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SOMMAIRE

Dans cette thése par articles, nous nous intéressons a ’augmentation de ’ordre de con-
vergence de la méthode itérative de Newton. Notre objectif a été d’établir en termes
mathématiques, la meilleure fagon d’augmenter ’ordre de convergence de cette méthode.
A cet effet, cette thése regroupera cing articles qui soulignent le cheminement de notre

travail de doctorat et la logique de notre recherche.

Dans un premier article, qui sert d’introduction et de mise en contexte de cette thése, nous
revisitons les méthodes itératives de point fixe et la méthode de Newton pour le calcul des
zéros d’une fonction suffisamment réguliére. Nous présentons les conditions nécessaires et
suffisantes pour la convergence d’ordre supérieure de celles-ci. A I’aide de ces conditions,
nous montrons comment augmenter de facon récursive 'ordre de convergence. Pour la
méthode de point fixe, nous présentons une généralisation de la méthode de Schroder
de premiére espéce. Plus spécifiquement, deux autres méthodes sont aussi présentées
pour la méthode de Newton. L’une d’entre elles est montrée équivalente a la méthode de

Schréder de deuxiéme espéce.

Notons que le début de nos recherches a été inspiré par larticle [8], qui présente deux
familles de méthodes itératives d’ordre m pour le calcul de la racine n-iéme. Celles-
ci sont initialement apparues dans les articles [9] et [25]. Ces méthodes par contre sont

spécifiquement adaptées au calcul de la racine n-iéme d’un nombre et leur utilisation y est



limitée. L’un des objectif de notre premier chapitre a été de les généraliser. Nous voulions
avoir deux familles distinctes de méthodes itératives qui pourraient approximer les zéros
d’une fonction suffisamment réguliére, mais nous voulions aussi, qu’une fois appliquées
au probléme du calcul de la racine, ces méthodes coincident avec les méthodes que nous

présente cet article. C’est ce que nous avons fait dans le premier chapitre.

Le second chapitre est une généralisation du chapitre précédent, dans le plan complexe.
De plus, plusieurs exemples numériques et illustrations de bassins d’attraction sont inclus

dans cet article.

Dans le chapitre suivant, nous notons que c’est en 1669 , pour le calcul d’un zéro simple
d’une fonction analytique f(z), qu'lsaac Newton [57] a introduit sa fameuse méthode
itérative d’ordre 2 . Quelques années plus tard, en 1694 , Edmond Halley [20] a lui
introduit une autre fonction d’itération d’ordre 3. Depuis, quoique plusieurs mathémati-
ciens aient essayé de trouver des méthodes plus rapides que la méthode de Newton, la
méthode de Halley a été redécouverte de nombreuses fois [44]. Pourquoi? Ceci est le
sujet de notre troisieme chapitre. Nous montrons que la séquence de Halley, une suite
de fonctions résultantes de I'augmentation de l'ordre de convergence de la méthode de
Newton, est la facon la plus efficace d’augmenter I'ordre de convergence de la méthode de
Newton en termes d’utilisation de dérivées d’ordre supérieur. Nous illustrons pourquoi
ce fait est probablement la raison pour laquelle la méthode itérative de Halley a été si
souvent redécouverte. A des fins illustratives nous présentons aussi un algorithme pour
reconnaitre la séquence de Halley afin d’éviter d’autres redécouvertes. Nous appliquons

cet algorithme a certains exemples.

Dans le quatriéme chapitre, nous montrons comment le développement de Taylor d’une
fonction analytique peut étre utilisé pour accoitre I'ordre de convergence de méthode
itérative. Ceci nous permet d’établir de nouveaux liens entre plusieurs differents processus

d’accélération, notamment entre celui de Halley et celui de Chebyshev.



Dans le cinquiéme chapitre, nous montrons que la fagon la plus efficace d’augmenter
I'ordre de convergence de la méthode de Newton, en termes de fonctions polynomiales,
nous donne la méthode de Schroder de premiére espéce. En particulier nous obtenons
la fameuse méthode itérative de Euler-Chebyshev a I'ordre 3. Nous obtenons aussi le
fait que les méthodes itératives de Schroder de premiére et deuxiéme espéce sont les

meilleures facons d’augmenter l'ordre de convergence de la méthode itérative de Newton.
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INTRODUCTION

Meéthodes de point fixe

La méthode de Newton-Rahpson a été introduite en 1669 [57]. Aujourd’hui, elle peut
étre appliquée au calcul des zéros d’une fonction analytique. La forme moderne de la

méthode de Newton est

2hyl = 2k — % = Ny(zp).

L’objectif est de choisir un point initial zg et d’utiliser le processus
21 = Ny(2) pour k=0,1,2,3,...,

afin de générer une séquence {zk}z:) qui converge vers . La méthode de Newton est,

en général, d’ordre de convergence égale a 2.

En 1694 , Edmond Halley [17], a introduit la fonction d’itération d’ordre 3

o 2/ (z) ' (2)
T2 ()2 — fla) (=)

= Hy(2k),

qui s’est, par la suite révélée étre la méthode de Newton appliquée a la fonction G(z) =

F2)/V [ ().



Ordre de convergence

On dit qu’une méthode de point fixe x,,,1 = g(z,) qui converge vers « est d’ordre p > 1

si

m =l e s,

n——+o0o |33n — a|p -

K

»(a) est la constante asymtotique.

Pour une valeur de z,, proche de a, le terme | x,, — a [P devient de plus en plus petit si p

est large. Si donc on regarde
TIpy1 — AR Kp(a7 I) (:L'n - a)p

ce terme indique la vitesse a laquelle ’erreur d’approximation décroit. Plus la valeur de p
est large, plus proche z,, sera de «, si on assume que la sequence est convergente. Typ-
iquement, augmenter 'ordre de convergence requiert le calcul de dérivées additionnelles,

ce calcul peut rendre les méthodes d’ordre supérieur peu pratiques.

Cadre

Il est important de noter qu’en 1870, Schroder [48] a proposé une séquence de fonctions
maintenant connue sous le nom de méthode de Schréder de seconde espéce. Le p-iéme

membre de cette séquence produit une fonction d’itération d’ordre p donné par

R ,2(2)
Sy(2) =2 — ="~ for p>2,
p( ) Rp—l(z) b=
avec
Ro(z) = 1/f(2),
1 ) (s
Ry(2) = >, (—1)"* ];f—é;Rp_j(z) for p>1.



Si par exemple nous calculons 'expression pour R;(z) et Ry(z), on obtient
_I'(®) (f'(2))” [1 B f(Z)f”(Z)}
1*(2) () 2(f'(2))° )

On observe que les deux premiers termes de cette séquence sont respectivement, la

Ry (z) and Ro(z) =

fonction d’itération de Newton Si(z) = Ny(z), et la fonction d’itération de Halley
S3(2) = Hy(2).

Depuis 1870, plusieurs mathématiciens ont proposé d’autres séquences, la majorité d’entre
elles ont malheureusement été des redécouvertes de la méthode de Schroder de seconde

espéce [44].

En 1964, Traub [51] remarque le fait que cette séquence de fonction est souvent redé-
couverte. En effet, plusieurs redécouvertes ont été publiées: par exemple 1946 [21], 1966
[54], 1969 [52], 1972 [31], 1975 [16], 1991 [28], 1994 [19], 1996 [17], 1997 [32]. En moyenne

une fois chaque décennie, cette suite de fonction est redécouverte [44, 45].

Observons que les formes sous lesquelles cette suite de fonction se présente peuvent étre

méconnaissables.

Par exemple, Householder’s [26, 27| a présenté la suite

(1/f ()2
(1/f(z))e=0 )

Ford and Pennline [17] avec P'assistance de Gerlach [19] ont présenté la suite

Ty(z)=2z+(p—1)

— s f(s Qp(z)
Gole) = = = FaI g o,
avec O = 1
Qp(2) = [(2)Qp-1(2) — ;5 [(2)Q,_1(2) for p=>3.
Le fait que

3



a été observé en 2010 par Petkovi¢ et al. [45] .

Tout en observant ces nombreuses redécouvertes, les auteurs n’ont par contre pas été
capables d’expliquer le pourquoi de ces redécouvertes, ni de présenter une facon d’éviter

d’autres éventuelles redécouvertes.

Nous avons réussi & montrer que cette suite de fonctions présentée par Schrioder est la
facon la plus efficace d’augmenter l'ordre de la méthode itérative de Newton en termes
d’utilisation de certaines dérivées d’ordre supérieure. Par ce fait, nous pouvons expliquer

ces nombreuses redécouvertes.

Nous avons aussi été capable d’établir un algorithme qui caractérise complétement la

séquence de Schroder de deuxiéme espéce. Notamment:

Theoréme: Soit f(z) tel que f(a) =0 et f'(a) # 0 tel que la méthode de Newton Ny

est d’ordre 2. La suite de fonction {Tp(z)}zjz définie par

Ty(x) =2 — V(=) pour p>2,

dont le p-th element est d’ordre p, corresponds a la suite de Schréder de seconde espéce

si et seulement si

Va(2) _ [t

Vpr(z) = [1-2[1-V}(2)])] Vilz) pour p>2

Nous pouvons par exemple appliquer cet algorithme aux suites de fonctions présentées

antérieurement.

Exemple 1: Si nous regardons la suite de Householder’s |26, 27] soit

(1/f(2))"?

B =2+ 0Dy
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en utilisant notre algorithme nous posons

Vo) = o= D5

donc

9

, (52011
V()= —(p—1)|1—
e 4 (/7]

apres direct substitution on a

IO IRACEE

(1/f(z)% Y
p z

Py - @) o

Exemple 2: Si nous regardons la suite de Ford and Pennline [17] inpirée de Gerlach [19]

Q0
Gp(z) =2 — f(z )Qerl( 7
avec { 0 - 1
Qp(2) = f/(Z)Qp—l(Z)_ﬁf(Z) »1(2) pour p>3.
On a
_ Qp(z>
Vo(2) = f( >Qp+1(2)
et
' o 5 Qp(z) ,
Ve = (o2
_ Qp(2) Q;(Z)QP‘H(Z) — Qp(2) ;7+1(Z)
= f()Qp+1(>+f() )
= (1 p)+pM,

p+1(Z>
apres avoir remplacé f(2)Q;,,,(2) et f'(2)@p(2) en utilisant leur relations de recurrence

pour avoir Qpi2(2) and Qpi1(2).



1 — 1 [1 _ V;(z)] _ Qp(Z)QpH(Z)’

p ;29+1<Z)
il advient donc que
1 / - _ QP(Z)QP 2(2) - Qp(z)
1= 20-ye]| e - [ e 2
_ 5 Qpy1(2)
R E
= Von(z). O

Nos travaux ont fortement été influencés directement par ceux de Petkovic et al [45] et

indirectement par Kalantari [36].

Notre contribution

L’une des contributions de nos recherches a été d’abord d’établir un algorithme qui
caractérise complétement la séquence de Schroder de deuxiéme espéce. Par ce fait, nous

pouvons éviter d’éventuelles redécouvertes.

Nous avons aussi réussi a montrer que cette suite de fonctions présentée par Schroder est
la fagon la plus efficace d’augmenter 'ordre de la méthode itérative de Newton en termes
d’utilisation de certaines dérivées d’ordre supérieure. Par ce fait, nous sommes capables

d’expliquer ces nombreuses redécouvertes.

Nous montrons également que tout processus d’accélération de la méthode Newton qui se
développe en terme polynomiales de la fonction f(z), peux étre tronqué en la deuxiéme

séquence de Schréder, de premiére espéce.

Ce travail repose toutefois sur I’étude des conditions nécessaires et suffisante, d’augmentation
de 'ordre de convergence des méthodes de point fixe et plus particuliérement de la méth-

ode de Newton.



Commentaires sur ’article présenté au chapitre 1

Dans cet article, nous revisitons la méthode du point fixe et la méthode de Newton pour

le calcul d’un zéro simple d’une fonction suffisamment réguliére.

Nous présentons les conditions nécessaires et suffisantes qui garantissent la convergence
d’ordre supérieure de ces méthodes. A partir de ces conditions, nous montrons comment

récursivement augmenter 'ordre de convergence.

Pour la méthode du point fixe, nous présentons une généralisation de la méthode de
Schroder de premiére espéce. Pour la méthode de Newton, deux méthodes sont aussi
présentées. L’une d’entre elles est montrée équivalente a la méthode de Schroder de

deuxiéme espéce.

Des exemples numeériques sont inclus dans cet article. Notamment, 'application de cette

théorie au calcul de la racine n-iéme d’un nombre.

Cet article a été rédigé conjointement avec M. Francois Dubeau et publié dans la revue
SIAM Review en 2014, sous le titre 'Fixed point and Newton’s methods for Solving a

nonlinear equation: From linear to high-order convergence.’

Commentaires sur ’article présenté au chapitre 2

Dans cet article, nous revisitons la méthode du point fixe et la méthode de Newton
pour le calcul d'un zéro simple d’une fonction analytique c’est une généralisation du
chapitre précédent au cas complexe. Des exemples numériques sont inclus dans cet article.
En particulier, tout comme Kalantari nous avons produit les bassins d’attraction de
differentes méthodes, en particulier les méthodes de Schroder de premiére et deuxiéme

espéce



Cet article a été rédigé conjointement avec M. Francois Dubeau et publié dans la revue
Journal of Complex Analysis, sous le titre 'Fixed Point and Newton’s Methods in the

Complex Plane.’

Commentaires sur ’article présenté au chapitre 3

Dans cet article nous posons la question suivante: En créant une suite de fonctions
dont le n-iéme élément est d’ordre n, comment peut-on s’assurer que ce ne soit pas une

redécouverte de la séquence de Schroder.

Nous montrons aussi que la suite de fonction présentée par Schroder est la fagon la plus
efficace d’augmenter 'ordre de la méthode itérative de Newton en terme d’utilisation de
certaines dérivées d’ordre supérieur. Nous présentons aussi un algorithme qui caractérise
complétement la suite de fonctions de Schroder, et par ce fait nous permet de la recon-
naitre. Finalement, nous appliquons cet algorithme & plusieurs exemples de redécouvertes

et en présentons méme de nouvelles.

Cet article a été rédigé conjointement avec M. Francois Dubeau et publié dans la revue
Journal of Computational and Applied Mathematics, sous le titre ’On the rediscovery of

Halley’s iterative method for computing the zero of an analytic function.’

En tant qu’auteur principal, 'y ai développé les notions d’algorithmes pour éviter les redé-
couvertes. La formulation de plusieurs théorémes et le développement de leurs preuves

ont été faites conjointement avec M. Dubeau.

Commentaires sur ’article présenté au chapitre 4

Il s’est avéré que la fonction d’itération de Halley peut étre obtenue en appliquant la

méthode de Newton & une nouvelle fonction F(z) au lieu de f(z). Nous posons donc les

8



questions suivantes: Quelles sont toutes les modifications possibles de la fonction f(z)
en une nouvelle fonction F(z) qui nous permettront d’obtenir une nouvelle méthode plus
rapide (comme celle de Halley , par exemple)? Quel est le lien entre toutes ces fonctions
possibles? Nous regardons aussi le processus d’accélération présenté par Euler-Chebyshev

et établissons un nouveau lien entre celui-ci et celui de Halley.

Cet article a été rédigé conjointement avec M. Francois Dubeau et publié dans la revue
Journal of Mathematical Analysis, sous le titre "Unifying old and new ways to increase
order of convergence of fixed point and Newton’s method’. La formulation de plusieurs

théorémes et élaboration de leurs preuves ont été fait conjointement avec M. Dubeau.

Commentaires sur I’article présenté au chapitre 5

Dans cet article nous cherchons la réponse a la question suivante: quelle est la meilleure

facon d’augmenter 'ordre de convergence la méthode itérative de Newton?

Nous montrons que, la fagon la plus effective d’augmenter 'ordre de convergence de la
méthode de Newton, en termes de fonctions polynomiales, est la méthode de Schroder

de premiére espéce.

Alinsi, joint au résultat du chapitre 3, nous obtenons le fait que les méthodes itératives
de Schroder de premiére et de deuxiéme espéces sont les meilleures fagons d’augmenter

I'ordre de convergence de la méthode itérative de Newton.

Cet article a été rédigé conjointement avec M. Francois Dubeau et accepté pour publica-
tion dans la revue Elemente der Mathematik, sous le titre "Schroder’s processes and the

best ways of increasing order of Newton’s method.’

J’y ai proposé les notions de développement de fonctions itérantes en termes de fonctions

polynomiales et leurs comparaisons avec le processus de Schroder de premiére espéce. La



formulation des théorémes et leurs preuves ont été faites conjointement avec M. Dubeau.

Commentaires sur la terminologie

Dans cette thése nous avons parlé d’augmentation de I'ordre de convergence de la méth-
ode de Newton. En effet en ce qui concerne la méthode de Schroder de deuxiéme es-
péce nous appliquons la méthode de Newton a une fonction modifiée pour en augmenter
I'ordre. Ainsi nous augmentons bel et bien 'ordre de la méthode de Newton. En général
la méthode de Newton est reconnue pour étre d’ordre 2 mais il s’avére que 'ordre de
convergence d’une méthode dépend de la fonction sur laquelle elle agit. Pour la méthode
de Schroder de premiére espéce on ne peut pas I'écrire comme la méthode de Newton
appliquée sur une fonction précise. Ainsi dans ce cas nous avons fait un abus de language
en disant qu’on augmente 'ordre de la méthode de Newton. Il faudrait plutot dire que
nous augmentons l'ordre en générant une suite de méthodes dites Newton généralisées

(generalized Newton), ou de type Newton (Newton type).
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CHAPITRE 1

Fixed point and Newton’s methods for
Solving a non-linear equation: From

linear to high-order convergence.

Abstract

In this paper we revisit the necessary and sufficient conditions for linear and high order
convergence of fixed point and Newton’s methods. Based on these conditions, we extend
Schroder’s process of the first kind to increase the order of convergence of the fixed point
method. We also obtain two processes to increase the order of convergence of Newton’s
method. One of them is Schréder’s process of the second kind, for which several forms
are also presented. A link between Schréder’s two processes is given. Examples and

numerical experiments are included.
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1.1 Introduction

In this paper we consider fixed point and Newton’s methods to find a simple solution of
a nonlinear equation. We not only present the sufficiency of conditions for convergence
of fixed point and Newton’s methods but we also prove the necessity of these conditions.
Based on these conditions, we show how to obtain processes to recursively increase order
of convergence. For the fixed point method, we present a generalization of Schréder’s
process of the first kind. Two methods are presented to increase the order of conver-
gence of Newton’s method when applied to this function. One of them coincides with
Schroder’s process of the second kind, which has several forms in the literature. We also
explain the link between the two processes of Schroder. Finally, we point out ways to
combine methods to obtain, for example, a Super-Halley process of order 3 and other
possible higher order generalizations of this process. It is important to keep in mind that
throughout the paper we consider real valued functions which are regular enough to be
differentiated sufficiently many times. As a consequence, the proofs are based on a very

basic tool: Taylor’s expansion.

The plan of the paper is the following. In Section 2.3, we consider fixed point methods
and necessary and sufficient conditions for convergence. This leads to a generalization of
Schroder’s process of the first kind. Section 2.4 is devoted to Newton’s method. Based
on the necessary and sufficient conditions, we propose two ways of increasing the order
of convergence of Newton’s method when applied to this function. Using examples given
in Sections 2.3 and 2.4, numerical experiments are reported in Section 1.4. Schriéder’s
process of the second kind, and its multiple different forms, is the object of Section 1.5.
In Section 1.6, we explain the link between the two processes of Schroder. In Section 1.7,
considering a linear combination of a fixed point process and its associated Newton’s pro-

cess, we obtain a general recursive method to increase the order of convergence of a fixed

12



point process. Finally, remarks on further research topics are mentioned in Section 2.6.

To close the introduction, let us mention that several excellent books discuss fixed point
and Newton’s methods, see for example |22, 30, 37, 51|. Several proofs presented in this

paper are in these books, they are included here for completeness.

1.2 Fixed point method

A fixed point method uses an iteration function (IF) which is a (regular) function mapping
its domain of definition into itself. With an IF ®(x) and an initial value xy, we are
interested in the convergence of the sequence {zy 1 = ®(z;)}; . It is well known that

if the sequence {x41 = ® ()}, converges, it converges to a fixed point of ®(x).

Let ®(z) be an IF, p be a positive integer, and {z),1 = ®(z4)},=5 be such that the

following limit exists (and is finite)

. Tk+1 — QO
lim ———

= K,(a; D).
koo (T, — Q)P o(25®)

We say that the convergence of the sequence to « is of (integer) order p if and only if
K,(a; @) # 0, and K,(a; ®) is called the asymptotic constant. We also say that ®(x) is
of order p. If the limit K,(a; @) exists but is zero, we can say that ®(z) is of order at

least p.
From a numerical point of view, since « is not known, it is useful to define the ratio

= Tr4+1 — Thk42

Kyl k) = T (1.2.1)

Following [4], it can be shown that
lim K,(a, k) = K,(o; ),
k—+o00
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and N
In ’Kl(a, k4 1)‘
lim — =p
koo ‘Kl(a, k)‘

The first result concerns necessary and sufficient conditions to have linear convergence.
Almost any textbook on numerical analysis reports the sufficiency of the condition in (i)

of the following result. We have included the necessity of the condition in (ii).

Theorem 1.2.1. Let ®(x) be an IF, and ®Y) (x) stand for its first derivative.

(i) If |2W(a)| < 1 then there exists a neighbourhood of o such that for any xq in that
neighbourhood the sequence {xy1 = ®(x4)},.°5 converges to a.

(i1) If there exists a neighbourhood of a such that for any xy in that neighbourhood the
sequence {41 = ®(4)}, 5 converges to a, and xy # a for all k, then |2W ()] < 1.
(iii) For any sequence {xyy1 = ®(wy)}/ 25 which converges to a the limit K, (; ®) ewists,

and Ki(o; ®) = W (a).
Proof. See Appendix 1.9 n

For higher order convergence we have the following result about the necessary and suf-
ficient conditions. Several textbooks, like [41, 37| and others, mention sufficiency of the
condition but not necessity. The necessity of the condition is rarely reported, it appears

for example in [51].

