
THE STAPL PLIST

A Thesis

by

XIABING XU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2010

Major Subject: Computer Science

THE STAPL PLIST

A Thesis

by

XIABING XU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Nancy M. Amato
Committee Members, Lawrence Rauchwerger

Marvin L. Adams
Jennifer L. Welch

Head of Department, Valerie E. Taylor

December 2010

Major Subject: Computer Science

iii

ABSTRACT

The STAPL pList. (December 2010)

Xiabing Xu, B.S., Jilin University, P.R.China

Chair of Advisory Committee: Dr. Nancy M. Amato

We present the design and implementation of the Standard Template Adap-

tive Parallel Library (stapl) pList, a parallel container that has the properties of

a sequential list, but allows for scalable concurrent access when used in a paral-

lel program. The stapl is a parallel programming library that extends C++ with

support for parallelism. stapl provides a collection of distributed data structures

(pContainers) and parallel algorithms (pAlgorithms) and a generic methodology

for extending them to provide customized functionality. stapl pContainers are

thread-safe, concurrent objects, providing appropriate interfaces (pViews) that can

be used by generic pAlgorithms.

The pList provides Standard Template Library (stl) equivalent methods, such

as insert, erase, and splice, additional methods such as split, and efficient asyn-

chronous (non-blocking) variants of some methods for improved parallel performance.

List related algorithms such as list ranking, Euler Tour (ET), and its applications to

compute tree based functions can be computed efficiently and expressed naturally

using the pList.

Lists are not usually considered useful in parallel algorithms because they do

not allow random access to its elements. Instead, they access elements through a

serializing traversal of the list. Our design of the pList, which consists of a collec-

tion of distributed lists (base containers), provides almost random access to its base

containers. The degree of parallelism supported can be tuned by setting the number

iv

of base containers. Thus, a key feature of the pList is that it offers the advantages

of a classical list while enabling scalable parallelism.

We evaluate the performance of the stapl pList on an IBM Power 5 cluster and

on a CRAY XT4 massively parallel processing system. Although lists are generally not

considered good data structures for parallel processing, we show that pList methods

and pAlgorithms, and list related algorithms such as list ranking and ET technique

operating on pLists provide good scalability on more than 16, 000 processors. We

also show that the pList compares favorably with other dynamic data structures

such as the pVector that explicitly support random access.

v

To my wife and my parents

vi

ACKNOWLEDGMENTS

I want to thank my advisor, Dr. Nancy Amato, for her supervision and support

over the last three years. I joined the group in 2007, and later Dr. Nancy Amato

suggested that I work in the research area related to parallel computing. I found this

to be an interesting subject, full of challenge, and I enjoy it a lot. Dr. Amato was very

supportive when I decided to change from a Ph.D. program to a master’s program in

order to stay close with my wife. I appreciate Dr. Amato very much for supporting

my decision.

I also want to thank Dr. Lawrence Rauchwerger, Dr. Jennifer Welch and Dr.

Marvin Adams for suggestions and help on research. Their comments and feedback

on the thesis were helpful.

Gabriel Tanase, who is a senior student in our group, has given me lots of help

since I joined the group. He is very nice and patient with all my questions, and

behaves like a teacher and a close friend all the time.

I also want to thank every member in the STAPL group who also helped me. I

could not have finished this work without their help.

I would like to thank my parents for their consistent support. Finally, I want

to thank my wife for being an assistant in my life and always supporting whatever I

want to do.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Our Contribution . 2

B. Outline of Thesis . 4

II PRELIMINARIES AND RELATED WORK 5

A. Preliminaries . 5

1. Linked List Data Structure 5

2. STL List . 7

B. Related Work . 8

1. Concurrent Data Structures 8

2. List Algorithms . 11

III STAPL . 13

A. Parallel Languages and Libraries 13

B. stapl Overview . 14

C. Parallel Container Framework (PCF) [45] 16

D. PCF Design . 17

1. Shared Object View 19

IV STAPL PLIST . 22

A. pList Interface . 22

1. Complexity of Methods 25

B. pList Design and Implementation 26

1. Base Container . 26

2. Global Identifiers (GID) 27

3. Domain . 28

4. Data Distribution . 28

5. pView . 29

6. Implementation of pList Methods 30

C. pList Advanced Methods 30

1. Splice . 31

2. Split . 32

V LIST RELATED ALGORITHMS 34

viii

CHAPTER Page

A. List Ranking . 34

1. List Ranking via Pointer Jumping with Global

Synchronization (LR-glob-sync) 35

2. List Ranking via Pointer Jumping with Point-to-

point Synchronization (LR-pt2pt-sync) 36

3. List Ranking in STAPL (LR-STAPL) 38

B. Euler Tour and Its Applications 39

1. ET Technique Overview 41

a. ET Construction 41

b. ET Technique . 42

2. ET in STAPL . 43

a. Complexity Analysis 45

3. ET Application in STAPL 46

a. Rooting a Tree 46

b. Postorder Numbering 47

c. Computing Vertex Level 48

d. Computing Number of Descendants 49

e. Complexity Analysis 50

VI PERFORMANCE EVALUATION 52

A. Machine Specification . 52

B. pList Constructor and Memory Usage 52

C. pList Methods . 54

D. pAlgorithms Comparison 56

E. Comparison of Dynamic Data Structures in stapl 59

F. List Ranking . 60

G. Euler Tour and Its Application 61

1. Euler Tour . 61

2. Euler Tour Application 63

VII CONCLUSION . 65

REFERENCES . 66

APPENDIX A . 72

APPENDIX B . 79

VITA . 81

ix

LIST OF TABLES

TABLE Page

I Concurrent data structure related work comparison. CAS: com-

pare and swap operation. nE : the average number of elements in

the list during any execution E. cE : the average operation con-

tention during E. mE : the total number of operations invoked

during E. 9

II STL equivalent methods of the pList. P : the number of lo-

cations; Mi: the number of base containers in one location; N :

the total number of elements in the list; TB(N): the time of a

broadcast communication of N elements; TR(N): the time of a

reduction communication of N elements; Tǫ: the time of a single

message communication time. 23

III Non-STL equivalent methods of the pList. P : the number of

locations; M : the total number of base containers in pList; N :

the total number of elements in the list; TB(N): the time of a

broadcast communication of N elements; Tǫ: the time of a single

message communication time in the following sections. 24

IV Machine specifications about P5-cluster and cray. 53

x

LIST OF FIGURES

FIGURE Page

1 Example of a singly (a) and a doubly (b) linked list. A, B and C

represent the data of each node. Each arrow represents a pointer

to the previous or next node. 6

2 Result lists of applying methods insert, delete, splice and split to

the doubly linked list in Figure 1(b). 6

3 STAPL overview. 13

4 PCF design. 17

5 pContainer modules for performing address resolution to find the

element reference corresponding to a given GID. 19

6 Example of pContainer modules for performing address resolu-

tion to find the element reference corresponding to a given GID. . . . 21

7 pList method implementation. 30

8 pList splice pList implementation. 31

9 pList splice range implementation. 32

10 pList split implementation. 33

11 LR-glob-sync pointer jumping algorithm for list ranking. 35

12 Illustration of the LR-glob-sync algorithm. (a) A list with eight

elements. (b) The result after the first jump. (c) The result after

the second jump. (d) The result after the third jump. 37

13 LR-pt2pt-sync algorithm. 38

14 LR-STAPL algorithm. 40

15 Euler Tour example. 42

xi

FIGURE Page

16 Generic algorithm of Euler Tour applications. 43

17 Euler Tour [30] construction. 44

18 Euler Tour [30] linking. 45

19 Rooting a tree [30]. 47

20 Postorder numbering [30]. 48

21 Computing vertex level [30]. 49

22 Computing number of descendants [30]. 50

23 pList constructor. (a) Execution times of constructors using dif-

ferent number of base containers per location in a default, blocked

and cyclic distributed fashion (weak scaling each processing unit

has 20 millions). (b) Metadata size for the default, blocked and

cyclic constructor used in (a). 54

24 Kernel used to evaluate the performance of pList methods. 54

25 pList methods comparison. (a) Splice for 5000 to 20000 base

containers per location. (b) Execution times for insert and

insert async when 1% and 2% of operations are remote. (c)

Execution times when all operations are executed locally (N=64

millions). (d) Weak scaling for pList methods on large number

of processors using 25 million elements per processor. 55

26 Execution times for p foreach, p generate, p accumulate algo-

rithms on cray for different data structures. 57

27 P5-cluster: weak scaling for p foreach allocating processes on

the same nodes when possible (curve a) or in different nodes (curve

b). Experiments are for 20 million elements/processor. 58

28 Comparison pList and pVector dynamic data structures using a

mix of 10M operations (read/write/insert/delete). 59

xii

FIGURE Page

29 List Ranking performance comparison (LR-glob-sync refers to

Pointer Jumping algorithm. LR-pt2pt-sync refers to point-to-

point synchronization Pointer Jumping algorithm. LR-STAPL

refers to stapl implementation of point-to-point synchroniza-

tion Pointer Jumping algorithm. The number means how many

bContainers per location). 60

30 Euler Tour with two different types of trees. 62

31 Euler Tour application. 64

1

CHAPTER I

INTRODUCTION

Parallel programming is becoming mainstream due to the increased availability of

multiprocessor and multicore architectures and the need to solve larger and more

complex problems. To help programmers address the difficulties of parallel program-

ming, we are developing the Standard Template Adaptive Parallel Library (stapl)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

stapl is a parallel C++ library with functionality similar to stl, the C++ Stan-

dard Template Library. stl is a collection of basic algorithms, containers and itera-

tors that can be used as high-level building blocks for sequential applications. stapl

provides a collection of parallel algorithms (pAlgorithms), parallel and distributed

containers (pContainers), and pViews to abstract the data access in pContainers.

These are the building blocks for writing parallel programs using stapl. An im-

portant goal of stapl is to provide a high productivity development environment for

applications that can execute efficiently on a wide spectrum of parallel and distributed

systems.

pContainers are collections of elements that are distributed across a parallel ma-

chine and support concurrent access. stapl provides a unified approach for develop-

ing pContainers. It uses object-oriented technology to build distributed thread-safe

containers that can easily be extended and customized. This approach allows us to

provide a large variety of pContainers such as pArray [10], pMatrix[4], associative

containers such as pMap and pSet [8], pVector and pGraph.

Distributed and concurrent data structures are an active research area that has

The journal model is IEEE Transactions on Automatic Control.

2

received significant attention. However, most of the research focuses on array-like

static data structures. Due to their intuitively sequential structure, linked list data

structures have presented a challenge to be used efficiently in parallel, and consider-

able effort has been devoted to designing efficient concurrent linked list data structures

[12, 13, 14, 15, 16, 17].

A. Our Contribution

In this thesis, we present the design and implementation of the stapl pList, a

parallel container that has the properties of a sequential list, but allows for scalable

concurrent access when used in a parallel program. In particular, the pList is a

distributed doubly linked list data structure that is the stapl parallel equivalent of

the stl list container. The pList interface includes threadsafe methods that are

counterparts of the stl list such as insert, erase, and splice, additional methods such

as split, and asynchronous (non-blocking) variants of some methods for improved

performance in a parallel and concurrent environment. As described in more detail

before, a summary of our contributions includes:

• a novel design that supports an arbitrary and tunable degree of random access

to match desired degree of parallelism;

• interfaces that enable the natural expression of list related algorithms that are

efficient to execute.

Lists are not usually considered useful in parallel algorithms because they do

not allow random access to its elements. Instead, they access elements through a

serializing traversal of the list. Our design of the pList, which consists of a collec-

tion of distributed lists (base containers), provides almost random access to its base

containers. The degree of parallelism supported can be tuned by setting the number

3

of base containers. Thus, a key feature of the pList is that it offers the advantages

of a classical list while enabling scalable parallelism.

List related algorithms are shown to be expressed naturally using pList. Un-

der the stapl programming model, an algorithm is expressed as a combination of

work function and data. Algorithms such as list ranking, Euler Tour (ET) and its

applications all can be naturally expressed using this model. In this thesis, we ex-

amine various list ranking algorithms including a classic pointer jumping algorithm,

a point-to-point synchronized version of the pointer jumping algorithm and an im-

plementation of later in stapl. We also describe an implementation of the classic

ET technique in stapl, that uses a list ranking algorithm internally. We study the

Euler Tour and four of its applications including rooting a tree, postorder numbering,

computing vertex level and computing the number of descendants.

We evaluate the performance of the pList on an IBM Power5 cluster and an

Opteron-based CRAY XT supercomputer. We analyze the running time and scala-

bility of different pList methods as well as the performance of different algorithms

using pList as data storage. We also compare the pList to the pArray and pVector

to understand the relative trade-offs of the various data structures. Our results show

that the pList outperforms the pVector when there are a significant number of in-

sertions or deletions. List ranking, Euler Tour (ET) computation and use of the ET

technique to compute tree based functions such as rooting a tree, postorder num-

bering, computing vertex level and computing the number of descendants are are

evaluated to show scalable performance when the pList is used as the intermediate

data structure.

4

B. Outline of Thesis

Chapter II describes related work to this research area. Chapter III gives an overview

of stapl and its components. Chapter IV describes the design and implementa-

tion of the pList, and its interface. Chapter V illustrates how list ranking can be

implemented using our pList, and the application of the pList in the Euler Tour

technique and its applications to compute tree based functions. Chapter VI shows

the performance of the pList methods and of applying different parallel algorithms

on the pList. Chapter VII concludes this work.

Portion of this work has been published as “stapl: Standard Template Adaptive

Parallel Library” in May 2010 [3] and “The stapl pList” in October 2009 [9].

5

CHAPTER II

PRELIMINARIES AND RELATED WORK

This chapter presents preliminaries and related work. Preliminaries first describes in

general the linked list data structure and its characteristics. The Standard Template

Library (STL) List which is a generic linked list data structure is then introduced.

Related work discusses previous work on concurrent data structures, parallel pro-

gramming languages and parallel libraries, and list related algorithms such as list

ranking and Euler Tour.

A. Preliminaries

This section presents the basics of the linked list data structure and the STL (Standard

Template Library) list.

