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ABSTRACT

A Fuzzy Logic-based Approach for

Node Localization in Mobile Sensor Networks. (December 2009)

Harshavardhan Chenji Jayanth, B.Tech, National Institute of Technology

Karnataka, Surathkal, India

Chair of Advisory Committee: Dr. Radu Stoleru

In most range-based localization methods, inferring distance from radio signal

strength using mathematical modeling becomes increasingly unreliable and compli-

cated in indoor and extreme environments, due to effects such as multipath propa-

gation and signal interference. We propose FuzLoc, a range-based, anchor-based,

fuzzy logic enabled system system for localization. Quantities like RSS and distance

are transformed into linguistic variables such as Low, Medium, High etc. by bin-

ning. The location of the node is then solved for using a nonlinear system in the fuzzy

domain itself, which outputs the location of the node as a pair of fuzzy numbers. An

included destination prediction system activates when only one anchor is heard; it

localizes the node to an area. It accomplishes this using the theoretical construct of

virtual anchors, which are calculated when a single anchor is in the node’s vicinity.

The fuzzy logic system is trained during deployment itself so that it learns to

associate an RSS with a distance, and a set of distances to a probability vector.

We implement the method in a simulator and compare it against other methods like

MCL, Centroid and Amorphous. Extensive evaluation is done based on a variety of

metrics like anchor density, node density etc.
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CHAPTER I

INTRODUCTION

Localization is a service required by location-aware wireless sensor network (WSN)

applications. Sometimes, the nodes in a network when deployed will need to know

their position in terms of absolute or relative coordinates. Localization provides that

service through a protocol. One way to do localization is by employing GPS devices

on these nodes; however that is expensive both cost and energy-wise.

Ranging is a simple low-cost method based on received signal strength (RSS).

Since the attenuation of a signal depends on distance between radios among other

factors, ranging provides a fair tradeoff between accuracy and hardware requirement.

In extreme environments however, it is difficult and sometimes impossible to expect a

predictable relationship between distance and RSS. In extreme environments however,

this method introduces large error due to multipath, fading etc. Fuzzy logic provides

a way of “learning” about the environment so that distance can be correctly inferred

from RSS. This is accomplished through a set of rules which is nothing but learned

intelligence. The input is fed into the fuzzy inference system which consults the rules

in order to compute an output. Note that the input and output can be any related

quantity, not just RSS and distance. This basic technique has been employed in

two constituent subsystems of FuzLoc - the Fuzzy Non Linear System (FNLS) and

the Fuzzy Grid Prediction System (FGPS). FGPS uses fuzzy logic to relate a set of

distances to a grid, and the probability that the node will be found in that particular

The journal model is IEEE/ACM Transactions on Networking.
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grid.

The contributions to our thesis lie in the semantic treatment of input using fuzzy

logic, which subsequently helps localize the node in the fuzzy domain itself and the

underlying mathematical framework. The location will not be a geometric point, but

rather a small area with the error encoded. We feel that localizing a node to a small

area provides a good tradeoff against localizing to a point.

The rest of the thesis is organized as follows. In Chapter II we review and

discusses related work. Chapter III introduces fuzzy logic. Chapter IV introduces the

framework with ample discussion, descriptions and an example. Chapter V provides

for an overview of the system, along with a distributed protocol for node localization.

Chapter VI evaluates FuzLoc. Chapter VII discusses impact, implications and future

work.
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CHAPTER II

RELATED WORK

There has been a substantial amount of previous work dealing with the problem of

localization in sensor networks. They can be classified into range-based/range-free

and anchor-based/anchor-free methods independent of each other. Anchors are nodes

which know their positions precisely. Ranging refers to the process of determining the

distance/angle between 2 nodes from the radio characteristics between them. Range-

free methods use only connectivity information, i.e, distance is inferred based on the

contents of messages.

2.1 Range-free Localization Methods

These are also called coarse grained methods. Hop counting is a technique that is

frequently used in these scenarios. The average hop length of the network is first

computed and then the distance between two nodes will be inferred from the number

of hops a packet takes. DV-hop [1] is one such work that uses this method. A major

drawback is that hop-counting will fail for networks with irregular topologies such as

those with a concave shape [2]. If the nodes are mobile, then this method incurs a

lot of overhead since all the hop-counters will have to be refreshed every single time.

Amorphous computing [3] also uses a similar approach.

Centroid [4] performs GPS-free indoor localization. The goal is achieved by

simply taking the average of the co-ordinates of the anchors each node hears from.

This method requires a large anchor density and fails when all the anchors are on

the same side of the node. The advantage is, however, extremely low computational
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resources are needed. The method introduces a large error for ad-hoc networks.

APIT [5] is a similar method which divides the area of deployment into triangles

formed by anchors and then estimates the location. It assumes a large anchor density

and higher radio ranges for the anchor nodes.

Hu and Evans [6] have proposed a technique based on sequential Monte Carlo

sampling. This technique has been widely used in robotics and hence handles mobility

very well. The nodes statically estimate their positions using the positions of their one

and two hop neighbors. The Monte Carlo method has been used in a similar fashion

by the MSL [7] method. Both these methods consider radio range irregularity in

extreme environments with the Degree of Irregularity (DoI) method. This essentially

randomizes the radio range of a node in every direction so that nodes which are

“near” cannot communicate because the radio range in that direction is different in

time. Yet another similar method [8] uses special hardware to recover the mobile

node’s pedometry data and then uses Monte Carlo to localize.

