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ABSTRACT 

 

First Characterization of Avian Memory T Lymphocyte  

Responses to Avian Influenza Virus Proteins. (December 2009) 

      Shailbala Singh, B.S., G.B. Pant University of Agriculture and Technology 

Co-Chairs of Advisory Committee: Dr. Ellen W. Collisson 

                         Dr. Blanca Lupiani 

 

 Although wild birds are natural hosts of avian influenza viruses (AIVs), these 

viruses can be highly contagious to poultry and a zoonotic threat to humans. The 

propensity of AIV for genetic variation through genetic shift and drift allows virus to 

evade vaccine mediated humoral immunity. An alternative approach to current vaccine 

development is induction of CD8+ T cells which responds to more conserved epitopes 

than humoral immunity and targets a broader spectrum of viruses. Since the memory 

CD8+ T lymphocyte responses in chickens to individual AIV proteins have not been 

defined, the modulation of responses of the memory CD8+ T lymphocytes to H5N9 AIV 

hemagglutinin (HA) and nucleocapsid (NP) proteins over a time course were evaluated. 

CD8+ T lymphocyte responses induced by intramuscular inoculation of chickens with 

AIV HA and NP expressing cDNA plasmids or a non-replicating human adenovirus 

vector were identified through ex vivo stimulation with virus infected, major 

histocompatibility complex (MHC) matched antigen presenting cells (APCs). The IFNγ 

production by activated lymphocytes was evaluated by macrophage production of nitric 

oxide and ELISA. MHC-I restricted memory T lymphocyte responses were determined 
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at 10 days and 3, 5, 7 and 9 weeks post-inoculation (p.i). The use of non-professional 

APCs and APC driven proliferation of cells with CD8+ phenotype correlated with the 

activation of CD8+ T lymphocytes.  The responses specific to nucleocapsid protein (NP) 

were consistently greater than those to the hemagglutinin (HA) at 5 weeks when the 

CD8+ T cell responses were maximum.  By 8 to 9 weeks p.i., responses to either protein 

were undetectable. The T lymphocytes also responded to stimulation with a heterologous 

H7N2 AIV infected APCs.  Administration of booster dose induced secondary effector 

cell mediated immune responses which had greater magnitudes than primary effector 

responses at 10 days p.i.  Flow cytometric analysis (FACS) of the T lymphocytes 

demonstrated that memory CD8+ T lymphocytes of chickens can be distinguished from 

naïve lymphocytes by their higher expression of CD44 and CD45 surface antigens. 

CD45 expression of memory lymphocytes further increases upon ex vivo stimulation 

with APCs expressing AIV. This is the first characterization of avian memory responses 

following both primary and secondary expression of any individual viral protein. 
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NOMENCLATURE 

 

AIV Avian Influenza Virus 

HA Hemagglutinin 

NP Nucleocapsid Protein 

APC Antigen Presenting Cells 

NO Nitric Oxide 

IFNγ Interferon γ 

PBS Phosphate Buffered Saline 

HI Hemaggluntination Inhibition 

MHC                           Major Histocompatibility Complex 
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CHAPTER I 

INTRODUCTION AND REVIEW OF LITERATURE 

 

CLASSIFICATION AND ECOLOGY OF AVIAN INFLUENZA VIRUSES  

Influenza viruses belong to the Orthomyxoviridae family of segmented RNA 

viruses. There are 3 genera of influenza viruses; type A, B and C (2, 21, 22). The avian 

influenza viruses (AIV) are type A influenza viruses (21, 22, 138). Influenza A viruses 

are classified into subtypes based on their surface glycoproteins hemagglutinin (HA) and 

neuraminidase (NA) (2, 3). Serological studies have demonstrated the presence of 16 

distinct HA and 9 distinct NA subtypes of AIV (21, 22, 36,105,131). Waterfowl and 

shorebirds (Orders Anseriformes and Charadriiformes) are considered the primary 

reservoirs of AIV, however on occasions these viruses can be transmitted to other 

species such as domestic poultry, including chickens and turkeys (Order Galliformes), 

humans, pigs, feral cats and seals (16,43). Classical AIVs replicate in the gastrointestinal 

tract of the waterfowl without causing disease (3, 21, 22, 60). The AIVs are shed in the 

feces of these birds thereby contaminating the water habitats and promoting the spread 

of virus (60, 81). 

Depending on their virulence in domestic poultry AIVs are classified as low 

pathogenic (LP) or highly pathogenic (HP) viruses (3, 21, 22). LPAIV strains can cause 

asymptomatic to mild respiratory and enteric tract infections while infection with a  

 
 
____________ 
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HPAIV strain causes clinical illness and systemic disease with 100% mortality in some 

cases (2). While LPAIV strains of all 16 HA subtypes have been isolated, HPAIV are 

restricted to only H5 and H7 subtypes (3, 21, 22). All HPAIV emerge only after 

introduction of AIV to poultry (3, 16, 18).  Infections of poultry by the highly 

pathogenic strains result in severe economic losses in domestic poultry operations both 

due to disease and culling of suspected flocks (27, 47). Additionally since 1996, there 

has been a direct transmission of the highly pathogenic H5N1 AIV from poultry to 

humans in many Asian countries (2, 16, 31, 136). The zoonotic infection of this highly 

pathogenic virus has resulted in fatality in 60% of the human cases (3). 

 

BIOLOGY OF THE VIRUS 

AIV, like all Influenza A viruses are enveloped with single stranded, negative 

sense, segmented RNA genomes (17, 21, 22). Morphologically the viral particles are 

pleomorphic and may have spherical to filamentous shape with a diameter of 80-120 nm. 

The genomes of all type A influenza viruses, including AIV, are composed of eight 

negative sense RNA segments encoding for upto 12 different viral proteins (18, 21, 22,  

143) (FIG. 1-1). 
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The mRNAs transcribed from the first 6 segments are monocistronic with the 

exception of segment 2 which in some viruses has overlapping reading frames and leaky 

ribosomal scanning leads to expression of three different proteins (21, 22, 143). The 

three largest genomic segments encode for proteins of the viral RNA polymerase 

complex. While genomic RNA segment 1 and 3 encode for polymerase basic protein 

(PB2) and polymerase acidic protein (PA) respectively segment 2 encodes for 

polymerase basic protein 1 (PB1) in all viruses along with PB1-F2 and PB1N40 in some 

strains ( 21, 22, 143) . Segments 4, 5 and 6 encode for hemagglutinin (HA), 

nucleocapsid protein (NP) and neuraminidase (NA) respectively (21, 22, 87). The last 

two small segments 7 and 8 encode for 2 proteins each by undergoing splicing. Matrix 

protein (M1) and the ion channel protein (M2) are encoded by segment 7 while segment 

8 encodes for non-structural viral protein 1 (NS1) and nuclear export protein (NEP/NS2) 

(21, 22). Non coding sequences are present at the 5’ and 3’ ends of all viral RNA 

segments. These sequences are conserved amongst all the RNA segments of Influenza A 

viruses. The replication cycle and mRNA synthesis of all influenza viruses occurs in the 

nucleus of the host cell. The viral polymerase complex utilizes the cellular transcription 

and splicing machinery for synthesis and modification of  mRNA (87). 
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FIG. 1-1. Schematic of an avian influenza virus particle 
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The lipid envelope of the viral particle is derived from the cellular membrane of 

the host cell and anchors the viral transmembrane glycoproteins HA and NA, along with 

M2. PB1, PA, PB2 constitute the viral RNA polymerase complex, and along with NP, 

form the viral ribonucleoprotein (RNP) complex (87). The viral RNPs, in association 

with the viral genome, form the core of the virus (21, 22). The M1, with strong affinity 

for RNP complex, lies beneath the envelope in association with the viral core and 

functions as a bridge between the envelope and viral RNP complex (21, 22). The 

NEP/NS2 is critical for the export of M1 associated RNP complex from the nucleus to 

the cytoplasm during viral assembly (21, 22). The non-structural viral protein 1 NS1 is 

absent in the viral particle but is found in infected cells where it functions as a type I 

interferon antagonist (8, 32, 63). PB1-F2 is a pro-apoptotic protein and is found in the 

mitochondria of infected cells (143). The function of PB1-N40 has not been defined 

(143). 

Viral attachment to the host cell is mediated by HA which recognizes sialic acid 

on the cell surface. AIV HA mainly recognizes the α-2, 3 linked sialic acid present 

throughout the respiratory tract of poultry but can also bind to α-2, 3 linked sialic acid 

found in the lower respiratory tract of humans enabling the virus to infect humans (73). 

Therefore, the nature of the sialic acid linkage is an important determinant of the viral 

host and tissue tropism (73). Precursor protein HA0 is cleaved post-translationally by 

host proteolytic enzymes into external HA1 and membrane anchored HA2 subunits to 

generate functional HA protein. The cleavage site of HA has been found to be an 

important determinant of the tissue tropism and hence the pathogenicity or virulence of 
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the virus (93, 105). LP viruses have a single basic amino acid at the cleavage site and 

require specific proteases like trypsin, found in the respiratory and enteric tracts, for 

activation of the virus (21, 22). Highly pathogenic viruses, in contrast, have a multi-basic 

cleavage site that can be cleaved by ubiquitous proteases, like furin, hence enabling the 

viruses to become systemic (21, 22, 105, 103).  HA1 binds to the cellular receptor with 

sialic acid moieties and the viral particle enters the host cell by endosomal uptake (21, 

22). The acidic pH of endocytic vesicles result in the conformational change in HA2 

enabling the viral fusion with the host membrane (21, 22). The conformational change in 

the viral particle required for uncoating and release of RNP into the cytoplasm is 

mediated by the ion channel M2 dependent lowering of the pH (21, 22). 

Viral transcription and replication occurs in the host cell nucleus by the viral 

RNA polymerase complex. Following the uncoating of the virus in the cellular 

endosome, the viral RNP complex is released in the cytoplasm and transported into the 

nucleus. This transport is mediated by NP which carries a nuclear localization signal 

(87). A 5’capped RNA fragment is required as a primer to initiate the transcription of 

mRNA (21, 22).  PB2 protein of the polymerase complex uses its endonuclease activity 

to cleave the capped 5’ end from cellular mRNA and makes it available for the 

transcription of viral mRNA (21, 22). The mRNA of influenza viruses are 

polyadenylated at their 3’ end. These modifications are essential for the nuclear export 

and stability of viral mRNA. The translation machinery of the host cell is used for 

protein synthesis (21, 22). 
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Full length copy RNA (cRNA) of the viral genomic RNA (vRNA) is required for 

the replication of the virus. cRNA serves as the template for primer independent de novo 

synthesis of vRNA (21, 22). Without the proofreading capacity of DNA polymerases, 

the mutation rate of RNA polymerases is very high, resulting in a high degree of viral 

genome mutations and thus viral protein variability (20, 21).  Although HA and NA are 

the most variable proteins, mutations can also occur in other genomic segments (21, 22). 

However, fewer variations are observed in the internal proteins, such as those 

constituting the viral RNP complex than in viral glycoproteins (21, 22).  This conserved 

nature of the internal proteins could be attributed to lesser exposure to selective pressure 

and/or their limited ability to function with alterations (21, 22). 

Besides the potential to mutate rapidly, the segmented nature of the viral genome 

allows for variation through reassortment of segments from different strains of viruses 

infecting the same cell (21, 22). The phenomenon of reassortment leads to the 

emergence of new viruses following co-infection of humans and pigs with influenza A 

viruses from other species, such as those of swine, human and avian origins (43). The 

influenza pandemics of 1918, 1957 and 1968 were caused by human influenza viruses 

encoding genes of avian, swine and human origins (2, 18, 31, 43). Genetic variation may 

readily occur through either reassortment or point mutations, providing the virus with the 

capacity to adapt to a range of species and even become zoonotic (43). 
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IMMUNE RESPONSES AGAINST INFLUENZA VIRUS 

Innate Immunity: Influenza virus specific immune responses have been studied 

extensively in mammals, especially mice and humans. Initial defense against viral 

infection includes the ciliary epithelium and the mucus membrane of the respiratory tract 

which inhibit the attachment of the virus. The protease inhibitors present in the 

respiratory tract may hinder the cleavage of HA and hence its activation, impeding the 

uncoating of virus (59). In addition to these barriers, the host innate immune system is 

activated when the pattern recognition receptors (PPRs) interact with the pathogen 

(virus) associated molecular patterns (PAMP) (21, 22, 32, 135). Toll-like receptors 

(TLRs) 3 and 7 (both present in the chicken) recognize the viral double-stranded (ds) 

RNA complex and single-stranded (ss) RNA, respectively, initiating a cascade of events 

leading to activation of the type I interferon pathway (IFN) ( 45,135). TLR3 recognize 

the duplex of positive and negative sense RNA formed during viral replication while 

recognition by TLR7 does not require viral replication (45). The presence of viral 

elements in the cytoplasm is also detected by proteins like retinoic acid –inducible gene I 

(RIG-I) and melanoma differentiation associated gene 5 (MDA5) which also induce type 

I IFN production (32, 46, 135). The type I IFNs in turn induce production of many anti-

viral proteins such as  myxovirus resistance gene (Mx), the 2’-5’ oligoadenylate 

synthetase (OAS), and ds-RNA activated protein kinase (PKR) which inhibit viral 

replication (32, 46). PKR is activated by the presence of ds RNA and inhibits protein 

synthesis in the cell by phosphorylating the α subunit of eukaryotic elongation factor 2 

(eIF-2α) hence impeding viral replication (8,63). OAS also recognizes ds RNA and 
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activates cellular RNAse such as RNAse L which can degrade both cellular and viral 

RNA (32, 46). Type I IFNs also induce an anti-viral state in uninfected cells (46). C-type 

lectins, which also function as PPRs in chickens and other species, inhibit 

hemagglutination (52). 

The innate response has been shown to be implicated in the development of the 

adaptive immune response. The viral NS1 protein antagonizes the innate immunity by 

sequestering the viral double-stranded RNA intermediates and hence inhibiting the 

activation of cellular protein kinase R (PKR) and OAS (32, 46, 144). NS1 has also been 

shown to link directly with PKR and prevent the conformational change required for 

PKR mediated inhibition of cellular protein synthesis (46). The apoptosis induced by 

PKR is also inhibited by NS1 by the activation of phosphoinositide 3 kinase (PI3K) (32, 

46).  Additionally, NS1 has a role in inhibiting host cell protein synthesis by preventing 

post-transcriptional modification of cellular pre-mRNA (63). The antagonistic role of 

NS1 on innate immune responses prevents maturation of dendritic cells hence inhibits 

the development of adaptive immune responses against the virus (46, 63). 

 

Adaptive Immunity: Although the innate immune response is the first line of 

defense against the virus, the adaptive immune response is ultimately responsible for 

viral clearance and for protection against subsequent infections (29). While antigen 

specific in nature, adaptive immunity also has antigenic memory, enabling it to respond 

more rapidly against subsequent antigen exposure. Adaptive immunity includes humoral 

(antibody production by B cells) and cell mediated (helper and cytotoxic T cell) 



 10

immunity (29). Helper or CD4+ T lymphocytes regulate activation of both B 

lymphocytes and cytotoxic or CD8+ T lymphocytes (107). B lymphocytes produce 

antibodies directed against viral glycoproteins HA and NA. While HA houses epitopes 

that induce neutralizing antibodies which are protective against viral challenge, the 

antibodies against NA epitopes reduce shedding of the virus by the host (19, 33). 

Antibodies against conserved internal proteins like NP and M1 are not protective in 

nature (115). Most commercial vaccines rely on the generation of neutralizing antibodies 

against HA. However, inability of the neutralizing antibodies to cross-react with 

heterotypic viruses or even viruses with variants of the same HA subtype limits the 

efficacy of such vaccines in providing broad spectrum protection (114, 115).  The 

humoral immune response is also generated against the more conserved M2 protein and 

antibodies against M2 have been shown to be cross- protective in mice (11, 33, 37, 116, 

145). 

