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ABSTRACT 

Kilogram Scale Synthesis of a Triazine-Based Dendrimer and the Development of a 

General Strategy for the Installation of Pharmacophores to Yield Potential Drug 

Delivery Agents. (December 2009) 

Vincent Joseph Venditto, B.S., Gettysburg College 

Chair of Advisory Committee: Dr. Eric E. Simanek 

 

 Diverse dendrimer peripheries are often produced through convergent synthesis 

with multiple protection-deprotection steps.  Achieving such diversity while maintaining 

monodispersity has previously proven problematic.  Interception of an electrophilic 

poly(monochlorotriazine) dendrimer with a molecule of interest bearing a reactive, 

nucleophilic group presents an efficient method to achieve large quantities of dendrimers 

with biologically relevant peripheries.   

Kilogram-scale synthesis of a triazine-based dendrimer relies on reaction of the 

dichlorotriazine monomer with the amine terminated dendrimer to afford a 

poly(monochlorotriazine) dendrimer.  Normally, the dendrimer is then reacted with 

piperidine, an inexpensive “cap” due to its chemically inert nature after reaction.  The 

dendrimer then undergoes a global deprotection to afford an amine-terminated 

dendrimer.  Subsequent iterations with the dichlorotriazine monomer affords higher 

generation architectures.  Intercepting the poly(monochlorotriazine) dendrimer with 

biologically relevant molecules containing reactive amines enables the development of a 

drug delivery vehicle.  Desferrioxamine B, an iron chelate, and camptothecin, and anti-

cancer drug, are two clinically approved drugs of interest investigated for 

macromolecular drug delivery.  Upon acylation of each drug with BOC-isonipecotic 

acid, substitution on the dendrimer may occur with varying levels of success depending 

on the drug in question. Upon successful substitution to afford the desired product, 

biological studies may be performed. Each synthetic approach will be discussed along 

with alternative routes leading to this general strategy.   
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CHAPTER I 

INTRODUCTION 

 

1.1 The Evolution of Dendrimers   

During the early 1900’s polymers became a major interest within the field of 

chemistry.  Theoretical contributions from Staudinger1 and experimental evidence of 

Carothers2 paved the way for further advancements toward the development of 

polymerization catalysts by Ziegler3 and Natta4 and polymerization kinetics by Flory.5  

More recently, the development of “living” polymerization techniques have dcreased 

polydispersities toward the achievement of monodisperse architectures.6, 7 However, 

improvements in linear polymerizations did not translate directly to branched polymers.  

The development of crosslinked and hyperbranched polymers showed many of the 

properties of linear polymers and improved structural properties but suffered from high 

polydispersity.  The inability of simple branched olefins to undergo controlled reactions 

was due to the lack of differential reactivity between reactive centers.  Such challenges 

opened the field to the development of dendrimer chemistry in the late 1970’s. 

Generally, polymerizations occur through addition of monomer and reagents to a 

single reaction vessel.  The products obtained oftentimes have a wide range of molecular 

weights and structures.  The inability to accurately characterize or purify the products 

leads to potential ambiguity in determining the mechanisms of action when used in 

biomedical applications.  The ability to produce monodisperse polymers provides 

regulatory advantages, as well as advantages in deciphering complex mechanisms upon 

specific tailoring of molecules.   

Typically, linear polymers grow in two directions with two terminal reactive 

units.  Alternativelly, hyperbranched polymers achieved through the use of branched 
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monomer units generates a large number of terminal functionalities depending on the 

feed ratios of the monomer units.  The development of dendrimers with exceptionally 

low polydispersity required monomer units with the ability to initiate and polymerize 

selectively.  Such monomers were developed through the use of differential reactivity or 

protecting groups to achieve the desired products.  Figure 1.1 summarizes different 

polymerization techniques through the use of cartooned puzzle pieces for monomer 

units.  Each terminal functional group (arrow) may react with its corresponding acceptor 

functionality (inverted arrow) to form polymers.  Thus, as shown here, polymerization of 

linear polymers propagates when both monomers are present.  

1. Deprotect

2.

A)

B)

C)

 
Figure 1.1: Cartoon summary of the synthesis of: A) linear polymers, B) hyperbranched 
polymers and C) dendrimers. 
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The dendrimer synthesis uses protecting groups as cartooned with caps on the arrows to 

prevent hyperbranching.  Subsequent iterations of monomer addition and deprotection 

produce higher generations.  The generation of a dendrimer is classified as the number of 

synthetic iterations performed.  Therefore, when using a monomer that branches into two 

terminal groups, three “arrows” present on the core become six at the first generation. 

The second-generation dendrimer then has twelve “arrows” or terminal functional 

groups and so on. 

While polymerization has been a flourishing field for over 100 years, the 

development of new monomer units spawned the area of dendrimer chemistry which 

continues to grow today.8  Originally, these well-defined branched structures were 

known as cascade polymers,9 but later adopted the names arborols10 and dendrimers.11  

Vögtle first synthesized cascade polymers in 1978 as pseudo-cavities for ion binding.9  

The synthesis employed a core molecule with three reactive sites, which could undergo 

iterative synthetic steps to introduce the branches.  This synthetic strategy became 

known as the divergent method of synthesis, which was later utilized by Denkewalter,12 

Newkome10, 13-15 and Tomalia11, 16-21 in the 1980’s.  The tree-like structure of the 

molecules suggested the name dendrimer, from the greek dendros, meaning tree.  This 

new class of macromolecules quickly found utilization through functionalization of the 

multivalent periphery with “leaves” to generate macromolecular constructs for a variety 

of potential applications from medicine to materials science.   

Poly(amidoamine) (PAMAM) dendrimers were the first constructs synthesized, 

which classified these new architectures as dendrimers.11  The PAMAM dendrimers 

were synthesized through Michael addition with methyl acrylate and ethylene diamine 

from a core outward to form a water soluble polyamide architecture.  The route of 

growth from the core outward is known as the divergent route.  The scalablity of this 

dendrimer and ease of synthesis enabled commercialization and further exploitation.  

Initially, dendrimers showed copper sequestration ability22 and were later exploited for 

radioimmunotherapy and imaging when decorated radionuclide or gadolinium 

complexes.23, 24  However, shortly after the first report of PAMAM dendrimers, the 
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attempted synthesis of other architectures proved to be less successful due to significant 

challenges in purification arising from imperfections at higher generations.  To 

overcome such drawbacks, a new synthetic technique was developed, which utilized the 

same concept, but built the dendrimer from the periphery inward.25-27  This route was 

termed the convergent route.  The two synthetic routes as well as the development of 

new monomer units and core molecules improved the synthetic efficiency and provided 

great potential toward macromolecules with interesting properties. Various other 

dendrimer architectures have been developed since the mid 1980’s including new 

poly(amides),28 phosphorous-based dendrimers29, 30 and polyaryl dendrimers31, 32 to 

name a few. 

1.2 Polymer Therapeutics 

Polymer therapeutics is a burgeoning field33-36 that combines the therapeutic 

capabilities of small molecule drugs with the extended blood retention times of 

macromolecules.  Namely, in cancer, polymers are designed to exploit tumor 

physiology37, 38 and achieve improved efficacy.  Small molecule drugs are chosen for 

incorporation into polymer therapeutics due to the various limitations of efficacy that 

would retard clinical application including: 1) poor solubility, 2) rapid clearance, 3) high 

systemic toxicity and 4) poor selectivity to the site of treatment.39  Each of these 

limitations may be addressed through covalent or non-covalent attachment to polymer 

architectures.  Accordingly, dendrimer based constructs present new possibilities to treat 

a variety of diseases.  

Two notable features of polymers keep them at the forefront of therapeutic 

applications, namely their size and multivalency.  Dendrimers have the additional benefit 

of monodispersity, which enables production of exact entities for biological evaluation.  

Dendrimers are on the scale of proteins and display a large number of peripheral groups 

for functionalization.  Multivalency is useful in nature for a number of processes ranging 

from cell-cell interactions to viral infections.40  Viruses, like dendrimers are large and 

have a multivalent periphery.  Their size helps them to remain in the blood stream for 
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extended periods, while their multivalency aids in improving infection through enhanced 

ligand-receptor interactions.  Previously, multivalency was exploited in dendrimers for 

HIV sequestration,41 investigation of protein-cell interactions42 and magnetic resonance 

imaging24 among other areas.  Dendrimers may also utilize their size for enhanced blood 

retention, and their multivalency for high drug loading capacity.  Generally, small 

molecules are filtered quickly from the blood stream by the kidneys and are excreted 

rapidly within the urine or are converted to inactive metabolites.  Through attachment of 

drugs to dendrimers, high drug loading is possible, with improved solubility and 

extended plasma half-life.  

Polymeric therapies for cancer therapy have witnessed a significant amount of 

attention in recent years for the reasons mentioned above.  More specifically, however, 

in cancer therapy one of the major challenges is tumor localization, causing damaging 

side effects to other organs.  Through increased blood circulation and “leaky” 

vasculature at the site of the tumor, localized tumor therapy may be realized.  The 

extended circulation and tumor accumulation has been termed the enhanced permeability 

and retention (EPR) effect.37  The exploitation of physiology for improved therapy, 

however, may only be achieved after selection of the dendrimer platform best suited for 

the application.  As we strive to develop dendrimers for biomedical applications, the 

proper selection of monomer and peripheral units enable us to achieve high molecular 

weights with improved pharmacokinetics. 

 

1.3 Triazine-Based Dendrimer Synthesis 

While dendrimers are more monodisperse than their original hyperbranched 

polymer counterparts, many of the constructs discussed have suffered from 

imperfections and complications during synthesis.  The ability to synthesize new 

dendrimer architectures, which are easily synthesized with robust high yielding reactions 

for eventual scalable synthesis and commercialization are still desired, to more 

effectively produce a macromolecular architecture for affordable medicine.  Our efforts 
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toward the scalable synthesis of monodisperse architectures, which are easily 

manipulated, began approximately ten years ago and continue today.   

The commercial use of dendrimers for a variety of applications depends on the 

cost and scalability, which are determined by the synthetic ease of each reaction, the 

robust nature of the reactions and the cost of starting materials among other parameters.   

Each dendrimer mentioned above has been synthesized to address each of these aspects 

to varying levels of success, but maximum optimization derives from an educated 

selection of core, monomer and peripheral unit as well as the synthetic route employed.  

The possibility for infinite combinations makes the selection of each unit a cumbersome 

task.  Herein, we aim to provide clarity toward our choice of synthetic route, core and 

branching units, which led to the kilogram-scale synthesis of a second-generation 

triazine-based dendrimer.  En route to achieving this goal we synthesized a number of 

dendrimers, which enabled us to better understand the reactivity and continue to 

optimize our strategy.  The reactivity and advantages of each unit and reaction sequence 

are summarized in the following section devoted to advancements in triazine-based 

dendrimer synthesis.   

1.3.1 Triazine and Nucleophilic Amine Reactivities 

A limited number of triazine-based polymeric architectures had previously been 

reported in the literature prior to 2000.43-46  Of the published reports, however, many 

employ a nitrile cyclization to obtain the triazine ring.  This method is applicable when 

synthesizing symmetric molecules, however, expanding this chemistry into the synthesis 

of complex asymmetric architectures containing a diverse periphery affords a mixture of 

products.  To overcome such shortfalls of nitrile cyclization to obtain similar structures, 

the chemoselective reactivity of cyanuric chloride using nucleophilic aromatic 

substitution may be exploited.  This enables one to synthesize such molecules with quite 

diverse peripheries and a limitless potential for eventual applications.  Taking cues from 

the functionalization of cyanuric chloride in the late 1800’s by Fries,47, 48 we are able to 
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achieve macromolecular architectures with high monodispersity on large scale and in 

modest yield.   

Cyanuric chloride is an attractive molecule for dendrimer synthesis due to the 

low cost and chemoselective reactivity.49  The generally accepted reactivity trend, as 

shown in Scheme 1.1, proceeds at 0 °C for the first substitution while the second and 

third substitutions occur at 25 °C and 70 °C, respectively.50 

Scheme 1.1: General reactivity of chlorotriazines with amine nucleophiles. 

 

While this scheme explains the electrophilic differences between 

trichlorotriazines, dichlorotriazines and monochlorotriazines, abbreviating the 

nucleophile with an “R” group prevents the full comprehension of such reactions.  The 

differences in amine reactivity enable further control over the generalized reactivity 

trend and allows for more efficient and robust dendrimer synthesis.  To develop an 

understanding of the differential amine reactivity, monochlorotriazines were reacted 

with a variety of amines.  The products were quantified over time using NMR to 

generate the following series and associated relative reactivity values (Figure 1.2).50, 51  
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H
N NH
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NH2 H
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321       214        64         45         32         21        10              7            3         2           1  
Figure 1.2: Relative reactivity of a series of amines toward monochlorotriazines. 
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The differential reactivity of amines has great impact in the synthesis of our 

dendrimers and enables us to perform reactions on the dendrimer, in some cases, without 

the use of protecting groups.52 We have expanded on the general trend of chlorotriazine-

based chemistry in Table 1.1.  The trend follows a pattern of cyclic secondary amines > 

primary amines > linear secondary amines > anilinic amines.  

Table 1.1: Generalized reactivity trend of nucleophilic amines toward chlorotriazine 
derivatives. 

 

This reactivity series can be explained using pKa, sterics and orbital 

characteristics.  Firstly, the pKa of anilines are approximately 5.0, while most other 

amines used in this study range from 8.0 to 11.0 suggesting that pKa would have an 

effect, however, the differences in relative reactivity between pyrrolidine (214, pKa = 

11.27) and piperidine (64, pKa = 11.22) would not be expected.51  Additionally, sterics 

may decrease reaction rates as seen in the low reactivity of diethylamine (2, pKa = 

10.64), which has comparable reactivity to that of butylamine (3, pKa = 10.59).  While 

the numerical differences here are not significant, the difference in reactivity from the 

cyclic to linear form is apparent.  Cyclic secondary amines are generally more reactive 

due to a combination of effects.  As the ring size decreases, the ring strain and the s-

orbital character increases, which is believed to cause an increase in orbital overlap with 

the electrophile and therefore increase the reaction rate.  The extent of each effect on the 

relative reactivity and their participation in reactivity is unclear, however, each effect 

must be considered in combination with each other when attempting to fully exploit this 

chemistry.  Our aim to exploit the differential reactivity of both amine nucleophiles and 

chlorotriazine electrophiles led us toward more efficient dendrimer syntheses.   
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1.3.2 Convergent vs. Divergent Synthesis 

Triazine dendrimers may be synthesized using a convergent route, divergent 

route or a combination of both to afford desired structures for specific applications.52  As 

explained previously, the convergent route involves synthesis of dendrons from the 

periphery inward, which are then joined to a core to afford the final dendrimer.  The 

divergent route, however, begins with a core and grows each branch outward generation 

by generation.  The convergent route benefits from a limited number of reactions 

occurring at each step, which generally remain the same throughout the synthesis, 

whereas the divergent route exponentially increases the number of reactions from 

generation to generation.  The convergent route enables complex functionalities to be 

obtained on the periphery while the divergent route generally requires that each 

peripheral unit be the same.  Due to the listed benefits, convergent syntheses are 

regarded as more efficient on the small scale, while divergent syntheses are used for 

kilogram-scale reactions.  Triazine-based dendrimers have been synthesized using both 

convergent and divergent routes successfully.  From our initial investigations in 

dendrimer synthesis, we aimed to expand our scope to implement a variety of core 

molecules, monomer units and peripheries to optimize the chemistry at each step, which 

eventually led us to our large-scale synthesis.   

 

1.3.3 Selection of Core, Monomer Unit and Peripheral Group 

Core molecules have been synthesized in our lab with functional groups 

numbering three or four, two examples are shown in Figure 1.3.  When the core 

contains four functional groups we refer to this as a “bow-tie”53 while three functional 

groups is a C3-symmetric core, formed from a triazine at the center with three diamine 

linkers appended from it. A variety of diamines have been employed including primary 

diamines, cyclic secondary diamines as well as mixed primary/secondary diamines.  

