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ABSTRACT

On Resource Allocation for Communication Systems with

Delay and Secrecy Constraints. (December 2009)

Anantharaman Balasubramanian, B.E., College of Engineering, Chennai;

M.S., Indian Institute of Science, Bangalore

Chair of Advisory Committee: Dr. Scott L. Miller

This dissertation studies fundamental limits of modern digital communication

systems in presence/absence of delay and secrecy constraints.

In the first part of this dissertation, we consider a typical time-division wireless

communication system wherein the channel strengths of the wireless users vary with

time with a power constraint at the base station and which is not subject to any

delay constraint. The objective is to allocate resources to the wireless users in an

equitable manner so as to achieve a specific throughput. This problem has been

looked at in different ways by previous researchers. We address this problem by

developing a systematic way of designing scheduling schemes that can achieve any

point on the boundary of the rate region. This allows us to map a desired throughput

to a specific scheduling scheme which can then be used to service the wireless users.

We then propose a simple scheme by which users can cooperate and then show that a

cooperative scheduling scheme enlarges the achievable rate region. A simple iterative

algorithm is proposed to find the resource allocation parameters and the scheduling

scheme for the cooperative system.

In the second part of the dissertation, a downlink time-division wireless sys-

tem that is subject to a delay constraint is studied, and the rate region and optimal

scheduling schemes are derived. The result of this study concludes that the achievable
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throughput of users decrease as the delay constraint is increased. Next, we consider

a problem motivated by cognitive radio applications which has been proposed as a

means to implement efficient reuse of the licensed spectrum. Previous research on this

topic has focussed largely on obtaining fundamental limits on achievable throughput

from a physical layer perspective. In this dissertation, we study the impact of im-

posing Quality of Service constraints (QoS) on the achievable throughput of users.

The result of this study gives insights on how the cognitive radio system needs to be

operated in the low and high QoS constraint regime.

Finally, the third part of this dissertation is motivated by the need for commu-

nicating information not only reliably, but also in a secure manner. To this end, we

study a source coding problem, wherein multiple sources needs to be communicated

to a receiver with the stipulation that there is no direct channel from the transmitter

to the receiver. However, there are many “agents” that can help carry the information

from the transmitter to the receiver. Depending on the reliability that the transmit-

ter has on each of the agents, information is securely encoded by the transmitter and

given to the agents, which will be subsequently given to the receiver. We study the

overhead that the transmitter has to incur for transmitting the information to the

receiver with the desired level of secrecy. The rate region for this problem is found

and simple achievable schemes are proposed. The main result is that, separate secure

coding of sources is optimal for achieving the sum-rate point for the general case of

the problem and the rate region for simple case of this problem.
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CHAPTER I

INTRODUCTION

The study of information theory for point-to-point communication systems began

with Shannon’s seminal paper [1]. Since then considerable research has taken place

for communication systems with one transmitter and receiver, and more or less a full

understanding has been developed. The late 1990’s witnessed a surge of research ac-

tivities for communication systems with multiple transmit and receive antennas (i.e.,

MIMO systems). An important fundamental result is the characterization of the

diversity-multiplexing trade off [2], indicating enhanced performance of MIMO sys-

tems over single antenna systems, especially in providing reliability/capacity. There

are still some interesting ongoing research activities in understanding the theory of

MIMO systems.

Not surprisingly, the gains that MIMO systems provided, captured the attention

of the wireless communication industry. There have been many success in putting the

theory of MIMO systems into practice, and it is important to note the contribution of

[3] which is used in IEEE 802.16, WiMax wireless standards. However there has been

a strong feeling that providing more than two antennas at the mobile terminals is

impractical, especially given the vogue of having mobile phones as small as possible.

This practical problem motivated the need of having a “close to MIMO” performance

by making use of one antenna, that the mobile is typically endowed with.

The idea of user cooperation was born [4, 5]. It is based on a simple idea that the

“stronger user” cooperates with a “weaker user” so that the former sacrifices some

of its own throughput to help the latter, in such a manner that the system resources

The journal model is IEEE Transactions on Automatic Control.
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are shared equitably. It is easy to see that when the inter-user channel (i.e., the

channel between the cooperating users) become strong, then this reduces roughly to

a MIMO system. Though it is not possible to reap all the gains of a MIMO system,

cooperation does help to improve the individual throughputs (or reliability, depending

on what the system is intended for) as compared to single-user systems. A part of

this dissertation studies achievable gains of a downlink cooperative system. Some

notable results in user cooperation include the study of diversity aspects of various

cooperation protocols by Laneman [6],[7] and achievable gains of a uplink cooperative

system in [8].

Since Shannon’s seminal paper [1], researchers have always measured the effi-

ciency of a communication system solely based on the throughput that it can provide.

This point of view may not be always correct. For example, consider the familiar op-

portunistic scheme which has been proposed recently in [9] for increasing the system

throughput. The primary idea in this scheme is to offer service to the user with

the best channel. The problem with this approach is that users with strong chan-

nel continue to get higher throughput, while users with weak channel is deprived of

any resources (i.e., opportunistic scheme maximizes the system throughput, but not

the individual user’s throughput). Hence a more reasonable method of measuring

the system performance is by taking into account the delay associated in achieving

a specific throughput. There has been an increase in the recent past in researchers

embracing this point of view for measuring the system performance. One of the first

results in this area was the power-delay tradeoff of Randall Berry [10]. Another tool

to study the interplay of delay and throughput is the effective capacity, which is akin

to the well developed concept of effective bandwidth. This tool was developed and

first put to use for studying point-to-point systems in [11], MIMO systems in [12]

and uplink cooperative systems in [13]. In this dissertation, we address the effect of
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delay constraints on the throughput of a two user downlink scheduliing system and a

cognitive radio system.

Designing a good communication system not only involves techniques for commu-

nicating reliably but also securely. It should be noted that there are several algorithms

that have been proposed for secure communication in the literature, most notably the

Rivest, Shamir and Adleman algorithm (also called the RSA algorithm). But these

algorithms work in the network layer. In this thesis we address the security issue

from a physical layer perspective. The problem of physical layer security was first

formulated by Shannon [14]. In particular the problem addressed in [14] was the fol-

lowing: What is the minimum external randomness (i.e., key bits) required in order to

communicate information bits of rate R? Shannon showed that minimum rate of key

bits for providing perfect secrecy should be at least the rate of the information bits.

Shannon’s work was followed by the remarkable work of Wyner [15] and Cheong [16].

In Wyner’s model, there is assumed to be a legitimate receiver and an eavesdropper,

with the eavesdropper’s channel assumed to be a degraded version of the legitimate

receiver’s channel. It is to be noted that in Wyner’s model there are no key bits or

external randomness assumed to be present. The problem that Wyner addressed was

the following: Given the equivocation rate of the wiretapper (i.e., degree of confus-

ability), what is the maximum rate at which communication can take place securely

with the legitimate receiver? Wyner showed that for perfect secrecy, the maximum

secure rate that is possible is, the difference in channel capacities of the legitimate

receiver and the wiretapper. There has been a burst of research activity in the area

of secure communications recently. Most notable results are the secrecy capacity of

the fading channels [17], multiple access channels [18], [19], broadcast channels [20],

MIMO channels [21], [22] and interference channels [23].
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A. Thesis Outline and Contributions

Chapter II gives the necessary background for the material discussed in the ensuing

chapters. Chapter III begins by finding optimal scheduling scheme for a simple two

user downlink time division wireless system. Further, it is shown that opportunistic

scheduling schemes fall out as a special case of a more generalized class of optimal

scheduling schemes that have been obtained. For the case when the users are allowed

to cooperate, it is shown that the optimal cooperative scheduling schemes belong to

the same class as that of non-cooperative (i.e., downlink) scheduling schemes. Finally,

the achievable gains of a cooperative scheduling system is addressed. The primary

contribution in this chapter is finding the optimal policy that one has to use for

getting any point on the rate region both for the non-cooperative and the cooperative

case [24], aside from establishing the rate region for the cooperative scenario. Further,

for the cooperative case we also have a simple algorithm that would determine the

optimal resource allocation parameters which will maximize the throughput achieved

by the users [25].

In Chapter IV, we generalize the optimal scheduling scheme derived in Chapter

III for the case when the wireless users have a Quality of Service (QoS) constraint.

We discuss the fundamental limits on the throughput that users can achieve if a QoS

constraint is imposed. The effect of coherence time on the admissible throughput

of users are studied. The primary contribution in this chapter is finding the exact

scheduling scheme and the rate region for a two-user problem with QoS constraints

[26]. Further, for the multi-user problem, we have proposed a scheme that gives

considerable gains over the opportunistic scheme for maximizing the sum-rate of

effective capacity [27].

In Chapter V, we address the problem of finding the admissible rate region of a
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cognitive radio system with QoS constraints. This is done by modeling a cognitive

radio system as a two-user priority queuing system with constant input arrival rates

(which is to be determined) and variable service rates determined by the wireless

channel. The primary contribution in this chapter is to model the cognitive radio

system that permits analysis and compare the achievable throughput attained by

users for the different models that we have proposed.

Chapter VI addresses the secrecy capacity of a source coding problem. More

specifically the problem that is addressed in Chapter VI is the following: Multiple

sources are to be communicated to (L + 1) receivers amidst an eavesdropper. A

direct channel is available from the source encoder to each of the L receivers, while

the (L + 1)th receiver has access to the output of L channels (i.e., there is no direct

channel from the source encoder to the (L+1)th receiver). The eavesdropper has access

to a subset of the m channels (m < L) and the legitimate receiver must be able to

reconstruct the source from a subset of n channels, where m < n ≤ L. The goal of the

source encoder is to encode the source in such a way so as to communicate the source

reliably to the (L + 1)th receiver with minimum overhead. The rate region of such

a system is found and achievability is established using simple linear network codes.

The primary contribution in this chapter is to prove that mixing a number of i.i.d

sources (that is, having multiple i.i.d sources) will not help increase the randomness

of the system and that one could approach the task of providing secrecy to multiple

sources by providing secrecy to each source separately [28], which is shown to be

optimal.

Finally, we conclude this dissertation with scope for future work in Chapter VII.
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CHAPTER II

BACKGROUND

In this chapter, we provide the necessary theoretical background that is required

for later chapters in this dissertation. First, we provide an overview of cooperative

systems, wherein we discuss the different types of protocols in the literature. This

will provide a good background for the the material in Chapter III. Next, we briefly

go over the concepts of effective bandwidth and effective capacity which are required

in Chapter IV and Chapter V. Finally, we discuss the main principle of information

theoretic secrecy which is used in Chapter VI.

A. Overview of Cooperative Systems

Consider a system shown in Fig. 1, where there is a source ‘S’ which employs terminal

‘R’(i.e., relay) in transmitting to the destination ‘D’(i.e., destination). As in [6], we

consider N consecutive uses (where N is large) of a baseband equivalent, discrete

time channel model.

For direct transmission (in the absence of the relay ‘R’), the channel model is:

yd[n] = as,dxs[n] + zd[n] (2.1)

R

DS

Fig. 1. Cooperative system model.
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where xs[n] is the source transmitted signal, yd[n] is the destination received signal

and n = 1, 2, . . . , N . In the case of cooperative transmission, the channel model

during the first half of the block is modeled as:

yr[n] = as,rxs[n] + zr[n] (2.2)

yd[n] = as,dxs[n] + zd[n] (2.3)

for n = 1, 2, . . . , N/2, where yr[n] and yd[n] are the relay and destination received

signals respectively. For the second half of the block, the received signal is modeled

as:

yd[n] = ar,dxr[n] + zd[n] (2.4)

for n = N
2

+ 1, . . . , N , where xr[n] is the relay transmitted signal. In (2.1)-(2.4),

as,r, ar,d and as,d denotes the effect of path-loss, shadowing and frequency non-selective

fading and zr[n], zd[n] denotes the effects of receiver noise modeled as zero-mean mu-

tually independent circularly symmetric, complex gaussian sequences with variance

No.

Cooperative protocols are classified based on the types of processing employed at

the relay terminals and are discussed along similar lines to the ones in [6] as follows.

1. Amplify-Forward

The system model for this protocol is given in (2.2)-(2.4). The source terminal trans-

mits xs[n], say, for n = 1, 2, . . . , N/2. During this interval, the relay processes yr[n],

and relays the information by transmitting

xr[n] = β yr[n−N/2]. (2.5)
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for n = N
2

+ 1, . . . , N , and β is the amplifying parameter. In order that the relay

remain within it power constraint, it follows that the amplifying parameter β needs

to satisfy

β ≤
√

P

|as,r|2 P + No

(2.6)

This scheme can be thought of repetition coding being performed by the relay, except

that the relay amplifies the received noise as well. The destination decodes the signal

from the source and the relay by using a maximal ratio combiner. The maximum

mutual information between the inputs and outputs can be shown to be [6]

IAF =
1

2
log

(
1 + SNR|as,d|2 + f

(
SNR|as,r|2, SNR|ar,d|2

))
(2.7)

where SNR := P
No

and

f(x, y) =
xy

x + y + 1

The outage event for achieving a spectral efficiency R is given by the event

Pr[IAF < R] (2.8)

which is equivalent to the event

|as,d|2 +
1

SNR
f
(
SNR|as,r|2, SNR|ar,d|2

)
<

22R − 1

SNR
(2.9)

Denoting the event in (2.8) by P out
AF (SNR, R), it has been shown in [6] that

P out
AF (SNR, R) ≈ C

(
22R − 1

SNR

)2

where C is as constant that depends on the average channel gain parameters. We

note that this scheme achieves a full diversity gain of two.
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2. Decode-and-Forward

The channel model for this scheme is given in (2.2)-(2.4). The source transmits xs[n]

for n = 1, 2, . . . , N/2, and the relay processes yr[n] by forming an estimate x̂s[n] of

the source transmitted signal, xs[n]. The relay transmits the signal

xr[n] = x̂s[n−N/2]

for n = N
2

+1, . . . , N . The destination employs a matched filter to combine the signals

received from the source and the relay. The maximum mutual information for this

scheme has been shown in [6] to be

IDF =
1

2
min

{
log(1 + SNR|as,r|2), log(1 + SNR|as,d|2 + SNR|ar,d|2)

}
(2.10)

The first term in (2.10) represents the maximum rate at which the relay can decode

the source, while the second term denotes the reliable rate at which the destination

can decode the source from the source and the relay. Requiring both the relays and

destination to decode the entire codeword without error results in the minimum of

the two terms as in (2.10)[6]. The outage event for a spectral efficiency R can be

obtained from (2.10), and is equivalent to the event that [6]

min
{|as,r|2, |as,d|2 + |ar,d|2

}
<

22R − 1

SNR
(2.11)

Note that (2.11) follows from (2.10) due to high SNR approximation. Denoting the

outage event by P out
DF (SNR, R), it has been shown in [6] that

P out
DF (SNR, R) ≈ C̃

(
22R − 1

SNR

)

where C̃ is a constant which depends on the average channel gain parameters. It is

important to note the 1
SNR decay in the above equation denotes that the decode-and-
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forward protocol does not offer diversity gains.

3. Selection Relaying

This scheme takes advantage of the fact that the channel coefficients can be tracked

by the cooperating terminals (i.e., the relay and the destination) perfectly. More

specifically, if the measured |as,r|2 falls below a certain threshold, the source simply

continues its transmission to the destination, in the form of repetition or more pow-

erful codes [6]. If the measured |as,r|2 lies above a threshold, the relay forwards what

it received from the source, using either amplify-forward or decode-and-forward, in

an attempt to achieve diversity gain [6].

Consider the performance of selection decode-and-forward scheme. The mutual

information of this scheme is given by [6]:

ISDF =





1
2
log

(
1 + 2SNR|as,d|2

)
, |as,r|2 < 22R−1

SNR

1
2
log

(
1 + SNR[|as,d|2 + |ar,d|2]), |as,r|2 ≥ 22R−1

SNR

(2.12)

The first case in (2.12) corresponds to the relay not being able to decode and the

source repeating its transmission. The second case corresponds to the relay being able

to decode and repeat the source transmission (i.e., in which case one can coherently

combine the signals from the source and the relay). It has been shown in [6] that the

outage probability decays like 1

SNR2 , which implies a diversity gain of two.

4. Incremental Relaying

In this scheme, the source transmits its information to the destination at spectral

efficiency R. The destination indicates success or failure by broadcasting a single

bit of feedback to the source and the relay. For high enough |as,d|2, there is a high

probability that the destination will be able to decode the source signal in which
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case the relay does not re-transmit. If the channel gain, |as,d|2, is not high enough

(i.e., the source-destination transmission is not successful), then the relay amplifies

and forwards what it received from the source, and the destination combines the two

transmissions (i.e., one from the source and the other from the relay). It has been

shown in [6], that the outage probability decays like 1

SNR2 , which suggests that this

scheme reaps all the diversity gains.

B. Effective Bandwidths, Effective Capacities and Stochastic Differential Equations

1. Effective Bandwidth

Future communication networks are expected to integrate a large number of traffic

sources with a wide variety of traffic characteristics while still providing some guaran-

teed quality of service (QoS) such as packet loss probability. Typically traffic streams

transmit data at different rates where the rate may vary between zero and some peak

rate. A natural question to ask for such a system is the following: Given that different

data streams have different rates, how do we decide on whether to admit, or, not to

admit a stream, if we need to guarantee a QoS? The effective bandwidth turns out

to be a benchmark to answer the aforementioned question.

The effective bandwidth of a traffic stream is chosen as the smallest capacity

(i.e., server rate) that solves the admission criterion. To view this in another way, the

effective bandwidth models the stochastic behavior of a source traffic process in an

asymptotic sense . In most cases, the admission criterion is taken as the allowed buffer

overflow probability (as will be explained in the sequel). One of the most attractive

property of using effective bandwidth in practical systems is that the sum of the effec-

tive bandwidth of two independent traffic sources is equal to the effective bandwidth

of their superposition (i.e., additive), which makes calculating the admission criterion
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   Q(t)
   A(t) S(t)=c

Fig. 2. Infinite length buffer with a variable arrival rate and constant service rate c.

simple.

Consider an arrival process {A(t), t ≥ 0}, where A(t) is the total amount of traffic

generated by a source over time [0, t]. Consider a stochastic process {Z(t), t > 0} that

models the traffic flow. Let r
(
Z(t)

)
be the rate at which the traffic flows at time t.

Then

A(t) =

t∫

0

r
(
Z(u)

)
du (2.13)

Define the asymptotic log moment generating function as

h(υ) = lim
t→∞

1

t
log E {exp(υ A(t))}

The effective bandwidth of the traffic is defined as

eb(υ) =
h(υ)

υ
(2.14)

The following properties hold

• rmean ≤ eb(υ) ≤ rpeak

• limυ→0 eb(υ) = rmean and limυ→∞ eb(υ) = rpeak

where rmean = E[r
(
Z(∞)

)
] is the mean traffic flow rate, and, rpeak = supz{r(Z)} is

the peak traffic flow rate.

Consider a queue of infinite buffer size served by a channel with service rate

S(t) = c (see Fig. 2), such as an AWGN channel. Due to the varying arrival rate

A(t), the queue length Q(t) varies with time. Using the theory of large deviations, it
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can be shown that the queue length Q(t) exceeding a threshold B satisfies

lim
t→∞

Pr {Q(t) ≥ B} ≈ e−θ B as B →∞ (2.15)

The exponent of the buffer overflow probability (i.e., the decay rate) is the unique

solution to eb(θ) = c, where eb(·) is defined in (2.14). For a desired exponent θ,

the effective bandwidth yields the minimum service rate c, such that the behavior in

(2.15) holds.

Example II.1. Assume an on-off source with rate of transition from ‘on’ to ‘off’ de-

noted by λ and from ‘off’ to ‘on’ by µ. Traffic is generated at rate c, when the source is

on and no traffic is generated when the source is off. Letting e(M) denote the largest

real eigen-value of a square matrix M . It has been shown in [29], that the asymp-

totic log moment generating function for the on-off process with the aforementioned

parameters is

h(υ) = e(Q + υ R)

where

Q =



−λ λ

µ µ


 , R =




0 0

0 c


 (2.16)

The highest eigen-value of the matrix Q + υ R turns out to be

cυ − µ− λ +
√

(cυ − µ− λ)2 + 4λcυ

2

and hence the effective bandwidth of an on-off source works out to be (from (2.14))

cυ − µ− λ +
√

(cυ − µ− λ)2 + 4λcυ

2υ
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2. Effective Capacity

It is to be noted that (2.15) is derived by assuming that the service rate is fixed, while

the input arrival rates are stochastic (which is why effective bandwidth characterizes

the stochastic behavior of source traffic process). One natural question to ask is the

following: Suppose if the input arrival rates are constant, while the output service

rate is stochastic (as shown in Fig. 3), can we get a asymptotic behavior similar to

(2.15). It turns out that it is possible and this is shown in [11]. The effective capacity

of a traffic stream is the maximum constant input arrival rate for a given stochastic

service rate that solves the admission criterion, which is why effective capacity is the

dual of effective bandwidth.