1. Linked List Data Structure

The linked list in its most basic form is a collection of elements that together form a

linear ordering. There are different variants such as a singly linked list, doubly linked

list and circularly linked list [18]. Each element of the linked list is called a node

which stores the data and pointers. Singly linked list only stores pointers to next

node (Figure 1(a)) and doubly linked list stores pointers to previous and next node

(Figure 1(b)). The first and last node of a linked list are called the head and tail

of the list, respectively. The elements of the list can be traversed by following the

pointers to next node.

The linked list is one of the fundamental data structures which is developed as

early as 1960s [19, 20]. It plays a very important role in real world applications and

is used by many areas such as the file system in many operating systems, genetic

6

(a) singly linked list

(b) doubly linked list

Fig. 1. Example of a singly (a) and a doubly (b) linked list. A, B and C represent the data
of each node. Each arrow represents a pointer to the previous or next node.

algorithms, built in data structures in languages such as Lisp and Scheme, and serves

as the basic data structure for other data structures such as stacks. Also many

variants have been proposed and implemented to obtain better performance.

Given a doubly linked list (Figure 1(b)) the previous node of head and the

next node of tail point to a sentinel node (NULL in most implementations). Such a

common doubly linked list has many characteristics (same for singly linked list) :

(a) insert D before C

(b) delete B

(c) splice another list with D,E to current list before C

(d) split current list to two lists at C

Fig. 2. Result lists of applying methods insert, delete, splice and split to the doubly linked
list in Figure 1(b).

7

• Given a pointer to a specific node, insertion of an element at a specific node

is a constant time operation. (Given a pointer to C, insertion of D results in

Figure 2(a). Four operations to perform: update next pointer of B to point D;

set previous pointer of D to B; update previous pointer of C to point D; set

next pointer of D to C.)

• Given a pointer to a specific node, deletion of an element at a specific node

is a constant time operation. (Given a pointer to B, deletion of B results in

Figure 2(b). Three operations to perform: update next pointer of A to point c;

update previous pointer of C to point A; delete B.)

• Given a pointer to a specific node of list1, splice list2 before that node is a

constant time operation. (Given a pointer to C, splice another list with D,E

results in Figure 2(c). Four operations to perform: update next pointer of B to

point D; set previous pointer of D to B; update previous pointer of C to point

E; set next pointer of E to C.)

• Given a pointer to a specific node, split one list to two lists at that node is a

constant time operation. (Given a pointer to C, split current list results in two

lists Figure 2(d). Four operations to perform: update next pointer of B to the

sentinel node; set previous pointer of D to B; update previous pointer of C to

point D; set next pointer of D to C.)

• Does not support random access. (In order to access C, you have to start from

A, traverse the list by following pointer to next node until reach C)

• Maybe slow to traverse because elements maybe scattered in memory.

2. STL List

The STL list is one of the many generic containers provided by the Standard Template

Library (STL). It is a doubly linked list which supports both forward and backward

8

traversal and special methods such as splice which are constant time operations. Also

splice does not invalidate the iterators (iterators are a generalization of pointers: they

are objects that point to other objects) to list elements and deletion only invalidates

iterators to elements that are deleted.

Compared to other STL containers such as the vector and deque, the STL list has

several differences: Insertions and deletions at any position in a list are constant time

operations, not just at one or both ends; Insertions never invalidate any iterators,

and deletions invalidate only iterators that refer to the deleted element. The lack of

random access means that many of the STL generic algorithms cannot operate on

lists, including random shuffle, random sample, nth element, make heap, is

heap, sort heap, sort, stable sort, partial sort.

When many insertions or deletions are required in interior positions and when

random access is not needed, then the list data structure may be a good choice.

B. Related Work

1. Concurrent Data Structures

Significant research has been done in the area of distributed and concurrent data

structures. Most of this effort focuses on how to implement concurrent objects using

different locking primitives or how to implement concurrent data structures without

locking, namely lock free data structures [12, 13, 14, 15, 16, 17, 21, 22]. Table I

summarizes the previous work, shows the operations the data structures provide, the

architectures they support, and the primitives they use.

Valois [12] was the first to present a non-blocking singly-linked list data structure

by using the Compare&Swap (CAS) synchronization primitives rather than locks.

The basic idea is to use auxiliary nodes between each ordinary node to solve the

9

Table I. Concurrent data structure related work comparison. CAS: compare and swap operation. nE: the average number of
elements in the list during any execution E. cE: the average operation contention during E. mE : the total number of operations
invoked during E.

Paper Operations Architecture Primitives Complexity

Paul [22] (Lock-based concur-
rent list)

Insert front end,
traverse

shared Lock-based Worst case amortized
cost is linear in length
of list plus contention

Valois [12] (First lock free
algo. Uses auxiliary nodes be-
tween each node)

Insert delete
anywhere,
traverse

shared Using Single CAS synchro-
nization primitive

Ω(mE) [16]

Harris [14] (Two CAS opera-
tions used, one to mark and
the other one to delete)

Insert delete
anywhere,
traverse

shared Using Double CAS syn-
chronization primitive

Ω(nEcE) [16]

Michael [15] (First CAS-based
lock-free list-based set algo)

Insert delete
anywhere,
traverse

shared CAS-based, compatible
with all lock-free memory
management methods

Worst case amortized
cost is linear in length
of list plus contention

Fomitchev [16] (Combination
of the technique of marking
node and backlink pointers)

Insert delete
anywhere,
traverse

shared Using Single CAS synchro-
nization primitive

Ω(nE + cE)

Tanase [9] (stapl pList) Insert, delete,
traverse, etc.

shared & distributed Lock-based Table III

10

concurrent issues. Subsequently Michael and Scott [13] fixed a known bug in [12].

Later, Harris [14] proposed another lock-free implementation. Two CAS opera-

tions are used in this implementation to deal with the problem of concurrent insertion

and deletion. The first one is used to mark the next field of the deleted node and the

second one is used to delete the node. If during the deletion a concurrent insertion

accesses the marked field of the deleted node, it should halt the insertion and retry

later. It will proceed successfully if it tries after the second CAS and before any other

list operation. The correctness is proved and also a comparison with Valois [12]’s

algorithm and the lock-based implementation is done. The result shows that Harris’s

algorithm has better performance compared to previous algorithms.

Another lock-free linked list was proposed by Michael [15]. It points out that

previous work for non-blocking data structures shows many drawbacks including size

inflexibility, dependence on some primitives not supported in hardware, and depen-

dence on some inefficient memory management techniques. In this paper, the author

first proposes a CAS-based lock-free list-based set algorithm which is compatible with

all lock-free memory management methods. Experimental results shows that in all

lock-free cases, the new algorithm has better performance by a factor of 2.5 or more

compared to [14].

Fomitchev [16] showed a linked list based on the techniques of node marking

[14] and using backlink pointers [17]. A marking bit is used the same way as in

[14] to mark the next field of a deleted node. A backlink pointer is used to track

the predecessor of the deleted node so that other operations can proceed efficiently.

A flag bit is used to indicate the next node in the list that is going to be deleted.

Improved performance in [16] derives from the coordinated use of the marking bit,

backlink pointer and flag bits.

In summary, previous work focuses on different concurrent list implementations

11

for shared memory architectures, emphasizing the benefits of non-blocking implemen-

tations in comparison with lock based solutions. In contrast, the pList and the other

stapl pContainers are designed to be used in both shared and distributed memory

environments. By default pList and other pContainers use lock based solutions,

but non-blocking concurrent data structures discussed can be integrated into stapl

as customization for current design.

2. List Algorithms

List ranking is a fundamental technique used in many parallel algorithms. The list

ranking problem is to compute the distance of each list element from the head or tail

of the list. Sequentially, it can be done by simply traversing the list from beginning to

the end. Much research effort has been devoted to solving this problem efficiently in

parallel [23, 24, 25, 26, 27, 28, 29]. Wyllie [27] proposed the first parallel list ranking

algorithm which is based on the Pointer Jumping technique. When P is equal or larger

than N where P is the number of processors and N denotes the number of elements

stored in the list, it takes O(log N) time using O(N log N) operations running on

EREW PRAM. When P is less than N and each processor with N

P
elements, it

takes O(N

P
+ log P) time and O(N + P log P) work. After that, many parallel list

ranking algorithms were proposed to improve the work or time. The first optimal

O(log N) time and O(N) work algorithm using N

log N
processors running on EREW

PRAM model was proposed in [28]. And another optimal O(log N) time and O(N)

work algorithm using N

log N
processors under EREW PRAM model is described by [23]

later. Another O(N

P
) time and (N) work optimal algorithm where P is equal or less

than N

log N
for CRCW PRAM model is presented in [29].

The Euler Tour (ET) is an important representation of a graph for parallel pro-

cessing, since the ET represents a depth-first-search (DFS) traversal and no other

12

efficient parallel DFS exists so far. The ET of a tree can be used to compute a num-

ber of tree functions such as rooting the tree, postorder numbering, vertex levels, and

number of descendants [30]. Tarjan and Vishkin [31] first proposed a constant time

and linear work algorithm under EREW PRAM model to compute an ET that needs

an additional pointer from an edge to its reverse edge in the tree’s adjacency lists.

Later, Cong and Bader [32] described another algorithm to compute the Euler Tour

when the pointer is not given in the adjacency list.

13

CHAPTER III

STAPL

stapl [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] is a framework for parallel C++ code devel-

opment; see Fig. 3. Its core is a library of C++ components implementing parallel

algorithms (pAlgorithms) and distributed data structures (pContainers) that have

interfaces similar to the (sequential) C++ standard library (stl) [33]. Analogous to

stl algorithms that use iterators, stapl pAlgorithms are written in terms of pViews

so that the same algorithm can operate on multiple pContainers. The pRange is the

stapl concept used to represent a parallel computation which is essentially a task

dependence graph. The runtime system (RTS) and its communication library ARMI

(Adaptive Remote Method Invocation [7, 34]) provide the interface to the underlying

operating system, native communication library and hardware architecture.

User Application Code

pAlgorithms Views

pRange

Run-time System

Pthreads, OpenMP, MPI, Native, ...

A
da

pt
iv

e
F

ra
m

ew
or

k

Scheduler Executor Performance
Monitor

ARMI Communication
 Library

pContainers

Fig. 3. STAPL overview.

A. Parallel Languages and Libraries

There are several parallel languages and libraries that have similar goals as stapl

[35, 36, 37, 38, 39, 40]. While a large amount of effort has been put into making

array-based data structures suitable for parallel programming, more dynamic data

14

structures that allow insertion and deletion of elements have not received as much

attention. The PSTL (Parallel Standard Template Library) project [41] explored

the same underlying philosophy as stapl of extending the C++ stl for parallel

programming. They planned to provide a distributed list, but the project is no longer

active. Intel Threading Building Blocks (TBB) [42] provide thread-safe containers

such as vectors, queues and hashmaps for shared memory architectures, but they do

not provide a parallel list implementation. Parallel languages such as Chapel [43]

(developed by CRAY), X10 [44] (developed by IBM), and many others are all aiming

to ease parallel programming and to improve productivity for parallel application

development. However, most of these languages only provide high level constructs

such as multi-dimensional arrays and facilities to specify the distribution of the arrays.

A major difference between stapl and all these new programing languages is that

stapl is a parallel programming library that is written in standard C++ thus making

it compatible with existing applications.

B. stapl Overview

stapl pContainers are distributed, thread-safe, concurrent objects, i.e., shared ob-

jects that provide parallel methods that can be invoked concurrently. They are com-

posable and extendible by users via inheritance. Currently, stapl provides coun-

terparts of all stl containers (e.g., pArray, pVector, pList, pMap, etc.), and two

pContainers that do not have stl equivalents: parallel matrix (pMatrix) and paral-

lel graph (pGraph). pContainers are made of a set of bContainers, that are the basic

storage components for the elements, and distribution information that manages the

distribution of the elements across the parallel machine.

15

pContainers provide methods corresponding to those provided by the stl con-

tainers, and some additional methods specifically designed for parallel use. For ex-

ample, stapl provides an insert async method that can return control to the caller

before its execution completes, or an insert anywhere that does not specify where an

element is going to be inserted and is executed asynchronously. While a pContainer’s

data may be distributed, pContainers offer the programmer a shared object view, i.e.,

they are shared data structures with a global address space. This is supported by

assigning each pContainer element a unique global identifier (GID) and by providing

each pContainer an internal translation mechanism which can locate, transparently,

both local and remote elements. The physical distribution of pContainer data can

be determined automatically by stapl or it can be user-specified.

stapl algorithms are written in terms of pViews [1], which provide a generic

access interface to pContainer data by abstracting common data structure concepts.

Briefly, pViews allow the same pContainer to present multiple interfaces, e.g., en-

abling the same pMatrix to be ‘viewed’ (or used) as a row-major or column-major

matrix, or even as a vector. stapl pViews generalize the iterator concept — a pView

corresponds to a collection of elements and provides an ADT for the data it represents.

stapl pViews enable parallelism by providing random access to the elements, and

support for managing the trade-off between the expressivity of the pViews and the

performance of the parallel execution. pViews trade additional parallelism enabling

information for reduced genericity.

The pRange is the stapl concept used to represent a parallel computation. In-

tuitively, a pRange is a task graph, where each task consists of a work function and a

view representing the data on which the work function will be applied. The pRange

provides support for specifying data dependencies between tasks that will be enforced

during execution.

16

The runtime system (RTS) and its communication library ARMI (Adaptive Re-

mote Method Invocation) provide the interface to the underlying operating system,

native communication library and hardware architecture [7]. ARMI uses the re-

mote method invocation (RMI) communication abstraction to hide the lower level

implementations (e.g., MPI, OpenMP, etc.). A remote method invocation in stapl

can be blocking (sync rmi) or non-blocking (async rmi). ARMI provides the fence

mechanism (rmi fence) to ensure the completion of all previous RMI calls. The

asynchronous calls can be aggregated by the RTS in an internal buffer to minimize

communication overhead.

The RTS provides locations as an abstraction of processing elements in a system.

