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ABSTRACT

The STAPL pList. (December 2010)
Xiabing Xu, B.S., Jilin University, P.R.China

Chair of Advisory Committee: Dr. Nancy M. Amato

We present the design and implementation of the Standard Template Adap-
tive Parallel Library (STAPL) pList, a parallel container that has the properties of
a sequential list, but allows for scalable concurrent access when used in a paral-
lel program. The STAPL is a parallel programming library that extends C+4 with
support for parallelism. STAPL provides a collection of distributed data structures
(pContainers) and parallel algorithms (pAlgorithms) and a generic methodology
for extending them to provide customized functionality. STAPL pContainers are
thread-safe, concurrent objects, providing appropriate interfaces (pViews) that can
be used by generic pAlgorithms.

The pList provides Standard Template Library (STL) equivalent methods, such
as insert, erase, and splice, additional methods such as split, and efficient asyn-
chronous (non-blocking) variants of some methods for improved parallel performance.
List related algorithms such as list ranking, Euler Tour (ET), and its applications to
compute tree based functions can be computed efficiently and expressed naturally
using the pList.

Lists are not usually considered useful in parallel algorithms because they do
not allow random access to its elements. Instead, they access elements through a
serializing traversal of the list. Our design of the pList, which consists of a collec-
tion of distributed lists (base containers), provides almost random access to its base

containers. The degree of parallelism supported can be tuned by setting the number
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of base containers. Thus, a key feature of the pList is that it offers the advantages
of a classical list while enabling scalable parallelism.

We evaluate the performance of the STAPL pList on an IBM Power 5 cluster and
on a CRAY XT4 massively parallel processing system. Although lists are generally not
considered good data structures for parallel processing, we show that pList methods
and pAlgorithms, and list related algorithms such as list ranking and ET technique
operating on pLists provide good scalability on more than 16,000 processors. We
also show that the pList compares favorably with other dynamic data structures

such as the pVector that explicitly support random access.
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CHAPTER I

INTRODUCTION
Parallel programming is becoming mainstream due to the increased availability of
multiprocessor and multicore architectures and the need to solve larger and more
complex problems. To help programmers address the difficulties of parallel program-
ming, we are developing the Standard Template Adaptive Parallel Library (STAPL)
1,2,3,4,5,6,7,8,9, 10, 11].

STAPL is a parallel C++ library with functionality similar to STL, the C++ Stan-
dard Template Library. STL is a collection of basic algorithms, containers and itera-
tors that can be used as high-level building blocks for sequential applications. STAPL
provides a collection of parallel algorithms (pAlgorithms), parallel and distributed
containers (pContainers), and pViews to abstract the data access in pContainers.
These are the building blocks for writing parallel programs using STAPL. An im-
portant goal of STAPL is to provide a high productivity development environment for
applications that can execute efficiently on a wide spectrum of parallel and distributed
systems.

pContainers are collections of elements that are distributed across a parallel ma-
chine and support concurrent access. STAPL provides a unified approach for develop-
ing pContainers. It uses object-oriented technology to build distributed thread-safe
containers that can easily be extended and customized. This approach allows us to
provide a large variety of pContainers such as pArray [10], pMatrix[4], associative
containers such as pMap and pSet [8], pVector and pGraph.

Distributed and concurrent data structures are an active research area that has

The journal model is IEEE Transactions on Automatic Control.



received significant attention. However, most of the research focuses on array-like
static data structures. Due to their intuitively sequential structure, linked list data
structures have presented a challenge to be used efficiently in parallel, and consider-

able effort has been devoted to designing efficient concurrent linked list data structures

[12, 13, 14, 15, 16, 17].

A. Our Contribution

In this thesis, we present the design and implementation of the STAPL pList, a
parallel container that has the properties of a sequential list, but allows for scalable
concurrent access when used in a parallel program. In particular, the pList is a
distributed doubly linked list data structure that is the STAPL parallel equivalent of
the STL list container. The pList interface includes threadsafe methods that are
counterparts of the STL list such as insert, erase, and splice, additional methods such
as split, and asynchronous (non-blocking) variants of some methods for improved
performance in a parallel and concurrent environment. As described in more detail

before, a summary of our contributions includes:

e a novel design that supports an arbitrary and tunable degree of random access
to match desired degree of parallelism;
e interfaces that enable the natural expression of list related algorithms that are

efficient to execute.

Lists are not usually considered useful in parallel algorithms because they do
not allow random access to its elements. Instead, they access elements through a
serializing traversal of the list. Our design of the pList, which consists of a collec-
tion of distributed lists (base containers), provides almost random access to its base

containers. The degree of parallelism supported can be tuned by setting the number



of base containers. Thus, a key feature of the pList is that it offers the advantages
of a classical list while enabling scalable parallelism.

List related algorithms are shown to be expressed naturally using pList. Un-
der the STAPL programming model, an algorithm is expressed as a combination of
work function and data. Algorithms such as list ranking, Euler Tour (ET) and its
applications all can be naturally expressed using this model. In this thesis, we ex-
amine various list ranking algorithms including a classic pointer jumping algorithm,
a point-to-point synchronized version of the pointer jumping algorithm and an im-
plementation of later in STAPL. We also describe an implementation of the classic
ET technique in STAPL, that uses a list ranking algorithm internally. We study the
Euler Tour and four of its applications including rooting a tree, postorder numbering,
computing vertex level and computing the number of descendants.

We evaluate the performance of the pList on an IBM Power5 cluster and an
Opteron-based CRAY XT supercomputer. We analyze the running time and scala-
bility of different pList methods as well as the performance of different algorithms
using pList as data storage. We also compare the pList to the pArray and pVector
to understand the relative trade-offs of the various data structures. Our results show
that the pList outperforms the pVector when there are a significant number of in-
sertions or deletions. List ranking, Euler Tour (ET) computation and use of the ET
technique to compute tree based functions such as rooting a tree, postorder num-
bering, computing vertex level and computing the number of descendants are are
evaluated to show scalable performance when the pList is used as the intermediate

data structure.



B. Outline of Thesis

Chapter II describes related work to this research area. Chapter III gives an overview
of STAPL and its components. Chapter IV describes the design and implementa-
tion of the pList, and its interface. Chapter V illustrates how list ranking can be
implemented using our pList, and the application of the pList in the Euler Tour
technique and its applications to compute tree based functions. Chapter VI shows
the performance of the pList methods and of applying different parallel algorithms
on the pList. Chapter VII concludes this work.

Portion of this work has been published as “STAPL: Standard Template Adaptive

Parallel Library” in May 2010 [3] and “The STAPL pList” in October 2009 [9].



CHAPTER II

PRELIMINARIES AND RELATED WORK
This chapter presents preliminaries and related work. Preliminaries first describes in
general the linked list data structure and its characteristics. The Standard Template
Library (STL) List which is a generic linked list data structure is then introduced.
Related work discusses previous work on concurrent data structures, parallel pro-
gramming languages and parallel libraries, and list related algorithms such as list

ranking and Euler Tour.

A. Preliminaries

This section presents the basics of the linked list data structure and the STL (Standard

Template Library) list.

1. Linked List Data Structure

The linked list in its most basic form is a collection of elements that together form a
linear ordering. There are different variants such as a singly linked list, doubly linked
list and circularly linked list [18]. Each element of the linked list is called a node
which stores the data and pointers. Singly linked list only stores pointers to next
node (Figure 1(a)) and doubly linked list stores pointers to previous and next node
(Figure 1(b)). The first and last node of a linked list are called the head and tail
of the list, respectively. The elements of the list can be traversed by following the
pointers to next node.

The linked list is one of the fundamental data structures which is developed as
early as 1960s [19, 20]. It plays a very important role in real world applications and

is used by many areas such as the file system in many operating systems, genetic



A — B — C >

(a) singly linked list

B < C —>

—
o

(b) doubly linked list

Fig. 1. Example of a singly (a) and a doubly (b) linked list. A, B and C represent the data
of each node. Each arrow represents a pointer to the previous or next node.
algorithms, built in data structures in languages such as Lisp and Scheme, and serves
as the basic data structure for other data structures such as stacks. Also many
variants have been proposed and implemented to obtain better performance.

Given a doubly linked list (Figure 1(b)) the previous node of head and the
next node of tail point to a sentinel node (NULL in most implementations). Such a

common doubly linked list has many characteristics (same for singly linked list) :

~ A B O b & |c -

(a) insert D before C

~ A & |c -

(b) delete B
-— A - B < D ] E el C H ‘

—

(c) splice another list with D,E to current list before C

— A : B > -— C >

(d) split current list to two lists at C

Fig. 2. Result lists of applying methods insert, delete, splice and split to the doubly linked
list in Figure 1(b).



e Given a pointer to a specific node, insertion of an element at a specific node
is a constant time operation. (Given a pointer to C, insertion of D results in
Figure 2(a). Four operations to perform: update next pointer of B to point D;
set previous pointer of D to B; update previous pointer of C to point D; set
next pointer of D to C.)

e Given a pointer to a specific node, deletion of an element at a specific node
is a constant time operation. (Given a pointer to B, deletion of B results in
Figure 2(b). Three operations to perform: update next pointer of A to point c;
update previous pointer of C to point A; delete B.)

e Given a pointer to a specific node of listl, splice list2 before that node is a
constant time operation. (Given a pointer to C, splice another list with D,E
results in Figure 2(c). Four operations to perform: update next pointer of B to
point D; set previous pointer of D to B; update previous pointer of C to point
E; set next pointer of E to C.)

e Given a pointer to a specific node, split one list to two lists at that node is a
constant time operation. (Given a pointer to C, split current list results in two
lists Figure 2(d). Four operations to perform: update next pointer of B to the
sentinel node; set previous pointer of D to B; update previous pointer of C to
point D; set next pointer of D to C.)

e Does not support random access. (In order to access C, you have to start from
A traverse the list by following pointer to next node until reach C)

e Maybe slow to traverse because elements maybe scattered in memory.

2. STL List

The STL list is one of the many generic containers provided by the Standard Template

Library (STL). It is a doubly linked list which supports both forward and backward



traversal and special methods such as splice which are constant time operations. Also
splice does not invalidate the iterators (iterators are a generalization of pointers: they
are objects that point to other objects) to list elements and deletion only invalidates
iterators to elements that are deleted.

Compared to other STL containers such as the vector and deque, the STL list has
several differences: Insertions and deletions at any position in a list are constant time
operations, not just at one or both ends; Insertions never invalidate any iterators,
and deletions invalidate only iterators that refer to the deleted element. The lack of
random access means that many of the STL generic algorithms cannot operate on
lists, including random shuffle, random sample, nth element, make heap, is
heap, sort heap, sort, stable sort, partial sort.

When many insertions or deletions are required in interior positions and when

random access is not needed, then the list data structure may be a good choice.