Theorem 1.2.2. Let p be an integer > 2 and let ®(x) be a regular function such that
®(a) = a. The IF ®(x) is of order p if and only if ®9(a) =0 for j=1,...,p—1, and
é(p)(a) # 0. Moreover, the asymptotic constant is given by

_ @
K,(a;®) = lim Thit 7 (@)

k—+oo (x), — )P p!

Proof. See Appendix 1.10 m
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It follows that for a regular IF and p > 2, the limit K,(a;®) exists if and only if
Ki(a;®)=0forl=1,...,p— 1.

We say that « is a root of f(z) of multiplicity ¢ if and only if f9¥)(a) = 0 for j =
0,...,q—1,and f9(a) # 0. Moreover, « is a root of f(x) of multiplicity ¢ if and only if

there exists a continuous function vs(z) such that vs(a) # 0 and f(z) = vs(z)(x — ).

We will use the big O notation g(z) = O(f(z)) (and the small o notation g(x) = o(f(z)))

around x = o when ¢ # 0 (when ¢ = 0, respectively) where

lim 9(@) =c. (1.2.2)

aoa f ()

If o is a root of multiplicity ¢ of f(x), then g(z) = O(f(x)) is equivalent to g(z) =
O((x —a)9). Also, if « is a simple root of f(z), then « is a root of multiplicity g of f7(x).
Hence g(z) = O(f9(x)) is equivalent to g(z) = O((x — «)?).

As a consequence, for a general regular IF ®(z) and a simple root « of f(z) we can
say that: (a) ®(x) is of order p if and only if ®(x) = o + O((x — «)?), or equivalently,
if ®(a) = a and @M (2) = O((x — a)P7'), and (b) if « is a simple root of f(x), then
®(z) is of order p if and only if ®(z) = a + O(fP(x)), or equivalently, if ®(«) = o and
0 (2) = O(f7~(x).

SchrAoder’s process of the first kind is a systematic and recursive way to construct an
[F of arbitrary order p to find a simple zero o of f(z). The IF has to fulfil at least the

sufficient condition of Theorem 2.3.2. Let us present a generalization of this process.

Theorem 1.2.3. Let o be a simple root of f(x), and co(x) be a regular function such

that co(a) = . Let @,(x) be the IF defined by

() =) alx)f(z) (1.2.3)



where the c¢;(z) are such that

alzr) = —% (%%) c—1(z) (1.2.4)

forl=1,2,... Then ®,(x) is of order p, and its asymptotic constant is

@) (a) 1 )
p! p "

Ky, 3,) = - @@ (129)
Proof. We verify that ®,(«) = . Moreover, taking the first derivative and using (2.3.4),

we obtain

oW (z) = V) (2) 77} (). (1.2.6)

p

As a consequence we not only have @él)(a) = 0 but we also have @,(f)(a) =0 for [ =

1,...,p— 1. It follows that

O (a) = (c;”l(x)fp—l(x))(p_ = (p— 11 () [FO@)] (1.2.7)

and using (2.3.4), we get (2.3.5).

This same result can also be obtained by considering Taylor’s expansion of an inverse
function [13, 51, 27]. For ¢y(z) = x in (2.3.3), we recover Schroder’s process of the first
kind of order p [48, 51, 27|, which is also associated to Chebyshev and Euler [2, 49,
44]. The first term cq(x) could be seen as a preconditioning to decrease the asymptotic
constant of the method, but its choice is not obvious. We present one such example

below.

Example 1.2.1. We illustrate Theorem 5.3.2 with a non-trivial co(x) on the n-th root

1/n

computation problem, namely find o = r'/™ for a strictly positive real number r. We

consider

fla)=—-1, (1.2.8)



Tableau 1.1: Tteration functions for the computation of 7'/ based on Theorem 5.3.2.

Ja) =5 -1 co(w) = (%)
Iteration function Asymptotic constant
®p () K,(rt/™; ®,)
1
o0 = e (M) (F-n) | o (V)

’ Example : M =0

see [15], [51], [25]

1/n

b — B - o5 (Y e A L

| Example : M = M* = [(p—1)/2] ‘

wie) = e (VTN ) | e (V)
and we set
z\ M
co(z) =x (7) , (1.2.9)
where M s an integer. We obtain
B ™' ( 1/n+ M
a(z) = co(z)<ﬁ> < ] ) (1.2.10)
for1=0,1,2,... Then
— 1/n+M T !
O, (x) = co(z) > ( , ) (ﬁ - ) (1.2.11)
with
W (pl/m) = (—1)PHippr=p)/np) ( 1/";M > : (1.2.12)
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and

Kp(Tl/n; (I)p) — (_1)p+1npr(1—p)/n ( 1/”;_ M ) . (1.2.13)

The processes obtained are presented in Table 1.1.

For M = 0, we have co(x) = x and the process corresponds to Schrider’s process of the
first kind presented in Durand [15] and Traub [51]. This process has also been rediscovered
by Hernandez and Romero [25]. For M # 0, we obtain new IFs of order p with the
smallest asymptotic constant for M = M* = |(p — 1)/2] given in Table 1.1. (See also

[13].)

1.3 Newton’s iteration function

Considering ¢o(z) = x and p = 2 in (2.3.3), we obtain
f(x)
fO(x)
which is Newton’s IF of order 2 to solve f(z) = 0. The sufficiency of the condition

Oy(x) = —

for high order convergence of Newton’s method when applied to this function has been

presented in [19]. The necessity of the condition is included in the next result.

Theorem 1.3.1. Let p > 2 and let V(x) be a reqular function such that ¥(a) = 0 and
UM (a) # 0. The Newton iteration Ny(z) = x — Lx)) is of order p if and only if

v (z
UW(a)=0forj=2,....p—1, and \P(p)(a) # 0. Moreover, the asymptotic constant s
‘ _p—19P(a)
A ) = )

Proof. See Appendix 1.11

We can look for a recursive method to construct a function W, () which fulfil the sufficient
condition of Theorem 5.4.1. A consequence will be that Ny, (z) will be of order p, and

Ny, () = a + O(f?(x)). One such method is given in the next theorem.
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Theorem 1.3.2. Let a be a simple root of f(x). Let U,(x) be defined by

W) = 3 i) ) (13.1)

where dy(x) and dy(z) are two regular functions such that

do(Oé) = O,
{ (1.3.2)

and

M (y
{dl_l( TS yIE

forl=2,3,... Then

1s of order p, with
VP (a) = —p! dy(e) [fD ()],

and

(p = Vy() [V (@)]"

K - N, —
p(a, \pr) dél)(oz)—i—dl(a)f(

Proof. We have ¥, (a) = dp(cr) = 0. A direct differentiation leads to

[\

p—

V(@) =D A" @) + (4 Vo (0) O (@)| £(@) + di (2) 7 @),

I
o

and

U(a) = d () + di () fV (o) £ 0.

p
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Differentiating again, we obtain

w2 = S {[d@+ 0+ D)

H+ 1) [ (@) + (4 Ddia(@) O (@)] S0 (@) } 1)

[dﬁz(fv) (0 = 1)y () fO (sr)} Y- 1dY, (x) f(l)(x)} f772(x)
)

Then we not only have ¥\ () = 0 but also (o) =0 for I =2,...,p — 1. Moreover
\Ij(p)(&) _ (\111(72)@))(1772)
= (-2 [[V@)])" x
M (] " (M) () £
A2(@) + (= Dy () V@] + (0= D, () fOa)

and the result follows from (2.4.6).

Let us observe that if we set U, (z) = ®,(x) — z with ®,(x) given by (2.3.3), then ¥, (z)

verifies the assumptions of Theorem 2.4.4.

Example 1.3.1. We illustrate Theorem 2.4.4 by considering the n-th root computation

problem. We consider

fla)=— —1 (1.3.4)

x?’L

) x—. We obtain
,

- (7))

£ (1) (2

=1

1/n

and choose do(z) =0 and dy(z) = — ( |

forl=1,2,3,..., and

20



The asymptotic constant of Ny, (x) is

K,(r'/™; Ng,) = —(p — nprt=p)/m ( 1]/)n ) : (1.3.5)

Ny, (x), which appears in Table 1.2, corresponds to Dubeau’s method of order p [9].

Tableau 1.2: Iteration functions for the computation of /" based on Theorem 2.4.4.

Tteration function Asymptotic constant

Ny, (z) Kp(rl/n'vN‘I’p)

—(p—1) ( 1/n ) nPy(1—p)/n
p

A second method to recursively obtain a function which satisfies the necessary and suffi-
cient conditions of Theorem 5.4.1 has been presented in [19, 17]. The technique can also

be based on Taylor’s expansion as indicated in [6].

Theorem 1.3.3. [19] Let f(x) be such that f(a) =0 and fV(a) > 0. If F,(x) is defined

by
F) = f()
Fla) — —510 fr p>3 (1.3.6)

(A2 @] 7

then F,(a) =0, Fa) >0, (@) =0 forl =2,....,p—1. It follows that Ng,(x) is

of order p, or at least of order p.
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We also have the following simplification for Ng, ().

Theorem 1.3.4. [17] If F,,(x) is given by (2.4.1), then

fla e ) 2)

FO(z) — L (m)% Qpya(z)’

Ng, () =z (1.3.7)

where
QQ(x) = 1,
(1.3.8)
Q(r) = fO@)Qpa(x) = 5 f(@)QY () for p>3.

Example 1.3.2. To illustrate Gerlach’s process we consider the n-th root computation

ustng

for which

fO@)  n
Table 1.3 presents the first 4 IFs. Unfortunately, no general formula for the IF and its

f(z) T
asymptotic constant are known in this case, contrary to the preceding methods. However,

the asymptotic constant can be estimated with (2.3.1).

1.4 A numerical example

To illustrate the different methods presented in Sections 2.3 and 2.4, and explicitly given
in Tables 1.1, 1.2, and 1.3, we have considered the n-th root problem, find o = 35'/*
for n = 2, 5, and 10. The results are reported in Tables 1.4, 1.5, and 1.6. For these
examples, in all cases, Gerlach’s process Np, (x) has the smallest asymptotic constant for
a given order. Schréder’s process of the first kind ®,(x) = E,(x) is slightly improved by
choosing M* = L’%lj instead of M = 0. Finally Ny, () seems to be the worse IF, but

let us observe we did not try to choose the best do(z) and d;(z) in (2.4.4) to minimize

its asymptotic constant.
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Tableau 1.3: Iteration functions for the computation of /" based on Theorems 1.3.3
and 1.3.4.

flz) =2 —1=Fy(x)

Np,(z) = a:+%x(m%—l>
B z (& —1)
Np(z) = z+ X1+n12<g)1(&_1)
Np,(z) = x+—x (IL_l) 1+n12(g)(;_1))
ez () oy (h )@
Ne@) = o+Zx (;_1)<1+7?2(g)(5_1)+f<g)(;”_lf)
Ca(m) oo (a) R (o) e s (1) ey
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Tableau 1.4: Computation of 35'/2 = 5.9160797830996160426... with zy = 6.

IFP($>
p k (I)p(x) :Ep(x) ‘ N‘I’p(x) ‘ NFP(J;)
3 M=0 M=M=[2"]=1
1 8.18 10~ 8.35 10~ 1.70 10°° 413 10°°
2 7.82 10718 8.33 10718 1.40 10716 5.04 1071°
3 6.83 107°4 8.25 1074 7.82 10750 9.16 10-°8
4 4.55 107162 | 8,05 10162 1.37 10749 | 5.49 10~
5 1.34 107486 | 7.44 10486 7.32 107*9 | 1.18 107522
|K5(351/2,1F3) | 1.43 102 1.43 102 2.857 1072 | 0.7143 10*
4 M=0 M=M=[2"]=1
1 1.42 10~7 873 1078 454 1077 291 1078
2 1.24 10730 1.05 103! 3.85 10728 4.33 10734
3 7.09 107123 | 2.23 1071%7 2.00 10712 | 2,13 107137
4 7.63 107492 | 4.48 107510 1.45 107449 | 1.24 107550
5 1.02 1071967 | 7.33 10204 3.98 101798 | 1.42 102203
|K4(35'/2,1F,) | 3.012 10=® [ 1.811 1073 9.055 10~% [ 0.604 103
5 M=0 M=M=[E2]=2
1 2.77 1079 1.25 1079 1.21 108 2.05 10~10
2 1.68 10~46 9.14 10~ 7.42 10743 1.85 10753
3 1.55 107223 | 1.96 1072% 6.44 10721 | 1.10 107268
4 6.33 10~1168 | 8,81 101223 3.18 1071069 | 8,06 10134
5 7.24 107840 | 1.62 1064 9.24 107346 | 1,74 107672
|K5(35'/2,IFs)| | 7.143 10-* [ 3.061 10~* 2.857 1073 | 5.102 10~°

1.5 The Schroder’s process of the second kind

Several authors have investigated different ways to increase the rate of convergence of
Newton’s method. It happens that some of these ways lead exactly to the same process
presented differently, and are equivalent to Schroder’s process of the second kind. In this
section we will present 6 approaches which all lead to the same process. In fact at least

11 different approaches are equivalent as it is reported in [44, 45].
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Tableau 1.5: Computation of 35'/5 = 2.0361680046403980174... with z, = 2.25.

IFp(x)
p k ¢, (2) = Ep() ‘ N‘I’p(x) ‘ NFp<x)
3 M=0 M=M=]E1]=1
1 9.15 1073 8.85 1073 5.81 1072 3.97 1073
2 1.09 106 6.72 10~ 7 5.17 1074 3.00 10~8
3 1.86 10~18 2.92 1019 4.00 10710 | 1.30 10723
4 9.36 10—°* 2.41 10756 1.85 102 | 1.07 1079
5 1.19 10719 | 1.36 10107 1.83 107% | 5.90 10208
|K3(35%/°, IF;)| | 1.447 9.648 101 2.894 4.824 107!
4 M=0 M=M=[EL]=1
1 2.60 1073 1.65 1073 == 2.39 1072 2.50 107%
2 1.12 10~10 7.94 1012 2.61 10 4.63 10716
3 3.91 10740 423 1074 3.48 10722 | 543 1073
4 5.79 10158 | 3.41 10178 1.10 10785 | 1.03 107250
5 2.79 107629 | 1.44 10710 1.10 107339 | 1.32 10—1001
[K4(35%/°,1F,)[ | 2.488 1.066 7.462 1.185 107!
5 M=0 M=M=[E1]=2
1 791 1071 4.48 1071 2.02 1072 3.22 1076
2 1.44 10715 2.09 10717 5.90 10~8 4.04 10730
3 2.86 10774 4.54 10784 1.33 1073 | 1.25 10~
4 8.84 107368 | 292 10747 7.75 107174 | 3.60 107747
5 2.50 1071385 | .20 102084 5.18 107865 | 7.04 1073735
|K5(35'/°, IFy)| | 4.642 1.152 1.860 10" | 1.16 1072
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Tableau 1.6: Computation of 35110 = 1.4269435884576509836... with =, = 1.5.
IFy(x)

P k Py (2) = Lp(2) | Ny, (2) Np, (z)

3 M =0 M=M=["]=1
1 3.67 1073 3.08 1073 2.71 1072 1.43 103
2 6.78 10~ 7 2.37 1077 4.78 10~ 1.19 108
3 4.37 10718 1.08 10719 3.07 107° 6.75 10~24
4 1.17 1075t 1.03 10756 812 1072% | 1.24 1079
5 2.22 10712 | 8.93 10168 1.50 10~7' | 7.84 107207

|K3(35Y/19 1F3)| | 1.400 10t! [ 8.103 2.799 1071 | 4.052

4 M =0 M=M=[P2]=1
1 1.07 1073 6.05 101 1.01 1072 5.78 107°
2 9.43 10~ 3.62 10712 2.46 1076 1.59 10-17
3 5.63 10739 4.65 1074 7.84 10721 | 9.05 10798
4 7.17 107152 | 1.26 107176 8.09 1077 | 9.53 107269
5 1.88 10769 | .82 10703 9.12 1073 | 1.17 10-1072

|K4(35Y/19 TFy)] | 7.112 1071 [ 2.698 10F! 2.133 1072 | 1.420

5 M=0 M=M=[E1]=2
1 3.36 104 1.57 1072 9.50 1073 3.10 10~
2 1.66 10~15 7.46 10718 1.07 1077 7.70 1028
3 4.94 10772 1.84 1084 2.19 10732 | 7.26 10136
4 1.14 1073%* | 1.67 10747 7.78 107196 | 542 107676
5 7.52 1071768 | 1.03 102082 4.43 107773 | 1.26 1073376

|K5(35'/10 1F5)| | 3.887 1072 | 7.940 107! 1.555 10%3 | 2.686
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1.5.1 Determinant based methods

Methods based on a determinant’s identity have been presented in the past under different

forms. We will point out their equivalence by introducing the appropriate notation.

Let Ag(z) =1, and for p > 1

@) e

(P=1) (g

fl@) () el

M@)=1 0 f@) D) L
|0 0 flz) fO) |

Expanding this determinant along the first line, we obtain

P ()
Ay = S0 T A,

|
j=1 I

We can prove by mathematical induction that

) (1Y
Ap(z) = (f >> : (1.5.1)

p!

and

F@)AD (@) = pfO () A, (2) — pA, (). (1.5.2)

Schroder proposed the following TF

Rys(z)

Sple) == Rp—l(x)

(1.5.3)

where R,(z) = fffl(f;). This method is also known as Schroder’s process of the second

kind [48, ?]. Schroder [48] derived this iteration formula by applying suitable development

27



to partial fractions to rational function. The above derivation can be made using K6nig’s

theorem [39], as presented in|45]. Wang [54] (see also [55]) proposed the IF

r _2<I>
Wy(z) = o — == 1.5.4
P( ) Fp,1<513'> ( )
where I')(z) = ?jg)). Kalantari [33, 34, 32| proposed the IF
A,
By(x) =z — flz) =28 (1.5.5)

Ap—l(ff)'
Hence, S,(z) = W,(z) = B,(x).

Because Ag(7) = 1 = Qq(7), Ay(z) = fU(z) = Qs(w), using (1.5.2) it follows by
induction that A,_s(x) = Qp(x) for p > 2. Hence Np, (x) = By(x) (see also [35]) and

Gerlach’s process corresponds to Schréder’s process of the second kind.

Householder [27] analysed the following IF, also known as the Ko6nig’s IF,

L\ P2
Hy(x) =z —(p— 1)M (1.5.6)

(L)le)
f(z)

for p > 2 which is also equivalent to S,(z) because of (1.5.1).

1.5.2 Jovanovié’s method

Jonanovié [31] suggested the following process

Jo(x) = x_ffl()lgv)a

o (1.5.7)
Jp(l') = T — #}51_)1(1) for p > 2.
We prove by mathematical induction that J,(z) = B,(x). Clearly Jy(x) = By(z) =

N¢(x). Assume that Ji(x) = By(x) for [ =2,...,p — 1. From
d A,
1= ) = (e = (o) = - (F0 2.
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and using (1.5.2), we obtain
Ap—3(2)Ap-1(z)
[Ap-2())”

1— IV (@) =—(p-2)+(p—1)

It follows that J,(x) = B,(x) .

1.6 A Link between the two processes of Schroder

We have shown that

Also
Ep(z) = a+ O(f"(z)).

A link between the two processes E,(z) and S,(x) of Schréder can be shown by using

the equivalent form J,(z) of S,(x).
We have Jy(z) = Ey(z) = Ny(z). We proceed by induction for p > 3. Suppose
Jy1(2) = By (2) + O (1)) = By () + G (0) 77 ()
for a regular function ¢,_;(z). Then
I () = BV (@) + [Bp i (2) /7 ()]
where, from (1.2.6), we have
B, (2) = (@) 772 (@) = O(f72(2)),
and
G @ @] = (= Do @)V @) @) + 0 (@) (@)
= (p— Do (0) SV (@) 72 (x) + 0" ()
= 0(f"(x)).
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Substituting in J,(x), we have

8

— [Bpi1(2) + dpa (@) 71 (2)]
1— L | B (2) + [pp () fr1 ()]

Using the expansion —— = 1 + y + O(y?), and the fact that 2p — 3 > p for p > 3, we
g

obtain _
Ia) = Bpala) + ~qale)g @)@
+p1(2) [1+ i (@) fO ()] 774 (@) + O(f* ().
Hence J,(z) = E,(z) + O(f?(z)) because ¢;(z) = —m, and
1cxc(1)x:—1 1ic z) =c,_1(x
@l = -2 (G ) ) = i)

This result shows that Schroder’s process of the first kind can be obtained from Schréder’s
process of the second kind by expanding the denominator in .J,(z), multiplying and
truncating to keep powers of f(x), or powers of f(x)/fM(x), up to p — 1 (see also [32],
[45]).

The reader can verify the link by using the formulae given below for the two processes.
The verification of this result has already been done using symbolic computation up to

order 20 [45].