CD4+ T lymphocytes indirectly provide control of viral infection through the 

regulation of the B lymphocyte and CD8+ T lymphocyte responses. They recognize 

antigenic peptides derived from exogenously expressed proteins presented in association 

with MHC-II molecules. MHC-II molecules are expressed only on professional antigen 

presenting cells (APC), such as dendritic cells, macrophages and B cells (30, 107). The 

professional APCs can internalize the viral antigens either by phagocytosis or 

endocytosis. These cells display the exogenously produced antigenic peptides in 

association with the MHC-II molecules. 
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CD8+ T or cytotoxic T lymphocytes are responsible for clearance of virus 

infected cells (49). CD8+ T cell receptors (TCR) recognize the specific antigenic peptide 

derived from endogenously expressed protein presented by MHC-I molecules expressed 

on the surface of APCs (14). MHC-I is expressed on the surface of most nucleated cells, 

including professional APC. The activation of the CD8+ T cells requires the association 

of TCR with syngenic MHC-I molecule (54). In chickens, the MHC complex is defined 

within the B genetic locus. There are at least 30 inbred lines of chickens expressing 

distinct MHC haplotypes (Avian Immunology Research Group, October, 2000) hence 

chickens provide a rich immunogenetic source of well defined MHC compatible lines. 

In addition to the interaction of the T cell receptors and the MHC-I presented 

antigen peptides, activation of naive CD8+ T lymphocytes also requires the interaction of 

complementary accessory molecules on APCs, such as members of the B7 family of 

molecules present on B cells and APCs which engages with CD28 on T lymphocytes 

(74)(FIG. 1-2). Although the majority of studies investigating the cell mediated immune 

response against influenza viruses have been conducted in mice and humans, studies 

with infectious bronchitis virus, also a respiratory viral pathogen of chickens, have 

demonstrated that chicken immune responses closely follow the paradigms established 

with mammalian systems (23, 84, 97). Chicken CD8+ T cell responses are also MHC-I 

restricted as demonstrated by cytolytic studies and adoptive transfer studies (84, 97, 99, 

100, 102). 
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FIG. 1-2. Schematic of APC-CD8+ T lymphocyte-macrophage interaction 
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Following the acute infection of mice with influenza virus, dendritic cells in the 

lungs interact with CD4+ T cells and by a CD40 dependent mechanism become 

activated, maturing into APCs expressing higher levels of MHC-I and MHC-II (49, 141, 

142). Naive CD8+ T lymphocytes are activated after their T cell receptors recognize the 

viral peptides presented by MHC-I in the mature dendritic cells (30, 74, 142). The 

activated T cells undergo extensive proliferation and differentiation leading to 

generation of functional effector cells (1).  It has also been shown in mammals that the 

effector cells produce cytokines, such as interferon-γ (IFN- γ) and tumor necrosis factor 

(TNF-α), which activate other cells of the immune system, such as macrophages (1, 30).  

T cell mediated lysis of infected cells is mediated by perforins, granzymes and the Fas-

Fas ligand pathway (1, 30).  IBV clearance in chickens has been shown to immediately 

precede the peak of the effector T cell population, which is followed by the decrease in 

the population of viral specific T lymphocytes and accompanied by an increase in cell 

death or apoptosis (23). In chickens, adoptive transfer of effector CD8+ T lymphocytes 

prepared at 7 to 10 days p.i. with AIV H9N2 protected naïve chickens against a 

challenge of highly pathogenic AIV H5N1 strain (102). 
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FIG. 1-3. Schematic of effector and memory T lymphocyte development 
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It has been shown in mammals that a small pool of antigen specific T 

lymphocytes persists and repopulate as memory T cells since they have the ability to 

respond efficiently to subsequent encounter with the antigen (1, 20, 64)(FIG. 1-3). In 

addition to their ability to recall an antigen specific response and the requirement for a 

lower threshold of activation, memory T cells in mice differ from naïve T cells and 

effector T cells in their phenotype display (1, 10, 64). Several cell surface markers, 

including CD44 and CD45, have been defined and investigated as memory cell markers 

in mammalian cells (1, 9, 10, 48, 133). These are adhesion molecules that can alter the 

homing pattern of activated T lymphocytes from that of naïve lymphocytes (48, 67). The 

upregulation of these surface molecules enables the memory CD8+ T cells to infiltrate 

non-immune tissue when a recall response is required (27, 48, 67). Both CD44 and 

CD45 are present on chicken lymphocytes (74, 83). 

Memory CD8+ T cell responses in mice and humans have been shown to target 

multiple epitopes on influenza virus proteins. In mice, NP and PA are considered the 

dominant proteins against which cytotoxic T cell responses are directed (35, 82, 90, 

128). However, the studies with humans have revealed that HA, M1 and M2 induce 

cytotoxic T cell responses in addition to NP (5, 41, 56, 68, 89). This diversity in 

response correlates with the greater avidity of MHC-I for antigenic peptides (28,122). 

Mice are not natural hosts of AIV and all the immunological characterization is based 

only on mouse adapted viruses. It is necessary to define the T lymphocyte mediated 

immune responses to AIV in chickens since they are pathogen of these animals and can 

be transmitted directly from chickens to humans. The CD8+ T cell mediated immune 
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protection, unlike protection resulting from neutralizing antibodies, has the ability to 

cross protect against heterotypic viruses in mice and chickens (79, 91, 100, 102). It has 

also been demonstrated in chickens that the protective immunity against a variant AIV is 

related to the percentage of activated CD8+ T lymphocytes present in the lungs (100). 

 

VACCINES AGAINST AIV 

Currently poultry in AIV endemic areas of the world may be vaccinated either 

with inactivated whole virus vaccine or with fowlpox vectored vaccines (17, 21, 22, 109, 

122). These vaccines rely on generating viral antibody responses against the viral 

glycoprotein, HA and NA (17, 85). Although the use of conventional vaccines reduce 

the susceptibility of the animal to the infection and shedding of the virus, the major 

limitation of depending on the induction of antibodies specific for HA and NA is that 

they are not effective against viral strains with a different or variant HA NA subtype.  

Therefore, such vaccine strategies, in the absence of effective cross protection, require 

continuous development of new relevant vaccines that address the threats of new strains 

(17, 31).  Vaccines aimed at generating neutralizing antibodies against viral HA have 

been helpful in the control of AIV but subsequent immune pressure has been shown to 

be instrumental in the evolution of evasive virus against which pre-existing antibodies 

are not effective.  In contrast, immune responses mediated by the CD8+ cytotoxic T cells 

target more conserved epitopes than those required to stimulate humoral immune 

response and hence have the potential to cross-react with various viral subtypes (121). 

NP, a highly conserved protein of the influenza A viruses, has been shown to house 
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epitopes for CD8+ T cells response in mice (147). The CD8+ T cell mediated responses 

against this protein have been shown to cross protect against heterologous influenza 

virus in mice (147). Although protective immunity against AIV may rely on neutralizing 

antibody responses to homologous HA protein, the response of effector and memory 

CD8+ T lymphocytes can diminish disease preventing mortality, and even morbidity (1). 

Another limitation to the efficacy of whole virus vaccine is the inability to 

distinguish infected from vaccinated animals (DIVA) since both have antibodies against 

the whole virus (17). In the event of sub-clinical infection the animal may continue to 

shed the virus despite the presence of antibodies (17). This has implications in trade and 

export of birds since movement of infected poultry can spread the virus hence it is 

important to develop vaccines which permit DIVA (17, 21, 22). The advantage of viral 

vectored vaccines over whole virus vaccines is the ability to DIVA (16). The AIV 

specific antibodies induced by the viral vector are limited to the encoded recombinant 

AIV protein. Recombinant TROVAC-H5 fowlpox HA vaccine has been licensed for use 

in USA (21, 22). In addition to inducing longer lasting immunity this vaccine permits 

DIVA (17). However pre-exisiting immunity to fowlpox virus in poultry interferes with 

the ability of this vectored vaccine to induce optimum protective response (17, 114). 

A non-replicating human adenovirus vector encoding HA from H5N9 AIV 

(AdTW68.H5) has been developed and found to elicit an effective humoral immune 

response that, when given in ovo, protected chickens against highly pathogenic virus 

challenges (124, 125). Besides the absence of pre-existing immunity to human 

adenovirus in chickens, another advantage of this non-replicating vector is that it is safer 
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than a replication competent vector. In mice, recombinant adenovirus vaccine vectors 

have been shown to generate effective CD8+ T cell immune responses with the potential 

to cross protect from heterologous viral challenge (38, 50, 51, 53). 
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CHAPTER II 

AVIAN INFLUENZA VIRAL NUCLEOCAPSID AND HEMAGGLUTININ 

PROTEINS INDUCE CHICKEN CD8+ MEMORY T LYMPHOCYTES 

 

INTRODUCTION 

Avian influenza viruses (AIV) belong to Orthomyxoviridae family of viruses and 

have segmented, negative sense RNA genomes. These viruses, natural infectious agents 

of waterfowl and shorebirds, are classified according to their transmembrane 

hemagglutinin (HA) and neuraminidase (NA) glycoproteins (3, 60, 81, 138). All 16 

hemagglutinin (HA) and 9 neuraminidase (NA) types have been isolated from waterfowl 

or shore birds (36, 60, 131). Due to their incredibly broad avian host range, AIV strains 

have been isolated from many different species of birds including ducks, gulls, geese, 

psittacines and poultry (3, 81). Depending on the virulence of the virus in the poultry, 

AIV isolates are classified as either low pathogenic (LP) or highly pathogenic (HP) (3, 

21 22). LPAIV strains cause asymptomatic to mild respiratory and enteric tract 

infections while the highly pathogenic strains cause clinical illness and systemic 

infections. Infections of poultry by the highly pathogenic strains result in especially 

severe economic losses (17, 27, 47, 122). Human influenza viruses, including those 

causing high morbidity and significant mortality, such as the H1N1 from 1918 pandemic 

have been shown to have avian origins (2, 16, 119). Since 1996, highly pathogenic 

H5N1 AIV strains isolated in Hong Kong have been infecting and subsequently causing 

deaths in humans, although person-to-person transmission is apparently rare (2, 16, 85, 
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129).Poultry are the logical intermediate host for adaptation of the viral strains from wild 

birds to humans and other mammals, such as swine (136, 137). Indeed, human adapted 

strains have been shown to consist of genome segments of avian, swine and human 

origin (136, 137, 138). 

Vaccination efficacy is traditionally determined by the demonstration of 

protective humoral immunity, especially targeting AIV HA and putative neutralization 

of viruses (21, 22, 110, 111, 115). Whereas humoral immunity of chickens to AIV is 

well characterized, little information is available regarding the more difficult to evaluate, 

virus specific T cell immune responses (65, 102, 115). 

With the availability of a number of poultry lines with defined MHC (located 

within the chicken B locus), the chicken is one of the few animals for which adaptive T 

lymphocyte responses can readily be evaluated. T cells have been stimulated ex vivo 

with known MHC matched chicken kidney cells (CKC) serving as non-professional 

antigen presenting cells (APCs) and by the adoptive transfer of MHC matched T 

lymphocytes to naïve chicks prior to viral challenge (23,84, 99, 101). Studies targeting 

acute infections with a strain of infectious bronchitis virus (IBV), an avian coronavirus, 

have identified specific CD8+ T cell responses (98, 101). Adoptive transfer of either 

effector T cells prepared from birds 10 days post-infection (p.i.) or of memory cells 

prepared from birds 3 weeks after infection with IBV, provided protection against acute 

disease after viral challenge (84, 94). Following infection with H9N2 AIV, Seo et al 

(100) described CD8+ T cell responses that correlated with cross-protection to an H5N1 

strain.  Protection by effector CD8+ T lymphocytes prepared at 7 to 10 days p.i. with 



 21

AIV was demonstrated following adoptive transfer one day prior to AIV challenge 

(102). However, these studies did not identify the viral proteins harboring T 

lymphocytes epitopes nor described the kinetics of the memory response to AIV. 

Whereas sterile immunity may depend on humoral responses to homologous HA 

and, to a lesser extent, homologous NA, effector and memory CD8+ T cell immunity in 

mice has been shown to diminish disease preventing mortality, and even morbidity (91, 

100, 102). The kinetics of the avian AIV specific memory response has not been defined 

nor have the avian T cell responses to individual AIV proteins been determined. 

Although DNA plasmids expressing HA protein from AIVs have been used to generate 

neutralizing antibody to homologous AIV, the ability of vector-expressed AIV proteins 

to generate specific T cell responses in chickens has not been examined.  

This study describes the AIV HA and/or NP protein memory responses of 

peripheral blood T lymphocytes from chicks inoculated with plasmids vectors. 

Responses were evaluated following ex vivo stimulation with MHC-matched or 

mismatched APCs. Both NP and HA induced AIV specific memory T lymphocyte 

response between 3 to 9 weeks p.i. Although the T lymphocyte response induced by NP 

was consistently higher than the response induced by HA until 7 weeks p.i., no 

differences were detected by 9 weeks p.i.   

 

MATERIALS AND METHODS 

Viruses: Low pathogenic AIVs, H5N9 (A/Turkey/Wis/68) and H7N2 

(A/Turkey/Virginia/158512/02), were propagated in the allantoic sacs of 10 day-old 
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embryonated chicken eggs (ECE). The allantoic fluid was harvested 48 hours p.i.and 

examined for presence of virus by hemagglutination activity (HA) test according to the 

OIE guidelines (http://www.oie.int/eng/normes/mmanual/2008/pdf/2.03.04_AI.pdf). 

Viruses were titrated in ECE and titers expressed as embryo infectious dose 50 (EID50) 

(7). 

 

Experimental Animals: Embryonated eggs of MHC-defined B19/B19 and 

B2/B2 lines of chickens were obtained from Dr. Briles’ laboratory at Northern Illinois 

University (DeKalb, IL). After hatching, chicks were housed in a specific pathogen free 

environment at the vivarium facility, Western University of Health Sciences, Pomona, 

CA.  Viral infection studies in chickens were conducted at the biosafety level 2 Lab 

Animal Research Resource animal facility, Texas A& M University, College Station, 

TX. All procedures involving the use of chickens were approved by and conducted 

according to guidelines established by the Institutional Animal Care and Use 

Committees of Western University of Health Sciences and/or Texas A&M University. 

 

Cloning of NP and HA into a Eukaryotic Expression Plasmid: RNA from 

H5N9 (A/Turkey/Wis/68) was extracted from allantoic fluid using the RNeasy Mini kit 

(Qiagen, Valencia, CA) according to the manufacturer’s protocol. First strand cDNA 

was synthesized with ImProm-II™ Reverse Transcriptase(Promega, Madison, WI) using 

AIV specific Universal 12 primer (5’AGCA/GAAAGCAGG 3’)(130). PFU polymerase 

(Stratagene, La Jolla, CA) was used to amplify the open reading frames (ORF) of HA 
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and NP using specific primer pairs HA-Forward5’-ACCATGGAAAGAATAGTGATT-

3’and HA-Reverse 5’-GATGCAAATTCTGCA-3’ and NP-Forward 5’-

ACCATGGCGTCTCAAGGCACC-3’ and NP-Reverse 5’-

ATTGTCATACTCCTCTGC-3’, respectively. Taq DNA polymerase (New England 

Biolabs, Ipswich, MA) was then used to add TA overhangs on the Pfu amplified PCR 

product. The amplified cDNA products were cloned into the eukaryotic expression 

vector pcDNA3.1/V5-His-TOPO TA (Invitrogen, Carlsbad, CA). Cloned gene segments 

were sequenced using ABI Big Dye (Applied Biosystems, Foster City, CA) at GenoSeq, 

UCLA, Los Angeles, CA to confirm the sequence of the ORF.  In order to confirm the in 

vitro expression of NP and HA proteins, an indirect immunofluorescence assay (IFA) 

was performed following plasmid transfection of CHO-K1 cells. Known chicken serum, 

positive for AIV (NVSL, Ames, IA) was used at a dilution of 1:100. Mouse anti-chicken 

IgG FITC at a dilution of 1:500 (Southern Biotech, Birmingham, AL) was used as the 

secondary antibody. 

