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ABSTRACT 

 

Chemiluminescence and Ignition Delay Time Measurements of C9H20 Oxidation in O2-Ar  

behind Reflected Shock Waves. (December 2009) 

Brandon Michael Rotavera, B.S., University of Central Florida 

Chair of Advisory Committee: Dr. Eric L. Petersen 

 

Stemming from a continuing demand for fuel surrogates, composed of only a few species, combustion of 

high-molecular-weight hydrocarbons (>C5) is of scientific interest due to their abundance in petroleum-

based fuels, which contain hundreds of different hydrocarbon species, used for military, aviation, and 

transportation applications. Fuel surrogate development involves the use of a few hydrocarbon species to 

replicate the physical, chemical, combustion, and ignition properties of multi-component petroleum-based 

fuels, enabling fundamental studies to be performed in a more controlled manner. Of particular interest are 

straight-chained, saturated hydrocarbons (n-alkanes) due to the high concentration of these species in 

diesel and jet fuels. Prior to integrating a particular hydrocarbon into a surrogate fuel formulation, its 

individual properties are to be precisely known. n-Nonane (n-C9H20) is found in diesel and aviation fuels, 

and its combustion properties have received only minimal consideration.  

 

The present work involves first measurements of n-C9H20 oxidation in oxygen (O2) and argon (Ar), which 

were performed under dilute conditions at three levels of equivalence ratio (φ = 0.5, 1.0, and 2.0) and fixed 

pressure near 1.5 atm using a shock tube. Utilizing shock waves, high-temperature, fixed-pressure 

conditions are created within which the fuel reacts, where temperature and pressure are calculated using 

1D shock theory and measurement of shock velocity. Of interest were measurements of ignition times and 

species time-histories of the hydroxyl (OH*) radical intermediate. 

 

A salient pre-ignition feature was observed in fuel-lean, stoichiometric, and fuel-rich OH* species profiles. 

The feature at each equivalence ratio was observed above 1400 K with the time-of-initiation (post 

reflected-shock) showing dependence on φ as the initiation time shortened with increasing φ. Relative 

percentage calculations reveal that the fuel-rich condition produces the largest quantity of pre-ignition 

OH*. Ignition delay time measurements and corresponding activation energy calculations show that the φ 

= 1.0 mixture was the most reactive, while the φ = 0.5 condition was least reactive. 
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NOMENCLATURE 

Abbreviations  Definition      

FT Fischer-Tropsch 

FWHM Full-Width Half-Maximum 

GTL Gas-to-Liquid 

HC Hydrocarbon 

H/C  Hydrogen-to-Carbon Ratio 

ISW Incident Shock Wave 

L/D Length-to-Diameter Ratio 

LVP Low Vapor Pressure 

NTC Negative Temperature Coefficient 

RSW  Reflected Shock Wave 

STP (101325 Pa, 295 K) 

UHCs Unburned Hydrocarbons 

UV Ultraviolet 

VIS Visible 

  

Symbols Definition    Units 

A Arrhenius Pre-Exponential,   

 Frequency Factor 

a Local Acoustic Speed   m /s 

c Speed of Light (in Vacuum)  m /s (3 · 108 m /s) 

cP Constant-Pressure Specific Heat  J /kg · K, kJ /kg · K 

cV Constant-Volume Specific Heat  J /kg · K, kJ /kg · K 

d Diameter    m, cm, mm, µm 

h Planck Constant    J·s (6.626 · 10–34 J·s) 

M Mach Number    (Dimensionless) 

MW Molecular Weight   kg /kmol 

n Arrhenius Non-Linearity Factor  (Dimensionless)  

P Pressure     torr, Pa, atm 

Ru Universal Gas Constant   J /mol · K, kJ /kmol · K 

s Entropy     J /kg · K, kJ /kg · K 

T Temperature    K 

V Velocity     m /s, µm /ms 
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Greek Symbols 

∆ Change (Final – Initial)    (Dimensionless) 

γ Specific Heat Ratio (cP /cV)  (Dimensionless) 

λ Wavelength     nm 

ν Frequency    s–1  

ρ Density     kg /m3 

τIgnition Ignition Delay Time    µs  

 

Subscripts Definition 

1 Initial State within Low-Pressure Section of Shock Tube  

2 Conditions within Incident Shock Wave 

3 Conditions within Expansion Fan 

4 Initial State within High-Pressure Section of Shock Tube 

5 Conditions behind Reflected Shock Wave 

∞ Free-Stream Condition 

R Reflected 
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1. INTRODUCTION: THE ROLE OF COMBUSTION SCIENCE IN AN  

ALTERNATIVE ENERGY ENVIRONMENT 

 
1.1 Motivation  

With a replacement for energy production from hydrocarbons well into the future, there remains strong 

interest in arriving at a temporary solution to mitigate some of the main concerns involved with 

hydrocarbon combustion: depleting availability of natural resources, pollutant emissions, and fuel 

efficiency. Given the continuing interest in alternative transportation, power generation, military and 

aviation fuels, most of which possess a low vapor pressure, an approach to examine the phenomenological 

combustion behavior of these fuels (reaction pathways, product-species formation, ignition delay, 

autoignition properties, flame speeds, soot production) to assess their role as replacements for current 

petroleum-based fuels is needed. Reproducing complex blends of hydrocarbons in laboratory and 

computational environments can be cumbersome, so replacing them with surrogate fuel blends containing 

only a few components is attractive. Surrogate fuels consist of a mixture of several species formulated to 

reproduce the combustion characteristics of the petroleum-based fuel it is intended to model. Each of the 

constituent species has individual adiabatic flame temperatures, minimum ignition energies, sooting 

tendencies, product yields, and ignition delay times. As such, there is an ongoing need to examine the 

cumulative impact of the mixture of several fuels and, more specifically, identify surrogate fuels suitable 

for the aforementioned applications. Understanding the chemical behavior of individual hydrocarbon 

species ultimately would benefit the engineering of new fuels that are tailored to specific applications.  

 

Low-vapor-pressure (LVP) fuels are implemented in aviation, military, and transportation applications due 

to their transportability and high energy density among other reasons. As a result of the wide applicability 

of fuels with low vapor pressure, experiments that cover a large range of conditions are required to 

examine such fuels under application-specific pressures and temperatures that span from ~ 10 atm and ~ 

800 K (compression-ignition engines) to ~ 50 atm and ~ 1000 K (gas turbine engines) with other 

applications reaching even higher temperatures and pressures.  

 

Shock tubes provide repeatable and controllable conditions of temperature and pressure using shock waves 

and gas dynamics. A test region is created by the reflection of a shock wave incident on an endwall, 

appended to which are numerous possible diagnostics for measurement of pressure, shock velocity, optical 

spectroscopy, and laser-based diagnostics such as scattering and absorption.  

 

____________ 
This thesis follows the style of AIAA Journal 
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Shock tubes are ideally suited for fuels with high vapor pressure as these species enter the gas-phase 

readily under standard conditions of temperature and pressure, however are also well-suited for studying 

fuels of low vapor pressure with additional precaution. As a result, the shock tube as an experimental 

device is capable of reaching experimental conditions that are of interest to each of the abovementioned 

application and conditions. 

 

1.2 Role of surrogate fuels 
 

Transportation and aviation fuels are petroleum based and are comprised organically of hundreds of 

hydrocarbon species, ranging in class (alkanes, alkenes, alkynes, aromatics, napthenes), molecular size (C3 

– C30), and molecular structure. A surrogate fuel, by definition, is a mixture of hydrocarbons classified by 

hydrocarbon family proportioning or an averaged molecular weight (H/C ratio) formulated to represent 

the physical, chemical, and reactivity properties of the petroleum-based counterpart. The count of 

constituent species in surrogate fuels can range from one to ten or more, where the utility of a surrogate 

fuel, in addition to addressing other practical concerns, is the ability to model the ignition and combustion 

of these fuels in simulated engines using chemical kinetic mechanisms.  

 

A depleting supply of petroleum alone undoubtedly justifies the need for alternative fuel research and 

development, however the large-scale use of alternative fuel blends has several important issues to 

contend with if it is to become a replacement for petroleum-based hydrocarbons, namely transportability, 

economic feasibility, and minimal impact on food supplies as many of the surrogate fuels under 

development currently utilize ethanol from corn, sugar cane, among others. Principally, aside from the 

abovementioned issues that any replacement, and in the limit a surrogate, fuel must satisfy, it must 

fundamentally be able to replicate the ignition and combustion properties that modern internal combustion 

and gas turbine engines require for generation of power to the respective device: automobile, aircraft, and 

power generation turbines. One popular category of alternative or replacement fuel is synthetic fuels. 

 

There are technological challenges to also overcome in the production of synthetic fuels. In military 

/aviation applications, the replacement synthetic fuel must satisfy a wide range of criteria. Physical 

properties (fluidity, density, lubricity, viscosity) and chemical properties (heat of combustion, energy 

content, thermal stability, flame temperature, flame speed, corrosiveness) maintain an interplay that is 

difficult to balance. One example is the requirement of a specific freezing point for high-altitude flight. 

Changing the fuel composition to meet required product yields (CO2, H2O, NOx, UHCs) alters the freezing 

point of the fuel which has drastic implications on it usability in military /aviation applications.1 A survey 

of surrogate fuel blend compositions, physical property requirements of jet fuels, heats of combustion, and 

compositional variation of jet fuels is given by Edwards and Maurice.2 Challenges specific to gas turbine 
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engine combustion have been described by Gupta and Lilley3, providing insight to NOx-related 

environmental issues, emissions, alternative fuels and other pertinent issues related to combustion. 

Ghassemi et. al. describe similar issues, yet those related to synthetic fuel use in transportation vehicles.4 

Longwell discusses heats of reaction of common components contained in synthetic fuels, conversion 

process efficiencies to create synthetic fuels, and an outline of the refining process.5 

 

 

The Fischer-Tropsch (FT) synthetic fuel technique utilizes gas-to-liquid (GTL) conversion of a feedstock 

(biomass, coal, natural gas) into carbon monoxide (CO) and hydrogen (H2) to generate liquid high-energy-

density fuels that can be further refined and tailored to meet requirements for product yields, ignition 

characteristics, and other fuel requirements, yet the fundamental issue of experimentation still exists with 

such fuels. A comprehensive look at the FT process, its applications, history, and trends is given by 

Schulz.6 Surveys and experimental examinations into aviation fuels7–9, synthetically produced jet fuels10, 

and automotive synthetics11–14 are abundant in the literature. 

 

Production and utilization of synthetic fuels have received attention for decades, and with a viable solution 

still to be attained much work is needed on a number of fronts to meet the challenge of implementing full-

scale synthetic fuel use. Although experimentation and modeling of synthetic and surrogate fuels has been 

ongoing for over a decade15–25, key issues remain largely unanswered. Addressing such fuel-related issues 

from a chemistry standpoint necessitates experimental testing and development of new fuels and surrogate 

models.  

 

The present work involves shock-tube combustion experiments on a single, heavy hydrocarbon (n-nonane, 

C9H20) which is a constituent in both aviation and transportation fuels with the ultimate aim of integrating 

these and additional experimental results into a chemical kinetics model from which a surrogate fuel can 

be developed and applied to applications such as jet engines and internal combustion engines.  
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2. BACKGROUND 

 
Studies in chemistry, spectroscopy, and physics require precision and accuracy over experimental pressure 

and temperature conditions to which a given test variable is subjected, ranging from low, sub-atmospheric 

pressures to elevated pressures of 100 atm and above and with temperatures exceeding several thousand 

Kelvins. Shock tubes are experimental devices in which wide-ranging thermodynamic conditions can be 

covered with high precision and accuracy, and with a high degree of chemical purity. This section serves 

first to provide a physical interpretation of the shock-tube process as it applies to combustion studies, a 

description given without mathematics to provide a purely physical expression of the overall process from 

shock-wave initiation, propagation and reflection, to combustion of a reactive mixture. Not covered are the 

processes of shock wave formation (a coalescence of acoustic waves as a result of an accelerating 

medium) and expansion wave formation (the physical consequence of the propagation of a compression 

wave). 

 

Fundamental concepts of acoustic (sound) speed and Mach number are discussed using thermodynamic 

concepts for purpose of review. The main components of a shock tube are outlined and detailed, after 

which a qualitative description of the physics involved in a given shock-tube experiment are presented 

with supporting figures. The shock tube utilized in the present study invokes one-dimensional (1D) shock 

equations to determine the test conditions in a given experiment, the Rankine-Hugoniot equations. The 

equations are presented without mathematical formalism, and a historical reference to their development is 

given, along with some underlying assumptions of their development and implementation as to yielding 

the thermodynamic conditions (temperature and pressure) behind shock waves. 

 

Lastly, the physics involved in the two main focuses of the present work, OH* species time-histories and 

ignition delay times, are discussed fundamentally. Supporting shock-tube literature focusing on these 

aspects and their relation to practical systems is also provided. 
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2.1 Shock wave and shock-tube physics 

The shock tube is an apparatus first brought to light in 189926 and since ca. 1950 has become a well-

established, reliable means of measuring a wide range of physical phenomena of interest to physics, 

chemistry, astrophysics, and astronomy.27,28 The primary attributes that have made the device both useful 

and versatile are the controllable, repeatable, and wide-ranging conditions of both pressure and 

temperature that are available. Using thermodynamics and gas dynamics, experimental conditions can be 

well-predicted to a high degree of accuracy for a given set of initial conditions. The shock tube consists of 

a long tube of given material (stainless steel, glass) and dimensions (circular, square) which is separated 

into two main sections: a driver and driven section or high- and low-pressure sections, respectively. The 

separation is achieved through the use of a diaphragm of plastic or metallic material and the bursting of the 

diaphragm resulting from an exerted pressure differential yields the propagation of a strong compression 

wave (shock wave) in the direction of the low pressure driven section.  

 

A shock wave by definition is a strong compression wave which, upon interaction with a given media, 

induces near instantaneous step changes in thermodynamic conditions (temperature, pressure, entropy). 

The process is irreversible from significant increases in entropy and adiabatic as there is insufficient time 

for heat transfer to occur appreciably and due to the diminutive wave area (shock thickness ~ mean free-

molecular path). The medium with which the shock wave interacts herein will be one in a gaseous state. In 

a physical sense, the interaction of a shock wave with its medium of propagation can be described as a 

series of rapid molecular collisions that occur on timescales too small for the surrounding media to 

respond. The speed at which a given media, of any phase, can respond to a change in surrounding 

conditions is described by a characteristic sound speed 𝑎𝑎: 

 

𝑎𝑎 =  �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑠𝑠

0.5

 

 

The sound speed can be described physically as the rate at which particles (molecules or atoms) can 

respond to upstream (oncoming) disturbances.  

 

Invoking Gibbś  relations, assuming the process is one-dimensional, and the gaseous medium through 

which a compression wave travels behaves as an ideal-gas, equations of momentum and mass 

conservation reveal: 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑠𝑠
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or, for an ideal gas 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑠𝑠

0.5

=  (𝑃𝑃𝛾𝛾𝛾𝛾)0.5 

 

The strength of a shock wave is defined by a Mach number, defined as the ratio of the speed of an object 

(shock wave) relative to the characteristic sound speed of the medium through which the object travels: 

 

𝑀𝑀 =
V
𝑎𝑎

 

or, 

𝑀𝑀 =
V𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜  𝑤𝑤𝑎𝑎𝑤𝑤𝑤𝑤

𝑎𝑎𝑡𝑡𝑤𝑤𝑠𝑠𝑡𝑡  𝑔𝑔𝑎𝑎𝑠𝑠
=

V𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜  𝑤𝑤𝑎𝑎𝑤𝑤𝑤𝑤

(𝑃𝑃𝛾𝛾𝛾𝛾)0.5  

 

A shock tube is an apparatus which employs the generation and control of normal (planar) shock waves to 

create desired conditions of temperature and pressure using physical laws of fluid mechanics and gas 

dynamics. The simple shock tube consists of two primary sections, a driver (high-pressure) section and 

driven (low-pressure) section, which are separated by a diaphragm station (Fig. 1). On each side of the 

diaphragm resides a gaseous mixture, usually differing in composition. Contained within the driver section 

is a single species or mixture of species that is typically non-reactive and of low molecular weight. In the 

driven section of the shock tube the reactive mixture is present. The reactive mixture may have several 

constituents which each belong to one of three categories: (1) fuel, (2) oxidizer, or (3) inert/buffer gas. In 

combustion work, the fuel and oxidizer are the focus of the given experiment, and the inert/buffer gas 

serves to control (absorb) the release of energy from the reaction and/or replicate a fuel mixture which 

would be used in a practical engine (i.e. a fuel-air mixture where the fuel accounts for ~ 3% by volume of 

the mixture). 

