Europe operational oceanography community is represented by

the European Global Ocean Observing System, or EuroGOOS (Capet et al., 2020). Due to

that, GOOS is able to constantly improve and design new observation methods that will

increase spatial and temporal resolutions of sampling and cover new areas which had no

available data yet (Liblik et al., 2016).

Operational oceanography is not made only by a well set observation framework. In its

early stages GOOS was trying to establish a global observation network, while there was

still  a  missing link between collected  data  and assimilation and modelling to  generate

useful information. This is why the Global Ocean Data Assimilation Experiment (GODAE)

was conceived, to evolve oceanography as a research based field to actually an operational

one  (Smith,  2000).  The experiment  enabled  a  routine  access  to  observation  data  from

different sources so they could be used in order to produce timely forecasts. In addition, it

established an information sharing environment  that  assisted the progress  of the ocean

modelling area  (Bell et al., 2009). GODAE was a time determined project that made the

ocean prediction process feasible and practical, so that after its end in 2008 a new group

was formed to continue its work in a long term, the GODAE OceanView (Bell et al., 2009;

Oke et al., 2013).

2.1.3 Operational Oceanography and Blue Growth

Millions of people around the globe depend on the exploitation of marine ecosystem

resources.  Among  the  various  economic  activities  that  can  be  developed,  oceans  are

primarily a source of food, can be used for energy generation, exploration of fossil fuels,

shipping and also for recreation and tourism. Even though it is already a very valuable

business, it is estimated that the ocean economy may still double in the coming years as the

population grows in urban centers close to coastal areas (Howard, 2018).
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Unfortunately,  this  exploitation  of  natural  resources  often  occurs  irresponsibly  and,

therefore, it was necessary to determine an initiative to expand the concept of sustainable

development to ocean economy  (Bari, 2017). Thus, in 2012, during the United Nations

Conference on Sustainable Development, also known as Rio +20, the blue growth term

was created to designate practices that aim at economic growth but that also guarantee the

preservation of the environment for future generations (Burgess et al., 2018). Therefore, it

is a matter of finding the optimum point between exploration and preservation, in order to

reduce environmental risks and ecological scarcity (Lee et al., 2020).

Operational  oceanography  is  closely  related  to  the  socioeconomic  activities  of  blue

growth,  as  it  provides  essential  marine  data  to  them.  This  search  for  sustainable

development causes an increasing demand for ocean knowledge, which in turn is one of

the agents that drives the improvements of operational oceanography. In this scenario, the

continuous expansion process of that area is determining for maintaining the information

supply for blue growth (She et al., 2016). For this reason, EuroGOOS has defined four

priority  development  areas  within  this  systematic  activity  in  Europe for  the  upcoming

years,  namely  ocean  observation,  modelling  and  forecasting  technology,  operational

oceanography of coastal areas and operational ecology (She, 2015).

Coastal zones are of great economic importance for society and are key areas of blue

growth. European coasts are generally densely populated and are therefore responsible for

generating more than 30% of its gross domestic product (GDP)  (She, 2015). Because of

that, it is essential to understand this environment behavior which is submitted to constant

fast  changes and, for that,  it  is  still  necessary to refine the knowledge of the complex

phenomena that takes place in there  (She et al., 2016). With this, it will be possible to

develop  operational  coastal  models  capable  of  generating  value  in  oceanic  data  form,

which in turn will be used to support sustainable economic growth (Capet et al., 2020).

2.2 Numerical Ocean Modelling

Ocean modelling is one of the most important activities developed within the scope of

operational oceanography  (Capet et al., 2020), considering that it is precisely through it

that  it  is  possible  to  generate  data  that  demonstrate  the  aspects  and  behaviors  of  this
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environment. A model consists in the mathematical representation of phenomena, that in

this case are equations to describe the fluid dynamics in oceans. Once a model's governing

equations are determined, they are discretized using numerical methods and transformed

into computational code to advance or iterate the ocean state in time (Griffies, 2006).

The  set  of  mathematical  statements  that  represent  fluid  motion  forms  a  system  of

differential  equations,  which  are  constructed  respecting  fundamental  conservation

principles of physics (Kämpf, 2009). Ocean models frequently use the Eulerian approach,

that consists in the evaluation of the conservation of properties inside a portion of space, or

a control volume, while the water flow goes through it. Therefore, in order to solve the

equations  the  first  step  is  to  discretize  them  in  space,  so  that  they  can  be  applied

individually in each of the control volumes that form the interest region. One of the most

commonly used method to do that is finite volumes (Griffies, 2006). Each control volume

is an element or cell of the mesh constructed for a domain. Thus, a model with higher

spatial resolution has, for the same domain, a mesh formed by smaller elements, but in

greater numbers. Despite generating more accurate data, this implies solving a system with

more equations and that consequently requires greater computational effort (Greenberg et

al., 2007).

The equations that represent the conservation laws are based on the so-called transport

equation,  which  for  an  infinitesimal  cubic  control  volume  delimited  in  the  Cartesian

coordinate system, is defined as (Kämpf, 2009; Versteeg & Malalasekera, 2007):

∂(ρ ϕ )
∂t

+
∂(ρ ϕ u)

∂ x
+

∂(ρ ϕ v)
∂ y

+
∂(ρ ϕ w)

∂ z
=∑ (Sources−Sinks) (1)

In which  corresponds to any intensive property,  the density, u, v and w the velocity𝜙 ⍴

vector components corresponding to the x, y, z axis, respectively. (1) can also be written as:

∂(ρ ϕ )
∂t

+div (ρ ϕ u)=∑ (Sources−Sinks) (2)

On the left side of (2), the first term represents the rate of change in time of  property𝜙

and the second, the convective term, is the flow rate of  that passes through the surface of𝜙
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the control volume. On the right side, the sum computes all sources and sinks that can

cause production or destruction of  within the fluid element.𝜙

The mass conservation principle of an element is expressed by the continuity equation,

obtained from (2) by making the sources and sinks equal to zero and  equals to 1, thus:𝜙

∂ ρ
∂t

+div (ρ u)=0 (3)

The conservation of momentum in the control volume is a direct application of Newton's

second law, which states that the momentum of a body or particle is only changed through

the  action  of  a  non null  resultant  force.  In  ocean modelling  the  forces  that  cause  the

movement of a fluid particle are due to to pressure, viscosity, gravity, centrifugal force,

Coriolis and electromagnetic. Therefore, for each axis of the Cartesian coordinate system,

(2) leads to:

∂(ρ u)
∂t

+div(ρ uu)=∑ F x (4)

∂(ρ v )
∂t

+div (ρ vu)=∑ F y (5)

∂(ρ z)
∂ t

+div (ρ zu)=∑ F z (6)

Equations 3 to 6 are known as the Navier-Stokes equations. They form the governing

equations that describe the movement of the fluid, together with the energy balance and

state  equations,  which  correlate  thermodynamic  properties  and  link  temperature  and

salinity with density. The governing equations are then discretized by a numerical method

in order to be solved after specifying the initial and boundary conditions. Each iteration of

the solution of this system expresses the conservation of properties in each control volume

(Versteeg & Malalasekera, 2007).
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2.2.1 MOHID Modelling System

The modelling system Modelo Hidrodinâmico, or simply MOHID, is a program designed

to solve the governing equations in order to model marine environments. It has a modular

architecture and features to reproduce several physical, chemical and biological processes

of that ecosystem (Janeiro et al., 2014). The model was conceived and is supported by the

Marine  and  Environmental  Technology  Research  Center  (MARETEC)  of  the  Instituto

Superior Técnico (IST) in University of Lisbon, and it is a working tool in many projects

of the research center’s environmental modeling group (Neves, 2007). Its beginning took

place in the 1980s, when numerical modelling in operational oceanography was driven by

the emergence of more powerful computer systems, and up until today new versions are

released regularly.

The  first  version  of  MOHID  was  developed  as  a  two-dimensional  tidal  model,

programmed in ANSI FORTRAN 77, and discretized the governing equations using the

finite difference method. It was commonly used in the study of coastal areas and estuaries.

Eventually the system evolved into a three-dimensional version,  in which Eulerian and

Lagrangian  transport  models  were  introduced  (Braunschweig  et  al.,  2004),  being  the

reference of the latter a fluid parcel that moves along with the flow instead of a control

volume (Kämpf, 2009). As for the vertical discretization, the first 3D version of MOHID

system has implemented a double sigma coordinates to better representing the topography.

However, it was not possible for a single type of vertical mesh to be suitable to the entire

domain and to all influences on water flow, which also vary at each point. In this way,

generic coordinates soon replaced the predecessor, which combines different types to better

accommodate the heterogeneous regions of the domain (2.8) (F. Martins et al., 2001).

Given the application of the generic coordinates, the model became able to solve the

equations for any type of geometry. Therefore, the finite volume approach was introduced,

in  which  the  discrete  form of  the  equations  is  applied  macroscopically  to  the  control

volume of  each cell.  Then,  the model  solves three-dimensional  primitive equations  for

incompressible and compressible flows, in which hydrostatic equilibrium and Boussinesq

approximation are assumed. In temporal discretization, a semi-implicit ADI algorithm with

two  levels  of  time  per  iteration  is  used.  A  more  detailed  description  of  model's

discretization can be found in (F. Martins et al., 1998; F. Martins, 1999).
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Figure 2.8 - Vertical grid division into four
different sub-domains. From: (F. Martins et al.,

2001).

Due to the growing number of users and, specially, the limitations of the FORTRAN

language used in its algorithm, the model had to go through an update process. In this

manner, MOHID code was updated to ANSI FORTRAN 95, which despite not being an

object-oriented language, allowed programming in this paradigm  (Miranda et al., 2000).

This is the moment at which the model assumes the configuration of its current structure:

the modular architecture, so that each module having the functionality of a class object. In

comparison with the previous version, the model took two to three times more CPU time in

the simulations, however the code was much better structured and easier to understand,

becoming much more reliable and protected against errors  (Braunschweig et al.,  2004).

Another great advantage that the use of this paradigm brought was to allow the observation

of processes in a greater level of detail by enabling the simultaneous simulation of nested

models, each one being a new instance of individual classes. These models can then be

used in the downscaling methodology, so that the parent model generates the boundary

conditions for the child models with more refined grids (Leitão et al., 2005).

The  modular  design  is  the  basis  of  MOHID modelling  system.  Each  module  of  the

FORTRAN code represents a class responsible for managing a specific type of information

(Neves,  2007).  Spacial  discretization  is  established  in  Geometry  module,  it  stores  and

updates  in  each iteration  the  shape  of  the  finite  volume.  It  is  also responsible  for  the

division of the water column in sub-domains. Then, the elements geometry information are
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passed to the Hydrodynamic module that actually solves a system of discrete forms of the

equations  3  to 6.  For  a  finite  volume  element  as  shown  in  2.9 and  mentioned

approximations, in MOHID Navier-Stokes equations become:

∂u i

∂ x i

=0 (7)

∂u1

∂ t
+

∂u j u1

∂ x j

= fu2−g
ρη ∂η
ρ 0 ∂ x1

− 1
ρ 0

∂ ps

∂ x1

− g
ρ 0

∫
Z

η
∂ρ '
∂ x1

dx3+
∂

∂ x j

( A j

∂u1

∂ x j

) (8)

∂u2

∂ t
+

∂u j u2

∂ x j

=−fu1−g
ρη ∂η
ρ 0 ∂ x2

− 1
ρ 0

∂ ps

∂ x2

− g
ρ 0

∫
Z

η
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∂ x2

dx3+
∂

∂ x j

( A j

∂u2

∂ x j

) (9)

∂ p
∂ x3

+ρ g=0 (10)

Figure 2.9 - MOHID generic finite volume element
geometry. From: (F. Martins et al., 2001).

In the equations from (7) to (10) ui indicates the velocity vector components referenced

by the axis in 2.9 and η, the free surface elevation. In the right hand side of (8) and (9) the

first term computes the force with Coriolis parameter  f;  the second term represents the

barotropic force produced by gradients in the water height, being ρ the density; third term

is the barotropic force produced by gradients in atmospheric pressure (ps); fourth term is
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the baroclinic force produced by the vertical integral of horizontal density gradients, where

ρ’ is the density’s anomaly; and the fifth term stands for the diffusive forces, where Aj is

the turbulent viscosity coefficients (F. Martins et al., 2001).

Still  using  the  transport  equation,  the  MOHID  system  manages  to  coordinate  the

evolution of properties values in the water column in the WaterProperties module (Neves,

2007). The concentration of a parameter is balanced through advective and diffusive flows,

fresh water discharges, sediment flows, surface heat and oxygen exchanges, among others

internal sources and sinks. With this module it is possible to simulate up to 24 different

properties,  that  in addition to the physical as temperature and salinity,  it  also does for

biochemical  ones  such  as  phytoplankton,  zooplankton,  ciliate  bacteria,  nitrogen,

phosphorus and oxygen. Due to the modular design that brings the features of an object-

orientated programming, new properties can be easily added. The WaterProperties module

uses the Eulerian approach to solve the equations, however there also is the Lagrangian

module,  which can  compute the  evolution  of  the  same properties  with the  Lagrangian

approach.

Processes involving non-conservative properties are handled by other modules, as is the

case of oil dispersion, ecology and turbulence. This last module uses the formulation from

the General Ocean Turbulence Model (GOTM). The system consists, at this moment, of

more than 70 FORTRAN modules, adding up to more than 300 thousand lines of written

code. Some of them require extra information to be executed correctly, they are parameters

passed through a keyword system written in ASCII text format in a specific file for each

module. The set of those files constitute the model setup which is simulated in the MOHID

environment.

The MOHID system has evolved from a simple two-dimensional hydrodynamic model to

a  complex  three-dimensional  support  tool  for  research  and  studies.  In  the  scientific

community, it has already been used to simulate, in several estuaries in Portugal, including

transport  processes,  sediment  dynamics  and  water  quality  (Trancoso  et  al.,  2009),  in

addition to also being used for modelling ocean circulation and oil spills  (Janeiro et al.,

2017). The complexity of the numerical tool led to the development of a graphical user

interface (MOHID GUI), in which it is possible to create and edit the data and directory
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structure  necessary  to  configure  a  set  of  simulations,  and  a  tool  for  visualizing

georeferenced data and results (MOHID GIS) (Braunschweig et al., 2004).

2.3 Python Programming Language

Developed at the Centrum Wiskunde & Informatica (CWI) in Netherlands, by Guido van

Rossum, who remains one of its main authors, Python is a multi platform general-purpose

programming language suitable for lots of different applications. Since its first launch in

the early 90s, all releases are free license and open source  (Sáenz et al., 2002). Its code

consists of numerous versatile modules and presents a clean structure, being consequently

easy to understand and to learn, making it very attractive to new programmers. This is one

of the reasons why Python has an active and fast increasing community of users and also is

one  of  the  most  adopted  programming  languages,  being  widely  used  for  artificial

intelligence, data science and machine learning (Casanova-Arenillas et al., 2020).

Python is a high-level language with dynamic typing, that is, variables declaration at the

beginning of the script are not necessary. Also, it uses a tab indentation to delimit blocks of

code, thus all tasks performed within a repetition cycle or decision command for example

are typed with forward indentation. The code group is then completed when the algorithm

returns to original tab without the need of an end statement  (Van Rossum & Drake Jr,

1995).  Furthermore,  Python is  a  language built  based on the object-oriented approach,

using the most common model of this paradigm, the class-based one  (Perez-Schofield &

Ortin, 2019). One of the great advantages of object-oriented programming (OOP) is the

possibility to create reusable entities by specifying sharing relationships, hence objects are

instances of classes that determine which information they contain, their attributes, and

what  operations  they  can  perform (their  methods)  (Ungar  et  al.,  1991).  According  to

Chambers et al. (1991), two of the OOP's peculiar features are:

Inheritance

The most basic feature of OOP enables code sharing avoiding unnecessary programming

effort, in which a subclass inherits from a super-class or ancestral class any of its attributes

and methods.
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Encapsulation

Restriction of the direct access to some of the object's components, some implementation

details of a class are kept unassessible to the user. In this way it is possible to use a method

without knowing how it internally works, or to make updates to the object without any

other components that use it being affected.

All the data introduced in Python corresponds to classes. A simple variable that contains

text information is an object or an instance of the class str, that transforms its value into a

string, which in turn has its attributes to define and its methods to modify it (J. P. Martins,

2012). 

Regarding data structures, there are three basic types available in Python: tuples, lists and

dictionaries. The first one is an immutable sequence of elements separated with comma

and inside parentheses that resemble the vector idea in math. Among other applications,

tuples can be quite handy when the user wants to keep a set of values that will be used

several times along the script, since they consume less memory space than the others. Lists

are very similar to the last, but are defined between brackets, have more methods available

to modify  their  elements  and  are  commonly  used  as  matrices.  The  last  type  are  the

dictionaries, created between curly brackets, and unlike lists and tuples its elements order

are not important since they are organized in pairs. They can commonly be found in other

programming  languages  in  what  called  associative  arrays  or  memories.  The  pairs,

separated by commas, are formatted as  key:value in which keys cannot be repeated and

values may assume any other data structure or variable. A certain value is accessed when

the corresponding key is requested.

Python features  a  library of  built  in  versatile  modules  that  allow quickly creation of

sophisticated algorithms for all kinds of tasks. With the import statement plus the name of

the desired module it is possible to summon tools for files edition and handling, operative

system commands, time and date manipulation, parallel script execution and a whole lot

more  (Oliphant,  2007).  Through  additional  download  of  external  modules,  Python

computational  power can be intensely  increased,  such as  with  SciPy project,  short  for

Scientific  Python,  which  contains  a  collection  of  open-source  packages  for  science,

engineering and mathematics (Oliphant, 2006). One of them is an elegant and efficient way
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to work with large datasets in matrix of any given dimensions, instead of using lists, widely

used in academia, the NumPy N-dimensional array (van der Walt et al., 2011).

To help develop their applications, programmers often rely on the growing community of

Python users, recognized for their fast and useful responses (Oliphant, 2007). This network

allied with its characteristics make Python one of the most widely used languages today,

especially in the scientific domain in which most users have decided to adopt it as the main

tool in replace of other major commonly used software (Casanova-Arenillas et al., 2020).

Therefore, Python is already a recognized instrument in environmental modelling and is

being used as a method in many published researches, such as: a pre- and post-processing

tool  for  the  Precipitation-Runoff  Modeling  System (PRMS)  (Volk  &  Turner,  2019),  a

networked resource system simulators support library (Knox et al., 2018), a planning and

analysis  library for water  resource systems  (Tomlinson et  al.,  2020),  a  greenhouse gas

emissions visualization toolkit (Wohlstadter et al., 2016), an application to obtain shoreline

position  time-series  (Vos  et  al.,  2019),  uncertainty  analysis  for  environmental  models

(White et al., 2016) and several others.

Similar to what is proposed in this work,  Marta-Almeida et al. (2011) used Python to

develop an engine to  automate forecast  simulations  for the Regional  Ocean Modelling

System (ROMS). ROMS has its code written in Fortran like MOHID. The programming

language chosen has  the necessary tools  to  perform the most  essential  task during the

forecast cycles, which is the control of model inputs and outputs. Thus, according to the

authors, in a single cycle the program must perform the following fundamental steps:

1. Verify the availability of required external forcing data, that could be information

regarding tides, river or other fresh water discharges, atmospheric surface heat and

momentum fluxes.

