
FERNANDO MENDES COIMBRA DE MENDONÇA

A PYTHON BASED SYSTEM TO MANAGE SIMULATIONS

OF COASTAL OPERATIONAL MODELS

UNIVERSIDADE DO ALGARVE

INSTITUTO SUPERIOR DE ENGENHARIA

2020

FERNANDO MENDES COIMBRA DE MENDONÇA

A PYTHON BASED SYSTEM TO MANAGE SIMULATIONS

OF COASTAL OPERATIONAL MODELS

Mestrado em Engenharia Mecânica

(Especialidade em Energia, Climatização e Refrigeração)

Trabalho efetuado sob a orientação de:

Prof. Dr. Flávio Martins

Dr. João Janeiro

UNIVERSIDADE DO ALGARVE

INSTITUTO SUPERIOR DE ENGENHARIA

2020

A python-based system to manage simulations of coastal operational models

Declaração de autoria de trabalho

Declaro ser o autor deste trabalho, que é original e inédito. Autores e trabalhos consultados

estão devidamente citados no texto e constam da listagem de referências incluída.

Copyright ©Fernando Mendes Coimbra de Mendonça

A Universidade do Algarve reserva para si o direito, em conformidade com o disposto no

Código do Direito de Autor e dos Direitos Conexos, de arquivar, reproduzir e publicar a

obra, independentemente do meio utilizado, bem como de a divulgar através de

repositórios científicos e de admitir a sua cópia e distribuição para fins meramente

educacionais ou de investigação e não comerciais, conquanto seja dado o devido crédito ao

autor e editor respetivos.

ABSTRACT

Operational oceanography is understood as the constant endeavor of observing seas and

oceans, collecting, interpreting and disseminating the measured data, in order to design

methods for analyzing behavior and predicting future conditions. Consequently, ocean

modelling is one of the most important activities developed within this context, as it helps

to understand the aspects and phenomena of those ecosystems. In this scenario, the goal of

this work is to build a simulation management system, programmed in the Python

language, for coastal hydrodynamic models made in MOHID modelling system

environment. MOHID is a three-dimensional model with numerical tools to solve

governing equations that describe the fluid flow and to reproduce several processes of the

marine environment. Python allows the rapid creation of sophisticated algorithms for all

types of tasks, having the necessary resources to perform the most essential function in

simulation management: the control of the inputs and outputs of a model. The management

system used SOMA as the application example. SOMA is the operational validated high

resolution hydrodynamic model of the Algarve coast based on MOHID. In this setup it is

necessary to manage two distinct simulation cycles: the daily runs or forecast simulations,

and weekly runs, which initialize the model for a new week cycle. The main body of the

program was divided into two basic layers, one to process the corresponding forcing data

and other to manage the simulations. The algorithm was designed to work with a pre-

determined generic structure of folders and file nomenclature. MOHID’s keyword feature

was also adopted to specify the parameters to configure the tool. SOMA has become the

first model to be controlled by the tool and still keeps its forecast cycles active,

nevertheless, due to its generic feature, the simulation management system presented in

this work is prepared to manage any other MOHID based model in operational mode.

Keywords: operational oceanography, MOHID modelling system, Python, simulation

management system, SOMA, Algarve coast.

i

RESUMO

Os oceanos desempenham um papel de extrema importância na manutenção da vida no

planeta. Eles são responsáveis por regular o clima e temperatura globais, reciclar

nutrientes, gerar oxigênio, absorver dióxido de carbono da atmosfera entre outros. Para a

humanidade, este ambiente possui ainda uma relevância extremamente elevada em relação

a aspectos econômicos, servindo principalmente como fonte de alimentos e de exploração

de recursos fósseis, via de transporte, desenvolvimento de atividades turísticas e

recreativas, geração de energia. Por esses motivos, torna-se essencial compreender suas

características e os diversos fenômenos que nele se desenvolvem. Dessa maneira, a

oceanografia operacional é entendida como a atividade constante de observação, coleta,

interpretação e divulgação dos dados medidos, a fim de projetar métodos de análise de

comportamento e previsão de condições futuras.

A modelação oceânica é uma das atividades mais importantes desenvolvidas no âmbito

da oceanografia operacional. Um modelo consiste na representação matemática de

fenômenos, que neste caso são equações para descrever a dinâmica dos fluidos nos

oceanos. O conjunto de expressões matemáticas que representam o movimento dos fluidos

forma um sistema de equações diferenciais, que são construídas respeitando os princípios

fundamentais de conservação da física, dando origem às equações de transporte. Uma vez

que essas equações não têm solução analítica, elas têm de ser resolvidas usando métodos

de modelação matemática. Para isso as equações são discretizadas usando métodos

numéricos e transformadas em código computacional para avançar ou iterar o estado do

oceano no tempo.

 As equações de transporte representam o movimento do fluido e descrevem, cada uma, a

conservação de uma propriedade. Elas são, portanto, formadas pelas equações de Navier-

Stokes, que correspondem à conservação de massa e momentum, mais o balanço de

energia e as equações de estado, que correlacionam propriedades termodinâmicas e fazem

o vínculo entre temperatura e salinidade com a densidade. Em modelos oceânicos, elas são

frequentemente discretizadas no espaço pelo método de volumes finitos na abordagem

euleriana, que consiste na avaliação da conservação de propriedades dentro de um volume

de controle, enquanto um fluxo de água passa por ele. O sistema de equações é resolvido

ii

individualmente para cada um destes elementos que juntos constituem a malha do domínio

do modelo, de forma que cada iteração expressa a conservação em cada um deles.

Embora já seja um negócio muito valioso, estima-se que a economia oceânica ainda

possa dobrar nos próximos anos, à medida que a população cresce nos centros urbanos

próximos às áreas costeiras. Assim, crescimento azul é o termo criado para designar

práticas que visam o crescimento econômico, mas que também garantem a preservação

desse ambiente para as gerações futuras. A busca pelo desenvolvimento sustentável

provoca uma demanda crescente por conhecimento em relação aos oceanos, especialmente

em regiões costeiras, fazendo com que os dados gerados na oceanografia operacional

sejam essenciais para as atividades socioeconômicas do crescimento azul. Sendo assim,

este trabalho tem como objetivo desenvolver um sistema de gestão de simulações,

programado na linguagem Python, para modelos hidrodinâmicos costeiros que sejam

construídos no ambiente do sistema de modelação MOHID.

O sistema MOHID é uma ferramenta numérica capaz de reproduzir diversos processos

do ambiente marinho. Ele é um modelo hidrodinâmico tridimensional que soluciona os

sistemas de equações de transporte para escoamentos incompressíveis, em que o equilíbrio

hidrostático e a aproximação de Boussinesq são assumidos. A discretização espacial

vertical é realizada por meio de coordenadas genéricas, em que a coluna de água pode ser

dividida em vários subdomínios para melhor se adequar as regiões heterogêneas de todo o

domínio. A discretização temporal é processada por um algoritmo ADI semi-implícito com

dois níveis de tempo por iteração.

O código do MOHID está escrito em ANSI FORTRAN 95, que permite a programação

por meio do paradigma da orientação por objetos. Logo, o sistema possui uma arquitetura

modular, de forma que cada módulo representa uma classe responsável por gerir um tipo

específico de informação. Este “design” possibilita a simulação simultânea de modelos

aninhados e, consequentemente, o uso da metodologia de redução de escala, sendo cada

domínio uma nova instância de classes individuais. Alguns dos módulos requerem

informações extras para serem executados corretamente. Esses parâmetros são fornecidos

através de um sistema de palavras-chave escrito em formato de texto ASCII em um arquivo

específico para cada um. O conjunto desses arquivos de entradas caracteriza um modelo no

ambiente MOHID.

iii

O Python é uma linguagem de programação multiplataforma de código aberto e licença

gratuita que se tem tornado cada vez mais popular. Ela é construída usando uma

abordagem orientada por objetos, baseado em classes, possuindo uma vasta biblioteca de

módulos versáteis, nativos e externos, que permitem a criação rápida de algoritmos

sofisticados para todos os tipos de tarefas. Devido às suas características o Python também

tem sido amplamente adotado no domínio científico. Em modelação oceânica ele possui

ferramentas para lidar com formatos de dados mais comuns, suporte para OPeNDAP,

métodos para realizar análise harmônica de marés e de visualização científica. A linguagem

também possui os recursos necessários para realizar a tarefa mais essencial durante os

ciclos de previsão, que é o controle das entradas e saídas de um modelo.

O sistema de gestão foi desenvolvido utilizando como base a operacionalização do

Sistema de Modelação e Monitorização Operacional do Algarve, ou SOMA, modelo

hidrodinâmico validado de alta resolução da costa algarvia que utiliza como base o sistema

de modelação MOHID. Desta forma, a ferramenta faz a gestão de dois ciclos de simulação

distintos: as corridas diárias, que equivalem às simulações de previsões contínuas, e as

semanais, que inicializam o modelo para gerar novas condições iniciais menos

deterioradas. Além disso, foi preciso desenvolver também operações para processar os

dados de forçamento correspondentes. Por esse motivo, o corpo principal do programa foi

dividido em duas camadas, uma para os dados de fontes externas e outra para gerir

simulações.

A gestão de simulações consiste basicamente em coordenar a execução de diferentes

operações e o manuseamento de arquivos. Por esse motivo, o algoritmo do programa foi

concebido de forma a trabalhar em cima de uma estrutura genérica pré-determinada de

pastas e de nomenclatura de arquivos. Esta arquitetura foi sendo aprimorada à medida que

os padrões de uma rotina de simulação realizada pelo MOHID eram identificados. Além

disso, foi adotado o método de leitura de palavras-chave para a especificação dos

parâmetros para executar cada modelo. Depois de adaptado a estas normas, o SOMA

passou a ser o meio para testar as versões da ferramenta. Consequentemente, este modelo é

primeiro a ser controlado por ela, razão pela qual foram criados módulos para processar

dados oceânicos do Mercador e atmosféricos do Skiron.

iv

O uso da linguagem de programação orientada por objetos contribuiu para simplificar o

código do programa, uma vez que foram construídos métodos para serem usados mais de

uma vez em diferentes situações, evitando assim a escrita repetitiva de partes iguais do

código. Além disso, módulos que desenvolvem tarefas fora do contexto de simulações,

como formatação de resultados ou processamento de dados de forçamentos, deram origem

a outras funcionalidades já que poderiam ser acessados de forma independente. Porém, da

forma como foi projetado e em conjunto com a estrutura de pastas imposta, a grande

limitação do programa de gestão é de ainda não permitir a operacionalização de modelos

que tenham mais do que um subdomínio definido para o mesmo nível. Além disso, quando

o código divide a execução do programa em para realizar tarefas simultâneas, as

mensagens impressas de cada módulo em execução surgem simultâneas na janela de

prompt, tornando-se confusas para o usuário. Estas são algumas das melhorias que se irão

efetuar no futuro próximo.

Apesar das limitações apresentadas o sistema de gestão de simulação apresentado neste

trabalho está preparado para converter modelos no modo operacional. Ainda assim, sua

construção é um processo contínuo, logo, ele continuará a passar por atualizações e

aperfeiçoamentos. Neste sentido, as opções para executar operações independentes, como

formatação de resultados e o processamento de dados de forçamento, já estão sendo

programadas e em breve serão integradas ao programa. Considerando ainda que Python

possui uma vasta biblioteca embutida e diversas outras ferramentas externas, que oferecem

uma ampla gama de recursos, também como trabalhos futuros, ir-se-á optimizar a

paralelização de tarefas e até mesmo construção de uma interface gráfica para melhorar a

visualização das mensagens. Além disso, o programa tem espaço para crescer com novos

módulos para outras fontes de forçamento e até com o desenvolvimento de novas

funcionalidades.

Palavras-chave: oceanografia operacional, sistema de modelação MOHID, Python,

sistema de gestão de simulações, SOMA, costa algarvia.

v

CONTENTS

1 INTRODUCTION...1

2 STATE OF THE ART..3

2.1 Operational Oceanography..3

2.1.1 Observation Methods...4

2.1.2 Observation Network...12

2.1.3 Operational Oceanography and Blue Growth..13

2.2 Numerical Ocean Modelling..14

2.2.1 MOHID Modelling System..17

2.3 Python Programming Language..21

3 METHODOLOGY..25

4 RESULTS...32

4.1 Main data structure..32

4.2 User inputs...34

4.3 Simulation operation..37

4.3.1 Daily run cycle...39

4.3.2 Weekly run cycle..41

4.3.3 Forcing layer..44

4.3.4 Formatting outputs...47

4.4 Failures statistics..49

4.5 SOMA Outputs..51

5 DISCUSSION...55

6 CONCLUSION..60

vi

BIBLIOGRAPHY..62

APPENDICES..69

Appendix A – Operation selector...69

Appendix B – Initial data file reader...70

Appendix C – Common operations...72

Appendix D – Simulation control..73

Appendix E – Weekly run cycle control..76

Appendix F – Daily run cycle control...78

Appendix G – Simulation class...80

Appendix H – Forcing data selector..84

Appendix I – MOHID outputs database formatting..86

Appendix J – SOMA outputs OCASO formatting..89

Appendix K – OCASO formatting supporting class...91

Appendix L – Mercator module...96

Appendix M – Skiron module...101

vii

INDEX OF FIGURES

Figure 2.1 - Navis BGC Argo float. From: (Roemmich et al., 2019).....................................6

Figure 2.2 - Surface drifter common structure. Adapted from: (Wu et al., 2019)..................7

Figure 2.3 - Diagram of coastal moorings. From: (Bailey et al., 2019).................................8

Figure 2.4 - Oceanscan light autonomous underwater vehicle used by the research center

CIMA at University of Algarve..9

Figure 2.5 - HF radar basic operating principle. From: (Medclic, 2020)...............................9

Figure 2.6 - Positions of active Argo floats in May of 2020. From: (Argo Program, 2020)10

Figure 2.7 - Spacial and temporal resolution at the sea surface of in-situ and satellites

observation techniques. From: (Send, 2006)..12

Figure 2.8 - Vertical grid division into four different sub-domains. From: (F. Martins et al.,

2001)...18

Figure 2.9 - MOHID generic finite volume element geometry. From: (F. Martins et al.,

2001)...19

Figure 3.1 - SOMA levels and location of in-situ observation systems. From: (Janeiro et al.,

2017)...26

Figure 3.2 - SOMA current bathymetry..27

Figure 3.3 - Simulation cycles diagram..28

Figure 3.4 - SOMA's built in MOHID GUI...29

Figure 3.5 - Hierarchical structure instructions for three nested models.............................29

Figure 3.6 - MOHID modules instructions for the father domain of SOMA system...........30

Figure 3.7 - Simulation time instructions...30

Figure 3.8 - Simulation cycles essential operations sequence..31

Figure 4.1 - Scheme of a generic project structure...34

viii

Figure 4.2 - SOMA init.dat set up..37

Figure 4.3 - Main processes of the simulation management..38

Figure 4.4 - Simulation operation algorithm logic...39

Figure 4.5 - Daily run cycle operations part 1..40

Figure 4.6 - Daily run cycle operations part 2..41

Figure 4.7 - Weekly run cycle operations part 1...42

Figure 4.8 - Weekly run cycle operations part 2...43

Figure 4.9 - Weekly run cycle operations part 3...43

Figure 4.10 - Forcing layer first stage..44

Figure 4.11 - Forcing layer second stage..45

Figure 4.12 - Simulation output formatting module operations for model database...........47

Figure 4.13 - Simulation output formatting module operations for OCASO project...........48

Figure 4.14 - SOMA surface velocity forecast in July 18th..52

Figure 4.15 - SOMA surface temperature forecast in July 18th..52

Figure 4.16 - SOMA 100 meters depth temperature forecast in July 18th............................53

Figure 4.17 - SOMA surface velocity forecast in June 19th..53

Figure 4.18 - SOMA surface temperature forecast in June 19th...54

Figure 4.19 - SOMA 100 meters depth temperature forecast in June 19th...........................54

ix

INDEX OF TABLES

Table 3.1 - Essential Python modules in simulation manager..31

Table 4.1 - Mandatory keywords..35

Table 4.2 - Optional keywords...35

Table 4.3 - Dependent mandatory keywords..36

Table 4.4 - Description of the shapes adopted..38

Table 4.5 - Simulation layer log codes...41

Table 4.6 - Failures in simulation layer..49

Table 4.7 - Simulation layer failures proportion..49

Table 4.8 - Failures in forcing layer...50

x

1 INTRODUCTION

Mankind still has a lot to learn about the oceans, however it is already well known that

they are of extremely importance in the Earth’s ecosystem. It is an environment that plays a

key role in the planet's climate, being a determining factor for regional climates affecting

the distribution of rainfall, droughts, floods. Also, since ancient times, the seas are of great

relevance for humanity being used as a source of food, recreation, transportation and for

extraction of valuable fossil resources.

Due to their importance, oceans various physical, chemical and biological phenomena are

constantly investigated and studied through continuous observation, in order to produce

helpful tools for their exploitation. In this context, the area of operational oceanography

includes making, disseminating and interpreting measurements of the seas and oceans

properties that will compose a set of historical data of this environment. These can be

further applied in numerical models that will help to assess and to understand their states

so that it would be possible to make predictions of their future state.

Operational oceanography is always facing improvement challenges, especially those

related to shallow waters. The hydrodynamic processes of these sites are complex due to

rapid changes induced by the most dynamic variations caused by winds, waves, tides,

sediment transport, human activity. In view of this difficulty, the Algarve Operational

Modelling and Monitoring System (SOMA) has emerged as a high-resolution operational

model, aiming to provide future conditions of the sea state in the coastal region of south

Portugal.

The objective of this work is to develop a coastal simulation management system and use

SOMA as the means to test it, since the last is a validated model and is enabled to predict

Algarve's coast hydrodynamic behavior and its water properties. The system created in this

work is here named as SMS-Coastal. It is built for the Windows operating system and

programmed using the open-source, high-level and object-oriented language Python, in

order to manage daily simulations of the operational model. Additionally, SOMA’s

numerical calculation is made by the hydrodynamic model MOHID, therefore it should be

a pillar of the SMS-Coastal main structure. Furthermore, this work had been developed

within the scope of the Coastal Environmental Observatory of the Southwest (OCASO)

1

project. Thus, once completed, the tool should be able to manage the Algarve’s coastal

model forecast data, making it available in a specific format as a product under the project

for state alerts.

SMS-Coastal should also be able to handle any other coastal model with equivalent data

structure as SOMA and that uses MOHID system for the numerical solution of the

hydrodynamic equations. For that reason, its structure shall be generic enough to receive

user input, such as simulation date, number of levels, forecast days range, simulation step

time and others, download and convert corresponding external forcing data files, manage

the simulation itself, generate monitoring reports and make result files available to be

interpreted by a graphic interface. This universal architecture shall make forecast processes

possible and fully automatic, keeping the models running, checking the availability of

initial and boundary conditions and attesting the success of the simulations.

Besides this introduction, this document was divided into five more chapters. The second

chapter makes a state of the art review of subjects related to this work, starting with the

definition of operational oceanography. Then, it briefly presents the concept of ocean

modelling and also describes the hydrodynamic model MOHID, the numerical tool used to

simulate the models managed by SMS-Coastal. Finally, the basic concepts of Python are

presented, the programming language used to write the algorithm of the application of this

work, as well as its use as a management tool. The third chapter describes the methodology

adopted to build the management system, which was based on the SOMA system

operationalization. Chapter four explains SMS-Coastal general aspects, its requirements to

properly work and its operations sequence. It also presents some aspects related to its use

to keep SOMA operational. In the fifth chapter, the main features of the program's

operation are discussed, and the sixth, consists of the general conclusions of the work

done. The SMS-Coastal's Python algorithm is presented in the appendices section, each of

which corresponding to a module of the program.

2

2 STATE OF THE ART

2.1 Operational Oceanography

The oceans are an extremely important environment for the planet and humanity. They

were the birthplace for the origin of life and still are the home to countless species. Due to

the occurrence of various phenomena, they develop a fundamental role in the Earth’s

ecosystem, being responsible to regulate global climate and temperature, to recycle

nutrients, to generate oxygen and to absorb carbon dioxide of the atmosphere. This

environment has equally unlimited relevance in economic aspects: it is one of the main

sources of food, it is the most widely used means of transportation in global trade, provides

more than 30% of the global supply of fossil hydrocarbons and offers great potential for

renewable energy production (Bari, 2017).

The use of marine resources by man began still in remote times of prehistory, which

made possible to blossom some understanding regarding tides, currents and waves

(Schiller, 2011). However, oceanography as the area that studies all aspects of the seas,

from their physical description to the interpretation of the phenomena that occur in them

and their interaction with the continents and the atmosphere, only began to be significant in

the great discoveries era, period between the 15th and 17th centuries. The maritime

expansion, motivated by the intercontinental business, contributed to the development of

knowledge in cartography and of ocean’s surface.

After the great expansion, according to Schiller (2011), scientific journeys began to be

realized, primarily to produce a more precise mapping of the continents, but also to

improve oceanography knowledge. The first scientific texts regarding sea currents, depth

of the ocean and meteorological data began to come out as expeditions with the same

purpose increased in late 18th century. Nevertheless, a large-scale expedition was not

possible until 1872, when a 4-year mission was made specifically to collect a wide range of

ocean properties such as temperature, chemical variables of seawater, currents and even

soil geology. That was a landmark in modern oceanography and thus soon enough,

observed phenomena could be quantitatively described.

3

As the number of scientific expeditions increased, there were entirely specialized vessels

for oceanographic studies. The technological instrumentation used has undergone intense

improvements since the 20th century, especially during World War II that boosted this

evolution, once knowing more about a region was strategically advantageous and could

mean a victory against the enemy. At that time the first sonars capable of mapping the

seabed emerged.

Now that the techniques of collecting ocean data were intensified and improved, a large

amount of ocean data was available. That combined with previously formulated theories

enabled the development of the first mathematical models that would describe

hydrodynamic processes in the oceans. By the end of the last century, these models already

could be implemented in computational environments and oceanographic tools began to be

produced to carry out forecasts states (Böning & Semtner, 2001).

As new numerical models have emerged, the need for more sea properties data has

triggered the development of in-situ and remote collection equipment to provide almost

real-time information of temperature, salinity, velocity on the surface. That created a cycle

of information data in a way that these and other measures are used in operational models

to provide an integrated description of the state of the ocean and allowing the rising of new

monitoring and forecasting techniques (Le Traon, 2011). The last, in turn, play a

fundamental role in understanding the dynamics and physical processes of this

environment.

Operational oceanography is therefore understood as the constant activity of observing,

collecting, interpreting and disseminating the measured data, in order to design methods

for analyzing behavior and predicting future conditions (Prandle, 2000). The information

generated by this activity is very important for scientific community in the sense of always

boosting the development of marine sector technology (She et al., 2016).

2.1.1 Observation Methods

The activities related to operational oceanography help to develop new ways of

understanding and predicting ocean behavior and climate evolution. Consequently, there

will always be a growing need for information from this environment (Robinson, 2010a;

4

von Schuckmann et al., 2016). In this manner, one of the pillars of the operational

oceanography are the observations systems, that make the ocean data acquisition to feed

operational models to produce forecasts and other products (Dombrowsky, 2011).

For operational systems to describe oceans’ physical state they require, among other

properties, primarily information regarding temperature, salinity, density and absolute

currents (Send, 2006). Biogeochemical models need other state variables such as nutrients,

oxygen, chlorophyll, phytoplankton and zooplankton biomass. The perfect method to

acquire all that data would be one on which measurements would cover all three-

dimensional space and time. However, there is no single ideal way to do this and therefore

observations systems combine techniques that can be divided basically into two types:

locally measurements (in-situ) and remotely.

2.1.1.1 In-situ methods

In-situ instruments record mainly physical sea properties and each one of them has its

capacity in terms of spatial and temporal resolution (Ravichandran, 2011). The operational

network of those data recording mechanisms is non-trivial and requires a great deal of

combined effort and coordinated actions, since tasks such as sensor lifetime and their

coverage area mapping are critical to avoid measuring gaps. In-situ methods can be yet

classified into those which are based on fixed points and those whose location varies with

time. According to Ravichandran (2011) and Send (2006) most common are:

Profiling floats

Generally used to make temperature and salinity profiles in a water column. The idea is

to build a long lifetime, low cost device, with light-weight and low electric power

consumption sensors, that sends all the data to satellite systems when at the surface. They

passively follow the horizontal currents flow and make buoyancy changes to cover the

water column. Biogeochemical properties can also be measured. 2.1 shows an example of

profiling float from Argo program, in which the location of the sensors for conductivity-

temperature-depth (CTD), oxygen (O2), acidity or basicity (pH) and nitrates (NO3) were

pointed out.

5

Figure 2.1 - Navis BGC Argo float. From:
(Roemmich et al., 2019)

Surface drifters

Buoys connected to a drogue (2.2) that allows passively following the ocean horizontal

flow. They mainly measure sea surface temperature (SST) and air pressure, but can also

give information about surface currents if their position is tracked.