Consider a standard point-to-point communication system where the source is

endowed with a infinite length buffer and that the traffic flows into the buffer with

constant arrival rate A(t) = c, with variable service rate S(t), at time t. Note that

the variability in service rate S(t) can arise due to the effects such as shadowing,

small-scale fading etc. Due the variable service rate, the queue length Q(t) is also a

variable. Similar to effective bandwidth, one can show that (2.15) is satisfied, where

θ is the unique solution to EC(θ) = c, and

EC(υ) = lim
t→∞

1

υ t
log E

[
e−υ S(t)

]

It is possible to show the following:

• limυ→0 EC(υ) = E[S(t)],

• limυ→∞ EC(υ) = 0.

The effective capacity can be intuitively explained as follows. Given system param-

eters and an exponential decay rate θ, the effective capacity is the maximum arrival
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Q(t)
   A(t)=c S(t)

Fig. 3. Infinite length buffer with a constant arrival rate c and variable service rate.

rate for which the QoS requirement in (2.15) is fulfilled. The effective capacity of a

system with constant arrival rate c, with an on-off service process is given by [11]

c θ + µ + λ−
√

(c θ + µ + λ)2 − 4λ c θ

2 θ

3. Stochastic Differential Equation

A stochastic differential equation (SDE) is one in which one or more terms is a

stochastic process which results in the solution being a stochastic process as well.

Here we discuss a SDE in which the random fluctuations are characterized by a jump

process. The discussion presented here proceeds along similar lines to [30].

Consider a SDE excited by a jump process:

x(t) = x(0) +

t∫

0

f
(
x(σ), σ

)
dσ +

t∫

0

g
(
x(σ), σ

)
dNσ (2.17)

where N is a poisson counter. A function x(·) is a solution of (2.17) in the Itô sense

if, on an interval where N is constant, x satisfies ẋ = f(x, t) and if, N jumps at t1, x

behaves in a neighborhood of t according to the rule [30]

lim
t→t1
t>t1

x(t) = g

(
lim
t→t1
t<t1

x(t), t1

)
+ lim

t→t1
t<t1

x(t) (2.18)

It is common to write (2.17) as

dx = f(x, t) dt + g(x, t) dN



16

Consider a more general SDE

dx = f(x) dt +
m∑

i=1

gi(x) dNi; x ∈ Rn (2.19)

where Ni are poisson counters of rate λi. Let ψ : Rn → R be a given function. It is

possible to show that [30]

dψ(t, x) =
∂ψ

∂t
dt + 〈∂ψ

∂x
, f(x)〉dt +

n∑
i=1

[ψ
(
t, x + gi(x)

)− ψ(t, x)] dNi (2.20)

(2.20) is called the Itô rule for jump processes.

Example II.2. Consider the following [30]:

dx(t) = −x(t) dt + dN1(t)− dN2(t)

For the case when ψ(t, x) = x2, one calculates dx2(t) using (2.20) to be

dx2(t) = −2x2(t) +
[
(x(t) + 1)2 − x2(t)

]
dN1 +

[
(x(t)− 1)2 − x2(t)

]
dN2,

= −2x2(t) +
(
2x(t) + 1

)
dN1 +

(
1− 2x(t)

)
dN2. (2.21)

The expectation of (2.19) can be obtained from [30] to be:

d

dt
Ex(t) = Ef

(
x(t), t

)
+

m∑
i=1

(Egi

(
x(t), t

))
(2.22)

Example II.3. Consider the following [30]:

dx(t) = −x(t) dt + dN1 − dN2

Using (2.22)

d

dt
Ex = −Ex + λ1 − λ2

Further, from the Itô rule for x2 (discussed in (2.21)) together with (2.22) yields
d

dt
Ex2 = −2Ex2 + E(

2x(t) + 1
)
λ1 + E(

1− 2x(t)
)
λ2.
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C. Information Theoretic Secrecy

We provide the primary idea of the Wyner’s wiretap problem treated in [15] and [16].

The problem considered in shown in Fig. 4. The objective for the transmitter is to

maximize the rate at which it can perform reliable communication with the legitimate

receiver, with the additional constraint that the eavesdropper be kept as ignorant as

possible. The important point to note in this model is that the transmitter does not

use any key or any external randomness to confuse the eavesdropper. Assume that

the transmitter needs to send the message W to the legitimate receiver. Hence, the

transmitter does the following:

• The message W is encoded according to some mapping rule and sends out the

codeword X into the channel.

• Let Y and Z be the signals received at the legitimate receiver and the eaves-

dropper respectively given by:

Y = X + n1 and Z = X + n2

where n1, n2 are the AWGN at the receivers with power N1, N2 respectively. Fur-

thermore, it is assumed that the eavesdropper’s channel is a degraded version of the

legitimate receiver’s channel (i.e., N2 > N1). The secrecy is measured by equivoca-

tion rate defined to be H(W |Z) and it is desired that H(W |Z) = H(W ) for perfect

secrecy. i.e., that is, the eavesdropper cannot make anything about the transmitted

message ‘W’ even after it observes its received signal ‘Z’.

The main result of secrecy capacity is as follows: The maximum rate at which the

transmitter can send information to the legitimate receiver by keeping the eavesdrop-

per as ignorant as possible is given by the difference of the capacities of the legitimate
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Transmitter Eavesdropper

Legitimate Receiver

X

Z

Y

Fig. 4. A point to point communication model with an eavesdropper.

receiver’s channel and the eavesdropper’s channel. Denoting Cs to be the secrecy

capacity, we then have:

Cs = log
(
1 +

P

N1

)− log
(
1 +

P

N2

)
(2.23)

We will give an intuitive explanation as to why (2.23) should hold. This will

be done by using the tool of the joint typicality. Consider for the moment we do

not have the eavesdropper. Then, this system becomes a point-to-point channel. We

know very well for the point-to-point case that, if the codeword X is transmitted into

an AWGN channel, then by joint typicality, the receiver will be able to decode to a

codeword with probability one, if the size of the code book C has roughly 2nI(X;Y )

codewords. (that is, |C| ≈ 2nI(X;Y )). Hence the rate of the message is then:

R =
1

n
log2 |C| = I(X; Y )

Let us now consider the case where there is an eavesdropper present as in Fig. 4.

The main task here is to confuse the eavesdropper. In order to do this, we do the

binning of codewords as shown in Fig. 5. In each bin we place 2I(X;Z) codewords and

the total number of codewords in all the bins is 2I(X;Y ). That is, in each bin there

are 2I(X;Y )

2I(X;Z) codewords. The encoding for secure communication is done as follows:
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bin W
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nRs

Fig. 5. The idea of binning in obtaining secure communication.

• For a given message W (for example, say ‘2’), the transmitter randomly chooses

one of the codewords from bin W (as shown in Fig. 5) and sends it (say X) into

the channel.

• The legitimate receiver receives Y and the eavesdropper receives Z.

• Both the legitimate and the eavesdropper does joint typical decoding and the

same codebooks are available with both of them. With probability one, the eaves-

dropper finds one codeword in each bin, as the number of codewords in each

bin is 2I(X;Z). So the eavesdropper would be thoroughly confused as to which

message was being transmitted as he finds one codeword decodable from each

of the bins. But note that the legitimate receiver would decode only one code-

word, as the number of codewords in all the bins is 2I(X;Y ) and with probability

one he would decode to only one bin as the message that was sent.

• The important point to note is that secrecy does not imply non-decodability.

In fact, the eavesdropper can decode codewords, but the catch is that he can

decode too many codewords and this causes the confusion for him.

Now it is clear that that the number of messages that the transmitter can reliably

send to the legitimate receiver by keeping the eavesdropper as ignorant as possible is:
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Rs =
1

n
log2

(
2nI(X;Y )

2nI(X;Z)

)

= I(X; Y )− I(X; Z)

which yields the result in (2.23).
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CHAPTER III

THE ACHIEVABLE RATE REGION OF A COOPERATIVE SCHEDULING

SYSTEM

In this chapter, we derive optimal scheduling schemes that can achieve any point on

the boundary of the capacity region for a wireless downlink system with a base station

(BS) sending independent data to the mobile users. It is assumed that the wireless

system is operated on a time division (TD) basis, wherein only one user is serviced

at a time. We also show that a simple linear scheduling scheme performs very close

to the optimal scheme. Furthermore, we characterize the optimal scheduling scheme

for the case where the remote mobile users can perform downlink cooperation and

find the achievable rate region for that case. Finally, a simple iterative algorithm is

proposed for finding the resource allocation parameters and the scheduling scheme

for the cooperative scheduling system.

A. Introduction

An inherent property of a wireless system is the time-variation of channel strength

among the users due to factors such as shadowing and multipath fading in the received

signal power. These factors can be exploited to increase the system throughput by op-

portunistically allocating more system resources to the user with the best channel [31],

when the channel knowledge is available at the transmitter. Though opportunistic

schemes yield higher overall system throughput, the individual throughput of various

users can be vastly different, resulting in unfairness among the users. To clarify this

further, consider a simple example. Assume, there is a base-station (BS) which serves

two users (i.e., a downlink system) according to a TD model. It is also assumed that

the BS can perfectly keep track of the channel gains of the wireless users. If the
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objective is to maximize the overall system throughput, the BS would choose to send

information to the user with the best channel, which is more likely to be the user

closer to the BS. Under this scheduling scheme, the user closer to the BS will have

much higher probability of accessing the channel. Hence, on the average, the user

which is farther away from the BS seldom gets service, which results in unfairness

between the two users.

In order to answer the question of what a “fair scheduling” scheme is, one needs

to define what the term “fair scheduling” scheme means. Usually, each user has its

own minimum rate requirement and in the context of this chapter, a “fair schedul-

ing” scheme is one that satisfies the minimum rate requirement for each user. The

answer to the above question then requires the complete characterization of the ca-

pacity region of the system and the corresponding scheduling schemes that achieve

the boundary of the capacity region. From an information theoretic point of view,

the opportunistic scheduling scheme simply achieves the point on boundary of the

capacity region that maximizes the sum-rate of the system. However, it is not clear

as to what scheduling schemes will achieve the other rate points on the boundary of

the capacity region. This chapter targets to provide an answer to this question. More

specifically, a class of scheduling schemes that can achieve all points on the boundary

of the capacity region are derived. It will be interesting to note that the opportunistic

scheme then becomes a special case of a generalized class of scheduling schemes con-

sidered in this chapter. By looking at the boundary points on the capacity region, we

can easily find those “fair” achievable rate pairs and then obtain the corresponding

“fair scheduling” schemes.

There has been a lot of work related to achieving fairness in an opportunistic

system. Most notable results in this area are treated in [32], [33], [34], [35], [36],

[37], [38], [39], [40], [41] and [42]. One of the familiar algorithms used in the IS-856
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standard (which is TDMA based) is the proportional fair scheduler (see [9], [43]).

This scheduler achieves fairness by giving service to the user which has the highest

ratio of requested rate at a particular time instant to the average throughput attained

over a time scale of interest. More specifically, let Rk[m], Tk[m] be the requested rate

and the average throughput of mobile k at time slot m. Proportional fair scheduler

services the user k∗ which has the highest ratio of

Rk[m]

Tk[m]

The average throughputs, Tk[m] are updated using

Tk[m + 1] =





(
1− 1/tc

)
Tk[m] + (1/tc)Rk[m] k = k∗

(
1− 1/tc

)
Tk[m] k 6= k∗

where tc is the length of the time window, and can be interpreted as the latency

time-scale of application. As the parameter tc becomes large, it can be shown that

this algorithm maximizes [43]
K∑

k=1

log Tk

where K is the number of users in the system. Though this algorithm is very intuitive

in the sense of achieving fairness, it does not claim optimality of the throughputs

achieved by users. On the other hand, the scheduling schemes proposed in this

chapter, provides the desired long-term throughputs (E[R1],E[R2]) to user-1 and user-

2 respectively (where E denotes the expectation operator), and it is claimed that

there does not exist any other scheme that can provide a throughput of (E[R1] +

ε1,E[R2] + ε2), where ε1, ε2 > 0. To this end, it is shown that “fairness” can actually

be achieved by carefully selecting the scheduling scheme which depends solely on the

instantaneous channel strengths of users. This chapter begins with finding a class

of optimal scheduling schemes for achieving all points on the boundary of the rate
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region for the non-cooperative case (i.e., a typical downlink scenario). This concept

is extended to derive optimal scheduling schemes for the case where users are allowed

to cooperate (i.e., optimal cooperative scheduling schemes are derived). Finally, the

achievable rate region of a downlink cooperative system is characterized. It is to be

noted that in [44], the authors have studied the achievable rate region of a variable-

power and variable-time transmission scheme of a time-division downlink system.

It is to be underscored that the contribution of this chapter is not in finding the

achievable rate region of a TD downlink system (which is well studied in [44]), but to

seek scheduling schemes that can achieve the boundary points of the capacity region.

User-cooperation has been found to increase the achievable rate region signifi-

cantly in an uplink multi-access scenario. In [8], [45], the authors have shown that

the rate region approaches the multi-input single-output system. Similarly, the rate

region of a system with cooperation for a broadcast system has been found in [46].

In this chapter, a downlink TD system is considered wherein users are allowed to

cooperate (i.e., users can help each other when the BS services a particular user). For

this scenario, optimal scheduling schemes are derived and eventually the achievable

rate region of this simple user-cooperative system is found.

B. Statement of the Problem

Consider the system shown in Fig. 6, where there is a base station (BS) sending

independent information to two wireless users. The system is operated in a TD mode

where, in each time slot only one of the wireless users can get service. The wireless

channels between the BS and the users are subject to Rayleigh block fading, and

there is an average transmission power constraint of P at the BS during each block.

Let ai be the channel gain of the ith user which is complex Gaussian with zero-mean
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Base Station
User 2

User 1

Fig. 6. Downlink system model.

and unit variance. Accordingly, the magnitude |ai| follows a Rayleigh distribution.

ai changes independently from block to block and is available both at the BS and the

wireless users. Therefore, if the ith user’s information is scheduled to be transmitted

during a block, the received signal of the corresponding user can be written as

yi = ai

√
PSi + ni

where Si is the transmitted signal of unit power, and, ni is the additive white gaussian

noise (AWGN) with zero mean and unit variance. Note that since |ai| follows a

Rayleigh distribution, the power gain, |ai|2 of the corresponding wireless link follows

an exponential distribution. Let γi = E[|ai|2] (i = 1, 2) be the expected channel

power gains of the links from the BS to the ith user. It is emphasized that the term

“scheduling scheme” refers to the manner in which the BS services the users solely

based on their channel power gain |ai|2. For simplicity, henceforth let |ai|2 = hi (i =

1, 2).

Given the fact that the BS accurately knows the channel gain of users, it can

devise strategies, as to how the users are to be serviced. For example, as we have

discussed in Section A, if the system throughput is to be maximized (i.e., the sum-rate
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User 1 
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(U )

(U )2

1

h2 = g(h1)

h1

h2

Fig. 7. Finding optimal scheduling scheme.

capacity is to be achieved), the BS needs to service the user with the best channel hi.

This chapter addresses the problem of finding a class of optimal scheduling schemes,

for the downlink scenario, which essentially encompasses the opportunistic scheduling

as a special case. Next, we consider the scenario where the two users are allowed to

cooperate (i.e., the users can help each other when they get serviced). This can be

achieved by using one user as a relay for the other user. For this case, we seek to

find the optimal scheduling scheme (i.e., optimal cooperative scheduling scheme) that

can achieve all points on the boundary of the capacity region. Then, based on the

optimal cooperative scheduling schemes, we determine the achievable rate region of

the cooperative scheduling system. It is to be noted that the power and bandwidth

are kept the same in both cooperative and non-cooperative systems to make the

comparison fair.

C. Optimal Non-Cooperative Scheduling Scheme

The problem of finding the optimal scheduling scheme amounts to finding a function

h2 = g(h1) in the h1 − h2 plane (see Fig. 7) such that the expected rate of user-2 is
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maximized, given that the expected rate of user-1 is fixed. From [47], [48], any point

on the boundary of the rate region can be obtained by the following optimization

problem

max µ1 E[R1] + µ2 E[R2] 0 ≤ µ1, µ2 ≤ 1, µ1 + µ2 = 1 (3.1)

where µi (i = 1, 2) represent the weight given to the ith user and E[Ri] is the expected

rate of user-i. As µi ranges from 0 to 1, the weights given to ith user changes which in

turn gives the boundary of the rate tuple
(
E[R1],E[R2]

)
corresponding to the weighted

sum rate in (3.1).

Theorem III.1. Let K = µ1

µ2
represent the ratio of the weights of the users. The

optimal scheduling scheme for the two-user case has the following form

Schedule User 2, if

h2 >
(1 + h1P )K − 1

P
.

Schedule User 1, if

h2 <
(1 + h1P )K − 1

P
. (3.2)

where 0 ≤ K < ∞.

Proof. Assuming without loss of generality that the noise power spectral density is

No = 1, and letting Ri = log2

(
1 + hiP

)
, fi(hi) = 1

γi
exp

(−hi

γi

)
, the optimization

problem in (3.1) becomes

max µ1E[R1] + µ2E[R2]

= max





∫∫

U1

µ1R1f1(h1)f2(h2)dh1dh2 +

∫∫

U2

µ2R2f1(h1)f2(h2)dh1dh2





= max

∞∫

0

∞∫

0

(
µ1R1IU1 + µ2R2IU2

)
f1(h1)f2(h2)dh1dh2 (3.3)
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where U1 and U2 are the regions over which the integrals are computed, and

IUi
=





1 if (h1, h2) ∈ Ui,

0 if (h1, h2) /∈ Ui.
(3.4)

By noticing that the integrand in (3.3) is always positive, the integral in (3.3) is

maximized by maximizing the terms inside the parentheses. Due to the fact that

only one user gets serviced during a time slot, the integrand in (3.3) is maximized by

assigning

IU1 = 1, IU2 = 0 if µ1R1 > µ2R2,

IU1 = 0, IU2 = 1 if µ1R1 < µ2R2.

The optimal scheduling scheme then becomes

Schedule User-2, if

µ2R2 > µ1R1,

µ2 log2

(
1 + h2P

)
> µ1 log2

(
1 + h1P

)
,

h2 >
(1 + h2P )K − 1

P
.

Schedule User-1, if

µ2R2 < µ1R1,

h2 <
(1 + h1P )K − 1

P
.

which is the desired result.

It is instructive to see that for the case when K = 1 (i.e., the sum-rate is being

maximized), the scheduling scheme becomes the well known opportunistic method.

The above derived result easily extends to the multi-user case which is stated below.
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Theorem III.2. For a system with n users, let Kj =
µj

µi
(j = 1, 2 . . . n, j 6= i) be the

ratio of weights given to user-j with respect to user-i. Then, the optimal scheduling

scheme is to schedule user-i, if
{
hi >

(1+hjP )Kj−1

P

}
where j = 1, 2 . . . n, j 6= i.

Proof. Using similar ideas and notations from the two user problem, the optimization

problem for the n user case can be written as

max µ1E[R1] + µ2E[R2] + . . . µnE[Rn] 0 ≤ µ1, µ2 . . . µn ≤ 1,
n∑

i=1

µi = 1

= max

∫
· · ·

∫

U1

µ1R1

n∏
i=1

fi(hi) dhi + . . . +

∫
· · ·

∫

Un

µnRn

n∏
i=1

fi(hi) dhi

= max

∫
· · ·

∫ (
µ1R1IU1 + µ2R2IU2 + . . . + µnRnIUn

) n∏
i=1

fi(hi) dhi

The above integral is maximized by assigning IUi
= 1 and IUj

= 0 (j = 1, 2 . . . n, j 6=
i) if

i = arg max
j=1,2...n

µjRj

Letting Kj =
µj

µi
(j = 1, 2 . . . n, j 6= i) together with the above condition concludes

the proof.

1. Approximately Optimal Scheduling Scheme

Next, we answer the following: How does linear scheduling compare with optimal

scheduling? The following class of linear scheduling schemes are approximately op-

timal (i.e., achieves rate pairs very close to the rate pairs achieved by the optimal

scheduling scheme), for the two-user case:

Schedule User 1, if

h1 > Ch2
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Schedule User 2, if

h1 < Ch2 (3.5)

where 0 ≤ C < ∞.