 

Generation of APCs: Primary CKC lines were established from 10 day-old 

chicks of B19/B19 and B2/B2 MHC haplotypes as described previously (98).  CKC of 

the tenth passage were used as non-professional APCs for the stimulation of the CD8+ T 

lymphocytes. The presence of MHC-I on CKC lines was confirmed by flow cytometric 

analysis, using anti-chicken MHC-I R-phycoerythrin conjugated monoclonal antibodies 

(MAbs) (Southern Biotech, Birmingham, AL). 
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Inoculation of Birds: Three-week old specific, pathogen-free chickens of the 

B19/B19 MHC haplotype were inoculated intramuscularly (i.m.) with 500 µg of cDNA 

expressing HA alone, or NP alone, or of 500µg of each HA and NP (HN).  Control birds 

were inoculated with either pcDNA 3.1 vector expressing LacZ (LacZ) or PBS. For viral 

inoculations, B19/B19 chicks were inoculated at 3 weeks of age, intranasally, with 108 

ELD50 of the low pathogenic H5N9/Tur/Wis/68 AIV strain. 

 

AIV- Specific Antibody Titrations: Serum samples were prepared from blood 

collected from the jugular vein of chickens at 3 weeks p.i. to evaluate the humoral 

responses against AIV HA and NP.  Hemagglutination inhibition (HI) assays, according 

to OIE guideline (http://www.oie.int/eng/normes/mmanual/2008/pdf/2.03.04_AI.pdf), 

were used to identify antibodies specific to H5N9 virus (A/Turkey/Wis/68) HA. HI 

mediated by the anti-H5 antibodies against H7N2 AIV was also evaluated.  Titers were 

expressed as geometric mean titers (GMT). Titers of ≤ 1 log2were assigned a titer of 1 

log2.NP specific antibodies were determined using the AIV Plus ELISA kit (Synbiotics, 

Kansas City, MO) as described by the manufacturer. 

 

Effector Cell Preparation: Effector T lymphocytes used for ex vivo stimulation, 

were prepared from the peripheral blood mononuclear cells (PBMC) of from 2 to 4 

chickens per group (84).  Briefly, blood was collected from the jugular vein at 3, 5, 7 and 

9 weeks p.i. and diluted 1:2 in Alsever’s solution (Sigma-Aldrich, St. Louis, MO). 

PBMC were prepared by Ficoll-histopaque (Histopaque-1077, Sigma-Aldrich, St. Louis, 
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MO) density gradient centrifugation (98). Viable cells were collected from the interface 

and washed twice with phosphate buffered saline (PBS, pH 7.4). Cells were resuspended 

in 3 ml of RPMI 1640 (Invitrogen, La Jolla, CA) supplemented with 10% fetal bovine 

serum (Gemini Bio-Products, West Sacramento, CA), 2 mM L-glutamine, and 0.1mM 

MEM non-essential amino acids. B lymphocytes were removed by passing the cell 

suspension through a complete RPMI equilibrated nylon wool column and adherent cells 

were removed by incubating the cell preparation in 25 cm2 tissue culture flasks as 

described previously (98). 

 

Ex vivo Stimulation of T Lymphocytes: T lymphocytes from PBMC were 

stimulated ex vivo with MHC B19/B19 (matched) and B2/B2 (mismatched) APCs. 

APCs at a concentration of 1 x 105cells/ml were incubated for 8 hours at 39ºC, 5% CO2 

in 96-well tissue culture plates. APCs were infected with 1x105 ELD50 of H5N9 

(A/Turkey/Wis/68) virus for 1 hour followed by removal of the virus and cells were 

washed 3 times with DMEM supplemented with 10% FBS. One x 106 T lymphocytes in 

complete RPMI were added to each well. Cells were co-cultured for 24 hours, before the 

media was collected and centrifuged (see FIG. 2-1 on page 28). The clarified 

supernatants were used to quantify IFNγ production by activated T lymphocytes using a 

nitric oxide detection assay. At 5 weeks p.i. the pelleted T lymphocytes were collected 

for FACS analysis to measure the lymphocyte proliferation. Each ex vivo stimulation 

assay was conducted in duplicate. 
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Nitric Oxide Induction Assay: In the absence of a commercial ELISA assay and 

the  MHC-I tetramer-peptide based technology the chicken immune system, a modified 

indirect IFNγ assay based on NO production(24,57, 83) from HD11 cells (a chicken 

macrophage cell line) was used to demonstrate the ex vivo activation of T lymphocytes 

by APCs. Briefly, cells were incubated in individual wells of 96-well plates at a 

concentration of 1x105 cells/well in complete RPMI media for 2 hours at 39ºC, 5% CO2 

prior to the addition of 150µl supernatants from T lymphocyte-APCs cultures. After 24 

hours of incubation, the accumulation of nitrite from stimulated HD11 cells was 

measured using the Griess reagent assay according to the manufacturer’s protocol 

(Sigma-Aldrich, St. Louis, MO) (FIG. 2-1) The concentration of nitrite produced was 

determined using sodium nitrite solutions with a concentration of 1-20 µmoles as 

standards. To ensure that the measured nitric oxide was produced by the IFNγ mediated 

stimulation of HD11 cells and not due to other soluble inducing factors, nitrite 

concentration in each sample was normalized by subtracting the nitrite concentration of 

supernatants from APCs cultured without T lymphocytes from the supernatants of the 

APCs cultured with T lymphocytes. 
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FACS Analysis: After ex vivo stimulation with AIV infected APCs, T 

lymphocytes were collected and dual labeled with phycoerythrin-conjugated MAbs 

specific for CD44 and fluorescein labeled MAbs specific for either CD8 or CD4 

(Southern Biotech Birmingham, AL) as previously described (98). Flow cytometric 

analysis was used to determine the concentration of T lymphocyte subpopulations. A 

minimum of 104 events were collected for each sample. The percentage of 

CD44+lymphocytes expressing either CD4 or CD8 surface antigen was determined using 

FlowJo™ (TreeStar, Inc., Ashland, OR). Cell proliferation was calculated as the percent 

increase in the population of CD4+ or CD8+T lymphocytes cultured with uninfected 

APCs after in vitro stimulation by virus-infected APCs for 24 hours.  

 

Statistical Significance of Differences: The nitric oxide concentrations were 

expressed as average of 4 to 6 birds per group. ANOVA (analysis of variance) with 

significance of p < 0.05 was used to determine statistical differences. 
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FIG. 2-1. Schematic of CD8+ T lymphocyte ex vivo stimulation assay 
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RESULTS 

In vitro Expression of AIV Proteins: In order to determine the T lymphocyte 

responses to individual AIV proteins, the NP and HA genes of the low pathogenic H5N9 

(Turkey/Wis/68) strain were cloned into the pcDNA3.1/V5-His-TOPO TA vector 

(Invitrogen, Carlsbad, CA). The eukaryotic expression of the proteins encoded by the 

plasmids was determined by IFA in CHO-K1 cells 48 hour post-transfection with 

plasmids expressing either NP or HA (FIG. 2-2).  AIV positive chicken polyclonal 

serum  (NVSL, Ames, IA) at a dilution of 1:100 was used as primary antibody and FITC 

conjugated mouse anti-chicken IgG at a dilution of 1:500 (Southern Biotech, 

Birmingham, AL) was used as the secondary antibody to detect the presence of protein 

expression. CHO-K1 cells transfected with either NP or HA expressing plasmids 

exhibited the presence of fluorescence while no fluorescence was observed in cells 

transfected with plasmid encoding for LacZ. 
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FIG. 2-2. In vitro expression of pcDNA3.1/V5-His-TOPO TA vectored AIV proteins in 
transfected CHO-K1 cells (magnification, 200x). Expression was detected using IFA 
using AIV positive reference serum as the source of primary antibodies. Cells were 
transfected with plasmids expressing (A) LacZ, (B) HA, and (C) NP. 
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Humoral Immune Response: The in vivo expression of AIV HA and NP and the 

antibody response to these proteins in the chickens was confirmed by detecting the 

presence of antibodies specific for HA and NP at 3 weeks p.i. with the plasmids. Serum 

HI assay was used to confirm the expression of HA. HI titers of sera from 6 chickens 

inoculated with the HA expression plasmid using the homologous H5N9 AIV strain was 

found to range from 5 to 6.5 log2 (GMT) (FIG. 2-3A). No HI activity was detected in 

sera of the 4 chickens inoculated with either PBS or NP alone (data not shown). Sera 

from HA inoculated birds failed to inhibit the hemagglutinating activity of a 

heterologous H7N2 AIV strain. The in vivo expression of NP following inoculation of 

the chickens with the plasmid was confirmed by a commercial ELISA. The ELISA titers 

for antibodies against AIV NP in 6 NP expressing plasmid inoculated chickens was 

found to range between 2.5 to 3.0 log10 (GMT) at 3 weeks p.i. (FIG. 2-3B). The sera 

from PBS inoculated birds were negative for the presence of anti-NP antibodies. The 

sera from HA plasmid inoculated chickens were also negative for the presence of anti-

NP antibodies (data not shown). Known chicken polyclonal serum positive for AIV was 

used as a positive control for validation of all titration assays (data not shown). 
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FIG. 2-3. Antibody titers induced in individual birds (n=6) by NP and HA expressing 
plasmids at 3 weeks p.i. (A) Serum HI antibody titers from chickens inoculated with HA 
expressing plasmid against the homologous H5N9 AIV strain and heterologous H7N2 
AIV strain. (B) Serum anti-NP antibody ELISA titers from chickens inoculated with the 
NP expressing plasmid. Neither HI nor anti-NP antibodies were detectable in the sera of 
4 control birds inoculated with PBS. Each symbol represents the response of an 
individual chicken. 
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Memory T Cell Responses were Detected from Weeks 3 to 9 p.i. with HA and 

NP Plasmids: Because the T cell specificity for individual proteins have not previously 

been reported, T lymphocyte responses to HA, NP or a combination of both HA and NP 

(HN) were determined following inoculation of B19/B19 chickens with plasmids 

expressing the HA or NP ORF. Since the conventional ELISA or intracellular cytokine 

staining methods to examine T lymphocyte mediated responses are not well established 

for research with avian immune system an indirect IFNγ assay (NO production from 

HD11 cells, a chicken macrophage cell line) was standardized for evaluating the ex vivo 

activation of T lymphocytes by APCs.  Considering previous adoptive transfer studies, 

which identified specific memory T cells to  IBV by 3 weeks p.i. with maximal 

responses occurring between weeks 5 and 6 p.i. (84), the memory AIV response of 

peripheral blood memory T lymphocytes were evaluated between 3 to 9 weeks p.i. with 

HA, NP, or HN plasmids.    

CKC infected with AIV were used as non-professional APCs for the stimulation 

of T lymphocytes.  Following ex vivo co-culture with MHC matched B19/B19 APCs 

infected withH5N9 virus, memory responses were detectable in T cell preparations 

obtained from all chickens receiving plasmids expressing both AIV proteins by 3 weeks 

p.i. Since neither supernatants from the T cells cultured with uninfected APCs nor T 

cells from PBS inoculated birds cultured with infected MHC matched B19/B19 birds 

produced IFNγ (data not shown), the memory T lymphocyte activity was considered 

AIV specific. Likewise, the memory T lymphocyte responses from each group of 

chickens receiving AIV plasmids was highly MHC  restricted, since the ex vivo 
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stimulation of the T cells from  plasmid inoculated birds with MHC mismatched B2/B2 

APCs could only induce basal levels of NO (FIG. 2-4). 

The maximum memory T cell response to NP was detected at 5 weeks p.i.  

However, while still detectable, memory T cells responses at 9 weeks p.i, were 

dramatically diminished for all birds receiving the AIV expression plasmids (HA, NP or 

HN). During weeks 3 through 7, the activity of T cells from the HA plasmid inoculated 

birds was significantly less than that of T cells isolated from birds receiving either NP or 

NP plus HA plasmids (FIG. 2-4). In addition to weaker APC induced stimulation, the 

levels of HA specific memory T lymphocyte responses were similar at weeks 3, 5 and 7 

p.i. The kinetics and the magnitude of the response mediated by the T lymphocytes 

derived from chickens inoculated with the combination of  both  NP and HA (HN) 

expressing plasmids was similar to the response mediated by the T lymphocytes derived 

from chickens inoculated with NP alone. 
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FIG. 2-4. Chicken memory T lymphocyte responses to AIV HA and NP proteins 
between 3 and 9 weeks p.i. with NP and/or HA expression plasmids. Chickens of the 
B19/B19 MHC haplotype were inoculated with DNA plasmids expressing AIV HA, NP 
or both HA and NP (HN). Memory T lymphocytes were stimulated ex vivo with virus 
infected MHC matched B19/B19 and mismatched B2/B2 APCs. Production of NO by 
HD11 macrophage cells induced by the the secretion of IFNγ from stimulated T 
lymphocytes was used to quantify lymphocyte activation. Results, expressed as the 
average (± S.E.) of two separate experiments. Each ex vivo stimulation assay is denoted 
by the source of T lymphocyte and virus infected MHC-I APCs. The difference in 
stimulation by matched and mismatched APCs was significant (p=0.003-0.02) for each 
inoculated antigen and time point. The responses to HN (p=0.02) at 3 weeks and NP 
(p=0.02) and HN (p =0.006) at 5 weeks p.i. were significantly greater than the responses 
to HA at the same time points. The p value for the difference between responses to NP 
and HA at 3 weeks p.i.was 0.07. 
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CD8
+
 T Lymphocyte Populations Increase with ex vivo Stimulation: The 

phenotype of activated subpopulations of T lymphocytes following co-culture with 

APCs expressing AIV antigens was determined using flow cytometric analyses (Table 2-

1). Since the response of T lymphocytes from HN inoculated chickens would reflect the 

response to the whole virus more closely than in NP or HA inoculated chickens, the 

proliferation of the lymphocytes from HN inoculated groups was measured at 5 weeks 

p.i. Lymphocyte populations were gated using a chicken pan lymphocyte CD44 specific 

MAb and MAbs specific for either CD4 or CD8 T cell antigens (98). The relative 

increase in the population of CD8+ T lymphocytes harvested from each HA and NP 

(HN) plasmid inoculated chicken was between 62 and 91% following ex vivo 

stimulation with AIV expressing APCs, in contrast to the increase of 31 to 37 % in the 

CD4+ T lymphocyte population. The increase in the population of T lymphocytes 

harvested from PBS inoculated birds was 7% and 1% for CD8+ and CD4+ T lymphocyte 

subpopulations, respectively, following co-culture with AIV infected APCs. The 

preferential increase in CD8+ cells correlates with their anticipated expansion following 

exposure to non-professional APCs endogenously expressing AIV and expressing 

surface MHC-I. 
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Table 2-1. Proliferation of T lymphocytes from birds 5 weeks p.i. with plasmids using 
flow cytometry1. 
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T Cell Responses Cross React with a Heterologous H7N2 AIV Strain: A 

rationale for targeting cellular immunity is the potential for cross-reactivity between 

vaccine and heterologous viruses. At 8 weeks p.i. the capacity for memory T 

lymphocytes specific for the NP and HA proteins of the H5N9 strain to be stimulated 

with an H7N2 (A/Turkey/Virgina/158512/02) strain of AIV was determined following 

co-culture with MHC matched APCs infected with either AIV strains (FIG. 2-5). Both 

heterologous H7N2 and homologous H5N9 AIV infected APCs significantly stimulated 

IFNγ production from memory T lymphocytes isolated from either HA or NP inoculated 

chickens (p ≤ 0.01) compared with PBS inoculated chickens. Although the difference 

between the response to homologous and heterologous AIV to either protein was not 

significant, the magnitude of the response of T lymphocytes to both HA and NP 

following stimulation with the homologous H5N9 AIV was observed to be greater. 