Ships

Ships may collect and distribute data in a non operational rate, still they are of great

importance in ocean research. Despite being an expensive construction, research vessels

are built entirely specialized for oceanography and can be used to collect water samples for

biochemical analysis. Furthermore, they are the means of transportation and have

mechanisms to launch more complex, bigger and heavier instrumentation. These vessels

can also be used as ships of opportunity, mainly to deploy expendable temperature probes

(XBT) along their route to their own operations. It is also possible to use merchant vessels

as volunteer observing ships (VOS) which allow researchers to lunch measurement

equipment and to collect underway sampling. However, mostly all of the routes will be

6

commercial ones and there is always the possibility for the ship operator to change to

others not planned.

Figure 2.2 - Surface drifter common
structure. Adapted from: (Wu et al., 2019)

Moorings and fixed platforms

Normally they are fixed buoys that may be equipped with several different sensors (2.3),

that record with a high temporal resolution timeseries of a wide range of properties. It is

also possible to get samples along the water column in the position where it is fixed, as

well as some atmospheric properties at the surface. Other more robust instruments can be

installed to make measurements of radiation, oxygen, carbon dioxide, chlorophyll and

other biogeochemical variables. A network of moorings enables the possibility to use a

method called acoustic tomography, in which a long distance profile of temperature or

currents are obtained as a function of the time it takes an acoustic signal to travel from one

instrument to another. In general moorings have a high cost to build and for the

maintenance, therefore they are used in low quantity and in places of great interest, where

critical ocean processes occurs.

7

Figure 2.3 - Diagram of coastal moorings. From:
(Bailey et al., 2019)

Gliders and autonomous underwater vehicles (AUV)

Vehicles in shape of small submarines that can be programmed to collect samples for a

specific mission track. The movement inside water is done actively by propellers in AUV

(2.4) and passively by buoyancy changes and wings in gliders. They usually perform an

up/down trajectory (sawtooth pattern) to get physical and also some biogeochemical

variables in different depths. Their main weakness are regarding total weight, systems

energy consumption and limited depth operation.

Radars

High-frequency (HF) radar land-based installations in coastlines can detect sea surface

currents providing operational data primarily for ship routing, pollutant transport forecast,

algal blooms. Regardless their limited coverage, until 300 km offshore, they have good

spatial and temporal resolution. 2.5 shows a diagram of the basic operating principle of the

HF radars. The antennas emit electromagnetic signals with a frequency between 6 and 30

MHz on the water surface. The signals scattered back by ocean waves with half the

8

wavelength of the first are received, and then the surface currents are assessed with the

doppler shift of the reflected signals.

Figure 2.4 - Oceanscan light autonomous underwater vehicle used by the
research center CIMA at University of Algarve.

Figure 2.5 - HF radar basic operating principle. From: (Medclic, 2020)

All the data collected by these in-situ methods are applied in countless operational

models that use a wide variety o variables (Pouliquen, 2006). In view of that need,

observation systems progressively try to increase the spatial and temporal resolution of

9

their measures. This is the case of the Argo program, which consists of a global array of

profiling floats deployed regularly in a large number to provide almost real-time ocean data

essential in oceanographic researches (Mittal & Delbridge, 2019). There are over 3900

active free-drifting floats reporting CTD profiles, salinity and velocity of the upper ocean.

They have a spacial sampling between 200 and 400 km and can go down to until 2000 m

depth. New floats are already under development that can go further than that and even

make biogeochemical measurements (Roemmich et al., 2019). For all of its features the

project is unique in some aspects and its data is being used to study previously unreachable

process such as submarine volcanism (Mittal & Delbridge, 2019) and the Weddell Gyre

(Reeve et al., 2019). The black dots in 2.6 represent the position of active Argo floats in

May of 2020.

Figure 2.6 - Positions of active Argo floats in May of 2020. From: (Argo Program, 2020)

2.1.1.2 Remote sensing

The other way to collect ocean data is by remote sensing. Mostly done by satellites, it

consists of getting, analyze and interpret sea surface electromagnetic signals. Although the

sensors are located far away from the data source, this method reveled to be of great

importance in operational oceanography considering it gives nearly real time information

about valuable ocean properties. Remote acquired data is being used since 1980’s and have

helped discovering previously unknown aspects of the sea (Robinson, 2010a). The

technique is able to cover areas of thousands of kilometers with, however, a spacial

resolution capable of providing information from mesoscale to coastal events (Le Traon,

10

2011). It also has a high temporal resolution and its long-term data accumulation is used to

understand ocean variability and to profile the occurrence of extreme events.

Remote instruments are capable of monitor parameters such as SST, sea surface height

(SSH), ocean circulation, ice, waves, winds and more recently sea surface salinity. They

can also detect ocean colour that gives information about biological properties.

Occasionally, to get the desired horizontal distribution and temporal resolution of given

surface variable it is necessary a simultaneously operation of several satellites (Le Traon,

2011). The radiation origin received by the sensors classify them into passive and active:

the first one collect reflected electromagnetic waves from the sun on the sea, or emitted

from the last, and the second emits its own pulses and analyses those reflected back to it

from the surface, they operate in the radar frequency band (Robinson, 2006).

When using satellite information, the final user must be aware of the type of data which

is provided by the product made available by a system. Essentially they are assorted into

levels as follows (Robinson, 2010b):

• Level 0 (L0): raw data in binary form.

• Level 1 (L1): calibrated multi channel signal in scan-line coordinates.

• Level 2 (L2): geolocated ocean data product.

• Level 3 (L3): global gridded data set.

• Level 4 (L4): global analysed gridded data set.

In operational oceanography there is no unique way of collecting data. Remote and in-

situ sensing are complementary measure techniques between them and inside each one. A

variable evaluated in different manners generates calibration and validation tools for

sensors and ocean models. Only with the integration of different measurement methods

will ocean data have better coverage and resolution. The graphic in 2.7 shows the

resolution aspects of in-situ and remote observation systems. For operational applications

the best quality data will be the one that combines in the most efficient way information

from different sources (Send, 2006).

11

Figure 2.7 - Spacial and temporal resolution at the sea
surface of in-situ and satellites observation techniques.

From: (Send, 2006).

2.1.2 Observation Network

The quantity and quality of data required in operational oceanography is obtained by a

well set network of different measurement instruments. Those, however, have high cost

and demand a great amount of effort to get them into right spatial coverage. That is why

most of the time research centers alone cannot afford them, and for that reason, programs

such as The Global Ocean Observing System (GOOS) are created to help build a solid data

collection and dissemination framework (Summerhayes, 2002).

When GOOS started, its main activity was the maintenance of the buoys array in Tropical

Ocean Global Atmosphere (TOGA) program and of the VOS network. Now, it plays an

essential role in operational oceanography, coordinating activities to monitor, describe and

predict ocean state on a global scale, including living resources (Malone et al., 2014;

Summerhayes, 2002). The program provides ocean observations using an integrated data

management and communications system. Furthermore, it works to improve the control of

marine and coastal resources, to reduce damage caused by pollution and natural disasters

and promote scientific research. The observing system was one of the responsible for

creating the concept of Essential Ocean Variables (EOVs) (von Schuckmann et al., 2016),

which are physical and biochemical measurable properties, like currents, salinity,

temperature, nutrients, phytoplankton biomass, oxygen and others, that give enough

information to describe ocean state (Capet et al., 2020).

12

In order to fulfill all its purpose, the implementation of GOOS is being done by the

GRAs (GOOS Regional Alliances). There are already 13 well-defined GRAs and two

under development, so that each one consists of an alliance between nations and/or

institutions responsible for developing observations systems at regional and coastal scale

(Malone et al., 2010). In Europe operational oceanography community is represented by

the European Global Ocean Observing System, or EuroGOOS (Capet et al., 2020). Due to

that, GOOS is able to constantly improve and design new observation methods that will

increase spatial and temporal resolutions of sampling and cover new areas which had no

available data yet (Liblik et al., 2016).

Operational oceanography is not made only by a well set observation framework. In its

early stages GOOS was trying to establish a global observation network, while there was

still a missing link between collected data and assimilation and modelling to generate

useful information. This is why the Global Ocean Data Assimilation Experiment (GODAE)

was conceived, to evolve oceanography as a research based field to actually an operational

one (Smith, 2000). The experiment enabled a routine access to observation data from

different sources so they could be used in order to produce timely forecasts. In addition, it

established an information sharing environment that assisted the progress of the ocean

modelling area (Bell et al., 2009). GODAE was a time determined project that made the

ocean prediction process feasible and practical, so that after its end in 2008 a new group

was formed to continue its work in a long term, the GODAE OceanView (Bell et al., 2009;

Oke et al., 2013).

2.1.3 Operational Oceanography and Blue Growth

Millions of people around the globe depend on the exploitation of marine ecosystem

resources. Among the various economic activities that can be developed, oceans are

primarily a source of food, can be used for energy generation, exploration of fossil fuels,

shipping and also for recreation and tourism. Even though it is already a very valuable

business, it is estimated that the ocean economy may still double in the coming years as the

population grows in urban centers close to coastal areas (Howard, 2018).

13

Unfortunately, this exploitation of natural resources often occurs irresponsibly and,

therefore, it was necessary to determine an initiative to expand the concept of sustainable

development to ocean economy (Bari, 2017). Thus, in 2012, during the United Nations

Conference on Sustainable Development, also known as Rio +20, the blue growth term

was created to designate practices that aim at economic growth but that also guarantee the

preservation of the environment for future generations (Burgess et al., 2018). Therefore, it

is a matter of finding the optimum point between exploration and preservation, in order to

reduce environmental risks and ecological scarcity (Lee et al., 2020).

Operational oceanography is closely related to the socioeconomic activities of blue

growth, as it provides essential marine data to them. This search for sustainable

development causes an increasing demand for ocean knowledge, which in turn is one of

the agents that drives the improvements of operational oceanography. In this scenario, the

continuous expansion process of that area is determining for maintaining the information

supply for blue growth (She et al., 2016). For this reason, EuroGOOS has defined four

priority development areas within this systematic activity in Europe for the upcoming

years, namely ocean observation, modelling and forecasting technology, operational

oceanography of coastal areas and operational ecology (She, 2015).

Coastal zones are of great economic importance for society and are key areas of blue

growth. European coasts are generally densely populated and are therefore responsible for

generating more than 30% of its gross domestic product (GDP) (She, 2015). Because of

that, it is essential to understand this environment behavior which is submitted to constant

fast changes and, for that, it is still necessary to refine the knowledge of the complex

phenomena that takes place in there (She et al., 2016). With this, it will be possible to

develop operational coastal models capable of generating value in oceanic data form,

which in turn will be used to support sustainable economic growth (Capet et al., 2020).

2.2 Numerical Ocean Modelling

Ocean modelling is one of the most important activities developed within the scope of

operational oceanography (Capet et al., 2020), considering that it is precisely through it

that it is possible to generate data that demonstrate the aspects and behaviors of this

14

environment. A model consists in the mathematical representation of phenomena, that in

this case are equations to describe the fluid dynamics in oceans. Once a model's governing

equations are determined, they are discretized using numerical methods and transformed

into computational code to advance or iterate the ocean state in time (Griffies, 2006).

The set of mathematical statements that represent fluid motion forms a system of

differential equations, which are constructed respecting fundamental conservation

principles of physics (Kämpf, 2009). Ocean models frequently use the Eulerian approach,

that consists in the evaluation of the conservation of properties inside a portion of space, or

a control volume, while the water flow goes through it. Therefore, in order to solve the

equations the first step is to discretize them in space, so that they can be applied

individually in each of the control volumes that form the interest region. One of the most

commonly used method to do that is finite volumes (Griffies, 2006). Each control volume

is an element or cell of the mesh constructed for a domain. Thus, a model with higher

spatial resolution has, for the same domain, a mesh formed by smaller elements, but in

greater numbers. Despite generating more accurate data, this implies solving a system with

more equations and that consequently requires greater computational effort (Greenberg et

al., 2007).

The equations that represent the conservation laws are based on the so-called transport

equation, which for an infinitesimal cubic control volume delimited in the Cartesian

coordinate system, is defined as (Kämpf, 2009; Versteeg & Malalasekera, 2007):

∂(ρ ϕ)
∂t

+
∂(ρ ϕ u)

∂ x
+

∂(ρ ϕ v)
∂ y

+
∂(ρ ϕ w)

∂ z
=∑ (Sources−Sinks) (1)

In which corresponds to any intensive property, the density, u, v and w the velocity𝜙 ⍴

vector components corresponding to the x, y, z axis, respectively. (1) can also be written as:

∂(ρ ϕ)
∂t

+div (ρ ϕ u)=∑ (Sources−Sinks) (2)

On the left side of (2), the first term represents the rate of change in time of property𝜙

and the second, the convective term, is the flow rate of that passes through the surface of𝜙

15

the control volume. On the right side, the sum computes all sources and sinks that can

cause production or destruction of within the fluid element.𝜙

The mass conservation principle of an element is expressed by the continuity equation,

obtained from (2) by making the sources and sinks equal to zero and equals to 1, thus:𝜙

∂ ρ
∂t

+div (ρ u)=0 (3)

The conservation of momentum in the control volume is a direct application of Newton's

second law, which states that the momentum of a body or particle is only changed through

the action of a non null resultant force. In ocean modelling the forces that cause the

movement of a fluid particle are due to to pressure, viscosity, gravity, centrifugal force,

Coriolis and electromagnetic. Therefore, for each axis of the Cartesian coordinate system,

(2) leads to:

∂(ρ u)
∂t

+div(ρ uu)=∑ F x (4)

∂(ρ v)
∂t

+div (ρ vu)=∑ F y (5)

∂(ρ z)
∂ t

+div (ρ zu)=∑ F z (6)

Equations 3 to 6 are known as the Navier-Stokes equations. They form the governing

equations that describe the movement of the fluid, together with the energy balance and

state equations, which correlate thermodynamic properties and link temperature and

salinity with density. The governing equations are then discretized by a numerical method

in order to be solved after specifying the initial and boundary conditions. Each iteration of

the solution of this system expresses the conservation of properties in each control volume

(Versteeg & Malalasekera, 2007).

16

2.2.1 MOHID Modelling System

The modelling system Modelo Hidrodinâmico, or simply MOHID, is a program designed

to solve the governing equations in order to model marine environments. It has a modular

architecture and features to reproduce several physical, chemical and biological processes

of that ecosystem (Janeiro et al., 2014). The model was conceived and is supported by the

Marine and Environmental Technology Research Center (MARETEC) of the Instituto

Superior Técnico (IST) in University of Lisbon, and it is a working tool in many projects

of the research center’s environmental modeling group (Neves, 2007). Its beginning took

place in the 1980s, when numerical modelling in operational oceanography was driven by

the emergence of more powerful computer systems, and up until today new versions are

released regularly.

The first version of MOHID was developed as a two-dimensional tidal model,

programmed in ANSI FORTRAN 77, and discretized the governing equations using the

finite difference method. It was commonly used in the study of coastal areas and estuaries.

Eventually the system evolved into a three-dimensional version, in which Eulerian and

Lagrangian transport models were introduced (Braunschweig et al., 2004), being the

reference of the latter a fluid parcel that moves along with the flow instead of a control

volume (Kämpf, 2009). As for the vertical discretization, the first 3D version of MOHID

system has implemented a double sigma coordinates to better representing the topography.

However, it was not possible for a single type of vertical mesh to be suitable to the entire

domain and to all influences on water flow, which also vary at each point. In this way,

generic coordinates soon replaced the predecessor, which combines different types to better

accommodate the heterogeneous regions of the domain (2.8) (F. Martins et al., 2001).

Given the application of the generic coordinates, the model became able to solve the

equations for any type of geometry. Therefore, the finite volume approach was introduced,

in which the discrete form of the equations is applied macroscopically to the control

volume of each cell. Then, the model solves three-dimensional primitive equations for

incompressible and compressible flows, in which hydrostatic equilibrium and Boussinesq

approximation are assumed. In temporal discretization, a semi-implicit ADI algorithm with

two levels of time per iteration is used. A more detailed description of model's

discretization can be found in (F. Martins et al., 1998; F. Martins, 1999).

17

Figure 2.8 - Vertical grid division into four
different sub-domains. From: (F. Martins et al.,

2001).

Due to the growing number of users and, specially, the limitations of the FORTRAN

language used in its algorithm, the model had to go through an update process. In this

manner, MOHID code was updated to ANSI FORTRAN 95, which despite not being an

object-oriented language, allowed programming in this paradigm (Miranda et al., 2000).

This is the moment at which the model assumes the configuration of its current structure:

the modular architecture, so that each module having the functionality of a class object. In

comparison with the previous version, the model took two to three times more CPU time in

the simulations, however the code was much better structured and easier to understand,

becoming much more reliable and protected against errors (Braunschweig et al., 2004).

Another great advantage that the use of this paradigm brought was to allow the observation

of processes in a greater level of detail by enabling the simultaneous simulation of nested

models, each one being a new instance of individual classes. These models can then be

used in the downscaling methodology, so that the parent model generates the boundary

conditions for the child models with more refined grids (Leitão et al., 2005).

The modular design is the basis of MOHID modelling system. Each module of the

FORTRAN code represents a class responsible for managing a specific type of information

(Neves, 2007). Spacial discretization is established in Geometry module, it stores and

updates in each iteration the shape of the finite volume. It is also responsible for the

division of the water column in sub-domains. Then, the elements geometry information are

18

passed to the Hydrodynamic module that actually solves a system of discrete forms of the

equations 3 to 6. For a finite volume element as shown in 2.9 and mentioned

approximations, in MOHID Navier-Stokes equations become:

∂u i

∂ x i

=0 (7)

∂u1

∂ t
+

∂u j u1

∂ x j

= fu2−g
ρη ∂η
ρ 0 ∂ x1

− 1
ρ 0

∂ ps

∂ x1

− g
ρ 0

∫
Z

η
∂ρ '
∂ x1

dx3+
∂

∂ x j

(A j

∂u1

∂ x j

) (8)

∂u2

∂ t
+

∂u j u2

∂ x j

=−fu1−g
ρη ∂η
ρ 0 ∂ x2

− 1
ρ 0

∂ ps

∂ x2

− g
ρ 0

∫
Z

η
∂ρ '
∂ x2

dx3+
∂

∂ x j

(A j

∂u2

∂ x j

) (9)

∂ p
∂ x3

+ρ g=0 (10)

Figure 2.9 - MOHID generic finite volume element
geometry. From: (F. Martins et al., 2001).

In the equations from (7) to (10) ui indicates the velocity vector components referenced

by the axis in 2.9 and η, the free surface elevation. In the right hand side of (8) and (9) the

first term computes the force with Coriolis parameter f; the second term represents the

barotropic force produced by gradients in the water height, being ρ the density; third term

is the barotropic force produced by gradients in atmospheric pressure (ps); fourth term is

19

the baroclinic force produced by the vertical integral of horizontal density gradients, where

ρ’ is the density’s anomaly; and the fifth term stands for the diffusive forces, where Aj is

the turbulent viscosity coefficients (F. Martins et al., 2001).

Still using the transport equation, the MOHID system manages to coordinate the

evolution of properties values in the water column in the WaterProperties module (Neves,

2007). The concentration of a parameter is balanced through advective and diffusive flows,

fresh water discharges, sediment flows, surface heat and oxygen exchanges, among others

internal sources and sinks. With this module it is possible to simulate up to 24 different

properties, that in addition to the physical as temperature and salinity, it also does for

biochemical ones such as phytoplankton, zooplankton, ciliate bacteria, nitrogen,

phosphorus and oxygen. Due to the modular design that brings the features of an object-

orientated programming, new properties can be easily added. The WaterProperties module

uses the Eulerian approach to solve the equations, however there also is the Lagrangian

module, which can compute the evolution of the same properties with the Lagrangian

approach.

Processes involving non-conservative properties are handled by other modules, as is the

case of oil dispersion, ecology and turbulence. This last module uses the formulation from

the General Ocean Turbulence Model (GOTM). The system consists, at this moment, of

more than 70 FORTRAN modules, adding up to more than 300 thousand lines of written

code. Some of them require extra information to be executed correctly, they are parameters

passed through a keyword system written in ASCII text format in a specific file for each

module. The set of those files constitute the model setup which is simulated in the MOHID

environment.

The MOHID system has evolved from a simple two-dimensional hydrodynamic model to

a complex three-dimensional support tool for research and studies. In the scientific

community, it has already been used to simulate, in several estuaries in Portugal, including

transport processes, sediment dynamics and water quality (Trancoso et al., 2009), in

addition to also being used for modelling ocean circulation and oil spills (Janeiro et al.,

2017). The complexity of the numerical tool led to the development of a graphical user

interface (MOHID GUI), in which it is possible to create and edit the data and directory

20

structure necessary to configure a set of simulations, and a tool for visualizing

georeferenced data and results (MOHID GIS) (Braunschweig et al., 2004).

2.3 Python Programming Language

Developed at the Centrum Wiskunde & Informatica (CWI) in Netherlands, by Guido van

Rossum, who remains one of its main authors, Python is a multi platform general-purpose

programming language suitable for lots of different applications. Since its first launch in

the early 90s, all releases are free license and open source (Sáenz et al., 2002). Its code

consists of numerous versatile modules and presents a clean structure, being consequently

easy to understand and to learn, making it very attractive to new programmers. This is one

of the reasons why Python has an active and fast increasing community of users and also is

one of the most adopted programming languages, being widely used for artificial

intelligence, data science and machine learning (Casanova-Arenillas et al., 2020).

Python is a high-level language with dynamic typing, that is, variables declaration at the

beginning of the script are not necessary. Also, it uses a tab indentation to delimit blocks of

code, thus all tasks performed within a repetition cycle or decision command for example

are typed with forward indentation. The code group is then completed when the algorithm

returns to original tab without the need of an end statement (Van Rossum & Drake Jr,

1995). Furthermore, Python is a language built based on the object-oriented approach,

using the most common model of this paradigm, the class-based one (Perez-Schofield &

Ortin, 2019). One of the great advantages of object-oriented programming (OOP) is the

possibility to create reusable entities by specifying sharing relationships, hence objects are

instances of classes that determine which information they contain, their attributes, and

what operations they can perform (their methods) (Ungar et al., 1991). According to

Chambers et al. (1991), two of the OOP's peculiar features are:

Inheritance

The most basic feature of OOP enables code sharing avoiding unnecessary programming

effort, in which a subclass inherits from a super-class or ancestral class any of its attributes

and methods.

21

Encapsulation

Restriction of the direct access to some of the object's components, some implementation

details of a class are kept unassessible to the user. In this way it is possible to use a method

without knowing how it internally works, or to make updates to the object without any

other components that use it being affected.

All the data introduced in Python corresponds to classes. A simple variable that contains

text information is an object or an instance of the class str, that transforms its value into a

string, which in turn has its attributes to define and its methods to modify it (J. P. Martins,

2012).

Regarding data structures, there are three basic types available in Python: tuples, lists and

dictionaries. The first one is an immutable sequence of elements separated with comma

and inside parentheses that resemble the vector idea in math. Among other applications,

tuples can be quite handy when the user wants to keep a set of values that will be used

several times along the script, since they consume less memory space than the others. Lists

are very similar to the last, but are defined between brackets, have more methods available

to modify their elements and are commonly used as matrices. The last type are the

dictionaries, created between curly brackets, and unlike lists and tuples its elements order

are not important since they are organized in pairs. They can commonly be found in other

programming languages in what called associative arrays or memories. The pairs,

separated by commas, are formatted as key:value in which keys cannot be repeated and

values may assume any other data structure or variable. A certain value is accessed when

the corresponding key is requested.

Python features a library of built in versatile modules that allow quickly creation of

sophisticated algorithms for all kinds of tasks. With the import statement plus the name of

the desired module it is possible to summon tools for files edition and handling, operative

system commands, time and date manipulation, parallel script execution and a whole lot

more (Oliphant, 2007). Through additional download of external modules, Python

computational power can be intensely increased, such as with SciPy project, short for

Scientific Python, which contains a collection of open-source packages for science,

engineering and mathematics (Oliphant, 2006). One of them is an elegant and efficient way

22

to work with large datasets in matrix of any given dimensions, instead of using lists, widely

used in academia, the NumPy N-dimensional array (van der Walt et al., 2011).

To help develop their applications, programmers often rely on the growing community of

Python users, recognized for their fast and useful responses (Oliphant, 2007). This network

allied with its characteristics make Python one of the most widely used languages today,

especially in the scientific domain in which most users have decided to adopt it as the main

tool in replace of other major commonly used software (Casanova-Arenillas et al., 2020).