2. Interpolate data to model grid.

3. Check for the initial  conditions which are obtained from the restart  files of the

previous day cycle.

4. Write model input files.

5. Run simulation.
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6. Manage model outputs and prepare restart files to the next forecast cycle.

Since daily simulations can easily produce many gigabytes of data, it  is important to

create  a  cleaning  module  that  will  erase  not  necessary  input  or  output  files  between

forecast cycles. In this way, the computer that performs the simulations will always have

free disk space,  hence the model database must be built  in another location or storage

devices.

According to Marta-Almeida et al. (2011), keeping forecast cycles in constant operation

involves  dealing  with  several  different  tasks,  which  can  cause  the  code  to  have  low

performance.  Despite  this,  Python still  is  a good option for ocean modelling,  because,

besides all  its built-in properties, it  has tools to handle common data formats in ocean

atmospheric  sciences  such as  HDF5,  GRIB and NetCDF,  support  for  OPeNDAP,  tidal

harmonic analysis software and scientific visualization resources.
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3 METHODOLOGY

Coastal  regions are  places  of quick changes  and are subject  to  most  of the dynamic

changes caused by winds, waves, tides, sediment transport, human activity. Therefore, it is

necessary to generate new knowledge to integrate these and other interactions of coastal

hydrodynamics  in  order  to  produce  operational  models  capable  of  providing  reliable

predictions of the ocean state  (She et al., 2016). Due to  the high variability of the ocean

processes, coastal models generally run simulations for not too many days at a time and

aim to represent detailed information in a limited domain but with a high resolution grid

(Send, 2006).

The Algarve  Operational  Modelling and Monitoring System (SOMA) arose from the

need  to  produce  a  high-resolution  operational  model,  with  the  purpose  of  providing

predictions of the sea state and the trajectory of oil spills on the Algarve coast (Janeiro et

al.,  2017).  The authors wanted to investigate the efficiency of downscaling methods in

determining the sources of oil leakage by combining backtracking simulation with vessel

trajectories and using lagrangian particles. SOMA is a validated model and is enabled to

make predictions of the hydrodynamic behavior and water properties of the implemented

region. In addition to traditional calibration and validation, an operational model must be

continuously  assessed  dynamically  and  this  is  also  being  done  for  SOMA under  the

OCASO project (Lorente et al., 2019; IP, 2006). For those reasons, it was used as the basis

for the creation of the simulation management tool proposed in this work.

SOMA is built within the environment of MOHID modelling system, which due to its

architecture is a suitable and robust tool for downscaling methods  (Janeiro et al., 2017).

The first version of the operational model consisted of two grid levels: the first one had a 3

km resolution  grid  and hybrid  vertical  spatial  discretization,  being  11 layers  of  sigma

coordinates at the first 20 m of depth and 35 in unequally spaced Z coordinates to the

bottom; the second level presented the same vertical profile of the first, but with horizontal

resolution of 1 km. Simulation step time was of 30 and 15 seconds for the first and second

levels  respectively.  The communication between the levels  was performed by the flow

relaxation scheme (FRS) method. In 3.1 the geographical location of the two grid areas is
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shown, as well as of the  in-situ observation systems used for the model validation and

calibration.

Figure 3.1 - SOMA levels and location of in-situ observation systems. From: (Janeiro et
al., 2017).

A different version of the SOMA system was used to build the SMS-Coastal. The main

change presented by the current version of the operational model are the  inclusion of an

additional mesh level and an increase of resolution. 

The original SOMA model had only two nested levels, both 3D where the first level was

forced at its boundaries by a combination of hydrodynamic and tidal forcings. This was

possible because the data provider was the IBI model that also solves the tide explicitly. In

this version the data provider was changed to the Mercator Ocean analysis and forecast

provided by Copernicus Marine Environment Monitoring Service (CMEMS). This new

model do not solve the tide explicitly. Due to that, an additional grid level was added above

the previous two levels. This new level is a simple 2D hydrodynamic model, forced by the

FES2012 global tidal solution and has as its single purpose supply the tidal conditions to

the lower levels.
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The increase in resolution was applied in the first 3D level to improve the quality of the

results. Numerical experiments have shown that an increase from the previous 3 km space

step to 2 km leads to significant improvements in the solution. Evolution of computational

capacity now allows the solution of this 2 km grid in an acceptable amount of time. 3.2

shows the representation of the present bathymetry for levels 2 and 3 of the model.

The operationalization of SOMA consists in two types of simulation cycles, daily and

weekly runs.  The forecasts  are  obtained from the execution of the first  type,  which in

addition to the external forcing data, also need the initial condition files generated in the

previous day's cycle. As initials conditions start to degrade due to the sequence of daily

runs, a weekly run is done to start a new solution of the model to provide fresh restart files.

Until the model is able to run at full speed, weekly cycles are divided into two stages with

gradual increase of step time to prevent simulation instability.

Figure 3.2 - SOMA current bathymetry.

The diagram shown in 3.3 demonstrate the simulation cycles processes. Assuming a four-

day forecast, a new daily run starts (blue ribbon in the figure) and, after a day of simulation

time, the model data has instructions for MOHID to write the initial condition files for the

next day simulation (red ribbon). After seven daily cycles, a weekly run (green ribbon) is

executed in hindcast mode to provide the initial conditions for the eighth day simulation. In
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that eighth day the weekly cycle restart files should always take priority over the daily

simulation files that runs in parallel.

For external forcing the model uses daily mean physical properties of CMEMS Mercator,

and  as  for  atmospheric  data,  from  Skiron  forecast  system  provided  by  Atmospheric

Modeling and Weather Forecasting Group of The National and Kapodistrian University of

Athens. These sources will constitute the first external data that SMS-Coastal will be able

to process, which in turn will have continuous updates to add other sources to its library.

Thus,  the  system downloads  necessary  files  and  conduct  conversion  and  interpolation

operations performed by the MOHID supporting tool ConvertToHDF. In this way,  SMS-

Coastal main body will be divided into two basic layers, one to download and process data

from external sources and the other to manage simulations.

Figure 3.3 - Simulation cycles diagram.

SMS-Coastal was designed to read a specific set  of folders,  which was based on the

construction of a project in MOHID GUI, as shown in  3.4 for SOMA. Each level of the

model contains the MOHID modules reading data files for each simulation cycle, so that

coldstart  and  hotstart  in  the  figure  represent  the  two  stages  of  weekly  run  mentioned

before.

In order to load a simulation with MOHID system, its executable needs to know the

hierarchical structure of the nested models and which modules to activate.  SMS-Coastal

will then give the information regarding levels arrangement by writing the “Tree.dat” file

(3.5)  in  the  working  directory  of  the  father  domain  in  the  beginning  of  a  simulation

process. The chosen MOHID modules and its correspondent data files are specific for one
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model and are defined in “Nomfich.dat” file (3.6) with keywords method. However, SMS-

Coastal must ensure that the correct one for each run is placed in the working directory of

each  level.  MOHID  must  be  launched  when  the  operating  system  current  working

directory coincides with that of the father domain, and this is why all computational paths,

as indicated in the figures, are written using relative paths, based on the "father" directory.

Finally,  SMS-Coastal will be the one in charge to generate the “Model.dat” file (3.7) for

each  run  and  level,  which  specify  to  MOHID  information  related  to  time,  such  as

simulation initial and final dates, iteration seconds and the time zone.

Figure 3.4 - SOMA's built in MOHID GUI.

Figure 3.5 - Hierarchical structure instructions for
three nested models.

The  most  basic  operations  performed  in  each  cycle  type  by  the  SMS-Coastal were

delimited as shown in the diagram of the 3.8, based on the essential tasks of a simulation

manager defined in chapter 2.3. Firstly, it shall download and process external oceanic and

atmospheric data independently, so that when there is more than one source defined for the

same type of data, they will serve as redundancy in the event of failure in the operation of

one of them. Secondly, it will generate and control the simulations through the handling of

files and folders. For the both layers the program should be able to send e-mails to report
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their  status.  Lastly,  it  should  conduct  operations  to  format  the  simulation  results.  3.1

specifies the vital Python modules used to build SMS-Coastal code so it could accomplish

all its functions.

Figure 3.6 - MOHID modules instructions for the father domain of SOMA
system.

Figure 3.7 - Simulation time instructions.
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Figure 3.8 - Simulation cycles essential operations sequence.

Table 3.1 - Essential Python modules in simulation manager.

Python module Library type Function

os Bult-in operating system dependent functionality

Shutil Bult-in high-level file and directory handling

datetime Bult-in manipulate dates

glob Bult-in work with path names

subprocess Bult-in spawn new processes

threading Bult-in open modules in different threads

numpy External operations with multidimensional array

h5py External reading and writing HDF files

netCDF4 External reading and writing NETCDF files

gdal External reading GRIB files
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4 RESULTS

4.1 Main data structure

This  section presents  the structure of directories and  files created specifically  for the

SMS-Coastal operation. In order to be managed by the system, a model must  attend the

specifications of this structure. The model data files, those of external forces, SMS-Coastal

and MOHID executables and all others necessary to run a simulation must be placed in a

single  folder  identified  as  the  project  directory.  The  name  of  this  folder  should  be

conveniently the same as the project, since SMS-Coastal may use it in some processes to

address  files  and reports.  During  operations,  several  paths  are  treated  relatively to  the

project directory. For that reason, all others inside the main project folder must have a very

well-defined standard format. Thus, the project folder contains the following set of folders

and files:

• FORC: stores hydrodynamic and atmospheric external forcing data;

• MOHID:  location  for  MOHID  executable,  its  libraries  in  dll  format  and  the

supporting tools Convert2Hdf5 and HDF5Extractor.

• Sim_Daily: daily simulations directory;

• Sim_Weekly: weekly simulations directory;

• SIM_Manager.exe: SMS-Coastal executable for windows operating system;

• init.dat: data file with user inputs for the system.

There are two simulations folder, one for each cycle defined in the methodology, weekly

and daily runs,  and both of them have the same internal structure.  Furthermore,  SMS-

Coastal will create the "FORC" folder if it  does not exist,  as well as its entire internal

content in the forcing layer.

As this structure was based in the same  one created by MOHID GUI, each simulation

directory contains the folder of the first level and “General Data” one in the model set up.

This folder is used to store files for bathymetry, tide data, initial conditions and time series

location. Bathymetry files must be named in the pattern “BATIM_LVi”, in which “i” is an
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integer  corresponding  to  the  level.  Moreover,  SMS-Coastal will  store  here  processed

external  forcing  data.  It also  creates  here  a  third  folder,  “Operations”,  to  place  all

simulations outputs such as HDF5 and log files, as well as formatted results to build the

model database, files of a failed run and, in case of SOMA, results converted to NetCDF4

format.

Still following the structure logic of MOHID GUI, each level folder contains three items

plus the directory of the subsequent level, if any. Two of the items are for exclusive use of

the MOHID executable and of the  SMS-Coastal operations, therefore do not require any

action on the part of the user. They are the “exe” folder, which is the working directory of a

domain  and  holds  files  containing  information  of  computational  paths  to  conduct  the

simulation, and “res” for MOHID outputs of that level. The last one, “data”, is the folder in

which  the  set  of  data  files  with  the  user-defined  parameters  for  the  resolution  of  the

governing equations by MOHID is located. 

The scheme in 4.1 shows the configuration of folders and files for a generic project. Any

information regarding paths must be written, in each data set, relative to the "exe" folder of

the model’s first level. In addition, in order for MOHID to find the forcing data files during

a simulation, the following naming standard must be followed:

• HYDFORC_LVi.hdf5  and  ATMFORC_LVi.hdf5:  respectively  ocean  and

atmospheric data for the whole grid, in which “i” is an integer of the corresponding

level;

• HYDFORC.dat  and ATMFORC.dat:  respectively ocean and atmospheric  data  in

time series for a single point of the grid.
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Figure 4.1 - Scheme of a generic project structure.

4.2 User inputs

In  the  same way that  MOHID reads  parameters  for  the  resolution  of  the  fluid  flow

equations,  SMS-Coastal reads  user's  inputs  through  a  system  of  keywords  written  in

init.dat file at project directory. Some of those are indispensable, so the first task performed

by  the  program is  to  check  if  all  of  them have  been  correctly  entered,  otherwise  the

execution is interrupted. The keywords can be classified into three types: mandatory (4.1),

optional  (4.2),  and  dependent  mandatory  (4.3).  The  incorrect  typing  or  the  lack  of

mandatory words aborts the progress of the program and may also cause improperly stops.

In  4.1,  “OPTYPE”  must  be  “1”  so  SMS-Coastal conduct  a  simulation  management

operation. Since in the optics of the system there are two types of models, one in which the

first level is part of the forecast data set and another in which it only serves to generate the

hydrodynamics for the interior levels, “MODSET” can assume only two values: “1” and

“2” respectively. The keyword "RESTART" takes on the value in Python that corresponds

to the day of the week desired to start a new cycle of solutions, so that Monday is "0",

Tuesday is "1" and so on. The “i” in “DTLVi” is the integer to the corresponding level. It is

defined by an ordered list of integers which are the time range in days for each stage in the

weekly run cycle and the last one for daily run. SMS-Coastal validates if every “DTLVi”

entered have the same length and if there is one for each level as in “LEVELS”.
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Table 4.1 - Mandatory keywords.

Keyword Description Format Accepted Values Example

OPTYPE
select operation type for the tool

to run
integer 1 1

MODSET model configuration integer 1 or 2 2

LEVELS number of levels of the model integer ≥ 0 3

RESTART
week day to start a new solution 

cycle
integer from 0 to 6 5

GMTREF GMF reference of the model integer -- -1

TRANGE
range in days ordered for each 

stage
list of integers > 0 2 4 5

DTLVi

step time in seconds for the 

iterations of each stage of each 

level

list of integers > 0 5 10 15

Table 4.2 - Optional keywords.

Keyword Description Format
Accepted

Values
Default

OPDATE operation date date YYYY MM DD 2020 07 30 today’s date

FMT
format output results to 

populate database
logic 1 or 0 0

PDE
format output results to 

Puertos del Estado
logic 1 or 0 0

MAILTO
e-mail address to send 

reports
string -- None

HYDSRC
external sources for ocean 

data
list of strings -- None

ATMSRC
external sources for 

atmospheric data
list of strings -- None

HYDTS
set external ocean data 

output as time series
logic 1 or 0 0

ATMTS
set external atmospheric 

data output as time series
logic 1 or 0 0

Except for “HYDSRC” and “ATMSRC” in  4.2, all optional keywords have a standard

value if they are not inputted by the user. The ones with logic format are for switching on

and off subroutines inside the program, with “1” and “0” respectively. When “OPDATE” is
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not passed, the tool assumes that operation date is today. The program will run even if the

user does not specify sources for external data,  it  will  not process the forcing layer or

search for forcing files in the simulation one.

Whatever sources for external data are specified, it is necessary to input the grid limits in

“LATLIM” and “LONLIM” (4.3). In this way, the forcing layer is going to download and

interpolate data for the area formed by those limits. The format of these keywords is a list

of two real numbers, or floats, that can be out of order and have decimal separator of “,” or

“.”.  If  one  of  the  strings  in  “HYDSRC”  is  “Mercator”,  it  must  be  indicated  in

“MERC_CRED” the user and password to login into CMEMS database so the tool is able

to download the files. Last but not least,  ocean and atmospheric external data standard

output format is a HDF5 file, nonetheless this can be changed by enabling "HYDTS" or

"ATMTS". By doing so, the location of time series must be defined in "TSLOC", first the

latitude value and then the longitude.

Table 4.3 - Dependent mandatory keywords.

Keyword Description Format Example Default

LATLIM
grid latitude limits for 

external forcing process
list of floats 40.0  35.5 None

LONLIM
grid longitude limits for 

external forcing process
list of floats -5.0  -12.0 None

TSLOC
time series location for 

external forcing process
list of floats 38.8  -7.5 None

At the end, all the inputs read from init.dat file are converted into a Python dictionary. 4.2

shows an example of a keywords set up to manage SOMA simulations.
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Figure 4.2 - SOMA init.dat set up.

4.3 Simulation operation

This section presents the diagrams that represent the programming logic of the algorithm

implemented in  Python to execute the procedures related to  a simulation management.

These  diagrams  are  simplification  of  the  code,  in  a  way  that  only  the  most  relevant

processes were described. The full code can be consulted in the Appendices section. The

patterns of the shapes used in the flowcharts can be interpreted as indicated in the 4.4.

The first task that SMS-Coastal performs is to read the inputs from the init.dat file, both

of them located inside the project directory. After identifying that the keyword "OPTYPE"

has a value of "1", it initiate the sequence of operations that controls the execution of the

forcing and simulation layers. When SMS-Coastal starts a new solution cycle, by the day

indicated in the keyword "RESTART", it divides itself into two threads, one to operate

weekly run and the other for the daily one, which are carried out concurrently. On the other

days of  the  week,  the  simulation layer  consists  only of  the  daily  cycle.  Despite  being

different operations, within the simulation generation and control blocks of the 3.8, the two

cycles make use of the same methods, available when each one creates an instance of the

class “Simrun” (4.3).
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Table 4.4 - Description of the shapes adopted.

Shape Description

start/end of a module or a sequence of operations

flow direction

process or operation

decision

“T” for a true statement and “F” for false

beginning of a fixed repetition cycle

As for the forcing layer, it will be carried out in two stages. The first one is executed

before any simulation cycle, to process at least one of the sources inserted in "HYDSRC"

and in "ATMSRC". Therefore, as soon as there is available data, the program moves to the

simulations  layer.  The  second stage  starts  only  after  the  end  of  the  daily  run,  just  to

download unprocessed sources in the first  stage.  That sequence was represented in the

diagram in the 4.3.

Figure 4.3 - Main processes of the simulation management.

The  diagram  in  4.4 shows  the  implementing  logic  of  the  Python  algorithm  for  the

simulation operation. The abbreviations WR and DR respectively indicate the weekly run
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and  daily  run  cycles.  The  acquisition  of  hydrodynamic  and  atmosphere  data  are

independent procedures between them, thus  to avoid delay of  the simulation cycles the

program splits into more than one thread in the forcing layer first stage. Formatting results

for database and their conversion to NetCDF are represented by outputs conversion block.

Figure 4.4 - Simulation operation algorithm logic.

4.3.1 Daily run cycle

The operations conducted in a daily run cycle are summarized in the diagrams of figures

4.5 and 4.6. SMS-Coastal first action is to create an instance of the class "Simrun", hence

all the green blocks in the figures represent a series of procedures performed by that class

methods, which are, in the order they appear, to:

• Remove previous simulation external forcing data and all contents from “res” and

“exe” folders for each model level.

• Create or verify “Operations” directory and its inside structure, as well as  SMS-

Coastal log file.

• Write “Model.dat” file in “data” folder of each level based on the information about

forecast range and iteration step time, “Tree.dat” in “exe” of the first level, copy

“Nomfich.dat” to that folder, and then run MOHID executable.
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• Check  if  the  cycle  has  finished  correctly  and  if  so,  copy  forecast  outputs  to

"Operations". Simulation success is determined by the content of MOHID log run

file and the availability of restart files generated for the next day cycle.

