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ABSTRACT

Phase-field Models for Solidification and Solid/liquid Interactions. (December 2009)

Min Soo Park, B. En., M. S., Yeungnam University, Korea

Chair of Advisory Committee: Dr. Raymundo Arróyave

The microstructure resulting from the solidification of alloys can greatly affect

their properties, making the prediction of solidification phenomena under arbitrary

conditions a very important tool in the field of computer-aided design of materials.

Although considerable attention has been allocated to the understanding of this phe-

nomenon in cases in which the solidification front advances freely into the liquid,

the actual microstructure of solidification is strongly dependent of interfacial interac-

tions. Over the past decade, the phase-field approach has been proved to be a quite

effective tool for the simulation of solidification processes. In phase-field models, one

or more phase fields ϕ (conserved and/or non-conserved) are introduced to describe

the microstructure of a complex system. The behavior of a given microstructure

over time is then simulated by solving evolution equations written in terms of the

minimization of the free energy of the entire system, which is written as functional

of the field variables as well as their gradients and materials’ constitutive equations.

With the given free energy functional, the governing equations (phase-field equation,

diffusion equation, heat equation and so on) are solved throughout the entire space

domain without having to track each of the interfaces formed or abrupt changes in

the topology of the microstructure. In this work I will present phase-field models for

solidification processes, solid/liquid interactions as well as their applications.
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CHAPTER I

MOTIVATION

Over the past decades, there has been considerable interest in finding efficient meth-

ods for simulating solidification phenomena [1, 2, 3, 4, 5, 6, 7, 8]. Recently, the

phase-field method has emerged as a very robust approach to investigating complex

microstructural evolution phenomena in a wide range of materials systems, involving

an equally wider range of physical phenomena. These models are able to describe

phase transformations in a system with a set of equations written in terms of con-

served and non-conserved field variables that are continuous and smooth across the

interfacial regions, while allowing for highly localized variations at the interfaces. The

evolution equations of the field variables are determined, through variational princi-

ples, by letting the system relax in a path that most efficiently minimizes the total

free energy of the system. This free energy is a functional of the field variables, their

gradients as well as constitutive equations and couplings involving thermal, chemical,

electrical, magnetic (and many more) contributions to the total free energy. The sim-

plest phase-field models (for binary systems) consist of a nonlinear diffusion equation

and a phase field equation. These models attempt to simulate phase transformations

involving mass transport across interfaces. With the use of the fundamental ther-

modynamic and kinetic information as input, the phase-field method can be used

to investigate the evolution of arbitrary morphologies and complex microstructures

without explicitly tracking the positions of interfaces.

Phase field modeling has been widely used to investigate many important so-

lidification problems including solute trapping during rapid solidification, dendritic

The journal model is IEEE Transactions on Automatic Control.
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growth in pure and binary materials, eutectic solidification in a binary alloys, and

so on. In this chapter, I will motivate the research objectives of this work by briefly

describing some key developments in the phase-field descriptions of phase transitions

involving solid/liquid interactions. A more detailed mathematical description of the

fundamental phase-field models will be provided in Chapter II.

A. Introduction

The complexities of the pattern evolution of a moving solid-liquid interface have been

solved by many different mathematical methods. Among the different approaches

developed, phase-field models are known to be simple and powerful from the numer-

ical perspective because the governing equations are defined throughout the whole

system, without having to identify internal interfaces or changes in topology as well

as the formation of new phases. Additionally, the interface position does not need to

be tracked during numerical calculation. Over the past decade, fairly robust phase

field models have been introduced for describing solidification phenomena in unary

systems [9, 10, 11], binary systems involving a single solid phase [3, 12], as well as

solidification phenomena involving two solid phases [4, 13, 14]–namely, eutectic and

peritectic reactions [15, 16].

Phase-field models are used for calculating morphology of solid-liquid interface as

well as solute redistribution during the solidification of a material system. Parameters

used in phase-field models can be obtained by matching classical balance equations

across a zero-thickness interface with approximate solutions to the phase-field equa-

tions across the interfaces. In classical models in solidification, each phase has their

own governing equations and conservation equations (mass, energy) to be solved for.

Additionally, supplemental conditions are also required to couple with neighboring
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phases. If there is a system that have more than 4 phases, for example, 8 governing

equations for each phase and 6 supplemental conditions are demanded to solve the

solidification behaviors of the system.

Realistic simulations involving multiple phases and components involve the cou-

pling of dynamic and conservation equations within and between phase interfaces,

making the simulation of complex systems undergoing extensive topological changes

in their microstructure a very challenging problem. Contrary to the classical models,

phase field models are free from those restrictions by introducing the concept of con-

served or non-conserved field variables ϕ which are smooth and continuous throughout

the simulation domain. However, implementation of realistic phase-field descriptions

of phase transformation phenomena involve the consideration of problems not present

in alternative models, such as the dimensions and structures of interfaces separating

neighboring domains with different values of a particular conserved or non-conserved

field variables [17].

As mentioned above, the development of phase-field models starts with the de-

scription of the total free energy of a system in terms of conserved (e. g. concen-

tration) or non-conserved (e. g. order parameter) field variables, their gradients

and constitutive relations that are used to introduce different energy contributions to

the total free energy of a system. The phase-field approach consists of formulating

dynamic equations for all the field variables used to describe the state of the sys-

tem at any point in space and moment in time. The actual dynamical behavior of

the relaxation equations depends on the nature of the field variables (conserved vs.

non-conserved), but ultimately is related to the maximization of the rate at which

a system minimizes its free energy [3]. For further developments of this powerful

approach, several technical issues have needed to be solved, while other important

issues still remain.
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In classical models, the thickness of interface does not need to be specified or

can be considered to be sharp because supplemental conditions involving conserva-

tions equations can be used to couple dynamic equations across neighboring phase

domains. However, phase-field models of a collection of integrated governing equa-

tions valid for all phases and regions of the computational domain. Therefore, when

considering regions in which field variables change rapidly (i.e. phase interfaces), the

field variable profiles should be continuous and differentiable. In order to ensure a

continuous and smooth change in the field variables defining the microstructure of a

system, it is necessary to impose a minimum thickness for the interfaces considered

in implementations. These interfaces do not correspond to physical interfaces but are

rather numerical representations of rapid changes in the topology of the distribution

of field variables. To develop more realistic phase-field descriptions, it is necessary to

define phase-field interfaces through sound physical understanding. Recently, Karma

and Rappel [18] have provided some guidelines for the determination of parameters

necessary for describing finite thickness interfaces in the phase-field equation in a

unary solidification system.

With the aspect of phase field modeling, phase field models, WBM model [3] and

KKS model [5] are introduced and widely used so far. The two models are developed

with the Landau-Ginzberg free energy functional associated with the Helmholtz free

energy and the concept of minimizing free energy in a system [19]. However, they took

different definition of the structure of the interface which is one of the key aspects of

phase-field modeling. In real physical systems, interfaces have very specific structures

which are fundamentally different from the bulk. Interfaces in the context of phase-

field modeling are simply mathematical constructs that need to be properly defined

in order to represent realistic microstructural features. One school of thought [3]

postulates that at the interface there is a combination of coexisting phases that have
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identical compositions even though they are different in nature. An example would

be a phase-field solidification model in which the liquid and solid phases are assumed

to coexist at the solid/liquid interfaces and to have equal compositions.

While this approach has been proven to be quite useful in many cases, imple-

mentation of this description imposes very stringent constraints on the thickness of

the numerical interfaces used in phase-field simulations. To resolve this issue, Kim

et al. [5] proposed a new concept for a phase field model that has a different defini-

tion of solid and liquid composition at a interface. They justified the new approach

by demonstrating that the assumption of coexisting phases with equal compositions

resulting in artificial contributions to the chemical free energy of the system which

were greatly amplified as the thickness of the numerical interfaces was increased. To

resolve this issue they proposed that across the interface local chemical equilibrium

conditions be imposed. These thermodynamic constraints and mass conservation were

then used to fix the compositions of coexisting phases. This approach was shown to

be successful at eliminating artificial contributions to the free energy, consequently

relaxing the constraints on the maximum interface thickness which could be used in

phase-field modeling.