Therefore, Python is already a recognized instrument in environmental modelling and is

being used as a method in many published researches, such as: a pre- and post-processing

tool for the Precipitation-Runoff Modeling System (PRMS) (Volk & Turner, 2019), a

networked resource system simulators support library (Knox et al., 2018), a planning and

analysis library for water resource systems (Tomlinson et al., 2020), a greenhouse gas

emissions visualization toolkit (Wohlstadter et al., 2016), an application to obtain shoreline

position time-series (Vos et al., 2019), uncertainty analysis for environmental models

(White et al., 2016) and several others.

Similar to what is proposed in this work, Marta-Almeida et al. (2011) used Python to

develop an engine to automate forecast simulations for the Regional Ocean Modelling

System (ROMS). ROMS has its code written in Fortran like MOHID. The programming

language chosen has the necessary tools to perform the most essential task during the

forecast cycles, which is the control of model inputs and outputs. Thus, according to the

authors, in a single cycle the program must perform the following fundamental steps:

1. Verify the availability of required external forcing data, that could be information

regarding tides, river or other fresh water discharges, atmospheric surface heat and

momentum fluxes.

2. Interpolate data to model grid.

3. Check for the initial conditions which are obtained from the restart files of the

previous day cycle.

4. Write model input files.

5. Run simulation.

23

6. Manage model outputs and prepare restart files to the next forecast cycle.

Since daily simulations can easily produce many gigabytes of data, it is important to

create a cleaning module that will erase not necessary input or output files between

forecast cycles. In this way, the computer that performs the simulations will always have

free disk space, hence the model database must be built in another location or storage

devices.

According to Marta-Almeida et al. (2011), keeping forecast cycles in constant operation

involves dealing with several different tasks, which can cause the code to have low

performance. Despite this, Python still is a good option for ocean modelling, because,

besides all its built-in properties, it has tools to handle common data formats in ocean

atmospheric sciences such as HDF5, GRIB and NetCDF, support for OPeNDAP, tidal

harmonic analysis software and scientific visualization resources.

24

3 METHODOLOGY

Coastal regions are places of quick changes and are subject to most of the dynamic

changes caused by winds, waves, tides, sediment transport, human activity. Therefore, it is

necessary to generate new knowledge to integrate these and other interactions of coastal

hydrodynamics in order to produce operational models capable of providing reliable

predictions of the ocean state (She et al., 2016). Due to the high variability of the ocean

processes, coastal models generally run simulations for not too many days at a time and

aim to represent detailed information in a limited domain but with a high resolution grid

(Send, 2006).

The Algarve Operational Modelling and Monitoring System (SOMA) arose from the

need to produce a high-resolution operational model, with the purpose of providing

predictions of the sea state and the trajectory of oil spills on the Algarve coast (Janeiro et

al., 2017). The authors wanted to investigate the efficiency of downscaling methods in

determining the sources of oil leakage by combining backtracking simulation with vessel

trajectories and using lagrangian particles. SOMA is a validated model and is enabled to

make predictions of the hydrodynamic behavior and water properties of the implemented

region. In addition to traditional calibration and validation, an operational model must be

continuously assessed dynamically and this is also being done for SOMA under the

OCASO project (Lorente et al., 2019; IP, 2006). For those reasons, it was used as the basis

for the creation of the simulation management tool proposed in this work.

SOMA is built within the environment of MOHID modelling system, which due to its

architecture is a suitable and robust tool for downscaling methods (Janeiro et al., 2017).

The first version of the operational model consisted of two grid levels: the first one had a 3

km resolution grid and hybrid vertical spatial discretization, being 11 layers of sigma

coordinates at the first 20 m of depth and 35 in unequally spaced Z coordinates to the

bottom; the second level presented the same vertical profile of the first, but with horizontal

resolution of 1 km. Simulation step time was of 30 and 15 seconds for the first and second

levels respectively. The communication between the levels was performed by the flow

relaxation scheme (FRS) method. In 3.1 the geographical location of the two grid areas is

25

shown, as well as of the in-situ observation systems used for the model validation and

calibration.

Figure 3.1 - SOMA levels and location of in-situ observation systems. From: (Janeiro et
al., 2017).

A different version of the SOMA system was used to build the SMS-Coastal. The main

change presented by the current version of the operational model are the inclusion of an

additional mesh level and an increase of resolution.

The original SOMA model had only two nested levels, both 3D where the first level was

forced at its boundaries by a combination of hydrodynamic and tidal forcings. This was

possible because the data provider was the IBI model that also solves the tide explicitly. In

this version the data provider was changed to the Mercator Ocean analysis and forecast

provided by Copernicus Marine Environment Monitoring Service (CMEMS). This new

model do not solve the tide explicitly. Due to that, an additional grid level was added above

the previous two levels. This new level is a simple 2D hydrodynamic model, forced by the

FES2012 global tidal solution and has as its single purpose supply the tidal conditions to

the lower levels.

26

The increase in resolution was applied in the first 3D level to improve the quality of the

results. Numerical experiments have shown that an increase from the previous 3 km space

step to 2 km leads to significant improvements in the solution. Evolution of computational

capacity now allows the solution of this 2 km grid in an acceptable amount of time. 3.2

shows the representation of the present bathymetry for levels 2 and 3 of the model.

The operationalization of SOMA consists in two types of simulation cycles, daily and

weekly runs. The forecasts are obtained from the execution of the first type, which in

addition to the external forcing data, also need the initial condition files generated in the

previous day's cycle. As initials conditions start to degrade due to the sequence of daily

runs, a weekly run is done to start a new solution of the model to provide fresh restart files.

Until the model is able to run at full speed, weekly cycles are divided into two stages with

gradual increase of step time to prevent simulation instability.

Figure 3.2 - SOMA current bathymetry.

The diagram shown in 3.3 demonstrate the simulation cycles processes. Assuming a four-

day forecast, a new daily run starts (blue ribbon in the figure) and, after a day of simulation

time, the model data has instructions for MOHID to write the initial condition files for the

next day simulation (red ribbon). After seven daily cycles, a weekly run (green ribbon) is

executed in hindcast mode to provide the initial conditions for the eighth day simulation. In

27

that eighth day the weekly cycle restart files should always take priority over the daily

simulation files that runs in parallel.

For external forcing the model uses daily mean physical properties of CMEMS Mercator,

and as for atmospheric data, from Skiron forecast system provided by Atmospheric

Modeling and Weather Forecasting Group of The National and Kapodistrian University of

Athens. These sources will constitute the first external data that SMS-Coastal will be able

to process, which in turn will have continuous updates to add other sources to its library.

Thus, the system downloads necessary files and conduct conversion and interpolation

operations performed by the MOHID supporting tool ConvertToHDF. In this way, SMS-

Coastal main body will be divided into two basic layers, one to download and process data

from external sources and the other to manage simulations.

Figure 3.3 - Simulation cycles diagram.

SMS-Coastal was designed to read a specific set of folders, which was based on the

construction of a project in MOHID GUI, as shown in 3.4 for SOMA. Each level of the

model contains the MOHID modules reading data files for each simulation cycle, so that

coldstart and hotstart in the figure represent the two stages of weekly run mentioned

before.

In order to load a simulation with MOHID system, its executable needs to know the

hierarchical structure of the nested models and which modules to activate. SMS-Coastal

will then give the information regarding levels arrangement by writing the “Tree.dat” file

(3.5) in the working directory of the father domain in the beginning of a simulation

process. The chosen MOHID modules and its correspondent data files are specific for one

28

model and are defined in “Nomfich.dat” file (3.6) with keywords method. However, SMS-

Coastal must ensure that the correct one for each run is placed in the working directory of

each level. MOHID must be launched when the operating system current working

directory coincides with that of the father domain, and this is why all computational paths,

as indicated in the figures, are written using relative paths, based on the "father" directory.

Finally, SMS-Coastal will be the one in charge to generate the “Model.dat” file (3.7) for

each run and level, which specify to MOHID information related to time, such as

simulation initial and final dates, iteration seconds and the time zone.

Figure 3.4 - SOMA's built in MOHID GUI.

Figure 3.5 - Hierarchical structure instructions for
three nested models.

The most basic operations performed in each cycle type by the SMS-Coastal were

delimited as shown in the diagram of the 3.8, based on the essential tasks of a simulation

manager defined in chapter 2.3. Firstly, it shall download and process external oceanic and

atmospheric data independently, so that when there is more than one source defined for the

same type of data, they will serve as redundancy in the event of failure in the operation of

one of them. Secondly, it will generate and control the simulations through the handling of

files and folders. For the both layers the program should be able to send e-mails to report

29

their status. Lastly, it should conduct operations to format the simulation results. 3.1

specifies the vital Python modules used to build SMS-Coastal code so it could accomplish

all its functions.

Figure 3.6 - MOHID modules instructions for the father domain of SOMA
system.

Figure 3.7 - Simulation time instructions.

30

Figure 3.8 - Simulation cycles essential operations sequence.

Table 3.1 - Essential Python modules in simulation manager.

Python module Library type Function

os Bult-in operating system dependent functionality

Shutil Bult-in high-level file and directory handling

datetime Bult-in manipulate dates

glob Bult-in work with path names

subprocess Bult-in spawn new processes

threading Bult-in open modules in different threads

numpy External operations with multidimensional array

h5py External reading and writing HDF files

netCDF4 External reading and writing NETCDF files

gdal External reading GRIB files

31

4 RESULTS

4.1 Main data structure

This section presents the structure of directories and files created specifically for the

SMS-Coastal operation. In order to be managed by the system, a model must attend the

specifications of this structure. The model data files, those of external forces, SMS-Coastal

and MOHID executables and all others necessary to run a simulation must be placed in a

single folder identified as the project directory. The name of this folder should be

conveniently the same as the project, since SMS-Coastal may use it in some processes to

address files and reports. During operations, several paths are treated relatively to the

project directory. For that reason, all others inside the main project folder must have a very

well-defined standard format. Thus, the project folder contains the following set of folders

and files:

• FORC: stores hydrodynamic and atmospheric external forcing data;

• MOHID: location for MOHID executable, its libraries in dll format and the

supporting tools Convert2Hdf5 and HDF5Extractor.

• Sim_Daily: daily simulations directory;

• Sim_Weekly: weekly simulations directory;

• SIM_Manager.exe: SMS-Coastal executable for windows operating system;

• init.dat: data file with user inputs for the system.

There are two simulations folder, one for each cycle defined in the methodology, weekly

and daily runs, and both of them have the same internal structure. Furthermore, SMS-

Coastal will create the "FORC" folder if it does not exist, as well as its entire internal

content in the forcing layer.

As this structure was based in the same one created by MOHID GUI, each simulation

directory contains the folder of the first level and “General Data” one in the model set up.

This folder is used to store files for bathymetry, tide data, initial conditions and time series

location. Bathymetry files must be named in the pattern “BATIM_LVi”, in which “i” is an

32

integer corresponding to the level. Moreover, SMS-Coastal will store here processed

external forcing data. It also creates here a third folder, “Operations”, to place all

simulations outputs such as HDF5 and log files, as well as formatted results to build the

model database, files of a failed run and, in case of SOMA, results converted to NetCDF4

format.

Still following the structure logic of MOHID GUI, each level folder contains three items

plus the directory of the subsequent level, if any. Two of the items are for exclusive use of

the MOHID executable and of the SMS-Coastal operations, therefore do not require any

action on the part of the user. They are the “exe” folder, which is the working directory of a

domain and holds files containing information of computational paths to conduct the

simulation, and “res” for MOHID outputs of that level. The last one, “data”, is the folder in

which the set of data files with the user-defined parameters for the resolution of the

governing equations by MOHID is located.

The scheme in 4.1 shows the configuration of folders and files for a generic project. Any

information regarding paths must be written, in each data set, relative to the "exe" folder of

the model’s first level. In addition, in order for MOHID to find the forcing data files during

a simulation, the following naming standard must be followed:

• HYDFORC_LVi.hdf5 and ATMFORC_LVi.hdf5: respectively ocean and

atmospheric data for the whole grid, in which “i” is an integer of the corresponding

level;

• HYDFORC.dat and ATMFORC.dat: respectively ocean and atmospheric data in

time series for a single point of the grid.

33

Figure 4.1 - Scheme of a generic project structure.

4.2 User inputs

In the same way that MOHID reads parameters for the resolution of the fluid flow

equations, SMS-Coastal reads user's inputs through a system of keywords written in

init.dat file at project directory. Some of those are indispensable, so the first task performed

by the program is to check if all of them have been correctly entered, otherwise the

execution is interrupted. The keywords can be classified into three types: mandatory (4.1),

optional (4.2), and dependent mandatory (4.3). The incorrect typing or the lack of

mandatory words aborts the progress of the program and may also cause improperly stops.

In 4.1, “OPTYPE” must be “1” so SMS-Coastal conduct a simulation management

operation. Since in the optics of the system there are two types of models, one in which the

first level is part of the forecast data set and another in which it only serves to generate the

hydrodynamics for the interior levels, “MODSET” can assume only two values: “1” and

“2” respectively. The keyword "RESTART" takes on the value in Python that corresponds

to the day of the week desired to start a new cycle of solutions, so that Monday is "0",

Tuesday is "1" and so on. The “i” in “DTLVi” is the integer to the corresponding level. It is

defined by an ordered list of integers which are the time range in days for each stage in the

weekly run cycle and the last one for daily run. SMS-Coastal validates if every “DTLVi”

entered have the same length and if there is one for each level as in “LEVELS”.

34

Table 4.1 - Mandatory keywords.

Keyword Description Format Accepted Values Example

OPTYPE
select operation type for the tool

to run
integer 1 1

MODSET model configuration integer 1 or 2 2

LEVELS number of levels of the model integer ≥ 0 3

RESTART
week day to start a new solution

cycle
integer from 0 to 6 5

GMTREF GMF reference of the model integer -- -1

TRANGE
range in days ordered for each

stage
list of integers > 0 2 4 5

DTLVi

step time in seconds for the

iterations of each stage of each

level

list of integers > 0 5 10 15

Table 4.2 - Optional keywords.

Keyword Description Format
Accepted

Values
Default

OPDATE operation date date YYYY MM DD 2020 07 30 today’s date

FMT
format output results to

populate database
logic 1 or 0 0

PDE
format output results to

Puertos del Estado
logic 1 or 0 0

MAILTO
e-mail address to send

reports
string -- None

HYDSRC
external sources for ocean

data
list of strings -- None

ATMSRC
external sources for

atmospheric data
list of strings -- None

HYDTS
set external ocean data

output as time series
logic 1 or 0 0

ATMTS
set external atmospheric

data output as time series
logic 1 or 0 0

Except for “HYDSRC” and “ATMSRC” in 4.2, all optional keywords have a standard

value if they are not inputted by the user. The ones with logic format are for switching on

and off subroutines inside the program, with “1” and “0” respectively. When “OPDATE” is

35

not passed, the tool assumes that operation date is today. The program will run even if the

user does not specify sources for external data, it will not process the forcing layer or

search for forcing files in the simulation one.

Whatever sources for external data are specified, it is necessary to input the grid limits in

“LATLIM” and “LONLIM” (4.3). In this way, the forcing layer is going to download and

interpolate data for the area formed by those limits. The format of these keywords is a list

of two real numbers, or floats, that can be out of order and have decimal separator of “,” or

“.”. If one of the strings in “HYDSRC” is “Mercator”, it must be indicated in

“MERC_CRED” the user and password to login into CMEMS database so the tool is able

to download the files. Last but not least, ocean and atmospheric external data standard

output format is a HDF5 file, nonetheless this can be changed by enabling "HYDTS" or

"ATMTS". By doing so, the location of time series must be defined in "TSLOC", first the

latitude value and then the longitude.

Table 4.3 - Dependent mandatory keywords.

Keyword Description Format Example Default

LATLIM
grid latitude limits for

external forcing process
list of floats 40.0 35.5 None

LONLIM
grid longitude limits for

external forcing process
list of floats -5.0 -12.0 None

TSLOC
time series location for

external forcing process
list of floats 38.8 -7.5 None

At the end, all the inputs read from init.dat file are converted into a Python dictionary. 4.2

shows an example of a keywords set up to manage SOMA simulations.

36

Figure 4.2 - SOMA init.dat set up.

4.3 Simulation operation

This section presents the diagrams that represent the programming logic of the algorithm

implemented in Python to execute the procedures related to a simulation management.

These diagrams are simplification of the code, in a way that only the most relevant

processes were described. The full code can be consulted in the Appendices section. The

patterns of the shapes used in the flowcharts can be interpreted as indicated in the 4.4.

The first task that SMS-Coastal performs is to read the inputs from the init.dat file, both

of them located inside the project directory. After identifying that the keyword "OPTYPE"

has a value of "1", it initiate the sequence of operations that controls the execution of the

forcing and simulation layers. When SMS-Coastal starts a new solution cycle, by the day

indicated in the keyword "RESTART", it divides itself into two threads, one to operate

weekly run and the other for the daily one, which are carried out concurrently. On the other

days of the week, the simulation layer consists only of the daily cycle. Despite being

different operations, within the simulation generation and control blocks of the 3.8, the two

cycles make use of the same methods, available when each one creates an instance of the

class “Simrun” (4.3).

37

Table 4.4 - Description of the shapes adopted.

Shape Description

start/end of a module or a sequence of operations

flow direction

process or operation

decision

“T” for a true statement and “F” for false

beginning of a fixed repetition cycle

As for the forcing layer, it will be carried out in two stages. The first one is executed

before any simulation cycle, to process at least one of the sources inserted in "HYDSRC"

and in "ATMSRC". Therefore, as soon as there is available data, the program moves to the

simulations layer. The second stage starts only after the end of the daily run, just to

download unprocessed sources in the first stage. That sequence was represented in the

diagram in the 4.3.

Figure 4.3 - Main processes of the simulation management.

The diagram in 4.4 shows the implementing logic of the Python algorithm for the

simulation operation. The abbreviations WR and DR respectively indicate the weekly run

38

T / F

and daily run cycles. The acquisition of hydrodynamic and atmosphere data are

independent procedures between them, thus to avoid delay of the simulation cycles the

program splits into more than one thread in the forcing layer first stage. Formatting results

for database and their conversion to NetCDF are represented by outputs conversion block.

Figure 4.4 - Simulation operation algorithm logic.

4.3.1 Daily run cycle

The operations conducted in a daily run cycle are summarized in the diagrams of figures

4.5 and 4.6. SMS-Coastal first action is to create an instance of the class "Simrun", hence

all the green blocks in the figures represent a series of procedures performed by that class

methods, which are, in the order they appear, to:

• Remove previous simulation external forcing data and all contents from “res” and

“exe” folders for each model level.

• Create or verify “Operations” directory and its inside structure, as well as SMS-

Coastal log file.

• Write “Model.dat” file in “data” folder of each level based on the information about

forecast range and iteration step time, “Tree.dat” in “exe” of the first level, copy

“Nomfich.dat” to that folder, and then run MOHID executable.

39

• Check if the cycle has finished correctly and if so, copy forecast outputs to

"Operations". Simulation success is determined by the content of MOHID log run

file and the availability of restart files generated for the next day cycle.

Figure 4.5 - Daily run cycle operations part 1.

In 4.5, “HYD data” and “ATM data” blocks denote the instant when SMS -oastal

searches respectively for external oceanic and atmospheric data in “FORC” directory,

given the information passed in "HYDSRC" and "ATMSRC" keywords. For each of the

sources in one input, the algorithm chooses to use the file that has the most recent data,

giving priority to the order listed by the user. Soon after that, there is an adjustment of the

forecast days range, as shown by the first block of 4.6, by selecting the minimum value

between the one entered in “TRANGE” and the maximum for each of the external forcing

files chosen.

SMS-Coastal entries a record in its log file inside "Operations" folder before the daily

module ends. It writes the information about whether the simulation succeeded or not. That

entry consists of the simulation date, the success or error code plus the time and date of the

registration, e.g. “2019-05-12 ERR03 2019-05-13_00:12”, which means that the

simulation of may 12th failed at 00:12 of the next day. 4.5 shows the codes used by the

management system. Additionally, all “log entry” blocks in figures 4.5 and 4.6, in which

40

this operation takes place, SMS-Coastal attempts to send a notice if an email is defined in

“MAILTO” keyword, which may also contain MOHID execution logs attached.

Figure 4.6 - Daily run cycle operations part 2.

Table 4.5 - Simulation layer log codes.

Code Description

1 simulation success

ERR01 restart files not found

ERR02 external ocean data not found

ERR03 external atmospheric data not found

ERR04 MOHID log not found

ERR05 simulation stopped unexpectedly

ERR06 failed to generate restart files to the next run

WARN01 used outdated external ocean and atmospheric data

WARN02 used outdated external ocean data

WARN03 used outdated atmospheric data

4.3.2 Weekly run cycle

The processes sequence performed in the weekly simulation cycles has some similarities

in relation to the daily run, as can be seen in the diagrams in figures 4.7 to 4.9. As

41

mentioned earlier, the weekly cycle also instantiates an object of the class “Simrun” to

have access to its methods. However, there is no need to search for restart files before

external forcing data check (4.7), considering that in weekly run a new solution cycle starts

from initial conditions determined by the user in the model data files inside “data” folders

of each level.

It is also noted in 4.8 that in weekly run, shortened to “WR”, SMS-Coastal commands

the execution of more than one simulation, which are the stages of the model startup.

Except for the last element in the keyword “TRANGE”, which is the value of days range

for the forecast simulation, the number of stages is determined by the quantity of

components in that input. Therefore, before the beginning of simulation cycles, hindcast

dates ranges are calculated based on the value indicated by each “TRANGE” element. For

every successfully completed stage the tool attempts to send a notice to the e-mail defined

in “MAILTO” and, in case of a failure of one of them, the whole execution is aborted.

Figure 4.7 - Weekly run cycle operations part 1.

42

Figure 4.8 - Weekly run cycle operations part 2.

Considering that in a weekly run a hindcast of several days is performed (3.3), the

execution of all stages may take more than one day to complete. This means that the last

stage restart files can be produced with a delay that will make it impossible to use them in

the daily simulation cycle. For this reason, the program generates an additional simulation

stage (4.9), with the same data and configuration of a forecast run, but with an adjustment

in days range, spanning from the date in which the previous stage has finished to the next

daily cycle, in a way that the fin files should be available before the next daily cycle

begins.

Figure 4.9 - Weekly run cycle operations part 3.

43

4.3.3 Forcing layer

The forcing layer has the function of coordinating the execution of the specific operations

of each source entered in the keywords “HYDSRC” and “ATMSRC”, developing actions

in two phases as shown in 4.3. In the first one, the list of oceanic or atmospheric data

sources is scanned according to the diagram in the 4.10. The specific processing module

for each source is executed considering the order inputted in each keyword. For a single

data type, only one of the specific processes needs to be successful for the first stage to

end, that is, SMS-Coastal will process the first data found for the listed sources. It will then

returns to the simulation operation course (4.4) a list of the sources from which it was not

necessary to try downloading. If none of the specific operations finish successfully, the

first stage will return an empty list and the error corresponding to the lack of data will be

identified in the simulation layer, as explained in item 4.3.1.

Figure 4.10 - Forcing layer first stage.

The second stage of the forcing layer (4.11) is launched after the execution of a daily run

cycle and of any outputs formatting operation when applicable. Simpler than the first, it

receives the list of not downloaded oceanic and atmospheric sources from the first stage

and downloads the remaining data. In addition, as there is no need to perform conversion

and interpolation operations, SMS-Coastal performs an update in the inputs that each

specific module receives to disable these features. Both phases are executed if a source list

44

has no elements, but each one will be finalized before entering in their respective repetition

cycle.

Figure 4.11 - Forcing layer second stage.

Due to the particularities of each external data source, it was necessary to build a module

with the set of specific operations for each one. However, these modules have a similar

processing logic, which can be delimited by the following items:

1. Check structure

Each module checks folders and files structure for the respective source, that will be

located inside "FORC" in the project directory. When necessary, SMS-Coastal creates the

set of folders that will be used in the subsequent processes, which are the folder for

download, conversion, interpolation, simulation data storage and for downloaded files

backup.

2. Data cleaning and backup

SMS-Coastal removes the outputs from the previous run, namely from the conversion

and interpolation folders. For sources whose provider has long-term databases, the files in

the download folder are also deleted, otherwise they are automatically moved to the

backup folder. Within the simulation data storage, SMS-Coastal maintains a file database

of one week for HDF5 formats and one month for time series.

45

3. Wait data availability

SMS-Coastal pauses if launched before the availability of data from the sources selected

in "HYDSRC" or "ATMSRC". Each supplier has a specific schedule for uploading their

data, and that is why this information is included in each source specific module.

4. Download

The download operation has the most specific processes for each source. In SOMA’s case

data from Mercator and Skiron are used. For the first one, it is necessary to have the

“motuclient” Python module installed so that it can be called by the program to extract the

information from the CMEMS database. As for Skiron data, they are downloaded from an

FTP repository, by using built-in Python libraries.

