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SOMMAIRE

Dans cette thèse par articles, nous nous intéressons à l'augmentation de l'ordre de con-

vergence de la méthode itérative de Newton. Notre objectif a été d'établir en termes

mathématiques, la meilleure façon d'augmenter l'ordre de convergence de cette méthode.

À cet e�et, cette thèse regroupera cinq articles qui soulignent le cheminement de notre

travail de doctorat et la logique de notre recherche.

Dans un premier article, qui sert d'introduction et de mise en contexte de cette thèse, nous

revisitons les méthodes itératives de point �xe et la méthode de Newton pour le calcul des

zéros d'une fonction su�samment régulière. Nous présentons les conditions nécessaires et

su�santes pour la convergence d'ordre supérieure de celles-ci. À l'aide de ces conditions,

nous montrons comment augmenter de façon récursive l'ordre de convergence. Pour la

méthode de point �xe, nous présentons une généralisation de la méthode de Schröder

de première espèce. Plus spéci�quement, deux autres méthodes sont aussi présentées

pour la méthode de Newton. L'une d'entre elles est montrée équivalente à la méthode de

Schröder de deuxième espèce.

Notons que le début de nos recherches a été inspiré par l'article [8], qui présente deux

familles de méthodes itératives d'ordre m pour le calcul de la racine n-ième. Celles-

ci sont initialement apparues dans les articles [9] et [25]. Ces méthodes par contre sont

spéci�quement adaptées au calcul de la racine n-ième d'un nombre et leur utilisation y est
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limitée. L'un des objectif de notre premier chapitre a été de les généraliser. Nous voulions

avoir deux familles distinctes de méthodes itératives qui pourraient approximer les zéros

d'une fonction su�samment régulière, mais nous voulions aussi, qu'une fois appliquées

au problème du calcul de la racine, ces méthodes coïncident avec les méthodes que nous

présente cet article. C'est ce que nous avons fait dans le premier chapitre.

Le second chapitre est une généralisation du chapitre précèdent, dans le plan complexe.

De plus, plusieurs exemples numériques et illustrations de bassins d'attraction sont inclus

dans cet article.

Dans le chapitre suivant, nous notons que c'est en 1669 , pour le calcul d'un zéro simple

d'une fonction analytique f(z), qu'Isaac Newton [57] a introduit sa fameuse méthode

itérative d'ordre 2 . Quelques années plus tard, en 1694 , Edmond Halley [20] a lui

introduit une autre fonction d'itération d'ordre 3. Depuis, quoique plusieurs mathémati-

ciens aient essayé de trouver des méthodes plus rapides que la méthode de Newton, la

méthode de Halley a été redécouverte de nombreuses fois [44]. Pourquoi? Ceci est le

sujet de notre troisième chapitre. Nous montrons que la séquence de Halley, une suite

de fonctions résultantes de l'augmentation de l'ordre de convergence de la méthode de

Newton, est la façon la plus e�cace d'augmenter l'ordre de convergence de la méthode de

Newton en termes d'utilisation de dérivées d'ordre supérieur. Nous illustrons pourquoi

ce fait est probablement la raison pour laquelle la méthode itérative de Halley a été si

souvent redécouverte. À des �ns illustratives nous présentons aussi un algorithme pour

reconnaître la séquence de Halley a�n d'éviter d'autres redécouvertes. Nous appliquons

cet algorithme à certains exemples.

Dans le quatrième chapitre, nous montrons comment le développement de Taylor d'une

fonction analytique peut être utilisé pour accoître l'ordre de convergence de méthode

itérative. Ceci nous permet d'établir de nouveaux liens entre plusieurs di�erents processus

d'accélération, notamment entre celui de Halley et celui de Chebyshev.
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Dans le cinquième chapitre, nous montrons que la façon la plus e�cace d'augmenter

l'ordre de convergence de la méthode de Newton, en termes de fonctions polynomiales,

nous donne la méthode de Schröder de première espèce. En particulier nous obtenons

la fameuse méthode itérative de Euler-Chebyshev à l'ordre 3. Nous obtenons aussi le

fait que les méthodes itératives de Schröder de première et deuxième espèce sont les

meilleures façons d'augmenter l'ordre de convergence de la méthode itérative de Newton.
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INTRODUCTION

Méthodes de point �xe

La méthode de Newton-Rahpson a été introduite en 1669 [57]. Aujourd'hui, elle peut

être appliquée au calcul des zéros d'une fonction analytique. La forme moderne de la

méthode de Newton est

zk+1 = zk −
f(zk)

f ′(zk)
= Nf (zk).

L'objectif est de choisir un point initial z0 et d'utiliser le processus

zk+1 = Nf (zk) pour k = 0, 1, 2, 3, . . . ,

a�n de générer une séquence {zk}+∞
k=0 qui converge vers α. La méthode de Newton est,

en général, d'ordre de convergence égale à 2.

En 1694 , Edmond Halley [17], a introduit la fonction d'itération d'ordre 3

zk+1 = zk −
2f(zk)f

′(zk)

2f ′(zk)2 − f(zk)f ′′(zk)
= Hf (zk),

qui s'est, par la suite révélée être la méthode de Newton appliquée à la fonction G(z) =

f(z)/
√
f ′(x).
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Ordre de convergence

On dit qu'une méthode de point �xe xn+1 = g(xn) qui converge vers α est d'ordre p ≥ 1

si

lim
n→+∞

|xn+1 − α|
|xn − α|p

= Kp(α) > 0,

Kp(α) est la constante asymtotique.

Pour une valeur de xn proche de α, le terme | xn−α |p devient de plus en plus petit si p

est large. Si donc on regarde

xn+1 − α ≈ Kp(α, I) (xn − α)p

ce terme indique la vitesse à laquelle l'erreur d'approximation décroît. Plus la valeur de p

est large, plus proche xn+1 sera de α, si on assume que la sequence est convergente. Typ-

iquement, augmenter l'ordre de convergence requiert le calcul de dérivées additionnelles,

ce calcul peut rendre les méthodes d'ordre supérieur peu pratiques.

Cadre

Il est important de noter qu'en 1870, Schröder [48] a proposé une séquence de fonctions

maintenant connue sous le nom de méthode de Schröder de seconde espèce. Le p-ième

membre de cette séquence produit une fonction d'itération d'ordre p donné par

Sp(z) = z − Rp−2(z)

Rp−1(z)
for p ≥ 2,

avec 
R0(z) = 1/f(z),

Rp(z) =
∑p

j=1 (−1)j+1 f (j)(z)
j!f(z)

Rp−j(z) for p ≥ 1.
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Si par exemple nous calculons l'expression pour R1(z) et R2(z), on obtient

R1(z) =
f ′(z)

f 2(z)
and R2(z) =

(f ′(z))2

f 3(z)

[
1− f(z)f ′′(z)

2 (f ′(z))2

]
.

On observe que les deux premiers termes de cette séquence sont respectivement, la

fonction d'itération de Newton S2(z) = Nf (z), et la fonction d'itération de Halley

S3(z) = Hf (z).

Depuis 1870, plusieurs mathématiciens ont proposé d'autres séquences, la majorité d'entre

elles ont malheureusement été des redécouvertes de la méthode de Schröder de seconde

espèce [44].

En 1964, Traub [51] remarque le fait que cette séquence de fonction est souvent redé-

couverte. En e�et, plusieurs redécouvertes ont été publiées: par exemple 1946 [21], 1966

[54], 1969 [52], 1972 [31], 1975 [16], 1991 [28], 1994 [19], 1996 [17], 1997 [32]. En moyenne

une fois chaque décennie, cette suite de fonction est redécouverte [44, 45].

Observons que les formes sous lesquelles cette suite de fonction se présente peuvent être

méconnaissables.

Par exemple, Householder's [26, 27] a présenté la suite

Tp(z) = z + (p− 1)
[(1/f(z))(p−2)

(1/f(z))(p−1)

]
.

Ford and Pennline [17] avec l'assistance de Gerlach [19] ont présenté la suite

Gp(z) = z − f(z)
Qp(z)

Qp+1(z)
,

avec 
Q2(z) = 1,

Qp(z) = f ′(z)Qp−1(z)− 1
p−2

f(z)Q′p−1(z) for p ≥ 3.

Le fait que

Sp(z)︸ ︷︷ ︸
1870

= Tp(z)︸ ︷︷ ︸
1953

= Gp(z)︸ ︷︷ ︸
1996

3



a été observé en 2010 par Petkovi¢ et al. [45] .

Tout en observant ces nombreuses redécouvertes, les auteurs n'ont par contre pas été

capables d'expliquer le pourquoi de ces redécouvertes, ni de présenter une façon d'éviter

d'autres éventuelles redécouvertes.

Nous avons réussi à montrer que cette suite de fonctions présentée par Schröder est la

façon la plus e�cace d'augmenter l'ordre de la méthode itérative de Newton en termes

d'utilisation de certaines dérivées d'ordre supérieure. Par ce fait, nous pouvons expliquer

ces nombreuses redécouvertes.

Nous avons aussi été capable d'établir un algorithme qui caractérise complètement la

séquence de Schröder de deuxième espèce. Notamment:

Theorème: Soit f(z) tel que f(α) = 0 et f ′(α) 6= 0 tel que la méthode de Newton Nf

est d'ordre 2. La suite de fonction {Tp(z)}+∞
p=2 dé�nie par

Tp(z) = z − Vp(z) pour p ≥ 2,

dont le p-th element est d'ordre p, corresponds a la suite de Schröder de seconde espèce

si et seulement si
V2(z) = f(z)

f ′(z)
,

Vp+1(z) =
[
1− 1

p

[
1− V ′p(z)

]]−1

Vp(z) pour p ≥ 2.

Nous pouvons par exemple appliquer cet algorithme aux suites de fonctions présentées

antérieurement.

Exemple 1: Si nous regardons la suite de Householder's [26, 27] soit

Tp(z) = z + (p− 1)
[(1/f(z))(p−2)

(1/f(z))(p−1)

]
4



en utilisant notre algorithme nous posons

Vp(z) = −(p− 1)
(1/f(z))(p−2)

(1/f(z))(p−1)
.

donc

V ′p(z) = −(p− 1)

[
1− (1/f(z))(p−2)(1/f(z))(p)

[(1/f(z))(p−1)]
2

]
,

après direct substitution on a[
1− 1

p

[
1− V ′p(z)

]]−1

Vp(z) = −p(1/f(z))(p−1)

(1/f(z))(p)
= Vp+1(z).

Exemple 2: Si nous regardons la suite de Ford and Pennline [17] inpirée de Gerlach [19]

Gp(z) = z − f(z)
Qp(z)

Qp+1(z)
,

avec 
Q2(z) = 1,

Qp(z) = f ′(z)Qp−1(z)− 1
p−2

f(z)Q′p−1(z) pour p ≥ 3.

On a

Vp(z) = f(z)
Qp(z)

Qp+1(z)
,

et

V ′p(z) =

(
f(z)

Qp(z)

Qp+1(z)

)′
= f ′(z)

Qp(z)

Qp+1(z)
+ f(z)

Q′p(z)Qp+1(z)−Qp(z)Q′p+1(z)

Q2
p+1(z)

= (1− p) + p
Qp(z)Qp+2(z)

Q2
p+1(z)

,

après avoir remplacé f(z)Q′p+1(z) et f ′(z)Qp(z) en utilisant leur relations de recurrence

pour avoir Qp+2(z) and Qp+1(z).
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1− 1

p

[
1− V ′p(z)

]
=
Qp(z)Qp+2(z)

Q2
p+1(z)

,

il advient donc que[
1− 1

p

[
1− V ′p(z)

]]−1

Vp(z) =

[
Qp(z)Qp+2(z)

Q2
p+1(z)

]−1

f(z)
Qp(z)

Qp+1(z)

= f(z)
Qp+1(z)

Qp+2(z)

= Vp+1(z).

Nos travaux ont fortement été in�uencés directement par ceux de Petkovic et al [45] et

indirectement par Kalantari [36].

Notre contribution

L'une des contributions de nos recherches a été d'abord d'établir un algorithme qui

caractérise complètement la séquence de Schröder de deuxième espèce. Par ce fait, nous

pouvons éviter d'éventuelles redécouvertes.

Nous avons aussi réussi à montrer que cette suite de fonctions présentée par Schröder est

la façon la plus e�cace d'augmenter l'ordre de la méthode itérative de Newton en termes

d'utilisation de certaines dérivées d'ordre supérieure. Par ce fait, nous sommes capables

d'expliquer ces nombreuses redécouvertes.

Nous montrons également que tout processus d'accélération de la méthode Newton qui se

développe en terme polynomiales de la fonction f(z), peux être tronqué en la deuxième

séquence de Schröder, de première espèce.

Ce travail repose toutefois sur l'étude des conditions nécessaires et su�sante, d'augmentation

de l'ordre de convergence des méthodes de point �xe et plus particulièrement de la méth-

ode de Newton.
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Commentaires sur l'article présenté au chapitre 1

Dans cet article, nous revisitons la méthode du point �xe et la méthode de Newton pour

le calcul d'un zéro simple d'une fonction su�samment régulière.

Nous présentons les conditions nécessaires et su�santes qui garantissent la convergence

d'ordre supérieure de ces méthodes. À partir de ces conditions, nous montrons comment

récursivement augmenter l'ordre de convergence.

Pour la méthode du point �xe, nous présentons une généralisation de la méthode de

Schröder de première espèce. Pour la méthode de Newton, deux méthodes sont aussi

présentées. L'une d'entre elles est montrée équivalente à la méthode de Schröder de

deuxième espèce.

Des exemples numériques sont inclus dans cet article. Notamment, l'application de cette

théorie au calcul de la racine n-ième d'un nombre.

Cet article a été rédigé conjointement avec M. François Dubeau et publié dans la revue

SIAM Review en 2014, sous le titre 'Fixed point and Newton's methods for Solving a

nonlinear equation: From linear to high-order convergence.'

Commentaires sur l'article présenté au chapitre 2

Dans cet article, nous revisitons la méthode du point �xe et la méthode de Newton

pour le calcul d'un zéro simple d'une fonction analytique c'est une généralisation du

chapitre précédent au cas complexe. Des exemples numériques sont inclus dans cet article.

En particulier, tout comme Kalantari nous avons produit les bassins d'attraction de

di�erentes méthodes, en particulier les méthodes de Schröder de première et deuxième

espèce
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Cet article a été rédigé conjointement avec M. François Dubeau et publié dans la revue

Journal of Complex Analysis, sous le titre 'Fixed Point and Newton's Methods in the

Complex Plane.'

Commentaires sur l'article présenté au chapitre 3

Dans cet article nous posons la question suivante: En créant une suite de fonctions

dont le n-ième élément est d'ordre n, comment peut-on s'assurer que ce ne soit pas une

redécouverte de la séquence de Schröder.

Nous montrons aussi que la suite de fonction présentée par Schröder est la façon la plus

e�cace d'augmenter l'ordre de la méthode itérative de Newton en terme d'utilisation de

certaines dérivées d'ordre supérieur. Nous présentons aussi un algorithme qui caractérise

complètement la suite de fonctions de Schröder, et par ce fait nous permet de la recon-

naître. Finalement, nous appliquons cet algorithme à plusieurs exemples de redécouvertes

et en présentons même de nouvelles.

Cet article a été rédigé conjointement avec M. François Dubeau et publié dans la revue

Journal of Computational and Applied Mathematics, sous le titre 'On the rediscovery of

Halley's iterative method for computing the zero of an analytic function.'

En tant qu'auteur principal, j'y ai développé les notions d'algorithmes pour éviter les redé-

couvertes. La formulation de plusieurs théorèmes et le développement de leurs preuves

ont été faites conjointement avec M. Dubeau.

Commentaires sur l'article présenté au chapitre 4

Il s'est avéré que la fonction d'itération de Halley peut être obtenue en appliquant la

méthode de Newton à une nouvelle fonction F (z) au lieu de f(z). Nous posons donc les
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questions suivantes: Quelles sont toutes les modi�cations possibles de la fonction f(z)

en une nouvelle fonction F (z) qui nous permettront d'obtenir une nouvelle méthode plus

rapide (comme celle de Halley , par exemple)? Quel est le lien entre toutes ces fonctions

possibles? Nous regardons aussi le processus d'accélération présenté par Euler-Chebyshev

et établissons un nouveau lien entre celui-ci et celui de Halley.

Cet article a été rédigé conjointement avec M. François Dubeau et publié dans la revue

Journal of Mathematical Analysis, sous le titre 'Unifying old and new ways to increase

order of convergence of �xed point and Newton's method'. La formulation de plusieurs

théorèmes et élaboration de leurs preuves ont été fait conjointement avec M. Dubeau.

Commentaires sur l'article présenté au chapitre 5

Dans cet article nous cherchons la réponse à la question suivante: quelle est la meilleure

façon d'augmenter l'ordre de convergence la méthode itérative de Newton?

Nous montrons que, la façon la plus e�ective d'augmenter l'ordre de convergence de la

méthode de Newton, en termes de fonctions polynomiales, est la méthode de Schröder

de première espèce.

Ainsi, joint au résultat du chapitre 3, nous obtenons le fait que les méthodes itératives

de Schröder de première et de deuxième espèces sont les meilleures façons d'augmenter

l'ordre de convergence de la méthode itérative de Newton.

Cet article a été rédigé conjointement avec M. François Dubeau et accepté pour publica-

tion dans la revue Elemente der Mathematik, sous le titre 'Schröder's processes and the

best ways of increasing order of Newton's method.'

J'y ai proposé les notions de développement de fonctions itérantes en termes de fonctions

polynomiales et leurs comparaisons avec le processus de Schröder de première espèce. La
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formulation des théorèmes et leurs preuves ont été faites conjointement avec M. Dubeau.

Commentaires sur la terminologie

Dans cette thèse nous avons parlé d'augmentation de l'ordre de convergence de la méth-

ode de Newton. En e�et en ce qui concerne la méthode de Schröder de deuxième es-

pèce nous appliquons la méthode de Newton à une fonction modi�ée pour en augmenter

l'ordre. Ainsi nous augmentons bel et bien l'ordre de la méthode de Newton. En général

la méthode de Newton est reconnue pour être d'ordre 2 mais il s'avère que l'ordre de

convergence d'une méthode dépend de la fonction sur laquelle elle agit. Pour la méthode

de Schröder de première espèce on ne peut pas l'écrire comme la méthode de Newton

appliquée sur une fonction précise. Ainsi dans ce cas nous avons fait un abus de language

en disant qu'on augmente l'ordre de la méthode de Newton. Il faudrait plutôt dire que

nous augmentons l'ordre en générant une suite de méthodes dites Newton généralisées

(generalized Newton), ou de type Newton (Newton type).
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CHAPITRE 1

Fixed point and Newton's methods for

Solving a non-linear equation: From

linear to high-order convergence.

Abstract

In this paper we revisit the necessary and su�cient conditions for linear and high order

convergence of �xed point and Newton's methods. Based on these conditions, we extend

Schröder's process of the �rst kind to increase the order of convergence of the �xed point

method. We also obtain two processes to increase the order of convergence of Newton's

method. One of them is Schröder's process of the second kind, for which several forms

are also presented. A link between Schröder's two processes is given. Examples and

numerical experiments are included.
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1.1 Introduction

In this paper we consider �xed point and Newton's methods to �nd a simple solution of

a nonlinear equation. We not only present the su�ciency of conditions for convergence

of �xed point and Newton's methods but we also prove the necessity of these conditions.

Based on these conditions, we show how to obtain processes to recursively increase order

of convergence. For the �xed point method, we present a generalization of Schröder's

process of the �rst kind. Two methods are presented to increase the order of conver-

gence of Newton's method when applied to this function. One of them coincides with

Schröder's process of the second kind, which has several forms in the literature. We also

explain the link between the two processes of Schröder. Finally, we point out ways to

combine methods to obtain, for example, a Super-Halley process of order 3 and other

possible higher order generalizations of this process. It is important to keep in mind that

throughout the paper we consider real valued functions which are regular enough to be

di�erentiated su�ciently many times. As a consequence, the proofs are based on a very

basic tool: Taylor's expansion.

The plan of the paper is the following. In Section 2.3, we consider �xed point methods

and necessary and su�cient conditions for convergence. This leads to a generalization of

Schröder's process of the �rst kind. Section 2.4 is devoted to Newton's method. Based

on the necessary and su�cient conditions, we propose two ways of increasing the order

of convergence of Newton's method when applied to this function. Using examples given

in Sections 2.3 and 2.4, numerical experiments are reported in Section 1.4. Schröder's

process of the second kind, and its multiple di�erent forms, is the object of Section 1.5.

In Section 1.6, we explain the link between the two processes of Schröder. In Section 1.7,

considering a linear combination of a �xed point process and its associated Newton's pro-

cess, we obtain a general recursive method to increase the order of convergence of a �xed

12



point process. Finally, remarks on further research topics are mentioned in Section 2.6.

To close the introduction, let us mention that several excellent books discuss �xed point

and Newton's methods, see for example [22, 30, 37, 51]. Several proofs presented in this

paper are in these books, they are included here for completeness.

1.2 Fixed point method

A �xed point method uses an iteration function (IF) which is a (regular) function mapping

its domain of de�nition into itself. With an IF Φ(x) and an initial value x0, we are

interested in the convergence of the sequence {xk+1 = Φ(xk)}+∞
k=0. It is well known that

if the sequence {xk+1 = Φ(xk)}+∞
k=0 converges, it converges to a �xed point of Φ(x).

Let Φ(x) be an IF, p be a positive integer, and {xk+1 = Φ(xk)}+∞
k=0 be such that the

following limit exists (and is �nite)

lim
k→+∞

xk+1 − α
(xk − α)p

= Kp(α; Φ).

We say that the convergence of the sequence to α is of (integer) order p if and only if

Kp(α; Φ) 6= 0, and Kp(α; Φ) is called the asymptotic constant. We also say that Φ(x) is

of order p. If the limit Kp(α; Φ) exists but is zero, we can say that Φ(x) is of order at

least p.

From a numerical point of view, since α is not known, it is useful to de�ne the ratio

K̃p(α, k) =
xk+1 − xk+2

(xk − xk+1)p
. (1.2.1)

Following [4], it can be shown that

lim
k→+∞

K̃p(α, k) = Kp(α; Φ),
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and

lim
k→+∞

ln
∣∣∣K̃1(α, k + 1)

∣∣∣
ln
∣∣∣K̃1(α, k)

∣∣∣ = p.

The �rst result concerns necessary and su�cient conditions to have linear convergence.

Almost any textbook on numerical analysis reports the su�ciency of the condition in (i)

of the following result. We have included the necessity of the condition in (ii).

Theorem 1.2.1. Let Φ(x) be an IF, and Φ(1)(x) stand for its �rst derivative.

(i) If |Φ(1)(α)| < 1 then there exists a neighbourhood of α such that for any x0 in that

neighbourhood the sequence {xk+1 = Φ(xk)}+∞
k=0 converges to α.

(ii) If there exists a neighbourhood of α such that for any x0 in that neighbourhood the

sequence {xk+1 = Φ(xk)}+∞
k=0 converges to α, and xk 6= α for all k, then

∣∣Φ(1)(α)
∣∣ ≤ 1.

(iii) For any sequence {xk+1 = Φ(xk)}+∞
k=0 which converges to α the limit K1(α; Φ) exists,

and K1(α; Φ) = Φ(1)(α).

Proof. See Appendix 1.9

For higher order convergence we have the following result about the necessary and suf-

�cient conditions. Several textbooks, like [41, 37] and others, mention su�ciency of the

condition but not necessity. The necessity of the condition is rarely reported, it appears

for example in [51].

Theorem 1.2.2. Let p be an integer ≥ 2 and let Φ(x) be a regular function such that

Φ(α) = α. The IF Φ(x) is of order p if and only if Φ(j)(α) = 0 for j = 1, . . . , p− 1, and

Φ(p)(α) 6= 0. Moreover, the asymptotic constant is given by

Kp(α; Φ) = lim
k→+∞

xk+1 − α
(xk − α)p

=
Φ(p)(α)

p!
.

Proof. See Appendix 1.10
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It follows that for a regular IF and p ≥ 2, the limit Kp(α; Φ) exists if and only if

Kl(α; Φ) = 0 for l = 1, . . . , p− 1.

We say that α is a root of f(x) of multiplicity q if and only if f (j)(α) = 0 for j =

0, . . . , q− 1, and f (q)(α) 6= 0. Moreover, α is a root of f(x) of multiplicity q if and only if

there exists a continuous function vf (x) such that vf (α) 6= 0 and f(x) = vf (x)(x− α)q.

We will use the big O notation g(x) = O(f(x)) (and the small o notation g(x) = o(f(x)))

around x = α when c 6= 0 (when c = 0, respectively) where

lim
x→α

g(x)

f(x)
= c. (1.2.2)

If α is a root of multiplicity q of f(x), then g(x) = O(f(x)) is equivalent to g(x) =

O((x−α)q). Also, if α is a simple root of f(x), then α is a root of multiplicity q of f q(x).

Hence g(x) = O(f q(x)) is equivalent to g(x) = O((x− α)q).

As a consequence, for a general regular IF Φ(x) and a simple root α of f(x) we can

say that: (a) Φ(x) is of order p if and only if Φ(x) = α + O((x − α)p), or equivalently,

if Φ(α) = α and Φ(1)(x) = O((x − α)p−1), and (b) if α is a simple root of f(x), then

Φ(x) is of order p if and only if Φ(x) = α + O(fp(x)), or equivalently, if Φ(α) = α and

Φ(1)(x) = O(fp−1(x)).