A location is a component of a parallel machine that has a contiguous memory address

space and has associated execution capabilities (e.g., threads). A location can be

identified with a process address space. Different locations can communicate to each

other only through RMIs. Internal stapl mechanisms assure an automatic translation

from one space to another, presenting to the less experienced user a unified data space.

For more experienced users, the local/remote distinction of accesses can be exposed

and performance enhanced for a specific application or application domain. stapl

allows for (recursive) nested parallelism.

C. Parallel Container Framework (PCF) [45]

The objective of the stapl Parallel Container Framework (PCF) is to simplify the

process of developing generic parallel containers. It is a collection of classes that can

be used to construct new pContainers through inheritance and specialization that

are customized for the programmer’s needs while preserving the properties of the base

container. In particular, the PCF can generate a wrapper for any standard data struc-

17

ture, sequential or parallel, that has the meta information necessary to use the data

structure in a distributed, concurrent environment. The PCF provides a shared object

view to allow the programmer to ignore the distributed aspect of the pContainer

if they so desire. And thread safety is also enabled internally by design. All these

allow the programmer to concentrate on the semantics of the container instead of

its concurrency and distribution management. Thus, the PCF makes developing a

pContainer almost as easy as developing its sequential counterpart. More details are

discussed in [45].

stapl provides a library of pContainers constructed using the PCF. These in-

clude counterparts of stl containers (e.g., pVector, pList [9], and associative con-

tainers [8] such as pSet, pMap) and additional containers such as pArray [10], pMatrix,

and pGraph.

D. PCF Design

Base pContainer

 Static
pContainer

 Dynamic
pContainer

 Indexed
 <Value>

 Associative
 <Key,Value>

 Relational
<Element,Relat ion>

 Sequence
 <Value>

Associative pContainers Relationship pContainers

User Specific
Container
Extensions

Index is the implicit
 key

 - pArray
 - pMatrix
 - pVector

Simple Associative
 <key=va lue>
 - pSet, pMultiset
Pair Associative
 <key, value>
 - pMap, pMultimap
 - pHashMap

 - pGraph
- pList
- pVector

Fig. 4. PCF design.

18

The PCF is designed to allow users to easily build pContainers by inheriting from

appropriate modules. It includes a set of base classes representing common data struc-

ture features and rules for how to use them to build pContainers. Figure 4 shows

the main concepts and the derivation relations between them; also shown are the

stapl pContainers that are defined using those concepts. All stapl pContainers

are derived from the pContainer base class which is in charge of storing the data

and distribution information. The remaining classes in the PCF provide minimal in-

terfaces and specify different requirements about bContainers. First, the static

and dynamic pContainers are tag classes that indicate if elements can be added to

or removed from the pContainer. The next discrimination is between associative

and relational pContainers. In associative containers, there is an implicit or explicit

association between a key and a value. For example, in an array there is an implicit

association between the index and the element corresponding to that index; we refer

to such (multi-dimensional) arrays as indexed pContainers. In other cases, such as

a hashmap, keys must be stored explicitly. The PCF provides an associative base

pContainer for such cases. The relational pContainers include data structures

that can be expressed as a collection of elements and relations between them. This

includes graphs and trees, where the relations are explicit and may have values asso-

ciated with them (e.g., weights on the edges of a graph, pList in chapter IV), and

lists where the relations between elements are implicit.

All classes of the PCF have default implementations that can be customized for

each pContainer instance using template arguments called traits. This allows users

to specialize various aspects, e.g., the bContainer or the data distribution, to improve

the performance of their data structures.

19

1. Shared Object View

Shared object view is an important concept in stapl which is defined as that each

pContainer instance is globally addressable. It is provided to relieve the programmer

from managing and dealing with the distribution explicitly, unless he desires to do

so. The fundamental concept required to provide a shared object view is that each

pContainer element has a unique global identifier (GID). The GID provides the shared

object abstraction since all references to a given element will use the same GID.

Examples of GIDs are indexes for pArrays, keys for pMaps, vertex identifiers for a

pGraph, and complex types for pList (defined in chapter IV).

(BCID, LOC)

computation
transfer

partition

yes

mapper

c
o
m
p
u
t
a
t
i
o
n

t
r
a
n
s
f
e
r

t
o

L
O
C

GID

element
reference

locationmanager

base container

(BCID, LID)

BCID valid?

to LID

Fig. 5. pContainer modules for performing address resolution to find the element reference
corresponding to a given GID.

20

The PCF supports the shared object view by providing an address translation

mechanism that determines where an element with a particular GID is stored (or

should be stored if it does not already exist). We now briefly mention the PCF

components involved in this address translation. The set of GIDs of a pContainer is

called a domain. For example, the domain of a pArray is a finite set of indices while

it is a set of keys for an associative pContainer. A pContainer’s domain is partitioned

into a set of non-intersecting sub-domains by a partition class, itself a distributed

object that also provides a map from a GID to the sub-domain that contains it, i.e.,

a directory. There is a one-to-one correspondence between a sub-domain and a base

container. In general, there can be multiple base containers allocated in a location,

where a location denotes a unit of a parallel machine that has a contiguous memory

address space and associated execution capabilities (e.g., threads); a location may,

but does not have to, be identified with a process address space. Finally, a class called

a partition-mapper maps a sub-domain (and its corresponding base container) to the

location where it resides, and a location-manager manages the base containers of a

pContainer mapped to a given location.

We now describe how a pContainer method is executed using the above concepts.

In Figure 5 we show a flowchart of the address resolution procedure. Given the

unique GID identifying a pContainer element, the data-distribution-manager queries

the partition class about the sub-domain associated with the requested GID. If the

base container (specified by a base container identifier, or BCID) is not available, the

partition provides information about the location (LOC) where it might be retrieved,

and the process is restarted on that location. If the BCID is available and valid, then

the partition-mapper gets information about the location where the base container

resides (LID); if the operation is not local, the method is re-evaluated on that location,

otherwise the location-manager provides the proper base container address and the

21

operation is performed.

Fig. 6. Example of pContainer modules for performing address resolution to find the
element reference corresponding to a given GID.

Figure 6 shows an example how the translation mechanism works. Here we have

a pContainer of 12 elements with GIDS integers in the range [0, 11]. The partition

specifies a block size of 3 which results in 4 sub-domains. By using a cyclic mapping

we have sub-domains 0 and 2 mapped to location 0 and sub-domains 1 and 3 mapped

to location 1. The location manager manages two base containers with LID 0 and

1 on each location. Suppose we want to find element with GID 9. The partition

indicates it is in sub-domain D3 and the partition mapper indicates it is in location

1. The location manager in location 1 can tell the LID2 corresponds to sub-domain

D3 and it is base container 3. Then 9 is the first element in base container 3.

More details are provided in the context of the pList in chapter IV.

22

CHAPTER IV

STAPL PLIST

The stapl pList is a parallel linked list data structure developed using the

pContainer framework. This chapter describes the pList interface and its design

and implementation in stapl.

A. pList Interface

The linked list is a fundamental data structure that plays an important role in many

areas of computer science and engineering such as operating systems, algorithm de-

sign, and programming languages. A large number of languages and libraries provide

different variants of lists with C++ stl being a representative example. The stl list

is a generic dynamic data structure that organizes the elements as a sequence and

allows fast insertions and deletions of elements at any point in the sequence.

The stapl pList is a parallel equivalent of the stl list with an interface for

efficient insertion and deletion of elements in parallel. Other interfaces such as size,

testing whether the list is empty or not, accessing front and back elements, pushing

elements to the front or back of the list, popping an element from the front and the

back of list, etc., are also provided for convenient usage as stl lists. Analogous to

stl lists, elements in a pList can be accessed through iterators. The STL equivalent

methods are shown in the Table II.

23

Table II. STL equivalent methods of the pList. P : the number of locations; Mi: the
number of base containers in one location; N : the total number of elements in the list;
TB(N): the time of a broadcast communication of N elements; TR(N): the time of a
reduction communication of N elements; Tǫ: the time of a single message communication
time.

pList Interface Description Complexity

p list(size t N, const T&
value = T())

Creates a pList with N elements,
each of which is a copy of value.
Collective Operation.

O(N/P + TB(P))

size t size() const Returns the size of the pList. O(N + TR(P))

bool empty() const True if the pList’s size is 0. O(MAX(Mi) +
TR(P))

T& [front|back]() Access the first/last element of the se-
quence.

O(Tǫ + 1)

void
push [front|back](const
T& val)

Insert a new element at the begin-
ning/end of the sequence.

O(Tǫ + 1)

void pop [front|back]() Remove the first element from the be-
ginning/end of the sequence.

O(Tǫ + 1)

iterator insert(iterator pos,
const T& val)

Insert val before position pos and re-
turn the iterator to the new inserted
element.

O(Tǫ + 1)

iterator erase(iterator pos) Erases the element at position pos
and returns the iterator pointing to
the new location of the element that
followed the element erased.

O(Tǫ + 1)

void splice(iter pos, pList&
pl);

Splice the elements of pList pl into
the current list before the position
pos.
Collective Operation.

O(TB(P) +
MAX(Mi)).

All stl equivalent methods require a return value, which in general translates

into a blocking call. For this reason, we provide a set of asynchronous (non-blocking)

methods, e.g., insert async and erase async. They are generally provided in stapl

and used by pVector, pMap, pSet, etc. Non-blocking methods will return immediately

and they do not wait for the communication event to complete, thus allowing for

better communication/computation overlap and enabling the stapl RTS to aggregate

messages to reduce the communication overhead [7].

24

Since there is no data replication, operations such as push back and push front,

if invoked concurrently, may produce serialization in the locations managing the head

and the tail of the list. For this reason, we added two new methods to the pList in-

terface, push anywhere and push anywhere async (also used by other pContainers

such as pVector), that allow the pList to insert the element in an unspecified loca-

tion in order to minimize communication and improve concurrency. The Non-STL

equivalent new methods are shown in Table III.

Table III. Non-STL equivalent methods of the pList. P : the number of locations; M :
the total number of base containers in pList; N : the total number of elements in the list;
TB(N): the time of a broadcast communication of N elements; Tǫ: the time of a single
message communication time in the following sections.

pList Interface Description Complexity

p list(size t N, parti-
tion type& ps)

Creates a pList with N elements
based on the given partition strategy.
Collective Operation.

O(N/P + TB(P))

void split(iter pos, pList&
pl);

The elements from pos to the end in
current pList will be removed from
current pList and inserted to pList

pl. pl is supposed to be default con-
structed, if not, old data will be re-
moved before new data is inserted.
Collective Operation.

O(TB(P) + M).

void insert async(iterator
pos, const T& val)

Insert val before pos with no return
value.

O(Tǫ + 1)

void erase async(iterator
pos)

Erases the element at position pos
with no return value.

O(Tǫ + 1)

iterator
push anywhere(const
value type& val)

Push val into one of base containers
in the location the method is invoked
and return the iterator pointing to the
new inserted element.

O(1)

void push anywhere async(
const T& val)

Push val into one of base containers
in the location the method is invoked
with no return value.

O(1)

The pList has both collective and non-collective operations. Non-collective op-

erations are those operations which can be invoked in only one location, and different

25

locations may invoke different number of operations concurrently. Collective opera-

tions have to be invoked by all locations and communication may happen to accom-

plish the work. Each collective operation ends with a global barrier to guarantee all

the communication is finished.

1. Complexity of Methods

We define P as the number of locations, Mi as the number of base containers in one

location, M as the total number of base containers in pList, N as the total number

of elements in the pList, TB(N) as the time of a broadcast communication of N

elements. TR(N) as the time of a reduction communication of N elements and Tǫ as

the time of a single message communication time in the following discussion.

The complexity of non-collective operations such as the size method is propor-

tional to the total number of elements in the pList and TR(P). It needs to collect

the size information of each base container and then perform a reduction to compute

the total size. The empty method is similar to the size method except that the empty

method of each base container is constant time. So the complexity of pList empty

method is proportional to the max number of base containers over all locations and

TR(P). Methods such as back, front, insert and erase may be invoked locally or re-

motely in a synchronous way. When invoked locally, it is a constant time operation.

When invoked remotely, the complexity depends on the time Tǫ to send a request

and receive an answer back. The asynchronous methods such as insert async and

erase async may be invoked locally or remotely. When invoked locally, they are con-

stant time operations. When invoked remotely, the complexity depends on the time

Tǫ to send a request and O(1) to finish remotely.

The complexity of collective operations such as different constructors take time

proportional to the number of elements over locations and TB(P). By default the

26

constructor will construct an equal number of elements in each location. Broadcast

communication is used to broadcast the head and tail base container information in

order to be able to traverse from the beginning to the end of pList. The complexity

of advanced methods such as splice and split is discussed in later sections.

B. pList Design and Implementation

The stapl pList is designed using the PCF Figure 4. It is a dynamic pContainer

and derives from the sequence pContainer. Specialized Global Unique Identifier

(GID) and base container identifier (BCID) are designed and different domains and

data distributions are used for the pList. This section discusses the design and

implementation of the various modules.

1. Base Container

The pContainer base container is the basic storage unit for data. For the stapl

pList, we use the stl list as the base container. Most pContainer methods will

ultimately be executed at the base container level using the corresponding method

of the base container. For example, pList insert will end up invoking the stl list

insert method. The pList base container can also be provided to the user so long as

insertions and deletions never invalidate iterators, and so that base containers provide

the domain interface (see below). Additional requirements are relative to the expected

performance of the methods (e.g., insertions and deletions should be constant time

operations).

Within each location of a parallel machine, a pList may store several base con-

tainers and the pList employs a location-manager module to allocate and handle

them. The pList has the global view of all of the base containers and knows the

27

order between them in order to provide a unique traversal of all its data. For this

reason each base container is identified by a globally unique base container identifier

(BCID). The pList, needs a base container identifier that allows for fast dynamic

operations. For example during the splice operation, base containers from a pList

instance need to be integrated efficiently into another pList instance while maintain-

ing the uniqueness of their BCIDs. For these reasons the BCID for the pList base

containers is currently defined as follows:

typedef std::pair<plist_bcontainer*, location_identifier> BCID

This BCID will provide the location information and a pointer to the base container.

It is a unique identifier and the pointer can only be used when the current location

is the same as the location specified in the BCID.