5. Conversion

The conversion is carried out to transform the downloaded files into the HDF format,

which is the native format of MOHID. SMS-Coastal conducts a conversion operation using

the Convert2Hdf5 support tool for Mercator data in NetCDF files. As for Skiron GRIB

files, it uses the “gdal” external module to read the datasets and then writes them directly

to an HDF output using the methods available in “h5py” module.

6. Interpolation

After the conversion, the outputs go through the interpolation process done again by the

Convert2Hdf5 tool, but controlled by the each specific source module. Then, the

interpolated files are copied to another folder with a name pattern of “HYDSRC_LVi_

YYMMDD.hdf5” for oceanic data and “ATMSRC_LVi_YYMMDD.hdf5” for

atmospheric, where "i" is the number of the level to which the data was interpolated, "YY"

the year in two digits, "MM" the month and "DD" the day, that is, the processing date of

the datasets recorded in that file. In the simulation layer, the forcing data is searched

according to the date recorded in the file name, which is copied to "General Data" folder

changing the name to the standard specified in item 4.1

If the forcing format is changed to time series, by attributing “1” to "HYDTS" or

"ATMTS" keywords, the program do not go through conversion and interpolation steps and

writes the datasets information, obtained directly from the downloads reading, in a “dat”

46

file. The simulation files name pattern is changed to “HYDSRC_YYMMDD.dat” for

oceanic data and “ATMSRC_YYMMDD.dat” for atmospheric.

4.3.4 Formatting outputs

At the end of a successful daily simulation cycle, if the user had defined “1” for the

keyword “FMT”, SMS-Coastal initiates the results formatting module, which will generate

the files to populate the local database. The implementing logic of this module algorithm is

expressed by the diagram of 4.12.

Figure 4.12 - Simulation output formatting module operations for model database.

One of the inputs of the formatting module is the folder in “Operations” directory that

holds the daily run results to be reshaped. Then, the first thing it does is to create the date

folder, inside the module standard output directory also located in “Operations”.

The number of iterations is based on the information given in “MODSET” and

“LEVELS” keywords. If the first level of the model is configured just to generate the

necessary hydrodynamics for child models, this module will process only the outputs from

the second level and further ones.

47

Next, within the repetition cycle of 4.12, the program creates a folder for the current level

inside of the date one and copies HDF5Extractor to it. Then SMS-Coastal executes the

MOHID supporting tool for gathering a group of datasets of the same output time and

write them in a single HDF5 file, doing this until there is data for only the first day of

forecast. This is done firstly for the hydrodynamic file and then to the water properties one.

In the specific case of SOMA operationalization, it is also possible to convert the forecast

results to the NetCDF format, which are one of the products of OCASO project. The

algorithm of the module responsible for this operation, represented in the diagram of the

4.13, is activated by assigning the value “1” to the keyword “PDE” in the SMS-Coastal

initialization file. This module also uses as input the folder containing the daily run outputs

and excludes from the conversion the files of first level, if “MODSET” is equals to “2”.

Figure 4.13 - Simulation output formatting module operations for OCASO
project.

After the setting up, OCASO formatting module iterates through the outputs of each

level. In the repetition cycle, it reads the datasets from hydrodynamic and water properties

HDF5 files for the whole bathymetry, 3D datasets in 4.13. Then, it calculates the daily

means and write one NetCDF file for each forecasted day. Secondly, it reads bathymetry

top layer datasets only, from surface HDF5 files, calculates its hourly means and writes one

NetCDF for each forecasted hour.

48

Each type of data sets, surface and three-dimensional, had to be handled in a unique way.

For this reason, an auxiliary class was created to instantiate a tool-object in each iteration

of the 4.13, which contains methods suitable to both types and others specific to deal with

each one. As the diagram in the figure is a simplification of the algorithm, that class

architecture can be consulted in the codes of the Appendices section. Lastly, when all files

in the NetCDF format are generated, they are uploaded to an SFTP repository, so that they

can be accessed by other collaborators of the OCASO project.

4.4 Failures statistics

SMS-Coastal first version was launched on July 7th 2019 and since then kept SOMA

operational. Until June 30th 2020, the system coordinated 68 weekly runs and 371 daily

runs, totaling 439 executions of the simulation layer. The simulations are running on a

server computer, within Windows 10 Enterprise 64-bit operating system, with availability

of 10 out of the 20 cores of the Intel Xeon Gold 6138 processor, 9.76 GB of RAM and an

exclusive 450 GB data storage space. 4.6 shows the failures computed in the program log

file for those executions and 4.7 the proportion of these failures related to total runs.

Table 4.6 - Failures in simulation layer.

Failures
Successful

runs

Weekly

run

Daily

run

Total

failures

Code errors Yes 3 8 11

Manual emergency stops Yes 2 7 9

Executions terminated by MOHID No 8 11 19

Insufficient virtual memory No 3 4 7

Restart files not found No 0 2 2

Totals 16 32 48

Table 4.7 - Simulation layer failures proportion.

Failures % failures % total runs
% unsuccessful

runs

Code errors 22.9 % 2.51% 0.00 %

Manual emergency stops 18.7 % 2.05 % 0.00 %

Executions terminated by MOHID 39.6 % 4.33 % 4.33 %

Insufficient virtual memory 14.6 % 1.59 % 1.59 %

49

Restart files not found 4.2 % 0.46 % 0.46 %

Totals 100 % 10.9 % 6.38 %

As for the forcing layer, SMS-Coastal did a total of 834 executions, so that it was 434

runs of the Mercator's specific module and 400 of Skiron's. 4.8 shows the failures of these

modules that the management system was able to point out in the log files of each source.

Table 4.8 - Failures in forcing layer.

Failures Mercator Skiron
Total

Failures
% failures % total runs

Code errors 11 9 20 0 0

Download error 82 37 119 0 0

Interpolation error 4 11 15 0 0

Reading files error 0 4 4 0 0

Totals 97 61 158 100 % 0

The failures evaluated in the last two tables correspond to:

• Code error: SMS-Coastal crash caused by poor programming of a new module or in

a code update.

• Manual emergency stops: execution manually aborted by the user.

• Executions terminated by MOHID: SMS-Coastal recognizes that the MOHID

executable unsuccessfully ended, due to model instability, lack of external forces,

or anything else presented in MOHID execution log.

• Insufficient virtual memory: specific case in which MOHID does not find enough

space in the computer's memory to continue its execution.

• Restart files not found: SMS-Coastal was unable to prompt a daily run cycle, in

simulation layer, due to the lack of restart files.

• Download error: failure encountered during specific download processes for each

external source of oceanic and atmospheric data.

50

• Interpolation error: failure computed by Convert2Hdf5 supporting tool when

performing an interpolation process of external forcing data.

• Reading files error: failure caused when opening external force file in read mode.

4.5 SOMA Outputs

At the end of each daily simulation cycle, SMS-Coastal copies the files containing the

forecast data to the “RES” folder within “Operations”, becoming this way available to be

viewed and analyzed. The following figures, constructed by MOHID Studio software from

Action Modulers, illustrate some of the data available in that folder that were obtained

during SOMA management by SMS-Coastal. In all of them the region with the highest

resolution, which is the model level 3, is delimited by a rectangle and the black arrows

indicates velocity vectors.

4.14 shows the map containing the predicted water velocity at the surface on July 18th

2020. For the same day, 4.15 and 4.16 show the temperature forecast for the surface and at

100 meters deep respectively. As a way of comparison, 4.17 contains the velocity, 4.18

and 4.19 the temperature information, but for June 19th of the same year. It is noticeable

through the figures the change in water behavior between the indicated months. In June it

is possible to observe a periodic phenomenon that occurs on the Portugal west coast and

extends to the Algarve, which is the resurgence of deep and cold waters from the bottom of

the ocean to the surface, also known as upwelling (Relvas, 2002).

51

Figure 4.14 - SOMA surface velocity forecast in July 18th.

Figure 4.15 - SOMA surface temperature forecast in July 18th.

52

Figure 4.16 - SOMA 100 meters depth temperature forecast in July 18th.

Figure 4.17 - SOMA surface velocity forecast in June 19th.

53

Figure 4.18 - SOMA surface temperature forecast in June 19th.

Figure 4.19 - SOMA 100 meters depth temperature forecast in June 19th.

54

5 DISCUSSION

Since the launch of SMS-Coastal first version for the operationalization of SOMA

system, several improvements have been implemented in its code, new modules have been

added and others discarded. In this way, new versions of the management system were

released as updates were made, so that each one is the compilation of the set of modules

that form it into a single executable file to be used on computers with Windows operating

system. That file incorporates all necessary modules and libraries so that it can run

independently of a Python installation. Nevertheless, an interpreter of this programming

language is essential when downloading information from CMEMS, since to retrieve

Mercator files the module “motuclient” must be called inside a Python environment. It is

also important to note that SMS-Coastal does not have a self awakening mechanism, thus it

is necessary to schedule its executable as one of the Windows tasks to make it fully

automatic.

The imposed structure of files and folders must be respected so that the generic code

identifies the correct computational paths during simulation handling. Therefore, in order

to run a simulation operation the model must be set as shown by the project structure in

4.1, its data files must be inserted in each level “data” folder, the required inputs must be

written in the initial file “ini.dat” and run SMS-Coastal application. Some missing

directories will be generated by the management system in their absence, such as

“Operations” of each simulation cycle, “FORC” and their contents, plus “res” and “exe”

for each model level. Furthermore, since SMS-Coastal manipulates external forcing and

bathymetry files, they have standard names which must be used in the instructions written

in the model data files, otherwise MOHID will not be able to find them.

As for the input files, the user must be aware of which keywords to use and what values

to attribute them. One of the SMS-Coastal first tasks is to check them all and interrupt the

execution if something incorrect is found. After the keywords are defined for a model they

will hardly be changed when the continuous forecast cycles begin. Inside SMS-Coastal’s

pogram code those inputs are read as a Python dictionary, making the order they are typed

in “init.dat” not relevant.

55

One of the major problems of the continuous simulation cycles is the availability of local

storage space for the outputs. In a few days of execution a very large amount of data can be

easily generated. In SOMA specific case, which has three levels, a four-day forecast

occupies around 8.25 GB on disk, neglecting Mercator and Skiron interpolated data files

used in that run. For that reason, SMS-Coastal has automatic data removal processes, since

it was observed that low space disk can affect itself performance, making daily and/or

weekly runs longer to complete, or even be interrupted. Therefore, in each simulation

folder, SMS-Coastal maintains a maximum of 20 days results in a local database inside

"Operations" and for each source of oceanic and atmospheric data, a week of interpolated

HDF5 files or 30 days time series recorded in dat files.

At some moments during the execution of the code, SMS-Coastal splits into more than

one thread to launch simultaneous processes. In the simulation layer, this happens only on

the scheduled day to start a new solution cycle of the model. This is necessary because it is

not possible to execute a daily run sequentially to a weekly run without interrupting the

daily forecasts provision, considering that the latter may take more than a day to complete.

Therefore, as the weekly and daily simulations are handled concomitantly, they were

placed in separate folders inside the project directory. That is also quite useful to avoid

conflict when they have to use the same forcing data files. Despite all this, weekly run still

causes a reduction in the performance of the forecast simulation, which in the case of

SOMA, MOHID execution logs indicated an increase of more than three hours, in most

cases, in the simulation elapsed time. Obtaining external oceanic and atmospheric data are

independent processes, so in the first stage of the forcing layer they are also carried out in

different threads, so that simulation cycles may start as soon as possible. SMS-Coastal

division into multiple threads, carried out by the Python “threading” module, however, did

not have any efficiency analysis, so it is still possible to implement other more

sophisticated programming techniques and even use other tools available for that language

to optimize the management system in this aspect.

For each source available to be inputted in the keywords “HYDSRC” and “ATMSRC”, a

specific module was built to process its data. Thus, SMS-Coastal has a library that will be

constantly expanded as new sources are demanded for other coastal models. Hence, its

forcing layer basically coordinates the moment when these modules are triggered in the

56

code operations sequence. For that reason, it was not required to generate its activity log,

instead the procedures status of each specific module are individually registered in each

source log file.

As indicated in the previous chapter, the forcing layer was separated into two stages, the

first of one with the possibility to run more than one task at the same time. The second, on

the other hand, only executes data download from unprocessed sources at the previous

stage and the specific modules are no longer required to be run simultaneously, as the daily

simulation cycle and other outputs conversion operations will be already completed. The

objective here is to build a local database of forcing files that may be used in the

simulation cycles. In this way, if a source processing fails, the next one will already have

part of the data available to avoid delaying the start of the simulation layer, especially on

the weekly run days when the amount of data corresponds the ranges defined in the

keyword "TRANGE". This shows that the sources listed by the user serve only as a

redundancy of each other and in the end only one will be used.

The same procedures are performed in the forcing sources specific modules, even though

in different ways. Final interpolated or time series files always contain data from the first

day of hindcast to the last day of forecast, calculated based on the inputs of “TRANGE”

and the operation date. In this manner, the forcing files will always be prepared to run a

restart of the model, regardless of the week day. Then, all the user have to do in order to

change the weekly run cycle day is to update the value given to “RESTART” keyword. As

for storing, for sources that has no long-term data availability, the module will

automatically backup the downloads in a local database. Those, in turn, must be managed

by the user so the disk will not run out of memory, erasing or moving unnecessary files to

another storage device. External forcing files ready for the simulation layer are kept for

one week to cover the possible scenario in which the processing of all sources fails,

therefore, even if it uses outdated oceanic and/or atmospheric data, the model remains

operational. In this case the forecast days range are adjusted according to the file used.

The SMS-Coastal version presented in this work has two optional processes for

formatting daily cycle simulations results. The first one divides the outputs of one day into

smaller HDF5 files, one for each datasets instant, until there is information for the first 24

hours of the forecast. The next run will give the subsequent 24 hours information and so

57

on. This procedure is activated by the keyword “FMT” and was designed to generate files

that will become the model’s historical database. Due to that, the program does not have a

cleaning operation for those files, and just like for the forcing data backup, they should be

manually transferred to another disk.

The second formatting process essentially consists in converting the simulation results

from HDF5 to NetCDF, which, however, was programmed exclusively for the SOMA

system results. The module built to accomplish this task meets a demand from OCASO

project by making Algarve’s coast forecast data available to the other partners. For this

reason, the output files of this module have writing standards and a very well defined

structure. Because of that, the code is not generic in this point and shall not be used for any

other model. Nevertheless, a valuable knowledge about NetCDF handling with Python was

developed and it might be used as basis to build other applications.

Some of the SMS-Coastal modules could be used independently, that is, outside the

simulations context. This is the case of the intrinsic operations to obtain forcing data and to

format HDF5 MOHID output files. Thus, from the management system itself new features

are being generated and they will be available to be selected only by changing the value of

the keyword “OPTYPE”. The other inputs will be specific for each operation type, so that

it will be required to set up the initial file “init.dat” for each one. The functions are: (1)

coastal models forecast simulations management; (2) forcing data processing according to

the library available in SMS-Coastal; (3) MOHID outputs formatting for model’s database;

(4) MOHID outputs conversion for OCASO project; and (5) a more generic application of

the last, MOHID outputs conversion to NetCDF for model’s database. Except for (5), the

main objective of this work was operation (1) integrated with the others, so that this is

already programmed and is currently being used to manage SOMA system forecast cycles.

Regarding the operationalization of the SOMA system, SMS-Coastal has been managing

its forecast simulations for over one year. During this period, the management system had

been updated many times, as new tasks were added and programming failures were

identified. The tables in the section 4.4 indicates the problems encountered while handling

the model runs, from the launch of the first version until the last day of June 2020. Most of

the failures caused by poor coding happened in the first days of operation and they were

used exactly as a basis to make the necessary corrections in the algorithm, which in turn

58

was only implemented after exhaustive tests to prevent simulation cycles interruption. In

the forcing layer, errors during download represented more than 75% of the total failures.

Little can be done about them except to rerun the program to make a new download

attempt. This is mainly caused by lost of connection between the computer and the

supplier's repository, but also by a possible delay in data availability.

Finally, in the simulation layer, the failure caused by insufficient virtual memory is a

specific case of the stops made by the MOHID system, which however was counted

separated because it represents a situation that is related to SMS-Coastal. At the end of an

execution, the prompt window remains open so the user is able to consult the operations

history. Thus, it was observed that when those processes are still open, even having more

than enough disk space to run the model, the computer is left with low random-access

memory (RAM). This type of failure is even more likely to happen when there is also two

simulations running simultaneously. Therefore, SMS-Coastal is not scheduled to be

automatically launched on SOMA restart day, instead, all remaining windows are manually

closed and the computer is rebooted. After this procedure has been implemented no

simulation has failed for that reason yet.

59

6 CONCLUSION

In this work a program as developed, written with the object-oriented programming

language Python, to manage forecast simulations of operational hydrodynamic coastal

models, the SMS-Coastal. The sequence of most basic operations to be developed by it in a

management process was based on the design of a similar one with the same purpose found

in the literature. However, the program was conceived to run models only built within the

MOHID modelling system environment, which is the one responsible to perform the

numerical solution of the governing equations and to carry out other process such as

interpolation and conversion forcing files to HDF5 format.

SMS-Coastal was developed using SOMA’s operationalization as a background, which is

a MOHID based and validated high resolution hydrodynamic model of the Algarve coast.

Therefore, it conducts two distinct simulation cycles: the daily runs, which correspond to

the continuous forecast simulations, and the weekly runs, which starts the model from the

most recent conditions given by CMEMS to generate new restart files with less

deteriorated initial conditions. The model became the means to test the SMS-Coastal

versions and consequently became the first one to be controlled by it. This is also the

reason why modules were created within the management system's forcing library to

process Mercator and Skiron data. The operationalization of SOMA remains active and

producing daily forecast data since the launch of the program first version in July 2019.

Simulation management basically consists in coordinating the execution of different

operations and file handling. For that reason, the simulation process carried out by MOHID

system, as well as the generic folder structure and file naming presented in this work, for

which SOMA had to be adapted, were the means to identify the routine patterns that were

used to build SMS-Coastal's algorithm in a way that it would be suitable for any other

model. The method of reading keywords was adopted so that the user can specify the

parameters to run each model. In this way, it is expected that other projects can be put in

operational mode by the tool so that their data may support activities developed within the

blue economy.

The use of an object-oriented programming language helped to simplify the program's

code, since the same methods could be used more than once in different situations,

60

avoiding extensive writing of the same parts of the code. Moreover, modules that develop

tasks outside the context of simulations, such as formatting results or forcing data

processing, have given rise to other features that shall be independently accessed.

However, in the way it was designed and together with the imposed folder structure, SMS-

Coastal major limitation is that it does not yet allow the operationalization of models that

have more than one sub-domain defined for the same level. In addition, when the code

splits its execution into more than one thread to perform simultaneous tasks, the printed

messages of each running module are shuffled in the prompt window, becoming confusing

to the user.

Despite these and other minor code problems that might be identified, the simulation

management system presented in this work is prepared to make coastal models operational.

Even so, SMS-Coastal’s construction is a continuous process and so updates and

improvements shall be regularly implemented. Because of that, the options for running

independent operations such as results formatting and forcing data processing are already

being programmed and soon will be integrated into the program. Besides that, and

considering that Python has a vast built-in library and several other external tools, which

offer a wide range of resources, also as future works, it is recommended to optimize the

parallelization of tasks and even to build a graphical interface for better viewing the

messages. Furthermore, SMS-Coastal still has room to grow with new modules for other

forcing sources and even with the development of new features.

61

BIBLIOGRAPHY

Argo Program. (2020, May 28). Argo - Part of the Integrated Global Observation Strategy.

http://www.argo.ucsd.edu/

Bailey, K., Steinberg, C., Davies, C., Galibert, G., Hidas, M., McManus, M. A., Murphy,

T., Newton, J., Roughan, M., & Schaeffer, A. (2019). Coastal Mooring Observing

Networks and Their Data Products: Recommendations for the Next Decade. Frontiers

in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00180

Bari, A. (2017). Our Oceans and the Blue Economy: Opportunities and Challenges.

Procedia Engineering, 194, 5–11. https://doi.org/10.1016/j.proeng.2017.08.109

Bell, M., Lefèbvre, M., Le Traon, P.-Y., Smith, N., & Wilmer-Becker, K. (2009). GODAE:

The Global Ocean Data Assimilation Experiment. Oceanography, 22(3), 14–21. https://

doi.org/10.5670/oceanog.2009.62

Böning, C. W., & Semtner, A. J. (2001). Chapter 2.2 High-resolution modelling of the

thermohaline and wind-driven circulation. In International Geophysics (Vol. 77, pp. 59–

XII). Elsevier. https://doi.org/10.1016/S0074-6142(01)80112-1

Braunschweig, F., Leitao, P. C., Fernandes, L., Pina, P., & Neves, R. J. J. (2004). The

object-oriented design of the integrated water modelling system MOHID. In

Developments in Water Science (Vol. 55, pp. 1079–1090). Elsevier.

https://doi.org/10.1016/S0167-5648(04)80126-6

Burgess, M. G., Clemence, M., McDermott, G. R., Costello, C., & Gaines, S. D. (2018).

Five rules for pragmatic blue growth. Marine Policy, 87, 331–339.

https://doi.org/10.1016/j.marpol.2016.12.005

Capet, A., Fernández, V., She, J., Dabrowski, T., Umgiesser, G., Staneva, J., Mészáros, L.,

Campuzano, F., Ursella, L., Nolan, G., & El Serafy, G. (2020). Operational Modeling

Capacity in European Seas—An EuroGOOS Perspective and Recommendations for

Improvement. Frontiers in Marine Science, 7, 129.

https://doi.org/10.3389/fmars.2020.00129

Casanova-Arenillas, S., Rodríguez-Tovar, F. J., & Martínez-Ruiz, F. (2020). Applied

ichnology in sedimentary geology: Python scripts as a method to automatize ichnofabric

analysis in marine core images. Computers & Geosciences, 136, 104407. https://doi.org/

10.1016/j.cageo.2020.104407

62

Chambers, C., Ungar, D., Chang, B.-W., & Hölzle, U. (1991). Parents are shared parts of

objects: Inheritance and encapsulation in SELF. Lisp and Symbolic Computation, 4(3),

207–222. https://doi.org/10.1007/BF01806106

Dombrowsky, E. (2011). Overview Global Operational Oceanography Systems. In A.

Schiller & G. B. Brassington (Eds.), Operational Oceanography in the 21st Century

(pp. 397–411). Springer Netherlands. https://doi.org/10.1007/978-94-007-0332-2_16

Greenberg, D. A., Dupont, F., Lyard, F. H., Lynch, D. R., & Werner, F. E. (2007).

Resolution issues in numerical models of oceanic and coastal circulation. Continental

Shelf Research, 27(9), 1317–1343. https://doi.org/10.1016/j.csr.2007.01.023

Griffies, S. M. (2006). Some Ocean Model Fundamentals. In E. P. Chassignet & J. Verron

(Eds.), Ocean Weather Forecasting (pp. 19–73). Springer-Verlag.

https://doi.org/10.1007/1-4020-4028-8_2

Howard, B. C. (2018). Blue growth: Stakeholder perspectives. Marine Policy, 87, 375–

377. https://doi.org/10.1016/j.marpol.2017.11.002

IP, M. (2006). List of internal metrics for the MERSEA-GODAE Global Ocean:

Specification for implementation.

Janeiro, J., Neves, A., Martins, F., & Relvas, P. (2017). Integrating technologies for oil spill

response in the SW Iberian coast. Journal of Marine Systems, 173, 31–42.

https://doi.org/10.1016/j.jmarsys.2017.04.005

Janeiro, J., Zacharioudaki, A., Sarhadi, E., Neves, A., & Martins, F. (2014). Enhancing the

management response to oil spills in the Tuscany Archipelago through operational

modelling. Marine Pollution Bulletin, 85(2), 574–589.

https://doi.org/10.1016/j.marpolbul.2014.03.021

Kämpf, J. (2009). Ocean Modelling for Beginners. Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-00820-7

Knox, S., Meier, P., Yoon, J., & Harou, J. J. (2018). A python framework for multi-agent

simulation of networked resource systems. Environmental Modelling & Software, 103,

16–28. https://doi.org/10.1016/j.envsoft.2018.01.019

Le Traon, P.-Y. (2011). Satellites and Operational Oceanography. In A. Schiller & G. B.

Brassington (Eds.), Operational Oceanography in the 21st Century (pp. 29–54).