From the reactivity series, the cyclic secondary amines are more reactive and facilitate 

tri-substitution to afford the core in high yields at room temperature.  A core with three 

cyclic secondary amines exposed, also enables efficient addition of dichlorotriazine 
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monomer units at the first generation.  The tris-piperazinyl triazine core is commonly 

utilized in our syntheses due to cost, ease of core formation and easy addition of 

monomer units.  Amino-azetidine, however, was utilized as the core diamine molecule to 

form a tris-azetidine core with unique NMR signals, which was supplemented by 

aminopiperidine and aminopyrrolidine moieties at subsequent generations to better 

understand dendrimer motion and folding.54  The bow-tie core uses a diamine through 

which two triazine molecules are linked.  The synthesis of a bow-tie core involves 

additional synthetic steps to produce the monochlorotriazine, which is then coupled with 

a diamine.  While chemoselectivity of the bow-tie forming reaction is exploited, 

additional steps on the kilogram scale are undesirable.   

N

N

N

N

N N

NH

H
N

HN

NN

N

N

NN

N

N

N

NN

N

NH

NH

HN

HN  
Figure 1.3: The C3-symmetric core containing three terminal amines and the bow-tie 
core with four peripheral amines. 

From the core we add branching units to increase the multivalency.  Branching 

units are added iteratively to the core to produce successive dendrimer generations.  

Traditional polymer chemistry terminology classifies a linear symmetric bifunctional 

monomer unit as an AA monomer, which forms an -AAAAAA- polymer. An 

asymmetric unit, however, is classified as an AB monomer, which reacts with other 

monomer units to form an -ABABAB- polymer.  Due to the branching character of 

dendritic monomer units a similar terminology is applied.  In the case of triazine based 

branching units, a monochlorotriazine with two pendant amines is classified as an AB2 

monomer, while a monochlorotriazine with four pendant amines is classified as an AB4 

monomer as shown in Figure 1.4. 
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HN

Cl

N

N

N

N

N

Cl

NHBoc

NHBoc

NHBoc

NHBoc

NHBoc

NHBoc

 
Figure 1.4: Examples of an AB2 branching unit and an AB4 branching unit. 

Reaction of an AB2 unit with a C3-symmetric core affords a first generation with 

six terminal amines followed by twelve and 24 for the second and third generations as 

shown in Figure 1.5.  Likewise, a “bow-tie” dendrimer contains eight, 16 and 32 

terminal amines at the first, second and third generations, respectively. An AB4 

branching unit would then have twelve, 48 and 192 terminal groups at the first, second 

and third generations in the case of the C3-symmetric core and 16, 64 and 256 terminal 

amines for the bow-tie core, respectively.   

 
Figure 1.5: Second-generation dendrimer with C3-symmetric core and 12 terminal 
amines and a second-generation dendrimer with “bow-tie” core and 16 terminal amines.  
The core of each dendrimer is shown in black with first and second generation in red and 
blue, respectively. 
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Triazine-based dendrimers are synthesized through nucleophilic aromatic 

substitution and therefore our monomer units require an aromatic electrophile and 

protected amine nucleophiles.  The electrophile is the chlorotriazine moiety, which has 

remained consistent throughout our various dendrimers.  Our selection of nucleophiles, 

however, has evolved over time.  Initially, p-aminobenzylamine and piperazine were 

utilized, which enabled us to begin our investigations with dendrimer systems.  The 

hydrophobicity and rigidity of these molecules allowed us to study non-covalent drug 

sequestration, however certain applications required a less rigid system, which led to 

diamines including aminomethyl piperidine50 and diaminobutane,55 which are more 

flexible, producing a less rigid dendrimer. 

Recently, manipulation of the linker unit was exploited for the development of a 

library of dendrimers for gene transfection.  In the original library, a variety of core 

structures were utilized.  The cores included rigid structures containing piperazine linker 

groups; bowtie structures, which contain both piperazine and PEG-like diamine linkers 

and; flexible compounds, which contain a core having PEG-like diamine linkers.  While 

generation and peripheral groups were also varied in this library, the results from the 

biological studies indicated that the dendrimer core has the most profound affect on 

transfection efficiency, with the highest gene transfer seen for the flexible structures.56, 57   

The monomer unit for many of the dendrimers synthesized, including the family 

of transfection agents is a monochlorotriazine with two amines to form the AB2 

branching unit.  Monochlorotriazines, however, are less reactive electrophiles than their 

dichlorotriazine counterparts and require a more reactive nucleophile for substitution.  

While the diamines and monomer units utilized were of great importance to the 

advancement of our research, the ability to synthesize dendrimers using these building 

blocks on the kilogram-scale was less than desirable.  The need for more robust reactions 

was necessary, and thus a need for monomer units with increased reactivity.  

To increase electrophilicity, an amine nucleophile was necessary that could be 

added to cyanuric chloride to produce a dichlorotriazine containing two peripheral 

amines.  This was achieved successfully through use of a linear triamine with two 
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primary amines and a centrally located secondary amine.  The implementation of this 

molecule greatly improved the synthesis of our dendrimers allowing for complex 

dendritic architectures and efficient synthesis, which has led to the synthesis of 

kilogram-scale quantities of dendrimer.58, 59  Scheme 1.2 summarizes our synthesis and 

post-synthetic dendrimer modifications to obtain functional dendrimers. The kilogram-

scale synthesis is detailed in Chapter II. 

Scheme 1.2: Route used for kilogram-scale synthesis and functionalization of 
intermediates. 

 

 

 

 

 

 

 

 

 

 
 
 

 

1.4 Applications Using Triazine-Based Dendrimers.   

As shown in Scheme 1.2, there are two possible intermediates, which may be 

intercepted for further manipulation.  The amine terminated dendrimer may undergo 

conjugation with an electrophilic linker while the poly(monochlorotriazine) dendrimer 

may undergo conjugation with a nucleophilic linker.  Utilizing the amine-terminated 

dendrimer as a platform for manipulation, a library of dendrimers may be synthesized 
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for a variety of applications.  Previous efforts in our lab successfully converted amine 

peripheries into carboxylate, sulfonate, phosphonate, guanidinylate and PEGylate 

peripheries.60  This work proved to successfully modulate toxicity in vitro.  

Understanding of the relative toxicity of peripheral functional groups provides a basis 

for further manipulations when implementing biologically relevant molecules.  

 Through functionalization of the amine-terminated dendrimer with succinic 

anhydride, a polycarboxylate dendrimer is obtained which may be functionalized further 

with glucosamine moieties for potential suppression of immunologic function during 

inflammation caused during disease and injury as shown when using PAMAM 

constructs.61  En route to the desired product new characterization methods using 

capillary electrophoresis were developed as a method to verify the purity obtained using 

mass spectrometry and NMR analysis.62  While the triazine-based dendrimer platforms 

appeared to be more pure and more monodisperse than their PAMAM counterparts, the 

triazine dendrimers did not seem to have any effects on the immune system.    

 Alternatively, modifying the amine-terminated dendrimer with chlorotriazine-

modified drugs has proven successful as a route toward drug delivery vehicles using 

paclitaxel.63  Attempts to attach desferrioxamine B (DFOB) to the dendrimer in a similar 

manner were also visited.  DFOB is a siderophore used in the treatment of iron overload 

due to the high affinity and high specificity for iron.  Attachment of DFOB to a 

dendrimer would enable macromolecular iron chelation.  The structure of DFOB 

(Figure 1.6) shows a linear chelate with three hydroxamic acids and one primary amine.  

Previous studies of the x-ray crystal structure provide solid-state evidence that the amine 

is outside of the coordination sphere of iron, offering a valid attachment point to the 

dendrimer.64  
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Figure 1.6: Desferrioxamine B shown in the absence of iron and in the presence of iron 
as a hexadentate chelate. 

Through exploitation of the dichlorotriazine route for attachment, the primary 

amine may react with cyanuric chloride to afford a dichlorotriazine containing DFOB.  

This molecule may then be appended from the amine-terminated dendrimer.  The similar 

pKa values between the primary amine and the three hydroxamic acids65 led to new 

strategies for the installation o DFOB onto the dendrimer.  Various routes will be 

discussed further in Chapter III. 

While drug attachment to the dendrimer through a dichlorotriazine intermediate 

has proven successful, the additional steps for drug attachment led to the development of 

an alternative method, which takes advantage of the poly(monochlorotriazine) 

containing dendrimer obtained as an intermediate in the synthesis of dendrimers.  To 

investigate this new route we chose 20-(S)-camptothecin as our drug of choice, shown in 

Figure 1.7.  The camptothecins are DNA topoisomerase-I (TOP I) inhibitors.66  When 

bound to the TOP I cleavage complex, DNA remains with a single-strand nick causing 

cell death.  Functionalization of camptothecin with a secondary amine enables for 

efficient substitution of the poly(monochlorotriazine) dendrimer, which will be 

explained in more detail in Chapter IV.  
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Figure 1.7: Camptothecin in the active lactone and inactive carboxylate forms. 

 Exploitation of a variety of synthetic routes for dendrimer synthesis has enabled 

us to obtain a dendrimer at kilogram-scale using routine laboratory equipment.  Current 

methods to derivatize this dendrimer have given mixed results.  While the success of this 

route has been largely dependent on molecule added to the dendrimer, the utility of such 

reactions will continue to be investigated by us toward the eventual goal of 

macromolecular-based therapeutics.  Current efforts to attach drugs for cancer 

therapeutics and other biologically relevant molecules will prove to fuel the future of 

research in our lab as we move from synthesis to cellular toxicity and eventually in vivo 

therapeutics.  Advances over the past ten years have proven promising to propel us into 

the next decade of applications using triazine dendrimers.  
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CHAPTER II 
 

KILOGRAM-SCALE SYNTHESIS OF A TRIAZINE-BASED DENDRIMER  
 
  
 
2.1 Introduction   

Since the development and commercialization of PAMAM dendrimers, various 

other architectures have been developed, which address issues associated with the 

application for which the architecture is intended.  Triazine-based dendrimers have had 

an impact on the field of dendrimer chemistry through the exquisite control over 

synthesis, which pushes the boundaries of design.  Early in the synthesis of triazine-

based dendrimers a third generation dendrimer was synthesized both convergently and 

divergently to afford a dendrimer with 16 terminal amines.52  The convergent synthesis 

of this dendrimer was performed in the absence of protecting group or functional group 

manipulations.  The divergent synthesis had poor yields upon addition of the monomer 

units at each generation and required multiple deprotection steps.  The poor yields may 

be attributed to the poor relative reactivity between monochlorotriazines and benzyl 

amine.  Furthermore, the reactions were carried out in organic solvents and required 

chromatography for purification. 

Shortly thereafter, complex peripheries were attained through the introduction of 

orthogonally reactive protecting groups.  The most complex dendrimer to date contains 

two hydroxyl groups, 16 BOC-protected amines, two t-butyl-diphenylsilyl (TBDPS)-

protected alcohols, two thiopyridyl disulfides and two levulinic esters for a total of five 

different functional groups and 24 total peripheral groups.67  This tailored complexity 

leads to the ability to attach specific molecules to each peripheral functional group for 

the development of multimodal theranostics containing imaging agents, drugs and 

biocompatibilizing agents.  The complexity of this construct is a synthetic feat in 

dendrimer synthesis, but suffers from the inability to produce this architecture on large 

scale at high yields without the use of column chromatography.  Since the successful 

completion of this complex triazine-based dendrimer, various other constructs were 
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developed in our lab, which come closer to development of a construct for achieving 

scalable synthesis. 

After our initial success with dendrimer synthesis, various other architectures 

were synthesized by our group, which improved on past structures.50, 51, 55, 59, 68-70  

Finally, a triazine-based dendrimer was synthesized, which utilized dichlorotriazine 

monomer units containing two BOC-protected primary amines.58  Synthesis from the 

commonly used  tris(piperazinyl) core progressed divergently through monomer addition 

and subsequent reaction with piperidine, an inert capping group.  The second-generation 

dendrimer had twelve terminal amines and was synthesized in great yield, but each 

reaction was run at a concentration of 0.1 M or less and some products required 

chromatography for purification.  While the procedure originally performed to obtain the 

dendrimer was not ideal for kilogram-scale reactions, the structure and synthetic strategy 

led to further investigation and synthetic optimization for large-scale synthesis.  

Although the synthetic route, core, monomer unit and peripheral functionality are 

among the most apparent parameters affecting synthesis, various other factors also play a 

major role in achieving dendrimer architectures at the kilogram scale.  These parameters 

include solvent, concentration and other reagents.  The majority of reactions to 

synthesize the dendrimers described above are performed in organic solvents at 0.1 M, 

which are commonplace in organic chemistry.  At the kilogram-scale, the reactions 

would generate a significant amount of organic waste at these concentrations.  To 

circumvent the issues of significant waste production, a number of efforts focused on 

optimizing reaction conditions to decrease the waste generation, to run more 

concentrated reactions and to use “green” solvents when possible.  The kilogram-scale 

synthesis of a triazine-based dendrimer is described here with attention drawn to the 

approaches used to circumvent the production of large quantities of waste.  
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2.2 Results and Discussion 

The dendrimer was synthesized through iterative reactions of monomer addition, 

capping and deprotection.  Each of these steps was performed divergently from the core 

outward to obtain a second-generation dendrimer with twelve terminal amines. 

Our initial selection of synthetic route stemmed from previous work in our lab 

and reports from other groups, which found that the divergent route is more 

advantageous for large-scale syntheses.  While the convergent synthesis produces less 

moles of product than reactant used, the divergent route has the advantage of molar 

retention by increasing the molecular weight at each generation.  The molecule central to 

this synthesis and most projects in our lab is cyanuric chloride, which undergoes 

chemoselective reactions with nucelophiles.  The core is formed by reaction of cyanuric 

chloride with three diamines to form a symmetric core with three terminal amines.  Our 

use of piperazine as the diamine affords a small molecule core with three cyclic 

secondary amines capable of reacting efficiently with mono and dichlorotriazines.  This 

reactivity has proven useful in the past when making dendrimers with piperazine at each 

generation, however, the poor yields and rigid product precludes scalability and use in 

certain applications.  Through the introduction of primary amines at the periphery of 

each generation, we are able to synthesize dendrimers with more versatile functionality.  

In an attempt to synthesize a dendrimer with primary amines on the periphery we lose 

reactivity seen with cyclic secondary amines.  To circumvent this problem we must 

introduce dichlorotriazines as the monomer unit capable of high yielding reactions with 

primary amines.  Therefore, increased yield and purity may be obtained through the use 

of a tris(piperazinyl) core and a dichlorotriazine with two primary amines.  These 

structures are shown in Figure 2.1. 
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Figure 2.1: Structure of tris(piperazinyl) core and aminodipropylamino-dichlorotriazine 
monomer.  

In the original procedure, the core molecule was synthesized through reaction of 

cyanuric chloride with excess 1-BOC-piperazine at a concentration of 0.04 M in 

tetrahydrofuran to yield 97% of the desired product.  In the large-scale synthesis, the 

concentration was only slightly higher at 0.05 M with a 96% yield.  Attempts to make 

this reaction “green” were unsuccessful as solubility was a problem in driving the 

reaction to completion.  Furthermore, the concentration that the reaction was performed 

at was optimized, but showed little improvement over the previously reported method.   

Protection of the triamine in “green” solvents also proved unsuccessful and was 

performed in tetrahydrofuran as originally reported.  The advantage was evident with the 

increased concentration of the reaction.  Originally, the reaction was carried out at 

concentration of 0.13 M in the presence of N,N-diisopropylethylamine resulting in 84% 

yield.  The large-scale reaction proceeded in the same yield at a concentration of 0.33 M.  