Regardless of the strain used to infect APCs, the observed memory responses generated 

by T cells obtained from chickens receiving the NP plasmid were again statistically 

greater (p=0.007) than that generated by T cells harvested from HA plasmid inoculated 

chickens. 
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FIG. 2-5. T lymphocytes from B19 birds inoculated with either H5N9 derived HA or NP 
expression plasmids respond to a heterologous (H7N2) virus.  At 8 weeks p.i., T 
lymphocytes from chickens receiving either HA or NP cloned from the H5N9 strain 
were cultured with APCs infected with H5N9 or H7N2 viruses. The T cell responses are 
expressed as the average (± S.E.)  of NO production for each treatment group. T 
lymphocytes from plasmid-inoculated chickens had significantly higher responses to 
H7N2 AIV strain than those from the PBS control group (p≤0.01). Three chickens were 
used for each stimulation assay. 
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Similar Memory T Lymphocyte Responses were Observed with Low Pathogenic 

AIV Infection: Memory T cells could be readily detected between 3 and 7 weeks p.i. 

with plasmids expressing either the NP or the HA proteins. In order to evaluate the 

memory T lymphocyte responses of chickens inoculated with infectious AIV, chicks 

with the B19/B19 haplotype were inoculated with the low pathogenic 

H5N9/Turkey/Wis/68 strain and blood was collected at 5 weeks p.i. The ex vivo 

activation of T lymphocytes by AIV infected APCs was determined by the indirect IFNγ 

assay (FIG. 2-6). The mean average NO production induced by the ex vivo stimulation 

of T lymphocytes from infected birds with B19/B19 APCs was specific compared with 

the uninfected, MHC matched APCs (p=0.004).  The responses to AIV infected APCs 

were MHC restricted as demonstrated by only basal level activation by B2/B2 APCs. 

Flow cytometric analysis was used to determine the phenotype of the T 

lymphocyte subpopulations from the infected chickens responding to ex vivo 

stimulation.  The relative increase in the population of CD8+ T lymphocytes from H5N9 

infected chickens was 46 to 95 % while the increase in the CD4+ T lymphocyte 

population ranged from 6 to 28% following co-culture with MHC-1 matched, H5N9 

AIV infected APCs (Table 2-2). The increase in the population of the lymphocytes from 

uninfected chickens was only 1 to 14% and 10 to 19% for CD8+ and CD4+ T 

lymphocytes, respectively. Although increases were observed in the CD4 lymphocytes, 

the greater increased proliferation of CD8+ lymphocytes from birds infected with the low 

pathogenic virus was consistent with detection of a preferential MHC -I restricted AIV 

specific, CD8+ memory T cell response. 
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FIG. 2-6. In vivo infection of B19 chickens with the low path H5N9/Tur/Wis/68 AIV 
generates AIV specific, MHC matched memory T lymphocytes. The potential for 
infectious AIV to also produce a memory T lymphocyte response was determined 5 
weeks p.i. with H5N9. Mean (± S.E.) NO production by each treatment group is 
represented by the bars. Stimulating APCs were either uninfected (Uninf) or virus-
infected (Inf).   Mismatched AIV infected APCs derived from the CKC of homozygous 
B2 chicks indicate MHC restriction. Three birds were used for each ex vivo stimulation 
assay. 
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Table 2-2. Proliferation of T lymphocytes from birds 5 weeks p.i. with AIV using flow 
cytometry. 
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DISCUSSION 

To our knowledge, this is the first study delineating the response of chicken 

memory CD8+ T lymphocytes to specific AIV proteins. Studies evaluating the CD8+ T 

lymphocyte response to influenza virus in mice have identified NP as housing the 

dominant CD8+ T cell epitopes (35,61, 82, 126, 134, 146). In contrast, human cytotoxic 

T lymphocytes (CTL) have a broader repertoire and the response is directed to multiple 

influenza viral proteins, including HA (39, 52, 58, 62). Our studies have shown that 

similar to the responses in humans, memory CD8+ T lymphocytes in chickens are 

directed against both AIV HA and NP proteins (41, 56, 62, 77). Significantly greater 

responses were induced by NP than by HA at 3 and 5 weeks p.i. The AIV specific T cell 

responses were primarily MHC-I restricted as non-professional APCs of B19 and B2 

haplotypes were used for ex vivo stimulation of T cells and the APCs of B2 haplotype 

chickens either failed or could only weakly stimulate the T lymphocytes derived from 

the B19 line. Therefore, responding T cells were primarily of CD8+phenotype, which 

also showed significantly greater proliferation than CD4+ T lymphocytes in response to 

ex vivo APC mediated stimulation. Similar to the MHC-I restricted T lymphocyte 

responses demonstrated following infection with IBV, CD8+ T cell memory responses to 

AIV HA and/or NP were detected by 3 weeks p.i. (84).  

Furthermore, the current studies quantified the protein specific responses until 9 

weeks p.i.  The response increased from 3 weeks p.i. until 5 weeks p.i.  However, by 9 

weeks p.i. with plasmids expressing either NP or HA AIV protein, the memory T cell 

activity had declined to significantly lower levels.  The decline in the more vigorous 
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CD8+ T lymphocyte response to NP was more rapid after 5 weeks than the CD8+ T cell 

response stimulated by HA, such that by 9 weeks p.i. the responses to both proteins 

individually or in combination were similar. A decline in the CD8+ T lymphocyte 

mediated protection at 10 weeks after challenge of H9N2- infected chicks with H5N1 

had been observed by Seo and Webster (102). Similarly, a decline in the memory T 

lymphocytes response specific to influenza virus infection was also reported in humans 

(75). 

Our study also proved the efficacy of the plasmid delivery approach in providing 

a mechanism to evaluate the T cell response to AIV HA and NP proteins, either 

individually or in combination. Protection studies were not included following 

inoculation of the AIV plasmids because of increased biosafety requirements for AIV.  

However, hemagglutinating antibodies which can be correlated with protection were 

demonstrated. The antibodies specific for the HA cloned from a H5N9 virus failed to 

prevent H7N2 virus-mediated hemagglutination. 

The limitation posed by the frequency of bleeding and the volume of blood 

available precluded our ability to conduct all the assays at the same time points hence the 

cross-reactivity assay was conducted at 8 weeks p.i. Although the response of the 

memory T lymphocytes was significantly lower than the response at 5 weeks p.i., it was 

still detectable and the APCs infected with H7N2 AIV were able to ex vivo stimulate the 

T lymphocytes from H5 inoculated chickens. These observations indicate that despite 

the absence of shared HI antibody epitopes, HA does have at least one CD8+ epitope 

that is shared between both the strains of the virus. 
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Adoptive transfer studies of CD8+ T lymphocytes specific for IBV and AIV have 

demonstrated their importance in protection against heterologous viruses (84, 99, 102). 

In mice, adoptive transfer of memory CD8+ T lymphocytes against influenza virus NP 

has also been shown to be protective against viral challenge (69, 71, 120).  In vivo 

inoculation of chicks with a DNA plasmid expressing the IBV nucleocapsid protein was 

shown to provide CTL mediated protection against acute respiratory disease (97,101). 

Consistent with the greater response to NP from the homologous virus, T lymphocytes 

of chicks inoculated with NP exhibited greater cross-reactivity with the heterologous 

H7N2 virus than T cells from the birds inoculated with HA. Amino acid sequences in 

HA from the two AIV strains were 41% identical while the amino acid sequences of NP 

were 97% identical. The more conserved nature of NP, in compared to HA could be 

responsible for the immunodominance of NP and a greater cross-reactive response (87).  

Although the variation could also be attributed to the differences in antigen processing 

and presentation by the same APCs (14, 25, 28, 29, 127), NP and the HA responses were 

similar by 9 weeks p.i. using the same standardized assay. Compared with other MHC 

defined haplotypes, B19 chicken may possess a distinct T cell epitope repertoire for AIV 

proteins and consequently, respond to AIV proteins differently (15, 76). Hence, it is 

important to determine the responses to AIV in different MHC lines of chickens.   

Although the cross-reactivity of memory CD8+ T lymphocytes may not prevent the 

infection of chickens with a heterotypic strain of AIV, it could contribute to the rapid 

clearance of the virally infected cells and augment the protection against clinical illness. 

This study establishes that chickens CD8+ T lymphocytes respond to AIV NP and HA 
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proteins. The ability of the other AIV proteins besides these in stimulating CD8+ T 

lymphocytes of chickens needs to be evaluated. Inclusion of such AIV protein targets 

that can induce cross-reactive CD8+ T lymphocyte responses besides humoral immunity 

in chickens is critical for the development of efficacious vaccines which can provide 

protective immunity against a broader range of AIV types (68). 
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CHAPTER III 

MEMORY CD8+ T LYMPHOCYTE RESPONSE TO AVIAN INFLUENZA 

VIRUS HEMAGGLUTININ AND NUCLEOCAPSID PROTEINS EXPRESSED 

BY A NON-REPLICATING HUMAN ADENOVIRUS VECTOR 

 

INTRODUCTION 

Since 1996, the zoonotic threat posed by avian influenza viruses (AIV) has been 

realized by the direct transmission of highly pathogenic H5N1 AIV from poultry to 

humans in many countries throughout the world, including Asian, Africa and Europe (2, 

16, 30,  78). These zoonotic infections have resulted in fatality in 60% of the cases 

reported (3). Although human-to-human transmission of the H5N1 AIV is rare, the 

emergence of transmissible human virus with genes of avian origin by reassortment is a 

reality (16, 129, 137). The influenza pandemics of 1918, 1957 and 1968 were caused by 

human influenza viruses encoding genes of avian, swine and human origins (2, 16, 18). 

AIV, influenza A viruses of the Orthmyxoviridae family, have segmented, 

negative sense RNA genomes. AIV strains are classified according to their 

transmembrane hemagglutinin (HA) and neuraminidase (NA) glycoproteins (3,18, 21, 

22). Although shore birds and waterfowl, such as ducks, swans, geese, waders and terns 

are considered primary hosts, AIV have also been isolated from pheasants, quails and 

poultry (3, 18, 20, 21). In poultry, the virulence of AIV determines its classification as 

either low pathogenic or highly pathogenic virus. Infection with low pathogenic AIV 

strains produce asymptomatic to mild respiratory and enteric tract disease, while that 
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with the highly pathogenic strains results in clinical illness and systemic disease (3, 60, 

81). Furthermore, poultry are also considered a critical intermediate host for adaptation 

of the AIV strains from wild birds to mammals, including swine and humans (21, 22, 

85). 

Both the zoonotic nature of AIV which provides a mechanism for emergence of 

new human strains and the economic losses sustained by the poultry industry from AIV 

outbreaks justify efforts to develop more efficacious, safe vaccines (16, 27, 31). While 

only inactivated whole AIV and fowl pox vectored vaccines are available commercially, 

AIV vaccines are discouraged or prohibited in many countries, such as the United States 

(17, 27, 47, 110). The use of inactivated whole virus vaccine as a control strategy for 

AIV is limited because of the inability to distinguish infected from vaccinated animals 

(DIVA), and pre-existing immunity against fowl pox virus prevents the development of 

optimum protective immune response against AIV (17, 110, 112, 114). Incomplete 

protection allows AIV to survive and circulate in flocks and potentially mutate into 

highly pathogenic strains (106, 107). The mass slaughter policy applied in the event of 

highly pathogenic AIV outbreaks in poultry contributes to extensive economic losses 

(17, 27). Highly pathogenic strains with an increase in infectious viral load within the 

bird are considered a risk to both birds and mammals.  

In both mice and chickens, the efficacy of a non-replicating adenovirus serotype 

5 (Ad5) based vector expressing HA of influenza virus to protect against a challenge of 

H5N1virus, has been demonstrated (38, 50). Toro et al (124) have shown that in ovo 

inoculation of the non-replicating (replication competent ( RCA)-free) human 
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adenovirus vectored vaccine encoding HA transgene of H5N9/Tur/Wis/68 AIV strain 

induced neutralizing anti-HA antibody in chickens. The vaccine also protected chickens 

against challenge with highly pathogenic H5N1 (Swan/Mongolia/244L/2005) AIV in 

68% cases and H5N2 (Chicken/Queretaro/19/95) AIV in 100 % cases (124). The amino 

acid sequence identity shared between the HA of the H5N9 AIV (GenBank accession 

U79456) and the H5N1 (GenBank accession EU723707) or H5N2 (GenBank accession 

U79448) challenge viruses was 89% and 94%, respectively (119). While the induction of 

humoral immunity in chickens to H5N9/Tur/Wis/68 AIV is well characterized, the 

ability of the non replicating adenovirus vectored vaccine to induce HA specific CD8+  T 

lymphocyte responses in chickens has not been determined. 

Although humoral immunity protects against the viral strains expressing 

homologous HA protein by neutralization of the virus, its efficacy is limited against 

variant or heterologous viruses (67, 90). The induction of CD8+ T lymphocyte immunity 

can greatly diminish the clinical disease by clearing viral infected cells (67, 90, 116). 

Additionally, the CD8+ T lymphocytes target more conserved epitopes than antibodies 

and thus can confer protection against a broader range of viruses (67, 90, 102). The 

current studies demonstrate that a viral specific, MHC-I restricted effector and memory 

CD8+ T lymphocytes are generated by RCA-free human Ad5 vector encoding AIV HA 

and NP proteins.  The T lymphocyte responses do cross-react with heterologous AIV 

and administration of a booster dose induces a more robust secondary humoral and 

cellular immune response against AIV. 
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MATERIALS AND METHODS 

Viruses: Viral stocks of low pathogenic AIVs, H5N9 (A/Turkey/Wis/68) and 

H7N2 (A/Turkey/Virginia/158512/02) types, were propagated in the allantoic sacs of 10 

day old embryonated chicken eggs (ECE) for 48 hours and presence of the virus was 

determined by hemagglutination (HA) assay performed according to OIE guidelines 

(http://www.oie.int/eng/normes/mmanual/2008/pdf/2.03.04_AI.pdf). Virus titers were 

determined in eggs and expressed as embryo infectious dose 50 (EID50) (7).  

 

Vector: An RCA-free E1/E3 deleted human adenovirus serotype 5 (Ad5) vector 

encoding  HA gene from H5N9 (A/Turkey/Wis/68) AIV,Ad-HA,) and Ad-NP encoding 

NP from H1N1/PR8  were provided by Dr. D.C. Tang (Vaxin Inc., Birmingham, 

AL)(124) .The amino acids of the NP from H1N1 and NP from H5N9 AIV were  93% 

identical. Virus titers were determined by the Adeno-X rapid titer kit (BD Clontech, 

Mountain View, CA), according to the manufacturer’s protocol, and expressed as 

infectious units (ifu) per ml. 

 

Experimental Animals: Embryonated eggs of B19/B19 MHC-defined chickens 

lines were obtained from Dr. Briles’ laboratory at Northern Illinois University (DeKalb, 

IL). Post- hatching,the chicks were housed in a specific, pathogen free environment at 

the vivarium facility of Western University of Health Sciences, Pomona, CA. All 

procedures involving the use of chickens were approved by and conducted according to 

guidelines established by the Institutional Animal Care and Use Committee of Western 
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University of Health Sciences. At three weeks of age chickens with the B19/B19 MHC 

haplotype were inoculated intramuscularly (IM) with 0.3 ml (1 X 108ifu total) of Ad-

HA, or Ad-NP vectors.  Control birds were inoculated with either AdE, the empty vector 

without AIV genes, or PBS only. Nine weeks after the first inoculation, chickens were 

boosted with the same dose of Ad-HA vector as described for primary inoculation. 