Springer Netherlands. https://doi.org/10.1007/978-94-007-0332-2_2

63

Lee, K.-H., Noh, J., & Khim, J. S. (2020). The Blue Economy and the United Nations’

sustainable development goals: Challenges and opportunities. Environment

International, 137, 105528. https://doi.org/10.1016/j.envint.2020.105528

Leitão, P., Coelho, H., Santos, A., & Neves, R. (2005). Modelling the main features of the

Algarve coastal circulation during July 2004: A downscaling approach. Journal of

Atmospheric & Ocean Science, 10(4), 421–462.

https://doi.org/10.1080/17417530601127704

Liblik, T., Karstensen, J., Testor, P., Alenius, P., Hayes, D., Ruiz, S., Heywood, K. J.,

Pouliquen, S., Mortier, L., & Mauri, E. (2016). Potential for an underwater glider

component as part of the Global Ocean Observing System. Methods in Oceanography,

17, 50–82. https://doi.org/10.1016/j.mio.2016.05.001

Lorente, P., Aznar, R., Alvarez Fanjul, E., Pascual, Á., Toledano Lozano, C., Amo, A.,

Dabrowski, T., Levier, B., Reffray, G., Dalphinet, A., & Aouf, L. (2019). The NARVAL

software toolbox in support of ocean model skill assessment at regional and coastal

scales.

Malone, T., Davidson, M., DiGiacomo, P., Gonçalves, E., Knap, T., Muelbert, J., Parslow,

J., Sweijd, N., Yanagai, T., & Yap, H. (2010). Climate Change, Sustainable

Development and Coastal Ocean Information Needs. Procedia Environmental Sciences,

1, 324–341. https://doi.org/10.1016/j.proenv.2010.09.021

Malone, T., DiGiacomo, P. M., Gonçalves, E., Knap, A. H., Talaue-McManus, L., & de

Mora, S. (2014). A global ocean observing system framework for sustainable

development. Marine Policy, 43, 262–272.

https://doi.org/10.1016/j.marpol.2013.06.008

Marta-Almeida, M., Ruiz-Villarreal, M., Otero, P., Cobas, M., Peliz, A., Nolasco, R.,

Cirano, M., & Pereira, J. (2011). OOFɛ: A Python engine for automating regional and

coastal ocean forecasts . ☆ Environmental Modelling & Software, 26(5), 680–682.

https://doi.org/10.1016/j.envsoft.2010.11.015

Martins, F. (1999). Modelação matemática tridimensional de escoamentos costeiros e

estuarinos usando uma abordagem de coordenada vertical genérica. Universidade

Técnica de Lisboa.

64

Martins, F., Leitão, P., Silva, A., & Neves, R. (2001). 3D modelling in the Sado estuary

using a new generic vertical discretization approach. Oceanologica Acta, 24, 51–62.

https://doi.org/10.1016/S0399-1784(01)00092-5

Martins, F., Neves, R. J., & Leitão, P. C. (1998). A three-dimensional hydrodynamic model

with generic vertical coordinate.

Martins, J. P. (2012). Programação em Python: Introdução a Programação Utilizando

Múltiplos Paradigmas.

Medclic. (2020, September 22). Coastal HF Radar. http://medclic.es/en/instrumentos/radar-

costero-hf/

Miranda, R., Braunschweig, F., Leitao, P., Neves, R., Martins, F., & Santos, A. (2000).

MOHID 2000-A coastal integrated object oriented model. WIT Transactions on Ecology

and the Environment, 40.

Mittal, T., & Delbridge, B. (2019). Detection of the 2012 Havre submarine eruption plume

using Argo floats and its implications for ocean dynamics. Earth and Planetary Science

Letters, 511, 105–116. https://doi.org/10.1016/j.epsl.2019.01.035

Neves, R. (2007). NUMERICAL MODELS AS DECISION SUPPORT TOOLS IN

COASTAL AREAS. In I. E. Gonenc, V. G. Koutitonsky, B. Rashleigh, R. B. Ambrose,

& J. P. Wolflin (Eds.), Assessment of the Fate and Effects of Toxic Agents on Water

Resources (pp. 171–195). Springer Netherlands. https://doi.org/10.1007/978-1-4020-

5528-7_8

Oke, P. R., Sakov, P., Cahill, M. L., Dunn, J. R., Fiedler, R., Griffin, D. A., Mansbridge, J.

V., Ridgway, K. R., & Schiller, A. (2013). Towards a dynamically balanced eddy-

resolving ocean reanalysis: BRAN3. Ocean Modelling, 67, 52–70.

https://doi.org/10.1016/j.ocemod.2013.03.008

Oliphant, T. E. (2006). Guide to NumPy. USA: Trelgol Publishing.

Oliphant, T. E. (2007). Python for Scientific Computing. Computing in Science &

Engineering, 9(3), 10–20. https://doi.org/10.1109/MCSE.2007.58

Perez-Schofield, B. G., & Ortin, F. (2019). A didactic object-oriented, prototype-based

visual programming environment. Science of Computer Programming, 176, 1–13.

https://doi.org/10.1016/j.scico.2019.02.004

65

Pouliquen, S. (2006). In-Situ Observations: Operational Systems and Data Management. In

E. P. Chassignet & J. Verron (Eds.), Ocean Weather Forecasting (pp. 207–227).

Springer-Verlag. https://doi.org/10.1007/1-4020-4028-8_8

Prandle, D. (2000). Introduction. Coastal Engineering, 41(1–3), 3–12.

https://doi.org/10.1016/S0378-3839(00)00024-7

Ravichandran, M. (2011). In-Situ Ocean Observing System. In A. Schiller & G. B.

Brassington (Eds.), Operational Oceanography in the 21st Century (pp. 55–90).

Springer Netherlands. https://doi.org/10.1007/978-94-007-0332-2_3

Reeve, K. A., Boebel, O., Strass, V., Kanzow, T., & Gerdes, R. (2019). Horizontal

circulation and volume transports in the Weddell Gyre derived from Argo float data.

Progress in Oceanography, 175, 263–283. https://doi.org/10.1016/j.pocean.2019.04.006

Relvas, P. (2002). Mesoscale patterns in the Cape São Vicente (Iberian Peninsula)

upwelling region. Journal of Geophysical Research, 107(C10), 3164.

https://doi.org/10.1029/2000JC000456

Robinson, I. S. (2006). Satellite Measurements for Operational Ocean Models. In E. P.

Chassignet & J. Verron (Eds.), Ocean Weather Forecasting (pp. 147–189). Springer-

Verlag. https://doi.org/10.1007/1-4020-4028-8_6

Robinson, I. S. (2010a). Introduction. In I. S. Robinson, Discovering the Ocean from

Space (pp. 1–6). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-68322-

3_1

Robinson, I. S. (2010b). The methods of satellite oceanography. In I. S. Robinson,

Discovering the Ocean from Space (pp. 7–67). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-540-68322-3_2

Roemmich, D., Alford, M. H., Claustre, H., Johnson, K., King, B., Moum, J., Oke, P.,

Owens, W. B., Pouliquen, S., Purkey, S., Scanderbeg, M., Suga, T., Wijffels, S.,

Zilberman, N., Bakker, D., Baringer, M., Belbeoch, M., Bittig, H. C., Boss, E., …

Yasuda, I. (2019). On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary

Array. Frontiers in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00439

Sáenz, J., Zubillaga, J., & Fernández, J. (2002). Geophysical data analysis using Python.

Computers & Geosciences, 28(4), 457–465. https://doi.org/10.1016/S0098-

3004(01)00086-3

66

Schiller, A. (2011). Ocean Forecasting in the 21st Century. In A. Schiller & G. B.

Brassington (Eds.), Operational Oceanography in the 21st Century (pp. 3–26). Springer

Netherlands. https://doi.org/10.1007/978-94-007-0332-2_1

Send, U. (2006). In-Situ Observations: Platforms and Techniques. In E. P. Chassignet & J.

Verron (Eds.), Ocean Weather Forecasting (pp. 191–206). Springer-Verlag.

https://doi.org/10.1007/1-4020-4028-8_7

She, J. (2015). Analysis on research priorities for European operational oceanography.

She, J., Allen, I., Buch, E., Crise, A., Johannessen, J. A., Le Traon, P.-Y., Lips, U., Nolan,

G., Pinardi, N., Reißmann, J. H., Siddorn, J., Stanev, E., & Wehde, H. (2016).

Developing European operational oceanography for Blue Growth, climate

changeadaptation and mitigation, and ecosystem-based management. Ocean Science,

12(4), 953–976. https://doi.org/10.5194/os-12-953-2016

Smith, N. R. (2000). The Global Ocean Data Assimilation Experiment. Advances in Space

Research, 25(5), 1089–1098. https://doi.org/10.1016/S0273-1177(99)00868-6

Summerhayes, C. (2002). Technical tools for regional seas management: The role of the

Global Ocean Observing System (GOOS). Ocean & Coastal Management, 45(11–12),

777–796. https://doi.org/10.1016/S0964-5691(02)00106-0

Tomlinson, J. E., Arnott, J. H., & Harou, J. J. (2020). A water resource simulator in Python.

Environmental Modelling & Software, 126, 104635.

https://doi.org/10.1016/j.envsoft.2020.104635

Trancoso, A. R., Braunschweig, F., Chambel Leitão, P., Obermann, M., & Neves, R.

(2009). An advanced modelling tool for simulating complex river systems. Science of

The Total Environment, 407(8), 3004–3016.

https://doi.org/10.1016/j.scitotenv.2009.01.015

Ungar, D., Chambers, C., Chang, B.-W., & Hölzle, U. (1991). Organizing programs

without classes. Lisp and Symbolic Computation, 4(3), 223–242.

https://doi.org/10.1007/BF01806107

van der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy Array: A Structure

for Efficient Numerical Computation. Computing in Science & Engineering, 13(2), 22–

30. https://doi.org/10.1109/MCSE.2011.37

Van Rossum, G., & Drake Jr, F. L. (1995). Python tutorial (Vol. 620). Amsterdam:

Centrum voor Wiskunde en Informatica.

67

Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid

dynamics: The finite volume method. Pearson Education.

Volk, J. M., & Turner, M. A. (2019). PRMS-Python: A Python framework for

programmatic PRMS modeling and access to its data structures. Environmental

Modelling & Software, 114, 152–165. https://doi.org/10.1016/j.envsoft.2019.01.006

von Schuckmann, K., Le Traon, P.-Y., Alvarez-Fanjul, E., Axell, L., Balmaseda, M.,

Breivik, L.-A., Brewin, R. J. W., Bricaud, C., Drevillon, M., Drillet, Y., Dubois, C.,

Embury, O., Etienne, H., Sotillo, M. G., Garric, G., Gasparin, F., Gutknecht, E.,

Guinehut, S., Hernandez, F., … Verbrugge, N. (2016). The Copernicus Marine

Environment Monitoring Service Ocean State Report. Journal of Operational

Oceanography, 9(sup2), s235–s320. https://doi.org/10.1080/1755876X.2016.1273446

Vos, K., Splinter, K. D., Harley, M. D., Simmons, J. A., & Turner, I. L. (2019). CoastSat: A

Google Earth Engine-enabled Python toolkit to extract shorelines from publicly

available satellite imagery. Environmental Modelling & Software, 122, 104528.

https://doi.org/10.1016/j.envsoft.2019.104528

White, J. T., Fienen, M. N., & Doherty, J. E. (2016). A python framework for

environmental model uncertainty analysis. Environmental Modelling & Software, 85,

217–228. https://doi.org/10.1016/j.envsoft.2016.08.017

Wohlstadter, M., Shoaib, L., Posey, J., Welsh, J., & Fishman, J. (2016). A Python toolkit for

visualizing greenhouse gas emissions at sub-county scales. Environmental Modelling &

Software, 83, 237–244. https://doi.org/10.1016/j.envsoft.2016.05.016

Wu, G., Lu, Z., Luo, Z., Shang, J., Sun, C., & Zhu, Y. (2019). Experimental Analysis of a

Novel Adaptively Counter-Rotating Wave Energy Converter for Powering Drifters.

Journal of Marine Science and Engineering, 7(6), 171.

https://doi.org/10.3390/jmse7060171

68

APPENDICES

This section presents the codes of the modules built in the Python programming

language, which together form the simulation management system for coastal

hydrodynamic models, the SMS-Coastal. Each sub-chapter corresponds to one of the

modules.

Appendix A – Operation selector

Module to select the operation to perform.

import os
from subprocess import run
from datetime import datetime

import inputsread
import sim_control
from forcontrol import forcontrol

rootdir = os.getcwd()
if not os.path.isfile(rootdir + "\\init.dat"):
 print("ERROR\n\ninit file not found\n")
 run("pause", shell=True)
 raise SystemExit

init = inputsread.initread(("OPTYPE", "OPDATE"), rootdir)
optype = init.get("OPTYPE")
opdate = init.get("OPDATE")

if not opdate:
 opdate = datetime.today().date()
else:
 try:
 opdate = datetime.strptime(opdate, "%Y %m %d").date()
 except ValueError:
 print("ERROR\n\nNot a valid date format\n")
 run("pause", shell=True)
 raise SystemExit

if optype == "1":
 sim_control.simcontrol(rootdir, opdate)
elif optype == "2":
 print("FORCING testing")
elif optype == "3":
 print("FMT develop")
elif optype == "4":
 print("PDE develop")
elif optype == "5":

69

 print("NetCDF project")
else:
 print("ERROR\n\nSelect a valid operation\n")

os.chdir(rootdir)
os.chdir("..\\..\\")
run("pause", shell=True)

Appendix B – Initial data file reader

Module to read initial data file “init.dat” and return a dictionary with the inputs.

import os

def initread(keywords, initpath):
 initdat = initpath + "\\init.dat"
 lines = tuple([line for line in open(initdat, "r")])

 init_keys = tuple([line[:line.find(":")].strip() for line in lines])
 init_vlue = tuple([line[line.find(":") + 1:].strip() for line in lines])

 vlues = []
 for key in keywords:
 vlue = None

 if key in init_keys:
 vlue = init_vlue[init_keys.index(key)]

 if vlue == '':
 vlue = None

 vlues.append(vlue)

 return dict(zip(keywords, vlues))

def initsim(initpath):
 inputs = initread(("MODSET", "LEVELS", "RESTART", "GMTREF", "TRANGE", "FMT", "PDE",
"MAILTO", "HYDSRC", "ATMSRC",
 "LATLIM", "LONLIM", "HYDTS", "ATMTS", "TSLOC"), initpath)
 out_keys = {}

 if None in (inputs.get("MODSET"), inputs.get("LEVELS"), inputs.get("RESTART"),
inputs.get("GMTREF"),
 inputs.get("TRANGE")):
 return

 levels = inputs.get("LEVELS")
 restart = inputs.get("RESTART")
 gmtref = inputs.get("GMTREF")
 trange = inputs.get("TRANGE")

 try:

70

 levels = int(levels)
 int(gmtref)
 restart = int(restart)
 trange = [int(val) for val in trange.split()]
 except ValueError:
 return

 if levels < 1 or 0 in trange:
 return

 out_keys["LEVELS"] = levels
 out_keys["RESTART"] = restart
 out_keys["GMTREF"] = gmtref
 out_keys["TRANGE"] = tuple(trange)

 dtlvi = initread([f"DTLV{level + 1}" for level in range(levels)], initpath)
 dtrun = []

 for level in range(levels):
 vals = dtlvi.get(f"DTLV{level + 1}")
 if not vals:
 return

 vals = vals.split()

 try:
 vals = [int(val) for val in vals]
 except (ValueError, TypeError):
 return

 if len(vals) != len(trange):
 return

 dtrun.append(vals)

 dtrun = tuple(zip(*dtrun))
 out_keys["DTRUN"] = dtrun

 val = inputs.get("MODSET")
 if not val or val not in ("1", "2"):
 return
 out_keys["MODSET"] = val

 vals = "FMT", "PDE", "HYDTS", "ATMTS"
 for key in vals:
 val = inputs.get(key)
 if val not in ("0", "1"):
 out_keys[key] = "0"
 else:
 out_keys[key] = val

 out_keys["MAILTO"] = inputs.get("MAILTO")

 hydsrc = inputs.get("HYDSRC")
 atmsrc = inputs.get("ATMSRC")

 if not hydsrc and not atmsrc:
 out_keys["HYDSRC"] = ()

71

 out_keys["ATMSRC"] = ()
 out_keys["GRID"] = None
 out_keys["TSLOC"] = None
 return out_keys

 out_keys["HYDSRC"] = tuple(hydsrc.split())
 out_keys["ATMSRC"] = tuple(atmsrc.split())
 lat = inputs.get("LATLIM")
 lon = inputs.get("LONLIM")
 tsl = inputs.get("TSLOC")

 try:
 lat = [float(val.replace(",", ".")) for val in lat.split()]
 lon = [float(val.replace(",", ".")) for val in lon.split()]
 except (ValueError, TypeError, AttributeError):
 return

 if len(lat) != 2 or len(lon) != 2:
 return

 lon.sort()
 lat.sort()
 out_keys["GRID"] = tuple(lon + lat)

 if "1" in (out_keys.get("ATMTS"), out_keys.get("HYDTS")):
 try:
 tsl = [float(val.replace(",", ".")) for val in tsl.split()]
 except (ValueError, TypeError, AttributeError):
 return

 if len(tsl) != 2:
 return

 out_keys["TSLOC"] = tuple(tsl)
 else:
 out_keys["TSLOC"] = None

 return out_keys

Appendix C – Common operations

Module containing methods to write in log files and send reporting e-mails.

import os
import smtplib

from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.mime.base import MIMEBase
from email import encoders

def mailreport(email_send, reportsubject, body, filename):
 if not email_send or email_send == '' or "@" not in email_send:

72

 return
 try:
 email_user = '********@ualg.pt'
 email_password = '******'
 server = smtplib.SMTP('smtp.office365.com',587)

 msg = MIMEMultipart()
 msg['From'] = email_user
 msg['To'] = email_send
 msg['Subject'] = reportsubject

 msg.attach(MIMEText(body,'plain'))

 for file in filename:
 if not os.path.isfile(file):
 filename = ()

 for file in filename:
 attachment = open(file,'rb')

 part = MIMEBase('application','octet-stream')
 part.set_payload(attachment.read())
 encoders.encode_base64(part)
 part.add_header('Content-Disposition',"attachment; filename= "+file)
 msg.attach(part)

 text = msg.as_string()

 server.starttls()
 server.login(email_user,email_password)

 server.sendmail(email_user,email_send,text)
 server.quit()

 except Exception as err:
 print('\n' + ' Failed to send report e-mail '.center(65, '-') + f'\n{err}\n')

def logentry(logfile, entry, mode="a"):
 with open(logfile, mode) as log:
 log.write(entry)

Appendix D – Simulation control

Module to control the simulation operation.

import os
import concurrent.futures
from inputsread import initsim
from threading import Thread
from time import sleep
from glob import glob

73

from forcmercator import mercator
from forc_skiron import skiron
from forcnam import nam
from forcgfs import gfs
from sim_weekly import weeklyrun
from sim_daily import dailyrun
from post_fmtres import fmtres
from post_pde_netcdf import convertpde

def first_forc(srcs, outdir, opdate, inputs):
 srcslib = {"Mercator": mercator, "Skiron": skiron, "NAM": nam, "GFS": gfs}
 redund = list(srcs)

 if "AVGWP" in redund:
 redund.remove("AVGWP")

 counter = len(redund)

 while counter > 0:
 status = srcslib.get(redund[0])(outdir, opdate, inputs)
 redund.remove(redund[0])
 counter -= 1

 if status == 1:
 counter = 0

 return redund

def scond_forc(srcs, outdir, opdate, inputs):
 srcslib = {"Mercator": mercator, "Skiron": skiron, "NAM": nam, "GFS": gfs}
 for src in srcs:
 srcslib.get(src)(outdir, opdate, inputs)

def simcontrol(projdir, opdate):
 inputs = initsim(projdir)
 if not inputs:
 print("ERROR\n\nInvalid/missing inputs\n")
 return

 inputs["PROJDIR"] = projdir
 inputs["MOHID"] = projdir + "\\MOHID"

 inputs["FORCDIR"] = projdir + "\\FORC"
 if not os.path.isdir(inputs.get("FORCDIR")):
 os.mkdir(inputs.get("FORCDIR"))

 # --------- FORCING LAYER
 hyd_inputs = inputs.copy()
 hyd_inputs["HNDCST"] = sum(inputs.get("TRANGE")[:-1])
 hyd_inputs["BKUP"] = "1"
 if inputs.get("HYDTS") == "0":
 hyd_inputs["HDFOUT"] = "1"
 hyd_inputs["TSOUT"] = "0"
 else:

74

 hyd_inputs["HDFOUT"] = "0"
 hyd_inputs["TSOUT"] = "1"

 atm_inputs = hyd_inputs.copy()
 if inputs.get("ATMTS") == "0":
 atm_inputs["HDFOUT"] = "1"
 atm_inputs["TSOUT"] = "0"
 else:
 atm_inputs["HDFOUT"] = "0"
 atm_inputs["TSOUT"] = "1"

 with concurrent.futures.ThreadPoolExecutor() as executor:
 hydpro = executor.submit(first_forc, inputs.get("HYDSRC"), inputs.get("FORCDIR"), opdate,
hyd_inputs)
 sleep(30)
 atmpro = executor.submit(first_forc, inputs.get("ATMSRC"), inputs.get("FORCDIR"), opdate,
atm_inputs)
 hydpost = hydpro.result()
 atmpost = atmpro.result()

 atm_inputs["HDFOUT"] = "0"
 atm_inputs["TSOUT"] = "0"
 hyd_inputs["HDFOUT"] = "0"
 hyd_inputs["TSOUT"] = "0"

 # --------- SIMULATION LAYER
 weekpro = Thread(target=weeklyrun, args=(opdate, inputs))
 if opdate.weekday() == inputs.get("RESTART"):
 print("WR + DR")
 weekpro.start()
 sleep(30)

 dailyrun(opdate, inputs)

 # --------- POST OPERATIONS
 resdir = glob(projdir + opdate.strftime("\\Sim_Daily\\Operations\\RES\\SIM%y%m%d_END*"))
 resdir.sort()
 try:
 resdir = resdir[-1]
 except IndexError:
 resdir = None

 if resdir and inputs.get("FMT") == "1":
 fmtres(resdir, opdate, projdir + "\\Sim_Daily\\Operations", inputs.get("LEVELS"),
inputs.get("MODSET"),
 inputs.get("MOHID"))

 if resdir and inputs.get("PDE") == "1":
 convertpde(resdir, opdate, projdir + "\\Sim_Daily\\Operations", inputs.get("MODSET"),
inputs.get("LEVELS"))

 # ---------- REDUNDANCY
 scond_forc(hydpost, inputs.get("FORCDIR"), opdate, hyd_inputs)
 scond_forc(atmpost, inputs.get("FORCDIR"), opdate, atm_inputs)

 if weekpro.is_alive():
 weekpro.join()

75

Appendix E – Weekly run cycle control

Module to control weekly run cycles.

import os
from datetime import datetime, timedelta
from math import ceil
from threading import Thread

from sim_runs import Simrun
from sim_forcing import select_source, check_range
from opcommon import mailreport

def weeklyrun(simdate, inputs):
 projdir = inputs.get("PROJDIR")
 projid = os.path.basename(projdir)
 simdir = projdir + "\\Sim_Weekly"

 print("-" * 80 + "\n" + "SIMULATION MANAGMENT MODULE".center(80) + "\n" + "-" * 80)
 print("PROJECT :", projdir)
 print("DATE :", simdate.strftime('%Y %m %d'))
 print("TYPE : Weekly run")
 print("MODEL SET :", inputs.get("MODSET"))
 print("LEVELS :", inputs.get("LEVELS"))
 print("-"*80)

 # ---------- LOAD SIMULATION OBJECT
 runsim = Simrun(projdir, inputs.get("LEVELS"), simdate, "Weekly", inputs.get("MAILTO"))
 print("Wiping simulation folder", end="\n\n")
 runsim.wipesim()
 print("Setting up environment", end="\n\n")
 runsim.chkdirs()
 runsim.logentry(str(simdate))

 # ---------- LOAD EXTERNAL FORCINGS DATA
 print("Searching forcing data")
 hyd_status = select_source(inputs.get("HYDSRC"), inputs.get("FORCDIR"), simdir, simdate,
inputs.get("HYDTS"))
 print(hyd_status)
 if hyd_status[0] == "NOT_FOUND":
 print("-"*80 + "\nERROR - Hydrodynamic forcing data not found\n" + "-"*80)
 runsim.logentry(datetime.today().strftime(" ERR02 %Y-%m-%d_%H:%M\n"))
 body = simdate.strftime('%Y-%m-%d Hydrodynamic forcing data not found')
 mailreport(inputs.get("MAILTO"), projid + " Daily run ERROR", body, ())
 return

 atm_status = select_source(inputs.get("ATMSRC"), inputs.get("FORCDIR"), simdir, simdate,
inputs.get("ATMTS"))
 print(atm_status)
 if atm_status[0] == "NOT_FOUND":
 print("-"*80 + "\nERROR - Atmospheric forcing data not found\n" + "-"*80)
 runsim.logentry(datetime.today().strftime(" ERR03 %Y-%m-%d_%H:%M\n"))
 body = simdate.strftime('%Y-%m-%d Atmospheric forcing data not found')
 mailreport(inputs.get("MAILTO"), projid + " Daily run ERROR", body, ())
 return