 

 

 

 

 

 

 

 

 

 

 

Diaphragm Station 

Driver Section Driven Section 

Fig. 1. Primary sections and diaphragm station of a simple shock tube. 
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Fig. 2. Driver-pressure time history of 254 µm-thick lexan diaphragm. Pressure ratio across diaphragm → 
4140 torr /80 torr ~ 50. 

The diaphragm station holds in place a diaphragm of given material (aluminum, stainless steel, lexan) and 

thickness which, for a given combination of the two parameters, possesses a unique and highly repeatable 

breaking pressure. The (breaking) pressure required for rupturing is surpassed by applying a large pressure 

differential, on the order of tens to hundreds, across the diaphragm. This implies that the pressure of the 

non-reactive driver gas is tens or hundreds of times greater than that of the reactive mixture.    

 

The driver section is filled at a constant rate with a gas until a critical pressure differential is reached, after 

which the diaphragm ruptures resulting in a substantial and instantaneous drop in driver-section pressure 

as the high-pressure gas is exposed to the low-pressure section which resided on the opposite side of the 

diaphragm (Fig. 2). Resultingly the pressure energy translates into momentum as, thermodynamically, the 

system changes from a closed-system to an open-system and the (non-reactive) driver-gas rushes through 

the diaphragm station into the low-pressure (reactive) test gas present in the driven section. The impetuous 

nature of the entry causes a sudden impartation of the kinetic energy held by the higher pressure gas flow 

which then instantaneously elevates the thermodynamic state of the initially stagnant driven gas.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In effect, the velocity of the driver gas is high enough such that the gas molecules (or atoms) existing on 

the low-pressure side of the shock tube are unable to respond to the rapid change in conditions. The low-

pressure gas is unable to give way to the entering higher pressure gas and as a result, a collision front 

propagates from the plane-of-exit from the diaphragm station through each cross-section of the shock tube. 

Diaphragm Ruptures 

Inflow into Driver Section  
of High-Pressure Gas 
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Shock strength, measured by its Mach number, and test gas composition dictate the degree of elevation of 

temperature, pressure, density, and thermophysical properties. The propagation of the shock wave itself 

occurs through a rapid series of molecular collisions. It is these collisions which result in the elevated 

thermodynamic state as the translational energy converts, partially, into molecular kinetic energy (i.e. an 

increase in temperature).  

 

After a period of time, the shock wave traverses the length of the tube and reaches the solid boundary at 

the end of the tube termed the endwall. In precisely the same manner, yet to a different degree, the reactive 

mixture then experiences another shock wave. The second shock wave, termed the reflected shock wave 

(RSW), is of lesser strength than the initial (incident) shock wave and is the product of the reflection of the 

incident shock wave (ISW) off of the solid boundary (endwall). The result of the interaction with the 

reflected-shock is the creation region containing stagnant, reactive gas and a further elevation in 

thermodynamic state–the test region. Upon interaction with the reflected shock wave, translational 

(kinetic) energy that is transferred to the quiescent reactive mixture through the collisions is converted into 

thermal energy, and the reactive mixture in the test region is nearly instantaneously brought to the reaction 

temperature and pressure. The timescale on which this (collision) process occurs reveals the primary 

advantage to using shock waves in kinetics and chemical physics–the reactants are heated on the order of 

microseconds (µs), avoiding slow heating of the reactants. Considering the converse, where reactants are 

heated on timescales longer than those of chemical processes (timescales > µs), issues such as thermal 

cracking of the fuel, slow combustion, temperature uncertainty from heat transfer, and other phenomena 

complicate the analysis of the reaction chemistry are avoided.  

 

During chemical reaction, the process of redistribution of electrons from the scission of existing and 

formation of new chemical bonds provides abundant sources of extractable information about the reactive 

mixture such as pressure rise, light emission, flame temperature, and sooting tendency, and from each of 

these phenomena further analysis can reveal the physics of fundamental processes including but not 

limited to ignition delay time, radical species time-histories, activation energy, and chemical reaction rates 

and pathways. Figures 3.A, 3.B, and 3.C show, pictorially, the process taken to rupture the diaphragm in a 

simple shock-tube (3.A), the formation of the incident shock wave (3.B), and the formation of the reflected 

shock wave (RSW) behind which conditions of temperature and pressure are created for experimental 

initial conditions (3.C). Details on shock wave theory, shock-tube design, boundary layer effects, and 

uncertainties in shock-tube experiments have been covered to a considerable degree.27–35 
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Fig. 3.A. The shock-tube driver section is filled at a constant rate with a high-pressure gas. Helium (MW = 
4 kg /kmol, γ = 1.67) is utilized in the present experiment as driver gas. The driver section of the shock 
tube is filled to yield pressure set by the diaphragm thickness and material. Diaphragms are specifically 
chosen to produced desired experimental conditions. For the experiments conducted herein, lexan 
diaphragms of 254 µm thickness and yield strength of 35 psig were used to produce ~ 1.5 atm in the test 
region of the shock tube. 

Fig. 3.B. The diaphragm is ruptured after a diaphragm-specific critical pressure is surpassed and a shock 
wave of Mach number M1 is formed in and propagates through the low-pressure reactive mixture. 
Diaphragm-bursting transfers high-pressure gas, initially separated from the low-pressure region, into 
high-velocity gas exiting the driver section.  The test-gas response time (acoustic speed, a1) is insufficient 
to react to the change in conditions and collide with the entering, high-velocity gas molecules. 
Resultingly, a shock wave forms and the passage of the shock wave heats and compresses the test gas to 
State 2. As the shock wave traverses the tube, attenuation from interaction with the shock tube walls and 
corresponding viscous force decreases its velocity with increasing distance as it approaches the endwall.  

Fig. 3.C. The test region of the shock-tube is formed as a result of the reflection of the incident shock 
wave off of the endwall. Since the gas near the endwall experiences two shock waves, T5 > T2 and P5 > 
P2. The reflected shock wave passes back through the shock tube where it interacts with expansion waves 
of lesser strength. Shock waves uniformly bring the test region to elevated temperature and pressure near 
instantaneously, thus (at short times) heat transfer effects to the gas can be neglected and the temperature 
of the gas is taken to be that created by the shock wave at the instant it forms.   

MR 

Endwall 

Test Region (T5, P5) 

Diaphragm separates high-pressure 
driver gas from low-pressure test gas 

Driver section containing high-
pressure driver gas 

Driven section containing low-pressure test gas 

Incident shock wave (T2, P2) 

M1 
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Driver gas is selected to serve the experimental objectives, namely the length of the time available in the 

test region of the shock tube required in order to observe the phenomena of interest. Several parameters 

affect the length of the time available in the test region, specifically shock-tube geometry (length) and 

physical properties of the gases contained within it. The physical properties which impact the test time are 

the specific heat ratio 𝑃𝑃 and molecular weight MW of the driver gas species. From the definition of sound 

speed, species with lower 𝑃𝑃 or higher MW possess a slower sound speed. This translates to a later time-of-

arrival of either the expansion fan, a series of low-pressure waves formed during the diaphragm rupture 

which initially travel in the opposite direction of the ISW, or the arrival of the contact surface, a less 

energetic front which separates the driver gas from the driven gas, in meeting the reflected shock wave. 

Common driver gases are shown in Table 1 with respective thermodynamic properties. Other species may 

be used to suit specific needs (i.e. combustion driver), as well as mixtures of varying molar proportions of 

each. Inert gases aside from Helium are not often used due to their rarity and corresponding high cost. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geometric implications on test time arise mainly from the respective lengths of the driver and driven 

section. For contact surface arrival at the test region in an exceedingly long driven section, since the ISW 

travels significantly faster than the low-energy front, the RSW (formed from the interaction of the ISW 

with the solid boundary) is allowed more time to travel back toward the diaphragm station from the 

endwall before meeting the front. Considering now both elongated driver and driven sections and the 

impact on rarefaction (expansion) waves, an even longer time is required to traverse both the elongated 

driver and driven sections, again allowing prolonged time for the RSW to pass through the once-shocked 

reactive mixture. 

 

Species  γ (293 K) MW (kg /kmol) 

H2 1.41 2 
He 1.67 4 
Ne 1.67 20 
N2 1.40 28 
O2 1.40 32 
Ar 1.67 40 

CO2 1.29 44 
Xe 1.67 131 

 

Table 1. Common species used for driver gas. 
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A limit also exists in consideration of geometric proportioning of each section of the shock tube. The 

driving force for shock wave propagation in a tube is the expansion of a high-pressure gas. In a shock tube 

of (hypothetical) infinite length the advantage may be seen that with infinite length comes infinite test time 

(assuming the ISW is afforded reflection through some means), however finite expansion is present with 

or without infinite length. Thus, a shock tube of infinite length would not be effective as the driving force 

for shock propagation would diminish at a given distance from the diaphragm station.  

 

2.2 Rankine-Hugoniot equations 

In order to predict the thermodynamic conditions within the shock tube, the waves are assumed planar 

which is a valid approximation past a distance of several diameters of length after the diaphragm station. 

From the planar-wave assumption, a one-dimensional (1D) simplification of the equations describing 

shock-gas interaction is employed: the Rankine-Hugoniot equations. From the solution of these equations, 

one can determine with high accuracy the conditions of temperature and pressure to which the test variable 

is subjected. These equations require two input variables to reach a characteristic solution, a Mach number 

and a specific heat ratio. Detailed and highly comprehensive work is performed by M. D. Salas36 on the 

history of shock wave theory, dealing with the works of William John Macquorn Rankine and Pierre Henri 

Hugoniot.37–38  

 

Embedded assumptions include propagation of the shock through an ideal gas with variable specific heats 

(cP and cV). The shock process is considered adiabatic as there is both insufficient time and insufficient 

area for appreciable quantities of heat to transfer. In terms of incident-shock Mach number 𝑀𝑀1, pressure 

and temperature conditions behind the reflected shock wave (𝑑𝑑5 and 𝛾𝛾5, respectively) relative to initial 

conditions are given: 

 

𝑑𝑑5

𝑑𝑑1
=  �

2𝑃𝑃𝑀𝑀1
2 − (𝑃𝑃 − 1)
𝑃𝑃 + 1

� �
(3𝑃𝑃 − 1)𝑀𝑀1

2 − 2(𝑃𝑃 − 1)
(𝑃𝑃 − 1)𝑀𝑀1

2 +  2
� 

 

𝛾𝛾5

𝛾𝛾1
=

{2(𝑃𝑃 − 1)𝑀𝑀1
2 + (3 −  𝑃𝑃)}{(3𝑃𝑃 − 1)𝑀𝑀1

2 −  2(𝑃𝑃 − 1)}
(𝑃𝑃 + 1)2𝑀𝑀1

2  

 

As observed from the above 1D shock relations, the thermodynamic conditions within the shock tube are 

dictated strictly by the specific heat ratio 𝑃𝑃 and the Mach number 𝑀𝑀. Bath gases can range widely in 

composition to match experimental goals. Table 2 shows several solutions for the Rankine-Hugoniot 

shock relations for commonly used bath gases and mixtures using helium as a driver gas. The term bath 

gas implies a nonreactive mixture, differing from test gas which can contain several percent by volume of 

fuel. 
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Species γ1 γ5 P5/P1 T5 /T1 Mincident shock a1 (m/s) a5 (m/s) 

Ar 1.67 1.67 29.03 5.15 2.50 320 726 
79/21 Ar/O2 1.58 1.53 30.01 4.53 2.51 318 667 
Air 1.40 1.34 24.25 3.00 2.32 345 586 
N2 1.40 1.35 23.05 2.96 2.29 350 593 

 

 

2.3 Fundamental description and application of measurements  

The two principal measurements reported herein, ignition delay times and species time-histories, are 

obtained from chemiluminescence measurements of excited hydroxyl radicals (OH*). Measurements of 

rates of change of OH* as well as ignition delay times have utility in the development and refinement of 

chemical kinetics models and both phenomena have other useful purposes which, along with a description 

of the underlying physics, are described in the sections below.  

 

2.3.1 OH* time-histories using chemiluminescence  

Combustion reactions are driven from the breaking of chemical bonds and formation of new bonds in an 

array of thousands of elementary reactions for a hydrocarbon fuel. The generation of radicals (short-lived 

species with unpaired valence electrons) occurs during the initial stages of combustion where such species 

are created under conditions of high temperature. As a result, energy is absorbed by the radicals, in 

addition to other species, through collisions with surrounding molecules/atoms (third-body inert species, 

stable and unstable species). Upon collision, the radicals become excited, increasing in vibrational 

frequency and reaching a higher electronic state. Shortly after excitation, a relaxation period ensues during 

which the radical tends toward a lower energy (ground) electronic state and in the process the emission of 

light (fluorescence) occurs proportional to the product of the Planck constant and frequency of light (hν). 

This emission of light, occurring as excited molecules return to their respective ground state, resulting 

from chemical reaction is chemiluminescence (Fig. 4). The oxidation of fuel in the present case, a heavy 

hydrocarbon (C9H20) oxidized by molecular oxygen (O2), involves only two reactants, excluding the 

nonreactive Ar, yet hundreds of species are formed from ignition and subsequent combustion each of 

which possess characteristic frequencies of vibration. Two radicals important to combustion chemistry are 

the hydroxyl (OH) and methylidyne radical (CH), and it is thus of interest to isolate respective 

characteristic frequencies of excited hydroxyl (OH*) and excited methylidyne (CH*) and measure the 

time-dependent formation and depletion of these species as a function of temperature, which can provide 

Table 2. Variance of thermodynamic condition for changing bath gas composition using helium as 
driver gas. Lower acoustic speeds imply that the fluid has a lower response time to react to oncoming 
pressure perturbations resulting in a larger Mach number (for fixed-velocity shock) and correspondingly 
larger step-changes in both pressure and temperature.  
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insight to the oxidation kinetics. As each of these species vibrate at a characteristic frequency, temporal 

measurement of species-specific emission of radiation (λOH*, λCH*) resulting from relaxation is achieved 

using a high-sensitivity detector coupled with a filter which excludes wavelengths other than the given 

wavelength of interest (bandpass filter). Frequencies, related to wavelength according to ν = c /λ, emitted 

during the chemical reaction behind the reflected-shock wave are recorded as time-dependent intensity, 

yielding species-time histories.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Morse potential energy curves for excited and equilibrated species as the product (P) of a chemical 
reaction. Relaxation brings the species from an elevated electronic level (A) to a lower -energy electronic 
level (X). From the transition of an excited radical (P*) to the ground-state (P), photons of energy E = hc 
/λ are emitted and measured for intensity according to wavelength λ. For OH* and CH*, λ ≈ 307.1 nm and 
≈ 430.0 nm, respectively.  
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Reactions involving OH* and CH* radicals are of well-known significance in hydrocarbon combustion 

and have received significant experimental focus.39–55 The hydroxyl radical (OH) in particular has received 

attention owing to its role in chain propagation reactions, branching reactions in H2-O2 systems, and the 

oxidation of soot and soot precursors. 

  

Xu et al.39 used transition-state theory to determine expressions for the rate coefficient for H-abstraction 

and OH-addition kinetics of the OH + CH2O over a broad temperature range, from 200 K to 3000 K. Each 

expression showed non-Arrhenius behavior. For H-abstraction, a temperature dependence of n = 2.98 was 

determined for the temperature range 200 K – 400 K, while for the range 400 K – 3000 K the non-linearity 

decreased to n = 2.11. The non-linearity of the temperature dependence for the OH-addition expression 

was characterized to be n = 1.63.  