2.2 Range-based Localization Methods

Fine grained methods refer to those that require an estimate of the distance or angle

between two nodes to localize. A frequent requirement is the presence of at least three

anchors so that basic uniqueness and geometric constraints are satisfied. The simplest

method is, of course, GPS which uses the time of arrival of signals from satellites in

order to obtain the precise location of a node in latitude-longitude format. A big

drawback is increased size of nodes, high energy consumption and increased cost.

Some methods use special hardware for very accurate localization. Precise mea-

surement of the phase difference between signals from 2 anchors is used to local-

ize [9]. Expensive hardware is a major drawback. The spinning beacons localization
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method [10] is an indigenous method that uses physically rotating beacons in order

to take advantage of the Doppler Effect.

RADAR [11] is a method which uses surveying to predetermine RSSI values at

any point in the area of deployment. Distance is then inferred from RSSI through

this data. Time difference of arrival (TDoA) and angle of arrival (AoA) [12] are

two fine grained methods requiring special hardware. Hybrid methods like parameter

estimation have been used [13]. Work by Patwari et al. uses the Cramer-Rao bound

to minimize the variance of error in location to iteratively localize [14].

Fuzzy logic has been proposed as a method to locate cellular phones in a hexag-

onal grid in a cellular network [15]. It assumes a fixed number of anchors but handles

mobility very well. The computation and refining are not suitable for a resource-

constrained computation platform like a micaZ node. This was the inspiration for

this work.

Sensors equipped with optical sensors and reflectors [16] [17] have been used to

localize accurately. These are very application specific; cst is another deterrent.

Some methods are anchor-free, i.e., they do not rely on the luxury of finding 2

or more anchors in their vicinity. Maps and map stitching and consequently graph

embedding localize nodes based on inter-node distances. Such methods are com-

putationally intensive. MDS-MAP [18] is one such method. Some others [19, 20]

are worth mentioning. However, these methods require atleast 3 anchors to obtain

absolute coordinates for the node in 2 dimensions.

2.3 Monte Carlo Based Localization Methods

The Monte Carlo method is widely used in the field of robot localization. The high

processing power involved is not a deterrent as most robots are not as resource con-
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strained as nodes. This method has been applied to sensor networks as well, with

some adaptation for low processing and memory requirements.

MCL [6] uses the maximum velocity of the node to filter out incorrect samples.

This way, mobility aids localization instead of hampering. It also uses knowledge

of indirect seeds. However, it will be shown in this thesis that such sampling based

methods perform badly when there is high noise/imprecision involved in sampling.

There are many works that build upon MCL [21, 7, 22]. These works seek to reduce

the processing power that MCL requires, and also reduces the error by constraining

the sampling area [21]. MSL seeks to consider non-anchor neighbors for sampling, by

considering already localized nodes. OTMCL is an innovative method which assumes

that nodes know their direction, either by the use of extra hardware or otherwise.

Errors in sensing the direction affect the accuracy, not to mention the energy cost

required.

However, it should be noted that all these methods perform poorly in the face of

extreme DoI. In other words, particle filtering does not handle imprecision well. For

example, since these are anchor based methods, having a large number of anchors

in a high DoI environment means that the amount of misinformation increases since

these anchors contribute to the filtering process. This effect is shown in this thesis’

evaluation section. Therefore, Monte Carlo based methods suffer from large memory

requirement as well as the inability to handle imprecision.
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CHAPTER III

PRELIMINARIES

We present our localization algorithm as a range based, anchor based one. The core

intuition is that ranging can be accomplished by “learning” about the environment,

and then using that intelligence to associate a RSS with a distance. Fuzzy logic (FL)

provides a cheap, inexpensive way to use and store the learned intelligence. We feel

that attempting to learn about the environment will eventually prove better than

trying to model the environment using complicated means. This point is especially

emphasized in extreme environments (like a typical indoor urban office with very

many metallic objects) where phenomenon like multipath and ranging are not easy

to model mathematically.

3.1 Definitions and Problem Formulation

A good method of localizing nodes in a highly mobile network is a distributed method,

given that a centralized method requires significantly more processing time (ref map

stitching). When each node individually localizes itself, we again have a choice be-

tween probabilistic estimation based methods (MCL, Cramer-Rao bound based MLE)

and multilateration based methods. In this thesis, we treat localization as a problem

of range-based multilateration (as opposed to localization from mere connectivity in-

formation). Both the ranging and the multilateration part occur in the fuzzy domain.

We intend to represent the location as a fuzzy number, thus encoding the (in)accuracy

information. In case the location is needed as a crisp number, an α-cut of the fuzzy

number with a desired confidence threshold will return a crisp number.
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Fuzzy Logic revisits classical set theory and enables it to have non-rigid (or fuzzy)

set boundaries. For example, define a classical set Far to contain elements between

and including 1000 and 2000. Then the number 999 would be excluded since it is

a classical set. For a fuzzy set named Far, the number would still belong, albeit

partially. This factor which denotes the associativity with the fuzzy set is called

degree of membership, and is a scalar between 0 and 1. If variables like distance

take on values such as 1000 or 42, linguistic variables like DISTANCE take on

non-numeric values like Near or Far which represent imprecise information.