These reaction conditions enabled the reaction to proceed in 0.6 L instead of the 1.5 L 

used in the previous procedure.  Purification, in both cases, proceeded through 

crystallization.  Reaction of the BOC-triamine with cyanuric chloride to form the 

monomer was then performed in THF at a concentration of 0.06 M in the presence of 

DIPEA and purified by crystallization to afford the product in 87% yield.  In acetone and 

water the reaction proceeds at a concentration of 0.14 M using sodium bicarbonate as the 

base.  The product was then obtained in 96% yield after purification through 

crystallization.  The ability to synthesize the monomer unit in large scale at excellent 

yield with significantly less solvent is imperative due to the use of this monomer at each 

generation.  Synthesis of the monomer proceeded with 362 g cyanuric chloride resulting 

in 810 g of monomer.   
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The next step to form the first generation poly(monochlorotriazine) dendrimer involved 

the reaction of a single core molecule with three monomer units.  The iterative 

dendrimer synthesis to produce the second-generation dendrimer starting from the 

reaction of core and monomer is shown in Scheme 2.1.  This reaction was achieved in 

organic solvents at a concentration of 0.018 M to yield 93% of the first generation 

poly(monochlorotriazine) dendrimer.  Purification was then performed using a short 

silica gel chromatography column to by removing a majority of the impurities.  The 

eluent was then concentrated and the product precipitated.  Reaction of this product with 

piperidine, an inert capping group, at a concentration of 0.03 M yields 99% of BOC-

protected first generation dendrimer.  In acetone and water, the reaction of monomer and 

core proceeds at a concentration of 0.09 M.  Due to the excess solvent necessary to 

perform chromatographic separation and the amount of silica gel necessary, the product  

Scheme 2.1: Iterative synthesis of the second-generation dendrimer on kilogram scale. 
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obtained in the large-scale synthesis was used in the next step without further 

purification.  Slight excess in monomer unit is the only likely impurity, which is also 

capped upon reaction with piperidine.  Addition of piperidine to this dendrimer in 

acetone proceeds at a concentration of 0.025 M to afford the product in 86% yield over 

both steps after purification.  The unreacted monomer present at the beginning of this 

reaction was indeed present as the bis-piperidine capped monomer and was removed 

using a filtration rinse with acetone. 

Deprotection of the BOC-protected amines in the next step occurs in methanol at 

a concentration of 0.01 M in both cases.  Generally, a 6 M solution of hydrochloric acid 

in methanol is used to deprotect the dendrimer.  Such harsh conditions are not necessary 

to achieve the desired product, but are utilized for synthetic and purification ease.  

Previously it has been shown that the dendrimer may be deprotected using trifluoroacetic 

acid, which proceeds in comparable yields but proceeds to completion slower than when 

utilizing HCl.  The first generation dendrimer then has six terminal amines, which may 

then undergo reaction with monomer units to afford a second generation 

poly(monochlorotriazine) dendrimer with twelve BOC-protected amines and six 

monochlorotriazines. 

The second-generation dendrimer was originally achieved at a concentration of 

0.0035 M in 93% yield after purification through a short silica gel chromatography 

column and subsequent precipitation as was performed in the first generation.  The pure 

dendrimer was then reacted with piperidine at a concentration of 0.016 M to yield 99% 

of the second-generation BOC-protected dendrimer.  Alternatively, the reaction was 

performed in acetone and water at a concentration of 0.0056 M and used directly in the 

next step without further purification.  Reaction with piperidine then proceeds at a 

concentration of 0.02 M.  At this stage purification was attempted to remove the bis-

piperidine capped monomer.  The resulting solid proved to be more difficult to purify as 

the monomer was still apparent in the solid.  The inability to remove the impurity led to 

the need for a single chromatographic purification step.  Column chromatography was 

performed using ethyl acetate and hexanes as the eluting solvent for the piperidine-
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capped monomer followed by a dichloromethane solution with 30% methanol to elute 

the desired product.  A yield of 83% was determined for the collected product over both 

steps.  Finally, deprotection of the dendrimer proceeded at concentration of 0.006 in the 

original report and 0.002 in the large-scale synthesis with a 99% yield in both cases.   

2.3 Conclusions 

This synthesis was performed in five steps in 70% yield with greater than 93% 

purity for under $10/g.  While yield and purity are often parameters that measure the 

success of a synthesis, we found various other parameters that further enhance the utility 

of this construct.  The synthetic ease, purification and use of water and acetone in a 

majority of the reactions also attest to the utility and potential commercial applicability 

of this triazine-based dendrimer.  The original synthesis of this dendrimer on small scale 

was reported to the fifth generation.  The purification and characterization became 

increasingly more difficult at each iteration and required significantly more effort with 

dramatically lower yields.  Solubility and incomplete reactions also became problematic 

at the fifth generation.  At the kilogram-scale the purification and characterization would 

prove to be too cumbersome to warrant investigation up to the fifth generation and thus 

our large scale synthesis was only carried out to the second generation. 

Oftentimes, the use of specialized laboratory equipment is required for syntheses 

performed on this scale.  Such equipment includes reactor vessels with multiple valves 

and attachments for handling ease and maximum collection efficiency of the products.  

In our hands, however, we completed the synthesis using routine laboratory equipment.   

Handling 22 L round bottom flasks and 4 L separatory funnels did pose certain safety 

precautions, however, the reactions were generally performed as would be routine with a 

100 mL round bottom flask.  Crystallization as the only purification method until the 

final chromatography column was also a major advantage to this route.  The need to 

purify compounds using column chromatography is commonplace in many organic 

reactions, but oftentimes uses significant volumes of solvent to elute the product.  

Circumventing the use of chromatography decreases the amount of waste produced and 
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simplifies the collection of pure materials through filtration rather than evaporation of 

solvents.  Finally, optimizing the reactions by increasing concentrations and using 

“green” solvents also generates less waste and less environmentally hazardous waste.  

The use of green solvents in industrial reactions is of much interest now and this reaction 

moves our chemistry one step closer toward triazine-based dendrimers with commercial 

applications.  

The synthetic ease, modest yield and overall purity have propelled us to continue 

to investigate this dendrimer in a variety of applications.  The low cost also suggests a 

potential for this construct in the development of affordable medicines for the third 

world.  Our interest and success in using this platform as a drug-delivery vehicle is 

discussed later in Chapters III and IV.  

 

2.4 Experimental 

2.4.1 Materials and Methods 

All solvents and reagents were purchased from commercial suppliers and used as 

received.  Acetone (99.5%), 2-(tertbutoxycarbonyloxyimino)-2-phenylacetonitrile 

(BOC-ON), chloroform (99.8%), 3,3'-diaminodipropylamine (98%), dichloromethane 

(99.6%), N,N-diisopropylethylamine (99%), methanol (99.8%), sodium chloride, sodium 

sulfate (anhydrous) and tetrahydrofuran (99.9%, anhydrous) were purchased from 

Sigma-Aldrich. Cyanuric chloride was purchased from Alfa Aesar. N-Boc-piperazine 

was purchased from AK Scientific.  Hydrochloric acid andsodium bicarbonate were 

purchased from J. T. Baker.  Sodium hydroxide was purchased from Fisher Scientific.  

Hexanes (98.5%) were purchased from Mallinckrodt.  NMR spectra were recorded on a 

Varian Mercury 300 MHz spectrometer in CDCl3, or DMSO-d6.  All mass spectral 

analyses were carried out by the Laboratory for Biological Mass Spectrometry at Texas 

A&M University.  HPLC analysis was performed using a Waters Delta 600 system and a 

Waters UV detector at 280 nm.  Either a Zorbax C-8 column (4.6 x 50 mm) was used at 

30 °C with a flow rate of 0.7 mL/min or a Halo C18 column (4.6 x 50 mm, 2.7 µm) was 

used at 50 °C with a flow rate of 1.5 mL/min.  The mobile phase in both cases was a 
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95/5 (0.5% HClO4 in water/acetonitrile) with a gradient to 5/95 (0.5% HClO4 in 

water/acetonitrile) over 3 minutes, and an isocratic hold for 4 min followed by a gradient 

of 95/5 (0.5% HClO4 in water/acetonitrile) over 7 min. 

2.4.2 Synthesis of 1,3,5-[Tris-piperazine]-triazine   

A 1-L, three-necked, roundbottomed flask, fitted with a magnetic stirrer, 

condenser, nitrogen inlet, and 250 mL addition funnel was charged with 1,3,5-[N-(tert-

butoxycarbonyl)-piperazine]-triazine (27.9 g, 44.1 mmol, 1.00 equiv) and 286 mL of 

methanol.  The solution was left to stir at 0 °C for 30 min.  A solution of 153 mL (0.918 

mol, 21 equiv) of 6 N hydrochloric acid was then added over 70 min. keeping the 

temperature at ~ 1 °C and the resulting light yellow slurry was left to stir at 0 °C for 2 h.  

The reaction slurry then warmed to ambient temperature over 3 h and slowly heated to 

an internal temperature of 40 °C for 12 h (the slurry became homogeneous at 27 °C).  

Off-gassing was observed as the temperature increased.  The volatile organic 

components were removed using a rotary evaporator 34–40 °C until only ca. 100 mL of 

water remained.  The resulting aqueous solution was cooled to 0 °C and made alkaline 

(pH = 14) by addition of 237 mL (657 mmol, 15 equiv.) of a 10% NaOH solution.  The 

resulting alkaline solution was then extracted with chloroform (3 x 250 mL), and the 

organic phases were combined and dried over sodium sulfate.  The solvent was filtered 

and evaporated at 34 °C to afford the product as a white solid (14.1 g, 96 %), mp 200–

208 °C. 

The product has the following characteristics: TLC Rf = 0.0 (silica gel 60 F254, 

EMD Chemicals, Inc. in 10% methanol:dichloromethane); IR (neat) cm-1: 3278, 2846, 

1523, 1433, 1242, 1007, 806, 728; 1H NMR (400 MHz, CDCl3) δ: 1.62 (s, 3 H), 2.81 (t, 

12 H, J = 5.0), 3.68 (t, 12 H, J = 5.0); 13C NMR (100 MHz, CDCl3) δ: 44.3, 46.0, 165.2; 

MS (CI) m/z 334.4 Anal. Calcd. for C15H27N9: C, 54.03; H, 8.16; N, 37.81. Found: C, 

53.72; H, 8.32; N, 37.48. 
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2.4.3 Synthesis of 3,3’-Di-(tert-butoxycarbonyl)-aminodipropylamine   

A 1 L, three-necked, round-bottomed flask equipped with a magnetic stirrer, a 

500-mL addition funnel, a temperature probe and a static nitrogen inlet was charged with 

3,3'-diaminodipropylamine (28.2 mL, 0.20 mol, 1.0 equiv), 300 mL of tetrahydrofuran, 

and N,N-diisopropylethylamine (100 mL, 0.57 mol, 2.8 equiv.).  A separate 500-mL 

Erlenmeyer flask was charged with 2-(tert-butoxycarbonyloxyimino)-2-

phenylacetonitrile (BOC-ON) (100 g, 0.41 mol, 2.0 equiv.) and 300 mL of 

tetrahydrofuran.  The resulting solutions were separately stirred at 0 °C for 30 min.  The 

BOC-ON solution was then transferred to the addition funnel and added dropwise to the 

solution of 3,3'-diaminodipropylamine over a 90-100 min period. After addition was 

complete, the solution was left to stir at 0 °C for 3 h, warmed to ambient temperature, 

and left to stir for an additional 20 h. The solvent was removed using a rotary evaporator 

at 39 °C and the residue was dissolved in 400 mL of dichloromethane. The organic 

solution was washed with 10% NaOH (3 x 200 mL), a saturated, aqueous solution of 

sodium chloride (1 x 300 mL), and dried over sodium sulfate.  Following filtration, the 

solvent was removed using a rotary evaporator at 32–39°C to afford the product as an 

oily material which was then precipitated as an off-white solid by addition of hexane 

(500 mL) and traces of MeOH (3 mL).  After standing in the freezer for 24 h, the solids 

were filtered, washed with hexane, and dried under vacuum overnight to provide the 

product as an off-white solid (54.2–55.9 g, 82–84 %), mp 68.1–70.0 °C. 

The product has the following spectral characteristics: TLC Rf = 0.0 (silica gel 

60 F254, EMD Chemicals, Inc. in 5:95 methanol:dichloromethane); IR (neat) cm-1: 3342, 

2975, 2931, 1686, 1518, 1365, 1273, 1250, 1168; 1H NMR (400 MHz, CDCl3) δ: 1.41 

(s, 18 H), 1.60–1.66 (m, 4 H), 2.63 (t, 4 H, J = 6.6), 3.15–3.20 (br, 4 H), 5.2 (br, 2 H); 
13C NMR (100 MHz, CDCl3) δ: 28.4(s), 29.7 (s), 38.9 (s), 47.4 (s), 78.9 (s), 156.1 (s); 

MS (CI), m/z 332.2 (M+H). Anal. Calcd. for C16H33N3O4: C, 57.98; H, 10.04; N, 12.68. 

Found: C, 57.86; H, 9.84; N, 12.51. 
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2.4.4 Synthesis of 2-[3,3’-Di-(tert-Butoxycarbonyl)-aminodipropylamine]-4,6- 

dichloro-1,3,5-triazine   

A 3-L, three-necked, round-bottomed flask equipped with a mechanical stirrer, 

static nitrogen inlet and 1-L addition funnel was charged with cyanuric chloride (30.5 g, 

0.165 mol, 1.00 equiv) and 300 mL of acetone.  The resulting solution was left to stir at 

0 ºC for 1 h.  A cooled solution of 3,3’-di-(tert-butoxycarbonyl)-aminodipropylamine 

(54.9 g, 0.166 mol, 1.01 equivalent) in acetone (686 mL) was then added dropwise to the 

cyanuric chloride solution over a period of 3 h (the internal temperature remained at or 

below 2 ºC during this addition).  A white suspension formed during the course of 

addition.  Sodium bicarbonate (13.9 g, 0.166 mol, 1.00 equiv) in water (195 mL) was 

then added dropwise over a period of 1 h.  A yellow mixture was obtained after complete 

addition.  The resulting solution was left to stir at 0 ºC for 3 h, which resulted in the 

formation of a white suspension.  The mixture was allowed to warm to ambient 

temperature and stirred for an additional 15 h.  The reaction mixture was concentrated 

without filtration (to approximately 200 mL) on a rotary evaporator at 31–40 °C.  The 

resulting aqueous suspension was filtered.  The solids were dissolved in 600 mL of 

dichloromethane and washed with water (3 x 250 mL), and a saturated, aqueous solution 

of sodium chloride (300 mL). The organic layer was dried with sodium sulfate, filtered, 

and the solvent was concentrated using a rotary evaporator at 40 °C.  The resulting solids 

were dried under vacuum to provide the product as an off-white solid (76.5 g, 0.160 mol, 

96 %), mp 122.4-125.7 °C. 

The product has the following characteristics: TLC Rf = 0.3 (silica gel 60 F254, 

EMD Chemicals, Inc. in 5% methanol:dichloromethane); IR (neat) cm-1: 3349, 2976, 

1691, 1573, 1475, 1233, 1160, 847, 733; 1H NMR (400 MHz, CDCl3) δ: 1.41 (s, 18 H), 

1.77 (tt, apparent quintet, 4 H, J = 6.6), 3.07-3.12 (br/quartet-depending on sample 

concentration, 4 H), 3.60 (t, 4 H, J = 7.1), 5.05 (br, 2H); 13C NMR (100 MHz, CDCl3) δ: 

27.7 (s), 28.3 (s), 37.3 (s), 44.9 (s), 79.3 (s), 156.0 (s), 164.7 (s), 170.1 (s); MS (CI): m/z 

479, 379. Anal. Calcd. for C19H32Cl2N6O4: C, 47.60; H, 6.73; N, 17.54; Cl, 14.79.  