Example 1.6.1. The first 4 IFs of Schrider’s process of the first kind are :

Ey(z) =2 — ffcl(fil), which corresponds to Newton’s IF of order 2;

2
Bs(r) =2 — f{l(;z(:)x) — %;E?;Eg [ffl()z)] , which corresponds to the order 3 Chebyshev’s
1P [2);
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f@) 1) [ f(x) r 1 {3[1‘(2)(@]2#‘“<x>f‘3><x>} [ f(@) ]3.
) b

Eix) =2 = 3050 — 250 70w 3 O] FD ()
and
fl) 1[0 [ f@) ]°
Es(z) = 2 — -~
=IO T ) (700
1 [3[P@)] = (@) f O (w) [ /() }
T P 1)
1 [O@)] O @) = 10D () fO (@) fO (@) + 15 [fP@)]] [ f@) 1P
I 0 (@)]" fo@]
The formulas for Ey(z) and Es(x) appear in Traub’s book [51].
Example 1.6.2. The first 4 IFs of Schrider’s process of the second kind are:
So(x) = Np,(z) = x — ffcl(%, which is Newton’s method of order 2;
S3(x) = Np,(z) =2 — ffcl(fﬂ(l) lléff;(lz) e ] , which is Halley’s method of order 3 [18];
@) 1 (@)

o - %fg;m o

Sy(x) = Np,(z) =2 — L& FD @) fD ()

( ) 4( ) f(l)(;g) 17f(2)<z> F(x) +Lf(3)(z>[ F(2) r ’
FD @) fM@) 3 D) | 7D ()

and

Ss(x) = Npy(2) = & — f{()f;) x

|- 2@ f@) | 1O [ @) r
@) 0@ T30 [T

| 3@ s {;fww) 1 1] } [ ]2 _ s L [ T’
3fMW(x) " 4| fD(x) FD(z) 4 fD(z) | FD ()

2 7 (x) FO(z)

Iterative formulas Sy(z) and Ss(x) were derived by I. Kiss [38]
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1.7 Combined iteration functions

Another way to obtain higher order fixed point methods to find a root a of f(z) is to
combine two fixed point methods of the same order p — 1 in such a way that the new
method CTDP(x) has an asymptotic constant K,_1(c; 5p) = 0. Then the resulting method

will be of order p, or at least of order p.

1.7.1 The Chebyshev-Halley family of order 3 [5]

Let us apply Newton’s method to f(z)/ [f®(z)] ¥ where f3 is any real number (we suppose
fO(a) > 0), then we get

PSR 11/ LC) Y (O N B T
WP\ = n -t D(r) |1= ol
0] [f(a:)/[f“)(x)]ﬁ]() fO(z) [1 - BLs(x)
. _ @@
where L;(z) = W It can be shown that
N® - (a)
. e 1=28 f(a)
= (a’Nf/[f“)]B) ST T A f0a)

Now let us combine two IFs of order 2, one with 8 # 0 and one with § = 0 (which

corresponds to Newton’s IF), we obtain a new IF of order 3

Gs(z) = % {Nf/[fm]ﬁ(l‘) —(1- QB)Nf(fff)}

_ o, J@ [1—(5—1/2)Lf($)]
fO(x) 1— BL(x) '

It is exactly the Chebyshev-Halley family of IFs of order 3. For § = 1 we get Super-

Halley IF, for 8 = 1/2 we get Halley’s IF, and for § = 0, which is a limit case, we get
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Chebyshev’s TF. Its asymptotic constant is

G 3) (o @ (a)]1>
Ks(o; G) = 53!( L% ‘;“)Ea; +3(1-0) H“)Ea;] ] (1.7.1)

1.7.2 Combination of a fixed point method and its corresponding

Newton’s method

Assume ®,_;(z) is an IF of order p — 1 such that K, (a;®,—1) = CIDZ(DI’_]l)(a)/(p — 1)
and let us set

Vpi(x) = @pa(z) — 2 = (Pp1 — [)(2)

I
where I(z) = 2. We have ¥, ;(a) = 0, ¥V (a) = &V (a) —1 = —1, ¥ (a) =
@;lll(a) =0forl=2,...,p—2 and ¥¥ V(a) = (ID( Y(a). Using the corresponding

p—
Newton’s method, Ny, ,(7) = Ng,_,_1(), it follows that

. _ (p-2)%7 () 2 ()
Ky 1(a; Ny, ) = (p— 1)‘\11(1)1(a) =—(p— 2) ( —1)!

= —(p — 2)Kp-1(0; Pp1).
Hence the linear combination of iteration functions

®y(7) = —— [(p = 2)2p1(2) + Nu,_, ()]

is an iteration function of order p, or at least of order p.

1.7.3 Families of Super-Halley methods

Combining the last two subsections, considering N¢(z) and applying Newton’s method

to N¢(z) —x = —f(x)/fP(z), we obtain

L [Ny(a) + N @)] = G (o).
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which is Super-Halley IF of order 3, noted SHj(z) (see |56, 24, 1]). We could then con-

sider different ways of defining generalized Super-Halley IFs of any order p. For example :

(a) since Ny(z) = Ey(x), by using Schroder’s process of the first kind E,_;(x) of order

p — 1 and considering the combination for p > 2

SHy(r) = —— [(P —2)E,_1(x) + NEp_lfI(ﬂf)] ;

(b) since Ny(x) = Sa(x), by using Schroder’s process of the second kind S,_;(z) of order

p — 1 and considering for p > 2 the combination

SHy(x) = — [(p —2)Sp1(x) + NSpfrl(a:)} ;

(c) or finally, by using induction
SH2($) = Nf(f),

SHy(z) = Iﬁ [(p—2)SH,—1(x) + Nsp,_,—1(x)] for p>2.

1.8 Concluding remarks

In this paper we presented fixed point and Newton’s methods to compute a simple root
of a non-linear function. We pointed out that the usual sufficient conditions for con-
vergence are also necessary. Based on the conditions for high order convergence, we
obtained systematic methods to increase the order of convergence of fixed point and
Newton’s methods. Among the resulting methods are the two processes of Schréder, for
which a link has been explicitly shown. Finally, a combination of fixed point method
and its corresponding natural Newton’s method has been used to increase the order of

convergence.
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Some extensions of this work are possible. For example we have recently extended Sec-
tion 2.4 to cover the modified Newton’s method for finding a multiple root of a non-linear
function |6]. Also, since high order methods require high order derivatives of the function,
it could be interesting to try automatic differentiation tools to implement these methods.
Finally, generalization of these high order processes to system of non-linear equations

would be of great theoretical and practical interest.

1.9 Proof of Theorem 2.3.1

(i) [37, 41] By continuity, there is an interval I,(a) = (o — p, a+ p) such that |®1)(z)| <
1+]|2M ()]

5 = L < 1. Then if ), € I,(a), we have

[Tk — o S Lfzp —af <z —af <p
and x4y € I,(a). Moreover
2 — a| < LFlazg — af,

and the sequence {xy.1 = ®(3)}, "5 converges to a because 0 < L < 1.
(i) If | @M (a)| > 1, there exists an interval ,(o) = (o — p, a+ p), with p > 0, such that

‘q)(l)(x)‘ >M_L>1 Let us su that th _ 3 oo -
= 2 = : ppose that the sequence {zy11 = ®(xx)}, 2, is

such that z;, # « for all k. If x), and x4 € I,(a), then we have
41— af = [@(zx) — B(a)| = [V (me) (z — )| > Lzy — o
Let 0 < € < p, and suppose Ty, Tgi1, -- ., Tpy are in I(a) C I,(«). Because
|2k —a| > Lay — af,

eventually L' |z, —a| > ¢, and 234,41 ¢ I.(a). Then the infinite sequence cannot

converge to a.
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(iii) [37, 41] For any sequence {z441 = ®(z})}, 25 which converges to a we have

. Tp+1 — & o . (1) o (1)
1 — =1 0] =® .
k—lgloo T — k—1>r—&{loo (77k) (Oé)

since 7, converges to a.

1.10 Proof of Theorem 2.3.2

(i) [37, 41] The (local) convergence is given by part (i) of Theorem 2.3.1. Moreover we

have
Tpe1 —a = P(zg) — P(a) = (D(p;('nk) (7 — )P,
and hence
Jim e P O o)

(ii) [51] If the IF is of order p > 2, assume that ®@)(a) =0 for j = 1,2,...,1 — 1 with

[ < p. We have
dW
Tpy1 —a = D(xg) — P(a) = #(zk —a)l.
Then
@ () _ Tkl T X Thpr — O (2 — )P
! (rp — )l (zp—a)p " ’
and so
o0 o0 0 if [< P,
l‘(a) — lim lf”’f) = K,(o;®) lim (24 — )P =
' e b e Ky(a;®) if | =p.

1.11 Proof of Theorem 5.4.1

(i) [19] If ¥ (a) =0 for j =2,...,p— 1, and ¥ (a) # 0 we have

_ U(ar) (g —a) [UP () 0@ ()
Tyl — = (l'k - Oé) - \D(l)(l'k) - \Ij(l)(ﬂfk) (p _ 1), - p‘ )
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it follows that

¥ (P) o (P)
e e : (pf(ql)’!k) - ;S?M) p—100)(a)
lim ———— = lim = .
k—s+o00 ([Ek — a)p k—+o00 wl) (xk> p' \IJ(U(Q)

(ii) Conversely, if Ny (x) is of order p we have Né,j)(a) =0for f=1,...,p—1 and
Né,p)(a) # 0. Hence « is a root of multiplicity p — 1 of Né,l)(a:) and we can write
Né,l)(:z:) = vy, (z)(z — a)P~! where vy, () is a regular function such that vy, () # 0.
But

VU@
[\11(1)(1’)]2 qu( )( ) )

and, since we have U(z) = vy (x)(z — «), where vy(z) is a regular function such that

Ny (@) =

vy (a) # 0, we obtain

\11(2)(95) _ Uny (z) [@(1)(96)}

o0 (2) (x —a)P™~.

It follows that a is a root of multiplicity p — 2 of ¥ (z), and so ¥V (a) = 0 for j =
2,...,p—1,and P (a) #£ 0.
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CHAPITRE 2

Fixed point and Newton’s method in

the complex field.

Abstract

In this paper we revisit the necessary and sufficient conditions for linear and high order
convergence of fixed point and Newton’s methods in the complex field. Schréder’s process
of the first kind and second kind and revisited and extended. FExamples and numerical

experiments are included.
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2.1 Introduction

In this paper we revisit fixed point and Newton’s methods to find a simple solution of
a non-linear equation in the complex plane. This paper is an adapted version of [11]
for complex valued functions. We present only proofs of theorems we have to modify
compared to the real case. We present sufficient and necessary conditions for the con-
vergence of fixed point and Newton’s methods. Based on these conditions we show how
to obtain direct processes to recursively increase the order of convergence. For the fixed
point method, we present a generalization of the Schroder’s method of the first kind.
Two methods are also presented to increase the order of convergence of the Newton’s
method. One of them coincide with the the Schroder’s process of the second kind which
has several forms in the literature. The link between the two Schroder’s processes can be
found in [7]. As for the real case, we can combine methods to obtain, for example, the
Super-Halley process of order 3 and other possible higher order generalizations of this

process. We refer to [11] for details about this subject.

The plan of the paper is as follows. In Section 2.2 we recall Taylor’s expansions for
analytic functions and the error term for truncated expansions. In Section 2.3 we consider
the fixed point method and its necessary and sufficient conditions for convergence. These
results lead to a generalization of the Schroder’s process of the first kind. Section 2.4
is devoted to Newton’s method. Based on the necessary and sufficient conditions, we
propose two ways to increase the order of convergence of the Newton’s method. Examples

and numerical experiments are included in Section 2.5.
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2.2 Analytic function

Since we are working with complex numbers, we will be dealing with analytic functions.

Suppose ¢(z) is an analytic function and « is in its domain, we can write

©  qk+9)
(k) __EE:SJ (a)

J=0

(z—a).

for any £ =0,1,.... Then, for ¢ =1,2,... we have

7L k)
By N9 ()
=0

(z —a) + wym 4(2) (2 —a)?.
where w,w ,(2) is the analytic function
>, glk+ati)
g () j
Wy (2) = Y (z—a).
a2 = 2 TG

Moreover, the series for g**)(z) and wyx) () have the same radius of convergence for any
k, and

() R L T
wg(k)7q(a) = (q+j)!g (CO

for j=0,1,2,....

2.3 Fixed point method

A fixed point method use an iteration function (IF) which is an analytic function mapping
its domain of definition into itself. Using an IF ®(z) and an initial value zy, we are
interested by the convergence of the sequence {211 = ®(2;,)},%. It is well known that

if the sequence {z1 = ®(2;)}, =5 converges, it converges to a fixed point of ®(z).

Let ®(z) be an IF, p be a positive integer, and {211 = ®(2;)},°; be such that the
following limit exists

. Zk+1 — Q@ .
W —ap Kp(a; ®).
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Let us observe that for p; < p < ps we have

lim M:O and lim —— = o0.
k—+oo (zp — @ )P1 k—+oo (zp — )P2

We say that the convergence of the sequence to « is of (integer) order p if and only if
K,(a;®) # 0, and K,(a;P) is called the asymptotic constant. We also say that ®(z) is

of p. If the limit K,(c; @) exists but is zero, we can say that ®(z) is of order at least p.

From a numerical point of view, since « is not known, it is useful to define the ratio

=~ Zk+1 — Rk+2

Kyl k) = P (2.3.1)

Following [4], it can be shown that

lim [N(p(a, k) = K,(a; @),

k—+o00

and B
In ‘Kl(a, k + 1)‘
lim — =p
koo ‘Kl(a, k:)‘

We say that o is a root of f(z) of multiplicity ¢ if and only if fU)(a) = 0 for j =
0,...,q — 1, and f@(a) # 0. Moreover, a is a root of f(z) of multiplicity ¢ if and

only if there exists an analytic function wy,(2) such that wy,(a) = % # 0 and
f(2) = wpq(2)(z = a)?.

We will use the Big O notation g(z) = O(f(z)), respectively the small o notation g(z) =

o(f(z)), around z = o when ¢ # 0, respectively ¢ = 0, when

I 9(2)

lim ) =c. (2.3.2)

For a a root of multiplicity g of f(2), it is equivalent to write g(z) = O(f(2)) or g(z) =
O((z—a)?). Observe also that if « is a simple root of f(z), then « is a root of multiplicity

q of f9(z). Hence g(z) = O(f9(z)) is equivalent to g(z) = O((z — a)9).
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The first result concerns the necessary and sufficient conditions for achieving linear con-

vergence.

Theorem 2.3.1. Let ®(2) be an IF, and let V) (2) stand for its first derivative. Observe
that although the first derivative is usually denoted by ®'(z), we will write M (2) to
maintain uniformity throughout the text.

(i) If |®W(a)| < 1, then there emists a neighbourhood of a such that for any zy in that
neighbourhood the sequence {zx 1 = @(zk)};gg converges to .

(i1) If there exists a neighbourhood of o such that for any zy in that neighbourhood the
sequence {zpy1 = ®(2;,) 125 converges to o, and z; #  for all k, then |(I>(1)(oz)’ < 1.
(iii) For any sequence {z41 = ®(23) }125 which converges to a, the limit K,(a; ®) ezists

and Ki(co; ®) = dW(a).

Proof.

(i) By continuity, there is a disk D,(a) = {a € C | |z —a| < p } such that |we1(2)| <
14+]|2M ()]

5 = L < 1. Then if z;, € D,(a), we have

[2kt1 — ol = [®(zk) = @()] = [wa1(2k) (2 — @) < Lz — o] <[z —af <p,
and 2y, € D,(a). Moreover
|z —a| < LFlz — af,

and the sequence {211 = ®(2;)}, 25 converges to a because 0 < L < 1.

(ii) If @M (a)| > 1, there exists a disk D,(«), with p > 0, such that |wge(2)] >
14+]|2M ()]

5 = L > 1. Let us suppose that the sequence {zj,1 = ®(z;)},=5 is such that
2, # a for all k. If 2z, and 2,1 € D,(), then we have
|21 — af = |®(z1) — B()| = [wo1(2k) (2 — )| = Lz — af.
Let 0 < € < p, and suppose 2x, 241, - .-, 2k are in D(a) C D,(«v). Because

Zopr — | > L'z, — o
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eventually L' |z, — o > eand 2,4, ¢ D.(«). Then the infinite sequence cannot converge
to a.

(iii) For any sequence {21 = ®(2;)},5 which converges to o we have

lim T gy w1 (z) = ®Y(a). O
k—+co 2 — (& k——+o0

For higher order convergence we have the following result about necessary and sufficient

conditions.

Theorem 2.3.2. Let p be an integer > 2 and let ®(2) be an analytic function such that
®(a) = a. The IF ®(z) is of order p if and only if ®V)(a) =0 for j=1,...,p—1, and
®®) () # 0. Moreover, the asymptotic constant is given by

— o)
K,(a;®) = lim hil T4 (@)
k—+oo (2, — )P p!

Proof.
(i) The (local) convergence is given by the part (i) of the Theorem 2.3.1. Moreover we

have
21 — Q0= (I)(Zk) — (I)(a) = w@,p(zk)<zk _ a)P,
and hence
. Zk+1 — O . (I)(p)(a)
Y = = K,(a; ).
kL+oo (Zk — og)P kglfoo wQP(zk) p! P(av )

(ii) If the IF is of order p > 2, assume that ®U)(a) =0 for j =1,2,...,1 — 1 with [ < p.
We have

Zip1 — o = O(z) — O(a) = wo(2) (21 — @),

where z
N
But
we(21) = PRl T QO Rl T (2 — a)p—l7

(zr =)t (z— )P
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and hence
0 if | <p,
wai(0) = lim we(z) = Kyle; @) Jim (2 — o) =

—+o00

Ky(a;®) if I=p.
So @V (a) = 0. O

It follows that for an analytic IF and p > 2, the limit K,(o; ®) exists if and only if
Ki(o;®)=0forl=1,...,p— 1.

As a consequence, for an analytic IF ®(z) we can say that: (a) ®(z) is of order p if and only
if ®(2) = a+ O((z — a)P), or equivalently, if ®(a) = a and &V (2) = O((z — a)P7!), and
(b) if « is a simple root of f(z), then ®(z) is of order p if and only if ®(z) = a+ O(fP(2)),
or equivalently, if ®(a) = a and ®M(z) = O(fP~1(2)).

Schroder’s process of the first kind is a systematic and recursive way to construct an [F
of arbitrary order p to find a simple zero « of f(z). The IF has to fulfil at least the

sufficient condition of Theorem 2.3.2. Let us present a generalization of this process.

Theorem 2.3.3. [11] Let o be a simple root of f(z), and let co(2) be an analytic function
such that co(a) = a. Let ®,(z) be the IF defined by the finite series

D,(2) = > alz)f'(2) (2.3.3)

where the ¢;(z) are such that

a(z) = —% (ﬁ(z)%) c-1(2) (2.3.4)

forl=1,2,... Then ®,(z) is of order p, and its asymptotic constant is

Ky, ®,) = == =~ (a) [fO(@)]" = —¢@) [fO(@)]". (2.3.5)



For c¢o(z) = z in (2.3.3), we recover the Schroder’s process of the first kind of order
p |48, 51, 27|, which is also associated to Chebyshev and Euler [2, 49, 44]. The first
term co(z) could be seen as a preconditioning to decrease the asymptotic constant of the

method, but its choice is not obvious.

2.4 Newton’s iteration function

Considering ¢o(z) = z and p = 2 in (2.3.3), we obtain

f(2)
f®(2)

which is the Newton’s IF of order 2 to solve f(z) = 0. The sufficiency and the necessity

Dy(2) = 2 —

of the condition for high-order convergence of the Newton’s method are presented in the

next result.

Theorem 2.4.1. Let p > 2 and let V(z) be an analytic function such that V(o) = 0

and WM (a) # 0. The Newton iteration Ny(z) = z — ﬁ%f()z) is of order p if and only if

VO(a)=0forj=2,...,p—1, and ¥ (a) # 0. Moreover, the asymptotic constant is
p—1U®(aq)

Kp(a; N\Il) = T 0 (OZ) :

Proof.
() f v (a)=0for j=2,...,p—1, and U@ (a) # 0 we have

B W (z)
Gy = (m-a)- WD) (z,)
(= )W (z) — U(z)
\I/(l)(Zk) '

But
\I!(l)(zk) = \Il(l)(a) +wy) po1(2k) (2 — )Pt
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and

U(zy,) = Q/(l)(a)(zk — ) + wy (k) (2 — )P

It follows that
Wy 1 (2) — W p(2k)

Rk4+1 — & = T (z) (zk — )",
SO
. Zpr1 — QO . w\I/(U,pfl(Zk) — Wy p(21)
lim ———— = lim
k—+oo (2, — )P k—+o0 U (z)
V0 (a)  ¥0(a)
_ { i/ hid }/\If(l)(a)
(p—1)! P!
(p—1) ¥P)(a)

pt YW(a)

(ii) Conversely, if Ng(z) is of order p we have N&,j)(oz) =0forj=1,...,p—1, and
Né,p) () # 0. Hence « is a root of multiplicity p — 1 of Né,l)(z) and we can write

1 _
N (z) = wym , (2)(z = a) .

We also have
U(z) = wy1(2)(z — ).

But
(1)( ) qj('z)\I](Q)(z)
‘ WO
SO we obtain
O _ a0 OO
W) = W
’LUN(1) —1(Z) 9
_ v P W12 (5 — )2
o [T (2)]" ( )
where ) o o
- Ung p1\B) A2 N ()T ()
l—m wy 1(2) [\Ij ()} (p—1)! 7 0.



It follows that a is a root of multiplicity p — 2 of ¥?)(z). Hence ¥V (a) = 0 for j =
2,...,p—1,and U@ (a) #£0. O

We can look for a recursive method to construct a function W,(z) which will satisfy the
conditions of Theorem 5.4.1. A consequence will be that Ny, (z) will be of order p, and
Ny, (2) = a+ O(fP(z)). A first method has been presented in [19, 17|. The technique

can also be based on Taylor’s expansion as indicated in [6].

Theorem 2.4.2. [19] Let f(2) be analytic such that f(a) =0 and fO(a) # 0. If F,(2)
15 defined by

(2.4.1)

then F,(a) =0, F,Sl)(a) #0, Fzgl)(a) =0 forl=2,...,p—1. It follows that Np,(z) is of

order at least p.

Let us observe that in this theorem it seems that the method depends on a choice of a
branch for the (p — 1)-th root function. In fact the newton iterative function does not

depends of this choice because we have

1 1
N (Z) o prl(z)/Fgg—)l(z) — Fp71<2)/F]§_)1<Z)
Fp 1 1 prl(Z)Fgg?l(Z) - Mk
o p—1 [F(l) (Z)]Q _ 1 1 _ P*l(z)
r p1 EY, (2)

In fact the next theorem show that a branch for the (p — 1)-th root function is not

necessary.