Schr�Âoder's process of the �rst kind is a systematic and recursive way to construct an

IF of arbitrary order p to �nd a simple zero α of f(x). The IF has to ful�l at least the

su�cient condition of Theorem 2.3.2. Let us present a generalization of this process.

Theorem 1.2.3. Let α be a simple root of f(x), and c0(x) be a regular function such

that c0(α) = α. Let Φp(x) be the IF de�ned by

Φp(x) =

p−1∑
l=0

cl(x)f l(x) (1.2.3)
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where the cl(x) are such that

cl(x) = −1

l

(
1

f (1)(x)

d

dx

)
cl−1(x) (1.2.4)

for l = 1, 2, . . . Then Φp(x) is of order p, and its asymptotic constant is

Kp(α,Φp) =
Φ(p)(α)

p!
=

1

p
c

(1)
p−1(α)

[
f (1)(α)

]p−1
= −cp(α)

[
f (1)(α)

]p
. (1.2.5)

Proof. We verify that Φp(α) = α. Moreover, taking the �rst derivative and using (2.3.4),

we obtain

Φ(1)
p (x) = c

(1)
p−1(x)fp−1(x). (1.2.6)

As a consequence we not only have Φ
(1)
p (α) = 0 but we also have Φ

(l)
p (α) = 0 for l =

1, . . . , p− 1. It follows that

Φ(p)
p (α) =

(
c

(1)
p−1(x)fp−1(x)

)(p−1)
∣∣∣∣
x=α

= (p− 1)! c
(1)
p−1(α)

[
f (1)(α)

]p−1
, (1.2.7)

and using (2.3.4), we get (2.3.5).

This same result can also be obtained by considering Taylor's expansion of an inverse

function [13, 51, 27]. For c0(x) = x in (2.3.3), we recover Schröder's process of the �rst

kind of order p [48, 51, 27], which is also associated to Chebyshev and Euler [2, 49,

44]. The �rst term c0(x) could be seen as a preconditioning to decrease the asymptotic

constant of the method, but its choice is not obvious. We present one such example

below.

Example 1.2.1. We illustrate Theorem 5.3.2 with a non-trivial c0(x) on the n-th root

computation problem, namely �nd α = r1/n for a strictly positive real number r. We

consider

f(x) =
xn

r
− 1, (1.2.8)
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Tableau 1.1: Iteration functions for the computation of r1/n based on Theorem 5.3.2.

f(x) = xn

r − 1 c0(x) = x
(
xn

r

)M
Iteration function Asymptotic constant

Φp(x) Kp(r1/n; Φp)

Φp(x) = c0(x)
∑p−1

l=0

(
1/n+M

l

)(
r
xn − 1

)l
(−1)p+1

(
1/n+M

p

)
npr(1−p)/n

Example : M = 0 see [15], [51], [25]

Φp(x) = Ep(x) = x
∑p−1

l=0

(
1/n
l

)(
r
xn − 1

)l
(−1)p+1

(
1/n
p

)
npr(1−p)/n

Example : M = M∗ = b(p− 1)/2c

Φp(x) = c∗0(x)
∑p−1

l=0

(
1/n+M∗

l

)(
r
xn − 1

)l
(−1)p+1

(
1/n+M∗

p

)
npr(1−p)/n

and we set

c0(x) = x

(
xn

r

)M
, (1.2.9)

where M is an integer. We obtain

cl(x) = c0(x)
( r
xn

)l( 1/n+M
l

)
(1.2.10)

for l = 0, 1, 2, . . . Then

Φp(x) = c0(x)

p−1∑
l=0

(
1/n+M

l

)( r
xn
− 1
)l

(1.2.11)

with

Φ(p)
p (r1/n) = (−1)p+1npr(1−p)/np!

(
1/n+M

p

)
, (1.2.12)
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and

Kp(r
1/n; Φp) = (−1)p+1npr(1−p)/n

(
1/n+M

p

)
. (1.2.13)

The processes obtained are presented in Table 1.1.

For M = 0, we have c0(x) = x and the process corresponds to Schröder's process of the

�rst kind presented in Durand [15] and Traub [51]. This process has also been rediscovered

by Hernandez and Romero [25]. For M 6= 0, we obtain new IFs of order p with the

smallest asymptotic constant for M = M∗ = b(p− 1)/2c given in Table 1.1. (See also

[13].)

1.3 Newton's iteration function

Considering c0(x) = x and p = 2 in (2.3.3), we obtain

Φ2(x) = x− f(x)

f (1)(x)

which is Newton's IF of order 2 to solve f(x) = 0. The su�ciency of the condition

for high order convergence of Newton's method when applied to this function has been

presented in [19]. The necessity of the condition is included in the next result.

Theorem 1.3.1. Let p ≥ 2 and let Ψ(x) be a regular function such that Ψ(α) = 0 and

Ψ(1)(α) 6= 0. The Newton iteration NΨ(x) = x − Ψ(x)

Ψ(1)(x)
is of order p if and only if

Ψ(j)(α) = 0 for j = 2, . . . , p− 1, and Ψ(p)(α) 6= 0. Moreover, the asymptotic constant is

Kp(α;NΨ) =
p− 1

p!

Ψ(p)(α)

Ψ(1)(α)
.

Proof. See Appendix 1.11

We can look for a recursive method to construct a function Ψp(x) which ful�l the su�cient

condition of Theorem 5.4.1. A consequence will be that NΨp(x) will be of order p, and

NΨp(x) = α +O(fp(x)). One such method is given in the next theorem.
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Theorem 1.3.2. Let α be a simple root of f(x). Let Ψp(x) be de�ned by

Ψp(x) =

p−1∑
l=0

dl(x)f l(x) (1.3.1)

where d0(x) and d1(x) are two regular functions such that
d0(α) = 0,

d
(1)
0 (α) + d1(α)f (1)(α) 6= 0,

(1.3.2)

and

dl(x) = − 1

lf (1)(x)
× (1.3.3)[

d
(1)
l−1(x) +

1

(l − 1)f (1)(x)

[
d

(1)
l−2(x) + (l − 1)dl−1(x)f (1)(x)

](1)
]

for l = 2, 3, . . . Then

NΨp(x) = x− Ψp(x)

Ψ
(1)
p (x)

is of order p, with

Ψ(p)
p (α) = −p! dp(α)

[
f (1)(α)

]p
,

and

Kp(α;NΨp) = −
(p− 1)dp(α)

[
f (1)(α)

]p
d

(1)
0 (α) + d1(α)f (1)(α)

.

Proof. We have Ψp(α) = d0(α) = 0. A direct di�erentiation leads to

Ψ(1)
p (x) =

p−2∑
l=0

[
d

(1)
l (x) + (l + 1)dl+1(x)f (1)(x)

]
f l(x) + d

(1)
p−1(x)fp−1(x),

and

Ψ(1)
p (α) = d

(1)
0 (α) + d1(α)f (1)(α) 6= 0.
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Di�erentiating again, we obtain

Ψ(2)
p (x) =

p−3∑
l=0

{[
d

(1)
l (x) + (l + 1)dl+1(x)f (1)(x)

](1)

+(l + 1)
[
d

(1)
l+1(x) + (l + 2)dl+2(x)f (1)(x)

]
f (1)(x)

}
f l(x)

+

{[
d

(1)
p−2(x) + (p− 1)dp−1(x)f (1)(x)

](1)

+ (p− 1)d
(1)
p−1(x)f (1)(x)

}
fp−2(x)

+d
(2)
p−1(x)fp−1(x)

=

{[
d

(1)
p−2(x) + (p− 1)dp−1(x)f (1)(x)

](1)

+ (p− 1)d
(1)
p−1(x)f (1)(x)

}
fp−2(x)

+d
(2)
p−1(x)fp−1(x).

Then we not only have Ψ
(2)
p (α) = 0 but also Ψ

(l)
p (α) = 0 for l = 2, . . . , p− 1. Moreover

Ψ(p)
p (α) =

(
Ψ(2)
p (x)

)(p−2)
∣∣∣
x=α

= (p− 2)!
[
f (1)(α)

]p−2 ×[[
d

(1)
p−2(x) + (p− 1)dp−1(x)f (1)(x)

](1)

+ (p− 1)d
(1)
p−1(x)f (1)(x)

]∣∣∣∣
x=α

,

and the result follows from (2.4.6).

Let us observe that if we set Ψp(x) = Φp(x)− x with Φp(x) given by (2.3.3), then Ψp(x)

veri�es the assumptions of Theorem 2.4.4.

Example 1.3.1. We illustrate Theorem 2.4.4 by considering the n-th root computation

problem. We consider

f(x) =
r

xn
− 1 (1.3.4)

and choose d0(x) = 0 and d1(x) = −
(

1/n
1

)
xn

r
. We obtain

dl(x) = (−1)l
(

1/n
l

)(
xn

r

)l
for l = 1, 2, 3, . . ., and

Ψp(x) =

p−1∑
l=1

(
1/n
l

)(
xn

r
− 1

)l
.
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The asymptotic constant of NΨp(x) is

Kp(r
1/n;NΨp) = −(p− 1)npr(1−p)/n

(
1/n
p

)
. (1.3.5)

NΨp(x), which appears in Table 1.2, corresponds to Dubeau's method of order p [9].

Tableau 1.2: Iteration functions for the computation of r1/n based on Theorem 2.4.4.

f(x) = r
xn − 1

Iteration function Asymptotic constant

NΨp
(x) Kp(r1/n;NΨp

)

NΨp
(x) = x− r

nxn−1

∑p−1
l=1

(
1/n
l

)(
xn

r − 1
)l

∑p−1
l=1 l

(
1/n
l

)(
xn

r − 1
)l−1

−(p− 1)

(
1/n
p

)
npr(1−p)/n

A second method to recursively obtain a function which satis�es the necessary and su�-

cient conditions of Theorem 5.4.1 has been presented in [19, 17]. The technique can also

be based on Taylor's expansion as indicated in [6].

Theorem 1.3.3. [19] Let f(x) be such that f(α) = 0 and f (1)(α) > 0. If Fp(x) is de�ned

by 
F2(x) = f(x),

Fp(x) = Fp−1(x)[
F

(1)
p−1(x)

] 1
p−1

for p ≥ 3,
(1.3.6)

then Fp(α) = 0, F (1)
p (α) > 0, F (l)

p (α) = 0 for l = 2, . . . , p − 1. It follows that NFp(x) is

of order p, or at least of order p.
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We also have the following simpli�cation for NFp(x).

Theorem 1.3.4. [17] If Fp(x) is given by (2.4.1), then

NFp(x) = x− f(x)

f (1)(x)− 1
p−1

f(x)
Q

(1)
p (x)

Qp(x)

= x− f(x)
Qp(x)

Qp+1(x)
, (1.3.7)

where 
Q2(x) = 1,

Qp(x) = f (1)(x)Qp−1(x)− 1
p−2

f(x)Q
(1)
p−1(x) for p ≥ 3.

(1.3.8)

Example 1.3.2. To illustrate Gerlach's process we consider the n-th root computation

using

f(x) =
xn

r
− 1,

for which
f(x)

f (1)(x)
= −x

n

( r
xn
− 1
)
.

Table 1.3 presents the �rst 4 IFs. Unfortunately, no general formula for the IF and its

asymptotic constant are known in this case, contrary to the preceding methods. However,

the asymptotic constant can be estimated with (2.3.1).

1.4 A numerical example

To illustrate the di�erent methods presented in Sections 2.3 and 2.4, and explicitly given

in Tables 1.1, 1.2, and 1.3, we have considered the n-th root problem, �nd α = 351/n

for n = 2, 5, and 10. The results are reported in Tables 1.4, 1.5, and 1.6. For these

examples, in all cases, Gerlach's process NFp(x) has the smallest asymptotic constant for

a given order. Schröder's process of the �rst kind Φp(x) = Ep(x) is slightly improved by

choosing M∗ =
⌊
p−1

2

⌋
instead of M = 0. Finally NΨp(x) seems to be the worse IF, but

let us observe we did not try to choose the best d0(x) and d1(x) in (2.4.4) to minimize

its asymptotic constant.
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Tableau 1.3: Iteration functions for the computation of r1/n based on Theorems 1.3.3
and 1.3.4.

f(x) = xn

r − 1 = F2(x)

NF2
(x) = x+

x

n
×
( r

xn
− 1
)

NF3
(x) = x+

x

n
×

(
r
xn − 1

)
1 + 1

n2

(
n
2

)(
r
xn − 1

)

NF4(x) = x+
x

n
×

(
r
xn − 1

)(
1 + 1

n2

(
n
2

)(
r
xn − 1

))
1 + 2

n2

(
n
2

)(
r
xn − 1

)
+ 1

n3

(
n
3

)(
r
xn − 1

)2

NF5
(x) = x+

x

n
×

(
r
xn − 1

)(
1 + 2

n2

(
n
2

)(
r
xn − 1

)
+ 1

n3

(
n
3

)(
r
xn − 1

)2)
1 + 3

n2

(
n
2

)(
r
xn − 1

)
+

[
2
n3

(
n
3

)
+ 1

n4

(
n
2

)2
] (

r
xn − 1

)2
+ 1

n4

(
n
4

)(
r
xn − 1

)3
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Tableau 1.4: Computation of 351/2 = 5.9160797830996160426... with x0 = 6.

IFp(x)
p k Φp(x) = Ep(x) NΨp(x) NFp(x)

3 M = 0 M = M∗ =
⌊
p−1

2

⌋
= 1

1 8.18 10−6 8.35 10−6 1.70 10−5 4.13 10−6

2 7.82 10−18 8.33 10−18 1.40 10−16 5.04 10−19

3 6.83 10−54 8.25 10−54 7.82 10−50 9.16 10−58

4 4.55 10−162 8.05 10−162 1.37 10−149 5.49 10−174

5 1.34 10−486 7.44 10−486 7.32 10−449 1.18 10−522∣∣K3(351/2, IF3)
∣∣ 1.43 10−2 1.43 10−2 2.857 10−2 0.7143 10−2

4 M = 0 M = M∗ =
⌊
p−1

2

⌋
= 1

1 1.42 10−7 8.73 10−8 4.54 10−7 2.91 10−8

2 1.24 10−30 1.05 10−31 3.85 10−28 4.33 10−34

3 7.09 10−123 2.23 10−127 2.00 10−112 2.13 10−137

4 7.63 10−492 4.48 10−510 1.45 10−449 1.24 10−550

5 1.02 10−1967 7.33 10−2041 3.98 10−1798 1.42 10−2203∣∣K4(351/2, IF4)
∣∣ 3.012 10−3 1.811 10−3 9.055 10−3 0.604 10−3

5 M = 0 M = M∗ =
⌊
p−1

2

⌋
= 2

1 2.77 10−9 1.25 10−9 1.21 10−8 2.05 10−10

2 1.68 10−46 9.14 10−49 7.42 10−43 1.85 10−53

3 1.55 10−223 1.96 10−244 6.44 10−214 1.10 10−268

4 6.33 10−1168 8.81 10−1223 3.18 10−1069 8.06 10−1345

5 7.24 10−5840 1.62 10−6114 9.24 10−5346 1.74 10−6725∣∣K5(351/2, IF5)
∣∣ 7.143 10−4 3.061 10−4 2.857 10−3 5.102 10−5

1.5 The Schröder's process of the second kind

Several authors have investigated di�erent ways to increase the rate of convergence of

Newton's method. It happens that some of these ways lead exactly to the same process

presented di�erently, and are equivalent to Schröder's process of the second kind. In this

section we will present 6 approaches which all lead to the same process. In fact at least

11 di�erent approaches are equivalent as it is reported in [44, 45].
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Tableau 1.5: Computation of 351/5 = 2.0361680046403980174... with x0 = 2.25.

IFp(x)
p k Φp(x) = Ep(x) NΨp(x) NFp(x)

3 M = 0 M = M∗ =
⌊
p−1

2

⌋
= 1

1 9.15 10−3 8.85 10−3 5.81 10−2 3.97 10−3

2 1.09 10−6 6.72 10−7 5.17 10−4 3.00 10−8

3 1.86 10−18 2.92 10−19 4.00 10−10 1.30 10−23

4 9.36 10−54 2.41 10−56 1.85 10−28 1.07 10−69

5 1.19 10−159 1.36 10−167 1.83 10−83 5.90 10−208∣∣K3(351/5, IF3)
∣∣ 1.447 9.648 10−1 2.894 4.824 10−1

4 M = 0 M = M∗ =
⌊
p−1

2

⌋
= 1

1 2.60 10−3 1.65 10−3 2.39 10−2 2.50 10−4

2 1.12 10−10 7.94 10−12 2.61 10−6 4.63 10−16

3 3.91 10−40 4.23 10−45 3.48 10−22 5.43 10−63

4 5.79 10−158 3.41 10−178 1.10 10−85 1.03 10−250

5 2.79 10−629 1.44 10−710 1.10 10−339 1.32 10−1001∣∣K4(351/5, IF4)
∣∣ 2.488 1.066 7.462 1.185 10−1

5 M = 0 M = M∗ =
⌊
p−1

2

⌋
= 2

1 7.91 10−4 4.48 10−4 2.02 10−2 3.22 10−6

2 1.44 10−15 2.09 10−17 5.90 10−8 4.04 10−30

3 2.86 10−74 4.54 10−84 1.33 10−35 1.25 10−149

4 8.84 10−368 2.22 10−417 7.75 10−174 3.60 10−747

5 2.50 10−1385 6.20 10−2084 5.18 10−865 7.04 10−3735∣∣K5(351/5, IF3)
∣∣ 4.642 1.152 1.860 10+1 1.16 10−2
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Tableau 1.6: Computation of 351/10 = 1.4269435884576509836... with x0 = 1.5.

IFp(x)
p k Φp(x) = Ep(x) NΨp(x) NFp(x)

3 M = 0 M = M∗ =
⌊
p−1

2

⌋
= 1

1 3.67 10−3 3.08 10−3 2.71 10−2 1.43 10−3

2 6.78 10−7 2.37 10−7 4.78 10−4 1.19 10−8

3 4.37 10−18 1.08 10−19 3.07 10−9 6.75 10−24

4 1.17 10−51 1.03 10−56 8.12 10−25 1.24 10−69

5 2.22 10−152 8.93 10−168 1.50 10−71 7.84 10−207∣∣K3(351/10, IF3)
∣∣ 1.400 10+1 8.103 2.799 10+1 4.052

4 M = 0 M = M∗ =
⌊
p−1

2

⌋
= 1

1 1.07 10−3 6.05 10−4 1.01 10−2 5.78 10−5

2 9.43 10−11 3.62 10−12 2.46 10−6 1.59 10−17

3 5.63 10−39 4.65 10−45 7.84 10−21 9.05 10−68

4 7.17 10−152 1.26 10−176 8.09 10−79 9.53 10−269

5 1.88 10−603 6.82 10−703 9.12 10−311 1.17 10−1072∣∣K4(351/10, IF4)
∣∣ 7.112 10+1 2.698 10+1 2.133 10+2 1.420

5 M = 0 M = M∗ =
⌊
p−1

2

⌋
= 2

1 3.36 10−4 1.57 10−4 9.50 10−3 3.10 10−6

2 1.66 10−15 7.46 10−18 1.07 10−7 7.70 10−28

3 4.94 10−72 1.84 10−84 2.19 10−32 7.26 10−136

4 1.14 10−354 1.67 10−417 7.78 10−156 5.42 10−676

5 7.52 10−1768 1.03 10−2082 4.43 10−773 1.26 10−3376∣∣K5(351/10, IF5)
∣∣ 3.887 10+2 7.940 10+1 1.555 10+3 2.686
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1.5.1 Determinant based methods

Methods based on a determinant's identity have been presented in the past under di�erent

forms. We will point out their equivalence by introducing the appropriate notation.

Let ∆0(x) = 1, and for p ≥ 1

∆p(x) =



f (1)(x) . . . . . . . . . f (p)(x)
p!

f(x) f (1)(x) . . . . . . f (p−1)(x)
(p−1)!

0 f(x) f (1)(x) . . . f (p−2)(x)
(p−2)!

...
. . . . . . . . .

...

0 . . . 0 f(x) f (1)(x)


.

Expanding this determinant along the �rst line, we obtain

∆p(x) =

p∑
j=1

(−1)j+1f
(j)(x)

j!
f j−1(x)∆p−j(x).

We can prove by mathematical induction that

∆p(x) =
(−1)pfp+1(x)

p!

(
1

f(x)

)(p)

, (1.5.1)

and

f(x)∆
(1)
p−1(x) = pf (1)(x)∆p−1(x)− p∆p(x). (1.5.2)

Schröder proposed the following IF

Sp(x) = x− Rp−2(x)

Rp−1(x)
(1.5.3)

where Rp(x) = ∆p(x)

fp+1(x)
. This method is also known as Schröder's process of the second

kind [48, ?]. Schröder [48] derived this iteration formula by applying suitable development
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to partial fractions to rational function. The above derivation can be made using König's

theorem [39], as presented in[45]. Wang [54] (see also [55]) proposed the IF

Wp(x) = x− Γp−2(x)

Γp−1(x)
(1.5.4)

where Γp(x) = ∆p(x)

fp(x)
. Kalantari [33, 34, 32] proposed the IF

Bp(x) = x− f(x)
∆p−2(x)

∆p−1(x)
. (1.5.5)

Hence, Sp(x) = Wp(x) = Bp(x).

Because ∆0(x) = 1 = Q2(x), ∆1(x) = f (1)(x) = Q3(x), using (1.5.2) it follows by

induction that ∆p−2(x) = Qp(x) for p ≥ 2. Hence NFp(x) = Bp(x) (see also [35]) and

Gerlach's process corresponds to Schröder's process of the second kind.

Householder [27] analysed the following IF, also known as the König's IF,

Hp(x) = x− (p− 1)

(
1

f(x)

)(p−2)

(
1

f(x)

)(p−1)
(1.5.6)

for p ≥ 2 which is also equivalent to Sp(x) because of (1.5.1).

1.5.2 Jovanović's method

Jonanović [31] suggested the following process


J2(x) = x− f(x)

f (1)(x)
,

Jp(x) = x− x−Jp−1(x)

1− 1
p−1

J
(1)
p−1(x)

for p > 2.
(1.5.7)

We prove by mathematical induction that Jp(x) = Bp(x). Clearly J2(x) = B2(x) =

Nf (x). Assume that Jl(x) = Bl(x) for l = 2, . . . , p− 1. From

1− J (1)
p−1(x) = (x− Jp−1(x))(1) =

d

dx

(
f(x)

∆p−3(x)

∆p−2(x)

)
,
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and using (1.5.2), we obtain

1− J (1)
p−1(x) = −(p− 2) + (p− 1)

∆p−3(x)∆p−1(x)

[∆p−2(x)]2
.

It follows that Jp(x) = Bp(x) .

1.6 A Link between the two processes of Schröder

We have shown that

NFp(x) = Sp(x) = Wp(x) = Bp(x) = Hp(x) = Jp(x) = α +O(fp(x)).

Also

Ep(x) = α +O(fp(x)).

A link between the two processes Ep(x) and Sp(x) of Schröder can be shown by using

the equivalent form Jp(x) of Sp(x).

We have J2(x) = E2(x) = Nf (x). We proceed by induction for p ≥ 3. Suppose

Jp−1(x) = Ep−1(x) +O(fp−1(x)) = Ep−1(x) + φp−1(x)fp−1(x)

for a regular function φp−1(x). Then

J
(1)
p−1(x) = E

(1)
p−1(x) +

[
φp−1(x)fp−1(x)

](1)

where, from (1.2.6), we have

E
(1)
p−1(x) = c

(1)
p−2(x)fp−2(x) = O(fp−2(x)),

and [
φp−1(x)fp−1(x)

](1)
= (p− 1)φp−1(x)f (1)(x)fp−2(x) + φ

(1)
p−1(x)fp−1(x)

= (p− 1)φp−1(x)f (1)(x)fp−2(x) + O(fp−1(x))

= O(fp−2(x)).
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Substituting in Jp(x), we have

Jp(x) = x− x− [Ep−1(x) + φp−1(x)fp−1(x)]

1− 1
p−1

[
E

(1)
p−1(x) + [φp−1(x)fp−1(x)](1)

]
Using the expansion 1

1−y = 1 + y + O(y2), and the fact that 2p − 3 ≥ p for p ≥ 3, we

obtain

Jp(x) = Ep−1(x) +
1

p− 1
c1(x)c

(1)
p−2(x)fp−1(x)

+φp−1(x)
[
1 + c1(x)f (1)(x)

]
fp−1(x) + O(fp(x)).

Hence Jp(x) = Ep(x) + O(fp(x)) because c1(x) = − 1
f (1)(x)

, and

1

p− 1
c1(x)c

(1)
p−2(x) = − 1

p− 1

(
1

f (1)(x)

d

dx

)
cp−2(x) = cp−1(x).

This result shows that Schröder's process of the �rst kind can be obtained from Schröder's

process of the second kind by expanding the denominator in Jp(x), multiplying and

truncating to keep powers of f(x), or powers of f(x)/f (1)(x), up to p − 1 (see also [32],

[45]).

The reader can verify the link by using the formulae given below for the two processes.

The veri�cation of this result has already been done using symbolic computation up to

order 20 [45].

