
DESIGN AND ANALYSIS OF STOCHASTIC DYNAMICAL SYSTEMS

WITH FOKKER-PLANCK EQUATION

A Dissertation

by

MRINAL KUMAR

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2009

Major Subject: Aerospace Engineering



DESIGN AND ANALYSIS OF STOCHASTIC DYNAMICAL SYSTEMS

WITH FOKKER-PLANCK EQUATION

A Dissertation

by

MRINAL KUMAR

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Co-Chairs of Committee, Suman Chakravorty
John L. Junkins

Committee Members, Srinivas R. Vadali
David C. Hyland
Shankar P. Bhattacharyya

Head of Department, Dimitris C. Lagoudas

December 2009

Major Subject: Aerospace Engineering



iii

ABSTRACT

Design and Analysis of Stochastic Dynamical Systems

with Fokker-Planck Equation. (December 2009)

Mrinal Kumar, B.Tech., Indian Institute of Technology, Kanpur;

Co–Chairs of Advisory Committee: Dr. Suman Chakravorty
Dr. John L. Junkins

This dissertation addresses design and analysis aspects of stochastic dynamical

systems using Fokker-Planck equation (FPE). A new numerical methodology based

on the partition of unity meshless paradigm is developed to tackle the greatest hurdle

in successful numerical solution of FPE, namely the curse of dimensionality. A local

variational form of the Fokker-Planck operator is developed with provision for h−

and p− refinement. The resulting high dimensional weak form integrals are evaluated

using quasi Monte-Carlo techniques. Spectral analysis of the discretized Fokker-

Planck operator, followed by spurious mode rejection is employed to construct a

new semi-analytical algorithm to obtain near real-time approximations of transient

FPE response of high dimensional nonlinear dynamical systems in terms of a reduced

subset of admissible modes. Numerical evidence is provided showing that the curse

of dimensionality associated with FPE is broken by the proposed technique, while

providing problem size reduction of several orders of magnitude.

In addition, a simple modification of norm in the variational formulation is shown

to improve quality of approximation significantly while keeping the problem size fixed.

Norm modification is also employed as part of a recursive methodology for tracking

the optimal finite domain to solve FPE numerically.

The basic tools developed to solve FPE are applied to solving problems in nonlin-
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ear stochastic optimal control and nonlinear filtering. A policy iteration algorithm for

stochastic dynamical systems is implemented in which successive approximations of

a forced backward Kolmogorov equation (BKE) is shown to converge to the solution

of the corresponding Hamilton Jacobi Bellman (HJB) equation. Several examples,

including a four-state missile autopilot design for pitch control, are considered.

Application of the FPE solver to nonlinear filtering is considered with special em-

phasis on situations involving long durations of propagation in between measurement

updates, which is implemented as a weak form of the Bayes rule. A nonlinear filter

is formulated that provides complete probabilistic state information conditioned on

measurements. Examples with long propagation times are considered to demonstrate

benefits of using the FPE based approach to filtering.
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CHAPTER I

INTRODUCTION

Analysis of stochastic dynamical systems is a mathematically challenging field

that has inspired more than a century of researchers. Fokker-Planck equation (FPE)

is a key equation encountered in the study of stochastic systems. It is a parabolic

partial differential equation that captures the exact description of evolution of the

state probability density function (pdf) through continuous dynamical systems per-

turbed by white noise excitation. An instance of pdf evolution is depicted in Fig.1(a),

which shows propagation of an uncertainty cloud (depicted using points) through a

stochastic system, clearly illustrating manifestation of underlying nonlinearity in the

form of distortion of the initial Gaussian sample.

Unfortunately, analytical solutions of FPE are known to exist for only a handful

of dynamical systems, which comprise a very small fraction of systems encountered

in real life. Furthermore, due to several difficult issues, the greatest of which is the

so called “curse of dimensionality”, accurate numerical solutions of FPE for general

high dimensional and/or nonlinear systems have remained elusive and drawn atten-

tion of numerous researchers for over half a century. Interest in FPE continues to

thrive because it lies at the heart of the uncertainty propagation problem and non-

linear filtering. This dissertation considers the core problem of developing a robust

numerical algorithm for solving FPE and explores applications in stochastic optimal

control and nonlinear filtering. Two variants of the partition of unity based finite

element meshless approach are developed to discretize the Fokker-Planck operator on

a finite sized domain. Significant improvement over state-of-the-art is demonstrated

The journal model is IEEE Transactions on Automatic Control.
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and numerical evidence for breaking of the curse of dimensionality is provided. Cou-

pled with spectral analysis of the discretized FP operator, a robust numerical tool

is developed that provides transient response of FPE in near real-time. The field of

nonlinear filtering, wherein knowledge of the complete state-pdf (as opposed to first

few moments) is worth its value in gold, especially stands to gain from such a robust

solver. In addition, there are multiple problems in science, engineering and economics

(detailed in section B) that can benefit from the methods developed in this work.

The remainder of this chapter is arranged as follows: Section A presents in detail

the history of research in the field of stochastic dynamics, starting with its inception to

the present state-of-the-art in solving FPE numerically. Section B presents immediate

and potential application areas of this research in various fields of science, engineering

and economics.

The remainder of this dissertation is organized as follows (see Fig.2 for an

overview of structure): Chapter II presents a formal statement of problems considered

in this dissertation, followed by a discussion of challenging research issues surrounding

these problems. This chapter is linked with appendix A, which reviews important

concepts in probability theory and stochastic dynamics with emphasis on physical

underpinnings of abstract concepts. Chapter III discusses in length the details of

various algorithms developed to solve the considered problems, including meshless

partition of unity based discretization (PUFEM) and analytical integration of the

resulting ODEs. The various modules of PUFEM and analytical integrator together

constitute a semianalytical algorithm for solving FPE in near real-time. Chapter

III also presents results for each algorithm discussed. Chapter IV presents recursive

norm-modification techniques for solution refinement and domain tracking for nonlin-

ear systems. Chapters V and VI discuss applications of various algorithms developed

in Chapter III to problems in nonlinear stochastic optimal control and nonlinear fil-
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(a) The state-pdf as a point cloud. (b) Approximate characterization of the
exact pdf

Fig. 1. The problem of uncertainty propagation. The x and y axes depict states of the

dynamical system (e.g. x, ẋ).

tering respectively. Finally, chapter VII draws conclusions and discusses avenues for

future extensions of work presented in this discourse.

A. History of Research in Stochastic Dynamics

The roots of stochastic dynamics go back to the investigations of Robert Maxwell

and Ludwig Boltzmann into molecular properties of gases. The premise of their

investigation was that heat in a medium is essentially random motion of its molecules

[1]. Following heuristic arguments, Maxwell (1860) developed an expression for the

steady state probability density of individual molecules as an exponential function

of their kinetic energy (Maxwell distribution) [2, 3]. Boltzmann (1868) generalized

Maxwell’s result to include the case of gas molecules subjected to a conservative force-

field [4]. The resulting steady-state probability density was then proposed to be an

exponential function of the total energy (potential + kinetic), known as the Maxwell-
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Boltzmann distribution and argued that a gas with any arbitrary initial distribution

would eventually approach the Maxwell-Boltzmann distribution. Together, their work

laid the foundation for stochastic dynamics, even though uncertainty entered only

via random initial conditions in their studies. The systems they considered were

autonomous and conservative with no stochastic forces. These assumptions led to

contradictory results and paradox-like situations in their conclusions, e.g., reversibility

paradox, recurrence paradox [1].

The inclusion of continuous random disturbances into dynamic analysis occurred

around the end of the nineteenth century. Rayleigh (1880) was the first to study

the problem of random walk [5, 6] and obtained a partial differential equation (PDE)

governing evolution of the probability density of displacement, the “random variable”

(1894, 1899) [7]. In 1891, he applied similar analysis to the theory of gases and ob-

tained a PDE for the probability density of velocity of gas molecules [8]. This was the

first instance of Fokker-Planck equation in physics (of course, with a different name).

Bachelier (1900) constructed a model of the French stock exchange [9], obtaining in

the process a simple form of FPE. Between 1910 and 1912, he related this work to the

problem of gambler’s ruin and obtained a more general version of FPE. The works of

Rayleigh and Bachelier went largely unnoticed and the equations they derived were

not identified as the “Fokker-Planck equation” [1].

In a second wave of interest in the subject, Albert Einstein brought together

the Maxwell-Boltzmann theory with the approach of random walks in his famous

1905 paper on Brownian motion [10]. Einstein’s Nobel prize winning work led to

popularization of the theory of Brownian motion and formalization of the associated

theory of stochastic dynamics. Langevin introduced the formal stochastic differential

equation (SDE) in a 1908 paper for modeling dynamical systems perturbed by random

disturbances (Langevin’s equations) [11]. Fokker studied state-dependent white noise
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for a first order system (motion of an electron in a field of random radiation) [12, 13].

Planck applied Fokker’s equation to quantum physics and generalized it considerably,

handlingN -th order dynamical systems with state-dependent white noise [14], leading

to the eventual christening, the Fokker-Planck equation.

Kolmogorov (1931) made significant contributions to the abstract theory of FPE,

tying it together with the theory of Markov processes [15]. To honor his contribu-

tions, FPE has also been named the Fokker-Planck-Kolmogorov equation (FPKE),

Kolmogorov forward equation and Kolmogorov’s second equation. Kolmogorov’s first

equation, also known as the Backward-Kolmogorov equation is the formal adjoint

of FPE. In 1933, Kolmogorov extended his work to vector processes and considered

uniqueness properties of FPE [16].

Other notable progress was made by Uhlenbeck and Ornstein (1930) [17] and

Chandrashekhar (1943) [18]. Barrett (1960) wrote an exposition on the application

of FPE to control systems [19], following the works of Stratonovich [20] (electronic

systems, 1963) and Chuang and Kazda [21] (nonlinear control systems, 1959). A

more in-depth review of research literature related to application of FPE to stochas-

tic control and nonlinear filtering is presented in chapters V and VI respectively.

Ariaratnam (1960), Lyon (1960, 1961), Caughey and Dienes (1962), Caughey (1963)

and Crandall (1963) were among the first to apply FPE to study random vibrations in

nonlinear dynamical systems [22, 23, 24, 25, 26, 27, 28]. Since then, FPE has been em-

ployed to study a wide range of problems in several fields of science, engineering and

economics; for example, particle physics, chemical mixture analysis, biomechanics,

structural mechanics, astrodynamics, nonlinear filtering, stochastic optimal control,

optimal stopping, stock-market analysis etc.

Currently, most of the fields mentioned above utilize approximate methods of

stochastic analysis because of numerous problems associated with solving FPE. Some
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popular approximate methods are Gaussian and higher-order closure techniques [29,

30, 31, 32, 33], equivalent and statistical linearization [34, 35, 36, 37, 38], and Monte

Carlo analysis [39, 40, 41]. An illustration of Gaussian closure is shown in Fig.1(b),

wherein Gaussian pdfs have been used to approximate (very well) the initial and

(poorly) the final point clouds. Note that Gaussian closure is accurate up to the

first two moments of the true pdf, while higher order closures also consider addi-

tional moments. All closure techniques are philosophically similar because they es-

sentially characterize state uncertainty using a finite number of moments (two in case

of Gaussian closure, equivalent to analysis of linearized system dynamics). Statistical

linearization replaces the actual nonlinear system model with an equivalent linear

system such that the mean square error with respect to parameters of the equiva-

lent linear system is minimized [37]. All linearization/higher order based techniques

work for small to moderate time durations of propagation, depending on the degree

of nonlinearity.

The Monte Carlo method is simulation based and essentially involves sampling

of the underlying probability space to generate a family of test points, which are in-

dividually numerically propagated forward through the exact nonlinear system. The

pdf at any time step is then approximated by evaluating desired number of moments

from the distribution of propagated sample points (see Fig.1). This method gener-

ally requires extensive computational resources and effort, and becomes increasingly

infeasible for dynamical systems with high-dimensional state space and for long-term

simulations. For a particular application under investigation, it is frequently possible

to find a suitable approximate method that provides reasonable results if suitable

assumptions are made. At the same time, it is well understood that the returns

of developing a robust FPE solver for high dimensional nonlinear systems are enor-

mous because it captures the true description of the uncertainty propagation problem.
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Consequently, research efforts in this direction have persisted.

The first attempts to solve FPE numerically were made in the late 1950s. Re-

searchers had realized that analytical solutions of the stationary and transient prob-

lems were possible for only a handful of dynamical systems which account for a very

small percentage of the range of systems encountered in science and engineering. One

of the earliest numerical attempts was made by Rosenbluth et al. in 1958 [42], who,

while working on interaction of gas molecules under an inverse square gravitation

field, expanded the related distribution function in terms of Legendre polynomials,

resulting in an infinite set of integro-differential equations which they were claimed

was solvable on a “computing machine.” In a 1968 paper, Bhandari and Sherrer

[43] used a Galerkin projection based method to determine the probability density

function for one and two degree-of-freedom systems using global Hermite polynomial

expansions. In 1973, Mayfield [44] presented a recursive sequence solution of FPE

based on the parametrix approach for partial differential equations. Reif and Barakat

(1973) [45] presented a Chebyshev polynomial expansion of FPE. Atkinson (1973)

[46], Johnson and Scott (1979, 1980) [47, 48] and Risken et al. (1980) [49] looked at

the eigenfunction expansion of FPE for first and second order nonlinear systems.

The earliest use of finite-difference methods date back to Killeen and Futch (1968)

[50] and Whitney (1970) [51], involving the study of plasma. The finite element

method (FEM) was used for the first time by Langley in 1985 [52, 53]. Since then,

FEM in its various forms has become the most popular method for solving FPE. At

the same time, several challenges have been identified, the most important of which

are outlined in section C of chapter II. At the heart of finite difference and finite

element methods lies discretization of a finite domain of solution, which harbors the

most formidable numerical challenge, namely the curse of dimensionality. It is widely

understood as an exponential increase in size of the discretized problem with increase
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in dimensionality of the system, thus eventually placing it beyond the capability of

machine computation. Due to this crippling obstacle, all results obtained using dis-

cretization techniques have been invariably restricted to dynamical systems with one

{Palleschi et al. [54], Vanaja [55], Epperlein [56], Günel and Savacı [57] } and two

{ Volosov and Pekker [58], Pekker and Khudik [59], Wedig [60], Mirin [61], Langan-

ten [62], Palleschi and de Rosa [63], Spencer and Bergman [64], Shiau and Wu [65],

Muscolino et al. [66], Johnson et al.(1997) [67], Pardlwarter and Vasta [68], Zhang

et al. [69], Zorzano et al. [70], McWilliam et al. [71], Wei [72], Fok et al. [73],

Paola and Sofi [74], Masud and Bergman [75], Kumar et al. [76], Lambert et al. [77],

Ujevic and Letelier [78], Attar and Vedula [79] } dimensional state-spaces. In many

of these publications, theoretical extensions were presented for higher dimensional

cases without actual examples due to infeasibility of numerical implementation. In

other works, higher dimensional systems were first reduced to lower order models be-

fore using discretization techniques, thus restricting their applicability to a particular

class of systems. For example, Wagner and Wedig [80] considered a 6-state exam-

ple using global orthogonal functions (extended Laguerre polynomials). However,

they reduced the 6-state problem to a 4-state problem via stochastic averaging and

exploiting system properties before application of the global approximation. Such

reduction is not always possible and global approximation is usually inadequate for

general nonlinear systems. Soize (1988) [81] used global Hermite polynomials for a

special class of systems represented by canonical state variables. A 12-state example

was studied, although the actual polynomial expansion was applied to six decoupled

2-state systems, once again emphasizing the difficulty associated with problems in

higher dimensions.

With growing computational resources, FPE for 3- and 4-state systems has

been numerically solved using supercomputers recently. Notable work was done by
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Bergman, Johnson, Wojtkiewicz and Spencer between 1992 and 2000, during which

they published a series of papers analyzing the difficulties associated with the exten-

sion of discretization techniques (FD/FEM) to high dimensional spaces[82, 64, 67,

83, 84, 85]. In 1995, they used the finite element method on a supercomputer to

obtain stationary distribution for three-state dynamical systems [82]. Wojtkiewicz

and Bergman used the Cray Y-MP/464 supercomputer to solve a discretized problem

of size 2.56 million to obtain the transient pdf for a four-state linear system [85]. De-

spite these results made possible by powerful computers, the curse of dimensionality

remained a stumbling block because the problem size in FEM grows exponentially

with dimensionality, assuming orders of 106 for the 4-state problem. Moreover, the

bookkeeping involved in FEM for maintaining inter-element boundary information

becomes increasingly cumbersome in high dimensions. In 2005, Masud and Bergman

presented a multi-scale finite element method in which the final approximation was

composed of a coarse level and a fine level approximation, in an attempt to curtail

the growth of problem size. However, results were presented only for 2-state systems

[75]. In 2006, the first attempt was made by Kumar et al. to use the meshless finite

element approach for FPE [86]. The meshless paradigm is naturally suited to Fokker-

Planck equation because of its numerous advantages over standard FEM, especially in

the context of solving partial differential equations in higher dimensions. Two crucial

advantages of meshless techniques over standard FEM are listed below:

1. Minimal bookkeeping: The meshless approach is essentially a “node-based”

approximation, rather than an “element-based” approximation like FEM. Nodes

used in the solution domain act as centers of local approximations, which are

blended together to obtain the global approximation. On the other hand, an

FEM approximation is constructed on the basis of shape of elements formed by
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inter-connection of nodes. The information of inter-element boundaries is thus

crucial, which becomes increasingly difficult to maintain in higher dimensions.

2. Ease of local refinement: In meshless techniques, the burden of enforcing

conformity of the approximation space over the solution domain is assumed by

special weight functions, which also define the local region of influence of various

nodes. It is therefore possible to assign individual nodes independently selected

local approximation spaces, making it easy to use higher order polynomial/non-

polynomial basis functions in desired regions of the solution domain. This is

known as local p-refinement.

This dissertation develops a robust numerical solver for FPE based on the parti-

tion of unity paradigm of meshless techniques. The key advantages mentioned above

are exploited, thus furthering research in this field in the logical direction. The de-

veloped methods are shown to reduce problem size for relatively high dimensional

systems, providing significant improvement over state-of-the-art. Coupled with spec-

tral analysis, a semianalytical algorithm is developed, making possible near real-time

solution of FPE transient response. Recursive norm-modification techniques are dis-

cussed to obtain further solution refinement while maintaining constant problem size,

while also tracking the optimal sized domain for numerical solution. It is expected

that the methods developed in this dissertation will permeate numerous applications

in stochastic dynamics, several of which are described below.

B. Application Areas

Fokker-Planck equation lies at the core of several key problems in stochastic mechan-

ics. Below, we enlist some important application areas of FPE.

• Weak solution of stochastic differential equations (SDEs): FPE governs the
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time evolution of the pdf of the entire ensemble of weak solutions of SDEs. The

mentioned pdf can be used for system analysis, e.g. stationary behavior, system

reliability, first passage etc.

• Uncertainty propagation: FPE captures the exact description of the problem of

nonlinear uncertainty propagation (Fig.1). Examples of particular applications

include: prediction of probability of collision in space (spacecraft/spacecraft,

asteroid/planet), study of nonlinear random vibrations in structural mechanics,

weather prediction models and plume tracking following explosions/eruptions.

• Nonlinear filtering: A fast FPE algorithm would find immediate application in

nonlinear filtering, especially in applications involving sparse measurements/and

or highly nonlinear dynamics. The prediction step of the Bayes filter requires

the solution of FPE for which closure schemes are currently employed, e.g.

Gauss closure is the Kalman filter.

• Stochastic optimal control: A policy iteration algorithm can be set up using

the adjoint of FPE, namely the backward Kolmogorov equation (BKE) to re-

cursively solve the Hamilton-Jacobi Bellman (HJB) equation, thus converting

the problem of solving a nonlinear PDE to a sequence of linear PDEs. It can

also be used effectively for control law design in hybrid stochastic systems, e.g.

morphing structures with multiple performance regimes.

• Particle physics and quantum optics: FPE finds widespread use in determining

the stationary distribution of elementary particles under force fields. It is also a

popular tool for handling noise in quantum optics, e.g. in the study of electric

field of a laser.
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Besides the above mentioned areas, several important problems in economics

and finance have been formulated around Fokker-Planck equation, e.g. optimal stop-

ping and modeling of the stock-market. It has also been used in biochemistry and

neurosciences to study the behavior of the nervous system. An efficient algorithm for

solving FPE is thus of great interest to the scientific and engineering community. This

dissertation primarily deals with the problems of uncertainty propagation, nonlinear

filtering and stochastic optimal control.
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CHAPTER II

PROBLEM STATEMENT

A. Introduction

In this chapter, formal statement of problems considered in this dissertation is

presented. As all these problems concern stochastic dynamic systems, a review is

warranted, starting from basic concepts and leading up to the elements of stochastic

differential equations. In order to maintain continuity, this review is presented in Ap-

pendix A and the reader is strongly encouraged to go through the discussed concepts.

Appearing below are three important problems in stochastic dynamics considered in

this work.

B. Problem Statement

This dissertation addresses the following three problems in stochastic dynamics:

Problem II.1 Meshless variational solution of Fokker-Planck equation

Consider a continuous dynamical system modeled by the following stochastic

differential equation (the state in all subsequent equations, which is a random variable,

is written as x):

dx = f(t,x)dt+ g(t,x)dB(t), E[x(0)] = x̄0 (2.1)

where, B represents a M -dimensional zero mean Brownian motion process with corre-

lation function Qδ(t1− t2), and x̄0 represents the mean initial state. Vector functions

f(t,x) : [0,∞)×<N 7→ <N and g(t,x) : [0,∞)×<N 7→ <N×M are measurable func-

tions. The initial probability density of the state is assumed known and designated

as W(0,x) = W0(x), which captures the state uncertainty at time t = 0. For the
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system in Eq.2.1, the following linear, parabolic partial differential equation describes

the time evolution of the state-pdf:

∂

∂t
W(t,x) = LFPW(t,x) (2.2)

on the domain (t,x) ∈ [0,∞)×<N , with the boundary condition

W(t,∞) = 0, t ≥ 0 (2.3)

where,

LFP =

[
−

N∑
i=1

∂

∂xi

D
(1)
i (·, ·) +

N∑
i=1

N∑
j=1

∂2

∂xi∂xj

D
(2)
ij (·, ·)

]
(2.4)

D(1)(t,x) = f(t,x) +
1

2

∂g(t,x)

∂x
Qg(t,x) (2.5)

D(2)(t,x) =
1

2
g(t,x)QgT(t,x) (2.6)

where, LFP is the Fokker-Planck operator, D(1) is known as the drift coefficient vector

and D(2) is the diffusion coefficient matrix, both understood in the Stratonovich sense.

In addition to satisfying Eq.2.2 and boundary conditions 2.3, the obtained solution

W(t,x) must fulfill the following admissibility conditions for a valid pdf:

1. Positivity of the pdf : W(t,x) ≥ 0, ∀t ≥ 0 & x ∈ <N .

2. Normalization constraint of the pdf :
∞∫
−∞

W(t,x)dV = 1,∀t ≥ 0.

Then, the first problem considered in this dissertation is to determine a finite dimen-

sional meshless approximation Ŵ(t,x) of W(t,x) given by the following expansion

on a finite sized domain Ω , ⊗N
i=1[ai, bi]:

Ŵ(t,x) =
D∑

i=1

ai(t)Ψi(x) (2.7)
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where, Ψi(x) are trial functions belonging to a conformal approximation space UD,

which is a subspace of an infinite dimensional Hilbert space on Ω. The size of the

finite dimensional approximation, D, is known as the number of degrees of freedom

of the approximation. The problem then reduces to determining coefficients ai(t) in

Eq.2.7 such that the following variational form (a bilinear functional) is satisfied:∫
Ω

R(Ŵ , v)dx = α

∫
Γ

(Ŵ −WΓ)vdx, ∀v ∈ VD (2.8)

where, v is a test function belonging to another subspace VD of a Hilbert space in Ω.

The bilinear functional R(·, ·) : UD×VD 7→ < is essentially the projection of residual

error resulting from substitution of approximation 2.7 into Eq.2.2 onto the test space

VD. The boundary conditions of Eq.2.3 are enforced in soft form using a penalty

parameter α.

Comments

The drift vector (D(1)) captures drifting apart of the mean of propagated pdf from

the propagated mean of initial pdf. Generally, it increases with degree of nonlinearity

of underlying dynamics, i.e. f(t,x). The diffusion matrix (D(2)) captures spreading

out of the substantial portion of the pdf (e.g. the 3σ region) over state-space. In

simple terms, it governs how flat (or diffuse) the pdf turns out to be. In case the un-

derlying governing dynamics (Eq.2.1) is deterministic, i.e. g(t,x) = 0 and the source

of uncertainty lies only in initial state, the diffusion matrix is identically zero and the

reduced FPE is called the Liouville equation. An example of such a problem is un-

certainty propagation through 2/N -body equations of motion in celestial mechanics,

wherein the dynamics are very well understood.
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It is important to point out that Eq.2.5 represents the Stratonovich form of the

drift vector. There exists another form known as the Itô form, which is generally

different from the Stratonovich form and is considered by mathematicians to be the

rigorously correct expression for D(1). In engineering fields however, the Stratonovich

form in preferred since it precludes the need for Itô calculus which is required to deal

with the Itô form. The two forms are identical in case of state additive noise, i.e.

when g(t,x) = g(t). This is typically the case with most real life stochastic systems.

Problem II.2 H2 Optimal Control Problem

Consider the following specialized form (autonomous f and g) of the governing

dynamics of Eq.2.1 with a control influence term:

dx = f(x)dt+ h(x)udt+ g(x)dB(t); E[x(0)] = x̄0 (2.9)

where, u ∈ <m is the control input vector and h(x) : <N → <N×m is the control

influence matrix. Adjust the coordinate system such that f(0) = 0 and let ϕ(t) be a

trajectory that solves Eq.2.9. Determine an approximation for the optimal regulator

u∗(x) that minimizes the following functional over infinite horizon:

J(x̄0) = E

[∫ ∞

0

[l(ϕ(t)) + ‖u(ϕ(t))‖2
R]e−βtdt

]
(2.10)

In the above relation, l is often referred to as the state-penalty function. Also, ‖u‖2
R

is defined as uTRu, where R is a positive definite matrix. The parameter β is a

discount factor that ensures finite cost-to-go in the presence of random disturbances.

Problem II.3 Bayes Nonlinear Filtering Problem

Consider again the dynamics of Eq.2.1 and augment to it the following discrete

measurement model:

yk = h(xk) + vk (2.11)
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where, y ∈ <l, v is a l-dimensional Brownian motion process (measurement noise),

h(x) : <N 7→ <l is measurable and k denotes the time instant of measurement.

The growth of information with successive measurements is denoted by the filtration

Yk = {y1,y2, . . . ,yk}. Then, the problem is to approximate the state probability

density function conditioned on the filtration Yk, i.e.,W(xk|Yk) utilizing the following

recursive equations (Bayes Filter):

W(xk|Yk−1) =

∫
W(xk|xk−1)W(xk−1|Yk−1)dxk−1 (2.12)

W(xk|Yk) =
W(yk|xk)W(xk|Yk−1)∫
Ω
W(yk|ξ)W(ξ|Yk−1)dξ

(2.13)

Eq.2.12 represents the propagation part between two measurement updates. The

left hand side of this equation is the prior state pdf, which can be obtained by inte-

grating the associated Fokker-Planck equation in weak form (refer to problem II.1)

between time labels tk−1 and tk. The posterior state pdf, W(xk|Yk), can be obtained

from the Bayes rule shown in Eq.2.13, in which W(yk|xk) represents the likelihood

function, and is given by:

W(yk|xk) =
1√

(2π detR)m
exp

(
−1

2
[yk − h(xk)]

TR−1
k [yk − h(xk)]

)
(2.14)

C. Research Issues

As observed in chapter I, any numerical approach for solving FPE faces numerous

difficult issues, three of which are detailed below:

1. Solution constraints: Problem statement II.1 stipulates conditions on the

obtained solution in order to qualify as a valid pdf, namely, the positivity and

normality constraints (Eqs.1, 2). In this dissertation, the normality constraint

is enforced as a postprocessing step of re-normalization. The positivity con-
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straint is not actively enforced, just checked to hold true within tolerance (e.g.

negative probability mass ≤ 10−9). Positivity becomes relevant only in the tail

regions of the pdf and its enforcement has thus far remained a tough propo-

sition. Several researchers have used a log-transformation of FPE (the inverse

exponential transform of the solution obtained ensures positive values) [66, 74].

However, this approach converts the linear PDE (Eq.2.2) into a nonlinear PDE,

which is generally not desirable.

2. Domain of solution : A numerical method based on discretization of state-

space requires a finite sized domain of solution (Ω in problem II.1). Determin-

ing such a domain of appropriate size, shape and orientation is a challenging

task because the theoretical domain of an N -state pdf is <N . Moreover, the

boundary conditions in problem II.1 are enforced at infinity, meaning that ar-

tificial boundary conditions need to be enforced on a “large enough solution

domain,” e.g. W(t,Γ) = 10−9, where Γ is the boundary of the chosen domain.