The phase field models described above are only single phase field model. A

phase field model that can handle with multiple phases is required. A multi-phase

field model developed by Steinbach et al. [6] and Tiaden et al. [20] was a milestone for

modeling solidification problems through the phase-field approach. The multi-phase

field model was originally derived from a single phase field model, but they defined

that each phase has a discrete phase variable and that each phase coexists with other

phases at a interfacial region. The free energy functional was the defined in terms

of pair-wise differences in field variables at interfacial regions and conventional ho-

mogeneous contributions to the free energies in regions away from interfaces. The
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multi-phase field dynamic (relaxation) equations were thus defined only within inter-

facial regions by summing (pair-wise) contributions of each existing phase-field at the

interface. Problems involving the formation of multiple grains of the same phase but

with well defined grain boundaries separating them involved the definition of multiple

phase-field variables corresponding to different variants (with different orientations,

for example) of the same structural phase. While this approach is rather unphysical,

it has been shown to be quite effective at modeling complex phase transformations.

A more physical approach to the simulation of multiple coexisting grains of the

same structural phase would be to consider the changes orientation of each grain

with respect to a frame of reference as a way for defining grain boundaries between

these grains. Recently, several researchers [8, 21, 22, 23] have attempted to intro-

duce crystal orientation as an additional field-variable to be relaxed during phase-

field formulations. The crystallographic model had been developed to treat at least

two-dimensional configurations that considerably simplifies the description of a grain

boundary where one can expect that the grain boundary has two geometrical degrees

of freedom. one is the inclination angle of the boundary plane between two crystals Ψ,

and the crystallographic misorientation ∆θ, which is discontinuous across the bound-

ary. Two more degrees of freedom (two more misorientations) should be required

in three dimensions and its implementation is conceptually straightforward. The in-

troduction of the orientation field effectively reduces the number of field variables

to solve for during the evolution of complex multi-phase phenomena. Unfortunately,

this comes with the cost of adding at least an additional dynamical equation to solve.

Based on the phase field models above, there are many investigations that have

been done in many interesting applications. Phase field model for dendrite growth

is developed initially in undercooled pure melt [1, 9, 10, 19, 24, 25] and extended to

binary or ternary alloy system [26]. Kim et al. [27] investigated eutectic solidification
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in organic alloy system. They presented a variety of numerical results based on the

tilt of the eutectic growth, lamellar spacing and compositions under isotropic and

anisotropic effect. Modeling and simulation of soldering reactions in electronic mate-

rials is also a good example for use of phase field approaches in order to investigate

the microstructural evolution of intermetallic compounds and the reliability of solder

interconnections [28, 29, 30, 31, 32]. Interfacial interactions–including crystal forma-

tion and growth–occurring at the interface of two substances is also can be solved by

the phase field approaches [33, 34, 35, 36].

There are also experimental investigations about the solidification process which

can have been motivated by phase-field simulations or that can be used to refine

phase-field descriptions of solidification phenomena. Mergy et al. [37] worked on the

experimental investigation of the eutectic growth pattern of CBr4-C2Cl6 system con-

sidering physical parameters such as interfacial energies and diffusion coefficients.

Ginibre et al. [38] investigated the instability of lamellar growing pattern under the

directional solidification by controlling lamellar spacing, concentration and solidifica-

tion velocity with the same organic alloy. The experimental characterization of the

instability of eutectic growth was found to be in very good agreement with instability

diagrams previously computed by Karma [4, 18]. A better understanding of the con-

ditions that drive the (in)stability of eutectic patterns have provided researchers with

the fundamental inspiration to control lamellar growth pattern [39]. Investigations

of the intermetallic compound growth are of great importance for the preliminary

researches [40, 41, 42, 43, 44, 45, 46]. In soldering reactions between Sn-based solders

and Cu substrate, Cu6Sn5 is formed as scallop-type grains with liquid solder pene-

trating between them and Cu3Sn is formed under Cu6Sn5 scallops. Many research

results found the rapid intermetallic compound growth with growth rates on the order

of several microns per minute during the reaction, grains coarsening with decreased
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number of grains.

In Chapter II, I will motivate the use of phase-field modeling for solidification by

describing existing models developed over the past decade as well as computational

investigations and experimental results used to corroborate (and in some instances

inspire) phase-field simulations. In Chapter III, I will introduce a recent modification

to the description of the interface structure in phase-field modeling. The approach

in question is based on imposing a thermodynamic equilibrium constraint though

regions of space occupied by more than one phase (i. e. interfaces). Examples

of the usage of this formalism to describe one and two-dimensional solidification

phenomena will be provided. In Chapter IV, the multi-phase-field formalism will

be introduced and will be used to describe solidification phenomena involving more

than two co-existing phases. Specifically, eutectic solidification of organic alloys will

be simulated. Furthermore the influence of insoluble particles on the stability of

eutectic solidification fronts will be investigated through multi-phase field simulations.

This later mathematical model is inspired by recent attempts to improve mechanical

properties of electronic solder alloys through eutectic refinement and synthesis of

nano-composite alloys. In Chapter V, the multi-phase-field approach introduced in

Chapter IV will be used to describe the morphological evolution of intermetallic

compound (IMC) layers formed through liquid/solder chemical interactions during

electronic soldering. Specifically, the morphological evolution of a single IMC (Cu6Sn5

only) phase and two IMCs (coexistence of Cu6Sn5 and Cu3Sn5)in Cu-Sn system will

be studied. Chapter VI describes further refinements of the mathematical models

presented in Chapter V through the incorporation of nucleation. This refinement

allows the investigation of the early stages of soldering reactions. In Chapter VII, the

multi-phase-field method used throughout most of this thesis will be replaced with a

novel formalism based on the addition of a non-conserved field variable representing
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the orientation of a particular solid phase formed through the interaction between

solid and liquid. This new formalism will be applied to the problem of soldering in

the Cu-Sn binary system. The thesis concludes with a summary of the work presented.
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CHAPTER II

LITERATURE REVIEW

This chapter provides readers with background knowledge and reviews of the key lit-

erature in the field of simulation of microstructural evolution of materials, specifically

with regards to phase-field modeling of solidification and microstructure evolution in-

volving solid/liquid interactions. This review is not meant to be exhaustive on the

topic but to provide readers with a basic framework within which the basic physical

and computational principles are presented.

We start with a discussion of a classical solidification model for unary and binary

systems by using heat equation and concentration equation. The goal of introducing

the classical solidification model is to show the difficulty of acquisition of govern-

ing and coupling equations in computational investigations of phase transformations

involving complex topological changes.

Secondly, we provide a detailed discussion of solidification models based on the

phase-field approach. Contrary to the classical model, it turns out that only two types

of governing equations describing the dynamics of conserved (concentration) and non-

conserved (phase parameter) field variables are required. To obtain the governing

equation of a phase-field variable (hereafter, phase-field equation), a definition of

phase stability should be required based on entropy-approached points of view [47] or

free-energy-approached points of view [3, 5], depending on whether non-isothermal or

isothermal conditions are imposed on the system, respectively. For the free-energy-

approach points of view, two different models are introduced. While these models

are not the only ones that have been developed to tackle this problem, they represent

two very different views on how to represent the structure of the interface, which

ultimately constitutes the basis of the phase-field approach (which in some instances
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is known as diffuse-interface model).

Wheeler et al. [3] defined a interface where solid and liquid composition are equal

while Kim et al. [5] defined a interface where solid and liquid composition are differ-

ent, but chemical potentials are equal. Steinbach et al. [6] extended the classical

two-phase-field description by introducing a phase-field model that considers the ex-

istence of multiple phases (hereafter, a multi-phase field model). The dynamics of this

later approach are defined in terms of pairwise energy difference between the coexist-

ing phases at an interface. With these models, there have been many computational

efforts aimed at reproducing experimental investigations of microstructure formation

and evolution during solidification and other phenomena involving solid/liquid inter-

actions. I will introduce some important computational results that come from use

of the phase field models and provide key experimental results for reference.