 

A lean, low-pressure (~ 40 torr) CO-H2-O2 flame was employed to investigate the kinetics of CO 

conversion to CO2 at low, intermediate, and high temperatures (400 K to 1800 K) using measurements of 

stable and unstable species in the reaction zone of the flame.40 Through measurement of the rate 

coefficient using mass spectrometry, the propagation reaction CO + OH → CO2 + H was shown to be the  

dominant reaction in the conversion of carbon monoxide to carbon dioxide. The logarithm of the rate 

coefficient showed non-Arrhenius behavior for temperatures between 600 K – 14500 K, then became 

linearly dependent on inverse temperature for 400 K – 600 K and 1450 K – 2000 K. Further, from 1000 K 

to 1800 K, the rate of OH consumption by CO decreases strongly with temperature. From 400 K to 1000 

K the decrease was slower. Another study involving the reaction of formation and destruction of OH with 

CO determined explosion limit parameters in the presence of wet CO combustion.41 

 

Flash photolysis using a flashlamp has been utilized to study the reaction of OH with light alkanes, C2H6 

and C3H8, using H2O as a precursor.42 Fluorescence by OH provided concentration profiles from which 

rates of reaction were measured. The study was conducted in pure argon at P = 100 torr and limited to low 

temperatures (297 K – 800 K). Rate coefficients for reactions with ethane (C2H6 + OH → Products) 

showed near-Arrhenius behavior (n = 1.05), while rate coefficients for reactions of hydroxyl with propane 

(C3H8 + OH → Products) deviated from inverse-temperature-linearity with n = 1.40. Hydrogen-abstraction 

channels were also predicted for OH-propane chemistry.   

 

Using a flat-flame burner, the effect of OH concentration on soot formation in premixed atmospheric 

flames of methane (CH4), ethane (C2H6), propane (C3H8), ethylene (C2H4), and acetylene (C2H2) was 

quantified over the temperature range 1600 K – 1880 K.43 Invoking a kinetic model, a correlation 

dependent on temperature, hydroxyl concentration, and fuel carbon-to-hydrogen ratio was developed. The 
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correlation was used to investigate the mechanisms by which OH oxidizes soot precursors. Under the 

theory that soot formation is a competition between production of soot precursors and consumption of 

these precursors by OH, the authors define an expression for the equivalence ratio using an Arrhenius 

expression involving rate coefficients of production /consumption of precursors, precursor concentration, 

fuel concentration, and hydroxyl concentration. Further, it was reported that an increase in OH 

concentration in the flame results in a decrease in soot concentration.  

 

Laser-induced photolysis (λ = 193.3 nm) applied to CH3CHO/N2O/H2O/He mixtures was employed by 

Taylor et al.44 over the temperature range 295 K – 900 K in helium at several pressures, although no 

pressure dependence was observed, hence the study was conducted mostly at a pressure of 740 torr. Time-

dependent OH profiles were measured as a function of reactant concentration using laser-induced 

fluorescence (LIF) measurements from which intensity at λ = 309 nm was recorded using a 

photomultiplier tube (PMT). From measurements of 𝜕𝜕[OH] 𝜕𝜕𝑡𝑡⁄ , two relations expressing rate coefficients 

for the consumption of acetaldehyde by OH (CH3CHO + OH → Products) were determined according to 

two temperature regimes. For 295 K – 550 K, the rate coefficient showed a negative temperature 

dependence, while for 600 K – 900 K a positive dependence on temperature was reported. The authors 

employed a quantum Rice-Ramsperger-Kassel (QRRK) model to calculated reaction pathways in which it 

was found that, at low temperature, the dominant reaction pathway was OH-addition followed by methyl 

(CH3) elimination, while at higher temperature, H-abstraction from the CH3 group was prevailing.  

 

Shock tubes have been employed in the study of OH chemistry using high temperatures behind either 

incident or reflected shock waves45–53. Bradley et al., using a shock tube, measured UV absorption by OH 

from decomposition of hydrogen peroxide (H2O2) behind incident shock waves to determine the time rate-

of-change of OH concentration. Rate coefficients for OH depletion were measured in the presence of H2, 

CO, CF3H, CH4, C2H6, and C2H4 at elevated temperatures (1280 K to 1600 K).47 The work of Bradley et 

al. also provides a summary of numerous rates of reaction for important reactions.  

 

OH laser absorption  at 306.7 nm behind reflected shock waves has also been utilized to investigate the 

reaction of CH3 with OH and the decomposition of methanol (CH3OH) to produce OH, from which an 

expression for the overall rate coefficient of CH3 + OH was formulated from 1081 K – 1426 K.49 OH 

radicals were generated by thermal decomposition of tert-butyl hydroperoxide (TBHP), while methyl 

radicals were generated using azomethane (CH3-NN-CH3) or methyl iodide (CH3I) precursors. A pressure 

effect was investigated by elevating the reaction pressure to approximately 5 atm, however no significant 

impact on rate coefficients was noted. Pressure was otherwise maintained near 1.65 atm. The rate 

coefficient for methyl with hydroxyl was obtained by measurements of OH time histories with those 
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produced using the GRI 3.0 kinetics model. Vasudevan et al. conducted similar studies on the reaction of 

OH with formaldehyde (CH2O).50 Covering a broad range of high temperatures from 934 K to 1670 K at 

1.6 atm, the authors utilized high-temperature data and kinetic theory to extend the temperature range of 

data available on this reaction. The rate coefficient for OH + CH2O = HCO + H2O showed non-Arrhenius 

behavior (n = 1.63). The reaction OH + CH2O = HCOOH was also investigated.  

 

Bott and Cohen have performed a series of shock-tube experiments focusing on OH chemistry.50–53 The 

reaction of OH with propane was studied under a narrow range of temperature from 1193 K to 1250 K.50 

The temperature range was limited and kept below a certain threshold such that dissociation could be 

controlled. Strong curvature in the rate coefficient as a function of inverse temperature was noted, 

indicating non-Arrhenius behavior as has been seen by others. The reaction of hydroxyl with several 

species (OH + H2 /+ CH4 /+ c-C5H10 /+ i-C4H10) 51, with methyl52, and with numerous hydrocarbons54 have 

also been the subject of experimentation by Bott and Cohen. In each of the works, measured rate 

coefficients were compared against calculations using transition state theory. 

 

Chemical kinetics calculations coupled with the simultaneous measurement of OH* and CH* in laminar 

premixed and non-premixed atmospheric CH4-air flames provided for the determination of equivalence 

ratio based on the ratio OH*/CH* as these parameters were shown to be monotonically related.56 

Additionally, Panoutsos et. al. provide abundant rate coefficient data for both OH* and CH*. OH and CH 

concentration profiles were measured in a rich, atmospheric methane-air flame using a flat-flame burner, 

where radical concentrations were perturbed with an ArF excimer laser.57 Rates of decay of each species 

was monitored using fluorescence, the results of which being compared to a kinetics model. A discrepancy 

in the CH decay rate led to the conclusion by the authors that an improper decay channel had been used in 

the employed mechanism as the data was over-predicted by the model. Resultingly, the suggestion that an 

intermediate which impacts the rate of consumption of CH has a higher concentration in rich flames.     

 

2.3.2 Ignition delay times  

Shock tubes remove the necessity for physical processes occurring in combustion systems that lead to 

ignition (fuel injection, mixing) and as such are uniquely apt for fundamental studies on combustion and 

ignition. The high temperatures behind the reflected shock wave initiate the ignition process by raising the 

temperature of the gas within a few microseconds. After a period of time, the thermal energy generated by 

the shock and subsequently absorbed by the atoms and molecules in various energy storage modes 

(translation, rotation, vibration, electronic) breaks apart certain chemical bonds. Radical species are 

generated in the process which then cause bond breakage of other species, and the process continues up to 
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a point where emission and/or pressure have risen rapidly from an abundance of chemical bond breakage 

and reformation. The period of time over which this process occurs is the ignition delay time. 

 

Ignition delay time measurements are utilized as a guide to understanding the reactivity of mixtures under 

predetermined sets of conditions (temperature, pressure, stoichiometry, dilution level). Routinely, shock-

tube measurements of ignition delay times address needs for kinetic model development or 

experimentation of a specific surrogate fuel blend applicable to jet, internal combustion, or gas turbine 

engines. Surrogate fuel development has been of considerable interest in recent years due to the needs of 

both low emissions (NOx, CO, soot), high fuel efficiency, reducing foreign oil demands, and utilization of 

fuels produced from natural gas through Fischer-Tropsch synthesis.  

 

Due to concerns over pollution at high elevation, jet fuels have been the subject of research in order to 

identify a surrogate which can mimic combustion, physical, and chemical properties of petroleum-based 

fuels, yet with reduced amounts of CO2, UHC, and soot as products of combustion. Constituents of jet fuel 

depend on the type (Jet-A, JP-8, JP-10), the refining process, and the source of the petroleum, however the 

dominant hydrocarbon classes are n- and iso-alkanes, alkenes, aromatics, and napthenes. Dean et al.58 

employed a heated shock tube to study ignition delay times of Jet-A and several blends of benzene (C6H6), 

hexane (C6H14), and decane (C10H22) resulting in an empirical correlation showing a negative dependence 

on Jet-A concentration. Measurement of Chapman-Jouguet (CJ) detonation velocities as a function of 

temperature were also reported. Vasu et al. have conducted similar studies using a heated shock tube 

(required due to the low vapor pressure of heavy hydrocarbons > C7) where ignition delay times for non-

dilute mixtures are reported for Jet-A, JP-8, and two proposed surrogates containing quantities of toluene, 

benzene, iso-octane, and n-decane, where toluene and iso-octane concentrations are varied.59–60 

Experimental data were compared to several kinetic mechanisms predicting ignition of jet fuel. The results 

most closely agreed with the model of Ranzi et al., however at lower temperatures model prediction shows 

NTC behavior where the data do not. 

 

Fuels used in internal combustion (IC) engines are typically comprised of several hydrocarbon families 

and surrogate replacements have been proposed and studied for several years along with individual fuels 

used in surrogate fuel blends.61–67 Fikri et. al. performed a series of shock-tube experiments to measure 

ignition delay times of two gasoline surrogates for spark-ignition (SI) engines with the purpose of 

contributing to the refinement of a kinetic model.66 Stoichiometric blends of [14.5% n-C7H16 /44.5% i-

C8H18 /41% C2H6O – Surrogate B] and [17.5% n-C7H16 /5.5% C7H8 /19.5% i-C8H18 /8% C8H16 

(diisobutylene) – Surrogate C], where percentages are molar based, were studied at 10, 30 and 50 bar over 

a wide range of temperature. As with Surrogate B, Surrogate C exhibited negative temperature coefficient 
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(NTC) behavior in the 30- and 50-bar cases, while ignition measurements at 10 bar were distributed 

linearly with inverse temperature. An empirical ignition delay time correlation was constructed, however a 

single equation did not accurately represent the ignition data for both blends. This behavior was ascribed 

to a difference in pressure exponent, taking on a value of -0.960 for Surrogate B and -0.650 for Surrogate 

C. A similar ignition delay time study was conducted in a shock tube by Herzler et al. where a 28% n-

C7H16 72% C7H8 (mol. %) formulation comprised a gasoline surrogate.67 Equivalence ratio was varied 

between fuel-lean (φ = 0.3) and stoichiometric (φ = 1.0). A pressure dependence of -0.883 was calculated 

for the empirical correlation describing the ignition delay time.  

 

Diesel engines are composed on average of alkanes, alkenes, and aromatics. Decane (C10H22) is commonly 

used as a reference fuel for petroleum-based diesel fuel and has received recent attention.68–70 Argon-

diluted mixtures of decane and oxygen were ignited behind reflected shock waves in a heated shock tube 

from 2 to 10 atm over a wide range of temperature.68 Alkane and alkene combustion products were also 

characterized, relative to [C10H22], as a function of temperature. A kinetic model was constructed around 

the experimentally measured ignition and product data, and an empirical ignition correlation as a function 

of mixture concentration and temperature was calculated. 

 

Homogeneous charge compression ignition (HCCI) engines employ the advantages of both SI and CI 

engines, acting as a hybrid, to partially address pollution and fuel efficiency issues through mechanical 

means. HCCI engines utilize a homogeneous mixture of fuel and oxidizer (as in SI engines) and induce 

combustion through auto-ignition by achieving high engine pressures (as in CI engines). Since ignition 

occurs simultaneously at multiple locations within the reactive homogeneous mixture as the fuel and 

oxidizer are brought to elevated pressure, a more complete burn is achieved. The process has advantages 

in that reduced quantities of soot and NOx are produced, relative to conventional CI engines.71 Issues 

remain to be addressed, however, specifically in regards to the higher levels of UHCs and CO which are 

being attempted by chemical means. Several experimental and modeling works have contributed to the 

plausibility of an HCCI fuel.72 

 

Gas turbine applications have a particularly important use for ignition delay time data due to concerns of 

adverse combustion phenomena (flashback, blow-off, instabilities). Owing to its abundance in North 

America as a natural resource, combustion of natural gas and synthetic formulations of natural gas have 

been studied under high-pressure conditions commonly used in gas turbine engines for power 

generation.73–77 Ignition delay times of hydrocarbon mixtures have also been investigated for associated 

effects on explosion parameters (explosion pressure, maximum rate of pressure rise).78 

 



 

 
 

19 

3. COMBUSTION STUDIES INVOLVING n-NONANE 

 
Nonane (C9H20) is a higher-order hydrocarbon which is a constituent in diesel and jet fuels and yet has 

received only limited experimental and modeling attention. Conversely, numerous combustion 

experiments have been performed on octane79–80 (C8H18) and decane81–83 (C10H22), and chemical kinetic 

mechanisms have been developed for both.84–89 Recently, Westbrook et al. constructed a detailed 

mechanism for high-order n-alkanes from C8 to C16.90 In the comprehensive work, ignition delay times at 

13.5 bar and φ = 1.0 were gathered from the literature for n-heptane (C7H16) and n-decane (n-C10H22), 

which show overlap. An extension is then made, from the observation of overlap, in which the model is 

used to calculated ignition delay times for similar heavy hydrocarbons from C7 – C16. Ignition delay times 

for n-nonane (C9H20) are calculated, however are not compared to experimental data for verification. In a 

separate study, Ji et. al. developed a kinetic model of 188 species and 1446 reactions to compute laminar 

flame speeds and extinction strain rates of C5 – C12 n-alkane flames as a function of equivalence ratio.91 

The model slightly under-predicted measured fuel-lean and stoichiometric flame speeds of  n-nonane.  
 

Fundamental combustion studies on C9H20 ignition, temperature- and pressure-dependent reactivity, and 

oxidation pathways are not available in the literature. A detailed chemical kinetic study on hydroxyl 

reactions with linear hydrocarbons92 focused mainly on OH rate coefficient measurement with ethane 

(C2H6), hexane (C6H14), heptanes (C7H14), octane (C8H18), nonane (C9H20), and decane (C10H22), however, 

rate coefficients were measured for C9H20 + OH → Products by the authors near 1 atm over a temperature 

range of 1010 K – 1131 K. A pyrolysis study was conducted in a downflow reactor for C9, C12, C13, C16, 

and C22 straight-chain alkanes to determine the major yield products using gas chromatography.93 Nonane 

was observed to have decomposed into the following, predominantly 1-alkene species (in descending 

weight percentage of combustion products): heptene (1-C7H14), hexane (1-C6H12), pentene (1-C5H10), 

butane (1-C4H8), ethylene (C2H4). Rate coefficients were also measured for thermal decomposition of 

nonane. Kunzru et al.94 performed a detailed study on the thermal decomposition of pure n-nonane using a 

flow reactor with pressure maintained at 1 atm and temperature varied from 920 K – 1020 K, reporting the 

frequency factor (Arrhenius pre-exponential, 𝐴𝐴), order of reaction, and activation energy for the 

decomposition reaction. In agreement with the work of Zhou et. al.93, ethylene was again observed in the 

measurements as the dominant product of pyrolysis, a result which additionally agreed with a model 

proposed by Rice. 