In most published literature, heuristic methods are used to determine a finite

domain for constructing the approximation. In this dissertation, a recursive

norm-modification approach for error projection is presented to determine an

appropriate solution domain for nonlinear systems. This approach also forms

the basis for improving approximation accuracy while keeping the size of the

discretized problem (D in Eq.2.7) small. This leads us to the final research issue

discussed below.

3. Curse of dimensionality : In the context of FPE, curse of dimensionality is

widely understood as an exponential increase in size of the discretized problem

(D) with dimensionality of state-space (N). It remains the greatest challenge

confronting the successful numerical solution of FPE and the state-of-the-art in
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this field, namely the finite element method is known to suffer from this curse.

This dissertation presents meshless approximation techniques based on the par-

tition of unity finite element method (PUFEM) to tackle this research issue.

Reduction in problem size by several orders of magnitude is demonstrated in

comparison with standard FEM (e.g. 3 orders of magnitude reduction for sys-

tems in <4) and numerical evidence for breaking of the curse of dimensionality

is presented. All results presented in this dissertation have been obtained on a

small workstation with modest computing resources.
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CHAPTER III

SOLUTION METHODOLOGIES

A. Introduction

This chapter discusses methods of solution to address the problems described in

chapter II. At the heart of each algorithm lies a robust numerical solver for Fokker-

Planck equation and its formal adjoint, the backward Kolmogorov equation (BKE),

which is developed using the meshless paradigm in finite elements. This paradigm

was developed during the late 1980’s and early 1990’s through the efforts of numerous

researchers striving to achieve the following two key attributes:

1. Node based approximation: The central idea behind any meshless technique

is to construct an approximation based entirely on nodes distributed over the

domain of solution, thus removing dependence on domain geometry. This is

different from traditional finite element methods, where a mesh is constructed

out of the nodes used for discretization. The nature of approximation (i.e. order

of polynomial basis functions used) depends on the shape of elements in the

mesh, i.e. how the nodes are connected to each other. For example, if the mesh

comprises of triangular elements, i.e. three nodes per element, only first degree

polynomials may be used to make sure that they satisfy inter-element continuity.

It is therefore required to maintain a record of inter-connectivities among nodes

to enforce regularity conditions across the solution domain. Because of this

characteristic, traditional FEM is known to be an “element-based” technique

and typically suffers from tedious book-keeping of elemental information. This

is especially challenging for domains in higher than two-dimensional spaces. On

the other hand, the meshless paradigm has built-in mechanisms for enforcing
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solution regularity automatically, thus precluding maintenance of information

about node interconnections. Each node acts as a center of approximation with

a local region of influence, inside which basis functions associated with that

node are defined.

2. Local approximation enrichment: Polynomial basis functions are typically

used in FEM, the order of which depends on the shape of elements in the mesh.

Local enrichment of approximation space is usually performed by addition of

new nodes followed by re-meshing, a procedure widely known as h-refinement.

A key benefit of the meshless node-based paradigm is that it greatly simplifies

the use of non-polynomial basis functions. In addition, its underlying frame-

work ensures that local approximations of individual nodes automatically satisfy

continuity conditions (conformity), irrespective of the nature of basis functions

used. This helps assign independently chosen basis functions (which may be

polynomials or special “handbook” functions) to individual nodes. Additional

basis functions may be added to selected nodes without significant overhead,

thus facilitating “local p-refinement” in addition to h-refinement, making these

techniques “multi-resultion” in addition to “meshless”.

In brief, the meshless paradigm provides a flexible framework for solving PDEs in

high dimensional spaces. Numerous versions have been developed, e.g. the element-

free Galerkin method (EFGM) of Belytschko [87], which was one of the earliest

meshless techniques, smooth particle hydrodynamics (SPH) of Monaghan [88, 89],

hp-clouds of Duarte and Oden [90], reproducing kernel particle method (RKPM) of

Liu et al. [91], meshless local Petrov-Galerkin methods (MLPG) of Atluri [92], ex-

tended FEM and generalized FEM (XFEM, GFEM) of Strouboulis and Babuška [93],

partition of unity finite element method (PUFEM) of Babuška and Melenk [94], and
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particle-PUFEM (pPUFEM) of Griebel and Schweitzer [95, 96, 97]. Related parti-

tion of unity (PU) methodology for piecewise continuous least squares approximation

in N-dimensions were first developed by Junkins, Jancaitis and Miller in the 1970’s

[98, 99, 100]. In this dissertation, the PUFEM technique of Babuška is referred to

as standard-PUFEM (sPUFEM) to distinguish it from the particle version of Griebel

and Schweitzer. Variants of both these techniques are developed herein to solve FPE

for high dimensional nonlinear stochastic systems.

The remainder of this chapter is arranged as follows: Section B describes various

aspects of the PUFEM framework; including domain discretization, cover generation,

construction of conformal approximation spaces, details of partition of unity weight

functions, variational form equations and their integration using quasi Monte-Carlo

techniques. Details for both the standard- and particle- versions of PUFEM are

discussed. Results for stationary FPE are presented in section C and the issue of curse

of dimensionality is discussed in elaborate detail. Numerical evidence for breaking

of the curse of dimensionality is presented, although a rigorous theoretical statement

still cannot be made. Section D couples the meshless discretization of FP operator

with spectral analysis and spurious mode rejection leading to a semianalytic algorithm

for near real-time solution of the transient FPE. It is shown that use of admissible

eigenfunctions of the discretized FP operator as basis functions causes equation error

to be bounded by an exponentially decaying envelope having greatest width at the

initial time. Results for transient FPE are presented in section E.
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B. PUFEM Methodology

1. Domain Discretization

The partition of unity (PU) approach to meshless finite elements was first devel-

oped by Babuška. The technique was further developed and generalized by several

researchers, most notably by Griebel and Schweitzer, who developed the particle

version of PUFEM (pPUFEM). Since we are interested in solving FPE in this disser-

tation, we will consider only N -hypercuboids as domains of solution, which simplifies

the process of discretization. This process differs greatly between s- and p- versions,

but we will start by talking about domain discretization in PUFEM in general. To

this end, consider a domain Ω and a set of overlapping subdomains Ωi, i = 1, 2, . . . , P ,

which form a cover for Ω. Each subdomain belongs to a node and acts as its region of

influence inside which its local approximation will be defined (see Fig.3). The actual

process of generating the cover will be discussed later. A “partition of unity” on Ω is a

mathematical paradigm in which each of the overlapping subdomains Ωi is associated

with a compactly supported function ϕi(x) called the PU pasting function (also, PU

weight function), which is strictly zero outside Ωi and has the property that:

P∑
i=1

ϕi(x) = 1, ∀x ∈ Ω (3.1)

The above paradigm represents the skeleton for a powerful meshless finite element

method for solving PDEs on Ω. By assigning the subdomains Ωi to individual nodes

distributed over the global domain Ω, an implicit “discretization” is obtained (Fig. 3

shows an example in 2 dimensions), using which a local variational form of the PDE to

be solved can be formulated. The discretization is not to be understood in the usual

sense of traditional mesh-based FEM because of two primary reasons: (a) overlap
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(a) Nodes distributed over the solution
domain act as “centers of approxima-
tion”.

Node 1

(b) Overlapping regions of influence of
various nodes, Ωi, form a cover for Ω.
Subdomain for node indexed “1” is high-
lighted.

Fig. 3. A node-based meshless framework for solving PDEs.

among neighboring subdomains and (b) minimal role of inter-node or inter-element

connectivity. By virtue of the latter property, this discretization is “meshless” and

has immense advantage in application to high dimensional PDEs. The PU weights

ϕi(x) perform the important task of blending together local approximations smoothly

in an unbiased manner, by virtue of the PU property (Eq.3.1). These functions are

discussed in the next section. At this point, details of cover generation are considered

for s- and p- versions of PUFEM.

a. Cover Generation in sPUFEM

The standard version of PUFEM as originally developed by Babuška works

around a highly structured distribution of nodes - it requires them to be placed

as if they lie on a rectangular grid overlaid on Ω, as shown in Fig.4. The meshless

nature is intact because it is still not required to maintain information about node

interconnections. However, the nature of PU weights used in sPUFEM require nodes
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(a) Grid-like distribution of nodes in
sPUFEM.

Node 1

(b) Cover Generation in sPUFEM.

Fig. 4. Structured framework of standard-PUFEM.

to be placed on a grid whose outermost perimeters lie on the solution domain bound-

aries. As a result, if Pi nodes are used along each of the N dimensions of Ω, the

total nodes appearing in the discretization are ΠN
i=1Pi, out of which ΠN

i=1(Pi − 2) lie

completely in the interior of Ω and [ΠN
i=1Pi − ΠN

i=1(Pi − 2)] lie on its boundary, Γ.

For such a structured assembly, cover generation is trivial because the subdomain of

any given node can be a hypercuboid whose vertices house its 2N neighboring nodes

(see Fig.4(b)). This ensures that all subdomains put together form a cover for Ω. Of

course, this approach suffers from the curse of dimensionality in h-refinement because

with every added node, the size of discretization grows exponentially in N .

b. Cover Generation in pPUFEM

The particle version of PUFEM developed by Griebel and Schweitzer is a much

more generalized form of PUFEM and allows nodes to be placed in a completely

unstructured fashion on Ω. Cover generation is therefore considerably more compli-

cated. Since no grid is involved, pPUFEM is free from the curse of dimensionality
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in h-refinement. In Ref.[96], Griebel and Schweitzer developed a tree-based algo-

rithm for assigning hypecuboid shaped subdomains to nodes that form a cover for Ω.

However, if only the original set of nodes are used, this approach leaves voids in the

domain which are filled by addition of further nodes. The number of additional nodes

required grows exponentially in N (∼ 2N), thus making this approach susceptible to

the curse of dimensionality. This section provides an alternate method for generating

hypercuboid subdomains whose union forms a cover for Ω, without introducing an

exponential number of additional nodes in the domain:

Algorithm III.1 pPUFEM Cover Generation

• Given: Solution domain, Ω = ⊗k[ak, bk], k = 1, . . . , N ; and a set of nodes

Ξ = {pi ∈ <N | pi ∈ Ω, i = 1, 2, . . . , P}.

• For each node pi ∈ Ξ :

1. Find the node pm ∈ Ξ with least distance from pi. Let the displacement

vector between pi and pm be v?
im.

2. Construct an initial estimate of subdomain of pi as: Ω0
i = ⊗k [kpi− kv?

im,

kpi+
kv?

im], where k = 1, . . . , N , and the superscript k on the vectors

denote their kth component in <N .

3. Define search index for pi as si = {1, 2, . . . , P} \ {i,m}. Make two copies:

si+ = si, si− = si.

4. Do until si− = φ or breaking condition is reached. Repeat this loop for

each k ∈ {1, 2, . . . , N}

(a) Define kmx = maxj [{kv−ij, ak}], where kv−ij ∈ {kvij | kvij < 0} and

j ∈ si−. Also, let arg max{j} = l.
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(b) if kmx = maxr[
rvil] or kmx = ak, set kΩ−

i = kmx and break.

(c) else si− = {1, 2, . . . , P} \ {i,m, l}

5. End Do

6. (This is a similar step as 4-5, except for “right” nodes)

Do until si+ = φ or breaking condition is reached. Repeat this loop for

each k ∈ {1, 2, . . . , N}

(a) Define kmn = minj [{kv+
ij, bk}], where kv+

ij ∈ {kvij | kvij > 0} and

j ∈ si+. Also, let arg min{j} = l.

(b) if kmn = maxr[
rvil] or kmn = bk, set kΩ+

i = kmn and break.

(c) else si+ = {1, 2, . . . , P} \ {i,m, l}

7. End Do

8. Ωi = ⊗k[
kΩ−

i ,
kΩ+

i ]

A flowchart for the above algorithm is provided in Fig.5. This algorithm generates

subdomains Ωi for any given set of nodes placed in an N dimensional domain Ω. It

starts by obtaining an initial estimate of Ωi using its nearest neighbor (step 2). Note

that the initial estimate, Ω0
i , is not necessarily contained in Ω. The algorithm then

expands (or contracts) the initial estimate both on the “left” and “right” along each

dimension, until it meets another node, or hits the global boundary, Ω (steps 4a, 6a).

For lack of appropriate terminology, “left” and “right” of a node are to be understood

in the same sense as for a single dimension, e.g. if node pi is on the “left” of node pj in

the kth dimension, it implies that kvij < 0, where, vij
.
= pj−pi. The above algorithm

permits a neighboring node to block subdomain growth only if the component of the

displacement vector has greatest absolute value in the direction of blockage (steps

4b, 6b). For example, the expansion of the subdomain of ith node is blocked in
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k = k + 1

END

Cover Generation Algorithm for pPUFEM

Define search index:

Determine:

where,

and                    , 

Is               , or

or,  

Is k = N?                 

Is i = P?                 

Given:
[nodes]

[domain]

Set k = 1

Find                    such that:

Define initial estimate as:

Y

Y

N

Ni = i + 1

Repeat for

Y

Fig. 5. Flowchart for the pPUFEM cover generation algorithm.
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the kth direction by the jth node only if the the kth component of the displacement

vector vij has the largest absolute magnitude among all components of vij. This is a

very important step because it ensures that a node very far in a particular direction

does not block expansion/contraction of subdomains in that direction. Therefore,

if a particular node cannot extend all the way out to the domain, there is at least

one other node present that would, hence increasing the chance of forming a cover.

Thus expansion/contraction is continued until a valid blocking node is encountered

or the global solution boundary is reached. An example of cover generation with

this algorithm is shown in Fig.3(b) and the subdomain of the highlighted node is

shown with solid lines. We note however that this algorithm cannot be proven to

guarantee cover generation for a general N -dimensional solution domain. For certain

node distributions in high dimensional domains (e.g. 4D, 5D), the algorithms was

found to leave a very small fraction of the domain uncovered, never exceeding more

than 0.1% of the total volume, near the boundary regions. These minor voids are

easy to fill with a very small number of additional nodes.

2. Construction of Conformal Approximation Space

Once the node distribution and cover generation are established for Ω, it is possi-

ble to define local approximation spaces within individual subdomains. As mentioned

previously, each node acts as a center of approximation, carrying local shape functions

with compact support over its region of influence, Ωi. In this section, we consider the

problem of building a globally conformal approximation space out of local approxima-

tions. By conformity, we mean continuity (to desired order) of shape functions across

boundaries of subdomains. To begin, consider the local approximation associated
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with the ith node, denoted by Ŵi(t,x):

Ŵi(t,x) =

Qi∑
j=1

aij(t)Ψij(x), supp(Ψij) = Ωi; ∀j = 1, . . . , Qi (3.2)

In the above equation, a total of Qi shape functions have been used for the ith

node. It is important to mention again that the number (Qi) and nature of shape

functions can be different for different nodes by virtue of the flexibility of the PUFEM

framework. The meshless nature of PUFEM guarantees that shape functions Ψij(·)

are conformal by construction, meaning that no additional steps are required to en-

force continuity. Different meshless methods use different techniques for this purpose,

most popular being the moving least squares (MLS) approach. PUFEM uses perhaps

the simplest way of constructing conformal shape functions. The starting ingredient

is a set of “basis functions” for a particular node, which when simply multiplied with

the PU weight associated with that node, forms conformal shape functions. This is

very easy to prove by considering derivatives of shape function on the inter-element

boundaries. Note that this work differentiates between “basis functions” and “shape

functions”, the latter being the final form used in the approximation space and con-

structed “out of” basis functions in the following manner:

Ψij(x) = ϕi(x)ψij(x), j = 1, . . . , Qi (3.3)

By themselves, basis functions do not satisfy conformity and in essence, PUFEM

delegates the burden of enforcing inter-element continuity to PU pasting functions so

that the user is free to select basis functions purely on the criteria of local approx-

imability (i.e. what functions best approximate local system behavior). The order

of continuity of shape functions across local subdomains is inherited from the con-

tinuity properties of PU weights [94, 98, 99, 101]. PU weights also bring about an
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unbiased average of local approximations (Eq.3.2) over regions of overlap by virtue

of the PU property. Again, this is automatic because the weights are built into the

shape functions. Typically, “tent-functions” are used as PU weights and they provide

C0 continuity. In this dissertation, higher order polynomial functions {Global/Local

Orthogonal Mapping (GLO-MAP) weights} are used that provide any desired order

of continuity across local boundaries and are considered in detail in the next section.

In comparison, basis functions are the same as shape functions in traditional

FEM. As a result, they need to form a conformal space on their own which limits

their range of selection. In most other meshless methods like SPH, MLPG etc, shape

functions are constructed using data fitting algorithms like the moving least squares

(MLS), using a pool of basis functions which may be non-polynomials. This is gen-

erally an elaborate process and makes independent selection of basis functions for

individual nodes difficult.

Figure 6 illustrates the process of shape function construction in the PUFEM

algorithm. In these figures, basis functions (ψij) have been drawn using bold lines

and the PU pasting functions (ϕi) using light lines. Also, all functions correspond-

ing to odd-numbered nodes are drawn with solid lines and those corresponding to

even-numbered nodes with dashed lines. The 1-D domain [−1, 1] is discretized using

5 subdomains with tent-functions in Fig.6(a) and C1 GLO-MAP weights in Fig.6(b).

The use of quadratic polynomials as basis functions has been shown in all subdo-

mains. Additionally, a sinusoidal function (which enriches the existing polynomial

basis) has been introduced locally only in the third subdomain (corresponding to

the highlighted node # 3). Clearly, these basis functions do not form a conformal

space on their own. However, upon multiplication with PU pasting functions of the

corresponding nodes, the resulting shape functions satisfy inter-element continuity

as is clearly visible in Figs.6(c) and 6(d). Note the inheritance of continuity from
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PU weights in Figs.6(e) and 6(f) as the latter figure illustrates continuous deriva-

tives because the corresponding weight functions are C1 continuous. The numerical

solver developed in this dissertation has the capability to automatically generate a

complete space of polynomial basis functions of pth order on N dimensional domains.

This feature was highlighted in Fig.2 in the introduction.

a. Partition of Unity Weights

Clearly, PU weights are an integral part of the PUFEM approach. As with cover

generation, their construction differs vastly between the s- and p- versions of PUFEM.

However in both versions, their functionality is the same: they bring about an implicit

domain discretization, merge together various local approximations by performing an

unbiased average and determine their order of continuity across local boundaries [94].

Because of the requirement of PU constraint (Eq.3.1), it is generally a difficult task

to construct pasting functions that enforce continuity of any desired order. Here, we

consider weight construction for the s- and p- versions separately.

b. PU Weights for sPUFEM

As previously mentioned, sPUFEM uses a structured grid-like distribution of

nodes, which helps construct simple polynomial weights that satisfy Eq.3.1. Typi-

cally “tent-functions” are used, which provide C0 continuity. Elsewhere, more so-

phisticated positive functions have been used after re-normalization to enforce the

PU constraint in the following manner: ϕi(.) = wi(.)P
j

wj(.)
(Shepard’s functions). These

functions however are generally difficult to integrate due to their rational-function

form. The use of higher order polynomials as PU weights which could be automati-

cally generated for a prescribed order of continuity has not been explored to a great

extent in the PUFEM literature thus far. In this work, weight functions developed
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(a) PUFEM basis functions and the
C0 PU function.

(b) PUFEM basis functions and the
C1 PU function.

(c) PUFEM shape functions with
C0 pasting.

(d) PUFEM shape functions with
C1 pasting.

(e) Derivative of the shape func-
tions - C0 pasting.

(f) Derivative of the shape func-
tions - C1 pasting.

Fig. 6. 1D shape function construction in PUFEM. x axis: x, y axis: Function evalu-

ated at x.
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(a) GLO-MAP weight functions in 1-D,
up to C2 smoothness.

m = 0 1 2

(b) GLO-MAP weight functions in 2-D,
up to C2 smoothness.

Fig. 7. GLO-MAP weights as PU pasting functions in standard-PUFEM.

by Jancaitis et al. [98, 99, 100], known as GLO-MAP weights are used as pasting

functions for sPUFEM. These functions are of polynomial form, satisfy Eq.3.1, and

have compact support - thus satisfying all requirements. Figs. 7(a) and 7(b) illustrate

GLO-MAP weights upto C2 continuity in 1 and 2 dimensions respectively.

The idea behind GLO-MAP weights is surprisingly simple - given a node belong-

ing to a discretized domain, the polynomial function of lowest degree which assumes

the value unity at its parent node and decays to zero at all its neighboring nodes

with specified degree of smoothness satisfies the property of partition of unity on the

global domain Ω. These conditions can be easily used to determine the coefficients of

such a polynomial in one variable, assuming the following general form: (more details

can be found in Ref. [101])

w(m)(x) = 1− ym+1

{
(−1)m(2m+ 1)!

(m!)2

m∑
k=0

(−1)k

2m− k + 1

(
m

k

)
ym−k

}
, y =

|x− xi|
2h

(3.4)

where, m is the desired order of smoothness at the boundaries of Ωi. In the above
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equation, the function wm(x) is defined in terms of a normalized variable y, which

has value unity at its parent node and zero at all neighboring nodes. Tent-functions

are a special case with m = 0. Functions with higher degree of smoothness (m = 1

and m = 2) have also been shown, and their benefits illustrated in Fig.6. In the

PUFEM framework, these weights come as an invaluable construct because of their

several relevant properties [101]:

1. Polynomial form: By virtue of their polynomial form, GLO-MAP weights are

easy to integrate. Additionally, if polynomial bases are used, the resulting weak

form integrals can be evaluated analytically.

2. They satisfy the PU property. It is very easy to prove the fulfillment of this con-

straint when the GLO-MAP weights are written in local co-ordinates centered

at the corresponding nodes and scaled with the inter-nodal distance along each

dimension, h(i). This implies that in local co-ordinates, the central node is at

the centroid of a N -hypercube and all its neighboring nodes are at the various

2N vertices. The value of the GLO-MAP weights are 1 and 0 respectively at

these locations.

3. They can provide any desired order of continuity across subdomain boundaries.

This is very useful in applications which require the solution derivatives to

satisfy error bounds.

4. Easy extension to higher dimensions: It is surprisingly easy to construct GLO-

MAP weights in higher dimensions [99]. A simple continued product of 1-D

weights written along the various dimensions gives the weight function in the

higher dimensional space. E.g., w(2)(x1, x2) = w(2)(x1)w(2)(x2), i.e. a GLO-

MAP weight in 2-D providing C2 continuity is simply the continued product of
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two 1-D weights providing the same level of smoothness.

In summary, the generality provided by GLO-MAP weight functions and their

easy extension to N -dimensions opens the path for implementation of the sPUFEM

algorithm to solve high dimensional PDEs (including FPE). Furthermore, if basis

functions orthogonal to these weight functions are used, we obtain an improvement

in the condition number of the stiffness matrix, K (see Eq.3.9). The obvious limitation

of these functions is that satisfaction of the PU constraint is contingent upon grid-like

node distributions, implying that they can be used directly only in PDEs defined on

N -hypercuboids. Domains of all other shapes would require a transformation into a

hypercuboid. In the current application (FPE) however this is not a problem, because

the domain of solution can be chosen to be an N -hypercube.

c. PU Weights for pPUFEM

Due to the unstructured nature of node distribution, building PU weights that

satisfy Eq.3.1 is extremely difficult in pPUFEM. In fact, the only obvious way of

building PU weights is by re-normalization as in Shepard’s functions. Since sub-

domains in pPUFEM are hypercuboids, GLO-MAP weights can still be used after

re-normalization:

ϕi(x) =
wi(x)

P∑
j=1

wj(x)

(3.5)

where, wj(x) could be a GLO-MAP weight of desired order. Figure 8(a) shows Shep-

ard PU weights constructed by re-normalization of C2 GLO-MAP weights. Some

comments are in order at this point. While GLO-MAP functions themselves are poly-

nomials, Shepard functions (Eq.3.5) are not - they are rational polynomials. These

functions are obviously much more difficult to integrate than piecewise polynomi-

als. In fact, standard numerical integration techniques based on Gaussian quadrature
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(a) Shepard’s pasting functions con-
structed from C2 GLO-MAP weights.

(b) x-Gradient of Shepard’s pasting func-
tions.

Fig. 8. Partition of unity weights and their x-derivatives for pPUFEM.

are usually inadequate since they are optimized for integrating polynomial like func-

tions. Additionally, unlike standard GLO-MAP weights, Shepard functions may have

steep gradients, also because of their rational polynomial nature, as is evident from

Fig.8(b). At the same time, they provide great flexibility and allow construction of

conformal approximation spaces even with staggered node distributions on Ω. This

work utilizes quasi Monte-Carlo techniques to integrate shape functions constructed

with Shepard’s weights.

3. Variational Formulation

Once the approximation space is set up, the variational formulation of FPE is

common in both versions of PUFEM. An approximation of the instantaneous pdf can

now be written as:

Ŵ(t,x) =
P∑

i=1

ϕi(x)

Qi∑
j=1

aij(t)ψij(x) =
P∑

i=1

Qi∑
j=1

aij(t)Ψij(x) (3.6)
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where, aij(t) are time-varying coefficients (to be determined) of local shape functions

denoted by Ψij(x). Note that Eq.3.6 is equivalent to separation of time and space

variables. Substitution of the above approximation into Eq.2.2 results in the following

residual error (equation error):

R(t,x) =
P∑

i=1

Qi∑
j=1

[ȧij(t)Ψij(x)− aij(t)LFP(Ψij(x))] (3.7)

The objective of variational formulation, also known as weak formulation, is

to minimize the residual error shown above on average over the solution domain, Ω.

This can be done by the standard error projection technique using a finite dimensional

space of test functions V = {vij(·); i = 1, . . . P, j = 1, . . . Qi}. In this work we follow

the Galerkin approach, whereby test functions are chosen to be the same as the shape

functions, i.e., V = {ϕi(x)ψij(x)}. Normal equations of error projection then give:∫
Ωi

R(t,x)vdx = α

∫
Γi∩Γ

(Ŵ(t,x)−WΓ(t,x))vdx (3.8)

or,∫
Ωi

∂

∂t
(Ŵ(t,x))vdx−

∫
Ωi

LFP(Ŵ(t,x))vdx = α

∫
Γi∩Γ

(Ŵ(t,x)−WΓ(t,x))vdx (3.9)

Note that integrals are computed over the local subdomain because of compact sup-

port of shape functions. The coefficients aij(t) are the unknowns which can be deter-

mined using a sufficient number of test functions, v. It is clear from the Eq.3.6 that a

total of
P∑

i=1

Qi linearly independent test functions are required. Boundary conditions

are enforced using a penalty parameter “α” over the part of the local boundary that

intersects with the global boundary, Γ. Although it is ideally desired to have WΓ = 0,

we implement artificial boundary conditions (as WΓ ≈ 10−9) using the penalty pa-

rameter α. Putting together the projection equations from all local subdomains, we
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are led to the following system of linear ODEs involving the mass matrix M, stiffness

matrix K and load vector f :

P∑
i=1

Qi∑
j=1

[

∫
Ωi

{ȧij(t)ϕi(x)ψij(x)vdx− aij(t)LFP(ϕi(x)ψij(x))}vdx

−α
∫

Γi∩Γ

aij(t)ϕi(x)ψij(x)vdx] = −α
∫

Γi∩Γ

WΓvdx (3.10)

or,

Mȧ(t) = Ka(t) + f (3.11)

where,

Mij =

∫
Ωsub

ϕk(x)ψkl(x)ϕp(x)ψpq(x)dx (3.12)

Kij =

∫
Ωsub

LFP(ϕk(x)ψkl(x))ϕp(x)ψpq(x)dx

−α
∫

Γsub∩Γ

ϕk(x)ψkl(x)ϕp(x)ψpq(x)dx (3.13)

fi = −α
∫

Γsub∩Γ

WΓ(t,x)ϕp(x)ψpq(x)dx (3.14)

where, i =

(
k−1∑
s=1

Qs + l

)
and j =

(
p−1∑
s=1

Qs + q

)
and no implicit summation is implied

by the repeated subscripts. We mention that the penalty parameter α used above

requires minor tuning in order to prevent numerically induced ill-conditioning of the

stiffness matrix. Also, note that irrespective of the underlying dynamical system, the

norm of the load vector is exceedingly small (≈ 10−6), because it involves integration

of the pdf over the domain boundary. These facts will be important in section D

which discusses the emergence of spurious modes and their elimination.