A “fuzzy bin” is synonym for a fuzzy set. For every fuzzy bin there is an associ-

ated membership function µ(x) which essentially defines the set. The purpose of the

µ(x) function is to find any given crisp (non-fuzzy) number’s degree of membership

in that particular set. Note that a crisp number can belong to more than one fuzzy

set(s) at a given time, with varying degrees of membership. In order to translate the

crisp value into a fuzzy bin, we simply choose that bin in which it has the highest

membership. A popular membership function is the triangular membership function

defined as follows:

µ(x) =



































0 if x < a

(x− a)/(b− a) if a ≤ x ≤ b

(c− x)/(c− b) if b ≤ x ≤ c

0 if x > c

(3.1)

where (a, b, c) defines a triangular bin. For example, in Figure 1, the SMALL bin

can be represented as (5, 10, 15) and MEDIUM as (10, 15, 20). A crisp number

13.75 has a membership of 0.25 in SMALL, whereas it has a membership of 0.75 in

MEDIUM . The triangular membership function is a reasonable substitute for the

Gaussian since it has linear components only, and not much computation is required
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Small Medium Large
1

0.75

0.25Me
mb

ers
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 µ(
x)

Weight (kg)
5 10 15 20 30

�����
Fig. 1. Triangular membership functions

to compute the membership.

For a given fuzzy system, the fuzzy ruleset relates two linguistic variables in the

form of an IF-THEN clause. Typically the IF clause contains the input linguistic

variable (e.g., RSSI) and the THEN clause contains the output linguistic variable

(e.g., DISTANCE). An example rule is:

IF [INPUT] is [LOW ] THEN [OUTPUT] is [MEDIUM-LARGE ]

A fuzzy number is a special fuzzy bin where the membership is 1 at one and

only one point. A fuzzy number represents a multi-valued, imprecise quantity unlike

a single valued traditional number. We propose to represent the two dimensional

location of a node as a pair of fuzzy numbers (X, Y ) where both X and Y are fuzzy

numbers. The imprecision in a crisp number can be compacted into a single fuzzy

number. This location is calculated in the fuzzy domain itself, beginning with the

fuzzification of the signal strength received from anchor(s).
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3.2 Assumptions

Anchor nodes are present. They are a fraction of total nodes. Anchor nodes know

their locations. Anchor nodes have more sophisticated storage capabilities than reg-

ular nodes, to store the fuzzy rules.

Nodes do not know what their maximum velocity is. Nodes do not know the

area of deployment beforehand. Nodes have a preset grid size - for eg, if the location

is (250,300) nodes can intuitively assume a reasonable grid length of 100, and place

itself in the grid (3,3). For latitude and longitudes in decimal format, for eg, they can

assume a grid length of 1e − 7 degrees (roughly 10m). They can then assume there

are 25 grids in total, and calculate the locations of those virtual anchors.
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CHAPTER IV

FUZZY LOGIC BASED NODE LOCALIZATION

4.1 Fuzzy Multilateration

Consider a node about to be localized, as shown in Figure 2. It transmits a beacon

message which is heard by three (in our example) anchors. Each anchor A1, A2 and A3

measures the RSSI of this message. Using this RSSI, an anchor proceeds to determine

the distance between it and the node. Suppose that the ruleset were as follows, where

RSSIi and Disti are fuzzy linguistic variables (e.g. LOW , MEDIUM , HIGH):

Rule 1: IF RSSI is RSSI1 THEN DIST is Dist1

Rule 2: IF RSSI is RSSI2 THEN DIST is Dist2
...

Rule i: IF RSSI is RSSIi THEN DIST is Disti

We have the input RSSI from Anchor 1 as rss1. The membership µi(rss1) of this

value is computed for each input bin RSSIi, and that value is to the corresponding

output bin Disti as shown in Figure 3. The centroid of this area, which is the center

value of the output bin since the bin is symmetrical, is then taken and multiplied

with µi(rss1), and all such sums are added. This sum is then divided by the sum of

µi(rss1) to yield distance d1:

d1 =











∑

i∈Rules

µi(rss) ∗ c(Disti)

∑

i∈Rules

µi(rss)











(4.1)
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A1 (x1, y1)

A3 (x3, y3)

A2 (x2, y2)

Ni (X, Y)

d2

d1

d3

Fig. 2. A sensor node Ni with fuzzy coordinates X and Y , to be located using three

anchors positioned at (x1, y1), (x2, y2) and (x3, y3)

This method is called the center average defuzzification. The output will be a

crisp number d1 which is again fuzzified into

D1 = Fz(d1)

where Fz denotes fuzzification. Repeating this process for each anchor, we end up

with D1, D2 and D3.

Now, let the coordinates of the anchors be (xi, yi). We have,

F1 = (X − x1)
2 + (Y − y1)

2 −D2
1 = 0

F2 = (X − x2)
2 + (Y − y2)

2 −D2
2 = 0

F3 = (X − x3)
2 + (Y − y3)

2 −D2
3 = 0

(4.2)

Here, X and Y are fuzzy numbers which represent the location of the node. Note

that Di is a fuzzy number also. In order to solve this non-linear system of equations

in two fuzzy variables, we employ the fuzzy variant of the iterative classical Newton
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R u l e  i : I f  R S S I  i s  H I GH t h e n  D i s t  i s  L OW

1

0 -60                             -70                                    10             20
dB m

Input: -62

0.5

Fig. 3. Applying an input RSSI of -62dB to Rule i

method based on the Jacobian matrix. To use this method, fuzzy numbers need to

be represented in their parametric form:

