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ABSTRACT

Combinatorial Path Planning for a System of Multiple

Unmanned Vehicles. (December 2010)

Sai Yadlapalli, B.Tech., Indian Institute of Technology, Madras;

M.S., Texas A&M University

Co–Chairs of Advisory Committee: Dr. Swaroop Darbha
Dr. K. R. Rajagopal

In this dissertation, the problem of planning the motion ofmUnmanned Vehicles (UVs) (or

simply vehicles) through n points in a plane is considered. A motion plan for a vehicle is

given by the sequence of points and the corresponding angles at which each point must be

visited by the vehicle. We require that each vehicle return to the same initial location(depot)

at the same heading after visiting the points. The objective of the motion planning problem

is to choose at most q(≤ m) UVs and find their motion plans so that all the points are

visited and the total cost of the tours of the chosen vehicles is a minimum amongst all the

possible choices of vehicles and their tours. This problem is a generalization of the well-

known Traveling Salesman Problem (TSP) in many ways: (1) each UV takes the role of

salesman (2) motion constraints of the UVs play an important role in determining the cost

of travel between any two locations; in fact, the cost of the travel between any two locations

depends on direction of travel along with the heading at the origin and destination, and (3)

there is an additional combinatorial complexity stemming from the need to partition the

points to be visited by each UV and the set of UVs that must be employed by the mission.

In this dissertation, a sub-optimal, two-step approach to motion planning is presented

to solve this problem:(1) the combinatorial problem of choosing the vehicles and their

associated tours is based on Euclidean distances between points and (2) once the sequence

of points to be visited is specified, the heading at each point is determined based on a

Dynamic Programming scheme. The solution to the first step is based on a generalization of



iv

Held-Karp’s method. We modify the Lagrangian heuristics for finding a close sub-optimal

solution.

In the later chapters of the dissertation, we relax the assumption that all vehicles are

homogenous. The motivation of heterogenous variant of Multi-depot, Multiple Traveling

Salesmen Problem (MDMTSP) derives form applications involving Unmanned Aerial Ve-

hicles (UAVs) or ground robots requiring multiple vehicles with different capabilities to

visit a set of locations.
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CHAPTER I

MOTIVATION AND INTRODUCTON

Unmanned Vehicles (UVs) are currently being used and will be used in the future in a va-

riety of military and civilian applications [1, 2, 3, 4]. In military applications, UVs find a

prominent role in surveillance and reconnaissance operations. The main advantage of de-

ploying UVs is that it eliminates the need for human pilots to operate in hostile/hazardous

environments. Since there is no need to accommodate a human pilot in a UV, the result-

ing designs for UVs are much simpler and can result in significantly lower production and

operational costs. In civilian applications, UVs are envisioned to be used for border pa-

trolling, fire monitoring, search and rescue operations in the aftermath of hazardous events

such as earthquake and fire [5].

UVs carry a limited amount of fuel which must be utilized efficiently. Typical mis-

sions require every target (target is a location of interest to the mission) to be visited by

some UV in the collection. Since UVs have motion constraints, i.e., they cannot change

their heading instantaneously, one must take into account this limitation of UVs in plan-

ning their motion for such missions. In some applications, one may not assume that the

collection of UVs is homogeneous. Heterogeneity in a collection can arise in two different

ways: (1) the UVs are structurally different and (2) the UVs may be structurally identical

but functionally different because of the on-board sensors that they may carry. In the case

of structural heterogeneity, the cost (typically either the fuel consumed or its proxy- the

distance traveled) between any pair of locations is also a function of the employed UV. In

the case of functional heterogeneity, one may have additional constraints on the assign-

ment of UVs to targets as some targets may require some specific types of sensors to be

The journal model is IEEE Transactions on Automatic Control.
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serviced/attended to.

Typical missions naturally lead to the following problems and variants: Given a set

of m UVs and n targets, and a collective objective function (such as the total cost or the

maximum time taken for a mission) to be minimized, the path planning problem for the

collection requires answers to the following questions:

• Which subset of UVs must be chosen to accomplish a given mission? It may be

possible that some UVs may be held back for contingency purposes. In this case,

one must determine the set of UVs that must be deployed.

• How should one choose the subset of targets to be visited by each chosen UV?

• What is the sequence of targets that must be assigned to each UV for visiting? What

angle should a UV approach each assigned target in the given sequence?

In this dissertation, we will consider UVs which may be modeled either a Dubins’

vehicle or a Reeds-Shepp vehicle. In these two types of vehicles, the inertia of the UV is

assumed to be negligible and there is a bound on the heading rate, i.e., the heading of a UV

does not change instantaneously. A Reeds-Shepp vehicle differs from a Dubins’ vehicle in

its ability to reverse the direction of travel. The principal consequences of this assumption

are as follows: If a UV has a constant longitudinal speed, V0, then there is a minimum

turning radius given by V0

Ω
, where Ω is the maximum rate of change of the heading angle.

Another important consequence of treating a UV as a Dubins’ or a Reeds-Shepp vehicle is

that the problem of determining the path of minimum length reduces to the determination

of a finite number of paths of a specified structure and determining, among these finite

number of paths, the path of shortest length [6, 7]. This assumption seems to be reasonable

for the purposes of planning the motion and determining the sequence of targets to be

visited. When the inertia of a UV is not negligible, the problem of determination of the
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shortest path, even in the absence of significant disturbances such as wind, from a given

origin with a specified heading to a given destination, is a difficult problem in general. The

assumption of negligible mass of a UV allows us to focus on the combinatorial aspects

of motion planning by simplifying the problem of determination of the cost of traveling

between any two targets for every UV.

We will consider the collective objective function to be the total distance traveled by

the collection. The rationale for this choice of collective objective function is as follows:

As a first approximation, the total distance traveled by the collection is representative of the

total fuel consumed by the collection. In applications where the mission time is important,

one may compute a lower bound on the optimal mission time as follows: For every convex

combination specified by m non-negative numbers that add to 1, one may associate the ith

non-negative number representing the scaling factor of the cost of routes for the ith UV. One

can specify the modified objective to be the sum of the scaled costs of the routes of UVs

in the collection. The problem of minimizing the modified objective function is similar to

collective objective function considered in this dissertation. In this case, one may readily

obtain a lower bound for the optimal mission time for every convex combination and one

may optimize over the convex combinations to determine the best possible lower bound.

The central point of this argument is that the collective objective function chosen in this

dissertation can be useful for determining the lower bounds for other collective objective

functions that one may choose.

The combinatorial problem underlying the problem of planning the motion for a col-

lection of UVs is a generalization of the Traveling Salesman Problem (TSP) and will be

referred to as the Multiple Depot, Multiple Traveling Salesmen Problem (MDMTSP). A

depot is the starting location for a UV and one may treat every UV as a salesman. The

TSP is a NP-hard problem [8, 9, 10] and hence, the MDMTSP is also NP-hard as it is a

generalization of the TSP. There are two options to “solve” MDMTSP - the first option is
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to find an algorithm that determines an approximately optimal or sub-optimal solution with

a guaranteed running time and with either a prior or a posterior guarantee on the quality

of the solution. A solution is of better quality compared to another if it its cost is closer

to the optimal cost. Algorithms that provide a priori guarantee on the quality of solutions

are called approximation algorithms and the development of such algorithms is an active

topic of research. An excellent overview of such algorithms for some NP-hard problems

may be found in the recent book of Vazirani [11]. This approach is useful for two reasons:

(1) one may find a sub-optimal solution which may be a starting solution for algorithms

that improve this solution, and (2) it is suitable for real-time implementation because of the

guarantee of running time and the quality of solution it provides. In practice, the solutions

provided by the well-known 2-approx and 1.5-approx algorithms [12] for a single TSP

deviate, on an average, from the optimum by no more than 30 %. The a posterior guaran-

tees are useful when improvement heuristics are applied to the solutions obtained by the

approximation algorithms.

The second approach is to forego the guarantees on running time, but solve the com-

binatorial problem to optimality. This is possible because the set of feasible solutions to

the problem is finite in some combinatorial problems such as the TSP, and one can find an

optimal solution by discarding the sets of feasible solutions that are guaranteed to not con-

tain an optimal solution. This is at the heart of most Branch and Bound (B&B) procedures.

Discarding the sets of feasible solutions requires finding a lower/upper bound on the cost

of solutions in an efficient manner. The effectiveness of a B&B procedure depends on the

tightness of the lower and upper bounds that one has at hand.

The problem of routing UVs considered in this dissertation is significantly more diffi-

cult than the counterparts considered in the Operations Research literature for the following

reasons:
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• Even with the simplified models of UVs, the cost of travel between any two locations

can depend on the origin and destination and the heading angles at the origin and

destination.

• The total cost of a route for a UV is not only a function of the sequence in which

targets are visited, but also on the heading angle at which each target is approached.

In essence, there is a coupling between the discrete optimization problem of deter-

mining the sequence and the continuous optimization problem of determining the

heading angle at each and every target.

• The additional combinatorial complexity of determining the UVs that must be se-

lected for the mission and the partitioning of the targets for assigning them to the

UVs makes the problem harder.

The dissertation is organized as follows: In Chapter II, we consider a collection of ho-

mogeneous vehicles and provide an algorithm for determining a sub-optimal motion plan,

i.e., the sequence of targets to be visited by each UV and the associated heading angles.

The results obtained by this algorithm seem promising when the distances between the tar-

gets is reasonably large compared to the the minimum turning radius. In other words, this

algorithm produces feasible solutions of high quality when the coupling between the dis-

crete and continuous optimization problems is not that strong. In Chapters III and IV, we

focus on the development of approximation algorithms for a heterogeneous collection of

UVs. In Chapter III, the main focus is on the development of an approximation algorithm

for a collection of structurally heterogeneous UVs. In Chapter IV, the main focus is on de-

veloping approximation algorithms for a collection of functionally heterogeneous vehicles.

We provide a brief description of the contents of Chapters II, III and IV in the following

subsections.
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A. Generalization of Held-Karp’s procedure for determining the lower bound for the Mul-

tiple Depot, Multiple Traveling Salesmen Problem (MDMTSP) and for finding sub-

optimal solutions

The main content of Chapter II deals with the development of an efficient algorithm for

determining a lower bound for the optimal cost of any instance of MDMTSP and to develop

a heuristic for finding a sub-optimal solution, whose cost is close to the lower bound. By

computing the lower bound efficiently, one can bound the deviation of the cost of any

feasible solution from the optimal cost. Such a guarantee of the quality of solution is

a posteriori as the quality of the solution may be computed after the solution has been

determined.

An efficient scheme for obtaining a tight lower bound for the MDMTSP is useful

for two reasons - first, it can be used in a B&B procedure and secondly, it can be used

to evaluate the quality of approximate solutions obtained by various heuristics. For this

purpose, we will extend the method of Held and Karp [13] for the MDMTSP in this section.

For the purpose of developing a mathematical formulation of the problem, let V be

a set of nodes (targets and depots) and let E be the set of roads (edges) connecting the

nodes. Let cij represent the cost of traveling between the ith and jth node. Now, one can

define a graph G = (V,E, c), representing the set of targets, T and the network of edges

connecting them. The MDMTSP may be posed as follows: Given a set of m UVs starting

from distinct nodes (depots), find a tour 1 for each UV in such a way that each node is

visited at least once by some UV and the total distance traveled by the UVs is a minimum

among all possible sets of tours assigned to them. If the triangle inequality holds2, it can

1A tour through a set of vertices {i1, ..., ik} is the set of k = 3 distinct edges
{(i1, i2), (i2, i3), ..., (ik−1, ik), (ik, i1)}.

2if the cost of traveling from a node (or a vertex) i to a node j directly is no costlier than
the cost of traveling from a node i to node j through intermediate nodes
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be shown that each node is visited exactly once by some UV in the optimal solution.

The binary program considered for MDMTSP is hard to solve and is analogous to the

linear, integer programming formulation of Dantzig, Fulkerson and Johnson for the TSP

[14]. In this formulation, the number of sub-tour elimination constraints is exponential in

the number of targets and depots. A sub-tour elimination constraint disallows a tour among

nodes that do not contain a depot. Clearly, such a solution is not feasible because a depot

corresponds to a starting location for a UV.

Held and Karp’s [13] method uses duality to compute a lower bound. Held-Karp’s

method considers the formulation of Dantzig, Fulkerson and Johnson [14] and penalizes

the degree constraint on the target vertices. The degree of a vertex is twice the number

of times a target has been visited. The mathematical problem of Dantzig, Fulkerson and

Johnson [14] is an integer linear program where the choice variables indicate what the next

node is from a given node, i.e., which edges must be picked. Held and Karp[13] show

that the resulting integer program with the penalty variables admits a simple (greedy type)

combinatorial algorithm. Hence, for each set of penalty variables, one may compute the op-

timal penalized cost, which is a lower bound for the optimal cost of TSP. Further, Held and

Karp [13] pose the problem of finding the greatest lower bound as that of determining the

penalties that maximize this lower bound. This lower bound, referred to as the Held-Karp

lower bound, is found to be within 1% of the optimal cost in most instances of TSPLIB.

We follow a similar approach for the MDMTSP and the numerical results seem to indicate

that the lower bound is equally tight even for the MDMTSP. We also provide a heuristic,

which computes a sub-optimal solution that is close to the dual solution and hence, the cost

of the sub-optimal solution is close to the lower bound.
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B. Motion planning for a collection of structurally heterogeneous vehicles

In Chapter III, the main content of the dissertation deals with the development of motion

planning algorithms for a collection of structurally heterogeneous UVs. In this case, the

cost of travel from the ith node to the jth node in a graph also depends on the UV deployed

and hence, we may represent the cost as cijk where k is the index of the UV deployed for

travel from the ith node to the jth node.

The focus of this chapter is on the development of approximation algorithms. Aiming

for approximation algorithms is reasonable in the context of path planning for a collection

of Unmanned Aerial Vehicles (UAVs) with motion constraints because the cost of traveling

between any two targets for a UAV can depend on several factors including wind distur-

bances. Hence, it is appropriate to devise approximation algorithms for these planning

problems that are relatively inexpensive than devise algorithms that opt for exact solutions.

In this sense, the approach adopted in Chapter II is reasonable in decoupling the discrete

optimization and continuous optimization by first determining the sequence of targets to

be visited by each UV based on the Euclidean distances and then determining the heading

angles using a Dynamic Programming technique. To realistically solve this complicated

problem in real-time will be difficult and hence, a sub-optimal solution for the discrete

problem based on the Euclidean distances may be used for planning the motion of a UAV

even in the presence of wind disturbances.

In Chapter III, we introduce a 3-approximation algorithm for the following two depot,

heterogeneous TSP (or simply 2-HTSP), when the costs associated with each vehicle satisfy

the triangle inequality: Given a set of targets and two heterogeneous UVs that start from

distinct depots, find a tour for each vehicle such that each destination is visited exactly once

and the total cost of the tours of the vehicles is a minimum. We assume that the headings

are specified at each and every target and we relax the motion constraint that a UV travels
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in the forward direction only, i.e., we will treat each UV to be a Reeds-Shepp vehicle. In

this case, the distance between any two nodes is symmetric (i.e., for the kth UV, the cost,

cijk, of travel from the ith node to the jth nodes is the same as the cost, cjik, of travel from

the jth node to the ith node. We will further assume that triangle inequality holds for every

UV, i.e., for every k and for any three distinct nodes i, j and l, the following inequality

holds: cijk + cjlk ≥ cilk.

At the end of Chapter III, we provide generalization of the results of 2-HTSP to col-

lections of more than 2 structurally heterogeneous vehicles. In the process of developing an

approximation algorithm for multiple vehicles, we also pose a Heterogeneous, Minimum

Cost Spanning Forest (HMSF) problem, a combinatorial problem of independent interest

that seems relevant to developing a constant factor approximation algorithm for Multiple

depot HTSP.

C. Motion planning for a collection of functionally heterogeneous UVs

In Chapter IV, we consider UVs that are structurally homogeneous but have different ca-

pabilities, e.g., they may have different on-board sensors for servicing targets. The cost of

travel from ith node to jth node is the same for every UV in the collection. The UVs differ

from each other in their sensing capabilities and accordingly, we categorize the targets into

three disjoint subsets:

1. Category I: Any target in this category may be visited by any UV in the collection.

2. Category II: A target in this category may only be visited by a specific UV or a sub-

set of UVs. This arises in a scenario where the technology/equipment to accomplish

the desired task on a target is available only to a subset of UVs. Also, if a group of

targets form a cluster i.e., they are very close to each other in terms of distance, it

might be economical to let one UV perform all the tasks on these group of targets.
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3. Category III: A target in this category may be unsuitable to be visited by a particular

UV or a subset of UVs.

Even though the cost of traveling from one node to another is the same for every UV,

these restrictions on the assignment of UVs to target, which we will refer to as assignment

constraints, introduce heterogeneity.

In this chapter, the following problem is considered: Given a set of depots (starting

locations of UVs) and their corresponding terminals (ending locations of UVs) find a path

for each vehicle such that

• the path of each UV starts from its respective depot and ends at the corresponding

terminal,

• each target is visited exactly once by some vehicle,

• the assignment constraints are satisfied and,

• the total cost of the paths of all the UVs is a minimum among all possible choices of

paths for the UVs.

The above problem is a generalization of the Hamiltonian Path Problem (HPP), which

is also NP-hard [8]. An optimal Hamiltonian path is a path that contains each vertex exactly

once of minimum total cost. The best approximation algorithm currently available for the

HPP was proposed by Hoogeveen [15]. In [15], Hoogeven proposed an approximation

algorithm for three variants of single HPP that depend on the choice of the endpoints of the

path. Hoogeveen modified the Christofides algorithm, and provided a 3-approx algorithm

for the variant of the HPP when at most one endpoint is fixed and proposed a 5-approx

algorithm when both endpoints are fixed.