Figure 4.5 - Daily run cycle operations part 1.

In  4.5,  “HYD  data”  and  “ATM  data”  blocks  denote  the  instant  when  SMS  -oastal

searches  respectively  for  external  oceanic  and  atmospheric  data  in  “FORC” directory,

given the information passed in "HYDSRC" and "ATMSRC" keywords. For each of the

sources in one input, the algorithm chooses to use the file that has the most recent data,

giving priority to the order listed by the user. Soon after that, there is an adjustment of the

forecast days range, as shown by the first block of  4.6, by selecting the minimum value

between the one entered in “TRANGE” and the maximum for each of the external forcing

files chosen.

SMS-Coastal entries a record in its log file inside "Operations" folder before the daily

module ends. It writes the information about whether the simulation succeeded or not. That

entry consists of the simulation date, the success or error code plus the time and date of the

registration,  e.g.  “2019-05-12  ERR03  2019-05-13_00:12”,  which  means  that  the

simulation of may 12th failed at 00:12 of the next day.  4.5 shows the codes used by the

management system. Additionally, all “log entry” blocks in figures  4.5 and 4.6, in which
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this operation takes place, SMS-Coastal attempts to send a notice if an email is defined in

“MAILTO” keyword, which may also contain MOHID execution logs attached.

Figure 4.6 - Daily run cycle operations part 2.

Table 4.5 - Simulation layer log codes.

Code Description

1 simulation success

ERR01 restart files not found

ERR02 external ocean data not found

ERR03 external atmospheric data not found

ERR04 MOHID log not found

ERR05 simulation stopped unexpectedly

ERR06 failed to generate restart files to the next run

WARN01 used outdated external ocean and atmospheric data

WARN02 used outdated external ocean data

WARN03 used outdated atmospheric data

4.3.2 Weekly run cycle

The processes sequence performed in the weekly simulation cycles has some similarities

in  relation  to  the  daily  run,  as  can  be  seen  in  the  diagrams  in  figures  4.7 to  4.9.  As
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mentioned earlier, the weekly cycle also instantiates an object of the class “Simrun” to

have access to its methods. However, there is no need to search for restart files before

external forcing data check (4.7), considering that in weekly run a new solution cycle starts

from initial conditions determined by the user in the model data files inside “data” folders

of each level.

It is also noted in  4.8 that in weekly run, shortened to “WR”,  SMS-Coastal commands

the execution of more than one simulation,  which are the stages of the model  startup.

Except for the last element in the keyword “TRANGE”, which is the value of days range

for  the  forecast  simulation,  the  number  of  stages  is  determined  by  the  quantity  of

components in that input. Therefore, before the beginning of simulation cycles, hindcast

dates ranges are calculated based on the value indicated by each “TRANGE” element. For

every successfully completed stage the tool attempts to send a notice to the e-mail defined

in “MAILTO” and, in case of a failure of one of them, the whole execution is aborted.

Figure 4.7 - Weekly run cycle operations part 1.

42



Figure 4.8 - Weekly run cycle operations part 2.

Considering  that  in  a  weekly  run  a  hindcast  of  several  days  is  performed (3.3),  the

execution of all stages may take more than one day to complete. This means that the last

stage restart files can be produced with a delay that will make it impossible to use them in

the daily simulation cycle. For this reason, the program generates an additional simulation

stage (4.9), with the same data and configuration of a forecast run, but with an adjustment

in days range, spanning from the date in which the previous stage has finished to the next

daily cycle,  in  a way that  the fin  files  should be available  before the  next daily cycle

begins.

Figure 4.9 - Weekly run cycle operations part 3.
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4.3.3 Forcing layer

The forcing layer has the function of coordinating the execution of the specific operations

of each source entered in the keywords “HYDSRC” and “ATMSRC”, developing actions

in two phases as shown in  4.3. In the first one, the list of oceanic or atmospheric data

sources is scanned according to the diagram in the  4.10. The specific processing module

for each source is executed considering the order inputted in each keyword. For a single

data type, only one of the specific processes needs to be successful for the first stage to

end, that is, SMS-Coastal will process the first data found for the listed sources. It will then

returns to the simulation operation course (4.4) a list of the sources from which it was not

necessary to try downloading. If none of the specific operations finish successfully, the

first stage will return an empty list and the error corresponding to the lack of data will be

identified in the simulation layer, as explained in item 4.3.1.

Figure 4.10 - Forcing layer first stage.

The second stage of the forcing layer (4.11) is launched after the execution of a daily run

cycle and of any outputs formatting operation when applicable. Simpler than the first, it

receives  the list of  not downloaded oceanic and atmospheric sources from the first stage

and downloads the remaining data. In addition, as there is no need to perform conversion

and  interpolation  operations,  SMS-Coastal performs  an  update  in  the  inputs  that  each

specific module receives to disable these features. Both phases are executed if a source list
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has no elements, but each one will be finalized before entering in their respective repetition

cycle.

Figure 4.11 - Forcing layer second stage.

Due to the particularities of each external data source, it was necessary to build a module

with the set of specific operations for each one. However, these modules have a similar

processing logic, which can be delimited by the following items:

1. Check structure

Each module checks folders and files structure for the respective source, that  will be

located inside "FORC" in the project directory. When necessary, SMS-Coastal creates the

set  of  folders  that  will  be  used  in  the  subsequent  processes,  which  are  the  folder  for

download,  conversion,  interpolation,  simulation  data  storage  and  for  downloaded  files

backup.

2. Data cleaning and backup

SMS-Coastal removes the outputs from the previous run, namely from the conversion

and interpolation folders. For sources whose provider has long-term databases, the files in

the  download  folder  are  also  deleted,  otherwise  they  are  automatically  moved  to  the

backup folder. Within the simulation data storage,  SMS-Coastal maintains a file database

of one week for HDF5 formats and one month for time series.
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3. Wait data availability

SMS-Coastal pauses if launched before the availability of data from the sources selected

in "HYDSRC" or "ATMSRC". Each supplier has a specific schedule for uploading their

data, and that is why this information is included in each source specific module.

4. Download

The download operation has the most specific processes for each source. In SOMA’s case

data from Mercator and Skiron are used.  For the first  one,  it  is  necessary to have the

“motuclient” Python module installed so that it can be called by the program to extract the

information from the CMEMS database. As for Skiron data, they are downloaded from an

FTP repository, by using built-in Python libraries.

5. Conversion

The conversion is carried out to transform the downloaded files into the HDF format,

which is the native format of MOHID. SMS-Coastal conducts a conversion operation using

the Convert2Hdf5 support tool for Mercator data in NetCDF files. As for Skiron GRIB

files, it uses the “gdal” external module to read the datasets and then writes them directly

to an HDF output using the methods available in “h5py” module.

6. Interpolation

After the conversion, the outputs go through the interpolation process done again by the

Convert2Hdf5  tool,  but  controlled  by  the  each  specific  source  module.  Then,  the

interpolated files are copied to another folder with a name pattern of “HYDSRC_LVi_

YYMMDD.hdf5”  for  oceanic  data  and  “ATMSRC_LVi_YYMMDD.hdf5”  for

atmospheric, where "i" is the number of the level to which the data was interpolated, "YY"

the year in two digits, "MM" the month and "DD" the day, that is, the processing date of

the  datasets  recorded in  that  file.  In  the  simulation  layer,  the  forcing  data  is  searched

according to the date recorded in the file name, which is copied to "General Data" folder

changing the name to the standard specified in item 4.1

If  the  forcing  format  is  changed  to  time  series,  by  attributing  “1”  to  "HYDTS"  or

"ATMTS" keywords, the program do not go through conversion and interpolation steps and

writes the datasets information, obtained directly from the downloads reading, in a “dat”
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file.  The  simulation  files  name  pattern  is  changed  to  “HYDSRC_YYMMDD.dat”  for

oceanic data and “ATMSRC_YYMMDD.dat” for atmospheric.

4.3.4 Formatting outputs

At the end of a successful daily simulation cycle, if the user had defined “1” for the

keyword “FMT”, SMS-Coastal initiates the results formatting module, which will generate

the files to populate the local database. The implementing logic of this module algorithm is

expressed by the diagram of 4.12.

Figure 4.12 - Simulation output formatting module operations for model database.

One of the inputs of the formatting module is the folder in “Operations” directory that

holds the daily run results to be reshaped. Then, the first thing it does is to create the date

folder, inside the module standard output directory also located in “Operations”. 

The  number  of  iterations  is  based  on  the  information  given  in  “MODSET”  and

“LEVELS” keywords. If  the first  level of the model is  configured just  to generate the

necessary hydrodynamics for child models, this module will process only the outputs from

the second level and further ones.
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Next, within the repetition cycle of 4.12, the program creates a folder for the current level

inside of the date one and copies HDF5Extractor to it.  Then  SMS-Coastal executes the

MOHID supporting tool for gathering a group of datasets of the same output time and

write them in a single HDF5 file, doing this until there is data for only the first day of

forecast. This is done firstly for the hydrodynamic file and then to the water properties one.

In the specific case of SOMA operationalization, it is also possible to convert the forecast

results  to  the NetCDF format,  which are  one of  the  products  of  OCASO project.  The

algorithm of the module responsible for this operation, represented in the diagram of the

4.13, is activated by assigning the value “1” to the keyword “PDE” in the SMS-Coastal

initialization file. This module also uses as input the folder containing the daily run outputs

and excludes from the conversion the files of first level, if “MODSET” is equals to “2”.

Figure 4.13 - Simulation output formatting module operations for OCASO
project.

After  the setting up,  OCASO formatting module iterates through the outputs of each

level. In the repetition cycle, it reads the datasets from hydrodynamic and water properties

HDF5 files for the whole bathymetry, 3D datasets in  4.13. Then, it calculates the daily

means and write one NetCDF file for each forecasted day. Secondly, it reads  bathymetry

top layer datasets only, from surface HDF5 files, calculates its hourly means and writes one

NetCDF for each forecasted hour.
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Each type of data sets, surface and three-dimensional, had to be handled in a unique way.

For this reason, an auxiliary class was created to instantiate a tool-object in each iteration

of the 4.13, which contains methods suitable to both types and others specific to deal with

each one.  As the diagram in  the  figure  is  a  simplification of  the  algorithm,  that  class

architecture can be consulted in the codes of the Appendices section. Lastly, when all files

in the NetCDF format are generated, they are uploaded to an SFTP repository, so that they

can be accessed by other collaborators of the OCASO project.

4.4 Failures statistics

SMS-Coastal first version was launched on July 7th 2019 and since then kept SOMA

operational. Until June 30th 2020, the system coordinated 68 weekly runs and 371 daily

runs, totaling 439 executions of the simulation layer.  The simulations are running on a

server computer, within Windows 10 Enterprise 64-bit operating system, with availability

of 10 out of the 20 cores of the Intel Xeon Gold 6138 processor, 9.76 GB of RAM and an

exclusive 450 GB data storage space. 4.6 shows the failures computed in the program log

file for those executions and 4.7 the proportion of these failures related to total runs.

Table 4.6 - Failures in simulation layer.

Failures
Successful

runs

Weekly

run

Daily

run

Total

failures

Code errors Yes 3 8 11

Manual emergency stops Yes 2 7 9

Executions terminated by MOHID No 8 11 19

Insufficient virtual memory No 3 4 7

Restart files not found No 0 2 2

Totals 16 32 48

Table 4.7 - Simulation layer failures proportion.

Failures % failures % total runs
% unsuccessful

runs

Code errors 22.9 % 2.51% 0.00 %

Manual emergency stops 18.7 % 2.05 % 0.00 %

Executions terminated by MOHID 39.6 % 4.33 % 4.33 %

Insufficient virtual memory 14.6 % 1.59 % 1.59 %
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Restart files not found 4.2 % 0.46 % 0.46 %

Totals 100 % 10.9 % 6.38 %

As for the forcing layer,  SMS-Coastal did a total of 834 executions, so that it was 434

runs of the Mercator's specific module and 400 of Skiron's. 4.8 shows the failures of these

modules that the management system was able to point out in the log files of each source.

Table 4.8 - Failures in forcing layer.

Failures Mercator Skiron
Total

Failures
% failures % total runs

Code errors 11 9 20 0 0

Download error 82 37 119 0 0

Interpolation error 4 11 15 0 0

Reading files error 0 4 4 0 0

Totals 97 61 158 100 % 0

The failures evaluated in the last two tables correspond to:

• Code error: SMS-Coastal crash caused by poor programming of a new module or in

a code update.

• Manual emergency stops: execution manually aborted by the user.

• Executions  terminated  by  MOHID:  SMS-Coastal recognizes  that  the  MOHID

executable unsuccessfully ended, due to model instability, lack of external forces,

or anything else presented in MOHID execution log.

• Insufficient virtual memory: specific case in which MOHID does not find enough

space in the computer's memory to continue its execution.

• Restart files not found:  SMS-Coastal was unable to prompt a daily run cycle, in

simulation layer, due to the lack of restart files.

• Download error: failure encountered during specific download processes for each

external source of oceanic and atmospheric data.
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• Interpolation  error:  failure  computed  by  Convert2Hdf5  supporting  tool  when

performing an interpolation process of external forcing data.

• Reading files error: failure caused when opening external force file in read mode.

4.5 SOMA Outputs

At the end of each daily simulation cycle,  SMS-Coastal copies the files containing the

forecast data to the “RES” folder within “Operations”, becoming this way available to be

viewed and analyzed. The following figures, constructed by MOHID Studio software from

Action Modulers, illustrate some of the data available in that folder that were obtained

during SOMA management by SMS-Coastal. In all of them the region with the highest

resolution, which is the model level 3, is delimited by a rectangle and the black arrows

indicates velocity vectors.

4.14 shows the map containing the  predicted water velocity at the surface on July 18th

2020. For the same day, 4.15 and 4.16 show the temperature forecast for the surface and at

100 meters deep respectively. As a way of comparison,  4.17 contains the velocity,  4.18

and 4.19 the temperature information, but for  June 19th of the same year. It is noticeable

through the figures the change in water behavior between the indicated months. In June it

is possible to observe a periodic phenomenon that occurs on the Portugal west coast and

extends to the Algarve, which is the resurgence of deep and cold waters from the bottom of

the ocean to the surface, also known as upwelling (Relvas, 2002).
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Figure 4.14 - SOMA surface velocity forecast in July 18th.

Figure 4.15 - SOMA surface temperature forecast in July 18th.
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Figure 4.16 - SOMA 100 meters depth temperature forecast in July 18th.

Figure 4.17 - SOMA surface velocity forecast in June 19th.
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Figure 4.18 - SOMA surface temperature forecast in June 19th.

Figure 4.19 - SOMA 100 meters depth temperature forecast in June 19th.
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5 DISCUSSION

Since  the  launch  of  SMS-Coastal  first  version  for  the  operationalization  of  SOMA

system, several improvements have been implemented in its code, new modules have been

added and others discarded. In this way, new versions of the  management system were

released as updates were made, so that each one is the compilation of the set of modules

that form it into a single executable file to be used on computers with Windows operating

system.  That  file  incorporates  all  necessary  modules  and  libraries  so  that  it  can  run

independently of a Python installation. Nevertheless, an interpreter of this programming

language  is  essential  when  downloading  information  from CMEMS,  since  to  retrieve

Mercator files the module “motuclient” must be called inside a Python environment. It is

also important to note that SMS-Coastal does not have a self awakening mechanism, thus it

is  necessary  to  schedule  its executable  as  one  of  the  Windows tasks  to  make  it  fully

automatic.

The imposed structure of files and folders must be respected so that the generic code

identifies the correct computational paths during simulation handling. Therefore, in order

to run a simulation operation the model must be set as shown by the project structure in

4.1, its data files must be inserted in each level “data” folder, the required inputs must be

written  in  the  initial  file  “ini.dat”  and  run  SMS-Coastal  application.  Some  missing

directories  will  be  generated  by  the  management  system  in  their  absence,  such  as

“Operations” of each simulation cycle, “FORC” and their contents, plus “res” and “exe”

for each model level. Furthermore, since  SMS-Coastal  manipulates external forcing and

bathymetry files, they have standard names which must be used in the instructions written

in the model data files, otherwise MOHID will not be able to find them.

As for the input files, the user must be aware of which keywords to use and what values

to attribute them. One of the SMS-Coastal first tasks is to check them all and interrupt the

execution if something incorrect is found. After the keywords are defined for a model they

will hardly be changed when the continuous forecast cycles begin. Inside SMS-Coastal’s

pogram code those inputs are read as a Python dictionary, making the order they are typed

in “init.dat” not relevant.
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One of the major problems of the continuous simulation cycles is the availability of local

storage space for the outputs. In a few days of execution a very large amount of data can be

easily  generated.  In  SOMA specific  case,  which  has  three  levels,  a  four-day  forecast

occupies around 8.25 GB on disk, neglecting Mercator and Skiron interpolated data files

used in that run. For that reason, SMS-Coastal has automatic data removal processes, since

it  was observed that low space disk can affect itself  performance,  making daily and/or

weekly  runs  longer  to  complete,  or  even be interrupted.  Therefore,  in  each simulation

folder,  SMS-Coastal maintains a maximum of 20 days results in a local database inside

"Operations" and for each source of oceanic and atmospheric data, a week of interpolated

HDF5 files or 30 days time series recorded in dat files.

At some moments during the execution of the code,  SMS-Coastal splits into more than

one thread to launch simultaneous processes. In the simulation layer, this happens only on

the scheduled day to start a new solution cycle of the model. This is necessary because it is

not possible to execute  a daily run  sequentially to  a weekly run  without interrupting the

daily forecasts provision, considering that the latter may take more than a day to complete.

Therefore,  as  the  weekly  and  daily  simulations  are  handled  concomitantly,  they  were

placed in separate folders inside the project directory. That is also quite useful to avoid

conflict when they have to use the same forcing data files. Despite all this, weekly run still

causes a reduction in the performance of the forecast simulation,  which in the case of

SOMA, MOHID execution logs indicated an increase of more than three hours, in most

cases, in the simulation elapsed time. Obtaining external oceanic and atmospheric data are

independent processes, so in the first stage of the forcing layer they are also carried out in

different threads, so that simulation cycles may start as soon as possible. SMS-Coastal

division into multiple threads, carried out by the Python “threading” module, however, did

not  have  any  efficiency  analysis,  so  it  is  still  possible  to  implement  other  more

sophisticated programming techniques and even use other tools available for that language

to optimize the management system in this aspect.

For each source available to be inputted in the keywords “HYDSRC” and “ATMSRC”, a

specific module was built to process its data. Thus, SMS-Coastal has a library that will be

constantly expanded as new sources are demanded for other coastal models. Hence,  its

forcing layer basically coordinates the moment when these modules are triggered in the
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code operations sequence. For that reason, it was not required to generate its activity log,

instead the procedures status of each specific module are individually registered in each

source log file.