B. Related Work

1. Concurrent Data Structures

Significant research has been done in the area of distributed and concurrent data
structures. Most of this effort focuses on how to implement concurrent objects using
different locking primitives or how to implement concurrent data structures without
locking, namely lock free data structures [12, 13, 14, 15, 16, 17, 21, 22]. Table I
summarizes the previous work, shows the operations the data structures provide, the
architectures they support, and the primitives they use.

Valois [12] was the first to present a non-blocking singly-linked list data structure
by using the Compare&Swap (CAS) synchronization primitives rather than locks.

The basic idea is to use auxiliary nodes between each ordinary node to solve the



Table I. Concurrent data structure related work comparison. CAS: compare and swap operation. nig: the average number of
elements in the list during any execution E. ¢g: the average operation contention during E. mpg: the total number of operations

invoked during E.

traverse, etc.

Paper Operations Architecture Primitives Complexity

Paul [22] (Lock-based concur- | Insert front end, shared Lock-based Worst case amortized

rent list) traverse cost is linear in length

of list plus contention

Valois [12] (First lock free | Insert  delete shared Using Single CAS synchro- | Q(mg) [16]

algo. Uses auxiliary nodes be- | anywhere, nization primitive

tween each node) traverse

Harris [14] (Two CAS opera- | Insert  delete shared Using Double CAS syn- | Q(ngcg) [16]

tions used, one to mark and | anywhere, chronization primitive

the other one to delete) traverse

Michael [15] (First CAS-based | Insert delete shared CAS-based,  compatible | Worst case amortized

lock-free list-based set algo) anywhere, with all lock-free memory | cost is linear in length
traverse management methods of list plus contention

Fomitchev [16] (Combination | Insert  delete shared Using Single CAS synchro- | Q(7ig + ¢g)

of the technique of marking | anywhere, nization primitive

node and backlink pointers) traverse

Tanase [9] (STAPL pList) Insert, delete, | shared & distributed | Lock-based Table III
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concurrent issues. Subsequently Michael and Scott [13] fixed a known bug in [12].

Later, Harris [14] proposed another lock-free implementation. Two CAS opera-
tions are used in this implementation to deal with the problem of concurrent insertion
and deletion. The first one is used to mark the next field of the deleted node and the
second one is used to delete the node. If during the deletion a concurrent insertion
accesses the marked field of the deleted node, it should halt the insertion and retry
later. It will proceed successfully if it tries after the second CAS and before any other
list operation. The correctness is proved and also a comparison with Valois [12]’s
algorithm and the lock-based implementation is done. The result shows that Harris’s
algorithm has better performance compared to previous algorithms.

Another lock-free linked list was proposed by Michael [15]. It points out that
previous work for non-blocking data structures shows many drawbacks including size
inflexibility, dependence on some primitives not supported in hardware, and depen-
dence on some inefficient memory management techniques. In this paper, the author
first proposes a CAS-based lock-free list-based set algorithm which is compatible with
all lock-free memory management methods. Experimental results shows that in all
lock-free cases, the new algorithm has better performance by a factor of 2.5 or more
compared to [14].

Fomitchev [16] showed a linked list based on the techniques of node marking
[14] and using backlink pointers [17]. A marking bit is used the same way as in
[14] to mark the next field of a deleted node. A backlink pointer is used to track
the predecessor of the deleted node so that other operations can proceed efficiently.
A flag bit is used to indicate the next node in the list that is going to be deleted.
Improved performance in [16] derives from the coordinated use of the marking bit,
backlink pointer and flag bits.

In summary, previous work focuses on different concurrent list implementations
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for shared memory architectures, emphasizing the benefits of non-blocking implemen-
tations in comparison with lock based solutions. In contrast, the pList and the other
STAPL pContainers are designed to be used in both shared and distributed memory
environments. By default pList and other pContainers use lock based solutions,
but non-blocking concurrent data structures discussed can be integrated into STAPL

as customization for current design.

2. List Algorithms

List ranking is a fundamental technique used in many parallel algorithms. The list
ranking problem is to compute the distance of each list element from the head or tail
of the list. Sequentially, it can be done by simply traversing the list from beginning to
the end. Much research effort has been devoted to solving this problem efficiently in
parallel [23, 24, 25, 26, 27, 28, 29]. Wyllie [27] proposed the first parallel list ranking
algorithm which is based on the Pointer Jumping technique. When P is equal or larger
than N where P is the number of processors and N denotes the number of elements
stored in the list, it takes O(log N) time using O(N log N) operations running on
EREW PRAM. When P is less than N and each processor with % elements, it
takes O(% + log P) time and O(N + Plog P) work. After that, many parallel list
ranking algorithms were proposed to improve the work or time. The first optimal
O(log N) time and O(N) work algorithm using % processors running on EREW
PRAM model was proposed in [28]. And another optimal O(log N) time and O(N)
work algorithm using % processors under EREW PRAM model is described by [23]
later. Another O(¥) time and (N) work optimal algorithm where P is equal or less
than % for CRCW PRAM model is presented in [29].

The Euler Tour (ET) is an important representation of a graph for parallel pro-

cessing, since the ET represents a depth-first-search (DFS) traversal and no other
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efficient parallel DFS exists so far. The ET of a tree can be used to compute a num-
ber of tree functions such as rooting the tree, postorder numbering, vertex levels, and
number of descendants [30]. Tarjan and Vishkin [31] first proposed a constant time
and linear work algorithm under EREW PRAM model to compute an ET that needs
an additional pointer from an edge to its reverse edge in the tree’s adjacency lists.
Later, Cong and Bader [32] described another algorithm to compute the Euler Tour

when the pointer is not given in the adjacency list.
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CHAPTER III

STAPL
STAPL [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] is a framework for parallel C++ code devel-
opment; see Fig. 3. Its core is a library of C+4 components implementing parallel
algorithms (pAlgorithms) and distributed data structures (pContainers) that have
interfaces similar to the (sequential) C++ standard library (STL) [33]. Analogous to
STL algorithms that use iterators, STAPL pAlgorithms are written in terms of pViews
so that the same algorithm can operate on multiple pContainers. The pRange is the
STAPL concept used to represent a parallel computation which is essentially a task
dependence graph. The runtime system (RTS) and its communication library ARMI
(Adaptive Remote Method Invocation [7, 34]) provide the interface to the underlying

operating system, native communication library and hardware architecture.

User Application Code

Views

Run-time System

ARMI Communication  Scheduler Executor Performance
Library Monitor

=
S
=
[
£
©
e
o
=
=
S
IS
e}
<

Pthreads, OpenMP, MPI, Native, ...

Fig. 3. STAPL overview.

A. Parallel Languages and Libraries

There are several parallel languages and libraries that have similar goals as STAPL
(35, 36, 37, 38, 39, 40]. While a large amount of effort has been put into making

array-based data structures suitable for parallel programming, more dynamic data



14

structures that allow insertion and deletion of elements have not received as much
attention. The PSTL (Parallel Standard Template Library) project [41] explored
the same underlying philosophy as STAPL of extending the C++ STL for parallel
programming. They planned to provide a distributed list, but the project is no longer
active. Intel Threading Building Blocks (TBB) [42] provide thread-safe containers
such as vectors, queues and hashmaps for shared memory architectures, but they do
not provide a parallel list implementation. Parallel languages such as Chapel [43]
(developed by CRAY), X10 [44] (developed by IBM), and many others are all aiming
to ease parallel programming and to improve productivity for parallel application
development. However, most of these languages only provide high level constructs
such as multi-dimensional arrays and facilities to specify the distribution of the arrays.
A major difference between STAPL and all these new programing languages is that
STAPL is a parallel programming library that is written in standard C++4 thus making

it compatible with existing applications.

B. sTAPL Overview

STAPL pContainers are distributed, thread-safe, concurrent objects, i.e., shared ob-
jects that provide parallel methods that can be invoked concurrently. They are com-
posable and extendible by users via inheritance. Currently, STAPL provides coun-
terparts of all STL containers (e.g., pArray, pVector, pList, pMap, etc.), and two
pContainers that do not have STL equivalents: parallel matrix (pMatrix) and paral-
lel graph (pGraph). pContainers are made of a set of bContainers, that are the basic
storage components for the elements, and distribution information that manages the

distribution of the elements across the parallel machine.
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pContainers provide methods corresponding to those provided by the STL con-
tainers, and some additional methods specifically designed for parallel use. For ex-
ample, STAPL provides an insert_async method that can return control to the caller
before its execution completes, or an insert_anywhere that does not specify where an
element is going to be inserted and is executed asynchronously. While a pContainer’s
data may be distributed, pContainers offer the programmer a shared object view, i.e.,
they are shared data structures with a global address space. This is supported by
assigning each pContainer element a unique global identifier (GID) and by providing
each pContainer an internal translation mechanism which can locate, transparently,
both local and remote elements. The physical distribution of pContainer data can
be determined automatically by STAPL or it can be user-specified.

STAPL algorithms are written in terms of pViews [1], which provide a generic
access interface to pContainer data by abstracting common data structure concepts.
Briefly, pViews allow the same pContainer to present multiple interfaces, e.g., en-
abling the same pMatrix to be ‘viewed’ (or used) as a row-major or column-major
matrix, or even as a vector. STAPL pViews generalize the iterator concept — a pView
corresponds to a collection of elements and provides an ADT for the data it represents.
STAPL pViews enable parallelism by providing random access to the elements, and
support for managing the trade-off between the expressivity of the pViews and the
performance of the parallel execution. pViews trade additional parallelism enabling
information for reduced genericity.

The pRange is the STAPL concept used to represent a parallel computation. In-
tuitively, a pRange is a task graph, where each task consists of a work function and a
view representing the data on which the work function will be applied. The pRange
provides support for specifying data dependencies between tasks that will be enforced

during execution.
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The runtime system (RTS) and its communication library ARMI (Adaptive Re-
mote Method Invocation) provide the interface to the underlying operating system,
native communication library and hardware architecture [7]. ARMI uses the re-
mote method invocation (RMI) communication abstraction to hide the lower level
implementations (e.g., MPI, OpenMP, etc.). A remote method invocation in STAPL
can be blocking (sync_rmi) or non-blocking (async_rmi). ARMI provides the fence
mechanism (rmi_fence) to ensure the completion of all previous RMI calls. The
asynchronous calls can be aggregated by the RTS in an internal buffer to minimize
communication overhead.

The RTS provides locations as an abstraction of processing elements in a system.
A location is a component of a parallel machine that has a contiguous memory address
space and has associated execution capabilities (e.g., threads). A location can be
identified with a process address space. Different locations can communicate to each
other only through RMIs. Internal STAPL mechanisms assure an automatic translation
from one space to another, presenting to the less experienced user a unified data space.
For more experienced users, the local/remote distinction of accesses can be exposed
and performance enhanced for a specific application or application domain. STAPL

allows for (recursive) nested parallelism.