76

 print()

 forctime = check_range(hyd_status, atm_status)
 simtime = datetime(simdate.year, simdate.month, simdate.day) + timedelta(hours=forctime[1])

 timerun = []
 trange = list(inputs.get("TRANGE"))[:-1]

 for _ in range(len(trange)):
 timerun.append(simtime - timedelta(sum(trange)))
 trange = trange[1:]

 timerun.append(simtime)

 # ---------- RUN SIMULATION
 threads = []
 runid = 1

 for stage in range(len(timerun)-1):
 runid += stage
 print("Running STAGE", runid)
 runsim.modeldat(runid, timerun[stage], timerun[stage + 1], inputs.get("DTRUN")[stage],
inputs.get("GMTREF"))
 status = runsim.execrun(runid)
 if status < 1:
 return
 print()

 subject = projid + " Weekly run STAGE " + str(runid) + " COMPLETED"
 body = simdate.strftime('%Y-%m-%d') + ' SIMULATION HDF5 READY'
 logs = simdir + "\\Operations\\LOGS\\Mohid_log_"
 logs = logs + f"run{runid}.txt", logs + f"err{runid}.txt"
 threads.append(Thread(target=mailreport, args=(inputs.get("MAILTO"), subject, body, logs)))
 threads[-1].start()

 delta_time = ceil((datetime.today() - simtime).total_seconds() / (24 * 3600))

 if delta_time <= 2:
 print("Running Interface")
 timerun = simtime, simtime + timedelta(delta_time)
 runid += 1

 runsim.modeldat(runid, timerun[0], timerun[1], inputs.get("DTRUN")[-1], inputs.get("GMTREF"))
 status = runsim.execrun(runid)
 if status < 1:
 return
 print()

 body = simdate.strftime('%Y-%m-%d') + ' SIMULATION HDF5 READY'
 logs = simdir + "\\Operations\\LOGS\\Mohid_log_"
 logs = logs + f"run{runid}.txt", logs + f"err{runid}.txt"
 mailreport(inputs.get("MAILTO"), projid + " Interface run COMPLETED", body, logs)

 else:
 delta_time = 0

 # ---------- FINISH SIMULATION AND COPY FILES
 if hyd_status[1] and atm_status[1] > 0:

77

 runsim.logentry(datetime.today().strftime(" WARN1 %Y-%m-%d_%H:%M\n")) # hyd and atm
forecast data
 elif hyd_status[1] > 0:
 runsim.logentry(datetime.today().strftime(" WARN2 %Y-%m-%d_%H:%M\n")) # hyd forecast data
 elif atm_status[1] > 0:
 runsim.logentry(datetime.today().strftime(" WARN3 %Y-%m-%d_%H:%M\n")) # atm forecast data
 else:
 runsim.logentry(datetime.today().strftime(" 1 %Y-%m-%d_%H:%M\n"))

 runsim.saveres()
 runsim.savefin(runid, delta_time, inputs.get("MODSET"))

 for thread in threads:
 thread.join()
 print("-"*80)
 print("WEEKLY RUN COMPLETED")
 print("-"*80)

Appendix F – Daily run cycle control

Module to control daily run cycles.

import os
from datetime import datetime, timedelta

from sim_runs import Simrun
from sim_forcing import select_source, check_range
from opcommon import mailreport

def dailyrun(simdate, inputs):
 projdir = inputs.get("PROJDIR")
 projid = os.path.basename(projdir)
 simdir = projdir + "\\Sim_Daily"

 print("-" * 80 + "\n" + "SIMULATION MANAGMENT MODULE".center(80) + "\n" + "-" * 80)
 print("PROJECT :", projdir)
 print("DATE :", simdate.strftime('%Y %m %d'))
 print("TYPE : Daily run")
 print("MODEL SET :", inputs.get("MODSET"))
 print("LEVELS :", inputs.get("LEVELS"))
 print("-"*80)

 # ---------- LOAD SIMULATION OBJECT
 runsim = Simrun(projdir, inputs.get("LEVELS"), simdate, "Daily", inputs.get("MAILTO"))
 print("Wiping simulation folder", end="\n\n")
 runsim.wipesim()
 print("Setting up environment", end="\n\n")
 runsim.chkdirs()
 runsim.logentry(str(simdate))

 print("Checking FINS")
 status = runsim.getfins()

78

 if status < 1:
 return

 # ---------- LOAD EXTERNAL FORCINGS DATA
 print("Searching forcing data")
 hyd_status = select_source(inputs.get("HYDSRC"), inputs.get("FORCDIR"), simdir, simdate,
inputs.get("HYDTS"))
 print(hyd_status)
 if hyd_status[0] == "NOT_FOUND":
 print("-"*80 + "\nERROR - Hydrodynamic forcing data not found\n" + "-"*80)
 runsim.logentry(datetime.today().strftime(" ERR02 %Y-%m-%d_%H:%M\n"))
 body = simdate.strftime('%Y-%m-%d Hydrodynamic forcing data not found')
 mailreport(inputs.get("MAILTO"), projid + " Daily run ERROR", body, ())
 return

 atm_status = select_source(inputs.get("ATMSRC"), inputs.get("FORCDIR"), simdir, simdate,
inputs.get("ATMTS"))
 print(atm_status)
 if atm_status[0] == "NOT_FOUND":
 print("-"*80 + "\nERROR - Atmospheric forcing data not found\n" + "-"*80)
 runsim.logentry(datetime.today().strftime(" ERR03 %Y-%m-%d_%H:%M\n"))
 body = simdate.strftime('%Y-%m-%d Atmospheric forcing data not found')
 mailreport(inputs.get("MAILTO"), projid + " Daily run ERROR", body, ())
 return
 print()

 forctime = check_range(hyd_status, atm_status)
 simtime = datetime(simdate.year, simdate.month, simdate.day) + timedelta(hours=forctime[1])
 frange = min(inputs.get("TRANGE")[-1], forctime[0])

 # ---------- RUN SIMULATION
 print("Running Forecast")
 runsim.modeldat(1, simtime, simtime + timedelta(frange), inputs.get("DTRUN")[-1],
inputs.get("GMTREF"))
 status = runsim.execrun(1)
 if status < 1:
 return

 # ---------- FINISH SIMULATION AND COPY FILES
 if hyd_status[1] and atm_status[1] > 0:
 runsim.logentry(datetime.today().strftime(" WARN1 %Y-%m-%d_%H:%M\n")) # hyd and atm
forecast data
 elif hyd_status[1] > 0:
 runsim.logentry(datetime.today().strftime(" WARN2 %Y-%m-%d_%H:%M\n")) # hyd forecast data
 elif atm_status[1] > 0:
 runsim.logentry(datetime.today().strftime(" WARN3 %Y-%m-%d_%H:%M\n")) # atm forecast data
 else:
 runsim.logentry(datetime.today().strftime(" 1 %Y-%m-%d_%H:%M\n"))

 runsim.saveres()
 runsim.savefin(1, 1, inputs.get("MODSET"))

 print("-"*80)
 print("DAILY RUN COMPLETED")
 print("-"*80)

 body = simdate.strftime('%Y-%m-%d') + ' SIMULATION HDF5 READY'

79

 logs = simdir + "\\Operations\\LOGS\\Mohid_log_run1.txt", simdir + "\\Operations\\LOGS\\
Mohid_log_err1.txt"
 mailreport(inputs.get("MAILTO"), projid + " Daily run COMPLETED", body, logs)

Appendix G – Simulation class

Class with all the common methods to any kind of simulation cycle.

import os
from glob import glob
from shutil import rmtree, copyfile, copytree
from subprocess import run
from datetime import datetime, timedelta

from opcommon import mailreport

class Simrun:
 def __init__(self, projdir, levels, simdate, simtype, mailto):
 self.projdir = projdir
 self.rootdir = projdir + "\\Sim_" + simtype
 self.levels = levels
 self.simdate = simdate
 self.simtype = simtype
 self.mailto = mailto

 def wipesim(self):
 boundarys = self.rootdir + "\\General Data\\Boundary Conditions*FORC*"
 initials = self.rootdir + "\\General Data\\Initial Conditions\\AVGWP*"
 logs = self.rootdir + "\\Operations\\LOGS\\Mohid*.txt"
 files = glob(boundarys) + glob(initials) + glob(logs)
 for file in files:
 os.unlink(file)

 lvpath = ""
 for level in range(self.levels):
 lvpath += "\\Level " + str(level + 1)
 if os.path.isdir(self.rootdir + lvpath + "\\res"):
 rmtree(self.rootdir + lvpath + "\\res")
 if os.path.isdir(self.rootdir + lvpath + "\\exe"):
 rmtree(self.rootdir + lvpath + "\\exe")
 os.mkdir(self.rootdir + lvpath + "\\res")
 os.mkdir(self.rootdir + lvpath + "\\exe")

 def chkdirs(self):
 if not os.path.isdir(self.rootdir + "\\Operations"):
 os.mkdir(self.rootdir + "\\Operations")
 if not os.path.isdir(self.rootdir + "\\Operations\\LOGS"):
 os.mkdir(self.rootdir + "\\Operations\\LOGS")
 if not os.path.isfile(self.rootdir + "\\Operations\\LOGS\\" + self.simtype + "_run.log"):
 Simrun.logentry(self, 'Date Status Time\n', mode="w")

 def logentry(self, entry, mode="a"):

80

 with open(self.rootdir + "\\Operations\\LOGS\\" + self.simtype + "_run.log", mode) as log:
 log.write(entry)

 def getfins(self):
 if os.path.isdir(self.projdir + "\\Sim_Weekly\\Operations\\FINS\\" + self.simdate.strftime('%y%m
%d')):
 finspath = self.projdir + "\\Sim_Weekly\\Operations\\FINS\\" + self.simdate.strftime('%y%m%d')
 elif os.path.isdir(self.projdir + "\\Sim_Daily\\Operations\\FINS\\" + self.simdate.strftime('%y%m
%d')):
 finspath = self.projdir + "\\Sim_Daily\\Operations\\FINS\\" + self.simdate.strftime('%y%m%d')
 else:
 print("-"*80 + f"\n{self.simtype} run ERROR - No FINS available\n" + "-"*80)
 Simrun.logentry(self, datetime.today().strftime(" ERR01 %Y-%m-%d_%H:%M\n"))
 mailreport(self.mailto, os.path.basename(self.projdir) + " Daily run ERROR", "No FINS
available", ())
 return 0

 print(" FINS :", finspath.replace(self.projdir, "."))
 lvpath = self.projdir + "\\Sim_Daily"
 for level in range(self.levels):
 lvpath += '\\Level ' + str(level + 1)
 fins = glob(finspath + f'\\LV{level + 1:02d}*.fin*')

 for fin in fins:
 prefix = os.path.basename(fin).split('_')[1]
 sufix = os.path.basename(fin).split('.')[-1]
 copyfile(fin, lvpath + '\\res\\' + prefix + '_0.' + sufix)
 print()
 return 1

 def modeldat(self, runid, ini, end, dtstep, gmtref):
 print(ini.strftime(" START : %Y %m %d %H %M %S"))
 print(end.strftime(" END : %Y %m %d %H %M %S"))
 print(" DTs :", str(dtstep).replace("(", "").replace(")", "").replace(",", ""))
 lvpath = self.rootdir
 for level in range(self.levels):
 lvpath += f'\\Level {level + 1}'

 with open(lvpath + f'\\data\\Model_{runid}.dat', 'w') as model:
 model.write(f'''START : {ini:%Y %m %d %H %M %S}
END : {end:%Y %m %d %H %M %S}
DT : {dtstep[level]}
VARIABLEDT : 0
GMTREFERENCE : {gmtref}\n''')

 copyfile(lvpath + f'\\data\\Nomfich_{runid}.dat', lvpath + '\\exe\\Nomfich.dat')

 def execrun(self, runid):
 with open(self.rootdir + '\\Level 1\\exe\\Tree.dat', 'w') as tree:
 tree.write('Automatic Generated Tree File\nby FERNANDOs AWESOME PYTHON BASED
PROGRAM\n')

 lvpath = self.rootdir
 for level in range(self.levels):
 lvpath += f'\\Level {level + 1}'

 with open(self.rootdir + '\\Level 1\\exe\\Tree.dat', 'a') as tree:

81

 tree.write('+' * (level + 1) + lvpath + '\\exe\n')

 if not os.path.exists(lvpath + '\\res\\Run' + str(runid)):
 os.mkdir(lvpath + '\\res\\Run' + str(runid))

 # ---------- Run simulation
 logrun = self.rootdir + "\\Operations\\LOGS\\Mohid_log_run" + str(runid) + ".txt"
 logerr = self.rootdir + "\\Operations\\LOGS\\Mohid_log_err" + str(runid) + ".txt"

 os.chdir(self.rootdir + '\\Level 1\\exe')
 run(f'"{self.projdir}\\MOHID\\MOHIDWater.exe" > {logrun} 2> {logerr}', shell=True)
 run('exit', shell=True)
 # ----------

 subject = os.path.basename(self.projdir)+" "+self.simtype+" run "

 if not os.path.isfile(logrun):
 print("-"*80 + f"\n{self.simtype} run ERROR - MOHID lof not found\n" + "-"*80)
 Simrun.logentry(self, datetime.today().strftime(" ERR04 %Y-%m-%d_%H:%M\n"))
 mailreport(self.mailto, subject+"ERROR", "MOHID log not found", ())
 Simrun.savefail(self)
 return 0

 loglines = [line.strip() for line in open(logrun)]
 if 'Program Mohid Water successfully terminated' not in loglines:
 print("-" * 80 + f"\n{self.simtype} run ERROR - Simulation stopped unexpectedly\n" + "-" * 80)
 Simrun.logentry(self, datetime.today().strftime(" ERR05 %Y-%m-%d_%H:%M\n"))
 mailreport(self.mailto, subject+"ERROR", "Simulation stopped unexpectedly", (logrun, logerr))
 Simrun.savefail(self)
 return 0

 lvpath = self.rootdir
 for level in range(self.levels):
 lvpath += f'\\Level {level + 1}'
 if not os.path.isfile(lvpath + '\\res\\Hydrodynamic_' + str(runid) + '.fin'):
 print("-" * 80 + f"\n{self.simtype} run ERROR - Hydrodynamic FIN not found\n" + "-" * 80)
 Simrun.logentry(self, datetime.today().strftime(" ERR06 %Y-%m-%d_%H:%M\n"))
 mailreport(self.mailto, subject+"ERROR", "Hydrodynamic FIN not found", (logrun, logerr))
 Simrun.savefail(self)
 return 0

 return 1

 def savefail(self):
 if not os.path.isdir(self.rootdir + "\\Operations\\FAIL"):
 os.mkdir(self.rootdir + "\\Operations\\FAIL")

 faildir = self.rootdir + self.simdate.strftime("\\Operations\\FAIL\\SIM%y%m%d_END")
 faildir += datetime.today().strftime("%y%m%d_%H%M")
 os.mkdir(faildir)

 boundarys = self.rootdir + "\\General Data\\Boundary Conditions*FORC*"
 initials = self.rootdir + "\\General Data\\Initial Conditions\\AVG*"
 logs = self.rootdir + "\\Operations\\LOGS\\Mohid*.txt"

 files = glob(boundarys)+glob(initials)+glob(logs)
 for file in files:
 copyfile(file, faildir + "\\" + os.path.basename(file))

82

 lvpath = self.rootdir
 for level in range(self.levels):
 lvpath += "\\Level " + str(level + 1)
 copytree(lvpath + "\\res", faildir + f"\\LV{level + 1:02d}_res")

 def saveres(self):
 outdir = self.rootdir + "\\Operations\\RES"
 if not os.path.isdir(outdir):
 os.mkdir(outdir)

 folders = glob(outdir + "*")
 while len(folders) > 20:
 rmtree(folders[0])
 folders = glob(outdir + "*")

 outdir += self.simdate.strftime("\\SIM%y%m%d_END") + datetime.today().strftime("%y%m%d_
%H%M")
 os.mkdir(outdir)

 lvpath = self.rootdir
 for level in range(self.levels):
 lvpath += "\\Level " + str(level + 1)

 hdfs = glob(lvpath + "\\res\\Hydrodynamic*.hdf5") + glob(lvpath + "\\res\\WaterProperties*.hdf5")
 for hdf in hdfs:
 copyfile(hdf, outdir + f"\\LV{level + 1:02d}_" + os.path.basename(hdf))

 timeseries = glob(lvpath + "\\res\\Run[1-3]")
 for folder in timeseries:
 copytree(folder, outdir + f"\\LV{level + 1:02d}_TimeSeries_" + os.path.basename(folder))

 def savefin(self, runid, fin_day, modset):
 outdir = self.rootdir + "\\Operations\\FINS"
 if not os.path.isdir(outdir):
 os.mkdir(outdir)

 folders = glob(outdir + "*")
 while len(folders) > 20:
 rmtree(folders[0])
 folders = glob(outdir + "*")

 findate = self.simdate + timedelta(fin_day)
 outdir += findate.strftime("\\%y%m%d")
 if os.path.isdir(outdir):
 rmtree(outdir)
 os.mkdir(outdir)

 lvpath = self.rootdir
 for level in range(self.levels):
 lvpath += "\\Level " + str(level + 1)

 if modset == "2" and level == 0:
 fins_size = 1
 else:
 fins_size = 3

 fins = glob(lvpath + findate.strftime('\\res*%Y%m%d*.fin*'))

83

 if not fins or len(fins) < fins_size:
 fins = glob(lvpath + f"\\res*_{runid}.fin*")

 for fin in fins:
 copyfile(fin, outdir + f"\\LV{level + 1:02d}_" + os.path.basename(fin))

Appendix H – Forcing data selector

Module to select the most convenient forcing data from the sources listed.

import os
from datetime import timedelta
from glob import glob
from shutil import copyfile

def select_source(srcs, forcdir, simdir, opdate, tsout):
 file_path = []
 for src in srcs:
 if src == "AVGWP" and tsout == "0":
 file_path.append(forcdir + "\\AVGWP*_%m.hdf5")
 elif src == "AVGWP" and tsout == "1":
 file_path.append(forcdir + "\\AVGWP*_%m.dat")
 elif tsout == "0":
 file_path.append(forcdir + "\\" + src + "\\Data HDF*_%y%m%d.hdf5")
 else:
 file_path.append(forcdir + "\\" + src + "\\Data TS*_%y%m%d.dat")

 file_day = []
 for path in file_path:
 file_day.append(file_availability(path, opdate))

 dtday = min(file_day)
 pos = file_day.index(dtday)
 if dtday > 90:
 return "NOT_FOUND", 99

 src = srcs[pos]
 path = file_path[pos]
 files = glob((opdate - timedelta(dtday)).strftime(path))
 if src == "AVGWP":
 outdir = simdir + "\\General Data\\Initial Conditions\\"
 else:
 outdir = simdir + "\\General Data\\Boundary Conditions\\"

 for file in files:
 file_name = str(os.path.basename(file))
 file_pre = file_name.split("_")
 file_ext = file_name.split(".")[-1]

 if file_ext == "hdf5" or "AVGWP" in file_name:
 file_pre = file_pre[0] + "_" + file_pre[1]
 else:

84

 file_pre = file_pre[0]

 file_name = file_pre + "." + file_ext
 print("", file)
 copyfile(file, outdir + file_name)

 return src, dtday

def file_availability(path, opdate):
 max_file = {'Mercator': 6, 'Skiron': 3, 'AVGWP': 6, 'NAM': 3, 'GFS': 3} # maxmium number of days
scanned

 if 'AVGWP' in path:
 max_days = max_file.get(os.path.basename(os.path.dirname(path)))
 else:
 max_days = max_file.get(os.path.basename(os.path.dirname(os.path.dirname(path))))

 if not max_days:
 return 99

 end_while = 0
 file_day = 0

 while file_day <= max_days and end_while < 1:
 file_date = opdate - timedelta(file_day)
 if len(glob(file_date.strftime(path))) > 0:
 end_while = 1
 else:
 file_day += 1

 if file_day > max_days:
 return 99
 return file_day

def check_range(hyd_status, atm_status):
 srcs = {'Mercator': (7, 12.), 'Skiron': (5, 0.), 'AVGWP': (31, 0.), 'NAM': (3, 0.), 'GFS': (5, 0.)}

 hyd_loss = hyd_status[1]
 atm_loss = atm_status[1]

 if srcs.get(hyd_status[0])[1] > srcs.get(atm_status[0])[1]:
 atm_loss += 1
 elif srcs.get(hyd_status[0])[1] < srcs.get(atm_status[0])[1]:
 hyd_loss += 1

 frange = min(srcs.get(hyd_status[0])[0] - hyd_loss, srcs.get(atm_status[0])[0] - atm_loss)
 simhour = max(srcs.get(hyd_status[0])[1], srcs.get(atm_status[0])[1])
 return frange, simhour

85

Appendix I – MOHID outputs database formatting

Module to conduct the formatting of MOHID outputs to populate the local database.

import os
from shutil import copyfile, rmtree, copytree
from datetime import datetime, timedelta
from subprocess import run
from glob import glob

import h5py
import numpy as np

def fmtres(resdir, opdate, outdir, levels, modset, mohid):
 return_dir = os.getcwd()

 def makedir(path):
 if not os.path.isdir(path):
 os.mkdir(path)

 print('-' * 80 + '\n' + "FORMAT RESULTS MODULE".center(80) + '\n' + '-' * 80)
 if not os.path.isdir(resdir) or not os.path.isdir(outdir):
 print("ERROR\nIn/out directory not found\n" + "-"*80)
 return
 print("INDIR :", resdir)

 outdir += "\\FMT"
 makedir(outdir)

 incrmt = 1
 if modset == "2":
 levels -= 1
 incrmt += 1

 for level in range(levels):
 lvdir = outdir + "\\Level " + str(level+1)
 makedir(lvdir)

 lvdir += opdate.strftime("\\%y%m%d")
 if os.path.isdir(lvdir):
 rmtree(lvdir)
 makedir(lvdir)

 mohid_files = "HDF5Extractor.exe", "szlibdll.dll", "zlib1.dll"
 for mohid_file in mohid_files:
 try:
 copyfile(mohid + "\\" + mohid_file, lvdir + "\\" + mohid_file)
 except FileNotFoundError:
 print("-"*80 + "\nERROR\nMOHID files not found\n" + "-" * 80)
 return

 timeseries = glob(resdir + f"\\LV{level+incrmt:02d}_TimeSeries*")[0]
 try:
 copytree(timeseries, lvdir + "\\TimeSeries")
 except FileNotFoundError:

86

 print("-"*80 + "\nERROR\nTimeSeries folder not found\n" + "-" * 80)
 return

 with open(lvdir + "\\Nomfich.dat", "w") as dat:
 dat.write(f"IN_MODEL : Extractor.dat\nROOT_SRT : {lvdir}\n")

 os.chdir(lvdir)
 hdf = resdir + f"\\LV{level+incrmt:02d}_Hydrodynamic_1.hdf5"
 print("HDFIN :", hdf.replace(resdir, "."))
 if os.path.isfile(hdf):
 status = extractdata(hdf, "HD")
 else:
 print("-"*80 + f"\nERROR\nMissing file: {hdf}\n" + "-" * 80)
 return

 if status < 1:
 os.chdir(return_dir)
 print("-"*80 + f"\nERROR\nExtraction failed for\n{hdf}\n" + "-" * 80)
 return

 hdf = resdir + f"\\LV{level+incrmt:02d}_WaterProperties_1.hdf5"
 print("HDFIN :", hdf.replace(resdir, "."))
 if os.path.isfile(hdf):
 status = extractdata(hdf, "WP")
 else:
 print("-"*80 + f"\nERROR\nMissing file: {hdf}\n" + "-" * 80)
 return
 os.chdir(return_dir)

 if status < 1:
 print("-"*80 + f"\nERROR\nExtraction failed for\n{hdf}\n" + "-" * 80)
 return

 olds = glob(lvdir + '*.exe') + glob(lvdir + '*.log') + glob(lvdir + '*.dat') + glob(lvdir + '*.txt')
 olds += glob(lvdir + "*dll")
 for old in olds:
 os.unlink(old)

 print('-' * 80 + '\n' + "FORMAT RESULTS MODULE COMPLETED" + '\n' + '-' * 80)

def extractdata(hdf, flavor):
 if flavor == "HD":
 hdfpre = "Hydrodynamic_"
 else:
 hdfpre = "WaterProperties_"

 with h5py.File(hdf, 'r') as hdfin:
 dateini = np.array(hdfin['Time/Time_00001'], dtype=np.int)
 datefin = np.array(hdfin['Time/Time_00002'], dtype=np.int)

 dateini = datetime(dateini[0], dateini[1], dateini[2], dateini[3], dateini[4])
 datefin = datetime(datefin[0], datefin[1], datefin[2], datefin[3], datefin[4])
 stptime = (datefin-dateini).total_seconds()
 datalen = int(24*3600/stptime)

 for instant in range(datalen):