We develop constant factor approximation algorithms based on the work of Hoogeven

for the case of multiple UVs.
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D. Contributions of the dissertation

The following are the novel contributions of this work:

• This dissertation provides a generalization of the Held-Karp lower bound for asym-

metric and symmetric MDMTSP; further, it provides sub-optimal motion plans for

a collection of homogeneous UVs with bounds on the deviation of the cost of the

motion plans from the optimal one. The sub-optimal motion planning algorithm and

the computation of the bound is based on the generalization of Held-Karp algorithm

for a single TSP and dynamic programming.

• This dissertation identifies a combinatorial problem of independent interest - Min-

imum cost, Heterogeneous Spanning Forest (MHSF). Although the computational

complexity of this problem is not readily apparent, this provides the first approxi-

mation algorithm for the construction of a suboptimal Heterogeneous Spanning For-

est and the associated Multiple Depot, Multiple Heterogeneous Traveling Salesmen

Problem.

• Prior to this dissertation, there were no constant factor approximation algorithm for

any variant of the heterogeneous, multiple HPP. The contribution on this dissertation

is in providing a constant factor approximation algorithm for the variant of HPP

considered. In this chapter, a 11/3 approximation algorithm for the multiple depot-

terminal HPP with functional heterogeneity constraints is presented. In the special

case when the locations of the terminals coincides with their respective depots, the

approximation factor of the proposed algorithm reduces to 3.5. This approximation

factor of 3.5 also holds true for other variants of the heterogeneous, multiple depot

HPP when at most one endpoint is specified for each vehicle.
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CHAPTER II

LAGRANGIAN-BASED MOTION PLANNING ALGORITHMS FOR A

HOMOGENOUS COLLECTION OF UVS

This chapter ∗ consists of two parts: In the first part, we provide algorithms for planning the

motion of a homogeneous collection of UVs whose costs are symmetric, i.e., the cost, cij , of

traveling from a node i to node j is the same as the cost, cji, of traveling from node j to node

i. One obtains such a problem by relaxing the motion constraints of a UV altogether and

considering the cost of travel, cij between the ith and jth nodes to be the Euclidean distance

between them. In the second part of this chapter, we relax the assumption of symmetry and

this situation corresponds to treating UVs as Dubins’ vehicles. We provide a Lagrangian-

based algorithm and provide a useful lower bound for this problem through the use of

duality. We also provide Lagrangian heuristics to compute a sub-optimal solution from the

dual solution. We adopt a two-step approach for the computation of a sub-optimal solution

for the UVs in the collection: By considering the cost of travel between a pair of nodes

to be the Euclidean distance between the nodes, we develop a partition and assignment of

sequence of targets to each UV and we use Dynamic Programming technique to determine

the optimal heading angle for each UV at the targets assigned to it.

A. Lagrangian based algorithm for MDMTSP

Motion planning of a collection of unmanned vehicles has significant applications, see [1,

2, 3, 4] and the references therein. The problem of motion planning considered for these

applications involves the solution of a combinatorial problem, wherein one must determine

∗Part of this chapter was reprinted with permission from “3-Approximation Algorithm
for a Two Depot, Heterogenous Traveling Salesman Problem,” by Sai Yadlapalli, Sivaku-
mar Rathinam and Swaroop Darbhn, Accepted for Publication in Operation Research Let-
ters, Copyright c⃝ 2010 by Elsevier http://www.elsevier.com/
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the set of points to be visited by each vehicle and the sequence in which they must be visited

before returning to the initial location (depot). Equally important is the consideration of

motion constraints of vehicles in the planning.

Underlying the combinatorial problems of motion planning for vehicles is a variant of

the Traveling Salesman Problem (TSP), which will be referred to as the Multiple Depot,

Multiple Traveling Salesmen Problem (MDMTSP). For a mathematical formulation of the

problem, let a graph G = (V,E, c) that represents a network of roads connecting a set of

cities (nodes) V and let E be the set of roads (edges) connecting the cities (nodes). Let

cij represent the distance between the ith and jth nodes. The MDMTSP may be posed

as follows: Given a set of m salesmen starting from distinct nodes (depots) and a set of

distinct nodes that they must collectively visit, find a tour1 for each salesman in such a way

that each node is visited at least once by some salesman and the total distance traveled by

the salesmen is a minimum among all possible sets of tours assigned to them. If the triangle

inequality holds2, it is easy to see in an optimal solution of the MDMTSP that each node

is visited exactly once by some salesman. This problem is an NP-hard problem as it is a

generalization of the Traveling Salesman Problem (TSP).

In view of this, there are two options to solve TSP - the first is to find a polynomial

algorithm that returns an approximate solution whose cost is within a guaranteed factor

of the optimal solution which is known apriori. The development of such algorithms is

an active topic of research; an excellent overview of such algorithms for some NP- hard

problems is given in the recent book of Vazirani [11]. The second approach is to forego the

polynomial running time guarantee but solve the problem exactly. This is possible because

the set of feasible solutions to the problem is finite and one can systematically enumerate

1A tour through a set of vertices {i1, . . . , ik} is the set of k ≥ 3 distinct edges
{(i1, i2), (i2, i3), . . . , (ik−1, ik), (ik, i1)}.

2A triangle inequality holds for the graph G if for every i, j, k ∈ V , if cij + cjk ≥ cik.
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all the feasible solutions and find an optimal one by discarding sets of feasible solutions

that are guaranteed to not contain the optimal solution. This is at the heart of most Branch

and Bound procedures. Discarding sets of feasible solutions requires finding a lower/upper

bound on the cost of solutions in the set in an efficient manner. The effectiveness of a B&B

procedure depends on the tightness of the lower and upper bounds that one has at hand.

In a symmetric TSP, the costs of edges (i, j) and (j, i) are the same, i.e., cij = cji.

The symmetric TSP admits constant factor approximation algorithms, notable among them

are the 2−approx algorithm that is based on doubling the Minimum Spanning Tree (MST)

of G, the 1.5− approximation algorithm of Christofides that is based on the computation

of MST of G and a non-bipartite matching of a subgraph of G, and the recent (1 + ϵ)

approximation algorithm of Arora for planar TSP [16]. The development of constant factor

approximation algorithms for the Asymmetric TSP (ATSP) is an open problem [11].

B&B algorithm have no polynomial running time guarantees. The B&B scheme pro-

posed by Held and Karp [13] is based on the computation of a “tight” lower bound using

1−trees. This bound, referred to as the Held-Karp Lower bound (HKLB), is reported to

be within 1 − 2% of the optimum on instances in the TSPLIB [17]. Essentially, HKLB

is determined by solving the dual program associated with the Dantzig-Fulkerson-Johnson

(DFJ) Integer Linear Programming formulation of the TSP [13]. It involves relaxing the de-

gree constraints on all nodes except the first node and retaining the connectivity constraints

(which are exponential in the number of nodes and essentially state that if the first node

and the edges incident on it are removed from the solution, the resulting graph must be a

spanning tree). For every set of penalty variables associated with the relaxed constraints,

one can compute the dual in an efficient way through the computation of an associated

MST [13, 18, 19]. The maximization of the dual program can then be performed using a

sub-gradient method [20]. If triangle inequality holds for the edge costs, HKLB is guaran-

teed to be at least two-thirds the optimum [21, 22, 23].
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There is a wealth of literature dealing with the TSP and the single depot variant of the

MDMTSP can be reduced to a TSP [13, 24]. Rao [25] converted the MDMTSP to a TSP

when the number of salesmen is restricted to two. It is not clear if the general MDMTSP

problem can be converted to a TSP. In light of this shortcoming, the literature on TSP

cannot be readily applied to the MDMTSP.

The symmetric version of the MDMTSP admits a 2−approx algorithm [26, 27] when

the edge costs satisfy the triangle inequality. The extension of Held-Karp’s approach to

finding Hamiltonian paths for multiple vehicles was recently considered in [28]. In this

work, the terminal points are not specified, and in principle, it can be converted to a TSP on

a directed graph, and one can employ the Held-Karp’s approach for directed graphs. Since

there is no ready transformation of the MDMTSP to TSP, a generalization of the Held-

Karp’s method is provided in this chapter and use it to compute primal feasible solution

and provide a posteriori guarantee of the quality of solution obtained by the proposed

method.

The problem of motion planning for a single Dubins’ vehicle is considered in [26, 29].

The approach of [26] is to provide an approximate solution that is guaranteed to be within

a constant factor of the optimum, while in [29], the authors provide a bead-tiling algorithm

which has asymptotic guarantees.

The problem of motion planning of multiple vehicles is considered in [26, 27] with

a view towards providing approximate solutions that are guaranteed to be within a certain

factor of approximation. The schemes considered make the assumption that the points

are well separated, i.e., the distance between points is at least twice the minimum turning

radius of the vehicles. This condition is reasonable when the dimension of the sensor

footprint is comparable or greater than the turning radius and it enables the separation

of the combinatorial problem of finding the set of points to be visited by vehicles and

the sequence in which they must be visited from the continuous optimization problem of
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determining the headings at each point.

Following [26, 27], in this chapter, a two step approach is adopted for solving the

MDMTSP when a Dubins vehicle represents a salesman. The combinatorial aspect of

the problem can be solved by considering the Euclidean distances between the vertices. To

solve the combinatorial problem, a generalization of Held-Karp’s method for the MDMTSP

is presented. In Section 1, we illustrate the procedure for finding a lower bound and the

effectiveness of the lower bound using branch and bound procedure for various cases of

the Euclidean MDMTSP. In Section 3, this method will be applied to a motion planning

problem for mobile robots. Once the sequence of the vertices to be visited is known for

each vehicle, the dynamic programming technique is used to compute the optimal heading

for the vehicle at each vertex. Numerical results corroborating the efficacy of the proposed

procedures are also included in Section 3.

1. Computation of a lower bound for the MDMTSP

An efficient scheme for obtaining a tight lower bound for the MDMTSP is useful for two

reasons - first, it can be used in a B&B procedure and secondly, it can be used to eval-

uate the quality of approximate solutions obtained by various heuristics. In this section,

the method of Held and Karp [13] will be generalized for the MDMTSP. It is known that

every combinatorial problem admits multiple integer programming formulations, each re-

flecting the structure of the problem in a different way. Even the TSP has at least three

different formulations: the integer linear programming formulations of Dantzig, Fulkerson

and Johnson and that of Miller, Tucker and Zemlin. The former has exponential (in the

size of the targets) number of constraints while the latter has only a polynomial number of

constraints; a third one is a semi-definite programming formulation recently proposed by

Cezik and Iyengar [30]. It is known, in the literature, [31] that the polytope corresponding

to Dantzig-Fulkerson-Johnson’s formulation [14] is contained in that of the polytope from
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Miller-Tucker-Zemlin’s formulation [32]. The Cezik and Iyengar’s semi-definite program-

ming formulation [30] has not been followed because Goemans [33] pointed out that the

connectivity requirements become weak in the semi-definite programming formulation as

the size of the vertices in the graph increase; moreover, the bounds obtained by relaxing

the integrality constraints asymptotically tend to the bounds obtained by an assignment

problem. We adopt a generalization of Dantzig-Fulkerson-Johnson formulation and Held-

Karp’s procedure for the problem at hand.

For purposes of notation, let the set of depots by D, the set of targets (cities) to be

visited by T and the set of vertices (nodes), V = D ∪ T . The cardinality of the set D is

m and that of T is n. The set of edges between the nodes is represented by E. Let the

δ(X), X ⊂ V to denote the set of edges with exactly one end in X and E(X), X ⊂ V

to indicate the set of edges with both ends in X . Let xe, e ∈ E and yv, v ∈ D to be

the binary variables that respectively represent the choice of the edge and the depot in the

solution. We will let ce, e ∈ E to denote the cost of an edge e. In this chapter we assume

that the edges satisfy triangle inequality as they represent distances between vertices. This

is very crucial in determining that the below binary program produces an optimal solution

that corresponds to an optimal solution of the MDMTSP:

J =min
∑
e∈E

cexe, (2.1)
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subject to

∑
e∈δ(v)∩δ(D)

xe = 2yv, v ∈ D (2.2)

∑
e∈δ(v)

xe = 2, v ∈ T, (2.3)

∑
e∈E(S)

xe ≤ |S| − 1, ∀ S ⊂ T, (2.4)

∑
e∈E(T )

xe +
∑
y∈D

yv = n, (2.5)

∑
v∈D

yv ≤ q, (2.6)

xe ∈ {0, 1}, yv ∈ {0, 1}. (2.7)

Constraints (2.2) and (2.3) represent the degree constraints of the depots and target cities

respectively. In particular, if a depot is not chosen, then no edge incident on the depot can

be chosen from the solution as constrained by (2.2). The constraint (2.32) indicates that

if the depots and the edges incident on the depots were to be removed from the solution,

the resulting graph will be acyclic; such constraints were used in the Linear Programming

formulation of a Minimum Spanning Tree (MST) by Edmonds [11]. The constraint (2.33)

indicates that if p depots were chosen in the solution, then the graph satisfying (2.32) must

have exactly p components. The constraint (2.34) indicates that there be at most q depots

be chosen in any solution. The discussion below shows that the above binary program

represents the MDMTSP problem at hand:

Every feasible solution to MDMTSP requires a choice of at most q vehicles and a tour

associated with each vehicle has at least two target cities. Therefore, every feasible solution

satisfies the constraints (2.2) through (2.35). Hence, J ≤ MDMTSP ∗, the optimal cost

of MDMTSP.

Consider an optimal solution to the binary program. Since the degree of every selected
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depot vertex and the target city vertex is 2, the optimal solution must represent a union of

cycles and isolated depots. Clearly, the constraint (2.32) does not admit a cyclic solution

amongst the target cities and hence, it must be the case that every cycle of an optimal

solution to MDMTSP must contain at least one depot vertex. It cannot have more than one

depot vertex; otherwise, using triangle inequality, additional depot vertices can be short cut

to produce a solution to MDMTSP with a smaller cost than the optimal solution. Since

the optimal solution to the binary program is a feasible solution to MDMTSP, it can be

concluded that J ≥MDMTSP ∗ and hence J =MDMTSP ∗.

The binary program considered for MDMTSP is hard to solve and is analogous to the

DFJ formulation of the TSP. Held-Karp’s method dualizes the DFJ formulation by relaxing

the degree constraint on the target cities. In the same spirit, one may include the degree

constraint on the depots and relax the constraint on the city vertices. Doing so, one gets a

relaxed binary linear programming which can be computed as shown in the Lemma 1 that

follows and is a lower bound for MDMTSP ∗.

When the violation of degree constraint (2.3) is penalized, one has a penalty variable,

πv, v ∈ T . Let Π be the vector of penalty variables, with πv ≡ 0, v ∈ D. Such a Π is

referred to as an admissible Π. One may then express the Lagrangian as:

L(Π) := min
∑
e∈E

cexe +
∑
v∈T

πv(
∑
e∈δ(v)

xe − 2), (2.8)

subject to constraints (2.2), (2.32) through (2.35). The objective function may be expressed

as:

L(Π) =
∑

e=(v,w)∈E

(ce + πv + πw)︸ ︷︷ ︸
ce(Π)

xe − 2
∑
v∈T

πv. (2.9)

It is clear that every feasible solution of MDMTSP is at least L(Π) and L(Π) is a lower

bound for MDMTSP ∗. From (2.36), it is clear that L(Π) is concave in Π as it is the
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minimum of a finite number of linear functions in Π. Consider the following lemma:

Lemma 1. For any given admissible Π, consider the binary program given by objective

function in (2.9) and subject to constraints (2.2) through (2.35). This program is solvable

in polynomial time and the optimal cost is a concave function of the edge costs, ce, e ∈ E

and is a lower bound on MDMTSP ∗.

Proof: It is sufficient to show that the following program is polynomially solvable for

every integral p lying between 1 and q:

Jp = min
∑
e∈E

ce(Π)xe, (2.10)

subject to

∑
e∈δ(v)∩δ(D)

xe = 2yv, v ∈ D, (2.11)

∑
y∈D

yv = p, (2.12)

∑
e∈E(S)

xe ≤ |S| − 1, ∀ S ⊂ T, (2.13)

∑
e∈E(T )

xe = n− p, (2.14)

xe ∈ {0, 1}, yv ∈ {0, 1}. (2.15)

The solution to the above program can be found using the following algorithm:

1. Compute the minimum spanning forest, MSF ∗
p on T with p components.

2. Determine the two cheapest edges incident on every v ∈ D and let their total cost be

tv.

3. Sort tv, v ∈ D and find the cheapest p costs and the set, E∗
p of the corresponding 2p

edges. Let the total cost of the cheapest p edges is C∗
p .
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4. The optimal cost of the binary program is MSF ∗
p + C∗

p . The corresponding optimal

solution can be determined by the set of edges in MSF ∗
p and the edges E∗

p .

The polynomial running time guarantee of the algorithm is immediate from the steps

(1) through (4). The correctness of the algorithm can be seen by rewriting the binary

program given as follows:

Jp = min
∑

e∈E(T )

cexe +
∑

e∈δ(D)

cexe, (2.16)

subject to

∑
e∈E(S)

xe ≤ |S| − 1, ∀ S ⊂ T, (2.17)

∑
e∈E(T )

xe = n− p, (2.18)

∑
e∈δ(v)∩δ(D)

xe = 2yv, v ∈ D, (2.19)

∑
v∈D

yv = p, (2.20)

xe ∈ {0, 1}, yv ∈ {0, 1}. (2.21)

Since the variables in constraints (2.17) through (2.18) and (2.19) through (2.20) are sepa-

rable (i.e., are not coupled) and the objective function is also separable, the minimization of

the objective function can be carried out separately. Clearly, step (1) of the algorithm pro-

vides a solution for minimization of the objective function over the variables in constraints

(2.17) through (2.18), while steps (2) and (3) solve the minimization of the objective func-

tion over the variables in constraints (2.19) through (2.20). It is then easy to see that the

objective function, J may be computed as J = minp Jp.