As indicated in the previous chapter, the forcing layer was separated into two stages, the

first of one with the possibility to run more than one task at the same time. The second, on

the other hand, only  executes data download from unprocessed sources at  the previous

stage and the specific modules are no longer required to be run simultaneously, as the daily

simulation cycle and other outputs conversion operations  will be already completed. The

objective  here  is  to  build  a  local  database  of  forcing  files  that  may  be  used  in  the

simulation cycles. In this way, if a source processing fails, the next one will already have

part of the data available to avoid delaying the start of the simulation layer, especially on

the  weekly  run  days  when  the  amount  of  data  corresponds  the  ranges  defined  in  the

keyword  "TRANGE".  This  shows  that  the  sources  listed  by  the  user  serve  only  as  a

redundancy of each other and in the end only one will be used.

The same procedures are performed in the forcing sources specific modules, even though

in different ways. Final interpolated or time series files always contain data from the first

day of hindcast to the last day of forecast, calculated based on the inputs of “TRANGE”

and the operation date. In this manner, the forcing files will always be prepared to run a

restart of the model, regardless of the week day. Then, all the user have to do in order to

change the weekly run cycle day is to update the value given to “RESTART” keyword. As

for  storing,  for  sources  that  has  no  long-term  data  availability,  the  module  will

automatically backup the downloads in a local database. Those, in turn, must be managed

by the user so the disk will not run out of memory, erasing or moving unnecessary files to

another storage device. External forcing files ready for the simulation layer are kept for

one  week  to  cover  the  possible  scenario  in  which  the  processing  of  all  sources  fails,

therefore,  even if  it  uses outdated oceanic and/or  atmospheric  data,  the model remains

operational. In this case the forecast days range are adjusted according to the file used.

The  SMS-Coastal  version  presented  in  this  work  has  two  optional  processes  for

formatting daily cycle simulations results. The first one divides the outputs of one day into

smaller HDF5 files, one for each datasets instant, until there is information for the first 24

hours of the forecast. The next run will give the subsequent 24 hours information and so
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on. This procedure is activated by the keyword “FMT” and was designed to generate files

that will become the model’s historical database. Due to that, the program does not have a

cleaning operation for those files, and just like for the forcing data backup, they should be

manually transferred to another disk. 

The second formatting process essentially consists in converting the simulation results

from HDF5 to NetCDF,  which,  however,  was programmed exclusively  for  the SOMA

system results. The module built to accomplish this task meets a demand from OCASO

project by making Algarve’s coast forecast data available to the other partners. For this

reason, the output files of this  module have writing standards and a very well  defined

structure. Because of that, the code is not generic in this point and shall not be used for any

other model. Nevertheless, a valuable knowledge about NetCDF handling with Python was

developed and it might be used as basis to build other applications.

Some of  the SMS-Coastal  modules  could  be  used independently,  that  is,  outside the

simulations context. This is the case of the intrinsic operations to obtain forcing data and to

format HDF5 MOHID output files. Thus, from the management system itself new features

are being generated and they will be available to be selected only by changing the value of

the keyword “OPTYPE”. The other inputs will be specific for each operation type, so that

it will be required to set up the initial file “init.dat” for each one. The functions are: (1)

coastal models forecast simulations management; (2) forcing data processing according to

the library available in SMS-Coastal; (3) MOHID outputs formatting for model’s database;

(4) MOHID outputs conversion for OCASO project; and (5) a more generic application of

the last, MOHID outputs conversion to NetCDF for model’s database. Except for (5), the

main objective of this work was operation (1) integrated with the others, so that this is

already programmed and is currently being used to manage SOMA system forecast cycles.

Regarding the operationalization of the SOMA system, SMS-Coastal has been managing

its forecast simulations for over one year. During this period, the management system had

been  updated  many  times,  as  new  tasks  were  added  and  programming  failures  were

identified. The tables in the section 4.4 indicates the problems encountered while handling

the model runs, from the launch of the first version until the last day of June 2020. Most of

the failures caused by poor coding happened in the first days of operation and they were

used exactly as a basis to make the necessary corrections in the algorithm, which in turn
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was only implemented after exhaustive tests to prevent simulation cycles interruption. In

the forcing layer, errors during download represented more than 75% of the total failures.

Little  can be done about  them except  to  rerun the program to make a  new download

attempt.  This  is  mainly  caused  by  lost  of  connection  between  the  computer  and  the

supplier's repository, but also by a possible delay in data availability.

Finally, in the simulation layer, the failure caused by insufficient virtual memory is a

specific  case  of  the  stops  made  by the  MOHID system,  which  however  was  counted

separated because it represents a situation that is related to SMS-Coastal. At the end of an

execution, the prompt window remains open so the user is able to consult the operations

history. Thus, it was observed that when those processes are still open, even having more

than enough disk space to run the model, the computer is left with low random-access

memory (RAM). This type of failure is even more likely to happen when there is also two

simulations  running  simultaneously.  Therefore,  SMS-Coastal is  not  scheduled  to  be

automatically launched on SOMA restart day, instead, all remaining windows are manually

closed  and  the  computer  is  rebooted.  After  this  procedure  has  been  implemented  no

simulation has failed for that reason yet.
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6 CONCLUSION

In  this  work  a  program as  developed,  written  with  the  object-oriented  programming

language  Python,  to  manage  forecast  simulations  of  operational  hydrodynamic  coastal

models, the SMS-Coastal. The sequence of most basic operations to be developed by it in a

management process was based on the design of a similar one with the same purpose found

in the literature. However, the program was conceived to run models only built within the

MOHID  modelling  system  environment,  which  is  the  one  responsible  to  perform  the

numerical  solution  of  the  governing  equations  and to  carry  out  other  process  such  as

interpolation and conversion forcing files to HDF5 format.

SMS-Coastal was developed using SOMA’s operationalization as a background, which is

a MOHID based and validated high resolution hydrodynamic model of the Algarve coast.

Therefore, it conducts two distinct simulation cycles: the daily runs, which correspond to

the continuous forecast simulations, and the weekly runs, which starts the model from the

most  recent  conditions  given  by  CMEMS to  generate  new  restart  files  with  less

deteriorated  initial  conditions.  The  model  became  the  means  to  test  the  SMS-Coastal

versions and consequently became the first  one to be controlled by it.  This is also the

reason  why  modules  were  created  within  the  management  system's  forcing  library  to

process Mercator and Skiron data. The operationalization of SOMA remains active and

producing daily forecast data since the launch of the program first version in July 2019.

Simulation  management  basically  consists  in  coordinating  the  execution  of  different

operations and file handling. For that reason, the simulation process carried out by MOHID

system, as well as the generic folder structure and file naming presented in this work, for

which SOMA had to be adapted, were the means to identify the routine patterns that were

used to build  SMS-Coastal's algorithm in a way that it would be suitable for any other

model.  The method of reading keywords was adopted so that  the user can specify the

parameters to run each model. In this way, it is expected that other projects can be put in

operational mode by the tool so that their data may support activities developed within the

blue economy.

The use of an object-oriented programming language helped to simplify the program's

code,  since  the  same  methods  could  be  used  more  than  once  in  different  situations,
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avoiding extensive writing of the same parts of the code. Moreover, modules that develop

tasks  outside  the  context  of  simulations,  such  as  formatting  results  or  forcing  data

processing,  have  given  rise  to  other  features  that  shall be  independently  accessed.

However, in the way it was designed and together with the imposed folder structure, SMS-

Coastal major limitation is that it does not yet allow the operationalization of models that

have more than one sub-domain defined for the same level. In addition, when the code

splits  its execution into more than one thread to perform simultaneous tasks, the printed

messages of each running module are shuffled in the prompt window, becoming confusing

to the user.

Despite these and other  minor code problems that  might be identified,  the simulation

management system presented in this work is prepared to make coastal models operational.

Even  so,  SMS-Coastal’s construction  is  a  continuous  process  and  so  updates  and

improvements  shall  be regularly implemented.  Because of that, the options for running

independent operations such as results formatting and forcing data processing are already

being  programmed  and  soon  will  be  integrated into  the  program.  Besides  that,  and

considering that Python has a vast built-in library and several other external tools, which

offer a wide range of resources, also as future works, it is recommended to optimize the

parallelization  of  tasks  and  even  to  build a  graphical  interface  for  better  viewing  the

messages.  Furthermore, SMS-Coastal still has room to grow with new modules for other

forcing sources and even with the development of new features.
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APPENDICES

This  section  presents  the  codes  of  the  modules  built  in  the  Python  programming

language,  which  together  form  the  simulation  management  system  for  coastal

hydrodynamic  models,  the  SMS-Coastal.  Each  sub-chapter  corresponds  to  one  of  the

modules.

Appendix A – Operation selector

Module to select the operation to perform.

import os
from subprocess import run
from datetime import datetime

import inputsread
import sim_control
from forcontrol import forcontrol

rootdir = os.getcwd()
if not os.path.isfile(rootdir + "\\init.dat"):
    print("ERROR\n\ninit file not found\n")
    run("pause", shell=True)
    raise SystemExit

init = inputsread.initread(("OPTYPE", "OPDATE"), rootdir)
optype = init.get("OPTYPE")
opdate = init.get("OPDATE")

if not opdate:
    opdate = datetime.today().date()
else:
    try:
        opdate = datetime.strptime(opdate, "%Y %m %d").date()
    except ValueError:
        print("ERROR\n\nNot a valid date format\n")
        run("pause", shell=True)
        raise SystemExit

if optype == "1":
    sim_control.simcontrol(rootdir, opdate)
elif optype == "2":
    print("FORCING testing")
elif optype == "3":
    print("FMT develop")
elif optype == "4":
    print("PDE develop")
elif optype == "5":
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    print("NetCDF project")
else:
    print("ERROR\n\nSelect a valid operation\n")

os.chdir(rootdir)
os.chdir("..\\..\\")
run("pause", shell=True)

Appendix B – Initial data file reader

Module to read initial data file “init.dat” and return a dictionary with the inputs.

import os

def initread(keywords, initpath):
    initdat = initpath + "\\init.dat"
    lines = tuple([line for line in open(initdat, "r")])

    init_keys = tuple([line[:line.find(":")].strip() for line in lines])
    init_vlue = tuple([line[line.find(":") + 1:].strip() for line in lines])

    vlues = []
    for key in keywords:
        vlue = None

        if key in init_keys:
            vlue = init_vlue[init_keys.index(key)]

        if vlue == '':
            vlue = None

        vlues.append(vlue)

    return dict(zip(keywords, vlues))

def initsim(initpath):
    inputs = initread(("MODSET", "LEVELS", "RESTART", "GMTREF", "TRANGE", "FMT", "PDE", 
"MAILTO", "HYDSRC", "ATMSRC",
                       "LATLIM", "LONLIM", "HYDTS", "ATMTS", "TSLOC"), initpath)
    out_keys = {}

    if None in (inputs.get("MODSET"), inputs.get("LEVELS"), inputs.get("RESTART"), 
inputs.get("GMTREF"),
                inputs.get("TRANGE")):
        return

    levels = inputs.get("LEVELS")
    restart = inputs.get("RESTART")
    gmtref = inputs.get("GMTREF")
    trange = inputs.get("TRANGE")

    try:
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        levels = int(levels)
        int(gmtref)
        restart = int(restart)
        trange = [int(val) for val in trange.split()]
    except ValueError:
        return

    if levels < 1 or 0 in trange:
        return

    out_keys["LEVELS"] = levels
    out_keys["RESTART"] = restart
    out_keys["GMTREF"] = gmtref
    out_keys["TRANGE"] = tuple(trange)

    dtlvi = initread([f"DTLV{level + 1}" for level in range(levels)], initpath)
    dtrun = []

    for level in range(levels):
        vals = dtlvi.get(f"DTLV{level + 1}")
        if not vals:
            return

        vals = vals.split()

        try:
            vals = [int(val) for val in vals]
        except (ValueError, TypeError):
            return

        if len(vals) != len(trange):
            return

        dtrun.append(vals)

    dtrun = tuple(zip(*dtrun))
    out_keys["DTRUN"] = dtrun

    val = inputs.get("MODSET")
    if not val or val not in ("1", "2"):
        return
    out_keys["MODSET"] = val

    vals = "FMT", "PDE", "HYDTS", "ATMTS"
    for key in vals:
        val = inputs.get(key)
        if val not in ("0", "1"):
            out_keys[key] = "0"
        else:
            out_keys[key] = val

    out_keys["MAILTO"] = inputs.get("MAILTO")

    hydsrc = inputs.get("HYDSRC")
    atmsrc = inputs.get("ATMSRC")

    if not hydsrc and not atmsrc:
        out_keys["HYDSRC"] = ()
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        out_keys["ATMSRC"] = ()
        out_keys["GRID"] = None
        out_keys["TSLOC"] = None
        return out_keys

    out_keys["HYDSRC"] = tuple(hydsrc.split())
    out_keys["ATMSRC"] = tuple(atmsrc.split())
    lat = inputs.get("LATLIM")
    lon = inputs.get("LONLIM")
    tsl = inputs.get("TSLOC")

    try:
        lat = [float(val.replace(",", ".")) for val in lat.split()]
        lon = [float(val.replace(",", ".")) for val in lon.split()]
    except (ValueError, TypeError, AttributeError):
        return

    if len(lat) != 2 or len(lon) != 2:
        return

    lon.sort()
    lat.sort()
    out_keys["GRID"] = tuple(lon + lat)

    if "1" in (out_keys.get("ATMTS"), out_keys.get("HYDTS")):
        try:
            tsl = [float(val.replace(",", ".")) for val in tsl.split()]
        except (ValueError, TypeError, AttributeError):
            return

        if len(tsl) != 2:
            return

        out_keys["TSLOC"] = tuple(tsl)
    else:
        out_keys["TSLOC"] = None

    return out_keys

Appendix C – Common operations

Module containing methods to write in log files and send reporting e-mails.

import os
import smtplib

from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.mime.base import MIMEBase
from email import encoders

def mailreport(email_send, reportsubject, body, filename):
    if not email_send or email_send == '' or "@" not in email_send:
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        return
    try:
        email_user = '********@ualg.pt'
        email_password = '******'
        server = smtplib.SMTP('smtp.office365.com',587)
    
        msg = MIMEMultipart()
        msg['From'] = email_user
        msg['To'] = email_send
        msg['Subject'] = reportsubject
    
        msg.attach(MIMEText(body,'plain'))
    
        for file in filename:
            if not os.path.isfile(file):
                filename = ()
                
        for file in filename:
            attachment = open(file,'rb')
    
            part = MIMEBase('application','octet-stream')
            part.set_payload(attachment.read())
            encoders.encode_base64(part)
            part.add_header('Content-Disposition',"attachment; filename= "+file)
            msg.attach(part)
            
        text = msg.as_string()
    
        server.starttls()
        server.login(email_user,email_password)
    
        server.sendmail(email_user,email_send,text)
        server.quit()
              
    except Exception as err:
        print('\n' + ' Failed to send report e-mail '.center(65, '-') + f'\n{err}\n')

def logentry(logfile, entry, mode="a"):
    with open(logfile, mode) as log:
        log.write(entry)

Appendix D – Simulation control

Module to control the simulation operation.

import os
import concurrent.futures
from inputsread import initsim
from threading import Thread
from time import sleep
from glob import glob
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from forcmercator import mercator
from forc_skiron import skiron
from forcnam import nam
from forcgfs import gfs
from sim_weekly import weeklyrun
from sim_daily import dailyrun
from post_fmtres import fmtres
from post_pde_netcdf import convertpde

def first_forc(srcs, outdir, opdate, inputs):
    srcslib = {"Mercator": mercator, "Skiron": skiron, "NAM": nam, "GFS": gfs}
    redund = list(srcs)

    if "AVGWP" in redund:
        redund.remove("AVGWP")

    counter = len(redund)

    while counter > 0:
        status = srcslib.get(redund[0])(outdir, opdate, inputs)
        redund.remove(redund[0])
        counter -= 1

        if status == 1:
            counter = 0

    return redund

def scond_forc(srcs, outdir, opdate, inputs):
    srcslib = {"Mercator": mercator, "Skiron": skiron, "NAM": nam, "GFS": gfs}
    for src in srcs:
        srcslib.get(src)(outdir, opdate, inputs)

def simcontrol(projdir, opdate):
    inputs = initsim(projdir)
    if not inputs:
        print("ERROR\n\nInvalid/missing inputs\n")
        return

    inputs["PROJDIR"] = projdir
    inputs["MOHID"] = projdir + "\\MOHID"

    inputs["FORCDIR"] = projdir + "\\FORC"
    if not os.path.isdir(inputs.get("FORCDIR")):
        os.mkdir(inputs.get("FORCDIR"))

    # --------- FORCING LAYER
    hyd_inputs = inputs.copy()
    hyd_inputs["HNDCST"] = sum(inputs.get("TRANGE")[:-1])
    hyd_inputs["BKUP"] = "1"
    if inputs.get("HYDTS") == "0":
        hyd_inputs["HDFOUT"] = "1"
        hyd_inputs["TSOUT"] = "0"
    else:
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        hyd_inputs["HDFOUT"] = "0"
        hyd_inputs["TSOUT"] = "1"

    atm_inputs = hyd_inputs.copy()
    if inputs.get("ATMTS") == "0":
        atm_inputs["HDFOUT"] = "1"
        atm_inputs["TSOUT"] = "0"
    else:
        atm_inputs["HDFOUT"] = "0"
        atm_inputs["TSOUT"] = "1"

    with concurrent.futures.ThreadPoolExecutor() as executor:
        hydpro = executor.submit(first_forc, inputs.get("HYDSRC"), inputs.get("FORCDIR"), opdate, 
hyd_inputs)
        sleep(30)
        atmpro = executor.submit(first_forc, inputs.get("ATMSRC"), inputs.get("FORCDIR"), opdate, 
atm_inputs)
        hydpost = hydpro.result()
        atmpost = atmpro.result()

    atm_inputs["HDFOUT"] = "0"
    atm_inputs["TSOUT"] = "0"
    hyd_inputs["HDFOUT"] = "0"
    hyd_inputs["TSOUT"] = "0"

    # --------- SIMULATION LAYER
    weekpro = Thread(target=weeklyrun, args=(opdate, inputs))
    if opdate.weekday() == inputs.get("RESTART"):
        print("WR + DR")
        weekpro.start()
        sleep(30)

    dailyrun(opdate, inputs)

    # --------- POST OPERATIONS
    resdir = glob(projdir + opdate.strftime("\\Sim_Daily\\Operations\\RES\\SIM%y%m%d_END*"))
    resdir.sort()
    try:
        resdir = resdir[-1]
    except IndexError:
        resdir = None

    if resdir and inputs.get("FMT") == "1":
        fmtres(resdir, opdate, projdir + "\\Sim_Daily\\Operations", inputs.get("LEVELS"), 
inputs.get("MODSET"),
               inputs.get("MOHID"))

    if resdir and inputs.get("PDE") == "1":
        convertpde(resdir, opdate, projdir + "\\Sim_Daily\\Operations", inputs.get("MODSET"), 
inputs.get("LEVELS"))

    # ---------- REDUNDANCY
    scond_forc(hydpost, inputs.get("FORCDIR"), opdate, hyd_inputs)
    scond_forc(atmpost, inputs.get("FORCDIR"), opdate, atm_inputs)

    if weekpro.is_alive():
        weekpro.join()
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Appendix E – Weekly run cycle control

Module to control weekly run cycles.

