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ABSTRACT 

 

Reliability Evaluation of Composite Power Systems Including the Effects of Hurricanes. 

(December 2010) 

Yong Liu, B.E., Huazhong University of Science and Technology; 

M.E., Nanyang Technological University 

Chair of Advisory Committee: Dr. Chanan Singh 

 

 Adverse weather such as hurricanes can significantly affect the reliability of 

composite power systems. Predicting the impact of hurricanes can help utilities for better 

preparedness and make appropriate restoration arrangements. In this dissertation, the 

impact of hurricanes on the reliability of composite power systems is investigated. 

Firstly, the impact of adverse weather on the long-term reliability of composite 

power systems is investigated by using Markov cut-set method. The Algorithms for the 

implementation is developed. Here, two-state weather model is used. An algorithm for 

sequential simulation is also developed to achieve the same goal. The results obtained by 

using the two methods are compared. The comparison shows that the analytical method 

can obtain comparable results and meantime it can be faster than the simulation method. 

Secondly, the impact of hurricanes on the short-term reliability of composite 

power systems is investigated. A fuzzy inference system is used to assess the failure rate 

increment of system components. Here, different methods are used to build two types of 

fuzzy inference systems. Considering the fact that hurricanes usually last only a few 
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days, short-term minimal cut-set method is proposed to compute the time-specific 

system and nodal reliability indices of composite power systems. The implementation 

demonstrates that the proposed methodology is effective and efficient and is flexible in 

its applications.  

Thirdly, the impact of hurricanes on the short-term reliability of composite power 

systems including common-cause failures is investigated. Here, two methods are 

proposed to archive this goal. One of them uses a Bayesian network to alleviate the 

dimensionality problem of conditional probability method. Another method extends 

minimal cut-set method to accommodate common-cause failures. The implementation 

results obtained by using the two methods are compared and their discrepancy is 

analyzed. 

Finally, the proposed methods in this dissertation are also applicable to other 

applications in power systems.  
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CHAPTER I 

INTRODUCTION 

 

In this chapter, the background of the research reported in this dissertation is 

introduced first, then the objectives of this dissertation are listed, and the organization of 

this dissertation is given in the end. 

1.1 Introduction 

Adverse weather such as hurricanes can significantly affect the operation of 

power systems, and it can jeopardize system reliability. In recent years, the hurricanes in 

the United States have caused hundreds of thousands of customers losing power supply. 

Moreover, due to the interdependency of various infrastructural systems, even brief 

power interruption may affect communication, water distribution, traffic signaling, and 

other lifeline systems [1]-[3]. Predicting the impact of hurricanes on power system 

reliability can help utilities for better preparedness and make appropriate restoration 

arrangements [2]-[3].  

The impact of adverse weather on the reliability of power systems has been 

investigated in the past decades, i.e. the average effect of adverse weather over a long 

period of time. Some weather models have been proposed to evaluate power system 

reliability considering the effect of weather, e.g. two-state weather model [4] and three-

state weather model [5].  

____________ 

This dissertation follows the style of IEEE Transactions on Power Systems. 



 2

When the effect of weather is considered, the states of the components of power 

systems can become dependent. For instance, when two-state weather model is used, 

usually a set of linear equations need to be solved by using Markov process [6]. 

However, this becomes impractical when applied to large power systems considering the 

fact that the number of system components is large. To solve this problem, usually 

Monte Carlo simulation can be used. But, due to its inherent nature of random 

experiments, simulation process can take long time to converge. In [6], Markov cut-set 

method was proposed to simplify the analytical approach. Its basic idea is that Markov 

process can be only applied to system minimal cut-sets as well as their unions, and its 

application to all system components is unnecessary. Although this method was 

described for some simple transmission configurations, it has not been developed for 

application to composite power systems, especially the nodal indices. 

In this dissertation, algorithms are developed to implement Markov cut-set 

method and simulation method to evaluate the impact of adverse weather on the long-

term reliability of composite power systems including system and nodal indices [7]. The 

obtained results by using different methods are compared and analyzed [7]. 

Usually, hurricanes last only a few days but their effect is drastic. Thus, the 

short-term impact of hurricanes, i.e. their dynamic impact during their durations, need to 

be investigated as their impact may not be reflected properly in the long term indices. 

Since a composite power system covers a large area, the weather models in [4]-[5] are 

not applicable and instead the regional weather model proposed in [8]-[9] can be used.  
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In this dissertation, the impact of hurricanes on the short-term reliability of 

composite power systems is investigated and the common-cause failures of system 

components are also considered. A common-cause failure refers to the simultaneous 

failures of multiple components due to a common cause [10], e.g. those of transmission 

lines installed on a same tower.  

It has been known for a long time that the failure rate of a transmission or a 

distribution line is a function of the weather that it is exposed to and the failure rate of 

the transmission (distribution) line can be much higher in adverse weather than that in 

normal weather [11]. In this dissertation, a fuzzy inference system combined with 

regional weather model is used to assess the failure rate increment of system components 

cause by hurricanes. Additionally, different methods are proposed to build different 

types of fuzzy inference systems [12]-[14]. After the incremental failure rates of system 

components are obtained, short-term minimal cut-set method is proposed to compute the 

time-specific system and nodal reliability indices of composite power systems [13]. 

Here, only the independent failures of system components are considered. 

Next, two methods are proposed to investigate the impact of hurricanes on the 

short-term reliability of composite power systems including common-cause failures 

[15]-[16]. One of them uses a Bayesian network to alleviate the dimensionality problem 

of conditional probability method when numerous common-cause failures are modeled 

[15]; the other method extends minimal cut-set method to accommodate common-cause 

failures [16]. The obtained results by using the two methods are compared and the 

difference is analyzed [16].  
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Finally, it is shown that the evaluation methods proposed in this dissertation are 

also applicable to distribution systems [17] and other applications [18], e.g. operational 

reliability, and intermittent renewable energy.  

1.2 Objectives 

The objectives of this dissertation are as follows: 

1) Investigate the impact of adverse weather on the long-term reliability of composite 

power systems. The evaluation results can be used in power system planning. 

2) Investigate the impact of hurricanes on the short-term reliability of composite power 

systems. The evaluation results can be used in power system operation. 

3) Investigate the impact of hurricanes on the short-term reliability of composite power 

systems including the common-cause failures of components. Thus, the impact of 

hurricanes on the operational reliability of composite power systems can be predicted 

more accurately.  

1.3 Organization of the Dissertation 

This dissertation is organized as follows: in Chapter II,  basic concepts of power 

system reliability and some weather models are introduced; in Chapter III, the 

investigation of the impact of adverse weather on the long-term reliability of composite 

power systems is presented; in Chapter IV, the investigation of the impact of hurricanes 

on the short-term reliability of composite power systems is presented; in Chapter V, the 

investigation of the impact of hurricanes on the short-term reliability including the 

common-cause failures of components is presented; finally, in Chapter VI, the 
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evaluation methods proposed in this dissertation is summarized and their possible 

extensions are discussed. 
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CHAPTER II 

POWER SYSTEM RELIABILITY EVALUATION 

 

In this chapter, some basic concepts of power system reliability are introduced 

first; then, two models to consider the effect of weather are introduced.  

2.1 Basics of Power System Reliability 

Generally, reliability is defined as the ability of a system or component to 

perform its required functions under stated conditions for a specified period of time [19]. 

A key element of this definition is that the concerned system or component should 

operate under stated conditions.  Operational environment such as weather is such a 

condition which should be addressed in reliability evaluation. The effect of adverse 

weather on power systems and other infrastructural systems are introduced in the next 

section. 

For power systems, North American Electric Reliability Corporation (NERC) 

defines reliability as “the degree to which the performance of the elements of [the 

electrical] system results in power being delivered to customers within accepted 

standards and in the amount desired.” Actually, NERC’s definition of reliability includes 

two concepts: adequacy and security. Adequacy is defined as “the ability of the system 

to supply the aggregate electric power and energy requirements of the consumers at all 

times.” NERC defines security as “the ability of the system to withstand sudden 

disturbance.” In other words, adequacy refers to that sufficient system resources are 
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available to meet predicted load with reserve for contingencies; security refers to that the 

system remains reliable even in contingent cases.  

 

 

 

Fig. 1: Functional Zones and Hierarchical Levels 

 

 

It is noted that most present probabilistic techniques for power system reliability 

evaluation are used for adequacy assessment. The available probabilistic techniques to 

assess the security of power systems are limited. Accordingly, most reliability indices 

used at the present time are adequacy indices. 

The reliability evaluation can be implemented in different segments of a power 

system, i.e. functional zones, as well as the combinations of them which shapes the 

hierarchical levels shown in Fig. 1 [20]. 

The evaluation methods at different hierarchical levels of a power system can be 

different. For instance, at hierarchical level II the configuration of a transmission system 

is usually in a meshed fashion, and the effects of load flow, overload alleviation, 

generation rescheduling need to be considered. In contrast, at hierarchical level III the 
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configuration of a distribution system is usually radial. Thus, power flow is usually not 

considered in distribution systems. Generally, the evaluation methods for power system 

reliability fall into two categories: analytical and simulation. The details of the 

algorithms to implement them are described in the following chapters. Clearly, the 

reliability assessment at hierarchical level III becomes very complex as it involves all 

three functional zones. Thus, the distribution system is usually analyzed as a separate 

part. 

In this dissertation, the impact of hurricanes is investigated at hierarchical level II 

which is usually called a composite power system or a bulk power system. But, the 

proposed evaluation methods in this dissertation are also applicable to distribution 

systems. This is discussed in detail in Chapter VI. 

2.2 Weather Models 

2.2.1 Two-state weather model 

In [4], each transmission line was assumed to operate in a two-state fluctuating 

environment as shown in Fig. 2, and Markov method for the whole transmission system 

was used to evaluate its reliability. In Fig. 2, the arrows represent the transition of 

component states. For simplicity, only the transition of the states of one component is 

illustrated.  

Advantages of two-state weather model are its simplicity and easy 

implementation. This weather model can be used for long-term applications in power 

systems, e.g. power system planning. In this dissertation, it is used to evaluate the impact 

of adverse weather on the long-term reliability of composite power systems. But, for a 
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composite power system the number of components is large, and applying Markov 

process to all components is impractical. In this dissertation, Markov cut-set method in 

[6] is used to solve this problem. The details are given in the next chapter.  

 

 

 

Fig. 2: Two-State Weather Model (Simplified) 

 

 

 

 

Fig. 3: Regional Weather Model 
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2.2.2 Regional weather model  

An assumption adopted by previous weather model is that all system components 

are exposed to the same weather at a time. This is not true considering the fact that 

hurricanes develop and dissipate over time, i.e. the impact of hurricanes on a power 

system can be different temporally and spatially. 

In [8]-[9], the regional weather model as shown in Fig. 3 was used to recognize 

the regional effects of weather that transmission lines are exposed to and Monte-Carlo 

simulation was used to evaluate the reliability of composite power systems. 

In [2]-[3], similar regional weather model was applied to distribution systems 

and statistical regression method was used to predict the number of outages caused by 

hurricanes in each geographic unit.  

2.2.3 Disaster impact on infrastructural systems  

The impact of adverse weather on other infrastructural systems has been 

investigated in the literature. For instance, in [21]   a regional weather model similar to 

that in [2]-[3] was used to evaluate the performance of cellular networks during 

hurricanes. Moreover, the impact of other natural disasters on power systems has been 

investigated. For instance, in [22] simulation method was used to investigate the 

restoration process of power systems after earthquakes. 
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CHAPTER III 

RELIABILITY EVALUATION OF COMPOSITE POWER SYSTEMS 

USING MARKOV CUT-SET METHOD 

 

The impact of adverse weather on the long-term reliability of power systems 

have been investigated during the past decades. Usually, two-state weather model [4] is 

used to evaluate the effects of fluctuating weather on power system reliability. As a 

result, the states of system components are not independent anymore. To solve this 

problem, usually simulation method can be used. In this chapter, Markov cut-set method 

[6] is used to achieve the same goal and algorithms to implement this method are 

developed. For the purpose of comparison, algorithm to implement sequential simulation 

is also developed, and the results obtained by using the two methods are compared and 

analyzed. 

This chapter is organized as follows: in Section 3.1 relevant researches using 

two-state weather model are reviewed; in Section 3.2 the assumptions adopted in this 

chapter are listed; in Section 3.3 minimal cut-set method is briefly introduced and the 

developed algorithms for Markov cut-set method are presented; in Section 3.4 Monte 

Carlo simulation is briefly introduced and the developed algorithm for sequential 

simulation is presented; in Section 3.5 the analytical and simulation methods proposed 

are applied to the modified IEEE reliability test system (RTS). The results obtained by 

using the two methods are presented and compared; finally, in Section 3.6 main 

conclusions obtained in this chapter are summarized.  
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3.1 Literature Review 

In the reliability evaluation of power systems, usually the states of system 

components are assumed to be independent, and system reliability indices are calculated 

by using the methods based on the multiplication rule of probabilities [23]. But, in some 

cases, for instance, when the effect of fluctuating weather or common-cause failures is 

considered, the previous assumption is invalid. The main weather models used include 

two-state weather model [4] and its variant [5]. Generally, two kinds of methods can be 

adopted, namely analytical [4], [6], [23] and Monte Carlo simulation [24].   

Generally, simulation method mimics the operational process of a physical 

system by using random experiments and obtains system reliability indices using 

statistical inference. Generally speaking, simulation method is suitable when complex 

system operational conditions are considered. In [24], basically two kinds of simulation 

methods are described: random sampling and sequential simulation. Generally, random 

sampling assumes that component states are independent and system states, i.e. the 

combinations of component states, are uncorrelated.  Sequential simulation is more 

flexible and is suitable to simulate the effect of fluctuating weather. Relevant details are 

given in Section 3.4.  

However, by the nature of simulation method, its convergence may need 

acceleration by using other techniques [24]. On the other hand, the Markov process used 

in [4] is accurate within the distribution assumptions, but it is only applicable to 

relatively small systems considering that the solution of 2
1+n  linear equations is required 

[6]. Here, n is the number of system components.  
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To alleviate the dimensionality problem, a method was proposed in [23] to 

reduce the state space by merging system states and systematically deleting low 

probability states. In [6], Markov cue-set method was proposed to evaluate the reliability 

of transmission and distribution systems considering the effects of fluctuating weather. 

In [6], minimal cut-set method was used to compute system reliability indices, and 

Markov process was applied to the components of a minimal cut-set or a union of 

minimal cut-sets to alleviate the computational burden. Markov cue-set method is based 

on the concept that if two-state weather model is used, the reliability indices of a 

minimal cut-set or a union of minimal cut-sets can be calculated by applying Markov 

process only to its members, and the application of Markov process to all system 

components simultaneously is unnecessary. Thus, if the minimal cut-sets up to some 

order (e.g. third-order, i.e. the maximum number of components) are determined, only a 

limited number of linear equations need to be solved at a time. For example, considering 

a system of 500 components, if the entire system is to be modeled by using Markov 

process, there will be 2
501  number of states and thus as many equations to be solved. 

However, if the maximum number of the components in a minimal cut-set or a union of 

minimal cut-sets is say 6, then by using Markov cut-set method, the highest number of 

equations to be solved at a time is 2
7 . This can make the difference in the practical 

applicability of Markov process. 

However, in [6] Markov cut-set method was applied to a simple 5-component 

system, and the minimal cut-sets were determined by using simple enumeration method 

and the connectivity criterion in transmission and distribution systems. Additionally, 
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nodal reliability indices were not computed, and the comparison with simulation method 

was not given in [6]. 

In this chapter, Markov cut-set method is used to investigate the impact of 

adverse weather on the long-term reliability of composite power systems. From previous 

discussion, it is clear that a key step of Markov cut-set method is the identification of 

minimal cut-sets.  In this dissertation, this is modeled as a linear constrained 

optimization problem to shorten computational time. Since enumerating all minimal cut-

sets of a power system is impractical and unnecessary, the algorithm of computing the 

bounds of minimal cut-sets is also developed. An important new feature is the method 

for computing nodal indices as these indices are important for assessing the impact of 

adverse weather as well as extensions to distribution systems. 

3.2 Assumptions 

In this chapter, the following assumptions are adopted: 

1) Voltage is assumed as 1pu at each bus and DC power flow is used. 

2) The distribution of state residence times is assumed exponential. Thus, Markov 

process can be used to compute reliability indices. 

3) All reliability indices computed are steady state indices. Thus, the probability of a 

system state can be obtained by using the steady state condition of Markov process. 

4) All system components have two possible states: success or failure. 
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3.3 Markov Cut-Set Method 

 In this section, the developed algorithms for implementing Markov cut-set 

method are presented in detail. Firstly, minimal cut-set method is briefly introduced; 

then, the algorithm for identifying system and nodal minimal cut-sets is presented; 

finally, the algorithm for computing the bounds of minimal cut-sets is presented. 

3.3.1 Minimal cut-set method 

A cut set is a set of components whose failures alone could cause system failure. 

Here, the definition of system failure is rather broad and it can be any kind of anomaly 

defined. In this dissertation, system failure refers to the load shedding at any node of a 

composite power system. A minimal cut-set has the further property that it has no proper 

subset of components whose failures alone could cause system failure. Here, the term 

“component” is also used in a broad sense. It can be any device in a power system and 

even can be a condition or a function whose presence or absence could cause system 

failure.  

The basic idea of minimal cut-set method is to first identify the minimal cut-sets 

of a power system, and then use the following equations of probabilities to compute the 

reliability indices [6].  

( ) ( ) ( ) ( ) ( )CCCpCCCpCCpCpp m
m

kji
kji

ji
ji

i
if ILIILIII 21

1
1 ⋅−+−∑+∑−∑= +

<<<
            

(1) 

( ) ( ) ( ) LIII −⋅∑+⋅∑−⋅∑= ++
<<

+
<

µµµ kji
kji

kjiji
ji

jii
i

if CCCpCCpCpf    

( ) ( ) µ mm
m

CCCp +++
+ ⋅⋅−+ LILII 2121
1

1     (2) 
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fpd fff =                                                              (3)                                                   

where  

         p f                 =            failure probability   

         C i          =              minimal cut-set i 

         C i                  =    event that all members of C i  fail 

         CC ji I          =    joint event that all members of both C i  and C j  fail 

          m         =     number of minimal cut-sets 

f f           =    failure frequency   

µ i
          =   repair rate of component i 

µi         =  ∑
∈Cii

iµ  

µ ji+         =  ∑
∈ CC jii

i
U

µ  

d f           =    mean duration of failure 

In practice, enumerating all the minimal cut-sets of a power system and using 

(1)-(3) to compute the exact values of reliability indices are impractical and unnecessary. 