For every admissible Π, the optimal solution for MDMTSP does not change when the

weight of each edge e = (v, w) is modified as c̃e = ce + πv + πw. Further, the cost of the
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optimal solution changes as:

MDMTSP ∗ + 2
∑
v∈T

πv.

By Lemma 1, it is known that L(Π) can be computed in polynomial time and

MDMTSP ∗ + 2
∑
v∈T

πv ≥ L(Π).

Therefore, one has:

MDMTSP ∗ ≥ L(Π)− 2
∑
v∈T

πv. (2.22)

Since the above inequality holds for all Π : πv ≡ 0, v ∈ D, one can then maximize the

right hand side of the inequality to get a tighter lower bound.

MDMTSP ∗ ≥ max
Π:πv=0, v∈D

L(Π)− 2
∑
v∈T

πv︸ ︷︷ ︸
ϕ(Π)

,

where ϕ(Π) is a lower bound to MDMTSP, corresponding to the vector of penalty variables,

Π. Let HKLB = max
Π:πv=0, v∈D

ϕ(Π) (right side of the inequality).

2. Numerical results

With the relaxed constraints on the degree of the targets, the dual solution at each iteration

may not be a primal feasible one. The primal feasible solution is computed using the p-

spanning forest MSF ∗
p generated by the dual algorithm. The procedure of assigning the

depots to each component of the MSF ∗
p and forming the feasible p-tours through modified

Lagrangian heuristics is given below.

Primal feasible Algorithm:

1. For each v ∈ D and ith component of MSF ∗
p , i ∈ {1, 2, . . . , p}, the cost, Avi is
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computed to be the total cost of the two cheapest edges in δ(v) ∩ δ(Si), where Si is

the set of nodes in ith component of MSF ∗
p

2. Assign a depot to every component in MSF ∗
p such that the total assignment cost is

minimum.

3. Let Zi be the set of edges in ith component of MSF ∗
p and let vi be the assigned

vehicle. Define Fi := Zi ∪ ei, where ei is the cheapest edge in δ(v) ∩ δ(Si).

4. On each Fi, use the Lagrangian heuristics in [34] to modify the relaxed solution into

a primal feasible one.

At each iteration k, compute a new set of penalty parameter [Π]k+1 from [Π]k through

an update scheme, so that one can get an improved direction of updating dual cost. Since,

by relaxing the constraints on the degrees of the targets a non-smooth dual problem is

generated, an non-smooth optimization method is employed. A method that works well

in practice for optimization problems of this genre is the sub-gradient method. In each

iteration, a new set of penalty parameters are generated. The direction of update is defined

through the sub-gradient. The sub-gradient can defined as follows:

gv =
∑
e∈δ(v)

xe − 2, ∀v ∈ T

gv = 0,∀v ∈ D

The new update [πv]
k+1 is computed as follows:

[Π]k+1 = [Π]k + βk[g]k ∀v

where the size of the step, β at iteration k is computed as

βk = ζk
MDMTSP ∗ − ϕ([Π]k)

||[g]k||
(2.23)
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where ϕ([Π]k) is the value of ϕ(Π) at the kth iteration. The above expression (2.51) is

commonly referred to as Polyak rule II. Since, the optimal solution MDMTSP ∗ is not

known, alternatively use the cost of the best primal solution found so far. A common

practice is to start ζk with a fixed value and reduce ζk by a constant factor after a specified

number of iterations or whenever ϕ([Π]k) does not increase within specified number of

iterations. The iterative procedure can be briefly put as follows:

1. Initial step: k = 0, Initialize ζk = ζ0.

2. For the computed [Π]k, solve the relaxed problem.

3. Use Primal feasible Algorithm to generate a primal feasible from the dual solution.

Let the cost of best primal feasible solution found so far be [C∗]k

4. Stopping criterion: If [C∗]k−ϕ([Π]k)
ϕ([Π]k)

≤ ϵ or k = Nmax, then go to 6.

5. Compute [Π]k+1 and set k = k + 1 and go to 2.

6. Stop the iterative process.

In step 4, [C∗]k−ϕ([Π]k)
ϕ([Π]k)

is the duality gap and ϵ is the desired duality gap. Since, the primal

problem is an integer problem, one may not be able to assure a zero duality gap. One

can apply the algorithm presented in the previous section to 20 instances. The maximum

number of iterations allowed is chosen to be 50. ζk was chosen to start with a value of 0.2

and is reduced by a factor of 2, if the dual does not improve in 10 successive iterations.

The value of ϵ for the stopping criterion is chosen to be 10−4. For the first 10 iterations, a

primal feasible solution is not computed. The results are shown in the following table. All

the depots are allowed to participate in the tour, i.e, q = |D|.

In Table I, n refers to the number of targets, m is the number of depots available, C∗
p is

the best found cost of the generated primal feasible solution, ϕ([Π]k)∗ is the best dual cost
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Table I. Computational results for various instances of MDMTSP

% of Duality Gap in k Iterations

n m ϕ([Π]k)∗ k∗dual C∗ MDMTSP ∗ k = 25 k = 50

15 3 2753 24 2753 2753 ‡ ‡

18 4 2651 49 2662 2653 0.8678 0.4892

19 6 2822 40 2840 2840 0.8228 0.6738

20 4 2430 50 2455 2455 1.4389 1.0409

20 7 1301 11 1301 1301 ‡ ‡

24 6 2172 46 2247 2217 3.5627 3.4671

25 5 3115 50 3118 3118 0.1032 0.0992

26 5 2583 47 2592 2592 0.5577 0.4047

28 6 3000 50 3052 3000 1.7373 1.7373

30 3 2599 40 2681 2659 4.1973 3.1605

33 6 3173 50 3173 3173 0.1144 0.0113

35 3 3313 41 3400 3330 2.8272 2.6455

37 3 3483 50 3484 3484 0.1677 0.0453

40 5 3459 47 3462 3462 0.1419 0.1051

40 7 3488 49 3587 3518 4.4790 2.2483

40 8 3776 46 3834 3814 2.5343 1.5862

44 5 3369 47 3464 3409 3.8615 2.8482

44 6 3031 40 3068 3031 1.3789 1.2578

45 5 3681 50 3696 3696 0.5226 0.4399

45 10 3409 43 3452 3410 1.6487 1.2555
‡ indicates that the stopping criterion is met before reaching that step
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Fig. 1. The optimal solution of MDMTSP generated through YALMIP.

computed, k∗dual is the iteration at which the best dual occurred and MDMTSP ∗ refers

to the optimal cost for that instance. For computing MDMTSP*, the integer program is

solved using GLPK (GNU Linear Programming Kit). The code is written in Matlab and

YALMIP [35] is used to formulate the problem and also provides the interface to GLPK.

An illustration of this method using m = 6, n = 25 is shown in Fig. 1. The dual

solution at the end of 50 iterations can be seen in Fig. 2. The black stars correspond to the

vehicles. There are two tours in the approximation, i.e., p = 2. These are shown in Fig. 3

using solid lines. The total cost of the 2 tours is 3334 units and is guaranteed to be less than

twice the optimal cost (2 MDMTSP ∗). MDMTSP ∗ computed by solving the integer

programming through Yalmip gives a cost of 3334 units, which is same as the primal cost

at the end of 50 iterations in this instance. The cost of the dual solution generated is 3332

units and the duality gap is 0.06%.
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Fig. 2. Dual Solution generated at k = 50

3. Determination of optimal heading angles for visiting targets in a given sequence

If the sequence of targets to be visited is specified a priori for a Dubins’ vehicle, the problem

of determination of optimal heading angles at each target can be solved through Dynamic

Programming (DP). A method for the determination of the sequence of targets to be visited,

by each vehicle, based on Euclidean distances between targets was presented in the previ-

ous section. A sub-optimal solution is settled upon in order to decouple the continuous

optimization problem of determining optimal heading angles at each vertex in T from the

combinatorial problem. The sub-optimal solution is obtained by carrying over the solution

to the combinatorial problem from the previous section and require that the Dubins’ vehicle

visit the specified vertices in the specified order.

Let the sequence of targets to be visited by a chosen vehicle v ∈ D be {1, 2, . . . , k}
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Fig. 3. Tours generated through primal heuristics at k = 50

3. Let Θi be the set of heading angles allowed for the Dubins’ vehicle at the ith target. Let

θ0 be the heading angle of the v at its starting location. If Θi contains only one element, it

implies that the heading is specified at the ith target. For the sake of converting a tour to

a path, let a fictitious (k + 1)st target be located at the same place as v is initially located

and has the same heading angle as the initial heading angle of v. Let dij(θi, θj) denote

the shortest path from the ith target to the jth target. Such a distance can be computed

efficiently using the result of Dubins [6]. Assume that θ0 is known and thus the problem

3The primal solution generates a tour for each chosen vehicle. Since, there is no sense
of directionality associated with the tour generated, {k, k − 1, . . . , 2, 1} is also a valid
sequence. The dynamic programming is detailed for the sequence {1, 2, . . . , k }. However,
the same process needs to be repeated for the reverse sequence and the minimum of the two
costs provides the best approximate tour for the chosen vehicle with motion constraints.
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can be posed as:

d∗ = min
θi∈Θi, i=1,...,n+1

n∑
i=0

di,i+1(θi, θi+1). (2.24)

To obtain the DP recursion equations:

d∗i,i+1(θi, θi+1) := di,i+1(θi, θi+1), i = 0, . . . , k, (2.25)

and for l ≥ 2 and 0 ≤ i ≤ k + 1− l,

d∗i,i+l(θi, θi+l) := min
θi+l−1∈Θi+l−1

d∗i,i+l−1(θi, θi+l−1) + d∗i+l−1,i+l(θi+l−1, θi+l). (2.26)

Using this recursion, one can compute d∗ = d∗0,k+1(θ0, θ0) and the corresponding optimal

arguments θ∗1, θ
∗
2, . . . , θ

∗
k.

a. Implementation

If the set Θi is an interval, one may partition it with N heading angles, θki , k = 1, . . . , N ,

in the partition. Assume that N is at least the size of any discrete set, (say Θp), one may

have. One can now construct a graph with at most O(nN) vertices with each vertex corre-

sponding to a target that may be visited at a discretized value of Θi. One can now construct

edges between vertices as follows: There are edges only between vertices that correspond

to targets that must be successively visited. For this reason, let dk,li,j denote the distance

di,j(θ
k
i , θ

l
j). The source node corresponds to the location of v with its specified initial head-

ing and the terminal node again corresponds to the same. The problem of determining the

optimal heading angles is posed as determining the shortest path from the source to the ter-

minal. Since edges exist only between targets that must be successively visited, the shortest

distance will not be zero, as there is no edge between the source and the terminal. Using

(2.26), one can show that the time complexity of the algorithm is O(nN2).
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Fig. 4. Tours for each vehicle imposing motion constraints

b. Numerical results

Consider the example in Section 1. Fig. 3 chooses 2 vehicles and constructs a tour for each

of them, and hence the sequence of targets to be visited by each used vehicle is specified.

Taking into consideration, the motion constraints given in [6] for a Dubins’ vehicle and

compute sub-optimal heading angles at each target through the Dynamic Programming

(DP) procedure detailed above. Assume that the initial (and final) heading of each vehicle

to be 0◦. The sub-optimal tours generated is shown in Figure 4. The total cost of the

sub-optimal is 3549.7 units. It can be easily calculated a posteriori that the sub-optimal

Dubins’ cost is within 3549.7
3332

= 1.0653 of the optimal Dubins’ cost.
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B. Extension to asymmetrical variant of the problem

The problem of motion planning involves the solution of a combinatorial problem, wherein

one must determine the set of targets to be visited by each vehicle and the sequence in

which they must be visited before returning to its initial location (depot). Equally important

is the consideration of motion constraints of the vehicles in the planning. In this section,

a combinatorial motion planning problem involving a homogeneous collection of vehicles

where the motion of each vehicle satisfies a non-holonomic constraint is addressed. The

non-holonomic constraint considered is that the yaw rate of the vehicle at any time is upper

bounded by a constant. Hence, if the vehicle is traveling at constant speed, this constraint is

equivalent to a lower bound on the turning radius of the vehicle. The combinatorial motion

planning problem (CMP) is as following:

Given a set of m vehicles and n targets on a plane, the heading angles of each target

and the initial heading angles of each vehicle, the CMP is to

• choose at most p(≤ m) vehicles,

• assign a set of targets for each chosen vehicle such that each target is visited exactly

once,

• find a feasible path (i.e. a path that satisfies the yaw rate constraints) for each chosen

vehicle such that the vehicle starts at its initial position, visits its assigned set of

targets at their respective heading angles in a specified sequence and returns to its

initial position.

The goal is to minimize the sum of the distances traveled by all the chosen vehicles.

The problem of finding the minimum distance path the vehicle must take between

any two positions on a plane subject to the constraints on the yaw rate has been solved

by Dubins [6]. Hence, the CMP can be posed as a multiple depot Asymmetric Traveling
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Salesman Problem (ATSP). This problem is a generalization of the single TSP and is NP-

Hard. The difficulty of this CMP is due to the following reasons:

1. The vehicle-target assignment is not given.

2. Given the vehicle-target assignment, finding the optimal sequence for each vehicle

is again a single depot ATSP which is hard. Several approximation algorithms and

heuristics that work well for the single symmetric TSP does not work well for single

depot ATSP [36].

Reference [37] provides an extensive review of the solution procedures for the mul-

tiple Traveling Salesman Problem. As previously mentioned in the introduction, CMP is

NP-Hard. Unlike the symmetric counterparts that have constant factor approximation4 al-

gorithms [26, 27], the best approximation algorithms available even for a single depot ATSP

have approximation ratios scale in the order of log(n) [38, 39]. One way to address a CMP

is to convert to the CMP into a single ATSP and use the algorithms available for ATSP to

solve CMP. But this is currently available only for m = 2 [25]. For a general m, Laporte

gives a transformation of CMP to a constrained assignment problem. As mentioned in [40],

[37], it is an incomplete transformation due to the presence of non assignment constraints.

Branch and Bound methods can be used to solve CMP [31]. In general the effective-

ness of a B&B procedure depends on the tightness of the lower and upper bounds that one

has at hand. In this chapter, tight lower bounds for CMP are generated using Lagrangian

Relaxation. This generalizes the results by Held-Karp [13] available for the single TSP for

the CMP.

It will be assumed that the heading of each target is known. This allows one to view

CMP purely as a combinatorial problem using Dubins [6] result. The CMP without this

4A polynomial algorithm that returns an approximate solution whose cost is within a
guaranteed factor of the optimal solution.
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assumption has also received significant attention in the literature [26, 29, 41, 42]. Though

motion constraints are an integral part of all these variants of the CMP, it is hard to envision

good algorithms or heuristics for the same that does not exploit the combinatorial structure

of the problem.

1. Asymmetrical variant: Problem formulation

LetD represent the set of depots (initial locations of vehicles), T represent the set of targets

and let V = D ∪ T . The cardinality of D is m and that of T is n. The set of all the edges

connecting any two vertices in V is represented by E. An arc e = (x, y) is considered to

be directed from x to y. y is called the head and x is called the tail of the arc. Let ce be the

cost of arc e. Basically, ce is the length of the Dubins path from vertex x to vertex y. Note

that the costs, ce, satisfy triangle inequality. Let δ(A) to indicate the set of edges with their

tails in A, ∆(A) to indicate the set of edges with their heads in A and E(X), X ⊂ V to

indicate the set of edges with both their heads and tails in X . Let xe, e ∈ E and yv, v ∈ D

to be the binary variables that respectively represent the choice of the edge and the depot

in the solution. The integer program for the CMP is formulated as follows:

CMP ∗ = min
∑
e∈E

cexe, (2.27)



34

subject to

∑
e∈δ(v)

∩
∆(T )

xe = yv, v ∈ D (2.28)

∑
e∈∆(v)

∩
δ(T )

xe = yv, v ∈ D (2.29)

∑
e∈δ(v)

xe = 1, v ∈ T. (2.30)

∑
e∈∆(v)

xe = 1, v ∈ T. (2.31)

∑
e∈E(S)

xe ≤ |S| − 1,∀S ⊂ T, (2.32)

∑
e∈E(T )

xe +
∑
v∈D

yv = n, (2.33)

∑
v∈D

yv ≤ q, (2.34)

xe ∈ {0, 1}, yv ∈ {0, 1}. (2.35)

Constraints (2.28) and (2.29) represent the out-degree and the in-degree constraints

on the depots respectively. In particular, if a depot is not chosen, then no edge incident

on the depot(incoming or outgoing) can be chosen from the solution as stated by (2.28)

and (2.29). Constraints (2.31) and (2.30) require the in-degree and out-degree of each

target equal to one. The constraint (2.32) eliminates the presence of any cycles among the

target vertices. Constraint (2.33) indicates that if p depots were chosen in the solution, then

the graph (T,E(T )) must have exactly p components. Constraint (2.34) requires that any

feasible solution must choose at most q depots. As one can notice, Objective function and

constraints (2.322.332.34) are also present in symmetric part of the problem as they hold

in this variant too.