Note also that the diffusion term in FP operator contains second order deriva-

tives, which may be extremely steep for Shepard function type PU weights used in
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the particle version. It is thus good practice to convert the “volume” integrals involv-

ing second derivatives to “surface” integrals involving first derivatives utilizing Gauss

divergence theorem: ∫
Ω

∂2f

∂x2
dx =

∫
Γ(Ω)

∇.fdx (3.15)

Once the discretized form of FPE is obtained (Eq.3.11), it remains to solve the

system of equations for coefficients aij(t). In existing literature, the linear system

of ODEs is integrated numerically, e.g. using a stabilized Crank-Nicholson scheme

[67]. Primary reasons for this are typically large sizes of the matrices involved and

possible ill-conditioning of the stiffness matrix. In this dissertation, spectral analysis

of Eq.3.11 is performed leading to a semianalytical algorithm, which provides near

real-time transient response for dynamical systems. This is treated in section D.

a. Considerations for Stationary FPE

On several occasions, it is only required to study the steady state solution of

Eq.2.2, i.e. the following equation:

LFP [W(x)] = 0 (3.16)

In other words, it is required to extract the null-space of the Fokker-Planck opera-

tor, which governs the long term behavior of stochastic dynamical systems. Condi-

tions for existence of a nontrivial and unique null-space are well known and can be

found in Fuller [1]. A necessary condition is time invariance of system dynamics, i.e.

f(t,x) = f(x) and g(t,x) = g(x). Other necessary conditions include existence of

finite intensity noise and the presence of at least one attractor in the system. More

details can be found in Fuller [1]. The discretized form of stationary FPE reduces to

the following algebraic equation: Ka = f . Note that if trivial boundary conditions
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are chosen, i.e., WΓ = 0, the load vector becomes f = 0 and the problem reduces to

finding the null space of the stiffness matrix.

Theoretically, if the stationary solution exists, it is unique and globally asymp-

totically stable, meaning that the null-space of K should have unit dimensionality.

However, this may not hold true for the numerical implementation shown above. If

the parameter α is chosen to be too large, it may numerically induce a rank deficiency

of greater than 1. In such event, one can study the equation error to determine the

best solution. Alternatively, the penalty parameter α can be tuned to obtain a sin-

gle dimensional (hence unique) null-space. Another approach is to implement the

boundary conditions not as WΓ = 0, but a very small value, e.g. WΓ = ε (= 10−9 was

used), so that the RHS of Eq.3.11 is not zero. This approach gives highly acceptable

results even with very coarse tuning of α. Note that rank deficiency in K may also

be caused due to other factors besides α-tuning, like the failure to incorporate the

constraints (1) and (2) mentioned in Sec. C of chapter II. Of course, the matrix K

will always be ill-conditioned if α is not chosen judiciously.

4. Numerical Integration

The integrals contained in Eq.3.10 in general need to be computed numerically

overN -dimensional local subdomains, due to which they are susceptible to the curse of

dimensionality. Traditional Gaussian quadrature rules fail to compute these integrals

effectively on two counts:

1. Gaussian quadrature by design is optimized to integrate polynomial/polynomial-

like functions and its performance in integration of rational polynomials is

largely inadequate.

2. Standard Gauss quadrature works in high dimensions by taking a continued
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Solve generalized eigenvalue
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Input:
Solution Domain:
Dynamics:
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Generate cover: 

Construct PU weights: 

Assign polynomial order to each node

Set i = 1
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Determine shape functions:                                 on j = j + 1

Identify  + eliminate spurious 
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Obtain analytical expression for 
coefficients: 

N

N

Y

Y

END

Fig. 9. A schematic of the PUFEM approach for FPE.
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product of quadratures in individual dimensions, leading to grid formation -

a procedure that suffers from the curse of dimensionality. For example, if 10

points are required to integrate in one dimension, 100 points will be required in

2 dimensions, 1000 in 3 dimensions and so on. This issue can be partially han-

dled using Smolyak tensor product rules for quadrature construction in higher

dimensions, but the actual savings remain small and subject to tuning.

The above issues are especially relevant for the particle version of PUFEM where

PU weights are rational polynomials. Gaussian quadrature can potentially become

a bottleneck in this scenario because even though it might be possible to discretize

the solution domain and write FPE in variational form, the integrals might not be

computable.

The randomization technique of Monte-Carlo integration is known to break the

curse in numerical integration on the canonical domain ⊗N
i=1[0, 1). In this approach,

the integral is computed as a weighted sum of the integrand evaluated at a set of

points, much like in standard Gauss quadrature techniques. In this case however, the

“quadrature points” are drawn from a uniformly distributed sample and each point

carries equal weight. This section briefly discusses a quasi-randomization technique,

known as quasi Monte-Carlo (QMC) integration [102, 103], which exploits uniform-

distribution like properties of pseudorandom numbers for numerical integration. A

sequence of pseudorandom numbers is deterministically generated (i.e. by means of an

algorithm), but appears to have a “near” uniform random distribution. In numerical

integration, quasi randomization has several benefits over standard randomization:

(1) It provides deterministic error bounds on numerical integration as opposed to

probabilistic bounds, (2) it provides better convergence properties than standard

Monte-Carlo integration and (3) it is much easier to implement because quadrature
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points are generated using an algorithm as opposed to a random number generator.

The closeness of a pseudorandom sequence to a true uniform distribution is mea-

sured in terms of a discrepancy parameter, the most popular being “star discrep-

ancy,” defined as follows: For a psuedorandom sequence SR = {x1,x2, . . .xR} in an

N -dimensional unit cube I = ⊗N
i=1[0, 1), star discrepancy is defined as the measure:

D∗
N(SR) , sup

B∈U∗

∣∣∣∣A(B;SR)

N
− λ(B)

∣∣∣∣ , (3.17)

where, U∗ is the class of open sets of type ⊗N
i=1[0, ai), ai ∈ [0, 1); A(B,SR) represents

the number of points of SR inB and λ(B) is the Lebesgue measure ofB in <N . Clearly,

a sequence with low star discrepancy is closer to a uniform distribution because it has

low bias and best approximates the volume of the integration domain. It has been

shown in existing literature that for a relatively large class of integrands (in terms of

regularity), a low discrepancy sequence achieves the following convergence property:∫
I

f(x)dx = lim
R→∞

1

R

R∑
k=1

f(xk) (3.18)

where, xk ∈ I belong to a pseudorandom sequence SR. The above approximation

achieves a deterministic error bound of O( (log(R))N

R
) for sequences with sufficiently low

discrepancy, which is much better than the rate O(R−
1
2 ) achieved by standard Monte-

Carlo techniques based on uniformly distributed random numbers. The above inte-

gration scheme can easily be extended to hypercuboids of other sizes: Ω = ⊗N
i=1[ai, bi],

by a simple linear transformation of SR as: xk,i 7→ ai + (bi − ai)xk,i, and altering the

weights to 1
R
7→ area(Ω)

R
. There exist several algorithms for generating pseudorandom

numbers with low discrepancy, e.g. the Halton sequence, Sobol sequence, Faure se-

quence, etc [102]. This dissertation utilizes the Halton sequence for integration of

weak form integrals, the algorithm for which is provided in appendix B.
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A flowchart of the PUFEM approach has been shown in Fig.9. In this figure, one

stops after generating the variational matrices (K,M) if only the stationary behavior

of the system is desired (see section below). Steps involving the generalized eigenvalue

problem of Eq.3.11 are outlined in section D, and they lead to a near real-time solution

of the transient FPE.

C. Results for Stationary FPE

This section presents results for stationary FPE for nonlinear dynamical systems

using both s- and p- versions of PUFEM. The core issue of curse of dimensionality is

addressed and numerical evidence is shown for breaking of the curse. A comparison

with existing finite element methods shows reduction in problem size by several orders

of magnitude for similar accuracy of approximation, e.g. three orders of magnitude

for problems in 4-dimensional space. Results are presented separately for sPUFEM

and pPUFEM. It is shown that pPUFEM provides unmatched flexibility and working

accuracy of approximation with a very small number of degrees of freedom.

1. Curse of Dimensionality: Size of the Discretized Problem

The size of the discretized problem, or, “degrees of freedom” of the approximation

is the number of shape functions required to achieve a particular level of accuracy. In

s-PUFEM, if n nodes are used to discretize each of the N dimensions of state-space

and every node is endowed with a complete set of polynomial basis functions up to

pth order, the number of coefficients to determine, or the degrees of freedom (DOFs)

of the approximation is given by the following expression: (depicted by NDn
p )

NDn
p = nN ×

p∑
k=0

(
N + k − 1

N − 1

)
(3.19)
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Note that increasing the number of nodes (n) or the order of basis functions per

node (p) both cause an explosive growth in problem size, NDn
p , especially for large N .

Therefore, in the absence of local p-refinement, sPUFEM would suffer from the curse

of dimensionality. Local p-refinement (local p-enrichment) allows us to increase the

order of basis functions at only selected nodes. In this scenario, we count the basis

functions for each node individually leading to an expression for the total number of

DOFs that is different from Eq. 3.19:

NDn
locp

=
nN∑
i=1

pi∑
k=0

(
N + k − 1

N − 1

)
(3.20)

The above equation shows that local p-refinement does not reduce the curse of

dimensionality directly because the number of nodes still grows exponentially with

N . However, it has been found to consistently lead to a significant reduction in

number of nodes actually required per dimension because all nodes are not enriched

equally. Although not broken rigorously, the curse of dimensionality is “indirectly”

significantly curtailed. Its effect on problem size is illustrated in Fig.32. Fig.10(a)

shows the growth in degrees of freedom in a standard PUFEM method without local

p-refinement. The dimensionality of the underlying system is assumed to be 4. Hori-

zontal curves are contours of constant polynomial order per node (varied from p = 0

to p = 8) while vertical curves represent contours of fixed number of nodes per dimen-

sion (n = 5 to n = 50). A grid is therefore formed and it is only possible to jump from

one grid point to another. The y-axis shows the number of DOFs associated with

each (n, p) pair. Three points are highlighted: 4D15
2 = 759375, 4D16

2 = 983040 and

4D15
3 = 1771875. Clearly, the jump in DOFs per added node for each dimension or per

polynomial order for each node are enormous, which greatly restricts flexibility. For

example, it is not possible to build an approximation with 800000 degrees of freedom

because it is does not lie on the grid. On the other hand, having the option of enrich-
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(a) No local p-refinement available. (b) DOF growth with local p-refinement.

Fig. 10. Growth of DOF in sPUFEM with and without local p-refinement.

ing only selected nodes helps control this growth and balance between enrichment of

the approximation space and growth in problem size. It makes the points in-between

the grid-points in Fig.10(a) accessible (see Fig.10(b)), e.g. 4D15
locp

≈ 800000. The

curse would be truly broken if DOFs did not grow exponentially with added nodes.

This feature is available in pPUFEM, wherein it is possible to use any desired num-

ber of nodes for any dimensional state-space (e.g. 5 nodes for 4D state-space). The

resulting problem size is given by:

NDP
locp

=
P∑

i=1

Qi (3.21)

If special (non-polynomial) functions are used, Eq.3.21 is independent of N and

the curse of dimensionality stands broken. Note that the number of DOFs in Eq.3.21

does not guarantee an approximation with a specified order of error. It merely presents

a framework in which it is possible, given appropriate shape functions, to construct

an approximation with a small number of unknowns in high dimensions. With this

in mind let us look at specific results for several nonlinear dynamical systems. All
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results presented below were obtained on a small computer (1.86 GHz Pentium M

processor with 1 GB random access memory).

2. Stationary FPE Results with sPUFEM

a. Dynamical System 1: Example in Two Dimensions

We first consider the following 2 dimensional nonlinear dynamical system:

ẍ+ ηẋ+ αx+ βx3 = g(t)G(t) (3.22)

Eq.3.22 represents a stochastic Duffing oscillator with damping (η > 0) and is used

widely for modeling of nonlinear vibrations. The expression for the true solution to

the stationary FPE for this system is as follows:

Ws(x, ẋ) |true= C exp

(
−2

η

g2Q

(
αx2

2
+
βx4

4
+
ẋ2

2

))
, (3.23)

where C is a normalization constant. Note that the stationary pdf is an exponential

function of the steady-state system energy (a Hamiltonian-like function), scaled by

the parameter −2 η
g2Q

[1]. For simulation purposes, we use α = −15, β = 30, η = 10

along with g = 1. The stationary pdf corresponding to these parameter values is

bimodal, shown in Fig. 11(a).

Following the discussion of rank deficiency of K in Sec.3, boundary condition was

implemented as WΓ = ε (= 10−9), resulting in a non-zero load vector. Fig.11 shows

the solution and error surfaces obtained using the PUFEM algorithm on a 18 × 18

rectangular grid with quadratic basis functions allocated to each node, i.e. n = 18 and

p = 2 in Eq.3.19. This is equivalent to a stiffness matrix of size 1944× 1944. In other

words, the size of the discretized problem (or the number of coefficients to determine)

is 2D18
2 = 1944. The results of this discretization are shown in Figs.11(b)-11(c).
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Table I. Numerical results using sPUFEM with local p-refinement: Two-state Duff-

ing oscillator

Node Polynomial Problem Size RMS Error Max Error Compu-
Discret- Orders tation
ization (p) (DOF) (e2) (e∞) Time

(tcomp)
Boundary

Nodes: p = 2
18× 18 Interior 2D18

2 = 1944 6.856× 10−3 5.905× 10−2 30.1 s
Nodes: p = 2

Boundary
Nodes: p = 1

9× 9 Interior 2D9
locp

= 831 5.998× 10−3 4.539× 10−2 10.7 s
Nodes: p = 4

The power of local p-refinement can be illustrated by considering the size of the

discretized problem versus approximation accuracy. It is reasonable to assume that

using quartic polynomials (instead of quadratic) would lead to better accuracy of

the approximation. If quartic polynomials were thus assigned to all nodes (global

p-refinement), the resulting problem size would be 2D18
4 = 4860. On the other hand,

we know that the pdf is expected to be almost flat near the boundary of the global

domain, and linear basis functions would likely be sufficient to capture its behavior

in these regions. Following this reasoning, it is possible with the current approach to

supply the nodes lying on the boundary with linear basis functions and the interior

nodes with quartic basis functions (local p-refinement). The resulting discretized FPE

contains 4044 DOFs, which is a sizeable reduction of about 17%. Depending on the

extent and nature of a-priori information available about the particular problem at

hand, it is possible to decide on the best polynomial assignment for every individual

node such that an acceptable accuracy is obtained with a small number of DOFs.

Table I shows one such example for the Duffing oscillator.
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(a) True stationary pdf for the Duffing os-
cillator.

(b) Computed Solution: sPUFEM Algo-
rithm, 18× 18 Grid with quadratic basis.
DOFs = 1944

(c) Error surface: sPUFEM algorithm,
18× 18 grid with quadratic basis.

(d) Error surface: sPUFEM algorithm,
9 × 9 grid with linear and quartic basis.
DOFs = 831

(e) Computed solution (Global method,
mean of the reference pdf = (0, 0.0075)).

(f) Comparative convergence character-
istics of PUFEM and MRMM for the
damped Duffing oscillator.

Fig. 11. Numerical results using the sPUFEM algorithm and global Galerkin approach.
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Both discretizations shown in Table I result in approximations with comparable

RMS error (defined as e2 ,
√

1
r−1

∑r
i=1(W(xi)− Ŵ(xi))2 ) and maximum error (e∞)

(see Figs. 11(c)&11(d)). However, the problem size for the second discretization (with

local p-refinement) is less than half of the first, in addition to a reduction of about a

third in the time of computation. This is an extremely important result, because it

illustrates the fact that local p-refinement can provide same/better accuracy with a

much smaller number of degrees of freedom, which augurs extremely well for higher

dimensional problems.

For comparison, the same problem was solved using the global-Galerkin approach[66]

with scaled Hermite polynomials as basis functions. It was found that although the

global approximation is able to provide similar accuracy for this problem, it is not

a suitable approach because it is extremely sensitive to certain tuning parameters.

One such parameter is a reference pdf, which is used to determine the finite domain

of solution, and attaches relative weights to different regions of the domain. A slight

perturbation in the reference leads to a significant rise in the error, and the degree

of tuning achieved in this study case may not be possible for general nonlinear sys-

tems. An example of such sensitivity is shown in Fig.11(e), in which the mean of

the reference pdf was perturbed towards one of the modes, resulting in unbalanced

weighting of the domain leading to significant errors. On the other hand, the PUFEM

is not subject to such tuning issues. Moreover, there is no scope for local solution

refinement in the global method.

In Kumar et al.[76], the above problem was solved using a multi-resolution mesh-

less method (MRMM) based on the Meshless Petrov Galerkin approach (MLPG).

The convergence characteristics of PUFEM were found to be significantly better than

MRMM, as seen in Fig.11(f). Although convergence rate of the latter algorithm is

faster, RMS error values are higher. The fast rate of convergence of MRMM is most
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likely due to decrease in interpolation errors as the density of nodes is increased. Also,

the PUFEM algorithm is considerably more computationally efficient, i.e. the time

of execution of the PUFEM algorithm is much less than that for MRMM. This is

primarily due to the fact that MRMM requires solution of several MLS problems (see

Sec.B2) during evaluation of the weak form integrals. Thus for this particular prob-

lem, PUFEM provides improvement in accuracy and efficiency over other meshless

methods based on MLS.

b. Dynamical System 2: Example in Two Dimensions

Consider now the following 2 dimensional quintic oscillator:

ẍ+ ηẋ+ x(ε1 + ε2x
2 + ε3x

4) = g(t)G(t) (3.24)

The stationary pdf for this system is given by the following expression:

Ws(x, ẋ) |true= C exp

(
−2

η

g2Q

(
ε1x

2

2
+
ε2x

4

4
+
ε3x

6

6
+
ẋ2

2

))
, (3.25)

Values of various parameters used in this simulation were: ε1 = 1, ε2 = −3.065,

ε2 = 1.825, η = 1.5, g = 1. The stiffness matrix and load vector for this system

are constructed exactly in the same manner as for system 1. From Fig.12 it is clear

that the method is able to handle systems with high order nonlinearity with ease.

Comparative convergence curves for this system, using PUFEM and MRMM show

a similar trend as for system 1. Table II shows results for problem size reduction

for this system. Clearly, these results are quite similar to the ones obtained for the

Duffing oscillator. This example further reaffirms the ability of the current technique

to handle highly nonlinear systems and multi-modal behavior accurately.

Study of the above two systems indicates that p-refinement (enrichment of basis)

typically provides superior error-reduction than h-refinement (adding more nodes).
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(a) Computed solution: sPUFEM algo-
rithm, 18× 18 grid with quadratic basis.
DOFs = 1944

(b) Error surface: sPUFEM algorithm,
18× 18 grid with quadratic basis.

(c) Convergence characteristics for the quintic os-
cillator using sPUFEM.

Fig. 12. Numerical results for the quintic oscillator using the sPUFEM algorithm.
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Table II. Numerical results using sPUFEM with local p-refinement: Two-state quin-

tic oscillator

Node Polynomial Problem Size RMS Error Max Error Compu-
Discret- Orders tation
ization (p) (DOF) (e2) (e∞) Time

(tcomp)
Boundary

Nodes: p = 2
18× 18 Interior 2D18

2 = 1944 6.121× 10−4 7.750× 10−3 33.2 s
Nodes: p = 2

Boundary
Nodes: p = 1

9× 9 Interior 2D9
locp

= 831 7.469× 10−4 6.127× 10−3 12.9 s
Nodes: p = 4

It greatly curtails problem size for the same level of accuracy by reducing the number

of nodes required along each dimension. This fact is illustrated effectively in Fig.13,

which shows that p-refinement is clearly superior for error reduction. Note that it

is possible to move towards the darker regions of low error on this graph by either

h- or p-refinement. However, the latter approach clearly requires a very few number

of nodes per dimension for achieving low approximation error. On the other hand,

if one is constrained to work with fixed order polynomials (e.g. constant or linear

polynomials), a very large number of nodes per dimension is required before the dark

zone is reached, implying slower convergence. Such h-refinement is typically employed

in standard FEM.

Overlaid on the error contours are contours of problem size, i.e. number of

DOFs for a given n and p. As expected, problem size increases monotonically upon

increasing n and/or p (see Eq.3.19). Therefore, as long as one remains underneath the

DOF contour of a particular value, say the D?-contour, the size of discretized problem

remains less than D?. This is very useful information, because now looking at the
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Unfeasible Zone
Unfeasible Zone

[ for 1.86 GHz 

Pentium M Processor

with  1 GB RAM]

Infeasible  Zone

Fig. 13. An accuracy-feasibility contour map of standard-PUFEM for a two-state sys-

tem.
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composite contour-map in Fig.13, we see that p-refinement provides not only lower

error, it also helps keep the problem size small. Combined together, it leads to high

accuracy with less computational effort. This is the ultimate criteria for being able to

attack problems in higher dimensions. Fig.13 has been referred to as an “accuracy-

feasibility contour map” because it provides complete information about the number

of nodes and order of polynomials required for desired accuracy, while keeping in mind

available computational resources (i.e. size of the discretized problem to be solved).

As previously mentioned, all results were obtained on a small workstation equipped

with a 1.86 GHz Pentium M processor and 1 GB RAM. The infeasible domain for

this machine (i.e. too many DOFs) are shown in the top-left section of the contour

map.

At this point, it is important to state that sPUFEM is not claimed to be a

remedy for the curse of dimensionality. It only helps ameliorate the curse, rather than

cure it. Especially with the added flexibility of selective, local basis-enrichment, it is

possible to keep the growth of problem size under tight check as system dimensionality

increases. Besides the systems considered in this section, the PUFEM algorithm was

applied to several other nonlinear oscillators in 2-D state-space, in all of which local

p-refinement was seen to offer significant reduction in problem size. This aspect of the

current method gives it advantage over both the global approach as well as traditional

FEM.



58

Table III. Comparative results using sPUFEM with local p-refinement: Three-state

linear system

Discretization Problem Size RMS Error Max Error Computation
Method (DOF) (e2) (e∞) Time (tcomp)

50× 50× 50
Brick elements 125000 1.133× 10−4 not available not available

(FEM)
7× 7× 7 Nodes

Boundary
Nodes: p = 1

Interior 3D7
locp

= 5247 2.823× 10−4 4.037× 10−3 18 min, 42.3 s
Nodes: p = 4

(sPUFEM, local
p-refinement)

c. Dynamic System 3: Example in Three Dimensions

Consider now the following 3-D linear system studied by Wojtkiewicz et.al.[82]:

ẋ =


0 1 0

−ω0 −2ζω0 1

0 0 −α

x +


0

0

1

w(t) (3.26)

The constants appearing in the above equation have the following values[82]: α =

ω0 = 1, ζ = 0.2. The reason for studying a linear system is that its stationary distribu-

tion can be obtained easily by solving the corresponding algebraic Riccati equation.

The stationary pdf for the above system was approximated by Wojtkiewicz et al.

[82] using traditional FEM with “brick” elements in 3-D state-space. Comparative

results have been shown in Table III. Approximation accuracy for both methods

are approximately the same, but the current method holds a significant advantage

in computational load. Fig.14 compares the computed x1 − x2 marginal pdf to the

true marginal. Note that if we were constrained to use quartic polynomials on all
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(a) Computed x1 − x2 marginal distribu-
tion.

(b) True x1 − x2 marginal distribution.

Fig. 14. Computed and true x1−x2 marginal distributions for the linear three dimen-

sional stochastic dynamics of Eq.4.45.

nodes, the resulting problem size would be 3D7
4 = 12005. This would most likely

provide better accuracy, but at a much higher computational cost, likely beyond the

capability of a small computer. Therefore, local p-refinement provides an attractive

balance between approximation accuracy and computational cost. In this case, we

obtain the same order of accuracy as traditional FEM with two orders of magnitude

fewer DOFs, which is a significant improvement.

d. Dynamic System 4: Nonlinear Example in Three Dimensions

Consider now the following nonlinear system with three dimensional state space:

ẋ = σ(y − x) + ζ1(t)

ẏ = x(ρ− z)− y + ζ2(t)

ż = xy − βz + ζ3(t) (3.27)
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The above equations represent a noise-driven Lorenz attractor. The Lorenz attractor

is a chaotic system that was originally used to model climatic changes and has been

used since to study numerous physical systems, e.g. laser systems (Maxwell-Bloch

model). Numerical values for various parameters appearing above are: σ = 10, ρ =

1; β = 8/3 and Q (noise intensity) = 2. Figures 15(a) and 15(b) show the x −

y marginal computed from the stationary pdf obtained by solving the static FPE

corresponding to Eq. 3.50. The discretization utilized for this solution was a 6×6×6

nodal grid with boundary nodes endowed with quadratic polynomials and interior

nodes with quartic polynomials (corresponding problem size = 3760 DOFs). An

analytical result is not available for this system, therefore error was quantified in

terms of equation-error and is shown in Fig.15(c). In this figure, equation error has

been integrated along the z-direction to obtain a 2D surface. The shown error surface

has an RMS value of 6.668× 10−6.

e. Dynamic System 5: Example in Four Dimensions

Here we look at the following linear dynamical system with a four dimensional

state space studied by Wojtkiewicz et. al.[84]:

ẋ =



0 1 0 0

−(k1 + k2) −c2 k2 0

0 0 0 1

k2 0 −(k2 + k3) −c2


x +



0 0

1 0

0 0

0 1


ζ(t) (3.28)

The Fokker Planck equation of concern is:

∂p

∂t
= −x2

∂p

∂x1

− ∂

∂x2

[(−(k1 + k2)x1 − c1x2 + k2x3)p]− x4
∂p

∂x3

− ∂

∂x3

[(k2x1 − (k2 + k3)x3 − c2x4)p] +D1
∂2p

∂x2
2

+D2
∂2p

∂x2
4

(3.29)
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(a) Computed x − y marginal for the
Lorenz attractor.

(b) Contour plot of the computed x − y
marginal surface.

(c) Equation error surface integrated along the z-
axis.

Fig. 15. Computed x − y marginal distribution for the noise-driven Lorenz attractor

of Eq.3.50.
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Constants appearing above have the following values: k1 = k2 = k3 = 1, c1 =

c2 = 0.4, D1 = D2 = 0.2. Fig.16 shows the (x1 − x2) marginal distribution computed

with the meshless sPUFEM method alongside the true marginal surface for the above

linear system. Available computing resources allowed the use of only 5 nodes along

each of the 4 dimensions, with all interior nodes carrying cubic basis functions and

boundary nodes linear polynomials. This leads to a total of 5555 DOFs, which is in

sharp contrast to the approximately 2.56 million DOFs used by the standard FEM

approach for the same problem. Table IV shows that the current method provides

an accuracy of one order of magnitude less than FEM. We note that this is solely

due to the limitation of computing resources currently utilized, with which it is not

possible to deal with problems of size greater than about 5500. In the absence of

local p-refinement, the problem size with cubic polynomials on a 5 × 5 × 5 × 5 grid

would be 4D5
3 = 21875, which is well beyond the capability of a small computer.

It is important to note therefore that the current approach provides highly ac-

ceptable accuracy (e.g. for use in the design of control laws via policy iteration) with

better than three orders of magnitude reduction in problem size so that it can be

solved on a small computer. Given the ability to deal with moderately larger matri-

ces, it is reasonable to believe that excellent approximations can be obtained for high

dimensional problems.

f. Remark on the Curse of Dimensionality

It has been demonstrated above through several examples that sPUFEM, coupled

with local p-refinement has the ability to attenuate the effect of curse of dimensionality

in FPE. Since the number of nodes required for discretization remains an exponential

function of the system dimensionality, a claim to breaking of the curse cannot be

made. At the same time, strong evidence towards curtailment of the curse has been
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Table IV. Comparative results using sPUFEM with local p-refinement: Four-state

linear system

Discretization Problem Size RMS Error Max Error Computation
Method (DOF) (e2) (e∞) Time

(tcomp)
40× 40× 40× 40

4D “Brick” 2560000 5.237× 10−5 2.911× 10−3 not available
elements (FEM)

5× 5× 5× 5
Nodes:

Boundary: p = 1 4D5
locp

= 5555 9.769× 10−4 8.870× 10−2 23 hr 36.4 min
Interior: p = 3

(sPUFEM, local
p-refinement)

(a) Computed x1 − x2 marginal surface. (b) True x1 − x2 marginal surface.

Fig. 16. Comparison of the computed (x1−x2) marginal for the four dimensional linear

system with the truth.
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presented. To further support this evidence, we look at Fig.17 and Table V. In Fig.17,

several problems residing in dimensions 1 − 4 have been solved with fixed accuracy

(O(e2) ≈ 10−4) using the sPUFEM algorithm and the required number of DOFs is

compared with the finite element method. For FEM, DOF requirement grows almost

linearly in log-scale indicating the curse of dimensionality. On the other hand, the

accuracy curve for sPUFEM tends to flatten out as dimensionality is increased. This

trend is extremely encouraging for further progress to problems residing in 5, 6 and

even higher dimensions. Approximate fits for the available data have also been shown

in Fig. 17. No rigorous conclusions can be drawn from these fits because very little

information (4 data points) is available. For FEM, it is well known (also seen in

Fig.17) that an exponential fit best describes the problem size growth. On the other

hand, a quartic-polynomial fit seems to capture DOF growth in sPUFEM. If indeed

true, polynomial growth would mean breaking of the curse of dimensionality, but

no formal conclusion is currently possible. Moreover, it is dangerous to extrapolate

and no conclusion can yet be drawn for dimensions 5, 6 and higher. With greater

computational resources, it would be possible to confirm such extension.