X = (X,X)

where X is a continuous bounded non-decreasing function (effectively the “left half”

of the membership function). Likewise for X. Now consider the special case of the

triangular membership function, as depicted in Figure 1 and defined by (a, b, c) where

the membership is 0 at a, increases linearly to 1 at b and again decreases to 0 at c.
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The parametric representation of X, in terms of a variable r ∈ [0, 1] is:

X = (a+ (b− a)r, c− (c− b)r)

Looking back to the system of equations, we seek to represent it in the parametric

form. Without any loss of generality, we can assume that X and Y are positive. The

system can now be split into:

F1 = (X − x1)
2 + (Y − y1)

2 −D1
2 = 0

F2 = (X − x2)
2 + (Y − y2)

2 −D2
2 = 0

F3 = (X − x3)
2 + (Y − y3)

2 −D3
2 = 0

(4.3)

and

F1 = (X − x1)
2 + (Y − y1)

2 −D1
2
= 0

F2 = (X − x2)
2 + (Y − y2)

2 −D2
2
= 0

F3 = (X − x3)
2 + (Y − y3)

2 −D3
2
= 0

(4.4)

We can now construct the Jacobian J as:

J =

































F1X
F1X

F1Y
F1Y

F1X F1X F1Y F1Y

F2X
F2X

F2Y
F2Y

F2X F2X F2Y F2Y

F3X
F3X

F3Y
F3Y

F3X F3X F3Y F3Y

































(4.5)
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J =





























2(X − x1) 0 2(Y − y1) 0

0 2(X − x1) 0 2(Y − y1)

2(X − x2) 0 2(Y − y2) 0

0 2(X − x2) 0 2(Y − y2)

2(X − x3) 0 2(Y − y3) 0

0 2(X − x3) 0 2(Y − y3)





























(4.6)

Initial guesses of X and Y can be updated as follows: for every iteration compute

a matrix ∆:

∆ =















h(r)

h(r)

k(r)

k(r)















(4.7)

where h1 etc are defined as the incremental updates to the initial guess.

X(r) = X(r) + h(r)

X(r) = X(r) + h(r)

Y (r) = Y (r) + k(r)

Y (r) = Y (r) + k(r)

(4.8)

The set of equations evaluated at the initial guess is:
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F =





























F1

F1

F2

F2

F3

F3





























(4.9)

The equation that connects them is:

∆ = −J−1F

First, the initial guess (X0, Y0) is computed from the average of the coordinates

of the anchors. Then, J and F are computed for this initial guess. The incremental

update ∆ is then calculated and applied to X and Y . J and F are then computed

for the new values and the process is repeated till ∆ is sufficiently close to zero.

4.2 Fuzzy Grid Prediction

Consider the area in which the network is deployed to be subdivided into grids.

Assume that a 500× 500 area is divided into square grids of side 100, which leaves a

matrix of 5 rows and 5 columns. Assume again that there is an anchor at the center

of every grid. We now propose to tackle the problem of not having enough anchors

to perform multi-lateration.

The key idea is very simple - if the distance to an anchor is less, it is highly

probable that the node is in the same grid which the anchor is at the center of.

The inspiration for this part of the algorithm is [23]. We aim to construct a

fuzzy inference system which will help predict a grid in the deployment area which

has a high probability of containing the node in question, as shown in Figure 4. The
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VA�

VA�VA�

VA� 	 
�� ���
N (X, Y)� �

����

Fig. 4. Grid prediction setup - only 4 of 25 grids are shown

center of gravity of the lamina defined by the intersection of he square defined by

this grid and the radio range defined by the anchor will yield the required location.

The system consists of fuzzy rules as before. The data which serves as input is the

calculated average distance D to each virtual anchor. A sample rule is:

IF (Distgrd0 is D0) and . . . and (Distgrdn is Dn) THEN Probg[0−n]
is P[0−n]

where Distgrd0 is the calculated average distance to the virtual anchor situated at the

center of grid 0 and Pg[0−n]
is probability that the node is in grids 0 to n etc.

We first train the system. This is done by considering the actual position of the

node (which is not available except in training) and then generating probabilities.
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4.2.1 Virtual Anchors

As we see in [23], the fuzzy prediction performs best when there is an anchor at

the center of every grid. This is unreasonable to expect in a highly mobile network.

Therefore, we propose to replace each anchor with mathematically equivalent anchors

situated at the center of every grid.

Consider a node and an anchor which is its neighbor. Take all possible virtual

anchors and discard the ones which are at a distance of more than 2R from the anchor.

This forms the set of possible virtual anchors. Then, calculate the average distance

from the node to each of the virtual anchors. This scenario, illustrated in Figure 5,

can be mathematically calculated as follows: the average distance from the virtual

anchor to all the points on the circumference of a hypothetical circle at whose center

the real anchor is located. The radius of the circle is the calculated distance between

the node and the anchor which is obtained from the fuzzy inference engine contained

in FNLS (no non-linear equations are constructed or solved). Since the node can be

anywhere on the circumference of this circle, the average distance D can be calculated

using the following equation:
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D =
1

2π

∫ 2π

0

√

(L − r cos θ)2 + (r sin θ)2 dθ

=
1

2π

∫ 2π

0

√
L2 + r2 − 2Lr cos θ dθ

=
(L− r)

π
E
[

π| −4Lr
(L− r)2

]

(4.10)

where E[x|m] is the incomplete elliptic integral of the second kind.