import os
from datetime import datetime, timedelta
from math import ceil
from threading import Thread

from sim_runs import Simrun
from sim_forcing import select_source, check_range
from opcommon import mailreport

def weeklyrun(simdate, inputs):
    projdir = inputs.get("PROJDIR")
    projid = os.path.basename(projdir)
    simdir = projdir + "\\Sim_Weekly"

    print("-" * 80 + "\n" + "SIMULATION MANAGMENT MODULE".center(80) + "\n" + "-" * 80)
    print("PROJECT   :", projdir)
    print("DATE      :", simdate.strftime('%Y %m %d'))
    print("TYPE      : Weekly run")
    print("MODEL SET :", inputs.get("MODSET"))
    print("LEVELS    :", inputs.get("LEVELS"))
    print("-"*80)

    # ---------- LOAD SIMULATION OBJECT
    runsim = Simrun(projdir, inputs.get("LEVELS"), simdate, "Weekly", inputs.get("MAILTO"))
    print("Wiping simulation folder", end="\n\n")
    runsim.wipesim()
    print("Setting up environment", end="\n\n")
    runsim.chkdirs()
    runsim.logentry(str(simdate))

    # ---------- LOAD EXTERNAL FORCINGS DATA
    print("Searching forcing data")
    hyd_status = select_source(inputs.get("HYDSRC"), inputs.get("FORCDIR"), simdir, simdate, 
inputs.get("HYDTS"))
    print(hyd_status)
    if hyd_status[0] == "NOT_FOUND":
        print("-"*80 + "\nERROR - Hydrodynamic forcing data not found\n" + "-"*80)
        runsim.logentry(datetime.today().strftime(" ERR02 %Y-%m-%d_%H:%M\n"))
        body = simdate.strftime('%Y-%m-%d Hydrodynamic forcing data not found')
        mailreport(inputs.get("MAILTO"), projid + " Daily run ERROR", body, ())
        return

    atm_status = select_source(inputs.get("ATMSRC"), inputs.get("FORCDIR"), simdir, simdate, 
inputs.get("ATMTS"))
    print(atm_status)
    if atm_status[0] == "NOT_FOUND":
        print("-"*80 + "\nERROR - Atmospheric forcing data not found\n" + "-"*80)
        runsim.logentry(datetime.today().strftime(" ERR03 %Y-%m-%d_%H:%M\n"))
        body = simdate.strftime('%Y-%m-%d Atmospheric forcing data not found')
        mailreport(inputs.get("MAILTO"), projid + " Daily run ERROR", body, ())
        return
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    print()

    forctime = check_range(hyd_status, atm_status)
    simtime = datetime(simdate.year, simdate.month, simdate.day) + timedelta(hours=forctime[1])

    timerun = []
    trange = list(inputs.get("TRANGE"))[:-1]

    for _ in range(len(trange)):
        timerun.append(simtime - timedelta(sum(trange)))
        trange = trange[1:]

    timerun.append(simtime)

    # ---------- RUN SIMULATION
    threads = []
    runid = 1

    for stage in range(len(timerun)-1):
        runid += stage
        print("Running STAGE", runid)
        runsim.modeldat(runid, timerun[stage], timerun[stage + 1], inputs.get("DTRUN")[stage], 
inputs.get("GMTREF"))
        status = runsim.execrun(runid)
        if status < 1:
            return
        print()

        subject = projid + " Weekly run STAGE " + str(runid) + " COMPLETED"
        body = simdate.strftime('%Y-%m-%d') + ' SIMULATION HDF5 READY'
        logs = simdir + "\\Operations\\LOGS\\Mohid_log_"
        logs = logs + f"run{runid}.txt", logs + f"err{runid}.txt"
        threads.append(Thread(target=mailreport, args=(inputs.get("MAILTO"), subject, body, logs)))
        threads[-1].start()

    delta_time = ceil((datetime.today() - simtime).total_seconds() / (24 * 3600))

    if delta_time <= 2:
        print("Running Interface")
        timerun = simtime, simtime + timedelta(delta_time)
        runid += 1

        runsim.modeldat(runid, timerun[0], timerun[1], inputs.get("DTRUN")[-1], inputs.get("GMTREF"))
        status = runsim.execrun(runid)
        if status < 1:
            return
        print()

        body = simdate.strftime('%Y-%m-%d') + ' SIMULATION HDF5 READY'
        logs = simdir + "\\Operations\\LOGS\\Mohid_log_"
        logs = logs + f"run{runid}.txt", logs + f"err{runid}.txt"
        mailreport(inputs.get("MAILTO"), projid + " Interface run COMPLETED", body, logs)

    else:
        delta_time = 0

    # ---------- FINISH SIMULATION AND COPY FILES
    if hyd_status[1] and atm_status[1] > 0:
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        runsim.logentry(datetime.today().strftime(" WARN1 %Y-%m-%d_%H:%M\n"))  # hyd and atm 
forecast data
    elif hyd_status[1] > 0:
        runsim.logentry(datetime.today().strftime(" WARN2 %Y-%m-%d_%H:%M\n"))  # hyd forecast data
    elif atm_status[1] > 0:
        runsim.logentry(datetime.today().strftime(" WARN3 %Y-%m-%d_%H:%M\n"))  # atm forecast data
    else:
        runsim.logentry(datetime.today().strftime(" 1 %Y-%m-%d_%H:%M\n"))

    runsim.saveres()
    runsim.savefin(runid, delta_time, inputs.get("MODSET"))

    for thread in threads:
        thread.join()
    print("-"*80)
    print("WEEKLY RUN COMPLETED")
    print("-"*80)

Appendix F – Daily run cycle control

Module to control daily run cycles.

import os
from datetime import datetime, timedelta

from sim_runs import Simrun
from sim_forcing import select_source, check_range
from opcommon import mailreport

def dailyrun(simdate, inputs):
    projdir = inputs.get("PROJDIR")
    projid = os.path.basename(projdir)
    simdir = projdir + "\\Sim_Daily"

    print("-" * 80 + "\n" + "SIMULATION MANAGMENT MODULE".center(80) + "\n" + "-" * 80)
    print("PROJECT   :", projdir)
    print("DATE      :", simdate.strftime('%Y %m %d'))
    print("TYPE      : Daily run")
    print("MODEL SET :", inputs.get("MODSET"))
    print("LEVELS    :", inputs.get("LEVELS"))
    print("-"*80)

    # ---------- LOAD SIMULATION OBJECT
    runsim = Simrun(projdir, inputs.get("LEVELS"), simdate, "Daily", inputs.get("MAILTO"))
    print("Wiping simulation folder", end="\n\n")
    runsim.wipesim()
    print("Setting up environment", end="\n\n")
    runsim.chkdirs()
    runsim.logentry(str(simdate))

    print("Checking FINS")
    status = runsim.getfins()
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    if status < 1:
        return

    # ---------- LOAD EXTERNAL FORCINGS DATA
    print("Searching forcing data")
    hyd_status = select_source(inputs.get("HYDSRC"), inputs.get("FORCDIR"), simdir, simdate, 
inputs.get("HYDTS"))
    print(hyd_status)  
    if hyd_status[0] == "NOT_FOUND":
        print("-"*80 + "\nERROR - Hydrodynamic forcing data not found\n" + "-"*80)
        runsim.logentry(datetime.today().strftime(" ERR02 %Y-%m-%d_%H:%M\n"))
        body = simdate.strftime('%Y-%m-%d Hydrodynamic forcing data not found')
        mailreport(inputs.get("MAILTO"), projid + " Daily run ERROR", body, ())
        return

    atm_status = select_source(inputs.get("ATMSRC"), inputs.get("FORCDIR"), simdir, simdate, 
inputs.get("ATMTS"))
    print(atm_status)  
    if atm_status[0] == "NOT_FOUND":
        print("-"*80 + "\nERROR - Atmospheric forcing data not found\n" + "-"*80)
        runsim.logentry(datetime.today().strftime(" ERR03 %Y-%m-%d_%H:%M\n"))
        body = simdate.strftime('%Y-%m-%d Atmospheric forcing data not found')
        mailreport(inputs.get("MAILTO"), projid + " Daily run ERROR", body, ())
        return
    print()

    forctime = check_range(hyd_status, atm_status)
    simtime = datetime(simdate.year, simdate.month, simdate.day) + timedelta(hours=forctime[1])
    frange = min(inputs.get("TRANGE")[-1], forctime[0])

    # ---------- RUN SIMULATION
    print("Running Forecast")
    runsim.modeldat(1, simtime, simtime + timedelta(frange), inputs.get("DTRUN")[-1], 
inputs.get("GMTREF"))
    status = runsim.execrun(1)
    if status < 1:
        return

    # ---------- FINISH SIMULATION AND COPY FILES
    if hyd_status[1] and atm_status[1] > 0:
        runsim.logentry(datetime.today().strftime(" WARN1 %Y-%m-%d_%H:%M\n"))  # hyd and atm 
forecast data
    elif hyd_status[1] > 0:
        runsim.logentry(datetime.today().strftime(" WARN2 %Y-%m-%d_%H:%M\n"))  # hyd forecast data
    elif atm_status[1] > 0:
        runsim.logentry(datetime.today().strftime(" WARN3 %Y-%m-%d_%H:%M\n"))  # atm forecast data
    else:
        runsim.logentry(datetime.today().strftime(" 1 %Y-%m-%d_%H:%M\n"))

    runsim.saveres()
    runsim.savefin(1, 1, inputs.get("MODSET"))

    print("-"*80)
    print("DAILY RUN COMPLETED")
    print("-"*80)

    body = simdate.strftime('%Y-%m-%d') + ' SIMULATION HDF5 READY'
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    logs = simdir + "\\Operations\\LOGS\\Mohid_log_run1.txt", simdir + "\\Operations\\LOGS\\
Mohid_log_err1.txt"
    mailreport(inputs.get("MAILTO"), projid + " Daily run COMPLETED", body, logs)

Appendix G – Simulation class

Class with all the common methods to any kind of simulation cycle.

import os
from glob import glob
from shutil import rmtree, copyfile, copytree
from subprocess import run
from datetime import datetime, timedelta

from opcommon import mailreport

class Simrun:
    def __init__(self, projdir, levels, simdate, simtype, mailto):
        self.projdir = projdir
        self.rootdir = projdir + "\\Sim_" + simtype
        self.levels = levels
        self.simdate = simdate
        self.simtype = simtype
        self.mailto = mailto

    def wipesim(self):
        boundarys = self.rootdir + "\\General Data\\Boundary Conditions\\*FORC*"
        initials = self.rootdir + "\\General Data\\Initial Conditions\\AVGWP*"
        logs = self.rootdir + "\\Operations\\LOGS\\Mohid*.txt"
        files = glob(boundarys) + glob(initials) + glob(logs)
        for file in files:
            os.unlink(file)

        lvpath = ""
        for level in range(self.levels):
            lvpath += "\\Level " + str(level + 1)
            if os.path.isdir(self.rootdir + lvpath + "\\res"):
                rmtree(self.rootdir + lvpath + "\\res")
            if os.path.isdir(self.rootdir + lvpath + "\\exe"):
                rmtree(self.rootdir + lvpath + "\\exe")
            os.mkdir(self.rootdir + lvpath + "\\res")
            os.mkdir(self.rootdir + lvpath + "\\exe")

    def chkdirs(self):
        if not os.path.isdir(self.rootdir + "\\Operations"):
            os.mkdir(self.rootdir + "\\Operations")
        if not os.path.isdir(self.rootdir + "\\Operations\\LOGS"):
            os.mkdir(self.rootdir + "\\Operations\\LOGS")
        if not os.path.isfile(self.rootdir + "\\Operations\\LOGS\\" + self.simtype + "_run.log"):
            Simrun.logentry(self, 'Date Status Time\n', mode="w")

    def logentry(self, entry, mode="a"):
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        with open(self.rootdir + "\\Operations\\LOGS\\" + self.simtype + "_run.log", mode) as log:
            log.write(entry)

    def getfins(self):
        if os.path.isdir(self.projdir + "\\Sim_Weekly\\Operations\\FINS\\" + self.simdate.strftime('%y%m
%d')):
            finspath = self.projdir + "\\Sim_Weekly\\Operations\\FINS\\" + self.simdate.strftime('%y%m%d')
        elif os.path.isdir(self.projdir + "\\Sim_Daily\\Operations\\FINS\\" + self.simdate.strftime('%y%m
%d')):
            finspath = self.projdir + "\\Sim_Daily\\Operations\\FINS\\" + self.simdate.strftime('%y%m%d')
        else:
            print("-"*80 + f"\n{self.simtype} run ERROR - No FINS available\n" + "-"*80)
            Simrun.logentry(self, datetime.today().strftime(" ERR01 %Y-%m-%d_%H:%M\n"))
            mailreport(self.mailto, os.path.basename(self.projdir) + " Daily run ERROR", "No FINS 
available", ())
            return 0

        print(" FINS    :", finspath.replace(self.projdir, "."))
        lvpath = self.projdir + "\\Sim_Daily"
        for level in range(self.levels):
            lvpath += '\\Level ' + str(level + 1)
            fins = glob(finspath + f'\\LV{level + 1:02d}*.fin*')

            for fin in fins:
                prefix = os.path.basename(fin).split('_')[1]
                sufix = os.path.basename(fin).split('.')[-1]
                copyfile(fin, lvpath + '\\res\\' + prefix + '_0.' + sufix)
        print()
        return 1

    def modeldat(self, runid, ini, end, dtstep, gmtref):
        print(ini.strftime(" START : %Y %m %d %H %M %S"))
        print(end.strftime(" END   : %Y %m %d %H %M %S"))
        print(" DTs   :", str(dtstep).replace("(", "").replace(")", "").replace(",", ""))
        lvpath = self.rootdir
        for level in range(self.levels):
            lvpath += f'\\Level {level + 1}'

            with open(lvpath + f'\\data\\Model_{runid}.dat', 'w') as model:
                model.write(f'''START                 : {ini:%Y %m %d %H %M %S}
END                   : {end:%Y %m %d %H %M %S}
DT                    : {dtstep[level]}
VARIABLEDT            : 0
GMTREFERENCE          : {gmtref}\n''')

            copyfile(lvpath + f'\\data\\Nomfich_{runid}.dat', lvpath + '\\exe\\Nomfich.dat')

    def execrun(self, runid):
        with open(self.rootdir + '\\Level 1\\exe\\Tree.dat', 'w') as tree:
            tree.write('Automatic Generated Tree File\nby FERNANDOs AWESOME PYTHON BASED 
PROGRAM\n')

        lvpath = self.rootdir
        for level in range(self.levels):
            lvpath += f'\\Level {level + 1}'

            with open(self.rootdir + '\\Level 1\\exe\\Tree.dat', 'a') as tree:
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                tree.write('+' * (level + 1) + lvpath + '\\exe\n')

            if not os.path.exists(lvpath + '\\res\\Run' + str(runid)):
                os.mkdir(lvpath + '\\res\\Run' + str(runid))

        # ---------- Run simulation
        logrun = self.rootdir + "\\Operations\\LOGS\\Mohid_log_run" + str(runid) + ".txt"
        logerr = self.rootdir + "\\Operations\\LOGS\\Mohid_log_err" + str(runid) + ".txt"

        os.chdir(self.rootdir + '\\Level 1\\exe')
        run(f'"{self.projdir}\\MOHID\\MOHIDWater.exe" > {logrun} 2> {logerr}', shell=True)
        run('exit', shell=True)
        # ----------

        subject = os.path.basename(self.projdir)+" "+self.simtype+" run "

        if not os.path.isfile(logrun):
            print("-"*80 + f"\n{self.simtype} run ERROR - MOHID lof not found\n" + "-"*80)
            Simrun.logentry(self, datetime.today().strftime(" ERR04 %Y-%m-%d_%H:%M\n"))
            mailreport(self.mailto, subject+"ERROR", "MOHID log not found", ())
            Simrun.savefail(self)
            return 0

        loglines = [line.strip() for line in open(logrun)]
        if 'Program Mohid Water successfully terminated' not in loglines:
            print("-" * 80 + f"\n{self.simtype} run ERROR - Simulation stopped unexpectedly\n" + "-" * 80)
            Simrun.logentry(self, datetime.today().strftime(" ERR05 %Y-%m-%d_%H:%M\n"))
            mailreport(self.mailto, subject+"ERROR", "Simulation stopped unexpectedly", (logrun, logerr))
            Simrun.savefail(self)
            return 0

        lvpath = self.rootdir
        for level in range(self.levels):
            lvpath += f'\\Level {level + 1}'
        if not os.path.isfile(lvpath + '\\res\\Hydrodynamic_' + str(runid) + '.fin'):
            print("-" * 80 + f"\n{self.simtype} run ERROR - Hydrodynamic FIN not found\n" + "-" * 80)
            Simrun.logentry(self, datetime.today().strftime(" ERR06 %Y-%m-%d_%H:%M\n"))
            mailreport(self.mailto, subject+"ERROR", "Hydrodynamic FIN not found", (logrun, logerr))
            Simrun.savefail(self)
            return 0

        return 1

    def savefail(self):
        if not os.path.isdir(self.rootdir + "\\Operations\\FAIL"):
            os.mkdir(self.rootdir + "\\Operations\\FAIL")

        faildir = self.rootdir + self.simdate.strftime("\\Operations\\FAIL\\SIM%y%m%d_END")
        faildir += datetime.today().strftime("%y%m%d_%H%M")
        os.mkdir(faildir)

        boundarys = self.rootdir + "\\General Data\\Boundary Conditions\\*FORC*"
        initials = self.rootdir + "\\General Data\\Initial Conditions\\AVG*"
        logs = self.rootdir + "\\Operations\\LOGS\\Mohid*.txt"

        files = glob(boundarys)+glob(initials)+glob(logs)
        for file in files:
            copyfile(file, faildir + "\\" + os.path.basename(file))
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        lvpath = self.rootdir
        for level in range(self.levels):
            lvpath += "\\Level " + str(level + 1)
            copytree(lvpath + "\\res", faildir + f"\\LV{level + 1:02d}_res")

    def saveres(self):
        outdir = self.rootdir + "\\Operations\\RES"
        if not os.path.isdir(outdir):
            os.mkdir(outdir)

        folders = glob(outdir + "\\*")
        while len(folders) > 20:
            rmtree(folders[0])
            folders = glob(outdir + "\\*")

        outdir += self.simdate.strftime("\\SIM%y%m%d_END") + datetime.today().strftime("%y%m%d_
%H%M")
        os.mkdir(outdir)

        lvpath = self.rootdir
        for level in range(self.levels):
            lvpath += "\\Level " + str(level + 1)

            hdfs = glob(lvpath + "\\res\\Hydrodynamic*.hdf5") + glob(lvpath + "\\res\\WaterProperties*.hdf5")
            for hdf in hdfs:
                copyfile(hdf, outdir + f"\\LV{level + 1:02d}_" + os.path.basename(hdf))

            timeseries = glob(lvpath + "\\res\\Run[1-3]")
            for folder in timeseries:
                copytree(folder, outdir + f"\\LV{level + 1:02d}_TimeSeries_" + os.path.basename(folder))

    def savefin(self, runid, fin_day, modset):
        outdir = self.rootdir + "\\Operations\\FINS"
        if not os.path.isdir(outdir):
            os.mkdir(outdir)

        folders = glob(outdir + "\\*")
        while len(folders) > 20:
            rmtree(folders[0])
            folders = glob(outdir + "\\*")

        findate = self.simdate + timedelta(fin_day)
        outdir += findate.strftime("\\%y%m%d")
        if os.path.isdir(outdir):
            rmtree(outdir)
        os.mkdir(outdir)

        lvpath = self.rootdir
        for level in range(self.levels):
            lvpath += "\\Level " + str(level + 1)

            if modset == "2" and level == 0:
                fins_size = 1
            else:
                fins_size = 3

            fins = glob(lvpath + findate.strftime('\\res\\*%Y%m%d*.fin*'))
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            if not fins or len(fins) < fins_size:
                fins = glob(lvpath + f"\\res\\*_{runid}.fin*")

            for fin in fins:
                copyfile(fin, outdir + f"\\LV{level + 1:02d}_" + os.path.basename(fin))