Proposition 1. The integer program for the CMP is valid (i.e. the optimal solution of

the integer program is an optimal solution to the CMP) if the costs, ce, satisfy triangle

inequality.
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Proof. Every feasible solution to the CMP satisfies the constraints (2.28) through (2.35).

Now, consider an optimal solution to the integer program. Since the in-degree and the

out-degree of every selected depot vertex and the target vertex is 1, the optimal solution

must represent a union of cycles and isolated depots. Clearly, the constraint (2.32) does not

admit a cyclic solution amongst the target cities and hence, it must be the case that every

cycle of an optimal solution to CMP must contain at least one depot vertex. It cannot have

more than one depot vertex; otherwise, using triangle inequality, additional depot vertices

can be short cut to produce a solution to CMP with a smaller cost than the optimal solution.

Since the optimal solution to the binary program is a feasible solution to CMP, the integer

program formulated for the CMP is correct.

2. A Lagrangian relaxation of the CMP

In this section, w tight lower bounds are obtained for the integer program stated in the pre-

vious section. In later sections, the results in this section are used to develop a heuristic

for the CMP. The method here (Lagrangian Relaxation) follows the approach by Held and

Karp who used it for solving the symmetric TSP [13]. The basic idea in Lagrangian Re-

laxation is to first identify the constraints that make the integer program difficult to solve.

Then, remove these complicating constraints and penalize them in the objective whenever

they are violated. A Lagrangian Relaxation of the integer program for CMP is:

L(Π,Ψ) := min
∑
e∈E

cexe +
∑
v∈T

πv(
∑
e∈δ(v)

xe − 1) + (2.36)

∑
v∈T

ψv(
∑

e∈∆(v)

xe − 1)
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subject to

∑
e∈δ(v)

∩
∆(T )

xe = yv, v ∈ D

∑
e∈∆(v)

∩
δ(T )

xe = yv, v ∈ D

∑
e∈E(S)

xe ≤ |S| − 1,∀S ⊂ T,

∑
e∈E(T )

xe +
∑
v∈D

yv = n,

∑
v∈D

yv ≤ q,

xe ∈ {0, 1}, yv ∈ {0, 1}.

where, πv (ψv) is the penalty variable when the out-degree (in-degree) constraint of a

target vertex v is violated and Π (Ψ) indicates the vector of penalty variables πv (ψv). The

following lemma shows that L(Π,Ψ) can be computed using a polynomial time algorithm.

Hence, for any given Π and Ψ, computing L(Π,Ψ) would yield a lower bound for CMP ∗.

Lemma 2. For any given Π,Ψ, the Lagrangian Relaxation in (2.36) is solvable in polyno-

mial time.

Proof. It is sufficient to show that the following program is polynomially solvable for every

integer p lying between 1 and q:

Jp(Π,Ψ) := min
∑
e∈E

cexe +
∑
v∈T

πv(
∑
e∈δ(v)

xe − 1) +

∑
v∈T

ψv(
∑

e∈∆(v)

xe − 1),
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subject to

∑
e∈δ(v)

∩
∆(T )

xe = yv, v ∈ D (2.37)

∑
e∈∆(v)

∩
δ(T )

xe = yv, v ∈ D (2.38)

∑
v∈D

yv = p, (2.39)∑
e∈E(S)

xe ≤ |S| − 1, ∀S ⊂ T, (2.40)

∑
e∈E(T )

xe = n− p, (2.41)

xe ∈ {0, 1}, yv ∈ {0, 1}. (2.42)

Observe that the variables in constraints (2.37,2.38,2.39), {yv : v ∈ D}, {xe : e ∈

δ(D)
∪

∆(D)}, and the variables in constraints (2.40,2.41), {xe : e ∈ E(T )}, are not

coupled. Hence the Lagrangian Relaxation can be decoupled into two problems and can be

solved separately as follows:

Problem I:

J1
p (Π,Ψ) := min

∑
e∈E(T )

cexe +
∑
v∈T

πv
∑

e∈δ(v)
∩

E(T )

xe +∑
v∈T

ψv

∑
e∈∆(v)

∩
E(T )

xe,

subject to

∑
e∈E(S)

xe ≤ |S| − 1, ∀S ⊂ T,

∑
e∈E(T )

xe = n− p,

xe ∈ {0, 1}, yv ∈ {0, 1}.



38

Problem II:

J2
p (Π,Ψ) := min

∑
e∈E\E(T )

cexe +
∑
v∈T

πv(
∑

e∈δ(v)
∩

∆(D)

xe − 1) +

∑
v∈T

ψv(
∑

e∈∆(v)
∩

δ(D)

xe − 1),

subject to

∑
e∈δ(v)

∩
∆(T )

xe = yv, v ∈ D

∑
e∈∆(v)

∩
δ(T )

xe = yv, v ∈ D

∑
v∈D

yv = p,

xe ∈ {0, 1}, yv ∈ {0, 1}.

Problem I involves computing a minimum cost, p-component, directed spanning for-

est (DMSF ∗
p ) that can be solved using a polynomial time algorithm given in the appendix.

The solution to problem II can be found using the following steps:

1. Let the modified cost of each edge e in δ(T ) (∆(T )) be ce+πv:e∈δ(v) (ce+ψv:e∈∆(v)).

Determine the cheapest incoming edge and outgoing edge incident on every v ∈ D.

Let their total cost be tv.

2. Sort tv, v ∈ D. The optimal solution, E∗
p , is the set of 2p edges corresponding to the

p cheapest costs.

The optimal cost of the Lagrangian Relaxation, L(Π,Ψ), can be computed asL(Π,Ψ) =

minp(J
1
p (Π,Ψ) + J2

p (Π,Ψ)).

Now, since for every Π,Ψ, CMP ∗ ≥ L(Π,Ψ), one can conclude that
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CMP ∗ ≥ max
Π,Ψ

L(Π,Ψ). (2.43)

maxΠ,Ψ L(Π,Ψ) is the Lagrangian Dual of the integer program for CMP. Note that

L(Π,Ψ) is a concave function of Π and Ψ. Details on how to solve this Lagrangian Dual

are given in the following section.

3. Computing a constrained, directed spanning forest

Add a root vertex r and join r to each of the vertices in T with a zero cost edge. Now, the

problem of finding the minimum cost, p-component directed spanning forest can be posed

as a problem of finding the minimum cost, directed spanning tree with a degree constraint

on the root vertex as follows:

min
∑

e∈E(T
∪
{r})

cexe, (2.44)

subject to

∑
e∈δ({r})

xe = p (2.45)

∑
e∈E(S)

xe ≤ |S| − 1, ∀ S ⊂ T
∪

{r}, (2.46)

∑
e∈E(T )

xe = n− p, (2.47)

xe ∈ {0, 1}. (2.48)

(2.49)

Removing the zero cost edges from the optimal solution to the above problem would

yield the desired minimum cost forest. Consider the following Lagrangian relaxation of the
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above problem:

L(z) = min
x

∑
e∈E(T

∪
{r})

cexe + z(
∑

e∈δ({r})

xe − p) (2.50)

subject to

∑
e∈E(S)

xe ≤ |S| − 1, ∀ S ⊂ T
∪

{r},

∑
e∈E(T )

xe = n− p,

xe ∈ {0, 1}.

Let (z∗) solve the Lagrangian dual maxz L(z). If x∗ is the unique optimal solution

that solves the minimization problem in L(z∗), then using the results in [43],[27] it can

conclude that x∗ also satisfies the complicating constraint. Perturb the cost of the edges so

that, in practice, one needs to find a unique optimal solution x∗. So, the algorithm can be

used to find the degree constrained spanning tree is as follows:

a. Directed spanning forest algorithm

1. Perturb the cost of each edge ce to c̃e = ce + ue, where {ue : e ∈ E(T
∪
{r})}

represent independent, uniform random variables chosen in the interval5 [0, 1
2(n+1)

].

2. Solve the Lagrangian dual problem (2.50) corresponding to cost c̃. The solution to

the Lagrangian dual problem is the desired optimal solution to problem (2.44) with

probability one.

5Assume ce for all e ∈ E(T
∪
{r}) are integers. If ce are rational numbers one can

always multiply them by appropriate constants to make them integers.
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The following part of the section gives a simple proof as to why the Lagrangian dual

problem must have a unique optimal solution with probability one. Specifically, Proposi-

tion 2 states why there should be a unique feasible solution and proposition 3 shows why

the unique feasible solution is also optimal.

Let x1 and x2 be any two feasible solutions that satisfy the constraints in 2.47 and

2.48. Let cost(x, c) =
∑

e∈E(T
∪
{r}) cexe.

Proposition 2. Let P(cost(x1, c + u) = cost(x2, c + u)) indicate the probability that the

solutions x1 and x2 have the same cost. Then, P(cost(x1, c+ u) = cost(x2, c+ u)) = 0.

Let S∗
c be the set of all the optimal solutions that solve the minimization problem in

(2.44) corresponding to the cost function ce.

Proposition 3. For all e ∈ E(T
∪
{r}), let ae be any constant in the interval [0, 1

2(n+1)
].

Then S∗
(c+a) ⊆ S∗

c .

Proof. Consider a solution x1 /∈ S∗
c and any x∗ ∈ S∗

c . Since all ce are integers, cost(x1, c)−

cost(x∗, c) ≥ 1. If all the edges corresponding to x∗ are perturbed from ce to ce + ae,

then cost(x∗, c + a) ≤ cost(x∗, c) + n
2(n+1)

< cost(x∗, c) + 1. Hence cost(x1, c + a) >

cost(x∗, c+ a). Therefore, S∗
(c+a) ⊆ S∗

c .

Table II presents the convergence results of this randomized algorithm for computing

the minimum cost, directed spanning forest. In Table II, n refers to the number of targets,

p∗ refers to the desired number of components and i∗ is the number of iterations required

to compute the optimal directed tree.

4. Primal feasible algorithm for CMP

To generate a feasible solution, the p-directed spanning forest DMSF ∗
p resulting through

the Lagrangian relaxation is used. The primal algorithm that assigns the depots to each

component of the DMSF ∗
p and forms the feasible p-directed tours is given below:
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1. For each v ∈ D and ith component of DMSF ∗
p , i ∈ {1, 2, . . . , p}, compute the cost,

Avi to be the total cost of the cheapest edge in δ(v)∩∆(Si) and the cheapest edge in

∆(v) ∩ δ(Si), where Si is the set of nodes in ith component of DMSF ∗
p .

2. Let vi be the depot assigned to component corresponding to set of nodes, Si. Define

Vi = Si ∪ vi. Assign a depot to every component in DMSF ∗
p such that the total

assignment cost minvi

∑
iAvii is minimum.

3. The problem of finding a directed, feasible tour with nodes in Vi is transformed to

a problem of finding feasible tour with symmetric costs by doubling the nodes in

Vi as described in ([36]). The transformation can be simply put as follows: Each

node n is replaced by a pair of nodes n+, n− and the define the costs as follows: Let

n1, n2 ∈ Si then c̃i(n1
+, n2

−) = c(n1, n2) and c̃i(n2
+, n1

−) = c(n2, n1). We also set

c̃i(n1
−, n1

+) = −M and all the other costs in c̃i to be +M , where M is a sufficiently

large positive number such that all the arcs whose costs are +M are excluded from

all the feasible tours and all the arcs with −M are included in any feasible tour.

4. Now for each modified cost matrix ci and the node set Si, the Lagrangian heuristic in

[34] is used to get a primal feasible tour.

5. Experimental results

In this section, the implementation details and the overall algorithm accompanied with the

simulation results are presented. To calculate the best lower bound discussed in section 2,

max
Π,Ψ

L(Π,Ψ) is computed using a gradient ascent algorithm. Let [Π]k and [Ψ]k indicate the

values of Π and Ψ at the kth iteration respectively. At each iteration k, compute a new set of

penalty parameters ,[Π]k+1, [Ψ]k+1, from [Π]k, [Ψ]k respectively through an update scheme

where the direction of update is defined through the sub-gradient. The sub-gradient as
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follows:

giv =
∑

e∈∆(v)

xe − 1, ∀v ∈ T

gov =
∑
e∈δ(v)

xe − 1, ∀v ∈ T

giv = 0, ∀v ∈ D

gov = 0, ∀v ∈ D

Let g = [gi go] be the vector of all the sub-gradients stacked together. The new

update [πv]
k+1 is computed as follows:

[Π]k+1 = [Π]k + βk[go]k ∀v

where the size of the step, β at iteration k is computed as

βk = ζk
MDMTSP ∗ − ϕ([Π,Ψ]k)

||[g]k||
(2.51)

[Ψ]k+1 can be computed in the similar fashion as [Π]k+1. The above expression (2.51)

is commonly referred to as Polyak rule II. Since, the optimal solution CMP ∗ is not known,

alternatively one can use the cost of the best primal solution found so far. A common prac-

tice is to start ζk with a fixed value and reduce ζk by a constant factor after a specified

number of iterations or whenever ϕ([Π]k, [Ψ]k) does not increase within specified number

of iterations. The iterative procedure can be briefly put as follows:

1. Initial step: k = 0, Initialize ζk = ζ0.

2. For the computed [Π]k and [Ψ]k, solve the Lagrangian relaxation L([Π]k, [Ψ]k).

3. Use the Primal feasible Algorithm to generate a primal feasible solution from the

dual solution. Let the cost of the best primal feasible solution found so far be [C∗]k.
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4. Stopping criterion: If [ϵ]k ≤ ϵ∗ or k = Nmax, go to 6.

5. Compute [Π]k+1,[Ψ]k+1 and set k = k + 1 and go to 2.

6. Stop the iterative process.

where [ϵ]k is the duality gap at iteration k and is defined as [C∗]k−ϕ([Π]k,[Ψ]k+1)
ϕ([Π]k,[Ψ]k+1)

. ϵ∗ is

the desired duality gap. The maximum number of iterations allowed is chosen to be 50. ζk

was chosen to start with a value of 0.5 and is reduced by a factor of 2, if the dual does not

improve in 3 successive iterations. The value of ϵ for the stopping criterion is chosen to be

10−4. In the simulations, depots are allowed to participate in the tour, i.e, q = |D|.

In Table III and IV, n refers to the number of targets, m is the number of depots

available, [Cprimal∗]k is the cost of the best primal found at iteration k. In Table III and IV,

the dual gap at iterations k = 25 and k = 50 is reported respectively. CMP ∗ refers to the

optimal cost for that instance. CMP ∗ is computed using the GNU Linear Programming Kit

(GLPK). The code is written in Matlab and YALMIP [35] is used to formulate the problem

and also provides the interface to GLPK. In Figure 5 the convergence of the dual gap with

the number of iterations is shown for few random instances. The sizes of the instances are

as indicated.

In Figure 6 the optimal solution generated by YALMIP for a random instance with 18

cities and 6 vehicles is shown . The red dots denote the location of all the cities. The black

stars show the depot for each vehicle. All the points are randomly generated on a region of

dimensions 5km x 5km. Each vehicle is assumed to behave like a Dubin’s car. The turning

radius of each vehicle is considered to be 100m. The heading angles at all cities and

depot are assumed to be known apriori. In Figure 7 the dual solution generated through

the procedure detailed above is shown. In Figure 8 the solution generated through the

primal feasible algorithm is shown. The extension of Lagrangian method for Asymmetric

problem is published in [44] and similar approach is extended to a problem with precedence
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Fig. 5. Convergence of dual gap for random instances

constraints, where there are additional timing constraints based on which target is visited

first [45]

C. Conclusions

1. We formulate CMP as an integer program with (n + m)2 + m variables (one vari-

able for each edge joining any two vertices and one variable for each depot). This

formulation exploits the fact that the Dubins’ distances satisfy triangle inequality.

2. We provide an approach for assigning the sequence of targets to a UV by solving a
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Lagrangian dual [46] of the formulated integer program. This step involves finding a

minimum cost directed spanning tree with a degree constraint. The problem is solved

by penalizing this degree constraint if violated and using the approach given in [43].

3. Given a set of targets, we provide a Lagrangian heuristic to find the sequence of

targets each UV must visit. The Lagrangian heuristic modifies the dual solution and

constructs a sub-optimal solution to the combinatorial (partitioning and sequencing)

problem..

4. The Lagrangian dual of the integer program also gives a tight lower bound for the

integer program. This lower bound was used in the Branch and Bound solver to find

the optimal solution to the integer program.