This distance is then calculated for each of the possible virtual anchors, which is

nothing but the input to the Fuzzy inference system. The output will be a grid. The

center of gravity of the lamina defined by the intersection is then calculated. Thus, a

location is obtained.

4.3 Example of Fuzzy Logic Based Localization

Consider 3 anchors at the sides of a triangle - (0, 0) (10, 0) and (5, 15). Let the node

to be localized be at the centroid which is (5, 5). The distances the node would then

calculate is 5
√
2 = 7.0711. Let us assume the bin corresponding to this to be (6, 7, 8).

We now have the system of equations as:

F1 = (X − 0)2 + (Y − 0)2 − (6, 7, 8)2 = 0 (4.11)

F2 = (X − 10)2 + (Y − 0)2 − (6, 7, 8)2 = 0 (4.12)

F3 = (X − 5)2 + (Y − 15)2 − (6, 7, 8)2 = 0 (4.13)

Assume X and Y to be (5, 6, 7) - it really is (4, 5, 6). The parametric form would

then be (5 + r, 7− r) as explained before. Also,
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F1 = (X − 0)2 + (Y − 0)2 − (6, 7, 8)2

F1 = (X − 0)2 + (Y − 15)2 − (6, 7, 8)
2

which can then be simplified to

F1 = (5 + r − 0)2 + (5 + r − 0)2 − (6 + r)2

F1 = (7− r − 0)2 + (7− r − 15)2 − (8− r)2

Similarly the Jacobian can now be constructed as (first 2 rows only):

J =

[

2(5 + r − 0) 0 2(5 + r − 0) 0

0 2(7− r − 0) 0 2(7− r − 0)

]

(4.14)

The pseudo-inverse of a matrix with symbolic elements is computationally expen-

sive, especially for motes. Instead of inverting J which contains a symbolic element

r, we can instead compute two non-symbolic inverses (for r = 0 and r = 1), and

then combine the results. The “cost” for this “free lunch” is that the solution will

be a perfect triangular fuzzy number, and not a fuzzy number with little variation.

However, the accuracy lost with this method is extremely small.

First, we make the simple substitution r = 0 in J and F , to yield

∆0 = J−1
0 F0

Now if the solution (X, Y ) is expressed in simple form (not in parametric form) as

(xA, xB, xC) and (yA, yB, yC), we have:
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∆0 =















δxA

δxC

δyA

δyC















(4.15)

where δxA is the incremental update to xA. This is obvious since the left half of any

fuzzy number in parametric form (a+(b− a)r) computes to a when r = 0. The same

argument holds for the right half also.

Subsequently, substituting r = 1 yields ∆1:

∆1 =















δxB

δxB

δyB

δyB















(4.16)

After this step, we now have the new (xA, xB, xC) and (yA, yB, yC), which is

the input for the next iteration. The process is repeated until sufficient accuracy is

obtained.
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CHAPTER V

LOCALIZATION SYSTEM DESIGN

The system design for the proposed node localization scheme is depicted in Fig-

ure 6. The system components that implement the proposed Fuzzy Multilateration

and Fuzzy Grid Prediction techniques described in Chapter IV are the Fuzzy Non

Linear System (FNLS) and Fuzzy Grid Prediction System (FGPS). Both FNLS and

FGPS consist of a Fuzzy Inference System (FIS) which basically applies the input

to the rule database. For FNLS, the FIS handles RSSI and distance; for FGPS it

handles distance and probability. These distances are used in the two constituent

components - the Fuzzy Non Linear System (FNLS) and the Fuzzy Grid Prediction

System (FGPS). FNLS, after inferring a distance, builds a fuzzy nonlinear system of

equations in order to compute the location of the node as a fuzzy number. FGPS uses

the defuzzified distance from FNLS to first calculate the distances to virtual anchors,

and then uses the distances as input to the FIS. A vector of probabilities is returned

as the output.

Once all the output is sent to the node, it decides whether to solve a NLS and

infer a location or use the FGPS results based on the number of anchors it hears. If

in case it has only anchor among its neighbors, it chooses the grid with the maximum

probability as its location. In order to further narrow the region, it geometrically

computes the area around the anchor and then uses it to narrow down the grid to a

smaller area. This is because the node HAS to be within hearing distance from the

anchor.
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Fig. 6. Overall system decision process

5.1 A Distributed Protocol

We can implement the above system for localization as a protocol for mobile nodes

via two kinds of messages - a Hello message which anchors use to broadcast their

location and build rules, and a Help message which node use to notify anchors

that they need to localize. The anchors are assumed to have a little more computing

power than ordinary nodes. They can then maintain the fuzzy rules needed for FGPS

and FNLS. Once the nodes are deployed, the anchors broadcast a Hello message

advertising their location (Algorithm 5.1, step 1) and their virtual anchors. Whenever

another anchor hears a Hello, it uses its own location and the RSS of the incoming

message to train the FIS of the FNLS system (step 7). Then, the FIS of the FGPS

system is trained using the virtual anchors of the sending anchor (step 11). Thus, one

rule each for the FNLS and FGPS systems are built. These rules are used whenever

a Help message, which is essentially a request for localization is sent out by a node.
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The pseudocode for the localization protocol is shown in Algorithm 5.1 and

Algorithm 2.