The expected rate (in bits/sec/Hz) attained by users, using the scheme in (3.5),

can be worked out to be:

E[R1] =

∞∫

h1=0

Ch1∫

h2=0

log2

(
1 + h1P

)
1

γ2

exp

(
−h2

γ2

)
1

γ1

exp

(
−h1

γ1

)
dh1dh2

= `
[ ∞∫

h1=0

log
(
1 + h1P

)
exp

(− h1

γ1

)
dh1 −

∞∫

h1=0

log
(
1 + h1P

)
exp

(− ( 1

γ1

+
C

γ2

)
h1

)
dh1

]

=
[
exp

( 1

γ1P

)
Γ
(
0,

1

γ1P

)− γ2

γ1C + γ2

exp
(γ2 + Cγ1

γ1γ2P

)
Γ
(
0,

γ2 + Cγ1

γ1γ2P

)]
log2 e

where ` = log2 e
γ1

. Similarly,

E[R2] =

∞∫

h2=0

h2
C∫

h1=0

log2

(
1 + h2P

)
1

γ2

exp

(
−h2

γ2

)
1

γ1

exp

(
−h1

γ1

)
dh1dh2

=
[
exp

( 1

γ2P

)
Γ
(
0,

1

γ2P

)− γ1C

γ1C + γ2

exp
(γ1C + γ2

γ1γ2CP

)
Γ
(
0,

γ1C + γ2

γ1γ2CP

)]
log2 e

where Γ(a, x) =
∞∫
x

ta−1e−tdt is the upper incomplete gamma function. The rate region

of the optimal scheduling scheme and that of the linear scheduling scheme are shown

in Fig. 8. The reason for the linear scheduling scheme to be very close to the optimal

scheduling scheme can be partially explained by the fact that for small K, we have

(1+hP )K−1
P

≈ Kh, and (3.2) converges to a linear scheduling scheme. It is easy to

see that by switching the roles of users, (1+hP )(1/K)−1
P

≈ (1/K)h for large K as well

(where K = µ1

µ2
). However, we see from Fig. 8, that the linear scheduling scheme

approximates the optimal scheduling scheme well for all achievable rates. We thus

have numerically shown that linear scheduling nearly achieves the optimal rate region.
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Fig. 8. Rate region of a linear and optimal scheduling scheme for P=10 and when (a)

γ1 = γ2 = 1, (b) γ1 = 1, γ2 = 4.

D. Optimal Cooperative Scheduling Schemes and the Achievable Rate Region

In this section, a two-user scenario when the mobile users can perform downlink

cooperation as shown in Fig. 9 is considered. Here again, one is interested in finding

out the optimal scheduling scheme, which will then be used to study the achievable

rate region. It is important to note that the optimal non-cooperative scheduling

schemes derived in Section C need not be the same for the case when users are

allowed to cooperate. In the cooperative scenario, the BS can choose to send all the

data that belongs to the scheduled user (the user which is serviced), or, the BS can

send a fraction of the other user’s data as well as the data of the scheduled user. This

is done by the BS with the intention that the data of the other user will subsequently

be forwarded (relayed) by the user being serviced, by allocating resources such as

power and bandwidth. Hence the total rate achieved by a particular user (say user-1)

in a cooperative scheduling scheme will be equal to the sum of the following:
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Base Station
User 2

User 1

Fig. 9. Downlink cooperation model.

a) Rate achieved during the time when the BS services user-1, and

b) Rate achieved, when user-2 helps user-1, during the time the BS services user-2.

The cooperation scheme is described next.

1. System Model

Let P, P1, P2 be the average power constraint of the BS, user-1 and user-2 respectively.

Let α1 and (1−α1) be the fraction of user-1’s data and user-2’s data respectively that

the BS sends to user-1, when user-1 is serviced. Notice that in the non-cooperative

scheme, α1 = 1 (i.e., the BS sends only the data of user-1). Similarly, let α2 and

(1 − α2) be the fraction of user-2’s data and user-1’s data respectively, that the

BS sends to user-2, when user-2 is serviced. Let β1 be the bandwidth allocated for

carrying user-1’s data and user-2’s data from the BS, whenever user-1 is serviced. The

bandwidth allocated for relaying user-2’s data from user-1, when user-1 is serviced,

is (1− β1). Here again, note that when β1 = 1, this scheme corresponds to a typical

non-cooperative scenario. Similarly, let β2 be the bandwidth allocated for carrying

user-2’s data and user-1’s data from the BS, whenever user-2 is serviced. The fraction



33

of bandwidth allocated for relaying user-1’s data from user-2, when user-2 is serviced,

is represented by (1 − β2). Let h3 be the inter-user channel power gain between

the user-1 – user-2 links, which we assume for simplicity is AWGN. Furthermore, it

is assumed that h3 is constant 1, and also that the mobile users are equipped with

infinite buffers. When the BS services a user (say user-2), the data intended for user-1

that is to be forwarded by user-2 need not be done instantaneously, but can be stored

in the buffer until there are enough resources that can be allocated for the relaying

operation. This assumption implies that the users can tolerate an arbitrary amount

of delay.

2. Optimal Cooperative Scheduling Scheme

We next characterize the optimal cooperative scheduling scheme, when users are

allowed to cooperate, according to the system model presented above. As done in

Section C, finding the optimal scheduling scheme amounts to finding a function h2 =

g(h1), in the h1 − h2 plane such that the boundary points in the rate region are

obtained, with the additional freedom that the users are allowed to cooperate. Note

that the function g(h1) does not depend on the instantaneous value of the inter-user

channel power gain h3, because, by the assumption made in Section 1, the data to

be relayed to the other user, by the user that is serviced, need not be done based

on the instantaneous rate of the inter-user channel. However, as will be seen from

the results of Theorem III.3 and Section 3 (refer (3.23)), the cooperative scheduling

scheme does depend on the long term average value of the inter-user rate, through

the resource allocation parameters αi, βi (i = 1, 2).

The net rate attained by user 1 (R1), is the sum of the direct rate attained from

1This assumption is made to simplify the analysis. The case when h3 is random
is discussed in Section 3
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the BS when user 1 gets serviced (R01) and the rate achieved by cooperating with user

2, when user 2 gets serviced (R21),under a particular scheduling scheme . Notice that

the rate attained by user-1 by cooperating with user-2 (R21) is the rate achievable in

a typical relay channel. Defining IU1 and IU2 as in (3.4), the expected rate achieved

by user 1 (assuming noise power, No = 1) is:

E[R1] = E[R01] + E[R21]

and,

E[R01] = α1β1

{
E

[
log2

(
1 + h1

P

β1

)IU1

]}
(3.6)

E[R21] = E
{

min
[
(1− α2)β2 log2

(
1 + h2

P

β2

)IU2 , (1− β2) log2

(
1 + h3

P2

1− β2

)]}

= min
{
E

[
(1− α2)β2 log2

(
1 + h2

P

β2

)IU2

]
, (1− β2) log2

(
1 + h3

P2

1− β2

)}
(3.7)

where, the above equality follows from the assumption that the users are equipped

with infinite buffers and h3 being a constant. Similarly the expected rate attained

by user 2, under the assumption that the users are equipped with infinite buffers is

given by:

E[R2] = E[R02] + E[R12] (3.8)

where,

E[R02] = α2β2

{
E

[
log2

(
1 + h2

P

β2

)IU2

]}
(3.9)

E[R12] = min
{
E

[
(1− α1)β1 log2

(
1 + h1

P

β1

)IU1

]
, (1− β1) log2

(
1 + h3

P1

1− β1

)}

(3.10)

Without loss of generality, one can consider the case when user-2 helps user-1 (but
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user-1 does not help user-2) by letting α1 = 1, β1 = 1 and 0 ≤ α2, β2 ≤ 1. To see why

there is no loss in generality, consider a two-user system that allows for bi-directional

cooperation (i.e., both users help their partner). In particular, user-1 carries a certain

data rate, ∆1, that is forwarded to user-2 and simultaneously, user-2 carries a certain

data rate, ∆2 which is forwarded to user-1. This bi-directional scheme has a certain

set of resource allocation parameters (α1, α2, β1, β2) as well as a scheduling scheme

described by K. Suppose that ∆1 < ∆2 (that is, user-2 provides more help to user-

1 than user-1 does to user-2). Now consider replacing this system with a one-way

cooperative scheme where user-2 forwards to user-1 a data rate equal to ∆2−∆1, but

user-1 does not forward anything to user-2. Note that the net flow of data between

user-1 and user-2 is the same in both systems. In the one-way system, user-1 will see

an increase in data rate since it now can use its full bandwidth for the link between

the BS and user-1 (it does not need to reserve any of the bandwidth to forward data

to user-2). By the same argument, user-2 will also see an increase in its data rate

as it has to forward a smaller amount of data to user-1 and hence can use more of

its bandwidth for the link from the base station to user-2. Hence, for any two-way

cooperative scheme, there exists a one-way cooperative scheme which performs at

least as well. Hence in finding the optimal resource allocation and the scheduling

scheme, it is sufficient to consider schemes with cooperation only in one direction.

The scenario α1 = 1, β1 = 1 and 0 ≤ α2, β2 ≤ 1 gives the maximum rates that user-1

can attain, for different rates attained by user-2. The expected rates achieved by the

users are given by substituting α1 = 1, β1 = 1 in (3.6) and (3.10). Then

E[R1] = E
[
log2

(
1 + h1P

)IU1

]
+

min
{
E

[
(1− α2)β2 log2

(
1 + h2

P

β2

)IU2

]
, (1− β2) log2

(
1 + h3

P2

1− β2

)}

E[R2] = α2β2E
[
log2

(
1 + h2

P

β2

)IU2

]
(3.11)
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Theorem III.3. The optimal cooperative scheduling scheme belongs to the same class

as that of a non-cooperative scheduling scheme given in (3.2).

It is emphasized that Theorem III.3 does not mean that the optimal cooper-

ative and non-cooperative scheduling schemes are the same, but that the optimal

cooperative scheduling scheme belongs to the same class as that of the optimal non-

cooperative scheduling schemes. This will become more clear in Section E, where an

example is provided to illustrate this concept.

Proof. Let h2 = g(h1), be the unknown scheduling scheme. By assuming that the

users are equipped with infinite buffers, and also that user-2 helps user-1, the opti-

mization problem can be formulated as (see (3.11))

max E[R1] = E
[
log2

(
1 + h1P

)IU1

]
+

min
{
E

[
(1− α2)β2 log2

(
1 + h2

P

β2

)
IU2

]
, (1− β2) log2

(
1 + h3

P2

1− β2

)}

subject to E[R2] = α2β2E
[

log2

(
1 + h2

P

β2

)
IU2

]
= C1 (3.12)

where C1 is a constant, IU1 and IU2 are the regions over which integration is performed

and are defined in (3.4).

Case 1: For a given inter-user channel power gain, h3, if 2

(1− α2)β2 E
[

log2

(
1 + h2

P

β2

)
IU2

]
< (1− β2) log2

(
1 + h3

P2

1− β2

)
(3.13)

then the optimization problem in (3.12) can be written as,

max E[R1] = E
[
log2

(
1 + h1P

)IU1

]
+ (1− α2)β2E

[
log2

(
1 + h2

P

β2

)IU2

]

2For the case when h3 is random, (3.13) is replaced by

(1− α2)β2 E
[

log2

(
1 + h2

P

β2

)
IU2

]
< (1− β2) E

[
log2

(
1 + h3

P2

1− β2

)]
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subject to E[R2] = α2β2E
[
log2

(
1 + h2

P

β2

)IU2

]
= C1 (3.14)

The above optimization further reduces to:

max E
[
log2

(
1 + h1P

)IU1

]
+

(
(1− α2)β2 + λα2β2

)
E

[
log2

(
1 + h2

P

β2

)IU2

]− λ.C1

(3.15)

where λ is the lagrangian multiplier. We can immediately recognize that the above

maximization problem is of the same form as in (3.1), and it clear that the optimal co-

operative scheduling scheme would belong to the same class as that of non-cooperative

optimal scheduling schemes. We make this argument more precise by proving this

using calculus of variations. The optimization problem in (3.15), reduces to:

max

( ∞∫

h1=0

g(h1)∫

h2=0

log2

(
1 + h1P

)
f1(h1)f2(h2)dh2dh1

)
+

(
(1− α2)β2 + λα2β2

)( ∞∫

h1=0

∞∫

h2=g(h1)

log2

(
1 + h2

P

β2

)
f1(h1)f2(h2)dh2dh1

)
− λC1

where fi(hi) = 1
γi

exp(−hi

γi
) is the pdf of a exponentially distributed random variable

with mean γi. The above problem, further reduces to

max
log2 e

γ1

∞∫

h1=0

Fdh1 − λC1 where,

F = log
(
1 + h1P

)
exp

(
− h1

γ1

)
+

(
(1− α2)β2 + λα2β2

)
×

exp

(
β2

γ2P
− h1

γ1

)
Γ
(
0,

g(h1)

γ2

+
β2

γ2P

)((
(1− α2)β2 + λα2β2

)
log

(
1 + g(h1)

P

β2

)
−

log
(
1 + h1P

))
exp

(
− g(h1)

γ2

− h1

γ1

)

and Γ(a, x) =
∞∫
x

ta−1e−tdt is the upper incomplete gamma function. As the integrand
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F, is not dependent on the derivatives of the unknown function, h2 = g(h1), the

Euler’s method of finding the unknown function ([49],Chap 17), reduces to:

∂F

∂g
= 0

⇒ g(h1) =
(1 + h1P )

1
(1−α2)β2+λα2β2 − 1

(P/β2)

which is exactly of the same form as derived in (3.2). For a fixed α2, β2, the value

of λ is chosen such that the constraint in (3.14), is satisfied. It is important to note

that the optimal cooperative scheduling scheme, g(h1), derived above depends on the

parameters (α2, β2), which in turn depends on the inter-user channel power gain, h3,

through (3.13).

Case 2: For a given h3, if 3

(1− α2)β2 E
[

log2

(
1 + h2

P

β2

)
IU2

]
> (1− β2) log2

(
1 + h3

P2

1− β2

)
(3.16)

then the optimization problem in (3.12) can be written as

max E[R1] = E
[
log2

(
1 + h1P

)
IU1

]
+ (1− β2) log2

(
1 + h3

P2

1− β2

)

subject to E[R2] = α2β2E
[

log2

(
1 + h2

P

β2

)
IU2

]
= C1 (3.17)

The above optimization problem further reduces to:

max E
[
log2

(
1+h1P

)IU1

]
+(1−β2) log2

(
1+h3

P2

1− β2

)
+λα2β2E

[
log2

(
1+h2

P

β2

)IU2

]−λ.C1

where λ is the lagrange multiplier. Here again, we recognize that this optimization

3For the case when h3 is random, (3.16) is replaced by

(1− α2)β2 E
[

log2

(
1 + h2

P

β2

)
IU2

]
> (1− β2) E

[
log2

(
1 + h3

P2

1− β2

)]
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problem is of the same form as in (3.1). By using the same technique as used for the

previous case, it can be shown that the optimal scheduling scheme is given by

g(h1) =
(1 + h1P )

1
λα2β2 − 1

(P/β2)
(3.18)

where λ is chosen to satisfy the constraint in (3.17). Again, it is important to note

that g(h1) derived above depends on the parameters (α2, β2), which in turn depends

on h3 through (3.16).

3. Achievable Rate Region of the Optimal Cooperative Scheduling Scheme

Since the optimal cooperative scheduling scheme belongs to the same class as that

of optimal non-cooperative scheduling scheme, it is sufficient to consider the class of

schemes in (3.2) to get the achievable rate region. The rates achievable by user-1

and user-2, under the class of optimal scheduling schemes from (3.6),(3.7), (3.9) and

(3.10) are:

E[R1] = α1β1 E

[
log2

(
1 + h1

P

β1

)
I(

h2<
(1+h1

P
β1

)
K−1

(P/β2)

)
]

+

min

{
E

[
(1− α2)β2 log2

(
1 + h2

P

β2

)
I(

h2>
(1+h1

P
β1

)
K−1

(P/β2)

)
]
,

(1− β2) log2

(
1 + h3

P2

1− β2

)}
(3.19)

E[R2] = α2β2 E

[
log2

(
1 + h2

P

β2

)
I(

h2>
(1+h1

P
β1

)
K−1

(P/β2)

)
]

+

min

{
E

[
(1− α1)β1 log2

(
1 + h1

P

β1

)
I(

h2<
(1+h1

P
β1

)
K−1

(P/β2)

)
]
,

(1− β1) log2

(
1 + h3

P1

1− β1

)}
(3.20)
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where

IX>Y =





1 for X > Y

0 for X ≤ Y

For a fixed (K, α1, α2, β1, β2), let R(K,α1, α2, β1, β2), denote the achievable rate re-

gion. Hence the achievable rate region of this cooperation scheme is given by

Rc ,
( ⋃

0 ≤ α1, α2, β1, β2 ≤ 1

0 ≤ K < ∞

R(K,α1, α2, β1, β2)

)

To characterize Rc, it suffices to find the boundary points defined by the above

parameters. First, we find the boundary points for the case when user-2 helps user-1

(but user-1 does not help user-2). The expected rates achievable by user 1 and user 2

for a fixed (K,α1, α2, β1, β2), under the assumption that user-2 helps user-1, the users

are equipped with infinite buffers and the inter-user channel power gain h3 being a

constant, can be obtained from (3.19),(3.20) and is given by (see also (3.11)):

E[R1] = E
[

log2

(
1 + h1P

) I(
h2<

(1+h1P )K−1
(P/β2)

)
]

+

min

{
E

[
(1− α2)β2 log2

(
1 + h2

P

β2

)
I(

h2>
(1+h1P )K−1

(P/β2)

)
]
,

(1− β2) log2

(
1 + h3

P2

1− β2

)}
(3.21)

E[R2] = α2β2 E
[

log2

(
1 + h2

P

β2

)
I(

h2>
(1+h1P )K−1

(P/β2)

)
]

(3.22)

As in [8], [45], we assume that the rate that is transmitted by the BS to user 2

for carrying user 1’s data, is no more than (or in best case equals to) what user 2 can

relay to user 1, so that the resources are not wasted. It follows from this assumption,
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that α2, β2 are to be chosen such that4

E
[
(1− α2)β2 log2

(
1 + h2

P

β2

)
I(

h2>
(1+h1P )K−1

(P/β2)

)
]

= (1− β2) log2

(
1 + h3

P2

1− β2

)
(3.23)

For 0 ≤ α2 ≤ 1, the value of β2 which satisfies (3.23) can be found, and it can be

shown easily that a solution always exists, which satisfies 0 ≤ β2 ≤ 1. Define the

following:

β∗2(α2) : the value of β2which satisfies (3.23), for a fixed α2

R21

(
β∗2(α2)

)
=

(
1− β∗2(α2)

)
log2

(
1 + h3

P2

1− β∗2(α2)

)

The boundary points of the achievable rate region for a particular value of K, for the

class of optimal cooperative scheduling scheme is:

E[R1] = E
[

log2

(
1 + h1P

)
I(

h2<
(1+h1P )K−1

(P/β2)

)
]

+ R21

(
β∗2(α2)

)

E[R2] = α2β
∗
2(α2) E

[
log2

(
1 + h2

P

β∗2(α2)

)
I(

h2>
(1+h1P )K−1

(P/β2)

)
]

Notice, that when α2 = 0 (i.e, when user 2 is fully helping user 1), then from

(3.21),(3.22)) and (3.23), it follows that the maximum additional rate (due to user

2), user 1 can get is R21

(
β∗2(0)

)
, with E[R2] = 0. The boundary points for all values

of K (0 ≤ K < ∞) can be found and the union of all such points is the achievable

rate region for the case when user 2 helps user 1. Similar analysis can be carried out

for the case when user 1 helps user 2. The achievable rate region of the cooperation

4For the case when h3 is random, (3.23) is replaced by

E
[
(1− α2)β2 log2

(
1 + h2

P

β2

)
I(

h2>
(1+h1P )K−1

(P/β2)

)
]

= E
[
(1− β2) log2

(
1 + h3

P2

1− β2

)]
.
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Fig. 10. Rate region of cooperation scheme with the following parameters.

P = 10, P1 = P2 = 0.4,E[h1] = 1,E[h2] = 1, h3 = 10.

scheme is given in Fig. 10, Fig. 11, and Fig. 12.

We conclude this section by giving some examples of resource allocation param-

eters. Suppose for example that the BS services user-2 at a particular time slot.

Then, the amount of user-1’s data that the BS needs to send to user-2 (so that user-2

could relay user-1’s data) is a function of how much bandwidth is allocated for the

inter-user channel. If no bandwidth is allocated for the inter-user channel, then it

is easy to see that the BS should not send any of user-1’s data so that the resource

allocated for carrying user-1’s data could as well be given to user-2 thereby increasing

user-2’s throughput. Also it is to be noted that once we allocate some bandwidth for

the inter-user channel, then the amount of bandwidth that can be allocated for the

link between the BS and user-2 will decrease (notice that both the user’s data need

to be carried in the link between the BS and user-2), which in turn would mean lesser

throughput for user-2. So, we see that there is a tradeoff between the parameters α2
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Fig. 11. Rate region of cooperation scheme with the following parameters.

P = 10, P1 = P2 = 0.4,E[h1] = 1,E[h2] = 4, h3 = 10.
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Fig. 12. Rate region of cooperation scheme with the following parameters.