Theorem 2.4.3. [17] Let F,(z) given by (2.4.1), we can also write

=z— f(z)Qp—(Z) (2.4.2)

C)p—i—l(z)7

Ng,(2) =z —

FOE) = () S



where
QQ(Z) = 1,
(2.4.3)
Q(2) = fD(2)Qp(2) — 5F(2)QY(2) for p>3.

Unfortunately, there exist no general formulae for Np, (2) and its asymptotic constant
Kp(a; Np,) exist. However, the asymptotic constant can be numerically estimated with

(2.3.1).

A second method to construct a function W,(z) which will satisfy the conditions of

Theorem 5.4.1 is given in the next theorem.

Theorem 2.4.4. [11] Let « be a simple root of f(z). Let V,(z) be defined by

Wy(z) = S di(2)f'(2) (24.4)

where do(z) and dyi(z) are two analytic functions such that

do(Oé) = 0
{ d(()l)(a) +dy (Oz)f(l)(a) £ 0 (2.4.5)
and
aiz) = - f(}) BL i

[dg(z) ENEE

forl=2,3,.... Then
15 of order p, with

and
(p—Vdy(a) [fV ()]
() + di () fO(a)

K,(a; Nq,p) =
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Let us observe that if we set U,(z) = ®,(2) — 2z with the ®,(z) given by (2.3.3), then

U, (z) verifies the assumptions of Theorem 2.4.4.

Remark 2.4.1. For a given pair of dy(z) and di(z) in Theorem 2.4.4, the linearity of
the expression 2.4.6 with respect to do(z) and dy(z) for computing the di(z)’s allows us
to decompose the computation for V,(z) in two computations, one for the pair do(z) and
di(z) = 0, and the other for the pair do(z) = 0 and d(z), then add the two ¥,(2)’s hence

obtained.

2.5 Examples

Let us consider the problem of finding the 3rd roots of unity

2(k—1)mi/3

for £=0,1,2,

A — €

for which we have o® = 1. Hence we would like to solve

for
f(z)=2"—1.

As examples of the preceding results, we present methods of order 2 and 3 obtained from
Theorems 5.3.2, 5.4.2, and 2.4.4. For each methods we consider we also present the basins

of attraction of the roots.

The drawing process for the basins of attraction follows Varona [53|. Typically for the
upcoming figures, in squares [2.5, 2.5]2, we assign a color to each attraction basin of each
root. That is, we color a point depending on whether within a fixed number of iteration

(here 25) we lie with a certain precision (here 1073 ) of a given root. If after 25 iterations
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we do not lie within 1072 of any given root we assign to the point a very dark shade of
purple. The more purple, the more point have failed to achieve the required precision

within the predetermined number of iteration.

2.5.1 Examples for Theorem 5.3.2

We start with iterative methods of order 2. From Theorem 5.3.2, we first want ¢y(a) =
a. We observe that the simplest such function is ¢y(z) = z. Such a choice has the
advantage that derivative of higher order then 2 of this function c¢y(z) will be 0, thus
simplifying further computation. This is in fact the choice of function ¢o(z) which leads
to Newton’s method and Chebysev family of iterative methods. We observe however that
it is generally possible to consider different choices of functions, although most will might
be numerically convenient as we will illustrate here. We need ¢y(a) = «, in such, we can
also look at cy(z) = za(z) where a(a) = 1. In the examples that follow we will look at

such functions a(z).

In Table 2.1, we have considered 3 functions of this kind. We have developed explicit
expressions for f(z) = 23 — 1. Figure2.1 presents different graphs for the basins of

attraction for these methods. We observe that some of them have a lot of purple points.

Now let us consider method of order 3 with co(z) = 2> with (m € Z). In this case we

obtain

Py(2) =
Z3m—2

18

and its asymptotic constant is

[(B3m —2)(3m —5)2* —2(3m +1) (3m —5) + (3m + 1) (3m — 2) 27°]

Ko(c a) = (3m+1) (3m6— 2) (3m —5)

50



a) For m =0, ¢g(z) = 2z, and b) For m = 1, ¢o(z) = 2%, and
(a) , co(2) = 2, : :

its asymptotic constant is a?. its asymptotic constant is —2a?

) -1 [] 1 2 -2 -1 0 1 2

(¢) For co(z) = z(e=*~Y), the (d) For co(z) = zcos(z® — 1), the
asymptotic constant is —% 2, asymptotic constant is %ag.

Figure 2.1: Basins of attraction for methods of order 2 of Table 2.1.
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Tableau 2.1: Method of order 2 based on Theorem 5.3.2.

co(z) = za(z) By (2) Ko(a; ®s)

225" (me ) [(Bm +1) — (3m — 2) 2] 25— — Bt Em=32) 2
zexp (29— 1) Li52'=82% o (53— 1) 1342
zeos (28— 1) | L cos (28 — 1) + 2 (2% — 1) sin (2% — 1) g2

Examples of basins of attraction are given in Figure 2.2 for m = 0,1,2. The smallest

asymptotic constant is for m = 1.

2.5.2 Examples for Theorem 5.4.2

Gerlach’s process described in Theorems 5.4.2 and 2.4.3 leads to Newton’s method for

p = 2 and Halley’s method for p = 3. For our problem we have

(= - 1)
NFQ(Z):Z_ 3.2
and
23 —1) /322 2342
Np,(2) =2z — ( )/3 o7 = f5m
1-pi-E)Y

These methods are well known standard methods. For comparison, their basins of at-

traction are given in Figure 2.3.
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",
(a) m = 0, its asymptotic constant is ga

(Chebysev’s method).

(c) m = 2, its asymptotic constant is %a.

Figure 2.2: Methods of order 3 for computing the cubic root with ¢y(z) = z*™*! for
M=0,1,2.
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(b) Np,(z) is Halley’s method.

Figure 2.3: First two methods for computing the third root with Theorem 5.4.2.
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2.5.3 Examples for Theorem 2.4.4

To illustrate Theorem 2.4.4, we set do(z) = 0 and dy(z) = 2* for k € Z, and let us
consider methods of order 2 and 3 to solve z*> — 1 = 0. Table 2.2 presents the quantities

U,(2), N, (2), dy(2), and K,(a; ¥,) for p = 2,3 for this example.

Tableau 2.2: Method of order 2 and 3 based on Theorem 5.3.2.

p U,(2) N\I'p(z) dp(2) Kp(o; %)
2 1) el ~ES | (k1)
N\ , _ (k+2)(2=R) 2+ (k=D k=D = (k=) (k+D)2""] | 312 _sp_g K23k
3 3 [(2 — k)P + @2k =1) = (k+1)2 5} Z[ [(F+3)(2—k)2°+k(2k—1)— (k—3)(k+1)z 7] |z 543'15 Bkt _w”’
We observe that the asymptotic constant of the method of order 2 for k = —1 is zero
7

it means that this method as an order of convergence higher than 2, and in fact it
corresponds to the Halley’s method which is of order 3. We observe that methods of
order 3 for the values of Kk = —1 and k£ = 2 both correspond to Halley’s method for our
specific problem. Examples of basins of attraction are given in Figure 2.4 for methods of

order 2 and in Figure 2.5 for methods of order 3 using values of £k = —2,—1,0,1,2, 3.

2.6 Concluding remarks

We have presented fixed point and Newton’s methods to compute a simple root of a
non-linear analytic function in the complex plane. Based on the necessary and sufficient
conditions for convergence we revisited and extended both Schréder’s methods. Like

Kalantari [36] and Varona [53| we have illustrated those methods with their bassins.
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(¢c) k=0anddi(z)=1. (d) kE=1and di(z) = z.

(e) k=2and dy(z) = 22 (f) k=3 and di(z) = 23

Figure 2.4: Methods of order 2 to illustrate Theorem 2.4.4.
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(e) k=2and dy(z) = 22 (f) k=3 and di(z) = 23

Figure 2.5: Methods of order 3 to illustrate Theorem 2.4.4.
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CHAPITRE 3

On the rediscovery of Halley’s iterative
method for computing the zero of an

analytic function.

Abstract

We show that Halley’s basic sequence, resulting from accelerating the order of convergence
of Newton’s method, is the most efficient way of doing so in terms of usage of certain
derivatives. This fact could explain why this process of accelerating the convergence of
Newton’s method is so frequently rediscovered. Then we present an algorithmic way of

recognizing Halley’s family and we apply this algorithm to examples of rediscoveries.
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3.1 Introduction

Newton’s method of order 2 to solve a nonlinear equation appeared in 1669 [57|. Later,
in 1694, Halley presented an improvement of order 3 of this method [20, 18]. In 1870
Schroder introduced an infinite sequence of methods based on rational approximations
whose p-th member is of order p. The first two elements of this sequence where Newton’s
method (p = 2), and Halley’s method (p = 3). This family is said to be the Schroder’s
method of 2nd kind, or also the Halley’s basic sequence. This sequence, under different
forms, has been rediscovered in 1946 [21], and 1953 [26]. In [51] Traub says that Halley’s
method has been very often rediscovered. That statement was made in 1964, since then,
this sequence has been rediscovered several times: 1966 [54], 1969 [52], 1972 |31], 1975
[16], 1991 [28], 1994 [19], 1996 [17], 1997 [32]. In fact, at least once every decade Halley’s
basic sequence of iterative methods is rediscovered [44, 45]. This no longer seems like a

simple coincidence.

Naturally we are faced with the following questions when we are looking for a new method:
are we also on the verge of a rediscovery? How can we prevent oneself from a rediscovery
? In the following we first show that the Halley’s basic sequence of iterative methods
results from accelerating the order of convergence of Newton’s method and we show that
it is the most efficient way of doing so in terms of usage of certain derivatives. Then
we present an algorithmic way of recognizing Halley’s family. We apply this algorithm
to examples of rediscoveries and present several forms under which the Halley’s basic

sequence can appear.
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3.2 Preliminaries

Suppose g(z) is an analytic function and « is in its domain, we can write

O gk+)
(k) () _ Y (@) PRY
) =Y (e - a)
j=0

for any £k =0,1,.... Then, for ¢ =1,2,... we have

s g<k+a) .
(z—a) +w,m  (2) (z— ).
7=0

where w,w ,(2) is the analytic function

>, glhtati) ()

’LUg(k),q(Z) = Z W (Z — @)j .

J=0

Moreover, the series for g*)(2) and wyw) () have the same radius of convergence for any
k, and

() I ke
wg(k)7q(a) = (q—i-j)!g (a>

for j =0,1,2,....

We will use the Big O notation, g(z) = O(f(z)), around z = « when there exists a
constant ¢ # 0 such that

_g(2)

lim =

Z—a f(z)
If a root « is of multiplicity ¢ for f(z), it is equivalent to write g(z) = O(f(z)) or
9(z) = 0((z — a)9).

Finally, the order of convergence to « of a sequence {Zk};;)?) is p if and only if there exists

a non-zero constant Cj, such that



3.3 On the Halley’s accelerating process

3.3.1 High order Newton’s method

An important result about high order Newton’s method is given by the following the-
orem which presents necessary and sufficient conditions for obtaining a given order of

convergence (see also [11] for this result for real valued functions).

Theorem 3.3.1. Newton’s method

f(z)

f(z)

applied to an analytic function f(z), with f(a) =0 and f'(«) # 0, is of order p > 2 if
and only if "(z) =0 ((z — a)P?).

Ni(z) =z —

Proof.
Sufficiency. If fU)(a) =0for j =2,...,p—1, and f®(a) # 0 we have
Ni(2) = Nita) = (=)= 55
() - 1)
f'(z)
But
fi(z) = f@) + wpp-a(2)(z — @),
and

It follows that

2) — o) = Wy p-1(2) — wyp(z)
Ny(2) - Ny(a) —
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SO

Necessity. Conversely, suppose Nf(z) is of order p. Let us assume that N}j)(a) =0 for

g=1,...,1—1forl <p. We have

Ny(z) =

But

because lim,_,,, %

of N(2), and we can write

Ny(a) + wa,l(z) (z — a)l )

tim (2

Ny(2) = N¢(a)

lim .
z—a (Z _ OZ)
N — N
lim 1(2) g(a) (2 a)(pfl)
2 (z—a)
0,

is a finite value. Tt follows that a is a root of multiplicity p—1

Ni(2) = wyr p1(2)(2 — )Pt

We also have

f

f(z) = wpa(2)(z = a).

But

f(2)["(2)

N}(z) =

/(=)
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we obtain

1 A12
e = e
W, 713—1(2) / 2 p
- S

where .

wnpa(2) o, NP () f (@)

ll_{rcl! U)\p71<2) [f (Z)] - (p . 1)| 7é O
It follows that a is a root of multiplicity p — 2 of f”(z). Hence f9)(a) = 0 for j =
2,...,p—1,and f®(a) #£0. O

3.3.2 Increasing the order of convergence with the minimal amount
of new information
Suppose f(a) =0, f'(a) # 0, and f"(a) = O((z — a)P~?), then N; is of order p. To

increase the order of convergence to p+1 we look for F'(z) such that F(a) = 0, F'(a) # 0,
and F"(a) = O ((z — a)P™'). Then Ny will be of order p + 1.

Since « is supposed to be a simple root of F(z), we can write

with F(a) # 0. We want that F(z) contains the minimal amount of new information. As
suggested in [51], this new information comes from f'(z). Hence we consider that F(z)

depends only on f’(2), so

Now



and
F'(z) = ['(2)G (f'(2)) + f(2)G (f'(2)) f" (2).
The requirement that o be a simple root of F(z) implies

F'(a) = f(a)G (f'(a)) #0,
so G (f'(a)) # 0. Because the value f’'(«) can be arbitrary in C except 0, we assume
that G(£) # 0 for any £ € C except eventually at & = 0. We would also like that
F"(2) =0 ((z — a)P™!). We have

F'(2) = ["(2)G (f'(2)) + 21" ()G (f'(2)) ["(2)
G (@) ") + FE () [f(2)]

Since f(2) =0 ((z — ) and f"(z) = O ((z — a)P~2), we observe that

FEG" (F()) [f(2)) =0 ((z — a)™?)

regardless of G” (f'(z)). Let us remark that O ((z — «@)?~?) is equivalent or lower than
O ((z — a)P71) for p > 2. So this term can be ignored. We already know that G (f'(«)) #
0. Suppose G’ (f'(«)) = 0, then we will have G’ (f'(2)) = O (2 — ) and

2f' ()G (f'(2) ['(2) + F()G (f(2) f7(2) = O ((z = a)"7)

meaning that

F'(2) = f"(2)G (f(2) + 0 ((z =)' !) = O ((z —a)"?),

because
f'(2)G (f'(2)) = 0 ((z = )"7?).
Therefore we need G’ (f'(a)) # 0 to get F”(z) = O ((z — a)P~1). Now let us write

G(f'(2)

F'() = GO "D Gripo

F21(2)f"(2) + F) ()] + 0 (= = ap).
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Under the hypothesis on f(z) it can be proved, see Lemma 3.3.3 in the next section, that
(0= 2S'(2)f"(2) = f()f"(2) = O ((z = a)") .
So we deduce
F'0) =6 () 1) Gy + o )] + 0 (G = ).

Since f"(z) = O ((z — @)?~?), we obtain that F”(z) = O ((z — «)P™!) if and only if
G (f'()

———— 4+ pf'(2) =0 (2 — ),
G (pe) OO
and therefore
G (f'(a)) :
— = 0.
@ (Flay) P
We want this to be true regardless of the value f'(a) = & # 0, then we have to find G(§)
such that
G(&)
+p=0
G'(¢)
for all £ # 0. Solving this equation leads to
c
for an arbitrary constant c. Conversely if the above equation holds then
G (f'(2)) :
e tpfi(z)=0
@ (re) Y

for all z in a neighbourhood of a, and F”(z) = O ((z — a)’"!). So we have proved the

following result.

Theorem 3.3.2. Let f(z) be such that f(o) = 0 and f'(a) # 0, and suppose Ny be of
order p. There exists a function G(&) such that Ng is of order p+ 1 for

if and only if



So using

we have

Np(z) =z — L&) f(2)

e {1 . {1 - (f'@)ﬂ |

which is of order p + 1. Let us mention that this is the result obtained in [19] for real

valued functions, and it is called the Halley’s acceleration process.

3.3.3 A fundamental lemma

To increase the order of convergence of the Newton’s method, we need a way to increase
the order of the zero of the second derivative of the appropriate function F'(z) related
to the original function f(z). Looking in this direction, the next lemma is very useful.
It describes a way to combine the minimum number of successive terms like f*)(2)
(k=0,1,2,3,...) to get an expression of the form O ((z — «)?~2). It happens that this

minimum number is 3.

Lemma 3.3.3. Let o be a simple root of an analytic function f(z), i.e. f(a) =0 and
F(@) £0. For anyp>2, () = 0 ((z — a)?) iff
(p=2)f'(2)f"(2) = f(2)f"(2) = O ((z = a)'7!) = w(2) (2 — a)"~".

Moreover
f'(@) fP ) (a)
-1t

Proof. Let us observe that for p = 2 there is nothing to prove. Indeed f”(z) = O (1)

w(a) = —

and the condition holds because f(z)f"”(z) = O(z — «a) = w(z)(z — «). So we consider

p=3.

66



Sufficiency. Let us consider the following expansions
fz) = o)z —a) +wpp(2)(z — ),
f'(z) = flla) +wppa(z)(z —a)™

e = Ly () -0
ey = L oyt (o)
(p—3)! ’
fO+) (@) o . L
where w ) ;(a) = o for any i,7 = 0,1, ... By a direct substitution we get

(P =2)f'(2)f"(2) = f(2) 1" (2)

= f(@)[(p = 2w pr(2) = wpmpa(2)](z = )+ 0 ((z = a)™7)

= O0((z—a) ),
because p — 1 < 2p — 3 for p > 2. For the value of w(«), we have
: f'(@) f* ()
= 1 ! — 2 10 — "o = — .
w(a> Zgrollf(co [(p )wf P 1(2) Wy p 2(Z>] (p_ 1)!

Necessity. We suppose for any p > 3 that

(P =2 (2)f"(2) = f(2)f"(2) = O ((z = )"!) = w(z)(z — )",
and we have to prove that f”(z) = O ((z — a)?~?), which is equivalent to f)(a) = 0 for

l=2,...,p— 1. Since

= lim(p — 2)f'(2)f"(2) — f(2)/"(2) = (p = 2) () f" ()

zZ—Q

it follows that f”(a) = 0. If p = 3 we are done. Let us consider p > 3, and suppose
2<l<p-—2and fU(a)=0for j =2,...,1, we are going to show that f(*D(a) = 0.

67



Hence for [ = p — 2 we will have the result. We consider the following expansions
f(z) = fla)(z—a)+wpm(a)(z —a)™
fl(z) = (@) +wp(z)(z —a),
f'(z) = wpraa(z)(z — )
f"(2) = wpriea(2)(z — )2,

By a direct substitution we get

(p=2)f'(2)f"(2) = F(2) " (2)

= 0= 2wpia() = wpmia(2)] @)z — @)

0= 2up R (2) — wpa(wpr o) (2 - @)
= O0((z—a)).
Then
(0= 2w () = wpmi(2)] £(a)
=~ = Dwpwpia () = wpa (g a(:)] (= - a)
+0 ((z — )P ™).
So .
/ +
0=l (9~ D (0) — wpmia2)] ) = p— 1 - 1 HOEL,

Since [ < p — 2 it follows that f(*+Y(a) = 0 and we have the result. O

3.4 Generating algorithm

Following [51], a basic sequence of methods is an infinite sequence whose p-th member is a

method of order p. Suppose we start with a function f(z) such that f(«a) =0, f'(a) # 0,
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and f”(«) # 0, the p-th member of the Halley’s basic sequence is

F
Hp(z) =z F]jéz;
For p = 2 we have
Fy(z)  f(2)

and for p > 2, we write

ped - ()] B3

Consider any other basic sequence for which the p-th member is

Ty(z) = 2 - Vy(2),

where V,,(z) is whatever expression. The methods H,(z) and T,(z) will be the same if

and only if
_ Fy(2)
Fy(2)

V() for p>2.

Hence we have the following result.

Theorem 3.4.1. Let f(z) be such that f(a) =0 and f'(«) # 0 for which Ny is of order
2. The basic sequence {Tp(z)}zz given by

T,(2) =2 —=Vp(2) for p>2,

for which the p-th element is of order p, corresponds to the Halley’s basic sequence if and

only if

ne = 4,

-1
V() = [1=1[1=V)]] V=) for p=2 O
We will now present some examples of application of this algorithm.
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Example 3.4.1. The Householder’s basic sequence [26, 27| given by

(1/f(z))r=2
T,(2)=z+(p—1) [W

15 in fact the Halley’s basic sequence by using the above algorithm. Here we have

(1/f(z)"?

Vp(2) = —(p - 1)W‘

Then

Vi) = —(p— 1) [1 - (l/f(z))(PQ)(l/f(z))(p)] |

[(1/f(2))@=D]"

and a direct substitution leads to

I b V0 O
1= -] v = U v, o

Example 3.4.2. Jovanovié [31] suggested the following basic sequence

Wz = 242,

Jp(z) = Z—Ll(z)) for p>2.