C. Parallel Container Framework (PCF) [45]

The objective of the STAPL Parallel Container Framework (PCF) is to simplify the
process of developing generic parallel containers. It is a collection of classes that can
be used to construct new pContainers through inheritance and specialization that
are customized for the programmer’s needs while preserving the properties of the base

container. In particular, the PCF can generate a wrapper for any standard data struc-
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ture, sequential or parallel, that has the meta information necessary to use the data

structure in a distributed, concurrent environment. The PCF provides a shared object

view to allow the programmer to ignore the distributed aspect of the pContainer

if they so desire. And thread safety is also enabled internally by design. All these

allow the programmer to concentrate on the semantics of the container instead of

its concurrency and distribution management. Thus, the PCF makes developing a

pContainer almost as easy as developing its sequential counterpart. More details are

discussed in [45].

STAPL provides a library of pContainers constructed using the PCF. These in-

clude counterparts of STL containers (e.g., pVector, pList [9], and associative con-

tainers [8] such as pSet, pMap) and additional containers such as pArray [10], pMatrix,

and pGraph.

D. PCF Design
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Fig. 4. PCF design.
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The PCF is designed to allow users to easily build pContainers by inheriting from
appropriate modules. It includes a set of base classes representing common data struc-
ture features and rules for how to use them to build pContainers. Figure 4 shows
the main concepts and the derivation relations between them; also shown are the
STAPL pContainers that are defined using those concepts. All STAPL pContainers
are derived from the pContainer base class which is in charge of storing the data
and distribution information. The remaining classes in the PCF provide minimal in-
terfaces and specify different requirements about bContainers. First, the static
and dynamic pContainers are tag classes that indicate if elements can be added to
or removed from the pContainer. The next discrimination is between associative
and relational pContainers. In associative containers, there is an implicit or explicit
association between a key and a value. For example, in an array there is an implicit
association between the index and the element corresponding to that index; we refer
to such (multi-dimensional) arrays as indexed pContainers. In other cases, such as
a hashmap, keys must be stored explicitly. The PCF provides an associative base
pContainer for such cases. The relational pContainers include data structures
that can be expressed as a collection of elements and relations between them. This
includes graphs and trees, where the relations are explicit and may have values asso-
ciated with them (e.g., weights on the edges of a graph, pList in chapter IV), and
lists where the relations between elements are implicit.

All classes of the PCF have default implementations that can be customized for
each pContainer instance using template arguments called traits. This allows users
to specialize various aspects, e.g., the bContainer or the data distribution, to improve

the performance of their data structures.
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1. Shared Object View

Shared object view is an important concept in STAPL which is defined as that each
pContainer instance is globally addressable. It is provided to relieve the programmer
from managing and dealing with the distribution explicitly, unless he desires to do
so. The fundamental concept required to provide a shared object view is that each
pContainer element has a unique global identifier (GID). The GID provides the shared
object abstraction since all references to a given element will use the same GID.
Examples of GIDs are indexes for pArrays, keys for pMaps, vertex identifiers for a

pGraph, and complex types for pList (defined in chapter IV).
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Fig. 5. pContainer modules for performing address resolution to find the element reference
corresponding to a given GID.
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The PCF supports the shared object view by providing an address translation
mechanism that determines where an element with a particular GID is stored (or
should be stored if it does not already exist). We now briefly mention the PCF
components involved in this address translation. The set of GIDs of a pContainer is
called a domain. For example, the domain of a pArray is a finite set of indices while
it is a set of keys for an associative pContainer. A pContainer’s domain is partitioned
into a set of non-intersecting sub-domains by a partition class, itself a distributed
object that also provides a map from a GID to the sub-domain that contains it, i.e.,
a directory. There is a one-to-one correspondence between a sub-domain and a base
container. In general, there can be multiple base containers allocated in a location,
where a location denotes a unit of a parallel machine that has a contiguous memory
address space and associated execution capabilities (e.g., threads); a location may,
but does not have to, be identified with a process address space. Finally, a class called
a partition-mapper maps a sub-domain (and its corresponding base container) to the
location where it resides, and a location-manager manages the base containers of a
pContainer mapped to a given location.

We now describe how a pContainer method is executed using the above concepts.
In Figure 5 we show a flowchart of the address resolution procedure. Given the
unique GID identifying a pContainer element, the data-distribution-manager queries
the partition class about the sub-domain associated with the requested GID. If the
base container (specified by a base container identifier, or BCID) is not available, the
partition provides information about the location (LOC) where it might be retrieved,
and the process is restarted on that location. If the BCID is available and valid, then
the partition-mapper gets information about the location where the base container
resides (LID); if the operation is not local, the method is re-evaluated on that location,

otherwise the location-manager provides the proper base container address and the
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operation is performed.
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Fig. 6. Example of pContainer modules for performing address resolution to find the
element reference corresponding to a given GID.

Figure 6 shows an example how the translation mechanism works. Here we have
a pContainer of 12 elements with GIDS integers in the range [0, 11]. The partition
specifies a block size of 3 which results in 4 sub-domains. By using a cyclic mapping
we have sub-domains 0 and 2 mapped to location 0 and sub-domains 1 and 3 mapped
to location 1. The location manager manages two base containers with LID 0 and
1 on each location. Suppose we want to find element with GID 9. The partition
indicates it is in sub-domain D3 and the partition mapper indicates it is in location
1. The location manager in location 1 can tell the LID2 corresponds to sub-domain
D3 and it is base container 3. Then 9 is the first element in base container 3.

More details are provided in the context of the pList in chapter IV.
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CHAPTER IV

STAPL PLIST
The STAPL pList is a parallel linked list data structure developed using the
pContainer framework. This chapter describes the pList interface and its design

and implementation in STAPL.

A. pList Interface

The linked list is a fundamental data structure that plays an important role in many
areas of computer science and engineering such as operating systems, algorithm de-
sign, and programming languages. A large number of languages and libraries provide
different variants of lists with C+-+ STL being a representative example. The STL list
is a generic dynamic data structure that organizes the elements as a sequence and
allows fast insertions and deletions of elements at any point in the sequence.

The STAPL pList is a parallel equivalent of the STL list with an interface for
efficient insertion and deletion of elements in parallel. Other interfaces such as size,
testing whether the list is empty or not, accessing front and back elements, pushing
elements to the front or back of the list, popping an element from the front and the
back of list, etc., are also provided for convenient usage as STL lists. Analogous to
STL lists, elements in a pList can be accessed through iterators. The STL equivalent

methods are shown in the Table II.
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STL equivalent methods of the pList. P: the number of locations; M;: the

number of base containers in one location; N: the total number of elements in the list;

Tp(N): the time of a broadcast communication of N elements; Tr(N): the time of a
reduction communication of N elements; T.: the time of a single message communication
time.

pList Interface Description Complexity

plist(size.t N, const T& | Creates a pList with N elements, | O(N/P + Tp(P))

value = T()) each of which is a copy of value.

Collective Operation.
size_t size() const Returns the size of the pList. O(N + Tgr(P))

bool empty() const

True if the pList’s size is 0.

OMAX(M,) +
Tr(P))

pos.
Collective Operation.

T& [front|back]() Access the first/last element of the se- | O(T, + 1)
quence.
void Insert a new element at the begin- | O(T, + 1)
push_[front|back](const ning/end of the sequence.
T& val)
void pop_[front|back]() Remove the first element from the be- | O(T, + 1)
ginning/end of the sequence.
iterator insert(iterator pos, | Insert val before position pos and re- | O(T, + 1)
const T& val) turn the iterator to the new inserted
element.
iterator erase(iterator pos) | Erases the element at position pos | O(T, + 1)
and returns the iterator pointing to
the new location of the element that
followed the element erased.
void splice(iter pos, pList& | Splice the elements of pList pl into | O(T(P) +
pl); the current list before the position | M AX(M;)).

All STL equivalent methods require a return value, which in general translates

into a blocking call. For this reason, we provide a set of asynchronous (non-blocking)

methods, e.g., insert_async and erase_async. They are generally provided in STAPL

and used by pVector, pMap, pSet, etc. Non-blocking methods will return immediately

and they do not wait for the communication event to complete, thus allowing for

better communication/computation overlap and enabling the STAPL RTS to aggregate

messages to reduce the communication overhead [7].
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Since there is no data replication, operations such as push_back and push _front,
if invoked concurrently, may produce serialization in the locations managing the head
and the tail of the list. For this reason, we added two new methods to the pList in-
terface, push_anywhere and push_anywhere_async (also used by other pContainers
such as pVector), that allow the pList to insert the element in an unspecified loca-
tion in order to minimize communication and improve concurrency. The Non-STL

equivalent new methods are shown in Table III.

Table III. Non-STL equivalent methods of the pList. P: the number of locations; M:
the total number of base containers in pList; N: the total number of elements in the list;
Tp(N): the time of a broadcast communication of N elements; T,: the time of a single
message communication time in the following sections.

pList Interface

Description

Complexity

plist(size.t N,
tion_type& ps)

parti-

Creates a pList with N elements
based on the given partition strategy.
Collective Operation.

O(N/P +Tg(P))

void split(iter pos, pList&
pl);

The elements from pos to the end in
current pList will be removed from
current pList and inserted to pList
pl. pl is supposed to be default con-
structed, if not, old data will be re-
moved before new data is inserted.
Collective Operation.

O(TB(P) + M)

void insert_async(iterator | Insert val before pos with no return | O(T, + 1)
pos, const T& val) value.
void  erase_async(iterator | Erases the element at position pos | O(T, + 1)
pos) with no return value.
iterator Push val into one of base containers | O(1)
push_anywhere(const in the location the method is invoked
value_type& val) and return the iterator pointing to the

new inserted element.
void push_anywhere_async( | Push val into one of base containers | O(1)

const T& _val)

in the location the method is invoked
with no return value.

The pList has both collective and non-collective operations. Non-collective op-

erations are those operations which can be invoked in only one location, and different
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locations may invoke different number of operations concurrently. Collective opera-
tions have to be invoked by all locations and communication may happen to accom-
plish the work. Each collective operation ends with a global barrier to guarantee all

the communication is finished.

1. Complexity of Methods

We define P as the number of locations, M; as the number of base containers in one
location, M as the total number of base containers in pList, /N as the total number
of elements in the pList, T5(/N) as the time of a broadcast communication of N
elements. Tr(N) as the time of a reduction communication of N elements and 7, as
the time of a single message communication time in the following discussion.

The complexity of non-collective operations such as the size method is propor-
tional to the total number of elements in the pList and Tx(P). It needs to collect
the size information of each base container and then perform a reduction to compute
the total size. The empty method is similar to the size method except that the empty
method of each base container is constant time. So the complexity of pList empty
method is proportional to the max number of base containers over all locations and
Tr(P). Methods such as back, front, insert and erase may be invoked locally or re-
motely in a synchronous way. When invoked locally, it is a constant time operation.
When invoked remotely, the complexity depends on the time T, to send a request
and receive an answer back. The asynchronous methods such as insert_async and
erase_async may be invoked locally or remotely. When invoked locally, they are con-
stant time operations. When invoked remotely, the complexity depends on the time
T, to send a request and O(1) to finish remotely.