Found: C, 47.87; H, 6.82; N, 17.48; Cl, 14.47. 
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2.4.5 Synthesis of 1,3,5-[Tris-N-(tert-butoxycarbonyl)-piperazine]-triazine 

A 2 L, three-necked, round-bottomed flask equipped with a magnetic stirrer, 

reflux condenser, temperature probe, glass stopper and static nitrogen inlet was charged 

with cyanuric chloride (10.0 g, 54.2 mmol, 1.00 equiv) and tetrahydrofuran (1 L).  N-

(tert-Butoxycarbonyl)-piperazine (34.0g, 183 mmol, 3.38 equiv) was added in ~10 g 

portions over 17 min (during the addition, the temperature rose from 20 to 28 °C; an 

ambient temperature water bath was used to moderate the exotherm).  White solids 

formed in the reaction mixture during the addition of the piperazine.  N,N-

Diisopropylethylamine (96.2 mL, 552 mmol, 10.2 equiv) was then added, and the 

reaction mixture stirred at ambient temperature for 1 h, then heated to an internal 

temperature of 66 °C for 20 h at which point the reaction was judged to be complete by 

HPLC.  Upon cooling to ambient temperature, a white precipitate forms.  The solvent is 

removed using a rotary evaporator at 31 °C.  The white residue was taken up in 

dichloromethane (300 mL) and washed with water (2 x 150 mL), 10% NaHSO4 (2 x 150 

mL) and a saturated, aqueous solution of sodium chloride (2 x 100 mL).  The organic 

layer was dried over anhydrous sodium sulfate, filtered, and the solvent was removed 

using a rotary evaporator at 35–41 °C.  The resulting white solids are granulated in 

EtOAc (35 mL, ca. 1 mL/g) to yield a white crystalline material (31.0–32.0 g, 90–93 %), 

mp 223.4–226.1 °C. 

The product has the following characteristics: TLC, Rf 0.35 (silica gel 60 F254, 

EMD Chemicals, Inc. in 5% methanol:dichloromethane); IR (neat) cm-1: 1679, 1535, 

1419, 1227, 998, 725; 1H NMR (400 MHz, CDCl3) δ: 1.46 (s, 27 H), 3.42 (m, 12 H), 

3.72 (m, 12 H); 13C NMR (100 MHz, CDCl3) δ: 28.4, 43.0, 79.9, 154.8, 165.2; MS (CI) 

m/z 634.3; Anal. Calcd. for C30H51N9O6: C, 56.85; H, 8.11; N, 19.89. Found: C, 56.69; 

H, 8.26; N, 19.82. 
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2.4.6 Synthesis of G1-[N(CH2CH2CH2NHBoc)2]3-Cl3   

In a 4-L, 4-necked, jacketed reaction vessel equipped with a 250-mL addition 

funnel, temperature probe, static N2 and mechanical stirrer, 2-[3,3’-di-(tert-

butoxycarbonyl)-aminodipropylamine]-4,6-dichloro-1,3,5-triazine (73.0 g, 0.152 mol, 

3.5 equiv.) was dissolved in acetone (1 L) and cooled to 0 °C.  Separately, a chilled 

solution of 1,3,5-[tris-piperazine]-triazine (14.5 g, 43.5 mmol, 1.0 equiv) in H2O (500 

mL) was prepared and treated with a solution of sodium carbonate (46.1 g, 0.435 mol, 10 

equiv.) in 250 mL of H2O.  This solution was left to stir at 0 °C for 30 min.  The 

resulting aqueous solution was added in a dropwise fashion to the acetone solution at 0 

°C over a period of 2 h.  The white suspension obtained after complete addition was left 

to stir at 0 °C for 2.5 h before warming gradually to 21 °C, and then stirred for an 

additional 20 h.  The white solid was collected by filtration on a 15 cm-diameter 

Büchner funnel.  The reaction vessel was rinsed with 500 mL water, which was 

subsequently used to wash the filter cake.  The wet solids were transferred back to the 

rinsed reaction vessel and dissolved in CH2Cl2 (1.5 L), washed with water (3 x 200 mL), 

a saturated, aqueous solution of sodium chloride (1 x 1.5 L), and then dried with 230 g 

of sodium sulfate.  Following filtration, the solvent was removed using a rotary 

evaporator at 30 °C and dried under vacuum to yield an off-white crude material (76.1 

g).  This material was used in the next step without further purification. 

A small amount of the product was purified for spectral characterization using 

column chromatography on silica gel eluting with 10% EtOAc:CH2Cl2 to give the 

unreacted starting material C3N3[N(CH2CH2CH2NHBoc)2]Cl2 as a white solid followed 

by elution with (50:50) EtOAc:CH2Cl2 to give the product as a white solid. 

The product has the following characteristics: TLC Rf = 0.28 (Silica Gel 60 F254, 

EMD Chemicals, Inc., 20:1 CH2Cl2:CH3OH); IR (KBr pellet) cm-1: 3375, 2976, 2931, 

1713, 1571, 1539, 1493, 1437, 1390, 1367, 1248, 1167, 1081, 1041, 999, 983, 880, 801, 

620, 465; 1H NMR (400 MHz, CDCl3) δ: 1.44 (s, 54 H, C(CH3)3), 1.75 (m, 12 H, 

NCH2CH2), 3.08 (m, 12 H, CH2NHBoc), 3.57 (m, 12 H, Boc-NCH2), 3.82 (m, 24 H, 

CH2, piperazine), 4.84 (br, 3 H, NH), 5.58 (br, 3 H, NH); 13C NMR (100 MHz, CDCl3) 
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δ: 28.0 (s, NCH2CH2), 28.1 (s, NCH2CH2), 28.6 (s, C(CH3)3), 28.7 (s, C(CH3)3), 37.0 (s, 

CH2NHBoc), 38.0 (s, CH2NHBoc), 42.9 (s, CH2), 43.1 (s, CH2), 43.6 (s, CH2, 

piperazine), 44.1 (s, CH2), 79.1 (s, C(CH3)3), 79.5 (s, C(CH3)3), 156.1 (s, C(O)), 156.4 

(s, C(O)), 164.6 (s, C3N3), 165.2 (s, C3N3), 165.4 (s, C3N3), 169.6 (s, C3N3); HRMS 

(Thermo LTQ FT Ultra): Calcd. for (M+H): 1660.8746. Found: 1660.87555. Anal. 

Calcd. for C72H120Cl3N27O12: C, 52.02; H, 7.28; N, 22.75; Cl, 6.40. Found: C, 52.14; H, 

7.30; N, 22.63; Cl, 6.48. 

2.4.7 Synthesis of G1-[N(CH2CH2CH2NHBoc)2]3-piperidine3  

In a 4-L, 4-necked, jacketed reaction vessel equipped with a temperature probe, 

static N2 inlet, glass stopper and mechanical stirrer, G1-[N(CH2CH2CH2NHBoc)2]3-Cl3 

(74.8 g, 43.5 mmol, 1.0 equiv) was suspended in acetone (3 L) and left to stir at 0 °C for 

1 h.  Piperidine (79.3 mL, 68.4 g, 803 mmol, 18.5 equiv) was added in a single portion 

and the mixture stirred at 0 °C for 4 h.  A white suspension formed after 30 min.  The 

mixture warmed to 21 °C and stirred for an additional 20 h, at which time the reaction 

was judged to be complete by HPLC. The resulting suspension was filtered, washed with 

acetone (100 mL), and air-dried overnight to afford 97.3 g of a white solid.  The white 

solid was dissolved in CH2Cl2 (1000 mL), transferred to a 2-L separatory funnel and 

washed with a 5% HCl solution (4 x 300 mL), 5% NaOH solution (1 x 300 mL), and a 

saturated, aqueous solution of sodium chloride (1 x 300 mL).  The organic phase was 

dried over sodium sulfate (108 g) and the solvent was removed on a rotary evaporator at 

30 °C to afford an off-white solid that was dried in a vacuum oven for 96 h to provide 

67.4 g of the title product (86% yield over two steps). 

 The product has the following characteristics: TLC Rf = 0.36 (Silica Gel 60 F254, 

EMD Chemicals, Inc., 20:1 CH2Cl2:CH3OH); IR (KBr pellet) cm-1: 2975, 2931, 2853, 

1717, 1530, 1487, 1434, 1366, 1293, 1249, 1173, 997; 1H NMR (400 MHz, CDCl3) δ: 

1.42 (s, 54 H, C(CH3)3), 1.56 (br, 12 H, C5H10N, β-H), 1.62 (br, 6 H, C5H10N, γ-H), 1.71 

(br, 12 H, NCH2CH2), 3.06 (br, 12 H, CH2NHBoc), 3.59 (br, 12 H, CH2, Boc-NCH2), 

3.73 (br, 12 H, C5H10N, α-H), 3.80 (br, 24 H, CH2, piperazine), 5.26 (br, 6 H, NH); 13C 
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NMR (100 MHz, CDCl3) δ: 25.1 (C5H10N, γ-C), 26.0 (C5H10N, β-C), 27.8 (s, 

NCH2CH2), 28.7 (s, C(CH3)3), 37.4 (s, CH2NHBoc), 41.9 (C5H10N, α-C), 43.2 (s, Boc-

NCH2), 43.4 (s, Boc-NCH2), 44.4 (s, CH2, piperazine), 79.1 (s, C(CH3)3), 156.2 (s, 

C(O)), 165.1 (s, C3N3), 165.5 (s, C3N3), 166.1 (s, C3N3); HRMS (Thermo LTQ FT Ultra) 

[M+H] calcd. for C87H150N30O12: 1808.2120. Found: 1808.20932. Anal. Calcd. for 

C87H150N30O12: C, 57.78; H, 8.36; N, 23.24. Found: C, 57.45; H, 8.10; N, 22.90. 

2.4.8 Synthesis of G1-[N(CH2CH2CH2NH2)2]3   

Prior to starting the reaction, methanol and concentrated HCl were cooled to 0 °C 

for 3 h.  In a 22 L three neck roundbottomed flask fitted with a mechanical stirrer was 

dissolved G1-[N(CH2CH2CH2NHBOC)2]3 (315 g, 0.17 mol) in CH3OH (9 L) and the 

mixture was allowed to stir at 0 °C for 30 min.  Concentrated HCl (12 N, 4.5 L) was 

added in 500 mL portions over a period of 2.5 h with a 15 min interval between each 

addition.  The temperature slightly rose to 5 °C after addition.  After complete addition, 

the resulting yellow solution was left to stir at 0 °C for 15 h and at 25 °C for 24 h.  The 

volatile components were concentrated in vacuo until only about 800 mL of water 

remained.  After cooling to 0 °C, the residue was made basic (pH = 14) with 1.5 L of a 5 

M NaOH (aq.) solution.  The resulting white suspension was filtered and attempt to dry 

this compound under vacuum and with low heating was unsuccessful. The solid was 

partially dissolved in CHCl3 (4 L). The organic phase was separated by filtration.  The 

remaining solid was dissolved in H2O (3 L), and the resulting milky solution was 

extracted with CHCl3 (1 L) using a 1 L size liquid-liquid extractor. The extraction was 

stopped when the aqueous solution turned clear (4-5 h).  Fresh CHCl3 was used after two 

successive extraction (500 mL each).  The organic fractions were combined, dried with 

Na2SO4, and filtered, and the solvent was removed under reduced pressure. The desired 

material was isolated as a white solid by precipitation from the oily solution using 

hexane and upon standing for 48 h in the freezer (205 g, >99%). 1H NMR (300 MHz, 

CDCl3) δ: 3.74 (br, 24H), 3.66 (br, 12H), 3.58 (br t, 3JH-H = 7 Hz, 12H), 2.63 (br, 12H), 

1.68 (br m, 12H), 1.57 (br, 6H), 1.49 (br, 12H), 1.38 (br, 12H). 13C NMR (75.5 MHz, 
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CDCl3) δ: 165.5, 165.2, 164.8, 44.0, 43.0, 42.4, 39.1, 39.0, 31.3, 25.7, 24.9. MS 

(MALDI): calcd. 1206.8904 (M)+, found 1207.9496 (M + H)+. Anal. Calcd. For 

C57H102N30•2H2O: C, 55.03; H, 8.52; N, 33.79. Found: C, 55.13; H, 8.16; N, 33.39. 

2.4.9 Synthesis of G2-[N(CH2CH2CH2NHBOC)2]6-Cl6   

A 22 L, three-neck roundbottomed flask equipped with a mechanical stirrer was 

charged with 130 g (0.11 mol) of G1-[N(CH2CH2CH2NH2)2]3 and 5 L of H2O.  A 

solution of Na2CO3 (205 g, 1.94 mol) in 1.5 L of H2O was added, and the resulting slurry 

solution was stirred at 25 °C for 1 h.  A solution of dichlorotriazine monomer(310 g, 

0.65 mol) in acetone (13 L) was added, and the reaction mixture was stirred at 25 °C for 

36 h.  The reaction was monitored by MALDI-TOF MS and TLC (silica gel, 5% CH3-

OH/CH2Cl2, Rf = 0.2) and deemed to be complete as a result a yellow gummy 

precipitated at the bottom of the flask during this time.  The solvent was removed on 

rotary evaporator (13 L), and the resulting aqueous suspension was dissolved in CH2Cl2 

(4 L).  The aqueous layer was removed, and the organic phase was washed with H2O (3 

x 500 mL) and brine (3 x 500 mL) and dried with Na2SO4.  Following filtration, the 

solvent was removed on rotary evaporator to afford a white crude material (420 g, 99%).  

Both TLC and MALDI-TOF MS analysis of this material showed the presence of the 

desired product along a small amount of unreacted monomer.  This material was suitable 

for use without further purification; however, a small amount was purified for spectral 

characterization using column chromatography on silica gel (40:1 CH2Cl2/CH3OH; Rf = 

0.19 using 20:1 CH2Cl2/CH3OH as developing solvent) to afford the product as a white 

solid. The excess/unreacted monomer may also be recovered from this purification (Rf  = 

0.50 using 20:1 CH2Cl2/CH3OH as the developing solvent).  1H NMR (300 MHz, 

CDCl3) δ: 6.60-4.80 (br, 18H), 3.80 (br, 24H), 3.72 (br, 12H), 3.56 (br, 36H), 3.36 (br, 

12H), 3.05 (br, 24H), 1.83 (br, 12H), 1.70 (br, 30H), 1.60 (br, 12H), 1.42 (s, 54H), 1.39 

(s, 54H). 13C NMR (75.5MHz, CDCl3) δ: 169.2, 168.4, 165.4, 165.1, 164.9, 164.6, 

156.0, 155.7, 78.9, 78.6, 44.0, 37.6, 36.6, 28.2, 27.7, 25.6, 24.8. MS (MALDI): calcd. 

3860.1476 (M+), found 3860.5223. Anal. Calcd. for C171H288Cl6N66O24: C, 53.14; H, 



 

 

33 

7.51; N, 23.92; Cl, 5.50.  Found: C, 53.31; H, 7.52; N, 23.79; Cl, 5.41. 