P = 10, P1 = P2 = 0.4,E[h1] = 1,E[h2] = 20, h3 = 20.
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Fig. 13. The LHS of (3.23) for α2 = 0.4, 0.5, 0.6 and the RHS of (3.23) for K = 1. From

the figure one can obtain the corresponding value of β2 for α2 = 0.4, 0.5, 0.6 to

be 0.754, 0.806, 0.856. Here P = 10, P1 = P2 = 0.4 and γ1 = γ2 = 1, h3 = 10.

and β2. Though the trade-off is easy to see for boundary points (i.e., when α2 = 1 or

β2 = 1), for general values of α2 ∈ (0, 1), the corresponding value of β2 can be found

from (3.23). Fig. 13 shows the left hand side (LHS) and right hand side (RHS) of

(3.23) for α2 = 0.4, 0.5, 0.6, and K = 1. We see that there is a unique solution β2 for

every value of α2, as was claimed earlier.

E. Discussions

One aspect of the derived cooperative scheduling scheme is that, one does not have

to service a user by taking into account the instantaneous value of inter-user channel

power gain (h3), but instead, to consider the class of non-cooperative scheduling

scheme and then allocate resources over a long time scale, based on (3.23). It is

important to see that the cooperative scheduling scheme does depend on h3 through
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the resource allocation parameters as in (3.23). One may note that in order to find

the boundary of the rate region (for example, the case when user-2 helps user-1, but

not vice versa, which is outlined in Section 3), a constrained optimization over the

parameters (α2, β2, K) where 0 ≤ α2, β2 ≤ 1 and 0 ≤ K < ∞ needs to be performed.

In what follows, a simple iterative algorithm is presented for finding the resource

allocation parameters and the scheduling scheme.

As an example, consider determining the resource allocation parameters and the

scheduling scheme for the following cooperative scenario

max E[R1],

subject to E[R2] = C.

where C is a constant. From (3.21), (3.22) and (3.23), the above problem reduces to

max E
[

log2

(
1 + h1P

)
I(

h2<
(1+h1P )K−1

(P/β2)

)
]

+ (1− β2) log2

(
1 + h3

P2

1−β2

)
, (3.24)

subject to β2 E
[

log2

(
1 + h2

P
β2

)
I(

h2>
(1+h1P )K−1

(P/β2)

)
]
− (1− β2) log2

(
1 + h3

P2

1−β2

)
= C.

(3.25)

Recall that β2 is the bandwidth allocated for carrying user-1’s as well as user-2’s data

from the BS when user-2 is serviced and K defines the scheduling scheme according

to (3.2). The higher the value of K, the lower are the chances of user-2 accessing

the channel. The feasible values of β2 and K which satisfy (3.25) with C = 0.5

are depicted in Fig. 14. The reason why K is a monotonic increasing function of

β2 can be explained as follows. As β2 increases, the ‘bit pipe’ for carrying the data

from the BS to user-2 becomes larger, and hence user-2 needs to access the channel

a comparatively fewer number of times for the constraint in (3.25) to be met (i.e.,

which implies K is higher). The constraint between K and β2 in (3.25) being non-
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convex (see Fig. 14) and the non-existence of a closed form expression between K

and β2 makes the optimization problem in (3.24) difficult. One can always perform

an exhaustive search over all feasible values of K and β2, however in what follows

a simple iterative algorithm is presented to obtain the maximizing value of β2 and

K in (3.24) from (3.25), by linearizing the constraint between K and β2 of the form

K̃(β2) = a2 β2 + a1.

Step 1) Initialize the maximizing value of β2 in (3.24), βmax
2 = 0.5.

Step 2) Form K̃(β2) = a2β2 + a1, with a1, a2 chosen to match dK
dβ2

∣∣
βmax
2

and K(βmax
2 )

which can be obtained from the constraint between K and β2 in (3.25).

Step 3) Update βmax
2 by finding the new value of β2 that maximizes (3.24) using the

locally linearized constraint K̃(β2) obtained in step (2), in place of (3.25).

Step 4) Repeat steps (2) and (3) until convergence occurs.

It was observed that the above algorithm typically converged in about eight to ten

iterations and that the numerical computations needed for this algorithm were much

less than performing an exhaustive search. An example is now given that provides

the resource allocation parameters and the scheduling scheme for both the cooper-

ative and the non-cooperative case. Consider determining the resource allocation

parameters and the scheduling scheme when E[R2] = 0.5 bits/sec/Hz for the sys-

tem parameters P = 10, P1 = P2 = 0.4, E[h1] = 1, E[h2] = 4 and h3 = 10. For

the non-cooperative case, the optimal scheduling scheme can be obtained by letting

α2 = β2 = 1 in (3.22), which yields K = 4.5 with the rate attained by user 1,

E[R1] = 2.8 bits/sec/Hz. For the cooperative scenario the resource allocation param-

eters and the scheduling scheme that are evaluated by the algorithm given above and



47

0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

β
2

K

Fig. 14. The plot of feasible values of β2 and K that satisfy (3.25) for

C = 0.5, P = 10, P2 = 0.4, E[h1] = 1, E[h2] = 4, h3 = 10.

(3.23) turn out to be β2 = 0.74, α2 = 0.32, K = 2.1 with the rate attained by user

1, E[R1] = 3.2 bits/sec/Hz. It is important to note that the optimal cooperative and

non-cooperative scheduling scheme (parameterized by K) are not the same. In this

example, the capability of the two users to cooperate has improved user-1’s through-

put by 14 %. When E[R2] = 0, the resource allocation parameters for cooperative

case is β2 = 0.67, α2 = 0, K = 2.47, with E[R1] = 3.6 bits/sec/Hz, whereas for

the non-cooperative case it is E[R1] = 2.9 bits/sec/Hz (with K arbitrarily large). For

this case the user-1’s throughput has increased by 24 % through user cooperation (the

maximum that user-1 can achieve, since E[R2] = 0). When E[R2] = 1.3 bits/sec/Hz,

the resource allocation parameters for both the cooperative and non-cooperative case

turn out to be the same (i.e., α2 = β2 = 1, K = 0.35), with E[R1] = 1.2 bits/sec/Hz

in which case there are no gains that can be obtained by the cooperation scheme.
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F. Conclusion

We have derived a class of optimal scheduling schemes that achieve the boundary

points of the rate region for the non-cooperative case. Hence we are able to de-

termine the necessary scheduling scheme to achieve any rate pair on the boundary.

Furthermore, it was shown that linear scheduling can be considered to be nearly op-

timal for all practical purposes. It was established that optimal cooperative schedul-

ing schemes belong to the same class as that of optimal non-cooperative scheduling

schemes. Based on the class of optimal cooperative scheduling schemes, the achiev-

able rate region was found, and it is observed that a cooperative scheduling system

enlarges the achievable rate region. Finally, a simple iterative algorithm was pre-

sented to find the resource allocation parameters and the scheduling scheme for a

cooperative scenario. We conclude this chapter by providing a intuitive explanation

of the proposed cooperative scheduling scheme.

Note that the opportunistic scheme (i.e., K = 1 in (3.2)) maximizes the sum-rate

of the system (i.e., R1 + R2). If the goal is to maximize R2, subject to R1 = C, and,

suppose that the opportunistic scheme produces a rate for user-1 such that R1 < C.

Then the non-cooperative system must adjust its scheduling scheme by lowering the

parameter K to some level K = Knc such that the user-1’s constraint is satisfied.

However user-2’s throughput will decrease at the same time. In the sense of the sum-

rate, this scheduling scheme is inefficient, but in the non-cooperative environment,

this is the only mechanism that is available to meet the constraint.

Next, consider a two-user system where user-2 helps user-1. The additional

rate that user-2 provides user-1 through the inter-user channel, bends the scheduling

scheme back towards the opportunistic scheme. This will decrease the data rate that

is directly communicated to user-1, but will increase the data rate available to user-2



49

(by more than R1 is decreased). Hence, user-2 can then use some of the extra rate to

allow user-1 to make up for its lost rate and still have some left over. But the catch

here is that, this comes at an additional cost because there are now two transmitters

(that is, the BS and user-2) and the bandwidth must be shared. As the rate of the

data that must be forwarded from user-2 to user-1 increases, the bandwidth needed

for the inter-user link increases (i.e., β2 decreases) and hence the bandwidth available

for the link from BS to user-2 decreases. So, not only does user-2 have to give up

some of its bit pipe from the BS to carry data for user-1, but the size of the bit pipe

gets squeezed in order to make room for the inter-user channel. At some point, the

cost associated with cooperation becomes greater than the benefit of using a more

efficient non-cooperative scheduling scheme at which point cooperative scheduling

scheme does not yield any gains beyond the gains provided by the non-cooperative

scheduling scheme.
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CHAPTER IV

THE EFFECTIVE CAPACITY OF A TIME DIVISION DOWNLINK

SCHEDULING SYSTEM

We derived the optimal scheduling scheme for the downlink system in Chapter III

without taking into account any constraints on the quality of service (QoS) require-

ments. In this chapter, we extend the optimal scheduling scheme presented in Chapter

III, to the case when QoS constraints are imposed on each user. The QoS requirement

is specified in terms of the asymptotic decay rate of the buffer occupancy. Further-

more, the effective capacity of this system is characterized.

A. Introduction

In Chapter III we studied the throughput that the users can achieve under the as-

sumption that users can wait for an arbitrary amount of time (i.e., when users can

tolerate an arbitrary amount of delay). But in practical systems, for example, in voice

applications, usually the users need to get their data (or packets) within a certain

time range (for example, 50ms to 100ms). We formulate a problem that takes into

account these ‘practical’ constraints and then seek what throughput the users achieve.

Future wireless communication networks are expected to support high traffic and

at the same time provide reliable service to delay sensitive applications. Hence, there

has been an increasing interest in the recent past for understanding and evaluating the

performance of wireless communication systems not only based on Shannon capacity,

but also on QoS in terms of delay sensitivity. Such an analysis becomes essential if one

considers real-time services like multimedia video conference or VoIP because the key

QoS metric is to ensure delay bounds rather than achieving spectral efficiency. There

has been extensive study devoted to understanding how to design systems to enhance
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spectral efficiency, for example [50]. Information theory has been the framework in

evaluating these techniques. However, information theory does not take into account

QoS service requirements, and hence it becomes necessary to seek tools that can help

understand the interplay between throughput and QoS. There have been some recent

contributions in trying to address these issues in different ways. For example, [41]

addresses the power-delay tradeoff. In [12], [51] and [52], effective capacity has been

used as a tool in studying the performance of resource allocation of a point to point

system and MIMO systems with delay constraints. In this chapter, effective capacity

is also used to study the problem of finding the capacity region and the optimal

scheduling scheme for a two user downlink system with QoS constraints. The insights

learned from the two user problem are then used to develop a sub-optimal scheduling

scheme for the multiuser scenario.

This chapter is organized as follows. The system model is detailed in Section

B. The optimal scheduling scheme with QoS constraints and the capacity region is

derived in Section C for the two-user case. Section D contains numerical results. A

simple multiuser scheduling method based on the optimal two-user scheduling scheme

is proposed in Section E. In Section F, numerical study is performed on mapping the

QoS requirement, θ, and the delay profile (in ms), where it is shown that there does

not exist a unique value of θ which yields a desired delay profile and that the delay

profile depends on the system parameters. It is also shown in this section that for

a typical delay profile desired in voice-type applications, a frequency division multi-

access (FDMA) scheme yields better throughput than the TDMA based scheme.

Finally Section G concludes the chapter.
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Fig. 15. Downlink system model with QoS constraints.

B. Statement of the Problem and System Model

Consider the system shown in Fig. 15 where there is a BS sending independent infor-

mation to two wireless users. There is a buffer associated with each user at the BS

into which messages intended for that user arrive at a particular rate. Furthermore,

there is a QoS constraint, θ, for each buffer which indicates the exponential decay rate

of the buffer overflow probability. The wireless channels between the BS and the users

are subject to i.i.d Rayleigh block fading and there is an average power constraint

of P at the BS during each block. Let ai be the channel gain of the ith user which

is complex Gaussian with zero mean and unit variance. Accordingly, the magnitude,

|ai|, follows a Rayleigh distribution. |ai| changes independently from block to block

and is perfectly known at the BS. Let Ti be the block length over which the ith user’s

fading process remains constant and can be interpreted as the coherence time of the

ith user’s channel. The system is operated in a TD mode where in each time slot only

one of the wireless users gets service. Therefore, if the ith user’s information is sched-

uled to be transmitted during a block, then the received signal of the corresponding

user can be written as:

yi = ai

√
PSi + ni.
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where Si is the transmitted signal of unit power, and ni is the additive white gaussian

noise (AWGN) with zero mean and variance NoW (No is the power spectral density

and W is the bandwidth). Accordingly, the service rate provided to user i at time m,

is Ri[m] = W log(1+ |ai|2 P
NoW

) and an amount equal to this gets depleted from the ith

user’s buffer. Let γi = E[|ai|2] (i = 1, 2) be the expected channel power gains of the

links from the BS to the wireless users. In this chapter, the term ‘scheduling scheme’

refers to the manner in which the BS services the users. For simplicity, henceforth

let |ai|2 = hi (i = 1, 2).

Given the fact that the BS accurately knows the channel power gains of each

user, the coherence times and the QoS requirement, θ, it can devise strategies as to

how the users are to be serviced. One scheme would to be service a user solely based

on the channel power gain (e.g., opportunistic scheme or the more general class of

scheduling schemes presented in Chapter III). This chapter develops optimal schemes

that makes use of all the available information such as the coherence times and the

QoS constraint as well as the channel power gain in servicing a user and it is shown

that these schemes naturally outperform the ones which does not take into account

all this information.

C. Optimal Scheduling Scheme with QoS constraints and the Effective Capacity

As in [25], the problem of finding an optimal scheduling scheme reduces to finding a

function h2 = g(h1) in the h1−h2 plane such that user-1 is serviced if h2 < g(h1) and

user-2 is serviced if h2 > g(h1). Here h1, h2 are the channel power gains of user-1 and

user-2, respectively. More specifically, scheduling schemes are desired which achieve

a point on the boundary of the capacity region such that the effective capacity of

user-2 is maximized, given that the effective capacity of user-1 is fixed (see also [25]).
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These points on the boundary of the capacity region can be obtained from the well

known optimization problem:

max βEC1(θ) + (1− β)EC2(θ), (4.1)

where,

EC1(θ) = − 1

θT1

logE
[
e−θT1R1[m]

]
, EC2(θ) = − 1

θT2

logE
[
e−θT2R2[m]

]
,

are the effective capacities of user-1 and user-2 respectively, Ri[m] = W log2

(
1 + hi

P
NoW

)

is the service that user i gets at time m, and β ∈ [0, 1]. Since only one user is serviced

at time m, whenever, R1[m] > 0, it follows that R2[m] = 0 and vice-versa. Hence,

the problem in (4.1), can be written as

max − β
θT1

logE
[
e−θT1

(
R1[m]=0

)
IU2 + e−θT1

(
R1[m]>0

)
IU1

]
−

(1−β)
θT2

logE
[
e−θT2

(
R2[m]=0

)
IU1 + e−θT2

(
R2[m]>0

)
IU2

]
, (4.2)

where, Ui is the region in the h1 − h2 plane over which user i is serviced and IUi
(i =

1, 2) represents the indicator function, defined by

IUi
=





1 if (h1, h2) ∈ Ui,

0 if (h1, h2) /∈ Ui

Equation (4.2), can be further simplified to

min

β

θT1

log

( ∞∫

h1=0

∞∫

h2=g(h1)

p1(h1)p2(h2) dh1 dh2 +

∞∫

h1=0

g(h1)∫

h2=0

e−θT1R1[m]p1(h1)p2(h2) dh1 dh2

)
+

(1− β)

θT2

log

( ∞∫

h1=0

g(h1)∫

h2=0

p1(h1)p2(h2) dh1 dh2 +

∞∫

h1=0

∞∫

h2=g(h1)

e−θT2R2[m]p1(h1)p2(h2) dh1 dh2

)
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where, pi(hi) = 1
γi

exp
( − hi

γi

)
is the pdf of an exponentially distributed random

variable with mean γi. After some algebra, the above reduces to:

min
β

θT1

log
( ∞∫

h1=0

f1

(
h1, g(h1)

)
dh1

)
+

(1− β)

θT2

log
( ∞∫

h1=0

f2

(
h1, g(h1)

)
dh1

)
, (4.3)

where,

f1

(
h1, g(h1)

)
=

1

γ1

exp
(−h1

γ1

)
[(

1+h1
P

NoW

)−k1
(
1−exp

(−g(h1)

γ2

))
+exp

(−g(h1)

γ2

)
]
,

f2

(
h1, g(h1)

)
=

1

γ1

exp
(− h1

γ1

)
[
1− exp

(− g(h1)

γ2

)
+

1

γ2

F
(
k2, g(h1)

)
]
, (4.4)

and

F (k2, g(h1)) =

∞∫

h2=g(h1)

(
1 + h2

P

NoW

)−k2

exp
(− h2

γ2

)
dh2; ki = θTiWM (i = 1, 2),

and M = log2 e. Note that the integrals defined in (4.3) and (4.4) are bounded for

ki ∈ [0,∞) (i = 1, 2). The optimization problem in (4.3) is a variational problem

which can be solved by using the technique of calculus of variations [49] as follows.

Let

J
(
g1(h1)

)
=

β

θT1

log
( ∞∫

h1=0

f1

(
h1, g1(h1)

)
dh1

)
+

(1− β)

θT2

log
( ∞∫

h1=0

f2

(
h1, g1(h1)

)
dh1

)
.

(4.5)

As in Arfken ([49],Chap. 17), let, g1(h1) = g(h1)+sη(h1), where, g(h1) is the function

which minimizes (4.5), s is any constant, and η(h1) represents arbitrary variation. As

the objective function in (4.5) is not dependent on the derivatives of the unknown

function g1(h1), Euler’s method of finding the unknown function reduces to [49]

d

ds

[
J
(
g1(h1)

)]
s=0

= 0, (4.6)
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d

ds

[
J
(
g1(h1)

)]
=

β

θT1

∞∫
h1=0

d
dg1

(
f1

(
h1, g1(h1)

))(
dg1(h1)

ds

)
dh1

∞∫
h1=0

f1

(
h1, g1(h1)

)
dh1

+
(1− β)

θT2

∞∫
h1=0

d
dg1

(
f2

(
h1, g1(h1)

))(
dg1(h1)

ds

)
dh1

∞∫
h1=0

f2

(
h1, g1(h1)

)
dh1

.

(4.7)

Define the following (for i = 1, 2):

d

dg

(
fi(h1, g(h1))

)
= f

′
ig

(
h1, g(h1)

)
; Ci =

∞∫

h1=0

fi

(
h1, g(h1)

)
dh1; C =

T1C1

T2C2

. (4.8)

By noting that dg1(h1)
ds

= η(h1), evaluating (4.7) at s = 0 and using (4.6) and (4.8)

yields

∞∫

h1=0

((
β

θT1C1

)
f
′
1g

(
h1, g(h1)

)
+

(
(1− β)

θT2C2

)
f
′
2g

(
h1, g(h1)

)
)

η(h1) dh1 = 0. (4.9)

Noting that (4.9) needs to be satisfied for any η(h1), it follows that

(
β

θT1C1

)
f
′
1g

(
h1, g(h1)

)
+

(
(1−β)
θT2C2

)
f
′
2g

(
h1, g(h1)

)
= 0, (4.10)

⇒ f
′
1g

f
′
2g

= −1−β
β

C.

Recall that the functions fi(i = 1, 2) are defined in (4.4). Defining K as below and

after some algebra, (4.10), works out to be

1−
(

1 + h1
P

NoW

)−θT1MW

1−
(

1 + g(h1)
P

NoW

)−θT2MW
=

1− β

β
C = K, (4.11)

g(h1) =

(
1 + 1

K

[(
1 + P

NoW
h1

)−θT1MW

− 1

]) −1
θT2MW

− 1

P/NoW
. (4.12)
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As β varies from 0 to 1, K varies from 0 to ∞ (see (4.11)). One can obtain a class of

functions by changing K in (4.12) from zero to infinity, which in turn can be used in

(4.3) to obtain the effective capacity. (Notice that C > 0 can be easily shown). For

a given β, there exists an optimal value of K that depends on C (see (4.11)) and it

is to be noted that C in turn depends on the function g(h1) in (4.12) (see also (4.8)

and (4.4)). For the trivial case when β = 0 (i.e, when only the effective capacity

of user-2 is maximized), then the optimal solution is to always service user-2 which

implies that the function g(h1) = 0 can be obtained from (4.12). Similarly, when

β = 1, g(h1) = ∞ can be obtained by solving f
′
1g

(
h1, g(h1)

)
= 0 in (4.10). For the

general case when β ∈ (0, 1), the following is a simple algorithm to evaluate the value

of C and hence the optimal scheduling scheme (i.e., K in (4.11)).

Step 1) Initialize K to some positive value (e.g., K = 1).

Step 2) Form g(h1) from (4.12).

Step 3) Find C1, C2, and hence C from (4.8) by using g(h1) obtained in step (2).

Step 4) For the assumed value of β, update K according to K = 1−β
β

C using the

value of C obtained in step (3).

Step 5) Repeat steps (2) to (4) until convergence occurs.