Instead, the minimal cut-sets are usually determined up to a desired order and the 

following equations are used to compute the bounds of the reliability indices to 

approximate the results of (1)-(3): 

( )∑=
i

i
u
f Cpp                        (4)    

    ( ) ( )∑−∑=
< ji

ji
i

i
l
f CCpCpp I           (5)                                                   

( ) µi
i

i
u
f Cpf ⋅∑=                                       (6)  
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( ) ( ) µµ ji
ji

jii
i

i
l
f CCpCpf +

<
⋅∑−⋅∑= I                                           (7)                                          

where  

p
u
f   = first upper bound of p f  

p
l
f  = first lower bound of p f  

 f
u
f   = first upper bound of f f  

f
l
f  = first lower bound of f f  

 By using inclusion-exclusion formula, a sequence of increasingly closer bounds of the 

reliability indices can be obtained [25].  

Following the above introduction, Markov cut-set method can be implemented as 

follows:  

1) Determine the minimal cut-sets up to the preset order and the ones of higher order are 

ignored.  

2) Compute the reliability indices of the minimal cut-sets and their unions. Here, the 

multiplication rule of probabilities is not applicable anymore. Instead, the algorithm 

developed in Subsection 3.3.4 can be used. 

3) Use (3)-(7) to compute the reliability indices.  

3.3.2 Identification of minimal cut-sets  

In the literature, numerous methods have been proposed to generate minimal cut-

sets to evaluate the reliability of large complex systems [26]-[34]. However, these graph-

based methods mainly explore the connectivity feature of networks and are not suitable 

for the reliability evaluation of composite power systems considering the capacity and 
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admittance of transmission lines. In [31], [33], although the link capacity of networks 

were considered, the proposed algorithms are only suitable for some general networks 

considering the fact that generation rescheduling and load shedding have to be 

considered in composite power systems. In [29], although the proposed method was 

implemented in power systems, the previous issues were not addressed.  

Normally, a composite power system can be modeled as a capacitated-flow 

network subjected to some operational constraints, such as generation-load balance, 

generator capacity limits and voltage magnitude limits. In reliability evaluation, usually 

the analysis of failure effects should be implemented after the occurrence of a system 

event, i.e. determining the resultant system state is success or failure as defined. In a 

composite power system, after a system event occurs, e.g. the outage of a generator or 

the tripping of a transmission line, usually the output of generators is rescheduled first. If 

the violation of system constraints cannot be remedied, usually load shedding is finally 

executed.  

In this dissertation, the identification of minimal cut-sets is modeled as a 

constrained linear optimization problem to reduce computational time. When the voltage 

is considered, the proposed algorithm can be easily extended to the AC model. 

Mathematically, the objective is to minimize the amount of load shedding M D  if 

necessary and meantime the following constraints are satisfied: 

Balance of active power flow:  

PPP LDDG −=                                                        (8) 
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where  

PG   =  active power of total generator output 

PD  =  active power of system load 

PLD   = active power of total load shedding   

Transmission line capacity limit: 

PP jiji
max
,, ≤                                                           (9)             

where  

P ji ,  =  active power flow in transmission line from bus i to j 

 P ji
max
,   =  upper limit of P ji ,  

Generator capacity limit: 

PP gg
max≤                                               (10) 

where  

Pg   =  active power output of generator g  

Pg
max   =  upper limit of Pg  

Load shedding limit: 

PP dd
max≤                                                       (11) 

where  

Pd   =  active power shedding of load d  

Pd
max   =  upper limit of Pd  

The algorithm to determine the minimal cut-sets of a composite power system up 

to the preset order is as follows: 
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1) Choose an n-order arbitrary combination of system components. 

2) Check all the existing lower-order minimal cut-sets to examine if they are the subsets 

of the combination in Step (1): if yes, go back to Step (1); if not, go to the next step. 

3) Run the optimization routine on the condition that these n components are out of 

service simultaneously. 

4) Examine if load shedding is needed: if yes, these components make up an n-order 

minimal cut-set; otherwise, not.  

5) Check if all the n-order combinations of system components have been examined: if 

not, go back to Step (1); if yes, forward to the next step. 

6) Check if the pre-set order of the combinations is reached: if yes, stop; if not, forward 

to the next step. 

7) Set 1+= nn  and go back to Step (1). 

The proposed algorithm has some advantages as follows: 

1) The implementation is simple. Since linear optimization is widely used in various 

applications in power systems, the proposed algorithm can be implemented by 

slightly modifying the current software.  

2) It is easy to extend this algorithm to incorporate more system operational 

considerations. For instance, it is simple to extend it to the AC model. 

3) It is easy to compare the proposed algorithm with other methods since linear 

optimization is also used in other analytical and simulation methods to analyze the 

failure effects. For example, the number of calling the optimization routine can 

indicate the efficiency of a reliability evaluation method.   
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4) It can be used to compute system and nodal reliability indices. Although simulation 

method can achieve the same goal, the computation may be more expensive. This is 

discussed in detail in the next subsection. 

However, a practical composite power system may have a large number of 

components. Even if the minimal cut-sets are determined to a small order, their number 

can be still very large. This problem can be further alleviated by using the approaches 

proposed in [35]. The basic idea is that using learning methods to classify system states 

as success or failure. Thus, the computational time can be reduced further. It should be 

pointed out that this problem is shared by analytical and simulation methods. Some 

intelligent methods can accelerate the algorithms of both of them. 

3.3.3 System and nodal minimal cut-sets  

As mentioned previously, the proposed algorithm can identify nodal minimal cut-

sets too. Actually, it can identify system and nodal minimal cut-sets simultaneously. 

Thus, the computation of nodal reliability indices can be much simplified.  

When a minimal cut-set is determined, the information about the nodes which 

suffer loss of load is saved. Thus, in the end there are two lists, first a list of all minimal 

cut-sets and then an additional list of nodes that have loss of load corresponding to each 

minimal cut-set. To compute system reliability indices, all the minimal cut-sets are used, 

i.e. they are system minimal cut-sets. To compute the reliability indices of a node, only 

those minimal cut-sets which have it suffering loss of load are used, i.e. they are the 

nodal minimal cut-sets. It should be pointed out that most of the computation time is 

spent in identifying the minimal cut-sets. The time taken by the computation of (3)-(7) is 
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relatively small. Since the nodal minimal cut-set are the subsets of system minimal cut-

sets, no additional time is needed for nodal reliability indices as far as the identification 

of minimal cut-sets is concerned. The only additional time needed is for the use of (3)-

(7) for the calculation of nodal reliability indices and this is not significant. This point 

will be further illustrated in Section 3.6. 

When simulation method is used to obtain nodal reliability indices, as pointed out 

in the above discussion, a system failure may have different effects at different nodes, 

i.e. it may only have some nodes suffering loss of load. Usually, for a power system the 

number of system states which are success is much greater than that of system states 

which are failure. Considering the fact that the number of system states that cause a node 

suffering loss of load is smaller than that of system states which are failure, the converge 

of simulation method is slower to simulate nodal reliability indices than that simulating 

system reliability indices. 

3.3.4 Calculation of probabilities  

Another key step of implementing Markov cue-set method is to compute the 

probabilities of a minimal cut-set or a union of minimal cut-sets. In this subsection, an 

improved algorithm is developed to compute the bounds of the reliability indices. This 

algorithm can automatically generate the transition rate matrix of a minimal cut-set or a 

union of minimal cut-sets, thus the computation of system and nodal reliability indices 

can be much easier. This algorithm is an improvement of the method proposed in [36]. 

The improvements are summarized as follows: 
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1) Although the algorithm in [36] is applicable to n-component system, it is different 

from that in this dissertation. The index n in [36] is 'fixed' whereas in this chapter n is  

'variable'. In other words, the algorithm in [36] is applicable to fixed-dimension 

problems whereas the algorithm developed here is applicable to variable-dimension 

problems. This is needed as the number of the components of a minimal cut-set or a 

union of minimal cut-sets keeps on changing.  

2) The algorithm in [36] is for single-state weather model whereas in this chapter the 

algorithm is applicable to two-state weather model considering the effects of 

fluctuating weather. Thus, the transition rate matrix produced here comprises four 

sub-matrices, and they are generated in sequential steps and finally all the diagonal 

elements are updated.  

3) The core parts of two algorithms are different. The core part of the algorithm in [36] 

is based on “number” processing whereas in this chapter it is based on “bit” 

processing. Relevant details are given in the following discussion. 

To illustrate the proposed algorithm to compute the bounds of the reliability 

indices, a simple example is given first. Here, the two-state weather model in Chapter II 

for a single component is used. It is reproduced in Fig. 4. and necessary parameters are 

added.  
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Fig. 4: Two-State Weather Model (Parameterized) 

 

 

here 

λn   =  failure rate in normal weather 

 µ n
  =  repair rate in normal weather 

 λa   = failure rate in adverse weather 

 µ a
  = repair rate in adverse weather 

 na  =  transition rate from normal weather to adverse weather 

 an  = transition rate from adverse weather to normal weather 

In this chapter, the impact of adverse weather on the long-term reliability of 

composite power systems is of interest. Thus, the steady state condition of Markov 

process can be used to compute the probabilities, i.e. the following equation can be 

obtained. 
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where,  

P
n
up   = success probability in normal weather 

P
n
down    =  failure probability in normal weather 

P
a
up   = success probability in adverse weather 

P
a
down    = failure probability in adverse weather 

However, the above equations cannot be directly solved to compute the probabilities 

because they are linearly correlated, i.e. they are not independent. Now, we have the 

following equation: 

1=+++ PPPP
a
down

a
up

n
down

n
up        (13) 

Then, we can replace say the fourth row of (12) as follows: 
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Now, the above equations can be solved appropriately to compute the probabilities. The 

previous discussion shows that a key step to compute the probabilities is to generate the 

transition rate matrix. 

For a minimal cue-set or a union of minimal cue-sets, generally the following 

equation can be used to compute the steady state probabilities:  

BPA =′                                                                  (15)   
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where  

A′   =  obtained from 







=

AANA

ANNN
A  by replacing the elements of an  

  arbitrary row k by summing vector 1 

 NN = 22
nn ×  transition rate matrix in normal weather 

AA = 22
nn ×  transition rate matrix in adverse weather 

NA = 22
nn ×  transition rate matrix from normal weather to adverse  

  weather 

AN  =  22
nn ×  transition rate matrix from adverse weather to normal  

  weather 

 n  =  order of a minimal cut-set or a union of minimal cut-sets 

P  = a column vector whose ith element is the steady state probability  

  of system state i 

B  =  a vector of zeros with the kth element set to 1 

Actually, only the sum of the state probabilities in two weathers which correspond to the 

minimal cut-set or the union of minimal cut-sets, needs to be calculated. 

 Next, the algorithm to generate matrix A is presented in detail. The basic idea is 

as follows:  

1) Generate the transition rate sub-matrices in different weathers. 

 2) Generate the transition rate sub-matrices between two weathers. 

3) Update the transition rate sub-matrices in Step(1). 

Generating NN 

    NN is a sub-matrix whose elements are as follows: 

NN ii,   = ∑−
j

ijNN ,  
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NN ji,   = λn
ij,  

λn
ji,   =  transition rate from system state i to j in normal weather 

The algorithm used to determine λ ji,  is as follows: for NN the number of system states 

is 2
n  and each system state is represented by an n-bit binary vector on the principle - for 

each bit the binary number is 1 or 0 if the state of the corresponding component is 

success or failure.  

1) Firstly, number 321L
n

000  is assigned to state 1. From state 2 to 12 −n , the binary 

representation of each system state is as follows:  

� From state 2 to state 1
1

+
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� Finally, vector 321L
n

111  is assigned to state 2
n . 

2) From system state i to j, if there is one and only one bit of their binary vectors being 

different, forward to the next step; if not, 0, =λ ji . Here only the change of the state 

of one component at a time is considered, i.e. common-mode failures are not 

considered.  

3) Suppose that the change of the state takes place at the lth bit of two binary vectors: if 

it is 10 → , µλ lji =, ; otherwise, λλ lji =, . 

4) If all the pairs of system states are examined, stop; if not, go back to Step (2). 

Generating AA 

AA is a sub-matrix whose elements are as follows:  

AA ii,   = ∑−
j

ijAA ,  

AA ji,   = λa
ij,  

λa
ji,    =  transition rate from system state i to j in adverse weather 

The algorithm to generate AA is the same as that to obtain NN except that the transition 

rates in adverse weather are used instead. 

Generating NA and AN  

Both NA and AN are diagonal sub-matrices and they are easy to produce. NA is a 

sub-matrix whose elements are as follows: 

NA ii,   = λ AN →  

λ AN →   =  transition rate from normal weather to adverse weather 
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AN is a sub-matrix whose elements are as follows: 

 AN ii,   = λ NA→  

λ NA→   = transition rate from adverse weather to normal weather  

Update NN and AA 

Finally, NN and AA are updated as: NANNNN +=  and ANAAAA += . 

In previous discussion, the relevant reliability parameters, i.e. the transition rates,   

are assumed to be known. Here, these parameters can be obtained as follows.  

Parameters in different weathers 

 Usually, average reliability parameters are ready to use or can be easily obtained 

by using simple conversion. For example, usually the mean time to failure or mean time 

to repair of a component is known. Then, the failure rate or repair rate is just the 

reciprocal of mean time to failure or mean time to repair. But, the average reliability 

parameters are undistinguished in different weathers. In the next chapter, a simple 

approach is proposed to differentiate the reliability parameters in different weathers.  

Parameters between two weathers 

These parameters can be obtained by using a method similar to that obtaining the 

average parameters, i.e. computing the reciprocal of mean time in normal weather or 

mean time in adverse weather to obtain the corresponding transition rate. 

3.4 Simulation Method 

In this section, the algorithm to simulate the impact of fluctuating weather on 

composite power system reliability is presented. Firstly, the basic concepts of sequential 
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simulation are introduced; then, the proposed simulation algorithm is presented; finally, 

some possible improvements to simulation method are discussed.   

3.4.1 Sequential simulation 

Generally, the evaluation techniques of power system reliability fall into two 

categories: analytical and simulation. Analytical method is usually based on some 

mathematical models and calculates reliability results using mathematical derivation. 

Basically, analytical method enumerates some dominant system states in state space 

which have non-trivial probabilities. In contrast, simulation method usually does not 

depend on specific mathematical models. Instead, it simulates the operational process of 

a physical system, and repeat the simulation till termination criterion is satisfied. Finally, 

the reliability indices are obtained by using statistical inference [37].  

As mentioned in the beginning of this chapter, basically there are two main 

simulation techniques: random sampling and sequential simulation [24]. The major 

difference of these two methods is as follows: random sampling assumes that component 

states are independent and consecutive simulations are also independent with each other; 

in contrast, sequential simulation simulates system operation literally over time. 

Actually, this method simulates a Markov chain chronologically. Thus, it is more 

flexible than random sampling and it is used to simulate the effects of adverse weather 

on the reliability of composite power systems in this chapter.  

Generally, there are two methods to control the advance of sequential simulation: 

fixed time interval method and next event method [24]. Fixed time interval method 

advances the simulation in step of a constant time interval t∆ . Next event method 
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advances the simulation in a temporal sequence which is determined by the occurrence 

order of system events. Here, a system event refers to the change of the state of a 

component or weather. In this chapter, the next event method is used. 

A main step of sequential simulation is to generate the random residence time of 

a component at a state and then determine the next most imminent event. The former 

issue is discussed next and the latter issue is explained in Subsection 3.4.4. 

 

 

 

Fig. 5: Function Inversion 

 

 

To generate the random time that a component resides at a state, usually the 

function inversion approach as shown in Fig. 5 can be used [24]. In this chapter, the 

residence time of component state is exponentially distributed. Firstly, a random number 

within [ ]1,0  is generated; then, the value of the corresponding residence time on the 
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horizontal axis can be obtained by inversing the exponential function.  Mathematically, 

the cumulative distribution function of an exponential distribution is as follows: 

eP tα−−= 1           (16) 

here, 

α  =  rate parameter 

Then, the residence time can be computed as follows: 

( )
α

P
t

−
−=

1ln
         (17) 

When α is replaced by failure rate λ or repair rate µ , the residence time of a component 

at success state or failure state can be obtained accordingly. 

3.4.2 Estimation and convergence 

As in the analytical method, here frequency and duration indices are simulated. 

An advantage of sequential simulation is that the estimation of reliability indices is 

simpler than that in random sampling. The estimates of p f , f f  are as follows: 
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where,  

p f  = estimate of p f   

f f  = estimate of f f  

N  = a sufficiently large number (e.g. the number of years)  
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T i  = system failure time during the ith cycle  

f i
 =  system failure frequency during the ith cycle (e.g. the frequency  

   from success to failure) 

Then, the mean duration of system failure d f  can be computed as follows: 

f

P
d

f

f
f =                                                                  (20)                                         

Apparently, ( )TEp if =  and ( )fEf if = . 

In this dissertation, the coefficient of variation of an estimate is used to terminate 

the simulation, i.e. when it is less than a preset value. The coefficients of variation of 

p f , f f  are as follows: 
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where,  

COV p   = coefficient of variation of p f   

COV f   = coefficient of variation of f f   

 ( )pVar f  = variance of p f    

( )fVar f   = variance of f f    

 ( )pVar f  = variance of p f    
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( )fVar f   = variance of f f   

( )pVar f   = estimate of ( )pVar f  and is equal to ( )∑ −
=
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3.4.3 Confidence interval  

As discussed previously, T i , f i
  are random variables and their expected values 

are p f , f f  respectively. Now, suppose that their variances are σ 2
T , σ 2

f
 respectively. 

Then, their sample variances are as follows: 
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where, 

 ST
2  = sample variances of T i  

S f
2  = sample variances of f i
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where,  

A 2α  = ( )th21100 α−  percentile of t-distribution 

Actually, confident interval is an interval estimation in contrast to the point estimation 

introduced in the last subsection, and it can provide another perspective on the estimates. 

3.4.4 Simulation algorithm 

The algorithm of sequential simulation to assess the effects of fluctuating 

weather is as follows: 

1) Each system state is represented by an (n+1)-bit binary vector. From bit 1 to n, each 

binary number is 1 or 0 if the state of the corresponding component is success or 

failure. The last bit indicates the state of weather and it is 1 or 0 if weather is normal 

or adverse. 

2) For an arbitrary combination of n+1 binary numbers, examine the last bit: if it is 1, 

the transition rates of all components in normal weather are used; otherwise, the 

transition rates of all components in adverse weather are used. 

3) Compare the residence times of all components and weather at their current states, 

and the smallest one determines the next most imminent event. Here, the change of 

weather state is also treated as an event. 

4) Update all residence times on the principle: each one minus the smallest one, and the 

one being 0 will get a new time. 

5) Check the type of the event: if it is the change of the state of weather, go back to 

Step (2); if it is the change of the state of a component, go to the next step.  
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6) After the event has happened, check if the obtained system state is failure (here the 

same criterion as that in the analytical method is used): if true, the corresponding 

event time is saved; otherwise, go to the next step directly. 