17711‘]{)_1(,2
which 1s again the Halley’s basic sequence. Indeed we have

z = Jp1(2)

‘/p(Z) - 1— p%lt]}/)71<z> =z = JP(Z)7
and
Vo(z) =1—J)(2).
Hence
v T 2By o
p p p 1 — %JZ,)(Z) p+1 :

Example 3.4.3. Ford and Pennline [17] have presented the following form of the Halley’s
basic sequence developed by Gerlach [19]

GA@ZZ—ﬂ@é%%%,
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where

We have

and

) = <f = >Qp+§2>>
)

( ( )Q:DH( ) — Qp( ) ;?-i-l(z)

= gt o= 7 02)
= (1 p)+p 2D Dels)
p+1(z)

where we have successively replaced f(2)Q,,,(2) and f'(2)Q,(2) using the preceding re-

lations to generate Qpi2(2) and Qpi1(2). Hence

L Q@)
T S ey

9

and it follows that

1 o] B
- 1p-3e)| we) -

Qp(2)

Sone

{Qp( 2)Qp+ (Z)}1

p+1( )
B Qpy1(2)
= OG0
= V})+1( ) O

3.5 Looking for sequences to define V(z)

3.5.1 Looking for a sequence {A,(2) ;;’8 such that V,(z) = f(z)ipjg;

The last example of the preceding section suggests a general method to find a sequence

{A(2) ;’8 such that V,(z) = f(z ) L f(z corresponds to the Halley’s basic sequence.
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The condition on the first two terms of the sequence will be

Molz) _ f(2)
G PG

so Ay(z) = f'(2)Ap(z). Moreover we would like that A;(z) be generated by Ay(z) and

Va(z) = f(2)

Af(2), so we write

A1(z) = ['(2)80(2) = (F'(2) + 9(2)) Do(2) + h(2)Ag(2).

where g(z) and h(z) have to be specified to get the Halley’s family. Let us introduce a
new function dg(z) such that Ag(2)dp(z) = 1. We can write

Then we have

It follows that

and

dp(2) ,
50(Z)> Ao(2) + h(z)Ay(2).

We would also like to have that A,(2) be generated by A, () and A} _(2). Let us see

Av(z) = (f’(Z) Ch(:)

what happens for Ay(z). To be an element of the Halley’s basic sequence, we must have

f(@il(z) - [1 - % [1 - (f(z)io(z))/”_l f(z)io(z)
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where

3o ()] - (-2 (1-12))

+2A—A0% Kf’(z) - % (f’(z) - h(z)%(z))) As(z) = f(2)A1(2) ] -

For obtaining an expression depending only on A;(z) and Al (z) we set

4o

which means that h(z) = — f(z). Hence we obtain
Ai(z) Ai(z)
f(2) = f(2) , ,
Balz) L] (202) - F(2)RE) Aiz) = F(2)2(2)]
Ny(2) = (f’(z) — @%) Ay(z) — ng)A/l(z)

Consequently, to get the Halley’s basic sequence, starting with Ag(2)dp(z) = 1, we show
by induction that

80 = (£ - 22BN 5, o) - )
for p > 1. Indeed it is easy to show that
0% = [ [ (s ) s

So we have proved the following result.

Theorem 3.5.1. Let f(z) be such that f(a) =0 and f'(c) # 0 for which Ny is of order
2. The basic sequence {T,(z) ;i; given by

Ap-2(2)
Ap-1(2)
where Ao(z) and do(2) are two arbitrary analytic functions such that

Ag(2)do(2) = 1,

Ty(z) =z = f(2) for p=2,

2) 6b (2 z
Ay(z) = (f/(z) - f;)&f;gz;) A,i(z) — %A;_l(z) for p>1,
corresponds to the Halley’s basic sequence. [
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Corollary 3.5.2. Suppose f(z) satifies the preceding assumption. Let o be an integer,
~ ~ “+oo
ds(2) be an analytic function, and {Ap(z)} defined by

p=0o

A = (Fre-RED A () - 18K () for p2o+,
then _
Apio—2(2)

he) =2 -5 o)

15 of order p for p > 2, and corresponds to the p-th element of the Halley’s basic sequence.
Proof. It is enough to remark that, for 6(z) = 8, (z) we have Ap(z) = &pﬂ,(z) forp >0
to conclude. O]

Example 3.5.1. Ford and Pennline basic sequence of Example 3.4.3 corresponds to the

case 0 = 2 and 0(z) = 1. O

3.5.2 Looking for a sequence {B,(z) ;;)8 such that V,(z) = By _»(2)

As a corollary of the last theorem, we have the following result.

Corollary 3.5.3. Let f(z) be such that f(a) =0 and f'(o) # 0 for which Ny is of order
2. The basic sequence {Tp(z)};;’; given by

Bp—2(z>
Bp—l(z)

where By(z) and Po(z) are two arbitrary functions such that

BQ(Z)BQ(Z = 1,

Tp(2) =2 —

for p>2,

Iy ﬁl o
pB,(2) = (J; @ _ 58) B, 1(2) = B, (2) for p>1,
corresponds to the Halley’s basic sequence.
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Proof. Let {Ap(z)};zg be generated with dp(z) = 1. Let us define 5,(2) = fP(2)5(%).
A

p(z)
Bp(2)

If we set B,(z) =

Example 3.5.2. Let By(z) = 1 = [o(2), we get

_ B B
po(Z) - f(Z) Bp—l( ) Bp—l( ) O
Example 3.5.3. Let Bo(z) = f(2) and Po(2) = 1/f(z), we get
pBy(5) =222 B, ()= By (). O

f(2)
Example 3.5.4. Let Bo(z) = 1/f(2) and Po(2) = f(z), we get

po(Z) = _BII)—I(Z>7

and hence

p!By(z) = (=1)" (1/f(2))".

we obtain the result by direct substitution.

]

So this basic sequence corresponds to the Householder’s sequence of Example 3.4.1 because

W) = PG = -0 B = - 1)

R _2(2)
Sp(z) = 2z — =2 or p>2,
p( ) Rpfl(Z) f p jl
where
Ro(z) = 1/f(2),
1 @) (s
Ry(2) = Y (-1Y"IZER, (2 for p>1.

It 1s easy to show by induction that

(1/£(2)"?
(1/£(z)""
Example 3.5.5. The Schroder [48] process of the second kind is defined by



Then we obtain directly

[\

(1/f(z))"
(1/f(=))" "

(71);7—2 1 (p—2)
R, 5(z (p-2)1 (f(Z)>
7 () _ =—(p-1
p—

(—l)pfl 1 (pfl)
(p—1)! (m)

which corresponds to the Householder’s basic sequence of Example 3.4.1, which has been

[y

—~
N

~—

proved to be the Halley’s basic sequence. We could also replace Ay(z), with g = 1, by
P (2)R,(2) in Theorem 3.5.1 to obtain that R,(z) = 20G). Sy it corresponds to the

T frti(z)”

Halley’s basic sequence because
Ry a(2) _ Apa(2)/fP1(2) Apa(2)
Ra) - A/ IR0

Remark 3.5.1. These expressions can also be written wn other different forms. For

example if we set B;(z) = f(2)Bj-1(z) = ... = f1(2)Bo(2) for j € Z, we get

B) _ f) | )
56 i TR

so we can also write

— 1(2). O

PO BN
) @-(z))B”‘l” B

PBy(2) = ((j L)

3.6 Other methods

Several other expressions of the Halley’s basic sequence are presented in the literature,
for example determinant-based methods. In [44, 45] their equivalence has been showed,
so we only present these methods here for completeness of the paper. The sequence

{Ap(z)};jg used in this section is generated with dy(z) = 1.
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3.6.1 Determinant-based methods

Determinant-based families of methods where developed using the sequence of determi-

nants given by: My(z) = 1, and for p > 1

) o L e

fiz) fllz) ... ... f?:gf)

My(z) = 0 fz) fl(z) ... %
0 0 f(z) f(2)

It can be shown, see for example [44, 35|, for p > 1 that

£ j+1 fjfl(z)f(j)(z)M

My(2) = Z (=1) ! p*j(z)a
and
M,(2) (—1)”fp“(2)( 1 )@)
P p! fz))

which lead to the relation

My(2) = F(2)Myr(2) — }jﬂz)M,;_l(z).

It follows that M,(z) = A,(z) for any p > 0.

Example 3.6.1. Hamilton [21], and later Kalantari [33, 34, 32], proposed the basic

sequence
M _2(2)
K, (2) =2z — f(2)=2 or > 2.
p( ) f( )Mp_l(Z) f D=
It is clearly the Halley’s basic sequence [35]. ]
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Example 3.6.2. Wang [5}/, see also [55], proposed that

r ,Q(Z)
W,(2) =2 — 2="2 for > 2,
p( ) Fp—l(z) f b=
where I'p(z) = fp( . Clearly this is again the Halley’s basic sequence. [

Example 3.6.3. Varjuhin and Kasjanjuk [52] considered the following determinants

f(2) 2f(2) P72 f(2)
) fR) o (PYf(R)"
Ny =| [ G ()|
FOE) (f)PTY L (2 ()Y
and /
f(2) (zf(2) ... ... (zPVf(2))
F(2) )" o (RPV()
D,z)=| 93 ()P o ()Y
f(p—l)(z) (zf(z))(p_l) (Z(p_z)f(z>)(p—1)

They suggested the method

which is of order p. These determinants seem similar to the M,’s, and it has been proved

[44] that
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and

Dy(z) = Mpr(2) [ (0 — 1 = m)!
So
Ny(2) _ 5 M,_2(2) 5 Ap-2(2)
PYE R TANE e
Consequently Y,(z) corresponds to H,(z). O

3.6.2 Even more methods

Two other methods which seemed at first complicated but in fact where only other forms

of the Halley’s basic sequence. These methods where analyzed in [44].

Example 3.6.4. Farmer and Loizou [16] considered

M) = oy or p>3,
Y 1S EDE [P2 A (2)

and

Lp(2) = 2 = Ay(2).

It can be shown [44] that

M, _Q(Z) A _2(2)
A (2) = f(2)=—L = f(2)=2 ,
p( ) f( )Mp,1<2’) f( )Apfl(Z)
and hence L,(z) corresponds to H,(z). O
Example 3.6.5. Igarashi and Nagasaka [28, 29] set
_ 9 -
ti(z) = ) for i=0,1,...,
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and for p > 2
bpa(2) = tp-1(2),
bpj(2) = bpj1(2)h;(z) +1,—(2) for j=2,....p—1,

hp(2) = — L

bp,p—1(2)°
They considered
Ip(2) = z 4 hy(2),

which is of order p. Since it has been proved that [44] that h,(z) = —A,(z), so hence
I,(z) corresponds to H,(z). O

3.7 Theory and practice

A well known result in complex function theory is that the zeros of an analytic function

are isolated (see for example [47]).

Lemma 3.7.1. If ¢(2) in an analytic function such that ¢(a) = 0, then either ¢(z) is
identically zero in a neighbourhood of o or there a punctured disk about o in which ¢(2)

has no zeros.

A practical test to determine if H,(z) and T,(z) could be the same method would be
to start with the same initial condition zy, and verify if H,(zx) = zx+1 = T,(z) and
limg_, 1o 2 = @, which means that both methods generate the same convergent sequence.
Since both functions are analytic in a neighbourhood of «, the lemma suggests that

H,(z) = T,(z) for all z in a neighbourhood of . This numerical test, which is not a

+0o0

p=2 corresponds to the Halley’s

proof, can help to suggest if the basic sequence {T,(2)}

+o0o

basic sequence {H,(2)}, ;.
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CHAPITRE 4

Unifying old and new ways to increase
order of convergence of fixed point and

Newton’s method.

Abstract

Halley, Euler, Chebyshev are examples of mathematicians that have presented procedures
for increasing the order of convergence of Newton’s method. Through Taylor’s expansions
and a thorough analysis of the necessary and sufficient conditions that will entail for fixed
point and Newton’s iterative methods to be of higher order convergence, we are able to

present a unified way which include old and new processes to make these methods faster.
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4.1 Introduction.

In 1669 |57|, for finding «, a simple root of an analytic function f(z), i.e. f(a) =0 and
f'(a) # 0, Sir Isaac Newton introduced the iteration function (IF)

)
e

Some years later, in 1694 [18, 20, 57|, Edmond Halley, introduced a “faster" IF

Ny(z) =

i) - (VU Pl V) (0

Z J— — .
2f"(2)* = f(2)1"(2) 2(£(2))*] f'(2)
Interestingly enough, one can observe that if we apply Newton’s method to the function

F(z) = [(2)/V/J'(2), we get

So, in considering this new function F'(z) and looking at its application to Newton’s
method, one could manage to make Newton’s method faster. We ask the following
question: What are all the possible functions F(z), like Halley’s, that we can find, for
which Newton’s method applied to the function F'(z) will be faster?

We also observe that Halley’s IF can be rewritten as

f(2)

ME) =25

G(z)

where
7 -1
6o - [1- T
2(f"(2))
In noticing that, we also ask: What are all possible functions such as G(z) that will entail

an increase of order of Newton’s method when applied to these functions? How do these

functions related to our previously mentioned F(z)?
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Moreover, using the first two terms of the Taylor’s expansion of 1/(1 — 2) for G(z), i.e.

1+ z, we get

Gioy 14+ L1CUC)

2(f'(2))

and

H —z_f(Z)~z:Z_f(Z)_f//(Z) f(2) 2: 2
Hy(z) = G) f'z) 2f(2) (f’(z)) )

which is the so called Euler-Chebyshev’s IF of order 3 [3].

Even if iteration functions of high order of convergence require high order derivatives and
are more complex, these methods are not only of academic interest but can also sometime

be of practical interest [13, 11].

The plan of the paper is the following. Some preliminaries are given in Sections 5.2.
Section 4.3 presents a general result about the local convergence of fixed point methods.
It also garanties convergence for iterative methods of higher order. Section 4.4 presents
a thorough analysis of the necessary and sufficient conditions that will entail for fixed
point and Newton’s iterative methods to be of higher order convergence. These results
allow us to consider two different procedures for increasing the order. The first approach,
presented in Section 4.5, consists in modifying the fixed point iteration function by adding
an additional term that conveniently enough increased the order of convergence of the
iteration function. The second procedure, explained in Section 4.6, consists in modifying
our original function f(z) into a new one F'(z) which caused the order of convergence of
Newton’s method to increase. We also establish links between those two procedures in
Section 4.7. Section 4.8 shows a way of linking very famous iterative methods like Halley’s
and Euler-Chebyshev’s through our new results. In the last section, as an interesting

example, we consider the Super-Halley family of iteration functions of order 3.
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4.2 Preliminaries

4.2.1 Order of convergence

If our goal here is to make iterative methods faster, so let us start by mathematically defin-
ing first what we may mean by faster. Let us consider any sequence {z;11 = I(2)},o,
generated from an initial condition zy and an IF I(z). We say that the order of conver-
gence of the IF I(z), is p, a positive integer, if and only if there exists a non-zero constant

K,(a;I) such that

fk+1 — O
5 =

i 162) = 1(0)

k—too  (2p — a)?

lim

=K
k—+oo (2 — @)

plas ).

For linear convergence, p = 1, it is required that |Kj(«a; )| < 1 [51]. For values of z

close to «, the term | z; — a [P becomes considerably smaller if p is large, so looking at
21 — af ~ [y e, D] 24 — af?

does indicate how fast the error of approximation decreases.

For instance, Newton’s iteration function is of order p = 2 with Ky(a; Ny) = %, while

Halley’s and Euler-Chebyshev’s iteration functions are of order p = 3 with asymptotic
constant respectively given by

' _i _§ f”(oz) 2_ f’”(a)
K““H”‘m_z(mw) f@J’

and

o L@y e
Kg(a,Cf) = 31 3 (f/(a)> f’(a) ] s

If two IFs have the same order, provided convergence occurs, the one with the smallest

asymptotic constant will typically be faster. But, as illustrated above, the asymptotic

constant depends on the function f(z), so a given IF may be faster for a given function
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f(2) and slower for another function f(z) compared to another IF. There already exit

numerical examples to illustrate this fact in [4].

In trying to increase the order of convergence of Newton’s method, many mathematicians
have found infinite sequences of IFs with increasing order of convergence. We will call
such an infinite sequence, say {[p(z)};§8 whose pth member [,(2) is an IF of order p, a

basic sequence of IFs [51].

4.2.2 Analytic function and Taylor’s expansion.

Higher order convergence results for fixed-point and Newton’s methods that we will
introduce in the next sections are extensively based on Taylor’s expansions. The notation

7

, d
g (2) stands for the jth derivative ﬁg(z)
z

Lemma 4.2.1. [}7] For any analytic function g(z), for any p > 1 there exists a unique

analytic function w,,(z) such that

More precisely

X gt ()

(p+7)

J

Wy p(2) = (z—a) and wypla) =

=0
For a function f(z) with a simple root «, i.e., f(a) =0 and f'(«) # 0, we can write
f(z) =wsi(2)(z —a) where wysi(a) = f'(a).

We observe that




f) _ f'(z) f(2)
wii(z)  wpa(2) f1(2)

We can rewrite the preceding lemma as follows.

(z —a) =

Lemma 4.2.2. Let a be a simple root of an analytic function f(z), i.e., f(a) =0 and

f'(a) # 0. Let g(z) be any analytic function, and any p > 1.

(a) There ezists a unique analytic function Wy ,(2) such that

Pl ) (a . 2\?
9(2) = Z g ]$ ) (z—a) + Wp(2) (%)

where
f'(2)

f(p)(oz)
wy(2) ‘

p!

Woal) = wgs(e) (L) and 1,000 -

(b) There exists a unique analytic function ng(z) such that

Pl 0o N
9(2’) = 4 9 ]E ) (Z_a)j+W97p(z)fp(z),
where
W Wy,p\Z —~ ®) (o
Wole) = 2220 g 0, 0) = L)

(wra(2))” L (@)™

For simplicity, we will use the big O notation for two functions u(z) and v(z), hence

u(z) = O(v(z)) around z = « to mean that there exists a constant ¢ # 0 such that

im M =c
M)~ ¢

Based on the assumption that a is a simple root of f(z), A the following three expressions,

!
namely O ((z — a)l), O (( /(z) > ), and O (fl(z)), are equivalent for any positive integer

f'(2)
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4.3 Linear convergence for fixed-point method.

A first result concerns the necessary and sufficient conditions for achieving linear con-
vergence, which explains why |Ki(a; )| < 1 is needed. Moreover this result implies the

convergence of any higher order methods since for these methods K;(«; ) = 0.

Theorem 4.3.1. [11, 12] Let I(z) be an iteration function.

(1) If |[I'(a)| < 1, then there exists a neighbourhood of o such that for any zy in that
neighbourhood the sequence {zx 1 = I(zk)}zzof) converges to .

(i1) If there exists a neighbourhood of o such that for any zy in that neighbourhood the
sequence {211 = I(2,)},20 converges to o, and z, # a for all k, then |I'(a)] < 1.
(iii) For any sequence {zpy1 = I(2)} ;=5 which converges to a, the limit Ky(o; 1) erists

and Kq(o; 1) = I'(a).

Using this result, a simple way to obtain a fixed-point method to find « could be
I(z) = 2+ Af(2)

for which we have I(«) = a. The parameter A is fixed in such a way that

(@) = |1+ Af(a)] < 1

Since obviously « is not known, let us replace \ by % to get
5 f(2)
I(z) =24+ A\ ,
B =240
and
I'(@) =1+ A

As long as X is such that ‘1 + 5\‘ < 1, we get a linearly convergent IF. For A= —1, we
get the Newton’s IF and I'(a) = N}(a) = 0 which, intuitively, indicates it is a “more"

than linear convergent IF.
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4.4 High-order convergence for fixed point and New-

ton’s methods.

Since Newton’s method is of order p = 2, we will consider now general results for method

of order p > 2.

4.4.1 Necessary and sufficient conditions for fixed point method.

The next result indicates that the order of an IF coincides with the order of its first

non-zero derivative at a.

Theorem 4.4.1. [11, 12] Let the integer p > 2 and let I(z) be an iteration function such
that I(a)) = a. The iteration function I(z) is of order p if and only if IV)(a) = 0 for
j=1,...,p—1, and IP(a) # 0. Moreover, the asymptotic constant is given by

I®) (@)

K,(o1) = o

This result says that the Taylor’s expansion of an IF I(z) of order p is

@ (o
1) = atuny(2)(e—aP = a+ 0 (PG with wpyle) = 2,
and we also have
@ (o
I'(z) = wrpa(2)(z — ) = 0 (f77}(2))  with wppa(a) = (; —(1))|

Remark 4.4.1. Two IFs I (z) and Iy(z) which are of the same order p, to compute «,
differ only at most by O (f*(2)) term, which means that I (z) — I»(z) = O (f?(2)) where
p > p. Moreover if I1(2) is an IF of order p and if I(z) = I(z) + O (fP(2)), than I(z)
is an IF of order at least p.
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Remark 4.4.2. To determine an IF of order 2 to find o we can proceed as follows.
Firstly, let us modify f(z) by setting f(z) = h(z)f(z) where h(z) is a reqular function
to be determined such that f'(o) = 1, that is to say h(a)f'(a) = 1 or h(a) = 1/f(a).
Secondly, let us set 1(z) = z — f(z) Since g(a) = a and ¢'(a) = 0, we can conclude
that the IF 1(z) is at least of order 2. In fact we can take any function h(z) such
that h(a) = 1/f' (). In particular, for h(z) = 1/f'(2) we get the Newton’s IF for

which Ky(a; Ny) = N7 () = 3 [’;;,/((2‘))]. There exist several other choices for h(z). For

example, let us consider

h(z) = ! then 1(z)=z— [1 + A(2)

F1(2) |1+ A() 5]

f(Z)}_1 f(z)

f'(2)

or

h(z) = ﬁ [1 — )\(Z)JJ:,((ZZ))} then I(z)=z— [1 —\2) J{/i’iﬂ %’

where \(z) is an arbitrary function. Those two IFs are in general of order 2, like the

Newton’s IF, because I" () = J;c/,/((s)) +2A(a) = N§(a)+2X(a) which means that Ko(o; 1) =

Ky(a; Ng)+Av). They will be of order higher that 2 only for functions such that A(«) =

—%. Finally if we take \(z) = —2’;’,((?) we get respectively Halley’s method and Euler-

Chebyshev’s method.

4.4.2 Necessary and sufficient conditions for Newton’s method

Let us now focus on Newton’s IF

T
One can observe that Ny(a) = «, and
Ny = 0,



so that Ni(a) = 0. Furthermore we also have

f"(@)
If o is a simple root of f(z), then Newton’s IF is of order at least 2, and it could be of
order 3, if f”(a) = 0, according to the above theorem. The necessity and the sufficiency

of the condition for high-order convergence of Newton’s method are presented in the next

result.