87

 hdfdate = dateini+timedelta(seconds=instant*stptime)
 hdfout = hdfpre + hdfdate.strftime('%y%m%d_%H%M.hdf5')
 print(' Writing...', hdfout, f' {instant+1}/{datalen}')

 dat = open('Extractor.dat', 'w')
 dat.write(f"""FILENAME : {hdf}\nOUTPUTFILENAME : {hdfout}

START_TIME : {hdfdate:%Y %m %d %H %M} 0
END_TIME : {hdfdate:%Y %m %d %H %M} 0

INTERVAL : 0\n\n""")
 if flavor == 'HD':
 dat.write("""<BeginParameter>\n
PROPERTY : velocity U
HDF_GROUP : /Results/velocity U
<EndParameter>

<BeginParameter>
PROPERTY : velocity V
HDF_GROUP : /Results/velocity V
<EndParameter>

<BeginParameter>
PROPERTY : velocity W
HDF_GROUP : /Results/velocity W
<EndParameter>

<BeginParameter>
PROPERTY : velocity modulus
HDF_GROUP : /Results/velocity modulus
<EndParameter>

<BeginParameter>
PROPERTY : water level
HDF_GROUP : /Results/water level
<EndParameter>\n""")
 else:
 dat.write("""<BeginParameter>
PROPERTY : temperature
HDF_GROUP : /Results/temperature
<EndParameter>

<BeginParameter>
PROPERTY : salinity
HDF_GROUP : /Results/salinity
<EndParameter>

<BeginParameter>
PROPERTY : density
HDF_GROUP : /Results/density
<EndParameter>\n""")

 dat.close()
 run('HDF5Extractor.exe > log_run.txt 2> log_err.txt', shell=True)

 if not os.path.isfile('log_run.txt') or not os.path.isfile('log_err.txt'):
 return 0

88

 log_run = [line.strip() for line in open('log_run.txt', 'r')]
 log_err = [line.strip() for line in open('log_err.txt', 'r')]

 if 'Program HDF5Extractor successfully terminated' not in log_run or log_err:
 return 0

 return 1

Appendix J – SOMA outputs OCASO formatting

Module to conduct the formatting of SOMA outputs to upload to OCASO SFTP.

import os
from shutil import rmtree
from glob import glob
from time import sleep
from datetime import datetime, timedelta

import pysftp

from post_pde_buildnc import BuildNetcdf

def convertpde(resdir, opdate, outdir, modset, levels):
 return_dir = os.getcwd()

 def makedir(path):
 if not os.path.isdir(path):
 os.mkdir(path)

 print('-'*80+'\n'+'PUERTOS DEL ESTADO NETCDF MODULE'.center(80)+'\n'+'-'*80)
 if not os.path.isdir(resdir) or not os.path.isdir(outdir):
 print("ERROR\nIn/out directory not found\n" + "-" * 80)
 return
 print("INDIR :", resdir)

 outdir += "\\PDE"
 makedir(outdir)

 incrmt = 1
 if modset == "2":
 levels -= 1
 incrmt += 1

 outdir += opdate.strftime("\\PDE_%y%m%d")
 if os.path.isdir(outdir):
 rmtree(outdir)
 os.mkdir(outdir)

 for level in range(levels):
 hdfs = glob(resdir + f"\\LV{level + incrmt:02d}_*.hdf5")
 if len(hdfs) != 4:
 print("-" * 80 + "\nERROR\nSimulation outputs missing\n" + "-" * 80)
 return

89

 for level in range(levels):
 hdfin = resdir + f"\\LV{level+incrmt:02d}_Hydrodynamic_1.hdf5"
 print("HDFIN :", hdfin.replace(resdir, "."))
 tool = BuildNetcdf(outdir, level + 1)

 tool.time_and_grid(hdfin)
 dsetnum = tool.dsetsamnt(hdfin)

 print(" Velocity U")
 velu = tool.trid_dsets(hdfin, "/Results/velocity U", 1, dsetnum, "uo")
 print(" Velocity V")
 velv = tool.trid_dsets(hdfin, "/Results/velocity V", 1, dsetnum, "vo")
 print(" Velocity W")
 tool.trid_dsets(hdfin, "/Results/velocity W", 1, dsetnum, "wo")
 print(" Water Level")
 tide = tool.trid_dsets(hdfin, "/Results/water level", 0, dsetnum, "zos")

 hdfin = resdir + f"\\LV{level+incrmt:02d}_WaterProperties_1.hdf5"
 print("HDFIN :", hdfin.replace(resdir, "."))
 dsetnum = tool.dsetsamnt(hdfin)

 print(" Temperature")
 temp = tool.trid_dsets(hdfin, "/Results/temperature", 0, dsetnum, 'thetao')
 print(" Salinity")
 sali = tool.trid_dsets(hdfin, "/Results/salinity", 0, dsetnum, "so")
 print(" Density")
 tool.trid_dsets(hdfin, "/Results/density", 0, dsetnum, "rho")

 hdfin = resdir + f"\\LV{level + incrmt:02d}_Hydrodynamic_1_Surface.hdf5"
 print("HDFIN :", hdfin.replace(resdir, "."))
 dsetnum = tool.dsetsamnt(hdfin, surf=1)

 print(" Velocity U")
 tool.bid_dsets(hdfin, "/Results/velocity U", 1, dsetnum, "uo", velu)
 print(" Velocity V")
 tool.bid_dsets(hdfin, "/Results/velocity V", 1, dsetnum, "vo", velv)
 print(" Tide")
 tool.bid_dsets(hdfin, "/Results/water level", 0, dsetnum, "zos", tide)

 hdfin = resdir + f"\\LV{level + incrmt:02d}_WaterProperties_1_Surface.hdf5"
 print("HDFIN :", hdfin.replace(resdir, "."))
 dsetnum = tool.dsetsamnt(hdfin, surf=1)

 print(" Temperature")
 tool.bid_dsets(hdfin, "/Results/temperature", 0, dsetnum, "thetao", temp)
 print(" Salinity")
 tool.bid_dsets(hdfin, "/Results/salinity", 0, dsetnum, "so", sali)

 os.chdir(return_dir)

 try:
 sleep_time = datetime.fromordinal((opdate + timedelta(1)).toordinal()) - datetime.today()
 sleep(sleep_time.total_seconds())
 except ValueError:
 pass

 print("-"*80+'\n\nUpload to SFTP')

90

 cnopts = pysftp.CnOpts()
 cnopts.hostkeys = None
 sftp = pysftp.Connection('ualg-ocaso.ualg.pt', username='userftpocaso',
password='iK7re8baYXpsEGLxjkWx',
 cnopts=cnopts)

 sftp.mkdir('/PDE/' + os.path.basename(outdir))
 sftp.put_r(outdir, '/PDE/' + os.path.basename(outdir), preserve_mtime=True)
 sftp.close()

 print("\n"+"-"*80)
 print('MODULE COMPLETED')
 print("-"*80)

Appendix K – OCASO formatting supporting class

Class with the methods to manipulate the datasets and write them in the NetCDF files.

from datetime import datetime, timedelta

import numpy as np
from h5py import File
from netCDF4 import Dataset

class BuildNetcdf:
 def __init__(self, outdir, level):
 self.outdir = outdir
 self.level = level
 self.project = "SOMA"
 self.valfill = -32767
 self.inifct = None
 self.frange = None
 self.surf = None
 self.vgrid = None
 self.scfofs = {}

 def time_and_grid(self, hdfin):
 with File(hdfin, "r") as hdf:
 self.inifct = datetime(*tuple([int(val) for val in hdf["/Time/Time_00001"]]))
 dsets_num = len(hdf["/Time"])
 endfct = datetime(*tuple([int(val) for val in hdf[f"/Time/Time_{dsets_num:05d}"]]))

 lat = np.array(hdf['Grid/Latitude'])[0]
 lon = np.array(hdf['Grid/Longitude']).transpose()[0]
 layers = np.array(hdf['Grid/VerticalZ/Vertical_00001']).transpose()

 lat = lat[:-1]
 lon = lon + (lon[1] - lon[0]) / 2
 lon = lon[:-1]

 maxdep = np.where(layers == np.amax(layers))
 layers = layers[maxdep[0][0], maxdep[1][0], ...]

91

 layers_amnt = len(layers) - 1

 layers = layers[layers > 0]
 layers.sort()

 self.surf = lat, lon
 self.vgrid = layers, layers_amnt

 frange = int((endfct - self.inifct).total_seconds()/3600)
 if frange % 24 == 0:
 self.frange = int(frange/24)
 elif (frange + 1) % 24 == 0:
 self.frange = int((frange + 1)/24)
 else:
 self.frange = 0

 def writetime(valfill, ncout, time_inst):
 ncout.createDimension('time', 1)
 varid = ncout.createVariable('time', 'f4', ('time',), fill_value=valfill)
 varid.axis = 'T'
 varid.calendar = 'gregorian'
 varid.standard_name = 'time'
 varid.long_name = 'time'
 varid.units = 'hours since 1950-01-01 00:00:00'
 greg = (time_inst - datetime(1950, 1, 1, 0)).total_seconds() / 3600
 varid.valid_min = greg
 varid.valid_max = greg
 varid.CoordinateAxisType = 'Time'
 varid[:] = np.array([greg])

 def writehgrid(ncout, latarr, lonarr):
 ncout.createDimension('latitude', len(latarr))
 ncout.createDimension('longitude', len(lonarr))

 varid = ncfile.createVariable('latitude', 'f4', ('latitude',), fill_value=False)
 varid.standard_name = 'latitude'
 varid.long_name = 'Latitude'
 varid.units = 'degrees_north'
 varid.unit_long = 'Degrees North'
 varid.axis = 'Y'
 varid.Valid_min = latarr.min()
 varid.Valid_max = latarr.max()
 varid.step = latarr[1] - latarr[0]
 varid.CoordinateAxisType = 'Lat'
 varid[:] = latarr

 varid = ncfile.createVariable('longitude', 'f4', ('longitude',), fill_value=False)
 varid.standard_name = 'longitude'
 varid.long_name = 'Longitude'
 varid.units = 'degrees_east'
 varid.unit_long = 'Degrees East'
 varid.axis = 'X'
 varid.Valid_min = lonarr.min()
 varid.Valid_max = lonarr.max()
 varid.step = lonarr[1] - lonarr[0]
 varid.CoordinateAxisType = 'Lon'
 varid[:] = lonarr

92

 def writevgrid(ncout, vgrid):
 ncout.createDimension('depth', len(vgrid))
 varid = ncfile.createVariable('depth', 'f4', ('depth',), fill_value=False)
 varid.standard_name = 'depth'
 varid.long_name = 'Vertical distance below the surface'
 varid.axis = 'Z'
 varid.units = 'm'
 varid.unit_long = 'Meters'
 varid.Valid_min = vgrid.min()
 varid.Valid_max = vgrid.max()
 varid.positive = 'down'
 varid.CoordinateAxisType = 'Height'
 varid.CoordinateZisPositive = 'down'
 varid[:] = layers

 for inst in range(self.frange):
 instant = self.inifct + timedelta(inst)
 ncname = '\\' + self.project + '-L' + str(self.level) + instant.strftime('_dm-%Y%m%d%H-B') +
self.inifct.strftime('%Y%m%d%H-FC.nc')

 with Dataset(self.outdir + ncname, 'w') as ncfile:
 writetime(self.valfill, ncfile, instant)
 writehgrid(ncfile, lat, lon)
 writevgrid(ncfile, self.vgrid[0])

 for inst in range(self.frange*24):
 instant = self.inifct + timedelta(hours=inst)
 ncname = '\\' + self.project + '-L' + str(self.level) + instant.strftime('_hv-%Y%m%d%H-B') +
self.inifct.strftime('%Y%m%d%H-FC.nc')

 with Dataset(self.outdir + ncname, 'w') as ncfile:
 writetime(self.valfill, ncfile, instant)
 writehgrid(ncfile, lat, lon)

 def dsetsamnt(self, hdfin, surf=0):
 with File(hdfin, "r") as hdf:
 secfct = datetime(*tuple([int(val) for val in hdf["/Time/Time_00002"]]))

 step = (secfct - self.inifct).total_seconds()

 if surf == 0:
 amnt = int(86400/step)
 else:
 amnt = int(3600/step)

 if amnt < 1:
 return 1

 return amnt

 def trid_dsets(self, hdfin, grpid, land, dset_amnt, ncvar):
 hdf = File(hdfin, "r")
 dset_shape = len(hdf["/Time"].keys()), self.vgrid[1], len(self.surf[1]), len(self.surf[0])
 dset = importdset(hdf[grpid], dset_shape)

 if land == 1:
 opnpts = importdset(hdf['/Grid/OpenPoints'], dset_shape)

93

 dset = dset + (((opnpts - 1) * (-1)) * (-9.9e15))

 hdf.close()

 scf, off = scaleoffset(dset)
 mean = np.zeros((self.frange, dset_shape[1], dset_shape[2], dset_shape[3]))

 for day in range(self.frange):
 mean[day] = np.mean(dset[day * dset_amnt:(day + 1) * dset_amnt], axis=0)
 del dset

 for day in range(self.frange):
 instant = self.inifct + timedelta(day)
 ncname = '\\' + self.project + '-L' + str(self.level) + instant.strftime('_dm-%Y%m%d%H-B') + \
 self.inifct.strftime('%Y%m%d%H-FC.nc')

 with Dataset(self.outdir + ncname, "a") as ncfile:
 varid = ncfile.createVariable(ncvar, 'f8', ('time', 'depth', 'longitude', 'latitude'),
 fill_value=self.valfill)
 dsetatt(varid, grpid, scf, off)
 prop = mean[day]
 prop = prop[::-1]
 prop = prop[:len(self.vgrid[0])]
 prop = np.ma.masked_less(prop, -98.99)
 varid[:] = prop # Write array in variable

 return scf, off

 def bid_dsets(self, hdfin, grpid, land, dset_amnt, ncvar, ncscl):
 hdf = File(hdfin, "r")
 dset_shape = len(hdf["/Time"].keys()), len(self.surf[1]), len(self.surf[0])
 dset = importdset(hdf[grpid], dset_shape)

 if land == 1:
 opnpts = importdset(hdf['/Grid/OpenPoints'], dset_shape)
 dset = dset + (((opnpts - 1) * (-1)) * (-9.9e15))

 hdf.close()

 frange = int(self.frange*24)
 mean = np.zeros((frange, dset_shape[1], dset_shape[2]))

 for hour in range(frange):
 mean[hour] = np.mean(dset[hour * dset_amnt:(hour + 1) * dset_amnt], axis=0)
 del dset

 for hour in range(frange):
 instant = self.inifct + timedelta(hours=hour)
 ncname = '\\' + self.project + '-L' + str(self.level) + instant.strftime('_hv-%Y%m%d%H-B') + \
 self.inifct.strftime('%Y%m%d%H-FC.nc')

 with Dataset(self.outdir + ncname, "a") as ncfile:
 varid = ncfile.createVariable(ncvar, 'f8', ('time', 'longitude', 'latitude'), fill_value=self.valfill)
 dsetatt(varid, grpid, ncscl[0], ncscl[1])
 prop = mean[hour]
 prop = np.ma.masked_less(prop, -98.99)
 varid[:] = prop

94

def importdset(group, shape):
 dataset = np.zeros(shape)
 indice = 0

 for key in group.keys():
 dataset[indice] = np.array(group.get(key))
 indice += 1

 return dataset

def scaleoffset(hdfin, groupid):
 """Stretch/compress data to the available packed range"""
 vmin = 9.9e15
 vmax = -9.9e15

 hdf = File(hdfin, "r")
 for key in hdf.get(groupid).keys():
 dset = np.array(hdf.get(groupid + '/' + key))
 dset = dset[dset > -9.889e15]
 vmin = min(vmin, dset.min())
 vmax = max(vmax, dset.max())
 hdf.close()

 n = 8
 scf = (vmax - vmin) / (2 ** (n - 1))
 if -1 < scf < 1:
 scf = round(scf, 4)
 else:
 scf = round(scf)

 # translate the range to be symmetric about zero
 ofs = vmin + 2 ** (n - 1) * scf
 if -1 < ofs < 1:
 ofs = round(ofs, 4)
 else:
 ofs = round(ofs)

 print("SFC", scf, "OFS", ofs)
 return scf, ofs

def dsetatt(varid, group, scale_factor, offset):
 """Writes atributes in netcdf file for a dataset"""
 dset_dict = {
 "/Results/velocity U": ('eastward_sea_water_velocity', 'Eastward Velocity', 'm s-1', 'Meters per
Second'),
 "/Results/velocity V": ('northward_sea_water_velocity', 'Northward Velocity', 'm s-1', 'Meters per
Second'),
 "/Results/velocity W": ('vertical_sea_water_velocity', 'Vertical Velocity', 'm s-1', 'Meters per Second'),
 "/Results/temperature": ('sea_water_potential_temperature', 'Temperature', 'degrees_C', 'Degrees
Celsius'),
 "/Results/salinity": ('sea_water_salinity', 'Salinity', 'psu', 'Pratical Salinty Unit'),
 "/Results/density": ('sea_water_density', 'Density', 'kg m3-1', 'kilograms per cubic meter'),
 "/Results/water level": ('sea_surface_height_above_geoid', 'Sea surface height', 'm', 'Meters')}

 varid.scale_factor = scale_factor

95

 varid.add_offset = offset
 varid.long_name = dset_dict.get(group)[0]
 varid.standard_name = dset_dict.get(group)[1]
 varid.units = dset_dict.get(group)[2]
 varid.unit_long = dset_dict.get(group)[3]

 varid.set_auto_scale(True)

Appendix L – Mercator module

Module to process CMEMS Mercator data for MOHID use.

import os
from subprocess import run
from datetime import datetime, timedelta
from glob import glob
from shutil import copyfile

import numpy as np
from netCDF4 import Dataset

from inputsread import initread
from opcommon import mailreport, logentry
from forcstructure import ForcStructure

def download(outdir, grid, cred, daterange):
 if not os.path.isdir(outdir):
 os.mkdir(outdir)

 logs = outdir + '\\download_log.txt', outdir + '\\error.txt'
 command = 'python -m motuclient --motu http://nrt.cmems-du.eu/motu-web/Motu --service-id
GLOBAL_ANALYSIS_FORECAST_PHY_001_024-TDS --product-id global-analysis-forecast-phy-001-
024'
 command += ' --longitude-min ' + str(grid[0]) + ' --longitude-max ' + str(grid[1]) + ' --latitude-min '
 command += str(grid[2]) + ' --latitude-max ' + str(grid[3]) + ' --date-min "' + str(daterange[0])
 command += '" --date-max "' + str(daterange[1]) + '" --depth-min 0.493 --depth-max
5727.918000000001 '

 command += '--variable uo --variable vo --variable thetao --variable so '

 command += f'--out-dir {outdir} --out-name Mercator.nc --user ' + cred[0] + ' --pwd ' + cred[1]
 command += ' > ' + logs[0] + ' 2> ' + logs[1]

 print('Downloading Mercator NETCDF file', end="\n\n")
 run(command, shell=True)

 if not os.path.isfile(outdir + '\\Mercator.nc'):
 print("-" * 80 + "\nERROR - NETCDF file not found\n" + "-" * 80)
 return "ERR02", logs

 with open(logs[1], "r") as log:
 lines = log.readlines()
 if lines:

96

 print("-" * 80 + "\nERROR - Download failed\n" + "-" * 80)
 return "ERR03", logs

 with Dataset(outdir + '\\Mercator.nc', 'r') as dset:
 dset_size = dset.variables['time'].size

 if dset_size != (daterange[1] - daterange[0]).days + 1:
 print("-" * 80 + "\nERROR - Downloaded NETCDF file with missing datasets\n" + "-" * 80)
 return "ERR04", logs
 return "GOOD JOB", ()

def conversion(outdir, dwnfile):
 logs = outdir + '\\conversion_log.txt', outdir + '\\error.txt'

 # vars = (name, units, desciption)
 velu = ('velocity U', 'm/s', 'Mercator velocity U')
 velv = ('velocity V', 'm/s', 'Mercator velocity V')
 temp = ('temperature', '°C', 'Mercator temperature')
 sali = ('salinity', 'psu', 'Mercator salinity')
 varsid = {'uo': velu, 'vo': velv, 'thetao': temp, 'so': sali}

 dset = Dataset(dwnfile, 'r')
 with open(outdir + '\\ConvertToHDF5Action.dat', 'w') as dat:
 dat.write(f"""<begin_file>
ACTION : CONVERT NETCDF CF TO HDF5 MOHID
HDF5_OUT : 1
NETCDF_OUT : 0
OUTPUTFILENAME : Mercator.hdf5

<<begin_time>>
NETCDF_NAME : time
<<end_time>>

<<begin_grid>>
NETCDF_NAME_LAT : latitude
NETCDF_NAME_LONG : longitude
NETCDF_NAME_MAPPING : uo
MAPPING_LIMIT : -32000
NETCDF_NAME_DEPTH : depth
INVERT_LAYER_ORDER : 1
BATHYM_FROM_MAP : 1
BATHYM_FILENAME : Mercator.dat
<<end_grid>>

PROPERTIES_NUMBER : {len(varsid)}\n\n""")

 for var in varsid:
 dat.write(f"""<<begin_field>>
NETCDF_NAME : {var}
NAME : {varsid[var][0]}
UNITS : {varsid[var][1]}
DESCRIPTION : {varsid[var][2]}
DIM : {dset.variables[var].ndim - 1}
ADD_FACTOR : {dset.variables[var].add_offset}
MULTIPLY_FACTOR : {dset.variables[var].scale_factor}
<<end_field>>\n\n""")

97

 dat.write(f"<<begin_input_files>>\n{dwnfile}\n<<end_input_files>>\n<end_file>\n")
 dset.close()

 os.chdir(outdir)
 print("Converting NETCDF file into HDF5", end="\n\n")
 run('ConvertToHdf5_release_double.exe > conversion_log.txt 2> error.txt', shell=True)

 if not os.path.isfile(outdir + '\\Mercator.hdf5'):
 print('-' * 80 + '\nERROR - Converted hdf5 not found\n' + '-' * 80)
 return 'ERR06', logs

 error = [line.strip() for line in open(outdir + '\\error.txt', 'r')]
 if error:
 print('-' * 80 + '\nERROR - Conversion failed\n' + '-' * 80)
 return 'ERR07', logs
 return "GOOD JOB", ()

def interpolation(outdir, modset, projdir, dwndnc, hdfint, hdfgrd):
 # --------- MODEL BATIM AND GEOMETRY
 batim = projdir + f'\\Sim_Daily\\General Data\\Digital Terrain\\BATIM_LV{modset}.dat'
 if int(modset) < 2:
 geomt = projdir + '\\Sim_Daily\\Level 1\\data\\Geometry_1.dat'
 else:
 geomt = projdir + '\\Sim_Daily\\Level 1\\Level 2\\data\\Geometry_1.dat'
 try:
 if not os.path.isfile(outdir + "\\" + os.path.basename(batim)):
 copyfile(batim, outdir + "\\" + os.path.basename(batim))
 if not os.path.isfile(outdir + '\\Geometry_out.dat'):
 copyfile(geomt, outdir + "\\Geometry_out.dat")
 except FileNotFoundError:
 print("-" * 80 + "\nERROR - Model files not found\n" + "-" * 80)
 return "ERR08", ()

 # ---------- WRITE GEOMETRY FROM DOWNLOADED NETCFD FILE
 with Dataset(dwndnc, 'r') as dset:
 depth = np.array(dset.variables['depth'][...])

 dat = open(outdir + '\\Geometry_in.dat', 'w')
 dat.write("<begindomain>\nID : 1\nTYPE : CARTESIAN\nDOMAINDEPTH : 0\n")
 dat.write(f"LAYERS : {len(depth)}\n<<beginlayers>>\n")
 for layer in range(len(depth)):
 if layer < 1:
 dat.write(f'{depth[layer]}\n')
 else:
 dat.write(f'{depth[layer] - depth[layer - 1]}\n')
 dat.write(f"<<endlayers>>\nMININITIALLAYERTHICKNESS : 1\n<enddomain>\n")
 dat.close()

 # ---------- RUN INTERPOLATION
 def convertactiondat(inthdf, grdhdf, hdfout, btmout):
 with open('ConvertToHDF5Action.dat', 'w') as inter_dat:
 inter_dat.write(f"""<begin_file>
ACTION : INTERPOLATE GRIDS
TYPE_OF_INTERPOLATION : 3
INTERPOLATION3D : 1
FATHER_FILENAME : {inthdf}