5. Numerical results are provided which compare the cost of the solution produced by

the algorithm given in this chapter with the optimal cost of the integer program.
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Table II. # of iterations for computing DMSF ∗

n p∗ i∗

16 3 9

21 6 15

27 3 21

30 7 20

32 6 12

33 5 20

34 6 13

35 5 2

38 4 8

40 8 13

41 2 15

42 6 14

44 7 16

45 3 13

47 7 8

48 5 8

49 8 8

50 3 8

57 7 14

66 4 2
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Table III. Duality gap (%) for various instances at 25th iteration.

n m CMP ∗ ϕ([Π]k, [Ψ]k)k=25 [Cprimal∗]kk=25 [ϵ]kk=25

14 3 1624.8 1566.6 1624.8 3.7163

19 4 2142.9 2142.2 2142.9 0.030342

22 7 2076.9 2041.8 2204.5 7.968

24 3 2638.1 2637.9 2638.1 0.0068235

24 7 2352.7 2294.8 2370.9 3.3161

26 3 2833.2 2833.2 2916.8 2.9493

26 6 2678.9 2598.9 2706.7 4.1476

28 5 2824.5 2728.5 2824.6 3.5187

30 4 2872.1 2759.2 2944.6 6.7193

31 4 3333.9 3268 3459.6 5.8622

32 3 2898.2 2786.1 2940.6 5.545

36 3 3271.1 3149.7 3386.6 7.5216

38 4 3497.9 3479.1 3497.9 0.54181

40 7 3061 2992.4 3061 2.2918

45 2 3724.6 3685.5 3748.4 1.7061

48 5 3722.1 3681.9 3723.7 1.1342

50 5 3242.4 3216 3346.2 4.0475
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Table IV. Duality gap (%) for various instances at 50th iteration.

n m CMP ∗ ϕ([Π]k, [Ψ]k)k=50 [Cprimal∗]kk=50 [ϵ]kk=50

14 3 1624.8 1568.5 1624.8 3.5959

19 4 2142.9 2142.9 2142.9 0.00046666

22 7 2076.9 2049.7 2204.5 7.5535

24 3 2638.1 2638.1 2638.1 0.00075812

24 7 2352.7 2312.2 2370.9 2.5418

26 3 2833.2 2833.2 2916.8 2.9493

26 6 2678.9 2611.6 2706.7 3.6387

28 5 2824.5 2740.2 2824.6 3.0794

30 4 2872.1 2778.7 2944.6 5.9711

31 4 3333.9 3268 3459.6 5.8622

32 3 2898.2 2786.1 2940.6 5.545

36 3 3271.1 3167.3 3386.6 6.9235

38 4 3497.9 3480 3497.9 0.51408

40 7 3061 3001.4 3061 1.9854

45 2 3724.6 3692.6 3748.4 1.5119

48 5 3722.1 3688 3723.7 0.96692

50 5 3242.4 3218.3 3346.2 3.9754
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Fig. 6. Optimal solution for a random instance
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Lagrangian Dual solution
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Fig. 7. Dual solution for a random instance
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Primal solution generated by heuristics
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Fig. 8. Primal solution for a random instance
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CHAPTER III

AN APPROXIMATION ALGORITHM FOR A TWO DEPOT, HETEROGENEOUS

TRAVELING SALESMAN PROBLEM

A. Introduction

In the previous chapter, we considered a homogeneous collection of UVs. It is conceivable

that UVs with different capabilities may be required to operate collectively in a mission

and their motion plans need to be determined. In this case, the cost of traveling between

any two locations may also depend on the direction of travel and the UV deployed. In

this chapter ∗, we consider the motion planning of structurally heterogeneous collection of

UVs. We begin with a simplified problem when the collection consists of only two hetero-

geneous UVs. Specifically, the routing problem we address is a 2-depot, Heterogeneous

Traveling Salesman Problem (2-HTSP) which is stated as follows: Given a set of nodes (or

destinations) and two heterogeneous vehicles that start from distinct depots, find a tour for

each vehicle such that each destination is visited exactly once and the total cost of the tours

of the vehicles is a minimum.

In this chapter, two types of heterogeneity for both the vehicles are considered, i.e.,

structural heterogeneity and functional heterogeneity. If the vehicles are structurally differ-

ent, the cost of traveling between two destinations not only depends on the position of the

destinations but also on the vehicle. In the case of functional heterogeneity, the vehicles are

identical structurally but there may be additional vehicle-destination constraints that must

be met. In this case, the destinations may be partitioned into three disjoint subsets: a subset

∗Part of this chapter was reprinted with permission from “3-Approximation Algorithm
for a Two Depot, Heterogeneous Traveling Salesman Problem,” by Sai Yadlapalli, Sivaku-
mar Rathinam and Swaroop Darbhn, Accepted for Publication in Operation Research Let-
ters, Copyright c⃝ 2010 by Elsevier http://www.elsevier.com/
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of destinations the first vehicle must visit, a subset of destinations the second vehicle must

visit and a set of common destinations that either of the two vehicles can visit.

There are several applications ([47],[48],[49],[50]) where routing problems such as

the 2-HTSP could arise. In UV applications, it is possible that the vehicles have different

constraints on their maximum speeds depending on the vehicle type. Even if we ignore the

constraints on the turning radius of the vehicles when the destinations are reasonably far

apart, the cost of traveling between any two destinations is still dependent on the type of the

vehicle. Also, the UVs can carry different sensors, and therefore, there may be additional

constraints that require a subset of destinations must be visited by a specific UV.

The 2-HTSP is a generalization of the single Traveling Salesman Problem and is NP-

Hard [36]. Therefore, we are interested in developing approximation algorithms for the

2-HTSP. An α−approximation algorithm [11] is an algorithm that

• has a polynomial-time running time, and

• returns a solution whose cost is within α times the optimal cost.

It is assumed that the cost of traveling from an origin to a destination directly for

each vehicle is no more expensive than the cost of traveling from the same origin to the

destination through an intermediate location. When the costs satisfy the triangle inequality,

they are said to satisfy the above property. It is currently known that there cannot exist

a constant factor approximation algorithm for a single Traveling Salesman Problem if the

triangle inequality is not satisfied unless P = NP .

Aiming for approximation algorithms is reasonable in the context of path planning of

unmanned aerial vehicles with motion constraints because the cost of traveling between

any two targets for an unmanned aerial vehicle can depend on several factors including

wind disturbances. Hence, it is appropriate to devise approximation algorithms for these

planning problems that are relatively inexpensive than devise algorithms that opt for exact
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solutions. In this chapter, a 3-approximation algorithm is introduced for the 2-HTSP when

the costs associated with each vehicle satisfy the triangle inequality.

1. Literature review

The 2-HTSP is related to a well known class of problems that has received significant

attention in the area of combinatorial optimization. These problems include the Travel-

ing Salesman Problem (TSP), the Hamiltonian Path Problem (HPP) and their generaliza-

tions [36, 11, 51, 12]. As this article deals with constant factor approximation algorithms,

henceforth, we assume that, for every vehicle the costs satisfy the triangle inequality. The

symmetric TSP has two well known approximation algorithms - the 2−approximation algo-

rithm obtained by doubling the minimum spanning tree (MST) and the 1.5−approximation

algorithm of Christofides obtained through the construction of MST and a weighted non-

bipartite matching of nodes of MST with odd degree [52].

There are 2−approximation algorithms for variants of the homogeneous, multiple TSP

and HPP in [53],[26]. Also, Rathinam et al. in [54] have developed 1.5−approximation

algorithm for two variants of a 2 depot, Hamiltonian Path Problem. Currently, there are no

approximation algorithms for any heterogeneous, multiple TSP known in the literature. In

this article, we present the first 3-approximation algorithm for the 2-HTSP when the costs

satisfy the triangle inequality.

The 2-HTSP problem is formulated as an integer program with assignment, degree

and connectivity constraints on a multi-graph. Given any two destinations, we construct

this multi-graph by adding an edge joining the two destinations for each vehicle. The cost

assigned to an edge would then be equal to the distance required by the corresponding ve-

hicle to travel that edge. The basic idea for the approximation algorithm is as follows: We

first relax all the binary decision variables and solve the resulting linear program to find

the subset of destinations each vehicle must visit. Once the partitioning problem is solved,
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Christofides algorithm [52] is used on the partitions to get a tour for each vehicle. Even

though the number of cut constraints in this linear program grow exponentially with the

number of destinations, the relaxed linear program can be shown to be solvable in poly-

nomial time using the Ellipsoid method[55]. Using the result that the cost of the feasible

solution produced by the Christofides algorithm is at most 3
2

times the cost of the Held-

Karp relaxation of the single TSP [23] and the parsimonious property of the Held-Karp

relaxation[56], one can show that the proposed algorithm has an approximation ratio of 3.

A key part of our approximation algorithm is in the way we formulate the 2-HTSP and

relax the constraints. The formulation is presented in the following section.

B. Problem formulation

Let T = {1, . . . , n} be the set of vertices that denote all the destinations and V = {d1, d2}

be the set of vertices that correspond to the initial depots of the vehicles. For each depot

vertex di, we also introduce a copy of the depot vertex called the terminal vertex, d′i, that

exactly coincides with the location of the depot vertex. Each vehicle after visiting its share

of destinations will visit its corresponding terminal before returning to its depot. Our inte-

ger programming formulation includes a terminal vertex for each vehicle in order to allow

for each vehicle to visit exactly one destination if needed (this will be further discussed in

Remark 1 later.).

Let Vi = {di, d′i}
∪
T denote the set of all the vertices corresponding to the ith vehicle.

Let Ei stand for the set of all the edges joining any two vertices in Vi. For any S ⊂ Vi, let

δi(S) denote the set of all the edges e ∈ Ei that has one end point in S and one end point

in Vi \ S. Each edge e ∈ Ei has a cost Ci
e ∈ Q+ associated with it where Q+ is the set

of all positive rational numbers. Assume that all the costs satisfy the triangle inequality.

Let R1 and R2 be the set of vertices that must be visited by the first and the second vehicle
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respectively. Note that R1

∩
R2 = ∅ and each destination in T \ (R1

∪
R2) can be visited

by either the first or the second vehicle. Let xe (ye) denote the binary variables that decide

whether edge e is present in the routes of the first (second) vehicle. An edge e is present in

the tour of the first vehicle if xe = 1 and is not present otherwise. ye is defined similarly.

Let ϕi denote the binary decision variable that is equal to 1 if destination i is visited by the

first vehicle and is equal to 0 otherwise. Similarly, let ηi denote the binary decision variable

that is equal to 1 if destination i is visited by the second vehicle and is equal to 0 otherwise.

The following is the integer programming formulation of the 2-HTSP:

Copt = min
x,y,ϕ,η

∑
e∈E1

xeC
1
e +

∑
e∈E2

yeC
2
e (3.1)

ϕi = 1, for all i ∈ R1, (3.2)

ηi = 1, for all i ∈ R2, (3.3)

ϕi + ηi = 1, for all i ∈ T\{R1

∪
R2}, (3.4)

∑
e∈δ1({i})

xe = 2ϕi,∀i ∈ T, (3.5a)

∑
e∈δ1({u})

xe ≥ 2ϕi, u ∈ {d1, d′1},∀i ∈ T,

(3.5b)∑
e∈δ1({u})

xe ≤ 2, u ∈ {d1, d′1}, (3.5c)

For all i ∈ T,∑
e∈δ1(S)

xe ≥ 2ϕi,∀S ⊂ V1, such that

i ∈ S, |S
∩

{d1, d′1}| ≤ 1,

(3.5d)

xe ∈ {0, 1} ∀e ∈ E1, (3.5e)

ϕi ∈ {0, 1} ∀i ∈ T. (3.5f)

∑
e∈δ2({i})

ye = 2ηi,∀i ∈ T, (3.6a)

∑
e∈δ2({u})

ye ≥ 2ηi, u ∈ {d2, d′2},∀i ∈ T,

(3.6b)∑
e∈δ2({u})

ye ≤ 2, u ∈ {d2, d′2}, (3.6c)

For all i ∈ T,∑
e∈δ2(S)

ye ≥ 2ηi,∀S ⊂ V2, such that

i ∈ S, |S
∩

{d2, d′2}| ≤ 1,

(3.6d)

ye ∈ {0, 1} ∀e ∈ E2, (3.6e)

ηi ∈ {0, 1} ∀i ∈ T. (3.6f)
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The constraints in (3.2) and (3.3) state that the destinations in R1 and R2 must be

respectively visited by the first and the second vehicle. The assignment constraints in (3.4)

require that a destination in T \ {R1

∪
R2} can be visited either by the first vehicle or the

second vehicle but not both. The degree constraints in (3.5a, 3.6a) together indicate that

the number of edges incident on each destination vertex must be equal to 2. The degree

constraints in (3.5b,3.6b) specify that the number of edges incident on a depot/terminal

must be at least equal to 2 if the vehicle corresponding to the depot/terminal is visiting at

least one destination. The degree constraints in (3.5c,3.6c) state that the number of edges

incident on both the depots and the terminals can at most be equal to 2. If a destination is

visited by a vehicle, the cut constraints in (3.5d, 3.6d) enforce a requirement that there must

be at least two edge disjoint paths from the destination to the depot/terminal corresponding

to the vehicle visiting that destination. These cut constraints in combination with the degree

constraints also eliminate the presence of any cycles among the destination vertices.

Remark 1: The terminal vertices d′1, d
′
2 were added to the problem to essentially

allow for a vehicle to visit exactly one destination if needed. For example, by adding these

terminal vertices, one could allow a tour for the first vehicle to be of the form {d1, u, d′1, d1}

where u is a vertex denoting a destination. Then, the first vehicle visits the destination u,

and then the terminal d′1 before returning to its depot. However, adding these terminal

vertices could also result in a solution where the optimal tour for the ith vehicle is of the

form {di, vi1, · · · , vili , d′i, vili+1
, · · · , viki , di} where vij ∈ T for j = 1, · · · , ki. In this

case, the depot and its corresponding terminal vertex are not adjacent vertices in the tour.

However, this is not an issue in this article as it is assumed all the costs associated with

every vehicle satisfy the triangle inequality. Therefore, one can always shortcut the edges

in the optimal solution to obtain tours so that each vehicle returns to its depot immediately

after visiting its corresponding terminal.

Remark 2: The cut constraints in (3.5d,3.6d) can also be written equivalently as given
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below. The reason for formulating the constraints as stated in (3.5d,3.6d) is to simplify the

proofs of the approximation algorithm discussed in section D.

∑
e∈δ1(S)

xe ≥ 2max
i∈S

ϕi,∀S ⊂ V1 such that |S
∩

T | > 0, |S
∩

{d1, d′1}| ≤ 1,

∑
e∈δ2(S)

ye ≥ 2max
i∈S

ηi,∀S ⊂ V2 such that |S
∩

T | > 0, |S
∩

{d2, d′2}| ≤ 1.

Remark 3: Using the max-flow min-cut theorem [57],[11], the cut constraints in

(3.5d,3.6d) can also be formulated using flow constraints. Therefore, ϕi and ηi can be

interpreted as the amount of flow shipped from the first and second depot respectively to

the ith destination.

The following Linear Programming (LP) relaxation of the 2-HTSP plays a crucial role

in the development of the algorithm.

C∗
lp = min

x,y,ϕ,η

∑
e∈E1

xeC
1
e +

∑
e∈E2

yeC
2
e (3.7)

ϕi ≥ 1, for all i ∈ R1, (3.8)

ηi ≥ 1, for all i ∈ R2, (3.9)

ϕi + ηi ≥ 1, for all i ∈ T \ {R1

∪
R2}, (3.10)

∑
e∈δ1({u})

xe ≥ 2ϕi, u ∈ {d1, d′1}, (3.11a)

For all i ∈ T,∑
e∈δ1(S)

xe ≥ 2ϕi,∀S ⊂ V1, such that

i ∈ S, |S
∩

{d1, d′1}| ≤ 1,

(3.11b)

0 ≤ xe ≤ 1 ∀e ∈ E1, (3.11c)

ϕi ≥ 0 ∀i ∈ T. (3.11d)

∑
e∈δ2({u})

ye ≥ 2ηi, u ∈ {d2, d′2}, (3.12a)

For all i ∈ T,∑
e∈δ2(S)

ye ≥ 2ηi,∀S ⊂ V2, such that

i ∈ S, |S
∩

{d2, d′2}| ≤ 1,

(3.12b)

0 ≤ ye ≤ 1 ∀e ∈ E2, (3.12c)

ηi ≥ 0 ∀i ∈ T. (3.12d)
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C. Approximation algorithm for the 2-HTSP

The following is the proposed algorithm Approx for the 2-HTSP:

1. Solve the Linear Programming relaxation formulated in equations (3.7-3.12) using

the Ellipsoid method [55]. Let an optimal solution to this relaxation be denoted by

(x∗, y∗, ϕ∗, η∗). We will later show that this relaxation is solvable in polynomial time.

2. ϕ∗
i (η∗i ) essentially denotes the optimal fraction of the flow shipped to the ith desti-

nation using the first vehicle (second vehicle). Assign each destination to the vehicle

that ships its largest fraction. Break ties arbitrarily. This step essentially partitions

the destinations into two groups. Let U1 = {i : i ∈ T, ψi ≥ ηi} correspond to those

destinations which are assigned to the first vehicle, and U2 = T \ U1 be the set of

destinations assigned to the second vehicle.

3. For the ith vehicle, if U i is not empty, apply the Christofides algorithm to find a tour

that visits all the vertices in U i

∪
{di, d′i}.

Clearly, the tours produced by the above algorithm is a feasible solution for the integer

program formulated in equations (3.1-3.6f). The following theorem is the main result of

this paper:

Theorem 1. Algorithm Approx is a polynomial time algorithm for the 2-HTSP with an

approximation ratio of 3.

D. Proof of the 3-approximation ratio of Approx

In the following lemma, we first show that Approx is a polynomial time algorithm.

Lemma 3. Approx is a polynomial time algorithm.
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Proof. The main steps in Approx involve solving a linear program defined by equations

(3.7-3.12) and using the Christofides algorithm. If there are n destinations, it is known

that the number of steps required for the Christofides algorithm is of O(n3). Therefore,

step (3) of the algorithm Approx requires O(|U1|3) + O(|U2|3) ≈ O(n3) steps. Shortly, it

will be shown that the linear program (3.7-3.12) is solvable in polynomial time using the

Ellipsoid method [55]. In [55], Grötschel, Lovász and Schrijver showed that the polynomial

solvability of a linear program is equivalent to the polynomial solvability of the following

separation problem using the Ellipsoid method:

Let P denote the polytope defined by all the constraints of the linear program in (3.8-

3.12). Given xe ∀e ∈ E1, ye ∀e ∈ E2, and ϕi, ηi ∀i ∈ T , decide whether the given solution

is in P and if not, find a violated constraint.