It was observed that the above algorithm typically converged in about six to ten

iterations. Taking a closer look at (4.11), in the limit as θ goes to zero,

lim
θ→0




(
1 + h1

P
NoW

)−θT1MW

− 1
(
1 + g(h1)

P
NoW

)−θT2MW

− 1


 = lim

θ→0

1− β

β
C

log
(
1 + h1

P
NoW

)

log
(
1 + g(h1)

P
NoW

) =
1− β

β
(4.13)
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Fig. 16. Effective capacity for the cases when θ = 0, 5×10−5, 9×10−5, 2×10−4, 4×10−4

and 2× 10−3 for the system parameters T1 = T2 = 100 ms, γ1 = γ2 = 1 and
P

NoW
= 15.

g(h1) =

(
1 + h1

P
NoW

) β
1−β − 1

P/NoW
(4.14)

This is precisely the optimal scheduling scheme derived in Chapter III. Notice that

the LHS of (4.13) follows from L’Hospital rule and the constant C is easily shown

to be T1

T2
, when θ → 0 from (4.8) and (4.4). Letting β = 0.5 in (4.14) gives the well

known opportunistic scheduling scheme g(h1) = h1.

D. Numerical Results

The effective capacities are computed using the optimal scheduling scheme for the case

when θ = 0 (Shannon ergodic capacity) and θ = 5× 10−5, 9× 10−5, 2× 10−4, 4× 10−4

and 2× 10−3 for the system parameters P
NoW

= 15, T1 = T2 = 100 ms, W = 10 KHz,

and γ1 = γ2 = 1 in Fig. 16. We can clearly see the loss in achievable throughputs
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Fig. 17. Effective capacity for the case when θ = 0, 4 × 10−4 and 6 × 10−4 for the

system parameters T1=100 ms, T2=20 ms, γ1 = γ2=1 and P
NoW

= 15.

of both users as θ increases. The reason for this behaviour may be explained due

to the fact that as θ increases, the input arrival rate must be controlled, which in

turn limits the buffer length and hence the delay. The case when θ = 0 eliminates

the constraint on the buffer delay and depends only on the service process, which

produces the Shannon ergodic capacity. Further, we see that as θ becomes large (e.g.,

θ = 2 × 10−3), the ability of the system to provide equitable rates to users keeps

decreasing. Hence for tight delay constraints, sharing resources between the users

becomes unproductive. Fig. 17 shows the effective capacity when user-1 and user-2

have different coherence times, T1 = 100ms and T2 = 20ms. Although the average

channel power gains of both users are the same (i.e., γ1 = γ2 = 1), the throughputs

of the users differ. This can be attributed to the fact that user-1’s channel changes

slowly w.r.t user-2’s channel and hence the throughput offered to user-1 is less than

that of user-2. If we consider this phenomenon from the buffer perspective at the
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BS, the buffer corresponding to the user with the larger coherence time can support

lower arrival rates than the user with the channel having a smaller coherence time.

This phenomenon is nicely captured in this framework, which the Shannon ergodic

capacity cannot, as it does not account for delay constraints.

E. Extensions to a Multiuser Scenario

The problem of finding the optimal scheduling scheme for the multiuser case can be

written as

max
N∑

i=1

βiECi
(θ) such that

N∑
i=1

βi = 1. (4.15)

where N represents the total number of users in the system, ECi
(θ) = − 1

θTi
log

[
e−θTiRi[m]

]

represents the effective capacity of user i, Ti represents the coherence time of the ith

user’s channel, and Ri[m] is the service rate of user i at the mth time instant. Let

hi be the channel power gain of user i. Similar to the idea presented in Section C

on the operational interpretation of (4.1) for the two user case, the problem in (4.15)

can be thought of splitting the
(
h1, h2 . . . hN

)
plane into N regions

(
U1, U2 . . . UN

)
,

which requires finding a distinct set of (N − 1) surfaces. This problem appears to be

mathematically intractable even for the case when N = 3. In what follows, a simple

suboptimal scheme is presented for multiuser scheduling based on the optimal two

user scheme derived in (4.11) and (4.12).

For j = 1, 2 . . . N , let

g̃
(
hj, Tj

)
=

βj

Tj

(
1−

(
1 + hjP

)−θTjMW
)

(4.16)

Recall that the optimal scheduling scheme for the two user case in (4.11), is to service

user i for which

i = arg max
j

(
`j g̃

(
hj, Tj

))
(4.17)
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where β1 = β, β2 = 1− β, `1 = 1 and `2 = C1

C2
was obtained from C (see (4.8)) by the

algorithm outlined in Section C.
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Opportunistic Scheme

Fig. 18. Average sum rate of the opportunistic and the proposed scheme for the case

when N = 5 with T1 = 20 ms, T2=70 ms, T3=80 ms, T4=100 ms, T5=120 ms

and P
NoW

= 50.

For the N user problem, consider maximizing the sum rate of the effective ca-

pacities (i.e., βj = 1/N ∀ j = 1, 2, . . . N). For a given (`1, `2 . . . `N), (T1, T2 . . . TN)

and (h1, h2 . . . hN), let Rsum
(
`1, `2 . . . `N

)
denote the achievable sum rate by using the

scheme in (4.17). Then the possible set of sum rates for the scheme in (4.17) can be

written as:

Rsum =
⋃

(
`1,`2...`N

)
`j∈[0,∞] ∀ j=1,2...N

Rsum
(
`1, `2 . . . `N

)
(4.18)

Since maximizing the sum rate of effective capacities implies maximizing the
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Fig. 19. Decision region for maximizing the sum rate of the opportunistic and the

proposed scheme for the two user problem when θ = 10−4.

sum input arrival rates, a natural scheme to accomplish this is to maximize the sum

output service rates (see also Fig. 15), for which the opportunistic scheduling scheme

is well known to be optimal. The average sum rate of effective capacities achieved

by the proposed scheduling scheme in (4.17) for `j = 1 (j = 1, 2 . . . N), and that

of the opportunistic scheme are compared in Fig. 18 for the case when N = 5 with

T1 = 20 ms, T2 = 70 ms, T3 = 80 ms, T4 = 100 ms, T5 = 120 ms. The reason that

the proposed scheme yields a higher sum rate throughput can be attributed to the

fact that it takes into account the channel power gains and delay constraints as well

as the channel coherence times in servicing a user, unlike the opportunistic scheme

which services the user solely based on the channel power gains. This can also be seen

from the optimal decision region for maximizing the sum rate of effective capacities

of the opportunistic and the proposed scheme depicted in Fig. 19 for the two user
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case. Further, when `j = 1, Tj = T (j = 1, 2, . . . N), the proposed scheme in (4.17)

reduces to the opportunistic scheme (which implies that the opportunistic scheme is

a subset of the proposed scheme).

F. Discussions

5 10 15 20 25
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Waiting Times ( x 20ms)

 

 

θ ≈ 7 (W=1 Hz)

θ ≈ 5x10−4 (W=10 KHz)

Fig. 20. Waiting time distribution of bits for different values of θ and the bandwidth

W .

From a practical standpoint, one is interested in knowing what values of θ yields

a desired delay profile of bits. Intuitively speaking this depends on the system pa-

rameters such as the bandwidth, SNR etc. The waiting time distribution of bits is

depicted in Fig. 20 when θ = 7 for W = 1 Hz and when θ = 5 × 10−4 for W = 10

KHz with the other system parameters the same as was described in Section D. We

infer from this plot there is no one universal value of θ that would yield a desired

delay profile and that it depends on the parameters of the system.
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TDMA scheme
FDMA scheme

Fig. 21. Rate region for a desired delay profile (shown in Fig. 20) achieved by a TDMA

and FDMA scheme.

Suppose, if the users are serviced by a FDMA scheme by splitting the bandwidth

into two, would it be possible to get better rates than the TDMA scheme for a desired

delay profile? For example, if one is interested in achieving the delay profile shown in

Fig. 20 (which typically might correspond to a voice system), what are the admissible

rates that a TDMA and a FDMA scheme can support? The rate region of a TDMA

scheme when W = 10 KHz (with the other system parameters being the same as was

described in Section D) is compared to a FDMA scheme with the users endowed with

ηW KHz and (1− η)W KHz respectively (where 0 ≤ η ≤ 1 ) and with the same SNR

as the time division scheme in Fig. 21. This study suggests that the FDMA schemes

achieves better throughput for users than the TDMA scheme.
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G. Conclusion

This chapter characterizes the effective capacity of a downlink scheduling system with

QoS constraints. The optimal scheduling scheme without QoS constraints and the

opportunistic scheduling schemes fall out as special cases of a more generalized class

of scheduling schemes derived in this chapter. Thus, this chapter has unified the

class of capacity achieving scheduling schemes for a given QoS constraint as well as

demonstrates how the effect of various channel parameters and the QoS constraint

influence the effective capacity. Based on the optimal two user scheduling scheme, a

sub-optimal, yet effective scheme for multiuser scheduling is proposed and shown to

dramatically increase the achievable sum rates as compared to the commonly used

opportunistic scheduling. Finally, we conclude that for delay constrained applications,

FDMA schemes are better than TDMA schemes in terms of getting better throughput

to users.
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CHAPTER V

THE ADMISSIBLE REGION OF A COGNITIVE RADIO SYSTEM

In previous chapters, we have looked at systems wherein users are allocated a licensed

channel (i.e., specific time slots or separate frequency bands) over which communi-

cation takes place. Though the users are allocated a licensed channel, it has been

found that in practical systems, users always do not have data to send; so the licensed

channel is unused most of the times. This has motivated the FCC to propose a system

wherein the unused channel could be utilized by users who really need them, thereby

making efficient reuse of the licensed spectrum. This has lead to the evolution of

cognitive radios.

In this chapter we study such a communication scenario in which one primary

(licensed) and one secondary (unlicensed) user wish to communicate to different re-

ceivers under a quality of service (QoS) constraint as was done in Chapter IV. The

QoS requirement is specified in terms of asymptotic decay rate of buffer occupancy.

Two schemes are proposed by which such a system could operate from a link layer

perspective and the admissible rate tuple under QoS constraint is characterized. In

the first scheme, the cognitive radio is modeled as a strict priority queuing system,

wherein the secondary user is serviced only when the primary user has no data to

transmit. In this scheme the service provided to the secondary user depends on the

input arrival rate of the primary user aside from the channel service rate. In the sec-

ond scheme, the cognitive radio is modeled as a non-strict priority queuing system,

wherein the primary and the secondary users are simultaneously provided service

(i.e., there is no dependence on when service is provided to the secondary user on

the primary user, however the amount of service provided to the primary and the

secondary user can vary).
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A. Introduction

As the licensed spectrum is under-utilized most of the times, the FCC recently recom-

mended that spectral efficiency could be enhanced by deploying additional wireless

devices (i.e., secondary users) that can coexist with the primary users. A natural way

by which such a system could function is that a secondary user could transmit data

whenever the primary user does not transmit. This further implies that the secondary

user must be able to sense to a reasonable level of accuracy, the presence/absence of

the primary user. Misdetection by the secondary user potentially interferes with the

primary user which is undesirable. False alarms by the secondary user could lead to

decreased spectral efficiency. The research in [53], [54] addresses these issues. For the

purpose of this chapter, we assume that a perfect sensing algorithm is in place.

Prior research on these systems were more from a physical layer perspective.

For example, achievable rates of cognitive radio channels are discussed in [55] and

[56] addresses maximum rates that primary and secondary users can get under the

stipulation that they coexist.

In this chapter, we take a totally different point of view on the cognitive radio

system by looking at it from a link layer perspective. We assume that there is one

primary and secondary user and that each user is endowed with an infinite length

buffer. Furthermore, there is a QoS constraint (as discussed in Chapter IV) denoted

by (θ1, θ2), where θi (i = 1, 2) is the asymptotic decay rate of buffer occupancy of the

primary and the secondary user respectively. The input arrival rates into each buffer

is assumed to be constant. The amount of packets taken out from each of the user’s

buffer is a function of whether the user is serviced and the state of the channel. The

primary question addressed in this chapter is the following: Given the QoS constraint

and the service process of the channel what is the maximum admissible rate when:
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• Secondary user is serviced only when the primary user does not have any data

to transmit.

• Both primary and secondary users are serviced simultaneously with varying

service rates.

B. Statement of the Problem

The systems of interest are shown in Fig. 22 and Fig. 23. In system-I (shown in

Fig. 22), the cognitive radio is modeled as a strict priority system. In this model,

the primary and secondary users are equipped with separate infinite buffers into

which data arrives at rates r1 and r2 respectively. The primary and secondary users

are serviced by a wireless channel which is modeled as an ‘ON-OFF’ process (i.e.,

Gilbert-Elliott model). Accordingly, the service rate of the channel is c when the

channel is in the ‘ON’ state, and zero when the channel is in the ‘OFF’ state. The

transition rate from ‘ON’ to ‘OFF’ is α, while the transition rate from ‘OFF’ to ‘ON’

is denoted by β. As long as the there is data to be transmitted by the primary user,

the primary user is always given priority over the secondary (cognitive) user. The

secondary user is serviced only when the primary user does not have anything to send

(i.e., when the primary user’s buffer is zero). Let X(t) and Y (t) denote the buffer

contents of the primary and secondary user respectively at time t. The queue length

process X(t) and Y (t) can be shown to converge in distribution to random variables

X(∞) and Y (∞) such that the following holds:

− lim
x→∞

log(Pr{X(∞) > x})
x

= θ1

and

− lim
y→∞

log(Pr{Y (∞) > y})
y

= θ2
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Y (t)
r2

X(t)
r1

Fig. 22. Priority based queuing model of a cognitive radio system (system-I).

α

Off On

β

c

r2

r1 X(t)

Y (t)

γc

(1 − γ)c

Fig. 23. Non-priority based queuing model of a cognitive radio system (system-II).

θ1, θ2 are sometimes called the QOS exponents [52] of the system, which depends on

the arrival rates r1 and r2 . The higher the value of θi, (i = 1, 2), the more stringent

is the QoS requirement. Given (θ1, θ2), we seek the maximum admissible rate tuple

(r1, r2) so as to fulfill the QoS exponent criterion. In system-II (shown in Fig. 23),

we again have separate infinite buffers for the primary and secondary user into which

data arrives at rates r1 and r2 respectively. Both the primary and secondary user

are serviced by a wireless channel which is modeled similar to the one detailed in the

system-I above. Unlike in system-I, where the secondary user is served only when

there is no data to be transmitted by the primary user, in this case, both primary

and the secondary users are served simultaneously by varying the level of service rate

γ ∈ (0, 1) such that primary and secondary users are serviced by rates γc and (1−γ)c
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respectively when the channel is in the ‘ON’ state as shown in Fig. 23. Here again we

seek the rate tuple (r1, r2) such that the QoS exponent criterion is satisfied. In what

follows, we derive bounds on the arrival rates for system-I and system-II.

C. Arrival Bounds on System-I

We first consider the model shown in Fig. 22. Stability of the system demands that

r1 + r2 < c α
α+β

.

Lemma V.1. The systems shown in Fig. 22 and Fig. 24 are equivalent.

Proof. First, consider the system shown in Fig. 22. Let S1(t) denote the state of the

channel (i.e., S1(t) = 0 denotes the channel is ‘OFF’, while S1(t) = 1 denotes the

channel is ‘ON’). The evolution of the buffer contents X(t), Y (t) at time t can then

be written as:

dX(t)

dt
=





r1 S1(t) = 0

r1 − c S1(t) = 1, X(t) > 0

0 S1(t) = 1, X(t) = 0

(5.1)

dY (t)

dt
=





r2 S1(t) = 0

r2 − (c− r1) S1(t) = 1, X(t) = 0, Y (t) > 0

0 S1(t) = 1, X(t) = 0, Y (t) = 0

Now, consider the system shown in Fig. 24. Let S2(t) denote the state of the equiv-

α

r1

Off
X(t)c

r2

c c
Y (t)β

On

Fig. 24. Equivalent of system model-I of a cognitive radio.
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alent source at the input of the high priority buffer. The equivalent source produces

data at rate c when S2(t) = 1 and zero when S2(t) = 0. The evolution of the buffer

contents X(t), Y (t) for this case can be written as:

dX(t)

dt
=





r1 − c S2(t) = 0, X(t) > 0

0 S2(t) = 0, X(t) = 0

r1 S2(t) = 1

(5.2)

dY (t)

dt
=





r2 − (c− r1) S2(t) = 0, X(t) = 0, Y (t) > 0

0 S2(t) = 0, X(t) = 0, Y (t) = 0

r2 S2(t) = 1

From (5.1) and (5.2), it is clear that the evolution of the buffers are the same

when S2(t) in (5.2) is ‘ON’, while S1(t) in (5.1) is ‘OFF’ and vice-versa. Hence, the

system in Fig. 22 with a markov modulated service wireless channel with transition

rate parameters (α, β), is equivalent to a system with a compensating source as shown

in Fig. 24, having parameters (β, α).

This equivalence makes it easier to use the well developed theory of effective

bandwidth [29], [57], to get bounds on the arrival rates for the problem posed in

Fig. 22.

1. Bounds on Arrival Rates

Having established the equivalence, we henceforth focus on the system depicted in

Fig. 24. The admission criterion using the theory of effective bandwidth demands

that the following be satisfied [57]. For the primary user:

r1 + eb1(θ1) < c (5.3)
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where eb1(·) is the effective bandwidth of the equivalent source which was compen-

sated for the wireless channel given by

eb1(θ1) =
1

2θ1

(
cθ1 − α− β +

√
(cθ1 − α− β)2 + 4βcθ1

)
(5.4)

[57], [58], and θ1 is the QoS exponent requirement of the primary user’s buffer. As

mentioned previously, the secondary user’s QoS also depends on the QoS requirement

of the primary user. Accordingly, it can be shown that the following condition needs

to be satisfied for the secondary user’s buffer [57]:

r2 + ebs(θ2) < c (5.5)

where ebs(·) denotes the effective bandwidth of the departure process of the primary

user’s buffer (which is also equal to the effective bandwidth of the arrival process into

the secondary user’s buffer), which is given by [58]:

ebs(θ2) =





r1 + eb1(θ2) 0 ≤ θ2 ≤ θ∗

c− θ∗
θ2

(
c− (r1 + eb1(θ

∗))
)

θ2 > θ∗
(5.6)

where θ∗ is the solution to,

d

dθ

(
r1 θ + θ eb1(θ)

)
= c (5.7)

[58], and, eb1(θ) is given by (5.4). From (5.7) one obtains θ∗ = α−β
c

+ c−2r1

c

√
αβ

r1(c−r1)
.

Hence the admissible rate tuple (r1, r2) can be obtained from (5.3) and (5.5). It is

important to note that (5.5) depends on r1 as well. The admissible rate tuple (r1, r2)

is shown in Fig. 25 for QoS exponent (θ1 = 8, θ2 = 4). Without loss of generality, we

take the service rate of the channel when it is ‘ON’ to be c = 1. It is not surprising

to see that the channel correlation (α + β), does have an impact on the admissible

rates. The waiting time distribution of bits for the primary and the secondary user
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Fig. 25. Admissible rates for different channel correlation rates (α + β) with (θ1 = 8,

θ2 = 4) and c = 1.
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Fig. 26. Waiting time distribution of bits of the primary and secondary user for sys-

tem-I when θ1 = 8, θ2 = 4.
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Fig. 27. Waiting time distribution of bits of the primary and secondary user for sys-

tem-I when θ1 = 50, θ2 = 40.

for various values of (θ1, θ2) are depicted in Fig. 26 and Fig. 27 for (α+β) = 50 sec−1.

2. Finite Buffer Case

Another way to think of this problem formulation is to seek an admissible rate tuple

(r1, r2) such that EX ≤ C1 and EY ≤ C2, where EX, EY represents the steady state

expected buffer contents of the high priority (primary user) and low priority buffer

(secondary user’s buffer) respectively and C1, C2 are arbitrary constants which may

depend on the buffer capacity of the primary and the secondary user.