The complexity of collective operations such as different constructors take time

proportional to the number of elements over locations and Tg(P). By default the
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constructor will construct an equal number of elements in each location. Broadcast
communication is used to broadcast the head and tail base container information in
order to be able to traverse from the beginning to the end of pList. The complexity

of advanced methods such as splice and split is discussed in later sections.

B. pList Design and Implementation

The STAPL pList is designed using the PCF Figure 4. It is a dynamic pContainer
and derives from the sequence pContainer. Specialized Global Unique Identifier
(GID) and base container identifier (BCID) are designed and different domains and
data distributions are used for the pList. This section discusses the design and

implementation of the various modules.

1. Base Container

The pContainer base container is the basic storage unit for data. For the STAPL
pList, we use the STL list as the base container. Most pContainer methods will
ultimately be executed at the base container level using the corresponding method
of the base container. For example, pList insert will end up invoking the STL list
insert method. The pList base container can also be provided to the user so long as
insertions and deletions never invalidate iterators, and so that base containers provide
the domain interface (see below). Additional requirements are relative to the expected
performance of the methods (e.g., insertions and deletions should be constant time
operations).

Within each location of a parallel machine, a pList may store several base con-
tainers and the pList employs a location-manager module to allocate and handle

them. The pList has the global view of all of the base containers and knows the
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order between them in order to provide a unique traversal of all its data. For this
reason each base container is identified by a globally unique base container identifier
(BCID). The pList, needs a base container identifier that allows for fast dynamic
operations. For example during the splice operation, base containers from a pList
instance need to be integrated efficiently into another pList instance while maintain-
ing the uniqueness of their BCIDs. For these reasons the BCID for the pList base

containers is currently defined as follows:
typedef std::pair<plist_bcontainer*, location_identifier> BCID

This BCID will provide the location information and a pointer to the base container.
It is a unique identifier and the pointer can only be used when the current location

is the same as the location specified in the BCID.

2. Global Identifiers (GID)

In the STAPL pContainer framework, each element is uniquely identified by its GID.
This is an important requirement that allows STAPL to provide the user with a shared
object view. Performance and uniqueness considerations similar to those of the base
container identifier, and the list guarantee that iterators are not invalidated when
elements are added or deleted lead us to use the following definition for the pList

GID.
typedef std::pair<std::list<>::iterator, BCID> GID;

This GID contains an iterator pointing to the element in the base container and the
base container ID. It is unique since the BCID is unique. With this definition the

pList can uniquely identify each of its elements.
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3. Domain

In the STAPL pContainer framework the domain is the universe of GIDs that identifies
the elements of a particular pContainer. A domain also specifies an order that defines
how elements are traversed by the iterators of the pList. This order is specified
by two methods: get_first_gid() which returns the first GID of the domain and
get next_gid(GID) which returns the next GID in the domain of the GID provided
as argument. The domain can also be specified as the union of sub-domains. The
pList derives a specialized domain from the PCF to support pList specific operations.
The pList base container serves as the storage of data and also the sub-domain by

providing domain-specific interfaces.

4. Data Distribution

Data distribution is essential to the performance of the various parallel algorithms.
The data distribution of the pList is managed by the PCF as discussed in chap-
ter III. The pList has its own distribution-manager which derives from the base
distribution-manager. In addition to the functionality provided by the base, it
is able to manage the distribution information of its advanced methods such as the
splice and split operations.

When default constructing a STAPL pList with a known size, the balanced dis-
tribution is used and each location is allocated an equal number of elements. The
balanced distribution will guarantee the best performance if every processing unit of
the machine is the same. A constructor to build a pList with multiple base contain-
ers per location is also provided and these base containers can be linked together in
a blocked or cyclic manner. We use N to refer to the total number of elements in

pList and P to refer to the number of locations. Blocked means to distribute N/P
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base containers per location and all the base containers in one location will be linked
together before linking to the base containers in the next location. Cyclic means to
distribute all base containers in a cyclic fashion over the locations. The choice of
which constructor to use is decided by the pList users since they have the knowl-
edge of the algorithms they will use and different algorithms benefit from different
distributions.

Even if it was initially balanced, the pList may reach an imbalance distribution
after insertions, deletions, splices or splits. For this reason, the pList provides a
redistribution method to evenly redistribute the data. The order between the elements

is preserved by this operation.

5. pView

In the STAPL framework, pViews are the means of accessing data elements stored in
the pContainer within generic algorithms. STAPL pAlgorithms are written in terms
of pViews, similar to how STL generic algorithms are written in terms of iterators.
The pList currently supports sequence pViews that provide an iterator type and
begin() and end() methods. A pView can be partitioned into sub-views. By default
the native pView of a pList matches the subdivision of the list in base containers,
thus allowing random access to portions of the pList. This allows parallel algorithms
to achieve good scalability (see Section VI). The native pList pView also provides
similar interfaces as those provided by the pList to support dynamic operations such
as inert and delete.

The pList pView has to perform the validity test for the rank of each base con-
tainer in order to be used with certain pAlgorithms such as those need the reduction
with a non-commutative operator, and the rank of each base container of the pList

has to be computed in this case. The computation of rank will increase the overall
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void plist::insert_async(iterator it, value_type val)

Location loc;

dist_manager.lookup(gid(it))

BCID = part_strategy.map(gid(it))

loc = part_mapper.map(BCID)

if loc is local
location_manager.bcontainer (BCID) .insert(gid(it))

else
async_rmi (loc, insert_async(it, val));

O 00N U WN -

Fig. 7. pList method implementation.

execution time of the algorithm. When a pList is instantiated it initializes the rank
of all of its base containers. However, dynamic operations such as splice and split
modify the number of base containers of a pList and invalidate the ranking of the

pList’s base containers.

6. Implementation of pList Methods

The pList methods are implemented using the distribution-manager and the
location-manager. A typical implementation of a pList method that operates at
the element level is included in Figure 7 to illustrate how the pContainer modules
interact. The run-time cost of the method has three constituents: the time to decide
the location and the base container where the element will be added (Figure 7, lines
3-5), the communication time to get/send the required information (Figure 7, line 9),

and the time to perform the operation on a base container (Figure 7, line 7).

C. pList Advanced Methods

The pList provides methods to rearrange data in bulk. These methods are splice

and split, which merge multiple lists and split lists into multiple pieces, respectively.
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1. Splice

splice is a pList method and it is an overloaded name. There are two versions of

splice (Figures 8 and 9) whose signatures are

void pList::splice(iter pos, pList& pl, iter itl, iter it2);

void pList::splice(iter pos, pList& pl);

void splice (iterator pos, PLIST& pL) {
//find gid of the element pointed by pos.
GID gid = gid_of(pos);
//find bcontainer id by asking partition strategy
PS* ps = this->m_dist->get_partition_strategy();
BCID cidl = ps->get_info(gid);
//split bcontainer associated with bcontainer id cidl to two
//bcontainers (having id cidl and cid2) from pos.
BCID cid2 = split_bcontainer(cidl);

//update the corresponding link of pL

cidl next bcontainer = pL first bcontainer;

pL first bcontainer previous bcontainer = cidl;
cid2 previous bcontainer = pL last bcontainer;
p2 last bcontainer next bcontainer = cid2;

//add all bcontainers to this pList in parallel
for all bcontainers in each location
this->add_bcontainer (bcontainer)

//release all bcontainers from pL.
pL.release();

//update pL to default constructed state
pL.reset_cidsinfo();

pL.add_bcontainer (empty bcontainer);

Fig. 8. pList splice pList implementation.

where iter stands for an iterator type, pos is an iterator of the calling pList, pl is
another pList, and the iterators itl and it2 are iterators pointing to elements of
pl. splice removes from pl the portion enclosed by it1 and it2 and inserts it at
pos. When it1 and it2 is not specified, the pList pl will be spliced at pos.

We use the same notation from Table II and III for complexity analysis. The
complexity of splice depends on the number of base containers included within it1

and it2. If itl or it2 points to elements between base containers, then new base
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void splice (iterator pos, PLIST& pL, iterator f, iterator 1) {
//find gid of the element pointed by pos.
GID gid = gid_of (pos);
//find bcontainer id by asking partition strategy
PS* ps = this->m_dist->get_partition_strategy();
BCID cidl = ps->get_info(gid);
//split bcontainer associated with bcontainer id cidl to two
//bcontainers (having id cidl and cid2) from pos.
BCID cid2 = split_bcontainer(cidl);

same process as above to split from iterator f to cidf_prev
and cidf split from iterator 1 to cidl_prev and cidl

//splice [cidf, cidl) between cidl and cid2
while (cidf != cidl) {

BCID cid = cidf;

cidf = get_next(cidf);

release cid from pL;

add cid to *this

link cid between cidl and cid2;

Fig. 9. pList splice range implementation.

containers are generated in constant time using a sequential list splice. When the
entire pList needs to be spliced, the complexity depends on the maximum M; among
all locations since base containers on every location have to be removed from the old
pList and inserted into another pList. The re-construction of the old pList takes
Tp(P) since the head and tail BCID needs to be broadcast. So the total time is
O(Tg(P)+ MAX(M;)).

2. Split

split is also a member method of pList that splits one pList into two. The algo-
rithm for this method is described in Figure 10. It is a pList specific parallel method
that is implemented based on splice with the following signature:
void pList::split(iterator pos, pList& other_plist).

When pList.split(pos, other plist) is invoked, the part of pList starting

at pos and ending at pList.end() is removed from current pList and appended at
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void split (iterator pos, PLIST& pL) {
BCID cidf = first cid of pL;
BCID cidl = last cid of pL;

iterator end = one past end iterator of pL;
iterator this_end = one past end iterator of *this pList;
pL.splice(end, *this, pos, this_end);
//traverse first P bcontainers, remove empty bcontainer if more
//than one bcontainer in that location.
cidl = next cid of cidl;
while (cidf != cidl) {
BCID cid = cidf;
cidf = get_next(cidf);
delete bcontainer having BCID cid from pL if more than one
bcontainer in that location;

}
}

Fig. 10. pList split implementation.

the end of the other_plist. If any data was stored in the other_plist before split
operation, they will be removed and the data inside other_plist will only be the data
from current pList.

We use the same notation from Table IT and III for complexity analysis. In the
worst case scenario, the whole pList will be splitted to an empty pList and another
pList contains all the data from original pList. It takes O(M) to split all base

containers and Ts(P) to rebuild the pList. So the total time is Ts(P) + O(M).
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CHAPTER V

LIST RELATED ALGORITHMS
The linked list is an important data structure and there are algorithms specific to it.
In this chapter, we consider two such algorithms, list ranking, which computes the
distance of each element from the head or the tail, and the Euler Tour (ET) technique
which can be used to compute interesting functions for trees such as rooting a tree and
postorder numbering. This chapter first describes the design and implementation of
different list ranking algorithms. Next, applications such as Euler Tour and computing
tree functions including rooting a tree, postorder numbering, computing vertex level
and computing number of descendants using Euler Tour and list ranking are shown

to demonstrate the usefulness of STAPL pList in parallel algorithms.