The cut constraints defined by equations (3.11b,3.12b) are the only set of constraints

that grow exponentially with the number of destinations. Therefore, the separation problem

is solvable in polynomial time if a separation algorithm can be developed for these cut

constraints. For each destination i ∈ T , the cut constraints defined in (3.11b) are as follows:

∑
e∈δ1(S)

xe ≥ 2ϕi, ∀S ⊂ V1 such that i ∈ S and |S
∩

{d1, d′1}| ≤ 1. (3.13)

Applying max-flow, min-cut theorem [57], the above cut constraints imply that there must

at least be a flow of 2ϕi from vertex i to both the depot d1 and the terminal d′1. Therefore,

given a destination vertex i ∈ T , xe ∀e ∈ E1 and ϕi, one can use the max-flow algorithm

to decide whether the given solution is feasible for the constraints in (3.13) or find a cut

that violates these constraints in polynomial time. By repeating this argument for each

of the destination vertices, we can conclude that a polynomial time separation algorithm

is available to handle the constraints defined in (3.11b). By using similar arguments, one

can also develop a separation algorithm for the constraints in (3.12b). Therefore, there is a
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polynomial time algorithm for the separation problem. Hence, the linear program defined in

equations (3.11,3.12) is solvable in polynomial time using the Ellipsoidal method [55].

In the remaining part of this discussion, it will be shown that the approximation ratio

of Approx is 3. Let the tour produced for the ith vehicle by Approx be denoted by TOURi.

Let the cost of these tours be denoted by C(TOUR1) and C(TOUR2) respectively. For a

single TSP, Shmoys and Williamson [23] have shown that the cost of the solution produced

by the Christofides algorithm is at most a factor of 3
2

away from the optimal cost of the Held-

Karp relaxation of the single TSP. Using this result, one can deduce that C(TOUR1) ≤
3
2
C1

hk where C1
hk denotes the optimal cost of the Held-Karp’s relaxation for the first vehicle

visiting all the vertices in U1

∪
{d1, d′1}. Similarly, it follows that C(TOUR2) ≤ 3

2
C2

hk

where C2
hk denotes the optimal cost of the Held-Karp’s relaxation for the second vehicle

visiting all the vertices in U2

∪
{d2, d′2}. The relaxation costs C1

hk and C2
hk are essentially

defined as follows:

C1
hk = min

x

∑
e∈E1

xeC
1
e∑

e∈δ1(S)

xe ≥ 2,∀S ⊂ U1

∪
{d1, d′1},∑

e∈δ1({i})

xe = 2,∀i ∈ U1

∪
{d1, d′1},∑

e∈δ1({i})

xe = 0,∀i ∈ U2,

xe ≥ 0 ∀e ∈ E1.

C2
hk = min

y

∑
e∈E2

yeC
2
e∑

e∈δ2(S)

ye ≥ 2, ∀S ⊂ U2

∪
{d2, d′2},∑

e∈δ2({i})

ye = 2, ∀i ∈ U2

∪
{d2, d′2},∑

e∈δ2({i})

ye = 0, ∀i ∈ U1,

ye ≥ 0 ∀e ∈ E2.

As all the costs satisfy the triangle inequality, Goemans and Bertsimas [56] have

shown that the optimal relaxation cost will not change if one were to remove all the degree
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constraints in the above Held-Karp relaxation. In [56], Goemans and Bertsimas proved this

property for a more general survivable network design problem. This property is essentially

called the parsimonious property of a network design problem. That is,

C1
hk = min

x

∑
e∈E1

xeC
1
e (3.14)∑

e∈δ1(S)

xe ≥ 2,∀S ⊂ U1

∪
{d1, d′1},

xe ≥ 0 ∀e ∈ E1.

C2
hk = min

y

∑
e∈E2

yeC
2
e (3.15)∑

e∈δ2(S)

ye ≥ 2,∀S ⊂ U2

∪
{d2, d′2},

ye ≥ 0 ∀e ∈ E2.

The sum of the optimal cost of the Held-Karp relaxations, C1
hk + C2

hk, can now be

upper bounded by two times the optimal cost, C∗
lp, of the LP relaxation (3.7-3.12) of

the 2-HTSP. To prove this, consider any optimal solution (x∗, y∗, ϕ∗, η∗) to the LP in

(3.7-3.12). One can construct a solution, x̂, for the Held-Karp relaxation in (3.14) by

choosing x̂ = 2x∗. To prove that x̂ is feasible solution for (3.14), note that, for any

S ⊂ U1

∪
{d1, d′1}, |S

∩
{d1, d′1}| = 2,

∑
e∈δ1(S)

x̂e = 2
∑

e∈δ1(S)

x∗e,

= 2
∑

e∈δ1(V1\S)

x∗e,

≥ 4ϕ∗
i , for all i ∈ V1 \ S, (from constraint 3.11b)

≥ 4ϕ∗
i , for all i ∈ U1 \ S,

≥ 2.
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Similarly, for any S ⊂ U1

∪
{d1, d′1}, |S

∩
U1| ≥ 1, |S

∩
{d1, d′1}| ≤ 1,

∑
e∈δ1(S)

x̂e = 2
∑

e∈δ1(S)

x∗e,

≥ 4ϕ∗
i , for all i ∈ S

∩
U1, (from constraint 3.11b)

≥ 2.

Also, for u = d1 or u = d′1,∑
e∈δ1(u)

x̂e = 2
∑

e∈δ1(u)

x∗e,

≥ 4ϕ∗
i , for all i ∈ U1, (from constraint 3.11a)

≥ 2.

Therefore, x̂ is a feasible solution for (3.14). In the same way, one can also show

that ŷ = 2y∗ is also a feasible solution for the Help-Karp relaxation defined in (3.15).

Therefore, C1
hk + C2

hk ≤ 2
∑

e∈E1 x∗eC
1
e + 2

∑
e∈E2 y∗eC

2
e = 2C∗

lp. Putting together all the

results:

C(TOUR1) + C(TOUR2) ≤ 3

2
(C1

hk + C2
hk),

≤ 3C∗
lp,

≤ 3Copt.

E. Extension to other problems

1. The related min-max problem

The above approach can also be extended to obtain a 3-approximation algorithm for a 2

depot, Heterogeneous TSP where the objective is to minimize the maximum cost traveled
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by either of the vehicles. To see this, consider the following min-max problem:

Cmax∗
opt = min

x,y,ϕ,η
max{

∑
e∈E1

xeC
1
e ,

∑
e∈E2

yeC
2
e} (3.16)

subject to the constraints defined in (3.5a-3.6f). The above min-max problem can also

be restated as:

Cmax∗
opt = min

t,x,y,ϕ,η
t (3.17)

t ≥
∑
e∈E1

xeC
1
e ,

t ≥
∑
e∈E2

yeC
2
e , (3.18)

and the constraints in (3.5a-3.6f). Therefore, a LP relaxation of this min-max problem will

have an objective defined in (3.17) subject to constraints in (3.18,3.8-3.12). The approxi-

mation algorithm for the min-max problem also follows the same approach as Algorithm

Approx in section C: 1) Solve the LP relaxation of the min-max problem; 2) Assign any

destination i to the first vehicle if ϕi ≥ ηi; 3) For each vehicle, use the Christofides algo-

rithm to obtain a tour to visit its set of destinations. Let Cmax∗
lp be the optimal cost of the

LP relaxation of the min-max problem. Using the same notations and similar arguments as

in the previous section, the following can be arrived at:

max(C(TOUR1), C(TOUR2)) ≤ 3

2
max(C1

hk, C
2
hk),

≤ 3Cmax∗
lp ,

≤ 3Cmax∗
opt .
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2. Generalization of 2-depot heterogeneous problem

In general, the approach given in this chapter can be extended to obtain a 3m
2

-approximation

algorithm for variants of a m-depot, Heterogeneous Traveling Salesman Problem.

When there are more than 2 vehicles, the vehicle-destination constraints that are present

due to the functional heterogeneity can be posed in different ways. For example, one

can specify that a vehicle must visit a subset of targets or that a set of vehicles must not

visit a subset of targets. The 3m
2

-approximation algorithm that is obtained by extend-

ing the approach in this paper, takes into consideration both these specifications. The

3-Approximation algorithm for 2-HTSP presented above in this chapter is accepted for

publication in [58].

F. 2-component heterogeneous minimum spanning forest

In this section, we pose a 2-component Heterogeneous, Minimum Cost Spanning Forest

(HMSF) problem, a combinatorial problem that is relevant to the tour problem discussed

above. The homogeneous case of Multiple TSP admits a 2-approximation algorithm [53].

That 2-approximation algorithm relies on doubling the edges of Minimum Spanning Forest

(MSF) and short-cutting the resulting edges to form a feasible tour. Each component of

MSF contains exactly one depot and a partition of targets that are to be visited by the

vehicle starting at that depot. MSF can be constructed in polynomial time and the procedure

is detailed in [53]. In the same spirit, we are interested in combinatorial formulation of

Heterogeneous MSF (HMSF). The computational complexity of HMSF is not clear. In the

rest of section, we present our formulation for 2-HMSF and a 4-approximation algorithm

for the same. The approximation algorithm presented in this chapter for 2-HMSF has been

published in [59]

The problem of 2-HMSF is as follows: Construct two disjoint trees rooted at d1 and
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d2, so that all the targets are spanned and the total cost of constructing the two trees is

minimum. The cost of the tree rooted at d1 is computed with the edge costs associated

with the first vehicle while the cost of tree rooted at d2 is computed with the edge costs

associated with the second vehicle. In this section, we pose the flow based formulation for

2−HMSF in detail.

Let pkij denote the flow of kth commodity originating from the first depot and flowing

from node i to node j. Let qkij be the corresponding flow from the second depot through the

directed edge (i, j) to the kth target. Though both the flows, pkij, q
k
ij , can flow through (i, j),

they are constrained in amount by the capacity of the arc (i, j). Let fij denote whether arc

(i, j) is used by the first vehicle in its tour and similarly let gij denote whether arc (i, j)

is used by the second vehicle. It should be noted that the directionality of arc is important

here. The following capacity constraints naturally arise:

0 ≤ puij ≤ fij ∀i, j ∈ T ∪ d1, (3.19)

0 ≤ quij ≤ gij ∀i, j ∈ T ∪ d2. (3.20)

Consider an edge e ∈ E. Let (i, j) be endpoints of e. Let xe and ye represent the variables

which decide whether edge e is present in routes of first vehicle and second vehicle respec-

tively. Edge e is present in the tour (xe = 1) of the first vehicle if either there is a directed

arc from i to j (fij = 1) or there is a directed arc from j to i (fji = 1). These conditions

can be stated as follows:

fij + fji = xe ∀e ∈ E, (3.21)

gij + gji = ye ∀e ∈ E. (3.22)

A shipment of the uth commodity shipped from either of the depots can only be delivered

to the uth target. Let ψu be the quantity of the uth commodity shipped to the uth target from
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the first depot and let ηu be the corresponding quantity shipped from the second depot. The

following are the flow balance equations for flows p and q respectively:

∑
j∈T

pkij − pkji =


ψk ∀k ∈ T and i = d1,

0 ∀i, k ∈ T and i ̸= k,

−ψk ∀i, k ∈ T and i = k.

(3.23)

∑
j∈T

qkij − qkji =


ηk ∀k ∈ T and i = d2,

0 ∀i, k ∈ T and i ̸= k,

−ηk ∀i, k ∈ T and i = k.

(3.24)

Since atleast one unit of commodity is to be shipped for each u ∈ T , we have the

following relation:

ψu + ηu ≥ 1,∀u ∈ T (3.25)

The 2−HMSF may thus be posed as the following integer program:

HMSF ∗ = min
∑
e∈E

cexe + deye. (3.26)

subject to capacity constraints [3.19, 3.20], flow balance constraints [3.23, 3.24], directed

constraints [3.21, 3.22], coupling constraint [3.25] and the following restriction on the

domain of the variables:

xe, ye, fij, gij ∈ Z+ pkij, q
k
ij, ψk, ηk ∈ ℜ+ (3.27)

where Z+ is the set of all positive integers.

The complexity of 2 − HMSF is not clear. However, we provide a 4-approx algo-

rithm for the 2−HMSF through the following algorithm.



69

HMSF Algorithm

1. Relax the integrality constraints in the above IP for the 2-HMSF and solve it. The

relaxed program (call it LP ∗) can be solved in polynomial time as the number of

variables and constraints only scale polynomially with the size of V .

2. Find the optimal fractional quantities of each commodity shipped from both the de-

pots. Partition the targets into two disjoint groups according to which depot ships the

maximum amount of commodity to the target. if both depots ship equal amount of

commodity to a particular target, it does not matter to which group it belongs to. Let

X = {k| ψk ≥ 1
2
}. X corresponds to those targets who have received maximum

shipment of their commodity from d1. Let Y be the rest of targets.

3. Find a tree spanning the targets X and the depot d1 of minimum cost. The minimum

cost spanning tree (MST) is computed according to the cost of edges associated with

the vehicle starting at depot d1. Similarly find a minimum-cost tree spanning the

targets Y and the depot d2. Clearly, this is a feasible solution to the above laid integer

program. We show in the following theorem that the feasible solution constructed

is within four times the cost of the relaxed linear program and hence, is less than

4HMSF ∗.

Theorem 2. HMSF Algorithm is 4-approx.

Proof: Solution of LP ∗ produces optimal quantities of commodities shipped from

each depot. Let the optimal cost of the solution be CLP ∗ . Let ψ∗, η∗ be the optimal quan-

tities of uth commodity shipped from d1 and d2 respectively. We formulate a new linear

program LP1 by replacing the coupling constraint [ 3.25] with the following constraints.

ψk ≥ ψ∗
k ∀k ∈ T, (3.28)

ηk ≥ η∗k ∀k ∈ T. (3.29)
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Let CLP1 be the optimal cost of this linear program. We shall prove shortly that CLP ∗ =

CLP1 . Any feasible solution of LP1 is also a feasible solution of LP ∗. But over the feasible

solutions of LP ∗ (includes the feasible solutions of LP1), ψ∗
k, η

∗
k are the optimal quantities

to be shipped (cost is C∗
LP ), which is also feasible solution of LP1. Hence,

CLP1 = CLP ∗ . (3.30)

Now lets construct another linear program LP2, replacing the constraints [3.28, 3.29] with

the following constraints:

ψk ≥
1

2
∀k ∈ X , (3.31)

ηk ≥
1

2
∀k ∈ Y . (3.32)

Consider any feasible set of commodities, ψ1, η1 for the LP1 problem.

ψ1 ≥ ψ∗
k ∀k ∈ T by the feasibility

≥ 1

2
∀k ∈ X by the definition of X

So every feasible solution of LP1 is also a feasible solution of LP2. Hence,

CLP1 ≥ CLP2 . (3.33)

We now construct another linear program LP3 by replacing constraints [3.31,3.32]

with the following constraints:

ψk ≥ 1 ∀k ∈ X , (3.34)

ηk ≥ 1 ∀k ∈ Y . (3.35)

Essentially, we are just doubling the commodity requirement. Everything else remains the

same. We shortly prove that CLP2 =
1
2
CLP3 .

Let Y2 = {x2, y2, f2, g2, p2, q2, ψ2
k, η

2
k ∀k} be the optimal solution of LP2. Now
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consider Y3 = 2Y2. Clearly, Y3 is a feasible solution of LP3, as there no restrictions on the

domain of variables. It should be noted that since the cost function is linear in x, y, the cost

of feasible soluton of LP3 is twice the cost of feasible solution of LP2. Let CLP3(Y3), CLP3

be the cost of LP3 corresponding to Y3 and optimal cost of LP3 respectively. The following

is trivially true:

CLP2 =
1

2
CLP3(Y3) ≥

1

2
CLP3

When the same procedure is reversed, it follows immediately that, CLP3 ≥ 2CLP2 . Hence

CLP2 =
1

2
CLP3 . (3.36)

It should be noted that constraints in LP3 are decoupled into following two sets of vari-

ables: x, p, f, ψk and y, q, g, ηk. This implies that the objective function can be separately

minimized. We shall denote the LP (X ) as the linear program which is minimized over

x, p, f, ψk and LP (Y) as the linear program which is minimized over y, q, g, ηk. It should

be noted T is partitioned into X and Y as defined earlier. Hence,

CLP3 = CLP (X ) + CLP (Y). (3.37)

1. Steiner tree (ST) problem

For establishing the result, we relate LP (X ) to a well-known problem in optimization

literature [11], known as the Steiner tree problem. Given an undirected graph G = (V,E)

with edge costs and subset of nodes, R ⊂ V , the ST problem is to find minimum weight

tree spanning all the nodes in R. The resulting tree may or may not have the optional nodes

(i.e, nodes in V \R). The optional nodes are often referred to as the Steiner nodes.

Lets consider the following integer programming formulation of Steiner Tree with ter-

minal nodes R (STcut):
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Zcut(R) = min
∑
e∈E

cexe,

subject to ∑
e∈δ(S)

xe ≥ 1 for S ⊂ V, S ∩R ̸= ϕ,R\S ̸= ϕ (3.38)

xe ∈ {0, 1} fore ∈ E (3.39)

We relate the above integer formulation with an equivalent multi-commodity flow

formulation of the Steiner tree. The multi-commodity formulation relies on using shipping

multiple commodities from a depot instead of a single commodity. Each commodity being

shipped has a specific target at which its delivered. Lets choose a node d ∈ R, call it

a depot. We formulate a flow based formulation of the Steiner tree problem and show

that it is similar to the cut-based formulation (STcut). The idea is to ship atleast one unit

of commodity corresponding to each node from the depot (a chosen terminal node). It

is necessarily that all the terminal nodes receive their commodities. The optional ones if

needed, will receive their commodity too. Consider the following formulation (STmcflow).