Appendix H – Forcing data selector

Module to select the most convenient forcing data from the sources listed.

import os
from datetime import timedelta
from glob import glob
from shutil import copyfile

def select_source(srcs, forcdir, simdir, opdate, tsout):
    file_path = []
    for src in srcs:
        if src == "AVGWP" and tsout == "0":
            file_path.append(forcdir + "\\AVGWP\\*_%m.hdf5")
        elif src == "AVGWP" and tsout == "1":
            file_path.append(forcdir + "\\AVGWP\\*_%m.dat")
        elif tsout == "0":
            file_path.append(forcdir + "\\" + src + "\\Data HDF\\*_%y%m%d.hdf5")
        else:
            file_path.append(forcdir + "\\" + src + "\\Data TS\\*_%y%m%d.dat")

    file_day = []
    for path in file_path:
        file_day.append(file_availability(path, opdate))

    dtday = min(file_day)
    pos = file_day.index(dtday)
    if dtday > 90:
        return "NOT_FOUND", 99

    src = srcs[pos]
    path = file_path[pos]
    files = glob((opdate - timedelta(dtday)).strftime(path))
    if src == "AVGWP":
        outdir = simdir + "\\General Data\\Initial Conditions\\"
    else:
        outdir = simdir + "\\General Data\\Boundary Conditions\\"

    for file in files:
        file_name = str(os.path.basename(file))
        file_pre = file_name.split("_")
        file_ext = file_name.split(".")[-1]

        if file_ext == "hdf5" or "AVGWP" in file_name:
            file_pre = file_pre[0] + "_" + file_pre[1]
        else:
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            file_pre = file_pre[0]

        file_name = file_pre + "." + file_ext
        print("", file)
        copyfile(file, outdir + file_name)

    return src, dtday

def file_availability(path, opdate):
    max_file = {'Mercator': 6, 'Skiron': 3, 'AVGWP': 6, 'NAM': 3, 'GFS': 3}  # maxmium number of days 
scanned

    if 'AVGWP' in path:
        max_days = max_file.get(os.path.basename(os.path.dirname(path)))
    else:
        max_days = max_file.get(os.path.basename(os.path.dirname(os.path.dirname(path))))

    if not max_days:
        return 99

    end_while = 0
    file_day = 0

    while file_day <= max_days and end_while < 1:
        file_date = opdate - timedelta(file_day)
        if len(glob(file_date.strftime(path))) > 0:
            end_while = 1
        else:
            file_day += 1

    if file_day > max_days:
        return 99
    return file_day

def check_range(hyd_status, atm_status):
    srcs = {'Mercator': (7, 12.), 'Skiron': (5, 0.), 'AVGWP': (31, 0.), 'NAM': (3, 0.), 'GFS': (5, 0.)}

    hyd_loss = hyd_status[1]
    atm_loss = atm_status[1]

    if srcs.get(hyd_status[0])[1] > srcs.get(atm_status[0])[1]:
        atm_loss += 1
    elif srcs.get(hyd_status[0])[1] < srcs.get(atm_status[0])[1]:
        hyd_loss += 1
    
    frange = min(srcs.get(hyd_status[0])[0] - hyd_loss, srcs.get(atm_status[0])[0] - atm_loss)
    simhour = max(srcs.get(hyd_status[0])[1], srcs.get(atm_status[0])[1])
    return frange, simhour
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Appendix I – MOHID outputs database formatting

Module to conduct the formatting of MOHID outputs to populate the local database.

import os
from shutil import copyfile, rmtree, copytree
from datetime import datetime, timedelta
from subprocess import run
from glob import glob

import h5py
import numpy as np

def fmtres(resdir, opdate, outdir, levels, modset, mohid):
    return_dir = os.getcwd()

    def makedir(path):
        if not os.path.isdir(path):
            os.mkdir(path)

    print('-' * 80 + '\n' + "FORMAT RESULTS MODULE".center(80) + '\n' + '-' * 80)
    if not os.path.isdir(resdir) or not os.path.isdir(outdir):
        print("ERROR\nIn/out directory not found\n" + "-"*80)
        return
    print("INDIR :", resdir)

    outdir += "\\FMT"
    makedir(outdir)

    incrmt = 1
    if modset == "2":
        levels -= 1
        incrmt += 1

    for level in range(levels):
        lvdir = outdir + "\\Level " + str(level+1)
        makedir(lvdir)

        lvdir += opdate.strftime("\\%y%m%d")
        if os.path.isdir(lvdir):
            rmtree(lvdir)
        makedir(lvdir)

        mohid_files = "HDF5Extractor.exe", "szlibdll.dll", "zlib1.dll"
        for mohid_file in mohid_files:
            try:
                copyfile(mohid + "\\" + mohid_file, lvdir + "\\" + mohid_file)
            except FileNotFoundError:
                print("-"*80 + "\nERROR\nMOHID files not found\n" + "-" * 80)
                return

        timeseries = glob(resdir + f"\\LV{level+incrmt:02d}_TimeSeries*")[0]
        try:
            copytree(timeseries, lvdir + "\\TimeSeries")
        except FileNotFoundError:
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            print("-"*80 + "\nERROR\nTimeSeries folder not found\n" + "-" * 80)
            return

        with open(lvdir + "\\Nomfich.dat", "w") as dat:
            dat.write(f"IN_MODEL : Extractor.dat\nROOT_SRT : {lvdir}\n")

        os.chdir(lvdir)
        hdf = resdir + f"\\LV{level+incrmt:02d}_Hydrodynamic_1.hdf5"
        print("HDFIN :", hdf.replace(resdir, "."))
        if os.path.isfile(hdf):
            status = extractdata(hdf, "HD")
        else:
            print("-"*80 + f"\nERROR\nMissing file: {hdf}\n" + "-" * 80)
            return

        if status < 1:
            os.chdir(return_dir)
            print("-"*80 + f"\nERROR\nExtraction failed for\n{hdf}\n" + "-" * 80)
            return

        hdf = resdir + f"\\LV{level+incrmt:02d}_WaterProperties_1.hdf5"
        print("HDFIN :", hdf.replace(resdir, "."))
        if os.path.isfile(hdf):
            status = extractdata(hdf, "WP")
        else:
            print("-"*80 + f"\nERROR\nMissing file: {hdf}\n" + "-" * 80)
            return
        os.chdir(return_dir)

        if status < 1:
            print("-"*80 + f"\nERROR\nExtraction failed for\n{hdf}\n" + "-" * 80)
            return

        olds = glob(lvdir + '\\*.exe') + glob(lvdir + '\\*.log') + glob(lvdir + '\\*.dat') + glob(lvdir + '\\*.txt')
        olds += glob(lvdir + "\\*dll")
        for old in olds:
            os.unlink(old)

    print('-' * 80 + '\n' + "FORMAT RESULTS MODULE COMPLETED" + '\n' + '-' * 80)
            

def extractdata(hdf, flavor):
    if flavor == "HD":
        hdfpre = "Hydrodynamic_"
    else:
        hdfpre = "WaterProperties_"

    with h5py.File(hdf, 'r') as hdfin:
        dateini = np.array(hdfin['Time/Time_00001'], dtype=np.int)
        datefin = np.array(hdfin['Time/Time_00002'], dtype=np.int)
        
    dateini = datetime(dateini[0], dateini[1], dateini[2], dateini[3], dateini[4])
    datefin = datetime(datefin[0], datefin[1], datefin[2], datefin[3], datefin[4])
    stptime = (datefin-dateini).total_seconds()
    datalen = int(24*3600/stptime)
    
    for instant in range(datalen):
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        hdfdate = dateini+timedelta(seconds=instant*stptime)
        hdfout = hdfpre + hdfdate.strftime('%y%m%d_%H%M.hdf5')
        print(' Writing...', hdfout, f' {instant+1}/{datalen}')
        
        dat = open('Extractor.dat', 'w')
        dat.write(f"""FILENAME        : {hdf}\nOUTPUTFILENAME : {hdfout}

START_TIME :  {hdfdate:%Y %m %d %H %M} 0
END_TIME   :  {hdfdate:%Y %m %d %H %M} 0

INTERVAL                 : 0\n\n""")
        if flavor == 'HD':
            dat.write("""<BeginParameter>\n
PROPERTY                 : velocity U
HDF_GROUP                : /Results/velocity U
<EndParameter>

<BeginParameter>
PROPERTY                 : velocity V
HDF_GROUP                : /Results/velocity V
<EndParameter>

<BeginParameter>
PROPERTY                 : velocity W
HDF_GROUP                : /Results/velocity W
<EndParameter>

<BeginParameter>
PROPERTY                 : velocity modulus
HDF_GROUP                : /Results/velocity modulus
<EndParameter>

<BeginParameter>
PROPERTY                 : water level
HDF_GROUP                : /Results/water level
<EndParameter>\n""")
        else:
            dat.write("""<BeginParameter>
PROPERTY                 : temperature
HDF_GROUP                : /Results/temperature
<EndParameter>

<BeginParameter>
PROPERTY                 : salinity
HDF_GROUP                : /Results/salinity
<EndParameter>

<BeginParameter>
PROPERTY                 : density
HDF_GROUP                : /Results/density
<EndParameter>\n""")
        
        dat.close()
        run('HDF5Extractor.exe > log_run.txt 2> log_err.txt', shell=True)

        if not os.path.isfile('log_run.txt') or not os.path.isfile('log_err.txt'):
            return 0
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        log_run = [line.strip() for line in open('log_run.txt', 'r')]
        log_err = [line.strip() for line in open('log_err.txt', 'r')]

        if 'Program HDF5Extractor successfully terminated' not in log_run or log_err:
            return 0

    return 1

Appendix J – SOMA outputs OCASO formatting

Module to conduct the formatting of SOMA outputs to upload to OCASO SFTP.

import os
from shutil import rmtree
from glob import glob
from time import sleep
from datetime import datetime, timedelta

import pysftp

from post_pde_buildnc import BuildNetcdf

def convertpde(resdir, opdate, outdir, modset, levels):
    return_dir = os.getcwd()

    def makedir(path):
        if not os.path.isdir(path):
            os.mkdir(path)

    print('-'*80+'\n'+'PUERTOS DEL ESTADO NETCDF MODULE'.center(80)+'\n'+'-'*80)
    if not os.path.isdir(resdir) or not os.path.isdir(outdir):
        print("ERROR\nIn/out directory not found\n" + "-" * 80)
        return
    print("INDIR :", resdir)

    outdir += "\\PDE"
    makedir(outdir)

    incrmt = 1
    if modset == "2":
        levels -= 1
        incrmt += 1

    outdir += opdate.strftime("\\PDE_%y%m%d")
    if os.path.isdir(outdir):
        rmtree(outdir)
    os.mkdir(outdir)

    for level in range(levels):
        hdfs = glob(resdir + f"\\LV{level + incrmt:02d}_*.hdf5")
        if len(hdfs) != 4:
            print("-" * 80 + "\nERROR\nSimulation outputs missing\n" + "-" * 80)
            return
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    for level in range(levels):
        hdfin = resdir + f"\\LV{level+incrmt:02d}_Hydrodynamic_1.hdf5"
        print("HDFIN :", hdfin.replace(resdir, "."))
        tool = BuildNetcdf(outdir, level + 1)

        tool.time_and_grid(hdfin)
        dsetnum = tool.dsetsamnt(hdfin)

        print(" Velocity U")
        velu = tool.trid_dsets(hdfin, "/Results/velocity U", 1, dsetnum, "uo")
        print(" Velocity V")
        velv = tool.trid_dsets(hdfin, "/Results/velocity V", 1, dsetnum, "vo")
        print(" Velocity W")
        tool.trid_dsets(hdfin, "/Results/velocity W", 1, dsetnum, "wo")
        print(" Water Level")
        tide = tool.trid_dsets(hdfin, "/Results/water level", 0, dsetnum, "zos")
    
        hdfin = resdir + f"\\LV{level+incrmt:02d}_WaterProperties_1.hdf5"
        print("HDFIN :", hdfin.replace(resdir, "."))
        dsetnum = tool.dsetsamnt(hdfin)

        print(" Temperature")
        temp = tool.trid_dsets(hdfin, "/Results/temperature", 0, dsetnum, 'thetao')
        print(" Salinity")
        sali = tool.trid_dsets(hdfin, "/Results/salinity", 0, dsetnum, "so")
        print(" Density")
        tool.trid_dsets(hdfin, "/Results/density", 0, dsetnum, "rho")

        hdfin = resdir + f"\\LV{level + incrmt:02d}_Hydrodynamic_1_Surface.hdf5"
        print("HDFIN :", hdfin.replace(resdir, "."))
        dsetnum = tool.dsetsamnt(hdfin, surf=1)

        print(" Velocity U")
        tool.bid_dsets(hdfin, "/Results/velocity U", 1, dsetnum, "uo", velu)
        print(" Velocity V")
        tool.bid_dsets(hdfin, "/Results/velocity V", 1, dsetnum, "vo", velv)
        print(" Tide")
        tool.bid_dsets(hdfin, "/Results/water level", 0, dsetnum, "zos", tide)

        hdfin = resdir + f"\\LV{level + incrmt:02d}_WaterProperties_1_Surface.hdf5"
        print("HDFIN :", hdfin.replace(resdir, "."))
        dsetnum = tool.dsetsamnt(hdfin, surf=1)

        print(" Temperature")
        tool.bid_dsets(hdfin, "/Results/temperature", 0, dsetnum, "thetao", temp)
        print(" Salinity")
        tool.bid_dsets(hdfin, "/Results/salinity", 0, dsetnum, "so", sali)

    os.chdir(return_dir)

    try:
        sleep_time = datetime.fromordinal((opdate + timedelta(1)).toordinal()) - datetime.today()
        sleep(sleep_time.total_seconds())
    except ValueError:
        pass

    print("-"*80+'\n\nUpload to SFTP')
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    cnopts = pysftp.CnOpts()
    cnopts.hostkeys = None
    sftp = pysftp.Connection('ualg-ocaso.ualg.pt', username='userftpocaso', 
password='iK7re8baYXpsEGLxjkWx',
                             cnopts=cnopts)

    sftp.mkdir('/PDE/' + os.path.basename(outdir))
    sftp.put_r(outdir, '/PDE/' + os.path.basename(outdir), preserve_mtime=True)
    sftp.close()
    
    print("\n"+"-"*80)
    print('MODULE COMPLETED')
    print("-"*80)

Appendix K – OCASO formatting supporting class

Class with the methods to manipulate the datasets and write them in the NetCDF files.

from datetime import datetime, timedelta

import numpy as np
from h5py import File
from netCDF4 import Dataset

class BuildNetcdf:
    def __init__(self, outdir, level):
        self.outdir = outdir
        self.level = level
        self.project = "SOMA"
        self.valfill = -32767
        self.inifct = None
        self.frange = None
        self.surf = None
        self.vgrid = None
        self.scfofs = {}

    def time_and_grid(self, hdfin):
        with File(hdfin, "r") as hdf:
            self.inifct = datetime(*tuple([int(val) for val in hdf["/Time/Time_00001"]]))
            dsets_num = len(hdf["/Time"])
            endfct = datetime(*tuple([int(val) for val in hdf[f"/Time/Time_{dsets_num:05d}"]]))

            lat = np.array(hdf['Grid/Latitude'])[0]
            lon = np.array(hdf['Grid/Longitude']).transpose()[0]
            layers = np.array(hdf['Grid/VerticalZ/Vertical_00001']).transpose()

        lat = lat[:-1]
        lon = lon + (lon[1] - lon[0]) / 2
        lon = lon[:-1]

        maxdep = np.where(layers == np.amax(layers))
        layers = layers[maxdep[0][0], maxdep[1][0], ...]
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        layers_amnt = len(layers) - 1

        layers = layers[layers > 0]
        layers.sort()

        self.surf = lat, lon
        self.vgrid = layers, layers_amnt

        frange = int((endfct - self.inifct).total_seconds()/3600)
        if frange % 24 == 0:
            self.frange = int(frange/24)
        elif (frange + 1) % 24 == 0:
            self.frange = int((frange + 1)/24)
        else:
            self.frange = 0

        def writetime(valfill, ncout, time_inst):
            ncout.createDimension('time', 1)
            varid = ncout.createVariable('time', 'f4', ('time',), fill_value=valfill)
            varid.axis = 'T'
            varid.calendar = 'gregorian'
            varid.standard_name = 'time'
            varid.long_name = 'time'
            varid.units = 'hours since 1950-01-01 00:00:00'
            greg = (time_inst - datetime(1950, 1, 1, 0)).total_seconds() / 3600
            varid.valid_min = greg
            varid.valid_max = greg
            varid.CoordinateAxisType = 'Time'
            varid[:] = np.array([greg])

        def writehgrid(ncout, latarr, lonarr):
            ncout.createDimension('latitude', len(latarr))
            ncout.createDimension('longitude', len(lonarr))

            varid = ncfile.createVariable('latitude', 'f4', ('latitude',), fill_value=False)
            varid.standard_name = 'latitude'
            varid.long_name = 'Latitude'
            varid.units = 'degrees_north'
            varid.unit_long = 'Degrees North'
            varid.axis = 'Y'
            varid.Valid_min = latarr.min()
            varid.Valid_max = latarr.max()
            varid.step = latarr[1] - latarr[0]
            varid.CoordinateAxisType = 'Lat'
            varid[:] = latarr

            varid = ncfile.createVariable('longitude', 'f4', ('longitude',), fill_value=False)
            varid.standard_name = 'longitude'
            varid.long_name = 'Longitude'
            varid.units = 'degrees_east'
            varid.unit_long = 'Degrees East'
            varid.axis = 'X'
            varid.Valid_min = lonarr.min()
            varid.Valid_max = lonarr.max()
            varid.step = lonarr[1] - lonarr[0]
            varid.CoordinateAxisType = 'Lon'
            varid[:] = lonarr
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        def writevgrid(ncout, vgrid):
            ncout.createDimension('depth', len(vgrid))
            varid = ncfile.createVariable('depth', 'f4', ('depth',), fill_value=False)
            varid.standard_name = 'depth'
            varid.long_name = 'Vertical distance below the surface'
            varid.axis = 'Z'
            varid.units = 'm'
            varid.unit_long = 'Meters'
            varid.Valid_min = vgrid.min()
            varid.Valid_max = vgrid.max()
            varid.positive = 'down'
            varid.CoordinateAxisType = 'Height'
            varid.CoordinateZisPositive = 'down'
            varid[:] = layers