 

Determination of HA-specific Antibodies: Serum samples were prepared from 

blood collected from the jugular vein of chickens at 10 days, and 3, 5, 7 weeks p.i. and 1 

week p.b. to evaluate the humoral responses. Hemagglutination inhibition (HI) assay 

was carried out to determine titers of anti-HA antibodies specific to H5N9 virus 

(A/Turkey/Wis/68) HA and expressed as geometric mean titer (GMT) 

(http://www.oie.int/eng/normes/mmanual/2008/pdf/2.03.04_AI.pdf). 

 

Generation of Antigen Presenting Cells (APCs): Primary chicken kidney cell 

CKC lines were established from 10day-old chicks of B19/B19 and B2/B2 MHC 

haplotypes as described previously (98).  Cells from the tenth passage were used as non-

professional APCs for the stimulation of the CD8+ T lymphocytes.  

 

T Lymphocyte Preparation: Peripheral Blood mononuclear cells (PBMC) and 

splenocytes from inoculated chickens were the source of ex vivo stimulated effector T 

lymphocytes (93). Briefly, blood was collected from the jugular vein at day 10 and, 3, 5, 

7 and 8 weeks post inoculation (p.i.) of the primary dose and 1 week post boosting (p.b.). 
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Splenocytes were isolated at 4 weeks p.b. Ficoll-histopaque (Histopaque-1077, Sigma-

Aldrich, St. Louis, MO) density gradient centrifugation method was used to isolated 

mononuclear cells from whole blood and spleens (98). Viable mononuclear cells were 

collected from the interface and washed twice with phosphate buffered saline (PBS, pH 

7.4). Cells were resuspended in 3 ml of RPMI 1640 (Invitrogen, La Jolla, CA) 

supplemented with 10% fetal bovine serum (Gemini Bio-Products, West Sacramento, 

CA), 2 mM L-glutamine, and 0.1mM MEM non-essential amino acids. B lymphocytes 

were removed by passing the cell suspension through a complete RPMI equilibrated 

nylon wool column and adherent cells were removed by incubating the cell preparation 

in 25 cm2 tissue culture flasks as described previously (98). 

 

Separation of CD8
+
 and CD4

+
 T Lymphocytes: The separation of CD8+ and 

CD4+ T lymphocytes was done by antibody mediated depletion using Dynabeads 

(Invitrogen, La Jolla, CA). The purified T lymphocytes were labeled with either mouse 

anti-chicken CD8 or mouse anti-chicken CD4 monoclonal antibodies (Southern Biotech, 

Birmingham, AL) at a concentration of 1 µg/106 cells in PBS containing 0.1% bovine 

serum albumin fraction V (Sigma-Aldrich, St. Louis, MO) and incubated at 4º C for 30 

mins. The unattached antibodies were removed by two washes with PBS and the cells 

were incubated with rat anti-mouse IgG coated Dynabeads according to the 

manufacturer’s protocol. The antibody coated cells were removed using DynaMag-2 

(Invitrogen, La Jolla, CA) and the unlabeled cells in the supernatants were collected. The 

purity of the separation technique was verified by conducting a FACS analysis on T 
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lymphocyte population labeled with anti-chicken CD8 FITC Mab and anti-chicken CD4 

R-PE (Southern Biotech, Birmingham, AL) .  

 

Ex vivo Stimulation of T Lymphocytes: T lymphocytes prepared from PBMC 

and spleens were stimulated ex vivo with MHC B19/B19 (matched) and B2/B2 

(mismatched) APCs (REF). APCs at a concentration of 1 x 105cells/ml were incubated 

for 8 hours at 39ºC, 5% CO2in 96-well tissue culture plates.  Each well of APCs was 

infected with 1 x 105 ELD50 ofH5N9 (A/Turkey/Wis/68) virus for 1 hour followed by 

removal of the unattached virus by three washes with DMEM supplemented with 10% 

FBS. One x 106 T lymphocytes in complete RPMI were then added 4 hours after 

infection of the APCs. The APCs and T lymphocytes were co-cultured for 24 hours at 

39ºC, 5% CO before the media was collected and the supernatant clarified by 

centrifugation. Each ex vivo stimulation assay was conducted in duplicate. 

 

Determination of IFNγ� in Supernatants: Since activated T lymphocytes 

produce IFNγ, the concentration of IFNγ in the clarified supernatants from T 

lymphocyte-APC co-culture was determined using both a nitric oxide detection assay 

and a commercially available ELISA ((Invitrogen, La Jolla, CA). The amount of IFNγ 

produced by  the activated T lymphocytes was determined in the clarified supernatants 

using an nitric oxide detection assay and an ELISA ((Invitrogen, La Jolla, CA). At 5 

weeks p.i., the T lymphocyte pellets were collected for FACS analysis.  Each ex vivo 

stimulation assay was conducted in duplicate. 
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Nitric oxide secretion by IFNγ stimulated HD11 cells, a chicken macrophage cell 

line, was evaluated using a modification of the assay described by Karaca et al (57), 

Crippen (24) and Pei et al (84). Cells were incubated in individual wells of 96-well 

plates at a concentration of 105 cells/ well in complete RPMI for 2 hours at 39ºC, 5% 

CO2, prior to the addition of 100µl of supernatants from T lymphocyte-APCs cultures.  

After 24 hours of incubation, the accumulation of nitrite from stimulated HD11 cells was 

measured using the Griess reagent assay according to the manufacturer’s protocol 

(Sigma-Aldrich, St. Louis, MO). The concentration of nitrite produced was determined 

using sodium nitrite solutions with a concentration of 1-20 µmoles as standards. The 

concentration of any non-specific production of nitric oxide by any soluble factors was 

removed by subtracting the nitrite concentration of supernatants from APCs cultured 

without T lymphocytes from the supernatants of the APCs cultured with T lymphocytes. 

The calculated sample nitrite concentration was induced by IFNγ mediated stimulation.  

The concentration of chicken IFN γ (ChIFN-γ)in 100µl of clarified supernatants 

collected after ex vivo stimulation was also determined at 10 days, 5 and 7 weeks p.i. 

and 1 week p.b. using a recently marketed, commercial ELISA kit according to the 

manufacturer’s protocol (Invitrogen, La Jolla, CA) (4). 
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Statistical Significance of Differences: The nitric oxide and the ChIFN-γ 

concentrations were expressed as average of three to four birds per group. ANOVA 

(analysis of variance) with significance of p < 0.05 was used to determine statistical 

differences. 

RESULTS 

Humoral  Immune Response to HA Expressed by the Non-Replicating 

Adenovirus: Chicks were inoculated IM with 1x108 i.f.u. of adenovirus vector 

expressing H5 protein of H5N9 (A/Turkey/Wis/68) (Ad-HA) or with an equivalent 

amount of the empty vector (AdE) (124).  Between 10 days p.i. to 7 weeks p.i., the HI 

titers of sera to the homologous H5N9 AIV strain from chickens inoculated with the Ad-

HA vector ranged from 4 log2 to 8 log2 (GMT) (FIG. 3-1). The HI titers from 10 days p.i. 

to 7 weeks p.i. continued to maintain steady levels. However, there was an increase of 

over 16 fold in the HI titers at 1 week p.b. which ranged from 9 log2 to  12 log2 (GMT). 

The sera from Ad-HA inoculated birds failed to inhibit the hemagglutinating activity of a 

heterologous H7N2 AIV. The sera from AdE and PBS inoculated chickens were also 

negative for any HI activity. 

 

 

 

 

 

 



 56

 

 

 

 
FIG. 3-1. Kinetics of the humoral immune response induced by Ad-HA inoculation at 10 
days, 3, 5, and 7 weeks post prime and 1 week post secondary administration. Serum HI 
antibody titers of individual chickens were evaluated and expressed as log2 of the 
reciprocal of the greatest dilution of serum inhibiting agglutination of 1% chicken RBCs 
by 4 HA units of H5N9/Turkey/Wis/68 AIV. Results are from two separate experiments. 
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AIV Specific Effector and Memory T Lymphocyte Responses: To determine 

whether Ad-HA  could induce antigen specific T lymphocyte responses, 3 week old 

chickens of B19/B19 MHC-I haplotype were inoculated IM with Ad-HA at a dose of 1 x 

108 ifu. Since adoptive transfer studies with infectious IBV and AIV had detected 

effector T lymphocytes at 10 days p.i, effector cells were evaluated at 10 days p.i. (84).  

An indirect IFN-γ assay relying on the production of NO by the HD-11 chicken 

macrophage cell line was used to demonstrate AIV specific ex vivo activation of T 

lymphocyte response by infected APCs. 

An effector T cell response to the HA, detected at 10 days after administration of 

the Ad-HA, declined to basal levels by 16 days p.i. Memory T lymphocyte responses 

were detected by 3 weeks p.i. and maximum stimulation of  viral specific T lymphocytes 

derived from Ad-HA  inoculated chickens were detected at 5 weeks p.i.  By 8 weeks p.i., 

T cell responses had declined to undetectable levels. Following the decline of the 

memory response of peripheral blood T lymphocytes, 4 birds were boosted with a 

second, 1 X 108 ifu dose of Ad-HA given IM at 8 weeks after the primary inoculation.  

The T lymphocyte responses were evaluated at one and two weeks post boosting (p.b.).  
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At 1 week p.b. with the Ad-HA, significantly higher memory effector T cell responses 

from Ad-HA inoculated chickens were detected after ex vivo stimulation of T 

lymphocytes than by T lymphocytes from AdE or PBS inoculated chickens. This 

secondary effector response markedly declined at 2 weeks post boosting (p.b.) similar to 

the decline observed following the primary effector response. 

The activation of the B19/B19 derived T lymphocytes by AIV infected B19/B19 

APCs was considered MHC-I restricted since B2/B2 CKC infected with AIV did not 

activate these T lymphocytes (data not shown). While at all time points T lymphocytes 

from Ad-HA inoculated chickens cultured with AIV infected APCs could stimulate NO 

production by the macrophage cell line, the response was considered primarily antigen 

specific (FIG. 3-2). Lymphocytes from chickens inoculated with empty Adeno vector 

(AdE) stimulated only basal levels of NO. T lymphocytes derived from PBS inoculated 

chickens were also minimally stimulated by infected B19/B19 APCs. T lymphocytes 

derived from AdE inoculated chickens were non specifically stimulated by infected 

APCs one week p.b. but this response was significantly lower than the response 

mediated by T lymphocytes derived  from Ad-HA inoculated chickens. 
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FIG. 3-2. Kinetics of the AIV specific T lymphocyte responses from B19/B19  MHC-I 
haplotype  chickens following primary and booster inoculations with 1X 108 ifu of  
RCA-free human Ad5 adenovirus vector expressing AIV HA (Ad-HA). T lymphocytes 
were ex vivo stimulated with H5N9 AIV infected MHC matched B19/B19 APCs before 
evaluating activation of the T lymphocytes.  Activation was quantified as IFNγ secretion 
from T cells determined through production of NO by an HD11 macrophage cell line. 
Results are expressed at average (± S.E.) of two experiments.  Each ex vivo stimulation 
assay is denoted bythe source of T lymphocyte and virus infected MHC-I APCs. The 
responses of  T lymphocytes from Ad-HA inoculated birds and AdE inoculated control 
birds at 10 days p.i. and at 3 and 5 weeks were significant (p≤ 0.001). 
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Direct IFN ELISA Confirmed HA Specific T Lymphocyte Responses: Using a 

recently developed commercial kit, ELISA directly evaluating the IFNγ production by 

activated T lymphocytes confirmed the AIV specific response of T lymphocytes at 10 

days, 5 weeks and 9 weeks (one week p.b) p.i. from chickens receiving Ad-HA. The 

mean amount of IFNγ produced by the primary effector T lymphocytes from Ad-HA 

inoculated chickens was 49.5 pgm which was nearly 24 folds of that secreted from 

lymphocytes of chickens inoculated with AdE (FIG. 3-3).   The memory T lymphocytes 

collected from chickens 5 weeks p.i. with HA secreted an average of 44 pgm of IFNγ 

which was more than 20 folds greater than that produced by the T lymphocytes derived 

from chickens receiving the empty AdE control. The HA specific response was highly 

MHC restricted at 10 days, as well as 5 weeks. At 5 weeks p.i., IFNγ secreted was more 

than 44 fold by the T lymphocytes of Ad-HA inoculated birds stimulated with the 

B19/B19 match compared to those stimulated by mismatched B2/B2 infected APCs 

(data not shown). The IFNγ production from the memory effector cells as detected by 

the ELISA 1 week p.b. was also greater than the primary effector response and was also 

confirmed to be highly AIV specific and MHC-I restricted. 
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FIG. 3-3. ELISA results measuring IFNγ secretion by T lymphocytes following primary 
and booster administration of Ad-HA. Concentration of IFNγ secreted in the supernatant 
of ex vivo stimulated T lymphocytes was determined using a commercial sandwich 
ELISA (Invitrogen, La Jolla, CA). Results are expressed as the average (± S.E.) of 3 
birds. Each ex vivo stimulation assay is denoted by the source of T lymphocyte and virus 
infected MHC-I APCs. The difference between IFNγ secretion by activation of T 
lymphocytes derived from Ad-HA and AdE inoculated chickens was significant (p≤ 
0.001). 
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AIV Specific Memory T Lymphocytes Are Mostly CD8
+
: To determine the 

phenotype of the responding memory T lymphocytes reacting to stimulation by AIV 

infected APCs, at 6 weeks p.i. the T lymphocyte subpopulations expressing either CD8 

or CD4 were enriched by negative selection using specific mouse anti-chicken CD4 or 

mouse anti-chicken CD8 antibodies and magnetic beads coated with rat anti-mouse IgG 

antibodies (97). Following ex vivo stimulation with the H5N9 AIV infected B19/B19 

haplotype APCs, the purified CD4+ T lymphocytes were activated but at a much lower 

level compared to the T lymphocyte enriched for the CD8 phenotype (p≤ 0.06) (FIG. 3-

4).  The activation of the CD8+ T lymphocytes derived from Ad-HA inoculated chickens 

was specifically stimulated by AIV infected APCs. Uninfected B19/B19 APCs had a 

significantly lower stimulatory effect on CD8+ T lymphocytes derived from Ad-HA 

inoculated chickens. Although in this assay, CD4+ lymphocytes from chickens given the 

AdE without HA were also stimulated by AIV infected APCs, these observations were 

not reproducible. The T lymphocytes derived from PBS inoculated chickens of either 

CD4 or CD8 subtype were stimulated only at basal levels. 
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FIG. 3-4. Response of memory CD4+ and CD8+ T lymphocytes from Ad-HA inoculated 
chickens. At 6 weeks p.i. the T lymphocytes from the peripheral blood mononuclear 
cells were separated into CD4+ and CD8+ T lymphocyte subpopulations and stimulated 
with AIV infected and uninfected B19 APCs. The activation of the T lymphocytes was 
measured by indirect stimulation of NO production.  Results are expressed as average 
NO production (±S.E) of an N of 3 birds. 
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H5 Specific CD8
+
 T Lymphocytes also Recognize H7 Infected APCs: The 

potential for T lymphocytes from H5 Ad-HA to cross react with H7 was determined at 7 

weeks p.i., while the responses remained detectable. Using H7N2 infected APCs for ex 

vivo stimulation of T lymphocytes, activation was detected by secretion of IFN using 

the indirect assay and a newly available commercial direct ELISA (Invitrogen, La Jolla, 

CA). The responses of T cells from Ad-HA inoculated birds were not significantly 

different whether the APCs were infected with the H5 or the H7 virus although the 

response to H5 virus infected APCs was slightly greater (FIG. 3-5)  

Using either the ELISA or NO production of macrophages to detect T cell 

secretion of IFNγ, the responses were again found to be primarily mediated by the 

activation of CD8+ T lymphocytes rather than CD4+ lymphocytes (p ≤ 0.001-0.0001). 