7) Check if the system state before this event is failure: if false, the transition of system 

state is counted; otherwise, go to the next step directly. 

8) Update all values: estimates, coefficients of variation, confidence intervals. 

9) Check if termination criterion is matched: if true, stop; if not, go back to Step (1). 

3.4.5 Possible improvements 

 As in the analytical method, most of the computational time is spent on analyzing 

failure effects, i.e. determining a system state is failure or not. This can be improved by 

using the methods mentioned in the last section. Due to the characteristics of simulation 

method, there are two other improvements which can be implemented. One is that some 

intelligent methods can be used to improve the selection of system states [24]; the other 

is that variance reduction method can be used to accelerate the convergence of 

simulation [23].   

3.5 Implementation 

In this section, the analytical and simulation methods proposed are applied to the 

modified IEEE reliability test system [38], and the results obtained by using the two 

methods are compared and analyzed.  
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Fig. 6: IEEE Reliability Test System [39] 

 

 

3.5.1 Test system 

The single-line diagram of IEEE reliability test system is shown in Fig. 6. There 

are 32 generators ranging from 12 MW to 400MW, 24 buses, and 38 transmission lines 

and transformers. The transmission part of the test system generally consists of two 

voltage levels: 138 KV and 230 KV.  
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Considering that the transmission part of the test system is relatively over-

reliable [40]-[41], the test system is modified as: the installed capacities of all generators 

and the load at each bus are increased 1.5 times. Accordingly, the annual peak load 4275 

MW is used as the system load, i.e. the system load is constant. But, the proposed 

methods are also applicable when varied system load is used. Additionally, for the 

purpose of illustration, all the generators in Table 7 and all the transmission lines in 

Table 11 in [38] are assigned integer numbers starting from 1 in an ascending order 

respectively. In this dissertation, the relevant data of IEEE reliability test system is listed 

in Appendix.  

3.5.2 System reliability indices 

 In this subsection, the system minimal cut-sets identified by using the proposed 

analytical method and the evaluation results obtained are presented. 

3.5.2.1 System minimal cut-sets 

Here, the minimal cut-sets are determined up to second-order. The minimal cut-

sets determined are as follows: first-order minimal cut-sets of generation and 

transmission parts, second-order minimal cut-sets of generation and transmission parts, 

and second-order mixed type which consists of a generator and a transmission line. A 

mixed minimal cut-set is represented in the form of {generator, transmission line}. The 

system minimal cut-sets determined are listed in Tables 1-3. It is pointed out that 

distinguishing the minimal cut-sets of different orders and different types in three tables 

is just for the purpose of illustration. In programming, actually they are processed 

indistinguishably as one table by using the algorithm developed in Section 3.3. 
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Table 1: System Minimal Cut-Sets (Generation) 

Type 1-Order 2-Order 

Generator None 

{12,13},{12,14},{13,14},{12,22},{13,22} 

{14,22},{20,22},{21,22},{12,23},{13,23} 

{14,23},{20,23},{21,23},{22,23},{22,30} 

{23,30}{22,31},{23,31},{12,32},{13,32} 

{14,32},{20,32}{21,32}{22,32},{23,32} 

{30,32},{31,32} 
 

 

 

Table 2: System Minimal Cut-Sets (Transmission) 

Type 1-Order 2-Order 

Transmission 

Lines 

{5},{10} 

{11} 

{1,7},{2,7},{6,7},{4,8},{3,9},{7,9} 

{12,13},{7,14},{7,15},{3,16},{7,16} 

{12,16},{15,16},{3,17},{7,17},{12,17} 

{15,17},{16,17},{7,18},{15,18},{17,18} 

{18,20},{7,21},{18,21},{20,21},{21,22} 

{7,23},{15,23},{17,23},{18,23},{19,23} 

{21,23},{1,27}{2,27},{6,27},{7,27} 

{8,27},{9,27},{14,27},{15,27},{16,27} 

{17,27}{18,27},{21,27},{23,27},{31,38} 

 

 

 

Table 3: System Minimal Cut-Sets (Mixed) 

Type 1-Order 2-Order 

Mixed N/A 

{7,1},{8,1},{1,7},{2,7},{3,7},{4,7} 

{5,7},{6,7},{7,7},{8,7},{12,7},{13,7} 

{14,7},{32,7},{32,25},{32,26},{1,27} 

{2,27},{3,27},{4,27},{5,27},{6,27} 

{7,27},{8,27},{12,27},{13,27},{14,27} 

{32,27},{32,29} 
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3.5.2.2 System reliability indices  

The system reliability indices and the computational time are listed in Table 4. 

The average value is the average of the upper and lower bounds. For simplicity, only the 

system reliability indices in normal weather are calculated. If the relevant data is 

available, the effects of adverse weather can be easily incorporated.  

3.5.3 Nodal reliability indices 

As discussed in Section 3.3, the proposed analytical method can also compute 

nodal reliability indices. The algorithm is the same as that computing system indices 

except that the nodal minimal cut-sets are used instead. For illustration, in Tables 5-7 the 

minimal cut-sets identified for bus 19 of the test system are listed. As mentioned in 

Section 3.3, the minimal cut-sets of bus 19 are the subsets of system minimal cut-sets. In 

Table 8, the reliability indices obtained at bus 19 are listed. The indices for all the nodes 

are listed in Table 9. For clarity, only the average values of p f ,
 f f  are computed. The 

computational time for system and all 20 bus indices is approximately 138 seconds as 

compared with the only system indices (Table 4) of 134 seconds. So, the additional 

computational time for the nodal indices is only about 4 seconds, about 3% of the time 

for the system indices. The reason, as explained earlier, is that the determination of 

minimal cut-sets where most CPU time is spent, is the same for the algorithms for 

computing system and nodal indices. 
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Table 4: Long-Term System Reliability Indices 

Index 
Upper 

Bound 

Lower 

Bound 

Average 

Value 

p f  0.1443 0.0853 0.1148 

f f  ( /yr) 35.04 12.264 23.652 

d f  (yr) N/A 0.0049 

Computation 

time (s) 
133.592 

 

 

Table 5: Minimal Cut-Sets of Bus19 (Generation) 

Type 1-Order 2-Order 

Generator None 

{12,13},{13,22}, {14,22},{20,22},{21,22} 

{12,23},{13,23},{14,23},{20,23},{21,23} 

{22,23},{22,30},{23,30}{22,31},{23,31} 

{12,32},{13,32},{14,32},{20,32}{21,32} 

{22,32},{23,32},{30,32},{31,32} 

 

 

Table 6: Minimal Cut-Sets of Bus 19 (Transmission) 

Type 1-Order 2-Order 

Transmission Lines {11} {4,8},{3,9},{19,23},{7,27},{31,38} 

 

 

Table 7: Minimal Cut-Sets of Bus 19 (Mixed) 

Type 1-Order 2-Order 

Mixed N/A {32,25},{32,26},{32,29} 
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Table 8: Reliability Indices at Bus 19 (Long-Term) 

Index 
Upper 

Bound 

Lower 

Bound 

Mean 

Value 

p f  0.1333 0.0815 0.1074 

f f  ( /yr) 30.66 12.264 21. 4506 

d f  (yr) N/A 0.005 

 

 

 

Table 9: Long-Term Nodal Reliability Indices 

Bus p f  f f  (/yr) d f  (yr) 

1 0.1123 22.8456 0.0049 

2 0.1121 22.7399 0.0049 

3 0.0923 18.0322 0.0051 

4 0.1122 22.8178 0.0049 

5 0.1122 22.8213 0.0049 

6 0.0339 5.1403 0.0066 

7 0.0002 0.1966 0.001 

8 0.0998 19.6637 0.0051 

9 0.0321 4.3344 0.0074 

10 0.1121 22.7205 0.0049 

13 0.1122 22.8087 0.0049 

14 0.0398 6.9801 0.0057 

15 0.091 17.6535 0.0052 

16 0.1073 21.4319 0.005 

18 0.0908 17.4674 0.0052 

19 0.1074 21.4506 0.005 

20 0.1072 21.3369 0.005 

Computation time (s): 138.408 
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3.5.4 Simulation results  

 

 
Table 10: Simulation Results: Part 1 (Long-Term) 

Iteration up lp p f  uf( /yr) lf( /yr) f f  ( /yr) 

50 0.2013 0.0787 0.14 53.9589 18.4706 36.2147 

250 0.1649 0.1121 0.14 57.5648 33.4846 45.5247 

500 0.164 0.124 0.144 40.0002 26.4266 33.2134 

2500 0.1258 0.1094 0.1176 27.6618 22.2996 24.9807 

5000 0.1245 0.1127 0.1186 27.2848 23.4432 25.364 

 

 

Table 11: Simulation Results: Part 2 (Long-Term) 

Iteration p f  f f  (/yr) d f (yr) Computation 

time(s) 

50 0.14 36.2147 0.0039 3.01 

250 0.14 45.5247 0.0031 14.835 

500 0.144 33.2134 0.0043 29.796 

2500 0.1176 24.9807 0.0047 148.34 

5000 0.1186 25.364 0.0047 294.54 

 

 

The reliability indices obtained by using the simulation method are listed in 

Tables 10-11. Here, for clarity only the results after some number of iterations are listed. 

Here, the 90th percentile of t-distribution is used to compute the confidence intervals. 

Corresponding to the analytical results, only the reliability indices in normal weather are 

simulated. For simplicity, only the system reliability indices are simulated. But the 
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proposed algorithm is also applicable to simulating the nodal indices. The abbreviations 

used in Table 10 are as follows: 

up =  upper bound of the confidence interval of  p f  

lp =  lower bound of the confidence interval of  p f  

uf =  upper bound of the confidence interval of f f   

lf  =  lower bound of the confidence interval of f f   

3.5.5 Comparison of results from two methods 

The results of the two methods are compared in Figs. 7-8. Here, the straight lines 

represent the bounds and the average value of the analytical results, and the curves 

represent the confidence intervals and the estimates of the simulation results. Here, the 

legends used are as follows: 

UBAM: upper bound of the analytical method 

LBAM: lower bound of the analytical method 

MVAM: mean value of the analytical method 

UBCI: upper bound of the confidence interval 

LBCI: lower bound of the confidence interval 

EFP: estimate of system failure probability  

EFF: estimate of system failure frequency  

From the comparison, the following conclusions can be made: 

1) The simulation results fall into the bounds of the analytical results, and the bounds of 

the analytical results is wider than the confidence intervals of the simulation results 

except in the beginning of the simulation. 
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Fig. 7: Long-Term System Failure Probability 
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Fig. 8: Long-Term System Failure Frequency 
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2) The average values of the analytical results fall into the confidence intervals of the 

simulation results, and they are close to the estimates of the simulation, i.e. the 

average values of the analytical results can approximate the system reliability indices 

and they are comparable to the simulation results.  

3) When the simulation is proceeding, the confidence intervals become narrower and 

the bounds of a confidence interval become parallel. Therefore, the variation 

tendency of the confidence intervals can be used as the termination criterion of the 

simulation, e.g. setting the difference of the bounds of a confidence interval being 

less than a small value. 

4) In this dissertation, no special technique is used to accelerate the convergence of the 

simulation. The comparison shows that in the current case the proposed analytical 

method is faster and comparable results can be obtained. 

5) In the current case, the computational time of the proposed analytical method is 

acceptable, and the additional computational burden in computing nodal reliability 

indices and storing corresponding data is not significant. For real-world applications, 

further investigation and improvements of implementation could be done. For 

instance, usually both analytical and simulation methods use linear optimization to 

analyze failure effects and this is time-consuming. Some heuristics combined with 

this approach can improve the performance of reliability evaluation methods. 

3.6 Summary 

In this chapter, an improved analytical method is proposed to evaluate the impact 

of adverse weather on the reliability of composite power systems. This method proposes 
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an algorithm to identify system and nodal minimal cut-sets, and proposes an improved 

algorithm to compute the reliability indices of the bounds of minimal cut-sets. An 

algorithm for using sequential simulation to assess the effects of fluctuating weather is 

also developed. These two methods are applied to the modified IEEE reliability test 

system. The evaluation results obtained by using different methods are compared and 

analyzed. 

From the implementation, the following conclusions are made: 

1) The proposed analytical method is effective and efficient. In the current case, it is 

fast and the evaluation results can be comparable to those of the simulation method. 

2) The proposed analytical method has the advantages of easy implementation, 

convenience of incorporating more system operational considerations, and easy 

interpretation of the obtained results.  

3) The variation tendency of the confidence intervals can be used to terminate the 

simulation. 

4) The additional computational burden in computing nodal reliability indices and 

storing corresponding data is not significant. The reason is that the proposed 

analytical method can identify system and nodal minimal cut-sets simultaneously, 

and this process is time-consuming compared to the calculation of reliability indices.   

5) For real-world applications, further investigation and improvements of 

implementation could perhaps be done. For instance, some intelligent methods can 

be used to improve the performance of reliability evaluation techniques. 
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CHAPTER IV 

EVALUATION OF HURRICANE IMPACT ON THE SHORT-TERM RELIABILITY 

OF COMPOSITE POWER SYSTEMS  

 

In the last chapter, the impact of adverse weather on the long-term reliability of 

composite power systems is investigated. Typically, hurricanes only last a few days but 

their impact on life-line systems is drastic. Therefore, the impact of hurricanes on the 

short-term reliability of composite power systems needs to be investigated as their 

impact on the long term reliability is likely to be diluted. In this chapter, a methodology 

is proposed to investigate the impact of hurricanes on the short-term reliability of 

composite power systems. Firstly, a fuzzy inference system is combined with regional 

weather model [8]-[9] to assess the effect of hurricanes on the failure rates of system 

components. Here,  different methods are used to build two types of fuzzy inference 

systems [12]-[14]. Then short-term minimal cut-set method is developed to compute 

time-specific system and nodal reliability indices [13], [17]. The proposed methodology 

is also applied to the modified IEEE reliability test system. The evaluation results 

obtained by using different methods are compared and analyzed. The implementation 

demonstrates that the proposed methodology is effective and efficient and is flexible in 

its applications [13]. 

 This chapter is organized as follows: in Section 4.1 relevant researches about the 

effect of weather on the short-term reliability of power systems are reviewed; in Section 

4.2 the overall evaluation scheme of the short-term reliability of composite power 
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systems affected by hurricanes is presented; in Section 4.3 the basic concepts of fuzzy 

sets and fuzzy inference systems are introduced; in Section 4.4 the different methods to 

build different fuzzy inference systems are presented; in Section 4.5 the main steps of 

short-term minimal cut-set method are presented; in Section 4.6 the proposed 

methodology is applied to the modified IEEE reliability test system; finally, in Section 

4.7 the main conclusions obtained in this chapter are summarized.  

4.1 Literature Review 

Many power system components, such as transmission and distribution lines, are 

exposed to external environment, and it can have a significant impact on the reliability 

parameters of system components. For instance, it is known for a long time that the 

failure rate of a transmission or a distribution line is a function of the weather that it is 

exposed to, and the failure rate of the transmission or distribution line can be much 

higher in adverse weather than that in normal weather [11]. Thus, one of the challenges 

of assessing the impact of hurricanes on the short-term reliability of composite power 

systems is to evaluate how hurricanes affect the reliability parameters of system 

components, i.e. failure and repair rates.  

In [1], it was pointed out that there is rough correspondence between the severity 

level of hurricanes and the number of power outages. Since the failure rate of a 

component is close to its failure frequency, i.e. the number of outages during a period of 

time, the preceding observation can be interpreted that there is some functional 

relationship between the severity level of hurricanes and the failure rates of system 
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components. Thus, a regression method can be used to assess the relationship between 

them. 

In [42], the impact of vegetation on the failure rates of overhead distribution 

feeders was assessed by using some parametric methods and an artificial neural network. 

In [43], multiple linear regression was used to evaluate the impact of weather on the 

failure rates of transmission lines. In [44], a Bayesian network was used to assess the 

impact of weather on the failure rates of overhead distribution lines.  

In this dissertation, a fuzzy inference system is combined with regional weather 

model [8]-[9] to assess the functional relationship between the severity level of 

hurricanes and the failure rate increment of system components. Here, different methods 

are used to build two types of fuzzy inference systems [12]-[14]. These methods include 

artificial method and data-driven methods. An advantage of the proposed approach is 

that these methods can be used in different situations.  

After the incremental failure rates of system components are determined, the 

short-term reliability of composite power systems can be evaluated as follows. Firstly, 

the reliability indices of system components are calculated. The steady state results of 

Markov process are not suitable here and so the short-term indices need to be calculated. 

In this chapter, a method is proposed to use the minimal cut-set approach 

described in the previous chapter to evaluate the short-term reliability of composite 

power systems affected by hurricanes. Here, both system and nodal reliability indices 

can be computed.   
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4.2 Overall Evaluation Scheme 

 

 

 

Fig. 9: Short-Term Reliability Evaluation Scheme (Independent Failures) 

 

 
The overall scheme for investigating the impact of hurricanes on the short-term 

reliability of composite power systems is shown in Fig. 9. Generally, it consists of three 

steps: hurricane forecast, assessing the incremental component parameters, and system 

reliability evaluation. The relevant details are presented in the following subsections. 

Finally, the collection of required data for data-driven methods to build the fuzzy 

inference system is discussed.  

4.2.1 Hurricane impact  

A hurricane is a stormy weather which develops over large bodies of the oceans 

and then loses its strength after moving over land. Its main effects are strong wind and 

heavy rainfall when it moves over land. The movement track and strength of a hurricane 

can be forecast by using observation data and prediction model.  

Since hurricanes develop and dissipate with time, their impact on a composite 
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power system can be described in two aspects: temporal and spatial. Temporal refers to 

the fact that the impact of a hurricane in a given region is different at different times; 

spatial refers to the fact that that the impact of a hurricane is different in different 

regions at a given time. In this dissertation, the duration of a hurricane is partitioned into 

some small time intervals to investigate the temporal effects of hurricanes; the affected 

composite power system is partitioned into several regions to investigate the spatial 

effects of hurricanes. The temporal partition can be determined by the dissipation rate of 

the hurricane, and the spatial partition can be determined by the geographical conditions 

of the composite power system. 

The severity level of hurricanes can be represented by some defined parameters. 

In this dissertation, wind speed and rainfall are used as two parameters of hurricanes. It 

is noted that in a given region, the parameters of hurricanes are assumed to be identical.  