As explained earlier let pkij denote the kth commodity passing from node i to node j.

Zmcflow = min
∑
e∈E

cexe,

subject to

0 ≤ puij ≤ fij ∀i, j ∈ V, u ∈ V \{d} (3.40)

fij + fji = xe ∀e ∈ E, (3.41)

∑
j p

k
ij − pkji =


ψk ∀k ∈ V \{d}, i = d, j ∈ V

0 ∀i, k ∈ V \{d}, i ̸= k, j ∈ V

−ψk ∀i, k ∈ V \{d}, i = k, j ∈ V

(3.42)

ψk ≥ 1∀ k ∈ R\{d} (3.43)

ψ ≥ 0, f ≥ 0 and xe ∈ Z+ for all arcs e ∈ E (3.44)

We establish shortly that equations [3.40] - [3.43] and equation [3.38] are equivalent.
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Consider any set S ⊂ V such that S ∩R ̸= ϕ and R\S ̸= ϕ. Without loss of generality lets

assume that the depot d, belongs to set S 1 Clearly, S contains atleast one node in R and

not all of them.

The flow model (STmcflow) implies a flow of unit commodity from the depot node in

S to all the terminal nodes. This implies that all the terminal nodes (there is atleast one of

them) in S̄ receive their shipment from depot. By virtue of capacity constraint [3.40], such

a flow is feasible only if for every cut δ(S), that separates the depot in S from the other

terminal nodes in S̄ contains atleast one edge(capacity). Hence, if xe is a feasible solution

to STmcflow, i.e., constraints [3.40] - [3.43] of the flow formulation are met, xe is a feasible

solution for cut formulation.

From the max-flow min-cut theorem,
∑

e∈δ(S) xe ≥ 1 with chosen S, if and only if the

graph has a feasible flow of atleast one unit from the depot (d ∈ S) to terminal node in

(̄S). Hence, a feasible solution to the cut formulation, is also a feasible solution to the flow

formulation.

If one choses, R = X ∪ d1, it is easy to see that LP (X ) formulated earlier is indeed

LP relaxation of Zmcflow(R). Since, we proved that the cut formulation Zcut and the multi-

commodity flow formulation Zmcflow, are equivalent, we conclude that the optimal value

of LP (X ) is same as the optimal value of the LP relaxation of Zcut(R). In the arguments

that follow, we use the cut formulation. Similarly if one choses R′ = Y ∪d2, it follows that

the optimal value of the LP (Y) is same as optimal value of LP relaxation of Zcut(R
′). Let

us call is Z∗
LP (R

′). Hence we have the following:

CLP (Y) = Z∗
LP (R

′) (3.45)

where, R′ = Y ∪ d2. Y represents the subset of targets whose commodities must be

1If it does not belong to S, the rest of the argument holds by considering the S ′.
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shipped by depot 2. To establish the result in the paper, we seek an important result con-

cerning the LP relaxation of the Steiner tree problem, which is well-known in the literature.

The cut formulation Zcut is a special case of the the following generalized problem.

Z = min
∑
e∈E

cexe,

subject to ∑
e∈δ(S)

xe ≥ f(S) for S ⊂ V (3.46)

xe ∈ {0, 1} fore ∈ E (3.47)

It is obvious that we obtain the Zcut formulation of Steiner problem by taking f(S) =

1 whenever S ⊂ V, S ∩R ̸= ϕ,R\S ̸= ϕ.

We note here that the above generalized problem when f(S) satisfies certain properties

is proven in [56] to have a 2- approximation algorithm. If the edge costs satisfy triangle

inequality, i.e., for any three vertices u, v, w, c(u, v) ≤ c(u,w) + c(v, w), then output of

the algorithm is the minimum spanning tree on the terminal nodes (R). It is proven that the

cost of MST (R) is within twice the cost of LP relaxation and hence within twice the cost

of the optimal integral solution.

Let Z∗
LP be the cost of optimal solution to the LP relaxation of the Integer program

Zcut. We know that Z∗
LP ≤ Z. Let R be the set of terminal nodes in V. The following is a

theorem from [56].

Theorem 3. The algorithm produces a set of edges F ′ whose incidence vector of edges if

feasible for integer program, and such that

∑
e∈F ′

ce ≤ (2− 2

|R|
)Z∗

LP (|R|) ≤ (2− 2

|R|
)Z.

Let CMST (R) be the cost of minimum spanning tree on R. Hence, we have the follow-
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ing result as a straight forward deduction from [56].

CMST (R) ≤ 2Z∗
LP (R) ≤ 2Zcut(R). (3.48)

For more details on the algorithm and the proof for the approximation factor, the

readers are referred to [ [56], [11]]. We now shall establish the main result of this work.

From the earlier inequalities [3.30, 3.33, 3.36, 3.37], we have the following:

CLP ∗ ≥ 1

2
(CLP (X ) + CLP (Y))

But my virtue of [3.45] we have the following:

CLP ∗ ≥ 1

2
(Z∗

LP (X ∪ d1) + Z∗
LP (Y ∪ d2)) (3.49)

where CLP ∗ is the cost of LP relaxation of HMSF problem andZ∗
LP (X ∪d1) represents

the cost of LP relaxation of Steiner problem with essential nodes as X ∪ d1.

Using equations [3.48, 3.49 ] and appropriate substitution the following can be de-

duced:

4HMSF ∗ ≥ 4CLP ∗ ≥ (CMST (X ∪ d1) + CMST (Y ∪ d2))︸ ︷︷ ︸
Cfeasible

(3.50)

The set of edges from MST (X ∪ d1) ∪MST (Y ∪ d2) are obviously a feasible solution

to the integer program HMSF, since X , Y is some partition of the target set. Therefore,

Cfeasible ≥ HMSF ∗. Hence, we established that HMSF is 4-approx.

G. Conclusions

In this chapter, we considered the motion planning of structurally heterogeneous collec-

tion of UVs. We begin with a simplified problem when the collection consists of only two

heterogeneous UVs. Specifically, the routing problem we addressed is 2-depot, Heteroge-
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neous Traveling Salesman Problem (2-HTSP). The 3
2

approximation algorithm presented

in this chapter for 2-HTSP is novel and its extensions to related variants is also novel. The

formulation of 2-HMSF is novel and the 4-approximation algorithm formulated for this

problem is first of it’s kind.
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CHAPTER IV

APPROXIMATION ALGORITHMS FOR VARIANTS OF A HETEROGENOUS

MULTIPLE DEPOT HAMILTONIAN PATH PROBLEM

A. Introduction

In the previous chapter, two types of heterogeneity for the vehicles are considered, i.e.,

structural heterogeneity and functional heterogeneity. In this chapter ∗, we assume that

the fleet considered for motion planning is structurally homogeneous but differ from each

other in terms of sensing capabilities (functional heterogeneity).

Specifically, there are m UVs that must collectively visit n targets. It is assumed that

the vehicles are identical dynamically and hence, the cost of traveling from any target A to

any other target B with identical headings is the same for every UV in the collection. The

UVs differ from each other in their sensing capabilities and accordingly, we categorize the

targets into three disjoint subsets:

1. Category I: Subset of targets which can be visited by any UV.

2. Category II: Subset of targets that can be visited only by a specific UV or a subset

of UVs. This arises in a scenario where the technology/equipment to accomplish the

desired task on a target is available only to a subset of UVs. Also, if a group of targets

form a cluster i.e., they are very close to each other in terms of distance, it might be

economical to let one UV perform all the tasks on these group of targets.

3. Category III: Subset of targets that are unsuitable to be visited by a particular UV

or a subset of UVs.

∗Part of this chapter was reprinted with permission from “3-Approximation Algorithm
for a Two Depot, Heterogeneous Traveling Salesman Problem,” by Sai Yadlapalli, Sivaku-
mar Rathinam and Swaroop Darbhn, Accepted for Publication in Operation Research Let-
ters, Copyright c⃝ 2010 by Elsevier http://www.elsevier.com/
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In this chapter, the following problem is considered: Given a set of depots (starting

locations of UVs) and their corresponding terminals (ending locations of UVs) find a path

for each vehicle such that

• the path of each UV starts from its respective depot and ends at the corresponding

terminal,

• each target is visited exactly once by some vehicle,

• the assignment constraints are satisfied and,

• the total cost of the paths of all the UVs is a minimum.

There are several applications ([47],[49],[50],[26], [60],[54]) where the above routing

problem arise. This problem is a generalization of the Hamiltonian Path Problem (HPP)

and its closely related Traveling Salesman Problem (TSP) and is NP-Hard. The generaliza-

tions of the HPP and TSP have received significant attention in the field of Combinatorial

Optimization ([36],[12],[11],[15]). Because the problem is NP-hard, one may not expect to

find an optimal solution with a running time guarantee that is polynomial in the size of the

problem. The focus in the chapter is on arriving at approximation algorithms, which are

polynomial time algorithms but relax the requirement of optimality; however, they provide

bounds on the deviation of the cost of the suboptimal solution from the optimal cost with-

out ever computing the optimal cost. An α−approximation algorithm [11] is an algorithm

that

• has a polynomial-time running time, and

• returns a solution whose cost is within α times the optimal cost.

The cost of traveling from an origin to a target directly for each vehicle is assumed to

be no more expensive than the cost of traveling from the same origin to the target through
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an intermediate location. The costs satisfy the triangle inequality if they satisfy the above

property. It is known that there cannot exist a constant factor approximation algorithm for

a HPP or a TSP if the triangle inequality is not satisfied unless P = NP . For this reason,

this property holds for the cost associated with travel for every UV.

1. Literature review

There are a few approximation algorithms that are available for the variants of the TSP

and the HPP. The symmetric TSP has two well known approximation algorithms - the 2

approximation algorithm obtained by doubling the minimum spanning tree (MST) and the

1.5 approximation algorithm of Christofides obtained through the construction of MST and

a minimum perfect matching of vertices of MST with odd degree [52].

The best approximation algorithm currently available for the single HPP (a path that

contains each vertex exactly once of minimum total cost) was proposed by Hoogeveen

[15]. In [15], he proposed an approximation algorithm for three variants of single HPP that

depend on the choice of the endpoints of the path. Hoogeveen modified the Christofides

algorithm, and provided a 3
2
−approximation algorithm for the variant of the HPP problem

when at most one endpoint is fixed and proposed a 5
3
−approximation algorithm when both

endpoints are fixed.

Rathinam et al. have provided 2−approximation algorithms for variants of the homo-

geneous, multiple TSP and HPP in ([26],[53],[60]). A 3
2
−approximation algorithm was

also developed for two variants of a 2-depot Hamiltonian path problem in [54] when the

costs are symmetric and satisfy the triangle inequality.

Until now, there is no constant factor approximation algorithm for any variant of

the heterogeneous, multiple HPP. The contribution here, is in providing a first constant

factor approximation algorithm for the variant of HPP considered. In this chapter, a 11
3

-

approximation algorithm for the multiple depot-terminal HPP with functional heterogene-
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ity constraints is presented. In the special case when the locations of the terminals coincides

with their respective depots, the approximation factor of the proposed algorithm reduces to

3.5. This approximation factor of 3.5 also holds true for other variants of the heterogeneous,

multiple depot HPP when at most one endpoint is specified for each vehicle.

B. Problem formulation

Let the set of vertices D and T represent all the distinct depots and terminals respectively.

Let |D| = |T |. Assume that there is an UV initially located at each of the depots. For every

depot, di ∈ D, let there exist exactly one terminal vertex denoted by ti ∈ T . We require that

each UV starting at its depot end its path at its corresponding (fixed) terminal. Let p := |D|

denote the total number of depots.

First, consider all the targets belonging to categories in I and II. It is assumed that all

the targets are distinct, i.e., there are no two targets present at the same location. Let the

set of targets which can be only visited by the ith UV that starts at di ∈ D be represented

by Ai. Let us define A = A1 ∪ A2... ∪ Ap. It is also assumed that all the Ai’s are disjoint,

i.e., A1 ∩ A2... ∩ Ap = ϕ. Let the common set of targets which can be reached by all UVs

be F .

Define a graph (V,E) with V = D
∪
T
∪
A
∪
F denoting the set of all the vertices

andE := V ×V denoting the set of all the edges joining any two vertices in V . Let c(Vi, Vj)

or simply cij represent the cost of traveling from vertex Vi to vertex Vj for all Vi, Vj ∈ V .

We further assume that the costs are positive, symmetric and satisfy the triangle inequality,

i.e., for all Vi, Vj, Vk ∈ V and i ̸= j ̸= k, Cij +Cjk ≥ Cik. The symmetry of costs may not

hold true for all UVs in general; however, by relaxing motion constraints, one can obtain

symmetry in the cost of travel between any two targets. This is especially so when the

constraint associated with forward travel in a Dubins’ vehicle is relaxed, one gets a Reed-
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Shepp vehicle and the costs are symmetric. While such a relaxation may not solve the

original problem, it serves two purposes: firstly, it provides a lower bound for the optimal

solution, and secondly, if the distances between targets is sufficiently large compared to

the turning radius as in the case of Dubins’ vehicle, the asymmetry in the cost is not so

significant compared to the Euclidean distance between the targets. In such circumstances,

the proposed approximation algorithms provide “adequate” feasible solutions.

A path for a UV is a sequence of vertices visited by the vehicle. The first vertex is

called the start vertex and the last vertex in the sequence is called the end vertex. A path

with no repeated vertices is called a simple path. In this work, we refer simple paths as

simply paths. However, it should be noted that since the costs satisfy triangle inequality,

it is always possible to shortcut a repeated vertex and obtain another path of lower cost

spanning (or visiting) all the vertices.

A path traveled by the ith UV is an ordered set, PATHi, and can be represented

by the form {di, Vi1 , ....., Vir , ti}, where Vil ∈ A
∪
F , l = 1, ...., r corresponds to the r

distinct targets being visited in that sequence by the ith UV. These set of targets being

visited by the ith UV must include the set Ai (which can be only visited by ith UV and

subset (could be empty) of common targets, F . The cost of traveling PATHi is defined as

C(PATHi) = cdii1 +
∑j=r−1

j=1 cikik+1
+ cirti . The Combinatorial Motion planning Problem

(CMP) addressed in this article is to find a PATHi for the ith UV (i = 1, · · · , p) such that

each target is visited exactly once, all the assignment constraints are satisfied and the total

cost defined by
∑i=p

i=1 C(PATHi) is minimized.

In section D, we also address an generalized variant of the CMP where the targets fall

under categories II and III. Let the set of targets which cannot be visited by the ith UV be

denoted by Ni. We also assume that all the Ni’s are disjoint, i.e., N1 ∩N2... ∩Np = ϕ. As

defined before, let the set of targets which must be visited only by the ith UV be Ai. The

Generalized Combinatorial Motion planning Problem (GCMP) addressed in this work is
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to find a PATHi for the ith UV (i = 1, · · · , p) such that

• each target is visited exactly once,

• each target in Ai is visited by the ith UV for all i = 1, · · · , p

• no target in Ni is visited by the ith UV for all i = 1, · · · , p, and,

• the total cost defined by
∑i=p

i=1 C(PATHi) is minimized.

C. Approximation algorithm for the CMP

Here, we present an algorithm, Approxcmp, which constructs a feasible solution to the

CMP. We later prove that this algorithm produces a solution with an approximation factor

of 11
3

. Approxcmp is as follows:

1. For each i ∈ 1, · · · , p, do the following:

• Consider the subset of vertices Si = {di} ∪ Ai ∪ {ti} ∀i = {1.....p}, where di

and ti are the depot and terminal vertices corresponding to the ith UV. Compute

a feasible depot-terminal path, HPPi, that starts from di and ends at ti using

the Hoogeveen’s algorithm [15]. Let EHPPi
be the set of all the edges present

in HPPi.

Let EHPP =
∪p

i=1EHPPi
. Let the total cost of these paths be denoted by CHPP =∑i=p

i=1 C(HPPi).

2. In this step we distribute the common targets, F , among all the UVs. After the dis-

tribution, we will construct a tour for each UV that starts at its depot and visits its

assigned set of common targets. The algorithm for distributing the common targets

among the UVs is as follows:
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Consider the setM = D∪F . Assign zero costs to all the edges among the depots. For

the rest of edges retain the costs assigned earlier. Now, construct a Minimum Span-

ning Tree (MST) on M with the assigned costs using Kruskal’s algorithm. Truncate

all the zero cost edges (among depots) in the resultant MST. This results in a forest

with exactly p connected components. Each of the connected component has exactly

one depot in it. (This follows from the fact that, during each iteration, the Kruskal’s

algorithm adds a (non-used) cheapest, cost edge to the solution such that no cycle is

formed among all the added edges in the solution. Therefore, there are exactly |p−1|

zero cost edges joining the p depots in the solution.) Let EF be the set of the remain-

ing edges after removing all the zero cost edges from the MST. EF corresponds to

a forest with p trees where each tree contains one depot. Also, let EFi
be the set of

edges present in the ith tree.

3. Double the edges of EFi
. Since EFi

is a tree, doubling the edges of EFi
would result

in a connected, Eulerian graph. Therefore, one can find an tour (TFi
) by short-cutting

the edges in the Eulerian tour. The cost of this tour must be at most twice the cost of

the edges in EFi
since the costs satisfy the triangle inequality.

4. Consider the set of edges denoted in TFi
∪HPPi. By construction, there are exactly

three edges incident on di where one belongs to the path HPPi and two belong to

the tour, TFi
. By short-cutting an edge from TFi

and an edge that belongs to HPPi

one can form a path Pi that starts from depot di, ends at terminal ti and visits all the

targets in Ai and Fi. This short cutting procedure is illustrated later in an example in

section E. Let P = ∪i=p
i=1Pi. Since P is a collection of edge-disjoint simple paths and

satisfies all the constraints, P is a feasible solution to CMP.