Theorem 4.4.2. [11, 12/ Let p > 2 and let f(z) be an analytic function such that
f(a) =0 and f'(a) # 0. The Newton’s iteration function Ny(z) = z — 1C) s of order p

f'(2)

if and only if f9(a) =0 for j=2,...,p—1, and f®)(a) # 0. Moreover,
(p)(a>
NP (q) = p—1 / ,

and the asymptotic constant is

N(”)(a) (p—1) f®(a)
(0 Ny) = == = S

This result says however that the Taylor’s expansion of N¢(z) of order p is

Ni(z) =a+ wNﬁp(z)(z —a)l =a+0(fP(z)) with wavp(oz) =

For the function f(z) we have

f(2) = f(a)(z = @) + wpp(2)(z = @) = f(@)(z = a) + O (f7(2))

with ®)
fP(a)
lUf,p(Oé) - p! ?
and
(p)
P/0) = sl = a2 =0 (77H:) with wpnyea(e) =

Moreover, if N¢(z) is of order p, and f(z) = f(z) + O (f?(z)), then N7(z) is also at least
of order p.
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Remark 4.4.3. Let us observe that if I(z) is an IF of order p, if we set F(z) =z —1(z)
we have F(a) = 0, F'(a) = 1, FW(a) = -1V (a) = 0 for j = 2,...,p — 1, and
F®)(a) = —IP(a) # 0, so Np(2) is also of order p. But since we have K,(a; Np) =
—(p— 1)K, (a;I) Np(z) is slower that I(z) for any p > 2. Conversely, suppose f(z) is
such that

(p)
f(2) = fa)(z—a) +wpy(2)(z —a)  wppa) = f p!(oz)’
then N¢(z2) is of orderp, and K,(o; Nf) = — (pgll) f;’:ii‘;) Suppose we set f(z) = f(2)/f'(2),

then f'(«) = 1. So the IF defined by I(z) = z — f(2) is nothing but Ny (z), then is of
order p with Ky(o; I) = K,(a; Ny).
4.5 Acceleration of fixed point method

In this section we consider different ways to increase the order of convergence of fixed

point methods.

4.5.1 Acceleration based on Theorem 4.4.1

The first result is a direct application of Theorem 4.4.1.

Theorem 4.5.1. [11, 12] Let p > 2, let S,(z) be defined by

—_

p—

S)2) = 6P (2,

<
I
o

where the cj(z)’s are defined by: co(z) is analytic such that co(a) = o (observe that we

can always take the case co(z) = z), and

3 (2)es(2) + ¢y (2) = 0
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for j=1,2,....p. Then Sy(z) is at least of order p. Moreover
S (@) = (p = 1)ejy (@) (f' (@) = =pley(a) (f' (),
and its asymptotic constant is
Kp(av, Sp) = —cp(a) [f'(@)]".
Proof. The ¢;(z)’s are defined in such a way that
S(2) = ¢y (2) 771 (2).
Then the result follows. O

Remark 4.5.1. We observe that

5l2) = (_jf’l(Z)d%) o1t

o) = (_ﬁ)j (f%z) di) i)

and recursively we get

So we have

s (2 1 d\’

It is also possible to get this result using the Taylor’s expansion if the inverse of f(z)

/51, 15].

=0

Remark 4.5.2. If ¢y(2) = z in this result, we get the Schrider’s IF of the first kind
[48, 51].

Remark 4.5.3. If ¢o(z) = 2z, we have Sa(2) = N¢(z), and for p > 3 we can write

—

50 =2~ L86,1() with Gpa(a) = 1= T (2 ()7 0)

||
N

J
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Remark 4.5.4. For cy(z) = z and p = 3, we have c3(z2) = 2];/,/(( ))3, and
S3(z) =z — %Gg(z’) with Go(z) = f ((f’)( ;;2 :

which is the FEuler-Chebyshev’s IF of order 3. Moreover, this result, combined to Re-

mark 4.4.1, suggests that for any function h(z) whose expansion around 0 is

hz)=1+2+0 ().

1"(2)f(2)
Ee N TITEY
to define
Go(2) = h(Ly(2)) = Ga(2) + 0 (£2(2)) .
Then, for
S _Z—f(Z)NZ:Z—f(Z) z 22 = z 32’
S3(2) = f,(Z)Gz( ) ) [Ga(2) + 0 (f2(2))] = Ss(2) + O (f*(2)) ,

which means that Ss(2) is also of order 3. Some examples of such h(z) functions again

are 1 +arctan(z), 2—e *, 1 —In(1 —2), e * 4 25sin(z) cos(z) +sin(z). For example

’12’

S3(z) =z — JJ:/((Z)) [COS (%) + sin (%)]

will be of order 3. Other examples are mentioned in [18].

Remark 4.5.5. Suppose that N¢(z) is of order k, hence f"(z) = O (fk_Q(z)). We have
co(z) =z, c1(z) = =1/ f'(2). Moreover

1 A(z) = — f”(z) — k—2 Py
ERETE A A

ca(z) = —

By induction, we show that

1

Wch(z) =0 (f"(2))

a(z)=-—
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forl=2,... k. Then each term c;(2)f'(z) = O (fk(z)) It follows that for p=3,... k

1(2) = Ny(2) + S al)fl(2) = Ny(2) + 0 (4(2))

1=2
Hence I,(z) and Ny(z) are at least of the same order k. It follows that 1,(z) could not
be of lower order then k from this construction. We cannot loose order of convergence by

applying this process.

4.5.2 Acceleration based on Taylor’s expansion

Based on the expression of the asymptotic constant given in Theorem 4.4.1, the main
idea to increase the order of convergence of a given IF of order p is by adding a term to

cancel out the pth term of its Taylor’s expansion.

Theorem 4.5.2. Let I,(z) be an iteration function of order p > 1. Then I,1(2) is an

iteration function of order p+1 if and only if there exists an analytic function A, ,.1(2)

such that
Lyi1(2) = Ip(2) + Alppia(2)
with A[I()Qﬂ(a) =0forj=0,....p—1, and Algp)ﬂ(a) =—I"(a).

Proof. Since we must have

(4)
)

(@) = I (@) + ALY, | (@)
for j =0,...,p, the result follows. O

Remark 4.5.6. We could also try to modify 1,(z) by multiplying it by a function H,(z).

It turns out that we must have H,(a) = 1, so we can rewrite H,(z) as



to obtain

Ipi1(2) = Ip(2)Hy(2) = Ip(2) + Ip(2) Hy(2) = Ly(2) + Alypia(2)

as we already did in the preceding theorem.

For A, ,11(%) of the preceding result we can write

A]p,p+1(z) = wA[pJHlap(Z)(Z - a)p

with )
_ALYA() ()

p! p!
As suggested in Section 4.2.2, we can rewrite this expression under different forms to get

wA]p,p+1»p(O‘/)

the next result.

Theorem 4.5.3. Let o a simple root of an analytic function f(z) andp > 1. Al,,11(2)
v () =0 for j=0,...,p—1, if and only if there

is an analytic function such that ALy,

exists an analytic function H,(z) such that

Mypa(e) = 1) (52

f'(2)

Moreover )
_ ALP (a)

p!

Hy(a)

The first general result to increase the order of convergence of an IF can now be stated

as follows.

Theorem 4.5.4. Let [,(z) be an iteration function of order p > 1 for computing the
simple root of an analytic function f(z). Then I,.1(2) is an iteration function of order
p+ 1 if and only if there exists an analytic function H,(z) such that

o)

La(2) = L(2) + Hy(2) (
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with

[(P)
Hyfa) = 1)
p!
Example 4.5.1. For the Newton’s IF N¢(z) = z — % of order 2, we observe that
Nf(a) = % This allows us to conclude that for any function Hy(z) such that
f"(a)
H. =—
=)
2 1"
we get Ny(z)+ Ha(2) (J{,@) , which is an IF of order 3. Particularly for Hy(z) = —gf,((zz)),

we have
1) IEIEP
f'z) 2f(2)°
which is the Euler-Chebyshev’s IF [3] of order 3.

= Cy(2),

We now present some general ways to apply the idea presented above. They consist of
adding appropriate terms to cancel out the pth term of the Taylor’s expansion of the
IF. The next three theorems provided us with ways to recursively create new IFs that

increase the order of convergence from p to p + 1.

Theorem 4.5.5. Let [,(z) be an iteration function of order p > 1. Then

ha2) = 1) - L) (L)

s an iteration function at least of order p+1 for any q=1,...,p.

Proof. We have

Hy(z) = _MI((])(Z) (f’(z)>l7—q

ptF f(2)
(p—q) f'z) \
= ———Fww, (2) :
p! P wy1(2)
S0 .
" ()
Hp(a) - pp' )
and [,.1(z) is of order p + 1. O
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Theorem 4.5.6. Let [,(z) be an iteration function of order p > 2. Then

() = (2) - L) [ - 1)

is iteration function of at least order p+ 1 for any q=1,...,p.

Proof. We have

Hy(2) I = 2] (f(z))
— | . ,
- p! | Wi -y (?) [1—wp,p(2) (z = )] (wii(l)) .
So )
19 (a
Hy(a) = — p§ ).
and I,.1(2) is of order p+ 1. ]

Theorem 4.5.7. [50] Let I,(z) be an iteration function of order p > 2. If ﬁp(z) is a

reqular function such that flp(a) =0 and f[;(a) = 1, then the iteration function

15 at least of order p + 1.

Proof. We have

Hz) = _%[;(z)ﬁp(@ (?g;)p

_ 1 fz)
where wg (o) = [A{T;)(a) =1. So
[(p)(a)
Hp(a) - - pp' )
and I,.1(z) is of order p + 1. O
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Remark 4.5.7. let \(z) be any regular function, and let us consider

Hy(2) = [1 = M2)I)(2)] " (2 = L(2)),

which, is such that H,(a) =0 and ]:j;(oz) =1 because I,(o) = 0. Then the IF given by

Ly(2) = I(2) — %f;@) [1- M) (2 = (),

is at least order p+ 1 for any \(z). For A(z) = 1/p we get

b =2 - [1-356)]| G- ),
which was presented in [31]. For \(z) =0, we get
Ln2) = B:) = 1(:) (2 = ).

which was presented in [40].

4.5.3 Acceleration of Newton’s method as a fixed point method.

Since Ny(z) is an IF of order at least 2, we can rewrite the results of the preceding section
in terms of N¢(z). Let us apply Theorem 4.5.4 to the iteration function N;(z) of order

p > 2. In this case for N¢(z), we have

NP (@) = (= 1)
and its Taylor’s expansion is

_ _oP w _NP@ -1 f(a)
Ni(z) = a+wn, p(2)(z — ) with  wy, ,(a) = 0 Pl

Again we add an appropriate O (f?(z)) term to cancel out the pth term of the corre-

sponding Taylor’s expansion. Theorems 4.5.4 and 4.5.5 are now restated as follows.
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Theorem 4.5.8. Let N¢(z) be of order p > 2 for computing the simple root of an analytic
function f(z). Then Nf(Z) is of order p+1 if and only if there exists an analytic function

H,(z) such that

Fi(2) =N + 1) ()
with .
B _pr (o) o f®(a)
Hp(a) - p‘ - (p 1)p'f/(06) :

Theorem 4.5.9. If Ns(2) is of order p > 2, then

Bt = mpte) - L) (L5

1s of order p+1 forqg=1,...,p.

We also have the following result.

Theorem 4.5.10. If Ny(z) is of order p > 2, then

(r—a)! f9(2) <f(2) )q

Nf(z):Nf<Z)—(p_1) P! f'(2)

s of order p+1 forq=2,...,p.

Proof. We have

o = f9R) )N\
e = o= R (55)
(0 (p_qwa(q%p—q(*z) f'(2) r
- -y ()
So
L f(p)(a)
Hpy(a) = —(p 1)p!f’(a)’
and ]vf(z) is of order p + 1. O
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Remark 4.5.8. Observe that for ¢ = 2, if p = 2 we retrieve Fuler-Chebyshev’s iterative
method, but if p > 3 we have

Fo() = Ny - 26 (f<z> )

pf'(z) \f'(2)
One thing that this illustrates is that, if Newton’s method is of order higher than 2, Euler-

Chebyshev would no longer be an acceleration process. Modifications will need to be made

according.

Finally, Theorems 4.5.6 and 4.5.7 can be rewritten also as follow.

Theorem 4.5.11. Let N¢(z) be of order p > 2. Then

(p—q)

Ni(z) = Ny() = =

N (2) [z — Ny(2)]°

is iteration function of at least order p+ 1 for any q=1,...,p.

Remark 4.5.9. For the case p =2, ¢ =1 and Ns(z) Newton’s method, we have Traub’s
difference-differential relation [51]

Theorem 4.5.12. Let Ny(z) be of order p > 2. If ﬁp(z) is a reqular function such that
H,(a) =0 and H () = 1, the iteration function

Ni(=) = I(2) -

15 at least of order p + 1.

4.6 Acceleration based on Theorem 4.4.2

In this section we consider different ways to increase the order of convergence of Newton’s

method when applied to a new function, by modifying the function f(z).
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4.6.1 A direct approach

We will now apply Theorem 4.4.2 to study the modifications that can be made on the
original function f(z) in order to improve convergence of Newton’s method. In doing so,

we are able to recover some famous acceleration processes.

For N(z) of order p > 2, let us look at a general modified function F,.,(2) = f(2)g,(2)
for which Newton’s method will be of order p+1 to compute a. We need that Fj,,1(a) =0,
Rl
j=p, 50 F%(a) = 0.

(o) # 0, and the function FISJr)l( ) = 0 not only for j = 2,...,p — 1, but also for

Theorem 4.6.1. Let Ny(z) be of order p > 2, and let Fjy1(2) = f(2)gp(2). Ng,,.(2) is
of order p+ 1 if and only if g,(c) # 0, g;(,j)(a) =0forj=1,...,p—2, and

(=1 (q) = — Q).
W= ey

Proof. Np,.,(z)is of order p+1 if and only if F),,(a) = 0, FI;H( a) # 0, and Fpi)l( )=0
for j=2,...,p. For F,11(2) = f(2)g,(2) we have F,;(a) = 0. Also
Fo(2) = f1(2)gp(2) + f(2)g,(2)

so F) (o) = f'(@)gy(a) # 0 if and only if g,(a) # 0. For p = 2 we have

F5(2) = ["(2)g2(2) + 2'(2)g5(2) + f(2)g5(2)

S0
Fy (o) = f"(a)ga(a) + 2f (@) g(ev),

hence FY(a) = 0 if and only if ¢)(a) = —g}l,((z))gg(a). For p > 3, we have f"(a) =0 so

g,(a) = 0. Suppose that g,()j)(a) =0forj=1,...,1—2and [ > 3. Then

F) = 100 + X (1) AP 4176 + £4)

101



and
Fp+1( @) = fP(a)gy(e) +1f (a)g) V().

Hence Féll( ) = 0 if and only if gz(ol_l)(oz) = —’;;,)((5))%(&). Since fU(a) = 0 for | =

2,...,p—1, we have ¢ (@) = 0 for j = 1,...,p — 2. Also szi)l( ) = 0 if and only if
(»)

9 1)(04) = _J;f/((a)) gp(c). 0

This first general result, which will be used to increase the order of convergence of New-

ton’s method N(z) by modifying the function f(z), can thus be restated as follows.

Theorem 4.6.2. Let N(z) be of order p > 2 for computing the simple root of an analytic
function f(z). Then for any function F,11(2) = f(2)9(2), Nr,.,(2) is of order p +1 if
and only if one of the following equivalent expressions holds :

(1) there exists an analytic function wg, ,_1(2) such that

9p(2) = gp(@) +wy, p-1(2) (2 — O‘)p_la

with o) »
) )
Lol =T S T )

();

(2) there exists an analytic function Wy ,_1(2) such that

z
(2) = 05(0) + Wy sz (Z)
with
)
ng:pfl(z) = wgp,p 1 ( Z
and

g @) _ V()
-1 pf(a)
(z) such that

ng,p—l(a) gp(a)Q

(3) there exists an analytic function Wg -1

p(2) = gpla) + Wy, 51 (2) f771(2),
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with

~ Wy, p—1(2)
ngvp_l(z) = gpfl )
Wy (2)
and )
~ o V) D)

Wepp-1(a) = ().

5 = g
(p— D! ()™ P ()"
Remark 4.6.1. We could also try to add a term 6 f(z) to f(z) in order to cancel the pth

derivative of f(z). So, let us consider

F(z) = f(z) +0f(2)
such that §f(2) is analytic and
0f(2) = wspp(2)(2 — )
with
 f9(a)

p!

Hence we would cancel out the pth derivative of f(z), and we would have F(a) = 0,

wspp(a) =

F'(a) = f(a), and FU)(a) =0 for j =2,...,p. We can always write this expression as
a product because

0f(2)
f(2)

F(z) = f(2) +6f(2) = f(2) {1 + ] =) [1+9(=)] = f(z)g9(2),

where g(z) = 1+ g(2), and

) wigle)
T =750 = o)

(2 =)™,

with
g(p—l)(a) = (p— 1)|w5f7p(04) . f(p)(a)

“wrila)  pfia)’

The first example we present will provide us with a recursive way to progressively increase

the order of convergence of Newton’s method to arbitrary values. It coincides with
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Halley’s method at the order 3. It was first presented by Gerlach [19] in 1994, although
it turned out, in [44, 45, 14], to be a rediscovery of the Schroder’s method of the second

kind dating from 1870 [48|. We present a new proof of this result.

Theorem 4.6.3. Let Ny(z) be of order p > 2. Then for

() = F(2)g5(2) with  g,(2) = ;@y
Ng,.,(2) is of order p+ 1.
Proof. For g,(z) = ;/(Z) and [ > 1 we have
g0 (z) = F(f’,f”,..,;j;(l);z) B f<1+1>(21) .
(f' ()" p(f'(2))"

Since fO(a) =0for I =2,...,p— 1, it follows that

r(f,f ..., f%a)=0 for I=1,....p—1,

and
g](f)(a) =0 for [=1,...,p—2.
Finally
(-1 (q) = fP(a)
g7 (o —
p(f'(@))r
SO
()
(p—1) AU
g &)= — Ip\ &),
§00) = s )
and Np ., (2) is of order p 41 for F,,1(2) = f(2)g,(2). O
Remark 4.6.2. Let us point out that g,(z) = —~—— satisfies the differential equation

f(2)

") 70
g(2) pf(2)
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only for z = «, while it is a solution of the differential equation

92 _ 1)
9p(2) pf'(2)

around o« [19, 14].

The next result shows that the order of convergence can also be increased using higher

order derivatives of f(z).

Theorem 4.6.4. Let N¢(z) be of order p > 2. Set

Fa(s) = ()= P2 (415
)

(p— ) fO2) [ fz)
P f(z) (f’(Z)) ]

then Ng, ,(2) is of order p+1 for q=2,...,p

- g6 -

Proof. The added term is an appropriate expression because we have
_ (p—q)! f ()( (Z))
w2 = 1 e PG
(p Q)'wf(‘I)p q( (w ()) . p—1
/ (P& o

Then, g,(a) =1, gl(,j)(oz) =0forj=1,...,p—2, and

= 1-

g? V(a) = _ =)' e pg(@) (wpa(@)™  fP(a)

p (f'(a))* - pfle)

4.6.2 An indirect approach

In the preceding section, we produced a process of increasing the order of convergence

recursively from p to p+ 1. In the next theorem we present a way of finding an iteration
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function F,(z), or equivalently g,_1(z) such that F,(2) = f(2)g,-1(%), that directly has

order of convergence equal to p.

Theorem 4.6.5. [11, 12] Let p > 2, and F,(z) be defined by

p(2) =) _bi(2)f(2),

where the bj(2)’s are such that: by(z) and by(2) are two analytic functions such that

bo(a) = 0,

b(a) + bi(a)f'(e) # O,
If we set
bi(z) = — 02 F20 = VY 1(2)/(2) + (G = Db (2)/7(2)
] i —1)f'(2)?
Jor j > 2, then Ng,(2) will be of order p. Moreover

EP(a) = —plby(a) (f'(a))”,

and
_(p=Dby(a) (f'())
bo(a) + ba(@) f'(a)
Note that by(z) = 0 and any function bi(z) such that by(«) # 0 are a trivial choices.

Ky(a; Np,) =

Example 4.6.1. For by(z) = 0 and bi(z) = 1, we get Np,(2) = N¢(2), and we have
ba(z) = —%, so F3(2) = f(2) + ba2(2) f(2)? = f(2)g2(2), where

f// z f z

pa() = 1- L)

2(f'(2))
and Np,(z) is of order 3. First observe that the above function go(z) is a particular case
of Theorem 4.6.4 for p = q = 2. Also since we can add to F3(z) any function O(f3(z))
and the order of convergence will be conserved, Newton’s method applied to any function

F3(2) defined by

~ 3/ f"(2)f(2) 2
Fy(z) = F3(2) + O(f°(2)) = f(2) |1 — B0 +0(f*(2))|,
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will be of order 3. So, as we observed in Example 4.5.4, for any functions h(z) such that
h(Z) =1l-z+ 0(22)7

if we use

_ ") f(2)
RETE

to define
32(2) = ML(2)) = g2(2) + O(f*(2)),

this leads to

Fy(2) = f(2)0:(2) = [(2)g2(2) + O(f*(2)) = Fa(2) + O(f*(2)),

for which Newton’s is of order 3. There are several such functions h(z) like : 1—arctan(z),

2—e”, 1—In(1+2), ¥ — 2sin(z), 115, cos(z) —sin(z). This illustrates the fact that we

have quite a variety of functions that will increase the order of convergence from 2 to 3.
If one wanted to be exotic, one could note that Newton’s method applied to a function

such as

Fi = 69 o (L) g (21210

would thus be an iterative method of order 3. This provides us also with several functions

f(@)
f(@)

that satisfy the point-wise condition gh(a) = — g2(a), but not the differential equation

gy (z) = —f;,/((zz)) g2(2) as done in [19].