Finally, I will introduce the intermetallic compound formation and growth during

lead-free soldering, which has also been simulated by the phase-field approach. Before

showing the examples of the experimental researches, I will briefly introduce the

motivation for the use of lead-free soldering which is important in the microelectronics

industry, prospectives of using lead-free solder, selection of lead-free solder and the

characteristic of materials that are used for lead-free solders. This section would

not be directly relevant to phase-field modeling of current works, but rather provide

readers with appropriate backgrounds necessary to understand the importance of

using lead-free solder, as well as the relevance of the work presented in the second

half of this thesis. Contributions of this work provide a better understanding of

interfacial interactions during soldering and will be discussed in the later parts of this

thesis.

All sections represent the state-of-the-art of current works for phase-field mod-

eling and solid-liquid interactions accompanying with interesting applications.
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A. Classical solidification models

In this section I will briefly introduce a mathematical overview of a classical solid-

ification model. Consider first a physical one-component system that is in thermal

equilibrium with uniform temperature. A part of the system is in the liquid state

while the other part is solid. In the region that has two phases, if solid-liquid interface

would be planar and the substance would be pure, the temperature of the interface

must correspond with the equilibrium melting temperature, and the melting temper-

ature may depends on pressure. During the process of phase change, the amount of

latent heat (L) of the substance evolved during the solid/liquid transformation needs

to be considered. Per unit volume, this latent heat is expressed as ρSL. Now, consider

a new system that has a temperature gradient and heat flux, and then we can get a

heat balance given by

d

dt

∫
V

ρcpTdV = −
∫
∂V

q · ndV, (2.1)

where ρ is density, q is heat flux, and n is the normal vector on the system boundary

(∂V ). Using the transport theorem applied into Gauss’s theorem leads to the heat

balance as ∫
V

[
∂

∂t
(ρcpT ) +∇ · (ρcpTv)

]
dV = −

∫
V

∇ · qdV, (2.2)

and the differential form is

d

dt
(ρcpT ) + ρcpT∇ · v = −∇ · q, (2.3)

where the material derivative is given by

d

dt
=

∂

∂t
+ v · ∇. (2.4)
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The constitutive equation for the heat flux is required and it can be obtained from

the Fourier law of heat conduction as

q = −kT∇T, (2.5)

where kT is the thermal conductivity. Thus the final equation for the heat balance is

given by

d

dt
(ρcpT ) + ρcpT∇ · v = ∇ · kT∇T. (2.6)

If there is no fluid flow and ρ, cp and kT are constant, the heat balance becomes the

standard heat conduction equation.

Because the interface moves, another constitutive equation involving interface

velocity is required as [48]

ρSLVnδt = (ql − qs) · nδt, (2.7)

and it becomes

ρSLVn =
[
ks
T∇T s − kl

T∇T l
]
· n, (2.8)

which indicates that interface velocity Vn depends on the heat entering the interface.

In addition, the continuous temperature across the interface should be obeyed as

Ts = Tl = Tm. (2.9)

Now consider a binary system that is undergoing solidification. Due to the fact

that in most cases the solid phase dissolves much less solute than the liquid, this

phase transformation usually involves the rejection of solute from the solid into the

liquid as more solid is formed. The degree of rejection can be obtained from the

equilibrium phase diagram of the binary system. Because the rejected solute into

the liquid will diffuse far away from the interface, the variations of temperature and
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concentration have to be tracked in the binary system, as opposed to what happens

in a unary system.

The heat conduction in the liquid and solid is

∂T

∂t
= κ∇2T, (2.10)

where κ is the thermal conductivity.

If the solute is dilute, the solute diffusion equation in both solid and liquid is

∂C

∂t
= D∇2C, (2.11)

where D is the solute diffusivity.

Fig. 1. A linearized phase diagram with the constitutional undercooling profile in small

solute concentration.

Because the solute is assumed to be dilute, it is valid to define that the liquidus

and solidus lines in the phase diagram as linear. The interface region is located

between two lines in given temperature as seen in Fig. 1. The solid concentration

is Cs, and the liquid concentration is equal to C l. In addition, we can get the
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liquid concentration at the interface from the solid concentration by using segregation

coefficient (k = Cs/C l) at constant temperature and pressure. If the thickness of

interface is zero. there is a concentration jump across the interface, which is given by

△C0 =
(
C l − Cs

)I
=

1− k

k
Cs. (2.12)

With the equation of the liquidus, the temperature difference with the corre-

sponding concentration represents the undercooling situation as

△T0 = −m△C0, (2.13)

where the Gibbs-Thompson equation on the interface can be obtained including cap-

illary and kinetic undercooling effects as [49]

T s = T l = T I = Tm

(
1 + 2H

γ

L

)
+mC − µ−1Vn, (2.14)

where µ−1 is the kinetic coefficient, γ is the interfacial energy, and H is the mean

curvature.

The heat balance including the Gibbs-Thompson equation is given by

(L+ 2Hγ)Vn =
[
ks
T∇T s − kl

T∇T l
]
· n, (2.15)

and the solute balance is

(C − Cs)Vn =
[
Ds∇Cs −Dl∇C l

]
· n. (2.16)

As studied above, a classical model is associated with many governing equations

and their corresponding supplements. A classical model , for example, may be good

for solving solidification problem if a system is simple like the above case. However, if a

given system is complicated, for example the existence of multiple phases, a classical

solidification model requires more equations and their corresponding supplements
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resulting in difficulties in terms of mathematical and computational works. To avoid

problems, a integrated formulation is needed. Phase-field models are a good solution

(although not the only one) of this problem.

B. Phase-field models

Phase-field models can be classified into several categories. One that involves a single

order parameter, another that is based on a thermodynamic formulation, another that

involves multiple order parameters, and one that is derived from geometrical consider-

ations. There are also formulations that are derived for systems with large deviations

from local equilibrium. There are order parameters that can easily be measurable

for quantities such as a long-range chemical order parameter and a displacing order

parameter in solids as well as order (or phase field) parameters that are not easily

measurable (or that represent a physical quantity at all) in solidification. In some

cases, the method might represent real physical phenomena while in other occasions

the phase-field method might be better thought of as a computational technique.

1. Entropy vs. free energy functional

Many papers have used approaches to construct phase-field models [3, 5, 47] and

to develop the evolution equations from a few basic concepts, such as irreversible

thermodynamics.

Because the entropy always increases locally in a system conserving internal

energy and concentration, we can obtain relationships between internal energy and

concentration which represents the generalization of the laws of diffusion. The total

entropy of the system should include contributions associated with gradients (inter-

faces), terms for energy (heat) diffusion, solute diffusion and phase field evolution so
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that the function of the entropy can be broadly written as [47]

S =

∫
V

[s(e, c, ϕ)] dV −
∫
V

[
ϵ2e
2
|∇e|2

]
dV

−
∫
V

[
ϵ2c
2
|∇c|2

]
dV −

∫
V

[
ϵ2ϕ
2
|∇ϕ|2

]
dV, (2.17)

where s is the entropy density, e is the internal energy density, c is the concentration

and ϕ is the phase field. ϵe, ϵc and ϵϕ are the corresponding gradient entropy coeffi-

cients. The variable ϕ distinguishes the liquid and solid, and should be involved in

the entropy density s for a double well. The equation is a very general formulation

for an entropy functional with all three gradient energy contributions.

In an isothermal case, the enthalpy density can be expressed from the entropy

formulation with ϵe = 0 as h = h0 + CpT + Lϕ. A formulation for thermal diffusion

with a source term from the enthalpy equation as

Cp
∂T

∂t
+ L

∂ϕ

∂t
= ∇ · (k∇T ), (2.18)

where T , Cp, L and k are temperature, heat capacity per unit volume, latent heat

per unit volume and thermal conductivity, respectively. The equation tells us that

the latent heat evolves when ϕ is changing with time near a moving interface.

On the other side, an isothermal consideration can use a free energy functional

F defined as

F =

∫
V

[
f(ϕ, c, T ) +

ϵ2c
2
|∇c|2 +

ϵ2ϕ
2
|∇ϕ|2

]
dV (2.19)

where f(ϕ, c, T ) is the free energy density.

In equilibrium state, the derivative of the free energy functional with respect to

ϕ is equal to zero because locally system is located in a stable state and there is no

other state lower in energy to relax to. The derivative of the free energy functional
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with respect to c is equal to constant because of mass conservation in a whole system.