Table V shows the numbers appearing in Fig.17 along with feasibility on a small

computer. Since all results for the current approach were obtained on a small com-

puter, it is easy to anticipate that given greater computational ability, sPUFEM will

likely handle problems residing in much higher dimensions. An important remark

about problem size corresponding to N = 4 is due at this point. Table V shows that

about 8200 DOFs are required to achieve mentioned accuracy for four dimensional

systems. This is a projected number since the currently available resources do not

allow solution to problems exceeding approximately 5500 in size. As shown in the

results section above, the sPUFEM algorithm has been used to solve a linear problem

in 4D state space, requiring 5555 DOFs. Based on this fact, and trends available
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Table V. Growth in problem size with underlying system dimensionality: FEM and

sPUFEM

Problem Size Feasible on a
N (DOF) small computer?

FEM sPUFEM FEM sPUFEM
1 100 50 Yes Yes
2 2500 1200 Yes Yes
3 1,25,000 5200 No Yes
4 2,560,000 8200 No No

from lower dimensional problems, it is projected that on average about 8200 DOFs

will be required to solve more difficult nonlinear problems in 4D. Consequently, even

though linear 4-state problems have been solved using sPUFEM, more general non-

linear problems may not be solvable on small computers, which is also reflected in

Table V.

3. Stationary FPE Results with pPUFEM

This section presents results for stationary FPE using the particle version of

PUFEM. In all these examples, the solution domain is discretized using randomly

distributed nodes, implying that no a-priori knowledge about the system is utilized.

It is shown that even with such domain discretization, extremely good approximations

can be obtained with a very small number of degrees of freedom. The emphasis in

this section is on obtaining approximations with very small number of DOFs, which

may not always be possible with sPUFEM.
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No Available 
Information

Not Feasible on a
Small Computer

Fig. 17. Ameliorating the curse of dimensionality with sPUFEM.



67

a. Example 1: 2-State System

Consider first the following system in 2D state-space[66]:

ẍ+ βẋ+ x+ α(x2 + ẋ2)ẋ = g(t)G(t) (3.30)

The above system is known to admit a “volcano-shaped” stationary probability dis-

tribution shown in Fig.18. Two approximations using pPUFEM are shown in this

section - one with high accuracy, and another with somewhat lower accuracy, but

composed of an extremely small number of DOFs. Both approximations are built

upon highly unstructured domain discretizations using nodes obtained from a Halton

pseudorandom sequence.

b. Highly Accurate Approximation for Example 1

Consider the domain discretization and cover shown in Fig.19(a) using 100 nodes

derived from a Halton sequence. Nodes near the boundary are assigned constant basis

functions while those near the center are assigned quadratic polynomials, resulting

in a problem size of 540 DOFs. The resulting approximation is shown in Fig.19(b)

and corresponding error surface in Fig.19(c). The RMS value of the error surface is

1.13 × 10−4, which is equivalent to a relative error of 0.5%. Note that even for this

highly accurate solution, its problem size of 540 compares favorably over sPUFEM

(see Table V).

c. Workable, Low Order Approximation for Example 1

The true power of pPUFEM lies in its ability to extract reasonable approxima-

tions with a small number of DOFs by means of unstructured node distributions.

Fig.20(a) shows an implicit discretization using 32 nodes derived from a Halton se-
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Fig. 18. True stationary pdf for system in Eq.3.30.

quence. Using local p-refinement as in the previous case, a problem size of 172 DOFs

is obtained, which is almost an order of magnitude lower than sPUFEM (Table V),

although with slightly lower accuracy. The resulting approximation and error surfaces

are shown in Fig.20(b) and 20(c), which an RMS error value of 7.22×10−4, equivalent

to a relative error of about 3.1%. A pertinent question at this point is: how to these

numbers compare with sPUFEM? To get an idea, the sPUFEM accuracy-feasibility

plot for this system must be considered (like the one shown in Fig.13). It was found

that the darkest point (i.e. lowest RMS error) around the 170-DOF contour on this

graph reads an approximate value of 10−2.75, which corresponds to a relative error of

about 7%. One can thus infer that pPUFEM performs better than sPUFEM even

with a (pseudo) random domain discretization. The key is that there is minimal

wastage of DOFs in pPUFEM because of its unstructured nature of discretization.

The constraint of placing nodes on a grid can therefore prove expensive in sPUFEM,

especially so in higher dimensions. As for sPUFEM, numerous other examples in 2−

and 3−D spaces have been carried out successfully using the pPUFEM algorithm.
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(a) Domain discretization using 100
nodes generated from the Halton se-
quence.

(b) Obtained approximation of station-
ary behavior.

(c) Error surface.

Fig. 19. High accuracy approximation of stationary pdf using pPUFEM for the dy-

namical system in Eq.3.30.
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(a) Domain discretization using 32 nodes
generated from the Halton sequence.

(b) Obtained low order approximation of
stationary behavior.

(c) Error surface.

Fig. 20. Low order approximation of stationary pdf using pPUFEM for the dynamical

system in Eq.3.30.
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d. Example 2: 4-State System

We next consider a coupled two-degree-of-freedom (i.e. four-state) nonlinear

vibration isolating suspension model considered by Ariaratnam [22]:

ẋ1 = x3

ẋ2 = x4

ẋ3 = −αx3 −
1

M

∂V

∂x1

+ ζ1

ẋ4 = −βx4 −
1

I

∂V

∂x2

+ ζ2 (3.31)

(3.32)

The above system belongs to a small class of nonlinear systems possessing a Hamil-

tonian structure for which the true stationary distribution of FPE is known. In

the above example, the coupled potential function V is given by [22]: V (x1, x2) =

k1x
2
1 + k2x

2
2 + ε(λ1x

4
1 + λ2x

4
2 + µx2

1x
2
2). Values of various system parameters used are:

α = 0.5, β = 1.0, k1 = 0.5, k2 = −0.5, ε = 0.5, λ1 = 0.25, λ2 = 0.125, µ = 0.375.

The noise process is two-dimensional with intensities D1 = 2 and D2 = 4. Note that

parameters have been selected so that D1M
α

= D2I
β

, because only under this condition

can the analytical solution be written. Of course, the numerical approach does not

require this condition to hold, and it has been made only for comparison purposes.

Figure 21 shows the stationary x1 − x2 marginal obtained for this system using the

pPUFEM approach. A total of 300 nodes were used to discretize the solution domain,

chosen to be [−6, 6]⊗[−6, 6]⊗[−6, 6]⊗[−6, 6]. Nodes close to the center of this domain

were assigned quadratic polynomial basis and nodes closer to the boundary constant

basis functions as in the above example, leading to a total of 2442 DOFs. The re-

sulting stationary marginal is presented in Fig.21(a), which compares reasonably well

with the true marginal shown in Fig.21(b). As a comparison, the stationary solution
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(a) Computed x1−x2 stationary marginal
distribution.

(b) True x1− x2 stationary marginal dis-
tribution.

Fig. 21. Computed and true x1 − x2 stationary marginal for the coupled 4-state non-

linear suspension model.

was obtained using sPUFEM for a linear 4-state system in the previous section using

5555 DOFs, and traditional FEM for the same linear problem requires 2.56 million

DOFs. The advantage of pPUFEM is thus quite clear for this system and this exam-

ple further underlines the fact that unstructured node distribution in the pPUFEM

paradigm gives it an edge over sPUFEM.
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e. Example 3: 5-State System

Finally, let us consider a linear example in five dimensional state space modeled

by the following equations:

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5


=



0 1 0 0 0

−ω1 −2ξ1ω1 α1 0 0

0 0 −α 0 0

0 0 0 0 1

0 0 α2 −ω2 −2ξ2ω2





x1

x2

x3

x4

x5


+



0 0 0

1 0 0

0 1 0

0 0 0

0 0 1




ζ1

ζ2

ζ3

 (3.33)

Nominal values were used for various parameters appearing above and the pPUFEM

discretization approach was used on a [−5, 5] ⊗ [−5, 5] . . . [−5, 5] domain with 301

nodes, and local p-refinement as above, leading to a problem size of 5496 DOFs.

The resulting approximation was relatively coarse and is shown in Fig.22. Note

that this result was obtained on a small computer (laptop with 1 GB computing

memory) and thus can be easily improved with few additional DOFs. The result

shown in this section illustrates the basic point that pPUFEM makes FPE solvable

with extremely small number of DOFs, and problems that have so far only been

attempted on supercomputers have been made solvable on the most basic computer

available today. Given the capability to perform the described computations on larger

computing platforms, it is expected that much more difficult problems can be solved,

residing in much higher dimensional spaces.

The discussion on curse of dimensionality can be rounded off by revisiting Fig.17

and adding to it another curve: the one corresponding to pPUFEM (see Fig.23).

Computing capability constraints remain the same for both figures, but the extra

flexibility of pPUFEM in use of unstructured node distributions makes an additional

dimension accessible to solution. Note from Fig.23 that problem size growth is much
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Fig. 22. Computed x1 − x2 marginal for the linear 5-state system.

slower for pPUFEM than sPUFEM and the amplitude of the leading term in a quartic-

polynomial fit is one order of magnitude less than sPUFEM. This suggests definite

advantages in higher dimensional applications. However, as mentioned in the discus-

sion surrounding Fig.17, figure 23 offers additional encouraging numerical evidence,

but still does not constitute a proof for breaking of the curse of dimensionality.

D. Semianalytical Approach for Transient FPE Response

This chapter thus far primarily considered spatial discretization of the FP op-

erator and long term (i.e. stationary) behavior of the state probability density.

The remainder of this chapter will focus on obtaining the transient FPE response,

which must precede stationary behavior. This involves solving Eq.3.11 to obtain time

varying coefficients ai(t), which parameterize the approximated transient response,
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No Available 
Information

Not Feasible on a
Small Computer

Fig. 23. Two variants of PUFEM (standard- and particle-) in the face of curse of

dimensionality.
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Ŵ(t,x) (Eq.3.6). It was mentioned in section B3 that in the existing literature, this

is almost exclusively done by temporal discretization, for example, by implementing

a stabilized Crank-Nicholson algorithm. In this section, an alternate algorithm is

presented to develop an analytical solution for the transient FPE response. Coupled

with the numerical discretization of section B, we obtain a semianalytical framework

for solving transient FPE.

Note that in the absence of parametric uncertainty, Eq.3.11 represents a time-

invariant system of linear equations (LTI). As is well known, it is often instructive to

study the eigenstructure of an LTI system because this procedure provides valuable

insight into the problem. However, the present problem involves several complicated

numerical issues like ill-conditioning (due to large penalty parameter) and large size

of matrices M and K in Eq.3.11. Additionally, the stiffness matrix is neither sym-

metric nor definite due to the non-normal nature of the FP operator. It is because

of these issues that temporal discretization has been widely used despite the linear

form of Eq.3.11. At the same time, extensive research has been conducted for such

systems, e.g. Krylov space iterative methods[104, 105] and we can benefit from such

studies. Thus considering Eq.3.11, we look at the following similarity transformation:

a′ = V−1a, where, V is a matrix of eigenvectors obtained by solving the generalized

eigenvalue problem for the system (K,M), i.e.:

Kv = λMv (3.34)

Assuming that Eq.3.34 can be solved, we obtain the familiar decoupled form of

Eq.3.11:

ȧ′(t) = Λa′(t) + f ′, (3.35)

where, Λ is a diagonal matrix containing the generalized eigenvalues of (K,M), and
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f ′ = V−1M−1f is the load vector in modal coordinates. Thus, if we can handle

the numerical issues involved in computing V and Λ, transient FPE response of the

system can be obtained analytically in modal space. Time history of the individual

modal amplitudes, a′i(t), can be written as:

a′i(t) =

(
a′i(t0) +

f ′i
λi

)
exp(λit)−

f ′i
λi

. (3.36)

Note that it is easy to deal with zero or near zero eigenvalues in the above equation

by taking the limit λi → 0. For example, if λk → 0, we have:

lim
λk→0

a′k(t) = a′k(t0) + f ′kt (3.37)

It is known that the stationary distribution of FPE (if it exists) is the eigen-

function of the FP operator with zero eigenvalue. Additionally, when it exists, it is

unique and globally asymptotically stable. Thus, there can be only one trivial eigen-

value. It is however not possible to recover an eigenvalue exactly equal to zero via

numerical computation. Thus, in numerical computation, the stationary mode can

be identified as the eigenvalue with minimum absolute magnitude. For the bulk of

physically relevant models, this mode appears with a spectral gap, i.e. with separa-

tion in magnitude between the static mode eigenvalue and the remaining spectrum,

thus making its identification fairly straightforward. In case the spectral gap is neg-

ligible (i.e. there appears a cluster of eigenvalues near the static eigenvalue, all close

to zero), the mode with the least eigenvalue magnitude can be designated to be the

static mode. For this eigenfunction, the modal amplitude should be time invariant,

i.e. a′k(t) = a′k(t0), which is not consistent with Eq.3.37. However, note that time

variation of the stationary mode is extremely slow (since fk ≈ 10−6) and occurs due

to enforcement of artificial boundary conditions. Therefore, one can force the iden-

tified static mode to be time invariant without causing noticeable error. For most
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systems, this is actually not required because time rate of change of the static mode is

typically several orders of magnitude slower than remaining modes. For more difficult

systems, especially ones with negligible spectral gap, it may be required to force the

static mode to be time invariant.

1. Spurious Modes

It was found that given the particular fineness of meshless discretization in use,

the solution of the generalized eigenvalue problem of (K,M) contains spurious (false/

extraneous) modes which do not contribute to improvement of approximation accu-

racy. In fact, it is postulated that these modes contribute to the difficulties associated

with solving Eq.3.11 in its original form. In the following section, evidence is provided

to back this claim and it is shown that a small subset of admissible eigenfunctions can

be identified which is sufficient to generate the transient FPE response in analytical

form, irrespective of initial probability density of the state.

2. Identification and Elimination of Extraneous Modes

The spectrum of the discretized Fokker-Planck operator contains numerous spu-

rious modes that do not correspond to physical reality and arise due to the details of

numerical implementation. These extraneous modes can be classified into two groups.

The first group (G1) emerges as an artifact of the penalty method used for boundary

condition enforcement and comprises of eigenfunctions that display severe boundary

condition violation. These modes are all either highly stable or unstable (i.e. have

large negative or positive real parts), depending on the sign of the penalty parameter.

In the former case, dynamics associated with these modes dies out almost instantly,

while in the latter, cause the corresponding modal amplitudes to diverge. It is easy

to prove that a large enough negative penalty parameter in Eq.3.9 guarantees the
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existence of unstable modes. To this end, consider the following lemma:

Lemma III.1 A matrix C = AB, where A is symmetric positive-definite and B

asymmetric indefinite admits positive eigenvalues.

Proof: Begin by assuming that C is negative definite, i.e., it admits only negative

eigenvalues. Then, we have the following developments:

C = AB

CT = BTAT = BTA

⇒ C + CT = AB + BTA (3.38)

Since C was assumed to be negative definite, we can write C + CT = −Q, where

Q is a symmetric positive-definite matrix. Hence, Eq.3.38 reduces to the following

Lyapunov equation in B with positive-definite symmetric matrices A and Q:

AB + BTA + Q = 0 (3.39)

Since B satisfies Eq.3.39, it must be Hurwitz, with all negative eigenvalues. This is

clearly a contradiction because B is given to be indefinite. Hence, the assumption that

C is negative definite is falsified. Matrix C therefore must admit positive eigenvalues.

�

The above lemma leads to the desired result, stated as another lemma below:

Lemma III.2 Given the structure of matrices M and K in Eqs.3.12 and 3.13 respec-

tively, and a large enough negative penalty parameter α, the generalized eigenvalue

problem Kv = λMv admits positive eigenvalues.

Proof: Proving the above lemma is equivalent to showing that the matrix L = M−1K

admits positive eigenvalues. This follows directly from Lemma III.1 because: (1)
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Looking at Eq.3.12, we see that M is symmetric positive definite, implying that so is

M−1, and (2) A large negative value of α coupled with the fact that the FP operator

is non-normal ensures that K is asymmetric indefinite. �

Eigenvalues belonging to group G1 of spurious modes are easy to identify by

virtue of their their large magnitude and unstable nature (for a negative penalty

parameter). They appear as a distinct band in the spectrum with the largest absolute

values and are easy to isolate (for example, see figure on page 85).

The second group (G2) of spurious modes comprises of unreliable eigenfunctions

that have not converged for the particular spatial discretization in use. These poorly

converged eigenfunctions are identified by evaluating the equation error in the eigen-

value problem of the FP operator in function space. In other words, while these

functions satisfy the discretized eigenvalue problem exactly, they show large error in

the original, un-discretized eigenvalue problem in function space. This is due to the

fact that the spatial discretization in use is unable to capture these eigenfunctions

sufficiently well. Thus we look at the norm of the following equation error:

‖εφ(x)‖ = ‖LFP(φ(x))− λφ(x)‖L2(Ω) (3.40)

All unconverged eigenfunctions (φ ∈ G2) appear as a distinct band showing high

residual error and can be filtered out easily (for example, see on page 86).

Thus eliminating extraneous modes, we are left with a reduced set (A) of “ad-

missible” eigenfunctions that can be used to approximate the solution of transient

FPE. Note that these selected modes, i.e. set A, work for all possible initial distri-

butions. As a result, once these modes are identified and isolated as a pre-processing

step, FPE can be solved for any given initial distribution in real-time. In this sense,

this algorithm is semianalytical - comprising of a numerical part (FPE discretization

followed by spectral analysis) and a analytical part (writing the response in terms of
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admissible modes). The identification of spurious modes is presented in the results

section.

As stated above, the presented analysis holds true for any given initial probability

distribution of the state. Before proceeding, we make the assumption that the set of

eigenvalues corresponding to admissible modes does not contain any repeated eigen-

values. This is typically true for a numerically computed set of eigenvalues. Then,

for a prescribed initial distribution, it may be possible to identify an even smaller

set, B ⊂ A, that approximates the transient solution and provides further reduction

in problem size. The set B, identified by the process of elimination, is such that it

approximates the initial state pdf sufficiently well in terms of the equation-error of

FPE. In other words, the eigenfunctions of set B are chosen such that equation error

in FPE is less than a prescribed tolerance at initial time. It can then be shown that

equation-error at all subsequent times remains bounded by the initial equation-error.

Therefore, the identified minimal admissible subset B is sufficient to generate the

FPE response for the particular initial distribution for all time. This result can be

stated as the following theorem:

Theorem III.1 Let A = {φi : Real(λi) < 0, ‖εi‖ = ‖LFP(φi) − λiφi‖L2(Ω) < δ} be

the set of stable admissible eigenfunctions assumed to contain no repeated eigenvalues.

Define equation error in FPE as e(t) =
∥∥∥ ∂

∂t
Ŵ(t,x)− LFP(Ŵ(t,x))

∥∥∥
L2(Ω)

. If a subset

B = {φ?
i : φ?

i ∈ A, i = 1, . . . , NB} of A can be identified such that the initial equation-

error is within a specified tolerance, i.e. e(t0) < ε, then the equation-error at all

subsequent times is bounded by the initial equation-error, i.e. e(t) < ε.

Proof: We assume that WΓ = 0, such that f = 0. This assumption is not restrictive

because the load vector is ideally zero, and in implementation turns out to be a small
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value (‖f‖ ≈ 10−6). Now, the equation-error in the FPE at time t is given by:

e(t) =

∥∥∥∥ ∂∂tŴ(t,x)− LFP(Ŵ(t,x))

∥∥∥∥
L2(Ω)

(3.41)

Using the proposed subset B of admissible eigenfunctions, we have the following

expression for the instantaneous pdf (following the assumption that exist no re-

peated eigenvalues): Ŵ(t,x) =
∑card(B)=NB

i=1 a′?i (t)φ?
i (x). Substituting this expression

in Eq.3.41 we have the following development:

e(t) =

∣∣∣∣∣
∣∣∣∣∣

NB∑
i=1

[
∂

∂t
(a′?i (t)φ?

i (x))− LFP(a′?i (t)φ?
i (x))

]∣∣∣∣∣
∣∣∣∣∣
L2(Ω)

=

∣∣∣∣∣
∣∣∣∣∣

NB∑
i=1

[ȧ′?i (t)φ?
i (x)− a′?i (t)LFP(φ?

i (x))]

∣∣∣∣∣
∣∣∣∣∣
L2(Ω)

=
Eq.3.40

∣∣∣∣∣
∣∣∣∣∣

NB∑
i=1

[ȧ′?i (t)φ?
i (x)− a′?i (t){λ?

iφ
?
i + ε?

i (x)}]

∣∣∣∣∣
∣∣∣∣∣
L2(Ω)

=

∣∣∣∣∣
∣∣∣∣∣

NB∑
i=1

[{ȧ′?i (t)− λ?
i a
′?
i (t)}φ?

i (x)− a′?i (t)ε?
i (x)]

∣∣∣∣∣
∣∣∣∣∣
L2(Ω)

(3.42)

⇒ e(t) =
Eq.3.35,

f=0

∣∣∣∣∣
∣∣∣∣∣

NB∑
i=1

a′?i (t)ε?
i (x)

∣∣∣∣∣
∣∣∣∣∣
L2(Ω)

(3.43)

Noting that the eigenfunctions can be normalized to have unit L2(Ω) norm, we get

e(t) ≤

√√√√ NB∑
i=1

|a?
i (t)|

2 (3.44)

The time history of modal amplitudes a
′?
i (t) (in general complex valued) is given by

Eq.3.36, from which it is easy to show that |a(t)| ≤ |a(t0)|. We thus conclude from

Eq.3.44 that e(t) ≤ e(t0) ≤ ε ∀t ≥ 0. �

It is important to note that the above theorem holds for B = A, and thus is not

specific to particular initial distributions. In the special case where systems admit a

stationary distribution, only one mode (corresponding to λ = 0, “stationary mode”)
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has non-zero amplitude as t→∞. A corollary to the above theorem is that equation-

error is bounded by a monotonically decaying envelope which has greatest width at

the initial time. This follows directly from Eq.3.43 and can be stated as follows:

Corollary III.1 The equation error, e(t) in FPE resulting from an admissible set A

of eigenfunctions (e(t) and A defined in Theorem III.1) is bounded by an exponentially

decaying envelope which has its greatest width at the initial time:

e(t) ≤ e(t0) exp(µt) + es, (3.45)

where, subscript ‘s’ corresponds to the static mode, es = ||as(t)εs(x)|| = ||as(t0)εs(x)||

is the equation-error in FPE resulting only from the static mode (stationary solution),

µ = max{Real(λi), i 6= s}, and λi correspond to eigenfunctions φi ∈ A.

Proof: The proof is simple and follows directly from substituting the time variation

of admissible modal coefficients in Eq.3.43:

e(t) =
Eq.3.35,

f=0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣a′s(t)εs(x) +

NA∑
i=1
i6=s

a′i(t0) exp(λit)εi(x)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω)

≤

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

NA∑
i=1
i6=s

a′i(t0) exp(λit)εi(x)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω)

+ ||a′s(t)εs(x)||

≤
µ=max{Real(λi)};

i6=s; and

a′s(t)=a′s(t0)

∣∣∣∣∣
∣∣∣∣∣

NA∑
i=1

a′i(t0)εi(x)

∣∣∣∣∣
∣∣∣∣∣
L2(Ω)

exp(µt) + es

= e(t0) exp(µt) + es (3.46)

Since λi correspond to φi ∈ A, Real(λi) < 0. Thus, µ < 0. �
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Initial response

t = 0

Long term behavior

t → ∞

Approximation space
designed for this problem

Equation error increases
in this direction

Highest equation error
at this point

Fig. 24. Illustration of Theorem III.1.

3. Benefits of Spectral Analysis

The most important advantage of transformation to modal coordinates is that it

allows for a robust solution of FPE in near-real time, given that the eigenvalue analysis

is performed offline. The pre-processing step of identifying the set of admissible

eigenfunctions makes the approach independent of initial state distribution. The

use of eigenfunctions ensures that solution accuracy (equation error) improves with

time and the approximation is at least as good as the approximation of the initial

distribution in terms of equation-error in FPE. This is a significant step towards

obtaining high-fidelity solutions of FPE. The idea of decreasing equation error is

illustrated in Fig.24, which shows that modal basis functions are obtained essentially

by studying long term characteristics of the FP operator. Therefore, these modes are

intrinsically suited to approximate steady state response. On the other hand, initial

conditions for modal coefficients are obtained by a standard least squares procedure
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of function approximation of the initial density function, for which the reduced set

of admissible eigenfunctions may not be the best choice of basis functions. Also note

that the process of removing spurious modes leads to a significant reduction in size

of the discretized problem, which is useful for high dimensional applications.

E. Results for Transient FPE

In this section, we present numerical results for various dynamical systems re-

siding in 2 and 3 dimensions using the above outlined algorithm.

a. Dynamic System 1: Example in Two Dimensions

For the first example, we consider again the dynamical system of Eq.3.30. This

system was studied by Muscolino et al. in Ref. [66], wherein global C-type Gram-

Charlier expansions were used to obtain transient FPE response. In the current

work, meshless sPUFEM discretization was implemented on a 14 × 14 grid. Local

p-refinement was utilized to endow boundary nodes with constant basis functions and

interior nodes with quadratic-polynomial basis, leading to a total of 916 undetermined

coefficients in the approximation. The results of modal analysis are shown in Figs.25

and 26. Recall that the spurious modes of ‘group 1’ (G1) display severe boundary

condition violation and those belonging to ‘group 2’ (G2) exhibit large equation-error

in the eigenvalue problem of the FP-operator in function space. The modes belong-

ing to group 1 are clearly distinguishable in Fig.25(a) by the large magnitude of their

eigenvalues. Fig.25(b) shows some examples of these eigenfunctions and their exag-

gerated violation of boundary conditions is clearly visible. Eigenfunctions of group 1

constitute 25% of the total number of modes for this system. Note that the eigenvalue

with the smallest magnitude is isolated from the rest of the spectrum (i.e. there exists
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(a) Unstable eigenvalues (of Group 1)
have the largest magnitudes and are easy
to identify.

(b) Examples of group 1 spurious modes.

Fig. 25. Identification of spurious modes of the discretized FP operator: group G1.

a spectral gap) and the corresponding eigenfunction is the stationary distribution of

the dynamical system under consideration. Note however that the stationary eigen-

function may not necessarily appear as an isolated mode for all dynamical systems,

although most physical systems exhibit this behavior.

Recall that if a stationary solution exists, it is known to be unique, meaning

it is globally asymptotically stable. As already mentioned, it is also often the case

that the stationary mode appears in isolation with a spectral gap (as is evident

from Fig.25(a)). Separation of the stationary solution from remaining modes endows

exponential stability to the system, i.e. faster than asymptotic stability, the extent of

which depends on the actual system under consideration. For systems where spectral

gap is small, (i.e. there exists a cluster/continuum of modes in the neighborhood

of the static mode) it is difficult to identify the stationary solution, and the mode

with least eigenvalue can be assigned as the stationary mode. Note that despite this

difficulty, the stationary solution, when it exists is unique and asymptotically stable.
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The modes belonging to group 2 are identified in Fig.26, which shows two distinct

bands of equation-error in the functional eigenvalue problem of FPE. The uniformly

large magnitude of errors on this plot (see the scale on the y-axis) is due to the

noise introduced in computing the second derivative of the approximation. The set

A of admissible modes is shown in Fig.26 encircled with an ellipse. The smallest

eigenvalue (corresponding to the unique stationary distribution) is highlighted and

emerges as the eigenfunction with the best convergence. Fig.27 shows a possible

initial distribution, namely a Gaussian pdf with mean at the origin. For this initial

distribution, a much smaller set B was found, (shown with circles in Fig.26) which

approximates the initial condition sufficiently well and contains only 20% of the total

number of degrees of freedom originally used. This is a significant order reduction.

Fig.27 provides a verification of the redundant nature of all eliminated modes (∈ BC).

In this figure, all initial modal amplitudes a?
i (t0) have been shown in the complex

plane. It is clearly visible that initial amplitudes of all eliminated modes is negligible.

In other words, they do not participate in the approximation of the initial distribution,

which is a necessary condition for their redundant nature.

Furthermore, following Eq.3.43, we know that |a?
i (t)| ≤ |a?

i (0)|, which in turn

implies that these modes do not participate in the approximation at any later time

and are therefore redundant.

Thus, we see that a significant reduction in the order of approximation is achiev-

able for the transient problem. Fig.28(a) shows the evolution of modal amplitudes of

all modes. Note that all transient modes decay to zero amplitude, while the ampli-

tude of the static mode attains a non zero, (nearly) steady state value. We mention

that the eigenvalue of the stationary mode is computed to have a very small real part

due to numerical computations and hence has a finite decay rate. However, the decay

rate of the static mode is several orders of magnitude lower than all other transient
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Admissible Modes (     )

Fig. 26. Identification of spurious modes belonging to group G2 (unconverged eigen-

functions).

modes and we obtain the stationary behavior for all practical purposes. This fact

is visible in Fig.28(a). This result also verifies the discussion surrounding Eq.3.37

(fi ≈ 10−6). Fig.28(b) confirms the exponential decrease in equation-error in accor-

dance with Corollary III.1. The equation-error curve flattens out to a steady state

value, including only the contribution from the static mode. Fig.29 shows time evo-

lution of the initial distribution obtained from analytical integration of coefficients

of the remaining modes. Several other chosen initial distributions led to the same

stationary distribution, as expected.

b. Dynamic System 2: 2D Nonlinear Oscillator with Multiplicative Noise

Consider the following two-state nonlinear oscillator studied by Wojtkiewicz et

al.[67]:

ẍ+ 2ηẋ+ x− εx3 = xG1(t) + G1(t) (3.47)
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Fig. 27. Initial amplitudes of all modes ∈ BC are almost trivial for the shown initial

distribution.