4.2.2 Fuzzy inference 

In this dissertation, a fuzzy inference system is used to map the functional 

relationship between hurricane parameters and the increment multipliers of the failure 

rates (IMFR) of transmission lines, i.e. the ratios of the failure rates during hurricanes 

and those in normal weather. Similarly, the IMFR of transmission lines in a given region 

is assumed to be identical. Since a long transmission line may traverse different regions, 

its overall IMFR can be determined by using weighted average method which is 

described in detail in Section 4.5. For the purpose of comparison, in this step different 

methods are used to build different types of fuzzy inference systems. 
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4.2.3 System reliability evaluation 

After the incremental failure rates of system components are obtained, short-term 

reliability indices can be computed by using analytical or simulation method. Here, 

short-term minimal cut-set method is proposed to compute system and nodal indices. 

Since the states of components are assumed to be independent here, firstly the reliability 

indices of components are computed by using the transient results of Markov process, 

then system and nodal indices are calculated by using the multiplication rule of 

probabilities. 

4.2.4 Data collection and preprocessing 

In this dissertation, data-driven method is also used to build the fuzzy inference 

system. Thus, the required data need to be collected and preprocessed. These data 

include hurricane parameters and the failure rates of system components affected. 

Usually, hurricane parameters can be collected by referring to historical meteorology 

records, and the average failure rates of system components can be obtained by referring 

to historical records of utilities, i.e. the failure rates in normal weather and during 

hurricanes are not distinguished. The failure rates of system components in different 

weathers can be obtained by using the transformation techniques like those in [43]-[44]. 

Basically, the relationship between failure frequency ( f ) and failure rate ( λ ) is used: 

λ≈f . Here, f  is the number of the failures of a system component during a period of 

time and it can be obtained from historical records. 

Since in this dissertation the output of the fuzzy inference system is the regional 

IMFR of system components, the obtained failure rates need to be preprocessed. Here, 
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the aggregated failure rates of system components during hurricanes and those in normal 

weather are compared to get the regional IMFR of system components.  

Due to the unavailability of relevant data for confidentiality reasons, the data 

used in this dissertation is generated by using the fuzzy expert system in [12]. The 

details are given in Section 4.6. 

4.3 Introduction of Fuzzy Inference Systems 

4.3.1 Basic concepts of fuzzy sets 

4.3.1.1 Crisp sets and fuzzy sets 

The concept of fuzzy sets is the generalization of that of crisp sets, i.e. classic 

sets. Usually, whether an element x is a member of a crisp set A or not is classified by 

using the characteristic function as follows: 

( )




∉

∈
=

Ax

Ax
xCF A

,0

,1
, i.e. { }1,0: →XCF A                 (27) 

where,  

CF =  characteristic function 

X =  universe of discourse of x, i.e. all the possible values that x can  

  take: discrete or continuous 

However, for a fuzzy set B the degree of whether or not an element x is its member can be 

between 0 and 1, and this is described by using the membership function as follows: 

                           [ ]1,0: →XMF B                       (28) 

Apparently, the expression of membership functions is more flexible than that of 

characteristic functions, and this makes membership functions more descriptive of how 
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the real world is perceived. Actually, we always encounter many objects that partially 

belong to a category and maybe belong to other categories at the same time. In practice, 

a membership function can be any function that satisfies the relationship defined in (28). 

It can be in triangular, trapezoidal, Gaussian, and many other forms.  

4.3.1.2 Operations on fuzzy sets 

Correspondingly, the operations of fuzzy sets are the generalization of those on 

crisp sets. For instance, the characteristic function of the intersection of two crisp sets A 

and B can be expressed as follows: 

( ) ( )CFCFxCF BABA ,min=I          for Xx ∈              (29) 

where, 

 min = minimum operation 

Using membership functions instead of the characteristic functions, the membership 

function of the intersection of two fuzzy sets C and D can be expressed as follows: 

 ( ) ( )MFMFxMF DCDC ,min=I         for Xx ∈             (30) 

Similarly, other operations on crisp sets can be extended to those on fuzzy sets. Here, it 

is noted that the laws of noncontradiction and excluded middle are applicable to crisp 

sets but not to fuzzy sets. This is described in Table 12 where usually the universe of 

discourse of interest is the set of real numbers. More generally, the intersection operation 

on fuzzy sets can be realized by using triangular norms (t-norms) [45]. It presents a 

group of operations, e.g. minimum and product operations. In the same way, the union 

operation on fuzzy sets can be realized by using t-conorms (s-norms), e.g. maximum and 
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probabilistic sum operations. 

 

 
Table 12: Comparison of Crisp Sets and Fuzzy Sets 

Operation Crisp Sets Fuzzy Sets 

Noncontradiction ∅=AAI  ∅≠AAI  

Excluded Middle XAA =U  XAA ≠U  

 

 

4.3.1.3 Fuzzy relations 

A relation captures the association between objects. Generally, a relation R 

defined over the Cartesian product of X and Y is a collection of selected pairs ( )yx, , 

Xx ∈ , Yy ∈ . Here, the two-dimensional case is illustrated and the definition is also 

applicable to multi-dimensional case. Mathematically, R is a mapping as follows:  

( )




=
unrelatedyx

relatedyx
yxR

,,0

,,1
, , i.e. { }1,0: →×YXR        (31) 

A fuzzy relation generalizes the above concept by recognizing the partial degree of 

association between objects, i.e. a fuzzy relation RF  is a mapping such that:  

          [ ]1,0: →×YXRF                                    (32) 

Actually, a fuzzy relation is a multi-dimensional fuzzy set or a fuzzy rule, and the 

aggregation of them forms a key part of a fuzzy inference system. 
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4.3.1.4 Cylindrical extension and projection 

Cylindrical extension and projection are two important notions in fuzzy theory. 

Generally, they can be regarded as two operations on fuzzy sets. Cylindrical extension 

on a fuzzy set A is defined as follows: 

[ ] ( ) [ ]1,0:1,0: →×⇒→ YXMFXMF ACeA        (33) 

where, 

( )ACe   =  cylindrical extension on fuzzy set A 

Basically, cylindrical extension is an operation which extends a low-dimensional fuzzy 

set to a high-dimensional one. Oppositely, projection is an operation that reduces a high-

dimensional fuzzy set to a low-dimensional one. For instance, the projection of a fuzzy 

set B from space YX ×   to space X is as follows: 

[ ] ( ) [ ]1,0:1,0: Pr →⇒→× XMFYXMF BB ojY
   (34) 

here, 

( )AojYPr  =  projection of fuzzy set B on Y  

4.3.1.5 Fuzzy inference  

 The inference refers to the derivation of the fuzzy set B that if a fuzzy set A and a 

fuzzy relation R between them are known. Mathematically, it is as follows: 

( )( )RACeojMF YB IPr=       (35) 

Alternately, equality (35) can be expressed as follows: 

RMFMF AB o=        (36) 

 



 58

where, 

 “o ”   = composition operation.  

The above equation is the composition rule of fuzzy inference. 

4.3.2 Fuzzy inference systems 

In this subsection, the basic concepts of fuzzy inference systems are introduced. 

Firstly, the reasoning mechanism is explained; then, the inference procedure of fuzzy 

inference systems is described.  

4.3.2.1 Reasoning mechanism  

 

 

 

Fig. 10: Reasoning of Fuzzy Inference Systems 

 

 
Actually, a fuzzy inference system is a rule-based system. Here, a fuzzy rule is 

actually a fuzzy relation. Thus, the reasoning process of a fuzzy inference system is just 
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the extension of that in the last subsection, and it is as follows: 

( )( )RACeojMF iYB ⊕= IPr            Ii ∈      (37) 

here,  

“ ⊕ ”  =  aggregation operation 

Ri   =  ith fuzzy rule 

I  =  index of the set of fuzzy rules 

The inference process of fuzzy inference systems is shown in Fig. 10. Here, f represents 

the functional relationship described by a set of fuzzy rules. 

4.3.2.2 Fuzzy inference systems  

 

 

 

Fig. 11: Architecture of Fuzzy Inference Systems 

 

 
Usually, a fuzzy inference system consists of five parts as shown in Fig. 11 [45]: 

input interface, rule base, data base, fuzzy inference, and output interface. Here, X and Y 
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represent the input and output of fuzzy inference systems respectively. Generally, there 

are two types of fuzzy inference systems: Sugeno-type [46] and Mamdani-type [47]. 

Their differences are described as follows. 

A. Input interface 

In this dissertation, the input X is the time-specific regional hurricane parameters 

and it is a vector. Thus, it needs to be converted into the form that the fuzzy inference 

system can deal with by fuzzification, i.e. finding the corresponding membership value 

of the input. This is shown in Fig. 12. Here, MF represents membership function. 

 

 

 

Fig. 12: Fuzzification 

 

 
B. Rule base 

Rule base is a set of fuzzy rules that describe the relationships between the input 

and output variables of fuzzy inference systems. Generally, for a Mamdani-type fuzzy 
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inference system a fuzzy rule can be in the following form: 

If X1  is A1  and X 2  is A2  and L  and X n  is An  then Y  is B   

here, 

X i  = ith  input variable, ni ≤  

Ai  = value of X i , ni ≤  

Y = output variable 

B = value of Y 

For instance, in this dissertation a Mamdani-type fuzzy rule can be as follows: 

If H1  is High and H 2  is Medium and L  and H n  is Low then IMFR is High 

where  

H i  = ith  hurricane parameter, ni ≤≤1  

For a Sugeno-type fuzzy inference system, a fuzzy rule can be in the following form: 

If X1  is A1  and X 2  is A2  and L  and X n  is An  then Y  is ( )XXXf nL,, 21   

here,  

( )XXXf nL,, 21  = linear function of X i , ni ≤  

C. Data base 

The type and parameters of the membership functions of input and output 

variables as well as other parameters of a fuzzy inference system are stored in data base. 

Generally, there are two kinds of methodologies to construct the rule base and data base 

of a fuzzy inference system: knowledge-based (expert systems) and data-driven [45]. In 

this dissertation, both methodologies are used. The relevant details are given in the next 

section. 
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D. Fuzzy inference 

Inference process is the most important part of a fuzzy inference system. This is 

the procedure that the fuzzy inference system processes input data and implement the 

function of reasoning using the information in rule base and data base. Its main steps are 

as follows: 

1) Input matching: for each rule, determine the membership value of each element of 

input vector.  

2) Input aggregation: for each rule, compute rule activation degree, i.e. the intersection 

of all the membership values of the input obtained in the last step. It is noted that 

different t-norm operations can be applied to different types of fuzzy inference 

systems. Here, product operation is used for the Sugeno-type fuzzy inference system 

and minimum operation is used for the Mamdani-type fuzzy inference system. 

3) Output derivation: for each rule, a t-norm operation is used to compute the 

intersection of the rule activation degree and the output. Here, product operation is 

used for the Sugeno-type fuzzy inference system and minimum operation is used for 

the Mamdani-type fuzzy inference system. 

4) Output aggregation: finally, normalized weighted method is used to compute the 

overall output of the Sugeno-type fuzzy inference system and the details can be 

found in the next section; for the Mamdani-type fuzzy inference system, a s-norm 

operation can be used to compute the union of all the obtained output in the last step. 

Here, maximum operation is used. 
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E. Output interface 

In this dissertation, the output of the fuzzy inference system is the time-specific 

regional IMFR of system components. Whereas, the output of the Mamdani-type fuzzy 

inference system is a fuzzy set. Thus, it needs to be converted into a numeric value by 

defuzzification. There are many defuzzification techniques available [45]. Here, centroid 

method is used [45].  Basically, it determines the gravity center of the aggregated  

membership function of the overall output and is as follows: 

                        

( ) ( )

( ) ( )∫

∫ ⋅

=

Y

Y

ydyMF

ydyMFy

y                                   (38) 

where, 

MF = membership function 

For the Sugeno-type fuzzy inference system, the normalized weighted method can be 

regarded as a method of defuzzification. 

4.3.2.3 Comparison of different fuzzy inference systems 

 From previous discussion, there are differences between the Sugeno-type and 

Mamdani-type fuzzy inference systems in terms of rule base, inference procedure, and 

difuzzification. Accordingly, different methods can be used to build them and this is 

described in the next section. 

4.4 Building Fuzzy Inference Systems  

Generally, there are two kinds of methodologies to build a fuzzy inference 

system: knowledge-based (expert system) and data-driven [45]. When sufficient data is 

available, a data-driven method can be used to build fuzzy inference system; if the data 
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is not available or is insufficient, knowledge-based method can be used. Moreover, other 

intelligent methods can be used to improve the performance of fuzzy inference systems. 

In this section, different methods used to build the fuzzy inference system are 

introduced: expert system [12], fuzzy clustering methods [13], and a hybrid method 

which combines a neural network and a fuzzy inference system [14]. 

4.4.1 Fuzzy expert systems 

A fuzzy inference system can be built by using artificial method, i.e. the domain 

expertise of experts are collected and processed to form a rule system. Actually, fuzzy 

expert systems are the generalization of deterministic expert systems, and they can 

handle the uncertainty and vagueness that traditional expert systems cannot deal with 

[45]. For the fuzzy inference system used in this dissertation, the domain knowledge of 

experts can be helpful to determine fuzzy rules and the parameters of membership 

functions.  

4.4.2 Fuzzy clustering methods 

A fuzzy inference systems can be built by using some data-driven methods too, 

e.g. clustering methods. In this chapter, two fuzzy clustering methods are used to build 

two types of fuzzy inference systems [13]: subtractive clustering [48] is used to build the 

Sugeno-type fuzzy inference system and fuzzy c-mean clustering [49] is used to build 

the Mamdani-type fuzzy inference system. In the end, different fuzzy clustering methods 

are compared.  

4.4.2.1 Fuzzy clustering methods 

Usually, some relationships exist among a set of variables and the corresponding 
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data can be collected via observation. Fuzzy clustering methods group these data into 

different clusters. Each fuzzy cluster is represented by a cluster center and the 

membership degrees of the data belonging to this cluster, and it represents a fuzzy rule. 

At the same time the membership functions can be obtained by projecting the fuzzy 

clusters on the spaces of input and output variables. Thus, fuzzy clustering methods can 

construct the membership functions and fuzzy rules of a fuzzy inference system 

automatically and simultaneously, and the number of fuzzy rules obtained can be 

reduced compared to that of a fuzzy expert system [45]. 

4.4.2.2 Subtractive clustering  

The basic idea of subtractive clustering is as follows [48]:  

1) The potential value of each data point as a cluster center is computed based on its 

distances to other data points. 

2) The data point with the highest potential value is chosen as the first cluster center, 

and the potentials of all data points (including the cluster center) are reduced 

according to their distances to this cluster center. 

3) For other data points, the one with the highest remaining potential value is chosen as 

the next cluster center. 

4) The above procedure goes on till the potential values of all data points fall below 

some threshold.  

Mathematically, the main steps of subtractive clustering are as follows: 

1) For a collection of data points { }xxx n,,, 21 L , the following equation is used to 

compute the potential value of each data point as a cluster center: 
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                          ∑=
=
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n

j
i eP x jxi

1

2

α                               (39)  

where, 

  Pi  = potential value of data point xi  

n = number of data points 

  α  =  
rα

2

4
, and rα  is a positive constant 

  ⋅  = Euclidean distance   

The above measure shows that a data point with many neighboring data points 

nearby will have a high potential value. The neighborhood radius is defined by rα  

and the data points outside rα  have little influences on the potential of the data 

point. Generally, a large rα  results in fewer clusters and a small rα  results in more 

clusters.  

2) Suppose now the kth cluster center has been determined, then the potential values of 

all data points (including the cluster centers) are in the following form: 

                    
( ) ( )

ePPP xkxikii
kk ∗−−∗− ⋅−=

2

1 β                 (40)             

 

where, 

  
( )

Pi
k

 = potential of data point xi , and 
( )

PP ii =0
 

xk
∗

 = kth cluster center 

  Pk
∗
 = potential value of xk

∗
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  β  = 
r β

2

4
, and rβ  is a positive constant 

 The above equation shows that the data point near the cluster center has greatly 

reduced potential and therefore is unlikely to be chosen as the next cluster center. 

The radius of reduction neighborhood is defined by rβ  and it is selected as being 

greater than rα  in order not to produce two close adjacent cluster centers. 

3) The following equation is used to compute the membership degree of each data point 

belonging to the fuzzy cluster with cluster center x k
∗ : 

                           em xkxii

∗−−=
2

α                                 (41)  

 

where, 

   mi  = membership degree of xi .  

Actually, the membership function is in the form of Gaussian function. 

4) Since subtractive clustering is used to build the Sugeno-type fuzzy inference system, 

its output functions are determined by using linear regression [48].  

4.4.2.3 Fuzzy c-mean clustering 

Fuzzy c-mean clustering is one of the most used fuzzy clustering methods in 

pattern recognition [49]. Its basic idea is to assign each data point to several pre-

determined cluster centers and a constrained objective function is solved to determine 

the optimal partition.  

Mathematically, the objective function is as follows: 
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where, 

c =  number of cluster centers 

  n =  number of data points 

 xk  = kth data point, nk ≤≤1  

 vi  = ith cluster center, ci ≤≤1  

  uik  = membership value of xk  belonging to the ith fuzzy cluster 

m = a constant representing fuzzification degree, and 1≥m  

Normally, small or big value of m leads to small or big number of cluster centers. The 

above formulation is a non-linear constrained optimization problem and its optimality 

condition is as follows: 
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where, 

vi
∗

 = ith optimal cluster center  

u ik
∗
 = optimal membership value of data point xk  belonging to the ith  

  fuzzy cluster  

Equations (46)-(47) show that the update of vu iik  can only be done if the value of 

uv iki  has been known. Thus, an alternate optimization algorithm can be used to solve 

the problem (42)-(45), and it is as follows. Here, vi  is assumed being known. Similarly, 

we can assume uik  being known first.  

1) Using (47) to compute uik ;  

2) Using (46) to update vi  and suppose now it is vi ;  

3) Test if vv ii −  is not greater than a pre-set threshold: if true, stop; otherwise, go 

back to step (1).  

4.4.2.4 Comparison of two methods 

From previous discussion, subtractive clustering and fuzzy c-mean clustering are 

compared as follows: 

A. Initialization problem 

For subtractive clustering, the initialization is simple and it considers each data 

point as a potential cluster center; for fuzzy c-mean clustering, this problem is more 

complex. There are several methods to get the initial cluster centers, e.g. randomly 

choosing some points, choosing cluster centers according to some modeling or choosing 

the results of another clustering method as cluster centers, and the chosen cluster centers 
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can be data points or not. Here, the results of subtractive clustering are chosen as the 

initial cluster centers of fuzzy c-mean clustering. 

B. Implementation procedure 

The comparison of their algorithms shows that the implementation of subtractive 

clustering is simpler than that of fuzzy c-mean clustering. Since fuzzy c-mean clustering 

solves a constrained optimization problem, it has the inherent weaknesses in 

initialization and convergence, i.e. the sensitivity to initialization and the possibility of 

trapping at a saddle point, i.e. a local minimum. 