4.7 Linking Section 4.5 and Section 4.6

We had presented two ways of increasing the order of Newton’s method. Firstly, we

observed that by looking at
f(z)
f'(2)
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we can find a convenient choice of function G(z). Secondly we have considered a new
F(z) and looking at Ng(z) instead of Ny¢(z). In this section we answer the following
questions: How are the functions F(z) and G(z) related? How do we go from one to the

other?

Suppose N(z) is an iteration function of order p > 2. Then

Fi(2) =N + 1) (5
is of order p + 1, where
B N](cp)(a) B f®(a)
Hp(a)__ p! __<p_ ) 'f’(Oé)

Looking at

o= fa-m () )

Gylz) = 1 — Hy(2) (%)

then Gp(o) =1, G,()j)(a) =0forj=1,...,p—2, and

let us define

f(p)(a)

GV (o) = ~(p = DlHyfa) = (= 1) .

i)

So if we set
_ p— Gp(z>
p—1

then g,(a) =1, g;,(,j)(oz) =0forj=1,...,p—2, and

9p(2)

Y

Gy V() _ 7o)
p—1 pf(e)

It follows from Theorem 4.6.1 that for F,i(2) = f(2)g,(2), Nr,,.(2) will be of order

g V(a) = -

p + 1. We can thus conclude the following result.
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Theorem 4.7.1. Suppose N¢(z) is of order p > 2. For any function G,(z) such that

Ni(e) = 2= 556

15 an iteration function of order p+ 1, if we set

:p_Gp(Z)
p—1

gp(Z) )
and Fy1(2) = f(2)gy(2), then Ng, ,(2) is also of order p+ 1.

Remark 4.7.1. Let us observe that this result does not say that Ny(z) = Ng, . (2).

Example 4.7.1. In particular, for the case p = 2, we had obtained that in Example 4.5.1

) (1)
Cal2) =11 950) (f’(Z)) |

This means we can set

e ) (1)
92(2) =2 = Calz) =1 = 5503 (f’(z))'

Hence, once we have determined such a function G,(z) as in Section 4.6 we can deduce

a corresponding function g,(z) such as in Section 4.5.

Conversely, suppose that Nf(z) is of order p > 2. Let F,11(2) = f(2)g,(2) with g,(2)
such that



and for which Np,,(z) is of order p + 1. We have

_ Fp+1(z)
NFP+1(Z) = z-— FI;H(Z)
1) | ]
@) |1+ 2548
R (GOl QO I©) 9(2) f(2)\°
T Tre | T were P ((gp(z) f’(z)> )]
I (N P AN (6 MONESION
- f'(z) : 9p(2) f’(Z)} +O<(gp(2)> (f’ Z)))
But ( )
gzlu(z) Wqr p—2\Z o2
gp(z) B gp(z) ( )
and
f(2) o wf,l(Z) (2 —a)
f'iz)  f'(2) ’

o((42) (1)) om0t

Observing that 2p — 1 > p+ 1 for p > 2, if we set

9(2) f(2)

I\

G = LB )
then
N (&
NFerl(Z) - f’(Z)Gp( )

is also of order p 4+ 1. This gives us the converse of the previous result.

Theorem 4.7.2. Let N¢(2) be of order p > 2, and suppose F,11(2) = f(2)g,(2) is such
that NF

p+1

(2) is of order p+ 1. Set




then
Moo (9) = 2= L6 2)

15 also of order p + 1.
Remark 4.7.2. Let us observe that this result does not say that ]\NfFPH(Z) = Ng,,,(2).

Remark 4.7.3. Observe if we have a Gander type method [18] for

f(2)
- f,(z) (T(Z))
forr(z) = f(;/)( )( 2 For any function G(z) such that G(0) = 1,G'(0) = 1/2, and |G"(0)| <

0o, Gander’s method produces a family of third order method. For example, we can take

1 (B-1/2)
CE) =15

one can obtain Werner’s family [56], Chebyshev’s method (B = 0), Halley’s method
(B =1/2) and super Halley (5 =1).

4.8 Linking Euler-Chebyshev’s and Halley’s works.

We will now link the work of Euler and Chebyshev with that of Halley. In Theorem 4.5.10
and Remark 4.5.8, we have increased the order of the iteration function N¢(z) of order p

by considering, for ¢ = 2,

f2) L") (£ _ @) [, 1)
7)) (f’(Z)> () [” <<z>2>}’

to come up with an new iteration function N 7(z) which has one degree of higher order

Ny(z) =2 —

of convergence than our original N;(z). For the particular value p = 2 we had Euler-
Chebyshev’s third order method. One could ask the following question: is it possible to
rewrite Nf(z) as Ng(z), Newton’s method for an appropriate function F(z) = f(2)g(z)?
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One thing we can certainly do, is apply Theorem 4.7.1 directly on the function

LR

Gl =1+ 750

This will give us a possible solution. More interestingly however, we could ask ourself the
following question instead: what is the function g,(z) to which we could apply Theorem

4.7.2 to have this above defined G,(z). That is, we want g,(z) such that

In other words

L) 1) 9l fG)

TP PR ) w(2) F(z)

That is

g() _ 1f"(2)
g(z)  pflz)

Solvmg this differential equation, we get solution g,(2) = 1/%/ f'(2). Therefore F,,1(2) =
(2)/%/ f'(%), which corresponds to Schroder’s process of the second kind presented in
Theorem 4.6.3, and we have
!/
Na(o) — o 1O

_f&M"E)-
p(f'(2)*

For the case p = 2 we recover Halley’s work from Euler-Chebyshev.

Remark 4.8.1. Other links between the Schrider’s process of the first kind, for which
the Fuler-Chebyshev’s method is the term of order three of the basic sequence, and the
Schroder’s process of the second king, for which the Halley’s method is the term of order

three of the basic sequence, are presented in [17].
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4.9 On the Chebyshev-Halley family of order 3.

The Super-Halley family of IFs can be obtained from the preceding results. For example,
if we apply Theorem 4.5.7 and Remark 4.5.7 for p = 2, with N(z) and

=~ &/
HQ(Z) - 1_ /\(2) f((;,)(]:;)(f)

we obtain

2 N D) @G

L) = Ny() - iwig | LQLG) ]
(f'(2))°
f

_ L fE 1 R (2)£"(2)
fl(z) 2 1—>\(z)f((;)(fz’;§§> (f(2))?
L |1 0E -9 GTER | s
O RS

since Ni(z) = f(/}(/z()zj)c)(f), and Hy(a) = 0 and Hj(o) = 1.

This family can also be obtained using Theorem 4.5.8. Indeed, use

Hy(2) = _1 [1 ")/ 1'(z) ] :

. )\(Z> f)f"(2)

[F'(2))°
which is such that
1 f" ()
2 f'(a)’

Hy(a) =

then




Hence all the IFs of this family are at least of order 3. For A(z) = 0 it is the Euler-
Chebyshev’s method, for A(z) = 1/2 it is the Halley’s method, and A(z) = 1 it is known

as the Super-Halley method.

It is straightforward to compute the asymptotic constant and get

f”(Oé))2 _ ()
f'(@) f'l) |

From this expression, the Super-Halley IF is of order at least 4 for the f(z) which are

1
Ks(a; 1) = 30

3(1.- e (

quadratic polynomials because K3(a; ;) = 0, a result obtained in |23, 24]. Any member
of the family can be superior to the others for a specific function f(z) since the asymp-
totic constant depends on f(z). So comparisons based on numerical experiments between
members of this family are useless considering the expressions for their asymptotic con-
stants which depends on the original function f(z). Examples are given for Chebyshev,

Halley, and Super-Halley IFs to illustrate this fact in |4, 5].

4.10 Conclusion.

In this paper we presented of thorough analysis of the necessary and sufficient conditions
that will entail for fixed point and Newton’s iterative methods to be of higher order
convergence. We did so by considering two different procedures. The first one consisted
in modifying the fixed point iteration function by adding an additional term that conve-
niently enough increased the order of convergence of the iteration function. The second
procedure consisted in modifying our original function f(z) into a new one F'(z) which
caused the order of convergence of Newton’s method to increase. We have also estab-
lished a link between those two procedures. Interestingly enough the results presented
are obtained using simple Taylor’s expansions. Finally, as a particular example, we have

considered the Super-Halley family of iteration functions of order 3 for which order of
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convergence of at least 3 is easy to established from the established preceding results.

One aspect that is not considered here is the basin of attraction of the method. But

these basins of attraction depends also on the function under consideration.

115



CHAPITRE 5

Schroder processes and the best ways
of increasing order of Newton’s

method.

Abstract

We seek the answer to the following question: What is the best way of increasing the order
of convergence of Newton’s method? We show that the most efficient way of increasing
the order of convergence of Newton’s method are respectively Schroder’s process of the
first and second kind. One, in terms of polynomial expansions and the other in term of

transformation.
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5.1 Introduction

Finding roots of an equation is a fundamental problem in applied mathematics. Many
mathematicians worked to develop efficient numerical methods to solve such problem.
One of the first and very popular way of numerically finding root of a general non-linear
equation was presented in 1669 [57] by Sir Isaac Newton. He introduced an iterative
method that can be applied to finding a simple root « of an analytic (or sufficiently
regular) function f(z), i.e. such that f(a) =0 and f'(a) # 0. It uses an initial point z

and a sequence generated by
f(zx)

Rk+1 = Rk — Fi(zn)

which need the evaluation of f(z;) and f’(z;) for each k. If the sequence {z; },°5 converges

to «, we get a fixed point to the iteration function (IF)
)

f'(2)
that is to say that & = Ny(«), and consequently f(a) = 0. The function N(z) is called
Newton’s IF. Later, in 1694 [20], Edmond Halley, introduced another IF

2 / 1 —1
PRRT. [CIC M. A ETiE) R )
2f'(2)? = f(2)f"(2) 2f'(2) f'(z)

which has the property to be “faster" than Newton’s IF. The last expression indicates that

Ny(z) =

we can obviously look at H(z) as a modified Ny(z) using a rational expression in terms of

f(z) or f(2)/f'(2). Less obvious is the fact that H¢(z) = Np(2) for F(2) = f(2)/\/f'(2),
and it is Newton’s IF applied to a modified function F'(z). Subsequently, as reported in

[3], a third IF, called Euler-Chebyshev’s TF, was introduced

O PO (YL 0re)] e
Crl&) === 50y " 270 (f’(Z)) {” 2'(2)? ]f’(z)’

which was as “fast" as Halley’s TF. Tt is written as a polynomial expression in terms of f(2)

or f(z)/f'(z). Again the last expression indicates that it can also be seen as a modified
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N¢(z). Moreover, it cannot be rewritten as a Newton’s IF applied to any modified
function F'(z), as it is possible for Halley’s IF. Both Halley’s and Euler-Chebyshev’s IF
which are constructed to be “faster" than Newton’s IF, require an additional information,

namely the knowledge of f”(z).

Let us point out that Newton’s, Halley’s, and Chebyshev’s IF correspond to one-point
iteration processes. Such one-point iteration processes require the evaluations of f(z),
and some of its derivatives at only one point at each iteration. To increase the order of
convergence for a one-point method of order p to get a one-point method of order p + 1
we need, at least, to add the information given by f®(z) [51]. For example to increase
the order of the Newton’s method, which is of order 2, to get a one-point method of order

3 we need to add at least f”(z) to the expression.

The goal of this paper is to study the “best" way of increasing the order of convergence of
Newton’s method as a one-point iteration process. There are at least two possible things
we can do to add the information and obtain efficiently a higher order one-point IF. We
can either use a polynomial expression to modify the Newton’s method, in that case we
get the Schroder’s method of the first kind (for Newton’s method of order 2 we get the
Chebyshev’s method of order 3), or apply Newton’s method to a modified function, or
equivalently use a rational expression to modify Newton’s method, in that case we get
the Schroder’s method of the second kind (for Newton’s method of order 2 we get the
Halley’s method of order 3).

We will see in this paper that the “best" ways of increasing the order of Newton’s IF,
in terms of one-point IF, which extend Halley’s and Euler-Chebyshev’s IF, correspond
to two processes established by Schroder in 1870 called Schroder’s processes of the first
kind and of the second kind [48]. In order to get our result, we need to define what
the terms “fast", “best", or “efficient", mean mathematically. It is done in Section 5.2.

In Section 5.3, we consider a direct modification of the Newton’s IF itself by adding
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appropriate terms. In Section 5.4, we apply Newton’s IF to a modified function F(z).

Finally, concluding remarks are presented in the last Section 5.5.

This paper focus on the (historical) theoretical development of ways to increase the order
of one-point methods using a basic definition of efficiency. In fact we point out a nice
Schroder’s achievement. Let us mention that Schréder’s processes are not so well-known.
If they had been so well-known they would not have been rediscovered so many times

44, 45].

From the application view point, some other topics about Newton’s method are impor-
tant, but they are not relevant for the purpose of the present paper. For example the
choice of the initial starting point zy to assure convergence of the process (zy be in the
basin of attraction), also related to the asymptotic constant of the method, depends
on the function f(z) [4]. The case of high order Newton’s method for multiple zeros
is interesting and studied elsewhere [6]. Also high order methods in the multidimen-
sional framework deserves its own study, see [10]. Finally we don’t consider multi-point

methods, as the secant method which is one of the simplest example.

5.2 Preliminaries

5.2.1 Order of convergence

Let us consider IF to find a simple zero « of a function f(z), that is to say f(«) =0 and
f'(a) # 0. We say that the order of convergence of an IF I(z) applied to find « is p, a
positive integer, if and only if there exists a non-zero asymptotic constant K,(a;I) such

that

g LT I(z) — I(;)z)
k—too (zp — @) kotoo (2 — @)

= K,(a; ).

7 =
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For values of z; close to «, the term (z; — «)P becomes considerably smaller if p is large,
so looking at

ey — o Kyla, I) (2 — )
hints at how fast the error of approximation decrease and the speed of convergence
increases as p increases. So this concept of order of convergence provides us with a
reasonable characterization of speed of an iterative process, or equivalently how fast,

locally or close to «, an IF I(z) may be.

Let us say also that this speed of convergence can be observed only for z sufficiently close

to . Let us mention that for two IF of the same order p, I; and I, if
[ Kp(a; )| > [Kp(a; )| > 0
I; will converge locally more rapidly around « than Is.

In this paper we look on infinite sequences of IF’s with increasing order of convergence.

—+00

»—o Whose pth member I,(z) is an IF of order p, is called a

Such sequence, say {I,(z)

basic sequence of IF’s [51].

5.2.2 Efficiency of informational usage

The informational usage of an IF is the number of new pieces of information required
at each iteration. Since the information to be used are the values of f(z) and some of
its derivatives, the informational usage is the total number of function and derivatives
evaluated per iteration. Following [51], we will use the informational efficiency EFF

which is the order p divided by the informational usage d
EFF = p/d.

There exist other measures of efficiency, for example the efficiency indexr and the com-

putational efficiency [51]. We will not consider those measures here.
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If I,(%) is a one-point IF of order p, given an arbitrary analytic function f(z), then IF
requires the knowledge of at least the (p — 1)th first derivatives of f(z) in its formulation

[51]. So d > p and EFF < 1.

This efficiency is maximized for process of order p, if its formulation requires no more then
the (p—1)th first derivatives of the function f(z), that is to say d = p, and EFF = 1. This
illustrates the following thing: there are many ways of increasing the order of convergence,
but to do so, as efficiently as possible, we need to always limit ourselves to computing at
most one additional derivative each time we increase the order. It will be shown that the
Schroder’s processes are constructed such that EFF = 1, so the informational efficiency

is maximized.

5.2.3 Taylor’s expansion

For an IF of order p, let us observe that we can write
I(z) =~ I(a) + Kp(o, I) (2 — @),

which looks like the Taylor’s expansion of (z).

Let us recall some facts about Taylor’s expansion of an arbitrary analytic function f(z).
Using the notation fU)(z) which stands for the jth derivative of f(2), and « in the

domain of f(z), we can write

> £0) (o ) (g A
0= a0y = Y I -y g (- o

j=0 ’ J

for any ¢ =1,2,,..., where wy,(z) is the analytic function



Moreover, the series for f(z) and wy,(2) have the same radius of convergence for any g,

f(q)(a)
g

and wy,(a) =
We say that « is a root of f(z) of multiplicity ¢ > 1 if and only if fU)(a) = 0 for
j=0,....,¢g—1, and f@(a) # 0. So « is a root of f(z) of multiplicity ¢ if and
only if there exists an analytic function wy,(2) such that wy,(a) = % # 0 and

f(z) = wpg(2)(z = a)?.

The Big O notation g(z) = O(f(z)), respectively the small o notation g(z) = o(f(2)),

around z = a when ¢ # 0, respectively ¢ = 0, means that

lim @ = c.
—Q

(2)

For a a root of multiplicity g of f(2), it is equivalent to write g(z) = O(f(2)) or g(z) =

z

O((z—a)?). Observe also that if « is a simple root of f(z), then « is a root of multiplicity

q of f9(z). Hence g(z) = O(f9(z)) is equivalent to g(z) = O((z — a)9).

5.3 Modifying Newton’s IF as a fixed point

As mentioned before, the first thing we can do is directly modify the iteration function
Ny(z) itself into some new iteration function S(z). Let us start by looking for the

conditions on an IF to be of order p.

5.3.1 Conditions on IF

As we have seen, the concept of order of convergence is related to Taylor’s expansion of

an [F. More precisely we have the following result.

Theorem 5.3.1. [12] Let p be an integer > 2 and let 1(z) be an analytic function such
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that I(o)) = a. The IF 1(z) is of order p if and only if IV (a) =0 for j=1,...,p— 1,
and 1P () # 0.

This result says that Taylor’s expansion of an IF I(z) of order p is

Ji‘2
1) = o+ wry(2)(z — 0 with wyy(a) = ),
p.
and we also have
/ —1 . ](p) (O./)
I'(z) = wp p1(2)(z — )P with  wp, (o) = o)

Let us remark that for a function f(z) with a simple root «, i.e., f(a) = 0 and f'(a) # 0,

since we can write

f(z) =wpa(2)(z — ) where wpa(a) = f(a),

the following two expressions, O ((z — Oé)l) and O (fl(z)), are equivalent for any positive

integer [.

As consequences of Theorem 5.3.1, for an analytic IF I(z), we could say that: (a) I(z)
is of order p if and only if I(z) = a + O((z — @)?), or equivalently, if I(a) = « and
I'(z) = O((z — a)P71), and (b) if « is a simple root of f(z), then I(2) is of order p if and
only if I(z) = a + O(f?(z)), or equivalently, if I(a) = a and I'(z) = O(fP~*(2)).

Now for the Newton’s IF one can observe that Ny(a) = . Furthermore N(2) = %,
and Ni(a) = 0. So if a is a simple root of f(2), that is f(a) = 0 and f'(a) # 0, we
can conclude that Newton’s method applied to f(z) is an iteration function of at least of

order 2.
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5.3.2 Polynomial expansion and Schroder’s process of the first

kind

Now let us directly modify the iteration function Ny(z) itself into some new iteration
function S(z). Here out of all possible such operations, we are looking at the “best" way,
we shall look for the modification with the simplest algebraic formulation. Noting that
the simplest algebraic operation we could performed on N(z) would be an addition, we
want to know what would be the simplest function A(z), so that for S(z) = Ny(2)+A(z),
the order of convergence of S(z) would be increased and furthermore we are required to

not use anything more then an additional derivative of f(z) in the formulation of A(z).

Suppose we start with an iteration function Ny(2) of order 2, that is N¢(a) = a, Ni(a) =
0 and N{(a) # 0. If S3(z) is an iteration function of order 3 defined by S3(z) = Ny(2) +
A(z), we must have S3(a) = o, Sj(a) = 0 and S§(«) = 0, according to Theorem 5.3.1.
This means for A(z) = S3(2) — Ny(2), o is a root of multiplicity 2. That is A(z), can be
written as §(z) f(z)?, for some analytic function 6(z), since a is a simple root of f(z). Our
goal here would be to figure out what would be the simplest and most efficient choice of

function §(z) to increase the order of convergence. This leads to the following theorem.

Theorem 5.3.2. [12] Let « be a simple root of f(z). Let S,(z) be the IF defined by the

finite series

—_

Sy(z) = 2 ei()F(2),

where ¢o(z) = z, and the ¢;(z) are defined by

HEGE + =0 o g = (5 ) o)

o

for j=1,2,... Then S,(z) is, at least, of order p.

The sequence of iteration function S,(z), as introduced by the Theorem 5.3.2, is known

as Schrader’s process of the first kind introduced in 1870 [48, 51].
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[t is very important to observe that ¢;(z) = 1/f'(z), so ¢1(z) is a function of the parameter

f'(2) only. Since ¢jy1(2) = —c;(2)/[(7 +1)f'(2)], ¢;(2) depends on f'(2), f"(2),, fO(2),

more precisely

_ polynomial expression in terms of f”(z),..., fU)(2)

(f(2)7

In particular, it is important to note that ¢;(2) is a function whose algebraic expression

c;(2)

does not depend explicitly on the parameter f(z) but depends only on f!)(z) for I =
1,...,j. Also by definition ¢;1;(%) only has one order of derivative of f(z) higher then

c;(2).

We have shown that S,(2) is an iteration function of at least order p. We know that if
Sp(%) is to be an iteration function of order p, given an arbitrary analytic function f(z),
then efficiency requires knowledge of at least the first (p — 1)th derivatives of f(z) in the
formulation [51|. This illustrates the fact that S,(z), as written above, is as efficient as
possible, because it does not require computing derivatives of unnecessarily higher order
then p — 1. Each time the order is increased, only one additional derivative is computed
as required to maximize efficiency. We will show furthermore that the coeficient ¢;(z),

given by Schréder’s process of the first kind, minimize the dependence on the number of
parameters z, f(z), f'(2),....f9(2).
5.3.3 Consequence

Let us present the consequence of the result of the last section.