(a) Time history of individual modal co-
efficients.

(b) Time history of equation error, e(t).

Fig. 28. Time history of modal coefficients and verification of Theorem III.1.
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(a) Time evolution of pdf : Time: 0.0s −
2.4s.

(b) Time evolution of pdf : Time: 2.8s −
8.0s.

Fig. 29. Solution of transient FPE for a 2-state nonlinear oscillator starting with a

Gaussian initial condition.

The above system represents a damped soft-spring Duffing oscillator with state mul-

tiplied noise. The noise driving the above system comprises of two independent

components, and can be written as: (refer to Eq.2.1)

dB(t) =

dG1

dG2

 ,Q =

 2D11 0

0 2D22

 (3.48)

where, D11 and D22 are intensities of the individual components, dG1 and dG1 respec-

tively. We will consider the case of D11 = 0.24 (“high multiplicative excitation case”

considered in Ref. [67]). Values of the other parameters used are: η = 0.2, ε = 0.1

and D22 = 0.4 [67]. FPE for the above system can be written as:

∂p

∂t
=

∂

∂x1

[(2ηx2 − x1 + εx3
1)p]− x2

∂p

∂x1

+ (D11x
2
1 +D22)

∂2p

∂x2
2

(3.49)

The above problem was solved in Wojtkiewicz et al. [67] using 100 finite elements per

dimension (problem size of 1002 = 10000). Computation time (including integration
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(a) Spurious modes of group G1. (b) Spurious modes belonging to group
G2 identified via large equation error.

Fig. 30. Spectral analysis for the Duffing oscillator with state-multiplied noise.

of the discretized FPE) was reported to be 17 minutes on a CRAY Y-MP/464 super-

computer. In this example, sPUFEM meshless discretization with local p-refinement

was implemented on a 9 × 9 grid, with constant basis functions endowed to the

boundary nodes. All interior nodes were endowed with quartic shape functions, thus

leading to a problem size of 767 degrees of freedom [106]. The computation time for

the variational formulation and modal analysis detailed above was 2 minutes on a

portable workstation with a 1.86 GHz Pentium M processor and 1 GB RAM. Results

of modal analysis are shown in Fig.30. Note that only about 48% of the 767 DOFs

are admissible, thus further reducing the problem size to a mere 366 DOFs. The time

evolution of an initial probability distribution has been shown in Fig.31 alongside the

evolution of modal coefficients of the admissible modes. Clearly, all transient modes

die out, leaving the static mode as the only non-zero mode in long term.
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(a) Time evolution of pdf : Time: 0.0s −
31.42s.

(b) Time histories of modal coefficients of
the admissible eigenfunctions.

Fig. 31. Solution to FPE for the Duffing oscillator with state-multiplied noise starting

with a Gaussian initial condition.

c. Approximation for Above System with pPUFEM

In this section, we consider the same 2-state duffing oscillator with high mul-

tiplicative noise and approach the problem with pPUFEM, aiming to achieve a

smaller problem size. Figure 32(a) shows discretization of the solution domain Ω =

[−10, 10]⊗ [−10, 10] using 93 nodes. These nodes were placed using the two dimen-

sional Halton sequence; i.e. no pattern or a-priori knowledge was used for node place-

ment. All nodes inside the bold broken box (34 of them) were assigned a complete

set of quadratic polynomial basis functions and all nodes lying outside were assigned

only the constant basis, i.e. Ψ(x) ≡ 1. This was based on a-priori knowledge that the

bulk of the pdf lies inside the box drawn with broken lines. Hence, the total number

of degrees of freedom in this approximation is: DpPU = 34× 6 + (93− 34)× 1 = 263.

The resulting approximation, following integration of variational equations and modal

analysis is shown in Figs.32(b) and 33. Fig.32(b) shows the spectrum of the discretized
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(a) 93 quasi uniformly random nodes
used to discretize the solution domain for
system in Eq.3.49.

(b) Spectrum of the discretized FP op-
erator showing spurious modes and the
isolated stationary mode for the system
in Eq.3.49.

Fig. 32. pPUFEM discretization details for system 2.

FP operator. The spurious modes mentioned in Section D2 are marked out and their

elimination leaves behind a mere 228 DOFs. The eigenfunction corresponding to the

smallest eigenvalue (marked with a circle) is nothing but the stationary solution of

FPE for this system. Note that there appears a sizeable spectral gap between the

static mode and transient modes.

Fig.33 shows nine snapshots of the time evolution of the initial pdf for the system,

which is assumed to be Gaussian, centered at (1, 1). It is visible that the quality of

approximation improves with time, as stated in Theorem III.1. This system was

considered by Kumar et al.[107] using the standard-PUFEM and comparable results

were obtained using about 700 DOFs. On the other hand, standard finite element

method (FEM) requires 10,000 DOFs to deliver comparable results[67].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 33. Time evolution of an initial Gaussian pdf using pPUFEM approach for the

dynamical system in Eq.3.49.
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d. Dynamic System 3: 3D Nonlinear Oscillator (Lorenz Attractor)

Consider now the following nonlinear system with three dimensional state space:

ẋ = σ(y − x) + ζ1(t)

ẏ = x(ρ− z)− y + ζ2(t)

ż = xy − βz + ζ3(t) (3.50)

The above represents a noise-driven lorenz attractor. Numerical values for the various

parameters appearing above are: σ = 10, ρ = 1; β = 8/3 and Q (noise intensity) = 2.

This system was also studied in the previous section for its stationary distribution.

We use the same discretization as in the first part, i.e. a 6×6×6 nodal grid with the

boundary nodes endowed with quadratic polynomials and interior nodes with quartic

polynomials (corresponding problem size = 3760 DOFs). Fig. 34(a) shows the modal

analysis for this system. About 28% of the total modes belong to group G1, which

amounts to 1088 modes. Fig. 34(b) shows the time-evolution of the xy-marginal

distribution. The (near) stationary distribution obtained from this analysis matches

the stationary distribution obtained in the previous section to machine precision.

e. Dynamic System 4: 4-State Nonlinear Oscillator

To conclude this chapter, let us study the transient FPE response of the coupled

nonlinear vibration isolation suspension model of Eq.3.31, which was considered in

section C for its steady state response. A somewhat bigger domain of ⊗4
i=1[−8, 8] was

considered and 350 locally enriched nodes were used under the pPUFEM framework,

leading to a problem size of 3221 DOFs. The resulting spectrum and spurious modes

are shown in Fig.35. The initial state density was assumed to be a Gaussian function

centered at [4, 4, 4, 4]T with unit covariance matrix. Time evolution of the x1 − x2
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(a) Eigenvalues for the three state noise
driven Lorenz attractor.

(b) Time evolution of the xy-marginal
distribution of the Lorenz attractor.

Fig. 34. Numerical results for the transient Fokker-Planck Equation of the noise driven

Lorenz attractor.

marginal probability density is shown in Fig.36. The system evolves at a fast rate

in the initial stages of propagation shown in Fig.36(a), as bimodal behavior in the

marginal density emerges. With the available computing resources, it is not possible

to solve generalized eigenvalue problems of size much greater than that considered in

this example. It is clear that even with a relatively few number of modes (∼ 2000

admissible modes), the overall system behavior is captured remarkably well.

This is confirmed by comparing the shown evolution with Monte Carlo propaga-

tion of a few sample points (75 in all), shown overlaid on the surface plots. Note that

there is considerable discrepancy between point propagation and pdf propagation in

the time range 0.1 s to 2.0 s. This is due to the fact that process noise was severely

attenuated for Monte Carlo propagation (intensity scaled down by 20 times) because

it takes on the order of hours to integrate a single sample through nonlinear dynamics

of Eq.3.31 if the same noise level used for FPE analysis is used in Monte Carlo sim-

ulations. As a result, in the absence of the actual dissipation level, the point cloud
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Fig. 35. Spectrum of the discretized FP operator for the four-state nonlinear vibration

isolation suspension model.

“drifts faster” than it should. Since long term behavior is globally asymptotically

stable, the point cloud propagation and pdf propagation both eventually match up to

the same probability distribution, albeit with mismatch in dissipation levels, clearly

visible from Fig.36(b).

F. Summary

In this chapter, basic tools for a robust solution methodology for FPE have been

developed. Two algorithms based on the standard and particle versions of PUFEM

have been presented to discretize the Fokker-Planck operator while handling the as-

sociated curse of dimensionality. Spatial discretization is coupled with modal analysis

and spurious mode rejection to obtain transient FPE response in real-time, indepen-

dently and for all possible initial state probability distributions. In this section, we

summarize the salient features of the tools developed in this chapter by comparing

them to other existing techniques for solving FPE, like the global Galerkin method

(GM), conventional FEM and the other meshless methods based on moving least
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(a) Time evolution of pdf : Time: 0.0s− 1.0s.

(b) Time evolution of pdf : Time: 2.0s− 32.0s.

Fig. 36. Evolution of the x1 − x2 marginal of a 4-state vibration isolation suspension

model with a Gaussian initial condition.
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squares, like the one used in used in Kumar et al.[76] (MRMM):

• Shape function selection: It has been demonstrated through several ex-

amples that PUFEM (especially the particle version) offers great flexibility

in the selection of independently chosen local approximation spaces (local p-

refinement). This feature is also the primary cause behind weakening of the

curse of dimensionality. Shape functions are constructed via the simple step

of multiplying basis functions with PU pasting functions. In most other mesh-

less methods, shape functions are constructed using data fitting algorithms like

MLS. Consequently, while it is possible to use non-polynomial functions in the

approximation space, it is a relatively difficult task to use different basis func-

tions in different regions of the solution domain. Conventional FEM typically

uses only polynomial shape functions in the approximation space, the order

of which is determined by the shape of the finite element. Finally, there is no

scope for local basis enrichment in global methods because of the nature of their

formulation.

• Convergence characteristics: Although a very small body of theoretical

results exist in this regard, convergence characteristics of (s,p)-PUFEM is ex-

pected to be superior to that of FEM, especially with the use of special (non-

polynomial) shape functions. From our experience in the current application,

we can conclude that convergence characteristics of PUFEM is better than that

of MRMM, using the same set of basis functions (see Figs.11(f) and 12(c)). This

could partially be due to the absence interpolation errors in PUFEM, whereas

in MRMM additional errors are introduced due to interpolation required to find

the solution at points other than the nodes used for discretization.



100

• Computational load: If we break up computational load into three stages -

preprocessing (grid generation and approximation space construction), integra-

tion (evaluation of weak form integrals) and postprocessing (solving discretized

FPE to obtain transient and stationary response), we get the following relative

ordering: PUFEM and MRMM rank above FEM in the preprocessing stage

because of minimal bookkeeping required in the former two methods. PUFEM

and FEM are faster than most other meshless methods in the integration stage

because the latter require solution to an MLS problem for every quadrature

point used for numerical integration. In the currently developed algorithms,

quasi-random integration schemes have been used to effectively integrate in

high dimensions. PUFEM ranks above both FEM and other meshless meth-

ods in the postprocessing stage because it provides a functional form of the

approximation; i.e. no interpolation is required to construct the solution at any

given point in the domain. In addition, almost all other methods (global and

local) apply temporal discretization to obtain transient FPE response. In the

current work, modal analysis was utilized to glean admissible eigenfunctions of

the discretized FP operator that provide an analytical solution of the transient

problem. By virtue of local p-refinement, the effective memory usage is also

smaller in PUFEM, especially pPUFEM. This has been amply demonstrated

in the examples showing exaggerated benefits in problem size over other local

techniques.

• Application to high dimensional problems: PUFEM and MRMM rank

above conventional FEM in implementation to higher dimensional problems

because mesh generation in 3 and higher dimensions is still not practical. Com-

paring MRMM and PUFEM in this respect, PUFEM has definite advantage



101

because of its simpler algorithm structure and much smaller time of execution.

The easy implementation of local p-refinement makes the current approach ex-

tremely attractive for use in high dimensional nonlinear problems, as shown in

the presented examples.

In summary, algorithms presented in this chapter compare favorably against

existing techniques in terms of flexibility, ease of implementation, extension to higher

dimensions and the ability to generate accurate approximations with small problem

size. The method is robust in the sense that it does not involve several tuning

parameters to achieve successful results. Modal analysis further improves robustness

by retaining only useful eigenfunctions for generating the transient approximation, in

the process also opening doors for nonlinear filtering with FPE, which is the subject

matter of chapter VI.
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CHAPTER IV

RECURSIVE SOLUTION REFINEMENT AND DOMAIN TRACKING

A. Introduction

In this chapter, an iterative approach for solution refinement of the stationary

Fokker-Planck equation is presented. The recursive use of a modified norm induced on

the solution domain by the most recent estimate of the stationary probability density

function is shown to significantly improve the accuracy of the approximation over

the standard L2-norm based Galerkin error projection. The modified norm is argued

to be naturally suited to the problem and hence preferable over the standard L2-

norm because the former requires substantially fewer degrees of freedom for the same

order of approximation accuracy, making it immediately attractive for Fokker-Planck

equation in higher dimensions. Additionally, it is shown that the modified norm can

be utilized to progress through a homotopy of dynamical systems, Dp, in order to

determine the domain of stationary distribution of a nonlinear system of interest,

(corresponding to p = 1) by starting with a known dynamical system (corresponding

to p = 0) and working upwards. The partition of unity finite element method is used

for numerical implementation.

B. Solution Refinement

In chapter III, a PUFEM based variational solution methodology was developed

for FPE. The standard Galerkin error projection approach was used, in which the

test function space VD is chosen to be the same as the trial space, UD. This results

in an approximation of size D having a particular level of accuracy. If nothing else

is changed, the only way to improve accuracy is to increase the number of DOFs,
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D. This section presents a methodology for improving approximation accuracy while

keeping the problem sized fixed, by means of suitable modification of the test function

space, VD. The idea as mentioned in the introduction, is to weight the test functions

with the most recent approximation of the solution. This in essence modifies the

norm under which error projection is performed and leads to a recursive scheme that

progressively improves solution accuracy for a fixed value of D.

1. Modification of the L2 Inner Product

As mentioned above, Galerkin variational formulation of FPE employs the tradi-

tional L2 inner product for error projection. It is claimed that there exists a natural

measure which defines a modified inner product and which can be used to our advan-

tage to obtain accurate approximations with a small number of degrees of freedom.

This natural measure is characterized by the true solution of FPE. Besides redefining

the inner product, it also implicitly defines the domain of solution by providing high

weightage to only the significant regions of pdf (regions with most probability mass).

The obvious problem with using the actual solution as a weight is that it is unknown.

Therefore, an iterative scheme is developed in which the most recent approximation of

the true solution is used to weight the L2 inner product. As the first step, closeness of

this approach to the optimal approximation of pdf obtained from normal equations of

the Hilbert projection theorem is shown. To reiterate, the current problem of interest

is restricted to the stationary FPE. We begin with the following assumptions on the

approximation space UD and the initial estimate Ŵ0 of the true solution W?:

Assumption IV.1 The true solution is exactly approximable by the trial space UD

using the Hilbert projection theorem, i.e. there exist {ai}, i = 1, 2, . . . ,D, such that:

W?(x) =
D∑

i=1

aiΨi(x).
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Assumption IV.2 A “sufficiently” close approximation Ŵ0 of the true solution is

available to start the iterative process:

‖Ŵ0 −W?‖ < ε.

Assumption IV.3 Shape functions Ψi form an orthonormal set with respect to the

standard Euclidean inner product, i.e. L2(Ω).

Assumption IV.1 has been made primarily for convenience and is equivalent to

saying that the approximation space UD equals U∞. It can be relaxed to read “suffi-

ciently well approximable” (to within ε?) instead of “exactly approximable,” and the

results would still hold but the mathematical development becomes tedious without

adding significant insight. The stability proof that follows depends on the closeness

of the starting approximation, i.e. assumption IV.2. Thus, if the L2 error norm of the

initial approximation is bounded above by ε, it is shown below that the error norm

resulting from the next step of iteration is at most scaled by a constant factor. If the

scaling factor (which depends on the particular system under consideration) is less

than 1, a contraction mapping is obtained and convergence follows, but in general

this might not be the case. The pdf for the first step of iteration can be obtained

by using the Galerkin approach of chapter III, or other techniques such as stochastic

averaging or statistical linearization. Finally, assumption IV.3 is made also purely for

the sake of convenience of evaluating integrals, and the actual approximation space

chosen need not satisfy this condition.

In the following, we set up equations for the Hilbert projection approach to find

the coefficients ai in assumption (IV.1). We redefine the inner product 〈., .〉 as the

following:

〈Ψi,Ψj〉 ,
∫
Ω

Ψi(x)Ψj(x)W?(x)dx. (4.1)
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Then, the Hilbert coefficients, ai for the true solution W? are given by the following

equation:
D∑

i=1

ai 〈Ψi,Ψj〉 = 〈W?,Ψj〉 j = 1, 2, . . . ,D. (4.2)

Following assumption IV.3, ai = 〈W?,Ψi〉. Next, we define a new inner product,

〈〈., .〉〉, which is induced on the solution domain Ω by the current approximation Ŵ ,

of the true solution W?:

〈〈Ψi,Ψj〉〉 ,
∫
Ω

Ψi(x)Ψj(x)Ŵ(x)dx. (4.3)

Using the new inner product defined above, projection equations 3.10 for variational

formulation of stationary FPE can be rewritten as the following:

〈〈LFP(
D∑

i=1

a′iΨi),Ψj〉〉 = α{〈〈
D∑

i=1

a′iΨi,Ψj〉〉Γ −

〈〈W?,Ψj〉〉Γ}, j = 1, 2, . . .D, (4.4)

where, a′i denote unknown coefficients of the approximation in the weighted Galerkin

method. As before, α is a penalty parameter which has been introduced to enforce the

boundary conditions, and 〈〈., .〉〉Γ denotes evaluation of the integral over the domain

boundary.

2. Closeness of the Hilbert and Galerkin Approximations

In the above section, two sets of coefficients were discussed, ai and a′i, corre-

sponding to the Hilbert projection method and the Galerkin method weighted with

the most recent approximation of the pdf respectively. Eq.4.4 represents a system of

linear equations in a′i, which can be expressed as follows:

B′A′ + B′
ΓA′ = F′Γ, (4.5)
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Following assumption IV.1, the Hilbert approximation of W? satisfies the weighted

Galerkin variational form exactly, i.e.:

〈LFP(
D∑

i=1

aiΨi),Ψj〉 = α{〈
D∑

i=1

aiΨi,Ψj〉Γ −

〈W?,Ψj〉Γ} j = 1, 2, . . .D. (4.6)

Note that the inner product in the Hilbert projection equation is weighted by

the true solution, W?, and hence the notation 〈., .〉 is used. Eq.4.6 thus reduces to

the following linear system:

BA + BΓA = FΓ. (4.7)

In Eq.(4.5), vector A′ represents the Galerkin coefficient vector while in Eq. (4.6),

A represents the Hilbert coefficient vector. Various other matrices and vectors are

defined as follows:

B = [〈LFP(Ψi),Ψj〉] , (4.8)

BΓ = −α [〈Ψi,Ψj〉Γ] , (4.9)

FΓ = −α [〈W?,Ψj〉Γ] , (4.10)

B′ = [〈〈LFP(Ψi),Ψj〉〉] , (4.11)

B′
Γ = −α [〈〈Ψi,Ψj〉〉Γ] , (4.12)

F′Γ = −α [〈〈W?,Ψj〉〉Γ] . (4.13)

As the first step towards showing the closeness of A′ to A, we prove the proximity of

Eq.4.5 to Eq.4.7 and write Eq.4.5 as:

BA′ + (BΓ + ∆3)A
′ = FΓ + ∆1 + ∆2. (4.14)
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Comparing Eq.4.5 and Eq.4.14, we have:

∆1 = F′Γ − FΓ, (4.15)

∆2 = BA′ −B′A′, (4.16)

∆3 = B′
Γ −BΓ. (4.17)

Then, we have the following lemma for upper bounds of various ∆i :

Lemma IV.1 Given the validity of assumptions IV.1 and IV.2, following inequalities

hold:

‖∆1‖ ≤ K1ε,

‖∆2‖ ≤ K2‖LFP‖ε,

‖∆3‖ ≤ K3ε,

where, K1-K3 are finite constants, ‖.‖ represents the Euclidean norm for vectors

∆1 and ∆2, and matrix norm induced by the Euclidean norm for ∆3, and ‖LFP‖

represents the operator norm of the Fokker-Planck operator.
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Proof: Consider ∆1 = [δ1
j ]:

δ1
j = α{〈W?,Ψj〉Γ − 〈〈W?,Ψj〉〉Γ}

= α

∫
Γ

W?Ψj(W? − Ŵ)dx (4.18)

⇒ |δ1
j |2 ≤ |α|2

∫
Γ

|W?|2 |Ψj|2 |W? − Ŵ|2dx (4.19)

≤ |α|2
∫
Γ

|Ψj|2|W? − Ŵ|2dx
∫
Γ

|W?|2 dx (4.20)

≤ |α|2
∫
Γ

|Ψ?|2 |W? − Ŵ|2dx.1 (4.21)

≤ |α|2
∫
Γ

|Ψ?|2 dx
∫
Γ

|W? − Ŵ|2dx (4.22)

≤ |α|2.1.ε2 (4.23)

⇒ |δ1
j | ≤ |α|ε (4.24)

In the above, Cauchy-Schwarz inequality has been applied in going from Eq.4.19 to

Eq.4.20 and from Eq.4.21 to Eq.4.22. Additionally, weaker forms of assumptions IV.2

and IV.3 (since only boundary integrals are involved) have been used in Eq.4.21 and

Eq.4.23. Thus, from Eq.4.24, we conclude that there exists K1 <∞ such that:

‖∆1‖ ≤ K1ε. (4.25)
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Next, looking at ∆2 = [δ2
j ], and following similar arguments as above, we obtain:

δ2
j = 〈

D∑
i=1

a′iLFP(Ψi),Ψj〉 −

〈〈
D∑

i=1

a′iLFP(Ψi),Ψj〉〉 (4.26)

=

∫
Ω

D∑
i=1

a′iLFP(Ψi)(W? − Ŵ)dx

⇒ |δ2
j |2 ≤

∫
Ω

|
D∑

i=1

a′iLFP(Ψi)|2|Ŵ −W?|2dx

≤ ‖LFP(
D∑

i=1

a′iΨi)‖2ε2

≤ ‖LFP‖2‖
D∑

i=1

a′iΨi‖2ε2

≤ ‖LFP‖2‖A′‖2ε2 (4.27)

In Eq.4.27, norm of the Galerkin coefficient vector, ‖A′‖ is a finite quantity because

it contains coefficients of various shape functions used to approximate pdfs that have

well behaved functional forms (i.e. without δ-function like singularities). Hence,

bounding it above by a finite quantity, we can show that there exists a K2 <∞ such

that:

‖∆2‖ ≤ K2‖LFP‖ε. (4.28)

Finally, considering ∆3 = [δ3
ij]:

δ3
ij = α{〈Ψi,Ψj〉Γ − 〈〈Ψi,Ψj〉〉Γ}

= α

∫
Γ

ΨiΨj(W? − Ŵ)dx

⇒ |δ3
ij|2 ≤ |α|2

∫
Γ

|Ψi|2|Ψj|2|W? − Ŵ|2dx

≤ |α|21.1.ε2 (4.29)
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A weak form of assumption IV.3 (over the boundary) has been used in Eq.4.29. Thus,

∃ K3 <∞, such that:

‖∆3‖ ≤ K3ε (4.30)

This completes the proof of the lemma. �

We now proceed to prove stability of the iterative approach by establishing an

upper bound for the error of approximation resulting from the weighted Galerkin

approach. We make the following additional assumptions:

Assumption IV.4 The quantity ε is small enough such that ‖(B+BΓ)−1‖‖∆3‖ ≤ 1.

Assumption IV.5 The operator norm of Fokker-Planck operator is bounded above

as ‖LFP‖ = M <∞.

This leads us to the following result:

Lemma IV.2 Given the validity of assumptions IV.4 and IV.5, the following up-

per bound exists on the L2 error norm between the weighted Galerkin and Hilbert

approximations of FPE:

‖A′ − A‖ ≤ Kε (4.31)

Proof: Let us adopt the following notation: B′ + B′
Γ = BG, and ∆1 + ∆2 = ∆Σ.

Then, Eqs.4.7 and 4.14 become:

(BG −∆3)A = F′Γ −∆Σ. (4.32)

BGA′ = F′Γ. (4.33)

Thus, we have:

A′ − A = B−1
G F′Γ − (BG −∆3)

−1(F′Γ −∆Σ)

= {B−1
G − (BG −∆3)

−1}F′Γ + (BG −∆3)
−1∆Σ
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Taking standard L2 norm on both sides and applying the triangle inequality,

‖A′ − A‖ ≤ ‖B−1
G − (BG −∆3)

−1‖‖F′Γ‖+ ‖(BG + ∆3)
−1‖‖∆Σ‖ (4.34)

Furthermore, following assumption IV.4, we obtain the following expansion:

(BG −∆3)
−1 = B−1

G + B−2
G ∆3 − . . .

Thus, using the result for upper bound of ∆3 from lemma IV.1 (Eq.4.30), we obtain:

‖(BG −∆3)
−1‖ ≤ ‖B−1

G ‖+ ‖B−1
G ‖2K3ε,

‖B−1
G − (BG −∆3)

−1‖ ≤ ‖B−1
G ‖2K3ε.

Also, combining Eqs.4.25 and 4.28:

‖∆Σ‖ ≤ KΣ(1 + ‖LFP‖)ε, (4.35)

where KΣ = max(K1, K2). Denoting ‖B−1
G ‖ as P , ‖F′Γ‖ as Q, and ‖LFP‖ as M , Eq.

4.34 becomes:

‖A′ − A‖ ≤ QP 2K3ε+KΣ(P + P 2K3ε)(1 +M)ε.

Dropping out terms of order higher than O(ε), we get:

‖A′ − A‖ ≤ (QP 2K3 + PKΣ(1 +M))ε,

⇒ ‖A′ − A‖ ≤ Kε.

This completes the proof of the lemma. �

Therefore, we see that error in the next iteration of the refinement process is

scaled by the constant K, which comprises of several norms associated with the

underlying system. If this quantity is less than 1, we obtain a contraction mapping
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and the error reduces to zero in the limit. However, this is not true in general.

In either case, the method is stable for a finite number of iterations and will not

lead to divergence (except in certain pathological cases discussed below). Superior

convergence characteristics has been shown for dynamical systems in two and three

dimensions through numerical simulations in the results section.

Looking closer at the constant K, we observe that the norm of the inverse of the

Hilbert stiffness matrix, BG appears in its expression. If this matrix is ill-conditioned

or singular, the method loses its stability. This situation may arise in certain condi-

tions (e.g. local methods which involve shape functions with compact support) and is

discussed in detail below. On the other hand, the norm of the vector F does not cause

problems as it involves the integral of the true solution along the domain boundary,

which is a very small quantity (∼ 10−6 or lower). In the numerical examples shown

below, we show that convergence is achievable using the PUFEM algorithm for varia-

tional formulation, in conjunction with suitable patching of solutions from successive

iterations.

C. Domain Tracking

In the above section it was assumed that the solution domain on which iterations

are performed is known a-priori. In general, this might not be the case, especially for

nonlinear systems. In this section, the implementation of a space homotopy is demon-

strated via a family of single parameter dynamical systems to track the domain of

stationary distribution for the system of interest. The main underlying assumption

is the existence of a family of dynamical systems, Dp indexed by the homotopy pa-

rameter p:

Dp : dx = f(x, p)dt+ g(x, p)dB, p ∈ [0, 1], (4.36)
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where D1 corresponds to the dynamical system of interest and D0 corresponds to a

stochastic dynamical system whose response is known, i.e., stationary FPE associ-

ated with it can be solved. Let W?
p (x) denote the true solution of FPE associated

with dynamical system Dp. We make the following assumption about the family of

dynamical systems Dp and solutions of associated FPEs, W?
p :

Assumption IV.6 Given any p ∈ [0, 1], and any ε > 0, there exists δ > 0 such that

for all p′ ∈ Bδ(p) (open ball of radius δ centered at p), ||W?
p (x)−W?

p′(x)|| ≤ ε.

In essence, the above assumption assumes the existence of a one parameter family

of dynamical systems such that solutions to associated FPEs change smoothly over

this parameter space - in other words, a homotopy exists. We next consider only

those dynamical systems for which the constant K appearing in lemma IV.2 is less

than unity (hence leading to a contraction mapping and ensuring convergence). The

following obvious result can then be stated as a proposition:

Proposition IV.1 Consider dynamical systems Dp with K < 1 in lemma IV.2.

Then, given Ŵ1, such that ||Ŵ1 − W?|| ≤ ε and that ε is sufficiently small, a se-

quence of functions {Ŵn}∞n=1 can be constructed recursively, starting with Ŵ1 such

that ||Ŵn −W?|| → 0 as n→∞, ∀ p ∈ [0, 1].