Hence the problem reduces to finding the expected value of the buffer contents

at steady state. We use tools from poisson driven stochastic differential equations to

be able to solve the problem at hand. The derivation presented here proceeds along

similar lines to the ones in [30] and [59].
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An ON-OFF Markov modulated process can be represented by:

dp(t) = (1− p)dN1 − pdN2

where p(t) ∈ {0, 1} and N1, N2 are counters of rate β and α respectively. Then, the

evolution of the primary and secondary user’s buffers can be written as:

dX = −cIXdt + cpdt + r1dt

dY = −cIY dt + cIXdt + r2dt (5.8)

where

IX =





1 X > 0

0 otherwise

By using the Ito’s rule for jump process [30], we obtain the following:

dX2 = (−2cXIX + 2cpX + 2Xr1)dt

dY 2 = (−2cY IY + 2cY IX + 2Y r2)dt

Using the method to calculate expectations from [30], we get:

d

dt

(EX2
)

= 2(r1 − c)EX + 2cE(pX)

d

dt

(EY 2
)

= 2(r2 − c)EY + 2cE(IXY ) (5.9)

Noting that at steady state d
dt

(EX2
)

= d
dt

(EY 2
)

= 0, we obtain:

E(Y IX) =
c− r2

c
EY (5.10)

E(pX) =
c− r1

c
EX (5.11)

Now, we have the following:

d(XY ) = XdY + Y dX
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= (−cXIY + cXIX + Xr2 − cY IX + cY p + r1Y )dt

d(pX) = pdX + Xdp

= (−cpIX + cp2 + r1p + X(1− p)dN1 −XpdN2)dt (5.12)

d

dt

(EXY
)

= (c + r2)EX − cE(Y IX)− cE(XIY ) + cE(pY ) + r1EY

d

dt

(E(pX)
)

= −cE(pIX) + (c + r1)
β

α + β
+ βEX − E(pX)(α + β)

(a)
= r1

β

α + β
+ βEX − E(pX)(α + β)

where (a) follows from the fact that E(pIX) = EX. This is because, when p(t) = 1,

the primary user’s buffer content is always positive as the input rate (c+r1) is greater

than the service rate c. Again by making use of the fact that d
dt

(E(Xp)
)

= 0 and

from (5.10), we get the expected value for the primary user’s content to be:

EX =
r1c

cα− r1(α + β)

β

α + β
(5.13)

Along similar lines to the idea presented above we obtain the following:

d

dt
E(pY ) = r2

β

α + β
+ βEY − E(pY )(α + β)

By equating d
dt
E(pY ) = 0, we have

E(pY ) =
r2β

(α + β)2
− β

α + β
EY (5.14)

Making use of the fact that X > 0 implies that Y > 0 (this is because, when X > 0,

the service rate of the primary user’s buffer will be c, which means that the input

rate to the secondary user’s buffer will be at rate r2 + c, which is greater than the

service rate c of the secondary user’s buffer) which implies E(XIY ) = EX and from

(5.10), (5.12), (5.13) and (5.14) we get the expected value of the secondary user’s
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Fig. 28. Bounds on the admissible rates for system-I for the finite buffer case when

C1 = 0.7, C2 = 0.5 and c = 1.

buffer content to be:

EY =
1

(α + β)

[c r2 β + (α + β)2 r2 EX

cα− (r1 + r2)(α + β)

]
(5.15)

Hence from (5.13) and (5.15), the admissible rate tuple (r1, r2) which satisfies EX ≤
C1 and EY ≤ C2 can be determined.

The admissible rate is shown in Fig. 28, when C1 = 0.7, C2 = 0.5 and when the

service rate of the channel when ‘ON’ is c = 1.

D. Arrival Bounds on System-II

We now consider the system model depicted in Fig. 23. It can be easily noticed that

once the fraction of service rate (γ1 = γ, γ2 = 1 − γ) are fixed, the buffers can be

analyzed independently. As done in Lemma V.1, Section C, we can establish the

equivalence of systems in Fig. 23 and Fig. 29 with γ1 = γ and γ2 = 1− γ. Based on
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Fig. 29. Equivalent of system model-II (shown in Fig. 23) of a cognitive radio with

γ1 = γ and γ2 = 1− γ.

the QoS exponents (θ1, θ2), the admissible rate tuple (r1, r2) turns out to be:

r1 + eb1(θ1) < γc

r2 + eb2(θ2) < (1− γ)c

which yields:
r1 < γc− eb1(θ1) (5.16)

r2 < (1− γ)c− eb2(θ2)

where, in this case eb1(θ1) = 1
2θ1

(
γcθ1 − α − β +

√
(γcθ1 − α− β)2 + 4βγcθ1

)
and

eb2(θ2) = 1
2θ2

(
(1 − γ)cθ2 − α − β +

√
((1− γ)cθ2 − α− β)2 + 4β(1− γ)cθ1

)
. The

admissible rate tuple (r1, r2) is shown in the Fig. 30 and the waiting time distribution

when γ = 0.5, θ1 = θ2 = 50 is shown in Fig. 31.

E. Discussions

The numerical results given in Fig. 25 and Fig. 30 for system-I and system-II re-

spectively suggests that when the QoS constraints are loose (i.e., θ1, θ2 are low), the

throughput provided by system-I is roughly the same as that of system-II for most

of the rate tuples. On the other hand, when the QoS constraints become tight (i.e,.

θ1, θ2 are high), the throughput of system-II is better than that of system-I for most

of the useful operating points as shown in Fig. 32. Hence, from a practical perspec-

tive, it may be beneficial to operate a cognitive radio system by giving access to both
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θ1 = 50, θ2 = 40 and α + β = 50 sec−1.

primary and secondary users simultaneously by varying their service rates appropri-

ately. Furthermore, for the finite buffer case, the numerical results in Fig. 28 suggests

that the impact of channel correlation on the throughput of the users becomes less

significant as compared to the case when users are endowed with infinite length buffer

shown in Fig. 25 and Fig. 30.

F. Conclusion

In this chapter we have characterized the admissible region of a cognitive radio system

by modeling it as a strict priority system (wherein the secondary user is serviced only

when the primary user has nothing to transmit) and a non-strict priority system

(wherein service is provided simultaneously to both primary and the secondary user

by varying their service rates). The results of this chapter suggests that operating

the cognitive radio system by providing access to both primary and secondary users
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by varying their service rates appropriately is beneficial for most operating points of

interest.
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CHAPTER VI

ON THE SECRECY CAPACITY OF A SOURCE CODING PROBLEM

In previous chapters, we have looked into problems wherein information needed to be

communicated reliably. In this chapter we take a different point of view in that the

information not only needs to be communicated reliably but also in a secure manner.

We study the ‘additional resources’ that are required to satisfy the constraint of

‘secrecy’ in this chapter.

More specifically, we treat the problem of communicating multiple sources to

(L + 1) receivers amidst an eavesdropper. A direct channel is available from the

source encoder to each of the L receivers, while the (L + 1)th receiver has access to

the outputs of L channels (i.e., there is no direct channel from the source encoder

to the (L + 1)th receiver). The eavesdropper has access to a subset of size m (where

m < L), and the legitimate receiver should be able to reconstruct the source from

any subset of size n (where m < n ≤ L). The goal of the source encoder is to encode

the sources in such a way so as to communicate the sources reliably to the (L + 1)th

receiver, with minimum overhead. The rate region of such a system is found and

achievability is established using simple linear network codes.

A. Introduction

In this chapter, we first consider the following communication problem: An informa-

tion source needs to be sent from P to Q. We assume that there is no direct way of

communicating from P to Q, however there are L “agents” that can help carry the

information, to which both P and Q have access to. Depending on the “reliability”

that P has on each of the agents, the information is securely encoded into L packets,

possibly of different size, with each agent carrying a packet, with the additional stipu-
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lation that Q should understand completely, whatever P sends. The goal of P is then

to encode the information source to the fidelity requirements of Q, with minimum

overhead, by taking into account the following situations:

• The agents clandestinely collaborate to pool their information, in which case

the agents might be able to decode partly/completely, though they may not be

able to decode individually.

• Q be able to decode completely from a subset of agents whose size is larger than

the size of the coalition that the agents make to clandestinely decode the data.

One can think of the situation mentioned above with P being a source encoder, Q

being a legitimate receiver and the “agents” as the eavesdroppers.

Alternately, one could think of the aforementioned situation wherein there are

(L + 1) receivers, out of which L receivers each has a direct communication channel

from the source encoder, while the (L + 1)th receiver (i.e., henceforth the legitimate

receiver) has access to L channels, though there is no direct channel from it to the

source encoder. The eavesdropper has access to a subset of m channels, and it is

desired that the legitimate receiver be able to completely decode the information

from a subset of size n of the L-direct channels (i.e., m < n ≤ L). We will henceforth

use this interpretation in this chapter.

Our main result is an exact characterization of the rate region for simple cases of

the problem considered above. For more general cases, we characterize the exact sum

rate and construct achievable schemes by using simple linear network codes which

are shown to provide the desired level of secrecy. A central theme which emerges in

showing the achievability is the following: Any “partial” secure code is constructed

by simply concatenating a “fully secure” code and a “totally insecure” code.
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Next, we consider the problem of communicating multiple sources to a receiver

amidst an eavesdropper. There are totally L−m sources to be communicated to the

receiver with the stipulation that the receiver needs to be able to reconstruct sources

{1, 2 . . . k}, by accessing any subset of (m + k) channels (1 ≤ k ≤ L−m). We obtain

the coding rate region for the case when L = 3,m = 1, and show that separate secure

encoding of sources is optimal for this problem. For the case of arbitrary m,L we

derive a lower bound on the sum rate and the result implies a separation scheme to

achieve this lower bound.

Notable results in this topic can be found in [60], [61], [62], [63], [64] and [65].

We have organized the results in this chapter as follows. In Section B, we present

the problem and the results for the single source case. These results are extended to

multiple sources in Section C. Finally, we present the conclusion in Section D.

B. The Single Source Problem with Eavesdropper and Diversity Coding

The problem considered in this section is shown in Fig. 33. A source encoder is

presented with a sequence of i.i.d source letters {Xk} drawn from the alphabet X.

For each block of N letters (N arbitrary), there are L outputs, fl(X
N) = Wl ∈

{1, 2 . . . 2NRl} for l = 1, 2 . . . L. The codeword Wl is sent through the lth (l = 1, 2 . . . L)

communication channel. The eavesdropper has access to m channels (m < L), while

the legitimate receiver (i.e., Receiver-0 in Fig. 33) has access to all the L channels.

The source is to be reconstructed at the legitimate receiver with a distortion of D0

by accessing any subset of n channels. To make this problem interesting, we need

to have m < n ≤ L. We denote R(D0) to be minimum number of bits required to

reconstruct the source with distortion D0 [66]. Let B denote the collection of all

subsets of channels that the legitimate receiver may be able to reconstruct the source
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Fig. 33. The single-source problem considered in this chapter. Receiver-0 is the legit-

imate receiver. Codeword sent on channel l is denoted by Wl ∈ {1, 2 . . . 2nRl}
(l = 1, 2 . . . L).

from. Clearly, |B|=(
L
n

)
, where |B| represents the cardinality of set B. Let A denote

the collection of all subsets of channels that the eavesdropper has access to.

For any B ∈ B, consider all collection of subsets of size m and denote it by Υ
(B)

.

Clearly,

A =
⋃

∀B∈B

Υ
(B)

We assume that the eavesdropper can access any member of A, but no more than one

member of A. For A ∈ A, (and hence A ⊂ B for one or more B ∈ B) let YA be the

codeword transmitted on the channel corresponding to the elements in A. It will be

convenient to think of YA as a vector whose jth element denotes the codeword
(
i.e.,

Wl (l ∈ {1, 2 . . . L}) )
sent on the channel corresponding to the jth element of A.

We define the equivocation rate (i.e., level of secrecy) when the eavesdropper has

access to any A ∈ A to be:

∆A =
1

N
H(XN |YA) (6.1)

and it is desired that ∆A ≥ hA, for a given hA.
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To clarify the notations introduced, we give an example here. For the case,

when L = 4, n = 3,m = 2, we have B =
{
(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)

}
and

A =
{
(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)

}
. For A = (1, 3), YA =

[
W1 W3

]
.

The primary problem addressed in this section is the following:

• For the case when hA = h and ∆A ≥ h, ∀A ∈ A and for any B ∈ B, we

characterize the sum-rate and propose simple schemes which achieve the lower

bound.

The case when n = L can be thought of the situation wherein the legitimate

receiver needs to access all the channels to reconstruct the source, while for the case

when n < L, we impose a diversity coding from the legitimate receiver perspective.

Before we begin addressing the aforementioned problems, we characterize the

rate region and achievability for a few simple representative cases with asymmetrical

secrecy requirements as well, which gives considerable insight for solving the more

generalized problem mentioned above. We consider the following scenarios:

• m = 1 and n = L = 2.

• m = 2 and n = L = 3.

• m = 1,n = 2 and L = 3.

1. m = 1, n = L = 2.

In this case, we have, A = {{1}, {2}} and B = {(1, 2)}. The desired level of secrecy

required by each channel for a given h1, h2 is given by:

1

N
H(XN |Wi) ≥ hi for i = 1, 2. (6.2)
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Fig. 34. The case when m = 1 and n = L = 2. The secrecy constraints on the two

channels are given by h1 and h2.

where, Wi is the codeword sent along channel i. The goal is to determine (R1, R2, h1, h2)

with a distortion requirement of D0 desired by the legitimate receiver, such that (6.2)

is satisfied. See also Fig. 34.

Theorem VI.1. The rate region (R1, R2, h1, h2), for a distortion requirement of D0

desired by the legitimate receiver, is given by the set of rate pairs (R1, R2) satisfying

the following:

R1 ≥
(
h2 − [H(X)−R(D0)]

)+
= Z1 (6.3)

R2 ≥
(
h1 − [H(X)−R(D0)]

)+
= Z2 (6.4)

R1 + R2 ≥ R(D0) (6.5)

where, (x)+ = max(x, 0)

Proof. Refer the generalized proof given in Theorem VI.5 for (6.3) and (6.4). (6.5)

follows naturally.

Remark 1. We can explain intuitively as to why (6.3) or (6.4) should hold. Suppose,

(H(X) − h2) is the ‘effective’ information bits (i.e., after taking into account the

secrecy level of channel 2) that is sent through channel 2 . Then, it is not difficult
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Z1 + Z2 ≤ R(D0).
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Fig. 36. The rate region for the case when

Z1 + Z2 > R(D0).

to see that the rest of the information bits
(
i.e., R(D0)− [H(X)− h2]

)
has to be at

least supplied by channel 1 for (6.5) to be satisfied, which is precisely (6.3).

a. Achievability of Theorem VI.1

Depending on the secrecy requirements of the channels, we have two cases:

Case 1: (Z1 + Z2) ≤ R(D0)

This case (shown in Fig.35) arises when the security requirements (h1, h2) of both

channels are small. It is clear from Fig.35, that we need only to show achievability of

points D and E as the other points along the line DE can be achieved by time sharing

between points D and E. We will show this only for point D as similar ideas can be

used for showing the achievability of point E.

• Source coding (i.e., rate distortion coding) is first performed. Then, the R(D0)

information bits are split into two parts such that R1 = (H(X) − h1) bits are
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sent through channel 1, while the rest of the information bits R2 = Z2 are sent

through channel 2.

It only remains to show that point D (i.e., a split of
(
R1 = (H(X) − h1), R2 = Z2

)

in Fig.35 satisfies the desired secrecy requirements, which is proved in the following

lemma.

Lemma VI.1. The assignment of
(
R1 = (H(X)− h1), R2 = Z2

)
bits (i.e., point D

in Fig.35) satisfies the secrecy requirements, in (6.2).

Proof.

1

N
H(XN |W1) =

1

N

[
H(XN ,W1)−H(W1)

]

≥ 1

N

[
H(XN)−H(W1)

]

≥ [
H(X)−R1

]

≥ h1

Following similar steps as above, we get:

1

N
H(XN |W2) ≥

[
H(X)−R2

] (b)

≥ h2

where, (b) follows from the fact that Z1 + Z2 ≤ R(D0).

Case 2: (Z1 + Z2) > R(D0)

This case arises (shown in Fig.36) when the secrecy requirements of the channels

are high. As shown in Fig.36, we clearly need more than R(D0) bits in this regime. We

need to show only the achievability of point C in Fig.36
(
i.e.,

(
R1 = Z1, R2 = Z2

))
,

which follows:

1. Generate Rk = Z1 + Z2 −R(D0) = h1 + h2 − 2H(X) + R(D0) bits independent

of the R(D0) information bits. We call these key bits. We denote the key bits
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by K, whose length is Rk.

2. Denote the information bits by {Ii} for i = 1, 2, . . . R(D0), and let `1 = H(X)−
h1 and `2 = H(X) − h2. Let Is = {Ii}Rk

i=1, I1 = {Ii}Rk+`1+1
Rk+1 and I2 =

{Ii}Rk+`1+`2+2
Rk+`1+2 .

3. Mask Is with K and concatenate it with I1 and place this in channel 1. Con-

catenate K with I2 and place it in channel 2. Hence, our code looks like:

C1 :
[ I1 Is ⊕ K ]

C2 :
[ I2 K ]

(6.6)

︸ ︷︷ ︸ ︸ ︷︷ ︸
Non-Secure Code Perfectly Secure Code

It is easy to see that the code construction in (6.6) meets the secrecy requirements in

(6.2) and also satisfies (6.3) and (6.4) with equality.

Remark 2. Alternately, (6.6) could have been constructed by placing K in C1 and

Is ⊕ K in C2. For the case of perfect secrecy (i.e., h1 = h2 = H(X)), K can be sent

in one channel and Is ⊕ K can be sent in the other channel, where K and Is , each

are of length R(D0) bits. We see that for the case of perfect secrecy, the overhead

we need is at least as much as the number of information bits, which agrees with

Shannon’s results [14].

The above observations naturally genealize to the case when there are L receivers,

with an eavesdropper having access to any one of the L channels, and the legitimate

receiver be able to reconstruct the source from all the n = L channels. In this case,

A =
{{1}, {2}, . . . {L}}, B =

{
(1, 2 . . . L)

}
.
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Theorem VI.2. The rate region (R1, R2, . . . RL, h1, h2 . . . hL), for a distortion re-

quirement of D0 desired by the legitimate receiver, with hi defined as in (6.2) for

i = 1, 2, . . . L, is given by the set of rate pairs (R1, R2, . . . RL) satisfying the following:

R1 + R2 + . . . + RL−2 + RL−1 ≥
(
hL −

[
H(X)−R(D0)

])+
= P1

R1 + R2 + . . . + RL−2 + RL ≥
(
hL−1 − [H(X)−R(D0)]

)+
= P2

R1 + R2 + . . . + RL−3 + RL−1 + RL ≥
(
hL−2 − [H(X)−R(D0)]

)+
= P3

... (6.7)

R1 + R3 + . . . + RL−1 + RL ≥
(
h2 − [H(X)−R(D0)]

)+
= PL−1

R2 + R3 + . . . + RL−1 + RL ≥
(
h1 − [H(X)−R(D0)]

)+
= PL

R1 + R2 + . . . + RL−1 + RL ≥ R(D0) (6.8)

Proof. Refer the generalized proof given in Theorem VI.5

b. Achievability of Theorem VI.2

By adding all the L equations in (6.7) we get:

R1 + R2 + . . . RL ≥ 1

L− 1

L∑
i=1

Pi = P (6.9)

From (6.8) and (6.9), we see that we again have two cases to address:

Case 1: P ≤ R(D0)

In this regime we have,

L∑
i=1

(
H(X)− hi

) ≥ R(D0). (6.10)

From a closer look of (6.10), we infer that the sum of the net ‘effective’ information

bits (i.e., information bits after taking the secrecy constraints into account), of all
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the L channels is at least the required R(D0) bits that the legitimate receiver needs,

which can be done as was seen earlier in the two channel case (i.e., m = 1, n = L = 2)

by splitting the bits. Clearly, there are a myriad of possibilities in this regime. A

very simple scheme is as follows:

1. For any F ⊂ {1, 2 . . . L}, for which
∑

i∈F

(
H(X) − hi − εi

)
= R(D0), (where

εi ≥ 0 ∀i ∈ {1, 2 . . . L}), send
(
H(X)− hi

)
bits in the ith channel, and none in

the rest of the channels.

Case 2: P > R(D0)

In this case we have
∑L

i=1

(
H(X) − hi

)
< R(D0). Furthermore, we need to have

hi ≥
[
H(X)−R(D0)

]
for i = 1, 2, . . . L (see (6.7)). Suppose not, we can easily argue

that there exists at least one i ∈ {1, 2, . . . L} such that hi ≤
[
H(X)−R(D0)

]
, which

implies that all the R(D0) bits can be sent through the ith channel and none through

the rest of the channels, (which satisfies the secrecy constraints) and clearly makes

this case trivial.

The following is an achievable scheme in the regime when Pi > 0 ∀i ∈ {1, 2, . . . L}:

1. Generate, Rk = P − R(D0) = 1
L−1

[ ∑L
i=1

(
hi − H(X)

)
+ R(D0)

]
key bits inde-

pendent of the information bits. Denote the key bits by K.

2. Letting `i = H(X)−hi, represent L distinct set of information bits by I i, each

of length `i for i = 1, 2 . . . L.

3. Represent another (L − 1) distinct set of information bits by J i for i =

1, 2, . . . (L−1), each of length Rk, which are different from
{I i

}L

i=1
. Letting Cj

represent the code sent through channel j for j = 1, 2, . . . L, we then have:

C1 =
[

I1 J 1 ⊕K
]
, C2 =

[
I2 J 2 ⊕K

]
, . . . CL =

[
IL K

]
.
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It is easy to verify that (6.7) is satisfied with equality.

2. m = 2, n = L = 3

In this case, the eavesdropper has access to any two out of total of three channels and

hence we have A = {(1, 2), (1, 3), (2, 3)}, B = {(1, 2, 3)}. The desired level of secrecy

for a given h12, h13, h23 are given by:

1

N
H(XN |Wi,Wj) ≥ hij 1 ≤ i < j ≤ 3 (6.11)

where Wi is the codeword sent along channel i.