Example 1.6.1. The �rst 4 IFs of Schröder's process of the �rst kind are :

E2(x) = x− f(x)

f (1)(x)
, which corresponds to Newton's IF of order 2;

E3(x) = x− f(x)

f (1)(x)
− 1

2!
f (2)(x)

f (1)(x)

[
f(x)

f (1)(x)

]2

, which corresponds to the order 3 Chebyshev's

IF [2];
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E4(x) = x− f(x)

f (1)(x)
− 1

2!
f (2)(x)

f (1)(x)

[
f(x)

f (1)(x)

]2

− 1
3!

[
3[f (2)(x)]

2
−f (1)(x)f (3)(x)

[f (1)(x)]
2

] [
f(x)

f (1)(x)

]3

;

and

E5(x) = x− f(x)

f (1)(x)
− 1

2!

f (2)(x)

f (1)(x)

[
f(x)

f (1)(x)

]2

− 1

3!

[
3
[
f (2)(x)

]2 − f (1)(x)f (3)(x)

[f (1)(x)]
2

] [
f(x)

f (1)(x)

]3

− 1

4!

[[
f (1)(x)

]2
f (4)(x)− 10f (1)(x)f (2)(x)f (3)(x) + 15

[
f (2)(x)

]3
[f (1)(x)]

4

][
f(x)

f (1)(x)

]3

.

The formulas for E4(x) and E5(x) appear in Traub's book [51].

Example 1.6.2. The �rst 4 IFs of Schröder's process of the second kind are:

S2(x) = NF2(x) = x− f(x)

f (1)(x)
, which is Newton's method of order 2;

S3(x) = NF3(x) = x− f(x)

f (1)(x)

[
1

1− 1
2
f(2)(x)

f(1)(x)

f(x)

f(1)(x)

]
, which is Halley's method of order 3 [18];

S4(x) = NF4(x) = x− f(x)

f (1)(x)

 1− 1
2
f(2)(x)

f(1)(x)

f(x)

f(1)(x)

1− f
(2)(x)

f(1)(x)

f(x)

f(1)(x)
+ 1

3!
f(3)(x)

f(1)(x)

[
f(x)

f(1)(x)

]2

 ,
and

S5(x) = NF5(x) = x− f(x)

f (1)(x)
× 1− f (2)(x)

f (1)(x)

f(x)

f (1)(x)
+ 1

3!
f (3)(x)

f (1)(x)

[
f(x)

f (1)(x)

]2

1− 3
2
f (2)(x)

f (1)(x)

f(x)

f (1)(x)
+

[
1
3
f (3)(x)

f (1)(x)
+ 1

4

[
f (2)(x)

f (1)(x)

]2
] [

f(x)

f (1)(x)

]2

− 1
4!
f (4)(x)

f (1)(x)

[
f(x)

f (1)(x)

]3

 .

Iterative formulas S4(x) and S5(x) were derived by I. Kiss [38]
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1.7 Combined iteration functions

Another way to obtain higher order �xed point methods to �nd a root α of f(x) is to

combine two �xed point methods of the same order p − 1 in such a way that the new

method Φ̃p(x) has an asymptotic constant Kp−1(α; Φ̃p) = 0. Then the resulting method

will be of order p, or at least of order p.

1.7.1 The Chebyshev-Halley family of order 3 [5]

Let us apply Newton's method to f(x)/
[
f (1)(x)

]β
where β is any real number (we suppose

f (1)(α) > 0), then we get

N
f/[f (1)]

β(x) = x−
f(x)/

[
f (1)(x)

]β[
f(x)/ [f (1)(x)]

β
](1)

= x− f(x)

f (1)(x)

[
1

1− βLf (x)

]
,

where Lf (x) = f(x)f (2)(x)

[f (1)(x)]
2 . It can be shown that

K2

(
α;N

f/[f (1)]
β

)
=

N
(2)

f/[f (1)]
β(α)

2!
=

1− 2β

2!

f (2)(α)

f (1)(α)
.

Now let us combine two IFs of order 2, one with β 6= 0 and one with β = 0 (which

corresponds to Newton's IF), we obtain a new IF of order 3

Gβ(x) =
1

2β

[
N
f/[f (1)]

β(x)− (1− 2β)Nf (x)

]
= x− f(x)

f (1)(x)

[
1− (β − 1/2)Lf (x)

1− βLf (x)

]
.

It is exactly the Chebyshev-Halley family of IFs of order 3. For β = 1 we get Super-

Halley IF, for β = 1/2 we get Halley's IF, and for β = 0, which is a limit case, we get
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Chebyshev's IF. Its asymptotic constant is

K3(α;Gβ) =
G

(3)
β (α)

3!
=

1

3!

[
−f

(3)(α)

f (1)(α)
+ 3(1− β)

[
f (2)(α)

f (1)(α)

]2
]
. (1.7.1)

1.7.2 Combination of a �xed point method and its corresponding

Newton's method

Assume Φp−1(x) is an IF of order p − 1 such that Kp−1(α; Φp−1) = Φ
(p−1)
p−1 (α)/(p − 1)!,

and let us set

Ψp−1(x) = Φp−1(x)− x = (Φp−1 − I)(x)

where I(x) = x. We have Ψp−1(α) = 0, Ψ
(1)
p−1(α) = Φ

(1)
p−1(α) − 1 = −1, Ψ

(l)
p−1(α) =

Φ
(l)
p−1(α) = 0 for l = 2, . . . , p − 2, and Ψ

(p−1)
p−1 (α) = Φ

(p−1)
p−1 (α). Using the corresponding

Newton's method, NΨp−1(x) = NΦp−1−I(x), it follows that

Kp−1(α;NΨp−1) =
(p− 2)Ψ

(p−1)
p−1 (α)

(p− 1)!Ψ
(1)
p−1(α)

= −(p− 2)
Φ

(p−1)
p−1 (α)

(p− 1)!
= −(p− 2)Kp−1(α; Φp−1).

Hence the linear combination of iteration functions

Φ̃p(x) =
1

p− 1

[
(p− 2)Φp−1(x) +NΨp−1(x)

]
is an iteration function of order p, or at least of order p.

1.7.3 Families of Super-Halley methods

Combining the last two subsections, considering Nf (x) and applying Newton's method

to Nf (x)− x = −f(x)/f (1)(x), we obtain

1

2

[
Nf (x) +NNf−I(x)

]
= G1(x),
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which is Super-Halley IF of order 3, noted SH3(x) (see [56, 24, 1]). We could then con-

sider di�erent ways of de�ning generalized Super-Halley IFs of any order p. For example :

(a) since Nf (x) = E2(x), by using Schröder's process of the �rst kind Ep−1(x) of order

p− 1 and considering the combination for p > 2

SHp(x) =
1

p− 1

[
(p− 2)Ep−1(x) +NEp−1−I(x)

]
;

(b) since Nf (x) = S2(x), by using Schröder's process of the second kind Sp−1(x) of order

p− 1 and considering for p > 2 the combination

SHp(x) =
1

p− 1

[
(p− 2)Sp−1(x) +NSp−1−I(x)

]
;

(c) or �nally, by using induction
SH2(x) = Nf (x),

SHp(x) = 1
p−1

[
(p− 2)SHp−1(x) +NSHp−1−I(x)

]
for p > 2.

1.8 Concluding remarks

In this paper we presented �xed point and Newton's methods to compute a simple root

of a non-linear function. We pointed out that the usual su�cient conditions for con-

vergence are also necessary. Based on the conditions for high order convergence, we

obtained systematic methods to increase the order of convergence of �xed point and

Newton's methods. Among the resulting methods are the two processes of Schröder, for

which a link has been explicitly shown. Finally, a combination of �xed point method

and its corresponding natural Newton's method has been used to increase the order of

convergence.
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Some extensions of this work are possible. For example we have recently extended Sec-

tion 2.4 to cover the modi�ed Newton's method for �nding a multiple root of a non-linear

function [6]. Also, since high order methods require high order derivatives of the function,

it could be interesting to try automatic di�erentiation tools to implement these methods.

Finally, generalization of these high order processes to system of non-linear equations

would be of great theoretical and practical interest.

1.9 Proof of Theorem 2.3.1

(i) [37, 41] By continuity, there is an interval Iρ(α) = (α− ρ, α+ ρ) such that
∣∣Φ(1)(x)

∣∣ ≤
1+|Φ(1)(α)|

2
= L < 1. Then if xk ∈ Iρ(α), we have

|xk+1 − α| ≤ L |xk − α| ≤ |xk − α| ≤ ρ

and xk+1 ∈ Iρ(α). Moreover

|xk − α| ≤ Lk |x0 − α| ,

and the sequence {xk+1 = Φ(xk)}+∞
k=0 converges to α because 0 ≤ L < 1.

(ii) If
∣∣Φ(1)(α)

∣∣ > 1, there exists an interval Iρ(α) = (α− ρ, α+ ρ), with ρ > 0, such that∣∣Φ(1)(x)
∣∣ ≥ 1+|Φ(1)(α)|

2
= L > 1. Let us suppose that the sequence {xk+1 = Φ(xk)}+∞

k=0 is

such that xk 6= α for all k. If xk and xk+1 ∈ Iρ(α), then we have

|xk+1 − α| = |Φ(xk)− Φ(α)| =
∣∣Φ(1)(ηk)(xk − α)

∣∣ ≥ L |xk − α| .

Let 0 < ε < ρ, and suppose xk, xk+1, . . . , xk+l are in Iε(α) ⊂ Iρ(α). Because

|xk+l − α| ≥ Ll |xk − α| ,

eventually Ll+1 |xk − α| ≥ ε, and xk+l+1 /∈ Iε(α). Then the in�nite sequence cannot

converge to α.
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(iii) [37, 41] For any sequence {xk+1 = Φ(xk)}+∞
k=0 which converges to α we have

lim
k→+∞

xk+1 − α
xk − α

= lim
k→+∞

Φ(1)(ηk) = Φ(1)(α).

since ηk converges to α.

1.10 Proof of Theorem 2.3.2

(i) [37, 41] The (local) convergence is given by part (i) of Theorem 2.3.1. Moreover we

have

xk+1 − α = Φ(xk)− Φ(α) =
Φ(p)(ηk)

p!
(xk − α)p,

and hence

lim
k→+∞

xk+1 − α
(xk − α)p

= lim
k→+∞

Φ(p)(ηk)

p!
=

Φ(p)(α)

p!
= Kp(α; Φ).

(ii) [51] If the IF is of order p ≥ 2, assume that Φ(j)(α) = 0 for j = 1, 2, . . . , l − 1 with

l < p. We have

xk+1 − α = Φ(xk)− Φ(α) =
Φ(l)(ηk)

l!
(xk − α)l.

Then
Φ(l)(ηk)

l!
=
xk+1 − α
(xk − α)l

=
xk+1 − α
(xk − α)p

(xk − α)p−l,

and so

Φ(l)(α)

l!
= lim

k→+∞

Φ(l)(ηk)

l!
= Kp(α; Φ) lim

k→+∞
(xk − α)p−l =


0 if l < p,

Kp(α; Φ) if l = p.

1.11 Proof of Theorem 5.4.1

(i) [19] If Ψ(j)(α) = 0 for j = 2, . . . , p− 1, and Ψ(p)(α) 6= 0 we have

xk+1 − α = (xk − α)− Ψ(xk)

Ψ(1)(xk)
=

(xk − α)p

Ψ(1)(xk)

[
Ψ(p)(η1,k)

(p− 1)!
− Ψ(p)(η2,k)

p!

]
,
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it follows that

lim
k→+∞

xk+1 − α
(xk − α)p

= lim
k→+∞

Ψ(p)(η1,k)

(p−1)!
− Ψ(p)(η2,k)

p!

Ψ(1)(xk)
=
p− 1

p!

Ψ(p)(α)

Ψ(1)(α)
.

(ii) Conversely, if NΨ(x) is of order p we have N (j)
Ψ (α) = 0 for f = 1, . . . , p − 1 and

N
(p)
Ψ (α) 6= 0. Hence α is a root of multiplicity p − 1 of N (1)

Ψ (x) and we can write

N
(1)
Ψ (x) = vNΨ

(x)(x − α)p−1 where vNΨ
(x) is a regular function such that vNΨ

(α) 6= 0.

But

N
(1)
Ψ (x) =

Ψ(x)Ψ(2)(x)

[Ψ(1)(x)]
2 = vNΨ

(x)(x− α)p−1,

and, since we have Ψ(x) = vΨ(x)(x − α), where vΨ(x) is a regular function such that

vΨ(α) 6= 0, we obtain

Ψ(2)(x) =
vNΨ

(x)

vΨ(x)

[
Ψ(1)(x)

]2
(x− α)p−2.

It follows that α is a root of multiplicity p − 2 of Ψ(2)(x), and so Ψ(j)(α) = 0 for j =

2, . . . , p− 1, and Ψ(p)(α) 6= 0.
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CHAPITRE 2

Fixed point and Newton's method in

the complex �eld.

Abstract

In this paper we revisit the necessary and su�cient conditions for linear and high order

convergence of �xed point and Newton's methods in the complex �eld. Schröder's process

of the �rst kind and second kind and revisited and extended. Examples and numerical

experiments are included.
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2.1 Introduction

In this paper we revisit �xed point and Newton's methods to �nd a simple solution of

a non-linear equation in the complex plane. This paper is an adapted version of [11]

for complex valued functions. We present only proofs of theorems we have to modify

compared to the real case. We present su�cient and necessary conditions for the con-

vergence of �xed point and Newton's methods. Based on these conditions we show how

to obtain direct processes to recursively increase the order of convergence. For the �xed

point method, we present a generalization of the Schröder's method of the �rst kind.

Two methods are also presented to increase the order of convergence of the Newton's

method. One of them coincide with the the Schröder's process of the second kind which

has several forms in the literature. The link between the two Schröder's processes can be

found in [7]. As for the real case, we can combine methods to obtain, for example, the

Super-Halley process of order 3 and other possible higher order generalizations of this

process. We refer to [11] for details about this subject.

The plan of the paper is as follows. In Section 2.2 we recall Taylor's expansions for

analytic functions and the error term for truncated expansions. In Section 2.3 we consider

the �xed point method and its necessary and su�cient conditions for convergence. These

results lead to a generalization of the Schröder's process of the �rst kind. Section 2.4

is devoted to Newton's method. Based on the necessary and su�cient conditions, we

propose two ways to increase the order of convergence of the Newton's method. Examples

and numerical experiments are included in Section 2.5.
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2.2 Analytic function

Since we are working with complex numbers, we will be dealing with analytic functions.

Suppose g(z) is an analytic function and α is in its domain, we can write

g(k)(z) =
∞∑
j=0

g(k+j)(α)

j!
(z − α)j .

for any k = 0, 1, . . .. Then, for q = 1, 2, . . . we have

g(k)(z) =

q−1∑
j=0

g(k+j)(α)

j!
(z − α)j + wg(k),q(z) (z − α)q .

where wg(k),q(z) is the analytic function

wg(k),q(z) =
∞∑
j=0

g(k+q+j)(α)

(q + j)!
(z − α)j .

Moreover, the series for g(k)(z) and wg(k),q(z) have the same radius of convergence for any

k, and

w
(j)

g(k),q
(α) =

j!

(q + j)!
g(k+q+j)(α)

for j = 0, 1, 2, . . ..

2.3 Fixed point method

A �xed point method use an iteration function (IF) which is an analytic function mapping

its domain of de�nition into itself. Using an IF Φ(z) and an initial value z0, we are

interested by the convergence of the sequence {zk+1 = Φ(zk)}+∞
k=0. It is well known that

if the sequence {zk+1 = Φ(zk)}+∞
k=0 converges, it converges to a �xed point of Φ(z).

Let Φ(z) be an IF, p be a positive integer, and {zk+1 = Φ(zk)}+∞
k=0 be such that the

following limit exists

lim
k→+∞

zk+1 − α
(zk − α)p

= Kp(α; Φ).
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Let us observe that for p1 < p < p2 we have

lim
k→+∞

zk+1 − α
(zk − α)p1

= 0 and lim
k→+∞

zk+1 − α
(zk − α)p2

=∞.

We say that the convergence of the sequence to α is of (integer) order p if and only if

Kp(α; Φ) 6= 0, and Kp(α; Φ) is called the asymptotic constant. We also say that Φ(z) is

of p. If the limit Kp(α; Φ) exists but is zero, we can say that Φ(z) is of order at least p.

From a numerical point of view, since α is not known, it is useful to de�ne the ratio

K̃p(α, k) =
zk+1 − zk+2

(zk − zk+1)p
. (2.3.1)

Following [4], it can be shown that

lim
k→+∞

K̃p(α, k) = Kp(α; Φ),

and

lim
k→+∞

ln
∣∣∣K̃1(α, k + 1)

∣∣∣
ln
∣∣∣K̃1(α, k)

∣∣∣ = p.

We say that α is a root of f(z) of multiplicity q if and only if f (j)(α) = 0 for j =

0, . . . , q − 1, and f (q)(α) 6= 0. Moreover, α is a root of f(z) of multiplicity q if and

only if there exists an analytic function wf,q(z) such that wf,q(α) = f (q)(α)
q!
6= 0 and

f(z) = wf,q(z)(z − α)q.

We will use the Big O notation g(z) = O(f(z)), respectively the small o notation g(z) =

o(f(z)), around z = α when c 6= 0, respectively c = 0, when

lim
z→α

g(z)

f(z)
= c. (2.3.2)

For α a root of multiplicity q of f(z), it is equivalent to write g(z) = O(f(z)) or g(z) =

O((z−α)q). Observe also that if α is a simple root of f(z), then α is a root of multiplicity

q of f q(z). Hence g(z) = O(f q(z)) is equivalent to g(z) = O((z − α)q).
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The �rst result concerns the necessary and su�cient conditions for achieving linear con-

vergence.

Theorem 2.3.1. Let Φ(z) be an IF, and let Φ(1)(z) stand for its �rst derivative. Observe

that although the �rst derivative is usually denoted by Φ′(z), we will write Φ(1)(z) to

maintain uniformity throughout the text.

(i) If |Φ(1)(α)| < 1, then there exists a neighbourhood of α such that for any z0 in that

neighbourhood the sequence {zk+1 = Φ(zk)}+∞
k=0 converges to α.

(ii) If there exists a neighbourhood of α such that for any z0 in that neighbourhood the

sequence {zk+1 = Φ(zk)}+∞
k=0 converges to α, and zk 6= α for all k, then

∣∣Φ(1)(α)
∣∣ ≤ 1.

(iii) For any sequence {zk+1 = Φ(zk)}+∞
k=0 which converges to α, the limit K1(α; Φ) exists

and K1(α; Φ) = Φ(1)(α).

Proof.

(i) By continuity, there is a disk Dρ(α) = {α ∈ C | |z − α| < ρ } such that |wΦ,1(z)| ≤
1+|Φ(1)(α)|

2
= L < 1. Then if zk ∈ Dρ(α), we have

|zk+1 − α| = |Φ(zk)− Φ(α)| = |wΦ,1(zk)(zk − α)| ≤ L |zk − α| ≤ |zk − α| < ρ,

and zk+1 ∈ Dρ(α). Moreover

|zk − α| ≤ Lk |z0 − α| ,

and the sequence {zk+1 = Φ(zk)}+∞
k=0 converges to α because 0 ≤ L < 1.

(ii) If
∣∣Φ(1)(α)

∣∣ > 1, there exists a disk Dρ(α), with ρ > 0, such that |wΦ,1(z)| ≥
1+|Φ(1)(α)|

2
= L > 1. Let us suppose that the sequence {zk+1 = Φ(zk)}+∞

k=0 is such that

zk 6= α for all k. If zk and zk+1 ∈ Dρ(α), then we have

|zk+1 − α| = |Φ(zk)− Φ(α)| = |wΦ,1(zk)(zk − α)| ≥ L |zk − α| .

Let 0 < ε < ρ, and suppose zk, zk+1, . . ., zk+l are in Dε(α) ⊂ Dρ(α). Because

|zk+l − α| ≥ Ll |zk − α|
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eventually Ll+1 |zk − α| ≥ ε and zk+l /∈ Dε(α). Then the in�nite sequence cannot converge

to α.

(iii) For any sequence {zk+1 = Φ(zk)}+∞
k=0 which converges to α we have

lim
k→+∞

zk+1 − α
zk − α

= lim
k→+∞

wΦ,1(zk) = Φ(1)(α).

For higher order convergence we have the following result about necessary and su�cient

conditions.

Theorem 2.3.2. Let p be an integer ≥ 2 and let Φ(z) be an analytic function such that

Φ(α) = α. The IF Φ(z) is of order p if and only if Φ(j)(α) = 0 for j = 1, . . . , p− 1, and

Φ(p)(α) 6= 0. Moreover, the asymptotic constant is given by

Kp(α; Φ) = lim
k→+∞

zk+1 − α
(zk − α)p

=
Φ(p)(α)

p!
.

Proof.

(i) The (local) convergence is given by the part (i) of the Theorem 2.3.1. Moreover we

have

zk+1 − α = Φ(zk)− Φ(α) = wΦ,p(zk)(zk − α)p,

and hence

lim
k→+∞

zk+1 − α
(zk − α)p

= lim
k→+∞

wΦ,p(zk) =
Φ(p)(α)

p!
= Kp(α; Φ).

(ii) If the IF is of order p ≥ 2, assume that Φ(j)(α) = 0 for j = 1, 2, . . . , l − 1 with l < p.

We have

zk+1 − α = Φ(zk)− Φ(α) = wΦ,l(zk)(zk − α)l,

where

wΦ,l(α) = lim
k→+∞

wΦ,l(zk) =
Φ(l)(α)

l!
.

But

wΦ,l(zk) =
zk+1 − α
(zk − α)l

=
zk+1 − α
(zk − α)p

(zk − α)p−l,
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and hence

wΦ,l(α) = lim
k→+∞

wΦ,l(zk) = Kp(α; Φ) lim
k→+∞

(zk − α)p−l =


0 if l < p,

Kp(α; Φ) if l = p.

So Φ(l)(α) = 0.

It follows that for an analytic IF and p > 2, the limit Kp(α; Φ) exists if and only if

Kl(α; Φ) = 0 for l = 1, . . . , p− 1.

As a consequence, for an analytic IF Φ(z) we can say that: (a) Φ(z) is of order p if and only

if Φ(z) = α+O((z−α)p), or equivalently, if Φ(α) = α and Φ(1)(z) = O((z−α)p−1), and

(b) if α is a simple root of f(z), then Φ(z) is of order p if and only if Φ(z) = α+O(fp(z)),

or equivalently, if Φ(α) = α and Φ(1)(z) = O(fp−1(z)).

Schröder's process of the �rst kind is a systematic and recursive way to construct an IF

of arbitrary order p to �nd a simple zero α of f(z). The IF has to ful�l at least the

su�cient condition of Theorem 2.3.2. Let us present a generalization of this process.

Theorem 2.3.3. [11] Let α be a simple root of f(z), and let c0(z) be an analytic function

such that c0(α) = α. Let Φp(z) be the IF de�ned by the �nite series

Φp(z) =

p−1∑
l=0

cl(z)f l(z) (2.3.3)

where the cl(z) are such that

cl(z) = −1

l

(
1

f (1)(z)

d

dz

)
cl−1(z) (2.3.4)

for l = 1, 2, . . . Then Φp(z) is of order p, and its asymptotic constant is

Kp(α,Φp) =
Φ(p)(α)

p!
=

1

p
c

(1)
p−1(α)

[
f (1)(α)

]p−1
= −cp(α)

[
f (1)(α)

]p
. (2.3.5)
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For c0(z) = z in (2.3.3), we recover the Schröder's process of the �rst kind of order

p [48, 51, 27], which is also associated to Chebyshev and Euler [2, 49, 44]. The �rst

term c0(z) could be seen as a preconditioning to decrease the asymptotic constant of the

method, but its choice is not obvious.

2.4 Newton's iteration function

Considering c0(z) = z and p = 2 in (2.3.3), we obtain

Φ2(z) = z − f(z)

f (1)(z)

which is the Newton's IF of order 2 to solve f(z) = 0. The su�ciency and the necessity

of the condition for high-order convergence of the Newton's method are presented in the

next result.

Theorem 2.4.1. Let p ≥ 2 and let Ψ(z) be an analytic function such that Ψ(α) = 0

and Ψ(1)(α) 6= 0. The Newton iteration NΨ(z) = z − Ψ(z)

Ψ(1)(z)
is of order p if and only if

Ψ(j)(α) = 0 for j = 2, . . . , p− 1, and Ψ(p)(α) 6= 0. Moreover, the asymptotic constant is

Kp(α;NΨ) =
p− 1

p!

Ψ(p)(α)

Ψ(1)(α)
.

Proof.

(i) If Ψ(j)(α) = 0 for j = 2, . . . , p− 1, and Ψ(p)(α) 6= 0 we have

zk+1 − α = (zk − α)− Ψ(zk)

Ψ(1)(zk)

=
(zk − α)Ψ(1)(zk)−Ψ(zk)

Ψ(1)(zk)
.

But

Ψ(1)(zk) = Ψ(1)(α) + wΨ(1),p−1(zk)(zk − α)p−1,
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and

Ψ(zk) = Ψ(1)(α)(zk − α) + wΨ,p(zk)(zk − α)p.