C. Complementation of two methods 

By contrast, subtractive clustering is a simpler method. But, these two methods 

can be complementary rather than competitive. For example, as mentioned earlier the 

results of subtractive clustering can be used as the initial cluster centers of fuzzy c-mean 

clustering. Thus, the performance of fuzzy c-mean clustering can be improved.  

4.4.2.5 Mamdani-type membership functions 

The input membership functions of Sugeno-type fuzzy inference systems are in 

the form of Gaussian function, whereas the membership functions of Mamdani-type 

fuzzy inference systems are not in any specific form. Here, the membership functions of 

the Mamdani-type fuzzy inference system are obtained by using the projection method 

and are approximated by using two-side Gaussian function [50]. It is actually a 

combination of two Gaussian functions, and each one represents a side of the 

membership function.  
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4.4.3 A hybrid method 

   After a fuzzy inference system is built, its parameters can be fine tuned by using 

some intelligent methods. In this chapter, a neural network is used to improve the 

performance of the Segeno-type fuzzy inference system. Here, adaptive neuro-fuzzy 

inference system (ANFIS) is used [51]. In this subsection, firstly the underlying 

motivation of combing fuzzy inference systems and neural networks is given. Then, the 

algorithm of ANFIS is introduced. 

4.4.3.1 Neuro-fuzzy systems 

 

 
Table 13: Comparison of Neural Networks and Fuzzy Inference Systems 

 Neural Networks Fuzzy Inference Systems 

Advantages 

No mathematical model No mathematical model 

No rules required Prior knowledge used 

Learning ability 
Inference and 
interpretability 

Disadvantages 

Black box Rules required 

No prior knowledge No learning 

Iteration needed 
to determine parameters 

Difficulty in tuning 
parameters 

 

 

Neural networks and fuzzy inference systems have some common merits, e.g. no 

need for establishing mathematical model in advance and universal approximation 

feature. However, they have their own advantages. As compared in Table 13 [52], neural 

networks have a learning ability but it is difficult to incorporate prior knowledge into 

them and to interpret their processing procedure; fuzzy systems can utilize prior 
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knowledge and it is easy to interpret their inference process, but they have no learning 

ability. Therefore, it is appealing to combine the merits of neural networks and fuzzy 

inference systems and the resultant is neuro-fuzzy systems. Here, the emphasis is to use 

the learning ability of neural networks to improve the performance of fuzzy inference 

systems. 

4.4.3.2 Algorithm of ANFIS  

 

 

 

Fig. 13: Configuration of Adaptive Neuro-Fuzzy Inference System 

 

 

            Adaptive neuro-fuzzy inference system is a popular neuro-fuzzy system. It has the 

configuration of a multilayer perceptron, i.e. a feed-forward neural network that consists 

of an input layer, one or multiple hidden layers and an output layer. Actually, adaptive 

neuro-fuzzy inference system uses a multilayer perceptron to realize the functions of a 

Sugeno-type fuzzy inference system. In such a way, it combines the merits of neural 

networks and fuzzy inference systems. It has the learning feature of neural networks and 
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retains the interpretability of fuzzy inference systems. Therefore, adaptive neuro-fuzzy 

inference system can use the learning ability of neural networks to improve the 

performance of Sugeno-type fuzzy inference systems. The schematic architecture of 

adaptive neuro-fuzzy inference system is shown in Fig. 13 [51]. Here, only two input 

variables and one output variable are shown. And, 

Li  = layer i, i =1, 2, 3, 4, 5  

The operating procedure of adaptive neuro-fuzzy inference system is as follows: 

• Layer 1 

X i   = ith input variable, i=1, 2 

Ai , Bi  = Gaussian-shaped linguistic labels, i=1, 2, and their parameters are  

   called antecedent parameters. 

output = membership value  

• Layer 2 

“×” = product operation 

W i   = product of the membership values of X i , i=1, 2, i.e. rule  

   activation degree  

• Layer 3 

“N” = normalization operation 

W i   =  

∑
=

2

1i
i

i

W

W
, i=1, 2 

• Layer 4 

f i   = ith linear output function, i=1, 2, and its parameters are called  

   consequent parameters  
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“ f i⋅ ”  = “multiplied by f i ”  

yi   = fW ii ⋅ , i = 1, 2  

• Layer 5 

“+”  = summation operation 

y  = 

∑

∑ ⋅

=∑ ⋅=∑

=

=

==
2

1

2

1
2

1

2

1

i
i

i
ii

i
ii

i
i

W

fW

fWy          

As mentioned before, adaptive neuro-fuzzy inference system has a learning 

ability, i.e. it can adjust its parameters to achieve the minimal error measure using the 

samples of input and output data. Adaptive neuro-fuzzy inference system realizes its 

learning ability using a hybrid algorithm: backpropagation and least squares estimation. 

Generally, the learning process of adaptive neuro-fuzzy inference system is as follows:  

1) The input is forwarded and consequent parameters are estimated by using least 

squares estimation while antecedent parameters are assumed unchanged.  

2) The error signal in the last step is propagated backwards and antecedent parameters 

are updated by using backpropagation while estimated consequent parameters are 

used and they are assumed unchanged.  

3) The learning process stops if the error measure is below some threshold. 

4.4.4 Clustering Data 

In the previous subsections, the implementation of the data-driven methods 

depends on the availability of relevant data. Due to the unavailability of the data for  
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confidentiality reasons, the clustering data used in this dissertation is generated by using 

the fuzzy expert system in [12] and the details are given in Section 4.6. 

4.5 Short-Term Minimal Cut-Set Method 

In this section, the short-term minimal cut-set method proposed to compute time-

specific reliability indices is presented. Firstly, the short-term reliability indices used are 

introduced; then, the computation procedure of reliability indices is described and 

finally, the weighted average method used to compute the overall IMFR of transmission 

lines that traverse a few regions is presented. 

4.5.1 Short-term reliability indices  

Since hurricanes usually last only a few days, the short-term reliability indices of 

composite power systems should be calculated instead of the long-term ones. In the last 

chapter, equations (3), (6)-(7) are suitable for calculating steady state reliability indices 

but not the short-term ones.  

In this section, the short-term reliability indices used are interval frequency and 

fractional duration [53], and they are defined as follows: 

          ( )∫=
t

t

dttfttIF
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               ( ) ( )ttdttpttFD
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1
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where,  

IF  =  interval frequency  

FD  = fractional duration  

[ ]tt 21,   = time duration of interest 
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( )tf f    = time-specific value of failure frequency 

( )tp f    = time-specific value of failure probability 

Actually, interval frequency is the expected number of system failures, and fractional 

duration is the mean value of ( )tp f  during [ ]tt 21, . In definition (48), the upper and 

lower bounds on ( )tf f  can be computed by using the following equations which are 

derived based on [54]:    
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where, 

 )(tf
u
f   

= first upper bound on )(tf f  

)(tf
l
f   = first lower bound on )(tf f  

( )Cp it   = time-specific value of the occurrence probability of  

   minimal cut-set Ci  

λ j    = constant failure rate of component j 

)(tp
j
s   = success probability of component j by time t 

)(tp
j
f

  = failure probability of component j by time t 

In this dissertation, the time-specific value ( )tjλ  of λ j  is assumed to be constant during 

a small time interval t∆ . Thus, equations (50)-(51) can be used appropriately. Actually, 

when extended to steady state equations (50)-(51) are the same as (6)-(7) in Chapter III.  
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 In definition (49), ( )tp f  can be computed by using (4)-(5) in Chapter III. Since  

the states of components are assumed to be independent with each other in this chapter, 

the multiplication rule of probabilities can be used to compute the time-specific failure 

probability of a minimal cut-set or that of a union of minimal cut-sets. Additionally, we 

have ( ) ( )tptp
j
f

j
s −= 1 , thus the calculation of the short-term reliability indices only 

depends on that of the time-specific failure probabilities of components as described in 

the next subsection.                                                              

4.5.2 Time-specific probabilities of components 

For time-specific case, the steady state results of Markov process are not suitable 

to compute the reliability indices. Instead, the transient state results of Markov process 

should be used. Basically, a set of differential equations need to be solved. In this 

chapter, for the investigation of the temporal effect of a hurricane, its duration is 

portioned into some small time intervals. Thus, the continuous time Markov chain to 

model the time-specific characteristics of a system component affected by hurricanes can 

be approximated by using a pseudo discrete time Markov chain. Thus, only a set of 

linear equations need to be solved as described as follows. Suppose that the hurricane 

duration [ ]tt 21,  is partitioned into n equal time intervals and each one is ∆t, i.e. 

( ) nttt 12 −=∆ . For component j in the ith time interval, the following equation can be 

derived from [23]: 
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where, 

  ( )ip
j
s   = success probability of component j by the end of the ith  

    time interval  

( )ip
j
f   

= failure probability of component j by the end of the ith  

    time interval  

I  = identity matrix  

( )iR j    = transition rate matrix of component j in the ith time  

   interval and is assumed to be a constant matrix  

Basically, equation (52) approximates a continuous time non-Markov process by using a 

pseudo discrete time Markov process with an equal time step t∆  and different constant 

transition rate matrix in each step. If the repair of a failed component is not considered, 

i.e. 0=µ j , the following equations are obtained: 
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where, 

µ j   
=  rapier rate of component j 

  ( )ijλ   =  failure rate of component j in the ith time interval 

and is assumed to be a constant  

There is an interpretation of equations (54)-(55): if suppose that at the beginning of the 

ith time interval the success probability of component j is 1, it is well known that by the 

end of the ith time interval its failure probability is ( ) ( ) tie j
tij ∆≈− ∆− λλ1  if ( ) tij ∆λ  is 
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small enough. Equations (54)-(55) can be interpreted as a modification of the preceding 

conclusion when the initial success probability of component j is ( )1−ip
j
s . From 

equation (55), the time-specific failure probability of component j can be calculated by 

using the following iteration:  

            ( ) ( )( ) ( ) ( )111 −+∆⋅−−= iptiipip
j
fj

j
f

j
f λ                   (56) 

                           ( ) 00 =p
j
f

                                       (57)  

Here, condition (57) refers to the assumption that at the beginning of the first time 

interval the failure probability of component j is 0. 

4.5.3 Time-specific system and nodal indices 

After the time-specific reliability indices of components are calculated (actually 

only those of the components belonging to some minimal cut-sets need to be computed),  

time-specific system and nodal reliability indices can be calculated as follows. The only 

difference in computing system and nodal indices is that system and nodal minimal cut-

sets should be used appropriately. 

1) It is pointed out that the desired reliability indices are ( )ip f , ( )ttIF 21,  and 

( )ttFD 21, . Here, 

( )ip f  = failure probability by the end of the ith time interval 

2) Use equations (4)-(5) to compute the bounds on ( )ip f  
and their average is used as 

its value. 

3) In [53] it is pointed out that the following equation can be obtained if the repair is not 

considered: 
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            ( ) ( )ttpttIF f 2121 ,, =
                     

   (58) 

here, 

( )ttp f 21,   = failure probability by time t2  assuming that the time starts  

    at t1  

Thus, there is no extra computation for ( )ttIF 21, , and its value can be obtained from 

the last step directly. Since no repair of failed components is considered, failure 

probability p f  is monotonically increasing during [ ]tt 21, . Thus, ( )ttIF 21,  is actually 

the maximal value of p f  by time t2 . 

4) From equation (49), the following equation can be used to compute ( )ttFD 21, .      
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              (59) 

Thus, ( )ttFD 21,  is just the mean value of the results of Step (2).  

5) It is possible that utilities may arrange more repair teams and materials than they 

normally do to be prepared for upcoming hurricanes. When the repair of failed 

components is considered, an approach is to assume that the repair rate of a single 

component is a smaller number than that of it in normal weather, and it is a constant 

during the duration of hurricanes [13].  

4.5.4 Weighted average method 

To investigate the spatial effect of hurricanes on composite power systems, the 

power system is divided into different regions. If a transmission line traverses a few 

regions, its overall IMFR can be calculated as follows: 
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where, 

  ni  = overall IMFR of transmission line i  

M = index of the set of all the regions that transmission line i traverses  

l
j
i  = length of transmission line i in region j 

li  = overall length of transmission line i 

n
j
i  = IMFR of transmission lines i in region j 

w
j
i  = weight of transmission line i belonging to region j 

4.6 Implementation 

In this section, the proposed methodology investigating the impact of hurricanes 

on the short-term reliability of composite power systems is applied to the modified IEEE 

reliability test system. Firstly, the data used in this chapter is presented; then, the 

different types of fuzzy inference systems built by using different methods are presented; 

finally, evaluation results obtained by using different methods are compared and 

analyzed.  

4.6.1 Test system 

Here, the test system used is the same as that in the last chapter, and is not 

described in this chapter repeatedly. 

4.6.2 Relevant data 

4.6.2.1 Clustering data 

Here, the training data for the data-driven methods is generated by using the 

fuzzy expert system in [12]. To verify the effectiveness of different data-driven methods, 
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the criterion is as follows: if the results obtained are close to those in [12], the data-

driven method is effective - the closer to the results in [12], more effective it is. In detail, 

the data is obtained as follows: for each input variable, the input data is generated from 

its minimal value to its maximal value with a step being ( ) 100minmax− , here max and 

min represent the minimal and maximal values respectively, and the inferred output is 

used as the output data. Thus, 101 data points are obtained for the data-driven methods. 

Using these data, different types of fuzzy inference systems are built by using MATLAB 

[50].   

4.6.2.2 Hurricane data 

 

 

Table 14: Hurricane Data 

Time 

Interval 

Region 1 Region 2 

Wind Speed 

(mph) 

Rainfall 

(in) 

Wind Speed 

(mph) 

Rainfall 

(in) 
1 80 10 70 5 

2 90 15 80 10 

3 100 20 90 15 

4 110 25 100 20 

5 120 30 110 25 

6 130 35 120 30 

7 140 40 130 35 

8 130 35 120 30 

9 120 30 110 25 

10 110 25 100 20 

11 100 20 90 15 

12 90 15 80 10 

 

 

Here, the IEEE reliability test system is partitioned into two parts and the split 
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basically follows along its voltage levels. Specifically, the tie lines between the 230KV 

and 138KV parts of the IEEE reliability test system are four transmission lines [38]. The 

split is assumed to pass through the middle points of these lines. The hurricane 

parameters are listed in Table 14. Here, hurricane duration is assumed to be 48 hours, 

and each time interval is set as 4 hours. 

 

 

Table 15: Rule Base (S-FIS) 

Output 
Rainfall 

High Medium Low 

Wind Speed 

High Output(H)   

Medium  Output(M)  

Low   Output(L) 

 

 

4.6.3. Different fuzzy inference systems  

4.6.3.1 Sugeno-type fuzzy inference system 

For the Sugeno-type fuzzy inference system, the fuzzy rules are listed in Table 

15. Here, Output (H/M/L) represents the output function. The membership functions of 

the input variables are shown in Figs. 14-15. It is noted that the output in Table 15 and 

those in Tables 16-17 are different: in Table 15 the output represents the linear function 

of the input variables; in Tables 16-17 the output represents membership function.  
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Fig. 14: Membership Function of Wind Speed (S-FIS) 
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Fig. 15: Membership Function of Rainfall (S-FIS) 
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4.6.3.2 Mamdani-type fuzzy inference system  

For the Mamdani-type fuzzy inference system, the fuzzy rules are listed in Table 

16, and the membership functions of the input and output variables are shown in Figs. 

16-18. 

 

 

Table 16: Rule Base (M-FIS) 

Output 
Rainfall 

High Medium Low 

Wind Speed 

High High   

Medium  Medium  

Low   Low 
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Fig. 16: Membership Function of Wind Speed (M-FIS) 
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Fig. 17: Membership Function of Rainfall (M-FIS) 
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Fig. 18: Membership Function of IMFR (M-FIS) 
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4.6.3.3 Fuzzy expert system 

For comparison, the fuzzy rules of the fuzzy expert system in [12] are listed in 

Table 17, and its membership functions are shown in Figs. 19-21. 

 

 

Table 17: Rule Base (FES) 

Output 
Rainfall 

High Medium Low 

Wind Speed 
High High High Medium 

Low Medium Low Low 
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Fig. 19: Membership Function of Wind Speed (FES) 
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Fig. 20: Membership Function of Rainfall (FES) 
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Fig. 21: Membership Function of IMFR (FES) 
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4.6.4 Evaluation results 

The system reliability indices obtained by using different methods are listed in 

Table 18 and are shown in Fig. 22. Here, for simplicity no repair of failed components is 

considered. The legends used in Fig. 22 are as follows: 

FPSF: system failure probability of Sugeno-type fuzzy inference system 

FPMF: system failure probability of Mamdani-type fuzzy inference system 

FPF: system failure probability of fuzzy expert system 

FDSF: fractional duration of Sugeno-type fuzzy inference system 

FDMF: fractional duration of Mamdani-type fuzzy inference system 

FDF: fractional duration of fuzzy expert system 
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Fig. 22: Short-Term System Failure Probability (Independent Failures) 
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Table 18: Short-Term System Failure Probability (Independent Failures) 

Time 

Interval 

System Failure Probability
 

Sugeno-Type 

System 

Mamdani-Type 

System 

Fuzzy Expert 

System 

1 0.0018 0.0036 0.0017 

2 0.0041 0.0076 0.0034 

3 0.0084 0.0133 0.0049 

4 0.0164 0.0197 0.0104 

5 0.0267 0.0262 0.0201 

6 0.0363 0.0327 0.0296 

7 0.0455 0.0411 0.0391 

8 0.0549 0.0476 0.0484 

9 0.0648 0.0538 0.0577 

10 0.0723 0.06 0.063 

11 0.0764 0.0654 0.0644 

12 0.0785 0.0692 0.066 

Interval 

Frequency 

(Maximum) 

0.0785 0.0692 0.066 

Fractional 

Duration 

(Mean) 

0.0405 0.0367 0.0341 

 

 

The nodal reliability indices obtained by using different methods are listed in 

Table 19. Here, for simplicity only those of two methods are listed. 

4.6.5 Comparison of results from different methods 

According to the obtained results, the following conclusions can be made: 

1. Figs. 14-21 show that the membership functions obtained by using different methods 

can be much different. 

2. Tables 15-17 show that fuzzy clustering methods can effectively reduce the number 

of the fuzzy rules of the fuzzy inference system, i.e. it can alleviate the 
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dimensionality problem of the artificial method.  