2.4.10 Synthesis of G2-[N(CH2CH2CH2NHBOC)2]6-piperidine6   

In a 22 L three-neck roundbottomed flask fitted with a mechanical stirrer, G2-

[N(CH2CH2CH2NHBOC)2]6Cl6 (1240 g, 0.32 mol) in acetone (16 L) was allowed to stir 

at 25 °C for 1 h. To the resulting solution was added piperidine (470 mL, 5.59 mol), and 

the mixture was allowed to stir at 25 °C for 48 h at which point the reaction was judged 

complete by MALDI-TOF MS and TLC (silica gel, Rf ) 0.49 using 5% 

CH3OH/CH2Cl2). The resulting suspension was filtered, washed with acetone (2 L), 

and dried to afford 238 g of a lightweight white material. Analysis (NMR, MS, and 

TLC) of this material showed the presence of the pyridinum chloride salt and none of the 

desired product, and it was therefore discarded. The filtrate was evaporated to dryness 

under reduced pressure to yield a yellowish white solid.  TLC analysis (SiO2, 5% 

MeOH-CH2Cl2) of the crude product showed two spots under UV lamp, one with an Rf 

value of 0.34 that corresponds to the desired product and the second with an Rf value of 

0.48 and corresponds to piperidine capped monomer. Furthermore, a ninhydrin stain 

showed the presence of a third spot at the baseline which corresponds to the excess 

piperidine. The crude product was dissolved in CHCl3 (8 L) and was washed with 5% 

aqueous HCl solution (3 x 2 L), 5% aqueous NaOH solution (3 x 2 L), and then brine (3 

x 1 L). TLC monitoring confirmed the disappearance of the excess piperidine. The 

organic phase was dried with Na2-SO4, and the solvent was removed in vacuo to afford a 

crude product which was passed through a chromatography column, eluting with 

EtOAc-hexane (1:1) to isolate the impurities, followed by a 30% CH3OH-CH2Cl2 elution 

to isolate the product.  The appropriate fractions were collected, and the solvent was 

removed under reduced pressure.  The resulting yellowish white solid was dried under 

vaccum for 3 days.  Yield: 1.105 kg, 83%. 1H NMR (300 MHz, CDCl3) δ: 6.71-4.85 (br, 

18H), 3.80 (br, 24H), 3.70 (br, 36H), 3.55 (br, 36H), 3.36 (br, 12H), 3.04 (br, 24H), 1.83 

(br, 12H), 1.68 (br, 24H), 1.58 (br, 18H), 1.53 (br, 36H), 1.38 (s, 108H). 13C NMR (75.5 

MHz, CDCl3) δ: 165.7, 165.3, 164.9, 164.5, 156.0, 78.8, 44.0, 43.0, 41.9, 37.0, 28.4, 
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27.6, 25.7, 24.8. MS (MALDI): calcd 4154.8224 (M+), found 4155.2448 (M + H+).  

Anal. Calcd. for C201H348N72O24: C, 58.07; H, 8.44; N, 24.26. Found: C, 57.91; H, 8.33; 

N, 24.48. The piperidine capped monomer sideproduct was recovered during purification 

(92 g).  1H NMR (300 MHz, CDCl3) δ: 5.35 (br, 2H), 3.69 (t, 3JH-H = 5 Hz, 8H), 3.56 (t, 
3JH-H = 6 Hz, 4H), 3.02 (t, 3JH-H = 6 Hz, 2H), 3.00 (t, 3JH-H = 6 Hz, 2H), 1.66 (m, 4H), 

1.60 (br, 4H), 1.54 (br, 8H), 1.40 (s, 18H).  13C NMR (75.5 MHz, CDCl3) δ: 166.0, 

164.9, 156.0, 78.8, 44.1, 41.0, 36.8, 28.4, 27.4, 25.7, 24.9. MS (ESI): calcd. 576.4112 

(M+), found 577.3884 (M + H+).  Anal. Calcd. for C29H52N8O4: C, 59.41; H, 8.96; N, 

19.12. Found: C, 59.20; H, 8.96; N, 19.69. 

2.4.11 Synthesis of G2-[N(CH2CH2CH2NH2)2]6  

Concentrated aqueous HCl (50 mL) was added to a solution of G2-

[N(CH2CH2CH2NHBOC)2]6 (5.0 g, 0.32 mmol) in CH3OH (100 mL), and the clear 

solution was stirred at 25 °C for 24 h. The volatile components were concentrated in 

vacuo until only ca. 40 mL of water remained.  The residue was made basic (pH = 14) 

with 85 mL of 10% NaOH (aq) solution, and the resulting milky suspension was 

extracted with CHCl3 (1 L) using a liquid-liquid extractor until the alkaline aqueous 

solution became clear. The organic phase was dried over Na2SO4, and then the solvent 

was removed in vacuo to afford the product as a white solid.  Yield: 3.51 g, >99%. 1H 

NMR (300 MHz, CDCl3 with trace CD3OD) δ: 5.22 (br, 6H), 3.68 (br, 24H), 3.60 (br, 

12H), 3.52 (br, 36H), 3.45 (br, 24H), 3.19 (br, 12H), 2.48 (br, 24H), 1.69 (br, 12H), 1.57 

(br, 24H), 1.48 (br, 18H), 1.39 (br, 36H).  13C NMR (75.5 MHz, CDCl3 with trace 

CD3OD) δ: 165.8, 165.4, 165.2, 165.1, 165.0, 164.6, 164.3, 43.8, 42.8, 41.7, 38.1, 37.3, 

30.3, 27.7, 25.5, 24.6. MS (MALDI): calcd 2954.1932 (M+); found 2955.0237 (M + 

H+). Anal. Calcd. for C141H252N72•1.5CHCl3: C, 54.54; H, 8.08; N, 32.15. Found: C, 

54.80; H, 8.08; N, 32.48. 



 

 

35 

CHAPTER III 

THE USE OF TRIAZINE-BASED DENDRIMERS AS MACROMOLECULAR 

AGENTS FOR IRON-OVERLOAD THERAPY 

 

3.1  Introduction 

3.1.1  Iron-Overload 

Iron is a necessary metal for normal cellular metabolism and respiration, 

however, excess levels of iron are cytotoxic and fatal if left untreated.71  Iron absorption 

from the gut into the body and subsequent transport to organs involves a complex 

pathway of proteins not yet fully understood.72  The uptake of iron is known to be highly 

regulated through various factors including iron deficiency and hypoxia, both of which 

increase iron absorption.71  Alternatively, iron-overload and inflammation decrease 

absorption.71  Intestinal epithelial cells absorb about 1-2 mg of iron per day through the 

divalent metal transporter 1 (DMT1), which equates to about 10% of daily dietary 

uptake.71  The body has no active mechanism for the release of iron.  In cases of iron-

overload, desquamation, menstruation and other blood loss maintains iron homeostasis.73  

The body is therefore considered a closed system, recycling the iron which is taken up 

and storing excess iron for emergency situations such as major blood loss and anemic 

conditions.71  The acute and chronic uptake and storage of excess iron in the body 

represents a group of hereditary and acquired conditions referred to as iron-overload 

which cause severe problems in normal organ function.74  Therapeutic methods to 

sequester iron must be employed to actively remove iron from the body in states of 

excess.  Such techniques have been shown to be effective through improved kidney 

filtration in the urine and biliary drainage from hepatocytes into the fecal matter of 

chelated iron complexes.74  Iron-overload is the most common, chronic metal toxicity 

condition worldwide with the highest morbidity and mortality rate.75  

Iron overload has been found to be both a genetic disorder present in recessive 

and dominant forms and as an acquired disorder from dietary and transfusional uptake of 

iron.71  The disorder was first described in diabetic patients with skin discolorations in 
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1865,76 however, the connection with iron was not made until 1890.77  Hereditary 

hemochromatosis was later described by Sheldon in 1935,78 but a great deal was still 

unknown about the disease leaving it quite difficult to treat.  Since that time, various 

genetic mutations have been observed and used to classify the disorder into five different 

types of hereditary hemochromatosis, however, discrepancies arise throughout the 

literature as some forms of the disorder are not understood.71, 74, 79  

Type 1 hereditary hemochromatosis is the most common form of iron overload 

as it affects between 1:200 and 1:500 people in the world equaling about 1 million 

American cases.80  The HFE gene responsible for Type 1 hemochromatosis was first 

cloned in 199681 and mutations of the gene were found to prevent dimerization of the 

encoded protein through missense mutations of cysteine for tyrosine at position 282.82  

The cysteine is believed to participate in protein-protein complex formation with the 

transferrin receptor, however, it is unclear how this disrupts the regulation of iron.83  

Other proteins and signaling pathways have been identified, including hepcidin,84 

tranferritin receptor 285 and hemojuvelin.86  In states of excess iron, hepcidin has been 

found to decrease iron absorption from the gut and prevent loss of iron from 

macrophages.84, 87  Hepcidin is upregulated by the proteins mentioned here among many 

others, which are expressed in the presence of excess iron.  The role of each protein is 

still unclear, but dramatic effects are observed when mutations of these proteins are 

investigated.71 

Secondary iron overload, or acquired iron overload is most often caused by 

multiple blood transfusions throughout one’s lifetime due to other disorders.  

Thalassemia, for example, is a chronic disease marked by anemia due to insufficient 

production of one globulin chain that forms hemoglobin.88, 89  This reduced production 

of one globin chain causes abnormal hemoglobin formation resulting in poor iron 

complexation and eventually anemia.  Thalassemia remains one of the leading causes of 

iron overload due to the blood transfusion therapy required to treat patients suffering 

from this disorder.90  Blood transfusions tend to cause elevated levels of free iron due to 

iron present in the blood from lysed blood cells, making iron-overload a major indirect 
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side effect of thalassemia.91  There are an estimated 100 million asymptomatic 

heterozygous thalassemia carriers worldwide with more than three quarters of the 

thalassemia population living in the Middle East, South East Asia and the 

Mediterranean.92 

Excess iron remains a problem for several reasons, but Fenton-like chemistry is 

the major concern of iron toxicity within the body, leading to oxidation of cellular 

organelles and cellular membranes.93-95  The oxidative potential requires that iron be 

complexed in proteins such as transferrin, hemoglobin and ferritin.  Transferrin consists 

of two iron binding regions and functions in iron transport throughout the blood.  It is 

estimated that only about 1% of total body iron is located in transferrin, which is about 

25-40% saturated at any given time.96  The majority of iron is stored in cellular domains 

within the liver and heart among other organs.96  With such small amounts of iron 

present in blood proteins and the variance of iron within the proteins, it is quite difficult 

to assess the actual levels of iron within the body.  Furthermore, it is unclear what levels 

of iron constitute iron overload and what levels of iron are actually toxic.97 

Free radical reactions associated with iron overload have been shown to cause 

lipid peroxidation of cells and cellular organelles causing membrane breakdown and 

cellular death and eventual tissue and organ dysfunction.98-100  The heart, liver and 

endocrine system are the most common organs affected by iron-overload due to the 

propensity for iron to be taken up in these organs.90  Excess iron stored in the heart tissue 

may cause congestive heart failure,101 pulmonary hypertension102 and myocarditis.103  In 

the liver, portal fibrosis and cirrhosis remain major life-threatening side-effects of iron 

overload, which are shown to accelerate with viral infection and alcohol use.88, 104-107 

The endocrine system is commonly affected by iron through hormonal 

deficiencies, which affect growth and reproduction while also affecting insulin 

production due to pancreatic iron uptake causing diabetes mellitus.108-110  Treatment of 

patients with chelation therapy has shown dramatic results in reducing the side effects 

related with iron overload and a great decrease in the mortality rate when iron-overload 

is detected in a timely manner.90  While heart and liver disease are the most common 
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causes of death in iron overload patients, the levels of blood flow necessary in the brain 

also causes damage to brain tissue.  A great deal of research is currently focused on 

disorders such as Alzheimer’s disease,111, 112 Parkinson’s disease,113, 114 multiple 

sclerosis115 and central pontine myelinolysis,116 and their association with iron among 

other metals.117-119  It has been found that transferrin deficient mice continue to receive 

high levels of iron in the brain ruling out the possibility that transferrin is the only 

vehicle which takes iron to the brain, however, intracellular trafficking is inhibited and 

produces iron pools causing subsequent tissue oxidation.120-122 

Despite the high occurrence, many physicians inaccurately consider 

haemochromatosis to be a rare disease due to poor diagnosis.123  Measurement of body 

iron levels has proven to be one of the major obstacles in diagnosis of iron-overload due 

to the inadequacies of detection.  Indirect methods of measuring iron levels include 

measurement of serum ferritin concentrations,124 serum transferrin saturation,125 

desferrioxamine-induced urinary iron excretion,126 imaging of iron,127 and evaluation of 

organ function.128  Heart biopsy,129 liver biopsy and superconducting susceptometry with 

a Superconducting QUantum Interference Device (SQUID)130 are the three methods of 

direct iron measurement.  Direct tests are more ideal in the correlation of actual body 

iron levels; however, these tests are often invasive, painful and expensive.  More 

commonly, indirect tests are performed, which tend to lack specificity and sensitivity 

with low correlation to actual iron levels.  Indirect tests, however, are generally non-

invasive and are inexpensive, but questionable results require further examination 

through direct methods and eventual therapy when a positive detection is achieved.  

3.1.2 Desferrioxamine B as an Iron Sequestration Agent 

Several iron specific chelation therapies have been proposed, however, the Food 

and Drug Administration has approved only three agents for preclinical or clinical use, 

to date, for iron overload therapy.  Deferriprone (Ferriprox) as an investigational new 

drug, deferasirox (Exjade)131 and desferrioxamine B (Desferal) are shown in Figure 3.1.  
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Desferrioxamine B (DFOB) is the most widespread therapy used, however, a significant 

amount of literature is available on the others.92, 132-138 

 
Figure 3.1: DFOB, Exjade and Ferriprox with corresponding iron complexes. 

Desferrioxamine B (DFOB) is a siderophore produced by Actinomycetes (Streptomyces 

pilosus) and was first isolated and characterized in 1960.139  Siderophores are microbial 

metabolites produced and released in oxic conditions to mobilize and allow for cellular 

trafficking of insoluble ferric ions for cellular function.140  Many siderophores are known 

to chelate various metals, however, the hydroxamate functionality present in the 

ferrioxamine family of siderophores creates a highly specific iron chelate for cellular 

trafficking.141 The ferrioxamines are a specific class of hydroxamate-based siderophores, 

which exist in linear and cyclic conformations.142  DFOB is a linear ferrioxamine with a 

wide range of affinities for a variety of metals.  Metal chelation for various applications 

with DFOB has been studied using Zr(IV);143 V(IV) and V(V);144 Cr(III);145 Mn(III);146 

Fe(II) and Co(III);147 Sr(II), Cu(II), Ni(II), Zn(II) and Mo(VI);147-149 Ga(III), In(III) and 

Al(III);150-153 Sn(II), Bi(III) and Hg(II);154 Pb(II) and Eu(III);155 Th(IV) and Pu(IV).156  

The metal binding affinity of DFOB for a variety of metals is shown in Figure 3.2, 

which is determined through correlation of the log K values of the DFOB with the log K 

values for hydroxide ions.65  The linear relationship offers insight into the correlation 
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between acidity of the metal ion while the low y-intercept indicates the level of 

preorganization.157  Ferric ions are hard and quite acidic requiring negatively charged, 

strongly basic oxygen donors for chelation as is present in the hydroxamic acid moieties 

of DFOB.158  While the basicity favors more acidic metals, the low level of 

preorganization leads to slow metallation and demetallation kinetics providing a highly 

selective iron chelate.157  

 

 
Figure 3.2:  Correlation of log KMLH values for DFOB against KM(OH) values for various 
metal ions.65  
 

The three hydroxamic acids moieties present in DFOB form a hexadentate 

octahedral complex around iron (III) at physiological pH.64  This complex creates a cis 

(facial) configuration forming two trigonal octahedral faces with the hydroxyls and 

carbonyl oxygens, of the three hydroxamates.64  Furthermore, the solid state crystal 

structure shows that the primary amine present in the molecule does not contribute to the 

stability of the complex, but forms a dimer through electrostatic interaction with a 

perchlorate ion.64  It has been proposed that the amine is used as a solubilizing group and 

as a recognition unit for cellular trafficking,64 and thus it has also been the target of 

DFOB functionalization.159-165  
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While DFOB has an affinity for many metals, the high affinity for iron(III) 

presents the use of this siderophore as a therapy for iron-overload.166-169  Initial studies 

with DFOB found that the drug was not orally available due to low lipophilicity, mainly 

due to the charged primary amine at physiological conditions, leading to only 15% 

bioavailability when orally administered.167  Recommendations for the delivery of 

DFOB were shortly thereafter developed for the treatment of acute iron poising 

involving placement of 5-10g of DFOB in the stomach after gastric lavage, followed by 

i.v. administration of DFOB with regular urine monitoring.170  The approval of the drug 

by the US Food and Drug Administration in 1968 opened the door to much more testing 

and development of an administration regimen.  The effectiveness of 24 h i.v. 

infusions,171, 172  24 h subcutaneous administration173, 174 and 12 h subcutaneous 

infusions175 were reported.  Currently, however, DFOB is most commonly administered 

through subcutaneous infusion over 6 or 7 hours, seven days a week as a person sleeps.95  

While the chronic regimen required has improved over the past few decades, the 

treatment of iron-overload using this method causes non-compliance with many patients 

due to high cost ($10,000-$30,000 annually), discomfort and minor side effects in a 

small number of patients.138 

The side effects of Desferrioxamine B are rare, but include ocular and auditory 

abnormalities,176-185 sensorimotor neurotoxicity,186 changes in renal function,187, 188 and 

pulmonary toxicity189, 190 as well as evidence of failure to grow due to cartilaginous 

dysplasia in the spine and long bones.191-196  Toxic side effects are generally observed 

over prolonged periods and during high-dose usage, as DFOB chelates metals and 

undergoes reduction to form oxidants197 or as DFOB-Fe infiltrates the healthy cells and 

acts in the same manner.198 Thus, the short half-life of DFOB poses problems due to the 

high rate of glomerular filtration by the kidneys199 and plasma metabolism200, 201 

requiring high dose injections causing many of the undesired side-effects over time.  