A. List Ranking

The classic list ranking problem is to identify the distance for each element in the list
from either end of the list. Here we will consider the distance from the beginning.
List ranking is a special case of prefix scan in which each element is initialized with
a value of 1 and the operation to be performed is addition.

The sequential algorithm simply traverses the entire list and sets the rank of
each element if reaches. It takes O(N) for list with N elements. As mentioned in
Section I1.B2, many algorithms have been proposed for parallel list ranking, with
the most efficient requiring O(log N) time and O(N) work using % processors in
EREW PRAM model [23].

The best known algorithm for parallel list ranking is based on the pointer jump-

ing or recursive doubling technique. We first implemented this algorithm with barriers

between each step. Next, we designed and implemented a point-to-point synchroniza-



Input:
A linked list
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(1) the predecessor of each node i is given by pred(i)

(2) the successor of each node i is given by succ(i)

(3) the pred value of the first node is equal to sentinel value
(4) the succ value of the last node is equal to sentinel value

Output:

For each 0 <= i < N, the distance Rank(i) of node i from the
beginning of the list

Algorithm:

P(i) denotes the current predecessor
S(i) denotes the current successor

begin
1: for i from
2:  Rank(i)
3: P@@) =p
4: S(i) =
5: for i from
6 for j fr
' send P
8: send S
9: global
10: R(i) =
11: P(i) =
12: S(i) =
end

0 to N - 1 pardo
=1 //initialize the
red(i) //initialize the

succ(i) //initialize the

0 to N - 1 pardo

om O to logN - 1

(i) and Rank(i) to S(i)
(i) to P(i)
synchronization

R(i) + R_received
P_received

S_received

rank of each element to be 1
current predecessor to be initial predecessor
current successor to be initial successor

//send current predecessor and rank to current successor
//send current successor to current predecessor
//guarantee all the communication complete

//update current rank

//update current predecessor

//update current successor

Fig. 11. LR-glob-sync pointer jumping algorithm for list ranking.

tion version of the pointer jumping algorithm. Also we redesigned and implemented

this new algorithm under the STAPL programming model.

1. List Ranking via Pointer Jumping with Global Synchronization (LR-glob-sync)

Pointer Jumping is a very simple technique to compute rank of all elements of a list

in parallel. Figure 11 shows pseudo code for the algorithm.

The algorithm first initializes the rank of each element to 1 in parallel. The rank

of E; denotes the number of elements known to be before F; and is also the number

of nodes current node will skip in the next step. When P is equal or larger than N

where P is the number of processors and NN is the number of nodes. The algorithm
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takes O(log V) steps to jump from one end to another end. And the total time is
O(log N)*(1+Tg) (Tp represents time for a single global barrier) since the algorithm
takes O(log N) steps and each step performs the computation in constant time and a
barrier, the total work is O(N log N). When P is less than IV, each processor with %
nodes. The algorithm takes O(% + log P * (1 + Tp)) time and O(N + Plog P) work.

It is important to notice that every step has to be synchronized before proceeding
to line 10 in Figure 11. This implies a barrier to synchronize all processing units which
is highly inefficient, especially for large scale machines.

Figure 12 shows an example execution of the LR-glob-sync algorithm. Fig-
ure 12(a) shows a list with eight elements. The algorithm takes three steps to finish.
Figure 12(b) is the result after the first jump. Figure 12(c) refers to the result of the
second jump. Figure 12(d) shows the conclusion of the algorithm with the correct

rank associated with each element.

2. List Ranking via Pointer Jumping with Point-to-point Synchronization

(LR-pt2pt-sync)

In an effort to improve the scalability of the list ranking via Pointer Jumping al-
gorithm, we designed a version that replaced the global barrier of each step with
point-to-point synchronization between the communications of the list elements. The
point-to-point synchronization version uses an auxiliary data structure associated
with each node to store the rank of the different steps. This is a typical trade off
between time and space. We are trading space for time since this algorithm will be
used to compute ranks based on the base containers and the number of base con-
tainers is proportional to the number of locations, which is typically not as large as
the number of elements. After the rank is computed, the auxiliary data structure is

cleared immediately.



37

(a)

1 1 1 1 1 1 1

OQOYOYOyOyOyOyO

(b)

A R N

ONONOBONONORONO

(d)

Fig. 12. Tllustration of the LR~glob-sync algorithm. (a) A list with eight elements. (b)
The result after the first jump. (c¢) The result after the second jump. (d) The result after
the third jump.

Figure 13 illustrates the LR-pt2pt-sync algorithm. For each node of the list,
the rank field records the final rank, the vector R stores the rank for different steps,
and vectors P and S store the predecessors and successors for different steps. Each
node will send its information to its current predecessor and successor and wait to

proceed until all the information it needs has been received. There is no explicit

global synchronization required among all the processing units, thus we expect this
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Auxiliary Data Structure:
vector R,P,S store different level rank, predecessor and successor

Algorithm:
begin
for i from O to N - 1 pardo

1:

2: R@E, 0) =1 //initialize the rank of each element at first round to be 1
3: Rank(i) 1 //initialize the rank of each element to be 1
4.
5

P(i, 0) = pred(i) //initialize the predecessor at first round to be initial predecessor
s(i, 0) succ(i) //initialize the successor at first round to be initial successor

6: for i from O to N - 1 pardo
7: for j from O to logN - 1 do
8: send P(i, j) and R(i, j) to S(i, j) //send predecessor and rank to successor at round j

9: send S(i, j) to P(i, j) //send successor to predecessor at round j

10: while not receive all

11: wait //wait until receive the predecessor,successor and rank at round j
12: R(i, j+1) = R_received //update rank at round j+1

13: P(i, j+1) = P_received //update predecessor at round j+1

14: S(i, j+1) = S_received //update successor at round j+1

15: Rank(i) = Rank(i) + R(i, j+1) //update rank

end

Fig. 13. LR-pt2pt-sync algorithm.

version to scale better than the LR-glob-sync.

The complexity of LR-pt2pt-sync is analogous to LR~glob-sync. When P is equal
or larger than N where P is the number of processors and N is the number of nodes.
The LR-pt2pt-sync takes O(log N) steps to jump form one end to another end. And
the total time is O(log V) which takes O(log N) steps and each step performs only
the computation in constant time without any barrier, the total work is O(N log N).
When P is less than N, each processor with % nodes. The LR-pt2pt-sync takes
O(% +log P) time and O(N + Plog P) work.

3. List Ranking in STAPL (LR-STAPL)

The list ranking algorithm implemented in STAPL follows the LR-pt2pt-sync. Under

the STAPL programming model, parallel algorithms are expressed as task graphs called
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pRanges. Dependences between tasks are noted in task graph and are enforced by
STAPL internally - no explicit communication primitives are used in STAPL program.

Figure 14 shows the STAPL version of the algorithm. Tasks in STAPL are specified
as a combination of data and the work function which should be applied to the data.
Data can be accessed by views. Tasks can be dynamically added to the task graph
by using the add_task function, which must specify the work function and the view.
Locality information is encapsulated inside the view, so users do not need to be
concerned about or be aware of where the task is going to be executed.

The algorithm starts by constructing a LISTRANKING_WF work function for
each node with its rank, prev or next and round information. The computation begins
by adding initial tasks with views over the previous node and the next node with the
proper work function. Whenever a task is executed over a node, it checks whether
the task at the previous round has been fired. If not, it does nothing, otherwise, it
continues to fire all the tasks from the current round to the final round as long as
prev, next and rank at that round have been updated. Whenever reaching a round
where not all of the three fields have been updated, the task terminates. Or when
reaching the final round, it updates the rank field and terminates the task. When no
new tasks are created, and every node reaches the final round with rank field updated,

the algorithm ends.

B. Euler Tour and Its Applications

The Euler Tour (ET) is an important representation of a graph for parallel processing.
Since the ET represents a depth-first-search traversal, when it is applied to a tree it
can be used to compute a number of tree functions such as rooting a tree, postorder

numbering, vertex levels, and number of descendants [30]. Good scalability of ET
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vector A stores accumulated rank up to level i and also serves
as a mark indicating whether the task at this level fired or not
Algorithm:
begin
1: for i from O to N - 1 pardo
2: R(i, 0) =1 //initialize the rank of each element at first round to be 1
3: Rank(i) = 1 //initialize the rank of each element to be 1
4: A4, 0) =1 //initialize the successor at first round to be initial successor
5: P(i, 0) = pred(i) //initialize the predecessor at first round to be initial predecessor
6: S(i, 0) = succ(i) //initialize the successor at first round to be initial successor
7: for i from O to N - 1 pardo
8: LISTRANK_WF wf_prev(S(i, 0), norank, 1)//create a functor with successor at first round
9: add_task (wf_prev, View(P(i, 0))) //add task on the predecessor at first round
10: LISTRANK_WF wf_next(P(i, 0), A(i, 0), 1)//create a functor with predecessor,rank at first round
11: add_task(wf_next, View(S(i, 0))) //add task on the successor at first round
end
//LISTRANK_WF constructed with round, rank and prev or next information.
//When norank, next is chosen, otherwise prev is chosen.
Class LISTRANK_WF
{
Data:
prev | next //data member to hold predecessor or successor
rank //data member to hold rank
round //data member to hold round
Member:
void operator() (Node i)
{
if (contain rank)
R(i, round) = rank //update rank at round round
P(i, round) = prev //update predecessor at round round
else
S(i, round) = next //update successor at round round
if (A(i, round-1) valid) //fire new task if previous task has been fired
for j from round to final_round //fire new task from current round to final round
if (P(i, j), S(i, j) and R(i, j) all set)//if receive predecessor,successor and rank
A(i, j) = A4, j-1) + R(@, J) //update to mark task at round j has been fired
if (j not final_round) //fire new task if not reach final round
LISTRANK_WF wf_prev( S(i, j), noramnk, j+1 )
add_task( wf_prev, View(P(i, j)) ) //fire task on predecessor at round j
LISTRANK_WF wf_next( P(i, j), A(i, j), j+1)
add_task( wf_next, View(S(i, j)) ) //fire task on successor at round j
else Rank(i) = A(i, j)
else
break
}
}

Fig. 14. LR-STAPL algorithm.
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algorithm depends on an efficient list ranking algorithm. We will discuss how the
pList is used in our implementation of ET technique [30] and how the algorithm is

implemented in this section.