 

 

Table 19: Short-Term Nodal Failure Probability (Independent Failures) 

Node 

Fractional Duration 

Mamdani-Type 

System 

Fuzzy Expert 

System 

1 0.0122 0.0114 

2 0.0121 0.0114 

3 0.0116 0.0109 

4 0.0121 0.0114 

5 0.0122 0.0115 

6 0.0334 0.0308 

7 0.0091 0.0084 

8 0.0032 0.0032 

9 0.0094 0.0088 

10 0.0121 0.0114 

13 0.0119 0.0112 

14 0.0018 0.0018 

15 0.0107 0.01 

16 0.0114 0.0107 

18 0.0021 0.0022 

19 0.0115 0.0108 

20 0.0032 0.0032 

System Indices 

(Mean) 
0.0367 0.0341 

 

 

3. Table 18 and Fig. 22 show that the evaluation results obtained by using different 

methods are different. Compared with the results of the fuzzy expert system, the 

Mamdani-type fuzzy inference system appears to obtain more accurate results than 

the Sugeno-type fuzzy inference system since the results of the former are closer to 

those of the fuzzy expert system. The reasons are as follows: 
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1) The membership functions of the input of the Sugeno-type fuzzy inference system 

is in the form of Gaussian function. Actually, this approximation may be over-

simplification. 

2) The assumption of the Sugeno-type fuzzy inference system that the input and the 

output variables have a linear functional relationship may be also over-

simplification.  

4. Table 18 and Fig. 22 also show that for time-specific case, interval index fractional 

duration can more clearly indicate the performance of different methods than time-

specific failure probability. 

5. Table 19 shows that nodal reliability indices can be much different. They can be 

helpful for utilities to effectively allocate recourses in preparation for upcoming 

hurricanes.  

6. The proposed methodology is efficient. After the fuzzy inference system is built, its 

inference time is almost negligible. 

7. In this chapter, the proposed methodology evaluates the impact of hurricanes on the 

short-term reliability of composite power systems. It is also applicable to simulation 

method as well as in other systems, e.g. distribution systems.  

8. In this chapter, for simplicity the repair of failed components is not considered. But, 

the proposed methodology is also applicable when the repair is considered. 

4.7 Summary 

In this chapter, the impact of hurricanes on the short-term reliability of composite 

power systems is investigated. The incremental failure rates of system components are 
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obtained by combining a fuzzy inference system and regional weather model. For the 

purpose of comparison, different methods are used to build different types of fuzzy 

inference systems. Since hurricanes only last a short period of time but their effects are 

drastic, time-specific system and nodal reliability indices are calculated during the 

duration of hurricanes.  

The proposed methodology is applied to the modified IEEE reliability test 

system. From the implementation, the main conclusions obtained in this chapter are 

summarized as follows: 

1) The proposed methodology is effective. It can evaluate the impact of hurricanes on 

the failure rate increment of system components temporally and spatially. 

2) The proposed methodology is efficient. After the fuzzy inference system is built, its 

inference time is almost negligible. 

3) The performances of different methods are different. But, different methods can be 

complementary rather than competitive. In practice, the requirements of efficiency 

and accuracy can determine the selection of suitable method. 

4) For time-specific case, steady state reliability indices are not suitable anymore. 

Instead, short-term indices should be used such as interval frequency and fractional 

duration. 

5) Nodal reliability indices can provide helpful information for utilities to effectively 

allocate recourses in preparation for upcoming hurricanes.  

6) The proposed methodology is flexible in its applications. It is applicable to analytical 

and simulation methods, and can be applied to different systems.  
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7) It should be pointed out that the implementation of the proposed methodology is 

mainly to demonstrate the feasibility of the idea. For practical applications, relevant 

hurricane parameters and the failure data of system components can be used to build 

the fuzzy inference system. 
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                                                         CHAPTER V 

EVALUATION OF HURRICANE IMPACT ON THE SHORT-TERM RELIABILITY 

OF COMPOSITE POWER SYSTEMS INCLUDING COMMON-CAUSE FAILURES 

 

In the previous chapter, the impact of hurricanes on the short-term reliability of 

composite power systems is investigated and the states of components are assumed to be 

independent. Another impact of hurricanes on composite power systems is that they can 

cause simultaneous failures of multiple components. For instance, hurricanes can 

damage transmission towers and the transmission lines on them can collapse together. 

This kind of failures is called common-cause failures and it can deteriorate the reliability 

of composite power systems affected by hurricanes. Thus, the common-cause failures of 

components should be included in the investigation of hurricane impact on the short-

term reliability of composite power systems. 

In this chapter, the impact of hurricanes on the short-term reliability of composite 

power systems is investigated and both the independent and common-cause failures of 

components are considered. Here, two methods are proposed to achieve this goal. One of 

them uses a Bayesian network to alleviate the dimensionality problem of conditional 

probability method. Another one extends minimal cut-set method to model the common-

cause failures of system components. 

The proposed methods are applied to the modified IEEE reliability test system. 

The evaluation results obtained by using the two methods are compared and analyzed. 
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The implementation demonstrates that the proposed methods are effective and are 

flexible in their applications. 

This chapter is organized as follows: in Section  5.1 relevant researches that 

investigated the effect of common-cause failures are reviewed; in Section 5.2 the overall 

scheme for investigating the impact of hurricanes on the short-term reliability of 

composite power systems is presented; in Section 5.3 the basic concepts of Bayesian 

networks are introduced; in Section 5.4 the use of noisy OR-gate model is presented; in 

Section 5.5 the use of pseudo repetitive temporal model to compute time-specific system 

reliability indices is described; in Section 5.6 the extended minimal cut-set method is 

presented; in Section 5.7 the proposed methods are applied to the modified IEEE 

reliability test system; finally, the summary concludes this chapter. 

5.1 Literature Review 

Common-cause failures refer to the simultaneous failures of multiple components 

due to a common cause. With the effect of common-cause failures considered, the states 

of component become dependent, and reliability evaluation becomes more complex.  

Some methods for evaluating the effects of common-cause failures are listed in 

[10]. These methods include beta-factor model, basic-parameter model, multiple Greek 

letter model, binomial failure-rate model, and Markov model. But, these models are not 

suitable for composite power systems. These models have two disadvantages when they 

are applied to composite power systems. One is that their required parameters drastically 

increase as the number of system components increases [55]. The other is that these 

models usually rely on some special techniques, e.g. building fault trees or solving 
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equations, thus they are computationally tedious when the number of system 

components is large [56]-[57]. In [56]-[57] some improved methods such as binary 

decision diagram and dynamic fault tree have been proposed. 

A straightforward method for evaluating the effect of common-cause failures is 

conditional probability formula [19], [23], [58]. Actually, this method decomposes 

system state space on condition whether common-cause failures occur or not. Thus, for 

each decomposed state space, the failures of system components are independent, and 

the evaluation of common-cause failures can be simplified. However, this method has a 

significant drawback that the decomposition is subject to an exponential explosion when 

the number of common-cause failures considered increases, i.e. if the number of 

common-cause failures is n, the number of decompositions will be 2
n . 

Hurricanes are extreme adverse weather and can cause common-cause failures in 

composite power systems. In [13], the impact of hurricanes on the short-term reliability 

of composite power systems was investigated. But, the common-cause failures of system 

components were not considered in [13].  

In this chapter, two methods are proposed to investigate the impact of hurricanes 

on the short-term reliability of composite power systems, and both the independent and 

common-cause failures of components are considered [15]-[16]. 

The first proposed method is based on Bayesian networks. Basically, it uses 

noisy OR-gate model to alleviate the dimensionality problem of conditional probability 

method, and uses pseudo repetitive temporal model to calculate time-specific system 

reliability indices.  
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Compared to other methods, the proposed method has following advantages: 

1) By using certain techniques [59]-[60], a complex Bayesian network can be 

simplified. 

2) The parameters of a Bayesian network can be obtained by using some learning 

algorithms, e.g. Monte Carlo simulation. 

3) Bayesian networks have a powerful inferring capability and the inference results may 

be various probabilities, such as marginal probability, joint probability, and posterior 

probability.  

4)  Bayesian networks can be applied to time-specific case by using repetitive temporal 

model [61].  

The second proposed method extends minimal cut-set method to model the 

common-cause failures of system components. The basic idea is to formulate the 

components associated with a common-cause failure as one component. 

Both proposed methods are applied to the modified IEEE reliability test system. 

The results obtained by using the two methods are compared and analyzed. The 

implementation demonstrates that the proposed methods are effective and are flexible in 

their applications. 

5.2 Overall Evaluation Scheme 

As shown in Fig. 23, the overall scheme for investigating the impact of 

hurricanes on the short-term reliability of composite power systems consists of two 

parts: determining the failure rate increment of system components, and evaluating the 
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effect of common-cause failures. Here, system failure refers to any load shedding at any 

node of a composite power system.  

 

 

 

 

 

 

 

 

 

Fig. 23: Overall Short-Term Reliability Evaluation Scheme 

 

 

5.2.1 Increment of failure rates  

One of the impacts of hurricanes on composite power system reliability is that 

they can increase the failure rates of system components, and this has been investigated 

in the last chapter. In this chapter, this impact of hurricanes is also considered to obtain 

the overall reliability evaluation results. However, this chapter emphasizes on the 

assessment of the common-cause failures of system components, and the relevant results 

in the last chapter are directly used here. 
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5.2.2 Common-cause failures 

In this chapter, the effect of common-cause failures caused by hurricanes on the 

short-term reliability of composite power systems is assessed. Finally, the marginal 

probability of system failure, and the occurrence probabilities of common-cause failures 

conditioning on the occurrence of system failure are calculated. The latter probability 

refers to the occurrence probability of a common-cause failure when system failure has 

been observed. This probability indicates the chance of the occurrence of a common-

cause failure when system failure occurs, and can be helpful for the decision-making 

process of utilities. The detailed discussion is given in Section 5.4.  

There are a few points to be noted as follows: 

1) This chapter investigates the impact of hurricanes on the short-term reliability of 

composite power systems considering both the independent and common-cause 

failures of components. Thus, the final evaluation results are the overall reliability 

indices.  

2) Although this chapter assesses the common-cause failures due to damaged 

transmission towers on which transmission lines are installed, the proposed methods 

are also applicable to other types of  common-cause failures in other systems, e.g. 

that caused by a bus failure.  

3) The transmission lines associated with a common-cause failure may comprise a 

minimal cut-set or not. This is an important issue in this chapter. The relevant details 

are discussed in Section 5.4. and 5.6. 
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4) For simplicity, the repair of failed transmission towers and system components are 

not considered. The reason is that usually hurricanes make such repair difficult. But, 

it is possible that utilities arrange more repair crew and equipments for upcoming 

hurricanes than they do in normal weather. When the repair is considered, [13] 

proposed an approach to deal with the independent failures of system components.  

5.3 Introduction of Bayesian Networks 

In this section, the basic concepts of Bayesian networks are introduced to 

facilitate the following discussion. Firstly, a simple example is given to illustrate the 

basic idea of Bayesian networks; then, modeling Bayesian networks and their inference 

are introduced; additionally, using Bayesian networks for time-specific applications, and 

modeling different types of random variables are introduced.  

5.3.1 A simple example  

Basically, a Bayesian network is a directed acyclic graph and its structure and 

parameters determine its functionality. The structure includes nodes and directed edges: 

the former represent random variables and the latter usually represent their causal 

relationships. The parameters are the conditional probability distributions associated 

with the nodes. Numerous algorithms for the inference and learning in Bayesian 

networks have been developed.  

A simple Bayesian network is shown in Fig. 24. Here, random variable X i , 

4,3,2,1=i , represents an event. According to the chain rule of probabilities, the 

following equation is obtained: 
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Fig. 24: A Simple Bayesian Network 

 

 

( ) ( ) ( ) ( ) ( )XPXXPXXXPXXXXPXXXXP 11221332144321 ,,,,,, ⋅⋅⋅=      (61) 

here,  

P =  probability  

In Fig. 24, if there is an edge from a node to another node, the node at head end is the 

parent of that at tail end or the node at tail end is the child of that at head end. For 

example, X1  is the parent of X 2  and X 3 , and they are the parents of X 4 , or X 4  is the 

child of X 2  and X 3  and they are the children of X1 . According to the recursive 

factorization of above joint probability distribution [62], the following equation is 

obtained: 

( ) ( ) ( ) ( ) ( )XPXXPXXPXXXPXXXXP 112133244321 ,,,, ⋅⋅⋅=        (62)                            

The above equation shows that the joint probability distribution can be expressed as the 

product of some conditional probability distributions, and each conditional probability 

distribution is in the form ( )( )XPaXP ii , 4,3,2,1=i . 

 

X1 

X2 X3 

X4 
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here, 

  ( )XPa i  = parents of random variable X i , 4,3,2,1=i  

 In contrast, (62) is more compact than (61), and the joint probability is easy to be 

computed if all the conditional probabilities in (62) are known. Then, all the other 

probabilities, say ( )XXXP 321 ,, , ( )XXXP 132 , , or ( )XXP 21 , can be computed 

accordingly by using variable elimination and conditional probability formula. For 

example, after summing out X 4  we get ( )XXXP 321 ,, . Repeatedly, we can get 

( )XXP 21,  , ( )XP 1 , and ( )XP 2 . Then, the desired conditional probabilities can be 

computed accordingly if the marginal probabilities are greater than zero.  

( ) ( )
( )XP

XXXP
XXXP

1

321
132

,,
, =        (63) 

( ) ( )
( )XP

XXP
XXP

2

21
21

,
=         (64) 

If the marginal probabilities equal to zero, seemingly the above conditional probabilities 

equal to zero too. 

A pivotal concept of Bayesian networks is the conditional independences of 

random variables. For example, (61) and (62) show that the following equations can be 

obtained: 

( ) ( )XXXPXXXXP 3243214 ,,, =          (65) 

( ) ( )XXPXXXP 13213 , =         (66) 

The conditional independences of Bayesian networks can be equally expressed as 

follows with some assumptions [63]: 
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Global Markov property 

 Basically, global Markov property refers to that two sets of nodes can be 

separated by a set of nodes which is called a d-separation [62]. Actually, the Markov 

blanket of a node is the minimal one of all the d-separations, and it consists of the 

parents and children of a node, and the parents of the children of the node.  

Local Markov property 

This property refers to that a node is independent of the nodes of its non-

descendants given its parents [63]. Here, the descendants of a node refer to all the nodes 

which are connected by the directed edges emanating from the node. 

Factorization 

 Actually, an easily understandable factorization form of Bayesian networks, 

named recursive factorization, has been illustrated in the simple example. More 

generally, a joint probability distribution can be expressed as follows: 

( ) ( )( )∏=
≤≤ ni

iin XBXPXXXP
1

21 ,, L                                        (67) 

here, 

( )XB i   = nodes before X i  according to some principle 

Equally, the joint probability distribution can be expressed as follows: 

( ) ( )( )∏=
≤≤ ni

iin XAXPXXXP
1

21 ,, L                                        (68) 

here, 

( )XA i   =  nodes after X i  according to some principle 
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 Summarily, a Bayesian network uniquely determines a joint probability 

distribution of the random variables [61]. By using recursive factorization, a joint 

probability distribution can be expressed as follows [61]: 

( ) ( )( )∏=
≤≤ ni

iin XPaXPXXXP
1

21 ,, L                                        (69) 

where  

X i   = random variable represented by node i, ni ≤≤1  

n  =  number of nodes 

( )XPa i  = parents of node i  

For the root node which has no parents, its conditional probability is just the marginal 

probability. 

5.3.2 Modeling Bayesian networks 

For the simple example, its structure and parameters are assumed to be known in 

advance. For practical applications, the structure and parameters of a Bayesian network 

need to be determined, and this is called the modeling of Bayesian networks. Generally, 

there are two kinds of approaches to model a Bayesian network: artificial method (expert 

opinion) and data-driven method [59]-[61], [64]. Usually, a hybrid method which 

combines the merits of two approaches can be used. When the data-driven method is 

used to model a Bayesian network, it can be used to learn the structure and parameters.  

Learning parameters 

 Usually, a statistical approach can be used to learn the parameters of a Bayesian 

network, i.e. we assume that the data belongs to some distribution but the parameters are 
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unknown. Thus, we can use statistical methods to estimate the desired parameters. For 

instance, maximum likelihood estimation and Bayesian inference are two common 

methods. Due to the stochastic characteristics of learning the parameters of Bayesian 

networks, Monte Carlo simulation can be used to achieve the goal. Actually, the 

simulation result is the estimator that minimizes the likelihood function [65]. Statistical 

methods can be used to learn the parameters of a Bayesian network from complete and 

incomplete data, i.e. when some data is missing statistical methods can be applied as 

well.  

Learning structure 

 Similarly, statistical methods can be used to learn the structure of a Bayesian 

network. But, learning structure is more complex than learning parameters. Usually, 

some search techniques have to be used to learning the structure of a Bayesian network. 

In this chapter, the structure of the Bayesian network used is determined a priori, 

i.e. it is built by considering the causal relationships in composite power systems 

affected by hurricanes. The parameters are obtained by using random sampling. More 

details are given in the next section.  

5.3.3 Inference in Bayesian networks 

In Subsection 5.3.1, variable elimination method is used to compute the desired 

probabilities in a simple Bayesian network. This process is actually the inference in 

Bayesian networks. But for a practical Bayesian network, variable elimination method is 

inefficient, and more efficient algorithms have been developed. In this subsection, 

several common inference algorithms are introduced as follows: 
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Junction tree 

Actually, junction tree or join tree algorithm is an improvement of variable 

elimination method [65]. This method eliminates factors instead of variables and uses 

elimination tree instead of elimination order. Here, a factor is actually a conditional 

probability. The core of the algorithm is message passing formulation. Compared with 

variable elimination method, this method can eliminate a set of variables at a time. Thus, 

it is more efficient than variable elimination method.  

Conditioning method 

 Conditioning method uses conditional probability formula to decompose the 

original Bayesian network into some simpler ones, and suitable algorithms can be used 

for each small network.                                    

Local structure exploitation 

 Similar to conditioning method, local structure exploitation is actually a kind of 

methodology rather than an algorithm. It utilizes the local structure of a Bayesian 

network, i.e. the specific values of some parameters, to simplify the inference. Actually, 

the noisy OR-gate model used in this chapter is such a method which exploits the local 

characteristics of a Bayesian network. 

Approximate methods                                                                                                                                                                               

   The elimination method is an exact inference algorithm. For complex Bayesian 

networks, the computation can be expensive. Instead, some iterative methods can be 

used to get approximate results. The massage passing algorithm, originally designed for 

exact inference, can be extended to such a method. Another such method is Monte Carlo 
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simulation. It can be used not only for learning parameters but also for approximate 

inference.                                                          

5.3.4 Repetitive temporal model 

When the dynamics of some random variables are of interest, Bayesian networks 

can be applied to the time-specific case. The basic idea is to interconnect the Bayesian 

networks in different periods of time. When the structures of the Bayesian networks are 

the same and the interconnection is the same, the resultant Bayesian network is called 

repetitive temporal model [61]. Additionally, if the conditional probabilities in each 

period of time are the same, this model is called dynamic Bayesian networks. 

In this chapter, in order to investigate the impact of hurricanes on the short-term 

reliability of composite power systems, a pseudo repetitive temporal model is proposed 

to calculate time-specific system reliability indices. This model is a modification of 

repetitive temporal model and it is different from a dynamic Bayesian network. More 

details are given in Section 5.5.  