98

FATHER_GRID_FILENAME : {grdhdf}
OUTPUTFILENAME : {hdfout}
NEW_GRID_FILENAME : {btmout}
FATHER_GEOMETRY : Geometry_in.dat
NEW_GEOMETRY : Geometry_out.dat
EXTRAPOLATE_2D : 2
BASE_GROUP : /Results
POLI_DEGREE : 1\n<end_file>""")

 os.chdir(outdir)
 convertactiondat(hdfint, hdfgrd, f'HYDFORC_LV{modset}.hdf5', f'BATIM_LV{modset}.dat')
 print("Interpolating HDF5 file", end="\n\n")
 run('Convert2Hdf5.exe > interpolation_log.txt 2> error.txt', shell=True)

 logs = outdir + "\\interpolation_log.txt", outdir + "\\error.txt"
 error = tuple([line.strip() for line in open(logs[1])])
 if 'VerifyBathymetry - Geometry - ERR165' in error:
 hdfgrd = os.path.dirname(hdfgrd) + "\\Mercator_v01.dat"
 os.chdir(outdir)
 convertactiondat(hdfint, hdfgrd, f'HYDFORC_LV{modset}.hdf5', f'BATIM_LV{modset}.dat')
 run('Convert2Hdf5.exe > interpolation_log.txt 2> error.txt', shell=True)

 if not os.path.isfile(outdir + f"\\HYDFORC_LV{modset}.hdf5"):
 print('-' * 80 + '\nERROR - Interpolated HDF5 not found\n' + '-' * 80)
 return "ERR09", logs

 error = [line.strip() for line in open(logs[1])]
 if error:
 print('-' * 80 + '\nERROR - Interpolation failed\n' + '-' * 80)
 return "ERR10", logs
 return "GOOD JOB", ()

def mercator(outdir, opdate, inputs):
 srcdir = outdir + "\\Mercator"
 logrun = srcdir + "\\Mercator_run_status.log"

 print("-"*80 + "\n" + "MERCATOR DATA MODULE".center(80) + "\n" + "-"*80)
 print("WOORKING DIRECTORY :", outdir)
 print("PROCESS DATE :", opdate.strftime("%Y %m %d"))
 print("HDFOUT :", inputs.get("HDFOUT"))
 print("TSOUT :", inputs.get("TSOUT"))
 print("-"*80)

 hdfout = inputs.get("HDFOUT") == "1" and len(glob(opdate.strftime(srcdir + "\\Data HDF*%y%m
%d.hdf5"))) > 0
 tsout = inputs.get("TSOUT") == "1" and len(glob(opdate.strftime(srcdir + "\\Data TS*%y%m
%d.dat"))) > 0
 if hdfout or tsout:
 print('-' * 80 + '\nDATA FILE ALREADY AVAILABLE FOR SELECTED DATE\n' + '-' * 80)
 return 1

 if not os.path.isdir(srcdir):
 os.mkdir(srcdir)
 if not os.path.isfile(logrun):
 logentry(logrun, "DATE STATUS ENDTIME\n", mode="w")
 logentry(logrun, str(opdate))

99

 cred = initread(("MERC_CRED",), inputs.get("PROJDIR")).get("MERC_CRED")
 if not cred or len(cred.split()) != 2:
 print("-"*80 + "\nERROR - MERC_CRED not found\n" + "-"*80)
 logentry(logrun, datetime.today().strftime(" ERR01 %Y-%m-%d_%H:%M\n"))
 mailreport(inputs.get("MAILTO"), "Mercator process ERROR", "ERR01 - MERC_CRED value
incorrect or missing", ())
 return 0
 cred = tuple(cred.split())

 print("Removing old files", end="\n\n")
 olds = glob(srcdir + "\\Download*.nc") + glob(srcdir + "\\Conversion*.hdf5")
 olds += glob(srcdir + "\\Interpolation*.hdf5")
 for old in olds:
 os.unlink(old)

 manager = ForcStructure(srcdir, inputs.get("MOHID"), opdate)
 manager.datawait(12, 30)

 timerun = opdate - timedelta(inputs.get("HNDCST") + 1), opdate + timedelta(7)

 status = download(srcdir + "\\Download", inputs.get("GRID"), cred, timerun)
 if "ERR" in status[0]:
 logentry(logrun, datetime.today().strftime(f" {status[0]} %Y-%m-%d_%H:%M\n"))
 body = opdate.strftime(f"%Y-%m-%d operation failed\n{status} - Mercator download failed")
 mailreport(inputs.get("MAILTO"), "Mercator process ERROR", body, status[1])
 return 0

 if inputs.get("HDFOUT") == "1":
 manager.hydhdfs()
 status = manager.mohid_conversion(srcdir + '\\Conversion')
 if status < 1:
 print("-" * 80 + "\nERROR - MOHID conversion files not found\n" + "-" * 80)
 logentry(logrun, datetime.today().strftime(" ERR05 %Y-%m-%d_%H:%M\n"))
 body = opdate.strftime("%Y-%m-%d operation failed\nERR05 - MOHID files not found")
 mailreport(inputs.get("MAILTO"), "Mercator process ERROR", body, ())
 return 0

 status = conversion(srcdir + '\\Conversion', srcdir + '\\Download\\Mercator.nc')
 if "ERR" in status[0]:
 logentry(logrun, datetime.today().strftime(f" {status[0]} %Y-%m-%d_%H:%M\n"))
 body = opdate.strftime(f"%Y-%m-%d operation failed\n{status} - Mercator conversion failed")
 mailreport(inputs.get("MAILTO"), "Mercator process ERROR", body, status[1])
 return 0

 status = manager.mohid_interpolation(srcdir + "\\Interpolation")
 if status < 1:
 print("-" * 80 + "\nERROR - Conversion files not found\n" + "-" * 80)
 logentry(logrun, datetime.today().strftime(" ERR05 %Y-%m-%d_%H:%M\n"))
 body = opdate.strftime("%Y-%m-%d operation failed\nERR05 - MOHID files not found")
 mailreport(inputs.get("MAILTO"), "Mercator process ERROR", body, ())
 return 0

 status = interpolation(srcdir + "\\Interpolation", inputs.get("MODSET"), inputs.get("PROJDIR"),
 srcdir + "\\Download\\Mercator.nc", srcdir + '\\Conversion\\Mercator.hdf5',
 srcdir + '\\Conversion\\Mercator.dat')
 if "ERR" in status[0]:
 logentry(logrun, datetime.today().strftime(f" {status[0]} %Y-%m-%d_%H:%M\n"))

100

 body = opdate.strftime(f"Operation for: %Y-%m-%d\n{status} - Mercator interpolation failed")
 mailreport(inputs.get("MAILTO"), "Mercator process ERROR", body, status[1])
 return 0

 os.chdir(outdir)
 hdf = srcdir + f"\\Interpolation\\HYDFORC_LV{inputs.get('MODSET')}.hdf5"
 copyfile(hdf, srcdir + opdate.strftime(f"\\Data HDF\\HYDFORC_LV{inputs.get('MODSET')}_%y
%m%d.hdf5"))

 print('-' * 80 + '\nMERCATOR MODULE COMPLETED\n' + '-' * 80)
 logentry(logrun, datetime.today().strftime(" 1 %Y-%m-%d_%H:%M\n"))
 mailreport(inputs.get("MAILTO"), "Mercator process COMPLETED", opdate.strftime("%Y-%m-%d
Files available"), ())
 return 1

Appendix M – Skiron module

Module to process Skiron data for MOHID use.

import os
from ftplib import FTP, error_perm
from shutil import rmtree, copytree, copyfile
from datetime import datetime, timedelta
from glob import glob
from subprocess import run

import numpy as np
from h5py import File

from opcommon import mailreport, logentry
from forcstructure import ForcStructure
from forcgribs import Griball, writehdf, relhum

def download(outdir, actdate):
 if not os.path.isdir(outdir):
 os.mkdir(outdir)

 ftp = FTP('ftp.mg.uoa.gr')
 ftp.login('mfstep', '!lam')
 ftpdir = actdate.strftime('/forecasts/Skiron/daily/005X005/%d%m%y')
 try:
 ftp.cwd(ftpdir)
 except error_perm:
 rmtree(outdir)
 return "ERR01"

 grbs = ftp.nlst()
 grbs.sort()
 if actdate < datetime.today().date():
 grbs_size = 24
 else:
 grbs_size = 121

101

 print("Downloading Skiron GRIB files")
 for inst in range(grbs_size):
 try:
 print("", grbs[inst])
 ftp.retrbinary("RETR " + grbs[inst], open(outdir + '\\' + grbs[inst], 'wb').write)
 except (EOFError, TimeoutError, ConnectionResetError):
 rmtree(outdir)
 return "ERR02"

 ftp.close()

 grbs = glob(outdir + '*.grb')
 if len(grbs) < grbs_size:
 rmtree(outdir)
 return "ERR03"

 grbs.sort()
 inst = 0
 for grb in grbs:
 os.rename(grb, outdir + actdate.strftime("\\MFSTEP005_00%y%m%d_") + f'{inst:03d}.grb')
 inst += 1
 return "GOOD JOB"

def conversion(outdir, dwndates, grid_lim):
 print("Converting GRIB files in one HDF5")
 hdf = outdir + "\\Skiron.hdf5"

 grbs = []
 for folder in glob(dwndates + "*"):
 grbs += glob(folder + '*.grb')
 grbs.sort()
 grbs_size = len(grbs)

 grb = Griball(grbs[0])
 status = grb.opengrb()
 if status < 1:
 print('-' * 80 + f'\nERROR - Failed to open grib file, {grbs[0]}\n' + '-' * 80)
 return "ERR04"

 print(" GRID")
 londset, latdset, cutdset = grb.hdfgrid(grid_lim)
 latdset, londset = np.meshgrid(latdset, londset)
 dset = grb.grbdset(15, cutdset=cutdset, hdfout=1).astype('i4') # land 1 sea 0
 batim = dset.copy()
 batim = batim * (-99) + abs(batim - 1) * 10000
 writehdf(hdf, 'Grid/Latitude', latdset, "deg", "w")
 writehdf(hdf, 'Grid/Longitude', londset, "deg", "a")
 writehdf(hdf, 'Grid/WaterPoints', abs(dset - 1), "-", "a")
 writehdf(hdf, 'Grid/Bathymetry', batim, 'm', "a")
 del latdset, londset, batim, grb

 inst = 1
 for src_grb in grbs:
 print(f'\r DATASETS {inst / grbs_size * 100:.1f}%', end="")
 grb = Griball(src_grb)

102

 status = grb.opengrb()
 if status < 1:
 print('-' * 80 + f'\nERROR - Failed to open grib file, {grbs[0]}\n' + '-' * 80)
 return "ERR04"

 dset = grb.grbtime()
 dset = np.array([dset.year, dset.month, dset.day, dset.hour, dset.minute, dset.second])
 writehdf(hdf, f'Time/Time_{inst:05d}', dset, 'YYYY/MM/DD HH:MM:SS', "a")

 sp_hum = grb.grbdset(4, cutdset=cutdset, hdfout=1)
 writehdf(hdf, f'Results/specific humidity/specific humidity_{inst:05d}', sp_hum, "kg/kg", "a")
 apress = grb.grbdset(6, cutdset=cutdset, hdfout=1)
 writehdf(hdf, f'Results/atmospheric pressure/atmospheric pressure_{inst:05d}', apress, "Pa", "a")
 airtmp = grb.grbdset(3, cutdset=cutdset, hdfout=1)
 writehdf(hdf, f'Results/air temperature/air temperature_{inst:05d}', airtmp, "C", "a")
 dset = relhum(sp_hum, airtmp, apress)
 writehdf(hdf, f'Results/relative humidity/relative humidity_{inst:05d}', dset, '-', "a")
 del sp_hum, apress, airtmp

 velu = grb.grbdset(1, cutdset=cutdset, hdfout=1)
 writehdf(hdf, f'Results/wind velocity X/wind velocity X_{inst:05d}', velu, 'm/s', "a")
 velv = grb.grbdset(2, cutdset=cutdset, hdfout=1)
 writehdf(hdf, f'Results/wind velocity Y/wind velocity Y_{inst:05d}', velv, 'm/s', "a")
 dset = np.sqrt(velu ** 2 + velv ** 2)
 writehdf(hdf, f"Results/wind modulus/wind modulus_{inst:05d}", dset, "m/s", "a")
 del velu, velv

 dset = grb.grbdset(5, cutdset=cutdset, fraction=1, hdfout=1)
 writehdf(hdf, f"Results/cloud cover/cloud cover_{inst:05d}", dset, "fraction", "a")
 dset = grb.grbdset(7, cutdset=cutdset, hdfout=1)
 writehdf(hdf, f"Results/precipitation/precipitation_{inst:05d}", dset, "kg/m2", "a")
 dset = grb.grbdset(8, cutdset=cutdset, hdfout=1)
 writehdf(hdf, f"Results/downward short wave radiation/downward short wave radiation_{inst:05d}",
dset,
 "W/m2", "a")
 dset = grb.grbdset(9, cutdset=cutdset, hdfout=1)
 writehdf(hdf, f"Results/upward short wave radiation/upward short wave radiation_{inst:05d}", dset,
"W/m2", "a")
 dset = grb.grbdset(10, cutdset=cutdset, hdfout=1)
 writehdf(hdf, f"Results/downward long wave radiation/downward long wave radiation_{inst:05d}",
dset, "W/m2",
 "a")
 dset = grb.grbdset(11, cutdset=cutdset, hdfout=1)
 writehdf(hdf, f"Results/upward long wave radiation/upward long wave radiation_{inst:05d}", dset,
"W/m2", "a")
 dset = grb.grbdset(12, cutdset=cutdset, hdfout=1)
 writehdf(hdf, f"Results/evaporation/evaporation_{inst:05d}", dset, "kg/m2", "a")
 dset = grb.grbdset(13, cutdset=cutdset, hdfout=1)
 writehdf(hdf, f"Results/latent heat/latent heat_{inst:05d}", dset, "W/m2", "a")
 dset = grb.grbdset(14, cutdset=cutdset, hdfout=1)
 writehdf(hdf, f"Results/sensible heat/sensible heat_{inst:05d}", dset, "W/m2", "a")

 inst += 1
 del dset, grb
 print("\n")
 return "GOOD JOB"

103

def interpolation(outdir, batdir, modset, levels, hdfski):
 model_batims = glob(batdir + "\\BATIM_LV*.dat")
 if modset == "1":
 levels_range = levels
 level_incrmt = 1
 else:
 model_batims.remove(batdir + "\\BATIM_LV1.dat")
 levels_range = levels - 1
 level_incrmt = 2

 for dat in model_batims:
 copyfile(dat, outdir + "\\" + os.path.basename(dat))

 model_batims = glob(outdir + "\\BATIM_LV*.dat")
 model_batims.sort()
 lat = lon = None
 lines = [line for line in open(model_batims[0])]

 for line in lines:
 if 'LATITUDE' in line:
 lat = line[line.find(":") + 1:].strip()
 if 'LONGITUDE' in line:
 lon = line[line.find(":") + 1:].strip()

 if None in (lat, lon):
 print('-' * 80 + '\nERROR - Unable to read model batim\n' + '-' * 80)
 return "ERR06", ()

 with File(hdfski, "r") as hdf:
 latdset = np.array(hdf['/Grid/Latitude'])[0]
 londset = np.array(hdf['/Grid/Longitude']).transpose()[0]
 batdset = np.array(hdf['/Grid/Bathymetry'])

 with open(outdir + '\\BATIM_SKIRON.dat', 'w') as dat:
 dat.write(f"""ILB_IUB : 1 {len(latdset) - 1}
JLB_JUB : 1 {len(londset) - 1}
COORD_TIP : 4
 ORIGIN : 0 0
 GRID_ANGLE : 0.000
 LATITUDE : {lat}
 LONGITUDE : {lon}
 FILL_VALUE : -99.0
<BeginGridData2D>\n""")

 for val in batdset.transpose().flatten():
 dat.write(f' {val:^14}\n')
 dat.write("<EndGridData2D>\n<BeginXX>\n")

 for val in londset:
 dat.write(f' {val:^14}\n')
 dat.write("<EndXX>\n<BeginYY>\n")

 for val in latdset:
 dat.write(f' {val:^14}\n')
 dat.write("<EndYY>\n")

 # ---------- INTERPOLATION

104

 print("Interpolating HDF5 file", end="\n\n")
 os.chdir(outdir)
 for level in range(levels_range):
 if level == 0:
 hdfin = hdfski
 gridin = outdir + '\\BATIM_SKIRON.dat'
 else:
 hdfin = outdir + f'\\ATMFORC_LV{level + level_incrmt - 1}.hdf5'
 gridin = outdir + f'\\BATIM_LV{level + level_incrmt - 1}.dat'

 hdfout = outdir + f'\\ATMFORC_LV{level + level_incrmt}.hdf5'

 with open(outdir + '\\ConvertToHDF5Action.dat', 'w') as dat:
 dat.write(f"""<begin_file>
ACTION : INTERPOLATE GRIDS
TYPE_OF_INTERPOLATION : 1
FATHER_FILENAME : {hdfin}
FATHER_GRID_FILENAME : {gridin}
OUTPUTFILENAME : {hdfout}
NEW_GRID_FILENAME : BATIM_LV{level + level_incrmt}.dat
EXTRAPOLATE_2D : 1
BASE_GROUP : /Results
POLI_DEGREE : 4\n<end_file>""")

 logs = outdir + '\\interpolation_log.txt', outdir + '\\error.txt'
 command = "Convert2Hdf5.exe > " + logs[0] + " 2> " + logs[1]
 run(command, shell=True)

 if not os.path.isfile(hdfout):
 print('-' * 80 + '\nERROR - Interpolated HDF5 not found\n' + '-' * 80)
 return "ERR07", logs

 error = [line.strip() for line in open(logs[1])]
 if error:
 print('-' * 80 + '\nERROR - Interpolation failed\n' + '-' * 80)
 return "ERR08", logs
 os.chdir("..\\..\\")
 return "GOOD JOB", ()

def skiron(outdir, opdate, inputs):
 srcdir = outdir + "\\Skiron"
 logrun = srcdir + "\\Skiron_run_status.log"

 print("-"*80 + "\n" + "SKIRON DATA MODULE".center(80) + "\n" + "-"*80)
 print("WOORKING DIRECTORY :", outdir)
 print("PROCESS DATE :", opdate.strftime("%Y %m %d"))
 print("HDFOUT :", inputs.get("HDFOUT"))
 print("TSOUT :", inputs.get("TSOUT"))
 print("-" * 80)

 hdfout = inputs.get("HDFOUT") == "1" and len(glob(opdate.strftime(srcdir + "\\Data HDF*%y%m
%d.hdf5"))) > 0
 tsout = inputs.get("TSOUT") == "1" and len(glob(opdate.strftime(srcdir + "\\Data TS*%y%m
%d.dat"))) > 0
 if hdfout or tsout:
 print('-' * 80 + '\nDATA FILE ALREADY AVAILABLE FOR SELECTED DATE\n' + '-' * 80)

105

 return 1

 if not os.path.isdir(srcdir):
 os.mkdir(srcdir)
 if not os.path.isfile(logrun):
 logentry(logrun, "DATE STATUS ENDTIME\n", mode="w")
 logentry(logrun, str(opdate))

 print("Removing old files", end="\n\n")
 olds = glob(srcdir + "\\Conversion*.hdf5") + glob(srcdir + "\\Interpolation*.hdf5")
 for old in olds:
 os.unlink(old)

 if not os.path.isdir(srcdir + "\\Download"):
 os.mkdir(srcdir + "\\Download")
 bkupdir = srcdir + "\\BKUP"
 if inputs.get("BKUP") == "1" and not os.path.isdir(bkupdir):
 os.mkdir(bkupdir)

 manager = ForcStructure(srcdir, inputs.get("MOHID"), opdate)
 manager.datawait(7, 0)

 timerun = opdate - timedelta(inputs.get("HNDCST") + 1), opdate

 # ---------- DOWNLOAD GRIB FILES
 for inst in range((timerun[1] - timerun[0]).days + 1):
 dir_date = timerun[0] + timedelta(inst)
 dir_dwld = srcdir + dir_date.strftime("\\Download\\%y%m%d")

 status = "GOOD JOB"
 if not os.path.isdir(dir_dwld):
 status = download(dir_dwld, dir_date)

 if "ERR" in status and os.path.isdir(bkupdir + dir_date.strftime("\\%y%m%d")):
 copytree(bkupdir + dir_date.strftime("\\%y%m%d"), dir_dwld)
 status = "GOOD JOB"

 if "ERR" in status:
 print('-' * 80 + dir_date.strftime(f'\nERROR - {status} Download failed for %d/%b/%Y data \n') +
'-' * 80)
 logentry(logrun, datetime.today().strftime(f" {status} %Y-%m-%d_%H:%M\n"))
 body = opdate.strftime(f"%Y-%m-%d operation failed\n{status} - Skiron download failed")
 mailreport(inputs.get("MAILTO"), "Skiron process ERROR", body, ())
 return 0

 dir_dates = []
 for folder in glob(srcdir + "\\Download*"):
 if os.path.isfile(folder):
 os.unlink(folder)
 continue
 try:
 dir_dates.append(datetime.strptime(os.path.basename(folder), "%y%m%d").date())
 except ValueError:
 rmtree(folder)
 continue

 grbs = []
 for date in dir_dates:

106

 if date < datetime.today().date():
 grbs += glob(srcdir + date.strftime("\\Download\\%y%m%d*.grb"))
 for grb in grbs:
 grb_time = int(os.path.basename(grb).split("_")[-1][:3])
 if grb_time > 23:
 os.unlink(grb)

 for date in dir_dates:
 if date >= timerun[0]:
 continue
 folder = srcdir + date.strftime("\\Download\\%y%m%d")
 if inputs.get("BKUP") == "1":
 try:
 copytree(folder, bkupdir + date.strftime("\\%y%m%d"))
 except FileExistsError:
 pass
 rmtree(folder)

 if inputs.get("HDFOUT") == "1":
 manager.atmhdfs(inputs.get("MODSET"), inputs.get("LEVELS"))
 manager.std_conversion()

 status = conversion(srcdir + "\\Conversion", srcdir + "\\Download", inputs.get("GRID"))
 if "ERR" in status[0]:
 logentry(logrun, datetime.today().strftime(f" {status[0]} %Y-%m-%d_%H:%M\n"))
 body = opdate.strftime(f"%Y-%m-%d operation failed\n{status} - Skiron conversion failed")
 mailreport(inputs.get("MAILTO"), "Skiron process ERROR", body, status[1])
 return 0

 batdir = inputs.get("PROJDIR") + "\\Sim_Daily\\General Data\\Digital Terrain"
 hdfski = srcdir + '\\Conversion\\Skiron.hdf5'

 status = manager.mohid_interpolation(srcdir + "\\Interpolation")
 if status < 1:
 print("-" * 80 + "\nERROR - Conversion files not found\n" + "-" * 80)
 logentry(logrun, datetime.today().strftime(" ERR05 %Y-%m-%d_%H:%M\n"))
 body = opdate.strftime("%Y-%m-%d operation failed\nERR05 - MOHID files not found")
 mailreport(inputs.get("MAILTO"), "Skiron process ERROR", body, ())
 return 0

 status = interpolation(srcdir + "\\Interpolation", batdir, inputs.get("MODSET"),
inputs.get("LEVELS"), hdfski)
 if "ERR" in status[0]:
 logentry(logrun, datetime.today().strftime(f" {status[0]} %Y-%m-%d_%H:%M\n"))
 body = opdate.strftime(f"%Y-%m-%d operation failed\n{status} - Skiron interpolation failed")
 mailreport(inputs.get("MAILTO"), "Skiron process ERROR", body, status[1])
 return 0

 hdfs = glob(srcdir + f"\\Interpolation\\ATMFORC_LV*.hdf5")
 for hdf in hdfs:
 hdfnew = os.path.basename(hdf).split(".")[0] + opdate.strftime("_%y%m%d.hdf5")
 copyfile(hdf, srcdir + "\\Data HDF\\" + hdfnew)

 os.chdir(outdir)

 print('-' * 80 + '\nSKIRON PROCESS COMPLETED\n' + '-' * 80)
 logentry(logrun, datetime.today().strftime(" 1 %Y-%m-%d_%H:%M\n"))

107

 mailreport(inputs.get("MAILTO"), "Skiron process COMPLETED", opdate.strftime("%Y-%m-%d Files
available"), ())
 return 1

108

	1 INTRODUCTION
	2 STATE OF THE ART
	2.1 Operational Oceanography
	2.1.1 Observation Methods
	2.1.1.1 In-situ methods
	2.1.1.2 Remote sensing

	2.1.2 Observation Network
	2.1.3 Operational Oceanography and Blue Growth

	2.2 Numerical Ocean Modelling
	2.2.1 MOHID Modelling System

	2.3 Python Programming Language

	3 METHODOLOGY
	4 RESULTS
	4.1 Main data structure
	4.2 User inputs
	4.3 Simulation operation
	4.3.1 Daily run cycle
	4.3.2 Weekly run cycle
	4.3.3 Forcing layer
	4.3.4 Formatting outputs

	4.4 Failures statistics
	4.5 SOMA Outputs

	5 DISCUSSION
	6 CONCLUSION