1. ET Technique Overview

There are many versions of Euler Tour problem such as whether an Euler Tour exists
for an arbitrary graph or how to find the Euler Tour if it exists. Here we consider the
following Euler Tour problem: Given an undirected tree T = (V, E), let 7" = (V, E’)
be the directed graph obtained from 7" where each edge (u,v) € E' is replaced by two
edges (u,v) and (v,u). Thus 7" is an Eulerian graph because each vertex has even

degree of edges, and the problem is to find the Euler Tour of T".

a. ET Construction

Existing sequential algorithms take O(N) time to build an Euler Tour since each edge
has to be traversed [46] where N refers to total number of edges in the tree.

The parallel Euler Tour algorithm presented in [30] can be specified by using
the successor function which is defined as a mapping function from each edge e € E’
to s(e) € E’ that follows e on the tour. Suppose adjacency list of v is adj(v) =
(ug, u1, ...uq—1) where d is the degree of v. s(u,v) = (V, Uit 1)moda) for 0 < i < d — 1.
Then it takes constant time for each edge to find the next edge in the tour using
successor function when the input tree is represented by the circular adjacency lists
with additional pointers. The entire algorithm takes constant time and O(N) work
where N is the number of vertices by using EREW PRAM model.

Figure 15 shows an example of a tree and its adjacency list. By applying the
successor function specified above, we can get the traversal easily as follows supposing

the start edge is (2, 6).
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Fig. 15. Euler Tour example.

(2,6) — (6,2) — (2,7) — (7,8) — (8,7) — (7,9) — (9,7) — (7,2) — (2,1) —
(1,3) = (3,1) = (1,4) — (4,1) — (1,2) — (2,5) — (5,2)

b. ET Technique

The Euler Tour technique can be used to compute some tree functions [30] such as
rooting a tree, post order numbering, computing the vertex level and computing the
number of descendants.

These algorithms are similar in terms of the procedures performed. And Fig-
ure 16 shows a generic algorithm which first initializes each edge in the list with a
corresponding weight, and then performs the prefix sum algorithm. The desired result
can be computed with the prefix sum value of each edge.

When P is equal or larger than N where P denotes the number of processors
and N is the number of vertices, the line 1-2 and 4-5 in Figure 16 take constant time

and O(N) work, and the line 3 takes O(log N) time and O(N log N) work. Thus
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Input:
(1) A tree T stored in a list L
(2) An Euler Tour defined by the successor function s

Output:
For each vertex, the parent, postorder number, level or the number of descendants.

Algorithm:

begin

1: for each edge (x,y) in L pardo

2: weight(x,y) =m //initialized to different weight accordingly
3: parallel prefix sum //perfrom prefix sum

4: for each edge (x,y) in L pardo

5: computation(x,y) //perform the corresponding computation

end

Fig. 16. Generic algorithm of Euler Tour applications.

the complexity of the generic algorithm is O(log N) time and O(N log N) work by
using the EREW PRAM model [30]. When P is less than N and each location has
% elements. The line 1-2 and 4-5 take constant time and O(N) work, and the line
3 takes O(% + log P) time and O(N + Plog P) work. Thus the complexity of the

generic algorithm is O(% + log P) time and O(N + Plog P) work.

2. ET in STAPL

The parallel Euler Tour constructor algorithm [30] implemented in STAPL uses a
STAPL pGraph to represent the tree and a pList to store the final Euler Tour. In the
first phase, the algorithm executes traversals on the pGraph view and generates Euler
Tour segments that are stored in a temporary pList. Then, the segments are linked
together to form the final pList containing the Euler Tour in the second phase.
Figure 17 describes the first phase of the algorithm. We use an undirected pGraph
to represent the tree and a pList to store the final Euler Tour. Each local traversal
is stored as a list of edges (L) and then inserted as an element to a pList of list of

edges (PLE). The next edge for a given edge can be found by using the successor
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Input:

(1) Undirected pGraph PG which is a tree
(2) start edge Start_Edge of the Euler Tour
Output:

plList with edges stored in Euler Tour order

Algorithm:
list<edge> L stores a local traversal for each cross cutting edge
pList<list<edge> > PLE stores all L

begin

for each incoming cutting edge e(i) pardo

L(i).insert(e(i)) //store cross cutting edge
next_edge(i) = e(i);
do {
next_edge(i) = succ_func(next_edge(i)) //find next edge
L(i).insert(next_edge(i)) //insert to L
} while (nex_edge(i) is not cutting edge)//until reach another cross cutting edge
PLE.push_anywhere_async(L(i)) //store L to the PLE

//special pList constructor takes PLE, PG and
//Start_Edge, and return the final pList with Euler Tour
pList<edge> pL(PLE, PG, Start_Edge)

end

next_edge(i) succ_func(edge e(i)) //successor function
{
vertex source(i) = e(i).source() //source vertex of edge e(i)
vertex target(i) = e(i).target() //target vertex of edge e(i)
list<vertex> adjl(i) = target’s adjacency list
find source(i) in adjl(i)
if source(i) is the end of adjl(i)//if source(i) is the last vertex, v(i) is the first vertex

v(i) = adjl(i).begin() //in the adjacency list
else

v(i) = adjl(i).next(source(i)) //v(i) is the next vertex of source(i) in the adjacency list
return edge(target(i), v(i)) //return the next edge of input edge

Fig. 17. Euler Tour [30] construction.

function introduced in [30].

The second phase of the algorithm in Figure 18 is performed using a special
pList constructor which takes the pList of list of edges, pGraph and start edge as
the arguments. pGraph is used to find where a given remote edge lives. An internal
phashmap is used to support fast look up of the base container for a given edge. The
start edge is used to identify the global first and last bContainer of the final pList.

The base container which starts with the start edge is the global first base container
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pList(pList<list<edge> > PLE, pGraph PG, edge Start_edge)

{
//internal phashmap built for fast loopup from given edge to base container
phashmap<edge, base container> pm(i)
for each element 1(i) of PLE
create base container bc(i) over 1(i)
insert(1(i).front(), bc(i)) to pm(i) //add cross cutting edge and its base cotainer to phashmap
if (bc(i).front() == start_edge)
broadcast to set bc(i) to the global first base container //broadcast head base cotainer
if (bc(i).back() == start_edge)
broadcast to set bc(i) to the global last base container //broadcast tail base cotainer
for each base container bc(i)
edge next(i) = bc(i).back()
location loc = PG.find(next(i)) //ask pgraph to find location information
send bc(i) to location
find base container bc_next which begins with next at location loc using phashmap
set bc(i) to be bc_next’s previous base container //set up link
send bc_next back to where bc(i) lives
set bc_next to be bc(i)’s next base container //set up link
remove last element in bc(i) //remove extra edgs
}

Fig. 18. Euler Tour [30] linking.

and the one that ends with the start edge is the global last one. Communications
happen explicitly to link two base containers, one from current base container to next
base container to set next base container’s previous to be current base container, and
another one from next base container to current base container to set current base
container’s next to be next base container. These are accomplished by asking pGraph
to decide the location of remote edge and phashmap to find the base container that
starts with remote edge on that location. The last edge in each base container is used
to specify the next relationship, and it can be removed once two base containers are
connected. After all the links are constructed, the algorithm has constructed a pList

of edges with the Euler Tour stored in order.

a. Complexity Analysis

We use O(E;) and O(V;) represent separately the number of edges and vertices in

location i. O(C;) is the number of cross cutting edges in location i. Tg(N) is the
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time of a broadcast communication of N elements. T, is the time of a single message

communication time. P is the total number of locations.

e find next edge for each edge:

— find next edge: % (Average size of adjacency list)
— Total phase 1 time: O(E;) * O(%)

e Build pList, for each base container, set previous and next

— Number of base containers : O(C;)
— Communication time to set all links: O(C;) x O(T)
— Broad cast first and last base container of pList: Tg(P)

— Total phase 2 time: O(C;) * (1 4+ O(T.)) + Tp(P)

Total Euler Tour time: O((E;}'i)Q) +O0(Cy) x (1+0(T,)) + Ts(P)

3. ET Application in STAPL

By using the Euler Tour technique, we implemented four applications in STAPL, in-
cluding rooting a tree, postorder numbering, compute the vertex level and the number
of descendants. These four algorithms are implemented using the generic algorithm
described in Figure 16. We use the STAPL pGraph to represent the tree and the pList
to store the Euler Tour. The algorithms differ in the initialization weight of each edge

and the computation performed.

a. Rooting a Tree

This algorithm (Figure 19) is frequently used as initial step in other algorithms. A

STAPL undirected pGraph is used to represent the tree, and Euler Tour is assumed to
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Input:

(1) A tree T defined as STAPL undirected pgraph

(2) An Euler Tour defined by the successor function s stored in pList pl
(3) Root vertex r

Output:
For each vertex v != r, the parent p(v) of v in the tree rooted at r.

Algorithm:
begin

for each edge in pl pardo
weight = 1

parallel prefix sum

for each edge (x,y) pardo
if (prefix(x,y) < prefix(y,x))
set x=parent(y)

end

Fig. 19. Rooting a tree [30].

be computed already and stored inside the pList. The algorithm starts by assigning
a weight 1 to each edge in pList, and the prefix sum algorithm is run over pList.
For each edge from vertex x to vertex y, if the prefix sum of xy is smaller than prefix
sum of yx, which means xy is traversed first and then yx in the Euler Tour, then x is

the parent of y. The root has no parent.

b. Postorder Numbering

This algorithm (Figure 20) requires the parent information of each vertex, so the
rooting tree algorithm is used. For each edge in the pList, if it is an edge from a
vertex to this vertex’s parent, the weight is set to be 1, and otherwise is set to 0. The
prefix sum algorithm runs over the pList. Since only the edge from a vertex to its
parent has any weight, the prefix sum of the edge from a vertex to its parent after
the prefix sum algorithm is the postorder number. The postorder number of the root

is the number of vertices in the tree.
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Input:

(1) A tree T defined as STAPL undirected pgraph

(2) An Euler Tour defined by the successor function s stored in pList pl
(3) Root vertex r

Output:
For each vertex v, the post order traversal number post(v) of v in the tree rooted at r.

Algorithm:

begin

rooting the tree

for each vertex v != r pardo

weight(v, p(v)) =1
weight (p(v), v)

parallel prefix sum

for each vertex v pardo

if (v == 1)
set post(v) = n(the num of vertices of tree)
else

set post(v) = prefix(v, p(v))

end

Fig. 20. Postorder numbering [30].

c. Computing Vertex Level

This algorithm (Figure 21) also requires the parent information of each vertex, so
the rooting tree algorithm is used. For each edge in the pList, if it is an edge from
a vertex to this vertex’s parent, the weight is set to be -1, otherwise 1. The prefix
sum algorithm runs over the pList. Whenever an edge is from parent to a child, the
vertex level increases by 1, and decreases by 1 otherwise. Thus after the prefix sum
algorithm, the prefix sum of a parent to a child records the level information of each

vertex. The level of the root is 0.
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Input:

(1) A tree T defined as STAPL undirected pgraph

(2) An Euler Tour defined by the successor function s stored in pList pl
(3) Root vertex r

Output:
For each vertex v, the level level(v) of v in the tree rooted at r.