5.3.5 Types of random variables 

Basically, a Bayesian network can deal with discrete and continuous random 

variables. But, when the latter is modeled, the exact inference can be impossible for an 

arbitrary distribution. Usually, continuous random variables can be transformed by 

discretization, and then suitable methods can be used. In this chapter, all the random 

variables of the Bayesian network used are binary variables which represent the 

occurrences or not of some events.  
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5.4 Noisy OR-Gate Model 

In this section, the noisy OR-gate model used to investigate the impacts of 

hurricanes on composite power system reliability is described in detail. Firstly, the 

overall evaluation strategy is presented; secondly, the noisy OR-gate model used is 

described in detail; thirdly, the algorithm for simulating the required parameters is given; 

finally, the interpretation of the posterior probability of a common-cause failure is 

presented. 

5.4.1 Overall evaluation strategy 

 

 

 

 

 

 

 

 

 

Fig. 25: Noisy OR-Gate Model 

 

 

The overall evaluation strategy for the impact of hurricane on the short-term 

reliability of composite power systems is shown in Fig. 25. This is the Bayesian network 

used in this chapter. Here, CCF i , mi ≤≤1 , is the ith common-cause failure; m is the 
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number of common-cause failures. In Fig. 25, the impact of hurricanes on the failure rate 

increment of transmission lines is indicated by a dashed line, i.e. it is implicitly 

incorporated in the noisy OR-gate model used. More details are given in the next 

subpart. After the structure of the Bayesian network used is determined, the conditional 

probability distributions associated with the nodes needs to be determined. They are the 

marginal probabilities of the hurricane, the conditional probabilities of CCF i , mi ≤≤1 , 

and those of system failure. In the following discussion, P represents a probability, and 

1/0 represents the occurrence or not of an event.  

5.4.1.1 Probability of hurricane  

Since the dynamic impact of hurricanes on the short-term reliability of composite 

power systems is of interest in this chapter, i.e. the impact of hurricanes is investigated 

during their durations, the occurrence of a hurricane is assumed to be a sure event and 

the following equation is obtained: 

             ( ) ( ) 0011 ==⇔== HurricanePHurricaneP                          (70) 

5.4.1.2 Probability of common-cause failures 

The conditional probability distributions of a common-cause failure are the 

probability of its occurrence or not given the occurrence or not of the hurricane. First of 

all, the following assumption is used in this chapter: 

( ) ( ) 100001 ===⇔=== HurricaneCCFPHurricaneCCFP ii  mi ≤≤1   (71)  

The above equation refers to that only the hurricane can cause common-cause failures. 

In reality, other kinds of common-cause failures exist in power systems, e.g. station-

originated common-cause failures. For simplicity, in this chapter only the common-
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cause failures caused by a hurricane are considered. But, it is straightforward to model 

other types of common-cause failures by adding additional directed edges and nodes in 

Fig. 25.  

Following (71), only ( )11 == HurricaneCCFP i , mi ≤≤1 , needs to be 

determined. Then, ( )10 == HurricaneCCFP i  can be easily obtained as follows: 

( ) ( )11110 ==−=== HurricaneCCFPHurricaneCCFP ii       mi ≤≤1       (72)                               

In [66] reliability theory was applied to the risk analysis of transmission towers, and the 

effects of wind and ice on their failures were considered. However, the method in [66] is 

not suitable for the determination of ( )11 == HurricaneCCFP i , mi ≤≤1 . The reasons 

are as follows: 

1) The main effects of hurricanes are strong wind and heavy rainfall when they move 

over land.  

2) The reliability indices calculated in [66] are averages over long time spans.  

Thus, the time-specific failure model of transmission towers affected by 

hurricanes needs to be developed. This may be realized by using structural reliability 

analysis. For simplicity, ( )11 == HurricaneCCFP i , mi ≤≤1 , is assumed to be an a 

priori constant during the duration of hurricanes in this chapter. The relevant data is 

given in Section 5.7. 
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5.4.1.3 Probability of system failure 

The conditional probability distribution of system failure is the probability of its 

occurrence or not given the combined occurrences or not of common-cause failures, i.e. 

it is in the form ( )CCFfailureSystemP 1_ =  or ( )CCFfailureSystemP 0_ = .  

here,  

CCF = combination of the occurrences or not of all common-cause  

  failures  

For instance, it can be in the form as follows: 

{ }1,1,01 ==== CCFCCFCCFCCF mi LL   

or { }0,0,11 ==== CCFCCFCCFCCF mi LL      mi ≤≤1  

The number of all the combinations is 2
m . If m is large, the determination of the 

conditional probability distribution of system failure is tedious. To solve this problem, 

some techniques such as parent divorcing and temporal transformation can be used [60]. 

But, they are not suitable for the Bayesian network used in this chapter. Here, noisy OR-

gate model is used and is described in detail in the next subsection.  

5.4.2 Noisy OR-gate model  

Like parent divorcing and temporal transformation, noisy OR-gate model 

modifies the structure of a Bayesian network by adding some auxiliary variables as well 

as corresponding directed edges to reduce its complexity logically when multi-causal 

relations are modeled. For example, a simple multi-causal Bayesian network is shown in 

Fig. 26. Here, Y i , 4,3,2,1=i , is the ith event. By using noisy OR-gate model, the 
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equivalent Bayesian network is shown in Fig. 27. Here, I i , 3,2,1=i , is the ith inhibitor 

(noisy); 1=Ai  if and only if { } { }10 == YI ii I , 3,2,1=i ; 04 =Y  if and only if 0=Ai , 

3,2,1=i . Clearly, Ai , 3,2,1=i , comprises the input of an OR gate and Y 4  is its output. 

Noisy OR-gate model makes a few assumptions: causal inhibition, exception 

independence, and accountability [59]. Basically, these assumptions refer to the fact that 

the inhibitors are independent with each other and one intermediate cause is enough to 

make the common result happen. Given the assumptions, equations (73)-(74) are 

obtained: 

 

 

 

 

 

Fig. 26: A Simple Multi-Causal Bayesian Network 

 

 

 

 

 

 

 

 

Fig. 27: Equivalent Noisy OR-Gate Model 
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( ) ( )( )∏ ==−−==
i

iYYPYYYYP 1111,,1 43214        3,2,1=i                      (73) 

( ) ( )YYYYPYYYYP 32143214 ,,11,,0 =−==       (74) 

Equation (74) shows that noisy OR-gate model only determines ( )114 == YYP i , 

3,2,1=i , instead of determining ( )YYYYP 3214 ,,1=  directly. Thus, the determination of 

the conditional probability distribution of a multi-causal Bayesian network can be 

simplified. For example, 28 3=  conditional probabilities need to be determined if 

( )YYYYP 3214 ,,1=  is determined directly. By using noisy OR-gate model, only 3 

conditional probabilities need to be determined. In other words, the conditional 

probabilities to be determined can be reduced from an exponential number to a linear 

number. 

To determine the conditional probability distribution of system failure, the 

following equation is obtained by using noisy OR-gate model: 

( ) ( )( )∏ ==−−==
∈Ii

iCCFfailuresystemPCCFfailureSystemP 11_111_       (75) 

( ) ( )CCFfailureSystemPCCFfailureSystemP 1_10_ =−==                   (76) 

where, 

  I =  set of all the common-cause failures such that Ii ∈  if and only if  

   1=CCF i   

Equation (75) shows that noisy OR-gate model can be interpreted as a series connection 

of common-cause failures. Thus, the Bayesian network in Fig. 25 can be interpreted as 

follows: system failure is the failure of a series system consisting of common-cause 
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failures, i.e. only the occurrence of one common-cause failure is sufficient to cause the 

occurrence of system failure, and only when no common-cause failure occurs system 

failure does not occur. Presumably, equation (75) has the following implication: 

( ) 001_ === CCFfailureSystemP                                            (77) 

Here, 0=CCF  represents that no common-cause failure occurs, i.e. 0=CCF i , 

mi ≤≤1 . In this chapter, both the independent and common-cause failures of system 

components are considered. Thus, equation (77) is modified as follows: 

( )01_ == CCFfailureSystemP       

( )0,1_1_ ==== CCFfailuretindependenfailuresystemP     (78)           

Here, 1_ =failuretindependen  represents the occurrence of the independent failures of 

system components. Here, the failure rate increment of system components is 

considered. Equation (78) refers to that when no common-cause failure occurs, system 

failure is that caused by the independent failures of system components. The time-

specific value of the probability in (78) has been calculated in [13], and it can be directly 

used here as well as in the pseudo repetitive temporal model in the next section. 

Accordingly, equation (75) is modified as follows: 

( )CCFfailureSystemP 1_ =        

( )( )∏ ===−−=
∈Ii

iCCFfailuretindependenfailuresystemP 1,1_1_11   (79) 

Equations (76), (79) show that the conditional probability distribution of system failure 

is only determined by the following probabilities: 
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( )1,1_1_ === CCFfailuretindependenfailuresystemP i        mi ≤≤1  

These conditional probabilities can be obtained by using a simple simulation method. Its 

algorithm is described in detail in the next subsection.  

5.4.3 Simulation algorithm  

Simulating ( )1,1_1_ === CCFfailuretindependenfailuresystemP i , mi ≤≤1 , 

can be realized as follows: remove the transmission lines associated with the ith 

common-cause failure CCF i  simultaneously, then simulate the system failure only 

caused by the independent failures of other system components. Thus, a simple 

simulation method, named random sampling [24], can be used here. Basically, random 

sampling assumes that the states of system components are independent with each other. 

Thus, the simulation of system state can be realized by simulating the states of system 

components separately. Finally, the system state is usually checked by running an 

optimization routine in a composite power system. If there is any load shedding at any 

node, the system state is marked as failure; otherwise, it is marked as success.  

When the state of a single component is simulated, the following method is used. 

Firstly, a random number between 0 and 1 is generated, and then it is compared with the 

success or failure probability of the component to determine its state. Suppose the 

success probability of the component is aPS = , 10 ≤≤ a , and its failure probability is 

bPF = , 10 ≤≤ b , such that 1=+=+ baPP FS . If the random number generated is as 

follows: 

PRN S≤≤0         (80) 
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here, 

RN = random number, 10 ≤≤ RN  

Then, the state of the component is success. If the random number generated is as 

follows: 

1≤< RNPS         (81) 

Then, the state of the component is failure. Alternately, if the random number generated 

is as follows: 

PRN F≤≤0         (82) 

Then, the state of the component is failure. If the random number generated is as 

follows: 

1≤< RNPF         (83) 

Then, the state of the component is success. 

In Chapter IV, the time-specific failure probabilities of system components have 

been calculated. Thus, inequalities (82)-(83) can be used to determine the state of a 

component. Here, the simulation results are 

( )1,1_1_ === CCFfailuretindependenfailuresystemP i , mi ≤≤1 . The estimate of a 

probability is as follows: 

∑=
=

N

i
if F

N
P

1

1
        (84) 

where, 

P f  = ( )1,1_1_ === CCFfailuretindependenfailuresystemP i ,  

   mi ≤≤1  
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P f  = estimate of P f  

N = a sufficiently large number 

F i  = 


 =

otherwise

failuresystem

,0

1_,1
, Ni ≤≤1  

In this chapter, the coefficient of variation of the estimate is used to terminate the 

simulation, i.e. when it is less than a preset value. The coefficient of variation of p f  is 

as follows: 

( ) ( )
p

pVar
N

p

pVar

COV
f

f

f

f

p

1

==                                     (85) 

where,  

COV p   = coefficient of variation of p f   

( )pVar f   = variance of p f    

( )pVar f   = variance of p f    

( )pVar f   = ( )∑ −
=

N

i

pF
N

fi
1

21
, estimate of ( )pVar f   

Here, an observation can simplify the simulation: if the transmission lines 

associated with a common-cause failure comprise a minimal cut-set, the following 

equation is obtained:  

11,1_1_ =













===

∈

CCFfailuretindependenfailuresystemP j
Jj

                  (86) 
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here, 

 J = index of a set such that Jj ∈ if and only if the transmission lines  

  associated with the jth common-cause failure comprise a minimal  

    cut-set 

The relevant data is given in Section 5.7. 

The algorithm of random sampling is as follows: 

1) For each common-cause failure, check if the associated transmission lines comprise 

a minimal cut-set: if true, the relevant probability is 1; otherwise, go to the next step. 

2) Set the states of the associated transmission line as failure. 

3) Simulate the states of other system components separately. Here, the failure rate 

increment of system components is considered, and the time-specific probabilities of 

components in [13] are directly used. 

4) The system state is obtained by combining all the states of components determined in 

Step (2) and (3). 

5) Run optimization routine which is model as the same as that in Chapter III.  

6) Check if there is any load shedding at any node: if yes, the system state is failure; if 

no, the system state is success. 

7) If the system state is failure, update the estimate; if not, go to the next step directly. 

8) Check if the convergence criterion is met: if yes, stop; if not, go back to step (3). 

5.4.4 Inference results 

Finally, the inference results of the Bayesian network in this chapter are marginal 

probability ( )1_ =failuresystemP  and posterior 
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probability ( )1_1 == failureSystemCCFP i , mi ≤≤1 . The former is the probability of 

system failure caused by both the independent and common-cause failures of system 

components; the latter is the occurrence probability of a common-cause failure when 

system failure has been observed. It can be interpreted as an importance index [67] and it 

indicates the weakness of a common-cause failure. Intuitively, greater is the posterior 

probability, more important (weaker) is the common-cause failure. Actually, 

( )( )1_1 == failureSystemCCFPMax i , mi ≤≤1 , is called maximum a posterior (MAP) 

hypothesis [65], and the corresponding common-cause failure is the weakest one. Here, 

Max is maximum operation. The posterior probability of common-cause failures can 

provide utilities another perspective on the decision-making process of hurricane 

prevention. The detailed analysis is given in Section 5.7. 

5.5 Pseudo Repetitive Temporal Model   

The pseudo-repetitive temporal model used to investigate the dynamic impact of 

hurricanes on composite power system reliability is shown in Fig. 28. Firstly, the 

duration of a hurricane is partitioned into n equal time intervals and each one is ∆t. Here, 

the value of ∆t can be determined by the tradeoff between evaluation accuracy and 

computational effort. Moreover, the speed of the development and dissipation of the 

hurricane should be taken into account. Then, during each ∆t the Bayesian network in 

Fig. 25 is used. For the whole duration of the hurricane, the Bayesian networks in 

different ∆t are only connected via system failure node.  
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Fig. 28: Pseudo Repetitive Temporal Model 

 

 

It is noted that the time-specific model used here is a modification of repetitive 

temporal model. Here, the Bayesian networks in different time slices are not connected 

by the directed edges as in repetitive temporal model. Instead, the connections between 

different Bayesian networks merely indicates temporal order, i.e. the Bayesian network 

in a time slice only affects that in the next time slice. This is similar to Markov property. 

This model is also different from a dynamic Bayesian network since the conditional 

probability distributions of system failure in different time slices can be different. The 

reason is that the failure rate increment of system components is considered here. 

Finally, the results obtained by using pseudo repetitive temporal model are the 

time-specific values of the inference results in the last section. In summary, the overall 
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procedure for the evaluation of the impact of hurricanes on composite power system 

reliability is as follows:  

1) During each ∆t, use the method in the last section to determine the conditional 

probability distribution of system failure. 

2) Do inference in the Bayesian network to calculate the desired probabilities.  

3) At the end of the last ∆t, for each probability calculate its average during the duration 

of hurricanes. Actually, the average of the time-specific probability during a period 

of time is the fractional duration in the last chapter.  

5.6 A Simple Analytical Method 

In this section, a simple analytical method is proposed to investigate the impact 

of hurricanes on the short-term reliability of composite power systems. This method is 

an extension of the minimal cut-set method in Chapter III. Firstly, the identification of 

the extended minimal cut-sets is discussed; then, the computation of their probabilities is 

discussed. 

5.6.1 Identification of extended minimal cut-sets  

As mentioned before, the transmission lines associated with a common-cause 

failure may comprise a minimal cut-set or not. This is analyzed in detail as follows: 

1) If the associated transmission lines comprise a minimal cut-set, there is no need to 

identify further minimal cut-sets as far as these transmission lines are concerned. In 

other words, these transmission lines can be regarded as a first-order minimal cut-set.  

2) If the associated transmission lines do not comprise a minimal cut-set, these 

transmission lines can be regarded as one component, and further minimal cut-sets 
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can be identified up to the desired order by using the algorithm in Chapter III. 

5.6.2 Probabilities of extended minimal cut-sets 

After the additional minimal cut-sets are determined, their probabilities can be 

calculated as follows: 

1) If the associated transmission lines comprise a minimal cut-set, the probability of the 

minimal cut-set can be calculated as follows: 

i. If the number of the transmission lines is greater than the desired order of minimal 

cut-sets, the obtained minimal cut-set is a new one, and its probability is just the 

occurrence probability of the common-cause failure.  

ii. If the number of the transmission lines is less than or equal to the desired order of 

minimal cut-sets, the obtained minimal cut-set is an existed one, and its probability 

can be calculated as follows: 

( ) ( ) ( ) ( ) ( )0011 =⋅=+=⋅== CCFPCCFCPCCFPCCFCPCP CCCC kkkk kkk     (87) 

where, 

Ck   = existed minimal cut-set k 

Ck    = event that all members of Ck  fail  

CCFC k
 = common-cause failure that Ck  associates  

1/0  =  occurrence or not of CCFC k
 

From the above equation, the following equation is obtained. 

( ) ( ) ( ) ( )( )11011 =−⋅=+=⋅= CCFPCCFCPCCFPCP CCC kkk kk             (88) 

If ( )1=CCFP Ck
 is small, then ( ) 111 ≈=− CCFP Ck

, and the following equation is 
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obtained: 

( ) ( ) ( )01 =+=≈ CCFCPCCFPCP CC kk kk                   (89) 

The above equation shows that ( )CP k  can be approximated as two parts: the 

occurrence probability of CCFC k
 and the probability of ( )CP k  when CCFC k

 does 

not occur. Here, the second part can be calculated by using the multiplication rule of 

probabilities considering the fact that now the failures of the member of Ck  are 

independent with each other.   

2) If the associated transmission lines do not comprise a minimal cut-set, these 

transmission lines and other components may comprise a minimal cut-set, and its 

probability can be calculated as the product of the occurrence probability of the 

common-cause failure and the probabilities of other components. 

3) When the lower bounds of the reliability indices in Chapter III are computed, the 

above rules are also applicable to compute the probabilities of the joint events. 

5.7 Implementation 

In this section, the two methods proposed to evaluate the impact of hurricanes on 

composite power system reliability are applied to the modified IEEE reliability test 

system. Firstly, the relevant data is given; then, the evaluation results obtained by using 

different methods are presented and analyzed.  