Theorem VI.3. The rate region (R1, R2, R3, h12, h13, h23), for a distortion require-

ment of D0 desired by the legitimate receiver is given by the set of rate pairs (R1, R2, R3)

satisfying the following:

R1 ≥
(

h23 −
[
H(X)−R(D0)

])+

= S1 (6.12)

R2 ≥
(

h13 −
[
H(X)−R(D0)

])+

= S2 (6.13)

R3 ≥
(

h12 −
[
H(X)−R(D0)

])+

= S3 (6.14)

R1 + R2 + R3 ≥ R(D0) (6.15)

Proof. Refer the generalized proof given in Thorem VI.5 for (6.12), (6.13) and (6.14).

(6.15) follows naturally.

a. Achievability of Theorem VI.3

We have two cases:

Case 1: S1 + S2 + S3 ≤ R(D0)

In this regime, we have:(
H(X)− h12

)
+

(
H(X)− h13

)
+

(
H(X)− h23

) ≥ 2R(D0) (6.16)
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It is clear from Theorem VI.3 that, all we need to show is that the points
(
R1 =

S1, R2 = S2, R3 = R(D0) − (S1 + S2)
)
,
(
R1 = S1, R2 = R(D0) − (S1 + S3), R3 = S3

)

and
(
R1 = R(D0) − (S2 + S3), R2 = S2, R3 = S3

)
achieve the desired secrecy levels.

We will do it only for one point as the others points can be shown in a similar manner.

Lemma VI.2. The assignment of
(
R1 = S1, R2 = S2, R3 = R(D0) − (S1 + S2)

)

information bits achieves the secrecy level in (6.11).

Proof.

1

N
H(XN |W1W2) ≥ 1

N

[
H(XN , W1,W2)−H(W1,W2)

]

≥ 1

N

[
H(XN)−H(W1,W2)

]

≥ 1

N

[
H(XN)−H(W1)−H(W2)

]

≥ H(X)−R1 −R2

(a)

≥ h12

By following similar steps as above

1

N
H(XN |W1,W3) ≥ H(X)−R1 −R3

(a)

≥ h13

1

N
H(XN |W2,W3) ≥ H(X)−R2 −R3

(a)

≥ h23

where (a) follows from (6.16).

Case 2: S1 + S2 + S3 > R(D0)

In this regime, we need to show the achievability of
(
R1 = S1, R2 = S2, R3 = S3

)
in

(6.12), (6.13) and (6.14). Without loss of generality, we assume that h23 ≥ h13 ≥ h12,

which implies R1 ≥ R2 ≥ R3.

We note that the maximum key bits (i.e., additional bits) that we are allowed to
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use in this regime is,

Rk = S1 + S2 + S3 −R(D0) =
(
h12 + h13 + h23 − 3H(X) + 2R(D0)

) ≥ 0 (6.17)

which clearly depends on the desired secrecy levels (h12, h13, h23), for a fixed H(X)

and R(D0). Furthermore, we observe that for the case of perfect secrecy (i.e., h12 =

h13 = h23 = H(X)), the total key bits we need is 2R(D0) (i.e., overhead of factor

two). Hence, we have 0 ≤ Rk ≤ 2R(D0). Depending on Rk, we will explicitly show a

code construction in two regimes, namely:

• R(D0) ≤ Rk ≤ 2R(D0)

• 0 ≤ Rk < R(D0)

We begin with the case when R(D0) ≤ Rk ≤ 2R(D0).

1. Letting Mk = Rk − R(D0), we write (R1 = S1, R2 = S2, R3 = S3) in (6.12),

(6.13) and (6.14) as:

R1 =
(
H(X)− h12

)
+

(
H(X)− h13

)
+ Mk

R2 =
(
H(X)− h12

)
+

(
H(X)− h23

)
+ Mk (6.18)

R3 =
(
H(X)− h13

)
+

(
H(X)− h23

)
+ Mk

2. Represent a distinct set of information bits of length Mk by Is. The idea now

is to make Is of length Mk perfectly secure, which by our previous observation

requires an overhead of 2Mk bits.

3. Generate key bits K1
s and K2

s each of length Mk independently of each other

and independent of the information bits. Place Is, Is ⊕K1
s and Is ⊕K2

s in

different channels.
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4. Denote Mrem to be the remaining information bits to code at this point. We

then have, Mrem = R(D0)−Mk =
(
H(X)−h12

)
+

(
H(X)−h13

)
+

(
H(X)−h23

)
.

We also note that the remaining key bits we can use is Rk − 2Mk = Mrem as

well. (Recall, that we had already used 2Mk key bits for constructing the perfect

secure code).

5. Generate key bits K12, K13, K23 of length
(
H(X)−h12

)
,
(
H(X)−h13

)
,
(
H(X)−

h23

)
respectively, independent of each other and independent of K1

s, K2
s and

the information bits. Represent distinct sets of information bits by I12, I13,

I23 of length
(
H(X) − h12

)
,
(
H(X) − h13

)
,
(
H(X) − h23

)
respectively, which

are different from Is. Place Kij , Iij⊕Kij in channel i (channel j) and channel

j (channel i) respectively for all 1 ≤ i < j ≤ 3. It is instructive to see that the

code construction given below follows the representation of R1, R2, R3 in (6.18):

C1 :
[ I12 ⊕K12 K13 Is ⊕K1

s ⊕K2
s

]

C2 :
[ K12 I23 ⊕K23 K1

s

]
(6.19)

C3 :
[ I13 ⊕K13 K23 K2

s

]

It is interesting to see that the code construction in (6.19) provides perfect security

for the case when eavesdropper has access to only one instead of two channels. This is

expected, as we need R(D0) key bits to provide perfect security to R(D0) information

bits, provided the eavesdropper has access to only one channel, from our study of the

case m = 1, n = L = 2.

Now, we turn to case when 0 ≤ Rk < R(D0). It is easy to see that in this

regime some of the bits must go unprotected even if the eavesdropper has access to

one channel, much like the structure in (6.6). Listed below are the possibilities that

need to be considered in constructing a code for this case:
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(i) With the availability of Rk key bits, construct a perfect secure code, by pro-

viding perfect security to Rk

2
information bits, much like the third column in

the structure of (6.19) and distribute the rest of the information bits in the

channels depending on rate constraints. This further implies that the minimum

rate constrained channel (which in our case is channel 3; recall the assumption

R1 ≥ R2 ≥ R3), should at least support Rk

2
bits.

(ii) If the condition (i) listed above fails, the next possibility is to use Rk key bits

to provide security to Rk information bits across the other two channels (i.e.,

in our case channels 1 and 2), and distribute the rest of the information bits

depending on rate constraints. This naturally implies that R2 = S2 must at

least support a rate of Rk.

(iii) If condition (i) and (ii) listed above fails, then, it can be easily argued that the

only way is to code jointly across channels 1,3 and channels 1,2.

We can succinctly represent the above possible cases by rewriting (6.12), (6.13) and

(6.14) as:

R1 = δ1 + η + γ1

R2 = δ2 + γ1 (6.20)

R3 = δ3 + η + γ2

where δ1, δ2, δ3, η, γ1 and γ2 for the cases (i), (ii) and (iii) discussed above are given

in Table I. (Note that Rk and Si (i = 1, 2, 3) are defined as in (6.17), (6.12), (6.13)

and (6.14) respectively). The achievability in this regime is as follows:

1. Generate a distinct set of information bits {I i} (i = 1, 2 . . . 5) of lengths

δ1, δ2, δ3, η and γ1 respectively.
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Table I. The case when 0 ≤ Rk < R(D0) when m = 2, n = L = 3.

Condition δ1 δ2 δ3 η γ1 γ2

(i) S3 ≥ Rk

2
S1 − Rk

2
S2 − Rk

2
S3 − Rk

2
0 Rk

2
Rk

2

(ii) S2 < Rk S1 −Rk S2 −Rk S3 0 Rk 0

(iii)
S2 < Rk &

S3 < Rk

2

S1 −Rk S2 −Rk + S3 0 S3 Rk − S3 0

2. Generate distinct set of key bits {Ki} (i = 1, 2, 3) of lengths γ1, γ2 and η re-

spectively, independent of each other and the information bits. Letting Ci be

the code sent through channel i, we have:

C1 :
[ I1 I4 ⊕K3 I5 ⊕K1 ⊕K2

]

C2 :
[ I2 K1

]
(6.21)

C3 :
[ I3 K3 K2

]

It is possible to show that the secrecy requirements are met for the code in (6.21) for

all the cases outlined in Table I.

3. m = 1, n = 2, L = 3

In this case, the eavesdropper has access to any one of three channels and the legiti-

mate receiver needs to be able to reconstruct the source from any of the two channels.

Here, we have A =
{{1}, {2}, {3}} and B = {(1, 2), (1, 3), (2, 3)}. The desired level

of secrecy for a given h1, h2, h3 are given by:

1

N
H(XN |Wi) ≥ hi for i = 1, 2, 3. (6.22)

where Wi is the codeword sent through the ith channel.
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Theorem VI.4. The rate region (R1, R2, R3, h1, h2, h3), for a distortion requirement

of D0 desired by the legitimate receiver is given by the set of rate pairs (R1, R2, R3)

satisfying the following:

R1 ≥ max{h2, h3} −
[
H(X)−R(D0)

]
(6.23)

R2 ≥ max{h1, h3} −
[
H(X)−R(D0)

]
(6.24)

R3 ≥ max{h1, h2} −
[
H(X)−R(D0)

]
(6.25)

Ri + Rj ≥ R(D0) for 1 ≤ i < j ≤ 3 (6.26)

Proof. We will prove only (6.23), as (6.24) and (6.25) can be proved similarly. (6.26)

follows naturally.

NR1 ≥ H(W1)

(a)

≥ H(W1|W2)

≥ H(W1|W2)−H(W1|W2, X
N)

= I(XN ; W1|W2)

= I(XN ; W1,W2)− I(XN ; W2)

= I(XN ; W1,W2)−H(XN) + H(XN |W2)

(b)

≥ N
[
R(D0)−H(X) + h2

]
(6.27)

Following similar steps as above

NR1 ≥ H(W1)

≥ H(W1|W3)−H(W1|W3, X
N)

(b)

≥ N
[
R(D0)−H(X) + h3

]
(6.28)

where (a) follows from the fact that conditioning reduces entropy and (b) follows due
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to the fact that R(D0) is the minimum number of bits required to describe a source

at distortion D0, {X} being i.i.d and the secrecy requirements in (6.22). From (6.27)

and (6.28), we obtain (6.23).

a. Achievability of Theorem VI.4

From (6.26), we get:

R1 + R2 + R3 ≥ 3R(D0)

2
(6.29)

It is easy to see that any two out of three equations in (6.23), (6.24), (6.25) needs to

be the same. Without loss of generality, we let h1 > h2 > h3. Then (6.23), (6.24),

(6.25) reduces to:

R1 ≥ h2 −
[
H(X)−R(D0)

]
= T1 (6.30)

R2 = R3 ≥ h1 −
[
H(X)−R(D0)

]
= T2 (6.31)

Henceforth we will appeal to (6.29), (6.30), (6.31), (6.26) for showing the achievability.

Here again, we have two cases to address depending on T1, T2.

Case 1: T1 + T2 ≤ R(D0)

It turns out that we need to show achievability of two points as described below.

However, we will not prove that the points satisfy the secrecy constraints, as similar

ideas (refer to the proof of Lemma VI.1) can be used here as well.

• We first consider the case when T2 < R(D0)
2

. Due to the fact that T1 < T2

and that (6.26) has to be satisfied, the only point achievable in this case has

to be
(
R1 = R2 = R3 = R(D0)

2

)
, which satisfies (6.29) with equality. A simple

achievable scheme is the following:

1. Represent distinct sets of information bits by I1 and I2 each of length

R(D0)
2

.
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2. Send I1 trough channel 1, I2 through channel 2 and I1 ⊕ I2 through

channel 3.

• Now consider the case when T2 > R(D0)
2

and of course T1 + T2 < R(D0), which

implies T1 < R(D0)
2

. Clearly, the achievable point which satisfies the secrecy

constraints is
(
R1 = H(X) − h1, R2 = R3 = T2

)
which satisfies (6.29) with

equality. A simple achievable scheme is the following:

1. Represent distinct set of information bits by I1, I2 each of length
(
H(X)−

h1

)
bits. Represent another distinct set of information bits of length

(
R(D0) − 2[H(X) − h1]

)
by I3. Letting Ci be the code sent through

channel i, we have:

C1 :
[ I1

]

C2 :
[ I2 I3

]
(6.32)

C3 :
[ I1 ⊕ I2 I3

]

Case 2: T1 + T2 > R(D0)

We show a simple scheme to achieve the point
(
R1 = T1, R2 = R3 = T2

)
which

follows:

1. Generate a key K of length Rk = T1 + T2 − R(D0) =
(
h1 + h2 − 2H(X) +

R(D0)
)
, independent of the information bits. We note that for perfect secrecy

the amount of key bits required is R(D0) (i.e., overhead of factor one). As was

done before we represent (6.30), (6.31) as :

R1 =
(
H(X)− h1

)
+ Rk

R2 =
(
h1 − h2

)
+

(
H(X)− h1

)
+ Rk (6.33)

R3 =
(
h1 − h2

)
+

(
H(X)− h1

)
+ Rk
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2. The idea now is to use K of length Rk to provide security to a total of 2Rk

information bits of which only Rk are distinct. (Note that we are doing a

diversity coding here). Denote distinct information bits of length Rk by Is.

Place K, Is⊕K, Is⊕αK in different channels. Here, α represents an element

from Galois Field.

3. At this point we still have
(
H(X) − h1

)
+

(
H(X) − h2

)
distinct information

bits that have to be coded in such a way that it can be decoded from any two

of the three channels. Denote distinct sets of information bits by I1, I2 each

of length
(
H(X) − h1

)
. Let I3 represent a distinct set of information bits of

length (h1 − h2). Place I1 in channel 1, concatenate I2 with I3 and place in

channel 2, and finally place I3 concatenated with I1 ⊕ I2 in channel 3.

The code construction in (6.34) follows the representation in (6.33). Furthermore, it

is important to note that for Is to be decodable by any two of the three channels,

α has to be chosen such that the column corresponding to the perfect secure code in

(6.34) which involves the variables Is and K are to be linearly independent . More on

choosing α is outlined in Section 4. It is also interesting to note that (6.34) is simply

a concatenation of (6.32) with a perfect secure code.

C1 :
[ I1 K ]

C2 :
[ I3 I2 Is ⊕K ]

(6.34)

C3 :
[ I3 I1 ⊕ I2 Is ⊕ αK ]

︸ ︷︷ ︸ ︸ ︷︷ ︸
Non-Secure Code Perfect Secure Code

The following gives some central themes that have emerged from the study of these

simple, yet representative cases:
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(a) The ‘extra’ bits beyond R(D0) information bits, if required, are the ‘key’ bits

that have to be generated independently of the information bits, and these needs

to be conveyed to the the legitimate receiver.

(b) It is interesting to note that the overhead factor of the key bits that is required

for providing perfect secrecy for the case m = 1, n = L = 2 was one; for the

case m = 2, n = L = 3 was two; while for m = 1, n = 2, L = 3 was one. These

observations are made more precise in Section 4.

(c) Depending on the availability of ‘key’ bits, some of the information bits are pro-

vided perfect secrecy using these key bits by constructing a simple network code

and the rest of the information bits are again network coded and concatenated

with the secure network code, which was observed to provide the desired level

of secrecy.

4. Generalizations to Arbitrary m,n, L

Here, we state precisely some of the observations that were made the Section 1,

Section 2 and Section 3. We focus on the symmetrical secrecy requirement which

facilitates derivations of lower bounds on sum-rate. Finally we propose simple schemes

to achieve the lower bound. We first introduce some notations pertinent to this

section. Note that A, B and Υ
(B)

for any B ∈ B are all defined in Section B. Let

RA denote the sum rate of channels corresponding to elements in A, and HA denote

the sum of the entropies of the codewords corresponding to the elements in A. For

example, if A = (1, 2, 4), RA = R1 +R2 +R4, while HA = H(W1)+H(W2)+H(W4),

where R1, R2, R4 are the rates of channels 1, 2, 4 respectively, and W1,W2, W4 are the

messages sent along channels 1, 2, 4 respectively.
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Theorem VI.5. For a fixed B ∈ B and any A ∈ Υ
(B)

, the following holds:

RAc ≥ hA −
(
H(X)−R(D0)

)
(6.35)

where, Ac = B \ A.

Proof.

NRAc ≥ HAc

≥ H(YAc)

(a)

≥ H(YAc|YA)

≥ H(YAc|YA)−H(YAc |YA, XN)

= I(YAc ; XN |YA)

= I(YB; XN)− I(YA; XN)

= I(YB; XN)−H(XN) + H(XN |YA)

(b)

≥ N
[
R(D0)−H(X) + hA

]

where (a) follows from the fact that conditioning reduces entropy, (b) follows from

the fact that R(D0) is the minimum number of bits required to describe a source at

distortion D0, {X} being i.i.d and the secrecy requirement in (6.1).

Lemma VI.3. The sum rate of L channels without secrecy constraints (i.e., m =

0, n ≤ L) satisfies:
L∑

i=1

Ri ≥ L

n
R(D0) (6.36)

Proof. For every B ∈ B, the following has to be true:

RB ≥ R(D0)
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Summing over all B ∈ B we get:

(
L− 1

n− 1

) L∑
i=1

Ri ≥
(

L

n

)
R(D0)

which yields (6.36).

Lemma VI.4. The sum rate of L channels with secrecy constraints (i.e., m 6= 0,

m < n ≤ L) , for the case when hA = h, ∀A ∈ A satisfies:

L∑
i=1

Ri ≥ L

n−m

[
h− (

H(X)−R(D0)
)]

(6.37)

Proof. From Theorem VI.5, we have for any A ∈ Υ
(B)

, and for a fixed B ∈ B:

RAc ≥ hA −
(
H(X)−R(D0)

)

Summing the above over all Υ
(B)

, for a fixed B ∈ B, together with the condition

hA = h, ∀A ∈ A yields:

(
n− 1

n−m− 1

)
RB ≥

(
n

m

) [
h− (

H(X)−R(D0)
)]

⇒ RB ≥ n

n−m

[
h− (

H(X)−R(D0)
)]

Summing the above over all B ∈ B,

(
L− 1

n− 1

) L∑
i=1

Ri ≥
(

L

n

)
n

n−m

(
h− [

H(X)−R(D0)
])

which yields (6.37).

Let us take a close look at (6.36). If n = L as in [67] (i.e., if we do not impose

diversity coding), then the sum-rate in (6.36)) reduces to the total information bits

of R(D0). Hence, we see that the L
n

factor overhead in (6.36) is precisely due to the

fact that the legitimate receiver is to be endowed with diversity coding. On the other

hand, the lower bound in Lemma VI.4 (refer (6.37)) imposes secrecy constraints on
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the channels, as well as diversity coding on the legitimate receiver. These results

gives a clear picture on the impact of secure and diversity coding on the sum-rate.

Further, we assume that

L

n
R(D0) ≤ L

n−m

[
h− (

H(X)−R(D0)
)]

(6.38)

If do not impose the above assumption, then, all we need to achieve is the lower

bound in (6.36) (i.e., without the secrecy constraints), which makes the problem less

interesting. Now, it only remains the show the lower bound in (6.37) is achievable.

Letting Rk represent the minimum additional bits, we then have the following:

Lemma VI.5. The minimum number of additional bits (i.e., key bits) with the eaves-

dropper being able to access any of the
(

L
m

)
channels and the legitimate receiver being

able to decode from any of the
(

L
n

)
channels with m < n ≤ L is given by

Rk =
L

n(n−m)

[
n
(
h−H(X)

)
+ mR(D0)

]
(6.39)

Here again, we see that the number of key bits required is scaled by the factor L
n

(i.e., diversity gain factor). We will first show that, we can construct a perfect secure

code which can provide a diversity gain as well, for the legitimate receiver. Then, we

will address the construction of a partial secure code that provides diversity gain.

Lemma VI.6. There exists a code which is perfectly secure and provides diversity

gain for the legitimate receiver, which achieves the lower bound in Lemma VI.4.

Proof. The code is constructed as follows:

1. For the case of perfect secrecy, we first note from Lemma VI.5 that we have a

total of Rk = L
n

m
n−m

R(D0) key bits. Hence, the number of distinct key bits we

need is m
n−m

R(D0). Generate key bits Ki for i = 1, 2 . . . m, each of length R(D0)
n−m

independently of each other and the information bits.
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2. Generate distinct information bits Ij, each of length R(D0)
n−m

for j = 1, 2 . . . n−m.

Note that, at this point we have represented all our distinct information bits.