2. Global Identifiers (GID)

In the stapl pContainer framework, each element is uniquely identified by its GID.

This is an important requirement that allows stapl to provide the user with a shared

object view. Performance and uniqueness considerations similar to those of the base

container identifier, and the list guarantee that iterators are not invalidated when

elements are added or deleted lead us to use the following definition for the pList

GID.

typedef std::pair<std::list<>::iterator, BCID> GID;

This GID contains an iterator pointing to the element in the base container and the

base container ID. It is unique since the BCID is unique. With this definition the

pList can uniquely identify each of its elements.

28

3. Domain

In the stapl pContainer framework the domain is the universe of GIDs that identifies

the elements of a particular pContainer. A domain also specifies an order that defines

how elements are traversed by the iterators of the pList. This order is specified

by two methods: get first gid() which returns the first GID of the domain and

get next gid(GID) which returns the next GID in the domain of the GID provided

as argument. The domain can also be specified as the union of sub-domains. The

pList derives a specialized domain from the PCF to support pList specific operations.

The pList base container serves as the storage of data and also the sub-domain by

providing domain-specific interfaces.

4. Data Distribution

Data distribution is essential to the performance of the various parallel algorithms.

The data distribution of the pList is managed by the PCF as discussed in chap-

ter III. The pList has its own distribution-manager which derives from the base

distribution-manager. In addition to the functionality provided by the base, it

is able to manage the distribution information of its advanced methods such as the

splice and split operations.

When default constructing a stapl pList with a known size, the balanced dis-

tribution is used and each location is allocated an equal number of elements. The

balanced distribution will guarantee the best performance if every processing unit of

the machine is the same. A constructor to build a pList with multiple base contain-

ers per location is also provided and these base containers can be linked together in

a blocked or cyclic manner. We use N to refer to the total number of elements in

pList and P to refer to the number of locations. Blocked means to distribute N/P

29

base containers per location and all the base containers in one location will be linked

together before linking to the base containers in the next location. Cyclic means to

distribute all base containers in a cyclic fashion over the locations. The choice of

which constructor to use is decided by the pList users since they have the knowl-

edge of the algorithms they will use and different algorithms benefit from different

distributions.

Even if it was initially balanced, the pList may reach an imbalance distribution

after insertions, deletions, splices or splits. For this reason, the pList provides a

redistribution method to evenly redistribute the data. The order between the elements

is preserved by this operation.

5. pView

In the stapl framework, pViews are the means of accessing data elements stored in

the pContainer within generic algorithms. stapl pAlgorithms are written in terms

of pViews, similar to how stl generic algorithms are written in terms of iterators.

The pList currently supports sequence pViews that provide an iterator type and

begin() and end() methods. A pView can be partitioned into sub-views. By default

the native pView of a pList matches the subdivision of the list in base containers,

thus allowing random access to portions of the pList. This allows parallel algorithms

to achieve good scalability (see Section VI). The native pList pView also provides

similar interfaces as those provided by the pList to support dynamic operations such

as inert and delete.

The pList pView has to perform the validity test for the rank of each base con-

tainer in order to be used with certain pAlgorithms such as those need the reduction

with a non-commutative operator, and the rank of each base container of the pList

has to be computed in this case. The computation of rank will increase the overall

30

1 void plist::insert_async(iterator it, value_type val)

2 Location loc;

3 dist_manager.lookup(gid(it))

4 BCID = part_strategy.map(gid(it))

5 loc = part_mapper.map(BCID)

6 if loc is local

7 location_manager.bcontainer(BCID).insert(gid(it))

8 else

9 async_rmi (loc, insert_async(it, val));

Fig. 7. pList method implementation.

execution time of the algorithm. When a pList is instantiated it initializes the rank

of all of its base containers. However, dynamic operations such as splice and split

modify the number of base containers of a pList and invalidate the ranking of the

pList’s base containers.

6. Implementation of pList Methods

The pList methods are implemented using the distribution-manager and the

location-manager. A typical implementation of a pList method that operates at

the element level is included in Figure 7 to illustrate how the pContainer modules

interact. The run-time cost of the method has three constituents: the time to decide

the location and the base container where the element will be added (Figure 7, lines

3-5), the communication time to get/send the required information (Figure 7, line 9),

and the time to perform the operation on a base container (Figure 7, line 7).

C. pList Advanced Methods

The pList provides methods to rearrange data in bulk. These methods are splice

and split, which merge multiple lists and split lists into multiple pieces, respectively.

31

1. Splice

splice is a pList method and it is an overloaded name. There are two versions of

splice (Figures 8 and 9) whose signatures are

void pList::splice(iter pos, pList& pl, iter it1, iter it2);

void pList::splice(iter pos, pList& pl);

void splice (iterator pos, PLIST& pL) {

//find gid of the element pointed by pos.

GID gid = gid_of(pos);

//find bcontainer id by asking partition strategy

PS* ps = this->m_dist->get_partition_strategy();

BCID cid1 = ps->get_info(gid);

//split bcontainer associated with bcontainer id cid1 to two

//bcontainers (having id cid1 and cid2) from pos.

BCID cid2 = split_bcontainer(cid1);

//update the corresponding link of pL

cid1 next bcontainer = pL first bcontainer;

pL first bcontainer previous bcontainer = cid1;

cid2 previous bcontainer = pL last bcontainer;

p2 last bcontainer next bcontainer = cid2;

//add all bcontainers to this pList in parallel

for all bcontainers in each location

this->add_bcontainer(bcontainer)

//release all bcontainers from pL.

pL.release();

//update pL to default constructed state

pL.reset_cidsinfo();

pL.add_bcontainer(empty bcontainer);

}

Fig. 8. pList splice pList implementation.

where iter stands for an iterator type, pos is an iterator of the calling pList, pl is

another pList, and the iterators it1 and it2 are iterators pointing to elements of

pl. splice removes from pl the portion enclosed by it1 and it2 and inserts it at

pos. When it1 and it2 is not specified, the pList pl will be spliced at pos.

We use the same notation from Table II and III for complexity analysis. The

complexity of splice depends on the number of base containers included within it1

and it2. If it1 or it2 points to elements between base containers, then new base

32

void splice (iterator pos, PLIST& pL, iterator f, iterator l) {

//find gid of the element pointed by pos.

GID gid = gid_of(pos);

//find bcontainer id by asking partition strategy

PS* ps = this->m_dist->get_partition_strategy();

BCID cid1 = ps->get_info(gid);

//split bcontainer associated with bcontainer id cid1 to two

//bcontainers (having id cid1 and cid2) from pos.

BCID cid2 = split_bcontainer(cid1);

same process as above to split from iterator f to cidf_prev

and cidf split from iterator l to cidl_prev and cidl

//splice [cidf, cidl) between cid1 and cid2

while (cidf != cidl) {

BCID cid = cidf;

cidf = get_next(cidf);

release cid from pL;

add cid to *this

link cid between cid1 and cid2;

}

}

Fig. 9. pList splice range implementation.

containers are generated in constant time using a sequential list splice. When the

entire pList needs to be spliced, the complexity depends on the maximum Mi among

all locations since base containers on every location have to be removed from the old

pList and inserted into another pList. The re-construction of the old pList takes

TB(P) since the head and tail BCID needs to be broadcast. So the total time is

O(TB(P) + MAX(Mi)).

2. Split

split is also a member method of pList that splits one pList into two. The algo-

rithm for this method is described in Figure 10. It is a pList specific parallel method

that is implemented based on splice with the following signature:

void pList::split(iterator pos, pList& other_plist).

When pList.split(pos, other plist) is invoked, the part of pList starting

at pos and ending at pList.end() is removed from current pList and appended at

33

void split (iterator pos, PLIST& pL) {

BCID cidf = first cid of pL;

BCID cidl = last cid of pL;

iterator end = one past end iterator of pL;

iterator this_end = one past end iterator of *this pList;

pL.splice(end, *this, pos, this_end);

//traverse first P bcontainers, remove empty bcontainer if more

//than one bcontainer in that location.

cidl = next cid of cidl;

while (cidf != cidl) {

BCID cid = cidf;

cidf = get_next(cidf);

delete bcontainer having BCID cid from pL if more than one

bcontainer in that location;

}

}

Fig. 10. pList split implementation.

the end of the other plist. If any data was stored in the other plist before split

operation, they will be removed and the data inside other plist will only be the data

from current pList.

We use the same notation from Table II and III for complexity analysis. In the

worst case scenario, the whole pList will be splitted to an empty pList and another

pList contains all the data from original pList. It takes O(M) to split all base

containers and TB(P) to rebuild the pList. So the total time is TB(P) + O(M).

34

CHAPTER V

LIST RELATED ALGORITHMS

The linked list is an important data structure and there are algorithms specific to it.

In this chapter, we consider two such algorithms, list ranking, which computes the

distance of each element from the head or the tail, and the Euler Tour (ET) technique

which can be used to compute interesting functions for trees such as rooting a tree and

postorder numbering. This chapter first describes the design and implementation of

different list ranking algorithms. Next, applications such as Euler Tour and computing

tree functions including rooting a tree, postorder numbering, computing vertex level

and computing number of descendants using Euler Tour and list ranking are shown

to demonstrate the usefulness of stapl pList in parallel algorithms.

A. List Ranking

The classic list ranking problem is to identify the distance for each element in the list

from either end of the list. Here we will consider the distance from the beginning.

List ranking is a special case of prefix scan in which each element is initialized with

a value of 1 and the operation to be performed is addition.

The sequential algorithm simply traverses the entire list and sets the rank of

each element if reaches. It takes O(N) for list with N elements. As mentioned in

Section II.B2, many algorithms have been proposed for parallel list ranking, with

the most efficient requiring O(log N) time and O(N) work using N

log N
processors in

EREW PRAM model [23].

The best known algorithm for parallel list ranking is based on the pointer jump-

ing or recursive doubling technique. We first implemented this algorithm with barriers

between each step. Next, we designed and implemented a point-to-point synchroniza-

35

Input:

A linked list of N nodes such that

(1) the predecessor of each node i is given by pred(i)

(2) the successor of each node i is given by succ(i)

(3) the pred value of the first node is equal to sentinel value

(4) the succ value of the last node is equal to sentinel value

Output:

For each 0 <= i < N, the distance Rank(i) of node i from the

beginning of the list

Algorithm:

P(i) denotes the current predecessor

S(i) denotes the current successor

begin

1: for i from 0 to N - 1 pardo

2: Rank(i) = 1 //initialize the rank of each element to be 1

3: P(i) = pred(i) //initialize the current predecessor to be initial predecessor

4: S(i) = succ(i) //initialize the current successor to be initial successor

5: for i from 0 to N - 1 pardo

6: for j from 0 to logN - 1

7: send P(i) and Rank(i) to S(i) //send current predecessor and rank to current successor

8: send S(i) to P(i) //send current successor to current predecessor

9: global synchronization //guarantee all the communication complete

10: R(i) = R(i) + R_received //update current rank

11: P(i) = P_received //update current predecessor

12: S(i) = S_received //update current successor

end

Fig. 11. LR-glob-sync pointer jumping algorithm for list ranking.

tion version of the pointer jumping algorithm. Also we redesigned and implemented

this new algorithm under the stapl programming model.

1. List Ranking via Pointer Jumping with Global Synchronization (LR-glob-sync)

Pointer Jumping is a very simple technique to compute rank of all elements of a list

in parallel. Figure 11 shows pseudo code for the algorithm.

The algorithm first initializes the rank of each element to 1 in parallel. The rank

of Ei denotes the number of elements known to be before Ei and is also the number

of nodes current node will skip in the next step. When P is equal or larger than N

where P is the number of processors and N is the number of nodes. The algorithm

36

takes O(log N) steps to jump from one end to another end. And the total time is

O(log N)∗(1+TB) (TB represents time for a single global barrier) since the algorithm

takes O(log N) steps and each step performs the computation in constant time and a

barrier, the total work is O(N log N). When P is less than N , each processor with N

P

nodes. The algorithm takes O(N

P
+ log P ∗ (1 + TB)) time and O(N + P log P) work.

It is important to notice that every step has to be synchronized before proceeding

to line 10 in Figure 11. This implies a barrier to synchronize all processing units which

is highly inefficient, especially for large scale machines.

Figure 12 shows an example execution of the LR-glob-sync algorithm. Fig-

ure 12(a) shows a list with eight elements. The algorithm takes three steps to finish.

Figure 12(b) is the result after the first jump. Figure 12(c) refers to the result of the

second jump. Figure 12(d) shows the conclusion of the algorithm with the correct

rank associated with each element.

2. List Ranking via Pointer Jumping with Point-to-point Synchronization

(LR-pt2pt-sync)

In an effort to improve the scalability of the list ranking via Pointer Jumping al-

gorithm, we designed a version that replaced the global barrier of each step with

point-to-point synchronization between the communications of the list elements. The

point-to-point synchronization version uses an auxiliary data structure associated

with each node to store the rank of the different steps. This is a typical trade off

between time and space. We are trading space for time since this algorithm will be

used to compute ranks based on the base containers and the number of base con-

tainers is proportional to the number of locations, which is typically not as large as

the number of elements. After the rank is computed, the auxiliary data structure is

cleared immediately.

37

1 1 1 1 1 1 1 1

(a)

1 1 1 1 1 1 1

1 2 2 2 2 2 2 2

(b)

1 2 2 2 2 2

1 2 43 44 4 4

(c)

1 2 3 4

1 2 3 4 5 6 7 8

(d)

Fig. 12. Illustration of the LR-glob-sync algorithm. (a) A list with eight elements. (b)
The result after the first jump. (c) The result after the second jump. (d) The result after
the third jump.