The proof is trivial because of lemma IV.2 and the contraction mapping argument

for K < 1.

A note about notation: Ŵ i refers to the ith function of a sequence {Ŵ i}S
i=1. On

the other hand, W?
i refers to the true solution of FPE for the dynamical system Dp=i.

In other words, the superscript i refers to member of a sequence while the subscript

i refers to the homotopy parameter.

Then, with assumption IV.6 in mind, we have the following result pertain-

ing to how the solution of FPE associated with the system of interest (D1), i.e.,
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W?
1 (x) = W?(x) can be obtained recursively given the knowledge of solution of FPE

for the system D0. The result uses proposition IV.1 in conjunction with successive

approximation.

Proposition IV.2 Let εp be sufficiently small such that proposition IV.1 is satis-

fied for any Ŵ satisfying ||Ŵ − Ŵ?
p || ≤ εp. Let infp∈[0,1] εp = ε̄ > 0. Then, under

assumptions IV.1-IV.3, IV.4, IV.5 and IV.6, given W?
0 (exact solution of FPE corre-

sponding to D0), there exists a finite sequence of functions {Ŵn}M
n=1 s.t. ŴM = W∗.

Moreover, this sequence can be obtained in a recursive fashion starting with W?
0 . (i.e.

Ŵ1 = W?
0 )

Proof: Let δp be such that if p′ ∈ Bδp(p) then ||W?
p − W?

p′|| ≤ ε̄
2
. Note that this

is possible due to assumption IV.6. Consider the open covering
⋃

p∈[0,1]Bδp(p) of

the set [0, 1]. Since [0, 1] is compact, there exists a finite subcover of [0, 1] given by⋃M
i=1Bδpi

(pi). Let δi ≡ δpi
(pi) and redefine W?

pi
≡ W?

i .

Let us assume that W?
i is known and we need to obtain W?

i+1. By definition, there

exists a p̃ such that |p̃ − pi| < δi and |p̃ − pi+1| < δi+1. Then, it follows from

construction that

||W?
i −W?

i+1|| ≤ ||W?
i −W?

p̃ ||+ ||W?
p̃ −W?

i+1|| ≤ ε̄. (4.37)

Then, due to proposition IV.1, starting with W?
i , it is possible to obtain W?

i+1 in a

recursive fashion. Note that the above holds for all i = 0, 1, . . . ,M−1. In this fashion

we obtain the sequence {W?
0 ,W?

1 , . . . ,W?
M = W∗} recursively starting with W?

0 .

This completes the proof of the proposition. �

In summary, the development above (space homotopy in conjunction with solu-

tion refinement) can be presented as the following algorithm:
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1. Find a homotopy of dynamical systems Dp, p ∈ [0, 1], such that Dp(p = 1)

corresponds to the system of interest and Dp(p = 0) corresponds to a known

system, in the sense that its stationary FPE can be solved.

2. Select a finite number of points pi ∈ [0, 1], i = 1, . . . ,M , that are “sufficiently”

close. For the rest of the algorithm, refer to the dynamical system corresponding

to pi, namely Dpi
, by its index, i.e. as Di, and the true solution of the associated

stationary FPE, W?
pi

as W?
i . Note that selection of points pi can be done online,

i.e. if pi+1 is found to be “not close enough” to pi, it is possible to go back and

redo the previous iteration.

3. Following the new “index based” notation, note that the exact solution for

system D1 is known (W?
1 ). Also, the solution we are after (for p = 1) is, in the

new notation, W?
M = W?. Set i = 2.

4. Determine the solution W?
i in the following manner:

(a) Set j = 1 and the current weight for norm modification, Ŵ = W?
i−1.

(b) Using Ŵ as the weight in the modified norm approach, obtain Ŵj
i , i.e. the

jth approximation for W?
i .

(c) If Ŵj
i = W?

i , goto step 5. Else, set j = j + 1 and Ŵ = Ŵj−1
i and goto

step 4b.

5. If i = M , stop. Else, set i = i+ 1 and goto step 4a.

The above algorithm involves two loops. The outer loop runs over the homotopic

sequence of dynamical systems, from the “known” to the “desired.” The inner loop

performs approximation refinements for each dynamical system via the modified-norm

approach until a good enough approximation is achieved for its true solution. The
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[Known system]

[System of interest]

Solution refinement
loops 

Space homotopy
loop 

Fig. 37. A graphic illustration of the norm-modification algorithm.

algorithm starts with the known system (p = 0) whose solution of stationary FPE is

available, serving as the first weight for norm-modification. A schematic of the above

algorithm is presented in Fig.37, illustrating its nested loops. A point to note is

that measuring error in the inner loop (closeness to the true solution for a particular

dynamical system in the homotopy) is not a trivial exercise, because true solutions

are not known except for Dp(p = 0). In practice, equation error is used to measure

closeness of approximation to the truth. A summary of the above algorithm along

with results can also be found in the figure on page 132.
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D. Numerical Implementation

The recursive norm modification techniques described in the above sections are

not subject to a particular method of solving FPE in the variational form. Since

PUFEM was used to develop Galerkin approximations in chapter III, the same will

be used for solution refinement and domain tracking in the current chapter. The

equation below represents the PUFEM approximation of the pdf in the nth iteration,

Ŵn:

Ŵn(x) =
P∑

i=1

Qi∑
j=1

na′ijϕi(x)ψij(x), (4.38)

The above equation is similar to Eq.3.6 except with the superscript n to signify the

current iteration in solution refinement. Note that to simplify notation in this chapter,

the above equation has been written using a single index “i” instead of “i” and “j”

and a single summation of shape functions, from 1 to D (=
∑P

k=1Qk). Then, the

objective of solution refinement is to obtain a better approximation Ŵn+1 by using

Ŵn as a weight to modify the inner product, resulting in the following weighted

Galerkin variational equation (see Eq.4.4):∫
Ωsub

D∑
i=1

LFP(n+1a′iΨi)ΨjŴndx = α

∫
Γsub∩Γ

D∑
i=1

n+1a′iΨiΨjŴndx

−α
∫

Γsub∩Γ

W?ΨjŴndx, j = 1, . . . ,D (4.39)
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The resulting elements of the matrices involved in the linear system of equations (4.5)

are:

B′
ij =

∫
Ωsub

LFP(Ψi)ΨjŴndx, (4.40)

B′
Γij = −α

∫
Γsub∩Γ

ΨiΨjŴndx, (4.41)

F ′
Γi = −α

∫
Γsub∩Γ

W?ΨiŴndx, (4.42)

1. Conditioning of the Stiffness Matrix

As seen in Sec.2, the condition number of stiffness matrix BG is an important

issue in considering stability of the above approach. Unfortunately, if a local approx-

imation scheme such as PUFEM is used for either the weighted Galerkin or Hilbert

approaches, the stiffness matrix invariably turns out to be ill-conditioned. This is

because of the following reason - the current approximate pdf used as weight gives

relative weightage to different regions of the domain, thus distinguishing regions of

higher significance (close to the mean) from regions of low significance (e.g. regions

beyond 3σ for a Gaussian distribution). Also, in a local scheme, shape functions and

their coefficients (ai or a′i) have local influence. In other words, the integrals associ-

ated with shape functions close to the boundary are evaluated on local domains only

near the boundary region. By virtue of the exponentially low weight given to these

regions by the weighting pdf, these integrals get nearly “washed out” in comparison

with the integrals evaluated on local domains close to the mean. Consequently, the

entries in the stiffness matrix B corresponding to local shape functions defined near

the boundary regions diminish severely in comparison with entries for shape func-

tions in the interior. This effect makes the boundary coefficients unobservable, and
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the resulting stiffness matrix numerically ill-conditioned.

2. A Numerical Fix

The section above argues that using a pdf as weight for modification of the inner

product causes ill-conditioning of the stiffness matrix in local approximation tech-

niques because it renders local coefficients near the boundary regions unobservable.

A natural solution to this problem is to extract the portion of the stiffness matrix

which has acceptable conditioning for inversion, and to retain the solution for the

remaining coefficients from the previous iteration. In this manner, not all coefficients

are modified in going from one iteration to another because coefficients close to the

boundary do not change. This method also gives a simple way of trimming the do-

main of solution from one iteration to the next - by identifying and pruning regions

which receive weightage below a specified tolerance from the weighting pdf. However,

we mention that selective modification of coefficients usually leads to discontinuities

and/or ripple formation in and around the concerned local domains. To counter this,

the two sets of coefficients (from the current and previous iterations) are patched

together to produce a smooth surface. This “patching” procedure can be done using

the PUFEM algorithm with the help of smooth blending functions, such as those

mentioned in section B2a in chapter III. This approach provided highly acceptable

results as illustrated in the next section.

E. Results in Solution Refinement and Domain Tracking

In this section, numerical examples are presented for illustration of the theoretical

ideas discussed above. It is shown that with the weighted norm approach, it is possible

to obtain high accuracy while using a small number of degrees of freedom.
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1. Solution Refinement of Stationary FPE: Results

We first consider two nonlinear systems residing in 2D state-space described below:

a. System 1: Example in 2D State-Space

Consider the following 2-D damped Duffing oscillator:

ẍ+ ηẋ+ αx+ βx3 = gG(t) (4.43)

We assign the parameters appearing above the following values: α = −15, β = 30, η =

10, g = 1 (soft-spring case). The analytical solution of stationary FPE for this system

is known and given in similar fashion as in Eq.3.22, shown in Fig.11(a), which is a

bimodal pdf.

b. System 2: Example in 2D State-Space

Consider the following 2-D nonlinear oscillator[66]:

ẍ+ βẋ+ x+ α(x2 + ẋ2)ẋ = gG(t) (4.44)

We set the following values: α = 0.125, β = −0.5, g = 0.86. This system was con-

sidered in section E in chapter III. We see that from the top-view (Fig.29(b)), the

stationary distribution for this system looks like a ring. Note that stationary distri-

butions for both systems considered above are exponentials of a polynomial function.

As the first exercise, we evaluate the various norms involved to ensure that

the systems described above conform with the theory presented in section B1. In

particular, we demonstrate that the numerical fix suggested in section D2 to tackle

unobservability of boundary nodes indeed causes the constant K appearing in lemma

IV.2 to be less than unity, thus leading to a contraction mapping, which in turn
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Table VI. Approximate estimates of various norms and constants appearing in the

theory, for systems 1 and 2.

Quantity/Norm System 1 System 2
K1 10−9 10−9

K2 10−5 10−5

K3 1 1
‖LFP‖ = M 41.13 7.87

‖B−1
G ‖ = P , before fix 2.25× 108 7.92× 109

‖B−1
G ‖fixed = Pfixed 1.96× 103 1.04× 104

‖F′Γ‖ = Q 2.44× 10−9 3.57× 10−9

K (Lemma IV.2) 0.835 0.961

implies convergence. Table VI contains the various quantities that appear in lemmas

IV.1 and IV.2. These are ballpark numbers and give order of magnitude estimates.

The constants K1 −K3 appearing in lemma IV.1 have been computed by evaluating

the various domain and boundary integrals. The operator norm, ‖LFP‖ has been

computed via discretization. Note that using a pdf as weight to modify the L2

norm causes the stiffness matrix to be nearly singular. However, the numerical fix

suggested in section D2 attenuates the ill-conditioning significantly, enough to make

the constant K appearing in lemma IV.2 less than unity. The actual numerical value

of K suggests that convergence is expected to be faster for system 1 than system 2.

This was indeed observed and is illustrated in convergence plots presented below.

Figs. 38(a)-38(f) show results for system 1 (soft-spring Duffing oscillator). Fig.

38(b) shows the error surface using the sPUFEM algorithm with standard L2 inner

product approach on a 16× 16 nodal grid equipped with local quadratic basis func-

tions. This error surface serves as a reference for the standard L2 approach. We next

perform the iterative refinement process, starting with the L2 solution computed on

a much coarser grid (12 × 12). This solution is also the weight for inner-product

modification in the first iteration. Upon using the modified inner-product approach
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in conjunction with patching of neighboring iteration approximations, the accuracy

improves significantly, which is evident in the error surface shown in Fig. 38(c).

The true power of this approach is illustrated in Fig.38(d), in which the con-

vergence characteristics for three comparable methods have been shown. The graph

corresponding to iterative sPUFEM confirms that the process is commenced on a

coarse 12× 12 grid, and the use of pdf obtained after every iteration to modify inner-

product space for the subsequent iteration leads to significant drops in error. Once

no further accuracy is possible with the 12 × 12 mesh, a switch is made to a finer

grid (14× 14), beginning with the last pdf obtained from the previous (12× 12) grid

as the weight for the first iteration on the new grid. The spacing between circles on

the iterative sPUFEM graph illustrates the drop in error after individual iterations.

Thus, huddling of circles signifies saturation on a particular grid, and a switch to a

finer grid is made following such behavior. In the graph shown, iterations have been

terminated after saturation of the (16× 16) grid, and the final error surface is shown

in Fig. 38(c). The most significant contribution of this result is that it shows that

it is possible to achieve extremely accurate approximations with a small number of

degrees of freedom. For example, compare in Fig. 38(d) the error after the final

iteration on the 16× 16 grid (≡ 1536 PUFEM DOFs using quadratic bases) with the

error of the L2 approach on a 30 × 30 grid (≡ 5400 PUFEM DOFs with quadratic

bases).

Fig. 38(e) illustrates (for iteration #3) the phenomenon of ripple formation

when selective update is performed by pruning out unobservable coefficients that

are weighted out by the pdf . As expected, ripples form on either side of the two

weighty modes, where the pdf drops off suddenly to extremely small values on either

side. However, patching of current and previous iterations described in section D2

smoothes out these ripples and a relatively better solution is obtained (Fig. 38(f)).
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(a) True solution: Damped Duffing oscil-
lator.

(b) Error surface: Standard L2 approach.

(c) Error surface at the end of the itera-
tive process.

(d) Comparative convergence character-
istics: Duffing oscillator.

(e) Ripple formation in the Duffing oscil-
lator at the boundary of transition be-
tween low and high weightage regions of
the weighting pdf.

(f) Smoothing of ripples by patching so-
lutions from adjacent iterations.

Fig. 38. Simulation results for the damped Duffing oscillator.



124

Similar results are obtained for system 2 (Fig. 39), and it is again possible

to obtain high accuracy with a much smaller number of approximation nodes, as

compared with the standard L2 approach. However, the results are not as drastic

here because for this system, it is possible to obtain fairly accurate results even with

the standard L2 approach. Also, the convergence rate is slower as visible in Fig.

39(c), which is also evident from the numerical value of constant K in Table VI. In

addition to systems considered in this section, similar encouraging results for several

other 2-D oscillators have been obtained.

c. System 3: Example in 3D State-Space

Consider the following dynamical systems studied in Wojtkiewicz et.al.[82]:

ẋ =


0 1 0

−ω0 −2ζω0 1

0 0 −α

x +


0

0

1

w(t) (4.45)

The above system is described in detail in section C in chapter III. Recall that

stationary FPE for the system above was solved in [82] using the traditional FEM

approach with 125, 000 “brick” elements, leading to RMS error (defined as e2 ,√
1

r−1

∑r
i=1(W(xi)− Ŵ(xi))2, r = number of test points) of e2(FEM) = 1.133×10−4.

The same problem was solved in this dissertation on a 6 × 6 × 6 grid utilizing local

p-refinement in the sPUFEM algorithm (see section C in chapter III). Cubic poly-

nomials were allocated to nodes in the interior region of the domain and quadratic

polynomials to boundary nodes. This polynomial assignment results in a problem

size of 2800 DOFs. The standard L2−norm approach results in an RMS error of

e2(6 × 6 × 6, cubic+quadratic, L2) = 1.336 × 10−3. This approximation was used

as the first weight to commence solution refinement with the modified-norm ap-
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(a) True solution: System 2. (b) Error surface at the end of the
iterative process.

(c) Comparative convergence charac-
teristics: System 2.

Fig. 39. Simulation results for system 2.
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(a) Computed x1 − x2 marginal dis-
tribution for system 3 at the end of
the iterative process.

(b) True x1−x2 marginal probability
density function for system 3.

(c) Error surface resulting from stan-
dard L2 error projection using 2800
DOFs.

(d) Error surface at the end of the
iterative process.

Fig. 40. Simulation results for system 3.
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proach. The obtained results are shown in figure 40. Figures 40(a) and 40(b) show

the converged x1 − x2 marginal surface alongside the true marginal distribution for

the system. The iterative process was found to reduce the above stated RMS er-

ror of L2 approach with 2800 DOFs by about one order of magnitude, down to

e2(6 × 6 × 6, cubic+quadratic,modified-norm) = 1.984 × 10−4. Figures 40(c) and

40(d) show error surfaces before and after the iterative refinement process. The error

reduction is clearly visible in these plots.

Fig.41 compares convergence characteristics of the L2-norm approach with the

modified-norm method. The x−axis shows the size of discretized problem (i.e. D)

while the y−axis shows RMS error in the obtained approximation. The infeasi-

ble region in the right section of this figure demarcated by the dash-dot line de-

picts problem sizes that are beyond the capacity of computational resources avail-

able for this work. The dashed horizontal line clearly shows that the modified-

norm approach provides slightly better accuracy than the best approximation ob-

tained using the standard L2 approach, with about half the number of DOFs (stan-

dard L2 approach on a 7 × 7 × 7 grid with quartic polynomials assigned to inte-

rior nodes and linear polynomials to boundary nodes results in an RMS error of

e2(7 × 7 × 7, quartic + linear, L2) = 2.823 × 10−4 and the resulting problem size is

5247 DOFs). Furthermore, both approaches (standard L2 PUFEM and modified-

norm PUFEM) require three orders of magnitude less DOFs than the standard FEM

approach for the same order of accuracy.

Similar results can be obtained for systems with 4 and higher dimensional state-

space. The results shown in this work were obtained on a small workstation and

each iteration of the 3D problem required about 45 minutes of computational time.

If attempted on a more advanced computing platform, the modified norm approach

can be utilized to solve problems in higher dimensions.
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Fig. 41. Comparative convergence characteristics for the three dimensional system.

2. Space Homotopy: Results

In order to illustrate the use of homotopic approach for domain determination,

we consider the following Duffing oscillator which is a modified version of the one

used in the previous section (Eq.4.43):

ẍ = −αx− βẋ+ ε(x3 + σ) + w (4.46)

The homotopy parameter p in the above system is ε, variation in which generates

a family of dynamical systems of varying nonlinearity. The role of parameter σ is to

shift the domain of significant portion of the pdf as p is varied. Its presence allows us

to validate the fact that the proposed method can successfully track movement in the

domain as ε changes from 0 to 1. Also, α is assumed to be positive (corresponding

to a hard spring with a solitary stable equilibrium point). Fig.43 shows results for
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(a) Variation of the x-coordinate of
the stable equilibrium with the ho-
motopy parameter (p = ε).

p ↑

p = 0

p = 1

(b) Progression of iterations from a
known dynamical system, D0, to the
unknown, D1.

Fig. 42. Variation of the homotopy parameter, p.

the above system. In Fig.42(a), variation of x-coordinate of the stable equilibrium

point is shown with ε. The marked values (stars) on this curve depict values of the

parameter used enroute to the desired dynamical system, corresponding to ε = 1. It

was found necessary to take small steps initially (see figure) in order to satisfy the

assumptions stated in lemma IV.2. In general, the nature of this variation will depend

on how the homotopic parameter influences the particular system under consideration.

As described in the double-loop algorithm, execution of space homotopy also involves

carrying out the solution refinement process. Before one can proceed from a particular

value of ε to the next, it must be ensured that the approximation obtained for the

current ε has converged to within acceptable tolerance, which requires refinement

iterations illustrated above.

Fig.42(b) shows the smooth variation of converged solutions obtained for each

ε (= p). It is visible in Fig.43(a) that the domain inside which dynamical system

Dp(p = 1) is solved is completely disconnected from the domain for the initially known

system, Dp(p = 0). However, via the iterative process of homotopic approximations
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(a) Movement of the domain of so-
lution along the iterative pProce-
dure.

(b) Comparison of the final itera-
tion with the true solution.

Fig. 43. Illustration of space homotopy by variation of dynamical systems, D0 −D1.

(of which only 4 are shown in this figure), the desired result is achievable. Finally,

Fig.43(b) shows the closeness of the final iteration (corresponding to p = ε = 1, drawn

surface) with the analytical result (shown with crosses), which is known in this case.

F. Summary

The ideas presented in this chapter can be summarized using a schematic of the

homotopic recursive algorithm shown in Fig.44. The top-left plot in this schematic

illustrates the problem of domain determination for FPE. For a general nonlinear

dynamical system, it is difficult to determine the appropriate location and size of the

finite sized domain on which to solve the FPE numerically. Using an extremely large

sized conservative domain can lead to wastage of computational resources, possibly

making higher dimensional problems infeasible. On the other hand, a domain too

small can result in significant errors because it may not accommodate the entire

probability density function. The method of modified norms discussed in this chapter

has been shown to resolve this issue while also improving approximation accuracy.
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In terms of Fig.44, the described approach obtains the desired solution shown in the

top-left portion, starting with the solution for a known system. This involves setting

up an iterative procedure using the best available solution for the current value of the

homotopic parameter, p. Starting with p = 0, the available solution is successively

refined using modified-norm error projection as shown in the top-right plot. In terms

of the algorithm described in section C, this constitutes the inner loop, which reduces

approximation error while keeping size of the discretized problem small. Once the

desired accuracy is met, value of the homotopic parameter is increased, moving on

to the next dynamical system, progressively towards the desired system, i.e. p = 1

(bottom-left plot). This constitutes the outer loop of the algorithm. The final result

is a highly accurate approximation of the stationary distribution for the nonlinear

dynamical system of interest. The bottom-right plot shows the error-reduction path

taken by the current approach, as compared with the standard L2 approach. Note

that the only way to reduce the error with L2 approach is to change the size of the

discretized problem for given a domain size, whereas the modified-norm approach can

reduce approximation error for a fixed problem size by changing the definition of the

norm. The resulting advantage of the modified-norm approach is clearly apparent

from the bottom-right plot in Fig.44.
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RECURSION

The Recursive Homotopic Approach to Domain Determination and Solution Refinement

Fig. 44. A schematic of the combined process of homotopic domain tracking and iter-

ative solution refinement.
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CHAPTER V

COMPUTATIONAL STOCHASTIC OPTIMAL CONTROL

A. Introduction

One of the greatest benefits of having a robust solver for FPE lies in the field

of stochastic analysis, design and control of nonlinear systems. In existing literature,

Markov decision processes (MDPs) have long been one of the most widely used meth-

ods for discrete time stochastic control. However, dynamic programming equations

underlying an MDP suffer from the curse of dimensionality [108, 109, 110]. Vari-

ous approximate dynamic programming (ADP) methods have been proposed in the

past several years for overcoming the curse [111, 110, 112, 113, 114], and can broadly

be categorized under one of several “functional reinforcement learning” techniques,

such as value function approximation methods, [110], policy gradient/approximation

methods [112, 113] and actor-critic methods [111, 114]. These are essentially model

free techniques for approximating the optimal control policy in stochastic optimal

control problems. They attempt to reduce the dimensionality of the DP problem

through a compact parametrization of the value function (with respect to a policy)

and the policy function. The difference among these methods lies mainly in the ac-

tual parametrization employed to achieve the above goal, and range from nonlinear

function approximators such as neural networks [111], to linear approximation ar-

chitectures [110, 115]. The optimal control policy is learnt by repeated simulations

on a dynamical system and thus, can take a long time to converge to a good policy,

especially when the problem has continuous state and control spaces.

In contrast, the control methodology proposed in this chapter is model-based,

and uses a finite dimensional representation of the underlying diffusion operator to
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parameterize both the value function as well as the control policy in the stochastic

optimal control problem. Considering the low order finite dimensional controlled

diffusion operator provides a computationally efficient recursive method for obtaining

progressively better control policies.

The literature on computational methods for solving continuous time stochastic

control problems is relatively sparse as compared to discrete time problems. One

approach uses locally consistent Markov decision processes [116], wherein the con-

tinuous controlled diffusion operator is approximated by a finite dimensional Markov

chain which satisfies certain local consistency conditions, namely that its drift and

diffusion coefficients match that of the original process locally. The resulting finite

state MDP is solved by standard DP techniques such as value iteration and pol-

icy iteration. The method relies on a finite difference discretization and thus, can

be computationally very intensive in higher dimensional spaces. In another approach

[117, 118], the diffusion process is approximated by a finite dimensional Markov chain

through the application of generalized cell to cell mapping [119]. However, even this

method suffers from the curse of dimensionality because it involves discretization of

the state space into a grid which becomes increasingly infeasible as system dimen-

sionality grows. Also, finite difference and finite element methods have been applied

directly to the nonlinear Hamilton-Jacobi-Bellman partial differential equation [120].

The method proposed here differs in that it uses policy iteration in the original

infinite dimensional function space, along with a finite dimensional representation of

the controlled diffusion operator in order to solve the problem. Considering a lower

order approximation of the underlying operator results in a significant reduction in

dimensionality of the computational problem. Utilizing the policy iteration algorithm

results in typically having to solve a sequence of a few linear equations (typically < 15)

before practical convergence is obtained, as opposed to solving a high dimensional



135

nonlinear equation if the original nonlinear HJB equation is solved.

The literature for solving deterministic optimal control problems in continuous

time is relatively mature as compared to its stochastic counterpart. The method of

successive approximations/policy iteration has been widely used to solve determinis-

tic optimal control problems. A variety of methods have been proposed for solving the

policy evaluation step in the policy iteration algorithm, including Galerkin-projection

based methods [121, 122] and neural-network based methods [123, 124, 125, 126, 127]

among others. The methodology outlined in this chapter can be viewed as an exten-

sion of this vast body of work to the stochastic optimal control problem. However, it

should be noted that this extension is far from trivial because the stochastic optimal

control problem, especially the control of degenerate diffusions, has pathologies that

have to be treated carefully in order to devise effective computational methods. As

described in chapter II, we are here interested in the feedback control of dynamical

systems, i.e., in the solution of HJB equation as opposed to solving the open loop op-

timal control problem based on Pontryagin’s principle[128] that results in a two-point

boundary value problem involving the states and co-states of the dynamical system.

The interested reader is directed to see references [128, 129, 130] for more on this

approach of solving the optimal control problem. Also, to the best of knowledge of

the author, there is no stochastic equivalent of the two-point boundary value problem

that result from Pontryagin’s principle applied to deterministic dynamical systems.

The rest of this chapter is arranged as follows: Section B discusses the formal ad-

joint of Fokker-Planck equation, namely, the Backward-Kolmogorov equation (BKE),

and shows their equivalence under the condition of asymptotic stability. Section 3

outlines the computational method used to obtain a finite dimensional representation

of the infinite dimensional Fokker-Planck or forward Kolmogorov (FPE), and the

backward Kolmogorov Equation (BKE). In Section 4, the finite dimensional repre-
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sentations of the FPE and BKE operators are used to outline a recursive procedure,

based on policy iteration, to obtain the solution to the stochastic nonlinear control

problem. In Section 5, the methodology is applied to various different nonlinear

control problems.

B. Forward and Backward Kolmogorov Equations

In this section, the formal adjoint of FPE (also known as forward Kolmogorov

equation), namely the backward Kolmogorov equation (BKE) is introduced. While

FPE is central to uncertainty propagation and nonlinear filtering of dynamical sys-

tems, the latter is paramount in solving stochastic control problems. It can be shown

that if FPE is asymptotically stable, then the forward and backward equations are

equivalent in a sense to be made precise later in this section. Recall the SDE of

Eq.2.1: for this system, backward Kolmogorov equation can be written as:

∂

∂t
W(t,x) = LBKW(t,x) (5.1)

where, the backward Kolmogorov operator appearing above can be written as:

LBK(·) = −

[
N∑

i=1

fi(t,x)
∂

∂xi

+
1

2
g(t,x)QgT(t,x)

N∑
i,j=1

∂2

∂xi∂xj

]
(·) (5.2)

For the sake of simplicity, we consider the case of an autonomous single di-

mensional system in this section to establish the equivalence between FP and BK

operators. The results can easily be generalized to multidimensional systems:

dx = f(x)dt+ g(x)dB, (5.3)

For the above system, the associated forward Kolmogorov equation or Fokker-Planck
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Equation (FPE) is:

∂W
∂t

= −∂(fW)

∂x
+

1

2

∂2(g2W)

∂x2
, (5.4)

and the backward Kolmogorov equation (BKE):

∂W
∂t

= f
∂W
∂x

+
g2

2

∂2W
∂x2

. (5.5)

FPE governs the evolution of state probability density function of the stochastic

system Eq.5.3 forward in time while the BKE governs its evolution backward in time.

FPE is said to be asymptotically stable if there exists a unique pdf W∞ such that

any initial condition, deterministic or probabilistic, decays to the pdf W∞ as time

goes to infinity. In the following, the equivalence of BKE and FPE is shown, under

the condition of asymptotic stability of the FPE.