Denote,

S =

[
K1 K2 . . . Km I1 I2 . . . In−m

]T

The code can then be written as :

C
(
R(D0)

)
= AS (6.40)

where, A is a L× n matrix, which takes the form:

A =




α11 α12 . . . α1,n−1 α1,n

α21 α22 . . . . . . α2,n

...
. . .

αL,1 αL,2 . . . . . . αL,n




(6.41)

and C
(
R(D0)

)
represents a code that can provide perfect secrecy and diversity gain

for R(D0) information bits. In order for the legitimate receiver be able to recover S,

from any of the
(

L
n

)
submatrices of A, each of size n × n, it must be true that all

such submatrices must be invertible. But, this can be easily guaranteed by choosing

αi,j from a large field for 1 ≤ i ≤ L, 1 ≤ j ≤ n such that A has all its rows linearly

independent. It is easy to see that for the case when no diversity coding is required

(i.e., n = L), simply delete the last (L−n) rows of matrix A. When the eavesdropper

accesses m channels at a time, he has n unknowns to determine (m < n) as in [67].

Another important aspect in achieving the lower bound in (6.37) is that the

elements αi,j in matrix A should be chosen such that we do not increase the rate of

the resultant code. Note that it may not always be possible to do this as it depends

on m, n, L and the secrecy requirements. The best way to ensure such that we operate
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on the lower bound is to use the channel once per G input codewords after collecting

enough information bits (where, G may be an arbitrary function of m,n, L and can

be determined empirically). It is clear that this scheme will incur a delay.

Lemma VI.7. A partially secure code can be obtained by concatenating a perfect

secure network code with another network code of information bits, which at the same

time provides diversity gain for the legitimate receiver and achieves the lower bound

in Lemma VI.4.

Proof. The code is constructed as follows:

1. From Lemma VI.5, and by our previous observation from Lemma VI.6 on the

amount of key bits required for providing perfect secrecy, we infer that for the

present case (i.e., when h 6= H(X)), the amount of distinct information bits

that can be provided perfect secrecy is:
[
R(D0)−

(
H(X)− h

)
n
m

]
.

2. Hence we see that we need to code an additional
(
H(X)−h

)
n
m

information bits.

Generate J i distinct information bits each of length

(
H(X)−h

)
m

for i = 1, 2 . . . n.

Denote:

S̃ =

[
J 1 J 2 . . . J n

]T

The network code of information bits is given by:

C̃ = ÃS̃

where, Ã is a L× n matrix, which can be represented as:

Ã =




β11 β12 . . . β1,n−1 β1,n

β21 β22 . . . . . . β2,n

...
. . .

βL,1 βL,2 . . . . . . βL,n



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Here again, we need to make sure that all the rows of Ã are linearly independent for

the legitimate receiver to be able to decode the rest of the
(
H(X)−h

)
n
m

information

bits. Hence, the partial secure code is given by:

R =

[
C̃ C

(
R(D0)− (H(X)− h) n

m

) ]
(6.42)

where, R is the final partial secure code and C
(
R(D0)− (H(X)−h) n

m

)
is the perfect

secure code which can provide perfect secrecy to
(
R(D0)−(H(X)−h) n

m

)
information

bits. Note that its construction was provided in the proof of Lemma VI.6.

C. Multiple Sources with Diversity Coding and Secrecy Constraints

In Section B, we looked at the problem of communicating one source in presence of an

eavesdropper with the legitimate receiver being able to reconstruct the source from a

subset whose size is larger than the size of the subset that the eavesdropper has access

to. In this section, we look at a natural extension of the problem treated in Section

B: communicating multiple sources with an eavesdropper and the legitimate receiver

being endowed with diversity coding. The motivation for studying this problem comes

from the following:

Consider the scenario where the eavesdropper has access to a subset of size m

out of a total of L available channels and that the legitimate receiver should be

able to reconstruct the source whose quality depends on the number of the channels

that it has access to. For example, if the legitimate receiver accesses any subset of

size (m + 1) channels, it should be able to reconstruct the source to an acceptable

level of distortion (i.e., basic quality), with the quality of reconstruction of the source

increasing with increasing k, as the legitimate receiver gets to access (m+k) channels.

Roughly speaking, this situation is more or less similar to the problem of successive
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refinement with secrecy constraints. However for this problem setup, the point of

view of successive refinement is as follows: We assume that an i.i.d source S can be

split into several i.i.d sources S1, S2 . . . Sk with decreasing level of importance. For

example, S1 could represent the bits corresponding to the low frequency coefficients

of the image S, while sources S2, S3 . . . Sk could represent the bits corresponding to

the (k− 1)thdetail coefficients, in a wavelet-type expansion. Hence, the problem then

reduces to communicating multiple sources with an eavesdropper, with the legitimate

receiver endowed with diversity coding. This scheme is sometimes called multilevel

diversity coding [68].

In a multilevel diversity coding system, information sources are encoded by many

encoders and there are multiple decoders with each decoder having access to a subset

of encoders [68]. The goal of the multilevel diversity coding system is that, the en-

coding needs to be done in such a way that each decoder be able to reconstruct the

source either perfectly or with some distortion. In the symmetrical multilevel diver-

sity coding problem treated by Roche and Yeung [69], the decoders are partitioned

into multiple levels and that the decoder belonging to a particular level be able to

reconstruct a predetermined number of sources.

We consider a more generalized version of the problem treated in [69] in this

section: There are multiple information sources that have to be communicated to a

legitimate receiver through the total available L separate communication channels.

The eavesdropper has access to any subset of m channels (m < L), while the legitimate

receiver has access to all the L channels. There are a total of L−m sources that has to

be communicated to the legitimate receiver. The source encoder encodes the sources

into L packets, possibly of different size and sends them each, through a channel. The

encoding is done in such a way that, any subset of m packets does not convey any

information about any of the sources, while the sources {1, 2, . . . k}(1 ≤ k ≤ L−m)
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Encoder Receiver

Legitimate...
...

R1

W1

W2

RL
WL

SN
1

S
N
2

SN

L−m

R2

Fig. 37. The general problem considered in this section. Codeword sent on channel l

is denoted by Wl ∈ {1, 2 . . . 2nRl} (l = 1, 2 . . . L).

can be reconstructed perfectly by accessing any subset of (m+ k) channels. The case

of m = 0 is treated in [69].

Our main result is an exact characterization of the rate region for the case when

L = 3 and m = 1, with two sources. Furthermore, we show that a ‘separate’ secure

coding of information sources is optimal for this problem. For the more general case

when L and m are arbitrary, we characterize a lower bound on the sum-rate and the

result implies a natural separation strategy to achieve this lower bound.

1. System Model

A source encoder is presented with a sequence of source letters from i.i.d sources

{S1, S2 . . . SL−m}, drawn from the alphabet X1,X2 . . . XL−m respectively, as shown in

Fig. 37. For each block of N letters from each of the sources (N arbitrary), there are L

outputs, fl(S
N
1 , SN

2 . . . SN
L−m) = Wl ∈ {1, 2 . . . 2NRl} for l = 1, 2 . . . L. The codeword

Wl is sent through the lth (l = 1, 2 . . . L) communication channel.

Let A denote the collection of all subsets of channels of size m, which the eaves-

dropper has access to. We assume that the eavesdropper can access any member of A,

but no more than one member of A. For A ∈ A, let YA be the codeword transmitted

on the channel corresponding to the elements in A. It is desired that the eavesdropper

does not get any information on any of the sources when it has access to YA, for all
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A ∈ A. Denote the collection of all subsets of sources of size {1, 2 . . . L −m}, by S.

For any S ∈ S, the equivocation rate needs to satisfy the following:

H(S|YA) = H(S) ∀S ∈ S and ∀A ∈ A (6.43)

Denote by Zm+k which contains the collection of all subsets of channels of size (m+k)

(1 ≤ k ≤ L−m). Since the legitimate receiver requires that sources {1, 2 . . . k} need

to be reconstructed perfectly when it accesses any B ∈ Zm+k, it follows that:

H(SN
1 , SN

2 . . . SN
k |YB) = 0 ∀B ∈ Zm+k and 1 ≤ k ≤ L−m (6.44)

where, YB is the codeword transmitted on the channels corresponding to elements in

B. For simplicity, we henceforth denote SN
k (1 ≤ k ≤ L−m) by Sk. We also define

the following:

x⊕ y =





x + y if x + y ≤ 3

x + y − 3 if x + y > 3

2. The Rate Region for the case when L = 3 and m = 1

In this case, we have two sources S1, S2 with a total of three communication channels

and the eavesdropper having access to any one channel (See Fig. 37).

Theorem VI.6. The rate region for the case with L = 3, m = 1, with two sources

S1, S2 is given by the rate tuple (R1, R2, R3) which satisfy the following:

Ri ≥ H(S1) for i = 1, 2, 3. (6.45)

Ri + Rj ≥ 2H(S1) + H(S2) for 1 ≤ i < j ≤ 3 (6.46)

R1 + R2 + R3 ≥ 3H(S1) +
3

2
H(S2) (6.47)

We first prove some lemmas which will be useful in proving Theorem VI.6.
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Lemma VI.8. For 1 ≤ i ≤ 3 ,

H(Wi) ≥ H(S1) + H(Wi|S1,Wi⊕1)

Proof.

H(Wi) ≥ H(Wi|Wi⊕1)

= H(Wi|Wi⊕1) + H(S1|Wi,Wi⊕1)

= H(S1,Wi|Wi⊕1)

= H(S1|Wi⊕1) + H(Wi|S1, Wi⊕1)

= H(S1) + H(Wi|S1,Wi⊕1)

where the first equality follows from the fact that the source S1 must be decodable

by any of the two distinct channels and the last equality follows due to the secrecy

constraints.

Lemma VI.9. For 1 ≤ i ≤ 3 ,

H(Wi|S1,Wi⊕1) + H(Wi⊕1|S1,Wi⊕2) ≥ H(S2)

Proof.

H(Wi|S1,Wi⊕1) + H(Wi⊕1|S1,Wi⊕2) ≥ H(Wi|S1,Wi⊕1,Wi⊕2) + H(Wi⊕1|S1,Wi⊕2)

= H(Wi,Wi⊕1|S1,Wi⊕2)

(a)
=

(
H(Wi,Wi⊕1|S1,Wi⊕2) +

H(S2|Wi,Wi⊕1,Wi⊕2,S1)
)

= H(S2,Wi,Wi⊕1|S1,Wi⊕2)

≥ H(S2|S1,Wi⊕2)

= H(S1,S2|Wi⊕2)−H(S1|Wi⊕2)
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(b)
= H(S1,S2)−H(S1)

(c)
= H(S2)

where, (a) follows due to the fact that the source S2 needs to be decodable from

all three channels, (b) due to secrecy constraints and (c) due to the sources being

i.i.d.

Now, we begin proving Theorem VI.6. (6.45) can be proved as follows:

NRi ≥ H(Wi) ≥ H(S1) = NH(S1)

where, the second inequality follows from Lemma VI.8. Now, we prove (6.46).

N(Ri + Rj) ≥ H(Wi) + H(Wj)

≥ 2H(S1) + H(Wi|S1,Wi⊕1) + H(Wj|S1,Wj⊕1)

≥ N(2H(S1) + H(S2))

where the second inequality follows from Lemma VI.8, and the last inequality follows

from Lemma VI.9. Finally, (6.47) follows from:

N(R1 + R2 + R3) ≥ H(W1) + H(W2) + H(W3)

≥ 3H(S1) + H(W1|S1,W2) + H(W2|S1,W3) + H(W3|S1, W1)

= 3H(S1) +
1

2

[(
H(W1|S1,W2) + H(W2|S1,W3)

)
+

(
H(W2|S1,W3) + H(W3|S1, W1)

)
+

(
H(W3|S1,W1) + H(W1|S1,W2)

)]

≥ N(3H(S1) +
3

2
H(S2))

where the second inequality follows from Lemma VI.8 and the last inequality follows

from Lemma VI.9.
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a. Separate Secure Coding of Sources is Optimal

We will show that, we can achieve the lower bounds in Theorem VI.6, by designing

secure codes for sources S1 and S2 separately. We will use the technique in [69] to

prove this claim. We write Ri (1 ≤ i ≤ 3) as follows:

Ri = r1
i + r2

i 1 ≤ i ≤ 3 (6.48)

where, r1
i and r2

i are the rate constraints for sources S1 and S2 respectively. Denote n

to be number of channels from which the source Si (i = 1, 2) needs to be reconstructed.

For source S1, we then have n = 2, L = 3 and m = 1. From Chapter VI (Theorem

VI.5 with D0 = 0), the rate region is given by the rate tuple (r1
1, r

1
2, r

1
3) which satisfy

the following:

r1
i ≥ H(S1) for 1 ≤ i ≤ 3 (6.49)

For the source S2, we have n = L = 3 and m = 1. The rate region is given by the rate

tuple (r2
1, r

2
2, r

2
3) which satisfy the following (from Chapter VI, Theorem VI.5 with

D0 = 0):

r2
1 + r2

2 ≥ H(S2)

r2
2 + r2

3 ≥ H(S2) (6.50)

r2
1 + r2

3 ≥ H(S2)

By taking into account (6.48) through (6.50) and also by the fact that:

r2
1 + r2

2 + r2
3 ≥

3

2
H(S2) (6.51)

(which follows by summing all equations in (6.50)), we get the rate tuples (R1, R2, R3)

that satisfy Theorem VI.6.
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3. Sum-Rate Lowerbound for Arbitrary L and m

In this section, we derive the sum-rate lowerbound for the case depicted in Fig. 37.

The derivation closely follows the technique presented in [69], with the secrecy con-

straints enforced.

Theorem VI.7. For the case of arbitrary L and m, with L−m sources, the sum-rate

satisfies the following:

R1 + . . . RL ≥ L
L∑

i=m+1

H(Si−m)

i−m

Proof. Let T denote a subset of {1, 2 . . . L}. We will prove that for m < r ≤ L, the

following holds:

L∑
i=1

H(Wi) ≥ NL

r∑
i=m+1

H(Si−m)

i−m
+

{
L(
L

r+1−m

) × (6.52)

∑

T :|T |=r+1−m

H(Wj, j ∈ T |S1,S2 . . .Sr−m, YA, A ∈ AT )

r + 1−m

}

where, AT denotes the collection of all subsets of channels that the eavesdropper has

access to, which does not contain j for j ∈ T . Clearly, |AT | =
(

L−|T |
m

)
, where |AT |

represents the cardinality of the set AT . Assume that (6.52) is true for r = p. We

will now show that (6.52) holds for r = p + 1.

L∑
i=1

H(Wi) ≥ NL

p∑
i=m+1

H(Si−m)

i−m
+

{
L(
L

p+1−m

) ×

∑

T :|T |=p+1−m

H(Wj, j ∈ T |S1,S2 . . .Sp−m, YA, A ∈ AT )

p + 1−m

}

(a)
= NL

p∑
i=m+1

H(Si−m)

i−m
+

{
L(
L

p+1−m

) ×



117

∑

T :|T |=p+1−m

[H(Wj, j ∈ T |S1,S2 . . .Sp−m, YA, A ∈ AT )

p + 1−m
+

H(Sp+1−m|S1,S2 . . .Sp−m,Wj, YA, j ∈ T,A ∈ AT )

p + 1−m

]}

= NL

p∑
i=m+1

H(Si−m)

i−m
+

{
L(
L

p+1−m

) ×

∑

T :|T |=p+1−m

H(Sp+1−m,Wj, j ∈ T |S1,S2 . . .Sp−m, YA, A ∈ AT )

p + 1−m

}

= NL

p∑
i=m+1

H(Si−m)

i−m
+

{
L(
L

p+1−m

) ×

∑

T :|T |=p+1−m

[H(Sp+1−m|S1,S2 . . .Sp−m, YA, A ∈ AT )

p + 1−m
+

H(Wj, j ∈ T |S1,S2 . . .Sp+1−m, YA, A ∈ AT )

p + 1−m

]}

= NL

p∑
i=m+1

H(Si−m)

i−m
+

L(
L

p+1−m

)
∑

T :|T |=p+1−m

[H(S1, . . .Sp+1−m|YA, A ∈ AT )

p + 1−m
−

H(S1, . . .Sp−m|YA, A ∈ AT )

p + 1−m
+

H(Wj, j ∈ T |S1,S2 . . .Sp+1−m, YA, A ∈ AT )

p + 1−m

]

(b)
= NL

p∑
i=m+1

H(Si−m)

i−m
+

L(
L

p+1−m

)
∑

T :|T |=p+1−m

[H(Sp+1−m)

p + 1−m
+

H(Wj, j ∈ T |S1,S2 . . .Sp+1−m, YA, A ∈ AT )

p + 1−m

]

= NL

p+1∑
i=m+1

H(Si−m)

i−m
+

{
L(
L

p+1−m

) ×

∑

T :|T |=p+1−m

[H(Wj, j ∈ T |S1,S2 . . .Sp+1−m, YA, A ∈ AT )

p + 1−m

]}

(c)

≥ NL

p+1∑
i=m+1

H(Si−m)

i−m
+

{
L(
L

p+2−m

) ×

∑

T :|T |=p+2−m

H(Wj, j ∈ T |S1,S2 . . .Sp+1−m, YA, A ∈ AT )

p + 2−m

}
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where (a) follows from the decodability of the source Sp+1−m given a subset of message

{W1, . . . WL} of size (p + 1), (b) follows due to secrecy constraints and the fact that

all sources are i.i.d and (c) from the application of Han’s inequality [66].

D. Conclusion

We have addressed the secrecy capacity of a source coding problem wherein infor-

mation needs to be transmitted from a source to a legitimate receiver amidst an

eavesdropper with the legitimate receiver endowed with diversity coding. The rate

region was precisely characterized for simple cases and schemes using linear network

codes were proposed to achieve the lower bound. We showed that we could con-

struct a partial secure code by simply concatenating a perfect secure network code

with another network code of information bits. For the case of arbitrary m,n, L,

we derived a lower bound on the sum-rate and proposed simple schemes to achieve

it. Furthermore, the concept of secure-diverse coding was extended for the problem

with multiple sources. Again, the rate region was derived for a simple case, while a

sum-rate lower bound was provided for the general case.
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CHAPTER VII

CONCLUSION

In this dissertation, we have looked at some fundamental limits of cooperative schedul-

ing systems, cognitive radio systems and the secrecy capacity of a source coding

problem.

In Chapter II, we have given a brief introduction to the general principles of

cooperative and secrecy systems. Chapter III dealt with finding optimal scheduling

schemes for a downlink (i.e., non-cooperative) and cooperative systems. It was inter-

esting to note that the optimal scheduling scheme for a cooperative system belongs

to the same class as that of non-cooperative systems. Furthermore, it was shown that

the cooperative scheduling system enlarges the achievable rate region. The concept

of finding optimal scheduling scheme was extended to the case of delay constrained

systems in Chapter IV. Thus the results of Chapter III and Chapter IV unifies the

capacity achieving scheduling schemes for any delay constraints.

In Chapter V, we analyzed the cognitive radio system from a link layer per-

spective. To this end, we modeled the cognitive radio as a priority queuing system

(by treating the secondary user as a lower priority user), with constant input arrival

rate and variable service rate (to model the time varying wireless channel). By using

a simple dual structure of the counterpart priority queuing system (i.e., with vari-

able input rate and constant service rate), we characterized the input rates that the

primary and secondary user could achieve for the original cognitive radio system.

Chapter VI looked at secrecy capacity of a source coding problem for single and

multiple sources. We started looking at the rate region of a problem wherein a source

needs to be transmitted to a legitimate receiver through a total of L channels with the

eavesdropper having access to any subset of m channels and the legitimate receiver
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being able to decode the source completely from any subset of n channels (where

m < n ≤ L). We proposed simple schemes that the encoder may use to communicate

with the legitimate receiver using linear network codes. We extended this problem

to the case when there are multiple sources to be communicated to the legitimate

receiver. The upshot of the study for this problem is the following: Performing

separate secure coding of individual sources is optimal for the case of two sources and

in general for achieving the sum-rate point for arbitrary number of sources.

It may be noted in Chapter VI, that the level of secrecy for a source was fixed

(i.e., the problem that we have addressed is that each source has to be perfectly secure

to any subset of m channels irrespective of the source). However, we can view this

problem in a different perspective. Suppose that the secrecy level desired for each

source is different. For example, if the source Sk, for k < L has to be secure against k

out of a total of L channels. Then we could ask what would be the optimal scheme to

communicate in this scenario? One possible solution is to construct a separate code

for each of the sources as we did in Chapter VI. But another line of thought is the

following: Note that the secrecy level of Sk increases with k (akin to the degraded

broadcast framework where there is a strict ordering in the channel of users). A

natural question to ask where there is an ordering in the secrecy levels of users is

the following: Can we construct a embedded secure code wherein the weaker secure

code is embedded in a stronger secure code (analogous to the code construction of

degraded broadcast channels, wherein the message of the weaker user is embedded in

the message of the stronger user)? We strongly conjecture the existence of embedded

secure codes, however, neither we have been able to prove the converse nor come up

with a scheme for this scenario. It would be interesting to answer the non-existence

or existence of secure embedded codes.
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