The equation can be expressed as

δF

δϕ
=

∂f

∂ϕ
− ϵ2ϕ∇2ϕ = 0, (2.20)

δF

δc
=

∂f

∂c
− ϵ2c∇2c = constant. (2.21)

In the case that an isothermal system is not in an equilibrium state, we can

make the assumption that the system will relax towards the final equilibrium state

by finding the fastest path for the minimization of the local (and total) free energy.

For conserved parameters, their local changes driving minimization of the free energy

involve fluxes (i.e. diffusive fluxes due to concentration and chemical potential gradi-

ents). On the other hand, non-conserved field parameters do not require macroscopic

fluxes to change the local free energy. For these two cases, the most simple equations

that can be written are given by [50]:

∂ϕ

∂t
= −Mϕ

[
∂f

∂ϕ
− ϵ2ϕ∇2ϕ

]
(2.22)

∂c

∂t
=

[
MCc(c− 1)∇

(
∂f

∂c
− ϵ2c∇2c

)]
(2.23)

The parameters Mϕ is related to the interface kinetic coefficient, and MC is

from solute diffusion coefficient. Equation (2.22) is called the Allen-Cahn equation

and equation (2.23) is known as the Cahn-Hilliard equation [50]. Having described

the different dynamic equations relevant for relaxations involving conserved and non-

conserved field-variables, we now describe different models depending on how the

interface structure is considered.
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2. WBM model vs. KKS model

The WBM model represents the model introduced in Wheeler et al. [3] while KKS

model presents the model introduced in Kim et al. [5]. The two models are formulated

by considering that the system relaxes along a path that minimizes the free energy

of the system in the fastest manner. The free energy density in the two models used

different kinds of functional relationships to express the energetic cost associated with

the phase transformation. Some models, for example, considered the existence of a

double-well contribution to the free energy functional, such as g(ϕ) = ϕ2(1 − ϕ)2

and the other is an interpolating type, such as p(ϕ) = ϕ3(10 − 15ϕ + 6ϕ2) ensuring

that derivative of free energy density is equal to zero when ϕ = 0 and ϕ = 1 in all

temperatures as seen in Fig. 2. In this case ϕ = 1 and ϕ = 0 represent solid and

liquid, respectively. As seen below, the fundamental difference between the WBM

and KKS models is the assumption regarding the structure of the interface.

φ

f
(φ

,T
)

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.04

-0.02

0

0.02

0.04
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T<Tm

T>Tm

T=Tm

Fig. 2. Free energy density as a function of ϕ with three different temperature.
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When Wheeler et al. [3] were seeking a form of free energy density, they selected

the form from Kobayashi (private communication) instead of from [51]. If there are

A and B components, we can write free energy density for component A and B as

fA(ϕ, T ) = WA

∫
p(p− 1)

[
p− 1

2
− βA(T )

]
dp (2.24)

and

fB(ϕ, T ) = WB

∫
p(p− 1)

[
p− 1

2
− βB(T )

]
dp, (2.25)

and free energy density of solution including concentrations, without regular solution

parameters (c(1− c) [ΩS(1− p(ϕ)) + ΩLp(ϕ)]), as

f(ϕ, c, T ) = (1− c)fA(ϕ, T ) + cfB(ϕ, T )

+RT [(1− c)ln(1− c) + c(lnc)] , (2.26)

where W is the height of energy hump. β is a constant (−0.5 < βA(T ) < 0 < βB <

0.5).

Wheeler et al. [3] obtained a governing equation for phase field and concentra-

tion, respectively, as

∂ϕ

∂t
= −Mϕ

[
∂F

∂ϕ

]
(2.27)

and

∂c

∂t
= Mc∇

[
c(c− 1)∇∂F

∂c

]
(2.28)

with the defined free energy functional:

F (ϕ, c, T ) =

∫ V [
f(ϕ, c;T ) +

ϵ2

2
|∇ϕ|2

]
dV. (2.29)

The WBM model contains, as we can see, model parameters which can be ob-

tained from the following. For getting the coefficients in the two governing equation

to simulation solidification, we need to know, at first, the difference in free energy
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between solid and liquid with the assumption that the difference is often obtained by

a linear function of temperature near the melting temperature. This can be written

as:

fA
S (T )− fA

L (T ) =
LA(T − TA

M)

TA
M

(2.30)

which yield with the function of free energy density

fA(ϕ, T ) = WAg(ϕ)− LA
T − TA

M

TA
M

p(ϕ). (2.31)

The excess free energy of the interface region can be obtained from the definition

of the interfacial energy as

σA = ϵϕ
√
2

∫ 1

0

√
fA(ϕ, T )dϕ =

ϵϕ
√
WA

3
√
2

. (2.32)

In equilibrium, a one-dimensional solution for a flat steady-state interface under

a pure material exists at melting point of component A in a transition zone between

liquid and solid can be obtained as

ϕ(x) =
1

2

[
1 + tanh

(
x

2δA

)]
, (2.33)

where δA is the interface thickness given by δA = ϵϕ/
√
2WA. The value of the thickness

should be optimized by the fact that the interface should be sharp enough to minimize

the volume of material occupied by the interface and be diffuse enough to reduce the

energy associated with the gradient of ϕ according to the computational techniques.

To investigate a moving interface, the mathematical transformation should be

taken care of to a coordinate frame moving at a constant velocity v under one dimen-

sional system. Changing ∂ϕ/∂t into −v(∂ϕ/∂x) leads to a solution in small interface

thickness when the temperature is given by

T = TA
M − v

µA

where µA =
6MϕϵϕLA

TA
M

√
2WA

. (2.34)
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The classical approach to linear interface kinetics is identical to an interface velocity

for corresponding temperature. The above equation can be used to determine a value

of Mϕ when µ is known.

Although the WBM model has been recently used [52, 53, 54], it appeared to

have a problem. In numerical simulation where a finite interface thickness is assumed,

model parameters actually are mainly functions of the interface thickness. Due to

chemical energy contribution with respect to interfacial energy, a certain limit of the

interface thickness arises, which is not only restricted by the interface energy but also

the difference between the equilibrium liquid and solid compositions. As mentioned

above, the fundamental characteristic of the WBM is to consider the interface as a

combination of co-existing phases with equal composition. This assumption eventu-

ally results in discontinuities in the chemical potentials of the constituent elements

at the interface. These energetic contributions to the free energy functional of the

system may become very important as soon as the interface thickness is increased.

Tiaden et al. [20] proposed that the interface should be assumed to be a mixture

of solid and liquid with different compositions, but constant in ratio. This assump-

tion resulted in chemical potential equilibrium constraint which in turn helped to

define a more thermodynamically-consistent interface structure for cases in which the

interface is considered as a mixture of two co-existing phases at an interface. The

adoption of chemical potential equilibrium makes elimination of extra potential that

is included in the WBM model [3]. The existence of the extra potential under the

condition of the some composition of liquid and solid restricts the interface energy and

interface width because the extra potential is a function of temperature, the height

of the extra potential increases according to the increasing temperature. It can be

said that the temperature variation causes the variation of the interface energy and

interface width which tend to be material properties that are not mainly functions of
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temperature. To eliminate this unphysical situation, Kim et al. [5] adapted chemical

potential equilibrium at a interface region as

fS
cS
[cS(x, t)] = fL

cL
[cL(x, t)] , (2.35)

where fS
cS

is the derivative of free energy density of solid phase with respect to solid

composition, which is called as chemical potential of solid phase, and follows the

definition of free energy density [20], and free energies for liquid and solid are obtained

from thermodynamics modeling from CALPHAD. The free energy density that Kim

et al. [5] used is

f(c, ϕ) = h(ϕ)fS(cS) + [1− h(ϕ)]fL(cL) + wg(ϕ), (2.36)

where fS(cS) is the free energy density of solid composition that can be obtained

from thermodynamics modeling.