It follows that

zk+1 − α =
wΨ(1),p−1(zk)− wΨ,p(zk)

Ψ(1)(zk)
(zk − α)p ,

so

lim
k→+∞

zk+1 − α
(zk − α)p

= lim
k→+∞

wΨ(1),p−1(zk)− wΨ,p(zk)

Ψ(1)(zk)

=

{
Ψ(p)(α)

(p− 1)!
− Ψ(p)(α)

p!

}
/Ψ(1)(α)

=
(p− 1)

p!

Ψ(p)(α)

Ψ(1)(α)
.

(ii) Conversely, if NΨ(z) is of order p we have N (j)
Ψ (α) = 0 for j = 1, . . . , p − 1, and

N
(p)
Ψ (α) 6= 0. Hence α is a root of multiplicity p− 1 of N (1)

Ψ (z) and we can write

N
(1)
Ψ (z) = w

N
(1)
Ψ ,p−1

(z)(z − α)p−1.

We also have

Ψ(z) = wΨ,1(z)(z − α).

But

N
(1)
Ψ (z) =

Ψ(z)Ψ(2)(z)

[Ψ(1)(z)]
2 ,

so we obtain

Ψ(2)(z) = N
(1)
Ψ (z)

[
Ψ(1)(z)

]2
Ψ(z)

=
w
N

(1)
Ψ ,p−1

(z)

wΨ,1(z)

[
Ψ(1)(z)

]2
(z − α)p−2

where

lim
z→α

w
N

(1)
Ψ ,p−1

(z)

wΨ,1(z)

[
Ψ(1)(z)

]2
=
N

(p)
Ψ (α)Ψ(1)(α)

(p− 1)!
6= 0.
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It follows that α is a root of multiplicity p − 2 of Ψ(2)(z). Hence Ψ(j)(α) = 0 for j =

2, . . . , p− 1, and Ψ(p)(α) 6= 0.

We can look for a recursive method to construct a function Ψp(z) which will satisfy the

conditions of Theorem 5.4.1. A consequence will be that NΨp(z) will be of order p, and

NΨp(z) = α + O(fp(z)). A �rst method has been presented in [19, 17]. The technique

can also be based on Taylor's expansion as indicated in [6].

Theorem 2.4.2. [19] Let f(z) be analytic such that f(α) = 0 and f (1)(α) 6= 0. If Fp(z)

is de�ned by 
F2(z) = f(z),

Fp(z) = Fp−1(z)[
F

(1)
p−1(z)

] 1
p−1

for p ≥ 3,
(2.4.1)

then Fp(α) = 0, F (1)
p (α) 6= 0, F (l)

p (α) = 0 for l = 2, . . . , p− 1. It follows that NFp(z) is of

order at least p.

Let us observe that in this theorem it seems that the method depends on a choice of a

branch for the (p − 1)-th root function. In fact the newton iterative function does not

depends of this choice because we have

NFp(z) = z −
Fp−1(z)/F

(1)
p−1(z)

1− 1
p−1

Fp−1(z)F
(2)
p−1(z)

[F
(1)
p−1(z)]2

= z −
Fp−1(z)/F

(1)
p−1(z)

1− 1
p−1

[
1−

(
Fp−1(z)

F
(1)
p−1(z)

)(1)
] .

In fact the next theorem show that a branch for the (p − 1)-th root function is not

necessary.

Theorem 2.4.3. [17] Let Fp(z) given by (2.4.1), we can also write

NFp(z) = z − f(z)

f (1)(z)− 1
p−1

f(z)
Q

(1)
p (z)

Qp(z)

= z − f(z)
Qp(z)

Qp+1(z)
, (2.4.2)
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where 
Q2(z) = 1,

Qp(z) = f (1)(z)Qp−1(z)− 1
p−2

f(z)Q
(1)
p−1(z) for p ≥ 3.

(2.4.3)

Unfortunately, there exist no general formulae for NFp(z) and its asymptotic constant

Kp(α;NFp) exist. However, the asymptotic constant can be numerically estimated with

(2.3.1).

A second method to construct a function Ψp(z) which will satisfy the conditions of

Theorem 5.4.1 is given in the next theorem.

Theorem 2.4.4. [11] Let α be a simple root of f(z). Let Ψp(z) be de�ned by

Ψp(z) =

p−1∑
l=0

dl(z)f l(z) (2.4.4)

where d0(z) and d1(z) are two analytic functions such that{
d0(α) = 0

d
(1)
0 (α) + d1(α)f (1)(α) 6= 0

(2.4.5)

and

dl(z) = − 1

lf (1)(z)
× (2.4.6)[

d
(1)
l−1(z) +

1

(l − 1)f (1)(z)

[
d

(1)
l−2(z) + (l − 1)dl−1(z)f (1)(z)

](1)
]

for l = 2, 3, . . .. Then

NΨp(z) = z − Ψp(z)

Ψ
(1)
p (z)

is of order p, with

Ψ(p)
p (α) = −p! dp(α)

[
f (1)(α)

]p
,

and

Kp(α;NΨp) = −
(p− 1)dp(α)

[
f (1)(α)

]p
d

(1)
0 (α) + d1(α)f (1)(α)

.
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Let us observe that if we set Ψp(z) = Φp(z) − z with the Φp(z) given by (2.3.3), then

Ψp(z) veri�es the assumptions of Theorem 2.4.4.

Remark 2.4.1. For a given pair of d0(z) and d1(z) in Theorem 2.4.4, the linearity of

the expression 2.4.6 with respect to d0(z) and d1(z) for computing the dl(z)'s allows us

to decompose the computation for Ψp(z) in two computations, one for the pair d0(z) and

d1(z) = 0, and the other for the pair d0(z) = 0 and d1(z), then add the two Ψp(z)'s hence

obtained.

2.5 Examples

Let us consider the problem of �nding the 3rd roots of unity

αk = e2(k−1)πi/3 for k = 0, 1, 2,

for which we have α3 = 1. Hence we would like to solve

f(z) = 0,

for

f(z) = z3 − 1.

As examples of the preceding results, we present methods of order 2 and 3 obtained from

Theorems 5.3.2, 5.4.2, and 2.4.4. For each methods we consider we also present the basins

of attraction of the roots.

The drawing process for the basins of attraction follows Varona [53]. Typically for the

upcoming �gures, in squares [2.5, 2.5]2, we assign a color to each attraction basin of each

root. That is, we color a point depending on whether within a �xed number of iteration

(here 25) we lie with a certain precision (here 10−3 ) of a given root. If after 25 iterations

49



we do not lie within 10−3 of any given root we assign to the point a very dark shade of

purple. The more purple, the more point have failed to achieve the required precision

within the predetermined number of iteration.

2.5.1 Examples for Theorem 5.3.2

We start with iterative methods of order 2. From Theorem 5.3.2, we �rst want c0(α) =

α. We observe that the simplest such function is c0(z) = z. Such a choice has the

advantage that derivative of higher order then 2 of this function c0(z) will be 0, thus

simplifying further computation. This is in fact the choice of function c0(z) which leads

to Newton's method and Chebysev family of iterative methods. We observe however that

it is generally possible to consider di�erent choices of functions, although most will might

be numerically convenient as we will illustrate here. We need c0(α) = α, in such, we can

also look at c0(z) = za(z) where a(α) = 1. In the examples that follow we will look at

such functions a(z).

In Table 2.1, we have considered 3 functions of this kind. We have developed explicit

expressions for f(z) = z3 − 1. Figure2.1 presents di�erent graphs for the basins of

attraction for these methods. We observe that some of them have a lot of purple points.

Now let us consider method of order 3 with c0(z) = z3m+1 with (m ∈ Z). In this case we

obtain

Φ3(z) =

z3m−2

18

[
(3m− 2) (3m− 5) z3 − 2 (3m+ 1) (3m− 5) + (3m+ 1) (3m− 2) z−3

]
,

and its asymptotic constant is

K3(α; Φ3) =
(3m+ 1) (3m− 2) (3m− 5)

6
α.
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(a) For m = 0, c0(z) = z, and

its asymptotic constant is α2.

(b) For m = 1, c0(z) = z4, and

its asymptotic constant is −2α2

(c) For c0(z) = z(e(z3−1)), the

asymptotic constant is −13
2 α

2.

(d) For c0(z) = z cos(z3 − 1), the

asymptotic constant is 11
2 α

2.

Figure 2.1: Basins of attraction for methods of order 2 of Table 2.1.
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Tableau 2.1: Method of order 2 based on Theorem 5.3.2.

c0(z) = za(z) Φ2(z) K2(α; Φ2)

z z3m (m ∈ Z)
[
(3m+ 1)− (3m− 2) z3

]
z3m−2

3 − (3m+1)(3m−2)
2 α2

z exp
(
z3 − 1

)
1+5z3−3z6

3z2
exp

(
z3 − 1

)
− 13

2 α
2

z cos
(
z3 − 1

)
6z3+1

32 cos
(
z3 − 1

)
+ z

(
z3 − 1

)
sin
(
z3 − 1

)
11
2 α

2

Examples of basins of attraction are given in Figure 2.2 for m = 0, 1, 2. The smallest

asymptotic constant is for m = 1.

2.5.2 Examples for Theorem 5.4.2

Gerlach's process described in Theorems 5.4.2 and 2.4.3 leads to Newton's method for

p = 2 and Halley's method for p = 3. For our problem we have

NF2(z) = z − (z3 − 1)

3z2
,

and

NF3(z) = z − (z3 − 1) /3z2

1− 1
2

[
1−

(
z3−1
3z2

)(1)
] = z

z3 + 2

2z3 + 1
.

These methods are well known standard methods. For comparison, their basins of at-

traction are given in Figure 2.3.
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(a) m = 0, its asymptotic constant is 5
3α

(Chebysev's method).

(b) m = 1, its asymptotic constant is −4
3α.

(c) m = 2, its asymptotic constant is 14
3 α.

Figure 2.2: Methods of order 3 for computing the cubic root with c0(z) = z3m+1 for
M = 0, 1, 2.
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(a) NF2(z) is Newton's method.

(b) NF3(z) is Halley's method.

Figure 2.3: First two methods for computing the third root with Theorem 5.4.2.
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2.5.3 Examples for Theorem 2.4.4

To illustrate Theorem 2.4.4, we set d0(z) = 0 and d1(z) = zk for k ∈ Z, and let us

consider methods of order 2 and 3 to solve z3 − 1 = 0. Table 2.2 presents the quantities

Ψp(z), NΨp(z), dp(z), and Kp(α; Ψp) for p = 2, 3 for this example.

Tableau 2.2: Method of order 2 and 3 based on Theorem 5.3.2.

p Ψp(z) NΨp
(z) dp(z) Kp(α; Ψp)

2 zk(z3 − 1) z (k+2)z3−(k−1)
(k+3)z3−k −k+1

3 zk−3 (k + 1)α2

3 zk

3

[
(2− k) z3 + (2k − 1)− (k + 1) z−3

]
z

[(k+2)(2−k)z3+(k−1)(2k−1)−(k−4)(k+1)z−3]
[(k+3)(2−k)z3+k(2k−1)−(k−3)(k+1)z−3]

3k2−3k−8
54z2 zk−4 − 3k2−3k−8

3 α

We observe that the asymptotic constant of the method of order 2 for k = −1 is zero,

it means that this method as an order of convergence higher than 2, and in fact it

corresponds to the Halley's method which is of order 3. We observe that methods of

order 3 for the values of k = −1 and k = 2 both correspond to Halley's method for our

speci�c problem. Examples of basins of attraction are given in Figure 2.4 for methods of

order 2 and in Figure 2.5 for methods of order 3 using values of k = −2,−1, 0, 1, 2, 3.

2.6 Concluding remarks

We have presented �xed point and Newton's methods to compute a simple root of a

non-linear analytic function in the complex plane. Based on the necessary and su�cient

conditions for convergence we revisited and extended both Schröder's methods. Like

Kalantari [36] and Varona [53] we have illustrated those methods with their bassins.
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(a) k = −2 and d1(z) = z−2. (b) k = −1 and d1(z) = z−1.

(c) k = 0 and d1(z) = 1. (d) k = 1 and d1(z) = z.

(e) k = 2 and d1(z) = z2. (f) k = 3 and d1(z) = z3.

Figure 2.4: Methods of order 2 to illustrate Theorem 2.4.4.
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(a) k = −2 and d1(z) = z−2. (b) k = −1 and d1(z) = z−1.

(c) k = 0 and d1(z) = 1. (d) k = 1 and d1(z) = z.

(e) k = 2 and d1(z) = z2. (f) k = 3 and d1(z) = z3.

Figure 2.5: Methods of order 3 to illustrate Theorem 2.4.4.
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CHAPITRE 3

On the rediscovery of Halley's iterative

method for computing the zero of an

analytic function.

Abstract

We show that Halley's basic sequence, resulting from accelerating the order of convergence

of Newton's method, is the most e�cient way of doing so in terms of usage of certain

derivatives. This fact could explain why this process of accelerating the convergence of

Newton's method is so frequently rediscovered. Then we present an algorithmic way of

recognizing Halley's family and we apply this algorithm to examples of rediscoveries.
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3.1 Introduction

Newton's method of order 2 to solve a nonlinear equation appeared in 1669 [57]. Later,

in 1694, Halley presented an improvement of order 3 of this method [20, 18]. In 1870

Schröder introduced an in�nite sequence of methods based on rational approximations

whose p-th member is of order p. The �rst two elements of this sequence where Newton's

method (p = 2), and Halley's method (p = 3). This family is said to be the Schröder's

method of 2nd kind, or also the Halley's basic sequence. This sequence, under di�erent

forms, has been rediscovered in 1946 [21], and 1953 [26]. In [51] Traub says that Halley's

method has been very often rediscovered. That statement was made in 1964, since then,

this sequence has been rediscovered several times: 1966 [54], 1969 [52], 1972 [31], 1975

[16], 1991 [28], 1994 [19], 1996 [17], 1997 [32]. In fact, at least once every decade Halley's

basic sequence of iterative methods is rediscovered [44, 45]. This no longer seems like a

simple coincidence.

Naturally we are faced with the following questions when we are looking for a new method:

are we also on the verge of a rediscovery? How can we prevent oneself from a rediscovery

? In the following we �rst show that the Halley's basic sequence of iterative methods

results from accelerating the order of convergence of Newton's method and we show that

it is the most e�cient way of doing so in terms of usage of certain derivatives. Then

we present an algorithmic way of recognizing Halley's family. We apply this algorithm

to examples of rediscoveries and present several forms under which the Halley's basic

sequence can appear.
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3.2 Preliminaries

Suppose g(z) is an analytic function and α is in its domain, we can write

g(k)(z) =
∞∑
j=0

g(k+j)(α)

j!
(z − α)j .

for any k = 0, 1, . . .. Then, for q = 1, 2, . . . we have

g(k)(z) =

q−1∑
j=0

g(k+j)(α)

j!
(z − α)j + wg(k),q(z) (z − α)q .

where wg(k),q(z) is the analytic function

wg(k),q(z) =
∞∑
j=0

g(k+q+j)(α)

(q + j)!
(z − α)j .

Moreover, the series for g(k)(z) and wg(k),q(z) have the same radius of convergence for any

k, and

w
(j)

g(k),q
(α) =

j!

(q + j)!
g(k+q+j)(α)

for j = 0, 1, 2, . . ..

We will use the Big O notation, g(z) = O(f(z)), around z = α when there exists a

constant c 6= 0 such that

lim
z→α

g(z)

f(z)
= c.

If a root α is of multiplicity q for f(z), it is equivalent to write g(z) = O(f(z)) or

g(z) = O((z − α)q).

Finally, the order of convergence to α of a sequence {zk}+∞
k=0 is p if and only if there exists

a non-zero constant Cp such that

lim
k→+∞

zk+1 − α
(zk − α)p

= Cp.
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3.3 On the Halley's accelerating process

3.3.1 High order Newton's method

An important result about high order Newton's method is given by the following the-

orem which presents necessary and su�cient conditions for obtaining a given order of

convergence (see also [11] for this result for real valued functions).

Theorem 3.3.1. Newton's method

Nf (z) = z − f(z)

f ′(z)
.

applied to an analytic function f(z), with f(α) = 0 and f ′(α) 6= 0, is of order p ≥ 2 if

and only if f ′′(z) = O ((z − α)p−2).

Proof.

Su�ciency. If f (j)(α) = 0 for j = 2, . . . , p− 1, and f (p)(α) 6= 0 we have

Nf (z)−Nf (α) = (z − α)− f(z)

f ′(z)

=
(z − α)f ′(z)− f(z)

f ′(z)
.

But

f ′(z) = f ′(α) + wf ′,p−1(z)(z − α)p−1,

and

f(z) = f ′(α)(z − α) + wf,p(z)(z − α)p.

It follows that

Nf (z)−Nf (α) =
wf ′,p−1(z)− wf,p(z)

f ′(z)
(z − α)p ,
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so

lim
z→α

zk − α
(z − α)p

= lim
z→α

wf ′,p−1(z)− wf,p(z)

f ′(z)

=

[
f (p)(α)

(p− 1)!
− f (p)(α)

p!

]
/f ′(α)

=
(p− 1)

p!

f (p)(α)

f ′(α)
.

Necessity. Conversely, suppose Nf (z) is of order p. Let us assume that N (j)
f (α) = 0 for

j = 1, . . . , l − 1 for l < p. We have

Nf (z) = Nf (α) + wNf ,l(z) (z − α)l .

But

N
(l)
f (α)

l!
= lim

z→α
wNf ,l(z)

= lim
z→α

Nf (z)−Nf (α)

(z − α)l

= lim
z→α

Nf (z)−Nf (α)

(z − α)p
(z − α)(p−l)

= 0,

because limz→α
Nf (z)−Nf (α)

(z−α)p
is a �nite value. It follows that α is a root of multiplicity p−1

of N ′f (z), and we can write

N ′f (z) = wN ′f ,p−1(z)(z − α)p−1.

We also have

f(z) = wf,1(z)(z − α).

But

N ′f (z) =
f(z)f ′′(z)

[f ′(z)]2
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we obtain

f ′′(z) = N ′f (z)
[f ′(z)]2

f(z)

=
wN ′f ,p−1(z)

wf,1(z)
[f ′(z)]

2
(z − α)p−2

where

lim
z→α

wN ′f ,p−1(z)

wΨ,1(z)
[f ′(z)]

2
=
N

(p)
f (α)f ′(α)

(p− 1)!
6= 0.

It follows that α is a root of multiplicity p − 2 of f ′′(z). Hence f (j)(α) = 0 for j =

2, . . . , p− 1, and f (p)(α) 6= 0.

3.3.2 Increasing the order of convergence with the minimal amount

of new information

Suppose f(α) = 0, f ′(α) 6= 0, and f ′′(α) = O ((z − α)p−2), then Nf is of order p. To

increase the order of convergence to p+1 we look for F (z) such that F (α) = 0, F ′(α) 6= 0,

and F ′′(α) = O ((z − α)p−1). Then NF will be of order p+ 1.

Since α is supposed to be a simple root of F (z), we can write

F (z) = f(z)
F (z)

f(z)
= f(z)F̃ (z).

with F̃ (α) 6= 0. We want that F (z) contains the minimal amount of new information. As

suggested in [51], this new information comes from f ′(z). Hence we consider that F̃ (z)

depends only on f ′(z), so

F̃ (z) = G (f ′(z)) .

Now

F (z) = f(z)G (f ′(z)) ,
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and

F ′(z) = f ′(z)G (f ′(z)) + f(z)G′ (f ′(z)) f ′′(z).

The requirement that α be a simple root of F (z) implies

F ′(α) = f ′(α)G (f ′(α)) 6= 0,

so G (f ′(α)) 6= 0. Because the value f ′(α) can be arbitrary in C except 0, we assume

that G(ξ) 6= 0 for any ξ ∈ C except eventually at ξ = 0. We would also like that

F ′′(z) = O ((z − α)p−1). We have

F ′′(z) = f ′′(z)G (f ′(z)) + 2f ′(z)G′ (f ′(z)) f ′′(z)

+f(z)G′ (f ′(z)) f ′′′(z) + f(z)G′′ (f ′(z))
[
f ′′(z)

]2
.

Since f(z) = O ((z − α)) and f ′′(z) = O ((z − α)p−2), we observe that

f(z)G′′ (f ′(z))
[
f ′′(z)

]2
= O

(
(z − α)2p−3

)
regardless of G′′ (f ′(z)). Let us remark that O ((z − α)2p−3) is equivalent or lower than

O ((z − α)p−1) for p ≥ 2. So this term can be ignored. We already know that G (f ′(α)) 6=

0. Suppose G′ (f ′(α)) = 0, then we will have G′ (f ′(z)) = O (z − α) and

2f ′(z)G′ (f ′(z)) f ′′(z) + f(z)G′ (f ′(z)) f ′′′(z) = O
(
(z − α)p−1

)
,

meaning that

F ′′(z) = f ′′(z)G (f ′(z)) + O
(
(z − α)p−1

)
= O

(
(z − α)p−2

)
,

because

f ′′(z)G (f ′(z)) = O
(
(z − α)p−2

)
.

Therefore we need G′ (f ′(α)) 6= 0 to get F ′′(z) = O ((z − α)p−1). Now let us write

F ′′(z) = G′ (f ′(z))
[
f ′′(z)

G (f ′(z))

G′ (f ′(z))
+ 2f ′(z)f ′′(z) + f(z)f ′′′(z)

]
+ O

(
(z − α)p−1

)
.
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Under the hypothesis on f(z) it can be proved, see Lemma 3.3.3 in the next section, that

(p− 2)f ′(z)f ′′(z)− f(z)f ′′′(z) = O
(
(z − α)p−1

)
.

So we deduce

F ′′(z) = G′ (f ′(z)) f ′′(z)
[G (f ′(z))

G′ (f ′(z))
+ pf ′(z)

]
+ O

(
(z − α)p−1

)
.

Since f ′′(z) = O ((z − α)p−2), we obtain that F ′′(z) = O ((z − α)p−1) if and only if

G (f ′(z))

G′ (f ′(z))
+ pf ′(z) = O (z − α) ,

and therefore
G (f ′(α))

G′ (f ′(α))
+ pf ′(α) = 0.

We want this to be true regardless of the value f ′(α) = ξ 6= 0, then we have to �nd G(ξ)

such that
G(ξ)

G′(ξ)
+ pξ = 0

for all ξ 6= 0. Solving this equation leads to

G(ξ) =
c

ξ1/p
,

for an arbitrary constant c. Conversely if the above equation holds then

G (f ′(z))

G′ (f ′(z))
+ pf ′(z) = 0

for all z in a neighbourhood of α, and F ′′(z) = O ((z − α)p−1). So we have proved the

following result.

Theorem 3.3.2. Let f(z) be such that f(α) = 0 and f ′(α) 6= 0, and suppose Nf be of

order p. There exists a function G(ξ) such that NF is of order p+ 1 for

F (z) = f(z)G (f ′(z))

if and only if

G(ξ) =
c

ξ1/p
.
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So using

F (z) = c
f(z)

[f ′(z)]1/p
,

we have

NF (z) = z − F (z)

F ′(z)
= z − f(z)

f ′(z)

[
1− 1

p

[
1−

(
f(z)
f ′(z)

)′]] ,
which is of order p + 1. Let us mention that this is the result obtained in [19] for real

valued functions, and it is called the Halley's acceleration process.

3.3.3 A fundamental lemma

To increase the order of convergence of the Newton's method, we need a way to increase

the order of the zero of the second derivative of the appropriate function F (z) related

to the original function f(z). Looking in this direction, the next lemma is very useful.

It describes a way to combine the minimum number of successive terms like f (k)(z)

(k = 0, 1, 2, 3, . . .) to get an expression of the form O ((z − α)p−2). It happens that this

minimum number is 3.

Lemma 3.3.3. Let α be a simple root of an analytic function f(z), i.e. f(α) = 0 and

f ′(α) 6= 0. For any p ≥ 2, f ′′(z) = O ((z − α)p−2) i�

(p− 2)f ′(z)f ′′(z)− f(z)f ′′′(z) = O
(
(z − α)p−1

)
= w(z)(z − α)p−1.

Moreover

w(α) = −f
′(α)f (p+1)(α)

(p− 1)!
.

Proof. Let us observe that for p = 2 there is nothing to prove. Indeed f ′′(z) = O (1)

and the condition holds because f(z)f ′′′(z) = O (z − α) = w(z)(z − α). So we consider

p ≥ 3.
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Su�ciency. Let us consider the following expansions

f(z) = f ′(α)(z − α) + wf,p(z)(z − α)p,

f ′(z) = f ′(α) + wf ′,p−1(z)(z − α)p−1,

f ′′(z) =
f (p)(α)

(p− 2)!
(z − α)p−2 + wf ′′,p−1(z)(z − α)p−1,

f ′′′(z) =
f (p)(α)

(p− 3)!
(z − α)p−3 + wf ′′′,p−2(z)(z − α)p−2,

where wf (i),j(α) =
f (i+j)(α)

j!
for any i, j = 0, 1, . . . By a direct substitution we get

(p− 2)f ′(z)f ′′(z)− f(z)f ′′′(z)

= f ′(α)
[
(p− 2)wf ′′,p−1(z)− wf ′′′,p−2(z)

]
(z − α)p−1 + O

(
(z − α)2p−3

)
= O

(
(z − α)p−1

)
,

because p− 1 ≤ 2p− 3 for p ≥ 2. For the value of w(α), we have

w(α) = lim
z→α

f ′(α)
[
(p− 2)wf ′′,p−1(z)− wf ′′′,p−2(z)

]
= −f

′(α)f (p+1)(α)

(p− 1)!
.