When an anchor hears a Help, it first calculates the RSS of the message via

internal methods (Algorithm 5.1, step 14). It uses this as input to the FIS of the

FNLS system, which essentially defuzzifies the RSS into a distance using the rule

database previously built (step 15). Using this distance, it calculates the distances to

its virtual anchors (step 17). These set of distances are once again the input to the

FGPS system (step 18). A vector of probabilities is returned, which in turn is sent

back to the sending node along with the other information (step 19).

A node sends out a Help message whenever it desires to localize itself (Algo-

rithm 2, step 1). Anchor(s) reply to this message and the number of such replies

is obviously the number of anchors in the node’s vicinity (step 3). If this number

happens to be unity, the node chooses to construct two geometrical objects - one, the

grid which corresponds to the maximum probability in the probability vector; two, a

circle with the anchor at the center and with a radius equal to the distance between

the anchor and the node. The intersection of these objects will be the location of the

node (steps 8-12).

If it hears two or more than two anchors, the node chooses to construct a FNLS

and then solve it iteratively (steps 14-16). The solution of this system eventually re-

turns a location. In case the node hears no anchors at all, the most recently calculated

location is claimed as the current location.
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Algorithm 1 FuzLoc Protocol - Anchors

1: [V A]← FGPS.getVirtualAnchors . VA of self

2: BroadcastHello(VA)

3: procedure RecvHello(anchor n)

4: rss← Radio.getRSS()

5: loc← Message.parseLocation() . Loc of sender

6: dist← Distance to sender

7: FNLS.train(rss, dist)

8: [V A]← Message.parseVA() . VA of sender

9: [dist]← Calculate distances to virtual anchors

10: [prob]← Calculate probabilities

11: FGPS.train(dist, prob)

12: end procedure

13: procedure RecvHelp(anchor n)

14: rss← Radio.getRSS()

15: dist← FNLS.getDist(rss)

16: [V A]← FGPS.getVirtualAnchors

17: [V A.dist]← FPGS.getDists(VA)

18: [V A.prob]← FPGS.defuzzify(VA.dist)

19: Radio.reply(dist, VA.dist, VA.prob)

20: end procedure
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Algorithm 2 FuzLoc Protocol - Nodes

1: BroadcastHelp() . Initiates localization

2: [info]← ConsolidateHelpReplies

3: anchors← Count(info)

4: procedure Localize(node n)

5: if anchors = 0 then

6: loc← Previous Location

7: else if anchors = 1 then

8: [prob]← info[0].parseVAProb()

9: grid← Max(prob).index

10: dist, center ← info[0].parseAnchorLoc()

11: circle← ConstructCircle(dist, center)

12: loc← SolveIntersection(grid,circle)

13: else

14: [dists]← info.parseDistances()

15: [centers]← info.parseLocations()

16: loc← solveFNLS(dists,centers)

17: end if

18: end procedure
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5.2 Training

5.2.1 FNLS - Training

Training this system involves fuzzifying both the RSS and the distance during the

training period. First, anchors exchange locations during the Hello broadcast pe-

riod. The RSS rss of the incoming message is calculated. The membership rss in

each RSS bin is calculated. The bin which corresponds to the maximum membership

is chosen as the corresponding bin rbin. Similarly, the distance between anchors is

computed since both the anchors know each others locations. The distance d between

anchors is similarly fuzzified into a distance bin dbin. The following rule will then be

inserted into the ruleset:

IF RSS is rbin THEN distance is dbin

5.2.2 FGPS - Training

Training this system involves fuzzifying the RSS from each valid virtual anchor and

the calculated probabilities. When an anchor receives a Hello, it also receives the

list of valid virtual anchors of the sending anchor. It then calculates distances to

each of those virtual anchors using the EllipticE method. As for the calculation

probabilities, the node first locates in own grid.
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CHAPTER VI

PERFORMANCE EVALUATION

Performance evaluation was carried out using a multi-method simulator written by

the authors of [6]. Along with MCL, Centroid and Amorphous Localization are im-

plemented in the simulator. There is also a “Perfect Fuzzy” algorithm, which is

essentially FuzLoc but with a 100% accurate fuzzy inference subsystem, which is

impossible to achieve. This ghost algorithm quantifies the errors caused by the topol-

ogy of the network (e.g., number of anchors), and not due to the learned intelligence

gathered by the anchors. We noticed that a significant portion of the error is due to

the absence of anchors at an anchor density of 10%.

The simulation setup is structured as follows. For each value of each metric (i.e.,

each data point), there are 10 iterations. Each iteration consists of each node taking

50 “steps”. The mobility model chosen is random waypoint. Nodes move towards a

fixed destination (which is not visible to the nodes) in steps. At each step, it moves

a maximum distance denoted by maxv. The localization error is averaged for each

method of localization over 50 steps, and then over 10 iterations. Since FuzLoc

returns a fuzzy location, it is first defuzzified into a crisp location by considering

the center values b of each of the fuzzy numbers representing the abscissa and the

ordinate. The default parameters used are shown in Table I.

6.1 Degree of Irregularity

The degree of irregularity helps quantify the real non-spherical radio range experi-

enced by antennae. Figure 7 illustrates the radio pattern caused by DoIs of 0.0 (ideal
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Table I. Default simulation parameters

Grid 500×500

Nodes 320

Seeds 32

DoI 0.4

Radio Range 50

Iterations 10

Fuzzy Bins 10

Bin Type Triangular

Defuzzification Center-average

case) and 0.4. As we can see, the change in range is at most 40% for a DoI of 0.4.