Algorithm:

begin

rooting the tree

for each vertex v != r pardo

weight(v, p(v)) = -1
weight (p(v), v) 1

parallel prefix sum

for each vertex v pardo

if (v == r)
set level(v) = 0
else

set level(v) = prefix(p(v), v)

end

Fig. 21. Computing vertex level [30].

d. Computing Number of Descendants

This algorithm (Figure 22) also requires the parent information of each vertex, so
the rooting tree algorithm is used. For each edge in the pList, if it is an edge from
a vertex to this vertex’s parent, the weight is set to be 1, and otherwise is set to 0.
The prefix sum algorithm runs over the pList. Whenever an edge is from a child to
its parent, the number of descendants increases by 1, and an edge from a parent to
a child has no influence on final result. After the prefix sum, the difference of the
prefix sum between children to parent and parent to children equals to the number
of descendants at vertex itself. The number of descendants of the root is the number

of vertices in the tree minus 1.
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Input:

(1) A tree T defined as STAPL undirected pgraph

(2) An Euler Tour defined by the successor function s stored in pList pl
(3) Root vertex r

Output:
For each vertex v, the number of descendants size(v) of v in the tree rooted at r.

Algorithm:

begin

rooting the tree

for each vertex v != r pardo

weight(v, p(v)) =1
weight (p(v), v)

parallel prefix sum

for each vertex v pardo

if (v == r)
set size(v) = n-1(n is the num of vertices of tree)
else

set size(v) = prefix(v, p(v)) - prefix(p(v), v)

end

Fig. 22. Computing number of descendants [30].

e. Complexity Analysis

These applications are implemented using the generic algorithm under the STAPL
programming model. We add an extra phase to store the prefix sum value back to
the graph so that the value of an edge (u,v) can be accessed in constant time by the
edge (v,u) and vice versa. We use the same notation as in the complexity analysis
section of Euler Tour in STAPL. B refers to the total number of base containers in

pList.

Initiate weight : O(E;)

Prefix sum: O(log B) + O(E;)

Copy back to pGraph: O(E;) + O(C;) * O(Ty)

Computation: O(E;) + O(C;) * O(Ty)



Total Euler Tour Application Time: O(log B) + O(E;) + O(C;) * O(T).

o1
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CHAPTER VI

PERFORMANCE EVALUATION
Previous chapters show the pList interface, its design, and implementation and de-
scribe parallel algorithms using the pList. This chapter examines performance of
pList methods, generic algorithms (p_generate, p_foreach and p_accumulate) us-
ing pList, and specialized algorithms such as list ranking (LR-glob-sync, LR-pt2pt-
sync and LR-STAPL), and Euler Tour and four of its applications (rooting a tree,

postorder numbering, computing vertex level and number of descendants).

A. Machine Specification

We conducted our experimental studies on two architectures: an IBM cluster with
p575 SMP nodes available at Texas A&M University (P5-CLUSTER), and a Cray XT4
with quad core Opteron processors available at NERSC (CRAY). Table IV shows the
details of the configuration of each machine. In all experiments, a location contains

a single processor, and the terms can be used interchangeably.

B. pList Constructor and Memory Usage

In this section we discuss the performance of the different pList constructors. The
default pList constructor will be built with one base container per location and data
will be evenly distributed across all processors (locations). Constructors are also
provided to build the pList with multiple base containers per location and these
base containers can be linked together in a blocked or cyclic manner.

Figure 23 shows three different constructors with different numbers of base con-

tainers per location. The more base containers are specified, the more work it takes
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Table IV. Machine specifications about P5-CLUSTER and CRAY.

configuration CRAY P5-CLUSTER

Number of compute nodes 9,572 52

Processor cores per node 4 16

Number of compute processor | 38,288 832

cores

Processor Core type Opteron 2.3 GHz | 1.9GHz Powerb5+
Quad Core processor

System theoretical peak (compute | 352 TFlop/sec 6.3 TFlop/sec

nodes only)

Physical memory per compute | 8 GB 32 GB

node

Memory usable by applications | 7.38 GB 25 GB

per node

Switch Interconnect SeaStar2 2-plane HPS (IBM'’s

High  Performance

Switch)

Operating System SuSE SLES10 SP1 | AIX 5.3

Linux

to link all the base containers compared to the default constructor. And for the same
number of base containers specified per location, the cyclic distributed constructor
takes more communication time to link all of the base containers compared to a
blocked distributed constructor. The reason that the cyclic distributed constructor
and the blocked distributed constructor are similar is because the only difference is

the linkage structure of the blocks. The default constructor is slower because the
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Fig. 23. pList constructor. (a) Execution times of constructors using different number
of base containers per location in a default, blocked and cyclic distributed fashion (weak
scaling each processing unit has 20 millions). (b) Metadata size for the default, blocked and
cyclic constructor used in (a).

memory allocator takes more time to allocate a large chunk of memory than a num-
ber of small chunks of memory, which dominates the time to link all base containers.
The meta data is proportional to the number of base containers in one location. Since

each location contains 1 or 5000 base containers, thus the amount of meta data is the

same across all locations for each scenario.

C. pList Methods

1 evaluate_performance(N,P)

2 tm = stapl::start_timer(); //start timer

3 //insert N/P elements concurrently

4 for(i=0; i<N/P; ++i)

5 plist.push_anywhere(v[i]); //pre-generated value stored in vector v
6 rmi_fence(); //ensure all inserts are finished

7 elapsed = stapl::stop_timer(tm); //stop the timer

8 - Reduce elapsed times, getting the max time from all processors.

9 - Report the max time

Fig. 24. Kernel used to evaluate the performance of pList methods.

In this section we discuss the performance of the pList methods and the factors
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Fig. 25. pList methods comparison. (a) Splice for 5000 to 20000 base containers per
location. (b) Execution times for insert and insert_async when 1% and 2% of operations
are remote. (c¢) Execution times when all operations are executed locally (N=64 millions).
(d) Weak scaling for pList methods on large number of processors using 25 million elements
per processor.
influencing their running time. To evaluate the scalability of individual methods we
designed the kernel shown in Figure 24. The figure shows push_anywhere, but the
same kernel is used to evaluate all methods. For a given number of elements N,
all P available processors (locations) concurrently insert N/P elements. We report
the time taken to insert all N elements globally. The measured time includes the
cost of a fence call which, as stated in Section III, is more than a simple barrier.

Figure 25 shows the execution time of different pList methods. To evaluate the

splice method, we splice a pList with a fixed number of base containers per location
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into another pList. Figure 25(a) shows the execution time on P5-CLUSTER for the
splice operation for different numbers of base containers per location and for various
numbers of locations. As expected, the time increases linearly with the number
of spliced base containers, but increases only slowly with the number of processors
(almost constant), ensuring good scalability. In Figure 25(b) we show the execution
time for a mix of local and remote method invocations to highlight the advantages of
the asynchronous methods over the synchronous ones. When all methods are invoked
with the same percentage of remote operations, the insert method that returns an
iterator to the newly inserted element is on average slower than the insert_async
method, which does not return a value and can exploit message aggregation. Also for
the same method, the time increases as the percentage of remote operations increases.
In another study, all methods are executed locally and we observe in Figure 25(c) that
both synchronous and asynchronous methods exhibit scalable performance as they do
not incur any communication. In Figure 25(d) we show a weak scaling experiment we
performed on CRAY using 25 million elements per processor and up to 8192 processors
(104.8 billion method invocations performed globally). The push_anywhere methods
are faster than insert as they do not perform any additional searches to find the
position to add the element. The asynchronous versions are faster as they don’t

return an iterator to the newly added element.

D. pAlgorithms Comparison

In this section we present the performance of three generic non-mutating
pAlgorithms, p_generate, p_foreach, and p_accumulate, which store their data
in two different STAPL pContainers: pList and pArray. Generic pAlgorithms can

operate transparently on different data structures.
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Fig. 26. Execution times for p_foreach, p_generate, p_accumulate algorithms on CRAY
for different data structures.

The p_generate algorithm produces random values and assigns them to the ele-
ments in the container, the p_foreach increments the elements in the container with
a given constant. The p_accumulate accumulates all the elements in the container
using a generic map reduce operation available in STAPL.

For all the algorithms considered in this section, for both P5-CLUSTER and CRAY
(Figure A-1 in Appendix A shows results on P5-CLUSTER), we conducted weak scaling
experiments. Strong scaling would be difficult to evaluate due to the short execution
times of the algorithms even when run on very large input sizes.

In Figure 26, we show the execution times for the pAlgorithms on pArray and
pList. In Figure 26(a) we show a weak scaling experiment for pArray, a simple but
efficient static container for accessing data based on indices [10]. The experiment is
run with 20M elements per processors and all algorithms show good scalability. As
we scale from 128 to 8192 processors there is less than 5% performance degradation
for p_generate and p_foreach.

The pList is a dynamic pContainer optimized for fast insert and delete oper-
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Fig. 27. P5-CLUSTER: weak scaling for p_foreach allocating processes on the same nodes
when possible (curve a) or in different nodes (curve b). Experiments are for 20 million
elements/processor.
ations at the cost of a slower access time relative to static data structures such as
pArray. As seen in Figure 26(b), all three algorithms on a pList with 20M elements
per location provide good scaling with less than 10% performance degradation as we
scale from 128 to 8192 processors.

Figure 27 shows two weak scaling experiments on P5-CLUSTER for two different
processor allocation strategies. Each node of P5-CLUSTER has 16 processors. In
the figure, p_foreach-a represents the case where all processors are allocated on a
single node (possible for 1-16 processors). p_foreach-b represents the case where
we use cyclic allocation across 128 processors, e.g., 16 processors would be allocated
one per node, and in general, there will be P/8 processors allocated on each node
for P < 128. The reason why the two curves do not match is related to memory
bandwidth saturation within a node. In p_foreach-b, the nodes are fully utilized
only when running on 128 processors, while for p_foreach-a we use all processors in

a node when running on 16 processors or more. These experiments emphasize the
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importance of a good task placement policy on the physical processors.

pList/pVector Synthetic Workload, 10M initial elements
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Fig. 28. Comparison pList and pVector dynamic data structures using a mix of 10M
operations (read/write/insert/delete).

E. Comparison of Dynamic Data Structures in STAPL

In this section, we compare the performance of the pList and pVector for various
mixes of container operations (i.e., read(), write(), insert() and delete()). We show
that the proportion of operations that modify the container size has substantial effects
on runtime, demonstrating the utility of each and that care must be taken in selecting
the appropriate parallel data structure.