Necessity. We suppose for any p ≥ 3 that

(p− 2)f ′(z)f ′′(z)− f(z)f ′′′(z) = O
(
(z − α)p−1

)
= w(z)(z − α)p−1,

and we have to prove that f ′′(z) = O ((z − α)p−2), which is equivalent to f (l)(α) = 0 for

l = 2, . . . , p− 1. Since

0 = lim
z→α

(p− 2)f ′(z)f ′′(z)− f(z)f ′′′(z) = (p− 2)f ′(α)f ′′(α)

it follows that f ′′(α) = 0. If p = 3 we are done. Let us consider p > 3, and suppose

2 ≤ l ≤ p − 2 and f (j)(α) = 0 for j = 2, . . . , l, we are going to show that f (l+1)(α) = 0.
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Hence for l = p− 2 we will have the result. We consider the following expansions

f(z) = f ′(α)(z − α) + wf,l+1(α)(z − α)l+1,

f ′(z) = f ′(α) + wf ′,l(z)(z − α)l,

f ′′(z) = wf ′′,l−1(z)(z − α)l−1,

f ′′′(z) = wf ′′′,l−2(z)(z − α)l−2,

By a direct substitution we get

(p− 2)f ′(z)f ′′(z)− f(z)f ′′′(z)

=
[
(p− 2)wf ′′,l−1(z)− wf ′′′,l−2(z)

]
f ′(α)(z − α)l−1

+
[
(p− 2)wf ′,l(z)wf ′′,l−1(z)− wf,l+1(z)wf ′′′,l−2(z)

]
(z − α)2l−1

= O
(
(z − α)p−1

)
.

Then [
(p− 2)wf ′′,l−1(z)− wf ′′′,l−2(z)

]
f ′(α)

= −
[
(p− 2)wf ′,l(z)wf ′′,l−1(z)− wf,l+1(z)wf ′′′,l−2(z)

](
z − α

)l
+O

(
(z − α)p−l

)
.

So

0 = lim
z→α

[
(p− 2)wf ′′,l−1(z)− wf ′′′,l−2(z)

]
f ′(α) = [p− 1− l]f

′(α)f (l+1)(α)

(l − 1)!
.

Since l ≤ p− 2 it follows that f (l+1)(α) = 0 and we have the result.

3.4 Generating algorithm

Following [51], a basic sequence of methods is an in�nite sequence whose p-th member is a

method of order p. Suppose we start with a function f(z) such that f(α) = 0, f ′(α) 6= 0,
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and f ′′(α) 6= 0, the p-th member of the Halley's basic sequence is

Hp(z) = z − Fp(z)

F ′p(z)
.

For p = 2 we have
F2(z)

F ′2(z)
=
f(z)

f ′(z)
,

and for p ≥ 2, we write

Fp+1(z)

F ′p+1(z)
=

[
1− 1

p

[
1−

(
Fp(z)

F ′p(z)

)′]]−1
Fp(z)

F ′p(z)
.

Consider any other basic sequence for which the p-th member is

Tp(z) = z − Vp(z),

where Vp(z) is whatever expression. The methods Hp(z) and Tp(z) will be the same if

and only if

Vp(z) =
Fp(z)

F ′p(z)
for p ≥ 2.

Hence we have the following result.

Theorem 3.4.1. Let f(z) be such that f(α) = 0 and f ′(α) 6= 0 for which Nf is of order

2. The basic sequence {Tp(z)}+∞
p=2 given by

Tp(z) = z − Vp(z) for p ≥ 2,

for which the p-th element is of order p, corresponds to the Halley's basic sequence if and

only if 
V2(z) = f(z)

f ′(z)
,

Vp+1(z) =
[
1− 1

p

[
1− V ′p(z)

]]−1

Vp(z) for p ≥ 2.

We will now present some examples of application of this algorithm.
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Example 3.4.1. The Householder's basic sequence [26, 27] given by

Tp(z) = z + (p− 1)
[(1/f(z))(p−2)

(1/f(z))(p−1)

]
is in fact the Halley's basic sequence by using the above algorithm. Here we have

Vp(z) = −(p− 1)
(1/f(z))(p−2)

(1/f(z))(p−1)
.

Then

V ′p(z) = −(p− 1)

[
1− (1/f(z))(p−2)(1/f(z))(p)

[(1/f(z))(p−1)]
2

]
,

and a direct substitution leads to[
1− 1

p

[
1− V ′p(z)

]]−1

Vp(z) = −p(1/f(z))(p−1)

(1/f(z))(p)
= Vp+1(z).

Example 3.4.2. Jovanovi¢ [31] suggested the following basic sequence
J2(z) = z − f(z)

f ′(z)
,

Jp(z) = z − z−Jp−1(z)

1− 1
p−1

J ′p−1(z)
for p > 2.

which is again the Halley's basic sequence. Indeed we have

Vp(z) =
z − Jp−1(z)

1− 1
p−1

J ′p−1(z)
= z − Jp(z),

and

V ′p(z) = 1− J ′p(z).

Hence [
1− 1

p

[
1− V ′p(z)

]]−1

Vp(z) =
z − Jp(z)

1− 1
p
J ′p(z)

= Vp+1(z).

Example 3.4.3. Ford and Pennline [17] have presented the following form of the Halley's

basic sequence developed by Gerlach [19]

Gp(z) = z − f(z)
Qp(z)

Qp+1(z)
,
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where 
Q2(z) = 1,

Qp(z) = f ′(z)Qp−1(z)− 1
p−2

f(z)Q′p−1(z) for p ≥ 3.

We have

Vp(z) = f(z)
Qp(z)

Qp+1(z)
,

and

V ′p(z) =

(
f(z)

Qp(z)

Qp+1(z)

)′
= f ′(z)

Qp(z)

Qp+1(z)
+ f(z)

Q′p(z)Qp+1(z)−Qp(z)Q′p+1(z)

Q2
p+1(z)

= (1− p) + p
Qp(z)Qp+2(z)

Q2
p+1(z)

,

where we have successively replaced f(z)Q′p+1(z) and f ′(z)Qp(z) using the preceding re-

lations to generate Qp+2(z) and Qp+1(z). Hence

1− 1

p

[
1− V ′p(z)

]
=
Qp(z)Qp+2(z)

Q2
p+1(z)

,

and it follows that[
1− 1

p

[
1− V ′p(z)

]]−1

Vp(z) =

[
Qp(z)Qp+2(z)

Q2
p+1(z)

]−1

f(z)
Qp(z)

Qp+1(z)

= f(z)
Qp+1(z)

Qp+2(z)

= Vp+1(z).

3.5 Looking for sequences to de�ne Vp(z)

3.5.1 Looking for a sequence {∆p(z)}+∞
p=0 such that Vp(z) = f(z)

∆p−2(z)
∆p−1(z)

The last example of the preceding section suggests a general method to �nd a sequence

{∆p(z)}+∞
p=0 such that Vp(z) = f(z)∆p−2(z)

∆p−1(z)
corresponds to the Halley's basic sequence.
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The condition on the �rst two terms of the sequence will be

V2(z) = f(z)
∆0(z)

∆1(z)
=
f(z)

f ′(z)
,

so ∆1(z) = f ′(z)∆0(z). Moreover we would like that ∆1(z) be generated by ∆0(z) and

∆′0(z), so we write

∆1(z) = f ′(z)∆0(z) = (f ′(z) + g(z)) ∆0(z) + h(z)∆′0(z).

where g(z) and h(z) have to be speci�ed to get the Halley's family. Let us introduce a

new function δ0(z) such that ∆0(z)δ0(z) = 1. We can write

h(z)∆′0(z) = h(z)
(
∆0(z)δ0(z)

)
∆′0(z)

= h(z)∆0(z)
[
(δ0(z)∆0(z))′ − δ′0(z)∆0(z)

]
= −h(z)∆0(z)δ′0(z)∆0(z)

= −h(z)
δ′0(z)

δ0(z)
∆0(z).

Then we have

∆1(z) =

(
f ′(z) + g(z)− h(z)

δ′0(z)

δ0(z)

)
∆0(z).

It follows that

g(z)− h(z)
δ′0(z)

δ0(z)
= 0,

and

∆1(z) =

(
f ′(z) + h(z)

δ′0(z)

δ0(z)

)
∆0(z) + h(z)∆′0(z).

We would also like to have that ∆p(z) be generated by ∆p−1(z) and ∆′p−1(z). Let us see

what happens for ∆2(z). To be an element of the Halley's basic sequence, we must have

f(z)
∆1(z)

∆2(z)
=

[
1− 1

2

[
1−

(
f(z)

∆0(z)

∆1(z)

)′]]−1

f(z)
∆0(z)

∆1(z)
,
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where

1− 1

2

[
1−

(
f(z)

∆0(z)

∆1(z)

)′]
=

(
1− 1

2

(
1− f(z)

h(z)

))
+

∆0

2∆2
1

[(
f ′(z)− f(z)

h(z)

(
f ′(z) + h(z)

δ′0(z)

δ0(z)

))
∆1(z)− f(z)∆′1(z)

]
.

For obtaining an expression depending only on ∆1(z) and ∆′1(z) we set

1− 1

2

(
1− f(z)

h(z)

)
= 0,

which means that h(z) = −f(z). Hence we obtain

f(z)
∆1(z)

∆2(z)
= f(z)

∆1(z)

1
2

[(
2f ′(z)− f(z)

δ′0(z)

δ0(z)

)
∆1(z)− f(z)∆′1(z)

] ,
so

∆2(z) =

(
f ′(z)− f(z)

2

δ′0(z)

δ0(z)

)
∆1(z)− f(z)

2
∆′1(z).

Consequently, to get the Halley's basic sequence, starting with ∆0(z)δ0(z) = 1, we show

by induction that

∆p(z) =

(
f ′(z)− f(z)

p

δ′0(z)

δ0(z)

)
∆p−1(z)− f(z)

p
∆′p−1(z)

for p ≥ 1. Indeed it is easy to show that

f(z)
∆p−1(z)

∆p(z)
=

[
1− 1

p

[
1−

(
f(z)

∆p−2(z)

∆p−1(z)

)′]]−1

f(z)
∆p−2(z)

∆p−1(z)
.

So we have proved the following result.

Theorem 3.5.1. Let f(z) be such that f(α) = 0 and f ′(α) 6= 0 for which Nf is of order

2. The basic sequence {Tp(z)}+∞
p=2 given by

Tp(z) = z − f(z)
∆p−2(z)

∆p−1(z)
for p ≥ 2,

where ∆0(z) and δ0(z) are two arbitrary analytic functions such that
∆0(z)δ0(z) = 1,

∆p(z) =
(
f ′(z)− f(z)

p

δ′0(z)

δ0(z)

)
∆p−1(z)− f(z)

p
∆′p−1(z) for p ≥ 1,

corresponds to the Halley's basic sequence.
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Corollary 3.5.2. Suppose f(z) sati�es the preceding assumption. Let σ be an integer,

δ̃σ(z) be an analytic function, and
{

∆̃p(z)
}+∞

p=σ
de�ned by

∆̃σ(z)δ̃σ(z) = 1,

∆̃p(z) =
(
f ′(z)− f(z)

p−σ
δ′σ(z)
δσ(z)

)
∆̃p−1(z)− f(z)

p−σ ∆̃′p−1(z) for p ≥ σ + 1,

then

Tp(z) = z − f(z)
∆̃p+σ−2(z)

∆̃p+σ−1(z)
,

is of order p for p ≥ 2, and corresponds to the p-th element of the Halley's basic sequence.

Proof. It is enough to remark that, for δ0(z) = δ̃σ(z) we have ∆p(z) = ∆̃p+σ(z) for p ≥ 0

to conclude.

Example 3.5.1. Ford and Pennline basic sequence of Example 3.4.3 corresponds to the

case σ = 2 and δ̃2(z) = 1.

3.5.2 Looking for a sequence {Bp(z)}+∞
p=0 such that Vp(z) =

Bp−2(z)
Bp−1(z)

As a corollary of the last theorem, we have the following result.

Corollary 3.5.3. Let f(z) be such that f(α) = 0 and f ′(α) 6= 0 for which Nf is of order

2. The basic sequence {Tp(z)}+∞
p=2 given by

Tp(z) = z − Bp−2(z)

Bp−1(z)
for p ≥ 2,

where B0(z) and β0(z) are two arbitrary functions such that
B0(z)β0(z = 1,

pBp(z) =
(
f ′(z)
f(z)
− β′0(z)

β0(z)

)
Bp−1(z)−B′p−1(z) for p ≥ 1,

corresponds to the Halley's basic sequence.
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Proof. Let {∆p(z)}+∞
p=0 be generated with δ0(z) = 1. Let us de�ne βp(z) = fp(z)β0(z).

If we set Bp(z) = ∆p(z)

βp(z)
, we obtain the result by direct substitution.

Example 3.5.2. Let B0(z) = 1 = β0(z), we get

pBp(z) =
f ′(z)

f(z)
Bp−1(z)−B′p−1(z).

Example 3.5.3. Let B0(z) = f(z) and β0(z) = 1/f(z), we get

pBp(z) = 2
f ′(z)

f(z)
Bp−1(z)−B′p−1(z).

Example 3.5.4. Let B0(z) = 1/f(z) and β0(z) = f(z), we get

pBp(z) = −B′p−1(z),

and hence

p!Bp(z) = (−1)p (1/f(z))(p) .

So this basic sequence corresponds to the Householder's sequence of Example 3.4.1 because

Vp(z) =
Bp−2(z)

Bp−1(z)
= −(p− 1)

Bp−2(z)

B′p−2(z)
= −(p− 1)

(1/f(z))(p−2)

(1/f(z))(p−1)
.

Example 3.5.5. The Schröder [48] process of the second kind is de�ned by

Sp(z) = z − Rp−2(z)

Rp−1(z)
for p ≥ 2,

where 
R0(z) = 1/f(z),

Rp(z) =
∑p

j=1 (−1)j+1 f (j)(z)
j!f(z)

Rp−j(z for p ≥ 1.

It is easy to show by induction that

Rp(z) =
(−1)p

p!

(
1

f(z)

)(p)

.
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Then we obtain directly

Rp−2(z)

Rp−1(z)
=

(−1)p−2

(p−2)!

(
1

f(z)

)(p−2)

(−1)p−1

(p−1)!

(
1

f(z)

)(p−1)
= −(p− 1)

(1/f(z))(p−2)

(1/f(z))(p−1)

which corresponds to the Householder's basic sequence of Example 3.4.1, which has been

proved to be the Halley's basic sequence. We could also replace ∆p(z), with δ0 = 1, by

fp+1(z)Rp(z) in Theorem 3.5.1 to obtain that Rp(z) = ∆p(z)

fp+1(z)
. So it corresponds to the

Halley's basic sequence because

Rp−2(z)

Rp−1(z)
=

∆p−2(z)/fp−1(z)

∆p−1(z)/fp(z)
= f(z)

∆p−2(z)

∆p−1(z)
.

Remark 3.5.1. These expressions can also be written in other di�erent forms. For

example if we set βj(z) = f(z)βj−1(z) = . . . = f j(z)β0(z) for j ∈ Z, we get

β′j(z)

βj(z)
= j

f ′(z)

f(z)
+
β′0(z)

β0(z)
,

so we can also write

pBp(z) =

(
(j + 1)

f ′(z)

f(z)
−
β′j(z)

βj(z)

)
Bp−1(z)−B′p−1(z).

3.6 Other methods

Several other expressions of the Halley's basic sequence are presented in the literature,

for example determinant-based methods. In [44, 45] their equivalence has been showed,

so we only present these methods here for completeness of the paper. The sequence

{∆p(z)}+∞
p=0 used in this section is generated with δ0(z) = 1.
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3.6.1 Determinant-based methods

Determinant-based families of methods where developed using the sequence of determi-

nants given by: M0(z) = 1, and for p ≥ 1

Mp(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ′(z) . . . . . . . . . f (p)(z)
p!

f(z) f ′(z) . . . . . . f (p−1)(z)
(p−1)!

0 f(z) f ′(z) . . . f (p−2)(z)
(p−2)!

...
. . . . . . . . .

...

0 . . . 0 f(z) f ′(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

It can be shown, see for example [44, 35], for p ≥ 1 that

Mp(z) =

p∑
j=1

(−1)j+1 f
j−1(z)f (j)(z)

j!
Mp−j(z),

and

Mp(z) =
(−1)p fp+1(z)

p!

(
1

f(z)

)(p)

,

which lead to the relation

Mp(z) = f ′(z)Mp−1(z)− 1

p
f(z)M ′

p−1(z).

It follows that Mp(z) = ∆p(z) for any p ≥ 0.

Example 3.6.1. Hamilton [21], and later Kalantari [33, 34, 32], proposed the basic

sequence

Kp(z) = z − f(z)
Mp−2(z)

Mp−1(z)
for p ≥ 2.

It is clearly the Halley's basic sequence [35].
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Example 3.6.2. Wang [54], see also [55], proposed that

Wp(z) = z − Γp−2(z)

Γp−1(z)
for p ≥ 2,

where Γp(z) = Mp(z)

fp(z)
. Clearly this is again the Halley's basic sequence.

Example 3.6.3. Varjuhin and Kasjanjuk [52] considered the following determinants

Np(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f(z) zf(z) . . . . . . zp−2f(z)

f ′′(z) (zf(z))′′ . . . . . .
(
z(p−2)f(z)

)′′
f (3)(z) (zf(z))(3) . . . . . .

(
z(p−2)f(z)

)(3)

... . . . . . . . . . ...

f (p−1)(z) (zf(z))(p−1) . . . . . .
(
z(p−2)f(z)

)(p−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

and

Dp(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ′(z) (zf(z))′ . . . . . .
(
z(p−2)f(z)

)′
f ′′(z) (zf(z))′′ . . . . . .

(
z(p−2)f(z)

)′′
f (3)(z) (zf(z))(3) . . . . . .

(
z(p−2)f(z)

)(3)

... . . . . . . . . . ...

f (p−1)(z) (zf(z))(p−1) . . . . . .
(
z(p−2)f(z)

)(p−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

They suggested the method

Yp(z) = z − Np(z)

Dp(z)
,

which is of order p. These determinants seem similar to the Mp's, and it has been proved

[44] that

Np(z) = f(z)Mp−2(z)

p−2∏
m=0

(p− 1−m)!
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and

Dp(z) = Mp−1(z)

p−2∏
m=0

(p− 1−m)!

So
Np(z)

Dp(z)
= f(z)

Mp−2(z)

Mp−1(z)
= f(z)

∆p−2(z)

∆p−1(z)
.

Consequently Yp(z) corresponds to Hp(z).

3.6.2 Even more methods

Two other methods which seemed at �rst complicated but in fact where only other forms

of the Halley's basic sequence. These methods where analyzed in [44].

Example 3.6.4. Farmer and Loizou [16] considered
Λ2(z) = f(z)

f ′(z)
,

Λp(z) = f(z)/f ′(z)

1−
∑p−1
i=2

f(i)(z)
i!f(z)

∏p−2
q=p−i Λq+1(z)

for p ≥ 3,

and

Lp(z) = z − Λp(z).

It can be shown [44] that

Λp(z) = f(z)
Mp−2(z)

Mp−1(z)
= f(z)

∆p−2(z)

∆p−1(z)
,

and hence Lp(z) corresponds to Hp(z).

Example 3.6.5. Igarashi and Nagasaka [28, 29] set

ti(z) =
f (i)(z)

i!f ′(z)
for i = 0, 1, . . . ,
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and for p ≥ 2
bp,1(z) = tp−1(z),

bp,j(z) = bp,j−1(z)hj(z) + tp−j(z) for j = 2, . . . , p− 1,

hp(z) = − t0(z)
bp,p−1(z)

.

They considered

Ip(z) = z + hp(z),

which is of order p. Since it has been proved that [44] that hp(z) = −Λp(z), so hence

Ip(z) corresponds to Hp(z).

3.7 Theory and practice

A well known result in complex function theory is that the zeros of an analytic function

are isolated (see for example [47]).

Lemma 3.7.1. If φ(z) in an analytic function such that φ(α) = 0, then either φ(z) is

identically zero in a neighbourhood of α or there a punctured disk about α in which φ(z)

has no zeros.

A practical test to determine if Hp(z) and Tp(z) could be the same method would be

to start with the same initial condition z0, and verify if Hp(zk) = zk+1 = Tp(zk) and

limk→+∞ zk = α, which means that both methods generate the same convergent sequence.

Since both functions are analytic in a neighbourhood of α, the lemma suggests that

Hp(z) = Tp(z) for all z in a neighbourhood of α. This numerical test, which is not a

proof, can help to suggest if the basic sequence {Tp(z)}+∞
p=2 corresponds to the Halley's

basic sequence {Hp(z)}+∞
p=2.
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CHAPITRE 4

Unifying old and new ways to increase

order of convergence of �xed point and

Newton's method.

Abstract

Halley, Euler, Chebyshev are examples of mathematicians that have presented procedures

for increasing the order of convergence of Newton's method. Through Taylor's expansions

and a thorough analysis of the necessary and su�cient conditions that will entail for �xed

point and Newton's iterative methods to be of higher order convergence, we are able to

present a uni�ed way which include old and new processes to make these methods faster.

81



4.1 Introduction.

In 1669 [57], for �nding α, a simple root of an analytic function f(z), i.e. f(α) = 0 and

f ′(α) 6= 0, Sir Isaac Newton introduced the iteration function (IF)

Nf (z) = z − f(z)

f ′(z)
.

Some years later, in 1694 [18, 20, 57], Edmond Halley, introduced a �faster" IF

Hf (z) = z − 2f(z)f ′(z)

2f ′(z)2 − f(z)f ′′(z)
= z −

[
1− f ′′(z)f(z)

2 (f ′(z))2

]−1
f(z)

f ′(z)
.

Interestingly enough, one can observe that if we apply Newton's method to the function

F (z) = f(z)/
√
f ′(z), we get

NF (z) = z −
f(z)/

√
f ′(z)

[f(z)/
√
f ′(z)]′

= Hf (z).

So, in considering this new function F (z) and looking at its application to Newton's

method, one could manage to make Newton's method faster. We ask the following

question: What are all the possible functions F (z), like Halley's, that we can �nd, for

which Newton's method applied to the function F (z) will be faster?

We also observe that Halley's IF can be rewritten as

Hf (z) = z − f(z)

f ′(z)
G(z)

where

G(z) =

[
1− f ′′(z)f(z)

2 (f ′(z))2

]−1

.

In noticing that, we also ask: What are all possible functions such as G(z) that will entail

an increase of order of Newton's method when applied to these functions? How do these

functions related to our previously mentioned F (z)?
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Moreover, using the �rst two terms of the Taylor's expansion of 1/(1 − z) for G(z), i.e.

1 + z, we get

G̃(z) = 1 +
f ′′(z)f(z)

2 (f ′(z))2 ,

and

H̃f (z) = z − f(z)

f ′(z)
G̃(z) = z − f(z)

f ′(z)
− f ′′(z)

2f ′(z)

(
f(z)

f ′(z)

)2

= Cf (z),

which is the so called Euler-Chebyshev's IF of order 3 [3].

Even if iteration functions of high order of convergence require high order derivatives and

are more complex, these methods are not only of academic interest but can also sometime

be of practical interest [13, 11].

The plan of the paper is the following. Some preliminaries are given in Sections 5.2.

Section 4.3 presents a general result about the local convergence of �xed point methods.

It also garanties convergence for iterative methods of higher order. Section 4.4 presents

a thorough analysis of the necessary and su�cient conditions that will entail for �xed

point and Newton's iterative methods to be of higher order convergence. These results

allow us to consider two di�erent procedures for increasing the order. The �rst approach,

presented in Section 4.5, consists in modifying the �xed point iteration function by adding

an additional term that conveniently enough increased the order of convergence of the

iteration function. The second procedure, explained in Section 4.6, consists in modifying

our original function f(z) into a new one F (z) which caused the order of convergence of

Newton's method to increase. We also establish links between those two procedures in

Section 4.7. Section 4.8 shows a way of linking very famous iterative methods like Halley's

and Euler-Chebyshev's through our new results. In the last section, as an interesting

example, we consider the Super-Halley family of iteration functions of order 3.
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4.2 Preliminaries

4.2.1 Order of convergence

If our goal here is to make iterative methods faster, so let us start by mathematically de�n-

ing �rst what we may mean by faster. Let us consider any sequence {zk+1 = I(zk)}∞k=0

generated from an initial condition z0 and an IF I(z). We say that the order of conver-

gence of the IF I(z), is p, a positive integer, if and only if there exists a non-zero constant

Kp(α; I) such that

lim
k→+∞

zk+1 − α
(zk − α)p

= lim
k→+∞

I(zk)− I(α)

(zk − α)p
= Kp(α; I).

For linear convergence, p = 1, it is required that |K1(α; I)| < 1 [51]. For values of zk

close to α, the term | zk − α |p becomes considerably smaller if p is large, so looking at

|zk+1 − α| ≈ |Kp(α, I)| |zk − α|p

does indicate how fast the error of approximation decreases.

For instance, Newton's iteration function is of order p = 2 with K2(α;Nf ) = f ′′(α)
2f ′(α)

, while

Halley's and Euler-Chebyshev's iteration functions are of order p = 3 with asymptotic

constant respectively given by

K3(α;Hf ) =
1

3!