Simulation was carried out with varying DoI. All other parameters were kept

constant. Figure 8 shows the runaway behavior of MCL. This effect of errors being

compounded due to polluted samples has been investigated as the “kidnapped robot

problem” in the world of robot localization. The kidnapped robot test verifies whether

the localization algorithm is able to recover from localization failures, as signified by

the sudden change in location due to “kidnapping”. It is well known that MCL

based algorithms suffer from this problem; many remedies have also been studied and

implemented. It has been shown that such uncorrected algorithms collapse when the
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observed sample is quite far from the estimated sample.

6.2 Anchor Density

The anchor density is a critical parameter for anchor-based localization schemes. In

Figure 9, we see the impact of anchor density on the localization schemes. The num-

ber of anchors vary from 10% (32 anchors) to 50% (160 anchors). The simulation

was done for a DoI of 0.4. We see that the accuracy of MCL suffers since the samples

become increasingly polluted because as the number of anchors increases, the amount

of “misinformation” also increases due to high DoI. This mismatch of observed and

calculated values causes the error to compound. Centroid performs better with in-

creasing anchor density. The error for Amorphous does not improve much, as noted

in [6].
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The same evaluation of the effect of anchor density has been done for a DoI of

0.2, as shown in Figure 10.
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Fig. 10. Effect of anchor density at a DoI of 0.2

6.3 Node Density

As shown in Figure 11 Node density does not significantly affect the algorithms since

the number of anchors is kept constant throughout at 10%. Amorphous, however,

needs the propagated messages to be delivered to the node. Hence, a higher node

density means more neighbors, which means better communication between nodes.

The same node density test was run at a lower DoI with the results as shown in

Figure 12. It is to be noted that a higher DoI means that a node may not always

have the same neighbors in adjacent steps of the simulation, since the radio range of

a node differs at every instant.



33

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 100  200  300  400  500  600

E
rr

o
r 

(r
)

Total Nodes

MCL error
Centroid error

Amorphous error
Fuzzy error

Perfect fuzzy error

Fig. 11. Effect of node density

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 100  200  300  400  500  600

E
rr

o
r 

(r
)

Total Nodes

MCL error
Centroid error

Amorphous error
Fuzzy error

Perfect fuzzy error

Fig. 12. Effect of node density at a DoI of 0.2



34

6.4 Number of Bins

The number of bins in the fuzzy system is a design parameter - the greater the number

of bins, better will be the accuracy of the system. As the number of bins increases,

more and more RSSs will find a bin with high membership. This causes more variety

in rules and more rules to fire strongly during the fuzzy inference process. Hence,

a better output will be obtained. Changing this number should not affect the other

algorithms. As we see in Figure 13, the other methods remain invariant whereas

FuzLoc experiences decreasing error with an increase in the number of bins.
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6.5 Maximum Velocity

MCL assumes that nodes know the maximum velocity, whereas none of the other

algorithms do. This information is then used to filter the samples, which results in

accurate localization. FuzLoc suffers from low anchor density at higher node speeds.

Hence the localization errors increases, but does not increase by a large percentage.

The results are depicted in Figure 14.
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6.6 Fuzzy Performance

The following figure shows the performance of the FNLS FIS engine, which is the

main subsystem. On the X axis is the input distance and on the Y is the defuzzified

output distance. After training the system using random RSS-Distance pairs, RSS
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values deduced from distances were fed into the system, so that a distance should

be inferred. Ideally, it should be a straight line with a slope of unity, however, the

actual output is plotted in the Figure 15. The data for the figure was gathered after

the fuzzy system was trained with 30 random pairs of data.

6.7 Memory Overhead

A typical FIS does not require much storage capacity. If there were 8 bins, for e.g., a

single byte can represent a bin. Hence, each FNLS rule requires just 2 bytes of storage.

Typically, an anchor creates around 30 rules during the period of deployment which

translates to 60 bytes of storage. The FGPS FIS however, requires 50 bytes for each

rule (25 bins in the input, 25 in the output). Note that regular nodes do not store

rules, only the anchors which are a fraction of the total number store rules. Moreover,
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due to the nature of the triangular bin shapes, simple calculations are required in order

to fuzzify and defuzzify. The only caveat is the inversion of matrices that is required.

MCL requires at least 50 samples for low localization error. Each sample requires

a weight. Centroid does not store any history and thus has the least storage require-

ment. Amorphous requires storing the announcements made by the seeds which are

flooded throughout the network. If there are 320 nodes, 32 of which are anchors,

MCL requires each node to store 50 samples. Each sample has an abscissa and an

ordinate, each of at least 4 bytes. Hence, MCL requires around (50 × 4 × 2 × 320)

= 128000 bytes. Fuzzy on the other hand requires around 1500 bytes for FGPS and

around 60 for FNLS = (1560×32) = 49920 bytes which is roughly 40% of the storage

MCL requires.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

Localization in indoor environments suffers from errors due to peculiarities of the

environment. Our method overcomes these errors even in the presence of mobility.

Instead of attempting to model the radio wave propagation so that an accurate dis-

tance can be inferred from RSS, we instead use fuzzy logic to treating the quantities

involved using a different semantic. This way, the imprecision in the measured RSS

was encoded into a fuzzy variable. Subsequently, the RSS was converted into a lo-

cation in the fuzzy domain itself using a nonlinear system of fuzzy variables. Our

method is anchor based, meaning that error reduces with increasing percentage of

anchors. Finally, our method does not require much storage and processing as com-

pared to MCL.