The governing equations they introduced are

∂ϕ

∂t
= M

(
ϵ2∇2ϕ− fϕ

)
, (2.37)

∂c

∂t
= ∇

(
D(ϕ)

fcc
∇fc

)
, (2.38)

with

c = h(ϕ)cS + [1− h(ϕ)]cL, (2.39)

fS
cS
[cS(x, t)] = fL

cL
[cL(x, t)], (2.40)

f(c, ϕ) = h(ϕ)fS(cS) + [1− h(ϕ)]fL(cL) + ωg(ϕ), (2.41)
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where D(ϕ) = h(ϕ)DS + (1− h(ϕ))DL is the diffusivity. h(ϕ) = ϕ3 (6ϕ2 − 15ϕ+ 10)

and g(ϕ) = ϕ2 (1− ϕ)2. To get model parameters, ϵ and ω, Kim et al. [5] used a

equilibrium state solution of phase field model adopting a definite of interface energy

and choose a interface thickness that is relevant to phase field continuity. With WBM

model, This model is also widely used by many researches [55, 56, 57, 58].

3. Multi-phase field models

The WBM and KKS models were developed to understand phase transitions in-

volving only two phases. Steinbach et al. [6] developed multiphase-field approach

that describes the interaction between an arbitrary number of individual phase fields

with individual characteristics by the use of interface fields. The first concept of the

multiphase-field modeling was from his previous work [14]. The order parameter ϕ is

not a characteristics of a single phase, but can be distinguished between two different

phases. For example, in case of the three different phases (α, β and L) in a system,

phase α may be transformed into phase L, and phase L may be again transformed

into phase β. Thereby we may consider a position that might have two or three

different coexisting phases (in a binary system). Steinbach et al. defined the set of

phase fields, (0 ≤ ϕi ≤ 1), by local traction of a phase, i, that is a certain value,

but constrained by the summation of the existing ϕi at a point is equal to 1. For

the definition of free energy, they adopted the interpretation given by [59], set up the

free energy density functional F of a system in its dependence on a local phase field

variable ϕi and the partial derivatives ∇ϕi as

F [ϕ1, ϕ2, ϕ3, ...,∇ϕ1, ∇ϕ2, ∇ϕ3...] =

∫
V

f [ϕ1, ϕ2, ϕ3, ...,∇ϕ1, ∇ϕ2, ∇ϕ3...] dV.

(2.42)

For the free energy density f , they distinguished a free energy density for each
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single phase, for a region of two coexisting phases, and a region of triple phase co-

existing and so forth as pairwise difference. Therefore, they introduced

f = f 0 +
∑
i

f 1
i +

∑
i,j(i̸=j)

f 2
ij +

∑
i,j,k(i̸=k ̸=k)

f1
i,j,k + ... (2.43)

With the free energy density, they applied the Euler-Lagrangian formulation

to get the minimization of the local free energy density of a system, resulting in a

relaxation ansatz [6]

∂ϕi

∂t
=

(
∇ ∂

∂∇ϕi

− ∂

∂ϕi

)
f(ϕi), (2.44)

which can be transformed, in terms of F , into

∂ϕi

∂t
= −Mij

1

N

∑
i̸=j

(
∂

∂ϕi

− ∂

∂ϕj

)
F. (2.45)

Their introduction of multi-phase field model became an important feature not

only to engineering applications but also to scientific reasons to develop multi-phase

field solidification methods involving one liquid and one or more solid phases. Extend-

ing the number of phases, such as eutectic/peritectic solidification can be achieved

by several methods. One is to introduce three phase fields to define each phase,

another is to introduce two phase fields where one is used to discriminate between

the solid and liquid phases, another is to discriminate between two different solid

phases, and the other is to couple the phase field model with the spinodal decompo-

sition model where two solids phases are distinguished by two different compositions.

Each approach shows its own benefit for producing useful information to understand

solidification pattern.

With the establishment of multiphase field concept [14, 20, 59], Kim et al. [27]
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developed a conventional multiphase field model as

∂ϕi

∂t
= − 2

N

∑
i ̸=j

Mijsisj

[
∂F

∂ϕi

− ∂F

∂ϕj

]
. (2.46)

and

∂F

∂ϕi

=
∑
i̸=j

[
ϵ2ij
2
∇2ϕj + ωijϕj

]
+ f i(ci)− fcci, (2.47)

where Mij is the mobility. N is the number of coexisting phases. It is noted that the

derivative of the free energy functional ∂F/∂ϕi is the sum of ∂FP/∂ϕi and ∂FT/∂ϕi.

ϵ(ϵij = ϵji) is the gradient energy coefficient and ω(ωij = ωji) is the height of double

well potential.

The phase-field models can be extended to the multi-component system by us-

ing the equal composition (WBM) [3] or equal chemical potential conditions (KKS)

[5]. However, the model involving equal chemical composition condition creates the

advantage of reducing extra computational cost to find the compositions of coexist-

ing solid and liquid phase comparing with that involving equal chemical potential

condition. Unfortunately, setting the compositions of coexisting phases as equal in-

troduced extraneous contributions to the free energy functional. The dilute solution

approximation reduces the computational cost of the KKS approach because of the

constant partition coefficients for a reference phase (liquid phase) [5]. The multi-

component phase-field models is still used as a tool for qualitative simulation because

the mapping of the models onto the classical sharp interface model has not been com-

pletely done although multi-component phase-field models have been developed with

the constant partition coefficients [18].
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Fig. 3. Phase-field configurations of polycrystalline microstructure. (a) Continu-

ous-orientation model: Each grains are specified by an order parameter for

orientations Θ, and an order parameter for phase field ϕ. (b) Two order pa-

rameters are continuously lined through the boundary. The figures come from

[8]. (Reprinted with Permission of Elsevier.)

4. Crystallographic field models

The treatment of the formation and growth of crystals of the same phase but with

different crystallographic orientation have been treated in the past by resorting to a

multi-phase field description. However, this approach results in several undesirable

consequences as this approach [60] implies that the free energy functional is not

invariant with respect to orientation measured from a frame of reference. Given these

limitations, some researchers had attempted to express field equations in terms of

continuous crystal orientations [8, 21, 22]. In two dimensions, the orientation of a

given grain can be specified completely by a single continuous parameter Θ indicating

the angle between the normal to a particular set of atomic planes and a fixed direction

in the reference frame as shown in Fig. 3(a).

It is sure that grain orientations are freely chosen from arbitrary manners, which

means that the grain orientations are independent of bulk free energy in systems.
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Because of this independence, the energy penalty caused by misorientation can not

be established for growth simulations. So, it is necessary to build an additional phase

field that is coupled between the width of the interfacial region and bulk free energy.

The order parameter ϕ indicating the degree of crystallinity at each point in the

calculation domain can be defined with unit values differentiating perfect crystalline

order, such as inner grains, (ϕ=1) with overlapped crystalline order, such as grains

boundaries (0 < ϕ < 1). As shown in Fig. 3(b), both ϕ and Θ have their distinct

gradients in the interface regions, but only the value of the orientational coordinate

distinguishes a given grain from its neighbors.

A static, one-dimensional boundary between two semi-infinite grains (a bicrystal)

of orientations, 0 and ∆Θ, with interface normal in the x-direction. We impose

ϕ(±∞) = 1. The equations governing the one-dimensional spatial dependence of a

bicrystal [8] are

1

Mϕ

∂ϕ

∂t
= α2ϕxx −

∂f

∂ϕ
− ∂g

∂ϕ
s|Θx| −

∂h

∂ϕ

ϵ2

2
|Θx|2 (2.48)

and

1

MΘ

∂Θ

∂t
=

[
hϵ2Θx + gs

Θx

|Θx|

]
x

. (2.49)

5. Review of computational researches

The analysis of dendrite solidification is widely used in the phase field simulations,

and there are lots of applications for pure materials, pure materials with convection,

binary alloys and ternary alloys [18, 25, 61, 62, 63, 64, 65, 66, 67, 68].