[
3

2

(
f ′′(α)

f ′(α)

)2

− f ′′′(α)

f ′(α)

]
,

and

K3(α;Cf ) =
1

3!

[
3

(
f ′′(α)

f ′(α)

)2

− f ′′′(α)

f ′(α)

]
,

If two IFs have the same order, provided convergence occurs, the one with the smallest

asymptotic constant will typically be faster. But, as illustrated above, the asymptotic

constant depends on the function f(z), so a given IF may be faster for a given function
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f(z) and slower for another function f(z) compared to another IF. There already exit

numerical examples to illustrate this fact in [4].

In trying to increase the order of convergence of Newton's method, many mathematicians

have found in�nite sequences of IFs with increasing order of convergence. We will call

such an in�nite sequence, say {Ip(z)}+∞
p=0 whose pth member Ip(z) is an IF of order p, a

basic sequence of IFs [51].

4.2.2 Analytic function and Taylor's expansion.

Higher order convergence results for �xed-point and Newton's methods that we will

introduce in the next sections are extensively based on Taylor's expansions. The notation

g(j)(z) stands for the jth derivative
dj

dzj
g(z).

Lemma 4.2.1. [47] For any analytic function g(z), for any p ≥ 1 there exists a unique

analytic function wg,p(z) such that

g(z) =

p−1∑
j=0

g(j)(α)

j!
(z − α)j + wg,p(z) (z − α)p .

More precisely

wg,p(z) =
+∞∑
j=0

g(p+j)(α)

(p+ j)!
(z − α)j and wg,p(α) =

g(p)(α)

p!
.

For a function f(z) with a simple root α, i.e., f(α) = 0 and f ′(α) 6= 0, we can write

f(z) = wf,1(z)(z − α) where wf,1(α) = f ′(α).

We observe that
f(z)

f ′(z)
=
wf,1(z)

f ′(z)
(z − α)
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or

(z − α) =
f(z)

wf,1(z)
=

f ′(z)

wf,1(z)

f(z)

f ′(z)
.

We can rewrite the preceding lemma as follows.

Lemma 4.2.2. Let α be a simple root of an analytic function f(z), i.e., f(α) = 0 and

f ′(α) 6= 0. Let g(z) be any analytic function, and any p ≥ 1.

(a) There exists a unique analytic function Wg,p(z) such that

g(z) =

p−1∑
j=0

g(j)(α)

j!
(z − α)j +Wg,p(z)

(
f(z)

f ′(z)

)p
where

Wg,p(z) = wg,p(z)

(
f ′(z)

wf,1(z)

)p
and Wg,p(α) =

f (p)(α)

p!
.

(b) There exists a unique analytic function W̃g,p(z) such that

g(z) =

p−1∑
j=0

g(j)(α)

j!
(z − α)j + W̃g,p(z)fp(z),

where

W̃g,p(z) =
wg,p(z)

(wf,1(z))p
and W̃g,p(α) =

f (p)(α)

p! (f ′(α))p
.

For simplicity, we will use the big O notation for two functions u(z) and v(z), hence

u(z) = O(v(z)) around z = α to mean that there exists a constant c 6= 0 such that

lim
z→α

u(z)

v(z)
= c.

Based on the assumption that α is a simple root of f(z), Â�the following three expressions,

namely O
(
(z − α)l

)
, O
((

f(z)
f ′(z)

)l)
, and O

(
f l(z)

)
, are equivalent for any positive integer

l.
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4.3 Linear convergence for �xed-point method.

A �rst result concerns the necessary and su�cient conditions for achieving linear con-

vergence, which explains why |K1(α; I)| < 1 is needed. Moreover this result implies the

convergence of any higher order methods since for these methods K1(α; I) = 0.

Theorem 4.3.1. [11, 12] Let I(z) be an iteration function.

(i) If |I ′(α)| < 1, then there exists a neighbourhood of α such that for any z0 in that

neighbourhood the sequence {zk+1 = I(zk)}+∞
k=0 converges to α.

(ii) If there exists a neighbourhood of α such that for any z0 in that neighbourhood the

sequence {zk+1 = I(zk)}+∞
k=0 converges to α, and zk 6= α for all k, then |I ′(α)| ≤ 1.

(iii) For any sequence {zk+1 = I(zk)}+∞
k=0 which converges to α, the limit K1(α; I) exists

and K1(α; I) = I ′(α).

Using this result, a simple way to obtain a �xed-point method to �nd α could be

I(z) = z + λf(z)

for which we have I(α) = α. The parameter λ is �xed in such a way that

|I ′(α)| = |1 + λf ′(α)| < 1

Since obviously α is not known, let us replace λ by λ̃
f ′(z)

to get

I(z) = z + λ̃
f(z)

f ′(z)
,

and

I ′(α) = 1 + λ̃.

As long as λ̃ is such that
∣∣∣1 + λ̃

∣∣∣ < 1, we get a linearly convergent IF. For λ̃ = −1, we

get the Newton's IF and I ′(α) = N ′f (α) = 0 which, intuitively, indicates it is a �more"

than linear convergent IF.
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4.4 High-order convergence for �xed point and New-

ton's methods.

Since Newton's method is of order p = 2, we will consider now general results for method

of order p ≥ 2.

4.4.1 Necessary and su�cient conditions for �xed point method.

The next result indicates that the order of an IF coincides with the order of its �rst

non-zero derivative at α.

Theorem 4.4.1. [11, 12] Let the integer p ≥ 2 and let I(z) be an iteration function such

that I(α) = α. The iteration function I(z) is of order p if and only if I(j)(α) = 0 for

j = 1, . . . , p− 1, and I(p)(α) 6= 0. Moreover, the asymptotic constant is given by

Kp(α; I) =
I(p)(α)

p!
.

This result says that the Taylor's expansion of an IF I(z) of order p is

I(z) = α + wI,p(z)(z − α)p = α + O (fp(z)) with wI,p(α) =
I(p)(α)

p!
,

and we also have

I ′(z) = wI′,p−1(z)(z − α)p−1 = O
(
fp−1(z)

)
with wI′,p−1(α) =

I(p)(α)

(p− 1)!
.

Remark 4.4.1. Two IFs I1(z) and I2(z) which are of the same order p, to compute α,

di�er only at most by O (fp(z)) term, which means that I1(z)− I2(z) = O
(
f p̃(z)

)
where

p̃ ≥ p. Moreover if I1(z) is an IF of order p and if I2(z) = I1(z) + O (fp(z)), than I2(z)

is an IF of order at least p.
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Remark 4.4.2. To determine an IF of order 2 to �nd α we can proceed as follows.

Firstly, let us modify f(z) by setting f̃(z) = h(z)f(z) where h(z) is a regular function

to be determined such that f̃ ′(α) = 1, that is to say h(α)f ′(α) = 1 or h(α) = 1/f ′(α).

Secondly, let us set I(z) = z − f̃(z). Since g(α) = α and g′(α) = 0, we can conclude

that the IF I(z) is at least of order 2. In fact we can take any function h(z) such

that h(α) = 1/f ′(α). In particular, for h(z) = 1/f ′(z) we get the Newton's IF for

which K2(α;Nf ) = 1
2
N ′′f (α) = 1

2

[
f ′′(α)
f ′(α)

]
. There exist several other choices for h(z). For

example, let us consider

h(z) =
1

f ′(z)
[
1 + λ(z) f(z)

f ′(z)

] then I(z) = z −
[
1 + λ(z)

f(z)

f ′(z)

]−1
f(z)

f ′(z)
,

or

h(z) =
1

f ′(z)

[
1− λ(z)

f(z)

f ′(z)

]
then I(z) = z −

[
1− λ(z)

f(z)

f ′(z)

]
f(z)

f ′(z)
,

where λ(z) is an arbitrary function. Those two IFs are in general of order 2, like the

Newton's IF, because I ′′(α) = f ′′(α)
f ′(α)

+2λ(α) = N ′′f (α)+2λ(α) which means that K2(α; I) =

K2(α;Nf )+λ(α). They will be of order higher that 2 only for functions such that λ(α) =

− f ′′(α)
2f ′(α)

. Finally if we take λ(z) = − f ′′(z)
2f ′(z)

we get respectively Halley's method and Euler-

Chebyshev's method.

4.4.2 Necessary and su�cient conditions for Newton's method

Let us now focus on Newton's IF

Nf (z) = z − f(z)

f ′(z)
.

One can observe that Nf (α) = α, and

N ′f (z) =
f ′′(z)f(z)

f ′(z)2
,
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so that N ′f (α) = 0. Furthermore we also have

N ′′f (α) =
f ′′(α)

f ′(α)
.

If α is a simple root of f(z), then Newton's IF is of order at least 2, and it could be of

order 3, if f ′′(α) = 0, according to the above theorem. The necessity and the su�ciency

of the condition for high-order convergence of Newton's method are presented in the next

result.

Theorem 4.4.2. [11, 12] Let p ≥ 2 and let f(z) be an analytic function such that

f(α) = 0 and f ′(α) 6= 0. The Newton's iteration function Nf (z) = z − f(z)
f ′(z)

is of order p

if and only if f (j)(α) = 0 for j = 2, . . . , p− 1, and f (p)(α) 6= 0. Moreover,

N
(p)
f (α) = (p− 1)

f (p)(α)

f ′(α)
,

and the asymptotic constant is

Kp(α;Nf ) =
N

(p)
f (α)

p!
=

(p− 1)

p!

f (p)(α)

f ′(α)
.

This result says however that the Taylor's expansion of Nf (z) of order p is

Nf (z) = α + wNf ,p(z)(z − α)p = α + O (fp(z)) with wNf ,p(α) =
N

(p)
f (α)

p!
.

For the function f(z) we have

f(z) = f ′(α)(z − α) + wf,p(z)(z − α)p = f ′(α)(z − α) + O (fp(z))

with

wf,p(α) =
f (p)(α)

p!
,

and

f ′′(z) = wf ′′,p−2(z)(z − α)p−2 = O
(
fp−2(z)

)
with wf ′′,p−2(α) =

f (p)(α)

(p− 2)!
.

Moreover, if Nf (z) is of order p, and f̃(z) = f(z) + O (fp(z)), then Nf̃ (z) is also at least

of order p.
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Remark 4.4.3. Let us observe that if I(x) is an IF of order p, if we set F (z) = z− I(z)

we have F (α) = 0, F ′(α) = 1, F (j)(α) = −I(j)(α) = 0 for j = 2, . . . , p − 1, and

F (p)(α) = −I(p)(α) 6= 0, so NF (z) is also of order p. But since we have Kp(α;NF ) =

−(p − 1)Kp(α; I) NF (z) is slower that I(z) for any p > 2. Conversely, suppose f(z) is

such that

f(z) = f ′(α)(z − α) + wf,p(z)(z − α)p wf,pα) =
f (p)(α)

p!
,

then Nf (z) is of order p, andKp(α;Nf ) = − (p−1)
p!

f (p)(α)
f ′(α)

. Suppose we set f̃(z) = f(z)/f ′(z),

then f̃ ′(α) = 1. So the IF de�ned by I(z) = z − f̃(z) is nothing but Nf (z), then is of

order p with Kp(α; I) = Kp(α;Nf ).

4.5 Acceleration of �xed point method

In this section we consider di�erent ways to increase the order of convergence of �xed

point methods.

4.5.1 Acceleration based on Theorem 4.4.1

The �rst result is a direct application of Theorem 4.4.1.

Theorem 4.5.1. [11, 12] Let p ≥ 2, let Sp(z) be de�ned by

Sp(z) =

p−1∑
j=0

cj(z)f j(z),

where the cj(z)'s are de�ned by: c0(z) is analytic such that c0(α) = α (observe that we

can always take the case c0(z) = z), and

jf ′(z)cj(z) + c′j−1(z) = 0
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for j = 1, 2, . . . , p. Then Sp(z) is at least of order p. Moreover

S(p)
p (α) = (p− 1)c′p−1(α) (f ′(α))

p−1
= −p!cp(α) (f ′(α))

p
,

and its asymptotic constant is

Kp(α, Sp) = −cp(α) [f ′(α)]
p
.

Proof. The cj(z)'s are de�ned in such a way that

S ′p(z) = c′p−1(z)fp−1(z).

Then the result follows.

Remark 4.5.1. We observe that

cj(z) =

(
− 1

jf ′(z)

d

dz

)
cj−1(z),

and recursively we get

cj(z) =
(−1)j

j!

(
1

f ′(z)

d

dz

)j
c0(z).

So we have

Sp(z) =

p−1∑
j=0

(−1)j
f j(z)

j!

(
1

f ′(z)

d

dz

)j
c0(z).

It is also possible to get this result using the Taylor's expansion if the inverse of f(z)

[51, 13].

Remark 4.5.2. If c0(z) = z in this result, we get the Schröder's IF of the �rst kind

[48, 51].

Remark 4.5.3. If c0(z) = z, we have S2(z) = Nf (z), and for p ≥ 3 we can write

Sp(z) = z − f(z)

f ′(z)
Gp−1(z) with Gp−1(z) = 1−

p−1∑
j=2

cj(z)f ′(z)f j−1(z).
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Remark 4.5.4. For c0(z) = z and p = 3, we have c2(z) = − f ′′(z)
2f ′(z)3 , and

S3(z) = z − f(z)

f ′(z)
G2(z) with G2(z) = 1 +

f ′′(z)f(z)

2 (f ′(z))2 ,

which is the Euler-Chebyshev's IF of order 3. Moreover, this result, combined to Re-

mark 4.4.1, suggests that for any function h(z) whose expansion around 0 is

h(z) = 1 + z + O
(
z2
)
,

we can use

Lf (z) =
f ′′(z)f(z)

2 (f ′(z))2

to de�ne

G̃2(z) = h(Lf (z)) = G2(z) + O
(
f 2(z)

)
.

Then, for

S̃3(z) = z − f(z)

f ′(z)
G̃2(z) = z − f(z)

f ′(z)

[
G2(z) + O

(
f 2(z)

)]
= S3(z) + O

(
f 3(z)

)
,

which means that S̃3(z) is also of order 3. Some examples of such h(z) functions again

are 1 + arctan(z), 2− e−z, 1− ln(1− z), e−z + 2 sin(z), 1
1−z , cos(z) + sin(z). For example

S3(z) = z − f(z)

f ′(z)

[
cos
(f ′′(z)f(z)

2f ′(z)2

)
+ sin

(f ′′(z)f(z)

2f ′(z)2

)]
will be of order 3. Other examples are mentioned in [18].

Remark 4.5.5. Suppose that Nf (z) is of order k, hence f ′′(z) = O
(
fk−2(z)

)
. We have

c0(z) = z, c1(z) = −1/f ′(z). Moreover

c2(z) = − 1

2f ′(z)
c′1(z) = − f ′′(z)

2 (f ′(z))3 = O
(
fk−2(z)

)
.

By induction, we show that

cl(z) = − 1

lf ′(z)
c′l−1(z) = O

(
fk−l(z)

)
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for l = 2, . . . , k. Then each term cl(z)f l(z) = O
(
fk(z)

)
. It follows that for p = 3, . . . , k

Ip(z) = Nf (z) +

p−1∑
l=2

cl(z)f l(z) = Nf (z) + O
(
fk(z)

)
.

Hence Ip(z) and Nf (z) are at least of the same order k. It follows that Ip(z) could not

be of lower order then k from this construction. We cannot loose order of convergence by

applying this process.

4.5.2 Acceleration based on Taylor's expansion

Based on the expression of the asymptotic constant given in Theorem 4.4.1, the main

idea to increase the order of convergence of a given IF of order p is by adding a term to

cancel out the pth term of its Taylor's expansion.

Theorem 4.5.2. Let Ip(z) be an iteration function of order p ≥ 1. Then Ip+1(z) is an

iteration function of order p+1 if and only if there exists an analytic function ∆Ip,p+1(z)

such that

Ip+1(z) = Ip(z) + ∆Ip,p+1(z)

with ∆I
(j)
p,p+1(α) = 0 for j = 0, . . . , p− 1, and ∆I

(p)
p,p+1(α) = −I(p)

p (α).

Proof. Since we must have

I
(j)
p+1(α) = I(j)

p (α) + ∆I
(j)
p,p+1(α)

for j = 0, . . . , p, the result follows.

Remark 4.5.6. We could also try to modify Ip(z) by multiplying it by a function Hp(z).

It turns out that we must have Hp(α) = 1, so we can rewrite Hp(z) as

Hp(z) = 1 + H̃p(z)
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to obtain

Ip+1(z) = Ip(z)Hp(z) = Ip(z) + Ip(z)H̃p(z) = Ip(z) + ∆Ip,p+1(z)

as we already did in the preceding theorem.

For ∆p,p+1(z) of the preceding result we can write

∆Ip,p+1(z) = w∆Ip,p+1,p(z)(z − α)p

with

w∆Ip,p+1,p(α) =
∆I

(p)
p,p+1(α)

p!
= −I

(p)
p (α)

p!
.

As suggested in Section 4.2.2, we can rewrite this expression under di�erent forms to get

the next result.

Theorem 4.5.3. Let α a simple root of an analytic function f(z) and p ≥ 1. ∆Ip,p+1(z)

is an analytic function such that ∆I
(j)
p,p+1(α) = 0 for j = 0, . . . , p− 1, if and only if there

exists an analytic function Hp(z) such that

∆Ip,p+1(z) = Hp(z)

(
f(z)

f ′(z)

)p
.

Moreover

Hp(α) =
∆I

(p)
p,p+1(α)

p!
.

The �rst general result to increase the order of convergence of an IF can now be stated

as follows.

Theorem 4.5.4. Let Ip(z) be an iteration function of order p ≥ 1 for computing the

simple root of an analytic function f(z). Then Ip+1(z) is an iteration function of order

p+ 1 if and only if there exists an analytic function Hp(z) such that

Ip+1(z) = Ip(z) +Hp(z)

(
f(z)

f ′(z)

)p
95



with

Hp(α) = −I
(p)
p (α)

p!
.

Example 4.5.1. For the Newton's IF Nf (z) = z − f(z)
f ′(z)

of order 2, we observe that

N ′′f (α) = f ′′(α)
f ′(α)

. This allows us to conclude that for any function H2(z) such that

H2(α) = − f
′′(α)

2f ′(α)

we get Nf (z)+H2(z)
(
f(z)
f ′(z)

)2

, which is an IF of order 3. Particularly for H2(z) = − f ′′(z)
2f ′(z)

,

we have

z − f(z)

f ′(z)
− f ′′(z)f(z)2

2f ′(z)3
= Cf (z),

which is the Euler-Chebyshev's IF [3] of order 3.

We now present some general ways to apply the idea presented above. They consist of

adding appropriate terms to cancel out the pth term of the Taylor's expansion of the

IF. The next three theorems provided us with ways to recursively create new IFs that

increase the order of convergence from p to p+ 1.

Theorem 4.5.5. Let Ip(z) be an iteration function of order p ≥ 1. Then

Ip+1(z) = Ip(z)− (p− q)!
p!

I(q)
p (z)

(
f(z)

f ′(z)

)q
is an iteration function at least of order p+ 1 for any q = 1, . . . , p.

Proof. We have

Hp(z) = −(p− q)!
p!

I(q)
p (z)

(
f ′(z)

f(z)

)p−q
= −(p− q)!

p!
w
I

(q)
p ,p−q(z)

(
f ′(z)

wf,1(z)

)p−q
,

so

Hp(α) = −I
(p)
p (α)

p!
,

and Ip+1(z) is of order p+ 1.

96



Theorem 4.5.6. Let Ip(z) be an iteration function of order p ≥ 2. Then

Ip+1(z) = Ip(z)− (p− q)!
p!

I(q)
p (z) [z − Ip(z)]q

is iteration function of at least order p+ 1 for any q = 1, . . . , p.

Proof. We have

Hp(z) = −(p− q)!
p!

I(q)
p (z) [z − Ip(z)]q

(
f ′(z)

f(z)

)p
= −(p− q)!

p!
w
I

(q)
p ,p−q(z)

[
1− wIp,p(z) (z − α)p−1]q ( f(z)

wf,1(z)

)p
.

So

Hp(α) = −I
(p)
p (α)

p!
,

and Ip+1(z) is of order p+ 1.

Theorem 4.5.7. [50] Let Ip(z) be an iteration function of order p ≥ 2. If H̃p(z) is a

regular function such that H̃p(α) = 0 and H̃ ′p(α) = 1, then the iteration function

Ip+1(z) = Ip(z)− 1

p
I ′p(z)H̃p(z),

is at least of order p+ 1.

Proof. We have

Hp(z) = −1

p
I ′p(z)H̃p(z)

(
f ′(z)

f(z)

)p
= − 1

p!
wI′p,p−1(z)wH̃p,1(z)

(
f(z)

wf,1(z)

)p
.

where wH̃p,1(α) = H̃ ′p(α) = 1. So

Hp(α) = −I
(p)
p (α)

p!
,

and Ip+1(z) is of order p+ 1.
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Remark 4.5.7. let λ(z) be any regular function, and let us consider

H̃p(z) =
[
1− λ(z)I ′p(z)

]−1
(z − Ip(z)) ,

which is such that H̃p(α) = 0 and H̃ ′p(α) = 1 because I ′p(α) = 0. Then the IF given by

Ip+1(z) = Ip(z)− 1

p
I ′p(z)

[
1− λ(z)I ′p(z)

]−1
(z − Ip(z)) ,

is at least order p+ 1 for any λ(z). For λ(z) = 1/p we get

Ip+1(z) = z −
[
1− 1

p
I ′p(z)

]−1

(z − Ip(z)) ,

which was presented in [31]. For λ(z) = 0, we get

Ip+1(z) = Ip(z)− 1

p
I ′p(z) (z − Ip(z)) ,

which was presented in [40].

4.5.3 Acceleration of Newton's method as a �xed point method.

Since Nf (z) is an IF of order at least 2, we can rewrite the results of the preceding section

in terms of Nf (z). Let us apply Theorem 4.5.4 to the iteration function Nf (z) of order

p ≥ 2. In this case for Nf (z), we have

N
(p)
f (α) = (p− 1)

f (p)(α)

f ′(α)
,

and its Taylor's expansion is

Nf (z) = α + wNf ,p(z)(z − α)p with wNf ,p(α) =
N

(p)
f (α)

p!
=

(p− 1)

p!

f (p)(α)

f ′(α)
.

Again we add an appropriate O (fp(z)) term to cancel out the pth term of the corre-

sponding Taylor's expansion. Theorems 4.5.4 and 4.5.5 are now restated as follows.
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Theorem 4.5.8. Let Nf (z) be of order p ≥ 2 for computing the simple root of an analytic

function f(z). Then Ñf (z) is of order p+1 if and only if there exists an analytic function

Hp(z) such that

Ñf (z) = Nf (z) +Hp(z)

(
f(z)

f ′(z)

)p
with

Hp(α) = −
N

(p)
f (α)

p!
= −(p− 1)

f (p)(α)

p!f ′(α)
.

Theorem 4.5.9. If Nf (z) is of order p ≥ 2, then

Ñf (z) = Nf (z)− (p− q)!
p!

N
(q)
f (z)

(
f(z)

f ′(z)

)q
is of order p+ 1 for q = 1, . . . , p.

We also have the following result.

Theorem 4.5.10. If Nf (z) is of order p ≥ 2, then

Ñf (z) = Nf (z)− (p− 1)
(p− q)!
p!

f (q)(z)

f ′(z)

(
f(z)

f ′(z)

)q
is of order p+ 1 for q = 2, . . . , p.

Proof. We have

Hp(z) = −(p− 1)
(p− q)!
p!

f (q)(z)

f ′(z)

(
f ′(z)

f(z)

)p−q
= −(p− 1)

(p− q)!
p!

wf (q),p−q(z)

f ′(z)

(
f ′(z)

wf,1(z)

)p−q
.

So

Hp(α) = −(p− 1)
f (p)(α)

p!f ′(α)
,

and Ñf (z) is of order p+ 1.
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Remark 4.5.8. Observe that for q = 2, if p = 2 we retrieve Euler-Chebyshev's iterative

method, but if p ≥ 3 we have

Ñf (z) = Nf (z)− f ′′(z)

pf ′(z)

(
f(z)

f ′(z)

)2

.

One thing that this illustrates is that, if Newton's method is of order higher than 2, Euler-

Chebyshev would no longer be an acceleration process. Modi�cations will need to be made

according.

Finally, Theorems 4.5.6 and 4.5.7 can be rewritten also as follow.

Theorem 4.5.11. Let Nf (z) be of order p ≥ 2. Then

Ñf (z) = Nf (z)− (p− q)!
p!

N
(q)
f (z) [z −Nf (z)]q

is iteration function of at least order p+ 1 for any q = 1, . . . , p.

Remark 4.5.9. For the case p = 2, q = 1 and Nf (z) Newton's method, we have Traub's

di�erence-di�erential relation [51]

Theorem 4.5.12. Let Nf (z) be of order p ≥ 2. If H̃p(z) is a regular function such that

H̃p(α) = 0 and H ′p(α) = 1, the iteration function

Ñf (z) = Ip(z)− f(z)f ′′(z)

p (f ′(z))2 H̃p(z),

is at least of order p+ 1.