On a general note, fuzzy logic can be applied to WSNs in a variety of ways. The

basic premise of using FL is that the system does not need to be modeled - only a

few input-output pairs are required for the FL system to learn and behave as if it

were the real system. This makes it ideal for WSNs since it is deployed in a variety

of environments. For example, localization using ultrasonic frequencies also suffers

from multipath and such related problems. The time of arrival can be related to the

time of emission of the wave using a fuzzy rule. Basically, any two related quantities

can be related in a fuzzy inference system. We intend to test FuzLoc using mobile

robots which can communicate using RF.

Since FL has been shown to be quite reliable when applied to control theory, it

can be applied in a distributed way to WSNs. Applications of distributed feedback
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control include beamforming for sensor networks and power control. Again, there are

a variety of applications for control that can use a reliable fuzzy inference system as

a backend.
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and K. Molnár, “Radio interferometric geolocation,” in SenSys ’05: Proceedings

of the 3rd International Conference on Embedded Networked Sensor Systems,

2005, pp. 1–12.

[10] H. lin Chang, J. ben Tian, T.-T. Lai, H.-H. Chu, and P. Huang, “Spinning

beacons for precise indoor localization,” in SenSys ’08: Proceedings of the 6th

ACM Conference on Embedded Network Sensor Systems, 2008, pp. 127–140.

[11] P. Bahl and V. N. Padmanabhan, “Radar: an in-building rf-based user location

and tracking system,” in INFOCOM 2000. Nineteenth Annual Joint Conference

of the IEEE Computer and Communications Societies. Proceedings, vol. 2, 2000,

pp. 775–784 vol.2.

[12] D. Niculescu and B. Nath, “Ad hoc positioning system (aps) using aoa,” in IN-

FOCOM 2003: Twenty-Second Annual Joint Conference of the IEEE Computer

and Communications Societies, vol. 3, April 2003, pp. 1734–1743 vol.3.

[13] K. Whitehouse and D. Culler, “Calibration as parameter estimation in sensor

networks,” in WSNA ’02: Proceedings of the 1st ACM International Workshop

on Wireless Sensor Networks and Applications, 2002, pp. 59–67.

[14] N. Patwari and I. Alfred O. Hero, “Using proximity and quantized rss for sensor

localization in wireless networks,” in WSNA ’03: Proceedings of the 2nd ACM

International Conference on Wireless Sensor Networks And Applications, 2003,

pp. 20–29.



42

[15] X. Shen, J. W. Mark, and J. Ye, “Mobile location estimation in cdma cellular

networks by using fuzzy logic,” Wirel. Pers. Commun., vol. 22, no. 1, pp. 57–70,

2002.

[16] R. Stoleru, P. Vicaire, T. He, and J. A. Stankovic, “Stardust: a flexible ar-

chitecture for passive localization in wireless sensor networks,” in SenSys ’06:

Proceedings of the 4th International Conference on Embedded Networked Sensor

Systems, 2006, pp. 57–70.

[17] R. Stoleru, T. He, J. A. Stankovic, and D. Luebke, “A high-accuracy, low-cost

localization system for wireless sensor networks,” in SenSys ’05: Proceedings of

the 3rd International Conference on Embedded Networked Sensor Systems, 2005,

pp. 13–26.

[18] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz, “Localization from

mere connectivity,” in MobiHoc ’03: Proceedings of the 4th ACM International

Symposium on Mobile ad hoc Networking & Computing, 2003, pp. 201–212.

[19] A. Savvides, C.-C. Han, and M. B. Strivastava, “Dynamic fine-grained localiza-

tion in ad-hoc networks of sensors,” in MobiCom ’01: Proceedings of the 7th

Annual International Conference on Mobile Computing and Networking, 2001,

pp. 166–179.

[20] C. Savarese, J. M. Rabaey, and K. Langendoen, “Robust positioning algorithms

for distributed ad-hoc wireless sensor networks,” in USENIX Annual Technical

Conference, General Track, 2002, pp. 317–327.

[21] A. Baggio and K. Langendoen, “Monte Carlo localization for mobile wireless

sensor networks,” Ad Hoc Netw., vol. 6, no. 5, pp. 718–733, 2008.



43

[22] M. Martins, H. Chen, and K. Sezaki, “Otmcl: Orientation tracking-based monte

carlo localization for mobile sensor networks,” in Proceedings of the Sixth In-

ternational Conference on Networked Sensing Systems (INSS 2009), Carnegie

Mellon University, Pittsburgh, PA, Jun. 2009.

[23] X. Shen, J. W. Mark, and J. Ye, “User mobility profile prediction: an adaptive

fuzzy inference approach,” Wirel. Netw., vol. 6, no. 5, pp. 363–374, 2000.



44

VITA

Harshavardhan Chenji Jayanth was born in Bangalore, India. After complet-

ing schooling and college at The Home School, Vijaya High School and the National

College Jayanagar, he attended university at the National Institute of Technology

Karnataka, Surathkal, India from 2003 to 2007. He received the degree of Bachelor

of Technology in May, 2007. He entered graduate school at Texas A&M University,

College Station in August, 2007 and graduated with his Master of Science in 2009.

He can be reached at:

Permanent Address:

#22, 1st B Cross, 33rd Main, 7th Block,

Banagirinagar, BSK 3rd Stage,

Bangalore, India 560 085

Email: h.chenji at gmail.com

The typist for this thesis was Harshavardhan Chenji Jayanth.