 

Nonane served as a fuel for investigating the sooting dynamics and droplet morphology of single-droplet 

combustion where, using a low-gravity approach, spherical gas-phase combustion is promoted around 600 

µm droplets of nonane.95 The paper investigates the effect of pressure (10 atm – 30 atm) on the growth of 
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soot clouds from combustion of the droplet and droplet morphology after ignition. A similar series of 

independent experiments was conducted wherein the droplet combustion dynamics of JP-8 jet fuel were 

compared against those of nonane.96,97 

 

Shock tubes provide a means by which uniform, rapid compression and subsequent near-instantaneous 

heating of reactive mixtures is achieved, and are thereby ideally suited for controlled, fundamental studies 

of combustion chemistry, as discussed in Section 2. Presented herein is the first detailed series of 

experiments on n-nonane combustion using a shock tube with emphasis on measurements of highly-dilute 

ignition delay times and resulting features of OH* and CH* species profiles obtained through 

chemiluminescence measurements.  
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4. EXPERIMENTAL METHODOLOGY 

 
The approach to measure both OH* and CH* time-histories using chemiluminescence and corresponding 

ignition delay times involves the use of a shock tube. A detailed description of the shock-tube facility is 

provided, covering the main components, geometric configuration, measurement equipment, facility-

specific attenuation rates and corresponding temperature uncertainty, optical diagnostics, and data 

acquisition system. The present work involves only high-dilution mixtures, however diagnostics for 

analyzing combustion phenomena from both dilute and non-dilute mixtures are discussed. Test times for 

the shock-tube configuration are shown through pressure traces obtained at several different conditions, 

depending on experimental temperature goals and driver/driven gas composition. An experimental series 

of data was measured to validate the use of the present facility in reporting chemical kinetic and ignition 

data. The series comparison uses ignition delay time data from four different shock-tube facilities: a high-

pressure shock-tube at Texas A&M University (TAMU), a shock-tube facility at The Aerospace 

Corporation98, and a correlation constructed from shock-tube data taken at Stanford University99. Details 

of the experimental objectives undertaken are also discussed. 

 

4.1 Description of facility 

The low-pressure shock-tube facility at TAMU utilized for combustion experiments, hosts a 6.1-m long 

stainless steel shock tube (Fig. 5). The internal dimensions for the circular driver and square driven 

sections are 7.6 cm and 10.8 cm, respectively. The driver section (L /D = 23.6) is supplied driver gas 

(typically helium) either through an electronically enhanced solenoid valve employed to control the time 

taken to rupture the diaphragm or a system of manual valves used for experiments where control over the 

rupture-time for the diaphragm is not important. Reflected-shock pressures and temperatures up to 10 atm 

and 5000 K, respectively, are safely obtainable in the low-pressure facility.  

 

The leak rate of the shock tube was characterized to provide a measure of purity to be expected for each 

experiment. From high-vacuum conditions (P ~ 10–6 torr ~ 10–9 atm) a rate of 4.18 mtorr /min. of ambient 

air leaked in to the shock tube vessel. A second measurement was taken under conditions commonly used 

in the shock-tube experiments where initial pressures of the reactive mixture (test gas) are much higher 

than 10–6 torr; a lower rate is thus expected since the ∆P across the shock tube is much lower. A reduced 

rate of 7.44 µtorr /min. was measured when a typical low initial pressure of 32.0 torr was used as the 

initial pressure. Since experiments are typically run within 1 min., impurities are negligible (32.0 torr of 

test gas, 7.44 µtorr of impurity /ambient air).  
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Shock-front velocity is precisely measured through the use of four high-frequency piezoelectric pressure 

transducers (PCB 113A) mounted atop the driven section at locations toward the end of the shock tube in 

conjunction with 120-MHz counters /timers (Phillips P6666), using respective distances between pressure 

sensors and the recorded time intervals. For a given measurement of shock speed, two pressure transducers 

are employed to report an initial time and final time where the initial time indicates the arrival of the 

(incident) shock at the first transducer, and the final time indicates the arrival at the second. The 120-MHz 

sampling rate allows the timers to provide shock velocities on microsecond (10–6 s) timescales. In total, the 

four pressure sensors make up a three-interval field within which velocities is measured. A linear 

extrapolation of the measured velocities is used to calculate the shock speed at the plane of the endwall 

where the reflected shock forms. An extrapolation is required due to physical limitations in positioning the 

pressure transducer directly at the endwall. Three measurements of shock speed are made, and a linear 

trend of the three data points is then calculated from which then the velocity of the shock at the arrival of 

the endwall is extracted (Fig. 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Due to contact between fluid moving behind the incident shock wave and the internal, solid walls of the 

shock tube attenuation is present as the wave loses energy during propagation. The degradation of this 

energy (shock strength) translates to a decrease in momentum, and in turn an uncertainty in reflected-

Endwall 

Driven Section (L = 4.0 m) Driver Section (L = 2.0 m) 

Two-Stage Vacuum 
To DAQ 

CaF2 Optical Ports 

1 2 3 4 

Timers 
 

Pressure Transducers 
 Diaphragm Station 

Fig. 5. Chemical Kinetics and Gas Dynamics low-pressure shock-tube facility at Texas A&M University. 
High-purity conditions are ensured by the two-stage vacuum system. An incident shock wave is formed 
upon diaphragm rupture. Four high-frequency pressure transducers provide shock speed measurement. 
The incident wave reflects from the endwall and creates the test region. An upper limit of 1.5 ms within 
the test region is available. Calcium-Fluoride optical ports allow non-intrusive probing of chemically 
reacting fuel and oxidizer for spectroscopic measurements of electromagnetic radiation, temperature, and 
species concentration. Measurements are made at MHz frequencies to resolve data on chemical 
timescales.  
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shock temperature, a physical consequence shown in Fig. 6 (velocity decreases with increasing distance). 

Attenuation is quantified by considering the change in shock front velocity over a given distance: 

 

𝑑𝑑𝑤𝑤𝑃𝑃𝑜𝑜𝑤𝑤𝑃𝑃𝑡𝑡 𝐴𝐴𝑡𝑡𝑡𝑡𝑤𝑤𝑃𝑃𝐴𝐴𝑎𝑎𝑡𝑡𝐴𝐴𝑜𝑜𝑃𝑃 𝑝𝑝𝑤𝑤𝑃𝑃 𝑀𝑀𝑤𝑤𝑡𝑡𝑤𝑤𝑃𝑃 =  
�V𝐹𝐹𝐴𝐴𝑃𝑃𝑎𝑎𝐹𝐹 −  V𝐼𝐼𝑃𝑃𝐴𝐴𝑡𝑡𝐴𝐴𝑎𝑎𝐹𝐹

V𝐼𝐼𝑃𝑃𝐴𝐴𝑡𝑡𝐴𝐴𝑎𝑎𝐹𝐹
� ∙ 100

𝐿𝐿𝑤𝑤𝑃𝑃𝑔𝑔𝑡𝑡ℎ 𝑜𝑜𝑜𝑜 𝑀𝑀𝑤𝑤𝑎𝑎𝑠𝑠𝐴𝐴𝑃𝑃𝑤𝑤𝑚𝑚𝑤𝑤𝑃𝑃𝑡𝑡 𝛾𝛾𝑤𝑤𝑔𝑔𝐴𝐴𝑜𝑜𝑃𝑃 (𝑚𝑚)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Computation of shock velocity serves as one of two input variables, the other of which being the initial 

pressure of the driven gas (P1), to arrive at a characteristic solution of the Rankine-Hugoniot shock 

relations. The shock relations are solved iteratively using real-gas thermodynamics, employing cP(T), 

cV(T), s(T), and h(T) data from Sandia National Laboratories to define conditions within the reflected-

shock region pertinent to a given experiment. 

 

The loss in energy poses an uncertainty since the last point where velocity is determined is the linearly 

extrapolated value at the endwall. Once the reflected-shock wave forms and begins travelling back toward 

the diaphragm station, its velocity at the sidewall station (1 cm from the endwall) is assumed to be 

equivalent to that which was present at the endwall. The source of uncertainty arises from the reliance on 

numerical solution of conservation equations to yield experimental conditions of temperature and pressure, 

which require two inputs: velocity and initial pressure. Since the reflected-shock inherits further 

attenuation once it departs the endwall plane, the velocity is known within the bounds of the calculated 
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Fig. 6. Incident-shock velocity measurements. Linear extrapolation is used to calculate velocity at the 
endwall. R2 = 0.99. Attenuation rate = 0.015VInitial /m. Solid line indicates experimental linear fit. 
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rate of attenuation. Rates of attenuation increase as the reflected-shock passes through a higher-

temperature gas and has to interact with the boundary layer formed by the flow behind the incident shock 

wave.27 Attenuation rates from hydrodynamic implications are on the order of 1.0 – 1.5% per meter 

imposing a maximum uncertainty in the calculation of temperature of approximately ± 10 K.  

 

After the attenuating shock wave passes over the surface of the pressure transducers (d = 5.54 mm) used to 

measure velocity, the shock front continues its path and approaches the endwall, where two distinct 

diagnostic stations for measurement of (1) pressure and (2) optical/spectroscopic phenomena are met – 

sidewall and endwall stations. The two stations provide similar measurements, yet possess different 

vantage points. The use of sidewall diagnostics provides valuable time-dependent species-specific 

chemistry, however measurements made in this plane suffer from effects of boundary layer formation, 

shock bifurcation, and, for non-dilute mixtures, accelerated shock speeds which add additional uncertainty 

to the accuracy of temperature calculations. Usage of endwall diagnostics avoid boundary layer-related 

issues and as a result provide pressure measurement without the potential for bifurcation intervention. 

Further, test gas closest to the endwall incurs less heat transfer from otherwise prolonged exposure to the 

incident shock wave. Test-gas further from the endwall experiences the temperature and pressure created 

by the incident shock wave for longer periods of time, between incident-shock departure from the given 

plane of interaction between the incident shock and the test gas and reflected-shock arrival at the same 

cross-section of test gas. Thus, chemistry measurements, which are highly temperature-dependent, can be 

recorded with higher certainty with diagnostics located closer to the endwall. Hence, positioning the 

sidewall diagnostic station as close to the endwall as possible mitigates both boundary layer issues as well 

as reduces temperature uncertainties arising from pre-heating within the incident shock wave. 

 

Optical and spectroscopic measurements frequently involve differential laser diagnostic techniques 

whereby a single laser beam of certain wavelength or multiplexed array of wavelengths is passed through 

the shock tube to interrogate the formation/depletion of certain species, probe for temperature, or to 

measure velocities. Additionally, emission spectroscopy measured from the exiting of electromagnetic 

radiation from the reacting fuel and oxidizer provides pertinent kinetic data. For these and other 

measurements, optical access is required in shock tubes which are routinely employed for experiments 

which utilize such techniques. Therefore, for shock tubes in which chemistry and chemical physics are of 

interest, a sidewall diagnostic station is a necessity and positioning the station close to the endwall is 

advantageous, as mentioned previously.  

 

Pressure measurements at the sidewall provide time-of-arrival information for both incident and reflected 

shock waves. Sidewall pressure is recorded using a 500-kHz quartz pressure transducer (Kistler 603B1). 
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Sidewall emission of photons from excited species during combustion is tracked using a detector which 

employs a photomultiplier tube (Hamamatsu Type 1P21), the output signal from which undergoes 

amplification using a low-noise pre-amplifier (SRS SR560). UV-filtering is employed to observe emission 

at two specific wavelengths, λOH* and λCH*. One narrowband filter (10 nm FWHM) centered at 430.0 nm 

is utilized to capture the ultra-violet CH* chemiluminescence while a separate, 10-nm FWHM filter 

centered at 307.1 nm passes emission only from the OH* species. The sidewall-positioned window and 

centerline of the sidewall pressure transducer form a diagnostic plane (field of view) which is positioned 1 

cm from the endwall. The distance between the sidewall diagnostic plane and the endwall is minimized to 

reduce the uncertainty in shock speed and resulting uncertainty in thermodynamic state of the reflected-

shock gas. Although not used for analysis in the present work, endwall diagnostics are available. Endwall 

pressure is obtained using a PCB 113 A and a photodiode (New Focus 2032) with a range of wavelengths 

(190 nm – 1100 nm) monitors emission down the longitudinal axis of the shock tube. Data for each of the 

four diagnostics (sidewall pressure and emission, and endwall pressure and emission) are recorded using 

two 16-bit, 25-MHz Gage Applied Sciences data acquisition boards (CS8482). 

 

Careful attention is paid to the set up and optical alignment of the photomultiplier (PMT) detector in order 

to maximize signal-to-noise (S /N) ratio, force the detector to see a thin plane inside of the test section of 

the shock tube, and avoid interference emission. A visible Helium-Neon (HeNe) laser (632 nm) is centered 

with and passed through a window on one side the shock tube directly into a medium placed inside of the 

test region which causes the light to disperse, simulating the multi-directional emission that occurs during 

combustion. The dispersed light is then transmitted through an identical window on the opposite side of 

the shock tube and collected onto a concave mirror of focal length f = 10 cm. The concavity of the mirror 

reforms the collected, yet still dispersed light emitting from the shock-tube window into a single, focused 

point positioned directly onto the detector. Minor adjustments are then made to maximize the S/N while 

monitoring signal output. During alignment, the PMT detector is unfiltered so that it may see the visible 

632 nm light. After optimal alignment is achieved, a bandpass filter is appended to the PMT viewport. The 

window from which emission exits is unobstructed during alignment, however throughout the experiment, 

emission from combustion exits a single CaF2 window through the 400 µm slit. The other (opposing) 

window is covered so that peak intensity is observed through a single window on the side of the shock 

tube the detector is positioned. Purposely obstructing the window using a 400-µm slit reduces the field of 

view of the detector, ensuring minimal interference from wall reflections is incurred. The slit also acts to 

restrict the detector to a (ideally infinitesimally thin) plane which is representative of a chemically reacting 

cross-section within the volume of the test region. 
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Optical bandpass filters possesses a specific bandwidth comprised of a center wavelength bound by a 

minimum wavelength and a maximum wavelength the filter is capable of passing, forming a Gaussian 

distribution of intensity as a function of wavelength. The bandwidth for the filters used herein is 10 nm, 

and to eliminate interference from electromagnetic radiation emitted from other species or particles that 

emit at wavelengths within the spectral band of the filter, the sidewall detector is positioned at an angle 

approximately 150° from the window (Fig. 7). The converse to this approach, aligning the detector face 

normal to the window, could result in artificially larger signals as species emitting within the allowable 

wavelength regime would contribute to the intensity measured by the detector.  Emission also exits a 

calcium-fluoride optical port located inside of the endwall where measurements are made within the UV-

VIS spectrum using a photodiode to provide qualitative affirmation of ignition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Corroboration of shock-tube data on methane ignition with established data and correlation 

Shock-tube ignition of stoichiometric methane in 99.5% argon data from the literature was employed to 

compare data measured in the shock-tube facility utilized for the present experiments (Fig. 8). Ignition 

delay times measured using CH* emission in all cases were conducted near 1 atm or at a slightly different 

pressure, in which case a pressure-adjusted time is reported using a pressure exponent, n = 0.72. Ignition 

delay times from the low-pressure shock-tube facility were compared to those measured in shock tubes at 

The Aerospace Corporation98, Stanford University99, and the high-pressure shock-tube facility at Texas 

A&M University and excellent agreement is observed in the ignition results from the different facilities 

UV-VIS Photodiode 

Reflected-Shock Front 

Reacting Fuel /Oxidizer 

Endwall 

UV-Filtered PMT Detector 

Al-Coated Concave Mirror (f = 10 cm) 

Emission Exits  
CaF2 Window  
through 400 µm Slit 

VShock 

Fig. 7. Emission from reacting fuel and oxidizer behind reflected-shock is measured at a sidewall 
location 1 cm from the endwall using a UV-filtered photomultiplier tube.  
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and the Stanford ignition delay time correlation. An upper limit on ignition delay time of approximately 

1000 µs (1.0 ms) is adhered to for measurements in the low-pressure facility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Definition of test time  

Test times for the abovementioned shock-tube geometry are within 1.0 – 1.6 ms with extensions up to 5 

ms obtainable through driver-gas mixtures. Pressure histories in nonreactive mixtures from both the 

sidewall and endwall locations (Figs. 9.A and 9.B) reveal the available test times for pure argon at, 

respectively, the maximum and minimum temperatures employed in the present study. At both extremes, 

an available test time of 1.6 ms was measured. 
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Fig. 8. Comparison of ignition delay times of methane in oxygen (0.00163CH4 + 0.00337O2 + 0.99500Ar) 
at 1.06 atm measured in different shock-tube facilities.  
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Theoretical determination of the length of time available for study behind the reflected-shock wave is 

presented as a function of shock-tube geometry, initial acoustic speed, incident Mach number, and specific 

heat ratio27, yet deviation from that which is experimentally measured is present in the results due to the 

difficulties in incorporating viscous effects into the fluid dynamic equations. The test time is defined either 

by the arrival of the contact surface to the test region near the endwall or by the overtaking of the contact 

surface by the rarefaction tail reflected off of the driver section. The nature of these complex gas dynamic 

processes, formation and structure of the contact surface, and interaction of the reflected-shock wave with 

the contact surface are provided in several references27–35, yet Gaydon and Hurle27 provide the most 

elaborate and physically descriptive explanation. The arrival of the contact surface in the test region poses 

scenarios dictated by thermodynamics (equality of specific heat ratios). For the case where 𝑃𝑃 is constant 

across the contact surface, three results are possible, noting that the contact surface separates regions 2 and 