4.6 Acceleration based on Theorem 4.4.2

In this section we consider di�erent ways to increase the order of convergence of Newton's

method when applied to a new function, by modifying the function f(z).
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4.6.1 A direct approach

We will now apply Theorem 4.4.2 to study the modi�cations that can be made on the

original function f(z) in order to improve convergence of Newton's method. In doing so,

we are able to recover some famous acceleration processes.

For Nf (z) of order p ≥ 2, let us look at a general modi�ed function Fp+1(z) = f(z)gp(z)

for which Newton's method will be of order p+1 to compute α. We need that Fp+1(α) = 0,

F ′p+1(α) 6= 0, and the function F
(j)
p+1(z) = 0 not only for j = 2, . . . , p − 1, but also for

j = p, so F (p)
p+1(α) = 0.

Theorem 4.6.1. Let Nf (z) be of order p ≥ 2, and let Fp+1(z) = f(z)gp(z). NFp+1(z) is

of order p+ 1 if and only if gp(α) 6= 0, g(j)
p (α) = 0 for j = 1, . . . , p− 2, and

g(p−1)
p (α) = −f

(p)(α)

pf ′(α)
gp(α).

Proof. NFp+1(z) is of order p+1 if and only if Fp+1(α) = 0, F ′p+1(α) 6= 0, and F (j)
p+1(α) = 0

for j = 2, . . . , p. For Fp+1(z) = f(z)gp(z) we have Fp+1(α) = 0. Also

F ′p+1(z) = f ′(z)gp(z) + f(z)g′p(z)

so F ′p+1(α) = f ′(α)gp(α) 6= 0 if and only if gp(α) 6= 0. For p = 2 we have

F ′′3 (z) = f ′′(z)g2(z) + 2f ′(z)g′2(z) + f(z)g′′2(z)

so

F ′′3 (α) = f ′′(α)g2(α) + 2f ′(α)g′2(α),

hence F ′′3 (α) = 0 if and only if g′2(α) = − f ′′(α)
2f ′(α)

g2(α). For p ≥ 3, we have f ′′(α) = 0 so

g′p(α) = 0. Suppose that g(j)
p (α) = 0 for j = 1, . . . , l − 2 and l ≥ 3. Then

F
(l)
p+1(z) = f (l)(z)gp(z) +

l−2∑
j=1

(
l
j

)
f (l−j)(z)g(j)

p (z) + lf ′(z)g(l−1)
p (z) + f(z)g(l)

p (z)
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and

F
(l)
p+1(α) = f (l)(α)gp(α) + lf ′(α)g(l−1)

p (α).

Hence F (l)
p+1(α) = 0 if and only if g(l−1)

p (α) = −f (l)(α)
lf ′(α)

gp(α). Since f (l)(α) = 0 for l =

2, . . . , p − 1, we have g(j)
p (α) = 0 for j = 1, . . . , p − 2. Also F (p)

p+1(α) = 0 if and only if

g
(p−1)
p (α) = −f (p)(α)

pf ′(α)
gp(α).

This �rst general result, which will be used to increase the order of convergence of New-

ton's method Nf (z) by modifying the function f(z), can thus be restated as follows.

Theorem 4.6.2. Let Nf (z) be of order p ≥ 2 for computing the simple root of an analytic

function f(z). Then for any function Fp+1(z) = f(z)gp(z), NFp+1(z) is of order p + 1 if

and only if one of the following equivalent expressions holds :

(1) there exists an analytic function wgp,p−1(z) such that

gp(z) = gp(α) + wgp,p−1(z)(z − α)p−1,

with

wgp,p−1(α) =
g

(p−1)
p (α)

(p− 1)!
= −f

(p)(α)

p!f ′(α)
gp(α);

(2) there exists an analytic function Wgp,p−1(z) such that

gp(z) = gp(α) +Wgp,p−1(z)

(
f(z)

f ′(z)

)p−1

,

with

Wgp,p−1(z) = wgp,p−1(z)

(
f ′(z)

wf,1(z)

)p−1

,

and

Wgp,p−1(α) =
g

(p−1)
p (α)

(p− 1)!
= −f

(p)(α)

p!f ′(α)
gp(α);

(3) there exists an analytic function W̃gp,p−1(z) such that

gp(z) = gp(α) + W̃gp,p−1(z)fp−1(z),
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with

W̃gp,p−1(z) =
wgp,p−1(z)

wp−1
f,1 (z)

,

and

W̃gp,p−1(α) =
g

(p−1)
p (α)

(p− 1)! (f ′(α))p−1 = − f (p)(α)

p! (f ′(α))p
gp(α).

Remark 4.6.1. We could also try to add a term δf(z) to f(z) in order to cancel the pth

derivative of f(z). So, let us consider

F (z) = f(z) + δf(z)

such that δf(z) is analytic and

δf(z) = wδf,p(z)(z − α)p

with

wδf,p(α) = −f
(p)(α)

p!
.

Hence we would cancel out the pth derivative of f(z), and we would have F (α) = 0,

F ′(α) = f(α), and F (j)(α) = 0 for j = 2, . . . , p. We can always write this expression as

a product because

F (z) = f(z) + δf(z) = f(z)

[
1 +

δf(z)

f(z)

]
= f(z) [1 + g̃(z)] = f(z)g(z),

where g(z) = 1 + g̃(z), and

g̃(z) =
δf(z)

f(z)
=
wδf,p(z)

wf,1(z)
(z − α)p−1,

with

g̃(p−1)(α) = (p− 1)!
wδf,p(α)

wf,1(α)
= −f

(p)(α)

pf ′(α)
.

The �rst example we present will provide us with a recursive way to progressively increase

the order of convergence of Newton's method to arbitrary values. It coincides with
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Halley's method at the order 3. It was �rst presented by Gerlach [19] in 1994, although

it turned out, in [44, 45, 14], to be a rediscovery of the Schröder's method of the second

kind dating from 1870 [48]. We present a new proof of this result.

Theorem 4.6.3. Let Nf (z) be of order p ≥ 2. Then for

Fp+1(z) = f(z)gp(z) with gp(z) =
1

p
√
f ′(z)

,

NFp+1(z) is of order p+ 1.

Proof. For gp(z) = 1
p
√
f ′(z)

and l ≥ 1 we have

g(l)
p (z) =

Γ
(
f ′, f ′′, . . . , f (l); z

)
(f ′(z))

1
p

+l
− f (l+1)(z)

p (f ′(z))
1
p

+1
.

Since f (l)(α) = 0 for l = 2, . . . , p− 1, it follows that

Γ
(
f ′, f ′′, . . . , f (l);α

)
= 0 for l = 1, . . . , p− 1,

and

g(l)
p (α) = 0 for l = 1, . . . , p− 2.

Finally

g(p−1)
p (α) = − f (p)(α)

p (f ′(α))
1
p

+1
,

so

g(p−1)
p (α) = −f

(p)(α)

pf ′(α)
gp(α),

and NFp+1(z) is of order p+ 1 for Fp+1(z) = f(z)gp(z).

Remark 4.6.2. Let us point out that gp(z) = 1
p
√
f ′(z)

satis�es the di�erential equation

g
(p−1)
p (z)

gp(z)
= −f

(p)(z)

pf ′(z)
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only for z = α, while it is a solution of the di�erential equation

g′p(z)

gp(z)
= − f

′′(z)

pf ′(z)

around α [19, 14].

The next result shows that the order of convergence can also be increased using higher

order derivatives of f(z).

Theorem 4.6.4. Let Nf (z) be of order p ≥ 2. Set

Fp+1(z) = f(z)− (p− q)!
p!

f (q)(z)

(
f(z)

f ′(z)

)q
= f(z)

[
1− (p− q)!

p!

f (q)(z)

f ′(z)

(
f(z)

f ′(z)

)q−1
]
,

then NFp+1(z) is of order p+ 1 for q = 2, . . . , p.

Proof. The added term is an appropriate expression because we have

gp(z) = 1− (p− q)!
p!

f (q)(z)

f ′(z)

(
f(z)

f ′(z)

)q−1

= 1− (p− q)!
p!

wf (q),p−q(z) (wf,1(z))q−1

(f ′(z))q
(z − α)p−1.

Then, gp(α) = 1, g(j)
p (α) = 0 for j = 1, . . . , p− 2, and

g(p−1)
p (α) = −(p− q)!

p

wf (q),p−q(α) (wf,1(α))q−1

(f ′(α))q
= −f

(p)(α)

pf ′(α)
.

4.6.2 An indirect approach

In the preceding section, we produced a process of increasing the order of convergence

recursively from p to p+ 1. In the next theorem we present a way of �nding an iteration
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function Fp(z), or equivalently gp−1(z) such that Fp(z) = f(z)gp−1(z), that directly has

order of convergence equal to p.

Theorem 4.6.5. [11, 12] Let p ≥ 2, and Fp(z) be de�ned by

Fp(z) =

p−1∑
j=0

bj(z)f j(z),

where the bj(z)'s are such that: b0(z) and b1(z) are two analytic functions such that
b0(α) = 0,

b′0(α) + b1(α)f ′(α) 6= 0,

If we set

bj(z) = −
b′′j−2(z) + 2(j − 1)b′j−1(z)f ′(z) + (j − 1)bj−1(z)f ′′(z)

j(j − 1)f ′(z)2

for j ≥ 2, then NFp(z) will be of order p. Moreover

F (p)
p (α) = −p!bp(α) (f ′(α))

p
,

and

Kp(α;NFp) = −(p− 1)bp(α) (f ′(α))p

b′0(α) + b1(α)f ′(α)
.

Note that b0(z) = 0 and any function b1(z) such that b1(α) 6= 0 are a trivial choices.

Example 4.6.1. For b0(z) = 0 and b1(z) = 1, we get NF2(z) = Nf (z), and we have

b2(z) = − f ′′(z)
2f ′(z)2 , so F3(z) = f(z) + b2(z)f(z)2 = f(z)g2(z), where

g2(z) = 1− f ′′(z)f(z)

2 (f ′(z))2 ,

and NF3(z) is of order 3. First observe that the above function g2(z) is a particular case

of Theorem 4.6.4 for p = q = 2. Also since we can add to F3(z) any function O(f 3(z))

and the order of convergence will be conserved, Newton's method applied to any function

F̃3(z) de�ned by

F̃3(z) = F3(z) + O(f 3(z)) = f(z)
[
1− f ′′(z)f(z)

2f ′(z)2
+ O(f 2(z))

]
,
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will be of order 3. So, as we observed in Example 4.5.4, for any functions h(z) such that

h(z) = 1− z + O(z2),

if we use

L(z) =
f ′′(z)f(z)

2f ′(z)2

to de�ne

g̃2(z) = h(L(z)) = g2(z) + O(f 2(z)),

this leads to

F̃3(z) = f(z)g̃2(z) = f(z)g2(z) + O(f 3(z)) = F3(z) + O(f 3(z)),

for which Newton's is of order 3. There are several such functions h(z) like : 1−arctan(z),

2− ez, 1− ln(1 + z), ez − 2 sin(z), 1
1+z

, cos(z)− sin(z). This illustrates the fact that we

have quite a variety of functions that will increase the order of convergence from 2 to 3.

If one wanted to be exotic, one could note that Newton's method applied to a function

such as

F̃3(z) = f(z)
[

cos
(f ′′(z)f(z)

2f ′(z)2

)
− sin

(f ′′(z)f(z)

2f ′(z)2

)]
would thus be an iterative method of order 3. This provides us also with several functions

that satisfy the point-wise condition g′′2(α) = −f ′′(α)
f ′(α)

g2(α), but not the di�erential equation

g′′2(z) = −f ′′(z)
f ′(z)

g2(z) as done in [19].

4.7 Linking Section 4.5 and Section 4.6

We had presented two ways of increasing the order of Newton's method. Firstly, we

observed that by looking at

z − f(z)

f ′(z)
G(z)
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we can �nd a convenient choice of function G(z). Secondly we have considered a new

F (z) and looking at NF (z) instead of Nf (z). In this section we answer the following

questions: How are the functions F (z) and G(z) related? How do we go from one to the

other?

Suppose Nf (z) is an iteration function of order p ≥ 2. Then

Ñf (z) = Nf (z) +Hp(z)

(
f(z)

f ′(z)

)p
is of order p+ 1, where

Hp(α) = −
N

(p)
f (α)

p!
= −(p− 1)

f (p)(α)

p!f ′(α)
.

Looking at

Ñf (z) = z − f(z)

f ′(z)

[
1−Hp(z)

(
f(z)

f ′(z)

)p−1
]
,

let us de�ne

Gp(z) = 1−Hp(z)

(
f(z)

f ′(z)

)p−1

then Gp(α) = 1, G(j)
p (α) = 0 for j = 1, . . . , p− 2, and

G(p−1)
p (α) = −(p− 1)!Hp(α) = (p− 1)

f (p)(α)

pf ′(α)
.

So if we set

gp(z) =
p−Gp(z)

p− 1
,

then gp(α) = 1, g(j)
p (α) = 0 for j = 1, . . . , p− 2, and

g(p−1)
p (α) = −G

(p−1)
p (α)

p− 1
= −f

(p)(α)

pf ′(α)
.

It follows from Theorem 4.6.1 that for Fp+1(z) = f(z)gp(z), NFp+1(z) will be of order

p+ 1. We can thus conclude the following result.
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Theorem 4.7.1. Suppose Nf (z) is of order p ≥ 2. For any function Gp(z) such that

Ñf (z) = z − f(z)

f ′(z)
Gp(z)

is an iteration function of order p+ 1, if we set

gp(z) =
p−Gp(z)

p− 1
,

and Fp+1(z) = f(z)gp(z), then NFp+1(z) is also of order p+ 1.

Remark 4.7.1. Let us observe that this result does not say that Ñf (z) = NFp+1(z).

Example 4.7.1. In particular, for the case p = 2, we had obtained that in Example 4.5.1

G2(z) = 1 +
f ′′(z)

2f ′(z)

(
f(z)

f ′(z)

)
.

This means we can set

g2(z) = 2−G2(z) = 1− f ′′(z)

2f ′(z)

(
f(z)

f ′(z)

)
.

Hence, once we have determined such a function Gp(z) as in Section 4.6 we can deduce

a corresponding function gp(z) such as in Section 4.5.

Conversely, suppose that Nf (z) is of order p ≥ 2. Let Fp+1(z) = f(z)gp(z) with gp(z)

such that
gp(α) 6= 0

gp(z) = gp(α) + wgp,p−1(z)(z − α)p−1 with wgp,p−1(α) =
g

((p−1)
p (α)

(p−1)!
,
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and for which NFp+1(z) is of order p+ 1. We have

NFp+1(z) = z − Fp+1(z)

F ′p+1(z)

= z − f(z)

f ′(z)

 1

1 +
g′p(z)

gp(z)
f(z)
f ′(z)


= z − f(z)

f ′(z)

[
1−

g′p(z)

gp(z)

f(z)

f ′(z)
+ O

((
g′p(z)

gp(z)

f(z)

f ′(z)

)2
)]

= z − f(z)

f ′(z)

[
1−

g′p(z)

gp(z)

f(z)

f ′(z)

]
+ O

((
g′p(z)

gp(z)

)2(
f(z)

f ′(z)

)3
)
.

But
g′p(z)

gp(z)
=
wg′p,p−2(z)

gp(z)
(z − α)p−2

and
f(z)

f ′(z)
=
wf,1(z)

f ′(z)
(z − α),

so

O

((
g′p(z)

gp(z)

)2(
f(z)

f ′(z)

)3
)

= O
(
(z − α)2(p−2)+3

)
= O

(
(z − α)2p−1

)
.

Observing that 2p− 1 ≥ p+ 1 for p ≥ 2, if we set

Gp(z) = 1−
g′p(z)

gp(z)

f(z)

f ′(z)

then

ÑFp+1(z) = z − f(z)

f ′(z)
Gp(z)

is also of order p+ 1. This gives us the converse of the previous result.

Theorem 4.7.2. Let Nf (z) be of order p ≥ 2, and suppose Fp+1(z) = f(z)gp(z) is such

that NFp+1(z) is of order p+ 1. Set

Gp(z) = 1−
g′p(z)

gp(z)

f(z)

f ′(z)
,
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then

ÑFp+1(z) = z − f(z)

f ′(z)
Gp(z)

is also of order p+ 1.

Remark 4.7.2. Let us observe that this result does not say that ÑFp+1(z) = NFp+1(z).

Remark 4.7.3. Observe if we have a Gander type method [18] for

z − f(z)

f ′(z)
G(r(z))

for r(z) = f(z)f ′′(z)
f ′(z)2 . For any function G(z) such that G(0) = 1,G′(0) = 1/2, and |G′′(0)| <

∞, Gander's method produces a family of third order method. For example, we can take

G(z) =
1− (β − 1/2)z

(1− βz)

one can obtain Werner's family [56], Chebyshev's method (β = 0), Halley's method

(β = 1/2) and super Halley (β = 1).

4.8 Linking Euler-Chebyshev's and Halley's works.

We will now link the work of Euler and Chebyshev with that of Halley. In Theorem 4.5.10

and Remark 4.5.8, we have increased the order of the iteration function Nf (z) of order p

by considering, for q = 2,

Ñf (z) = z − f(z)

f ′(z)
− 1

p

f ′′(z)

f ′(z)

(
f(z)

f ′(z)

)2

= z − f(z)

f ′(z)

[
1 +

1

p

f ′′(z)f(z)

(f ′(z)2)

]
,

to come up with an new iteration function Ñf (z) which has one degree of higher order

of convergence than our original Nf (z). For the particular value p = 2 we had Euler-

Chebyshev's third order method. One could ask the following question: is it possible to

rewrite Ñf (z) as NF (z), Newton's method for an appropriate function F (z) = f(z)g(z)?
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One thing we can certainly do, is apply Theorem 4.7.1 directly on the function

Gp(z) = 1 +
1

p

f ′′(z)f(z)

f ′(z)2
.

This will give us a possible solution. More interestingly however, we could ask ourself the

following question instead: what is the function gp(z) to which we could apply Theorem

4.7.2 to have this above de�ned Gp(z). That is, we want gp(z) such that

Gp(z) = 1−
g′p(z)

gp(z)

f(z)

f ′(z)
.

In other words

1 +
1

p

f ′′(z)

f ′(z)

f(z)

f ′(z)
= 1−

g′p(z)

gp(z)

f(z)

f ′(z)
.

That is

g′(z)

g(z)
= −1

p

f ′′(z)

f ′(z)
.

Solving this di�erential equation, we get solution gp(z) = 1/ p
√
f ′(z). Therefore Fp+1(z) =

f(z)/ p
√
f ′(z), which corresponds to Schröder's process of the second kind presented in

Theorem 4.6.3, and we have

NF (z) = z − f(z)/f ′(z)

1− f(z)f ′′(z)

p(f ′(z))2

.

For the case p = 2 we recover Halley's work from Euler-Chebyshev.

Remark 4.8.1. Other links between the Schröder's process of the �rst kind, for which

the Euler-Chebyshev's method is the term of order three of the basic sequence, and the

Schröder's process of the second king, for which the Halley's method is the term of order

three of the basic sequence, are presented in [7].
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4.9 On the Chebyshev-Halley family of order 3.

The Super-Halley family of IFs can be obtained from the preceding results. For example,

if we apply Theorem 4.5.7 and Remark 4.5.7 for p = 2, with Nf (z) and

H̃2(z) =
f(z)/f ′(z)

1− λ(z)f(z)f ′′(z)

(f ′(z))2

we obtain

Iλ(z) = Nf (z)− 1

2
N ′f (z)

 f(z)/f ′(z)

1− λ(z)f(z)f ′′(z)

(f ′(z))2


= z − f(z)

f ′(z)
− 1

2

 f(z)/f ′(z)

1− λ(z)f(z)f ′′(z)

(f ′(z))2

 f(z)f ′′(z)

(f ′(z))2

= z −

1−
(
λ(z)− 1

2

)
f(z)f ′′(z)

(f ′(z))2

1− λ(z)f(z)f ′′(z)

(f ′(z))2

 f(z)

f ′(z)
,

since N ′f (z) = f ′′(z)f(z)

(f ′(z))2 , and H̃2(α) = 0 and H̃ ′2(α) = 1.

This family can also be obtained using Theorem 4.5.8. Indeed, use

H2(z) = −1

2

 f ′′(z)/f ′(z)

1− λ(z)f(z)f ′′(z)

[f ′(z)]2

 ,
which is such that

H2(α) = −1

2

f ′′(α)

f ′(α)
,

then

Iλ(z) = Nf (z) +H2(z)

(
f(z)

f ′(z)

)2

= z − f(z)

f ′(z)
− 1

2

 f ′′(z)/f ′(z)

1− λ(z)f(z)f ′′(z)

[f ′(z)]2

( f(z)

f ′(z)

)2

= z −

1−
(
λ(z)− 1

2

) f(z)f ′′(z)

(f ′(z))2

1− λ(z)f(z)f ′′(z)

(f ′(z))2

 f(z)

f ′(z)
.
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Hence all the IFs of this family are at least of order 3. For λ(z) = 0 it is the Euler-

Chebyshev's method, for λ(z) = 1/2 it is the Halley's method, and λ(z) = 1 it is known

as the Super-Halley method.

It is straightforward to compute the asymptotic constant and get

K3(α; Iλ) =
1

3!

[
3(1− λ(α))

(
f ′′(α)

f ′(α)

)2

− f ′′′(α)

f ′(α)

]
.

From this expression, the Super-Halley IF is of order at least 4 for the f(z) which are

quadratic polynomials because K3(α; I1) = 0, a result obtained in [23, 24]. Any member

of the family can be superior to the others for a speci�c function f(z) since the asymp-

totic constant depends on f(z). So comparisons based on numerical experiments between

members of this family are useless considering the expressions for their asymptotic con-

stants which depends on the original function f(z). Examples are given for Chebyshev,

Halley, and Super-Halley IFs to illustrate this fact in [4, 5].

4.10 Conclusion.

In this paper we presented of thorough analysis of the necessary and su�cient conditions

that will entail for �xed point and Newton's iterative methods to be of higher order

convergence. We did so by considering two di�erent procedures. The �rst one consisted

in modifying the �xed point iteration function by adding an additional term that conve-

niently enough increased the order of convergence of the iteration function. The second

procedure consisted in modifying our original function f(z) into a new one F (z) which

caused the order of convergence of Newton's method to increase. We have also estab-

lished a link between those two procedures. Interestingly enough the results presented

are obtained using simple Taylor's expansions. Finally, as a particular example, we have

considered the Super-Halley family of iteration functions of order 3 for which order of
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convergence of at least 3 is easy to established from the established preceding results.

One aspect that is not considered here is the basin of attraction of the method. But

these basins of attraction depends also on the function under consideration.
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CHAPITRE 5

Schröder processes and the best ways

of increasing order of Newton's

method.

Abstract

We seek the answer to the following question: What is the best way of increasing the order

of convergence of Newton's method? We show that the most e�cient way of increasing

the order of convergence of Newton's method are respectively Schröder's process of the

�rst and second kind. One, in terms of polynomial expansions and the other in term of

transformation.
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5.1 Introduction

Finding roots of an equation is a fundamental problem in applied mathematics. Many

mathematicians worked to develop e�cient numerical methods to solve such problem.

One of the �rst and very popular way of numerically �nding root of a general non-linear

equation was presented in 1669 [57] by Sir Isaac Newton. He introduced an iterative

method that can be applied to �nding a simple root α of an analytic (or su�ciently

regular) function f(z), i.e. such that f(α) = 0 and f ′(α) 6= 0. It uses an initial point z0

and a sequence generated by

zk+1 = zk −
f(zk)

f ′(zk)
,

which need the evaluation of f(zk) and f ′(zk) for each k. If the sequence {zk}+∞
k=0 converges

to α, we get a �xed point to the iteration function (IF)

Nf (z) = z − f(z)

f ′(z)
,

that is to say that α = Nf (α), and consequently f(α) = 0. The function Nf (z) is called

Newton's IF. Later, in 1694 [20], Edmond Halley, introduced another IF

Hf (z) = z − 2f(z)f ′(z)

2f ′(z)2 − f(z)f ′′(z)
= z −

[
1− f(z)f ′′(z)

2f ′(z)2

]−1
f(z)

f ′(z)
,

which has the property to be �faster" than Newton's IF. The last expression indicates that

we can obviously look atHf (z) as a modi�ed Nf (z) using a rational expression in terms of

f(z) or f(z)/f ′(z). Less obvious is the fact that Hf (z) = NF (z) for F (z) = f(z)/
√
f ′(z),

and it is Newton's IF applied to a modi�ed function F (z). Subsequently, as reported in

[3], a third IF, called Euler-Chebyshev's IF, was introduced

Cf (z) = z − f(z)

f ′(z)
− f ′′(z)

2f ′(z)

(
f(z)

f ′(z)

)2

= z −
[
1 +

f(z)f ′′(z)

2f ′(z)2

]
f(z)

f ′(z)
,

which was as �fast" as Halley's IF. It is written as a polynomial expression in terms of f(z)

or f(z)/f ′(z). Again the last expression indicates that it can also be seen as a modi�ed
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Nf (z). Moreover, it cannot be rewritten as a Newton's IF applied to any modi�ed

function F (z), as it is possible for Halley's IF. Both Halley's and Euler-Chebyshev's IF

which are constructed to be �faster" than Newton's IF, require an additional information,

namely the knowledge of f ′′(z).