5.7.1Test system 

In this chapter, the same modified IEEE reliability test system as those in the 

previous chapters is used as the test system. 
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5.7.2 Input data 

5.7.2.1 Hurricane data 

Here, the same time-specific regional hurricane data as that in the last chapter is 

used. 

5.7.2.2 Data of common-cause failure 

 

 
Table 20: Common-Cause Failure Data 

CCF 
Occurrence 

Probability 

Associated 

Lines 

Minimal 

Cut-Set? 

CCF1(B) 0.05 [32,33] No 

CCF2(C) 0.025 [25,26] No 

CCF3(E) 0.025 [18,20] Yes 

CCF4(F) 0.05 [12,13] Yes 

CCF5(G) 0.05 [34,35] No 

 

 

The data of common-cause failures is listed in Table 20. In Table 12 of [38] 

some transmission lines exposed to common-mode failures are described. They are on a 

common right of way or a common transmission tower for at least some length. In this 

chapter only the latter case is investigated, and the common-mode failures are indicated 

by using the same letters as those in [38]. As mentioned before, the transmission lines 

associated with a common-mode failure may comprise a minimal cut-set or not. The 

relevant data is also listed in Table 20. The determination of the minimal cut-sets is 

described in detail in Chapter II.  
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Table 21: Short-Term Joint System Failure Probability 

Time 

Interval 

( )1_ =failuresystemP  

Independent 

Failure 

Overall Effects 

(Bayesian 

Network) 

Overall Effects 

(Analytical 

Method) 

1 0.0036 0.1555 0.0787 

2 0.0076 0.1581 0.0833 

3 0.0133 0.1611 0.0901 

4 0.0197 0.1651 0.0984 

5 0.0262 0.1681 0.1074 

6 0.0327 0.172 0.1172 

7 0.0411 0.1761 0.1297 

8 0.0476 0.1803 0.1407 

9 0.0538 0.1841 0.1521 

10 0.06 0.1867 0.164 

11 0.0654 0.1922 0.1752 

12 0.0692 0.1925 0.1851 

Interval 

Frequency 

(Maximum)  

0.0692 0.1925 0.1851 

Fractional 

Duration 

(Average) 

0.0367 0.1743 0.1268 

 

 

5.7.3 Evaluation results  

The time-specific marginal probabilities of system failure obtained by using the 

two proposed methods are listed in Table 21 and are shown in Fig. 29. For comparison, 

the result in the last chapter where only the independent failures of components are 

considered, is also presented here. The obtained posterior probabilities of common-cause 

failures are listed in Table 22 and are shown in Fig. 30. The legends used in Figs. 29 and 

30 are as follows:  
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SP-IN: system failure probability only when independent failures considered 

SP-JOINT (BN): overall system failure probability by using Bayesian networks  

SP-JOINT (A): overall system failure probability by using analytical method  

FD-IN: fractional duration only when independent failures considered 

FD-JOINT (BN): overall fractional duration by using Bayesian networks 

FD-JOINT (A): overall fractional duration by using analytical method 

CCF1: Circle            CCF2: “× ”              CCF3: “+”               CCF4: “*”                     

CCF5: Square  

 

 
Table 22: Posterior Probabilities of Common-Cause Failures 

Time Interval 
( ) 5,,1,1_1 L=== ifailureSystemCCFP i  

CCF1 CCF2 CCF3 CCF4 CCF5 

1 0.0245 0.0177 0.1474 0.2948 0.0256 

2 0.0266 0.0232 0.1454 0.2909 0.0316 

3 0.0295 0.0311 0.1433 0.2866 0.0354 

4 0.0364 0.0351 0.1405 0.281 0.0436 

5 0.0386 0.0431 0.1387 0.2774 0.0455 

6 0.0439 0.0467 0.1362 0.2725 0.0533 

7 0.0481 0.0544 0.1339 0.2678 0.0571 

8 0.0544 0.0588 0.1314 0.2628 0.0634 

9 0.0563 0.061 0.1294 0.2588 0.073 

10 0.0595 0.0685 0.1282 0.2564 0.0704 

11 0.0699 0.0687 0.125 0.2501 0.081 

12 0.072 0.0681 0.1252 0.2503 0.0785 

Interval 

Frequency 

(Maximum) 

0.072 0.0681 0.1252 0.2503 0.0785 

Fractional 

Duration 

(Average) 

0.0466 0.048 0.1354 0.2708 0.0549 
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Fig. 29: Overall Short-Term System Failure Probability 
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Fig. 30: Posterior Probabilities of Common-Cause Failures 
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5.7.4 Analysis of evaluation results 

     According to the above results, the following conclusions can be drawn: 

1. Table 21 and Fig. 29 show that common-cause failures have a significant impact on 

composite power system reliability. When their effect is considered, as would be 

expected, the reliability of composite power systems becomes worse than that when 

only the independent failures of system components are considered. 

2. Table 21 and Fig. 29 also show that different overall reliability indices are obtained 

by using different methods. The reasons are as follows:    

1) The system failure probability obtained by using the Bayesian network is greater 

than that obtained by using the analytical method. The reason is that the former 

method considers all the combinations of common-cause failures whereas only 

partial combinations are considered in the latter method.  

2) The discrepancy of the results of two methods decreases with time. The reasons are 

as follows:    

i. Initially, the probabilities of the independent failures of system components are 

relatively small. Thus, the contribution of common-cause failures is big. Since 

two methods model common-cause failures differently as mentioned, the 

discrepancy of their results is big.   

ii. With system reliability deteriorating, the probabilities of the independent failures 

of system components are increasing. Then, the contribution of common-cause 

failures is decreasing. Although the models of two methods are different, the 

discrepancy of their results is also decreasing. 
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3. From Table 22 and Fig. 30, the following observations can be made:    

1) The posterior probabilities of CCF3 and CCF4 are greater than those of CC1, CC2, 

and CCF3. The reason is that the transmission lines associated with CCF3 and 

CCF4 comprise minimal cut-sets respectively. 

2) The posterior probability of CCF3 is less than that of CCF4 as its prior probability is. 

Actually, the posterior probabilities of CCF3 and CCF4 will be the same if their 

prior probabilities are the same, i.e. CCF3 and CCF4 cannot be distinguished. 

Similarly, the reason is that the transmission lines associated with them comprise 

minimal cut-sets respectively. To differentiate CCF3 and CCF4, the load-shedding 

values associated with their minimal cut-sets can be used. 

3) The posterior probability of CCF1 is less than that of CCF5 whereas their prior 

probabilities are the same.  

4) The posterior probability of CCF1 is less than that of CCF2 whereas its prior 

probability is greater than that of CCF1. 

5) Generally, the posterior probabilities of CCF3 and CCF4 decrease whereas the 

posterior probabilities of CCF1, CCF2, and CCF4 increase with time. The reason is 

as follows:  initially the probability of system failure is relatively small, the impact 

of important (weak) common-cause failures (CCF3 and CCF4) on it is big; with 

system reliability deteriorating, the impact of important (weak) common-cause 

failures decreases whereas the impact of unimportant (strong) common-cause 

failures (CCF1, CCF2, and CCF4) increases, i.e. important common-cause failures 

and unimportant ones are becoming indistinguishable with system reliability 
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deteriorating. 

4. For time-specific case, interval index fractional duration can more clearly indicate 

the characteristics of different evaluation results than time-specific failure 

probability. 

5. For the method of using Bayesian networks, most CPU time is spent on determining 

the parameters. This problem has been alleviated by using linear optimization, and it 

can be further alleviated by using the sensitivity analysis in Bayesian networks, i.e. 

analyzing the sensitivity of the evaluation results to the parameters of system failure 

node [59]-[61], [65]. The iteration number of simulating the parameters to which the 

results are insensitive can be reduced. 

6. For the analytical method, most computational time is spent on determining the 

minimal cut-sets. However, this needs to be done only once in current case where 

system load is constant. This is in contrast to the case when simulation method is 

used where it has to be implemented in each time interval.  

7. In this chapter, the proposed methods evaluate the impact of hurricanes on the short-

term reliability of composite power systems. They also can evaluate other types of 

common-cause failures, e.g. that caused by a bus failure. They also can be applied to 

other systems. For example, they can be applied to a substation to investigate some 

station-originated failures. 

5.8 Summary 

Common-cause failures have a significant impact on the reliability of composite 

power systems. In this chapter, two methods are proposed to investigate the impact of 



 132

hurricanes on the short-term reliability of composite power systems. Here, both the 

independent and common-cause failures of system components are taken into account. 

One method uses Bayesian networks to alleviate the dimensionality problem of 

conditional probability method. The other method is a simple analytical method which 

extends the minimal cut-set method in previous chapters. These two methods are applied 

to the modified IEEE reliability test system. From the implementation, the following 

conclusions are summarized:  

1) The proposed methods are effective. They can evaluate the impact of hurricanes on 

composite power system reliability. When common-cause failures are not 

considered, the reliability of composite power systems is overestimated. 

2) The evaluation results obtained by using different methods are different. Choosing 

suitable method should depend on practical requirements. 

3) Posterior probability has different characteristics from prior probability. In some 

cases, its results are counter-intuitive. It can provide a new perspective on the 

reliability evaluation of composite power systems, and can be a helpful vehicle for 

the decision-making process of utilities.  

4) For time-specific case, interval index fractional duration can more clearly indicate 

the characteristics of different evaluation results than time-specific index. 

5) The proposed methods are applicable to other types of common-cause failures in 

other systems. 

6) The implementation of the proposed methods is mainly to demonstrate the feasibility 

of the ideas. Possible improvements can be investigated for practical applications, 
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e.g. developing the time-specific failure model of transmission towers damaged by 

hurricanes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 134

CHAPTER VI 

CONCLUSIONS AND EXTENSIONS 

 

In this chapter, the evaluation methods proposed in previous chapters are 

summarized. Additionally, possible extensions of them are discussed. 

6.1 Summary 

Adverse weather such as hurricanes has a significant impact on the reliability of 

composite power systems. Predicting the impact of hurricanes can help utilities for better 

preparedness and make appropriate restoration arrangements. In this dissertation, long-

term and short-term impacts of adverse weather on the reliability of composite power 

systems are investigated.  

In summary, the proposed methods to investigate the impact of adverse weather 

on composite power system reliability are as follows: 

In Chapter III, the impact of adverse weather on the long-term reliability of 

composite power systems is investigated by using Markov cut-set method and sequential 

simulation. For the analytical method, an algorithm based on linear optimization is 

developed to identify system and nodal minimal cut-sets, and another algorithm is 

developed to compute the probabilities of minimal cut-sets and their unions. These 

algorithms are important not only for the inclusion of the impact of adverse weather but 

also for reliability evaluation of composite power systems. These algorithms differ from 

the previous cut-set methods that it can compute nodal indices and use linear 

optimization.  Both the analytical and simulation methods are applied to the modified 
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IEEE reliability test system. The evaluation results obtained by using different methods 

are compared and analyzed. The implementation demonstrates that comparable results 

can be obtained by using the analytical method, and meantime it can be faster than the 

simulation method. 

In Chapter IV, the impact of hurricanes on the short-term reliability of composite 

power systems is investigated where the states of components are assumed to be 

independent. Firstly, a fuzzy inference system is combined with regional weather model 

to assess the failure rate increment of components affected by hurricanes. Here, different 

methods are used to build two types of fuzzy inference systems: Then, short-term 

minimal cut-set method is proposed to compute time-specific system and nodal 

reliability indices. This is the first time the cut-set method is used to compute short term 

reliability indices for composite power systems. The proposed methodology is also 

applied to the modified IEEE reliability test system. The implementation demonstrates 

that the proposed methodology is effective and efficient and is flexible in its 

applications.  

In Chapter V, the impact of hurricanes on the short-term reliability of composite 

power systems including the common-cause failures of components is investigated. 

Here, two methods are proposed to achieve this goal. One of them uses Bayesian 

networks to alleviate the dimensionality problem of conditional probability method. The 

other methodology is the extension of minimal cut-set method. As in Chapter IV, the 

time-specific reliability indices of composite power systems are calculated by using 

these two methods. The methods proposed also can compute nodal reliability indices. 



 136

They are also applied to the modified IEEE reliability test system. In the 

implementation, the results obtained by using different methods are compared and their 

discrepancy is analyzed. 

6.2 Possible Extensions 

In this section, two possible extensions of the proposed methods in this 

dissertation are discussed.  

6.2.1 Extension to distribution systems 

The proposed methods for investigating the impact of hurricanes on composite 

power system reliability can be extended to distribution systems in two ways as follows: 

6.2.1.1 Extension of methods 

When the proposed methods are applied to distribution systems, the only 

modification is the analysis of failure effects, i.e. determining a system state is success or 

failure as defined. The reason is that the configuration of a distribution system can be 

different from that of a transmission system. In a meshed distribution system, the 

identification of system states is the same as that in a transmission system, i.e. usually 

linear optimization is used to identify whether load shedding is needed. In a radial 

distribution system the analysis of failure effects becomes simpler, and network 

reduction method can be used. It is noted that the modification of the analysis of failure 

effects is applicable to both analytical and simulation methods. 

6.2.1.2 Nodal reliability indices 

The nodal reliability indices of transmission systems can be used in distribution 

systems, and more accurate evaluation results in distribution systems can be obtained. 
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The basic idea is to regard each node of the transmission system as a power source in the 

distribution system. Thus, the nodal reliability indices in the transmission system can be 

regarded as the reliability indices of the power sources in the distribution system. Since 

the reliability evaluation of power systems at hierarchical level III is too complex to be 

implemented directly, usually the reliability evaluation of distribution systems is 

implemented separately, and their power sources are assumed to be perfectly reliable. 

Considering the actual reliability performance of the power sources in distribution 

systems, more accurate evaluation results for power systems can be obtained at 

hierarchical level III.  

6.2.2 Extension to other applications 

The proposed methods in this dissertation are also applicable to other 

applications in power systems, e.g. operational reliability, and intermittent renewable 

energy.  

Usually, reliability evaluation in power systems is implemented for long-term 

applications, e.g. planning issues [37], [68]-[69]. Additionally, the reliability parameters 

of system components, i.e. failure and repair rates, are assumed to be constant, and the 

probabilities of components are calculated by using renewal process [68].  

However, the above approach is facing challenges in present power systems with 

some emerging applications, e.g. unit commitment considering probabilistic constraints 

[70], assessment of the impact of extreme weather [13], [15], and intermittent renewable 

energy [71]-[72]. The common characteristic of these applications is that the observation 

horizon is much shorter compared to that of planning. For example, electricity market is 
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cleared say every half an hour or an hour, some extreme weather say hurricanes last only 

a few days, and the output of some intermittent energy sources say wind energy can 

fluctuate hourly. In general, there is likely to be more emphasis on reliability evaluation 

over short term where the proposed methods can be used. 
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APPENDIX 

DADA OF IEEE RELIABILITY TEST SYSTEM 

 

Table 23: Generating Unit Reliability Data 

Unit Size 

(MW) 

Number of 

Units 

Forced 

Outage Rate 

Mean Time 

To Failure 

(hr) 

Mean Time 

To repair 

(hr) 

Scheduled 

Maintenance 

(week/yr) 

12 5 0.02 2940 60 2 

20 4 0.1 450 50 2 

50 6 0.01 1980 20 2 

76 4 0.02 1960 40 3 

100 3 0.04 1200 50 3 

155 4 0.04 960 40 4 

197 3 0.05 950 50 4 

350 1 0.08 1150 100 5 

400 2 0.12 1100 150 6 

 

Note: 

FailureToTimeMeanapirToTimeMean

apirToTimeMean
RateOutageForced

___Re___

Re___
__

+
=  

 

Table 24: Generation Mix Data 

Type 
Installed Capacity 

(MW) 

Percentage 

(%) 

Fossil Oil 951 28 

Fossil Coal 1274 37 

Nuclear 800 24 

Combustion 

Turbine 
80 2 

Hydro 300 9 

Total 3405 100 
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Table 25: Generating Unit Locations 

Bus 
Unit 1 

(MW) 

Unit 2 

(MW) 

Unit 3 

(MW) 

Unit 4 

(MW) 

Unit 5 

(MW) 

Unit 6 

(MW) 

1 20 20 76 76   

2 20 20 76 76   

7 100 100 100    

13 197 197 197    

15 12 12 12 12 12 155 

16 155      

18 400      

21 400      

22 50 50 50 50 50 50 

23 155 155 350    

 

 

Table 26: Bus Load Data 

Bus 
Load 

(MW) 

Percentage 

(%) 

1 108 3.8 

2 97 3.4 

3 180 6.3 

4 74 2.6 

5 71 2.5 

6 136 4.8 

7 125 4.4 

8 171 6 

9 175 6.6 

10 195 6.8 

13 265 9.3 

14 194 6.8 

15 317 11.1 

16 100 3.5 

18 333 11.7 

19 181 6.4 

20 128 4.5 

Total 2805 100 
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Table 27: Transmission Line Length and Forced Outage Data 

Bus 

(From) 

Bus 

(To) 

Length 

(ml) 

Outage Rate 

(/yr) 

Outage 

Duration 

(hr) 
1 2 3 0.24 16 

1 3 55 0.51 10 

1 5 22 0.33 10 

2 4 33 0.39 10 

2 6 50 0.48 10 

3 9 31 0.38 10 

3 24 0 0.02 768 

4 9 27 0.36 10 

5 10 23 0.34 10 

6 10 16 0.33 35 

7 8 16 0.3 10 

8 9 43 0.44 10 

8 10 43 0.44 10 

9 11 0 0.2 768 

9 12 0 0.2 768 

10 11 0 0.2 768 

10 12 0 0.2 768 

11 13 33 0.4 11 

11 14 29 0.39 11 

12 13 33 0.4 11 

12 23 67 0.52 11 

13 23 60 0.49 11 

14 16 27 0.38 11 

15 16 12 0.33 11 

15 21 34 0.41 11 

15 21 34 0.41 11 

15 24 38 0.41 11 

16 17 18 0.35 11 

16 19 16 0.34 11 

17 18 10 0.32 11 

17 22 73 0.54 11 

18 21 18 0.35 11 

18 21 18 0.35 11 

19 20 27.5 0.38 11 

19 20 27.5 0.38 11 

20 23 15 0.34 11 

20 23 15 0.34 11 

21 22 47 0.45 11 
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Table 28: Circuits on Common Right Way or Common Structure 

Right of Way 

Identification 

Bus 

(From) 

Bus 

(to) 

Common Row 

(ml) 

Common Row 

(ml) 

A 
22 21 45  

22 17 45  

B 
23 20  15 

23 20  15 

C 
21 18  18 

21 18  18 

D 
15 21 34  

15 21 34  

E 
13 11  33 

13 12  33 

F 
8 10  43 

8 9  43 

G 
20 19  27.5 

20 19  27.5 
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