3: a2 > a3, a2 < a3, and a2 = a3. In the cases where acoustic inequalities are present, wave reflections result 

from the interaction of the reflected-shock wave with the contact surface. Under the condition of acoustic 

speed equality, no reflections occur and the test time is extended as a result (ending by the arrival of the 

expansion wave from the driver section). In the present experiments, helium was used exclusively as a 

driver gas, and the acoustic speed in region 3 is high (a3 ~ 1040 m /s) due to its low molecular weight. In a 
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Fig. 9.A. Sidewall pressure in pure argon at 1619 K, P5 = 1.33 atm. P1 = 31.7 torr. The first rise in 
pressure indicates the arrival of the incident shock, while the second rise in pressure is the passing of the 
reflected shock wave over the sidewall diagnostic station. An expansion wave arrives at t ~ 1.6 ms and 
the steep pressure decrease indicates change in the thermodynamic conditions and defines available test 
time (~ 1.6 ms). 
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typical experiment, with the incident shock wave creating a higher-temperature region 2, the acoustic 

speed a2 is approximately 550 m /s, thus for the experiments conducted herein the case a2 < a3 is described.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Upon reflection from the endwall, appending the reference frame onto the shock front, the shock wave 

takes on a Mach number higher than that of the incident shock due to the higher temperature created in 

region 2 (a ∝ T0.5). When the reflected-shock wave meets the contact surface, a rarefaction reflects back 

toward the endwall through the test section. A change in thermodynamic state is then registered where a 

decrease in pressure and temperature alters the conditions created by the reflected-shock wave, and the 

experiment ceases. This behavior is shown above in Figs 9.A and 9.B. Therefore, measurements behind 

reflected-shock waves were made at times less than 1 ms to remain within the bounds of the shock-tube 

test time.  
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Fig. 9.B. Sidewall pressure in pure argon at 1312 K, P5 = 1.53 atm. The steep pressure decrease indicates 
changes the thermodynamic conditions and defines available test time (~ 1.6 ms). P1 = 50.2 torr. The first 
rise in pressure indicates the arrival of the incident shock, while the second rise in pressure is the passing 
of the reflected shock wave over the sidewall diagnostic station. An expansion wave arrives at t ~ 1.6 ms 
and the steep pressure decrease indicates change in the thermodynamic conditions and defines available 
test time (~ 1.6 ms). 
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4.4 Composition and preparation of mixtures 

Highly dilute mixtures of n-C9H20 /O2 in Ar were prepared at three levels of equivalence ratio (Table 3); 

fuel-lean (φ = 0.5), stoichiometric (φ = 1.0), and fuel-rich (φ = 2.0). The equivalence ratio is defined herein 

as: 

 

φ =  �
xFuel

xOxidizer
� �

xFuel

xOxidizer
�

Stoichiometric
�  

 

 

 

 

 

 

 

 

 

The mixtures were prepared in a chamber separate from the shock tube using the partial pressure method. 

Inside the mixing chamber, turbulent mixing is promoted through an internal multi-hole delivery tube 

where the holes are out of phase with one another and span the length of the chamber. High-purity 

research-grade (> 99.9995%) oxygen and argon were employed. Since the vapor pressure of nonane is low 

at room temperature (~ 3.0 torr), a vacuum-sealed cylinder containing condensed-phase nonane was 

exposed to the mixing chamber at low-pressure (~ 10–6 torr) and allowed to evaporate to a pre-determined 

partial pressure. Correspondingly, precautions were taken to ensure mixture homogeneity and avoidance 

of condensation inside of the supply lines and mixing chamber. First, mixtures were made with the partial 

pressure of the nonane roughly 60% of its room temperature vapor pressure (i.e. < 2.0 torr). During the 

addition of the other constituents (oxygen and argon), pulses were used to further promote mixing during 

their individual injection. Antoine100 extended the Clapyeron equation for vapor-liquid phase equilibrium 

by adding a third constant:  

 

𝐹𝐹𝑜𝑜𝑔𝑔10 �𝑑𝑑𝑤𝑤𝑎𝑎𝑝𝑝𝑜𝑜𝑃𝑃 � = 𝐴𝐴 −  
𝐵𝐵

𝛾𝛾 + 𝐶𝐶 − 273.15
 

 

The values of constants A, B, and C are calculated using regression analysis from experimental data over a 

prescribed range of temperature. For nonane (C9H20), the constants A, B, and C are 4.07356, 1438.030, 

202.694, respectively.101 Carrying out the vapor pressure calculation at 293 K yields: 

 

φ %C9H20 %O2 %Ar 

0.5 0.1 2.8 97.1 
1.0 0.1 1.4 98.5 
2.0 0.1 0.7 99.2 

 

Table 3. Composition and stoichiometry of mixtures. 
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𝑑𝑑𝑤𝑤𝑎𝑎𝑝𝑝𝑜𝑜𝑃𝑃 ,𝐶𝐶9𝐻𝐻20  (𝛾𝛾 = 293 𝐾𝐾) = 3.07 𝑡𝑡𝑜𝑜𝑃𝑃𝑃𝑃 

 

The vapor pressure at 293 K for the n-nonane used in the study (Sigma-Aldrich N29406, assay 99%) was 

verified using a high-sensitivity (0 – 10 torr) MKS dual capacitance manometer. A second precaution was 

taken whereby a minimum waiting time of 24 hours was adopted prior to using the mixture for 

experimentation to allow for further mixing through diffusion. A total of six mixtures were made – two 

identical mixtures of each φ – to ensure repeatability of the mixing procedure and measurements. 

Repeatability is of particular importance due to the low vapor-pressure of the fuel and corresponding 

concerns over fuel condensation, the issue being the potential for an inhomogeneous mixture.  

 

4.5 Definition of ignition delay time through measurements of time-histories of OH*  

Species profiles provide a means by which kinetics models can be developed from comparison of the time 

rate of change of a given species measured in an experiment to ab initio calculations. Using the convention 

described by Petersen102, highly diluted mixtures are best suited for studies of chemical kinetics, where the 

diluent concentration is sufficiently high (> 95%) such that energy release is limited, rendering 

temperature and pressure constant throughout the length of the experiment. In many cases, the rise in 

pressure from combustion of such mixtures is diminutive and does not manifest in the recorded pressure 

history behind the reflected-shock. Conversely, endwall measurements are preferred for mixtures where 

diluent concentration is low (< 95%). For this reason, such mixtures are considered highly energetic due to 

the large quantity of bond breakage and formation during oxidation. Resultingly, pressure and temperature 

rise during combustion making unfavorable conditions for condition-sensitive chemistry measurements. 

 

Ignition delay times are defined herein using the method of steepest ascent as applied to OH* 

chemiluminescence measurements (Fig. 10). The method entails constructing a horizontal line 

representing zero-concentration of the intermediate species being measured. The line is extended from 

time-zero throughout the length of the profile to establish a reference (zero) concentration from which 

changes with time are measured. A second line is then drawn along the slope with the steepest ascent in 

the profile, indicative of rapid population of the intermediate radical pool, to intersect with the reference 

line. The difference in time between time-zero (arrival of reflected shock wave at sidewall location) and 

the intersection point is the ignition delay time τIgnition, measured in microseconds (µs). 
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Fig. 10. Definition of ignition delay time using the method of steepest ascent with sidewall OH* 
emission. 0.001C9H20 + 0.028O2 + 0.971Ar (φ = 0.5). T = 1403 K, P = 1.52 atm, τIgnition = 247 µs. 
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5. EXPERIMENTAL RESULTS OF n-NONANE COMBUSTION 
 

Experimental results for species time-histories of excited hydroxyl (OH*) radicals and ignition delay times 

for C9H20/O2/Ar mixtures were measured behind reflected shock waves for three equivalence ratios (φ = 

0.5, 1.0, and 2.0) at a fixed pressure near 1.50 atm. OH* formation was measured using emission 

spectroscopy of the A2Σ+ → X2Π transition. A temperature range of 1268 < T (K) < 1627 was covered by 

varying the incident-shock speed from 0.736 < VShock (µm /µs) < 0.831 using initial pressures 50.2 < P1 

(torr) < 31.5. A strong pre-ignition feature was observed in the chemiluminescence of OH* and is 

described in detail. Ignition delay times, measured from OH* time histories show Arrhenius behavior and 

are reported along with calculated activation energies. 

 

5.1 Details on the use of sidewall diagnostics for measurements  

All measurements reported were obtained from a sidewall location positioned 1 cm from the endwall 

containing a high-frequency pressure transducer for pressure measurement and a CaF2 windowed port 

allowing for emission diagnostics to observe the combustion event. Fig. 11 shows representative sidewall 

pressure and emission traces and Fig. 12 shows those as observed from the endwall. Time-zero is defined 

qualitatively as the arrival of the reflected shock which initiates the constancy of thermodynamic 

conditions (temperature, pressure) and is taken herein at the time of reflected-shock arrival at the sidewall 

location (Fig. 11). 
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Fig. 11. Typical pressure and OH* emission traces as measured from the sidewall for 0.001C9H20 + 0.014O2 
+ 0.985Ar (φ = 1.0). T = 1447 K, P = 1.57 atm, τIgnition = 378 µs. Time-zero defined upon arrival of the 
reflected-shock at the sidewall location.  
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Petersen102 discussed in detail the implications associated with diagnostic location and provides 

recommendations on reporting ignition delay times in both dilute and non-dilute reactive mixtures. Using 

an analytical optical model, Petersen showed that the integrative effect of an endwall-positioned emission 

diagnostic leads to artificially longer ignition delay times for dilute mixtures due to a convolution of initial 

signal intensity with emission contributions from ignition at points downstream of the endwall. The 

observation was made in two previous works where OH* chemiluminescence was used to measure 

ignition delay times under dilute conditions at both sidewall and endwall positions. Discrepancies between 

sidewall-measured ignition times, which agreed with the kinetics model of Wang and Laskin103, and 

endwall-measured ignition times from 10 µs to 60 µs were observed, and relative differences between 

endwall- or sidewall-defined ignition delay times showed a dependence on temperature with the 

percentage difference between the two definitions decreasing with decreasing temperature. Thus, for 

higher temperatures, a larger percentage-discrepancy is observed between definitions of ignition time from 

the two diagnostic locations. Thus, sidewall measurements are reported herein to avoid such issues and to 

extract time-dependent species concentrations from conditions ideal for measurements of chemical kinetic 

phenomena – constant temperature and pressure behind the reflected shock afforded from the high level of 

dilution and corresponding diminution of energy release. Endwall diagnostics are best suited for 

experiments which involve larger molar quantities of fuel (> 3% by vol.). In such mixtures, the 

abovementioned effect is lessened due to an acceleration effect of the shock wave being fed by 

combustion processes behind it.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Typical pressure and OH* emission traces measured from the endwall for 0.001C9H20 + 0.014O2 
+ 0.985Ar (φ = 1.0). Ignition unable to be defined due to the inherent integrative effect of the endwall 
emission diagnostic enabling light to be measured axially throughout the shock tube and distort the initial 
intensity rise. 
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5.2 OH* time histories 

Time-dependent species concentration profiles were measured for OH* under fuel-lean (φ = 0.5), 

stoichiometric (φ = 1.0), and fuel-rich (φ = 2.0) equivalence ratios. Each equivalence ratio displayed a 

particular characteristic of interest to the modeling of the chemical kinetics of the combustion process. 

Features characteristic to each stoichiometry condition and others common to all equivalence ratios are 

discussed in their respective sections. One such feature is a decrease in peak formation time of OH* post-

ignition, defined as the length of time which exists from the point of ignition to the peak of the OH* 

profile (Fig. 13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.1 Fuel-lean OH* behavior  

With the exception of only one case, no presence of a major feature during production or consumption of 

the species was observed, and the measured profiles exhibited smooth and nearly symmetric behavior. 

However, it is noteworthy that a slight pre-ignition rise in OH* concentration was detected for 

temperatures exceeding 1400 K (Fig. 14). In each of the five cases where this phenomenon was observed, 

ignition delay times were less than 200 µs. Further, within the envelope of T > 1400 K, the height of the 

peak increased with increasing temperature.  

 

The percentage of the pre-ignition curve height, relative to the main ignition curve height varied from 

1.8% to 3.5% of the total rise in OH*, thus the relative amount of pre-ignition OH* is small yet potentially 
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Fig. 13. Definition of post-ignition rise-time, τPeak – Ignition. τIgnition = 254 µs, τPeak – Ignition = 168 µs. 

τPeak – Ignition 
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relevant to the governing kinetics. The time-span over which the pre-ignition phenomenon occurred was 

measureable in only two of the five cases where the behavior was observed. At T = 1399 K, the duration 

of the pre-ignition phenomenon was 63 µs, and at an increased temperature of T = 1425 K the duration 

lasted 80 µs, where the duration is defined as the time interval between a measurable quantity of OH* and 

the return of the species concentration to the initial level (at time-zero). In the cases where the time 

interval was immeasurable, the pre-ignition behavior sustained through to the point of ignition. The time at 

which the pre-ignition phenomenon initiated was consistent, ranging narrowly from 33 µs – 37 µs.  

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another characteristic apparent in the fuel-lean species profiles occurred after peak concentration and 

ensuing rapid (primary) depletion where the majority of the species is consumed. A tendency persisted for 

secondary consumption, differing from primary consumption by rate, of the remaining OH*, occurring 

over a period of several hundred microseconds after ignition (Fig. 15). Calculations of emission intensity 

at t = 1000 µs (1 ms) relative to the zero-concentration (baseline) intensity show that emission from OH* 

post-ignition varied from 4.8% to 9.0%. The behavior occurred at all temperatures up to 1343 K. The 

change-in-rate behavior showed no significant dependence on temperature, yet at an upper limit of a 1-ms 

ignition delay time, the behavior ceased as the OH* concentration re-attained the zero-concentration level. 