In Figure 28, we show results for both containers on the P5-CLUSTER for 16
processors and 10 million elements. We perform 10 million operations per container.
Each operation is either a read or write of the next element in the container, an
insertion at the current location, or deletion of the current element. These operations

are distributed evenly among the processors, which perform them in parallel. For
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these experiments, the combined number of insertions and deletions is varied from 0
to 2000, with the remaining operations being an equal number of reads and writes.
More insertions or deletions than this cause the runtime of the pVector to increase
dramatically.

As expected, the runtime of the pList remains relatively unchanged regardless
of the number insertions or deletions, as both operations execute in constant time.
The performance of the pVector bests the pList when there are no insertions or
deletions. However, at 1200 insertions/deletions, the heavy cost of the operations
(all subsequent elements must be shifted accordingly) causes the performance of the
two containers to crossover with the pList taking the lead. This experiment clearly
justifies the use of the pList in spite of not being truly random access containers like

the pVector .

F. List Ranking
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= ' E
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> ]
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(a) 1 bContainerper location (b) 80 bContainers per location

Fig. 29. List Ranking performance comparison (LR-glob-sync refers to Pointer Jumping
algorithm. LR-pt2pt-sync refers to point-to-point synchronization Pointer Jumping algo-
rithm. LR-STAPL refers to STAPL implementation of point-to-point synchronization Pointer
Jumping algorithm. The number means how many bContainers per location).
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Figure 29 shows the performance of different versions of the parallel list ranking
algorithm performed on different numbers of processors by using different numbers of
base containers per location. The larger the number of base containers per location the
more computation needs to be performed requiring longer computation time (section
A in chapter V). The LR-glob-sync is slower because of the global synchronization
performed at each step. The LR-STAPL is getting slower than the LR-pt2pt-sync with
the number of base containers increases because LR-STAPL needs to create the work
function and the view dynamically first and then perform the algorithm compared to
LR-pt2pt-sync which uses lower level MPI primitives directly. The LR-STAPL are
implemented using high level representations under the STAPL programming model

which is more general and natural to express the algorithm.

G. Euler Tour and Its Application

The Euler Tour (ET) is an important representation of a graph for parallel processing.
Since the ET represents a depth-first-search traversal, when it is applied to a tree it
can be used to compute a number of tree functions such as rooting a tree, postorder

numbering, vertex levels, and number of descendants [30].

1. Euler Tour

The parallel ET constructor algorithm [30] tested here uses a pGraph to represent
the tree and a pList to store the final Euler Tour. In parallel, the algorithm exe-
cutes traversals on the pGraph view and generates ET segments that are stored in
a temporary pList. Then, the segments are linked together to form the final pList
containing the ET.

Performance is evaluated by a weak scaling experiment on CRAY using as input
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Fig. 30. Euler Tour with two different types of trees.

a tree distributed across all locations. We consider two types of trees. One is a
binary tree of binary tree that is generated by first building a specified number of
binary trees in each location and then linking the roots of these trees in a binary tree
fashion. The number of remote edges is at most six times the number of subtrees
for each location (for each subtree root, one to its root and two to its children in
each location, with directed edges in both directions). The second tree was simply
a list. Figure 30(a) shows the execution time on CRAY for different sizes of the tree
and varying numbers of subtrees. The running time increases with the number of
vertices per location because the number of edges in the computed ET increases
correspondingly. When there are more subtrees specified in each location, there is
more communication required to link them. The same analysis applies to lists graph

too (Figure 30(b)) which simply links all the vertices to form a list.
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2. Euler Tour Application

The tree ET applications are computed using a generic algorithm which first initializes
each edge in the tour with a corresponding weight, and then performs the prefix sum
algorithm. The prefix sum result for each edge is copied back to the graph, and the
final step computes the desired result. For more details please refer to Chapter V.
Figure 31(a,b,c,d) shows the execution time for rooting the tree, computing the
posorder numbering, vertex level and number of descendants using tree graph which is
generated the same way as in ET section. The running time increases with the number
of vertices per location because the number of edges increases and the computation
cost is proportional to the number of edges. When more subtrees are specified per
location, more segments are formed in the pList and more communication is needed
for the prefix sum. Rooting the tree is faster than the other three applications because
the initialization phase simply assigns each edge a weight of 1 compared to others
which have to check for the parent information and then assign the corresponding

weight. The same analysis applies to the list graph (Figure 31(e,f,g,h)).



Execution Times(sec) Execution Times(sec)

Execution Times(sec)

Execution Times(sec)

3 rooting tree 500K 1 —+—
25 | rooting tree 500K 50 -

) rooting tree IM 1 ---#&--

5 rooting tree 1M 50 ---@-

O L L L L L L
128 256 512 1024 2048 4096 819216384
Num Procs

(a)

postorder numbering 500K 1 —+—
3.5 | postorder numbering 500K 50 -3
postorder numbering 1M 1 ---#--
37 postorder numbering 1M 50 ---®-

25
2,
[ ]
15
1,
P

05

O L L L L L L
128 256 512 1024 2048 4096 819216384
Num Procs

(b)

4 T T T T : -
vertex level 500K 1 —+—
35 vertex level 500K 50 -
vertex level 1M 1 -~

3 vertex level IM 50 ---®-
25t ‘

2t R
.»L_“.,,,,,';_.w,.,”ﬂ.»f—»f.””

0 1 1 1 1 1 1
128 256 512 1024 2048 4096 819216384
Num Procs

()

num descendants 500K 1 —+—
3.5 num descendants 500K 50 -3
num descendants 1IM 1 ---#--
37 num descendants 1M 50 ---®-

O L L L L L L
128 256 512 1024 2048 4096 819216384
Num Procs

(d)

Execution Times(sec) Execution Times(sec) Execution Times(sec)

Execution Times(sec)

7 ! ! . ! . !
rooting tree 2M 1 —+—

6 rooting tree 2M 1000 -
rooting tree IM 1 ---#--

5 rooting tree 1M 1000 ---®-

4 « % e ¥ H —

3

2

1

O L L L L L L
128 256 512 1024 2048 4096 8192 16384
Num Procs

()

postorder numbering 2M 1 —+—
postorder numbering 2M 1000 -3
8 postorder numbering 1M 1 ---#--
postorder numbering 1M 1000 ---®-

O L L L L L L
128 256 512 1024 2048 4096 819216384
Num Procs

vertex level 2M 1 —+—
vertex level 2M 1000 -

8 vertex level IM 1 -~
vertex level 1M 1000 ---®-

O 1 1 1 1 1 1
128 256 512 1024 2048 4096 819216384
Num Procs

(2)

10 num descendants 2M 1 —+—

num descendants 2M 1000 -

8 num descendants 1IM 1 ---#--
num descendants 1M 1000 ---®-

e e e e

O L L L L L L
128 256 512 1024 2048 4096 819216384
Num Procs

()

Fig. 31. Euler Tour application.

64



65

CHAPTER VII

CONCLUSION

In this thesis, we presented the STAPL pList, a distributed data structure optimized
for fast dynamic operations such as push_anywhere, push_back, and erase. We
described the design and implementation of the pList, whose methods include coun-
terparts of the STL list container methods, and new methods that provide improved
parallel performance. Our experimental results on a variety of architectures show that
pList provides good scalability and compares favorably with other STAPL dynamic
pContainers.

We also described the design and implementation of various parallel algorithms
using the pList such as list ranking, Euler Tour and some of its applications (root-
ing a tree, postorder numbering, computing vertex level and computing number of
descendants).

We have demonstrated that pList is a generic and dynamic parallel container
which is appropriate to work with for certain parallel algorithms.

In the future, we would like to use and evaluate the pList in real world applica-
tions. According to the needs of those applications, more methods can be designed
and implemented. Also if there is any other generic and more efficient list than
the STL list available in the future, then we can use it instead of our current base

container for improved performance.
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Fig. A-8. (a) Weak scaling of representative methods using 20M method invocations per
location. (b) Weak scaling of erase methods with 5 million invocations per location. (c)
Splice method with different number of base containers per location. (d) Split method with
worst case scenario. (e) Redistribution method using 1M elements 1000 base containers per

location.
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STL LIST INTERFACE

Table B-I. STL List Interface
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Members Complexity Where defined
value_type O(1) Container
pointer (1 Container
reference (1 Container
const_reference (1 Container
size_type (1 Container
difference_type (1 Container
iterator (1 Container
const_iterator (1 Container

reverse_iterator

—
—_

Reversible Container

const_reverse_iterator

Reversible Container

iterator begin() (1 Container
iterator end() (1 Container
const_iterator begin() const (1 Container
const_iterator end() const (1 Container

reverse_iterator rbegin()

—
—_

Reversible Container

reverse_iterator rend()

—
—_

Reversible Container

const_reverse_iterator rbegin() const

—
—_

Reversible Container

const_reverse_iterator rend() const

OIOI0IQ|O|0|0Q|0Q|0|0|0|10|0|0| O
—

—
—_

Reversible Container

size_type size() const O(1) or O(N) Container
size_type max_size() const O(1) or O(N) Container
bool empty() const O(1) Container
list() O(1) Container
list(size_type n) O(N) Sequence
list(size_type n, const T& t) O(N) Sequence
list(const list&) O(N) Container
list(Inputlterator f, Inputlterator 1) O(N) Sequence
list() O(N) Container
list& operator=(const list&) O(N) Container
reference front() O(1) Front Insertion Sequence
const_reference front() const O(1) Front Insertion Sequence
reference back() O(1) Sequence
const_reference back() const O(1) Back Insertion Sequence
void push_front(const T&) O(1) Front Insertion Sequence
void push_back(const T&) O(1) Back Insertion Sequence
void pop_front() O(1) Front Insertion Sequence
void pop_back() O(1) Back Insertion Sequence




Table B-I continued. STL List Interface

Members Complexity | Where defined
void swap(list&) O(1) Container
iterator insert(iterator pos, const T& x) O(1) Sequence
void insert(iterator pos, Inputlterator f, O(N) Sequence
Inputlterator 1)

void insert(iterator pos, size_type n, O(N) Sequence
const T& x)

iterator erase(iterator pos) O(1) Sequence
iterator erase(iterator first, iterator last) O(N) Sequence
void clear() O(N) Sequence
void resize(n, t = T()) O(N) Sequence
bool operator==(const list&, const O(N) Forward Container

list&)

bool operator< (const list&, const list&) O(N) Forward Container
void splice(iterator position, list& x) O(1) list
void splice(iterator position, list& x, iter- O(1) list
ator 1)

void splice(iterator position, list& x, iter- O(1) list
ator f, iterator 1)

void remove(const T& val) O(N) list
void remove_if(Predicate p) O(N) list
void unique() O(N) list
void unique(BinaryPredicate p) O(N) list
void merge(list& x) O(N) list
void merge(list& x, BinaryPredicate O(N) list
Comp)

void reverse() O(N) list
void sort() O(NlogN) list
void sort(BinaryPredicate comp) O(NlogN) list
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