Investigation of the major pathway for metabolism found that the plasma was 

responsible for the majority of inactivation of DFOB as compared to metabolism in the 

pancreas, small intestine, brain, liver, muscle, and spleen in various animals.200  
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Remarkably, human and dog plasma had significantly lower rates of DFOB metabolism 

as compared to rat, rabbit, guinea-pig, cat, bovine and pig, while mice had the fastest 

rate of metabolism.200  Studies have proven that the major metabolites found in the urine 

involve conversion of the primary amine into a series of oxygenated species, which have 

decreased binding affinity.202, 203  This data is in direct contradiction to the assertion that 

the primary amine does not contribute to the stability of the complex.  With such high 

levels of renal filtration of both the free chelate and the iron complex, spectroscopic 

studies of patient urine after therapy may be performed to determine if free iron is 

present in the blood.204  While DFOB is generally considered a chelate for non-

transferrin bound iron in the blood, it has also been found to mobilize iron from ferritin 

storage within cells,205 but poor lipophilicity of the chelate prevents cellular penetration.  

It is believed that DFOB must become internalized into the cell through endocytosis to 

have a direct effect on intracellular iron stores.  This has been shown through in vitro 

cell studies that have undetectable decreases in intracellular iron stores treated with 

DFOB except in the case of Kupffer cells in the liver, which readily undergo endocytosis 

to easily allow DFOB to enter the cell.206  

Although the majority of DFOB applications involve iron-overload, the chelation 

ability of DFOB may also be exploited in a variety of avenues including MR imaging, 
207, 208 PET imaging,143 antibacterials and antibiotics,209 superoxide dismutase mimics,146 

hypoxia-mimetic agent210, 211 and cancer therapy.147, 151, 153, 165, 212 

 

3.1.3 The Development of Alternative Small Molecule Iron Chelates  

Much research has now focused on the development of lipophilic iron chelates, 

which are then orally available and may easily traverse cell membranes and chelate non-

transferrin bound iron stores within the cell.  Two drugs, for example, which achieve 

these goals, are deferasirox and deferiprone.  However, these orally active therapies 

suffer from side effects including nausea, abdominal discomfort, and high potential for 

renal failure among others.138  Annual cost for deferasirox (Exjade®) has been estimated 

at $20,000-$60,000, thus, preventing widespread usage in the US as well as many 
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developing countries.138  While delivery remains the major drawback of DFOB, the 

minimal side effects and low cost allows DFOB to remain as the desired chelation agent 

of choice.    

Alternatively, small molecule bis-(hydroxylamino) triazine-based chelates have 

been developed by Melman and coworkers, which show high Fe(III) binding specificity 

in competition with other metals.213, 214  Such structures have been synthesized in high 

yield and also show high binding affinity for Vanadium oxide for magnetic resonance 

imaging215 and titanium for cancer therapy.216-218  While limited studies are available on 

these chelates, the potential for further explotation of this ligand system which take 

advantage of synthetic ease and scalability are warranted.  

3.1.4 Macromolecular Iron Chelation Agents 

From the promising clinical data obtained with DFOB and the less than ideal 

pharmacokinetics of the therapy, the desire to find chelation therapies able to remain in 

the blood for significant lengths of time has attracted a great deal of focus.  Prolonged 

blood plasma half-lives of macromolecular agents has shown great success due to the 

decreased glomerular filtration and hepatic cellular trafficking allowing for longer 

plasma circulation times.24, 33, 37  Using increased size as an aid in developing chelating 

agents, DFOB was attached to dextran or hydroxyethyl-starch (HES) biocompatible 

polymers through reductive amination after oxidation of the polysaccharide.159, 160, 219  

DFOB loading on the polysaccharides varied according to the amount of periodate used 

in the oxidation of the starch and the amount of DFOB used in reductive amination, 

however, dextran had 20-30% incorporation by weight while HES had only 10-20% 

incorporation by weight.159 Attempts to calculate the relative toxicity of the polymer-

DFOB conjugates compared to DFOB alone and polymer-DFOB-Fe compared to 

DFOB-Fe failed due to the amount of dose necessary leading to lethal hypervolemic and 

hyperoncotic effects.  The LD50 values for DFOB and DFOB-Fe through i.v. 

administration are 0.4 and 1.4 µmol/g, respectively, which are much below the range of 

the polymer conjugates.219  During in vivo experiments with mice in which acute iron 
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poisoning was induced with iron sulfate injection or oral administration immediately 

followed by therapy, 100% survival was achieved with the conjugate compared to 22% 

for DFOB alone and 30% for polymer alone.219  Efficacy of injection 1 hour after 

administration of iron resulted in 77% survival as compared to 0% survival in the other 

cases.219  Furthermore, the long retention times in the vasculature of a mouse increased 

from 5.5 minutes for free DFOB to 67 minutes for the dextran conjugate and 84 minutes 

for the HES conjugate.159  Iron excretion in the urine also proved to be comparable and 

better than DFOB alone,159 leading the eventual pre-clinical studies in human subjects.160  

Plasma half-life of between 22 and 32 hours were reported for the HES-DFOB 

conjugates depending on the dosage, which ranged from 0.3 mL/kg to 9 mL/kg.160  

Generally 35-55% of initial dose of drug was recovered in the urine 48 hour along with 

up to 7 mg iron as compared to 0.06 mg in control patients.160  The major drawback of 

this therapy was the 14,000 to 200,000 Da molecular weight range associated with the 

conjugates.160  Development of monodisperse macromolecular iron sequestration agents 

such as chelate decorated dendrimers is of interest. 

The first report of metal sequestration using dendrimer constructs appeared in 

1999 for the sequestration of Cu(II) in unmodified PAMAM dendrimers.220  This work 

opened the door to directed iron sequestration using salicylate-, catecholate- and 

hydroxypyridinonate-functionalized dendrimers for the sequestration of iron.221-224  The 

advantage of using such monodisperse agents allows for more concrete characterization 

as compared to the dextran and starch therapeutics.  The development of new dendrimer-

chelate constructs remains a topic of interest.  Our investigations toward the attachment 

of DFOB to triazine-based dendrimers are described. 

 

3.2 Results and Discussion 

3.2.1 Selective Reaction of the Primary Amine of DFOB   

When devising a strategy to install DFOB on the dendrimer, both the 

nucleophilic and electrophilic linkage routes must be considered.  The crystal structure 

of DFOB-Fe has shown that the primary amine is not involved in complexation, which 
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would suggest that selective functionalization of the amine would be the route of choice 

for attachment to the dendrimer.  The amine alone is a nucleophile, however, primary 

amines such as this generally do not react easily with poly(monochlorotriazine) 

containing dendrimers.  Therefore, we aimed to pursue the electrophilic route, where 

DFOB is reacted with cyanuric chloride to produce the dichlorotriazine.  Initial attempts 

to obtain this molecule proved problematic due to the similar pKa values, and thus 

similar reactivities, between the primary amine and each of the hydroxamic acids.65  The 

similar reactivity of each nucleophile in DFOB led to the formation of oligomers and 

polymers as determined by MALDI-TOF mass spectrometry.  The poor selective 

reactivity toward cyanuric chloride led us to attempt various other amine selective 

chemistries, including reductive amination and acetate protection of the hydroxamic 

acids in the presence of 18-crown-6 as a transient amine protecting group.  Each attempt 

at selective functionalization proved futile in our hands and a new method was needed.  

To circumvent the nucleophilicity of the hydroxamic acids, iron was also utilized 

as a protecting group, which could be removed later through a number of potential 

routes.  The lewis acidity of iron and the catalytic effect on chlorotriazine substitution is 

believed to catalyze the reaction to generate a mixture of mono- and di-substituted 

triazines.  Understanding the reactivity of triazines and the results from this reaction, a 

dichlorotriazine containing propargylamine was then reacted with DFOB-Fe(III) to 

afford the desired monochlorotriazine as shown in Scheme 3.1.  When reacted with the 

primary amine terminated second-generation dendrimer, however, complete reaction 

was unattainable.  This result, although undesirable, was understood due to the poor 

nucleophilicity of primary amines, poor electrophilicity of monochlorotriazines, the 

steric hindrance and poor solubility of the product.  
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Scheme 3.1: Synthesis of the monochlorotriazine containing Fe-DFOB unable to add to 
the dendrimer due to poor reactivity, solubility and sterics.  

 

An alternative route for selective functionalization was then attempted using 

azide transfer chemistry.  The Alper-Wong azide transfer reaction converts primary 

amines into azides through the use of triflic azide in the presence of a copper catalyst.225  

This reaction has been shown to proceed efficiently in the presence of a variety of 

functional groups and in high yield.  Desferrioxamine B proved to be an ideal molecule 

for this reaction as the conversion of the primary amine to an azide proceeded in 62% 

yield.  The obtained azide may then undergo the Huisgen-Sharpless “click” reaction.226  

Click reaction of the DFOB-azide with alkyne terminated dendrimers to afford the 

dendrimer-DFOB construct through a triazole linkage as shown in Scheme 3.2, proved 

problematic.  While this reaction is robust and proceeds in a variety of conditions with a 

wide range of substrates, DFOB however, is unsuccessful as only a portion of DFOB-

azide has been attached to the dendrimer.  This incomplete reaction may be due to 

chelation of copper by desferrioxamine preventing catalysis to occur, however issues 

with solubility are more likely the ultimate limitation of this chemistry as amine 

functionalized DFOB has been shown to inhibit solubility.163  Incomplete reactions may 

occur due to the hydrogen bond interactions present in the final product, which form 

insoluble aggregates.  While poor solubility may be the culprit, methods to solubilize 

lipophilic drugs covalently and non-covalently linked to dendrimers have been addressed 

in the past.  However, due to the extremely explosive triflyl azide intermediate used in 

the azide transfer reaction, this method has been abandoned.   
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Scheme 3.2: An unsuccessful click reaction with desferrioxamine B-azide and an 
alkyne-containing dendrimer. 

 

3.2.2 Increasing the Nucleophilicity of the Primary Amine 

Another method to attach DFOB to the dendrimer is to increase the 

nucleophilicity of the primary amine with cyclic secondary amines, which will enable 

reaction with a poly(monochlorotriazine) dendrimer.  Increasing the nucleophilicity of 

the primary amine through reaction with isonipecotic acid allows for reaction with 

chlorotriazines as the third substitution.  This has been achieved through a one-pot 

reaction of DFOB with the NHS-ester of Fmoc-protected isonipecotic acid and 

deprotection to produce Inp-DFOB.  Poor characterization data by mass spectrometry 

has led us to characterize the compounds using NMR alone.  Purification is carried out 

through filtration with water to remove DBU, followed by toluene to remove 9-

methylene fluorene produced in the deprotection.  The secondary amine is then capable 

of reacting as the third substituent on the triazine ring using the 

poly(monochlorotriazine) dendrimer obtained in the kilogram-scale synthesis as shown 

in Scheme 3.3.  During this reaction an insoluble mass forms, which is insoluble in all 

solvents for further characterization.  Attempts to characterize the solid by NMR, mass 

spectrometry and infrared spectroscopy resulted in insufficient data to quantify the 

extent of the reaction or evidence of a reaction occurring at all.  It is likely that the poor 

mass spectral data obtained with DFOB alone is likely compounded when multiple 

chelates are attached to the dendrimer.  NMR was also unsuccessful at providing 

adequate data for a reaction taking place.  The poor solubility of DFOB and the sterics 
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involved are likely to hinder reaction with the dendrimer.  Various attempts to achieve 

the desired product using this construct resulted in solid masses, which were 

uncharacterizable.  Other constructs also provided similar results with characterization 

showing greater potential than in the kilogram-scale dendrimer, but complete 

substitution was never achieved. 

Scheme 3.3: Synthesis of Inp-DFOB and subsequent unsuccessful reaction with the 
poly(monochloro triazine) dendrimer. 

 

 To overcome issues of solubility, PEG-mono-methylether was reacted in one pot 

with cyanuric chloride to form the first substitution followed by reaction with the 

dendrimer.  Purification of the poly(monochlorotriazine) dendrimer was performed using 

ultrafiltration through regenerated cellulose membranes. The need for higher molecular 

weight PEG chains also led to a loss of monodispersity of the starting material inhibiting 

characterization of the product.  This route was abandoned and further attempts to 

functionalize the dendrimer with DFOB was determined to be unwarranted.  

3.3. Conclusions 

Iron-overload is a serious condition, which is believed to affect a significant 

number of people around the world.  The symptoms of this disease are oftentimes 

characterized as old age.  Proper diagnosis requires invasive testing, which is still 

inaccurate due to the patient variability and the inability to accurately classify the limits 

of iron toxicity.  However, when testing concludes that patients are suffering from the 

disease, therapy must be implemented to diminish the side effects.  Current therapies 

include deferrioxamine B, deferiprone and deferasirox.  
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Desferrioxamine B is considered the gold standard in the treatment of iron-

overload.  While it has been used widely in patients with both hereditary 

hemochromatosis and secondary hemochromatosis, the poor bioavailabilty and 

inconvenient route of administration prevents the drug from achieving its full potential.  

New small molecule chelates such as deferiprone and deferasirox have improved 

bioavailability, but possess other issues such as toxicity and high cost.  With poor drug 

pharmacokinetics and toxicity with the currently approved therapies, the utilization of 

polymer technologies provide additional benefits in treating this disease.  From 

carbohydrate polymers containing DFOB to dendrimers with synthetic chelates, the field 

of polymer based iron chelation is burgeoning and continues to improve therapy. 

In our hands, attachment of DFOB to a dendrimer has proven unsuccessful due to 

similar reactivities of the amine and hydroxamic acids.  Furthermore, the solubility of 

the chelate and the inability to characterize insoluble products obtained through reaction 

with DFOB-Inp and the poly(monochlorotriazine) dendrimers were largely unsuccessful.  

While partial reaction was eventually achieved in one situation using a dendrimer 

containing propargylamine as one substituent on a poly(monochlorotriazine) dendrimer 

the ability to achieve monodisperse constructs for chelation therapy was never met. 

Attachment of DFOB to polydisperse polymers has been achieved in the past, but the 

utilizion of triazine-based dendrimers has proven to be problematic thus far and does not 

warrant further investigation with our current dendrimer system.  Alternatively, the use 

of synthetic triazine-based small molecule chelates have shown great promise in iron 

chelation and shows greater promise toward inexpensive polymer therapeutics for the 

treatment of iron-overload. 

3.4 Experimental 

3.4.1 Materials and Instrumentation   

All reagents were procured from Sigma-Aldrich (St. Louis, MO) and used as 

received without further purification.  Fmoc-protected isonipecotic acid was purchased 

from NovaBiochem (San Diego, CA) and used without further purification.  NMR 
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spectra were recorded on a Varian Mercury 300 MHz spectrometer in CDCl3, or DMSO-

d6.  All mass spectral analyses were carried out by the Laboratory for Biological Mass 

Spectrometry at Texas A&M University.  