Models for dendrite growth were developed initially in undercooled pure melt

[1, 9, 10, 19, 24, 25] and then extended to binary alloy system. The first model for alloy

solidification was from Wheeler et al. [3]. The model is still used by many researchers

in many solidification problems [4, 5, 69] under thermodynamic considerations. In
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this model, it is assumed that a mixture of solid and liquid have a same composition

any point within the interfacial region. A sharp interface condition and a finite

interface thickness condition are applied for determining phase field parameters. In

order to illustrate the successive growth of arms from parents arms under dendritic

solidification, anisotropy was introduced in gradient term coefficient as

ϵ(θ) = ϵ0 {1 + ν cos(4θ)} , (2.50)

where ν is the anisotropic coefficient. θ is the angle between normal direction of

interface and x-axis, which can be given by

θ = tan−1 (ϕi)y
(ϕi)x

. (2.51)

Fig. 4 is a good example of the single dendrite growth by using phase-field model.

It shows the effect of the anisotropy coefficient in the shape of the dendrite tip and

the number of secondary and tertiary arms qualitatively by varying the value of the

model parameters arbitrary. Wheeler et al. [10] adopted the phase-field parameters

which were determined from physical properties and studied the dendrite tip shape

more quantitatively. They also pointed out the calculation result changed depend-

ing on the interface thickness because of the sharp interface limit. The prediction of

the solvability theory adopting by phase-field simulation was successful by Karma and

Rappel [4]. A phase-field model is also useful to numerically study a cellular/dendritic

pattern formation in the directional solidification. Fig. 5 shows transition procedure

of cellular/dendritic growth pattern in directional solidification under temperature

gradient in Al-Cu alloy. In this example, phase-field models turn out to be computa-

tionally efficient, and provide one with quantitative predictions of the microstructure

evolution.

Ode et al. [70] focused on the growth and mergence of secondary arm in Fe-base
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(d)

Fig. 4. The phase-field simulation of dendrite solidification in 3D. The anisotropy is

introduced in the driving force for the interface. The anisotropic coefficient

ν is (a) 0.2 (b) 0.3 (c) 0.5 respectively. The effect of the anisotropy and the

competitive growth of the side branches are nicely reproduced. (d) A dendrite

simulation with grid of size 500 × 500 × 500 and mirrored along the x and y

axes. Figs. 4(a)-(c) come from [71]. Fig. 4(d) comes from [72]. (Reprinted with

Permission of Elsevier.)

and Al-base alloys and produced numerical simulations using a phase-field model.

They calculated arm spacing and the exponent of the local solidification time and

compared with experimental data. They examined the change in the arm spacing and

the exponent which depend on physical properties (interface energy, solute diffusivity,

liquidus slope and so on). They found that interface energy and solute diffusivity in

liquid change the arm spacing while liquidus slope and partition coefficient change

both the arm spacing and the exponent. Fig. 6 shows the growth and merge of the

secondary arms for Fe-0.1wt%C alloy. The difference size of triangular solid seeds are
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Fig. 5. Cellular/dendritic growth pattern in directional solidification under tempera-

ture gradient in Al-Cu alloy. The temperature gradient is 1.11 × 107(K/m).

The figures come from [73]. (Reprinted with Permission of Elsevier.)

Fig. 6. Evolution of secondary arms for Fe-0.1wt%C. (a) early stage of arm growth,

(b) arm growth and selection, (c) arm coarsening. The large size of initial

seeds in Fig. 6(a) grow preferably and other arms stop or melt back due to

the curvature effect [Fig. 6(b)]. The small secondary arms coarsen in Fig. 6(c).

The figures come from [70]. (Reprinted with Permission of Elsevier.)
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initially located at the bottom of the calculation domain and grow upward according

to the anisotropy.

Fig. 7. Two dimensional results of eutectic solidification simulation for different volume

fractions of the two phases in computational domain (200×200 µm). The minor

phase volume fractions are (a) 0.178, (b) 0.305, (c) 0.379, (d) 0.485, and (e)

0.499. It is calculated in the computational volume (CV), and four pieces of CV

are put together due to the periodicity. The figures come from [74]. (Reprinted

with Permission of Elsevier.)

Eutectic solidification is also computed by multi-phase field model [74] that is

based on the work by [6, 20]. The multi-phase field model is well described in Ap-

pendix B. Fig. 7 shows two-dimensional results of eutectic solidification simulation for

different volume fractions of the two phases in computational domain (200×200µm).

The minor phase volume fractions are (a) 0.178, (b) 0.305, (c) 0.379, (d) 0.485, and (e)

0.499. It is calculated in the computational volume (CV), and four pieces of CV are

put together due to the periodicity. A. Parisi et al. [75] reported stability of lamellar

eutectic growth in three dimension. They found that Jackson-hunt stability limit is

agreeable when low solidification front velocity (V) and temperature gradients, and

the zigzag shape of lamellae the instability is a classical transverse phase diffusion
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instability similar to those observed in many other non-equilibrium systems [76].

Fig. 8. Microstructure for a Ni-0.369mol% Cu alloy solidified under different cool-

ing rates: (a) 30, (b) 75, (c) 150, (d) 300 K/s. The figures come from [56].

(Reprinted with Permission of Elsevier.)

A method for incorporating nucleation into phase-field simulations relies on ex-

plicitly incorporating nuclei throughout the simulation time by relying on classical

nucleation theory and stochastic approaches [33, 34, 56]. In this approach, the prob-

ability for the nucleation of a new phase at an arbitrary point in space and time is

determined and the microstructure is ’seeded’ accordingly. This approach assumes

that the time necessary for the new phase to nucleate is much smaller than the time

interval of the simulation. Furthermore, the expectation value of the number of nuclei

that form during a time interval ∆t corresponds to the nucleation rate, J , which can

be calculated from classical nucleation theory. This approach further assumes that

once the nuclei forms, it occupies a definite volume of space which in turn yields a

”zero event probability” for the formation of subsequent nuclei [33, 34, 56]. The detail

explanation of a ”zero event probability” will be addressed in another chapter. It is
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interesting to know that they performed microstructures that involves many physical

phenomenon mentioned in previous paragraphs, such as dendrite solidification, nu-

cleation by using phase-field model including the effect of polycrystalline as seen in

Fig. 8.

Fig. 9. Evolution of crystal growth under the effect of ploycrystalline in materi-

als. Dendritic microstructure forms in early stages, and crystals impinge and

coarsen each other in late stages. The box is initially cooled under the freezing

temperature, and then a constant rate of heat sink is imposed to make the

entire box freezing. The figures come from [8]. (Reprinted with Permission of

Elsevier.)

Recently, phase-field model has been extended to investigate the orientation of

crystals as introduced in Eqs. (2.50) and (2.50). Warren et al. [8] is one of the leading

researches in this field. Their model can easily be extended to include alloy effects like

Fig. 9 and encourages one to be interested in studying grain coalescence in thin films

as well as grain boundary migration. However, in spite of being widely applicable,

the model is necessary to extend to three dimensional simulation. In principle, this
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extension is straightforward once the addition of two more angle variables is well

established. Warren et al. [8] briefly introduced the analysis to couple with two more

angle variables, but it is still a challenging area of research.

6. Review of experimental researches

Dendrite researches in experimental investigation have been done in several decades

ago. However, many researches are still interested in dendrite solidification which

is a common phenomenon in solidification of materials, and industrial fields are still

suffering from the formation and growth of dendritic microstructure because dendrites

usually form before (or after) desired microstructure.

Fig. 10. Snapshots demonstrating the effect of modulated pressure on the dendrite

growing into undercooled condition. Higher frequency of modulated pressure

is applied at (d), and frequency of modulated pressure is applied at (b). (a) is

not applied with oscillatory pressure. The figures come from [77]. (Reprinted

with Permission of American Physical Society.)

Borzsonyi et al. [77] performed computational simulations and experiments in or-

der to demonstrate dendritic formation pattern under the effect of modulated pressure
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and heat flux that result in an fluctuated velocity of the dendrite tip, and eventually

yield secondary arms on primary arms. By using the high frequency of pressure vari-

ation in the dendrite solidification, they tried to create more seeds that will grow as

secondary arms on the primary arms as shown in Fig. 10, and they found that high

variation of imposed conditions, such as modulated pressure and heat flux, on the

system creates more secondary arms, and they revealed that the imposed condition

is related to the anisotropic coefficient of a phase field model that is used to confront

with experimental results.