The following theorem establishes the approximation ratio of the above algorithm.
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Theorem 4. The approximation factor of Approxcmp is 11
3

.

Proof. First, we will prove that the running time of Approxcmp is a polynomial function of

the number of targets and depots. The number of steps required byApproxcmp is dominated

by the computations in steps 1 and 2 of the algorithm. Step 1 of Approxcmp uses the

Hoogeveen algorithm which requires O(m3) steps where m is the total number of targets.

Step 2 of Approxcmp uses the Kruskal’s algorithm which requires O((m+ p)2log(m+ p))

steps to compute. Therefore, the running time of Approxcmp is a polynomial function of

the number of targets and depots.

Now, we will prove the guarantee on the quality of the solutions. Let OPT denote an

optimal solution to the CMP and let COPT denote its corresponding cost. Let the optimal

path corresponding to the UV at depot di in OPT be OPT i.

We will now bound the costs of all the HPP’s found in step 1 of Approxcmp. Consider

the Single Depot-Terminal HPP restricted to the set Si = {di} ∪ Ai ∪ {ti}. Let HPP ∗
i

be an optimal solution to this problem. Note that the HPPi found in step 1 of Approxcmp

is a feasible solution to the single Depot-Terminal HPP on Si. Also note that the path

OPT i visits each target in Si in addition to some common targets from F . Since the costs

satisfy the triangle inequality, by short-cutting all the common vertices in OPT i that do

not belong to Si, one can easily conclude that:

COPT⟩ ≥ CHPP ∗
i
≥ 3

5
CHPPi

. (4.1)

The latter part of the above inequality follows from Hoogeveen’s result for Single

Depot-Terminal HPP. Summing the above result for all the vehicles, we get,

5

3
COPT ≥ CHPP . (4.2)

In the following discussion, we will bound the costs of all the tours found in steps 2
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and 3 of Approxcmp. Note that the optimal path OPT i visits some common vertices from

F in addition to visiting each vertex in Ai. By short-cutting all the vertices in ti ∪ Ai from

OPT i, one can obtain a tree that spans the depot vertex di and all the common vertices in

OPT i. Let the set of edges spanning this tree be EOPT i
F . Let EOPT

F = ∪i=p
i=1E

OPT i
F . The

set of edges in EOPT
F corresponds to a p−component forest that consists of a depot in each

tree and spans all the common vertices in F . Since the costs satisfy the triangle inequality,

it follows that

COPT ≥ C(EOPT
F ) ≥ C(EF ), (4.3)

where C(EF ) is the sum of the cost of edges in EF (found in step 2 of Approxcmp).

From inequalities (4.2) and (4.3), we obtain:

11

3
COPT ≥ CHPP + 2C(EF ) ≥ CHPP + C(TF ). (4.4)

In the above equation C(TF ) is the total cost of the tours obtained by doubling the

trees and short-cutting. From step 4 of Approxcmp, we can deduce that

CHPP + C(TF ) ≥ CP . (4.5)

By combining Equations (4.4) and (4.5)

11

3
COPT ≥ CP ≥ COPT . (4.6)

Hence proved.

Remark 1. The approximation factor of Approxcmp can be improved for the special case

of the CMP when each location of each terminal coincides with its respective depot. In this

case, instead of using Hoogeveen’s [15] algorithm in step 1 of Approxcmp, one can use the



86

Christofides [52] algorithm for finding a path for each vehicle that starts and ends at its de-

pot. Since the approximation factor of the Christofides algorithm is 1.5, the approximation

factor of Approxcmp for this special case reduces to 2 + 1.5 = 3.5.

Remark 2. It is also easy to see that the Approxcmp can be easily extended to the variant

of the CMP when the final vertex of each path is not specified. In this variant, instead

of using the 5
3
−approximation algorithm by Hoogeveen in step 1 of Approxcmp, one can

use the 1.5-approximation algorithm by Hoogeveen [15] where the terminal vertex is not

specified for a path. Therefore, the approximation factor of Approxcmp for this variant

would be equal to 3.5.

In Remark 1, the special case in which location of each terminal coincides with its

respective depot, becomes a corresponding TOUR problem (CTP). More details to the

claim made in Remark 1 are provided here:

Proof for Remark 1

1. Consider the subsets of vertices Zi = di∪Ai ∀i = {1.....p}. Compute a tour on each

of Zi using Christofides algorithm [52].

2. As in Step 2 ofApproxcmp, distribute common targets F among the depots. It should

result in a p-component Minimum Spanning Forest (EF ).

3. Double all the edges in the Minimum Spanning Forest to obtain an Eulerian graph.

Find an Eulerian tour in each component of the Eulerian graph and shortcut the edges

to obtain a tour for each vehicle [11].

4. Combine the tours in Step 1 and Step 3 of this algorithm. By construction, each

depot will have four edges adjacent on it. By using triangle inequality, one can

shortcut these four edges such that only two edges are incident on the depot resulting

in a feasible solution to the tour problem.
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Let Z = ∪i=p
i=1Zi. Let us take a look at the optimal solution to the p-component tour

problem on Z. This solution should be union of optimal solutions to tour problem on

each of Zi. The above statement holds true since all the targets in Zi has to be visited by

vehicle starting from di, and hence should be in the same tour as di. Let CZ be the cost of

optimal p-component tour problem and CT OUR be the optimal cost of CTP. Let Cf be the

cost of feasible solution found in Step 1 of the above algorithm. By virtue of Christofides

algorithm, we have the following:

CZ ≤ Cf ≤ 3

2
CZ ≤ 3

2
CT OUR (4.7)

Let CTOURF
be the cost of tour formed by doubling p-component Minimum Spanning

Forest (cost is CEF
) and short-cutting it. The following holds true as well:

CTOURF
≤ 2CEF

≤ 2CT OUR (4.8)

Let Cfeasible be the cost of feasible solution to CTP formed in Step 4. By using Equa-

tion [4.7,4.9], it follows that:

Cfeasible ≤ Cf + CTOURF
≤ Cf + 2CEF

≤ 3.5CT OUR (4.9)

Hence proved.

D. Approximation algorithm for the GCMP

In this section, a generalized version of the problem (GCMP) is considered when the

possible set of targets fall under categories II and III. This problem admits a (2p + 5
3
)-

approximation algorithm. The following are the main steps of the approximation algorithm

for the GCMP:

1. For i = {1.....p}, do the following:
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• Consider the subset of target vertices denoted by Ni. Note that each target

in Ni must not be visited by the ith vehicle. Therefore, using the spanning

tree algorithm discussed in steps 2 and 3 of Approxcmp, find a tour for all the

vehicles at depots d\{di} such that each target in Ni is visited by any vehicle

other than the vehicle at the ith depot.

• Find a depot-terminal path that starts at di, visits the set of targets in Ai and

terminates at ti.

2. For each vehicle,

• add the edges in its corresponding tours and the path obtained during the pre-

vious step. If any depot vertex di is visited more than once, one can always

shortcut the edges so that a path can be obtained for the vehicle that starts at di,

visits all the targets in Ai and the tours, and ends at ti.

Using a similar proof technique as in Theorem 1, it can be shown that the approxima-

tion factor of the above algorithm is 2p+ 5
3
.

E. Illustration of the algorithm Approxcmp with an example

An instance of the depots, targets and terminals in shown in Figure 9. The blue colored

star denotes depot 1 and the black colored star denotes depot 2. The square shaped vertices

are terminals and are colored respectively. The red colored vertices denote the common

targets that can be visited by any one of the vehicles. Step 1 of Approxcmp is illustrated in

figure 10. In this step, a feasible solution to single depot-terminal HPP is constructed using

Hoogeveen’s algorithm on each of vertices constituting a depot, its corresponding terminal

and the vertices that must be visited by the corresponding vehicle.

The distribution of the common targets among the depots is shown in figure 11 (Step
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Fig. 9. An instance of depots, terminals and targets.

2 of Approxcmp). The resulting graph consists of two components with a depot in each of

them. By doubling and short-cutting the resulting graph, we obtain a tour for each vehicle

as shown in Figure 12. Figure 13 shows the graph resulting from adding all the tours and

paths constructed thus far.

Figure 14 shows the short-cutting process. The dashes are the edges being shortcut.

One can notice that these two edges are incident on the depot where one of them belongs

to the tour and the other to the path incident on the depot. The paths obtained after short-

cutting these edges is shown in Figure 15. The final solution has two components and each

component is a path starting from a depot and ending at its respective terminal.

1. Illustration of remark 1

The algorithm for the corresponding tour problem (CTP) is implemented on a set of ver-

tices shown in figure 16. Using Christofides algorithm, the tours of each depot visiting its

specific targets are constructed in figure 17. In figure 18, 2-component MSF (Minimum
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Fig. 10. Feasible Hamiltonian Path on depot, terminal and essential vertices using
Hoogeveen’s algorithm

Spanning Forest) is constructed by using a greedy algorithm which distributes the common

targets among both the depots. The edges of this forest can be doubled and shortcut to form

a tour. The resulting tour is shown in figure 19. This tour is not unique as short-cutting can

be done in several ways. Figure 20 shows the combined solution of both the tours. And

finally, by short-cutting an edge from both the tours incident on the depot, one can obtain

the feasible solution to CTP as shown in Figure 21.

F. Conclusions

The focus of this chapter is on the first approximation algorithm for a variant of a Multiple

Depot-Terminal Hamiltonian Path Problem when the costs are symmetric and satisfy the

triangle inequality. A variant of the problem is considered where each vehicle starting

from its depot should end its path at a terminal corresponding to the depot. The vehicles

considered in this problem are dynamically identical. However, the complexity is enhanced
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Fig. 11. Common targets are distributed among the UVs at the depots.

by including the possibility that their capabilities or equipment available onboard could be

different. Currently, the proposed algorithm for the generalized version of the problem

(GCMP) has an approximation factor of 2p + 5
3

where p is the number of vehicles. This

approximation factor is essentially dependent on the number of vehicles used.
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Fig. 12. Doubling the edges and short-cutting to tours

Fig. 13. Combining edges from path and tours.
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Fig. 14. Short-cutting edges adjacent to each depot to create feasible solution.

Fig. 15. Feasible solution obtained using the Approxcmp.
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Fig. 16. Target and Depots distribution for CTP

Fig. 17. Using Christofides algorithm on each depot’s specific targets vertices
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Fig. 18. Construction of 2-component Minimum Spanning Forest

Fig. 19. Construction of tour by doubling each component and short-cutting



96

Fig. 20. Combing both the tours constructed

Fig. 21. Construction of feasible solution by short-cutting one edge from both tours incident
on a depot
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

This thesis, as a whole, was devoted to the study of motion planning problem ofm (possibly

heterogeneous) UVs through n points in a plane. In this thesis, we assumed a simple

model of the UV, with the only constraint being that the rate of change of heading angle

is bounded. As a consequence, a UV traveling at a constant speed has a minimum turning

radius.

In Chapter II, we considered a collection of homogeneous vehicles and provided an

algorithm for determining a sub-optimal motion plan, i.e., the sequence of targets to be

visited by each UV and the associated heading angles. The results obtained by this algo-

rithm were promising when the distances between the targets is reasonably large compared

to the the minimum turning radius. In other words, this algorithm produced feasible so-

lutions of reasonably high quality when the coupling between the discrete and continuous

optimization problems is not that strong.

In Chapters III and IV, we focussed on the development of approximation algorithms

for a heterogeneous collection of UVs. In Chapter III, the main focus was on the develop-

ment of an approximation algorithm for a collection of structurally heterogeneous UVs. In

Chapter IV, the main focus was on developing approximation algorithms for a collection of

functionally heterogeneous vehicles. In Chapter IV, a path-type problem was considered,

where a vehicle starting from a depot, after visiting the assigned targets, can ends its path

at a corresponding terminal or a target. In the sections to follow, the main contributions of

each chapter will be highlighted.
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A. Contribution of Chapter II

In Chapter I, the problem of motion planning of UVs with motion constraints was con-

sidered which was referred to as MDMTSP. The motion constraints were modeled as that

Dubins’ like vehicle or Reeds Schepp vehicle. In the first part of the chapter, an assump-

tion was made that the targets were well separated, i.e., the distance between targets is at

least twice the minimum turning radius of the vehicles. This condition is reasonable when

the dimension of the sensor footprint is comparable or greater than the turning radius and

it enables the separation of the combinatorial problem of finding the set of points to be

visited by vehicles and the sequence in which they must be visited from the continuous

optimization problem of determining the headings at each point.

A 2-step approach was adopted to solve MDMTSP when a Dubins’ vehicle repre-

sents a salesman. The combinatorial aspect of the problem was solved by considering the

Euclidean distances between the vertices. To solve the combinatorial problem, a gener-

alization of Held-Karp’s method for the MDMTSP was provided. Further, a procedure

was shown for finding a lower bound. We presented numerical results to corroborate the

effectiveness of the lower bound for various cases of the Euclidean MDMTSP. Once the

sequence of the vertices to be visited was determined for each vehicle, the dynamic pro-

gramming technique was then used to compute the optimal heading for the vehicle at each

vertex.

Combinatorial Optimization problems admit different integer programming formula-

tions. Given that there is a duality gap in the integer programming problems, it matters

significantly which formulation is considered and which constraints in the formulation are

penalized. Herein lies the novelty of the work we have proposed.

1. The Binary Program formulated for this problem generalizes the Dantzig-Fulkerson-

Johnson formulation for MDMTSP.
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2. The generalization of Held-Karp’s procedure for this problem.

3. In application of Lagrangian relaxation, the novelty of the work conducted in this

chapter lies in the choice of constraints to be penalized. Moreover, the choice of the

formulation and the constraints to be penalized in the formulation plays a critical role

in reducing this gap.

4. The application of this combinatorial optimization technique and the use of dynamic

programming to determine the optimal heading angles for the Dubins’ vehicles.

B. Contribution of Chapter III

In Chapter III, an important problem of 2-Depot Heterogeneous TSP(2-HTSP) was ad-

dressed. 2-HTSP can be briefly stated as follows: Given a set of destinations and two

heterogeneous vehicles that start from distinct depots, find a tour for each vehicle such that

each destination is visited exactly once and the total cost of the tours of the vehicles is a

minimum.

In Chapter III, we considered the vehicles available to be structurally heterogeneous.

If the vehicles are structurally different, the cost of traveling between two destinations not

only depends on the position of the destinations but also on the vehicle. The 2-HTSP is

a generalization of the Single Traveling Salesman Problem (Single TSP) and is NP-Hard

[36]. The following are the contributions of Chapter III:

1. A 3-approximation algorithm was introduced for the 2-HTSP when the costs associ-

ated with each vehicle satisfy the triangle inequality. This is the best approximation

algorithm in literature for 2-HTSP to this point.

2. In general, the approach given in this chapter can be extended to obtain a 3m
2

-approximation

algorithm for variants of am-depot, Heterogeneous Traveling Salesman Problem(HTSP).
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3. The approach adopted in the chapter can also be extended to obtain a 3-approximation

algorithm for a 2 depot, Heterogeneous TSP where the objective is to minimize the

maximum cost traveled by either of the vehicles (min-max 2-HTSP). The min-max

problem admits the same approximation factor as 2-HTSP.

4. Relaxing the degree constraints of all the destinations in the formulation of the

2-HTSP would yield a corresponding heterogeneous spanning forest problem (2-

HMSF) with two connected components. Therefore, an other way to develop an

approximation algorithm for the 2-HTSP is to find the optimal heterogeneous span-

ning forest, and double and shortcut the edges in this forest to obtain tours for the

vehicles. However, it is not yet clear if 2-HMSF is in the class of P or NP-Hard.

However, a 4-approximation algorithm is presented in this thesis for the 2- heteroge-

neous spanning forest. This is first approximation algorithm for the construction of a

suboptimal Heterogeneous Spanning Forest

Hence, future research directions could include using similar approaches for finding

better algorithms for HMSF and 2-HTSP.

C. Contribution of Chapter IV

In Chapter IV, we considered UVs that are structurally homogeneous but have different

capabilities. The cost of travel from ith node to jth node is the same for every UV in the

collection. However, the fleet of UVs employed for the task differ from each other in terms

of sensing abilities, thus introducing heterogeneity. We coined the word functional hetero-

geneity to represent this distinction amongst UVs. The following are the contributions of

Chapter IV:

In Chapter IV, 11
3

approximation algorithm was presented for a variant of Multiple

Depot Heterogeneous Hamiltonian Path problem. It was assumed that the vehicles are



101

identical dynamically and hence, the cost of traveling from any target A to any other target

B with identical headings is the same for every UV in the collection. The UVs differ from

each other in their sensing capabilities.

1. Up to the point of this thesis, there was no constant factor approximation algorithm

for any variant of the heterogeneous, multiple HPP. The contribution here, is in pro-

viding a first constant factor approximation algorithm for the variant of HPP consid-

ered.

2. In this chapter, a 11
3

-approximation algorithm for the multiple depot-terminal HPP

with functional heterogeneity constraints is presented. In the special case when the

locations of the terminals coincides with their respective depots, the approximation

factor of the proposed algorithm reduces to 3.5.

3. This approximation factor of 3.5 also holds true for other variants of the heteroge-

neous, multiple depot HPP when at most one endpoint is specified for each vehicle.

4. The proposed algorithm for the generalized version of the problem (GCMP) has an

approximation factor of 2p+ 5
3

where p is the number of vehicles. This approximation

factor is essentially dependent on the number of vehicles used.

Future work could be directed at exploring the possibility of constant factor approxi-

mation algorithms for the generalized problem.
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