Figure 13 illustrates the LR-pt2pt-sync algorithm. For each node of the list,

the rank field records the final rank, the vector R stores the rank for different steps,

and vectors P and S store the predecessors and successors for different steps. Each

node will send its information to its current predecessor and successor and wait to

proceed until all the information it needs has been received. There is no explicit

global synchronization required among all the processing units, thus we expect this

38

Auxiliary Data Structure:

vector R,P,S store different level rank, predecessor and successor

Algorithm:

begin

1: for i from 0 to N - 1 pardo

2: R(i, 0) = 1 //initialize the rank of each element at first round to be 1

3: Rank(i) = 1 //initialize the rank of each element to be 1

4: P(i, 0) = pred(i) //initialize the predecessor at first round to be initial predecessor

5: S(i, 0) = succ(i) //initialize the successor at first round to be initial successor

6: for i from 0 to N - 1 pardo

7: for j from 0 to logN - 1 do

8: send P(i, j) and R(i, j) to S(i, j) //send predecessor and rank to successor at round j

9: send S(i, j) to P(i, j) //send successor to predecessor at round j

10: while not receive all

11: wait //wait until receive the predecessor,successor and rank at round j

12: R(i, j+1) = R_received //update rank at round j+1

13: P(i, j+1) = P_received //update predecessor at round j+1

14: S(i, j+1) = S_received //update successor at round j+1

15: Rank(i) = Rank(i) + R(i, j+1) //update rank

end

Fig. 13. LR-pt2pt-sync algorithm.

version to scale better than the LR-glob-sync.

The complexity of LR-pt2pt-sync is analogous to LR-glob-sync. When P is equal

or larger than N where P is the number of processors and N is the number of nodes.

The LR-pt2pt-sync takes O(log N) steps to jump form one end to another end. And

the total time is O(log N) which takes O(log N) steps and each step performs only

the computation in constant time without any barrier, the total work is O(N log N).

When P is less than N , each processor with N

P
nodes. The LR-pt2pt-sync takes

O(N

P
+ log P) time and O(N + P log P) work.

3. List Ranking in STAPL (LR-STAPL)

The list ranking algorithm implemented in stapl follows the LR-pt2pt-sync. Under

the stapl programming model, parallel algorithms are expressed as task graphs called

39

pRanges. Dependences between tasks are noted in task graph and are enforced by

stapl internally - no explicit communication primitives are used in stapl program.

Figure 14 shows the stapl version of the algorithm. Tasks in stapl are specified

as a combination of data and the work function which should be applied to the data.

Data can be accessed by views. Tasks can be dynamically added to the task graph

by using the add task function, which must specify the work function and the view.

Locality information is encapsulated inside the view, so users do not need to be

concerned about or be aware of where the task is going to be executed.

The algorithm starts by constructing a LISTRANKING WF work function for

each node with its rank, prev or next and round information. The computation begins

by adding initial tasks with views over the previous node and the next node with the

proper work function. Whenever a task is executed over a node, it checks whether

the task at the previous round has been fired. If not, it does nothing, otherwise, it

continues to fire all the tasks from the current round to the final round as long as

prev, next and rank at that round have been updated. Whenever reaching a round

where not all of the three fields have been updated, the task terminates. Or when

reaching the final round, it updates the rank field and terminates the task. When no

new tasks are created, and every node reaches the final round with rank field updated,

the algorithm ends.

B. Euler Tour and Its Applications

The Euler Tour (ET) is an important representation of a graph for parallel processing.

Since the ET represents a depth-first-search traversal, when it is applied to a tree it

can be used to compute a number of tree functions such as rooting a tree, postorder

numbering, vertex levels, and number of descendants [30]. Good scalability of ET

40

vector A stores accumulated rank up to level i and also serves

as a mark indicating whether the task at this level fired or not

Algorithm:

begin

1: for i from 0 to N - 1 pardo

2: R(i, 0) = 1 //initialize the rank of each element at first round to be 1

3: Rank(i) = 1 //initialize the rank of each element to be 1

4: A(i, 0) = 1 //initialize the successor at first round to be initial successor

5: P(i, 0) = pred(i) //initialize the predecessor at first round to be initial predecessor

6: S(i, 0) = succ(i) //initialize the successor at first round to be initial successor

7: for i from 0 to N - 1 pardo

8: LISTRANK_WF wf_prev(S(i, 0), norank, 1)//create a functor with successor at first round

9: add_task(wf_prev, View(P(i, 0))) //add task on the predecessor at first round

10: LISTRANK_WF wf_next(P(i, 0), A(i, 0), 1)//create a functor with predecessor,rank at first round

11: add_task(wf_next, View(S(i, 0))) //add task on the successor at first round

end

//LISTRANK_WF constructed with round, rank and prev or next information.

//When norank, next is chosen, otherwise prev is chosen.

Class LISTRANK_WF

{

Data:

prev | next //data member to hold predecessor or successor

rank //data member to hold rank

round //data member to hold round

Member:

void operator()(Node i)

{

if (contain rank)

R(i, round) = rank //update rank at round round

P(i, round) = prev //update predecessor at round round

else

S(i, round) = next //update successor at round round

if (A(i, round-1) valid) //fire new task if previous task has been fired

for j from round to final_round //fire new task from current round to final round

if (P(i, j), S(i, j) and R(i, j) all set)//if receive predecessor,successor and rank

A(i, j) = A(i, j-1) + R(i, j) //update to mark task at round j has been fired

if (j not final_round) //fire new task if not reach final round

LISTRANK_WF wf_prev(S(i, j), norank, j+1)

add_task(wf_prev, View(P(i, j))) //fire task on predecessor at round j

LISTRANK_WF wf_next(P(i, j), A(i, j), j+1)

add_task(wf_next, View(S(i, j))) //fire task on successor at round j

else Rank(i) = A(i, j)

else

break

}

}

Fig. 14. LR-STAPL algorithm.

41

algorithm depends on an efficient list ranking algorithm. We will discuss how the

pList is used in our implementation of ET technique [30] and how the algorithm is

implemented in this section.

1. ET Technique Overview

There are many versions of Euler Tour problem such as whether an Euler Tour exists

for an arbitrary graph or how to find the Euler Tour if it exists. Here we consider the

following Euler Tour problem: Given an undirected tree T = (V, E), let T ′ = (V, E ′)

be the directed graph obtained from T where each edge (u, v) ∈ E is replaced by two

edges (u, v) and (v, u). Thus T ′ is an Eulerian graph because each vertex has even

degree of edges, and the problem is to find the Euler Tour of T ′.

a. ET Construction

Existing sequential algorithms take O(N) time to build an Euler Tour since each edge

has to be traversed [46] where N refers to total number of edges in the tree.

The parallel Euler Tour algorithm presented in [30] can be specified by using

the successor function which is defined as a mapping function from each edge e ∈ E ′

to s(e) ∈ E ′ that follows e on the tour. Suppose adjacency list of v is adj(v) =

(u0, u1, ...ud−1) where d is the degree of v. s(u, v) = (v, u(i+1)modd) for 0 ≤ i ≤ d − 1.

Then it takes constant time for each edge to find the next edge in the tour using

successor function when the input tree is represented by the circular adjacency lists

with additional pointers. The entire algorithm takes constant time and O(N) work

where N is the number of vertices by using EREW PRAM model.

Figure 15 shows an example of a tree and its adjacency list. By applying the

successor function specified above, we can get the traversal easily as follows supposing

the start edge is (2, 6).

42

1

2 3 4

5 6 7

8 9

1

2

3

4

5

6

7

8

9

2

1

1 0

1 0

2 0

2 0

2

7 0

7 0

3 4 0

5 6 7 0

8 9 0

Fig. 15. Euler Tour example.

(2, 6) → (6, 2) → (2, 7) → (7, 8) → (8, 7) → (7, 9) → (9, 7) → (7, 2) → (2, 1) →

(1, 3) → (3, 1) → (1, 4) → (4, 1) → (1, 2) → (2, 5) → (5, 2)

b. ET Technique

The Euler Tour technique can be used to compute some tree functions [30] such as

rooting a tree, post order numbering, computing the vertex level and computing the

number of descendants.

These algorithms are similar in terms of the procedures performed. And Fig-

ure 16 shows a generic algorithm which first initializes each edge in the list with a

corresponding weight, and then performs the prefix sum algorithm. The desired result

can be computed with the prefix sum value of each edge.

When P is equal or larger than N where P denotes the number of processors

and N is the number of vertices, the line 1-2 and 4-5 in Figure 16 take constant time

and O(N) work, and the line 3 takes O(log N) time and O(N log N) work. Thus

43

Input:

(1) A tree T stored in a list L

(2) An Euler Tour defined by the successor function s

Output:

For each vertex, the parent, postorder number, level or the number of descendants.

Algorithm:

begin

1: for each edge (x,y) in L pardo

2: weight(x,y) = m //initialized to different weight accordingly

3: parallel prefix sum //perfrom prefix sum

4: for each edge (x,y) in L pardo

5: computation(x,y) //perform the corresponding computation

end

Fig. 16. Generic algorithm of Euler Tour applications.

the complexity of the generic algorithm is O(log N) time and O(N log N) work by

using the EREW PRAM model [30]. When P is less than N and each location has

N

P
elements. The line 1-2 and 4-5 take constant time and O(N) work, and the line

3 takes O(N

P
+ log P) time and O(N + P log P) work. Thus the complexity of the

generic algorithm is O(N

P
+ log P) time and O(N + P log P) work.

2. ET in STAPL

The parallel Euler Tour constructor algorithm [30] implemented in stapl uses a

stapl pGraph to represent the tree and a pList to store the final Euler Tour. In the

first phase, the algorithm executes traversals on the pGraph view and generates Euler

Tour segments that are stored in a temporary pList. Then, the segments are linked

together to form the final pList containing the Euler Tour in the second phase.

Figure 17 describes the first phase of the algorithm. We use an undirected pGraph

to represent the tree and a pList to store the final Euler Tour. Each local traversal

is stored as a list of edges (L) and then inserted as an element to a pList of list of

edges (PLE). The next edge for a given edge can be found by using the successor

44

Input:

(1) Undirected pGraph PG which is a tree

(2) start edge Start_Edge of the Euler Tour

Output:

pList with edges stored in Euler Tour order

Algorithm:

list<edge> L stores a local traversal for each cross cutting edge

pList<list<edge> > PLE stores all L

begin

for each incoming cutting edge e(i) pardo

L(i).insert(e(i)) //store cross cutting edge

next_edge(i) = e(i);

do {

next_edge(i) = succ_func(next_edge(i)) //find next edge

L(i).insert(next_edge(i)) //insert to L

} while (nex_edge(i) is not cutting edge)//until reach another cross cutting edge

PLE.push_anywhere_async(L(i)) //store L to the PLE

//special pList constructor takes PLE, PG and

//Start_Edge, and return the final pList with Euler Tour

pList<edge> pL(PLE, PG, Start_Edge)

end

next_edge(i) succ_func(edge e(i)) //successor function

{

vertex source(i) = e(i).source() //source vertex of edge e(i)

vertex target(i) = e(i).target() //target vertex of edge e(i)

list<vertex> adjl(i) = target’s adjacency list

find source(i) in adjl(i)

if source(i) is the end of adjl(i)//if source(i) is the last vertex, v(i) is the first vertex

v(i) = adjl(i).begin() //in the adjacency list

else

v(i) = adjl(i).next(source(i)) //v(i) is the next vertex of source(i) in the adjacency list

return edge(target(i), v(i)) //return the next edge of input edge

}

Fig. 17. Euler Tour [30] construction.

function introduced in [30].

The second phase of the algorithm in Figure 18 is performed using a special

pList constructor which takes the pList of list of edges, pGraph and start edge as

the arguments. pGraph is used to find where a given remote edge lives. An internal

phashmap is used to support fast look up of the base container for a given edge. The

start edge is used to identify the global first and last bContainer of the final pList.

The base container which starts with the start edge is the global first base container

45

pList(pList<list<edge> > PLE, pGraph PG, edge Start_edge)

{

//internal phashmap built for fast loopup from given edge to base container

phashmap<edge, base container> pm(i)

for each element l(i) of PLE

create base container bc(i) over l(i)

insert(l(i).front(), bc(i)) to pm(i) //add cross cutting edge and its base cotainer to phashmap

if (bc(i).front() == start_edge)

broadcast to set bc(i) to the global first base container //broadcast head base cotainer

if (bc(i).back() == start_edge)

broadcast to set bc(i) to the global last base container //broadcast tail base cotainer

for each base container bc(i)

edge next(i) = bc(i).back()

location loc = PG.find(next(i)) //ask pgraph to find location information

send bc(i) to location

find base container bc_next which begins with next at location loc using phashmap

set bc(i) to be bc_next’s previous base container //set up link

send bc_next back to where bc(i) lives

set bc_next to be bc(i)’s next base container //set up link

remove last element in bc(i) //remove extra edgs

}

Fig. 18. Euler Tour [30] linking.

and the one that ends with the start edge is the global last one. Communications

happen explicitly to link two base containers, one from current base container to next

base container to set next base container’s previous to be current base container, and

another one from next base container to current base container to set current base

container’s next to be next base container. These are accomplished by asking pGraph

to decide the location of remote edge and phashmap to find the base container that

starts with remote edge on that location. The last edge in each base container is used

to specify the next relationship, and it can be removed once two base containers are

connected. After all the links are constructed, the algorithm has constructed a pList

of edges with the Euler Tour stored in order.

a. Complexity Analysis

We use O(Ei) and O(Vi) represent separately the number of edges and vertices in

location i. O(Ci) is the number of cross cutting edges in location i. TB(N) is the

46

time of a broadcast communication of N elements. Tǫ is the time of a single message

communication time. P is the total number of locations.

• find next edge for each edge:

– find next edge: Ei

Vi

(Average size of adjacency list)

– Total phase 1 time: O(Ei) ∗ O(Ei

Vi

)

• Build pList, for each base container, set previous and next

– Number of base containers : O(Ci)

– Communication time to set all links: O(Ci) ∗ O(Tǫ)

– Broad cast first and last base container of pList: TB(P)

– Total phase 2 time: O(Ci) ∗ (1 + O(Tǫ)) + TB(P)

Total Euler Tour time: O((Ei)
2

Vi

) + O(Ci) ∗ (1 + O(Tǫ)) + TB(P)

3. ET Application in STAPL

By using the Euler Tour technique, we implemented four applications in stapl, in-

cluding rooting a tree, postorder numbering, compute the vertex level and the number

of descendants. These four algorithms are implemented using the generic algorithm

described in Figure 16. We use the stapl pGraph to represent the tree and the pList

to store the Euler Tour. The algorithms differ in the initialization weight of each edge

and the computation performed.

a. Rooting a Tree

This algorithm (Figure 19) is frequently used as initial step in other algorithms. A

stapl undirected pGraph is used to represent the tree, and Euler Tour is assumed to

47

Input:

(1) A tree T defined as STAPL undirected pgraph

(2) An Euler Tour defined by the successor function s stored in pList pl

(3) Root vertex r

Output:

For each vertex v != r, the parent p(v) of v in the tree rooted at r.