Stimulation of either CD8+ or CD4+ T lymphocyte populations from AdE and PBS 

inoculated chickens was either weak or absent. 
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FIG. 3-5. CD8+ T lymphocytes from B19 birds inoculated with Ad-HA respond to APCs 
infected with a heterologous (H7N2) virus.  At 7 weeks p.i., purified CD4+ and CD8+ T 
lymphocytes from chickens (n=3) inoculated with Ad-HA were stimulated by APCs 
infected with either homologous virus H5N9 or a heterologous H7N2 strain. Assays 
represent the mean (± S.E.) of T lymphocytes of 3 birds. (A) The T lymphocyte 
responses as determined by the indirect IFNγ assay. (B) The T lymphocyte responses of 
the same birds as determined by a direct IFNγ ELISA. Responses of CD8+ T 
lymphocytes were significantly greater than those of the CD4+ T lymphocytes (p ≤ 0.01 
and p ≤ 0.001, respectively). 
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Memory Response of Spleen Derived T Lymphocytes: Memory T lymphocyte 

subpopulations in the spleens were evaluated 4 weeks p.b. when the study was 

terminated. Whole T lymphocyte populations and the purified CD4+ and CD8+ T 

lymphocyte subpopulations were stimulated ex vivo with AIV infected and uninfected 

B19/B19 APCs. The stimulation of the T lymphocytes from the spleens of the Ad-HA 

inoculated chickens was AIV specific and MHC-I restricted. These memory splenic T 

lymphocytes responses were mediated primarily by the activation of CD8+lymphocytes 

(FIG. 3-6). The magnitude of the response of whole T lymphocyte population was 

similar to the response of CD8+ T lymphocytes. In contrast, the activation of the CD4+T 

lymphocytes was significantly lower (p≤0.003) and non-specific as suggested by 

stimulation with uninfected APCs. The significantly lower response of the T lymphocyte 

subpopulations derived from either AdE or PBS inoculated birds was non specific since 

they were stimulated by both uninfected and AIV infected APCs. 
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FIG. 3-6. Response of T lymphocytes derived from spleens of Ad-HA inoculated 
chickens 4 weeks post boosting. Splenic T lymphocytes were separated into CD4+ and 
CD8+ subpopulations and were stimulated ex vivo along with un-separated T 
lymphocytes using MHC matched B19/B19 APCs infected with homologous H5N9 
virus.  Production of NO by HD11 macrophage cells induced by secretion of IFNγ from 
stimulated T lymphocytes was used to quantify the activation of the lymphocytes. 
Results were expressed as the average (± S.E.) of 4 birds. Each ex vivo stimulation assay 
is denoted by the source of T lymphocyte and virus infected MHC-I APCs. AIV specific 
memory CD8+ T lymphocyte responses in the spleens were demonstrated by the 
significantly greater production of IFN following co-culture with AIV infected APCs as 
compared to CD4+ T lymphocytes (p≤0.003). 
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 Non-Replicating Adenovirus Expressing NP Stimulates Greater T Lymphocyte 

Responses: Previous studies using plasmid expression vectors had indicated that in 

chickens the CD8+ T lymphocyte response directed against AIV NP may be more 

vigorous than that against HA.  Therefore, the T lymphocyte response following 

inoculation of the RCA-free Ad5 human adenovirus vector expressing NP (Ad-NP) was 

evaluated and compared with the Ad-HA (FIG. 3-7).  Although the origin of the NP was 

H1N1, the NP gene has 93 % identity with the H5N9 AIV NP.   Six 3 week old B19 

haplotype chickens were inoculated with 1X 108 ifu Ad-NP or Ad-HA.   The AIV 

specific responses of T lymphocytes prepared from PBMCs collected at 10 days, 5 

weeks and 7 weeks p.i. were evaluated by ex vivo activation using H5N9 infected APCs 

or the uninfected APCs. The activation of lymphocytes was determined with the direct 

ELISA. The effector and 5 week p.i. memory responses of T lymphocytes collected from 

the Ad-NP inoculated chickens were significantly greater than that from HA inoculated 

chickens at the same time p.i. (p ≤ 0.02 and p≤0.09, respectively). Moreover the 

stimulation of the T lymphocytes collected from Ad-NP inoculated chickens was 

induced by the cross reaction to a heterologous virus, H5N9/Turkey/ Wis/68 used 

infected APCs. At 7 weeks p.i., the separation of T lymphocytes into CD4+ and CD8+ 

subpopulations indicated a significantly greater activation of CD8+ T lymphocytes by 48 

folds in comparison to CD4+ T lymphocytes. However, as the responses declined at 7 

weeks and the differences between the stimulation of cells from NP and HA inoculated 

birds decreased it was still significant (p≤0.01). 
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FIG. 3-7. IFNγ secretion by T lymphocytes from birds (n=3) inoculated with Ad-NP or 
Ad-HA. Concentration of IFNγ produced by T lymphocytes following ex vivo 
stimulation with H5N9 AIV infected B19 APCs at 10 days, 5 weeks and 7 weeks p.i. 
Results are expressed as the average (± S.E.) of 3 birds. Each ex vivo stimulation assay 
is denoted by the source of T lymphocytes and virus infected MHC-I APCs. 
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DISCUSSION 

The increased incidence of the outbreaks of highly pathogenic AIV infections in 

poultry throughout the world and the threat of emergence of a zoonotic pandemic are the 

compelling reasons which make the development of an efficacious vaccine against these 

viruses imperative (17, 22, 31, 116). Although humoral immunity provides protective 

immunity against a specific AIV strain, their ability to protect against serologically 

distinct variants is limited (68, 91). In contrast, the immune response mediated by CD8+ 

T lymphocytes protect against a broader range of antigenically distinct strains (68, 100, 

102). In this study, we have examined the ability of an RCA-free human Ad5 vector 

expressing AIV HA and NP to elicit CD8+T lymphocyte responses to AIV in chickens.  

The capacity of adenovirus vectored vaccine expressing influenza virus proteins 

to stimulate CD8+ T lymphocytes has been demonstrated in mice and swine (38, 50, 51, 

53, 103, 117, 133). Gao et al (38) have also established the effectiveness of adenovirus 

vectored vaccine in protecting chickens from a challenge of homologous virus (38). Toro 

et al (124) have developed an RCA- free human Ad5 vector expressing H5N9 AIV HA 

that ability protects chickens against challenge of highly pathogenic AIV variants, H5N1 

and H5N2 strains (124). 

Although the Ad5 vectored adenovirus infection of chickens resulted in the 

production of anti-HA antibodies and HI of homologous virus, these antibodies failed to 

inhibit hemagglutination mediated by the heterologous, H7N2, AIV strain. The ability of 

this vaccine to protect against a challenge of variant virus in the absence of HI could be 

explained by a contribution of T lymphocyte mediated immunity. In the current study we 
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demonstrated that IM inoculation of HA expressing Ad-vectored AI vaccine induces 

CD8+ T lymphocyte response specifically against AIV. Previous studies in our lab have 

shown that plasmid DNA expressing HA stimulates CD8+ T lymphocytes in chickens 

(Chapter II). This response was primarily MHC-I restricted as only AIV infected APCs 

of B19 MHC-I haplotype could activate the T lymphocytes. The stimulatory effect of 

infected APCs of B2 MHC-I mismatched APCs was either absent or very weak. The Ad-

HA response was mediated primarily by CD8+ T lymphocytes since the NO production 

and IFNγ secretion by purified T lymphocyte subpopulation bearing CD8+ phenotype 

was significantly greater than subpopulation with CD4+ phenotype following ex vivo 

activation by infected APCs at 7 weeks p.i. Although at 6 weeks p.i. the CD4+ T 

lymphocytes from Ad-HA inoculated chickens induced NO production following 

stimulation with both AIV infected and uninfected APCs, these results were not 

observed at other time points. The T lymphocytes induced by RCA-free Ad5 vector also 

reacted with a heterologous H7N2 AIV, which  shared only 41% amino acid sequence 

identity with the HA expressed by the adenovirus vector.      

The current studies further established the kinetics the CD8+ T lymphocyte 

response following primary and booster administration of Ad-HA.  Similar  to the MHC-

I restricted T lymphocyte responses stimulated by infection with whole IBV or AIV 

infection, the primary effector CD8+ T lymphocyte response was observed at 10 days p.i. 

(99 , 102). However at 16 days p.i., the response of the T lymphocytes was undetectable.  

The AIV specific memory T lymphocyte response induced by Ad-HA could be observed 

between 3 weeks and 7 weeks p.i. Although the magnitude of the memory response was 
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greatest at 5 weeks p.i., it remained lower than the primary effector response. The 

response of the memory T lymphocytes declined sharply 7 weeks after the primary 

inoculation of the vector and was reduced to undetectable levels at 8 weeks p.i. These 

observations of the memory T lymphocyte response induced by Ad-HA are consistent 

with our previous findings with T lymphocyte response to HA expressing plasmid 

(Chapter II). Seo and Webster also observed that in chickens inoculated with H9N2 AIV, 

the protection against a variant viral challenge had greatly declined by 10 weeks p.i. 

(97). Similarly, human memory T lymphocyte responses have also been reported to 

decline with time (75). 

The current study also evaluated the impact of boosting on the chicken T 

lymphocyte response. Studies with mice and non human primates have indicated the 

induction of immune responses to vaccine vectors following primary inoculation as an 

impediment to their use for further homologous boosting with the same vector (65, 90, 

113).  However, our study demonstrated the induction of a robust T lymphocyte 

response with a 16 fold increase in anti-HA antibody titers 1 week post boosting with the 

same Ad-HA vector, indicates the contrary. Toro et al  (125) have also established that in 

ovo vaccination of chickens with H5 Ad-vectored vaccine did not impair the 

development of protective immune response induced by the post hatch vaccination with 

the same Ad-vector expressing different HA (125). The presence of pre-existing 

immunity against the Ad- vector did not inhibit the efficacy of this vaccine to stimulate a 

secondary immune response against HA. This could be attributed to the non replicating 
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nature of the vector which induces the development of a weaker immune response 

against its self (125). 

Additionally, the present study also established that the non-replicating Ad- 

vector encoding an NP originating from a human H1N1/PR8 influenza virus has the 

ability to induce a cross reactive chicken T lymphocyte mediated responses specific for 

an avian derived NP. Studies with mice have demonstrated the immunodominance of NP 

in induction of CD8+ T lymphocytes (68, 120, 134, 146). The observations from this 

study also concur with our previous findings that NP from influenza virus is a better 

stimulator of T lymphocytes than HA, however the presence of the memory T 

lymphocyte in the peripheral blood against both the proteins is detectable only for 7 

weeks p.i. of the primary inoculation. The presence of responding memory T 

lymphocytes in the spleen 4 weeks post boosting suggest that following clearance of the 

antigens the circulating memory lymphocytes localize to central immune organs in 

chickens. 

The results of this study demonstrate that RCA-free Ad5 human adenovirus 

vectored vaccine expressing HA has the potential to induce both cell mediated and 

humoral immunity against AIV HA. This vaccine can cross react at the CD8+ T cell level 

with variant and heterologous AIV strains hence has a better ability to provide immunity 

against broader range of AIV. This vaccine can also be used effectively in a homologous 

prime-boost vaccination program. 
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CHAPTER IV 

CHICKEN CD8+ MEMORY T LYMPHOCYTES HAVE GREATER 

EXPRESSION OF CD44 AND CD45 THAN NAÏVE T LYMPHOCYTES 

 

INTRODUCTION 

Although water fowl and shore birds are natural reservoirs of avian influenza 

viruses (AIV), these viruses have also been isolated from domestic poultry, humans, 

pigs, tiger and seals (16, 43). Depending on the virulence of the virus, poultry may suffer 

from mild respiratory and enteric tract infection due to low pathogenic viruses or 

systemic infections, which may result in mortality due to highly pathogenic viruses (3, 

21, 60). The direct transmission of the highly pathogenic H5N1 AIV from chickens to 

humans with 60% fatalities of reported cases has made these viruses of grave zoonotic 

concern (3).  

 Genetic versatility of the HA and NA genes makes both humoral and cell 

mediated immunity critical in establishing effective immunity. Although the antibodies 

against the viral hemagglutinin (HA) protein may be viral neutralizing in nature and 

prevent infection, their efficacy is limited to homologous viral HA (3, 5). The more 

conserved nature of T lymphocyte epitopes in comparison to B lymphocyte epitopes 

allows them to respond to a broader range of serotypes (5). More cross reactive, T 

lymphocyte responses against viral infections have been shown to reduce disease by 

clearing infection (1, 29, 30). Vaccines that can induce T lymphocyte mediated immune 
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responses are more likely to be effective in preventing and limiting the disease caused by 

variant viruses (5). 

Following viral infection, the receptors of naïve T lymphocytes recognize the 

antigenic epitopes presented by dendritic cells and other antigen presenting cells (APC), 

responding by proliferating and differentiating into effector T lymphocytes that can clear 

the virus one to three weeks post infection (1, 29). The elimination of infection is 

followed by the contraction in the population of the effector T lymphocytes where the 

majority of the cells die due to apoptosis while a small population either persists or 

arises as memory T lymphocytes (1). The memory T lymphocytes have the ability to 

respond to the specific antigen more rapidly than naïve T lymphocytes (1). Memory T 

lymphocytes in mice and humans have been shown to express surface molecules that 

serve as markers to distinguish them from naïve lymphocytes. Adhesion molecules, 

CD44 and CD45, are two such phenotypic markers (26). These molecules have been 

shown to influence the migration, localization and activation of the T lymphocytes (29, 

30, 34). 

 In mice and humans, T lymphocytes express different isoforms of CD45, which 

differentiate memory from naïve cells (8). In other species, such as rats, quantitative 

differences in the levels of CD45 on the surface of T lymphocytes are used to distinguish 

memory and naïve T lymphocytes (8). CD45 is a membrane protein tyrosine 

phosphatase and has a role in the signaling cascades that influence the differentiation and 

proliferation of T lymphocytes (8, 83).   
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    Similarly, the level of expression of CD44 distinguishes memory T 

lymphocytes from naïve T lymphocytes (26). CD44 is a primary receptor of hyaluronate 

present in extracellular matrix and its interaction with the hyaluronic acid regulates cell 

adhesion, migration and homing (40). Naïve T cells in mice and humans have been 

shown to express low levels of CD44 and their activation leads to higher expression of 

CD44 which continue to remain elevated on both effector and memory T lymphocytes 

(1, 26). The CD44 antigen also can have a role in signal transduction which is mediated 

by its coupling with tyrosine kinases p185 and s-SRC and regulates cell growth, 

activation and differentiation (44, 49, 54). 

Since the development of immunological memory is the fundamental basis of 

vaccination, it is essential to recognize and differentiate the key components of the T 

lymphocyte mediated immune response. Although avian T lymphocyte progenitors have 

been shown to express adhesion proteins like CD44, BEN, HEMCAM and CD45 on 

their surface, the phenotype of avian memory and naïve T lymphocytes remain to be 

described (79, 83).  

Previous studies in our lab have demonstrated the induction of an AIV HA 

specific, memory CD8+T lymphocyte response in chickens inoculated with either a 

plasmid or a replication competent (RCA)-free human adenovirus vector encoding HA 

of H5N9/Tur/Wis/68 AIV strain (Chapter I, Chapter II). This memory response is 

detected at 3 weeks p.i.  and a peak response is observed at 5 weeks p.i.  The current 

study evaluates the expression of CD44 and CD45 surface molecules on the memory T 

lymphocytes at 5 weeks p.i. with replication competent (RCA)-free human adenovirus 
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vector encoding HA. The study demonstrates that the median fluorescence intensities of 

both CD44 and CD45 on the surface of memory chicken CD8+ and CD4+ T lymphocytes 

specific for AIV HA were greater than that of naïve T lymphocytes. Moreover, the 

differential expression of CD44 and CD45 on mature T lymphocytes could be used to 

distinguish memory T lymphocytes from naïve T lymphocytes. 