Since FPE is assumed to be asymptotically stable, let the pdf at any time be

given as follows:

W(t, x) = W∞(x)W̄(t, x), (5.6)

i.e., as a product of the stationary pdf and a time varying part. Substituting into

FPE, we obtain:

∂W∞W̄
∂t

= −∂(fW∞W̄)

∂x
+

1

2

∂2(g2W∞W̄)

∂x2
, (5.7)

Expanding various terms in the above equation, we obtain the following identity:

W∞
∂W̄
∂t

= −fW∞
∂W̄
∂x

+
1

2
g2W∞

∂2W̄
∂x2

+
∂W̄
∂x

∂(g2W∞)

∂x
. (5.8)

Now, make use of the fact that W∞ is the stationary solution, i.e.,

∂W∞

∂t
= −∂(fW∞)

∂x
+

1

2

∂2(g2W∞)

∂x2
= 0, (5.9)
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Next, Consider the term
[
−fW∞

∂W̄
∂x

+ ∂W̄
∂x

∂(g2W∞)
∂x

]
in Eq.5.8. Note that from Eq.5.9:

∂

∂x

(
−fW∞ +

1

2

∂g2W∞

∂x

)
= 0, (5.10)

and hence,

−fW∞ +
1

2

∂(g2W∞)

∂x
= const. (5.11)

The above relation holds due to boundary conditions of the pdf at infinity. In fact, if

we assume that the invariant distribution is well-behaved such that the terms fW∞ →

0, and ∂g2W∞
∂x

→ 0 as x→ ±∞, i.e, if the stationary distribution is not heavy-tailed,

then

−fW∞ +
1

2

∂(g2W∞)

∂x
= 0, (5.12)

and hence, substituting the above into Eq. 5.8, and dividing throughout by W∞(x),

it follows that

∂W̄
∂t

= f
∂(W̄)

∂x
+
g2

2

∂2W̄
∂x2

, (5.13)

i.e, the time varying part of the pdf follows BKE.

Under the condition of asymptotic stability of FPE, and in view of the above

development, BKE and FPE are equivalent in the following sense: if φ(x) is an eigen-

function of the BK operator LBK(.) with corresponding eigenvalue λ, thenW∞(x)φ(x)

is an eigenfunction of the FP operator with the same eigenvalue λ. Hence, the knowl-

edge of eigenfunctions of the FP operator along with the stationary distribution of

FPE is sufficient to determine the eigenstructure of BKE, and vice-versa. This will

be useful in the next section when we consider policy iteration for solving HJB.
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C. Nonlinear Stochastic Control

In this section, an iterative approach for solving the Hamilton-Jacobi-Bellman

(HJB) equation is presented for nonlinear stochastic dynamical systems. The problem

of concern, as described in chapter II is known as the H2 optimal control problem.

The infinite horizon scenario results in a stationary, i.e., time invariant control law.

However, for the case of systems with additive noise, i.e., when g(x) is independent of

x, as would be the case for instance in the LQG problem, the cost-to-go is undefined

since the trajectories of the system never decay to zero. In that case, discounting

(via β in Eq.2.10) is a practical step to ensure a bounded cost-to-go function. The

discount factor may also be interpreted as an artificial finite horizon over which the

control law tries to optimize the system performance. For this problem, the optimal

control law, u∗(x) is known to be given in terms of a value function V ∗(x) as follows:

u∗(x) = −1

2
R−1hT∂V

∗

∂x
(x) (5.14)

where, the value function V ∗(x) solves the following well known (stationary) Hamilton-

Jacobi Bellman equation:

∂V ∗

∂x

T

f − 1

4

∂V ∗

∂x
hR−1hT∂V

∗

∂x
+

1

2
gQgT∂

2V ∗

∂x2
+ l − βV ∗ = 0, V ∗(0) = 0 (5.15)

As mentioned before, the above framework solving for the optimal control law,

u∗(x) is known as the H2 control paradigm. Note that obtaining the optimal control

within the above framework requires solving a nonlinear PDE (Eq.5.15), which is

in general a very difficult problem. It is however possible to restructure the above

equations so that the central problem can be reduced to solving a sequence of linear

PDEs, which is a much easier proposition. This is achieved via substitution of Eq.5.14

into the quadratic term involving the gradient of the value function in HJB (Eq.5.15).
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Doing so gives us the following equivalent form the the HJB:

∂V ∗

∂x

T

(f + hu) +
1

2
gQgT∂

2V ∗

∂x2
+ l + ‖u‖2

R − βV ∗ = 0 (5.16)

The above form of HJB is known as the generalized HJB. Note that the substitution

discussed above converted the nonlinear PDE to a linear PDE in the value function,

V ∗(x). Eq.5.16 forms the core of a policy iteration algorithm in which the optimal

control law can be obtained by iterating upon an initial stabilizing control policy as

follows:

1. Let u(0) be an initial stabilizing control law (policy) for the dynamical system

(Eq.2.9), i.e., the FPE corresponding to the closed loop under u(0) is asymptot-

ically stable.

2. For i = 0 to ∞

• Solve for V (i) from:

∂V (i)

∂x

T

(f + hu(i)) +
1

2
gQgT∂

2V (i)

∂x2
+ l + ‖u(i)‖2

R − βV (i) = 0 (5.17)

• Update policy as:

u(i+1)(x) = −1

2
R−1hT∂V

(i)

∂x
(x) (5.18)

3. End [Policy Iteration]

The convergence of the above algorithm has been proven for the deterministic

case (Q = 0) in references [121, 122] and the result holds for the stochastic case as

well[131]. However, conditions for existence of classical solutions of the linear elliptic

PDE in the policy evaluation step (Eq.5.17), and asymptotic stability of the closed

loop systems under the resulting control policies, in the sense that the associated FPE
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is stable, have not been obtained to the best knowledge of the author. In this chapter,

we assume that the policy evaluation step admits a classical solution and that the

sequence of control policies generated asymptotically stabilize the closed loop system.

In fact, these assumptions are borne out of the numerical examples considered in the

next section. The greatest advantage of using the policy iteration algorithm over

directly solving the nonlinear HJB equation is that the algorithm typically converges

in a very few number of steps (≤ 15).

Let us take a closer look at Eq.5.17: writing it in operator form, we have:

(L − β)V = q (5.19)

where,

L = (f + hu)T ∂

∂x
+

1

2
gQgT ∂2

∂x2
(5.20)

q = −(l + ‖u‖2
R) (5.21)

Note that the operator L(·) is identical to the BK operator of the closed loop under

control policy u. In other words, the policy iteration step reduces to recursively solv-

ing BKE for the controlled diffusion process. From section B, we saw the equivalence

of FPE and BKE, under the conditions considered therein. Since a robust algorithm

for FPE has already been developed, the policy iteration can easily be implemented

to solve for the optimal control law. The unknown in this scenario is not a pdf, but

the value function, V . As in Eq.3.6, an approximation for V can be written in terms

of shape functions as follows:

V̂ (x) =
D∑

i=1

aiΨi(x) (5.22)

where, Ψi(x) could be local or global shape functions depending on the nature of
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approximation being used. Then, following the Galerkin approach, residual error

resulting from substitution of Eq.5.22 into the generalized HJB (Eq.5.17) can be

minimized as follows:

D∑
i=1

ai

∫
Ω

(L − β)[Ψi(x)]Ψj(x)dx =

∫
Ω

qΨjdx, j = 1, 2, . . . ,D (5.23)

Eq.5.23 is equivalent to the following linear system of algebraic equations in ai:

Ka = f (5.24)

where

Kij =

∫
Ω

(L − β)[Ψj]Ψidx (5.25)

fi =

∫
Ω

qΨidx (5.26)

Note that

K = KBK − βI, (5.27)

where KBK is a finite dimensional representation of the backward Kolmogorov oper-

ator. Some notes on admissibility of shape functions (Ψi) are due at this point. Note

that the BK operator involves only derivatives of the unknown function, V (x), and

no terms containing the function itself. It is thus clear that when the discount factor

(β) is zero, it is not possible to use a complete set of polynomial shape functions

without making the stiffness matrix K singular (Ψ ≡ 1 causes a rank deficiency of 1).

In theory, a nontrivial β allows us to include Ψ ≡ 1 in the basis set; but in practice

it would require a large discount factor before K is reasonably well-conditioned for

inversion; which in turn would make the solution far from being optimal because the

control policy would become very “short sighted”.
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D. Numerical Examples

1. Two Dimensional System - Van der Pol Oscillator

Consider the following two dimensional stochastic Van der Pol oscillator:

ẍ+ v1x+ v2(1− x2)ẋ = u+ gw(t) (5.28)

with, v1 = 1, v2 = −1, g = 1. The objective is to minimize the following cost function:

J(x0, ẋ0) = E

[∫ ∞

0

1

2

[
(x2 + ẋ2) + u2

]
dt

]
(5.29)

The approximation was constructed using a complete set of global polynomials

up to fourth order (using polynomials up to the sixth order did not provide signif-

icant improvement in the approximation accuracy). It is notable that in the above

formulation, no direct means of enforcing state or control input constraints have been

used. In order to obtain reasonable bounds on the control input, the cost function

(Eq.5.29) was scaled so as to modify the generalized HJB (Eq.5.17) as follows (in

addition to including the discount factor (β)):

∂V (i)

∂x

T

(f + hu(i)) +
1

2
gQgT∂

2V (i)

∂x2
+ βV = −eγ(l + ‖u(i)‖R) (5.30)

i.e.,

l(·) 7→ eγl(·) (5.31)

R 7→ eγR, γ < 0 (5.32)

Fig.45 shows converged results obtained for the above system. A linear starting

policy was used to begin the iteration process, i.e., u(0) = Kẋ, with K = −20. Tuning

parameters β = 0.05 and γ = −0.15 were found to give acceptable results after about

13 iterations of the control policy. Fig.46(a) shows the system response without a
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(a) Converged value function surface. (b) Converged control input surface. The
maximum control required was modu-
lated using the tuning parameter γ.

Fig. 45. Converged results for the stochastic Van der Pol oscillator.

control input. Clearly, the states diverge. Fig.46(b) shows the system response with

the initial stabilizing control. For both these results, nominal initial conditions were

used inside the domain of operation, Ω = [−5, 5]× [−5, 5]. Fig.47 shows the optimal

state trajectories obtained and the optimal control law.

2. Two Dimensional System - Duffing Oscillator

Next consider the following hard spring stochastic duffing oscillator:

ẍ− x+ εx3 = u+ gw(t) (5.33)

The above system represents the hard-spring case (ε = +1.5) with an unstable equi-

librium at (x, ẋ) = (0, 0) and stable equilibria at (
√
ε, 0) and (−

√
ε, 0). The cost

function to be minimized is the same as for the previous system, and we use a linear

stabilizing control given by: u(0) = −30ẋ to begin policy iteration. Similar conver-

gence characteristics as for the Van der Pol oscillator were obtained and are shown



145

(a) Uncontrolled system response for
Eq.5.28.

(b) System response to initial stabilizing
control, u(0) = −20ẋ.

Fig. 46. System response of the stochastic Van der Pol oscillator I.

Response to u(0)

Response to uconverged

(a) Optimal path obtained, shown along-
side response to u(0).

(b) Optimal control law converged upon
and u(0).

Fig. 47. System response of the stochastic Van der Pol oscillator II.
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(a) Converged value function surface. (b) Converged control input surface. The
maximum control required was modu-
lated using the tuning parameter γ.

Fig. 48. Converged results for the stochastic hard spring Duffing oscillator.

in Figs. 48-50.

3. Four Dimensional System - Missile Pitch Control Autopilot

Finally, we consider a four-dimensional system that models the pitch motion

control for a missile autopilot. The deterministic version of this model was considered

in by Beard et al. [121, 122]. In the present model, noise terms have been added to

all kinetic level equations:

q̇ =
My

Iy
+ gqw1(t), My = Cm(α, δ)QSd (5.34)

α̇ =
cos2 α

mU
Fz + q + gαw2(t), Fz = Cn(α, δ)Sd (5.35)

δ̈ = −2ζωnδ̇ + ω2
n(δc − δ) + gδw3(t) (5.36)

The control input in the above equations is δc(t), which is the commanded tail-fin

deflection, while δ(t) denotes the actual tail-fin deflection. Pitch rate and angle of
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(a) Uncontrolled system response of
Eq.5.33.

(b) System response to initial stabilizing
control, u(0) = −30ẋ.

Fig. 49. System response of the stochastic Duffing oscillator I.

Response to u(0)

Response to uconverged

(a) Optimal path obtained, shown along-
side response to u(0).

(b) Optimal control law converged upon
and u(0).

Fig. 50. System response of the stochastic Duffing oscillator II.
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attack are denoted by q and α respectively. wq(t), wα(t) and wδ(t) are independent

components of a 3 dimensional white noise process. The aerodynamic coefficients are

given by the following nonlinear functions[122]:

Cm(α, δ) = b1α
3 + b2α|α|+ b3α+ b4δ (5.37)

Cn(α, δ) = a1α
3 + a2α|α|+ a3α+ a4δ (5.38)

Values of the various constants can be found in Beard et al. [122]. The cost

function to be minimized is given by:

J(x0) = E

[∫ ∞

0

1

2
(q − qss)

2 + 25(α− αss)
2 +

(
Fz − Fzss

m

)2

+
1

2
‖u− δss‖2

R

]
(5.39)

where the ‘ss’ subscripted quantities denote steady state values. We use the same

starting stabilizing control as that used in Beard et al. [122]:

u(0) = 0.08(q + qss) + 0.38(α+ αss) + 0.37
Fz

m
(5.40)

A complete basis of global quadratic shape functions was used to approximate

the value function in the policy iteration algorithm. Various sections of the converged

value function and optimal control surface are shown in Fig.51. The optimal trajec-

tories are shown in Fig.51. Fig.52 illustrates system response to the optimal control

law obtained. Note that pitch rate settles to zero and angle of attack acquires the

desired steady state value.

4. Notes on Modal Analysis

It is easy to see that any constant function, Ψ ≡ c, is a stationary solution of the

BK equation, and an eigenfunction of the BK operator with trivial eigenvalue. It was

mentioned in section C that the constant basis function, Ψ ≡ 1, is not admissible while

solving for the coefficients, ai. However, when considering the eigenvalue problem for
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(a) Converged value function surface. (b) Converged control input surface.

Fig. 51. Converged results for the missile pitch controller, showing various sections of

the four-D state space.

Open Loop
Response to uconverged

(a) Optimal path obtained, shown along-
side open loop trajectory.

(b) Optimal control law obtained.

Fig. 52. System response of the missile pitch controller.
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(a) Comparison of spectra of the BK and
FP operators for the Van der Pol oscilla-
tor.

(b) The modified BK operator does not
contain a trivial eigenvalue in its spec-
trum (β = 0.02).

Fig. 53. Spectra of the BK, modified BK and FP operators for the Van der Pol oscil-

lator.

the BK operator, Lψ = λψ, it is imperative that the constant basis function be

included in the set; because the stationary solution of the BK equation is nothing but

the constant function. The modified BK operator (with β > 0), however, does not

admit an eigenfunction with a trivial eigenvalue: for example, see Fig.53 for the Van

der Pol oscillator.

E. Summary

In this chapter, backward Kolmogorov equation was utilized to formulate a policy

iteration technique for solving closed-loop stochastic optimal control problems. The

computational methodology was also tested on a number of test cases where it was

shown to have satisfactory performance.
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CHAPTER VI

NONLINEAR FILTERING

A. Introduction

This chapter considers the problem of nonlinear filtering described in chapter II

for continuous dynamical systems and discrete measurement updates. The developed

filter is based on the robust and fast solver for Fokker-Planck equation developed in

chapter III, while the measurement update is performed as a weak form of Bayes

rule. Nonlinear filtering has been a subject of intense research over past decades

with the objective of developing accurate filters for nonlinear systems and/or sparse

measurement scenarios. The Kalman filter [132] and extended Kalman filter (EKF)

have been the standard tools for state estimation since the 1960’s. While Kalman

filter is an optimal state estimator for linear systems, the extended Kalman filter deals

with nonlinear systems by considering first order Taylor series expansion of underlying

system dynamics and measurement model. This is also known as Gaussian closure

because the state probability density function is approximated by a Gaussian pdf at

all times, fully characterized by its mean vector and covariance matrix. EKF can lead

to poor performance if the degree of nonlinearity is high, the quality of measurements

is poor, or the time duration between measurement updates is long.

The true description of nonlinear state estimation is given by Fokker-Planck

equation for the propagation part, in conjunction with the Bayes measurement up-

date rule. Unfortunately, as amply observed in this dissertation, FPE is a partial

differential equation which is equivalent to an infinite dimensional system of nonlin-

ear ordinary differential equations in the moments of the state pdf - a practically

intractable problem [116, 133, 134, 20]. An extensive amount of research has been
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conducted leading to a broad gamut of approximate filters for nonlinear systems -

most notable being the unscented Kalman filter of Julier and Uhlmann, particle fil-

ters, Gaussian sum filters, higher order moment filters and sigma-point filters for

discrete systems. In sigma-point filters, the various terms of interest for the optimal

Kalman recursion are obtained using a semi-global technique known as stochastic or

statistical linearization [37, 135]. The method essentially consists of discretizing the

domain of the random variable into a set of weighted sigma points and transforming

these through the nonlinear map in order to obtain the distribution characteristics

of the transformed random variable. The various sigma point algorithms differ from

each other in their choice of the sigma points, for instance the unscented Kalman filter

(UKF) [136, 137], the central difference Kalman filter (CDKF) [138], the square root

form UKF and CDKF [139] and so on. The Gaussian sum filter uses Gaussian pdfs as

basis functions to solve moment propagation equations derived from FPE [140]. They

have been especially useful in capturing multi-modal behavior in dynamical systems.

In this chapter, continuous dynamical systems are considered with measurements

made after discrete time gaps. This allows us to use the elegant formalism of Fokker-

Planck equations to evaluate the prediction terms in the nonlinear filtering recur-

sions. In 1997, Beard presented a fast technique for solving Fokker-Planck equation

using global shape functions, coupling it with discrete cosine transforms to obtain the

so-called nonlinear projection filter [141]. Unfortunately, due to multiple problems

related to solving FPE, the application of this filter was limited to a restricted class

of systems in two dimensional state-space.

Here, the semianalytical method of solving FPE in near real-time developed in

chapter III is utilized to develop a filter for systems with high nonlinearity and long

durations of propagation in between measurement updates. Measurement updates are

implemented as a variational (weak) form of the Bayes update rule. The methodology
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developed in this work provides two major advantages:

1. The preprocessing numerical step of meshless discretization of the FP operator

followed by spectral analysis and spurious mode rejection gives the ability to

generate transient FPE response in near real-time, independent of initial proba-

bility distribution of the state. This provides the missing link in filtering theory

in the form of a fast nonlinear propagator.

2. The equation error of transient response obtained using the modal basis reduces

with time, implying that propagation is more accurate if time between measure-

ments is longer. This counter intuitive result makes the developed solver ideally

suited for filtering problems with sparse measurements.

B. Nonlinear Filter Based on FPE

Nonlinear state estimation as described in chapter II involves two key steps:

(1) obtaining the prior pdf by integrating the associated FPE and (2) obtaining the

posterior pdf by incorporating new measurements via the Bayes rule. As a convention,

we will assume that the pdf at initial time is a “posterior,” i.e. the filter is put into

motion by state propagation.

The various steps of the current filter are presented in tabular form in Table

VII. As previously mentioned the model comprises of nonlinear continuous dynamics

and discrete measurements. Further details are can be obtained from description of

Problem II.3 in chapter II. Before the filter can be initiated, it is required to execute

the preprocessing steps of the semianalytical algorithm described in chapter III. This

includes meshless discretization of the associated FP operator on a finite sized domain

followed by spectral analysis and spurious mode rejection. In Table VII, it is assumed

that these steps have been completed, and an admissible set of eigenfunctions, A is at
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hand to describe the transient FPE response. The initial state density is assumed to

be given (W(x̃0), where x̃ denotes measured state), or can be found via initial state

estimation techniques. Typically, this is a Gaussian pdf.

1. Filter Initialization

Following completion of preprocessing steps mentioned above, the conditional

state pdf can now be parameterized by coefficients of the admissible eigenfunctions,

φ?(x) ∈ A as follows:

Ŵ(t,x|Y) =

card(A)∑
i=1

ái(t)φ
?(x), φ?(·) ∈ A (6.1)

Note change in terminology: the above equation uses ái(t) instead of a′i(t) as in

chapter III due to appearance of other superscripts starting from Eq.6.2 below. This

holds for all similarly accented symbols throughout this chapter. Because of the

above modal expansion, the entire filtering problem can now be formulated around

propagation and update rules for the coefficients ái(t). The first step is to determine

the initial conditions ái(t0), which can be found by a standard least squares procedure

of approximating the (given) function W(x̃0) with modal basis functions φ? ∈ A,

leading to the following approximation:

Ŵ(x0|Y0) =

card(A)∑
i=1

á+
i (t0)φ

?(x) (6.2)

The superscript “+” signifies that the above pdf is a “posterior,” in accordance with

the assumption made earlier that the filter is set into motion by propagation rather

than update. In other words, if there is a measurement update involved at t = 0, it

is assumed to be built into the function W(x̃0).
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Table VII. FPE based nonlinear filter

dx = f(t,x)dt+ g(t,x)dB(t), dB(t) ∼ N(0,Q)

Model yk = h(xk) + vk, vk ∼ N(0,R)

Measurement updates at: {t1, t2, . . . , tm}

W(x0|Y0) = W(x̃0) (assumed given)

Initialize Ŵ(x0|Y0) =
∑
i

á+
i (t0)φ

?
i (x), φ?

i (x) ∈ A

Set k = 1

á−i (tk) =
(
á+

i (tk−1) + ĺi
λ?

i

)
exp(λ?

i tk)− ĺi
λ?

i

Propagate
{
≡ ∂

∂t
W(t,x|Yk−1) = LFPW(t,x|Yk−1)

}
,

Ŵ(xk|Yk−1) =
∑
i

á−i (tk)φ
?
i (x)

Kk = M−1Yk

Gain [M]ij = 〈φ?
i , φ

?
j〉L2(Ω), [Yk]ij = 〈φ?

i , φ
?
j〉L2(dW(yk|x))

W(yk|x) ≡ Likelihood function (Eq.2.14)

á+(tk) = 1
vT

k á−(tk)
Kká

−(tk),

[vk]i =
∫

Ω
φ?

i (x)W(yk|x)dx

Update
{
≡ W(xk|Yk) = W(yk|xk)W(xk|Yk−1)R

ΩW(yk|ξ)W(ξ|Yk−1)dξ

}
Ŵ(xk|Yk) =

∑
i á

+
i (tk)φ

?
i (x);

Yk = {Yk−1,yk}, k 7→ k + 1, until k = m
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2. Filter Propagation

Once the initial parameters, á+
i (t0) are obtained, it is required to propagate

them up to the time instant when the next measurement comes in, i.e., t1. Since

preprocessing steps are already complete, this is extremely easy because it follows

directly from Eq.3.36 of chapter III. Written in current notation, we obtain:

á−i (tk) =

(
á+

i (tk−1) +
ĺi
λ?

i

)
exp(λ?

i tk)−
ĺi
λ?

i

, (6.3)

where, k = 1 for the first propagation phase. More notational changes: ith element of

the load vector in modal coordinates, written as f ′i in Eq.3.36 appears above changed

into ĺi to prevent confusion between load vector and system dynamics, f(t,x). Also,

λ?
i are eigenvalues corresponding to admissible eigenfunctions φ?

i . The superscript

“−” in Eq.6.3 signifies that the measurement update at tk has not yet taken place

and the coefficients will thus characterize the prior pdf. Note that the above ana-

lytic expression is equivalent to solving FPE for the conditional state density, i.e.

∂
∂t
W(t,x|Yk−1) = LFPW(t,x|Yk−1) and the resulting approximation of the prior pdf

can be written as:

Ŵ(xk|Yk−1) =

card(A)∑
i=1

á−i (tk)φ
?
i (x) (6.4)

The final step in state estimation is to obtain the posterior pdf by incorporating

new incoming information accumulating in the filtration as Yk = {Yk−1,yk}.

a. Exponentially Decaying Modal Basis Functions

An important benefit of using eigenfunctions of FP operator as shape functions

for approximating the state pdf is that their time constants of decay can be exploited

to reduce problem size. The figures on page 160 show a typical spectrum associated

with the FP operator. Note that the magnitude of eigenvalues (along y-axis) gives
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a measure of how fast the corresponding eigenfunctions would decay and stop par-

ticipating in the approximation. Therefore, the minimum known time gap between

measurements (inf(tk − tk−1)) can be used as a guide to retain only those eigen-

functions that will participate in uncertainty propagation, hence removing several

relatively fast-decaying modes from analysis. Note however, that such a step may

reduce the accuracy of approximation of the posterior pdf (discussed in the next sec-

tion) because the measurement update step may require additional shape functions

in order to implement the weak form of the Bayes rule.

3. Measurement Update

End result of the propagation phase is the state probability density at the cur-

rent time, conditioned on all previous measurements. The last step in recursive state

estimation is to obtain the state probability density conditioned on all available infor-

mation up to the present time. In the current filter, this is performed via the Bayes

rule (Eq.2.13) enforced in weak form, which can be written as: (much like in Beard

et al. [141])

card(A)∑
i=1

á+
i (tk)

∫
Ω

φ?
i (x)vdx =

card(A)∑
i=1

á−i (tk)
∫

Ω
φ?

i (x)W(yk|x)vdx

card(A)∑
i=1

á−i (tk)
∫

Ω
φ?

i (x)W(yk|x)dx

(6.5)

Following Galerkin’s approach, we have V = {vj} = {φ?
j}. Using Beard’s nota-

tion, the above equation can be represented in matrix form as:

a+(tk) =
M−1Yka

−(tk)

vT
k a−(tk)

(6.6)
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where,

[M]ij =

∫
Ω

φ?
i (x)φ?

j(x)dx = 〈φ?
i , φ

?
j〉L2(Ω) (6.7)

[Yk]ij =

∫
Ω

φ?
i (x)φ?

j(x)W(yk|x)dx = 〈φ?
i , φ

?
j〉L2(dW(yk|x)) (6.8)

[vk]i =

∫
Ω

φ?
i (x)W(yk|x)dx (6.9)

Note that in the above equations, only mass matrix, M can be pre-computed, while

the measurement stiffness matrix, Yk and measurement load vector, vk need to be

computed online as new measurements come in. This challenge makes the current

approach not suitable for problems with very fast measurement updates, especially

when using modest computing resources. Note however, that there is an alternate

way of implementing a fast measurement update based on a function approximation

approach. The RHS of Eq.2.13 can be treated as a function to be approximated

using the shape functions φ?
i (x)(·) by sampling it on a large number of points over

the solution domain. This leads us to the following normal equations:

Ma = b (6.10)

where M is the mass matrix, which can be pre-computed and b is a load vector given

by:

bj = 〈φ?
j(x),W(yk|xk)W(xk|Yk−1)〉Ω (6.11)

≡ 〈φ?
j ,W(xk|Yk−1)〉L2(dW(yk|x)) (6.12)

The above norms are computed in the discrete sense using the sampled points, as in

any function approximation problem where the objective function is given in the form

of a table. Note that Eq.6.12 represents a “weighted norm” form of Eq.6.11, in the

spirit of chapter IV. Indeed, Eq.6.12 provides a guideline for sampling the posterior
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pdf because it gives relative weightage to the various regions of the domain Ω based

on where the measurements appear. In order to enforce the normality condition, the

posterior pdf resulting from the above approximation needs to be re-normalized to

unit probability mass. While this process may still not make the measurement update

an instantaneous computation, it does provide considerable speed-up over the weak

form implementation of Bayes rule.

In either case, we note that the current filter is more suited for problems where

time duration between measurement updates is relatively high, for two reasons: (1)

the extended Kalman filter and other approximate filters work very well for applica-

tions where fast measurement updates are available and the current approach would

be somewhat of an overkill, and (2) the current FPE propagator actually works better

(is more accurate) when time gap between measurements is longer.

C. Results

This section presents examples of nonlinear filtering using the above described

methodology. Examples in 2, 3 and 4 dimensional space are considered.

1. Filtering in 2D: System 1

Consider the following 2-state nonlinear Duffing oscillator with state-multiplied

noise:

ẍ+ 2ηẋ− x+ εx3 = xG1(t) + G2(t) (6.13)

The two independent components of noise, G1 and G1 have intensities D11 and D22.

We consider the case of D11 = 0.0 for easy comparison with the extended Kalman

filter. Note that the current method is fully equipped to deal with state multiplied

noise. Values of other parameters used are: η = 0.1, ε = 0.5 and D22 = 0.4. Figure
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(a) Domain discretization with local p-
refinement.

(b) Spectrum of discretized FP operator.

Fig. 54. Domain discretization and spectral analysis for filtering of system in Eq.6.13.