Algorithm:

begin

for each edge in pl pardo

weight = 1

parallel prefix sum

for each edge (x,y) pardo

if (prefix(x,y) < prefix(y,x))

set x=parent(y)

end

Fig. 19. Rooting a tree [30].

be computed already and stored inside the pList. The algorithm starts by assigning

a weight 1 to each edge in pList, and the prefix sum algorithm is run over pList.

For each edge from vertex x to vertex y, if the prefix sum of xy is smaller than prefix

sum of yx, which means xy is traversed first and then yx in the Euler Tour, then x is

the parent of y. The root has no parent.

b. Postorder Numbering

This algorithm (Figure 20) requires the parent information of each vertex, so the

rooting tree algorithm is used. For each edge in the pList, if it is an edge from a

vertex to this vertex’s parent, the weight is set to be 1, and otherwise is set to 0. The

prefix sum algorithm runs over the pList. Since only the edge from a vertex to its

parent has any weight, the prefix sum of the edge from a vertex to its parent after

the prefix sum algorithm is the postorder number. The postorder number of the root

is the number of vertices in the tree.

48

Input:

(1) A tree T defined as STAPL undirected pgraph

(2) An Euler Tour defined by the successor function s stored in pList pl

(3) Root vertex r

Output:

For each vertex v, the post order traversal number post(v) of v in the tree rooted at r.

Algorithm:

begin

rooting the tree

for each vertex v != r pardo

weight(v, p(v)) = 1

weight(p(v), v) = 0

parallel prefix sum

for each vertex v pardo

if (v == r)

set post(v) = n(the num of vertices of tree)

else

set post(v) = prefix(v, p(v))

end

Fig. 20. Postorder numbering [30].

c. Computing Vertex Level

This algorithm (Figure 21) also requires the parent information of each vertex, so

the rooting tree algorithm is used. For each edge in the pList, if it is an edge from

a vertex to this vertex’s parent, the weight is set to be -1, otherwise 1. The prefix

sum algorithm runs over the pList. Whenever an edge is from parent to a child, the

vertex level increases by 1, and decreases by 1 otherwise. Thus after the prefix sum

algorithm, the prefix sum of a parent to a child records the level information of each

vertex. The level of the root is 0.

49

Input:

(1) A tree T defined as STAPL undirected pgraph

(2) An Euler Tour defined by the successor function s stored in pList pl

(3) Root vertex r

Output:

For each vertex v, the level level(v) of v in the tree rooted at r.

Algorithm:

begin

rooting the tree

for each vertex v != r pardo

weight(v, p(v)) = -1

weight(p(v), v) = 1

parallel prefix sum

for each vertex v pardo

if (v == r)

set level(v) = 0

else

set level(v) = prefix(p(v), v)

end

Fig. 21. Computing vertex level [30].

d. Computing Number of Descendants

This algorithm (Figure 22) also requires the parent information of each vertex, so

the rooting tree algorithm is used. For each edge in the pList, if it is an edge from

a vertex to this vertex’s parent, the weight is set to be 1, and otherwise is set to 0.

The prefix sum algorithm runs over the pList. Whenever an edge is from a child to

its parent, the number of descendants increases by 1, and an edge from a parent to

a child has no influence on final result. After the prefix sum, the difference of the

prefix sum between children to parent and parent to children equals to the number

of descendants at vertex itself. The number of descendants of the root is the number

of vertices in the tree minus 1.

50

Input:

(1) A tree T defined as STAPL undirected pgraph

(2) An Euler Tour defined by the successor function s stored in pList pl

(3) Root vertex r

Output:

For each vertex v, the number of descendants size(v) of v in the tree rooted at r.

Algorithm:

begin

rooting the tree

for each vertex v != r pardo

weight(v, p(v)) = 1

weight(p(v), v) = 0

parallel prefix sum

for each vertex v pardo

if (v == r)

set size(v) = n-1(n is the num of vertices of tree)

else

set size(v) = prefix(v, p(v)) - prefix(p(v), v)

end

Fig. 22. Computing number of descendants [30].

e. Complexity Analysis

These applications are implemented using the generic algorithm under the stapl

programming model. We add an extra phase to store the prefix sum value back to

the graph so that the value of an edge (u,v) can be accessed in constant time by the

edge (v,u) and vice versa. We use the same notation as in the complexity analysis

section of Euler Tour in stapl. B refers to the total number of base containers in

pList.

• Initiate weight : O(Ei)

• Prefix sum: O(log B) + O(Ei)

• Copy back to pGraph: O(Ei) + O(Ci) ∗ O(Tǫ)

• Computation: O(Ei) + O(Ci) ∗ O(Tǫ)

51

Total Euler Tour Application Time: O(log B) + O(Ei) + O(Ci) ∗ O(Tǫ).

52

CHAPTER VI

PERFORMANCE EVALUATION

Previous chapters show the pList interface, its design, and implementation and de-

scribe parallel algorithms using the pList. This chapter examines performance of

pList methods, generic algorithms (p generate, p foreach and p accumulate) us-

ing pList, and specialized algorithms such as list ranking (LR-glob-sync, LR-pt2pt-

sync and LR-STAPL), and Euler Tour and four of its applications (rooting a tree,

postorder numbering, computing vertex level and number of descendants).

A. Machine Specification

We conducted our experimental studies on two architectures: an IBM cluster with

p575 SMP nodes available at Texas A&M University (P5-cluster), and a Cray XT4

with quad core Opteron processors available at NERSC (cray). Table IV shows the

details of the configuration of each machine. In all experiments, a location contains

a single processor, and the terms can be used interchangeably.

B. pList Constructor and Memory Usage

In this section we discuss the performance of the different pList constructors. The

default pList constructor will be built with one base container per location and data

will be evenly distributed across all processors (locations). Constructors are also

provided to build the pList with multiple base containers per location and these

base containers can be linked together in a blocked or cyclic manner.

Figure 23 shows three different constructors with different numbers of base con-

tainers per location. The more base containers are specified, the more work it takes

53

Table IV. Machine specifications about P5-cluster and cray.

configuration cray P5-cluster

Number of compute nodes 9,572 52

Processor cores per node 4 16

Number of compute processor

cores

38,288 832

Processor Core type Opteron 2.3 GHz

Quad Core

1.9GHz Power5+

processor

System theoretical peak (compute

nodes only)

352 TFlop/sec 6.3 TFlop/sec

Physical memory per compute

node

8 GB 32 GB

Memory usable by applications

per node

7.38 GB 25 GB

Switch Interconnect SeaStar2 2-plane HPS (IBM’s

High Performance

Switch)

Operating System SuSE SLES10 SP1

Linux

AIX 5.3

to link all the base containers compared to the default constructor. And for the same

number of base containers specified per location, the cyclic distributed constructor

takes more communication time to link all of the base containers compared to a

blocked distributed constructor. The reason that the cyclic distributed constructor

and the blocked distributed constructor are similar is because the only difference is

the linkage structure of the blocks. The default constructor is slower because the

54

 0

 1

 2

 3

 4

 5

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

default
blocked 5000

cyclic 5000

(a) cray: Constructor

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 128 256 512 1024 2048 4096 8192 16384

M
em

eo
ry

 U
sa

ge
(m

eg
)

Num Procs

default
blocked 5000

cyclic 5000

(b) cray: Metadata

Fig. 23. pList constructor. (a) Execution times of constructors using different number
of base containers per location in a default, blocked and cyclic distributed fashion (weak
scaling each processing unit has 20 millions). (b) Metadata size for the default, blocked and
cyclic constructor used in (a).

memory allocator takes more time to allocate a large chunk of memory than a num-

ber of small chunks of memory, which dominates the time to link all base containers.

The meta data is proportional to the number of base containers in one location. Since

each location contains 1 or 5000 base containers, thus the amount of meta data is the

same across all locations for each scenario.

C. pList Methods

1 evaluate_performance(N,P)

2 tm = stapl::start_timer(); //start timer

3 //insert N/P elements concurrently

4 for(i=0; i<N/P; ++i)

5 plist.push_anywhere(v[i]); //pre-generated value stored in vector v

6 rmi_fence(); //ensure all inserts are finished

7 elapsed = stapl::stop_timer(tm); //stop the timer

8 - Reduce elapsed times, getting the max time from all processors.

9 - Report the max time

Fig. 24. Kernel used to evaluate the performance of pList methods.

In this section we discuss the performance of the pList methods and the factors

55

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

splice 5000
splice 10000
splice 20000

(a) P5-cluster: Splice

 0

 1

 2

 3

 4

 5

 6

 7

 8

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

insert 1%
insert async 1%

insert 2%
insert async 2%

(b) cray: Remote insertions

 0

 10

 20

 30

 40

 50

 60

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

push anywhere async
push anywhere

insert async
insert

erase async
erase

(c) P5-cluster: Local operations

 0

 1

 2

 3

 4

 5

 1024 2048 4096 8192

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

push anywhere async
push anywhere

insert
insert async

(d) cray: Weak scaling

Fig. 25. pList methods comparison. (a) Splice for 5000 to 20000 base containers per
location. (b) Execution times for insert and insert async when 1% and 2% of operations
are remote. (c) Execution times when all operations are executed locally (N=64 millions).
(d) Weak scaling for pList methods on large number of processors using 25 million elements
per processor.

influencing their running time. To evaluate the scalability of individual methods we

designed the kernel shown in Figure 24. The figure shows push anywhere, but the

same kernel is used to evaluate all methods. For a given number of elements N ,

all P available processors (locations) concurrently insert N/P elements. We report

the time taken to insert all N elements globally. The measured time includes the

cost of a fence call which, as stated in Section III, is more than a simple barrier.

Figure 25 shows the execution time of different pList methods. To evaluate the

splice method, we splice a pList with a fixed number of base containers per location

56

into another pList. Figure 25(a) shows the execution time on P5-cluster for the

splice operation for different numbers of base containers per location and for various

numbers of locations. As expected, the time increases linearly with the number

of spliced base containers, but increases only slowly with the number of processors

(almost constant), ensuring good scalability. In Figure 25(b) we show the execution

time for a mix of local and remote method invocations to highlight the advantages of

the asynchronous methods over the synchronous ones. When all methods are invoked

with the same percentage of remote operations, the insert method that returns an

iterator to the newly inserted element is on average slower than the insert async

method, which does not return a value and can exploit message aggregation. Also for

the same method, the time increases as the percentage of remote operations increases.

In another study, all methods are executed locally and we observe in Figure 25(c) that

both synchronous and asynchronous methods exhibit scalable performance as they do

not incur any communication. In Figure 25(d) we show a weak scaling experiment we

performed on cray using 25 million elements per processor and up to 8192 processors

(104.8 billion method invocations performed globally). The push anywhere methods

are faster than insert as they do not perform any additional searches to find the

position to add the element. The asynchronous versions are faster as they don’t

return an iterator to the newly added element.

D. pAlgorithms Comparison

In this section we present the performance of three generic non-mutating

pAlgorithms, p generate, p foreach, and p accumulate, which store their data

in two different stapl pContainers: pList and pArray. Generic pAlgorithms can

operate transparently on different data structures.

57

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

parray pgenerate
parray pforeach

parray paccumulate

(a) pArray; 20M/Proc

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

plist pgenerate
plist pforeach

plist paccumulate

(b) pList; 20M/Proc

Fig. 26. Execution times for p foreach, p generate, p accumulate algorithms on cray

for different data structures.

The p generate algorithm produces random values and assigns them to the ele-

ments in the container, the p foreach increments the elements in the container with

a given constant. The p accumulate accumulates all the elements in the container

using a generic map reduce operation available in stapl.

For all the algorithms considered in this section, for both P5-cluster and cray

(Figure A-1 in Appendix A shows results on P5-cluster), we conducted weak scaling

experiments. Strong scaling would be difficult to evaluate due to the short execution

times of the algorithms even when run on very large input sizes.

In Figure 26, we show the execution times for the pAlgorithms on pArray and

pList. In Figure 26(a) we show a weak scaling experiment for pArray, a simple but

efficient static container for accessing data based on indices [10]. The experiment is

run with 20M elements per processors and all algorithms show good scalability. As

we scale from 128 to 8192 processors there is less than 5% performance degradation

for p generate and p foreach.

The pList is a dynamic pContainer optimized for fast insert and delete oper-

58

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

p for each a
p for each b

Fig. 27. P5-cluster: weak scaling for p foreach allocating processes on the same nodes
when possible (curve a) or in different nodes (curve b). Experiments are for 20 million
elements/processor.

ations at the cost of a slower access time relative to static data structures such as

pArray. As seen in Figure 26(b), all three algorithms on a pList with 20M elements

per location provide good scaling with less than 10% performance degradation as we

scale from 128 to 8192 processors.

Figure 27 shows two weak scaling experiments on P5-cluster for two different

processor allocation strategies. Each node of P5-cluster has 16 processors. In

the figure, p foreach-a represents the case where all processors are allocated on a

single node (possible for 1-16 processors). p foreach-b represents the case where

we use cyclic allocation across 128 processors, e.g., 16 processors would be allocated

one per node, and in general, there will be P/8 processors allocated on each node

for P < 128. The reason why the two curves do not match is related to memory

bandwidth saturation within a node. In p foreach-b, the nodes are fully utilized

only when running on 128 processors, while for p foreach-a we use all processors in

a node when running on 16 processors or more. These experiments emphasize the

59

importance of a good task placement policy on the physical processors.

0 500 700 1000 1200 1500 2000

10

20

30

40

50

60

Number of Inserts/Deletes per 10M Operations

T
im

e
(m

se
c)

pList/pVector Synthetic Workload, 10M initial elements

pList

pVector

Fig. 28. Comparison pList and pVector dynamic data structures using a mix of 10M
operations (read/write/insert/delete).