   

MATERIALS AND METHODS 

Viruses: Virus stock of low pathogenic H5N9 (A/Turkey/Wis/68) AIV was 

propagated in the allantoic sacs of 10 day old embryonated chicken eggs (ECE) for 48 

hours. Presence of the virus was determined by hemagglutination (HA) assays 

performed according to OIE guidelines 

(http://www.oie.int/eng/normes/mmanual/2008/pdf/2.03.04_AI.pdf).Virus titers were 

determined in eggs and expressed as embryo infectious dose 50 (EID50) (7).  

 

Vector: An RCA-free E1/E3 deleted human adenovirus serotype 5 (Ad5) vector 

encoding the HA gene from H5N9 (A/Turkey/Wis/68) AIV (Ad-HA) was provided by 

Dr. D.C. Tang (Vaxin Inc., Birmingham, AL)(119) . Virus titers were determined by the 

Adeno-X rapid titer kit (BD Clontech, Mountain View, CA), according to the 

manufacturer’s protocol, and expressed as infectious units (ifu) per ml.  

 

Experimental Animals: Embryonated eggs of B19/B19 MHC-defined chickens 

lines were obtained from Dr. Briles’ laboratory at Northern Illinois University (DeKalb, 
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IL). Post-hatching, the chicks were housed in a specific, pathogen free environment at 

the vivarium facility of Western University of Health Sciences, Pomona, CA. All 

procedures involving the use of chickens were approved by and conducted according to 

guidelines established by the Institutional Animal Care and Use Committee of Western 

University of Health Sciences. At three weeks of age, chickens with the B19/B19 MHC 

haplotype were inoculated intramuscularly (i.m.) with 0.3 ml (1 X 108 ifu total) of Ad-

HA. Control birds were inoculated with either AdE empty vector or PBS.  

 

Determination of HA-specific Antibodies: Serum samples were prepared from 

blood collected from the jugular vein of chickens at 5 weeks p.i. to evaluate the humoral 

responses.  Hemagglutination inhibition (HI) assays 

(http://www.oie.int/eng/normes/mmanual/2008/pdf/2.03.04_AI.pdf) were carried out to 

determine titers of anti-HA antibodies specific to H5N9 (A/Turkey/Wis/68) HA and 

expressed as geometric mean titer (GMT). 

 

Generation of Antigen Presenting Cells (APCs): Primary chicken kidney cell 

CKC lines were established from 10 day-old chicks of B19/B19 and B2/B2 MHC 

haplotypes as described previously (98).  Cells from the tenth passage were used as non-

professional APCs for the stimulation of the CD8+ T lymphocytes.  

 

T Lymphocyte Preparation: Peripheral blood mononuclear cells (PBMC) and 

splenocytes from vaccinated chickens were the source of ex vivo stimulated effector T 
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lymphocytes (92).  Briefly, blood was collected from the jugular vein at varying times 

post-inoculation (p.i.). Viable cells were collected from the interface and washed twice 

with phosphate buffered saline (PBS, pH 7.4). Cells were resuspended in 3 ml of RPMI 

1640 (Invitrogen, La Jolla, CA) supplemented with 10% fetal bovine serum (Gemini 

Bio-Products, West Sacramento, CA), 2 mM L-glutamine, and 0.1mM MEM non-

essential amino acids. B lymphocytes were removed by passing the cell suspension 

through an RPMI 1640 equilibrated nylon wool column and adherent cells were 

removed by incubating the cell preparation in 25 cm2 tissue culture flasks as described 

previously (98). 

 

Ex vivo stimulation of T Lymphocytes: T lymphocytes prepared from PBMC 

and spleens were stimulated ex vivo with MHC B19/B19 (matched) and B2/B2 

(mismatched) APCs. APCs at a concentration of 1 x 105 cells/ml were incubated for 8 

hours at 39ºC, 5% CO2 in 96-well tissue culture plates.  Each well of APCs was infected 

with 1 x 105 ELD50 of H5N9 (A/Turkey/Wis/68) virus for 1 hour followed by removal of 

the unattached virus by three washes with DMEM supplemented with 10% FBS. One x 

106 T lymphocytes in complete RPMI were then added 4 hours after infection of the 

APCs. The APCs and T lymphocytes were co-cultured for 24 hours at 39ºC, 5% CO 

before the media was collected and the supernatant clarified by centrifugation. Each ex 

vivo stimulation assay was conducted in duplicate. 
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Determination of IFNγ� in Supernatants: Since activated T lymphocytes 

produce IFNγ, the concentration of chicken IFNγ (ChIFN-γ) in 100µl of clarified 

supernatants collected after ex vivo stimulation was also determined at 5 weeks p.i. 

using a recently marketed, commercial ELISA kit (Invitrogen, La Jolla, CA) according 

to the manufacturer’s protocol (4). 

 

FACS Analysis: After ex vivo stimulation with AIV infected APCs, T 

lymphocytes were collected and labeled with antibodies for flow cytometric analysis as 

described by Bohls et al (12). One hundred µl of normal goat IgG (Sigma Aldrich, St. 

Louis, MO) at a concentration of 2 mg/ml was used to block non-specific binding by 

cellular Fc receptors on 106 cells for 20 min. Following blocking, the cells were washed 

twice with PBS and then labeled with phycoerythrin-conjugated monoclonal antibodies 

(MAbs) specific for either CD44 or CD45 at a concentration of 4 µg / 106 cells and 

fluorescein labeled MAbs specific for either CD8 or CD4 at a concentration of  1 µg / 

106 cells (Southern Biotech Birmingham, AL) as previously described (98). Biotinylated 

K55 Mab, labeled with streptavidin conjugated to R-phycoerythrin Cy5, was used for 

gating the lymphocytes as described by Bohls et al (12). Controls included unstained 

cells.  
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Flow cytometric analyses were performed on Beckman Coulter Cytomics FC 500 

Flow Cytometer (Beckman Coulter, Fullerton, CA). A minimum of 104 events were 

collected for each sample. FlowJo (TreeStar, Inc., Ashland, OR) was used to perform 

compensation and analyses of the data. 

 

Statistical Significance of Differences: The ChIFN-γ concentrations and median 

fluorescence intensities of CD44 and CD45 expression were expressed as average of 

three to six birds per group. ANOVA (analysis of variance) with significance of p < 0.05 

was used to determine statistical differences. 

 

RESULTS 

RCA Ad-HA Vector Induces Both CD4
+
 and CD8

+
 T Lymphocyte Mediated 

Responses: Since activation of the B lymphocytes is regulated by the CD4+ T helper 

lymphocytes, the presence of viral antibodies reflects on the induction of a CD4+ T 

lymphocyte response. At 5 weeks p.i., the anti-HA antibodies against the homologous 

H5N9 AIV were detected by HI serum assays following Ad-HA inoculation of chickens. 

The HI titers of these anti-HA antibodies ranged from 4 log2  to 7log 2. No HI activity 

was detected in the sera collected from the birds inoculated with PBS (FIG. 4-1). 
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FIG. 4-1. Average (±S.E.) HI antibody titers against H5N9 AIV in the sera of chickens 
inoculated with Ad-HA (n=6) or PBS (n=4) at 5 weeks p.i.  
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 The induction of memory CD8+ T lymphocyte mediated response was analyzed 

by a capture ELISA evaluating the IFNγ production by activation of T lymphocytes by 

MHC-I matched AIV infected APC . Since the APCs used for stimulation of T 

lymphocytes were non-professional in nature and FACS analysis confirmed only 

expression of MHC-I and not MHC-II molecule on their surface, the stimulated T 

lymphocytes were of CD8+ phenotype.  At 5 weeks p.i., the T lymphocytes from the 

chickens inoculated with either Ad-HA or PBS were ex vivo stimulated by co-culturing 

with AIV infected or uninfected APCs of the B19 MHC-I haplotype. After 24 hours of 

stimulation, the concentration of the IFNγ secreted in the supernatants of co-culture was 

evaluated using an ELISA. The stimulation mediated by AIV infected APCs resulted in 

an average of 44 pgm/ml of IFNγ secretion by the memory T lymphocytes derived from 

Ad-HA inoculated chickens while no detectable IFNγ was secreted by the T 

lymphocytes derived from PBS inoculated chickens. The memory T lymphocyte 

stimulation was AIV specific since neither T lymphocytes derived from Ad-HA nor 

from PBS inoculated chickens secreted any detectable levels of IFNγ following co-

culture with uninfected APCs (FIG. 4-2). 
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FIG. 4-2. Concentration of IFNγ secretion by T lymphocytes isolated from chickens 
inoculated with either Ad-HA or PBS at 5 weeks p.i. following ex vivo stimulation with 
uninfected and AIV infected APCs of the B19 MHC-I haplotype. Results are expressed 
as the average (± S.E.) of 3 birds. The difference between IFNγ secreted by T 
lymphocytes derived from Ad-HA and PBS inoculated chickens stimulated with AIV 
infected APCs was significant (p≤ 0.001). 
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Analysis of CD44 Expression on T Lymphocytes: The expression of the pan 

leukocyte marker CD44 on T lymphocytes from Ad-HA or PBS inoculated chickens at 5 

weeks p.i. was evaluated after ex vivo stimulation with uninfected and AIV infected B19 

APCs. Each sample of the T lymphocytes was divided into two aliquots and dual labeled 

with either anti-chicken CD4+ Mab or anti-chicken CD8+ Mab conjugated to FITC and 

anti-chicken CD44 Mab conjugated to PE.  Biotinylated K55 Mab labeled with 

streptavidin conjugated to R-phycoerythrin Cy5 was used for gating the lymphocytes as 

described by Bohls et al. (11). All T lymphocytes of either CD4 or CD8 phenotype were 

positive for the expression of CD44. However, the median fluorescence intensity of 

CD44 expression on the CD8+ T lymphocytes was greater than the intensity of 

expression on CD4+ T lymphocytes (FIG. 4-3(a) and FIG. 4-3 (b)). The T lymphocytes 

of both CD4 and CD8 phenotype derived from Ad-HA inoculated chickens had 

significantly higher median fluorescence intensity (p≤0.01) of CD44 expression than the 

lymphocytes derived from PBS inoculated chickens. Although the average median 

fluorescence of the CD44 expression on CD8+ T lymphocytes from Ad-HA inoculated 

chickens was greater following co-culture with infected APC than with uninfected 

APCs, the difference was not significant (Table 4-1). In contrast, the difference in the 

median fluorescence intensity of the CD44 expression on CD4+ T lymphocytes co-

cultured with infected APCs  was significantly (p=0.03) greater than that of  CD4+  T 

lymphocytes co-cultured with uninfected APCs.   
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FIG. 4-3(a). Analysis of the CD44 expression on the surface of T lymphocytes after ex 
vivo stimulation with H5N9 AIV infected APCs. Contours of the T lymphocyte 
populations stained with anti-chicken CD44 PE and anti-chicken CD4 or CD8 FITC. 
Histogram of the log fluorescence (Fl2) of CD44 expression (black) on T lymphocyte 
populations and the unlabeled control cells (gray). (A) CD4+ T lymphocytes from Ad-
HA, (B) CD4+ T lymphocytes from PBS. 
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FIG. 4-3(b). Analysis of the CD44 expression on the surface of T lymphocytes after ex 
vivo stimulation with H5N9 AIV infected APCs. Contours of the T lymphocyte 
populations stained with anti-chicken CD44 PE and anti-chicken CD4 or CD8 FITC. 
Histogram of the log fluorescence (Fl2) of CD44 expression (black) on T lymphocyte 
populations and the unlabeled control cells (gray). (C) CD8+ T lymphocytes from Ad-
HA and  (D) CD8+ T lymphocytes from PBS inoculated chickens co-cultured with AIV 
infected APC. 
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Table 4-1. Median fluorescence intensity of CD44 expression on ex vivo stimulated T 
lymphocytes from chicken 5 weeks p.i. with Ad-HA and PBS. 
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Analysis of CD45 Expression on T Lymphocytes: CD45 is also a pan leukocyte 

marker and the level of its expression has been used to define the phenotype of memory 

and naïve T lymphocytes in rats (8).  Flow cytometric analysis of the T lymphocytes 

labeled with anti-CD45 MAbs conjugated with PE revealed the presence of this 

molecule on both CD4+ and CD8+ T lymphocytes derived from either Ad-HA or PBS 

inoculated chickens. Similar to the CD44 expression, following ex vivo stimulation with 

AIV infected APCs , the median fluorescence intensity of CD45 expression was 

significantly  greater on CD8+ T lymphocytes than CD4+ T lymphocytes. T lymphocytes 

of both the CD4 and CD8 phenotype derived from Ad-HA inoculated chickens had 

higher expressions of CD45 than those derived from PBS inoculated chickens as 

indicated by the levels of the fluorescence intensities (FIG. 4-4(a) and FIG. 4-4(b)).   

The activation of the T lymphocytes by the infected APCs had an impact on the 

expression of the CD45 on CD8+ T lymphocytes since the fluorescence intensities of the 

CD45 expression on CD8+ T lymphocytes co-cultured with uninfected APCs was 

significantly less than those co-cultured with infected APCs (p≤0.001). There was no 

difference in the levels of fluorescence intensity of CD45 expression on the CD4+ T 

lymphocytes from Ad-HA chickens cultured with either infected or uninfected APCs 

(Table 4-2).  
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FIG. 4-4(a). Analysis of the CD45 expression on the surface of T lymphocytes after ex 
vivo stimulation with H5N9 AIV infected APCs. Contour plots of the T lymphocyte 
populations stained with anti-chicken CD45 PE and anti-chicken CD4 or CD8 FITC. 
Histograms of the log fluorescence (Fl2) of CD45 expression (black) on T lymphocyte 
populations and the unlabeled control  T cells (gray). (A) CD4+ T lymphocytes from Ad-
HA ,(B) CD4+ T lymphocytes from PBS. 
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FIG. 4-4(b). Analysis of the CD45 expression on the surface of T lymphocytes after ex 
vivo stimulation with H5N9 AIV infected APCs. Contour plots of the T lymphocyte 
populations stained with anti-chicken CD45 PE and anti-chicken CD4 or CD8 FITC. 
Histograms of the log fluorescence (Fl2) of CD45 expression (black) on T lymphocyte 
populations and the unlabeled control  T cells (gray). (C) CD8+ T lymphocytes from Ad-
HA and  (D)  CD8+ T lymphocytes from PBS inoculated chickens co-cultured with AIV 
infected APC. 
 

 



 92

 

 

 
Table 4-2. Median fluorescence intensity of CD45 expression on ex vivo stimulated T 
lymphocytes from chicken 5 weeks p.i. with Ad-HA and PBS. 
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DISCUSSION 

This is the first study that describes the phenotype of the memory and naïve T 

lymphocytes of the chicken.  The study examined differential expression of pan 

leukocyte markers CD44 and CD45 on the surface of T lymphocytes. Studies with 

human and mice T lymphocytes have described differences in the expression of CD44 

and CD45 on the memory and naïve T lymphocytes, implicating differences in the 

quality of the response mediated by them (1, 9, 10, 29, 30).  