(a) (b) (c)

(d) (e)

Fig. 11. Experimental results for eutectic solidification: (a) Directionally solidified

thin sample of the eutectic alloy CBr4-C2Cl6 in a basic state, (b) tilted, pe-

riod-preserving oscillatory pattern, (c) the transition from the basic state to

oscillatory pattern, (d) microstructure change of composite solders contain-

ing TiO2 nanopowder, and (e) the decay of lamellae due to the existence of

glass particles. The figures come from [38] for (a)-(c), [78] for (d), and [76]

for (e). (Reprinted with permission from the American Physical Society and

Elsevier.)
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Mergy et al. [37] worked on the experimental investigation of the eutectic growth

pattern considering physical parameters such as interfacial energies and diffusion coef-

ficients. The value of the parameters for the transparent organic alloy (CBr4-C2Cl6)

was determined by experiments under directional solidification. Ginibre et al. [38]

investigated the instability of lamellar growing pattern under the directional solidifi-

cation by controlling lamellar spacing, concentration and solidification velocity with

the same organic alloy [see Fig. 11(a)-(c)]. The experimental characterization of the

instability of eutectic growth was found to be in very good agreement with instabil-

ity diagrams previously computed by Karma [4, 18]. A better understanding of the

conditions that drive the (in)stability of eutectic patterns have provided researchers

with the fundamental inspiration to control lamellar growth pattern [39]. More ex-

perimental results can be seen in [37, 38].

Akamatsu et al. [76] accidentally observed the decay of eutectic lamellae by glass

particles [see Fig. 11(e)]. Although it happens accidentally, the evolution of eutectic

lamellae is worthy of note . One of the researches to look into the effect of particles was

performed by Lin et al. [78] who showed an experimental study of the solidification

kinetics and microstructure development in tin/lead solders by mechanically mixing

nanopowders of either copper or TiO2 with tin/lead powders [see Fig. 11(d)]. They

found that the solidified composite solder results in the reduction of grain size and

spacing of the eutectic lamellae. They concluded that nanopowders increase hardness

of microstructure.
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C. Lead-free soldering in microelectronics

1. Environmental and health issues with lead

The Environmental Protection Agency (EPA) announced lead and its compounds as

one of the 17 chemical poisons that threat human life and environment [79]. When

lead accumulates in the body for a long time, it will produce adverse health effects

because lead combines strongly to proteins in the body and prohibits normal functions

of proteins in the human body, which causes disorder of nervous and reproductive

system resulting in delaying neurological and physical development [80]. Those effects

are some of the adverse effects of lead on human health. When the level of lead in

the blood exceeds 50 mg/dl of blood, lead poisoning is considerable enough to occur

the adverse effects [81]. Lead level even below the official threshold causes hazardous

situation to humane neurological and physical development, especially for children.

The usage of lead in the electronics industry exposes to occupations, such as

the waste from the manufacturing process and the disposal of electronic assemblies.

Although the consumption of lead in the electronics industry appears tiny [80], the

potential due to lead exposure should not be negligible. Soldering process is one of

occupational exposure in electronics, especially the wave soldering operation. Re-

searches have addressed that there is little danger of exposure to lead in hand during

soldering and tinning because of non-volatileness under normal temperatures [82].

However, lead vapors or dust formed by dross during the wave soldering operation

increase to expose them to workers. Wave soldering generates dross from surface

oxidation at the surface of the molten solder. About 90 percent of dross generated

during wave soldering is refined to pure metal for reuse [83], but the remaining stays

out of the refining process, which means that 10 percent of lead would move into the

human body when workers breath close to the lead source. The Resource Conservation
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and Recovery Act classified this remaining as hazardous substance to human health

and regulate special handling and disposal in a law.

The Occupational Safety and Health Administration regulates no more than

50 mg/dl of lead accumulation in worker’s blood [84]. This accumulation limit is

related to maintaining lead levels in blood below 40 mg/dl, which level is believed to

prohibit adverse health effects from exposure to lead in a working lifetime. Therefore,

it is very important to develop possibly alternative lead-free solders for electronic

assemblies keeping existing soldering characteristics. In initial stage to make the

world legislation, some companies did not follow the ban of lead-using legislation, but

almost all companies have begun to respond to this by announcing their own plans

for shifting to lead-free solders because a lot of reports about the hazard of using lead

in the industry.

2. Lead-free alloy selection

The descried issues forced one to perform examining and understanding of the im-

plications for lead-free alternatives to tin-lead eutectic solder. The Department of

Trade and Industry (DTI) developed a progressive report on the selection of lead-free

solder [85]. DTI first tasked the introducing a possible lead free solder alternatives.

Once a material is selected, DTI manufactured a sample with the selected material

on the same procedure of manufacturing lead-based alloys, and tested the sample to

see the performance which should be equivalent to the lead-based alloys. The criteria

of selecting lead-free alternatives to tin-lead eutectic solder are follows [30]:

1. The lead-free alloy stays with at most ternary alloys if possible.

Quaternary alloys may make control difficult.

2. The lead-free alloy should be located in near the eutectic point. If it
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would be far away from the point, the solder have large pasty range

during cool-down.

3. The lead-free alloy should be have similar melting point comparing

with tin-lead alloy in order to use existing manufacturing equipments.

4. The lead-free alloy should be equal or better characteristics than

tin-lead alloy in reliability when it is used in electronics assembly.

5. The lead-free alloy should create equal or less cost comparing with

tin-lead alloy.

6. If possible, the lead-free solder should be free from the existing

patents.

7. The information of lead-free solder should be well known in the

industry.

8. The lead free solder should be free from the health and environment

issues.

3. Candidate alloy compositions

The second task to select the alternatives is to find a lead free solder that is free

from patents of alloys because more than 30 companies have already achieved the

patent about technologies and components related to lead-free alloy. Based on the

criteria for selecting new lead-free alloys, the International Electronics Manufacturing

Initiative evaluated more than 79 solder alloys, and then selected the solder alloy in

the following [85]:

1. Sn-Bi alloy

2. Sn-Zn (or Sn-Zn-Bi) alloy

3. Sn-Ag (or Sn-Ag-Bi) alloy
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4. Sn-Ag-Cu alloy

5. Sn-Ag eutectic alloy

6. Sn-Cu eutectic alloy

a. Sn

Sn is the principal component in most solder alloys for electronic applications in

terms of wetting and spreading on a wide range of substrates. Melting point of

Sn is 504 K. Tin has two different forms with two different crystal structures in solid

state. β-tin that is stable at room temperature has a body-centered tetragonal crystal

structure. α-tin has a diamond cubic crystal structure and is thermodynamically

stable below 286 K. β-tin transforms to α-tin when the temperature is below 286

K resulting in increasing volume, which lead to cracking in the tin structure. Tin

pest induces problems for applications that are performed at low temperature and

can be partially problematic for equipments across the 286 K. The thermal expansion

of tin is also anisotropic because of the body centered tetragonal crystal structure

[86]. Therefore, when tin repeats thermal plastic deformation, cracking on grain

boundaries eventually occurs. Thermal cycling over a range as 303-448 K allows one

to observe [87]. Thus, even though there is no external mechanical strain, thermal

fatigue appears considerable in tin or tin-rich phases of solder alloys.

Tin also leads to whisker growth that represents single-crystal growth like fine

wire extending up to 0.64 mm high [88]. The whiskers are tetragonal β-tin growing

associated with internal stress or external loads of the material. The quick growth

in tin occurs at about 424 K, which is influenced by substrate property and plating

conditions. Although solderability and deterioration of the tin coatings is free from

the whiskers, it is interesting to know that longer whiskers may lead to electrical

shorts in PCB boards. In order to avoid whisker growth Pb is usually used.
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b. Sn-Bi

The Sn-Bi alloy has a eutectic composition of 42Sn-58Bi at the temperature of 512K.