Profile widths, indicative of the amount of time OH* remained present in the reactive system, showed a 

tendency toward decreasing with increasing temperature.  
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Fig. 14. OH* species profile (φ = 0.5). T = 1458 K, P = 1.51 atm, τIgnition = 129 µs, τPeak – Ignition = 109 µs. 
A slight pre-ignition formation of OH* is present.  
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Post-ignition rise-times required for peak formation of OH* (radical pool population) were recorded as a 

function of temperature (Fig. 16) relative to the point of ignition and varied over a relatively narrow range 

of 97 µs showing an expected, albeit slight, temperature dependence where, at 1478 K, 105 µs  was 

required to fully populate the radical pool and at 1309 K, 202 µs elapsed for the population. A statistical 

outlier of 335 µs measured at 1341 K is present, yet post-ignition rise-times of the species displayed an 

inverse relationship to temperature. 
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Fig. 15. OH* species profile (φ = 0.5). T = 1349 K, P = 1.58 atm, τIgnition = 485 µs, τPeak – Ignition = 157 µs. 
Emission (1 ms) = 6.0%. 
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5.2.2 Stoichiometric OH* behavior  

Similar to the measurements at the fuel-lean condition, OH* species time-histories were smooth and 

showed no significant change in behavior during production or consumption. A symmetric trend was 

observed for higher temperatures up to approximately 1530 K, however with decreasing temperature the 

profiles became increasingly asymmetric with a steeper slope of consumption compared to that of 

production. Only slight primary /secondary rate-of-consumption behavior was exhibited under the 

conditions studied, primarily at lower temperatures (< 1430 K). Pre-ignition OH* formation was present in 

13 of the 16 profiles, becoming evident at temperatures greater than 1430 K. For measurements where 

ignition delay times were less than 100 µs, the pre-ignition OH* profile was sustained to the point of 

ignition as insufficient time was available for the zero-concentration level to be re-attained (Fig. 17); the 

result of the pre-ignition behavior having a duration which overlaps ignition. At lower temperatures, below 

1400 K, the pre-ignition phenomenon is nonexistent (Fig. 18).  

 

 

 

 

 

 

 

 

Fig. 16. Post-ignition rise-times to peak OH* yield for 0.001C9H20 + 0.028O2 + 0.971Ar (φ = 0.5) at P = 
1.5 atm.  
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Fig. 18. OH* species time-history. τIgnition = 729 µs, T = 1402 K, P = 1.61 atm. 
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Fig. 17. Pre-ignition OH* formation overlapping with ignition event. τIgnition = 54 µs, T = 1591 K,  
P = 1.37 atm. 
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For conditions under which the pre-ignition profile was present, increased temperature was seen to 

increase the size (peak OH* yield) relative to the main peak resulting from ignition. The relative 

percentage (pre-ignition peak height relative to peak height resulting from ignition) varied from 2.5% at a 

temperature of 1434 K to 16.7% at an elevated temperature of 1591 K. The durations of the pre-ignition 

peaks were similar to those seen in the fuel-lean condition, although different qualitative behavior was 

observed. Under conditions where the pre-ignition profile was not measurable due to interaction with the 

ignition event, two behaviors were seen: (1) zero-concentration level of OH* was not reattained, leaving a 

small, yet measurable quantity of OH* present in the shock tube prior to ignition, (2) pre-ignition OH* 

concentration was sustained up to the point of ignition. In the latter case, the OH radical pool initiates, 

reaches a pre-ignition maximum, then begins to decrease where it meets the main ignition event. The time 

of initiation of the pre-ignition phenomena was shortened, relative to that for the fuel-lean condition and 

displayed a temperature dependence whereby higher temperature resulted in an earlier initiation of pre-

ignition OH* chemistry.  Initiation times ranged from 32 µs at a temperature of 1434 K to 24 µs at a 

temperature of 1591 K. Measurements of post-ignition rise times for φ = 1.0 mixtures show a moderate 

dependence on temperature, ranging from 99 µs at 1591 K to 284 µs at 1402 K (Fig. 19). 
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Fig. 19. Post-ignition rise-times to peak concentration for 0.001C9H20 + 0.014O2 + 0.985Ar (φ = 1.0) 
at P = 1.5 atm. 
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5.2.3 Fuel-rich OH* behavior  

Under fuel-rich conditions, no change in rates of consumption was present. Upon ignition and ensuing 

consumption of OH*, the concentration rapidly approached a zero-level. A prominent distinction in the 

fuel-rich OH* chemistry is the width of the main OH* profile resulting from ignition. In the previous two 

conditions, profiles were considerably thinner, particularly at higher temperatures. For φ = 2.0, at all 

temperatures, profile widths exceeded several hundred microseconds. In previous (fuel-lean and 

stoichiometric) cases, this behavior was displayed at lower temperatures with an upper limit of 

approximately 300 µs seen in the φ = 1.0 condition. At a temperature of 1412 K with an ignition delay of 

964 µs, the duration of the main OH* profile from ignition subsisted for a lower limit of approximately 

500 µs approaching 900 µs as an upper limit (Fig. 20). Another salient trait to fuel-rich OH* profiles is a 

substantial increase in pre-ignition phenomena. The behavior was exhibited in 13 of the 14 measurements 

and achieved a higher level of peak yield relative to both the zero-concentration level and to the maximum 

OH* yield post-ignition. A temperature dependence was revealed, however the dependence is less than in 

the previous two equivalence ratios where pronounced pre-ignition peak behavior was shown for ignition 

delay times less than 200 µs (φ = 1.0) or less than 100 µs (φ = 0.5). For φ = 2.0, a marked increase in pre-

ignition behavior measured for ignition delay times as long as 800 µs.  
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Fig. 20. OH* species time-history. T = 1412 K, P = 1.50 atm, τIgnition = 964 µs, τPeak – Ignition = 422 µs. 
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Relative to the main OH* peak, the pre-ignition profile attained higher percentages and showed a strong 

temperature-dependence. At a lower temperature of 1443 K, the pre-ignition profile reached a maximum 

value 11.4% of the maximum OH* yield resultant from ignition. At higher temperatures, the value 

increased dramatically. For a temperature of 1543 K, the pre-ignition peak reached 36.9% of the value of 

OH* formed by the ignition event. Figure 21 shows OH* formation and consumption at 1555 K where the 

pre-ignition peak is 28.8% of peak OH* concentration. Durations for pre-ignition profiles were amenable 

for 12 of the 14 measurements. No significant deviations from previous conditions were noted. The 

initiation of the pre-ignition events, however, formed a trend: decreasing time-of-initiation with increasing 

equivalence ratio. A range of times at which pre-ignition behavior is first observable from 33 µs at 1443 K 

to 22 µs at 1555 K was evidenced. Post-ignition rise-times for the fuel-rich experiments presented 

substantial scatter (Fig. 22) such that a general behavioral trend was unattainable. 
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Fig. 21. OH* species time-history. T = 1555 K, P = 1.53 atm, τIgnition = 181 µs, τPeak – Ignition = 301 µs. Pre-
ignition peak measured at 28.8% of the peak OH* formation.  
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5.3 Pre-ignition formation and depletion of OH* 

A pre-ignition behavior in OH* profiles was detected under all equivalence ratios studied, at temperatures 

as low as 1400 K, where a small, yet measurable formation of OH* was present prior to the point of 

ignition. The profiles took on a parabolic, symmetric shape and characteristics of these pre-ignition peaks 

include a significant dependence on equivalence ratio – increasing in relative percentage of the total OH* 

concentration with increasing fuel concentration (equivalence ratio), a dependence on temperature, 

statistically consistent duration times, and a temperature-dependent time of initiation within the high-

temperature, quiescent conditions created by the reflected-shock wave. Each of these phenomena was 

quantified in order to correlate dependencies and elucidate the chemistry of this behavior. The most 

significant observation is that of the growth of the pre-ignition peaks with increasing equivalence ratio. 

Calculations were performed to quantify the percentage of the pre-ignition profile height relative to that of 

the main peak height resultant from combustion which can provide a metric for kinetic relevance. Signal 

outputs from the photomultiplier emission detector were plotted, and maximum values of each profile 

were recorded.  

 

The signal indicating peak OH* production from ignition (ymax.) is used as the maximum (reference) value, 

measured relative to the baseline zero-level of concentration. A second value, obtained from the peak of 

the pre-ignition profile is then determined (y0). A peak-to-peak percentage was then calculated (Fig. 23) as 

a measure of the relative production of OH* in both the pre-ignition and main ignition regimes. 
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Fig. 22. Post-ignition rise-times to peak concentration for 0.001C9H20 + 0.007O2 + 0.992Ar (φ = 2.0) 
at P = 1.5 atm. 
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Percentage of signal measured from pre-ignition peak relative to the peak in the ignition profile is 

calculated: 

 

%𝑑𝑑𝑤𝑤𝑎𝑎𝑜𝑜 −𝑑𝑑𝑤𝑤𝑎𝑎𝑜𝑜 =  �1 − �
𝑦𝑦𝑚𝑚𝑎𝑎𝑚𝑚 . −  𝑦𝑦0

𝑦𝑦𝑚𝑚𝑎𝑎𝑚𝑚 .
�� ∙ 100 

 

Results from pre-ignition calculations for each equivalence ratio are shown in Table 4. 
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Fig. 23. Terms for definition of signal percentages for pre-ignition peak behavior. OH* measurement for 
0.001C9H20 + 0.007O2 + 0.992Ar (φ = 2.0), T = 1521 K, P = 1.49 atm. Pre-ignition peak initiates at 27 µs 
after reflected-shock formation, 67 µs in duration. The height of the peak is 16.2% of that for the main 
peak marking ignition. 
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Table 4. Relative percentages of peak-to-peak OH* yield. The peak of the pre-ignition profile is shown to 
take on a larger percentage relative to peak OH* yield from ignition with increasing temperature and 
equivalence ratio. Initiation times (t) of pre-ignition peaks are defined relative to time-zero (t0). 
 

Stoichiometry T (K) %Peak-Peak Pre-Ignition Profile Duration (µs) t - t0 (µs) 

φ = 0.5 

1399 3.4 63 36 
1425 1.8 80 37 
1457 2.1 Sustained to ignition 34 
1458 3.5 Sustained to ignition 33 
1478 3.5 Sustained to ignition 35 

φ = 1.0 

1434 2.5 80 32 
1443 3.4 55 31 
1447 2.6 63 37 
1457 4.3 Zero not reattained 28 
1462 6.8 66 28 
1470 3.7 69 29 
1480 4.5 58 30 
1485 5.6 Zero not reattained 28 
1487 5.3 69 29 
1519 5.5 Zero not reattained 26 
1535 8.7 Sustained to ignition 26 
1537 11.3 Sustained to ignition 26 
1591 16.7 Sustained to ignition 24 

φ = 2.0 

1443 11.4 74 33 
1454 25.9 68 24 
1460 15.7 74 27 
1462 11.9 74 27 
1477 15.0 73 27 
1508 20.4 80 22 
1510 17.1 92 23 
1515 28.5 77 25 
1521 16.3 67 27 
1523 22.3 72 21 
1529 30.6 Zero not reattained 26 
1543 36.9 69 30 
1555 28.8 Zero not reattained 22 
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Aside from a temperature dependence of the pre-ignition peaks, which under each equivalence ratio 

caused an increase in pre-ignition peak height, the behavior showed a significant dependence on the 

degree of stoichiometry, detectable in the fuel-lean, stoichiometric, and fuel-rich OH* profiles. In some of 

the fuel-lean cases, pre-ignition curves show an increased level over those in the stoichiometric cases, 

which is to be expected due to the higher concentration of O2 present in the system. However, relative to 

the main ignition peak a significant dependence on fuel concentration is shown, where peak-to-peak 

relative percentages increase with increasing equivalence ratio (Fig. 24). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The time interval over which the pre-ignition OH* pool was populated and depleted was measured to infer 

any dependencies. The behavior showed to be within an interval of time of 37 µs from a lower limit 55 µs 

to an upper limit of 92 µs, however owing to a large variation with temperature no consistent dependence 

is noted. Due to the pre-ignition peak formation in only the higher temperature fuel-lean experiments, 

statistics calculated for the φ = 0.5 condition case suffer from a small sample size (N = 2) where peak 

duration was measurable and a corresponding relative higher standard deviation. Statistical mean and 

standard deviation for each equivalence ratio are shown in Table 5.  
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Fig. 24. OH* emission at T = 1478 K, P = 1.52 atm. Pre-ignition peaks show dependence on 
stoichiometry. Peak-to-peak percentages for φ = 0.5, 1.0, and 2.0 are 3.5%, 4.5%, and 15.0%, 
respectively. 
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The point in time once the reflected-shock conditions were formed that the pre-ignition OH* initiated 

displayed both a temperature- and stoichiometry-dependence. For a given equivalence ratio, the parameter 

decreased with increasing temperature, thus for higher temperature reactions pre-ignition OH* formed 

earlier than at lower temperatures. Further, the initiation time parameter decreased with increasing 

equivalence ratio with the longest initiation times existing in the fuel-lean condition and the shortest times 

occurring in the fuel-rich condition (Table 6). 

 

 

 

 

 

 

 

 

 

Pre-ignition peak initiation times were plotted as a function of temperature (Fig. 25). Trend lines 

calculated for each equivalence ratio show decreasing time-of-initiation with increasing temperature and 

increasing equivalence ratio. The time of initiation of the pre-ignition phenomenon for the stoichiometric 

condition was shortened, relative to that for the φ = 0.5 condition and displayed a dependence whereby 

higher temperature resulted in an earlier initiation of pre-ignition OH* chemistry. Stoichiometric pre-

ignition OH* initiation times ranged from 32 µs at a temperature of 1434 K to 24 µs at a temperature of 

1591 K. The φ = 2.0 condition, despite an apparent high degree of  experimental scatter, yielded initiation 

times which were slightly lower than for φ = 1.0, thereby possessing the shortest initiation times of the 

equivalence ratios studied over the entire range of temperature for pre-ignition behavior. 

 

 

 

 

φ Mean Duration Time (µs) Standard Deviation (µs) 
0.5 71 12 
1.0 66 8 
2.0 74 7 

 

Table 5. Pre-ignition peak duration statistics. 

φ Mean Initiation Time (µs) Standard Deviation (µs) 
0.5 35 2 
1.0 29 3 
2.0 26 3 

 

Table 6. Pre-ignition OH* initiation statistics. 
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5.4 Ignition delay time measurements of n-nonane in O2-Ar 

Upon reflection of the incident shock wave off of the shock-tube endwall, a reflected shock wave forms 

and passes through the reactive C9H20-O2-Ar mixture creating a high-temperature, quiescent (test) region 

within which the fuel and oxidizer can react. Inside of the test region, thermal energy generated from the 

shock wave is absorbed by the energy storage modes of each species (translational, rotational, vibrational, 

electronic) causing chemical bonds to weaken and eventually cause dissociation. The interval of time, 

unique to the mixture composition, temperature and pressure, existing between the formation of the 

reflected shock and sharp increase in emission and /or pressure is defined as the ignition delay time of the 

given mixture under the given set of thermodynamic conditions, the reflected-shock temperature and 

pressure (Fig. 11). The method of steepest ascent applied to measured sidewall emission profiles of OH* 

radicals is utilized herein to report ignition delay times. 

 

Ignition delay times are plotted using a logarithmic scale (ordinate) as a function of inverse temperature 

(abscissa), thus increasing temperature occurs from the right to left. Logarithmic scales are routinely used 

to report ignition delay time data such that the behavior can be described using a linear relation, 

constructed using empirical equations of Arrhenius form. In the physical sense, ignition delay times 

commonly form an exponential dependence on inverse temperature. The activation energy of a mixture is 
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Fig. 25. Pre-ignition peak initiation times. Dependence is observed both on temperature (decreasing with 
increasing temperature) and equivalence ratio. 
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defined qualitatively as the energy required for chemical reaction to take place or, in a quantum 

mechanical sense the energy required to bring species in the reactive mixture above respective potential 

energy barriers. Recall the form of the Arrhenius expression for the temperature dependence of reaction 

rate constants: 

 

𝑜𝑜 = 𝐴𝐴𝑤𝑤𝑚𝑚𝑝𝑝 �
−𝐸𝐸𝐴𝐴
𝛾𝛾𝐴𝐴𝛾𝛾

� 

or, 

ln 𝑜𝑜 = −
𝐸𝐸𝐴𝐴
𝛾𝛾𝐴𝐴

�
1
𝛾𝛾
� +  𝐶𝐶𝑜𝑜𝑃𝑃𝑠𝑠𝑡𝑡𝑎𝑎𝑃𝑃𝑡𝑡 

where, 

 𝑜𝑜 ≡ Rate constant (s–1) 

 𝐸𝐸𝐴𝐴 ≡ Activation energy (kcal /mol) 

 𝛾𝛾𝐴𝐴  ≡ Universal gas constant (kcal /mol · K) 

 𝛾𝛾 ≡ Temperature (K)  

 

In terms of an ignition delay time, noting the inversion of the natural log parameter: 

 

ln 𝜏𝜏 =
𝐸𝐸𝐴𝐴
𝛾𝛾𝐴𝐴

�
1
𝛾𝛾
� +  𝐶𝐶𝑜𝑜𝑃𝑃𝑠𝑠𝑡𝑡𝑎𝑎𝑃𝑃𝑡𝑡 

 

Using the distributed ignition data (ln τIgnition – 1 /T), the above equation takes on linear form (y = mx + b), 

where 𝐸𝐸𝐴𝐴 𝛾𝛾𝐴𝐴⁄  is the slope and inverse temperature is the abscissa. From this expression, a numeric value 

for the slope (m) of the linear trend is determined, from which then the activation energy is calculated 

through multiplication by the universal gas constant 𝛾𝛾𝑈𝑈  = 1986 kcal /mol · K. An increased activation 

energy implies that a mixture is less reactive at a given temperature than another mixture with lower 𝐸𝐸𝐴𝐴. 