The CD44 high expression of the memory T lymphocytes has been shownto 

facilitate the activation by a lower antigenic stimulation as compared with activation 

needed for naïve T cells, probably by allowing stronger interactions with dendritic cells 

(1). Studies using purified MHC-I and antigenic peptide complexes immobilized on 

latex microspheres lacking any other adhesion or co-receptor molecules have 

demonstrated the ability of CD44 high memory T lymphocytes to respond to antigen 

without the requirement for co-stimulation (26).  The ability of the memory T 

lymphocytes to extravasate and localize to non lymphoid tissue like skin, lungs and 

intestinal tract is also due to CD44 mediated adhesion with hyaluronic acid present in 

these tissues (29, 30 , 34).  

 In the current study, the T lymphocytes from Ad-HA inoculated chickens were 

shown to express higher levels of CD44 on their surface than T lymphocytes from PBS 

inoculated chickens. Moreover the expression of CD44 was greater on the CD8+ T 

lymphocytes than on CD4+ T lymphocytes from both Ad-HA and PBS inoculated 

chickens. Although the expression of CD44 on AIV stimulated memory CD8+T 
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lymphocytes was greater than the unstimulated memory T lymphocytes, the difference 

was not significant enough to allow distinguishing of effector and memory CD8+T 

lymphocytes on the basis of CD44 expression. 

        CD45 by virtue of its tyrosine phosphatase activity functions in the 

signaling during activation of the T lymphocytes (72). The different isoforms of CD45 

allow distinction between naive and memory T lymphocytes of humans and mice (9, 30). 

Although Paramithioitis et al (83) have shown the presence of various isoforms of CD45 

in chicken thymocytes, the expression of these isoforms in chicken memory and naïve T 

lymphocytes have not been established (83). However, the current study does clearly 

indicate greater expression of CD45 on either CD4+ or CD8+ chicken T lymphocytes 

derived from Ad-HA inoculated chickens than on T lymphocytes derived from PBS 

inoculated chickens. Additionally, the activation of the memory CD8+ T lymphocytes 

with infected APCs resulted in a greater CD45 expression on the cells as compared to 

those with uninfected APCs. 

Since the ex vivo stimulation of the T lymphocytes was mediated by non-

professional APCs with MHC 1 expression, the responding T lymphocytes were 

primarily of CD8+ phenotype. Hence, the current studies clearly establish that the 

chicken memory and naïve CD8+T lymphocytes can be phenotypically distinguished on 

the basis of CD44 and CD45 expression. Although the expression of both CD44 and 

CD45 was found elevated on the CD4+ T lymphocytes from Ad-HA inoculated chickens 

compared with those of PBS inoculated chickens, the distinction between memory and 
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naïve CD4+ T lymphocytes would be established more definitely by assays evaluating 

CD4+ T lymphocyte function.  

In addition to CD44 and CD45, other surface adhesion and signaling molecules, 

such as CD62L and CD27, have been show to be important for distinguishing the 

phenotype of memory and naïve T lymphocytes in humans and mice (1, 9). 

Identification of the chicken homologues of these molecules and the subsequent 

development of antibodies that can recognize these molecules would be of value in 

determining the function and development of T lymphocyte mediated responses in 

chickens. 
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CHAPTER V 

CONCLUSIONS AND DISCUSSION 

 

Infections with the avian influenza viruses (AIV) are concerns for veterinary and 

public health. Although shore birds and waterfowl are reservoirs for subclinical 

infections, the incidental infection of and adaptation to domestic poultry with these 

viruses cause mild respiratory and enteric disease to severe systemic disease that can 

even result in 100% fatality (2, 3, 17, 18).Since 1996, the increased incidence of the 

highly pathogenic AIV infection of humans in many Asian, African and European 

countries by direct transmission from poultry has made AIV a zoontoic threat (2, 78) . 

Although human-to-human transmission of the H5N1 AIV is rare, there are risks of 

emergence of a reassortant transmissible human virus with genes of avian origin viruses 

(16, 129, 136). The viruses of the influenza pandemics of 1918, 1957 and 1968 and the 

currently circulating swine origin H1N1 influenza virus encode genes of viruses of 

avian, swine and human origins (2, 6, 16, 18, 39).  Although pre-emptive mass slaughter 

policies practiced in the event of highly pathogenic AIV outbreaks in poultry curtails the 

spread of the virus, extensive economic losses are inevitably sustained (16, 27). Highly 

pathogenic strains with an increase in infectious viral loads within the bird are 

considered a risk to both birds and mammals (27, 115). Therefore, it is of great 

importance for both veterinary and public health to develop vaccines that limit viral 

proliferation and spread in chickens. 



 97

Currently, the available vaccines used in chickens rely on generating antibody 

mediated immunity primarily against the viral hemagglutinin (HA) and to a lesser extent, 

neuraminidase (NA) glycoproteins (3, 21, 22). Such humoral immunity protects against 

the viral strains expressing homologous HA protein and reduces shedding of viruses 

expressing homologous NA protein (3, 21, 22). However, with the presence of strains 

with any one of 16 different HA subtypes and any one of 9 different NA subtypes, the 

efficacies of the vaccines are limited for variant or heterologous viruses (3,5 ). 

Therefore, such vaccine strategies, in the absence of effective cross protection, require 

continuous development of new relevant vaccines that address the threats of a variety of 

serologically distinct strains (3, 9). 

In contrast, the induction of CD8+ T lymphocyte immunity can greatly diminish 

the clinical disease by clearing viral infected cells.  Additionally, the CD8+T 

lymphocytes target more conserved epitopes and hence have the potential to cross react 

with various viral subtypes (67, 68 ). Adoptive transfer studies have shown viral specific 

CD8+ T cells to be protective against a serologically heterologous avian influenza virus 

(100, 102 ). The responses of T cells to antigen by the initial activation of naïve cells can 

be described as the primary effector response, followed by the eventual appearance of 

memory cells which after activation by boosting or restimulation mediate the secondary 

effector response (1, 140).  

The use of commercially available inactivated whole AIV and fowl poxvirus 

vectored vaccines against AIV is discouraged or prohibited in many countries, such as 

the United States (16, 26, 47, 110). While the inability to distinguish infected from 
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vaccinated animals (DIVA) has limited the use of inactivated whole virus vaccine as a 

control strategy for AIV, pre-existing immunity to fowl poxvirus precludes the 

development of optimum protective immune response against AIV by this vectored 

vaccine (110, 114, 115, 122). Incomplete protection allows low pathogenic AIV to 

survive and circulate in flocks and potentially mutate into highly pathogenic strains (112, 

113).   

The adenovirus vectored vaccine expressing influenza virus proteins have been 

shown to stimulate CD8+ T lymphocytes in mice and swine (38, 50, 51, 53, 103, 117, 

133). The non-replicating (RCA- free) human Ad5 vector expressing H5N9 AIV HA 

(Ad-HA) developed by Toro et al provided partial to complete protection in chickens 

challenged with highly pathogenic H5N1 and H5N2 AIV strains (124).  

Development of safe and efficacious vaccines that have the ability to cross 

protect is critical for the prophylactic control of AIV. Vaccines that activate CD8+ T cell 

mediated immune responses, in addition to neutralizing antibody response, provide a 

rational approach for achieving cross protection. While the antibody mediated immune 

response to individual AIV proteins is well studied, the kinetics of the AIV specific T 

lymphocyte responses to these proteins have not been described in chickens. Ultimate 

protection against AIV challenge infection requires immunologic memory that is 

relevant for the virus.  Memory responses are thus, the essence of an efficacious 

vaccine. The rationale of this study was to identify the AIV proteins that can activate 

CD8+ memory T lymphocyte responses providing tools to develop more efficacious 
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vaccines against broader spectrum of AIV infections in chickens, which unlike mice, can 

be naturally infected by the field strains of these viruses. 

The study describes the modulation of chicken T lymphocyte responses specific 

to AIV HA and NP proteins. This study focused on delineating the responses of chicken 

memory CD8+ T lymphocytes to specific AIV hemagglutinin (HA) and nucleocapsid 

(NP) proteins expressed by plasmids or non replicating human adeno Ad5 virus vector 

and describing the kinetics of both primary and secondary responses of T cells. 

Additionally, this study identifies markers that differentiate the phenotype of the 

memory and naïve chicken T lymphocytes based on the expression of the pan leukocyte 

CD44 and CD45 markers on the surface of T lymphocytes.  

Studies evaluating the CD8+ T lymphocyte responses to influenza virus in mice 

have identified epitopes in the NP as being dominant in induction of specific CD8+ T 

cells (35, 61, 82, 126, 134, 146).  In contrast, the repertoire of human CD8+ T 

lymphocytes has been found to be broader and the responses are directed against 

multiple influenza viral proteins, including NP and HA (42,56, 62, 66).  This study also 

demonstrated that similar to the responses in humans, the memory CD8+ T lymphocytes 

of chickens respond to both AIV HA and NP proteins expressed by either plasmid or a 

non replicating (replication competent (RCA)-free) human Ad5 vector (41, 56, 62, 77). 

This, primarily MHC-I restricted, response ex vivo stimulated specifically by the AIV 

infected non-professional APCs resulted in the activation and proliferation of CD8+ T 

lymphocytes. Similar to the MHC-I restricted T lymphocyte responses stimulated by 

whole IBV or AIV, the primary effector CD8+ T lymphocytes resulting from inoculation 
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of adenovirus vector expressing either HA or NP was observed at 10 days p.i. (99, 102).  

The decline in effector T lymphocyte responses at 16 days p.i. was followed by 

emergence of AIV specific memory T lymphocyte responses. AIV protein specific 

memory CD8+ T lymphocyte responses induced by either plasmid or adenovirus vector 

expressing AIV proteins were detected by 3 weeks p.i. and increased until 5 weeks p.i. 

The response of the memory T lymphocytes to either protein declined after 5 weeks p.i. 

to nearly undetectable or undetectable levels by 8 to 9 weeks p.i.  (83).  Consistent with 

our studies, a decline in the protection of chickens against a challenge of H5N1AIV, 10 

weeks after infection with an H9N2 AIV has been observed by Seo and Webster (100, 

102). 

 The magnitude of the responses of viral specific memory T lymphocytes was 

consistently lower than that by the primary effector T lymphocytes. However, CD8+ T 

lymphocytes were the primary inducers of this response because the MHC matched 

CKC used for ex vivo stimulation were non-professional APCs.  The non-professional 

APCs express MHC-I, in the absence of MHC-II and thus stimulate CD8+ T 

lymphocytes rather than CD4+ T lymphocytes.  In order to further substantiate that the 

stimulated T cells expressed the CD8 rather than the CD4 antigen, populations enriched 

by negative selection using antibody coated Dynabeads (Invitrogen, La Jolla, CA) were 

stimulated and the response of CD8+ T lymphocytes were observed to be significantly 

greater than the response of CD4+ T lymphocytes.  

 While comparing the responses of individual AIV proteins NP expressed by 

either vector was observed to be a significantly more effective at inducing CD8+ T 
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lymphocytes than HA at 3 and 5 weeks p.i. when memory responses were most evident.  

Consistent with this greater response to NP than HA stimulated by the homologous 

virus, the T lymphocytes from the chickens inoculated with NP had a greater cross-

reactive response to the heterologous H7N2 virus than T cells from the birds inoculated 

with HA. It is possible that NP has more common T lymphocyte epitopes since, the 

amino acid identity between NP from H5N9 AIV and H7N2 AIV was 98% while that of 

HA was 41%.  

   After reactivation by a secondary or booster inoculation, the secondary effector 

response appeared and declined more rapidly than the primary effector response 

(Chapter III).  Whereas the initial effector response is greater than the memory response, 

the booster effector was even greater than the primary effector activity. Administration 

of a booster dose of Ad-HA stimulates a 16 fold increase in the anti-HA antibody titer 

and a secondary effector T lymphocyte response which is induced more rapidly and has 

a higher magnitude than the primary effector T lymphocyte response. The ability of Ad-

HA to induce a secondary immune response in chickens is not inhibited by the immunity 

against this non-replicating adeno virus vector.   

In the absence of an IFNγ ELISA, the initial studies evaluated IFNγ produced by 

activated T cells using NO production from stimulated macrophage cells. Although not 

commonly used to evaluate T cell responses, the latter assay was in our hands highly 

reproducible with strict standardization of cell conditions, such as the concentration, 

passage number and incubation. However, with the availability of a recently marketed 

commercial chicken IFNγ assay, an ELISA was used to evaluate the secretion of IFNγ 
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by the T lymphocytes ex vivo stimulated with AIV infected APCs. The results observed 

by this assay were corroborated with the simultaneously executed indirect NO 

production assay. However, the background as determined by PBS and AdE controls 

was actually lower using the ELISA as compared with the macrophage NO secretion to 

detect IFNγ. Therefore, the ELISA is not only more efficient and less expensive, but also 

is likely more specific at detecting T lymphocyte activation. 

The phenotypic difference between memory and naïve T lymphocytes of the 

chickens 5 weeks p.i. with Ad-HA, when the memory responses were greatest, was also 

described in these studies. The pan leukocyte markers for chicken CD44 and CD45 were 

available to quantify their expression on the surface of T lymphocytes from birds 

inoculated with either Ad-HA or PBS. Studies with human and mice T lymphocytes 

have implicated that the differences in the expression of CD44 and CD45 on the memory 

and naïve T lymphocytes impact the quality of the response mediated by them (1, 9, 10, 

29, 30). The mice CD44 high expressing T lymphocytes were activated by lower levels 

of antigenic stimulation than CD44 low expressing T lymphocytes (26). The homing and 

migration pattern of the T lymphocytes expressing higher or lower levels of CD44 were 

also shown to differ (1, 9). CD45 is a tyrosine phosphatase and functions in signaling 

during activation of the T lymphocytes (72). Naive and memory T lymphocytes of 

humans and mice have been shown to express different isoforms of CD45 and in rats the 

differential level of CD45 is the basis to distinguish naïve from memory T lymphocytes 

(9, 30).  
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In the current study, it was observed that both CD4+ and CD8+ T lymphocytes 

from Ad-HA inoculated chickens expressed higher levels of CD44 and CD45 than the T 

lymphocytes derived from PBS inoculated chickens. The surface expression of both 

CD44 and CD45 was greater on T lymphocytes with CD8+ than CD4+ phenotype. 

Although ex vivo stimulation of memory CD8+T lymphocytes with APCs expressing 

AIV proteins had no effect on the CD44 expression, the expression of CD45 on 

stimulated memory cells was observed to be greater than in the absence of AIV specific 

APC stimulation. 

In conclusion both AIV HA and NP delivered by plasmid DNA or a non 

replicating (RCA-free) Ad5 human adenovirus vectored vaccine have the ability to 

stimulate memory CD8+ T lymphocytes that can be activated by both homologous and 

heterologous AIV viruses. This non-replicating Ad5 human adenovirus vectored vaccine 

can be used effectively in a homologous prime-boost vaccination program in chickens 

AIV.  The phenotype of the chicken memory CD8+ and naïve CD8+ T lymphocytes can 

be distinguished by the levels of the expression of CD44 and CD45 molecules on their 

surface.  

Future studies should be aimed at determining the response of CD8+ T 

lymphocytes to other AIV proteins besides HA and NP.  Our preliminary studies have 

indicated that the M1 and to a lesser extent M2 may have T cell epitopes.  Since there 

are estimated to be at least 30 distinct MHC chicken haplotypes, additional studies 

should also evaluate the CD8+T lymphocyte repertoire to AIV in different MHC-I 

defined lines of chickens. The identification of the chicken homologues to other surface 
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adhesion molecules on mice and human T lymphocytes such as CD62L and CD27 would 

be relevant in defining the phenotype of and mechanisms of action for the response T 

lymphocytes in chickens. Development of reagents to detect cytokine expression by the 

T cells following activation would be helpful in understanding and manipulating the 

avian immunology. Only vaccine strategies that maximize induction of both memory 

cross-reactive CD8+ T lymphocyte responses and humoral immunity in chickens can 

address the challenge of providing protective immunity against a broader range of AIV 

types. 
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