        for inst in range(self.frange):
            instant = self.inifct + timedelta(inst)
            ncname = '\\' + self.project + '-L' + str(self.level) + instant.strftime('_dm-%Y%m%d%H-B') + 
self.inifct.strftime('%Y%m%d%H-FC.nc')

            with Dataset(self.outdir + ncname, 'w') as ncfile:
                writetime(self.valfill, ncfile, instant)
                writehgrid(ncfile, lat, lon)
                writevgrid(ncfile, self.vgrid[0])

        for inst in range(self.frange*24):
            instant = self.inifct + timedelta(hours=inst)
            ncname = '\\' + self.project + '-L' + str(self.level) + instant.strftime('_hv-%Y%m%d%H-B') + 
self.inifct.strftime('%Y%m%d%H-FC.nc')

            with Dataset(self.outdir + ncname, 'w') as ncfile:
                writetime(self.valfill, ncfile, instant)
                writehgrid(ncfile, lat, lon)

    def dsetsamnt(self, hdfin, surf=0):
        with File(hdfin, "r") as hdf:
            secfct = datetime(*tuple([int(val) for val in hdf["/Time/Time_00002"]]))

        step = (secfct - self.inifct).total_seconds()

        if surf == 0:
            amnt = int(86400/step)
        else:
            amnt = int(3600/step)

        if amnt < 1:
            return 1

        return amnt

    def trid_dsets(self, hdfin, grpid, land, dset_amnt, ncvar):
        hdf = File(hdfin, "r")
        dset_shape = len(hdf["/Time"].keys()), self.vgrid[1], len(self.surf[1]), len(self.surf[0])
        dset = importdset(hdf[grpid], dset_shape)

        if land == 1:
            opnpts = importdset(hdf['/Grid/OpenPoints'], dset_shape)
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            dset = dset + (((opnpts - 1) * (-1)) * (-9.9e15))

        hdf.close()

        scf, off = scaleoffset(dset)
        mean = np.zeros((self.frange, dset_shape[1], dset_shape[2], dset_shape[3]))

        for day in range(self.frange):
            mean[day] = np.mean(dset[day * dset_amnt:(day + 1) * dset_amnt], axis=0)
        del dset

        for day in range(self.frange):
            instant = self.inifct + timedelta(day)
            ncname = '\\' + self.project + '-L' + str(self.level) + instant.strftime('_dm-%Y%m%d%H-B') + \
                     self.inifct.strftime('%Y%m%d%H-FC.nc')

            with Dataset(self.outdir + ncname, "a") as ncfile:
                varid = ncfile.createVariable(ncvar, 'f8', ('time', 'depth', 'longitude', 'latitude'),
                                              fill_value=self.valfill)
                dsetatt(varid, grpid, scf, off)
                prop = mean[day]
                prop = prop[::-1]
                prop = prop[:len(self.vgrid[0])]
                prop = np.ma.masked_less(prop, -98.99)
                varid[:] = prop  # Write array in variable

        return scf, off

    def bid_dsets(self, hdfin, grpid, land, dset_amnt, ncvar, ncscl):
        hdf = File(hdfin, "r")
        dset_shape = len(hdf["/Time"].keys()), len(self.surf[1]), len(self.surf[0])
        dset = importdset(hdf[grpid], dset_shape)

        if land == 1:
            opnpts = importdset(hdf['/Grid/OpenPoints'], dset_shape)
            dset = dset + (((opnpts - 1) * (-1)) * (-9.9e15))

        hdf.close()

        frange = int(self.frange*24)
        mean = np.zeros((frange, dset_shape[1], dset_shape[2]))

        for hour in range(frange):
            mean[hour] = np.mean(dset[hour * dset_amnt:(hour + 1) * dset_amnt], axis=0)
        del dset

        for hour in range(frange):
            instant = self.inifct + timedelta(hours=hour)
            ncname = '\\' + self.project + '-L' + str(self.level) + instant.strftime('_hv-%Y%m%d%H-B') + \
                     self.inifct.strftime('%Y%m%d%H-FC.nc')

            with Dataset(self.outdir + ncname, "a") as ncfile:
                varid = ncfile.createVariable(ncvar, 'f8', ('time', 'longitude', 'latitude'), fill_value=self.valfill)
                dsetatt(varid, grpid, ncscl[0], ncscl[1])
                prop = mean[hour]
                prop = np.ma.masked_less(prop, -98.99)
                varid[:] = prop
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def importdset(group, shape):
    dataset = np.zeros(shape)
    indice = 0

    for key in group.keys():
        dataset[indice] = np.array(group.get(key))
        indice += 1

    return dataset

def scaleoffset(hdfin, groupid):
    """Stretch/compress data to the available packed range"""
    vmin = 9.9e15
    vmax = -9.9e15
    
    hdf = File(hdfin, "r")
    for key in hdf.get(groupid).keys():
        dset = np.array(hdf.get(groupid + '/' + key))
        dset = dset[dset > -9.889e15]
        vmin = min(vmin, dset.min())
        vmax = max(vmax, dset.max())
    hdf.close()

    n = 8
    scf = (vmax - vmin) / (2 ** (n - 1))
    if -1 < scf < 1:
        scf = round(scf, 4)
    else:
        scf = round(scf)

    # translate the range to be symmetric about zero
    ofs = vmin + 2 ** (n - 1) * scf
    if -1 < ofs < 1:
        ofs = round(ofs, 4)
    else:
        ofs = round(ofs)

    print("SFC", scf, "OFS", ofs)
    return scf, ofs

def dsetatt(varid, group, scale_factor, offset):
    """Writes atributes in netcdf file for a dataset"""
    dset_dict = {
        "/Results/velocity U": ('eastward_sea_water_velocity', 'Eastward Velocity', 'm s-1', 'Meters per 
Second'),
        "/Results/velocity V": ('northward_sea_water_velocity', 'Northward Velocity', 'm s-1', 'Meters per 
Second'),
        "/Results/velocity W": ('vertical_sea_water_velocity', 'Vertical Velocity', 'm s-1', 'Meters per Second'),
        "/Results/temperature": ('sea_water_potential_temperature', 'Temperature', 'degrees_C', 'Degrees 
Celsius'),
        "/Results/salinity": ('sea_water_salinity', 'Salinity', 'psu', 'Pratical Salinty Unit'),
        "/Results/density": ('sea_water_density', 'Density', 'kg m3-1', 'kilograms per cubic meter'),
        "/Results/water level": ('sea_surface_height_above_geoid', 'Sea surface height', 'm', 'Meters')}

    varid.scale_factor = scale_factor
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    varid.add_offset = offset
    varid.long_name = dset_dict.get(group)[0]
    varid.standard_name = dset_dict.get(group)[1]
    varid.units = dset_dict.get(group)[2]
    varid.unit_long = dset_dict.get(group)[3]

    varid.set_auto_scale(True)

Appendix L – Mercator module

Module to process CMEMS Mercator data for MOHID use.

import os
from subprocess import run
from datetime import datetime, timedelta
from glob import glob
from shutil import copyfile

import numpy as np
from netCDF4 import Dataset

from inputsread import initread
from opcommon import mailreport, logentry
from forcstructure import ForcStructure

def download(outdir, grid, cred, daterange):
    if not os.path.isdir(outdir):
        os.mkdir(outdir)

    logs = outdir + '\\download_log.txt', outdir + '\\error.txt'
    command = 'python -m motuclient --motu http://nrt.cmems-du.eu/motu-web/Motu --service-id 
GLOBAL_ANALYSIS_FORECAST_PHY_001_024-TDS --product-id global-analysis-forecast-phy-001-
024'
    command += ' --longitude-min ' + str(grid[0]) + ' --longitude-max ' + str(grid[1]) + ' --latitude-min '
    command += str(grid[2]) + ' --latitude-max ' + str(grid[3]) + ' --date-min "' + str(daterange[0])
    command += '" --date-max "' + str(daterange[1]) + '" --depth-min 0.493 --depth-max 
5727.918000000001 '

    command += '--variable uo --variable vo --variable thetao --variable so '

    command += f'--out-dir {outdir} --out-name Mercator.nc --user ' + cred[0] + ' --pwd ' + cred[1]
    command += ' > ' + logs[0] + ' 2> ' + logs[1]

    print('Downloading Mercator NETCDF file', end="\n\n")
    run(command, shell=True)

    if not os.path.isfile(outdir + '\\Mercator.nc'):
        print("-" * 80 + "\nERROR - NETCDF file not found\n" + "-" * 80)
        return "ERR02", logs

    with open(logs[1], "r") as log:
        lines = log.readlines()
    if lines:
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        print("-" * 80 + "\nERROR - Download failed\n" + "-" * 80)
        return "ERR03", logs

    with Dataset(outdir + '\\Mercator.nc', 'r') as dset:
        dset_size = dset.variables['time'].size

    if dset_size != (daterange[1] - daterange[0]).days + 1:
        print("-" * 80 + "\nERROR - Downloaded NETCDF file with missing datasets\n" + "-" * 80)
        return "ERR04", logs
    return "GOOD JOB", ()

def conversion(outdir, dwnfile):
    logs = outdir + '\\conversion_log.txt', outdir + '\\error.txt'

    # vars = (name, units, desciption)
    velu = ('velocity U', 'm/s', 'Mercator velocity U')
    velv = ('velocity V', 'm/s', 'Mercator velocity V')
    temp = ('temperature', '°C', 'Mercator temperature')
    sali = ('salinity', 'psu', 'Mercator salinity')
    varsid = {'uo': velu, 'vo': velv, 'thetao': temp, 'so': sali}

    dset = Dataset(dwnfile, 'r')
    with open(outdir + '\\ConvertToHDF5Action.dat', 'w') as dat:
        dat.write(f"""<begin_file>
ACTION              : CONVERT NETCDF CF TO HDF5 MOHID
HDF5_OUT            : 1
NETCDF_OUT          : 0
OUTPUTFILENAME      : Mercator.hdf5

<<begin_time>>
NETCDF_NAME         : time
<<end_time>>

<<begin_grid>>
NETCDF_NAME_LAT     : latitude
NETCDF_NAME_LONG    : longitude
NETCDF_NAME_MAPPING : uo
MAPPING_LIMIT       : -32000
NETCDF_NAME_DEPTH   : depth
INVERT_LAYER_ORDER  : 1
BATHYM_FROM_MAP     : 1
BATHYM_FILENAME     : Mercator.dat
<<end_grid>>

PROPERTIES_NUMBER   : {len(varsid)}\n\n""")

        for var in varsid:
            dat.write(f"""<<begin_field>>
NETCDF_NAME         : {var}
NAME                : {varsid[var][0]}
UNITS               : {varsid[var][1]}
DESCRIPTION         : {varsid[var][2]}
DIM                 : {dset.variables[var].ndim - 1}
ADD_FACTOR          : {dset.variables[var].add_offset}
MULTIPLY_FACTOR     : {dset.variables[var].scale_factor}
<<end_field>>\n\n""")
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        dat.write(f"<<begin_input_files>>\n{dwnfile}\n<<end_input_files>>\n<end_file>\n")
    dset.close()

    os.chdir(outdir)
    print("Converting NETCDF file into HDF5", end="\n\n")
    run('ConvertToHdf5_release_double.exe > conversion_log.txt 2> error.txt', shell=True)

    if not os.path.isfile(outdir + '\\Mercator.hdf5'):
        print('-' * 80 + '\nERROR - Converted hdf5 not found\n' + '-' * 80)
        return 'ERR06', logs

    error = [line.strip() for line in open(outdir + '\\error.txt', 'r')]
    if error:
        print('-' * 80 + '\nERROR - Conversion failed\n' + '-' * 80)
        return 'ERR07', logs
    return "GOOD JOB", ()

def interpolation(outdir, modset, projdir, dwndnc, hdfint, hdfgrd):
    # --------- MODEL BATIM AND GEOMETRY
    batim = projdir + f'\\Sim_Daily\\General Data\\Digital Terrain\\BATIM_LV{modset}.dat'
    if int(modset) < 2:
        geomt = projdir + '\\Sim_Daily\\Level 1\\data\\Geometry_1.dat'
    else:
        geomt = projdir + '\\Sim_Daily\\Level 1\\Level 2\\data\\Geometry_1.dat'
    try:
        if not os.path.isfile(outdir + "\\" + os.path.basename(batim)):
            copyfile(batim, outdir + "\\" + os.path.basename(batim))
        if not os.path.isfile(outdir + '\\Geometry_out.dat'):
            copyfile(geomt, outdir + "\\Geometry_out.dat")
    except FileNotFoundError:
        print("-" * 80 + "\nERROR - Model files not found\n" + "-" * 80)
        return "ERR08", ()

    # ---------- WRITE GEOMETRY FROM DOWNLOADED NETCFD FILE
    with Dataset(dwndnc, 'r') as dset:
        depth = np.array(dset.variables['depth'][...])

    dat = open(outdir + '\\Geometry_in.dat', 'w')
    dat.write("<begindomain>\nID          : 1\nTYPE        : CARTESIAN\nDOMAINDEPTH : 0\n")
    dat.write(f"LAYERS      : {len(depth)}\n<<beginlayers>>\n")
    for layer in range(len(depth)):
        if layer < 1:
            dat.write(f'{depth[layer]}\n')
        else:
            dat.write(f'{depth[layer] - depth[layer - 1]}\n')
    dat.write(f"<<endlayers>>\nMININITIALLAYERTHICKNESS : 1\n<enddomain>\n")
    dat.close()

    # ---------- RUN INTERPOLATION
    def convertactiondat(inthdf, grdhdf, hdfout, btmout):
        with open('ConvertToHDF5Action.dat', 'w') as inter_dat:
            inter_dat.write(f"""<begin_file>
ACTION                    : INTERPOLATE GRIDS
TYPE_OF_INTERPOLATION     : 3
INTERPOLATION3D           : 1
FATHER_FILENAME           : {inthdf}
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FATHER_GRID_FILENAME      : {grdhdf}
OUTPUTFILENAME            : {hdfout}
NEW_GRID_FILENAME         : {btmout}
FATHER_GEOMETRY           : Geometry_in.dat
NEW_GEOMETRY              : Geometry_out.dat
EXTRAPOLATE_2D            : 2
BASE_GROUP                : /Results
POLI_DEGREE               : 1\n<end_file>""")

    os.chdir(outdir)
    convertactiondat(hdfint, hdfgrd, f'HYDFORC_LV{modset}.hdf5', f'BATIM_LV{modset}.dat')
    print("Interpolating HDF5 file", end="\n\n")
    run('Convert2Hdf5.exe > interpolation_log.txt 2> error.txt', shell=True)

    logs = outdir + "\\interpolation_log.txt", outdir + "\\error.txt"
    error = tuple([line.strip() for line in open(logs[1])])
    if 'VerifyBathymetry - Geometry - ERR165' in error:
        hdfgrd = os.path.dirname(hdfgrd) + "\\Mercator_v01.dat"
        os.chdir(outdir)
        convertactiondat(hdfint, hdfgrd, f'HYDFORC_LV{modset}.hdf5', f'BATIM_LV{modset}.dat')
        run('Convert2Hdf5.exe > interpolation_log.txt 2> error.txt', shell=True)

    if not os.path.isfile(outdir + f"\\HYDFORC_LV{modset}.hdf5"):
        print('-' * 80 + '\nERROR - Interpolated HDF5 not found\n' + '-' * 80)
        return "ERR09", logs

    error = [line.strip() for line in open(logs[1])]
    if error:
        print('-' * 80 + '\nERROR - Interpolation failed\n' + '-' * 80)
        return "ERR10", logs
    return "GOOD JOB", ()

def mercator(outdir, opdate, inputs):
    srcdir = outdir + "\\Mercator"
    logrun = srcdir + "\\Mercator_run_status.log"

    print("-"*80 + "\n" + "MERCATOR DATA MODULE".center(80) + "\n" + "-"*80)
    print("WOORKING DIRECTORY :", outdir)
    print("PROCESS DATE       :", opdate.strftime("%Y %m %d"))
    print("HDFOUT             :", inputs.get("HDFOUT"))
    print("TSOUT              :", inputs.get("TSOUT"))
    print("-"*80)

    hdfout = inputs.get("HDFOUT") == "1" and len(glob(opdate.strftime(srcdir + "\\Data HDF\\*%y%m
%d.hdf5"))) > 0
    tsout = inputs.get("TSOUT") == "1" and len(glob(opdate.strftime(srcdir + "\\Data TS\\*%y%m
%d.dat"))) > 0
    if hdfout or tsout:
        print('-' * 80 + '\nDATA FILE ALREADY AVAILABLE FOR SELECTED DATE\n' + '-' * 80)
        return 1

    if not os.path.isdir(srcdir):
        os.mkdir(srcdir)
    if not os.path.isfile(logrun):
        logentry(logrun, "DATE STATUS ENDTIME\n", mode="w")
    logentry(logrun, str(opdate))
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    cred = initread(("MERC_CRED", ), inputs.get("PROJDIR")).get("MERC_CRED")
    if not cred or len(cred.split()) != 2:
        print("-"*80 + "\nERROR - MERC_CRED not found\n" + "-"*80)
        logentry(logrun, datetime.today().strftime(" ERR01 %Y-%m-%d_%H:%M\n"))
        mailreport(inputs.get("MAILTO"), "Mercator process ERROR", "ERR01 - MERC_CRED value 
incorrect or missing", ())
        return 0
    cred = tuple(cred.split())

    print("Removing old files", end="\n\n")
    olds = glob(srcdir + "\\Download\\*.nc") + glob(srcdir + "\\Conversion\\*.hdf5")
    olds += glob(srcdir + "\\Interpolation\\*.hdf5")
    for old in olds:
        os.unlink(old)

    manager = ForcStructure(srcdir, inputs.get("MOHID"), opdate)
    manager.datawait(12, 30)

    timerun = opdate - timedelta(inputs.get("HNDCST") + 1), opdate + timedelta(7)

    status = download(srcdir + "\\Download", inputs.get("GRID"), cred, timerun)
    if "ERR" in status[0]:
        logentry(logrun, datetime.today().strftime(f" {status[0]} %Y-%m-%d_%H:%M\n"))
        body = opdate.strftime(f"%Y-%m-%d operation failed\n{status} - Mercator download failed")
        mailreport(inputs.get("MAILTO"), "Mercator process ERROR", body, status[1])
        return 0

    if inputs.get("HDFOUT") == "1":
        manager.hydhdfs()
        status = manager.mohid_conversion(srcdir + '\\Conversion')
        if status < 1:
            print("-" * 80 + "\nERROR - MOHID conversion files not found\n" + "-" * 80)
            logentry(logrun, datetime.today().strftime(" ERR05 %Y-%m-%d_%H:%M\n"))
            body = opdate.strftime("%Y-%m-%d operation failed\nERR05 - MOHID files not found")
            mailreport(inputs.get("MAILTO"), "Mercator process ERROR", body, ())
            return 0

        status = conversion(srcdir + '\\Conversion', srcdir + '\\Download\\Mercator.nc')
        if "ERR" in status[0]:
            logentry(logrun, datetime.today().strftime(f" {status[0]} %Y-%m-%d_%H:%M\n"))
            body = opdate.strftime(f"%Y-%m-%d operation failed\n{status} - Mercator conversion failed")
            mailreport(inputs.get("MAILTO"), "Mercator process ERROR", body, status[1])
            return 0

        status = manager.mohid_interpolation(srcdir + "\\Interpolation")
        if status < 1:
            print("-" * 80 + "\nERROR - Conversion files not found\n" + "-" * 80)
            logentry(logrun, datetime.today().strftime(" ERR05 %Y-%m-%d_%H:%M\n"))
            body = opdate.strftime("%Y-%m-%d operation failed\nERR05 - MOHID files not found")
            mailreport(inputs.get("MAILTO"), "Mercator process ERROR", body, ())
            return 0

        status = interpolation(srcdir + "\\Interpolation", inputs.get("MODSET"), inputs.get("PROJDIR"),
                               srcdir + "\\Download\\Mercator.nc", srcdir + '\\Conversion\\Mercator.hdf5',
                               srcdir + '\\Conversion\\Mercator.dat')
        if "ERR" in status[0]:
            logentry(logrun, datetime.today().strftime(f" {status[0]} %Y-%m-%d_%H:%M\n"))