 

An imposed test time limitation of 1 ms in the shock-tube facility utilized to conduct the species profile 

measurements coupled with mixture ignitability dictate the range of temperatures covered in the 

experimental set. Measurements of ignition delay times were made over the temperature range 1285 < T 

(K) < 1478 for the φ = 0.5 condition, 1402 < T (K) < 1591 for the φ = 1.0 condition, and 1443 < T (K) < 

1555 for the φ = 2.0 condition, with each reaction pressure for all equivalence ratios maintained near 1.5 

atm. For the φ = 0.5 condition (Fig. 26), ignition delay times based on OH* emission ranged from 107 µs 

at 1478 K to 1104 µs at 1285 K where the data are fit by a linear trend (R2 = 0.97). Calculations reveal an 

activation energy for the φ = 0.5 mixture 𝐸𝐸𝐴𝐴 of 44.2 kcal /mol (185.0 kJ /mol). 
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Measurements of stoichiometric ignition delay times (Fig. 27) spanned from 54 µs at 1591 K to 729 µs at 

1402 K where the data are fit by a linear trend (R2 = 0.98). Activation energy calculations were carried out 

for φ = 1.0 an 𝐸𝐸𝐴𝐴 of 56.0 kcal /mol (234.5 kJ /mol).  
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Fig. 26. Ignition delay times for 0.001C9H20 + 0.028O2 + 0.971Ar (φ = 0.5) at P = 1.5 atm. 
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Fig. 27. Ignition delay times for 0.001C9H20 + 0.014O2 + 0.985Ar (φ = 1.0) at P = 1.5 atm. 
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For the fuel-rich condition, ignition times (Fig. 28) were measured from 1412 K (964 µs) to 1555 K (181 

µs) with a linear fit R2 = 0.96. The slope of the linear fit, multiplied by the universal gas constant gives an 

𝐸𝐸𝐴𝐴 of 51.1 kcal /mol (213.9 kJ /mol). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Combustion and ignition of the fuel-lean condition yielded the shortest ignition times over the entire range 

of temperature covered, followed by those of the stoichiometric condition, and lastly by the fuel-rich 

condition which measured the longest ignition times at each temperature. Activation energies were 

calculated from ignition trends for each mixture and shown in Table 7. 

 

Despite having prolonged time of ignition relative to the φ = 1.0 condition, the fuel-rich trend produced an 

activation energy 9% lower than that of the φ = 1.0 trend, observable in the trends noting that as colder 

temperatures are reached, an approach toward intersection becomes apparent due to the steeper φ = 1.0 

slope. The behavior may be rationalized by considering the system at high temperatures with less 

oxygen/more fuel present, lengthening the time for the radical pool to populate. This trend is evidenced in 

each of the fuel-rich OH* profiles which at all temperatures produced a more moderate rate of hydroxyl 

radical production. Each equivalence-ratio-based data set contains measurements from two independent 

mixtures, and excellent repeatability is shown by overlapping ignition times at several temperatures for 
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Fig. 28. Ignition delay times for 0.001C9H20 + 0.007O2 + 0.992Ar (φ = 2.0) at P = 1.5 atm. 
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each set. Repeatability is of particular importance for the present experiments conducted due to the 

properties of the n-nonane fuel, namely its low vapor pressure at standard temperature and pressure (STP). 

 

 

 

 

 

 

 

 

 

5.5 Empirical ignition delay time correlation 

An empirical correlation for determining ignition delay times for n-C9H20/O2/Ar mixtures as a function of 

molar concentrations and temperature was constructed for the data set totaling 61 measurements. Rates of 

chemical reaction following Arrhenius behavior can be described using the product of the frequency factor 

(𝐴𝐴) and an exponential term involving the activation energy (𝐸𝐸𝐴𝐴) and temperature (T ): 
 

𝑜𝑜 = 𝐴𝐴´exp �
−𝐸𝐸𝐴𝐴
𝛾𝛾𝐴𝐴𝛾𝛾

� 

 

A similar expression can be formed with ignition delay times plotted in the same manner as reaction rates 

(log10 – 1 /T), where 𝐴𝐴 ≠ 𝐴𝐴´: 

 

𝜏𝜏 = 𝐴𝐴[𝐹𝐹𝐴𝐴𝑤𝑤𝐹𝐹]𝑚𝑚[𝑂𝑂𝑚𝑚𝐴𝐴𝑑𝑑𝐴𝐴𝑂𝑂𝑤𝑤𝑃𝑃]𝑦𝑦[𝛾𝛾ℎ𝐴𝐴𝑃𝑃𝑑𝑑 𝐵𝐵𝑜𝑜𝑑𝑑𝑦𝑦 /𝐼𝐼𝑃𝑃𝑤𝑤𝑃𝑃𝑡𝑡]𝑂𝑂exp �
𝐸𝐸𝐴𝐴
𝛾𝛾𝐴𝐴𝛾𝛾

� 

 

Differing in slope, each set of ignition data (φ = 0.5, 1.0, 2.0) varied linearly with inverse temperature 

when plotted logarithmically. The method of least squares was applied to the complete data set in order to 

calculate statistics describing a common linear trend. Taking the natural logarithm of the above relation 

yields an equation describable by a linear function: 

 

ln(𝜏𝜏) = ln(𝐴𝐴) +  𝑚𝑚𝐹𝐹𝑃𝑃[𝐹𝐹𝐴𝐴𝑤𝑤𝐹𝐹] + 𝑦𝑦𝐹𝐹𝑃𝑃[𝑂𝑂𝑚𝑚𝐴𝐴𝑑𝑑𝐴𝐴𝑂𝑂𝑤𝑤𝑃𝑃] + 𝑂𝑂𝐹𝐹𝑃𝑃[𝛾𝛾ℎ𝐴𝐴𝑃𝑃𝑑𝑑 𝐵𝐵𝑜𝑜𝑑𝑑𝑦𝑦 /𝐼𝐼𝑃𝑃𝑤𝑤𝑃𝑃𝑡𝑡] + �
𝐸𝐸𝐴𝐴
𝛾𝛾𝐴𝐴
�𝛾𝛾 

 

 

φ Diluent EA (kcal /mol) 

0.5 97.1% Ar 44.2 
1.0 98.5% Ar 56.0 
2.0 99.2% Ar 51.1 

 

Table 7. Calculated activation energies. 
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The pre-multipliers x, y, z, and 𝐸𝐸𝐴𝐴 𝛾𝛾𝐴𝐴⁄  represent respective slopes for each term, and the ln(𝐴𝐴) term 

represents the constant (y-intercept). Solution of these parameters is reached using the method of least 

squares and after taking the exponential of the relation, an equation describing the complete ignition data 

set as a function of species concentration (mol /m3) and temperature is determined: 

 

𝜏𝜏 (𝜇𝜇𝑠𝑠) = 4.01789 · 10−5[C9H20]1.65[O2]−4.10[Ar]3.95exp �
19228.23

T
� 

 

The ignition delay time correlation fit the entire data set well (R2 = 0.94). Positive exponents (x, z) imply 

that an increase in concentration of species with such coefficients will lead to an increase in τIgnition, 

conversely a negative exponent (y) indicates that the ignition delay time will correspondingly decrease 

when the concentration is decreased since the parameter is inversely proportional to the species 

concentration raised to a negative power. Reproduction of the calculated ignition times using the above 

correlation (τCorrelation) relative to experimental ignition delay times (τExperimental) show good agreement (Fig. 

29). A pressure exponent derived from the correlation of n = 1.5 results. Typical for pressure exponents for 

n-alkanes is a range between –0.50 and –0.90. A second correlation was made in which the inert was 

removed. The resulting pressure exponent was n = –0.53 and the equation is given: 

 

𝜏𝜏 (𝜇𝜇𝑠𝑠) = 0.06721[C9H20]−0.60209 [O2]0.06721 exp �
28219.95

T
� 
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From the correlation, 𝐸𝐸𝐴𝐴 = 38.2 kcal /mol (159.9 kJ /mol). Experimental ignition data for n-nonane (C9H20) 

are not available in the literature, thus a comparison of activation energy is not possible. However, octane 

(C8H18) and decane (C10H22) ignition data are abundant. Activation energy is a pressure-dependent 

parameter, and while 𝐸𝐸𝐴𝐴 additionally shows a dependence on the particular type of fuel as well as the fuel 

concentration, results for activation energy are compared for reference against the two alkanes. For a 0.5% 

fuel concentration, Davidson et al.62 report an activation energy for iso-octane of 43.9 kcal /mol for 

ignition times at 1.3 atm. Oehlschlaeger et al. measured ignition delay times for iso-octane over a range of 

fuel concentrations (0.01% – 0.50%) at pressures near 1.5 atm and through calculation of an overall 

ignition correlation recorded an activation energy of 44.8 kcal /mol.45 Decane is reported to have an 

activation energy of 34.2 kcal /mol for ignition times measured from 1.8 to 10 atm with fuel concentration 

ranging from 0.49% – 1.50%.68 From the observations inferred on alkanes of next higher and lower order 

relative to nonane (decane and octane, respectively) the calculated activation energy falls in between those 

values for the higher- and lower-order alkanes. 
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Fig. 29. Ignition delay times for each equivalence ratio calculated using the empirical correlation and 
compared to experimental ignition times. Ignition times plotted with the correlation were determined using 
conditions from each experiment. 
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5.6 Effect on temperature of small rise in pressure during experiment 

Resulting from adverse gas dynamic effects in the shock tube, the pressure was observed to rise slightly 

behind the reflected-shock over the timeframe of the experiment. Considering the most severe case where 

this behavior was seen, the increase in pressure is small, reaching a maximum deviation of only ~ 0.14 psi 

(0.0096 atm) at a time of 1018 µs (20 µs prior to ignition), yet its effect on the reaction temperature was 

taken into account to elucidate the potential for issues with reported ignition data. The rise in pressure is 

gradual, and in terms of pressure per unit time, the increase was at a typical rate of 1.7 · 10–4 atm /100 µs. 

It is important to note that the majority of ignition data was measured well below 1.2 ms, however a few 

measurements were taken near this value and as such, the case in which one of the longer ignition times is 

delineated as a worst-case condition. 

 

The compression process behind the reflected-shock wave is approximated as isentropic to calculate the 

increase in temperature from the associated rise in pressure. The shock process is adiabatic due to small 

timescales, yet is highly non-isentropic, however the assumption holds as a guide to reporting changes in 

experimental conditions. Assuming ideal gas, 

 

𝛾𝛾5,𝑠𝑠

𝛾𝛾5
=  �

𝑑𝑑5
ʹ

𝑑𝑑5
�

𝑃𝑃−1
𝑃𝑃

 

 

 

 

where, 

 𝛾𝛾5,𝑠𝑠 ≡ Isentropic temperature behind reflected shock (K) 

 𝛾𝛾5 ≡ Reflected-shock temperature (K) 

 𝑑𝑑5
ʹ  ≡ Pressure at t = τIgnition – 20 µs (atm) 

 𝑑𝑑5 ≡ Reflected-shock pressure (atm)  

 𝑃𝑃 ≡ Specific heat ratio within reflected-shock region   

 

For the φ = 0.5 condition, an ignition delay time of 1038 µs was recorded for a reflected-shock 

temperature and pressure of T5 = 1309 K and P5 = 1.62 atm, respectively (Fig. 30). Using thermodynamic 

conditions calculated for the test region, the temperature is shown to increase isentropically to 1342 K, an 

increase of 33 K over T5. Since the process is gradual, the impact on ignition data is taken using an 

average value of temperature increase. In the present, limiting case the average temperature is 1326 K. The 

change in temperature slightly impacts the longer ignition delay time (Fig. 31). A time of 20 µs prior to 
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ignition is taken to be the point at which the increase in temperature is experienced by the reactants to 

allow time for the vibrational relaxation period of the reactant molecules (n-C9H20 and O2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 31. A deviation results at long ignition delay times due to adverse gas dynamic imposing a gradual 
rise in pressure behind the reflected-shock with time.  
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Fig. 30. Pressure-rise occurs due to the interaction of the boundary layer with the gas behind the 
reflected shock wave. At long ignition times, the pressure effect was calculated to reveal the 
corresponding rise in temperature using ideal-gas isentropic relations. A calculated reflected-shock 
pressure of 1.62 atm rose to a peak 1.84 atm at a time shortly after ignition.  
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6. SUMMARY 

 
n-Nonane combustion data have been recorded for first time in a shock tube. Fundamental combustion 

measurements of n-nonane highly diluted in argon were made at three levels of equivalence ratio (φ = 0.5, 

1.0, 2.0) behind reflected shock waves where the level of argon dilution varied from 97.1% Ar (φ = 0.5) to 

98.5% Ar (φ = 1.0) to 99.2% Ar (φ = 2.0). Species time-histories of excited hydroxyl (OH*) radicals were 

measured using chemiluminescence and recorded on µs timescales over a wide range of temperature, 1285 

< T (K) < 1627, using shock speeds from 0.736 mm/µs to 0.831 mm /µs. To attain the experimental 

conditions behind the reflected-shock wave, initial pressures of the reactive mixture were varied from 50.2 

torr to 31.5 torr, resulting in reaction pressures near 1.5 atm. 

 

Due to the diminutive amount of energy release in dilute mixtures, ignition delay times were extracted 

from sidewall-measured species time-histories using the method of steepest ascent. Ignition data plotted on 

a logarithmic-linear scale (τIgnition – 1/T) provided for calculation of activation energies for each 

equivalence ratio as the data took on Arrhenius form. The stoichiometric condition (φ = 1.0) had ignition 

times ranging from 729 µs (1402 K) to 54 µs (1591 K) and yielded the highest activation energy of 56.0 

kcal/mol (234.5 kJ/mol). The fuel-rich condition (φ = 2.0) recorded the second highest activation energy 

with 𝐸𝐸𝐴𝐴 = 51.1 kcal/mol (213.9 kJ /mol) resulting from ignition times ranging from 964 µs (1412 K) to 181 

µs (1555 K), and the fuel-lean (φ = 0.5) condition measured the lowest activation energy at 𝐸𝐸𝐴𝐴  = 44.2 kcal 

/mol (185.0 kJ /mol) resulting from ignition times ranging from 1104 µs (1285 K) to 107 µs (1478 K). 

 

Pre-ignition formation of OH* existed at higher temperatures (T > 1400 K) in each equivalence ratio. 

Equivalence ratio influenced the time at which pre-ignition occurred and also displayed a temperature-

dependence, occurring earlier at higher temperatures and higher fuel-to-oxygen concentrations. The profile 

of pre-ignition appeared parabolic in shape, lasting several tens of microseconds in duration, and the peak 

level of pre-ignition OH* also showed a strong dependence on both temperature and equivalence ratio. 

Beyond 1400 K, the peak of the pre-ignition OH* profile significantly increased in relative percentage to 

that of the main peak OH* formation resulting from ignition. Further, extending to higher equivalence 

ratios showed that the pre-ignition behavior is strongly influenced by φ. Pre-ignition OH* peaks measured 

16.7% of maximum OH* yield for the φ = 1.0 condition and a higher 36.9% for the φ = 2.0 condition. 