Let us point out that Newton's, Halley's, and Chebyshev's IF correspond to one-point

iteration processes. Such one-point iteration processes require the evaluations of f(z),

and some of its derivatives at only one point at each iteration. To increase the order of

convergence for a one-point method of order p to get a one-point method of order p+ 1

we need, at least, to add the information given by f (p)(z) [51]. For example to increase

the order of the Newton's method, which is of order 2, to get a one-point method of order

3 we need to add at least f ′′(z) to the expression.

The goal of this paper is to study the �best" way of increasing the order of convergence of

Newton's method as a one-point iteration process. There are at least two possible things

we can do to add the information and obtain e�ciently a higher order one-point IF. We

can either use a polynomial expression to modify the Newton's method, in that case we

get the Schröder's method of the �rst kind (for Newton's method of order 2 we get the

Chebyshev's method of order 3), or apply Newton's method to a modi�ed function, or

equivalently use a rational expression to modify Newton's method, in that case we get

the Schröder's method of the second kind (for Newton's method of order 2 we get the

Halley's method of order 3).

We will see in this paper that the �best" ways of increasing the order of Newton's IF,

in terms of one-point IF, which extend Halley's and Euler-Chebyshev's IF, correspond

to two processes established by Schröder in 1870 called Schröder's processes of the �rst

kind and of the second kind [48]. In order to get our result, we need to de�ne what

the terms �fast", �best", or �e�cient", mean mathematically. It is done in Section 5.2.

In Section 5.3, we consider a direct modi�cation of the Newton's IF itself by adding

118



appropriate terms. In Section 5.4, we apply Newton's IF to a modi�ed function F (z).

Finally, concluding remarks are presented in the last Section 5.5.

This paper focus on the (historical) theoretical development of ways to increase the order

of one-point methods using a basic de�nition of e�ciency. In fact we point out a nice

Schröder's achievement. Let us mention that Schröder's processes are not so well-known.

If they had been so well-known they would not have been rediscovered so many times

[44, 45].

From the application view point, some other topics about Newton's method are impor-

tant, but they are not relevant for the purpose of the present paper. For example the

choice of the initial starting point z0 to assure convergence of the process (z0 be in the

basin of attraction), also related to the asymptotic constant of the method, depends

on the function f(z) [4]. The case of high order Newton's method for multiple zeros

is interesting and studied elsewhere [6]. Also high order methods in the multidimen-

sional framework deserves its own study, see [10]. Finally we don't consider multi-point

methods, as the secant method which is one of the simplest example.

5.2 Preliminaries

5.2.1 Order of convergence

Let us consider IF to �nd a simple zero α of a function f(z), that is to say f(α) = 0 and

f ′(α) 6= 0. We say that the order of convergence of an IF I(z) applied to �nd α is p, a

positive integer, if and only if there exists a non-zero asymptotic constant Kp(α; I) such

that

lim
k→+∞

zk+1 − α
(zk − α)p

= lim
k→+∞

I(zk)− I(α)

(zk − α)p
= Kp(α; I).
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For values of zk close to α, the term (zk − α)p becomes considerably smaller if p is large,

so looking at

zk+1 − α ≈ Kp(α, I) (zk − α)p

hints at how fast the error of approximation decrease and the speed of convergence

increases as p increases. So this concept of order of convergence provides us with a

reasonable characterization of speed of an iterative process, or equivalently how fast,

locally or close to α, an IF I(z) may be.

Let us say also that this speed of convergence can be observed only for z su�ciently close

to α. Let us mention that for two IF of the same order p, I1 and I2, if

|Kp(α; I2)| > |Kp(α; I1)| > 0

I1 will converge locally more rapidly around α than I2.

In this paper we look on in�nite sequences of IF's with increasing order of convergence.

Such sequence, say {Ip(z)}+∞
p=0 whose pth member Ip(z) is an IF of order p, is called a

basic sequence of IF's [51].

5.2.2 E�ciency of informational usage

The informational usage of an IF is the number of new pieces of information required

at each iteration. Since the information to be used are the values of f(z) and some of

its derivatives, the informational usage is the total number of function and derivatives

evaluated per iteration. Following [51], we will use the informational e�ciency EFF

which is the order p divided by the informational usage d

EFF = p/d.

There exist other measures of e�ciency, for example the e�ciency index and the com-

putational e�ciency [51]. We will not consider those measures here.
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If Ip(z) is a one-point IF of order p, given an arbitrary analytic function f(z), then IF

requires the knowledge of at least the (p− 1)th �rst derivatives of f(z) in its formulation

[51]. So d ≥ p and EFF ≤ 1.

This e�ciency is maximized for process of order p, if its formulation requires no more then

the (p−1)th �rst derivatives of the function f(z), that is to say d = p, and EFF = 1. This

illustrates the following thing: there are many ways of increasing the order of convergence,

but to do so, as e�ciently as possible, we need to always limit ourselves to computing at

most one additional derivative each time we increase the order. It will be shown that the

Schröder's processes are constructed such that EFF = 1, so the informational e�ciency

is maximized.

5.2.3 Taylor's expansion

For an IF of order p, let us observe that we can write

I(zk) ≈ I(α) +Kp(α, I) (zk − α)p ,

which looks like the Taylor's expansion of I(z).

Let us recall some facts about Taylor's expansion of an arbitrary analytic function f(z).

Using the notation f (j)(z) which stands for the jth derivative of f(z), and α in the

domain of f(z), we can write

f(z) =
∞∑
j=0

f (j)(α)

j!
(z − α)j =

q−1∑
j=0

f (j)(α)

j!
(z − α)j + wf,q(z) (z − α)q

for any q = 1, 2, , . . ., where wf,q(z) is the analytic function

wf,q(z) =
∞∑
j=0

f (q+j)(α)

(q + j)!
(z − α)j .
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Moreover, the series for f(z) and wf,q(z) have the same radius of convergence for any q,

and wf,q(α) = f (q)(α)
j!

.

We say that α is a root of f(z) of multiplicity q ≥ 1 if and only if f (j)(α) = 0 for

j = 0, . . . , q − 1, and f (q)(α) 6= 0. So α is a root of f(z) of multiplicity q if and

only if there exists an analytic function wf,q(z) such that wf,q(α) = f (q)(α)
q!
6= 0 and

f(z) = wf,q(z)(z − α)q.

The Big O notation g(z) = O(f(z)), respectively the small o notation g(z) = o(f(z)),

around z = α when c 6= 0, respectively c = 0, means that

lim
z→α

g(z)

f(z)
= c.

For α a root of multiplicity q of f(z), it is equivalent to write g(z) = O(f(z)) or g(z) =

O((z−α)q). Observe also that if α is a simple root of f(z), then α is a root of multiplicity

q of f q(z). Hence g(z) = O(f q(z)) is equivalent to g(z) = O((z − α)q).

5.3 Modifying Newton's IF as a �xed point

As mentioned before, the �rst thing we can do is directly modify the iteration function

Nf (z) itself into some new iteration function S(z). Let us start by looking for the

conditions on an IF to be of order p.

5.3.1 Conditions on IF

As we have seen, the concept of order of convergence is related to Taylor's expansion of

an IF. More precisely we have the following result.

Theorem 5.3.1. [12] Let p be an integer ≥ 2 and let I(z) be an analytic function such
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that I(α) = α. The IF I(z) is of order p if and only if I(j)(α) = 0 for j = 1, . . . , p − 1,

and I(p)(α) 6= 0.

This result says that Taylor's expansion of an IF I(z) of order p is

I(z) = α + wI,p(z)(z − α)p with wI,p(α) =
I(p)(α)

p!
,

and we also have

I ′(z) = wI′,p−1(z)(z − α)p−1 with wI′,p−1(α) =
I(p)(α)

(p− 1)!
.

Let us remark that for a function f(z) with a simple root α, i.e., f(α) = 0 and f ′(α) 6= 0,

since we can write

f(z) = wf,1(z)(z − α) where wf,1(α) = f ′(α),

the following two expressions, O
(
(z − α)l

)
and O

(
f l(z)

)
, are equivalent for any positive

integer l.

As consequences of Theorem 5.3.1, for an analytic IF I(z), we could say that: (a) I(z)

is of order p if and only if I(z) = α + O((z − α)p), or equivalently, if I(α) = α and

I ′(z) = O((z−α)p−1), and (b) if α is a simple root of f(z), then I(z) is of order p if and

only if I(z) = α +O(fp(z)), or equivalently, if I(α) = α and I ′(z) = O(fp−1(z)).

Now for the Newton's IF one can observe that Nf (α) = α. Furthermore N ′f (z) = f ′′(z)f(z)
f ′(z)2 ,

and N ′f (α) = 0. So if α is a simple root of f(z), that is f(α) = 0 and f ′(α) 6= 0, we

can conclude that Newton's method applied to f(z) is an iteration function of at least of

order 2.
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5.3.2 Polynomial expansion and Schröder's process of the �rst

kind

Now let us directly modify the iteration function Nf (z) itself into some new iteration

function S(z). Here out of all possible such operations, we are looking at the �best" way,

we shall look for the modi�cation with the simplest algebraic formulation. Noting that

the simplest algebraic operation we could performed on Nf (z) would be an addition, we

want to know what would be the simplest function ∆(z), so that for S(z) = Nf (z)+∆(z),

the order of convergence of S(z) would be increased and furthermore we are required to

not use anything more then an additional derivative of f(z) in the formulation of ∆(z).

Suppose we start with an iteration function Nf (z) of order 2, that is Nf (α) = α, N ′f (α) =

0 and N ′′f (α) 6= 0. If S3(z) is an iteration function of order 3 de�ned by S3(z) = Nf (z) +

∆(z), we must have S3(α) = α, S ′3(α) = 0 and S ′′3 (α) = 0, according to Theorem 5.3.1.

This means for ∆(z) = S3(z)−Nf (z), α is a root of multiplicity 2. That is ∆(z), can be

written as δ(z)f(z)2, for some analytic function δ(z), since α is a simple root of f(z). Our

goal here would be to �gure out what would be the simplest and most e�cient choice of

function δ(z) to increase the order of convergence. This leads to the following theorem.

Theorem 5.3.2. [12] Let α be a simple root of f(z). Let Sp(z) be the IF de�ned by the

�nite series

Sp(z) =

p−1∑
j=0

cj(z)f j(z),

where c0(z) = z, and the cj(z) are de�ned by

jf ′(z)cj(z) + c′j−1(z) = 0 or cj(x) = −1

j

(
1

f ′(x)

d

dx

)
cj−1(z)

for j = 1, 2, . . . Then Sp(z) is, at least, of order p.

The sequence of iteration function Sp(z), as introduced by the Theorem 5.3.2, is known

as Schröder's process of the �rst kind introduced in 1870 [48, 51].
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It is very important to observe that c1(z) = 1/f ′(z), so c1(z) is a function of the parameter

f ′(z) only. Since cj+1(z) = −c′j(z)/[(j+ 1)f ′(z)], cj(z) depends on f ′(z), f ′′(z),...,f (j)(z),

more precisely

cj(z) =
polynomial expression in terms of f ′′(z), . . . , f (j)(z)

(f ′(z))2j−1 .

In particular, it is important to note that cj(z) is a function whose algebraic expression

does not depend explicitly on the parameter f(z) but depends only on f (l)(z) for l =

1, . . . , j. Also by de�nition cj+1(z) only has one order of derivative of f(z) higher then

cj(z).

We have shown that Sp(z) is an iteration function of at least order p. We know that if

Sp(z) is to be an iteration function of order p, given an arbitrary analytic function f(z),

then e�ciency requires knowledge of at least the �rst (p− 1)th derivatives of f(z) in the

formulation [51]. This illustrates the fact that Sp(z), as written above, is as e�cient as

possible, because it does not require computing derivatives of unnecessarily higher order

then p− 1. Each time the order is increased, only one additional derivative is computed

as required to maximize e�ciency. We will show furthermore that the coe�cient cj(z),

given by Schröder's process of the �rst kind, minimize the dependence on the number of

parameters z, f(z), f ′(z),...,f (j)(z).

5.3.3 Consequence

Let us present the consequence of the result of the last section.

Theorem 5.3.3. Suppose we have an iterative method of order p ≥ 2,

S̃p(z) =

p−1∑
j=0

c̃j(z)f(z)j,
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where c̃0(z) = z = c0(z), and c̃j(z) depends on z, f ′(z), f ′′(z),..., f (j)(z) for j = 1, 2, . . .,

then

c̃j(z) = cj(z)

for j = 0, 1, 2, . . ., and S̃p(z) = Sp(z).

Note that in this last theorem c̃j(z) are only dependent of the parameter z and derivatives

of f(z), they do not directly depend on the function f(z) itself.

Proof. First, we observe that in order for S̃p(z) to be an iterative method of any order

for �nding the simple root α we need that S̃p(α) = α. We have S̃1(z) = S1(z). Now,

suppose there exists a �rst index p∗ > 1, such that c̃p∗−1(z) 6= cp∗−1(z). Then, because

both processes, Sp∗(z) and S̃p∗(z), are of the same order p∗, we observe that

S̃p∗(z)− Sp∗(z) = O(fp
∗
(z)).

But

S̃p∗(z)− Sp∗(z) = (c̃p∗−1(z)− cp∗−1(z)) fp
∗−1(z),

which means that

c̃p∗−1(z)− cp∗−1(z) = O(f(z)).

In other words we have

Γp∗−1

(
z, f ′(z), f ′′(z), .., f (p∗−1)(z)

)
= c̃p∗−1(z)− cp∗−1(z) = O(f(z)).

This is only possible if

Γp∗−1

(
z, f ′(z), f ′′(z), .., f (p∗−1)(z)

)
= 0

as we will show. But this contradict the fact that c̃p∗−1(z) 6= cp∗−1(z), and hence S̃p∗(z) =

Sp∗(z).
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To show that Γp∗−1

(
z, f ′(z), f ′′(z), .., f (p∗−1)(z)

)
= 0, let us observe that the formula for

c̃p∗−1(z) and cp∗−1(z) must hold for any function f(z) having a simple root at α. So let

us consider

f(z) =

p∗−1∑
l=1

λl
l!

(z − β)l ,

with arbitrary β, λ1 6= 0, λ2, . . ., λp∗−2, and λp∗−1. For this expression of f(z) we have

f(β) = 0, f ′(β) = λ1 6= 0, and f (l)(β) = λl for l = 2, . . . , p∗ − 1. Then

Γp∗−1

(
z, f ′(z), f ′′(z), .., f (p∗−1)(z)

)∣∣z=β = 0,

which leads to

Γp∗−1

(
β, λ1, λ2, . . . , λp∗−1

)
= 0.

So, this fact means that this function is identically zero as required, because β, λ1, λ2,

. . ., λp∗−2, and λp∗−1 can take any values.

So we have also the following consequence.

Corollary 5.3.4. Suppose Qp(z) is an acceleration process of order p ≥ 2, that expands

into polynomial terms of f(z), then

Qp(z) = Sp(z) + δ(z)fp(z)

and can be truncated to Sp(z) for every p.

So, these results say that Sp(z) is the most e�cient IF of order p, in polynomial terms

of f(z), that increases the order of convergence of Newton's IF.

5.4 Modifying f (z) into a new function F (z)

The second way is to modify the function f(z) itself into a new function F (z), whose

application to Newton's will be faster. We will need to establish conditions that will entail
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any new function F (z) to increase the order of convergence of Nf (z) by one. Furthermore

if our modi�cation F (z) is to be the �best" possible choice of such a function, we are

required to not use anything more then an additional derivative of f(z) in the formulation

of F (z), as discussed before. We shall look for such a function F (z) with the simplest

possible formulation.

����������������

5.4.1 Finding the form

We �rst look at the necessary and su�cient conditions to get high order of convergence

of the Newton's method.

Theorem 5.4.1. [12] Let p ≥ 2 and let Fp(z) be an analytic function such that Fp(α) = 0

and F ′p(α) 6= 0. Newton IF NFp(z) = z− Fp(z)

F ′p(z)
is of order p if and only if F (j)

p (α) = 0 for

j = 2, . . . , p− 1, and F (p)
p (α) 6= 0.

Starting with F2(z) = f(z), we can look for a recursive way to construct a function Fp(z)

which will satisfy the conditions of Theorem 5.4.1. A consequence is that NFp(z) will be

of order p, and NFp(z) = α + O(fp(z)). Our goal here however is to establish the most

e�cient way of constructing such a function.

Suppose Fp(z) is an analytic function such that Fp(α) = 0 and F ′p(α) 6= 0. If NFp(z) is of

order p, then Theorem 5.4.1 implies that F ′′p (z) = O ((z − α)p−2). To increase the order

of convergence from p to p+1, we must look for a function Fp+1(z) such that Fp+1(α) = 0,

F ′p+1(α) 6= 0, and F ′′p+1(z) = O ((z − α)p−1). Because the conditions of Theorem 5.4.1 are

an if and only if, we really have no other choice but to go about it this way.

Several functions Fp+1(z) might a priori be used. These functions may depend on z,

f(z), f ′(z), f ′′(z), . . .. Our goal here is to �nd a new function Fp+1(z), related to f(z),

128



that would use the least possible amount of such parameters. Since α is supposed to be

a simple root of both Fp+1(z) and of Fp(z), we can write

Fp+1(z) = Fp(z)gp(z).

The function gp(z) will contains information from f(z) or Fp(z), in terms of some of

its derivatives f (l)(z) for l = 1, 2, 3, . . ., and we know, in term of its dependence on the

initial function Fp(z), at least F ′p(z) is needed to increase the order of NFp+1(z). That

is because to increase the order of convergence at each step, at least knowledge of an

additional derivative is required as discussed previously. So if we could write gp(z) as a

function depending only of F ′p(z), that is gp(z) = Gp(F
′
p(z)), we would have e�ectively

used the least amount of new information of Fp(z) in term of its derivatives. Let us

point out that the fact that such a solution may even exist is not obvious. However, the

following result has been proved to solve the problem.

Theorem 5.4.2. [14] Let Fp(z) be an analytic function such that Fp(α) = 0 and F ′p(α) 6=

0, and suppose NFp(z) is of order p. There exists a unique function Gp(ξ), up to a

multiplicative constant ρp, such that NFp+1(z) is of order p+ 1, for

Fp+1(z) = Fp(z)Gp

(
F ′p(z)

)
,

and this function is

Gp(ξ) =
ρp
ξ1/p

.

So using

Fp+1(z) = Fp(z)Gp(F
′
p(z)) = ρp

Fp(z)[
F ′p(z)

]1/p ,
we obtain

NFp+1(z) = z − Fp+1(z)

F ′p+1(z)
= z − Fp(z)

F ′p(z)

[
1−

F ′′p (z)Fp(z)

pF ′p(z)2

]−1

,

which will be of order p+ 1.
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Because F2(z) = f(z), NF2(z) = Nf (z) is of order 2. When we apply Newton's IF to the

function F3(z) = F2(z)/
√
F ′2(z) = f(z)/

√
f ′(z), we have an IF of order 3, this just so

happen to exactly be Halley's IF.

What we have obtained, additionally, is that the function Gp(ξ) is in fact unique and this

allows us to conclude that if Fp(z) is a function for which Newton's IF applied to Fp(z),

that is NFp(z), is of order p, then for

Fp+1(z) = Fp(z)Gp(F
′
p(z)) with Gp(z) =

1
p
√
z
,

not only is NFp+1(z) of order p + 1, but Gp(z) = 1
p√z is the simplest such function we

could use. So the speci�c family obtained by this process is in fact the most e�cient

way of recursively increasing the order of convergence of Newton's IF in terms of usage

of derivatives of the function f(z) if we were to only modify the function f(z).

5.4.2 Implication of results

The above described process provides us with a recursive way of progressively determining

functions {Fp(z)}+∞
p=2, with F2(z) = f(z), for which Hp(z) = NFp(z) is of order p. The

family {Hp(z)}+∞
p=2 will be called Halley's basic sequence because H3(z) = Hf (z).

Recall that very early we had observed: if there was such a thing as the �best" way of

making Newton's IF, dating from 1669, faster, we shouldn't be surprised that mathe-

maticians have rediscover it, several times. In fact this acceleration process has been

rediscovered several times since 1870 [44, 45].

Halley's basic sequence has one fundamental property it always satis�es. So providing

a formulaic approach that can be used to recognize Halley's basic sequence, regardless

of the formulation, we would have a complete characterization of this basic sequence.

It could be used to e�ectively recognize it, regardless of form, and avoid any further
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rediscovery. This is the goal of the next result.

Theorem 5.4.3. [14] Let f(z) be an analytic function such that f(α) = 0 and f ′(α) 6= 0

for which Nf (z) is of order 2. The basic sequence {Gp(z)}+∞
p=2 given by

Gp(z) = z − Vp(z) for p ≥ 2,

for which the pth element is of order p, corresponds to the Halley's basic sequence if and

only if 
V2(z) = f(z)

f ′(z)
,

Vp+1(z) =
[
1− 1

p

[
1− V ′p(z)

]]−1

Vp(z) for p ≥ 2.

5.4.3 Schröder's method of the second kind

In 1870, Schröder [48] proposed 2 basic sequences. The second one, known as Schröder's

method of the second kind, is based on rational approximations. Its pth member of order

p is given by

Tp(z) = z − Rp−2(z)

Rp−1(z)
for p ≥ 2,

where 
R0(z) = 1/f(z),

Rp(z) =
∑p

j=1 (−1)j+1 f (j)(z)
j!f(z)

Rp−j(z) for p ≥ 1.

Computing the expressions for R1(z) and R2(z), we observe that the �rst two elements

of this sequence are respectively, Newton's IF T2(z) = Nf (z) of order 2, and Halley's IF

T3(z) = Hf (z) of order 3.

In fact, Schröder's method of the second kind is actually Halley's basic sequence. To get

this result, the next lemma provide us with an equivalent formulation for Rp(z).

Lemma 5.4.4. [14] Rp(z) =
(−1)p

p!

(
1

f(z)

)(p)

for p = 0, 1, 2, . . .
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Then we have the result.

Theorem 5.4.5. Halley's basic sequence and Schröder's method of the second kind co-

incide.

Proof. We have directly that

Vp(z) =
Rp−2(z)

Rp−1(z)
=

(−1)p−2

(p−2)!

(
1

f(z)

)(p−2)

(−1)p−1

(p−1)!

(
1

f(z)

)(p−1)
= −(p− 1)

(1/f(z))(p−2)

(1/f(z))(p−1)
.

Consequently

V ′p(z) = −(p− 1)

[
1− (1/f(z))(p−2)(1/f(z))(p)

[(1/f(z))(p−1)]
2

]
,

and a direct substitution leads to[
1− 1

p

[
1− V ′p(z)

]]−1

Vp(z) = −p(1/f(z))(p−1)

(1/f(z))(p)
= Vp+1(z),

which establishes the result.

So, Schröder's process of the second kind, as proposed in 1870, is the most e�cient way

of increasing the order of convergence of Newton's IF if we were to modify the function

f(z) into a new one F (z).

5.5 Conclusion

In seeking to increase the order of convergence of Newton's method as e�ciently as

possible, based on necessary and su�cient conditions for high order of convergence, we

found that while Schröder process of the �rst kind is the best way of increasing the order

of convergence of Newton's method by addition to obtain a polynomial expression in

terms of f(z), Schröder's process of the second kind was the best way of increasing the
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order of Newton's method, when applied to a new function, by modifying the function

f(z) into a new function F (z). Those two processes introduced by Schröder in 1870 are

thus respectively the best one in some terms of minimal usage of derivatives of f(z) and

simplicity of formulation. Finally, let us observe that those two processes are related by

polynomial and rational interpolation as shown in [7].
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CONCLUSION

Nous avons développé dans nos travaux un nouvel algorithme pour reconnaître le proces-

sus d'accélération de Schröder de première espèce. Celui-ci pourrait éviter toute autre

éventuelle redécouverte.

Nous avons aussi prouvé que les deux processus de Schröder sont respectivement les

meilleures façons d'augmenter l'ordre de convergence de la méthode itérative de Newton.

L'un en termes d'application de la méthode de Newton à une nouvelle fonction, l'autre

en termes de développement polynomial de la fonction itérante par rapport à la fonction

originale.

Nous avons aussi uni�é le travail de mathématiciens comme Euler, Chebyshev et Halley,

en présentant une façon générale d'augmenter la convergence de méthodes itératives,

basées sur le développement Taylor de fonctions analytiques.

L'extension de plusieurs de ces résultats dans les espaces de Banach est faite dans [10].

L'une des perspectives de recherche pourrait être de voir s'il y a un lien entre la constante

asymptotique et les bassins d'attraction. Egalement de voir comment on peut modi�er

une fonction a�n d'agrandir le bassin d'attraction pour une racine précise. Ainsi voir

comment nos travaux peuvent contribuer à étendre et améliorer les résutats connus dans

ce domaine, en particulier les travaux de Traub [51] et Kalantari [36]. Finalement, un
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domaine d'interêt qui pourrait être exploré concerne l'application de nos travaux aux

méthodes de recherche simultannées des racines d'une fonction. Lorsque plusieurs zéros

d'une fonction sont requis ces méthodes présentent des avantages par rapport à la méth-

ode de Newton utilisée pour la recherche d'un zéro isolé à la fois. Pour en savoir plus sur

ces methodes de recherche des zéros de polynomes voir par example [43, 42, 55, 16] .

On pourrait aussi voir comment les bassins d'attraction changeraient si on augmentait le

nombre d'iterations qu'on a e�ectué dans le chapitre 2.
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