E. Comparison of Dynamic Data Structures in stapl

In this section, we compare the performance of the pList and pVector for various

mixes of container operations (i.e., read(), write(), insert() and delete()). We show

that the proportion of operations that modify the container size has substantial effects

on runtime, demonstrating the utility of each and that care must be taken in selecting

the appropriate parallel data structure.

In Figure 28, we show results for both containers on the P5-cluster for 16

processors and 10 million elements. We perform 10 million operations per container.

Each operation is either a read or write of the next element in the container, an

insertion at the current location, or deletion of the current element. These operations

are distributed evenly among the processors, which perform them in parallel. For

60

these experiments, the combined number of insertions and deletions is varied from 0

to 2000, with the remaining operations being an equal number of reads and writes.

More insertions or deletions than this cause the runtime of the pVector to increase

dramatically.

As expected, the runtime of the pList remains relatively unchanged regardless

of the number insertions or deletions, as both operations execute in constant time.

The performance of the pVector bests the pList when there are no insertions or

deletions. However, at 1200 insertions/deletions, the heavy cost of the operations

(all subsequent elements must be shifted accordingly) causes the performance of the

two containers to crossover with the pList taking the lead. This experiment clearly

justifies the use of the pList in spite of not being truly random access containers like

the pVector .

F. List Ranking

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

LR-STAPL
LR-glob-sync
LT-pt2pt-sync

(a) 1 bContainerper location

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

pr list ranking 80
list ranking 80

nb list ranking 80

(b) 80 bContainers per location

Fig. 29. List Ranking performance comparison (LR-glob-sync refers to Pointer Jumping
algorithm. LR-pt2pt-sync refers to point-to-point synchronization Pointer Jumping algo-
rithm. LR-STAPL refers to stapl implementation of point-to-point synchronization Pointer
Jumping algorithm. The number means how many bContainers per location).

61

Figure 29 shows the performance of different versions of the parallel list ranking

algorithm performed on different numbers of processors by using different numbers of

base containers per location. The larger the number of base containers per location the

more computation needs to be performed requiring longer computation time (section

A in chapter V). The LR-glob-sync is slower because of the global synchronization

performed at each step. The LR-STAPL is getting slower than the LR-pt2pt-sync with

the number of base containers increases because LR-STAPL needs to create the work

function and the view dynamically first and then perform the algorithm compared to

LR-pt2pt-sync which uses lower level MPI primitives directly. The LR-STAPL are

implemented using high level representations under the stapl programming model

which is more general and natural to express the algorithm.

G. Euler Tour and Its Application

The Euler Tour (ET) is an important representation of a graph for parallel processing.

Since the ET represents a depth-first-search traversal, when it is applied to a tree it

can be used to compute a number of tree functions such as rooting a tree, postorder

numbering, vertex levels, and number of descendants [30].

1. Euler Tour

The parallel ET constructor algorithm [30] tested here uses a pGraph to represent

the tree and a pList to store the final Euler Tour. In parallel, the algorithm exe-

cutes traversals on the pGraph view and generates ET segments that are stored in

a temporary pList. Then, the segments are linked together to form the final pList

containing the ET.

Performance is evaluated by a weak scaling experiment on cray using as input

62

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

euler tour 500K 1
euler tour 500K 50

euler tour 1M 1
euler tour 1M 50

(a) binary tree of binary trees tree

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

euler tour 2M 1
euler tour 2M 1000

euler tour 1M 1
euler tour 1M 1000

(b) list tree

Fig. 30. Euler Tour with two different types of trees.

a tree distributed across all locations. We consider two types of trees. One is a

binary tree of binary tree that is generated by first building a specified number of

binary trees in each location and then linking the roots of these trees in a binary tree

fashion. The number of remote edges is at most six times the number of subtrees

for each location (for each subtree root, one to its root and two to its children in

each location, with directed edges in both directions). The second tree was simply

a list. Figure 30(a) shows the execution time on cray for different sizes of the tree

and varying numbers of subtrees. The running time increases with the number of

vertices per location because the number of edges in the computed ET increases

correspondingly. When there are more subtrees specified in each location, there is

more communication required to link them. The same analysis applies to lists graph

too (Figure 30(b)) which simply links all the vertices to form a list.

63

2. Euler Tour Application

The tree ET applications are computed using a generic algorithm which first initializes

each edge in the tour with a corresponding weight, and then performs the prefix sum

algorithm. The prefix sum result for each edge is copied back to the graph, and the

final step computes the desired result. For more details please refer to Chapter V.

Figure 31(a,b,c,d) shows the execution time for rooting the tree, computing the

posorder numbering, vertex level and number of descendants using tree graph which is

generated the same way as in ET section. The running time increases with the number

of vertices per location because the number of edges increases and the computation

cost is proportional to the number of edges. When more subtrees are specified per

location, more segments are formed in the pList and more communication is needed

for the prefix sum. Rooting the tree is faster than the other three applications because

the initialization phase simply assigns each edge a weight of 1 compared to others

which have to check for the parent information and then assign the corresponding

weight. The same analysis applies to the list graph (Figure 31(e,f,g,h)).

64

 0

 0.5

 1

 1.5

 2

 2.5

 3

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

rooting tree 500K 1
rooting tree 500K 50

rooting tree 1M 1
rooting tree 1M 50

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

rooting tree 2M 1
rooting tree 2M 1000

rooting tree 1M 1
rooting tree 1M 1000

(e)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

postorder numbering 500K 1
postorder numbering 500K 50

postorder numbering 1M 1
postorder numbering 1M 50

(b)

 0

 2

 4

 6

 8

 10

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

postorder numbering 2M 1
postorder numbering 2M 1000

postorder numbering 1M 1
postorder numbering 1M 1000

(f)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

vertex level 500K 1
vertex level 500K 50

vertex level 1M 1
vertex level 1M 50

(c)

 0

 2

 4

 6

 8

 10

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

vertex level 2M 1
vertex level 2M 1000

vertex level 1M 1
vertex level 1M 1000

(g)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

num descendants 500K 1
 num descendants 500K 50

 num descendants 1M 1
 num descendants 1M 50

(d)

 0

 2

 4

 6

 8

 10

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

 num descendants 2M 1
 num descendants 2M 1000

 num descendants 1M 1
num descendants 1M 1000

(h)

Fig. 31. Euler Tour application.

65

CHAPTER VII

CONCLUSION

In this thesis, we presented the stapl pList, a distributed data structure optimized

for fast dynamic operations such as push anywhere, push back, and erase. We

described the design and implementation of the pList, whose methods include coun-

terparts of the stl list container methods, and new methods that provide improved

parallel performance. Our experimental results on a variety of architectures show that

pList provides good scalability and compares favorably with other stapl dynamic

pContainers.

We also described the design and implementation of various parallel algorithms

using the pList such as list ranking, Euler Tour and some of its applications (root-

ing a tree, postorder numbering, computing vertex level and computing number of

descendants).

We have demonstrated that pList is a generic and dynamic parallel container

which is appropriate to work with for certain parallel algorithms.

In the future, we would like to use and evaluate the pList in real world applica-

tions. According to the needs of those applications, more methods can be designed

and implemented. Also if there is any other generic and more efficient list than

the STL list available in the future, then we can use it instead of our current base

container for improved performance.

66

REFERENCES

[1] A. Buss, A. Fidel, Harshvardhan, T. Smith, G. Tanase, N. Thomas, X. Xu,

M. Bianco, N. M. Amato, and L. Rauchwerger, “The STAPL pView,” Dept.

Comp. Sci., Texas A&M Univ., Tech. Rep., TR10-001, July 2010.

[2] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. M.

Amato, and L. Rauchwerger, “STAPL: An adaptive, generic parallel

programming library for C++,” in In. Workshop on Languages and Compilers

for Parallel Computing (LCPC), published in Lecture Notes in Computer

Science (LNCS), Cumberland Falls, KY, Aug 2001, vol. 2624, pp. 193–208.

[3] A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce, T. Smith, G. Tanase,

N. Thomas, X. Xu, M. Bianco, N. M. Amato, and L. Rauchwerger, “STAPL:

Standard Template Adaptive Parallel Library,” in Proc. Annual Haifa

Experimental Systems Conference (SYSTOR), New York, NY, 2010, pp. 1–10.

[4] A. Buss, T. Smith, G. Tanase, N. Thomas, M. Bianco, N. M. Amato, and

L. Rauchwerger, “Design for interoperability in STAPL: pMatrices and linear

algebra algorithms,” in In. Workshop on Languages and Compilers for Parallel

Computing (LCPC), published in Lecture Notes in Computer Science (LNCS),

Edmonton, Alberta, Canada, July 2008, vol. 5335, pp. 304–315.

[5] L. Rauchwerger, F. Arzu, and K. Ouchi, “Standard Templates Adaptive

Parallel Library,” in Proc. of the 4th In. Workshop on Languages, Compilers

and Run-Time Systems for Scalable Computers (LCR), Pittsburgh, PA, May

1998, pp. 402–409.

[6] L. Rauchwerger, F. Arzu, and K. Ouchi, “Standard templates adaptive parallel

library (STAPL),” Lecture Notes in Computer Science, vol. 1511, pp. 402–413,

1998.

67

[7] S. Saunders and L. Rauchwerger, “Armi: an adaptive, platform independent

communication library,” in Proc. ACM SIGPLAN Symp. Prin. Prac. Par.

Prog. (PPoPP), San Diego, CA, 2003, pp. 230–241.

[8] G. Tanase, C. Raman, M. Bianco, N. M. Amato, and L. Rauchwerger,

“Associative parallel containers in STAPL,” in In. Workshop on Languages and

Compilers for Parallel Computing (LCPC), published in Lecture Notes in

Computer Science (LNCS), Urbana-Champaign, IL, 2008, vol. 5234, pp.

156–171.

[9] G. Tanase, X. Xu, A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce,

T. Smith, N. Thomas, M. Bianco, N. M. Amato, and L. Rauchwerger, “The

STAPL pList,” in In. Workshop on Languages and Compilers for Parallel

Computing (LCPC), published in Lecture Notes in Computer Science (LNCS),

Newark, DE, 2009, vol. 5898, pp. 16–30.

[10] G. Tanase, M. Bianco, N. M. Amato, and L. Rauchwerger, “The STAPL

pArray,” in Proc. of the 2007 Workshop on Memory Performance (MEDEA),

Brasov, Romania, 2007, pp. 73–80.

[11] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato, and

L. Rauchwerger, “A framework for adaptive algorithm selection in STAPL,” in

Proc. ACM SIGPLAN Symp. Prin. Prac. Par. Prog. (PPoPP), Chicago, IL,

2005, pp. 277–288.

[12] J. D. Valois, “Lock-free linked lists using compare-and-swap,” in Proc. ACM

Symp. on Princ. of Dist. Proc. (PODC), New York, NY, 1995, pp. 214–222.

[13] M. M. Michael and M. L. Scott, “Correction of a memory management method

for lock-free data structures,” Dept. Comp. Sci., Univ. of Rochester, Rochester,

NY, Tech. Rep., TR599, 1995.

68

[14] T. L. Harris, “A pragmatic implementation of non-blocking linked-lists,” in

Proc. Int. Conf. Dist. Comput., London, UK, 2001, pp. 300–314.

[15] M. M. Michael, “High performance dynamic lock-free hash tables and

list-based sets,” in Proc. of the Fourteenth Annual ACM Symposium on

Parallel Algorithms and Architectures (SPAA), Winnipeg, Manitoba, Canada,

2002, pp. 73–82.

[16] M. Fomitchev and E. Ruppert, “Lock-free linked lists and skip lists,” in Proc.

ACM Symp. on Princ. of Dist. Proc. (PODC), New York, NY, 2004, pp. 50–59.

[17] W. Pugh, “Concurrent maintenance of skip lists,” Dept. Comp. Sci., Univ. of

Maryland, College Park, MD, Tech. Rep., CS-TR-2222, 1990.

[18] M. T. Goodrich, R. Tamassia, and D. M. Mount, Data Structures and

Algorithms in C++, 2nd ed. New York: Wiley, 2009.

[19] J. McCarthy, “Recursive functions of symbolic expressions and their

computation by machine, part i,” Commun. ACM, vol. 3, no. 4, pp. 184–195,

1960.

[20] A. Newell and J. C. Shaw, “Programming the logic theory machine,” in

IRE-AIEE-ACM ’57 (Western): Papers presented at the February 26-28, 1957,

Western Joint Computer Conference: Techniques for Reliability, New York,

NY, 1957, pp. 230–240.

[21] M. Herlihy, “A methodology for implementing highly concurrent data objects,”

ACM Trans. Prog. Lang. Sys., vol. 15, no. 5, pp. 745–770, 1993.

[22] A. Paul and J. Rohrig, “Implementing a parallel list on the sb-pram,” in Proc.

Int. Conf. on High-Performance Comput. (HIPC), Washington, DC, 1998, p. 52.

[23] R. J. Anderson and G. L. Miller, “Deterministic parallel list ranking,”

in Proc. the 3rd Aegean Workshop on Computing: VLSI Algorithms and

Architectures, London, UK, 1988, pp. 81–90.

69

[24] D. R. Helman and J. JáJá, “Designing practical efficient algorithms for

symmetric multiprocessors,” in ALENEX ’99: Selected papers from the In.

Workshop on Algorithm Engineering and Experimentation, London, UK, 1999,

pp. 37–56.

[25] M. Reid-Miller, “List ranking and list scan on the cray c90,” J. Comput. Syst.

Sci., vol. 53, no. 3, pp. 344–356, 1996.

[26] U. Vishkin, “Randomized speed-ups in parallel computation,” in STOC ’84:

Proc. of the Sixteenth Annual ACM Symposium on Theory of Computing, New

York, NY, 1984, pp. 230–239.

[27] J. C. Wyllie, “The complexity of parallel computations,” Dept. Comp. Sci.,

Cornell Univ., Ithaca, NY, Tech. Rep., 1979.