3.4.2 Synthesis of Desferrixoamine B-Isonipecotic Amide   

A round bottom flask containing 959.9 mg of desferrioxamine B mesylate (1.46 

mmol) dissolved in 20 mL THF stirred on ice for 30 minutes.  Then 655.0 mg Fmoc-Inp-

NHS (1.46 mmol) was added and the reaction stirred warming to room temperature for 

12 h.  The reaction became cloudy white during this time.  Then, 0.2 mL of 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU) (1.34 mmol) was added to the solution and the 

solution immediately cleared and a precipitate formed.  The solution stirred for 6 h and 

was concentrated in vacuo.  The residue was then mixed with water to form a precipitate, 

which was filtered and collected.  The resulting solid was then mixed with toluene to 

form 422 mg (0.63 mmol, 43%) of the off-white solid product collected by filtration.  1H 

NMR (300MHz, CDCl3): 1.21 (br m, 6H), 1.37 (br m, 6H), 1.49 (br m, 6H), 1.62 (br m, 

4H), 1.89 (t, 1H), 1.96 (s, 3H), 2.26 (t, 3H), 2.30 (s, 1H), 2.45 (s, 1H), 2.50 (t, 2H), 2.52-

2.67 (m, 8H), 2.90 (br m, 2H), 2.99 (q, 4H), 3.23 (t, 6H), 3.44 (t, 6H), 3.52 (br d, 1H), 

7.81 (br s, 3H).  13C NMR (75MHz, CDCl3): 22.2, 25.8, 28.4, 29.6, 36.8, 43.6, 48.3, 

52.8, 154.2, 161.9.   

3.4.3 Synthesis of Desferrioxamine B-Containing Dendrimer   

A round bottomed flask containing 12 mg of G2-[N(CH2CH2CH2NHBOC)2]6 

(0.004 mmol) stirred in 1 mL THF as 50 mg DFOB-Inp (0.074 mmol) was added to the 

solution.  Then, 0.2 mL DIPEA was added and the solution continued to stir for 7d.  A 

solid was obtained, which could not be characterized.  The solution was concentrated 

and showed starting material by NMR and MS.   
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CHAPTER IV 

TRIAZINE-BASED DENDRIMERS CONTAINING CAMPTOTHECIN AS 

DRUG DELIVERY VEHICLES FOR CANCER THERAPY* 

 

4.1 Introduction 

The camptothecins are cytotoxic, quinoline alkaloids characterized by a planar 

pentacyclic ring system.227, 228  Isolated using an anticancer activity screen by Wall and 

Wani in 1966 from the bark of Camptotheca acuminata,227  20-(S)-camptothecin suffers 

from many limitions including poor solubility, rapid clearance, high systemic toxicity 

and/or poor selectivity toward cancer cells.39  A year after the discovery of 

camptothecin, Wall and Wani discovered paclitaxel, another anticancer drug, which also 

showed great promise.229  While both drugs showed powerful anticancer activity,230 

camptothecin’s poor solubility and unpredictable adverse drug interactions favored the 

development of paclitaxel as a broad spectrum chemotherapeutic.231  

The camptothecins gained much interest in the late 1980’s when the molecular 

target was identified: DNA topoisomerase I (TOP I) is believed to be the single point of 

biological activity.232-237  Crystal structures later confirmed the binding pocket for 

camptothecin as well as for a series of other compounds.238-240  TOP I is an essential 

enzyme that relaxes supercoiled DNA prior to transcription through the formation of 

single strand breaks and religation.  Upon irreversible binding to TOP I, camptothecin 

prevents religation and causes apoptosis.  Pommier has reviewed the literature focusing 

on the genetic basis of TOP I inhibition.66 

Various structure activity relationships have shown that while the A-D rings of 

camptothecin are necessary to maintain activity, modifications of these rings attenuate 

efficacy.241  The E-ring lactone, however, is necessary for activity due to the binding site  

____________ 
* Reproduced by permission of The Royal Society of Chemistry: Venditto, V.J.; Allred, 
K.; Allred, C.; Simanek, E.E. Chem. Commun. 2009, 5541-5542. 
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found in TOP I.242  Upon removal of the lactone or hydrolysis to the carboxylate, all 

activity is lost.  Camptothecin in the active lactone form and inactive carboxylate form 

are shown in Scheme 4.1.  The equilibrium between the closed, active lactone and the 

open, inactive carboxylate form is further influenced by both the affinity of the 

carboxylate for human serum albumin and the local pH in vivo.243  Originally, 

camptothecin was delivered as the sodium salt of the carboxylate to help overcome 

solubility issues, however, the poor efficacy created a need for new alternatives.244  Two 

camptothecin derivatives, irinotecan and topotecan, were eventually approved for 

clinical use along with 10-hydroxycamptothecin, another naturally occurring derivative.  

Currently, the camptothecins ― notably topotecan,245-251 irinotecan,252-257 9-

aminocamptothecin,258, 259 9-nitrocamptothecin260, 261 and belotecan262 ― are commonly 

used as a late-stage therapy either alone or in combination therapies.  

Scheme 4.1: Camptothecin in the lactone form and open carboxylate form. 

 

Even given the hydrolytic sensitivity, the drug remains highly active as an 

anticancer agent.  When delivered in an intralipid formulation through i.m. 

administration, camptothecin showed nearly 100% growth inhibition and regression in 

colon, lung, breast, stomach, ovary and malignant melanoma xenografts.263   

Pharmacokinetic studies of camptothecin in the lactone and carboxylate forms 

were performed in rats to better understand the focus of future work.264  In various 

buffers at 37 °C the carboxylate was shown to be the predominant form.  In PBS at pH 

7.2, 7.4 and 8.0, the half-life of the lactone was 33 min, 22 min and 5.3 min, 

respectively. Furthermore, equilibrium was achieved between both forms 90 minutes 

after injection of either 1 mg/kg lactone or carboxylate in rats.  The carboxylate was 
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cleared at a much faster rate through the urine and bile as compared to the lactone form.  

Clearance was also shown to be pH dependent, suggesting that decreasing pH of the 

urine may reduce bladder toxicity caused by the carboxylate form.265  Additional studies 

in dogs, monkeys, rats and mice showed toxic effects, including emesis, diarrhea, 

dehydration, coma and death.  Intravenous administration of 80 mg/kg or five doses of 

0.625 mg/kg/day in dogs showed cumulative toxicity that was entirely reversible in 

survivors.266  In human subjects, unpredictable toxicity associated with camptothecin 

halted clinical trials and opened the door for new antitumor agents.267-271  The 

preparation and assessment of derivatives through classical structure activity 

relationships led to increased efficacy and better understanding of such activity. 

Structure activity relationships (SAR) have been carried out, which have led to 

the development of new camptothecins with potent antitumor activity.237, 241, 244, 272-278  

Many efforts focused on stabilizing the lactone without compromising cytotoxicity.  To 

summarize the SAR studies, the A and B rings are the most tolerant to modification with 

substitutions at positions 7, 9, 10 and 11 improving or retaining activity.  Altering the C 

and D rings or substituting positions 12 and 14, however, inactivates the molecules.  

Interestingly, von Hoff has provided evidence that substitutions which increase hydrogen 

bonding at the 7-position improve binding to TOP I, thus increasing activity over 

camptothecin.279  The E-ring, where binding to TOP I occurs, may undergo only minor 

modifications without dramatic negative effects. Additionally, modification of the C20 

hydroxyl group through alkylation or acylation has been shown to stabilize the lactone 

by creating a prodrug form, which is the favored method to link camptothecin covalently 

to polymer constructs.  

Quinoline ring modifications of camptothecin are the most common.  These 

derivatives show increased solubility, lactone stability and antitumor activity.  

Derivatives include the FDA approved drugs, irinotecan280 and topotecan278 among 

many others.  Quinoline modified camptothecins, which have been investigated in vivo 

are shown in Figure 4.1.  Many quinoline modifications have aimed to improve 

solubility through introduction of protonable amines.274, 278, 280-284  While other  
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Figure 4.1: Quinoline modified camptothecins. 

derivatives, including the siletecans,285, 286 and chimmetican287 have been synthesized to 

improve lipophilicity for improved blood brain barrier trafficking.  Additional small 

molecule derivatives, which have not been investigated in vivo include Low’s peptide 

folate conjugate,288 Chen’s 20-O-linked esters289 and Battaglia’s polyamine 
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conjugates.290 Some modified lactone derivatives have been investigated in vivo 

including, the E-ring enlarged homocamptothecins characterized by a seven-membered 

beta-hydroxy lactone.291, 292  While the homocamptothecins have shown improved 

lactone stability, irreversible inactivation of the drug through lactone hydrolysis is also 

observed. 

Esterification or alkylation of the 20-hydroxyl group has also shown improved 

lactone stability in small molecules293 and has become the favored method for covalent 

attachment in macromolecular drug delivery vehicles.  A hypothesis proposed in 1992 

implicates the hydroxyl group as a mediator of lactone hydrolysis by activation of water 

through a hydrogen bond interaction.294 

The covalent conjugation of camptothecins to macromolecular architectures has 

shown great potential for improving pharmacokinetics and increasing tumor efficacy.  

Various covalent constructs have been tested in vivo including micelles,295 linear 

polymers296-302 and branched polymers.303, 304  Most commonly, camptothecin is attached 

to the polymer through an ester bond with the 20-hydroxyl moiety.  This linkage not 

only conveys solubility through conjugation with a water-soluble polymer, but also 

improves lactone stability.  Some linkages are chosen as specific substrates for 

enzymatic cleavage, while others are used due to their pH sensitivity, but may also 

undergo hydrolysis.  Covalent constructs offer advantages and disadvantages over non-

covalent assemblies.  Of the advantages, the opportunity to execute structure-activity 

studies in a very narrowly defined composition space is attractive.  Disadvantages 

include, in addition to constituting a new drug entity, the burden of characterization. The 

characterization of covalent macromolecular constructs is oftentimes not trivial, and 

enthusiasm for biological results need to be tempered with the critical evaluation of the 

claims on composition.  Noncovalent constructs have also been investigated in vivo 

including micelles,305, 306 liposomes,307-312 nanoparticles313-315 and hydrogels.316, 317  Various 

other covalent318-327 and noncovalent68, 328, 329  architectures have also been developed but 

still untested in vivo.  Our approach to macromolecular covalent constructs for the 

delivery of camptothecin are discussed along with preliminary cytotoxicity data. 
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4.2 Results and Discussion 

Upon completion of the kilogram-scale synthesis of a second generation 

dendrimer,5 with attributes of a “universal” drug delivery vehicle we aimed to 

functionalize with camptothecin.  Here, we describe the interception of the 

poly(monochlorotriazine) dendrimer with a camptothecin linked nucleophile.  Our 

synthesis of the ester derivative of CPT (Scheme 4.2) utilizes 1-BOC-isonipecotic acid 

under standard coupling conditions to afforded 3 in 97% yield after methanol 

crystallization. Subsequent deprotection with trifluoroacetic acid gives the TFA salt of 4 

in 82% after precipitation with methanol.  Installation of the constrained secondary 

amine is a critical design element.  These amines have been shown to be highly reactive 

towards monochlorotriazines.20  

Scheme 4.2: Installation of BOC-Inp on 20-(S)-camptothecin through a hydrolysable 
ester linkage. 
 
 
 
 
 
  

 

Scheme 4.3 shows the route for elaboration to the final products.  Reaction of 4 with 

1 was accomplished in N,N-dimethylformamide in the presence of N,N-

diisopropylethylamine at 50 oC for 12 days to yield dendrimer 5. While higher 

temperatures may accelerate this reaction; accelerated hydrolysis of the camptothecin 

ester led us to pursue this more conservative approach. Reaction progress could be 

followed with MALDI-TOF mass spectrometry with the desired species, 5, appearing 

initially at day 4. While the spectra produced depend on matrix and ionization 

conditions, the reaction was continued until only lines corresponding to product, loss 

of BOC, and loss of a single CPT were observed.  Purification was accomplished 

using Sephadex LH-20 size exclusion chromatography.  While  1H and 13C NMR 
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corroborates the presence of six CPT groups on the dendrimer, NMR cannot be used 

to unambiguously quantify purities of these species due to the broad signals 

ineherent in these dendrimers. 

  Dendrimer 5 was deprotected using trifluoroacetic acid to afford 6 in nearly 

quantitative yield. PEGylation of the deprotected dendrimer was carried out using 

2000 Da NHS-mPEG leading to dendrimer 7. While both targets are water soluble, 7 

was purified by ultrafiltration using a YM3 regenerated cellulose membrane in an 

Amicon stirred cell. 

Scheme 4.3: Elaboration of the poly(monochlorotriazine) dendrimer to the amine 
and PEGylated targets.  

 

 

 

 

 

 

 

 

  Cytotoxicity is measured using an assay that employs (3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide, or yellow MTT.   The MTT assay quantitates 

the amount of living cells through the activity of mitochondria.  In living cells, 

mitochondrial reductase converts the yellow tetrazole of MTT to a purple colored 

formazan.  Therefore, the color of the media will not change when all the cells die 

from the cytotoxic agent investigated.  Decreasing the dose from toxic to non-toxic 

generates a dose response curve.  Evaluation of the dose-response curve at a 
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concentration where 50% of the cells die generates the IC50 value or the value where 

50% of the cells are inhibited from proper function.  Lower IC50 values therfore 

correspond to compounds with increased toxicity. 

  The cytotoxicity data for our compounds in comparison to the free drug is 

summarized in Table 4.1 and is reported with respect to CPT concentration.  

Treatment of MCF7 and HT-29 cells provided dose dependent response curves for all 

analytes.  The IC50 value for CPT was 0.2 µM regardless of cell line, while the IC50 

value for irinotecan varied with line, 52 µM or 33 µM. Targets 6 and 7 showed 

intermediate values suggesting both an enhanced solubility of the construct over free 

CPT and similar behaviors of cationic and PEGylated vehicles.  A drug-free 

dendrimer bearing piperidine groups instead of isonipecotic esters showed no toxicity 

up to 10 µM (60 µM in CPT equivalents) in MCF-7 cells, but an IC50 value of 2 µM 

in HT-29 cells. At this time it is unclear why there is a pronounced difference in 

toxicity between cell lines. Similar cell specific cytotoxicity has been observed using 

cyclic peptides.21  Given the success of these constructs in vitro, further optimization 

of the synthetic strategy could offer routes to scales of material required for 

additional inquiry. 

Table 4.1: IC50 values of free drug and dendrimer-drug conjugates determined by 
MTT assay.a 

Cells CPT Irinotecan G2-NH2
b G2-CPTd G2-CPT-PEG2000

d 

MCF-7 0.2 52 14 9 13 

HT-29 0.2 33 >60c 8 3 
a IC50 values are reported in µM over three experiments in triplicate unless otherwise stated. 
b Value is reported in terms of six potential CPT as compared to G2-CPT. 
c No toxicity was observed up to the maximum dendrimer concentration of 10 µM determined by 9 experiments 
in triplicate. 
d Values are reported in terms of six CPT present in each molecule.  
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4.3 Conclusions  

  Triazine-based dendrimers have shown promise as drug delivery vehicles, 

however further investigation must be completed to determine the full potential of 

such constructs.  Through covalent attachment of camptothecin to the dendrimer 

through a hydrolysable linkage, we are able to improve the water solubility over the 

parent drug.  The camptothecin containing PEGylated and cationic dendrimers both 

show improved water solubility over camptothecin alone and increased toxicity over 

the water soluble derivative, irinotecan.  Our next step toward utilizing this triazine-

based dendrimer containing camptothecin involves the efficacy of this construct in 

animals with human tumor xenografts.   