Early radical-pool population to this extent could have an impact on incipient chemical kinetic processes 

which further dictate ignition and other combustion phenomena.  
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Table A–1: Activation Energy Results for Fuel-Rich C9H20/O2 in Ar 
 

φ = 0.5 
       

        
τ (µs) T5 (K) ln τ 1 /T (K-1) Run 

   
      

EA /R (1 /K) 
329 1352 5.80 0.00074 1414 

 
22267.2 

453 1351 6.12 0.00074 1415 
   247 1403 5.51 0.00071 1418 
 

EA (cal /mol) 
245 1391 5.50 0.00072 1419 

 
44217.5 

203 1411 5.31 0.00071 1420 
   198 1399 5.29 0.00071 1421 
 

EA (kcal /mol) 
319 1366 5.77 0.00073 1422 

 
44.2 

235 1391 5.46 0.00072 1442 
   549 1343 6.31 0.00074 1444 
   428 1349 6.06 0.00074 1445 
   414 1360 6.03 0.00074 1446 
   436 1345 6.08 0.00074 1447 
   544 1346 6.30 0.00074 1448 
   245 1400 5.50 0.00071 1449 
   311 1381 5.74 0.00072 1450 
   485 1349 6.18 0.00074 1451 
   107 1478 4.68 0.00068 1452 
   218 1420 5.39 0.00070 1453 
   195 1425 5.27 0.00070 1454 
   1038 1309 6.94 0.00076 1455 
   129 1458 4.86 0.00069 1456 
   139 1457 4.93 0.00069 1457 
   1092 1306 7.00 0.00077 1458 
   1104 1285 7.01 0.00078 1459 
   720 1341 6.58 0.00075 1460 
   468 1399 6.15 0.00071 1462 
   259 1465 5.56 0.00068 1463 
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Table A–2: Activation Energy Results for Stoichiometric C9H20/O2 in Ar 
 

φ = 1.0 
       

        
τ (µs) T5 (K) ln τ 1 /T (K-1) Run 

   
      

EA /R (1 /K) 
54 1591 3.98 0.00063 1399 

 
28197.1 

116 1537 4.75 0.00065 1400 
   104 1535 4.64 0.00065 1406 
 

EA (cal /mol) 
378 1447 5.94 0.00069 1407 

 
55992.7 

729 1402 6.59 0.00071 1408 
   259 1480 5.56 0.00068 1409 
 

EA (kcal /mol) 
205 1519 5.32 0.00066 1410 

 
56.0 

195 1485 5.28 0.00067 1432 
   208 1457 5.34 0.00069 1433 
   254 1470 5.54 0.00068 1434 
   228 1462 5.43 0.00068 1435 
   218 1487 5.38 0.00067 1436 
   550 1412 6.31 0.00071 1437 
   539 1409 6.29 0.00071 1438 
   439 1443 6.09 0.00069 1439 
   458 1434 6.13 0.00070 1440 
    

 
Table A–3: Activation Energy Results for Fuel-Rich C9H20/O2 in Ar 

 
φ = 2.0 

       
        

τ (µs) T5 (K) ln τ 1 /T (K-1) Run 
   

      
EA /R (1 /K) 

964 1412 6.87 0.00071 1423 
 

25726.5 
383 1521 5.95 0.00066 1424 

   306 1510 5.72 0.00066 1425 
 

EA (cal /mol) 
181 1555 5.20 0.00064 1426 

 
51086.8 

707 1460 6.56 0.00068 1427 
   403 1508 6.00 0.00066 1428 
 

EA (kcal /mol) 
195 1543 5.27 0.00065 1429 

 
51.1 

333 1515 5.81 0.00066 1430 
   441 1462 6.09 0.00068 1464 
   490 1477 6.19 0.00068 1465 
   761 1443 6.63 0.00069 1466 
   296 1523 5.69 0.00066 1467 
   280 1529 5.63 0.00065 1468 
   465 1497 6.14 0.00067 1469 
   800 1454 6.68 0.00069 1470 
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APPENDIX B 

TABULATION OF OH*-BASED IGNITION DELAY TIMES 
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Table B–1: Ignition and Peak Concentration Times (Post-Ignition) for Fuel-Lean C9H20/O2 in Ar 
 

T (K) P (atm) τ (µs) τpeak - τignition (µs) Diagnostic 

     0.001n-C9H20 + 0.028O2 + 0.971Ar (φ = 0.5) 
1285 1.56 1104 - 

OH* 

1306 1.62 1092 169 
1309 1.62 1038 202 
1341 1.57 720 335 
1343 1.58 549 169 
1345 1.59 436 156 
1346 1.59 544 153 
1349 1.60 428 150 
1349 1.58 485 157 
1351 1.60 453 154 
1352 1.49 329 182 
1360 1.62 414 144 
1366 1.63 319 195 
1381 1.63 311 170 
1391 1.54 245 106 
1391 1.50 235 139 
1399 1.49 198 151 
1400 1.48 245 117 
1403 1.52 247 111 
1411 1.53 203 110 
1420 1.48 218 110 
1425 1.49 195 120 
1457 1.51 139 147 
1458 1.51 129 109 
1478 1.54 107 105 
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Table B–2: Ignition and Peak Concentration Times (Post-Ignition) for Stoichiometric C9H20/O2 in Ar 

 
T (K) P (atm) τ (µs) τpeak - τignition (µs) Diagnostic 

     0.001n-C9H20 + 0.014O2 + 0.985Ar (φ = 1.0) 
1402 1.610 729 284 

OH* 

1409 1.510 539 258 
1412 1.509 550 169 
1434 1.529 458 160 
1443 1.543 439 212 
1447 1.569 378 179 
1457 1.564 208 152 
1462 1.454 228 218 
1470 1.490 254 168 
1480 1.521 259 167 
1485 1.538 195 136 
1487 1.529 218 132 
1519 1.528 205 130 
1535 1.496 104 129 
1537 1.466 116 131 
1591 1.365 54 99 

 

Table B–3: Ignition and Peak Concentration Times (Post-Ignition) for Fuel-Rich C9H20/O2 in Ar 
 
 

T (K) P (atm) τ (µs) τpeak - τignition (µs) Diagnostic 

     0.001n-C9H20 + 0.007O2 + 0.992Ar (φ = 2.0) 
1412 1.50 964 422 

OH* 

1443 1.43 761 393 
1454 1.47 800 145 
1460 1.49 707 494 
1462 1.47 441 267 
1477 1.49 490 331 
1508 1.47 403 370 
1510 1.43 306 321 
1515 1.52 333 363 
1521 1.49 383 298 
1523 1.43 296 363 
1529 1.44 280 403 
1543 1.46 195 371 
1555 1.53 181 301 
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APPENDIX C 

CALCULATION OF IGNITION DELAY TIME CORRELATION 
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Table C–1: Parameters and Results of Ignition Delay Time Correlation.  
 

τ (µs) = 4.02·10-5[C9H20]1.65072[O2]-4.09886[Ar]3.94694exp(19228.23/T)       

         m4 
  

b 
     19228.23 

  
-10.12216 

     
     

EA (kJ /mol) 159.9 
 m3 

  
exp(b) 

 
EA (kcal /mol) 38.2 

 3.94694 
  

4.02E-05 
     

         m2 
    

Pressure Exponent (n) 
 -4.09886 

    
1.50 

 
    

 

    m1 
        1.65072 
        

         φ = 0.5 φ = 1.0 φ = 2.0 

         τIgnition. (µs) τCorr. (µs) T (K) τIgnition. (µs) τCorr. (µs) T (K) τIgnition. (µs) τCorr. (µs) T (K) 

         329 431 1352 54 60 1591 964 1101 1412 
453 486 1351 116 117 1537 383 308 1521 
246 229 1403 104 124 1535 306 329 1510 
245 271 1391 378 357 1447 181 225 1555 
203 209 1411 729 642 1402 707 615 1460 
198 233 1399 259 232 1480 403 348 1508 
319 409 1366 205 151 1519 195 236 1543 
235 262 1391 195 223 1485 333 339 1515 
549 534 1343 208 315 1457 441 580 1462 
428 498 1349 254 252 1470 490 500 1477 
414 438 1360 228 267 1462 761 701 1443 
436 522 1345 218 216 1487 296 282 1523 
544 515 1346 550 514 1412 280 266 1529 
245 230 1400 539 535 1409 800 629 1454 
311 335 1381 439 365 1443 

   485 491 1349 458 401 1434 
   107 95 1478 

      218 179 1420 
      195 170 1425 
      1038 888 1309 
      129 117 1458 
      139 117 1457 
      1092 922 1306 
      1104 1187 1285 
      720 543 1341             

 

n = ∑ 𝑚𝑚𝐴𝐴𝐴𝐴  
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APPENDIX D 

OH* SPECIES TIME-HISTORIES 
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Fuel-Lean (φ = 0.5) Profiles 
 
 

 
Run 1414: T = 1352 K, P = 1.49 atm, τIgnition = 329 µs, τPeak – Ignition = 182 µs. 

 
 

 
1415: T = 1351 K, P = 1.60 atm, τIgnition = 453 µs, τPeak – Ignition = 154 µs. 
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1418: T = 1403 K, P = 1.52 atm, τIgnition = 247 µs, τPeak – Ignition = 111 µs. 

 
 

 
1419: T = 1391 K, P = 1.54 atm, τIgnition = 245 µs, τPeak – Ignition = 106 µs. 
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1420: T = 1411 K, P = 1.53 atm, τIgnition = 203 µs, τPeak – Ignition = 110 µs. 

 
 

 
1421: T = 1399 K, P = 1.49 atm, τIgnition = 198 µs, τPeak – Ignition = 151 µs. 
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1422: T = 1366 K, P = 1.63 atm, τIgnition = 319 µs, τPeak – Ignition = 195 µs. 

 
 

 
1442: T = 1391 K, P = 1.50 atm, τIgnition = 235 µs, τPeak – Ignition = 139 µs. 
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1444: T = 1343 K, P = 1.58 atm, τIgnition = 549 µs, τPeak – Ignition = 169 µs. 

 
 

 
1445: T = 1349 K, P = 1.60 atm, τIgnition = 428 µs, τPeak – Ignition = 150 µs. 
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1446: T = 1360 K, P = 1.62 atm, τIgnition = 414 µs, τPeak – Ignition = 144 µs. 

 
 

 
1447: T = 1345 K, P = 1.59 atm, τIgnition = 436 µs, τPeak – Ignition = 156 µs. 
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1448: T = 1346 K, P = 1.59 atm, τIgnition = 544 µs, τPeak – Ignition = 153 µs. 

 
 

 
1449: T = 1400 K, P = 1.48 atm, τIgnition = 245 µs, τPeak – Ignition = 117 µs. 
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1450: T = 1381 K, P = 1.63 atm, τIgnition = 311 µs, τPeak – Ignition = 170 µs. 
 
 

 
1451: T = 1349 K, P = 1.58 atm, τIgnition = 485 µs, τPeak – Ignition = 157 µs. 

 
 
 
 
 
 
 
 

0 200 400 600 800 1000
0.00

0.04

0.08

0.12

 

 

OH
* 

Em
iss

io
n 

(a
. u

.)

Time (µs)

0 200 400 600 800 1000
0.00

0.04

0.08

0.12

 

 

OH
* 

Em
iss

io
n 

(a
. u

.)

Time (µs)



 

 
 

83 

 
 

 
1452: T = 1478 K, P = 1.54 atm, τIgnition = 107 µs, τPeak – Ignition = 105 µs. 

 
 

 
1453: T = 1420 K, P = 1.48 atm, τIgnition = 218 µs, τPeak – Ignition = 110 µs. 
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1454: T = 1425 K, P = 1.49 atm, τIgnition = 195 µs, τPeak – Ignition = 120 µs. 

 
 

 
1455: T = 1309 K, P = 1.62 atm, τIgnition = 1038 µs, τPeak – Ignition = 202 µs. 
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1456: T = 1458 K, P = 1.51 atm, τIgnition = 129 µs, τPeak – Ignition = 109 µs. 

 
 

 
1457: T = 1457 K, P = 1.51 atm, τIgnition = 139 µs, τPeak – Ignition = 147 µs. 
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1458: T = 1306 K, P = 1.62 atm, τIgnition = 1092 µs, τPeak – Ignition = 169 µs. 

 
 

 
1459: T = 1285 K, P = 1.56 atm, τIgnition = 1104 µs. 
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1460: T = 1341 K, P = 1.57 atm, τIgnition = 720 µs, τPeak – Ignition = 335 µs. 
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Stoichiometric (φ = 1.0) Profiles 
 
 

 
1399: T = 1591 K, P = 1.37 atm, τIgnition = 54 µs, τPeak – Ignition = 99 µs. 

 
 

 
1400: T = 1537 K, P = 1.47 atm, τIgnition = 116 µs, τPeak – Ignition = 131 µs. 
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1406: T = 1535 K, P = 1.50 atm, τIgnition = 104 µs, τPeak – Ignition = 129 µs. 

 
 

 
1407: T = 1447 K, P = 1.57 atm, τIgnition = 378 µs, τPeak – Ignition = 179 µs. 
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1408: T = 1402 K, P = 1.61 atm, τIgnition = 729 µs, τPeak – Ignition = 284 µs. 

 
 

 
1409: T = 1480 K, P = 1.52 atm, τIgnition = 259 µs, τPeak – Ignition = 167 µs. 
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1410: T = 1519 K, P = 1.53 atm, τIgnition = 205 µs, τPeak – Ignition = 130 µs. 

 
 

 
1432: T = 1485 K, P = 1.54 atm, τIgnition = 195 µs, τPeak – Ignition = 136 µs. 
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1433: T = 1457 K, P = 1.56 atm, τIgnition = 208 µs, τPeak – Ignition = 152 µs. 

 
 

 
1434: T = 1470 K, P = 1.49 atm, τIgnition = 254 µs, τPeak – Ignition = 168 µs. 
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1435: T = 1462 K, P = 1.45 atm, τIgnition = 228 µs, τPeak – Ignition = 218 µs. 

 
 

 
1436: T = 1487 K, P = 1.53 atm, τIgnition = 218 µs, τPeak – Ignition = 132 µs. 

 
 
 
 
 
 
 
 
 

0 200 400 600 800 1000

0.00

0.04

0.08

 

 

OH
* 

Em
iss

io
n 

(a
. u

.)

Time (µs)

0 200 400 600 800 1000

0.00

0.04

0.08

 

 

OH
* 

Em
iss

io
n 

(a
. u

.)

Time (µs)



 

 
 

94 

 
 

 
1437: T = 1412 K, P = 1.51 atm, τIgnition = 550 µs, τPeak – Ignition = 169 µs. 

 
 

 
1438: T = 1409 K, P = 1.51 atm, τIgnition = 539 µs, τPeak – Ignition = 258 µs. 
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1439: T = 1443 K, P = 1.54 atm, τIgnition = 439 µs, τPeak – Ignition = 212 µs. 

 
 

 
1440: T = 1434 K, P = 1.53 atm, τIgnition = 458 µs, τPeak – Ignition = 160 µs. 
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Fuel-Rich (φ = 2.0) Profiles 
 
 

 
1423: T = 1412 K, P = 1.50 atm, τIgnition = 964 µs, τPeak – Ignition = 422 µs. 

 
 

 
1424: T = 1521 K, P = 1.49 atm, τIgnition = 383 µs, τPeak – Ignition = 298 µs. 
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1425: T = 1510 K, P = 1.43 atm, τIgnition = 306 µs, τPeak – Ignition = 321 µs. 

 
 

 
1426: T = 1555 K, P = 1.53 atm, τIgnition = 181 µs, τPeak – Ignition = 301 µs. 
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1427: T = 1460 K, P = 1.49 atm, τIgnition = 707 µs, τPeak – Ignition = 494 µs. 

 
 

 
1428: T = 1508 K, P = 1.47 atm, τIgnition = 403 µs, τPeak – Ignition = 370 µs. 
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1429: T = 1543 K, P = 1.46 atm, τIgnition = 195 µs, τPeak – Ignition = 371 µs. 

 
 

 
1430: T = 1515 K, P = 1.52 atm, τIgnition = 333 µs, τPeak – Ignition = 363 µs. 
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1464: T = 1462 K, P = 1.47 atm, τIgnition = 441 µs, τPeak – Ignition = 267 µs. 

 
 

 
1465: T = 1477 K, P = 1.49 atm, τIgnition = 490 µs, τPeak – Ignition = 331 µs. 
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1466: T = 1443 K, P = 1.43 atm, τIgnition = 761  µs, τPeak – Ignition = 393 µs. 

 
 

 
1467: T = 1523 K, P = 1.43 atm, τIgnition = 296 µs, τPeak – Ignition = 363 µs. 
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1468: T = 1529 K, P = 1.44 atm, τIgnition = 280 µs, τPeak – Ignition = 403 µs. 

 
 

 
1470: T = 1454 K, P = 1.47 atm, τIgnition = 800 µs, τPeak – Ignition = 145 µs. 
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APPENDIX E 

CALCULATIONS ON PRE-IGNITION OH* PHENOMENA 
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Table E–1: Pre-Ignition Peak Calculations 

 
 
 

Run Temperature (K) Pressure (atm) Signal%OH*, t = 1 ms 
1452 1478 1.54 2.2 
1456 1458 1.51 3.2 
1457 1457 1.51 3.8 
1454 1425 1.49 2.8 
1453 1420 1.48 3.4 
1420 1411 1.53 5.6 
1418 1403 1.52 12.2 
1449 1400 1.48 8.1 
1421 1399 1.49 3.5 
1419 1391 1.54 1.9 
1442 1391 1.50 7.0 
1450 1381 1.63 4.4 
1422 1366 1.63 3.8 
1446 1360 1.62 4.1 
1414 1352 1.49 8.0 
1415 1351 1.60 13.3 
1451 1349 1.58 6.0 
1445 1349 1.60 4.7 
1448 1346 1.59 6.1 
1447 1345 1.59 5.0 
1444 1343 1.58 6.7 
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APPENDIX F 

PERCENT TRANSMISSION CURVES FOR OPTICAL FILTERS 
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Transmission profile for optical filter used to measure OH* species (Andover Corporation). 

 

Transmission profile for optical filter used to measure CH* species (Andover Corporation). 
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