54(a) shows discretization of the solution domain Ω = [−10, 10] ⊗ [−10, 10] with in-

terior nodes carrying quadratic polynomials and outer nodes carrying constant basis

functions (shown with circles and squares respectively). Spectrum of ensuing general-

ized eigenvalue problem is shown in Fig.54(b) and spurious eigenfunctions are marked

out. Two measurement models are considered:

1. Measurement model 1: The system state x is measured: h(x, ẋ) = x.

2. Measurement model 2: The system “energy” is measured: h(x, ẋ) = x2 + ηẋ2 +

εx4

Measurement noise in both cases is assumed to be R = 2 and measurements are

assumed to arrive every 9 seconds. The initial state distribution is given by the

following Gaussian pdf: N({5, 5}, 0.5I2×2).
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a. Results for Measurement Model 1

Tracking results using the FPE based nonlinear filter are shown in Fig.55. The

“stars” appearing on the plot of true state trajectories denote times at which measure-

ments were made. Figs.56(a) and 56(b) illustrate estimation errors and confidence

bounds along with comparison to the extended Kalman filter. Since the actual state

measurement is available in this case, EKF performs well, as expected. However, the

confidence bound in estimates of ẋ grow large because measurements include no in-

formation of this state. In comparison, the nonlinear filter performs with lower error

and tighter confidence (see Fig.56(b)). It is important to note that the nonlinear

filter developed in this chapter provides much more information than just mean and

covariance estimates. Indeed, the complete state conditional pdf is available and can

be used to derive any desired probabilistic information. In comparison, the mean

and covariance plots comprise the complete information available from EKF. Fig.57

shows prior and posterior conditional pdfs at four time instants of measurement up-

dates (excluding t = 0 where prior and posterior pdfs are the same) . Note that at

t = 9s, the prior probability density is highly non Gaussian. However, measurement

update converts it into a unimodal density function. At t = 18s, the prior density

again assumes bimodal form at the end of the propagation phase, but the state mea-

surement converts it back into a unimodal function, as expected. After this point,

the filter enters a steady state and propagation-update steps repeat (see t = 54s).

b. Results for Measurement Model 2

Tracking results are much more interesting in the second case, wherein “energy”

measurements are made. Fig.58 shows state estimates while filter-errors are plotted

in Figs.59(a) and 59(b). Fig. 60 shows conditional densities obtained from the non-
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EKF

FPE Based
Truth

Fig. 55. State estimates for system 1 with measurement model 1.

linear filter at four time instants. It is instructive to consider Fig.60 first: since the

measurement model does not provide unique information about the state (model is

symmteric about the x and ẋ axis), the measurement update is unable to convert

the bimodal prior into a unimodal function. Due to the nature of the measurement

model, the likelihood function is bimodal, and as a result, the update step only makes

the two modes “sharper” (see Fig.60) rather than eliminating one of the modes. The

resulting posterior means are therefore zero, as is visible from Figs.59(a) and 59(b).

On the other hand, the EKF estimate of state x tends to drift away from the truth,

and despite tuning efforts, leads to inconsistent behavior. This is clearly apparent in

Fig.59(a), wherein the filter error in x breaks the 3 − σ confidence boundary. This

behavior is most likely due to the ambiguity introduced by the measurement model

in conjunction with long propagation time.
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EKF

FPE Based

(a) Error estimates for x (system 1, mea-
surement model 1).

EKF

FPE Based

(b) Error estimates for ẋ (system 1, mea-
surement model 1.

Fig. 56. Filtering results (FPE based and EKF) for system 1 and measurement model

1.

Fig. 57. Conditional pdf estimates with FPE based filter for system 1 and measurement

model 1.
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EKF

FPE Based
Truth

Fig. 58. State estimates for system 1 with measurement model 2.

EKF

FPE Based

(a) Error estimates for x (system 1, mea-
surement model 2).

EKF

FPE Based

(b) Error estimates for ẋ (system 1, mea-
surement model 2).

Fig. 59. Filtering results (FPE based and EKF) for system 1 and measurement model

2.
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Fig. 60. Conditional pdf estimates with FPE based filter for system 1 and measurement

model 2.

2. Filtering in 2D: System 2

We consider next the nonlinear Van der Pol oscillator given by the following

equation:

ẍ+ x+ ẋ(x2 − 1) = gζ (6.14)

Van der Pol equations are widely used in science and engineering for modeling several

real life systems, e.g. in studying electrical and opto-electrical circuits, modeling geo-

logical faults between tectonic plates, and also in neurobiology for modeling behavior

of neurons. The nonlinearity in a Van der Pol oscillator manifests in the form of a

limit cycle. In this example, a displacement measurement model is used: h(x) = x.

Measurements are assumed to arrive every 5 seconds with an error intensity of R =

1. The process noise (ζ) is assumed to have a high intensity of Q = 10. Resulting

state estimates are shown in Fig.61 and error therein appears in Fig.62(a) and 62(b)
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along with error estimates of the extended Kalman filter. Note that the FPE filter

provides more accurate estimates with tighter confidence bounds, especially in ẋ. Be-

cause of the widely separated bimodal nature of prior conditional pdfs (see Figs.63

and 64), the estimated covariance of EKF is likely to be very high. This is clearly

visible in error estimates of state ẋ which grow with time, eventually making EKF

estimates inconsistent (i.e. error > 3σ bound). It is worth noting that no information

is available about ẋ from the measurement.

On the other hand, because of the measurement model, the likelihood function

associated with this system is unimodal (see Eq.2.14). In the FPE based nonlinear

filter, this is responsible for conversion of bimodal nature of prior pdfs to unimodal

nature of the posteriors. Note that after 10 s, the prior pdfs always degenerate into the

stationary solution of FPE, which is essentially a limit cycle with two regions of high

probability density. However, the unimodal likelihood function discards one mode (for

example, see posterior for t = 15s, 20s, 80s), or both modes (t = 25s) depending on

the actual measurements, thus providing unambiguous information about the location

of the state. State error estimates are never inconsistent for this filter.

3. System 3: Filtering in 3D (Lorenz Attractor)

We next consider the Lorenz attractor of Eq.3.50 considered in chapter III. The

measurement model is considered to be similar to the previous examples, h(x) =

x2 + y2 + z2, with R = 2. High measurement and process noise are chosen for this

problem and results of state estimation are shown in Figs.65 and 66 for x and y. It

is visible that the nonlinear filter estimates of the state settle to a steady state value

with fixed error while the EKF estimates are uniformly high in error and tend to drift

farther away from the truth as time progresses. This is likely due to the cumulative

effect of high nonlinearity and high intensity process and measurement noise. Time
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EKF

FPE Based
Truth

Fig. 61. State estimates for system 2.

EKF

FPE Based

(a) Error estimates for x (system 2).

EKF

FPE Based

(b) Error estimates for ẋ (system 2).

Fig. 62. Filtering results (FPE based and EKF) for system 2.



168

Fig. 63. Full state conditional pdf estimates with FPE based filter for system 2: t = 0s

to t = 15s.

Fig. 64. Full state conditional pdf estimates with FPE based filter for system 2: t = 20s

to t = 80s.
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EKF

FPE Based
Truth

Fig. 65. State estimates for system 3 with “energy like” measurement model.

snapshots of the state conditional-pdf (x − y marginals) have been shown in Fig.67,

depicting unimodal behavior for this system. The steady state behavior of the system

is also captured in these plots.

4. Filtering in 4D: Coupled Vibration Isolation Suspension

We finally consider nonlinear estimation for the two degree-of-freedom nonlinear

vibration model of Eq.3.31 studied in chapter III. In this example, we consider a

2 dimensional measurement model in which the state-rates, ẋ1 and ẋ2, i.e. x3 and

x4 are measured. The measurements are assumed to arrive every 4 seconds with

an error covariance matrix of 5I2×2. State estimates are shown in Fig.68 and error

estimates in Figs.69. Note that the EKF estimate of state x2 is erroneous because it

settles over the incorrect mode. In fact, its behavior was observed to be unpredictable

because different noise samples led to different steady state behaviors of x2. In other
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EKF

FPE Based

(a) Comparative error estimates for x,
system 3.

EKF

FPE Based

(b) Comparative error estimates for y,
system 3.

Fig. 66. Error estimates for system 3.

Fig. 67. Full state pdf tracking with FPE based filter for the Lorenz attractor.
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EKF

FPE Based
Truth

(a) Comparative state estimates for
x1, x2, system 3.

EKF

FPE Based
Truth

(b) Comparative state estimates for
x3, x4, system 3.

Fig. 68. State estimation using FPE based nonlinear filter for system 3.

words, due to relative closeness of the two modes, the EKF chose one mode over

the other depending on the particular noise sample used in the simulation. This is a

result of high process noise coupled with relatively long propagation times, causing

the EKF errors to border on inconsistency (see error estimates of states x2 and x4 in

Figs.69(a),69(b)). On the other hand, with only the information available about the

states x3 and x4, the FPE based filter is unable to decide between the two modes of

the system. The x1-x2 marginal conditional densities illustrated in Fig.70 show that

prior pdfs assume bimodal shape (as expected, from chapter III, section E) but the

posterior conditional pdfs are unimodal centered at the origin as the rates x3 and x4

settle to zero.

D. Summary

In this chapter, a nonlinear filter based on FPE was developed and proposed

to be suitable for problems involving long durations of propagation phase and/or
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EKF

FPE Based

(a) Comparative error estimates for x1

and x2, system 3.

EKF

FPE Based

(b) Comparative error estimates for x1

and x2, system 3.

Fig. 69. Error estimates for system 3.

Fig. 70. Full state pdf tracking with FPE based filter for the four-state oscillator of

Eq.3.31.
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high process/measurement noise scenarios. The semianalytical algorithm developed

in chapter III is used to trivially solve the propagation phase of the nonlinear filter.

In fact, by virtue of modal basis functions used to characterize the conditional state

density, equation error reduces with time (Theorem III.1 and Corollary III.1) implying

that the current nonlinear filter works better when time duration of propagation is

longer. Measurements are incorporated via a weak form of the Bayes update rule,

which is a computationally heavy step and renders the current filter ineffective for

applications involving high frequency measurement updates. The benefits of having

the full-state conditional pdf at disposal for estimation are illustrated through several

examples. It is observed that the FPE based nonlinear filter typically provides tighter

confidence bounds than EKF most cases. It is never observed to be inconsistent in

its predictions, primarily because it considers the actual conditional pdfs (as opposed

to a few moments) to generate estimates. Because this information is not available

to the EKF, it is often seen to be inconsistent or overly conservative, especially when

propagation times are long. It is however noted that the discussed filter is still largely

in its developmental phase and there remains tremendous scope for improvement. For

example, the powerful technique of proper orthogonal decomposition (POD) can be

utilized to significantly reduce the order of the filter by constructing highly accurate

modal basis functions for approximation of the conditional pdf. The results presented

in this chapter amply illustrate the power of the proposed FPE based filter under

difficult state-estimation conditions and provide significant basis for optimism.
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CHAPTER VII

CONCLUSIONS

This dissertation has presented a meshless numerical methodology for solving

FPE and coupled it with spectral analysis to provide near real-time transient FPE

response. A recursive norm-modification technique has been developed to improve

approximation accuracy without changing problem size and track optimal solution

domain for nonlinear systems. Applications of the developed algorithms has been

discussed in the fields of computational stochastic optimal control and nonlinear fil-

tering. This chapter reviews contributions made by this work and viable paths for

extending this research to a wider span of applications.

A. Contributions of Research

Based on presented solution methodologies and results, a claim to the following

contributions to the field of stochastic systems analysis and design can be made:

1. A robust algorithm for solving Fokker-Planck equation has been developed for

nonlinear stochastic systems. The meshless approach has been introduced for

the first time in FPE literature and shown to tackle the curse of dimensionality

successfully, for which numerical evidence has been provided. The particle ver-

sion of PUFEM is used to obtain working approximations with extremely small

problem size. Significant improvement has been achieved over state-of-the-art

techniques for solving FPE.

2. A semianalytic method has been developed by coupling meshless discretization

with modal analysis and spurious mode rejection to solve the transient FPE

in near-real time, independent of initial probability distribution. It is shown
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that equation error in FPE is bounded by an exponentially decaying envelope

with greatest width at the initial time, implying that approximation accuracy

improves over time by use of modal basis functions. This approach will open

new avenues in the area of nonlinear filtering.

3. A recursive norm-modification approach has been developed for solution refine-

ment while maintaining small problem size. A homotopic approach has been

developed to track solution domain for nonlinear dynamics.

4. An FPE perspective has been developed for stochastic optimal control prob-

lems and solution of the stationary nonlinear HJB equation has been obtained

for several systems through a policy iteration recursion over the backward Kol-

mogorov equation.

5. The semianalytic algorithm has been used to solve the nonlinear filtering prob-

lem by propagating state-pdf in between measurement updates. The technique

is especially suited for application with sparse measurements. The measurement

update is performed by implementation of the Bayes rule in variational form.

B. Future Extensions of Conducted Research

Because of the core value of FPE in the field of randomly excited systems, there

remains significant room for further progress in each of the problems considered in this

dissertation. This section presents a few avenues for direct extensions in numerical

and theoretical aspects of current research:
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1. Extensions in Numerical Research

• Large scale and parallel computing: The true potential of meshless techniques

can only be fulfilled by its implementation on large scale and parallel computing

platforms. This is especially true for PU based methods because they are very

highly amenable to parallelization of computation. The research presented in

this dissertation has shown that problems previously attempted only on super-

computers (e.g. FPE for four-state nonlinear systems) can be solved on a small

workstation using PU based meshless techniques. With the emerging field of

graphic processing unit (GPU) based computation, the PU based algorithm can

be transformed into a truly potent tool for solving extremely high dimensional

FPE, and an industrial standard PDE solver in general.

• Randomization techniques and curse of dimensionality: The primary reason

for turning to meshless methods is to deal with problems in high dimensions

and handle the curse of dimensionality associated with them. Randomization

is a process in which a problem suffering from this curse is solved effectively by

the use of a node-based approximation, typically drawn from a uniform random

distribution. Popular examples include Monte-Carlo numerical integration in

<N using uniform distributions and Discrete Decision Processes (a subclass

of Markov Decision Processes). Randomly discretized solution domains used

in this dissertation have shown (numerically) the weakening of the curse of

dimensionality in solving FPE. The bigger question remains: Can randomly

discretized domains, under the partition of unity paradigm of meshless methods,

break the curse of dimensionality associated with solving PDEs? This will

require extensive numerical and theoretical investigation.

• Further development of approximation space refinement: There is tremendous
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scope for research in automatic generation of non-polynomial/special shape

functions suited to a particular PDE. Also open is the problem of determin-

ing optimal placement of nodes for highest approximation accuracy.

2. Extensions in Theoretical Research

• Convergence studies: There still exist theoretical holes in determining conver-

gence properties of the discussed meshless methods. This is currently the case

with almost all existing meshless methods.

• Rigorous proof for breaking the curse of dimensionality: A rigorous proof for

breaking the curse of dimensionality with optimal node placement and use of

special functions is due. When developed, such a proof would be a ground

breaking result in this field.
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APPENDIX A

REVIEW OF STOCHASTIC DYNAMICAL SYSTEMS

The origins of probability theory can be traced back to the age of Renaissance, when

mathematicians and gamblers alike were interested in determining the chance of win-

ning hands. Notable contributions from researchers like Pierre de Fermat, Blaise

Pascal and Christiaan Huygens led to development of the counting theory of prob-

ability, which dealt only with discrete variables and probabilities were expressed in

terms of frequency of positive outcomes. The modernization of set theory during the

nineteenth century and development of measure theory during the twentieth century

led to the establishment of an axiomatic theory of probability, motivated by analyt-

ical concerns of dealing with both discrete and continuous random variables. The

works of Andrey Kolmogorov, published in 1933 [16] are central to the formalization

of the axiomatic theory of probability and below we review the basic concepts of this

theory.

Definition VII.1 Sample space: Denoted by Ω, sample space is the set of all

possible outcomes of an experiment. An event is a subset of Ω.

Definition VII.2 σ−algebra: Denoted by F , a σ-algebra (also known as σ-field) is

a collection of subsets of Ω such that:

1. Ω ∈ F

2. B ∈ F ⇒ BC ∈ F [“closed under complementation”]

3. Bi ∈ F , i ∈ N ⇒
⋃∞

i=1 ∈ F [“closed under countable union”]
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The sample space, Ω, is the set of all possible outcomes of an experiment, keeping in

mind that it could be an uncountable set. A σ-field is a measure of the amount of

information available about the experiment. Of course, if everything is known, then

F = P(Ω), where P(·) denotes the power set. An important σ−algebra in stochastic

dynamics is the Borel σ-algebra for <N , which is defined as the σ-algebra generated

by the open sets (N -hypercuboids) in <N , and is denoted by B(<N), or simply B.

Also, if F1 and F2 are two σ-fields, and F1 ⊆ F2, then F1 is called a sub-σ-algebra of

F2. In terms of information, F2 carries at least as much information as F1, possibly

depicting a nested sequence of information with subscripts 1 and 2 denoting time

instances. Finally, consider a collection U of subsets of Ω, i.e. U ⊆ P(Ω); then the

σ-field generated by U is the smallest σ-field containing U and is denoted by σ(U).

With this background, we are in a position to define the probability space:

Definition VII.3 Probability space: A triple (Ω,F , P ) is called a probability

space, where:

• Ω 6= φ, and F is a σ-algebra of subsets of Ω

• P is a probability measure, i.e. a function P : F → [0, 1] such that:

1. P (Ω) = 1

2. If Ai ∈ F , i ∈ N are disjoint; then

P

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai) [countable additivity, or σ-additivity] (A.1)

The above two axioms associated with the probability measure P helped make prob-

ability theory rigorous in the 1930’s. The word “measure” is key because the positive

function P endows a sense of quantification to the available information, i.e. the

σ-algebra F . In fact, if the sample space is non-empty, it is always possible to de-

fine a probability measure on its σ-algebras. As a result, the pair (Ω,F), Ω 6= φ
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is called a measureable space. The probability space is the foundation on which all

subsequent concepts of stochastic dynamical systems are grounded. A very important

idea related to growth of information within a probability space, especially relevant

to filtering theory is that of the filtration:

Definition VII.4 Filtration: Given a probability space, (Ω,F , P ), the collection

{Fi : i ≥ 0} of sub-σ-algebras of F is called a filtration if Fn ⊆ Fn+1 for all n.

A filtration captures the idea that available information (Fi) accumulates with time,

but complete set of relevant information (F) may never be known. This is central

in filtering theory because the objective is to obtain the probability distribution of

the state conditioned on all available information at the present time (∼ posterior

state density). The “state” under question at any given time is a random variable

defined on the probability space that is governed by nonlinear dynamics perturbed

by “noise”. We are now in a position to define another important function on (Ω,F),

namely the random variable:

Definition VII.5 Random variable: Given a measureable space (Ω,F), a func-

tion X : Ω → <N is a random variable if

X−1(B) ∈ B, ∀B ∈ B(<N) (A.2)

In other words, a random variable is a measureable mapping,X : (Ω,B) 7→ (<N ,B(<N)).

Note that the inverse superscript on X is not to be understood as a function inverse,

rather, as the inverse image. This general definition of random variables makes it

applicable to both discrete and continuous measureable spaces. It can be roughly un-

derstood as a variable that can assume a range of values with different probabilities.

Such probabilities can be quantified in terms of the so called probability distribution

function of X, denoted by FX(V ∈ <N). For a single dimensional random variable,
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it can be defined as follows:

Definition VII.6 Probability distribution function: The function FX(x) ,

P (X ∈ (−∞, x]), x ∈ < is known as the probability distribution function of the one-

dimensional random variable X and has the following properties: F is right contin-

uous and monotone nondecreasing, if F (∞) , limx→∞ F (x), then F (∞) = 1; and if

F (−∞) , limx→−∞ F (x), then F (−∞) = 0.

Clearly, FX(x) gives the probability of finding X on the real line to the left of x,

including x. This definition covers both discrete and continuous random variables

and can be extended to multi-dimensional case in analogous fashion with ease. For

continuous random variables, it is possible to define the derivative of the distribution

function, known as the probability density function (pdf), denoted by WX(x). The

pdf is especially important because it depicts probability density over the real space

(similar to mass density), the integration of which over the region of interest gives

the probability of finding the random variable in that region. It is often desired to

know the average value of a function of the random variable, which can be done by

integrating (summing for discrete variables) the concerned function weighted by the

probability density:

Definition VII.7 Expectation: The expected value of a function f(X) of a random

variable X on (Ω,F , P ) is understood in the Lebesbue-Stieltjes sense of integration

as:

E[f(X)] ,
∫

Ω

f(x)WX(x)dx (A.3)

When f(X) = X, the integral is known as the mean value of the random variable

while f(X) = (X − E[X])2 is well known as the covariance. Expected value of the

function over a smaller region ∆ ⊂ Ω can be obtained by changing the domain of
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integration. We now proceed to the idea of the random process, which generalizes

the concept of random variables by incorporating time in the framework.

Definition VII.8 Random process/stochastic process: Let T (∼ time) be an

index set. A random process is a parameterized collection of random variables, {Xt :

t ∈ T} defined on a probability space (Ω,F , P ).

Alternate ways of writing a stochastic process are Xt, Xt(ω) and X(t, ω). The state

of a dynamical system perturbed by noise is modeled as a stochastic process. Note

that for a fixed t ∈ T , the function ω ∈ Ω 7→ Xt(ω) is a random variable which has

its own pdf, WXt(x). For a fixed ω ∈ Ω, the function t ∈ T 7→ Xt(ω) is called a

path. Indeed, implicit is the fact that a stochastic process is really a spatiotemporal

function: Xt(ω) : T × Ω 7→ <N with the special condition that for each t ∈ T ,

X(t, ·) : Ω 7→ <N is a random variable. Before we proceed to formulating stochastic

differential equations for random processes, two more concepts must be considered:

Definition VII.9 Finite dimensional distributions: Given a stochastic process

{Xt}t∈T , finite dimensional distributions are the measures µt1,...,tk on <Nk defined as

follows: For t1, . . . , tk ∈ T and F1, . . . , Fk ∈ B(<N);

µt1,...,tk(F1 × . . .× Fk) = P (Xt1 ∈ F1, . . . , Xtk ∈ Fk) (A.4)

From Eq.A.4, it is easy to see that for k = 1, the finite dimensional distribution is

nothing but the probability distribution function for Xt1 . It is important to note

that two stochastic processes with the same finite dimensional distributions can have

completely different paths. We next consider a special random process known as

Brownian motion:

Definition VII.10 Brownian motion: The single-dimensional Brownian motion

is a real valued stochastic process {Bt}t≥0 such that
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1. For t0 < t1 < . . . < tn, B(t0), B(t1)−B(t0), . . . , B(tn)−B(tn−1) are independent

for any n.

2. For s and t ≥ 0, B(s + t) − B(s) ∼ N(0, t), i.e. the increment process is

normally distributed with zero mean and covariance t.

3. The paths t 7→ Bt are continuous with probability 1, i.e. P (t 7→ Bt is continuous) =

1.

The above properties of Brownian motion are consistent with its use as a model for

motion of pollen grains suspended in a liquid. The N -dimensional Brownian motion

is a <N -valued process whose components are individual one-dimensional Brownian

motion processes. More importantly, its formal derivative is nothing but the white

noise process, which can be written in terms of differentials as: dBt = Wtdt. In fact,

Brownian motion is the simplest continuous stochastic process that can be used to

model noise. This leads us to dynamical systems perturbed by noise, written very

roughly as:

dX

dt
= f(t,X) + g(t,X).“white noise” (A.5)

Because of obvious difficulties associated with writing white noise as the rigorous

derivative of Brownian motion (which is differential nowhere), the above equation

can be written in terms of differentials, a form known popularly as the Itô stochastic

differential equation (SDE):

dXt = f(t,Xt)dt+ g(t,Xt)dBt, 0 ≤ t ≤ T (A.6)

Eq.A.6 represents a continuous dynamical system comprising a deterministic part

fdt, which in general may be nonlinear and a stochastic part gdBt. The state of the

system, Xt is a stochastic process (because of the perturbation term) which usually

has a known initial probability density function, WX0(x), or simply, W0(x). It is
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in general very difficult to obtain explicit solutions to Eq.A.6 and precise conditions

of existence and uniqueness can be stated as follows: Let T > 0 and suppose f :

[0, T ]×<N 7→ <N and g : [0, T ]×<N 7→ <N×M are measureable functions such that

for some constants C and D,

|f(t,x)|+ |g(t,x)| ≤ C[1 + |x|], (A.7)

|f(t,x)− f(t,y)|+ |g(t,x)− g(t,y)| ≤ D|x− y| (A.8)

where, t ∈ [0, T ] and x, y ∈ <N . If Bt is a M dimensional Brownian motion and X0 is

a random variable independent of FT with finite second moments, i.e. E[|X0|2] <∞,

then the SDE A.6 has an almost sure unique solution such that E[
∫ T

0
|Xs|2ds] <∞.

The “growth condition” of Eq.A.7 ensures that the solution Xt does not explode

in finite time while Eq.A.8 represents a Lipschitz condition ensuring uniqueness of

solution. Almost sure uniqueness (also known as strong uniqueness and pathwise

uniqueness) means that if X1 and X2 satisfy Eq.A.6, then X1(t, ω) = X2(t, ω) for

all t ≤ T almost surely. It is important to note that these conditions of existence

and uniqueness are very strong and explicit solutions to Eq.A.6 usually do not exist,

or aren’t very useful. Typically, it is most beneficial to solve for the time varying

probability density function of X, i.e. WX(t,x). This leads to the notion of weak

uniqueness, under which if X1 and X2 are solutions of Eq.A.6, then they have the same

probability density function. In this sense, it is sufficient to solve for the probability

density function of the state Xt. Once the time varying pdf is available, the average

behavior of the system state can be analyzed in terms of its various expectations. We

conclude this section by stating that for the SDE in Eq.A.6, there exists a parabolic

partial differential equation known as Fokker-Planck equation, the solution to which

gives the time varying pdf of state Xt, and is considered in the next section.
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APPENDIX B

HALTON SEQUENCE OF QUASI RANDOM NUMBERS

The following algorithm describes Halton’s algorithm for generating quasi random

numbers in <N :

• Given domain of interest: Ω = ⊗N
i=1[ai, bi].

• Start with a sequence of natural numbers: SP = {q1, q2, . . . , qP}. Define G =

{p1, . . . , pN} as the set of first N prime numbers.

• For each qi ∈ SP , do the following:

1. Set n = 1

2. Obtain base pn representation of qi as nBi = {b1, b2, . . . , bm}.

3. Reverse the above string to: nB̃i = {bm, . . . , b2, b1} , {c1, c2, . . . , cm}.

4. Obtain the nth component of the psuedorandom number as: nxi =
m∑

k=1

ckp
−k−1
n

5. Change n 7→ n+ 1, go back to step 2 until n = N .

6. Repeat above steps for each member of the sequence SP .

The above steps generates psuedorandom numbers in the canonical domain I =

⊗N
i=1[0, 1]. To transform the sequence to the desired domain Ω, use the following

linear transformation:

nxi 7→ an +n xi(bn − an); i = 1, 2, . . . , P (B.1)

The weights associated with each of the quadrature points is w =
QN

n=1 (bn−an)

P
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APPENDIX C

DERIVATION OF THE 1-D RICCATI EQUATION FROM FPE

This appendix presents a derivation of the single dimensional Riccati equation from

FPE. This simple exercise demonstrates that the Kalman filter propagation is a special

case of the full nonlinear uncertainty evolution problem.

To start, consider the following unit dimensional linear stochastic system:

ẋ = ax+ bζ (C.1)

Then, FPE corresponding to the above dynamical system is:

∂W
∂t

= −ax∂W
∂x

− aW +
1

2
b2q

∂2W
∂x2

(C.2)

Since Eq.C.1 represents a linear system, the time varying pdf of state x is Gaussian,

i.e. W(t, x) = N(µ(t), σ(t)), or,

W(t, x) =
κ

σ
exp

[
−1

2

(
x− µ

σ

)2
]
≡ κ

σ
G(t, x) (C.3)

where, G(t, x) = exp
[
−1

2

(
x−µ

σ

)2]
. Substituting Eq.C.3 in Eq.C.2, we the following

partial derivatives:

∂W
∂t

=
W
σ

[
(z2 − 1)σ̇ + zµ̇

]
(C.4)

∂2W
∂x

= −W
σ
z (C.5)

∂2W
∂x2

=
W
σ2

(z2 − 1) (C.6)
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where, z = x−µ
σ

is an auxiliary variable. Substituting the above partials back into

Eq.C.2, we get:

z2σ̇ + zµ̇− σ̇ =

(
aσ +

b2q

2σ

)
z2 + aµz −

(
aσ +

b2q

2σ

)
(C.7)

Comparing coefficients of z2, z and the constant term from both sides, we get:

σ̇ = aσ +
b2q

2σ
(C.8)

µ̇ = aµ (C.9)

−σ̇ = −
(
aσ +

b2q

2σ

)
(C.10)

Note that Eqs.C.8 and C.10 are exactly the same. Also, Eq.C.8 is not the desired

form of covariance propagation. We are actually interested in knowing σ̇2, which is

nothing but ν̇ = 2σσ̇. So we get:

µ̇ = aµ (C.11)

ν̇ = 2aν + b2q (C.12)

The above equations are nothing but the Riccati equations of uncertainty propagation

for a scalar linear system. the matrix version can be derived similarly.
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