  As we move forward toward in vivo therapeutics, interpatient variability will 

likely play a significant role in success.  Interpatient variability with both 

macromolecular constructs and free drug continues to hamper the widespread use of 

camptothecins.  Some variability in pharmacokinetics has been shown to occur due to 

a mutation in ABCG2 transporter proteins when using diflomotecan.330  This protein 

is believed to be responsible for natural detoxification and has been found to be 

overexpressed in the placenta, liver and intestine.  Allele mutations have shown 

dramatically increased plasma AUC values for molecule substrates, which include 9-

AC,331 SN-38332 and topotecan.333  Although allele variants may provide insight into 

potential pharmacokinetic outcomes, it is likely that other physiological differences 

in tumors such as vascularization and expression of other proteins, may also cause 

variability.  To overcome such challenges, our constructs are poised for codelivery of 

camptotehcin and DNA or RNA for transfection.  Delivery of genetic information 

encoded for TOPI or ABCG2 protein expression will likely improve efficacy.  

Transfection enhanced toxicity with irinotecan has been observed through 

introduction of carboxylesterase enzymes,334 which convert irinotecan to the active 

metabolized form in the cell rather than at the liver prior to tumor accumulation.  

Investigation with camptothecins using both transfection assisted therapy and 

macromolecular therapy is warranted. 



 

 

60 

    

4.4 Experimental 

4.4.1 Materials and Instrumentation   

All reagents were procured from Sigma-Aldrich (St. Louis, MO) and used as 

received without further purification.  NHS-mPEG was purchased from NOF American 

Corporation.  Amicon filters (YM-3: MWCO 3kDa) were purchased from Millipore.  

Size exclusion chromatography (SEC) was carried out using a Waters Delta 600 system 

and a Waters 2414 refractive index detector.  A Suprema 10 micron GPC analytical 

column (1000 Å, 8 x 300mm) was used with 0.1 M NaNO3 as the eluent and a flow rate 

of 1 mL/min.  NMR spectra were recorded on a Varian Mercury 300 MHz spectrometer 

in CDCl3, or DMSO-d6.  All mass spectral analyses were carried out by the Laboratory 

for Biological Mass Spectrometry at Texas A&M University.  MCF-7 (human breast 

cancer) cells were purchased from ATCC.  Cells were maintained in phenol red free 

DMEM (Sigma) containing 10% fetal bovine serum (FBS) at 37°C in a 5% CO2 

atmosphere.  HT-29 (human colon cancer) cells were purchased from ATCC.  Cells were 

maintained in phenol red free DMEM F-12 (Sigma) containing 10 % FBS and 1% 1M 

HEPES.   

4.4.2 Synthesis of BOC-Inp-CPT (3)  

A solution of 1.40 g BOC-Inp (6.11 mmol) in 50 mL dichloromethane stirred as 

3.55 g 1-ethyl-3-(3’-dimethylaminopropyl) carbodiimide (18.5 mmol) and 0.78 g N,N-

dimethylaminopyridine (6.38 mmol)were added.  After stirring for 30 minutes, 1.50 g 

camptothecin (4.31 mmol) was added and stirring continued for 18 h.  The solution was 

concentrated in vacuo and the residue was precipitated with methanol to yield a yellow 

solid.  Yield: 2.34 g, (4.18 mmol), 97%.  ESI MS: calcd. mass for (C31H33N3O7)+ 

560.2398, found 560.2537.  1H NMR (300MHz, CDCl3): 0.98 (t, 3H), 1.43 (s, 9H), 1.71 

(m, 3H), 1.97 (t, 2H), 2.15 (m, 1H), 2.27 (m,1H), 2.68 (m, 1H), 2.94 (m,2H), 3.98 

(m,2H), 5.28 (s, 2H), 5.40 (d,1H), 5.68 (d, 1H), 7.21 (s, 1H), 7.68 (t,1H), 7.84 (t, 1H), 

7.95 (d, 1H), 8.24 (d, 1H), 8.41 (s,1H).  13C NMR (75MHz, CDCl3): 8.3, 28.0, 28.2, 
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28.7, 30.9, 51.0, 67.0, 76.4, 79.4, 95.2, 119.5, 128.4, 128.7, 129.3, 129.6, 130.5, 131.1, 

132.3, 146.1, 146.8, 148.5, 153.0, 154.5, 157.2, 167.8, 173.6. 

4.4.3 Synthesis of Inp-CPT (4)  

A solution of 1.01 g 3 (1.80 mmol) was stirred in 20 mL dichloromethane as 20 

mL trifluoroacetic acid was added slowly.  The reaction continued to stir for 3 h and was 

concentrated in vacuo to yield a yellow residue, which was precipitated with methanol to 

yield the TFA salt as a yellow solid. Yield: 0.82 g (1.47 mmol), 82%.  ESI MS: calcd. 

mass for (C26H27N3O5)+ 460.1873, found 460.1827.  1H NMR (300MHz, DMSO-d6): 0.95 

(t, 3H), 1.79 (m, 2H), 2.17 (m, 4H), 3.05 (m, 3H), 3.28 (t, 2H), 5.30 (s, 2H), 5.52 (s, 2H), 

7.06 (s, 1H), 7.72 (t, 1H), 7.87 (t, 1H), 8.14 (t, 2H), 8.70 (s, 1H).  13C NMR (75MHz, 

DMSO-d6): 8.3, 24.8, 25.2, 30.8, 37.7, 42.8, 51.0, 67.0, 76.8, 95.2, 119.4, 128.5, 128.7, 

129.3, 129.6, 130.5, 131.1, 132.3, 146.0, 146.8, 148.5, 153.0, 157.2, 167.9, 172.9. 

4.4.4 Synthesis of BOC-G2-CPT (5)   

A solution of 54 mg of 4 (0.12 mmol) in 1 mL of N,N-dimethylformamide stirred 

as 22 mg second generation chlorotriazine dendrimer 8 (5.7 µmol) was added.  The 

solution continued to stir as 40 µL of N,N-diisopropylethylamine was added to the 

reaction.  The solution then heated to 50 oC for 12 d and was cooled to rt.  The reaction 

was then concentrated in vacuo and the residue was taken up in chloroform and passed 

through a Sephadex LH-20 size exclusion chromatography column.  The purified 

material was dried in vacuo.  MALDI-TOF MS: calcd. mass for (C327H444N84O54)+ 

6399.36, found 6413.79.  1H NMR (300MHz, DMSO-d6): 0.99 (m, 18H), 1.10-2.50 (m, 

245H), 2.75 (br m, 5H), 3.04 (br m, 30H), 3.34 (br m, 12H), 3.57 (br m, 30H), 3.76 (br 

m, 32H), 4.56 (br m, 12H), 5.27 (br m, 12H), 5.37 (br d, 6H), 5.71 (br d, 6H), 7.19 (br 

m, 6H), 7.66 (br m, 6H), 7.82 (br m, 6H), 7.92 (br m, 6H), 8.20, (br m, 6H), 8.38 (br m, 

6H).  13C NMR (75MHz, DMSO-d6): 7.6, 25.0, 25.8, 27.8, 28.5, 31.8, 37.2, 42.4, 42.7, 
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43.1 44.1, 49.9 67.0, 79.0, 95.7, 120.1, 128.1, 128.4, 129.5, 130.6, 131.2, 145.9, 146.3, 

148.8, 152.2, 156.0, 157.3, 164.9, 165.2, 167.4. 

4.4.5 Synthesis of G2-CPT (6)  

A solution of 25 mg of 5 (0.004 mmol) stirred in 2 mL dichloromethane as 1 mL 

trifluoroacetic acid was added.  The solution stirred for 12 h and was concenctrated in 

vacuo.  The residue was taken up in methanol and concentrated three times and used in 

the next step without further purification.  MALDI-TOF MS: calcd. mass for 

(C267H336N84O30)+ 5202.07, found 5204.21.  1H NMR (300MHz, CDCl3): 0.95 (m, 18H), 

1.10-2.50 (m, 245H), 2.88 (br m, 5H), 3.38 (br m, 12H), 3.61 (br m, 62H), 4.30 (br m, 

12H), 5.24 (br m, 12H), 5.35 (br d, 6H), 5.57 (br d, 6H), 7.24 (br m, 6H), 7.64 (br m, 

6H), 7.79 (br m, 6H), 7.93 (br m, 6H), 8.10, (br m, 6H), 8.43 (br m, 6H).  13C NMR 

(75MHz, CDCl3): 8.2, 26.0, 26.8, 28.0, 29.5, 30.8, 37.3, 42.4, 42.7, 43.0 44.1, 50.7 66.9, 

76.5, 95.2, 119.4, 128.6, 129.3, 129.5, 131.0, 131.6, 132.7, 146.1, 146.7, 148.4, 152.8, 

156.0, 157.3, 158.9, 159.3 165.3, 167.8, 173.6.  
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4.4.6 Synthesis of PEG2000-G2-CPT (7) 

A solution of 7.2 mg of 6 (0.002 mmol) in 4 mL dimethylformamide stirred as 

445 mg NHS-mPEG2000 was added to the solution.  Then, 20 µL of N,N-

diisopropylethylamine was added  to the solution and stirring continued for 48h and was 

concentrated in vacuo.  The product was then purified with ultrafiltration using an 

Amicon stirred cell and YM3 regenerated cellulose membrane.  Upon filtration of 

approximately 6 L of water, the retentate was collected and concentrated in vacuo to 

yield a yellow residue. 

4.4.7 MTT Assay  

 Cells were plated at a density of 5,000 cells / well in 96 well plates.  Plates were 

incubated for 24 hours at 37°C.  Cells were treated with Control (DMSO), triton X-100 

(all dead control), CPT, Irinotecan, G2-CPT-PEG2000, G2-CPT, or G2NH2 for 72 hours at 

37°C. Treatment concentrations were as follows: 3% triton X-100 (all dead control), 

CPT (1µM-10mM), Irinotecan (1µM-50mM), G2-CPT-PEG2000 (1µM-1mM), G2-CPT 

(1µM-1mM), or G2NH2 (1µM-1mM).  Cell toxicity was determined using an MTT (3-

(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole) assay kit 

(Promega).  For this analysis, 15 µl dye was added per well; plates were incubated for 4 

hr at 37°C.  Then a stop solution (100µl) was added and plates incubated for 1 hr at 

37°C.  Wells were mixed to create a uniform color and absorbance was read at 570 nm 

with a reference wavelength of 650 nm.   

 

 

 

 



 

 

64 

CHAPTER V 

CONCLUSIONS 

 

5.1 Summary 

The use of polymeric architectures as drug delivery vehicles has been a 

burgeoning field of study in the past 20 years.  Polymeric therapeutics have shown great 

potential at improving solubility, blood retention and diseased tissue accumulation of 

small molecule drugs.  Better understanding of human physiology has enabled more 

efficient tailoring of polymer architectures to achieve desired pharmacokinetics for 

treatment of a variety of diseases.  Furthermore, many tumor models show enhanced 

permeability and retention, which promotes accumulation of the polymer at the site of 

the tumor.  Dendrimer architectures possess additional benefits of monodispersity and a 

well-defined multivalent periphery.  

Triazine-based dendrimer architectures have also shown great potential as drug-

delivery vehicles.  The chemoselective reactivity of cyanuric chloride and use of amine 

nucleophiles results in efficient and inexpensive macromolecules.  Various architectures 

have been developed, which improve the therapeutic index of small molecule drugs.  

The development of various architectures enabled us to optimize the synthesis to achieve 

a second-generation dendrimer at the kilogram-scale.  Dichlorotriazine monomer units 

proved to be more reactive than the monochlorotriazine monomer units used in previous 

syntheses.  Iterations of dichlorotriazine monomer addition to the amine terminated 

dendrimer and subsequent capping and deprotection afforded a second generation 

dendrimer with 12 terminal primary amines in greater that 70% yield with over 1 kg of 

product.  This construct was synthesized for under $10/g and opens the door for 

inexpensive polymeric therapeutics. 

Iterations en route to the kilogram-scale second-generation dendrimer affords 

amine terminated dendrimers and poly(monochlorotriazine) dendrimers.  The amine 

terminated dendrimers have previously been utilized as a vehicle for paclitaxel with 

great success.  Interception of the poly(monochlorotriazine) dendrimer with a drug 
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containing a nucleophilic linker offers a new route to functionalization.  This route 

requires fewer steps and allows for a variety of molecules to be attached to the 

periphery.  Our investigation of desferrioxamine B and camptothecin explores the utility 

of this route.  

Desferrioxamine B, an iron chelate, used for the treatment of iron-overload 

suffers from poor pharmacokinetics.  Attachment of DFOB to polymers has shown great 

potential toward improving the therapeutic index of the drug.  In our hands, nucleophilic 

similarities between the amine and the hydroxamic acids create synthetic hurdles, which 

hinder attachment to the dendrimer.  Acylation of the amine of DFOB with isonipecotic 

acid presents a more nucleophilic amine for reaction with the poly(monochlorotriazine) 

dendrimer.  However, solubility precludes this route from being realized.  Synthetic and 

characterization challenges with desferrioxamine B have forced us to abandon further 

attempts to attach DFOB to the dendrimer. 

Camptothecin, however, has proven more successful.  This antineoplastic agent 

has a lone hydroxyl group poised for reactivity with isonipecotic acid as was utilized in a 

similar manner to DFOB.  Reaction of the modified camptothecin with the 

poly(monochlorotriazine) dendrimer affords a macromolecule with six camptothecins 

and twelve BOC-protected primary amines.  Deprotection and subsequent PEGylation 

affords a dendrimer with an approximate molecular weight of 30 kDa.  The PEGylated 

product proves to be more soluble in water than the free drug and wll presumably 

increase the therapeutic index in vivo.  Investigation of each construct in an MTT assay 

provided dose-response curves in both breast and colon cancer cell lines.   

Although the success of camptothecin was not observed with desferrioxamine B, 

this route offers great potential for functionalization with a variety of drugs or molecules 

of interest.  While not all drugs will be successfully introduced on the dendrimer using 

this nucleophilic liners, the ability to investigate this route offers a new facet to the 

potential of triazine-based dendrimers for drug delivery.  
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5.2 Recommendations 

While the kilogram-scale synthesis proved successful, further improvement of 

dendrimer synthesis must be sought.  Great strides have been made from the initial 

synthesis of triazine-based dendrimer, but new routes and new architectures are 

necessary to optimize drug delivery.  New architectures may also overcome the poor 

solubility issues observed with desferrioxamine B. 

The attachment of desferrioxamine B to the dendrimer proved to be unsuccessful, 

but the development of small molecule triazine-based chelates with high-affinity for iron 

may prove to be an inexpensive alternative.  Efficient synthesis of such chelates have 

proven promising as inexpensive alternatives to DFOB.  Successful modification of the 

reported small molecules to allow attachment to triazine-based dendrimers will afford a 

macromolecular construct capable of iron sequestration.  Upon successful synthesis, 

evaluation of the dendrimers for iron binding affinity and competition in the presence of 

other metals will offer insight into the potential use of this construct as a 

macromolecular iron sequestration agent.  Further evaluation in animal models of iron-

overload will then be required to determine the potential of this drug for further clinical 

investigation. 

 With success obtained with camptothecin in two cell lines, improved synthesis 

may potentially be met through the use of azetidinecarboxylic acid as the linker in place 

of isonipecotic acid.  The improved synthesis on large scale will then provide significant 

amounts of construct for more rigorous characterization in a wide range of cell lines.  

Furthermore, the evaluation of this construct in animals bearing human tumor xenografts 

will generate relevant evidence of further clinical potential.     

While the interests pursued here have focused on desferrioxamine B and 

camptothecin, a variety of other molecules with interesting biological and commercial 

applications may be investigated.  For example, the introduction of fluorescent agents or 

radiolabels for imaging with primary amines available for PEGylation or drug loading 

will move our constructs toward theranostics and long-term biodistribution and chronic 

toxicity studies.  Attachment of drugs to the poly(monochlorotriazine) dendrimer and 
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subsequent deprotection produces a cationic dendrimer capable of condensation of DNA 

or RNA.  Successful delivery of genetic material and drug will potentially sensitize cells 

for more efficient drug activity.     
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APPENDIX B 
 

SPECTRA FOR CHAPTER III 
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APPENDIX C 
 

SPECTRA FOR CHAPTER IV 
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PEG2000-G2-CPT: HPLC (before ultrafiltration) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PEG2000-G2-CPT: HPLC (after ultrafiltration) 
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