100



            body = opdate.strftime(f"Operation for: %Y-%m-%d\n{status} - Mercator interpolation failed")
            mailreport(inputs.get("MAILTO"), "Mercator process ERROR", body, status[1])
            return 0

        os.chdir(outdir)
        hdf = srcdir + f"\\Interpolation\\HYDFORC_LV{inputs.get('MODSET')}.hdf5"
        copyfile(hdf, srcdir + opdate.strftime(f"\\Data HDF\\HYDFORC_LV{inputs.get('MODSET')}_%y
%m%d.hdf5"))

    print('-' * 80 + '\nMERCATOR MODULE COMPLETED\n' + '-' * 80)
    logentry(logrun, datetime.today().strftime(" 1 %Y-%m-%d_%H:%M\n"))
    mailreport(inputs.get("MAILTO"), "Mercator process COMPLETED", opdate.strftime("%Y-%m-%d 
Files available"), ())
    return 1

Appendix M – Skiron module

Module to process Skiron data for MOHID use.

import os
from ftplib import FTP, error_perm
from shutil import rmtree, copytree, copyfile
from datetime import datetime, timedelta
from glob import glob
from subprocess import run

import numpy as np
from h5py import File

from opcommon import mailreport, logentry
from forcstructure import ForcStructure
from forcgribs import Griball, writehdf, relhum

def download(outdir, actdate):
    if not os.path.isdir(outdir):
        os.mkdir(outdir)

    ftp = FTP('ftp.mg.uoa.gr')
    ftp.login('mfstep', '!lam')
    ftpdir = actdate.strftime('/forecasts/Skiron/daily/005X005/%d%m%y')
    try:
        ftp.cwd(ftpdir)
    except error_perm:
        rmtree(outdir)
        return "ERR01"

    grbs = ftp.nlst()
    grbs.sort()
    if actdate < datetime.today().date():
        grbs_size = 24
    else:
        grbs_size = 121
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    print("Downloading Skiron GRIB files")
    for inst in range(grbs_size):
        try:
            print("", grbs[inst])
            ftp.retrbinary("RETR " + grbs[inst], open(outdir + '\\' + grbs[inst], 'wb').write)
        except (EOFError, TimeoutError, ConnectionResetError):
            rmtree(outdir)
            return "ERR02"

    ftp.close()

    grbs = glob(outdir + '\\*.grb')
    if len(grbs) < grbs_size:
        rmtree(outdir)
        return "ERR03"

    grbs.sort()
    inst = 0
    for grb in grbs:
        os.rename(grb, outdir + actdate.strftime("\\MFSTEP005_00%y%m%d_") + f'{inst:03d}.grb')
        inst += 1
    return "GOOD JOB"

def conversion(outdir, dwndates, grid_lim):
    print("Converting GRIB files in one HDF5")
    hdf = outdir + "\\Skiron.hdf5"

    grbs = []
    for folder in glob(dwndates + "\\*"):
        grbs += glob(folder + '\\*.grb')
    grbs.sort()
    grbs_size = len(grbs)

    grb = Griball(grbs[0])
    status = grb.opengrb()
    if status < 1:
        print('-' * 80 + f'\nERROR - Failed to open grib file, {grbs[0]}\n' + '-' * 80)
        return "ERR04"

    print(" GRID")
    londset, latdset, cutdset = grb.hdfgrid(grid_lim)
    latdset, londset = np.meshgrid(latdset, londset)
    dset = grb.grbdset(15, cutdset=cutdset, hdfout=1).astype('i4')  # land 1 sea 0
    batim = dset.copy()
    batim = batim * (-99) + abs(batim - 1) * 10000
    writehdf(hdf, 'Grid/Latitude', latdset, "deg", "w")
    writehdf(hdf, 'Grid/Longitude', londset, "deg", "a")
    writehdf(hdf, 'Grid/WaterPoints', abs(dset - 1), "-", "a")
    writehdf(hdf, 'Grid/Bathymetry', batim, 'm', "a")
    del latdset, londset, batim, grb

    inst = 1
    for src_grb in grbs:
        print(f'\r DATASETS {inst / grbs_size * 100:.1f}%', end="")
        grb = Griball(src_grb)
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        status = grb.opengrb()
        if status < 1:
            print('-' * 80 + f'\nERROR - Failed to open grib file, {grbs[0]}\n' + '-' * 80)
            return "ERR04"

        dset = grb.grbtime()
        dset = np.array([dset.year, dset.month, dset.day, dset.hour, dset.minute, dset.second])
        writehdf(hdf, f'Time/Time_{inst:05d}', dset, 'YYYY/MM/DD HH:MM:SS', "a")

        sp_hum = grb.grbdset(4, cutdset=cutdset, hdfout=1)
        writehdf(hdf, f'Results/specific humidity/specific humidity_{inst:05d}', sp_hum, "kg/kg", "a")
        apress = grb.grbdset(6, cutdset=cutdset, hdfout=1)
        writehdf(hdf, f'Results/atmospheric pressure/atmospheric pressure_{inst:05d}', apress, "Pa", "a")
        airtmp = grb.grbdset(3, cutdset=cutdset, hdfout=1)
        writehdf(hdf, f'Results/air temperature/air temperature_{inst:05d}', airtmp, "C", "a")
        dset = relhum(sp_hum, airtmp, apress)
        writehdf(hdf, f'Results/relative humidity/relative humidity_{inst:05d}', dset, '-', "a")
        del sp_hum, apress, airtmp

        velu = grb.grbdset(1, cutdset=cutdset, hdfout=1)
        writehdf(hdf, f'Results/wind velocity X/wind velocity X_{inst:05d}', velu, 'm/s', "a")
        velv = grb.grbdset(2, cutdset=cutdset, hdfout=1)
        writehdf(hdf, f'Results/wind velocity Y/wind velocity Y_{inst:05d}', velv, 'm/s', "a")
        dset = np.sqrt(velu ** 2 + velv ** 2)
        writehdf(hdf, f"Results/wind modulus/wind modulus_{inst:05d}", dset, "m/s", "a")
        del velu, velv

        dset = grb.grbdset(5, cutdset=cutdset, fraction=1, hdfout=1)
        writehdf(hdf, f"Results/cloud cover/cloud cover_{inst:05d}", dset, "fraction", "a")
        dset = grb.grbdset(7, cutdset=cutdset, hdfout=1)
        writehdf(hdf, f"Results/precipitation/precipitation_{inst:05d}", dset, "kg/m2", "a")
        dset = grb.grbdset(8, cutdset=cutdset, hdfout=1)
        writehdf(hdf, f"Results/downward short wave radiation/downward short wave radiation_{inst:05d}", 
dset,
                 "W/m2", "a")
        dset = grb.grbdset(9, cutdset=cutdset, hdfout=1)
        writehdf(hdf, f"Results/upward short wave radiation/upward short wave radiation_{inst:05d}", dset, 
"W/m2", "a")
        dset = grb.grbdset(10, cutdset=cutdset, hdfout=1)
        writehdf(hdf, f"Results/downward long wave radiation/downward long wave radiation_{inst:05d}", 
dset, "W/m2",
                 "a")
        dset = grb.grbdset(11, cutdset=cutdset, hdfout=1)
        writehdf(hdf, f"Results/upward long wave radiation/upward long wave radiation_{inst:05d}", dset, 
"W/m2", "a")
        dset = grb.grbdset(12, cutdset=cutdset, hdfout=1)
        writehdf(hdf, f"Results/evaporation/evaporation_{inst:05d}", dset, "kg/m2", "a")
        dset = grb.grbdset(13, cutdset=cutdset, hdfout=1)
        writehdf(hdf, f"Results/latent heat/latent heat_{inst:05d}", dset, "W/m2", "a")
        dset = grb.grbdset(14, cutdset=cutdset, hdfout=1)
        writehdf(hdf, f"Results/sensible heat/sensible heat_{inst:05d}", dset, "W/m2", "a")

        inst += 1
        del dset, grb
    print("\n")
    return "GOOD JOB"
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def interpolation(outdir, batdir, modset, levels, hdfski):
    model_batims = glob(batdir + "\\BATIM_LV*.dat")
    if modset == "1":
        levels_range = levels
        level_incrmt = 1
    else:
        model_batims.remove(batdir + "\\BATIM_LV1.dat")
        levels_range = levels - 1
        level_incrmt = 2

    for dat in model_batims:
        copyfile(dat, outdir + "\\" + os.path.basename(dat))

    model_batims = glob(outdir + "\\BATIM_LV*.dat")
    model_batims.sort()
    lat = lon = None
    lines = [line for line in open(model_batims[0])]

    for line in lines:
        if 'LATITUDE' in line:
            lat = line[line.find(":") + 1:].strip()
        if 'LONGITUDE' in line:
            lon = line[line.find(":") + 1:].strip()

    if None in (lat, lon):
        print('-' * 80 + '\nERROR - Unable to read model batim\n' + '-' * 80)
        return "ERR06", ()

    with File(hdfski, "r") as hdf:
        latdset = np.array(hdf['/Grid/Latitude'])[0]
        londset = np.array(hdf['/Grid/Longitude']).transpose()[0]
        batdset = np.array(hdf['/Grid/Bathymetry'])

    with open(outdir + '\\BATIM_SKIRON.dat', 'w') as dat:
        dat.write(f"""ILB_IUB                 : 1         {len(latdset) - 1}
JLB_JUB                 : 1         {len(londset) - 1}
COORD_TIP               : 4
 ORIGIN                  : 0         0
 GRID_ANGLE              : 0.000
 LATITUDE                : {lat}     
 LONGITUDE               : {lon}
 FILL_VALUE              : -99.0
<BeginGridData2D>\n""")

        for val in batdset.transpose().flatten():
            dat.write(f' {val:^14}\n')
        dat.write("<EndGridData2D>\n<BeginXX>\n")

        for val in londset:
            dat.write(f' {val:^14}\n')
        dat.write("<EndXX>\n<BeginYY>\n")

        for val in latdset:
            dat.write(f' {val:^14}\n')
        dat.write("<EndYY>\n")

    # ---------- INTERPOLATION
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    print("Interpolating HDF5 file", end="\n\n")
    os.chdir(outdir)
    for level in range(levels_range):
        if level == 0:
            hdfin = hdfski
            gridin = outdir + '\\BATIM_SKIRON.dat'
        else:
            hdfin = outdir + f'\\ATMFORC_LV{level + level_incrmt - 1}.hdf5'
            gridin = outdir + f'\\BATIM_LV{level + level_incrmt - 1}.dat'

        hdfout = outdir + f'\\ATMFORC_LV{level + level_incrmt}.hdf5'

        with open(outdir + '\\ConvertToHDF5Action.dat', 'w') as dat:
            dat.write(f"""<begin_file>
ACTION                    : INTERPOLATE GRIDS
TYPE_OF_INTERPOLATION     : 1
FATHER_FILENAME           : {hdfin}
FATHER_GRID_FILENAME      : {gridin}
OUTPUTFILENAME            : {hdfout}
NEW_GRID_FILENAME         : BATIM_LV{level + level_incrmt}.dat
EXTRAPOLATE_2D            : 1
BASE_GROUP                : /Results
POLI_DEGREE               : 4\n<end_file>""")

        logs = outdir + '\\interpolation_log.txt', outdir + '\\error.txt'
        command = "Convert2Hdf5.exe > " + logs[0] + " 2> " + logs[1]
        run(command, shell=True)

        if not os.path.isfile(hdfout):
            print('-' * 80 + '\nERROR - Interpolated HDF5 not found\n' + '-' * 80)
            return "ERR07", logs

        error = [line.strip() for line in open(logs[1])]
        if error:
            print('-' * 80 + '\nERROR - Interpolation failed\n' + '-' * 80)
            return "ERR08", logs
    os.chdir("..\\..\\")
    return "GOOD JOB", ()

def skiron(outdir, opdate, inputs):
    srcdir = outdir + "\\Skiron"
    logrun = srcdir + "\\Skiron_run_status.log"

    print("-"*80 + "\n" + "SKIRON DATA MODULE".center(80) + "\n" + "-"*80)
    print("WOORKING DIRECTORY :", outdir)
    print("PROCESS DATE       :", opdate.strftime("%Y %m %d"))
    print("HDFOUT             :", inputs.get("HDFOUT"))
    print("TSOUT              :", inputs.get("TSOUT"))
    print("-" * 80)

    hdfout = inputs.get("HDFOUT") == "1" and len(glob(opdate.strftime(srcdir + "\\Data HDF\\*%y%m
%d.hdf5"))) > 0
    tsout = inputs.get("TSOUT") == "1" and len(glob(opdate.strftime(srcdir + "\\Data TS\\*%y%m
%d.dat"))) > 0
    if hdfout or tsout:
        print('-' * 80 + '\nDATA FILE ALREADY AVAILABLE FOR SELECTED DATE\n' + '-' * 80)
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        return 1

    if not os.path.isdir(srcdir):
        os.mkdir(srcdir)
    if not os.path.isfile(logrun):
        logentry(logrun, "DATE STATUS ENDTIME\n", mode="w")
    logentry(logrun, str(opdate))

    print("Removing old files", end="\n\n")
    olds = glob(srcdir + "\\Conversion\\*.hdf5") + glob(srcdir + "\\Interpolation\\*.hdf5")
    for old in olds:
        os.unlink(old)

    if not os.path.isdir(srcdir + "\\Download"):
        os.mkdir(srcdir + "\\Download")
    bkupdir = srcdir + "\\BKUP"
    if inputs.get("BKUP") == "1" and not os.path.isdir(bkupdir):
        os.mkdir(bkupdir)

    manager = ForcStructure(srcdir, inputs.get("MOHID"), opdate)
    manager.datawait(7, 0)

    timerun = opdate - timedelta(inputs.get("HNDCST") + 1), opdate

    # ---------- DOWNLOAD GRIB FILES
    for inst in range((timerun[1] - timerun[0]).days + 1):
        dir_date = timerun[0] + timedelta(inst)
        dir_dwld = srcdir + dir_date.strftime("\\Download\\%y%m%d")

        status = "GOOD JOB"
        if not os.path.isdir(dir_dwld):
            status = download(dir_dwld, dir_date)

        if "ERR" in status and os.path.isdir(bkupdir + dir_date.strftime("\\%y%m%d")):
            copytree(bkupdir + dir_date.strftime("\\%y%m%d"), dir_dwld)
            status = "GOOD JOB"

        if "ERR" in status:
            print('-' * 80 + dir_date.strftime(f'\nERROR - {status} Download failed for %d/%b/%Y data \n') + 
'-' * 80)
            logentry(logrun, datetime.today().strftime(f" {status} %Y-%m-%d_%H:%M\n"))
            body = opdate.strftime(f"%Y-%m-%d operation failed\n{status} - Skiron download failed")
            mailreport(inputs.get("MAILTO"), "Skiron process ERROR", body, ())
            return 0

    dir_dates = []
    for folder in glob(srcdir + "\\Download\\*"):
        if os.path.isfile(folder):
            os.unlink(folder)
            continue
        try:
            dir_dates.append(datetime.strptime(os.path.basename(folder), "%y%m%d").date())
        except ValueError:
            rmtree(folder)
            continue

    grbs = []
    for date in dir_dates:
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        if date < datetime.today().date():
            grbs += glob(srcdir + date.strftime("\\Download\\%y%m%d\\*.grb"))
    for grb in grbs:
        grb_time = int(os.path.basename(grb).split("_")[-1][:3])
        if grb_time > 23:
            os.unlink(grb)

    for date in dir_dates:
        if date >= timerun[0]:
            continue
        folder = srcdir + date.strftime("\\Download\\%y%m%d")
        if inputs.get("BKUP") == "1":
            try:
                copytree(folder, bkupdir + date.strftime("\\%y%m%d"))
            except FileExistsError:
                pass
        rmtree(folder)

    if inputs.get("HDFOUT") == "1":
        manager.atmhdfs(inputs.get("MODSET"), inputs.get("LEVELS"))
        manager.std_conversion()

        status = conversion(srcdir + "\\Conversion", srcdir + "\\Download", inputs.get("GRID"))
        if "ERR" in status[0]:
            logentry(logrun, datetime.today().strftime(f" {status[0]} %Y-%m-%d_%H:%M\n"))
            body = opdate.strftime(f"%Y-%m-%d operation failed\n{status} - Skiron conversion failed")
            mailreport(inputs.get("MAILTO"), "Skiron process ERROR", body, status[1])
            return 0

        batdir = inputs.get("PROJDIR") + "\\Sim_Daily\\General Data\\Digital Terrain"
        hdfski = srcdir + '\\Conversion\\Skiron.hdf5'

        status = manager.mohid_interpolation(srcdir + "\\Interpolation")
        if status < 1:
            print("-" * 80 + "\nERROR - Conversion files not found\n" + "-" * 80)
            logentry(logrun, datetime.today().strftime(" ERR05 %Y-%m-%d_%H:%M\n"))
            body = opdate.strftime("%Y-%m-%d operation failed\nERR05 - MOHID files not found")
            mailreport(inputs.get("MAILTO"), "Skiron process ERROR", body, ())
            return 0

        status = interpolation(srcdir + "\\Interpolation", batdir, inputs.get("MODSET"), 
inputs.get("LEVELS"), hdfski)
        if "ERR" in status[0]:
            logentry(logrun, datetime.today().strftime(f" {status[0]} %Y-%m-%d_%H:%M\n"))
            body = opdate.strftime(f"%Y-%m-%d operation failed\n{status} - Skiron interpolation failed")
            mailreport(inputs.get("MAILTO"), "Skiron process ERROR", body, status[1])
            return 0

        hdfs = glob(srcdir + f"\\Interpolation\\ATMFORC_LV*.hdf5")
        for hdf in hdfs:
            hdfnew = os.path.basename(hdf).split(".")[0] + opdate.strftime("_%y%m%d.hdf5")
            copyfile(hdf, srcdir + "\\Data HDF\\" + hdfnew)

        os.chdir(outdir)

    print('-' * 80 + '\nSKIRON PROCESS COMPLETED\n' + '-' * 80)
    logentry(logrun, datetime.today().strftime(" 1 %Y-%m-%d_%H:%M\n"))
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    mailreport(inputs.get("MAILTO"), "Skiron process COMPLETED", opdate.strftime("%Y-%m-%d Files
available"), ())
    return 1
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