[28] R. Cole and U. Vishkin, “Approximate parallel scheduling, part I: the basic

technique with applications to optimal parallel list ranking in logarithmic

time,” SIAM J. Comput., vol. 17, no. 1, pp. 128–142, 1988.

[29] R. Cole and U. Vishkin, “Faster optimal parallel prefix sums and list ranking,”

Inf. Comput., vol. 81, no. 3, pp. 334–352, 1989.

[30] J. JàJà, An Introduction Parallel Algorithms. Reading, MA: Addison–Wesley,

1992.

[31] R.E. Tarjan and U. Vishkin, “An efficient parallel biconnectivity algorithm,”

SIAM J. on Computing, pp. 862–874, 1985.

[32] G. Cong and D. A. Bader, “The euler tour technique and parallel rooted

spanning tree,” in In Proc. In. Con. on Parallel Processing (ICPP), 2004, pp.

448–457.

[33] D. Musser, G. Derge, and A. Saini, STL Tutorial and Reference Guide, 2nd ed.

Boston, MA: Addison-Wesley, 2001.

70

[34] N. Thomas, S. Saunders, T. Smith, G. Tanase, and L. Rauchwerger, “ARMI: A

high level communication library for STAPL,” Parallel Processing Letters, vol.

16(2), pp. 261–280, 2006.

[35] G. E. Blelloch, Vector Models for Data-Parallel Computing, Cambridge, MA:

MIT Press, 1990.

[36] G. Blelloch, “NESL: A Nested Data-Parallel Language,” Dept. Comp. Sci.,

Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep., CMU-CS-95-170, 1993.

[37] A. Chan and F. Dehne, “Cgmgraph/cgmlib: Implementing and testing cgm

graph algorithms on pc clusters,” in In. J. of High Performance Computing

Applications, 2003, p. 2005.

[38] D. Gregor and A. Lumsdaine, “Lifting sequential graph algorithms for

distributed-memory parallel computation,” in Proc. of the 20th annual ACM

SIGPLAN Conf. on Object-oriented Programming, Systems, Languages, and

Applications, New York, NY, 2005, pp. 423–437.

[39] L. V. Kale and S. Krishnan, “CHARM++: A portable concurrent object

oriented system based on C++,” SIGPLAN Not., vol. 28, no. 10, pp. 91–108,

1993.

[40] J. V. W. Reynders, P. J. Hinker, J. C. Cummings, S. R. Atlas, S. Banerjee,

W. F. Humphrey, S. R. Karmesin, K. Keahey, M. Srikant, and M. D. Tholburn,

“POOMA: A Framework for Scientific Simulations of Parallel Architectures,”

in Parallel Programming in C++, Gregory V. Wilson and Paul Lu, Eds.,

Cambridge, MA: MIT Press, 1996, pp. 547–588.

[41] E. Johnson and D. Gannon, “HPC++: experiments with the parallel standard

template library,” in Proc. of the 11th In. Conf. on Supercomputing (ICS),

Vienna, Austria, 1997, pp. 124–131.

[42] Intel, Reference for Intel Threading Building Blocks, version 1.0, April 2006.

71

[43] D. Callahan, Chamberlain, B.L., and H.P. Zima, “The Cascade high

productivity language,” in The Ninth In. Workshop on High-Level Parallel

Programming Models and Supportive Environments, Los Alamitos, CA, 2004,

vol. 26, pp. 52–60.

[44] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. Praun, and V. Sarkar, “X10: an object-oriented approach to non-uniform

cluster computing,” in Proc. of the 20th annual ACM SIGPLAN Conf. on

Object-oriented Programming, Systems, Languages, and Applications

(OOPSLA ’05), New York, NY, 2005, pp. 519–538.

[45] G. Tanase, “The STAPL parallel container framework,” Ph.D. dissertation,

Dept. of Computer Science and Engineering, Texas A&M Univ., College

Station, TX, 2010, to appear.

[46] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms, 2nd ed. Cambridge, MA: MIT Press, 2002.

72

APPENDIX A

PERFORMANCE RESULTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

p array p for each
p vector p for each

p list p for each

(a) P5-cluster: For each algorithm

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

p array p accumulate
p vector p accumulate

p list p accumulate

(b) P5-cluster: Accumulate algorithm

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 1 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

p array p generate
p vector p generate

p list p generate

(c) P5-cluster: Generate algorithm

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

p list p accumulate a
p list p accumulate b

(d) P5-cluster: Accumulate with 2 configurations

Fig. A-1. pList algorithms comparison. Weak scaling each processing unit has 20 millions
elements. (a) Parallel for each (b) Parallel accumulate (c) Parallel generate (d) Configu-
ration a use as many processing units as possible in a node; configuration b use as many
nodes possible.

73

 4

 4.5

 5

 5.5

 6

 6.5

 7

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

default
blocked 5000

(a) P5-cluster: Constructor(Blocked)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128

M
em

or
y

U
sa

ge
(m

eg
)

Num Procs

default
blocked 5000

(b) P5-cluster: Metadata

 4

 4.5

 5

 5.5

 6

 6.5

 7

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

default
cyclic 5000

(c) P5-cluster: Constructor(Cyclic)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128

M
em

or
y

U
sa

ge
(m

eg
)

Num Procs

default
cyclic 5000

(d) P5-cluster: Metadata

Fig. A-2. pList constructor. (a) Execution times of constructors using different number of
base containers per location in a blocked distributed fashion (weak scaling each processing
unit has 20 millions). (b) Metadata size for the same constructor used in (a). (c) Execution
times of constructors using different number of base containers per location in a cyclic
distributed fashion (weak scaling each processing unit has 20 millions). (d) Metadata size
for the same constructor used in (c).

74

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

push anywhere async
push anywhere

insert
insert async

(a) P5-cluster: Methods

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

erase best
erase async best

(b) P5-cluster: Erase

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

splice 5000
splice 10000
splice 20000

(c) P5-cluster: Splice

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

split

(d) P5-cluster: Split

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

insert 1%
insert async 1%

insert 2%
insert async 2%

(e) P5-cluster: Insert

 0

 0.5

 1

 1.5

 2

 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

redistribution

(f) P5-cluster: Redistribution

Fig. A-3. pList methods comparison. (a) Weak scaling of representative methods P5-

cluster using 5M method invocations per location.(b) Erase method using 5M method
invocations per location. (c) Split method with worst case scenario. (d) Splice with various
number of base containers per location. (e) Weak scaling of insert usiing 5M method invo-
cations per location with 1% or 2% remote. (f) Redistribution method using 1M elements
1000 base containers per location.

75

 0

 0.005

 0.01

 0.015

 0.02

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

LR-glob-sync
LR-pt2pt-sync

LR-STAPL
LR-glob-sync 80

LR-pt2pt-sync 80

(a)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

LR-STAPL 80

(b)

Fig. A-4. List Ranking performance comparison.

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

euler tour 1M 1
euler tour 1M 1000

euler tour 2M 1
euler tour 2M 1000

(a) List graph

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

euler tour 1M 1
euler tour 1M 1000

euler tour 2M 1
euler tour 2M 1000

(b) Tree graph

 0

 0.5

 1

 1.5

 2

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

euler tour 500K
euler tour 1M

(c) Random tree graph

Fig. A-5. Euler Tour algorithm using three different types of trees.

76

 0

 1

 2

 3

 4

 5

 6

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

rooting tree 1M 1
rooting tree 1M 1000

rooting tree 2M 1
rooting tree 2M 1000

(a)

 0

 2

 4

 6

 8

 10

 12

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

rooting tree 1M 1
rooting tree 1M 1000

rooting tree 2M 1
rooting tree 2M 1000

(e)

 0

 2

 4

 6

 8

 10

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

postorder numbering 1M 1
postorder numbering 1M 1000

postorder numbering 2M 1
postorder numbering 2M 1000

(b)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

postorder numbering 1M 1
postorder numbering 1M 1000

postorder numbering 2M 1
postorder numbering 2M 1000

(f)

 0

 2

 4

 6

 8

 10

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

computing vertex level 1M 1
computing vertex level 1M 1000

computing vertex level 2M 1
computing vertex level 2M 1000

(c)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

computing vertex level 1M 1
computing vertex level 1M 1000

computing vertex level 2M 1
computing vertex level 2M 1000

(g)

 0

 2

 4

 6

 8

 10

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

num descendants 1M 1
num descendants 1M 1000

num descendants 2M 1
num descendants 2M 1000

(d)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

num descendants 1M 1
num descendants 1M 1000

num descendants 2M 1
num descendants 2M 1000

(h)

Fig. A-6. Euler Tour application using tree graph (a,b,c,d) and list graph (e,f,g,h).

77

 0

 0.2

 0.4

 0.6

 0.8

 1

 128 256 512 1024 2048

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

rooting tree 200K
rooting tree 400K

(a) cray

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

rooting tree 500K
rooting tree 1M

(e) P5-cluster

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 128 256 512 1024 2048

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

postorder numbering 200K
postorder numbering 400K

(b) cray

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

postorder numbering 500K
postorder numbering 1M

(f) P5-cluster

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 128 256 512 1024 2048

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

computing vertex level 200K
computing vertex level 400K

(c) cray

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

computing vertex level 500K
computing vertex level 1M

(g) P5-cluster

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 128 256 512 1024 2048

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

num descendants 200K
num descendants 400K

(d) cray

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

num descendants 500K
num descendants 1M

(h) P5-cluster

Fig. A-7. Euler Tour application using random tree graph.

78

 0

 0.5

 1

 1.5

 2

 2.5

 3

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

push anywhere async
push anywhere

insert
insert async

(a) cray: Methods

 0

 0.5

 1

 1.5

 2

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

erase best
erase async best

(b) cray: Erase

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 128 256 512 1024 2048 4096 8192

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

splice 5000
splice 10000
splice 20000

(c) cray: Splice

 0

 5

 10

 15

 20

 25

 30

 128 256 512 1024 2048 4096

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

split

(d) cray: Split

 0

 1

 2

 3

 4

 5

 6

 7

 8

 128 256 512 1024 2048 4096

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

redistribution

(e) cray: Redistribution

Fig. A-8. (a) Weak scaling of representative methods using 20M method invocations per
location. (b) Weak scaling of erase methods with 5 million invocations per location. (c)
Splice method with different number of base containers per location. (d) Split method with
worst case scenario. (e) Redistribution method using 1M elements 1000 base containers per
location.

79

APPENDIX B

STL LIST INTERFACE

Table B-I. STL List Interface

Members Complexity Where defined

value type O(1) Container

pointer O(1) Container

reference O(1) Container

const reference O(1) Container

size type O(1) Container

difference type O(1) Container

iterator O(1) Container

const iterator O(1) Container

reverse iterator O(1) Reversible Container

const reverse iterator O(1) Reversible Container

iterator begin() O(1) Container

iterator end() O(1) Container

const iterator begin() const O(1) Container

const iterator end() const O(1) Container

reverse iterator rbegin() O(1) Reversible Container

reverse iterator rend() O(1) Reversible Container

const reverse iterator rbegin() const O(1) Reversible Container

const reverse iterator rend() const O(1) Reversible Container

size type size() const O(1) or O(N) Container

size type max size() const O(1) or O(N) Container

bool empty() const O(1) Container

list() O(1) Container

list(size type n) O(N) Sequence

list(size type n, const T& t) O(N) Sequence

list(const list&) O(N) Container

list(InputIterator f, InputIterator l) O(N) Sequence

l̃ist() O(N) Container

list& operator=(const list&) O(N) Container

reference front() O(1) Front Insertion Sequence

const reference front() const O(1) Front Insertion Sequence

reference back() O(1) Sequence

const reference back() const O(1) Back Insertion Sequence

void push front(const T&) O(1) Front Insertion Sequence

void push back(const T&) O(1) Back Insertion Sequence

void pop front() O(1) Front Insertion Sequence

void pop back() O(1) Back Insertion Sequence

80

Table B-I continued. STL List Interface

Members Complexity Where defined

void swap(list&) O(1) Container

iterator insert(iterator pos, const T& x) O(1) Sequence

void insert(iterator pos, InputIterator f,
InputIterator l)

O(N) Sequence

void insert(iterator pos, size type n,
const T& x)

O(N) Sequence

iterator erase(iterator pos) O(1) Sequence

iterator erase(iterator first, iterator last) O(N) Sequence

void clear() O(N) Sequence

void resize(n, t = T()) O(N) Sequence

bool operator==(const list&, const
list&)

O(N) Forward Container

bool operator<(const list&, const list&) O(N) Forward Container

void splice(iterator position, list& x) O(1) list

void splice(iterator position, list& x, iter-
ator i)

O(1) list

void splice(iterator position, list& x, iter-
ator f, iterator l)

O(1) list

void remove(const T& val) O(N) list

void remove if(Predicate p) O(N) list

void unique() O(N) list

void unique(BinaryPredicate p) O(N) list

void merge(list& x) O(N) list

void merge(list& x, BinaryPredicate
Comp)

O(N) list

void reverse() O(N) list

void sort() O(NlogN) list

void sort(BinaryPredicate comp) O(NlogN) list

81

VITA

Xiabing Xu received his B.S. in computer science and engineering at Jilin Univer-

sity, Changchun City, in 2007. He has worked on the research area involving motion

planning and parallel library development and published some papers.

• A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce, T. Smith, G. Tanase,

N. Thomas, X. Xu, M. Bianco, N. M. Amato, and L. Rauchwerger, “STAPL:

Standard Template Adaptive Parallel Library”, in Proc. of SYSTOR 2010: The

3rd Annual Haifa Experimental Systems Conference, Haifa, Israel, May 2010.

• G. Tanase, X. Xu, A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce,

T. Smith, N. Thomas, M. Bianco, N. M. Amato, and L. Rauchwerger, “The

STAPL pList”, in Proc. of the 22nd International Workshop on Languages and

Compilers for Parallel Computing (LCPC), Newark, DE, Oct 2009.

More information about Xiabing Xu’s research and publications may be found

at http://parasol.tamu.edu/people/xiabing. He may be reached at: Parasol Lab, 301

Harvey R. Bright Bldg, 3112 TAMU, College Station, TX 77843-3112.

The typist for this dissertation was Xiabing Xu.