Theorem 5.3.3. Suppose we have an iterative method of order p > 2,



where &(2) = z = co(2), and &;(2) depends on z, f'(2), f"(2),..., f9(2) for j =1,2,...,
then

for 7=0,1,2,..., and gp(z) = S,(2).

Note that in this last theorem ¢;(z) are only dependent of the parameter z and derivatives

of f(z), they do not directly depend on the function f(z) itself.

Proof. First, we observe that in order for §p(z) to be an iterative method of any order
for finding the simple root o we need that §p(oz) — a. We have S;(z) = Sy(z). Now,
suppose there exists a first index p* > 1, such that ¢,~_1(z) # ¢p—1(2). Then, because

both processes, S,+(z) and §p*(z), are of the same order p*, we observe that

Spr(2) = Spe(2) = O(f7"(2)).

But

*

Spr(2) = Spe(2) = (E-1(2) = o1 (2)) SV 71(2),
which means that
Cpr1(2) = ¢pr1(2) = O(f(2))-
In other words we have

*

rp*_l(z, F1(2), (2), .., [P _1)(z)> = 1 (2) — e (2) = O(f(2)).

This is only possible if

Dyt (2 /(). £7(2), o £ 70(:) ) = 0

as we will show. But this contradict the fact that é,»_(z) # ¢pe_1(2), and hence S, (z) =

Sp+(2).
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To show that I')«_y (z, f(2), f"(2), .., f(p*_l)(z)) = 0, let us observe that the formula for
¢p—1(z) and ¢p«_1(z) must hold for any function f(z) having a simple root at . So let

us counsider

with arbitrary 3, Ay # 0, Aa, ..., Ap_a, and Ap«_q. For this expression of f(z) we have

f(B)=0, f(B) =X\ #0,and fO(B) =\ forl =2,...,p" — 1. Then
FP*_l (Z’ f/(Z), f”(z)7 ) f(p*_l)(2)> ‘Z:ﬁ =0,
which leads to

Fp*fl (ﬁ> )\17 )\27 SRR )\p*fl) = 0.
So, this fact means that this function is identically zero as required, because 3, A1, Ao,

., Apr—g2, and A,-_; can take any values. O

So we have also the following consequence.

Corollary 5.3.4. Suppose Q,(z) is an acceleration process of order p > 2, that expands

into polynomial terms of f(z), then

Qp(2) = 5p(2) +9(2)f*(2)

and can be truncated to S,(z) for every p.

So, these results say that S,(z) is the most efficient IF of order p, in polynomial terms

of f(z), that increases the order of convergence of Newton’s IF.

5.4 Modifying f(z) into a new function F'(z)

The second way is to modify the function f(z) itself into a new function F(z), whose

application to Newton’s will be faster. We will need to establish conditions that will entail
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any new function F'(z) to increase the order of convergence of N(z) by one. Furthermore
if our modification F'(z) is to be the “best" possible choice of such a function, we are
required to not use anything more then an additional derivative of f(z) in the formulation
of F(z), as discussed before. We shall look for such a function F(z) with the simplest

possible formulation.

5.4.1 Finding the form

We first look at the necessary and sufficient conditions to get high order of convergence

of the Newton’s method.

Theorem 5.4.1. [12] Let p > 2 and let F,(z) be an analytic function such that F,(a) =0
and F)(a) # 0. Newton IF Np,(z) = z — ?228 is of order p if and only if Fp(j)(oz) =0 for
j=2,...,p—1, and F}S”)(a) £ 0.

Starting with Fy(z) = f(z), we can look for a recursive way to construct a function F,(z)
which will satisfy the conditions of Theorem 5.4.1. A consequence is that Ng, (z) will be
of order p, and N, (z) = o + O(f?(2)). Our goal here however is to establish the most

efficient way of constructing such a function.

Suppose F,(z) is an analytic function such that F},(a) = 0 and F}(a) # 0. If Ng,(2) is of
order p, then Theorem 5.4.1 implies that F/(z) = O ((z — a)?~?). To increase the order
of convergence from p to p+1, we must look for a function F,,,(z) such that F,;;(a) = 0,
F) (a) #0, and F)/, (2) = O ((z — a)P7"). Because the conditions of Theorem 5.4.1 are

an if and only if, we really have no other choice but to go about it this way.

Several functions Fj;(z) might a priori be used. These functions may depend on z,

f(2), f'(z), f"(2), .... Our goal here is to find a new function F,,,(z), related to f(z),
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that would use the least possible amount of such parameters. Since « is supposed to be

a simple root of both F,,1(z) and of F,(z), we can write

Fp+1(2’) = Fp(Z)gp(Z)-

The function g,(z) will contains information from f(z) or F,(z), in terms of some of
its derivatives f()(z) for [ = 1,2,3,..., and we know, in term of its dependence on the
initial function F,(z), at least F)(z) is needed to increase the order of Np,,(2). That
is because to increase the order of convergence at each step, at least knowledge of an
additional derivative is required as discussed previously. So if we could write g,(z) as a
function depending only of F}(z), that is g,(z) = G,(F}(2)), we would have effectively
used the least amount of new information of F,(z) in term of its derivatives. Let us
point out that the fact that such a solution may even exist is not obvious. However, the

following result has been proved to solve the problem.

Theorem 5.4.2. [14] Let F,(z) be an analytic function such that F,(o) = 0 and F)(a) #
0, and suppose Np,(2) is of order p. There erists a unique function G,(§), up to a

multiplicative constant py,, such that Ng,  (z) is of order p+ 1, for

Fp-l-l('z) = Fp(Z)Gp (Fé(z)) )

and this function is

Pp
Gp(g) gl/p
So using
/ Fp<z>
F, F,(2)G, Fp = pp ,
+1(2) (2)Gp(Fy(2)) = p [F;(Zﬂl/p
we obtain

Fo(2) F2) [, Fl(2)F(2)]"
Np, () =2—2—==z2-2 1--2 5 ,
which will be of order p + 1.
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Because Fy(2) = f(2), Np,(2) = N¢(2) is of order 2. When we apply Newton’s IF to the

function F3(2) = Fy(2)// F3(2) = f(2)/\/f'(2), we have an IF of order 3, this just so
happen to exactly be Halley’s IF.

What we have obtained, additionally, is that the function G,(§) is in fact unique and this
allows us to conclude that if F,(z) is a function for which Newton’s IF applied to F,(z),
that is Ng,(z2), is of order p, then for

Fpr1(2) = F(2)Gp(Fy(2))  with  Gy(z) = rZh
not only is Ng,,,(2) of order p + 1, but G,(z) = VLE is the simplest such function we
could use. So the specific family obtained by this process is in fact the most efficient
way of recursively increasing the order of convergence of Newton’s IF in terms of usage

of derivatives of the function f(z) if we were to only modify the function f(z).

5.4.2 Implication of results

The above described process provides us with a recursive way of progressively determining

functions {F,(z)}%, with F5(z) = f(z), for which H,(z) = Np,(2) is of order p. The

p=2’
family {H,(z) ;j; will be called Halley’s basic sequence because Hs(z) = H ().
Recall that very early we had observed: if there was such a thing as the “best" way of
making Newton’s IF, dating from 1669, faster, we shouldn’t be surprised that mathe-
maticians have rediscover it, several times. In fact this acceleration process has been

rediscovered several times since 1870 |44, 45].

Halley’s basic sequence has one fundamental property it always satisfies. So providing
a formulaic approach that can be used to recognize Halley’s basic sequence, regardless
of the formulation, we would have a complete characterization of this basic sequence.

It could be used to effectively recognize it, regardless of form, and avoid any further
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rediscovery. This is the goal of the next result.

Theorem 5.4.3. [14] Let f(z) be an analytic function such that f(a) =0 and f'(a) # 0
for which Ny(2) is of order 2. The basic sequence {Gp(z)};;’; given by

Gp(z) =2 —V,(2) for p>2,

for which the pth element is of order p, corresponds to the Halley’s basic sequence if and

only if

Voa(z) = [1-2[1-V@)] Vo) for p>2

5.4.3 Schroder’s method of the second kind

In 1870, Schrider [48] proposed 2 basic sequences. The second one, known as Schrider’s
method of the second kind, is based on rational approximations. Its pth member of order

p is given by

R 72<Z>
T,(2) =2z — =L—="2 for > 2,
p( ) p71<z) p -
where
Ro(z) = 1/f(2),
1 PO (s
Ry(z) = >, (—1)"* ];!f((z))Rp,j(z) for p>1.

Computing the expressions for R;(z) and Ry(z), we observe that the first two elements
of this sequence are respectively, Newton’s IF T5(z) = N¢(z) of order 2, and Halley’s IF
T3(z) = H(z) of order 3.

In fact, Schroder’s method of the second kind is actually Halley’s basic sequence. To get

this result, the next lemma provide us with an equivalent formulation for R,(z).

(_1);) 1 (p)
Lemma 5.4.4. [14] R)(z) = o (m) forp=0,1,2,...
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Then we have the result.

Theorem 5.4.5. Halley’s basic sequence and Schroder’s method of the second kind co-

incide.

Proof. We have directly that

(71);7—2 1 (p—2)
Rp—Q(Z) (»—2)! <f(2)> _
i Lt ()

Vo(2) =

Consequently
1/ f ) P21/ f(2))”
[(1/£(2)@-D]°

Y

V,(2)=—(p—1) [1 -
and a direct substitution leads to

1 ) -1 -
1—]—?[1—%@}] V(=) = —p

(1/f(z))""Y

/e

which establishes the result.

]

So, Schroder’s process of the second kind, as proposed in 1870, is the most efficient way

of increasing the order of convergence of Newton’s IF if we were to modify the function

f(z) into a new one F'(z).

5.5 Conclusion

In seeking to increase the order of convergence of Newton’s method as efficiently as

possible, based on necessary and sufficient conditions for high order of convergence, we

found that while Schréder process of the first kind is the best way of increasing the order

of convergence of Newton’s method by addition to obtain a polynomial expression in

terms of f(z), Schroder’s process of the second kind was the best way of increasing the
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order of Newton’s method, when applied to a new function, by modifying the function
f(2) into a new function F'(z). Those two processes introduced by Schréder in 1870 are
thus respectively the best one in some terms of minimal usage of derivatives of f(z) and
simplicity of formulation. Finally, let us observe that those two processes are related by

polynomial and rational interpolation as shown in |7].
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CONCLUSION

Nous avons développé dans nos travaux un nouvel algorithme pour reconnaitre le proces-
sus d’accélération de Schroder de premiére espéce. Celui-ci pourrait éviter toute autre

éventuelle redécouverte.

Nous avons aussi prouvé que les deux processus de Schroder sont respectivement les
meilleures facons d’augmenter ’ordre de convergence de la méthode itérative de Newton.
L’un en termes d’application de la méthode de Newton a une nouvelle fonction, 'autre
en termes de développement polynomial de la fonction itérante par rapport a la fonction

originale.

Nous avons aussi unifié le travail de mathématiciens comme Euler, Chebyshev et Halley,
en présentant une facon générale d’augmenter la convergence de méthodes itératives,

basées sur le développement Taylor de fonctions analytiques.
L’extension de plusieurs de ces résultats dans les espaces de Banach est faite dans [10].

L’une des perspectives de recherche pourrait étre de voir s’il y a un lien entre la constante
asymptotique et les bassins d’attraction. Egalement de voir comment on peut modifier
une fonction afin d’agrandir le bassin d’attraction pour une racine précise. Ainsi voir
comment nos travaux peuvent contribuer a étendre et améliorer les résutats connus dans

ce domaine, en particulier les travaux de Traub [51] et Kalantari [36]. Finalement, un
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domaine d’interét qui pourrait étre exploré concerne ’application de nos travaux aux
méthodes de recherche simultannées des racines d’une fonction. Lorsque plusieurs zéros
d’une fonction sont requis ces méthodes présentent des avantages par rapport a la méth-
ode de Newton utilisée pour la recherche d’un zéro isolé a la fois. Pour en savoir plus sur

ces methodes de recherche des zéros de polynomes voir par example |43, 42, 55, 16] .

On pourrait aussi voir comment les bassins d’attraction changeraient si on augmentait le

nombre d’iterations qu’on a effectué dans le chapitre 2.

135



BIBLIOGRAPHIE

[1] I.K. Argyros and F. Szidarovszky (1993), The Theory and Applications of Iteration
Methods, CRC Press, Boca Raton, FL .

[2] E. Bodewig (1949), On types of convergence and on the behavior of approximations
in the neighborhood of a multiple root of an equation, Quart. Appl. Math., 7 ,
325-333.

[3] P.L. Chebyshev (1951), Collected Works, Izd. Akad. Nauk SSSR, 5, 5-27 (in Rus-

sian).

[4] F. Dubeau (2013), On comparisons of Chebyshev-Halley iteration functions based
on their asymptotic constants, International J. of Pure and Applied Mathematics,

85(5), 965-981.

[5] F. Dubeau and C. Gnang (2013), On the Chebyshev-Halley family of iteration func-
tions and the n-th root computation problem, Inter. J. Pure Applied Math., 85 ,
1051-1059.

[6] F. Dubeau (2013), On the modified Newton’s method for multiple root, Journal of
Mathematical Analysis, 4(2), 9-15.

136



[7] F. Dubeau (2014), Polynomial and rational approximations and the link between
Schroder’s processes of the first and second kind, Abstract and Applied Analysis,
2014, Article ID 719846, 5 pages.

[8] F. Dubeau (2009), Newton’s method and high-order algorithms for the nth root
computation, JCAM, 224 , 66-76.

[9] F. Dubeau (1996), Algorithms for n-th root approximation, Computing, 57 , 365-369.

[10] F. Dubeau (2021), High order fixed point and Newton’s methods
in Banach space  Numerical Functional Analysis and  Optimization,

https://doi.org/10.1080/01630563.2021.1873365

[11] F. Dubeau and C. Gnang (2014), Fixed point and Newton’s for solving a nonlinear
equation: from linear to high order convergence, STAM Review, 56.4 , 691-708.

[12] F. Dubeau and C. Gnang (2018), Fixed-point and Newton’s method in the complex
plane, Journal of Complex Analysis, 2018, Article ID 7289092, 11 pages.

[13] F.Dubeau and C.Gnang (2014), Inverse function, Taylor’s expan-
sion and extended Schroder’s processes, Inter. J. Comput. Math.,

http://dx.doi.org/10.1080,/00207160.2013.833611.

[14] F. Dubeau and C. Gnang (2018), On the rediscovery of Halley’s iterative method for
computing the zero of an analytic function, Journal of Computational and Applied

Mathematics, 335, 129-141.

[15] E. Durand (1960), Solutions Numériques des Equations Algébriques, Tome 1, Masson

et Cie, Paris.

137



[16]

[17]

18]

[19]

20]

21]

22]

23]

[24]

[25]

[26]

M.R. Farmer and G. Loizou (1975), A class of iteration functions for improving,
simultaneously, approximations to the zeros of a polynomial, BIT 15(3): 250-258.
http://dx.doi.org/10.1007/BF01933657

W.F. Ford and J. A. Pennline (1996), Accelerated convergence in Newton’s method,
SIAM Review 38(4): 658-659. http://dx.doi.org/10.1137/S0036144594292972

W. Gander (1985), On Halley’s iteration method, Amer. Math. Monthly 92(2): 131
134. http://dx.doi.org/10.2307 /2322644

J. Gerlach (1994), Accelerated convergence in Newton’s method, SIAM Review
36(2): 272-276. http://dx.doi.org/10.2307/2322644

E. Halley (1694), A new and general method of finding the roots of equations, Philos.
Trans. Roy. Soc. London, 18: 136-148.

H.J. Hamilton (1946), Roots of equations by functional iteration, Duke Math. J.
13(1): 113-121. http://dx.doi.org/10.1215/S0012-7094-46-01312-9

P. Henrici ( 1964), Elements of Numerical Analysis, John Wiley and Sons, New
York.

M.A. Hernandez and M.A. Salanova, (1993), A family of Chebyshec-Halley type
methods , Inter. J. Computer Math,47 59-63.

J.M. Gutierrez and M.A. Hernandez (1997), A family of Chebyshev-Halley type
methods in Banach spaces, Bull. Austral. Math. Soc., 66 ;, 113-130.

M.A. Hernandez and N. Romero (2004), High order algorithms for approximating
nth roots, Inter. J. Comput. Math., 81 , 1001-1014.

A.S. Householder (1953), Principles of Numerical Analysis, McGraw Hill, Columbus
OH.

138



27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

A.S. Householder (1970), The Numerical Treatment of a Single Nonlinear Equation,
McGraw Hill, New York.

M. Igarashi and H. Nagasaka (1991), Relationships between the iteration times and
the convergence order for Newton-Raphson like methods, J. Inform. Process 32:

1349-1354 (in Japanese).

M. Igarashi and T. Ypma (1995), Relationships between order and efficiency of a
class of methods for multiple zeros of polynomials, J. Comput. Math. Appl., 60
101-113.

E. Isaacson and H.B. Keller (1966), Analysis of Numerical Methods, John Wiley and
Sons, New York.

B. Jovanovi¢ (1972), A method for obtaining iterative formulas of higher order, Mat.
Vesnik 24: 365-369.

B. Kalantari and I. Kalantari, R. Zaare-Nahandi (1997), A basic family of iteration
functions for polynomial root-finding and its characterizations, J. Comput. Appl.

Math. 80(2): 209-226. http://doi.org/10.1016/S0377-0427(97)00014-9

B. Kalantari (1999), On the order of convergence of a determinantal family of root-

finding methods, BIT 39(1): 96-109. http://dx.doi.org/10.1023/A:1022321325108

B. Kalantari (2000), Generalization of Taylor’s theorem and Newton’s method via a
new family of determinantal interpolation formulas and its applications, J. Comput.

Appl. Math. 126(1-2): 287-318. http://doi.org/10.1016/S0377-0427(99)00360-X

B. Kalantari and J. Gerlach (2000), Newton’s method and generation of deter-
minantal family of iteration functions, J. Comput. Appl. Math. 116(1): 195-200.
http://doi.org/10.1016/S0377-0427(99)00361-1

139



[36]

[37]

38]

[39]

[40]

[41]

[42]

[43]

[44]

B. Kalantari (2008), Polynimial root-finding and polynomiography, World Scientific,

New Jersey.

D. Kincaid and W. Cheney (1991), Numerical Analysis, Brooks/Cole Pub. Co.,

California.

L.Kiss (1954), Uber die Verallgemeinerun des Newtonschen, Angew. Math. Mech.
34 , 68-69.

J.Konig (1954), Uber eine eigenshratf der potenzreihen, Math. Anal. 23 ,447-449.

G.V. Milovanovi¢ (1974), A method to accelerated iterative processes in Banach
spaces, Univ.Betograd. Publ. Eleektrotehn. Fak. Ser. Mat. Fiz. Mat. Vesnik 461-
497: 67-71.

G.M. Phillips and P.J. Taylor (1973), Theory and Applications of Numerical Anal-

ysis, Academic Press, New York.

I. Petkovi¢ and D. Herceg (2017), Symbolic computation and computer graphics as
tools for developing and studying new root-finding methods, Applied Mathematics
and Coomputation 295: 95-113.

I. Petkovi¢ and D. Herceg (2020), Computer tools for the construction and analy-
sis of some efficient root-finding simultaneous methods, Filomet 34(7): 2151-2169.
http://doi.org/10.2298 /FIL2007151P

M. S. Petkovic and D. Herceg (1999), On rediscovered iteration meth-
ods for solving equations, J. Comput. Appl. Math. 107(2):  275-284.
http://doi.org/10.1016/j.cam.2009.09.012

140



[45]

|46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

M.S. Petkovi¢ and L. D. Petkovi¢, D. Herceg (2010), On Schroder’s fam-
ilies of root-finding methods, J. Comput. Appl. Math. 233(8): 1755-1762.
http://doi.org/10.1016/j.cam.2009.09.012

G.M. Phillips and P.J. Taylor (1973), Theory and applications of Numerical Analysis,

Academic Press, new York.

E.B. Saff and A.D. Snider (2003), Fundamentals of Complex Analysis, with Appli-

cations to Engineering and Science, 3rd ed., Prentice hall, New Jersey.

E. Schroder (1870), Uber unendlich viele Algorithmen zur Auflosung der Gleichun-
gen, Math. Ann. 2: 317-365. English translation by G.W. Stewart (1992), On In-
finitely Many Algorithms for Solving Equations (1992), Institute for Advanced Com-
puter Studies, TR-92-121 and TR-2990, University of Maryland.

M.Shub and S.Smale (1985), Computation complexity: On the geometry of polyno-
mials and the theory of cost I, Ann. Sci. Ecole Norm. Sup., 18 , 107-142.

D. Simeunovi¢ (2005), On a method for obtaining iterative formulas of higher order,

Mathematica Moravica, 9, 53-58.

J.F. Traub (1964), Iterative Methods for the Solution of Equations, Prentice-Hall,
Englewood Cliffs, New Jersey.

V.A. Varjuhin and S.A. Kasjanjuk (1969), Ob iteracionnyh metodah uto¢nenija
kornei uravnenii, Z. Vycisl. Mat. i Mat. Fiz. 9: 684-687 (in Russian).

J.L. Varona (2002), Graphic and numerical comparaison between iterative methods,

The Mathematical Intelligencer, vol. 24, no 1, 7-46.

X. Wang (1966), J. Hangzhou Univ. (Natural Science), 3: 63-70 (in Chinese).

141



[55] X. Wang and S. Zheng (1984), A family of parallel iterations for finding all roots of
a polynomial simultaneously with rapid convergence, J. Comput. Math., 4 , 305-3009.

[56] W. Werner (1981), Some improvements of classical iterative methods for the solu-
tion of nonlinear equations, in Numerical Solution of Nonlinear equations, (Proc.,
Bremen, 1980), E.L. Allgower, K. Glashoff and H.O. Peitgen, eds, Lecture Notes in
Math., 878, 427-440.

[57] T.J. Ypma (1995), Historical development of the Newton-Raphson method, SIAM
Review 37(4): 531-551. http://doi.org/10.1137/1037125

142