Equilibrium phases of Bi and Sn are about 4 wt.% Bi in solid solution at room

temperature [89]. Although Bi has maximum solubility (21 wt.%) in Sn, the Bi phase

is essentially pure Bi because tin has low solubility in Bi at 512K. Bi precipitates in

the Sn phase during cool-down. When cooling rate is moderate, the lamellar growth

of Sn-Bi occurs. When the cooling rate is low, cracks can be observed in eutectic Sn-Bi

solder joints resulting in large grain formation [90]. However, cracking is not observed

in rapid cooling. Tin precipitates from the solder matrix along the boundaries of these

large grains through which cracking occurs. Recrystallization of the alloy produced

an expansion was also observed resulting that the crystal may be brittle because of

strain hardening caused by deformation from the expansion [86, 90].

c. Sn-Zn

The melting temperature (471K), close to eutectic Sn-Pb, of the Sn-9wt.%Zn alloy

appears to be an attractive alternative. The eutectic structure has two phases. one

is a body centered tetragonal Sn matrix phase, and the other is a secondary phase

of hexagonal Zn containing less than 1% Sn in solid solution. The microstructure is

reported to show large grains with a fine uniform two-phase eutectic pattern. Sn-9

wt.% Zn is the eutectic composition for the Sn-Zn family, and the microstructure

appears to be lamellar, containing alternating Sn-rich and Zn rich phases. In the

Sn-Zn family, intermetallic phases are formed by both Sn and Zn interacting with

Cu.

The solid solubility of Sn is less than 0.05 wt.% in Zn. The maximum solid

solubility of Zn in Sn has been reported as 2 wt.% [91]. Intermetallic compounds of
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Zn-Cu can be expected to form when Sn-Zn solders are used on copper substrates

because the Zn-rich phase is essentially pure Zn.

d. Sn-Ag

The eutectic solidification occurs at 494K with Sn-3.5Ag in the Sn-Ag binary system.

The microstructure consists of Sn and the intermetallic Ag3Sn in the form of thin

plates. The solidified microstructure of the binary eutectic Sn-3.5%Ag consists of a

β-Sn phase with dendritic globules and inter-dendritic regions with a eutectic dis-

persion of Ag3Sn precipitates within a β-Sn matrix. Additional 1% Zn was reported

to improve the solidification microstructure of this alloy by removing the large β-Sn

dendritic globules and producing a finer and more uniform two-phase distribution

throughout the alloy [92]. The addition of Zn suppresses the formation of b-Sn den-

drites resulting in a uniform dispersion of Ag3Sn. This solder is likely susceptible to

whisker growth due to its high tin composition. The similar phenomenon happens to

the Sn-0.07Cu alloy.

As described above this system exhibits eutectic behavior on the Sn-rich side with

a eutectic composition of Sn-3.5Ag at 494K. The Sn-enriched intermetallic phase (ϵ)

has a nominal composition of Ag3Sn. The concentration of Sn may vary between 25.5

and 26 wt.%. The solid solubility of Ag in Sn is less than 0.1 wt.%.

e. Sn-Cu

A eutectic solidification occurs at 500K with Sn-0.7 wt%Cu in the Sn-Cu binary alloy.

The solidification reaction has Cu that is precipitated in the form of hollow rods as

the intermetallic Cu6Sn5. Data for the property of this alloy hardly exists. However

it may be likely that whisker growth or transformation to gray tin may occur because

of the high concentration of tin in this alloy. The additional Cu causes tin whisker
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growth, or the β → α transformation is not clear at this time.

From the Sn-Cu phase diagram, the intermetallic phases becomes stable below

573K, and they are η and ϵ phases. Sn concentration in the η phase is between 44.8

and 45.5 wt.% corresponding to Cu6Sn5. Sn concentration in the ϵ phase is between

25.7 and 27.1 wt.% corresponding closely to Cu3Sn. It is important to know that

both phases are identified in investigations of Pb-Sn solder-Cu substrate interactions

[93, 94]. The growth of these phases were addressed to follow the relationship that the

activation energy for Cu6Sn5 is between 0.41 and 0.5 eV, and that for Cu3Sn is between

1.06 and 1.27 eV at 363-443K range [95], which means that the growth of Cu6Sn5

would be faster than Cu3Sn under the temperature conditions. These data can be

obtained from reaction of a 60%Sn-40%Pb solder paste on single crystal Cu substrate.

In microelectronics, copper is normally used in one of the three following forms. One

is a rolled copper for lead frames, another is a rolled copper foil for lead traces, and

the other is electroplated copper traces or pads. According to the formation and

growth of the Cu6Sn5 and Cu3Sn on these types of copper, the activation energies

appears being different forms of single crystal copper.

Based on the candidates, there have been many researchers who tried to inves-

tigate the characteristic of the materials during soldering reaction in experimental

methods. Important features are shown in follows.

4. Review of experimental researches

Experimental investigations on IMC growth during soldering previously published

by other groups have provided important insights into the nature of these complex

interfacial reactions [41, 43, 44, 45, 46, 96]. They reported that a Cu6Sn5 layer is

formed as scallop-type grains in contact with liquid solder, while Cu3Sn is formed as a

reactive diffusion layer between Cu6Sn5 and the solid substrate. They also mentioned
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on the influence of IMC morphology on the solid-state microstructural processes that

affect reliability of interconnects during normal operation. Although many groups

have observed the morphological change of IMC layers, it is still unclear how kinetics

of the soldering process is related to IMC growth.

Fig. 12. Micrographs of a Cu-Sn specimen. The figures come from [45]. (Reprinted

with Permission of Elsevier.)

In Fig. 12(a) a binary reaction couple is shown. Four different regions are easily

distinguished: the Cu-substrate ( a⃝), the Cu3Sn layer ( b⃝), the Cu6Sn5 grains/scallops

( c⃝), and the unreacted Sn ( d⃝). Most remarkable channels between individual scal-

lops reveal sharpness down to about 1 nm in Fig. 12(b). Furthermore, a clearly

defined triple joint with wetting angle is seen in Fig. 12(b). Since the appearance of

the triple joints does not depend on the reflow time and thus on the scallop size, it

is suggested that the observed wetting angle is an equilibrium feature at the reaction

temperature instead of being formed at quenching. In consequence, those channels

must be interpreted as ordinary grain boundaries separating two grains of Cu6Sn5.
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Between the scallops and the Cu substrate a polycrystalline Cu3Sn layer has formed,

300 nm in thickness in Fig. 12(c). This layer seems to form just at the beginning

of the reaction. The dense Cu3Sn layer consists of a row of columnar grown grains.

However, with its high density of grain boundaries it is probably not the rate limiting

factor for the Cu supply to the reactive solid/liquid interface. During the reaction

the substrate develops a certain waviness in correspondence to the scallop structure.

The onset of this process is already noticed in the presented pictures in Fig. 12(d).

That confirms that Cu is predominantly transported along the Cu6Sn5 grain bound-

aries. The outflow of Cu cannot be compensated by volume diffusion inside the Cu

substrate or by diffusion along the interfaces to the Cu3Sn layer. In consequence the

region closed to the Cu6Sn5 shifts into the Cu substrate. The reaction zone of the

binary system in the figure is shown in plane (viewing direction normal to the inter-

face) and cross-section view (viewing direction along original interface) in Fig. 12(e)

and (f). It is clearly seen that also the binary system develops a non-planar morphol-

ogy of the Cu6Sn5 product, with channels of solder apparently extending to the Cu

substrate.



47

Fig. 13. Micrographs of Cu6Sn5 interface formed by hot dipping in molten tin with

copper substrate for 1 sec at different temperatures: (a) 513K, (b) 533K, (c)

553K and 575K. Gagliano et al. [97] investigates the heterogeneous nucleation

of the Cu6Sn5 phase in liquid tin/solid copper couples. They carried out to

determine (a) the effective rate of nucleation of Cu6Sn5 in the temperature

range from 513K to 575K, (b) the effect of surface finish for the nucleation

rate, and (c) the average radius of Cu6Sn5 grains at each temperatures and

surface finishes. The figures come from [97]. Similar experimental researches

can be found at Load et al. [98]. (Reprinted with Permission of Elsevier.)
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CHAPTER III

PHASE TRANSITION FOR ISOTHERMAL SOLIDIFICATION IN BINARY

ALLOYS

A. Introduction

The complexity of the pattern evolution of the solid-liquid interface on a nonequi-

librium state has been solved by many mathematical methods. Among the methods

phase field models are known to be simple and powerful in numerical treatments be-

cause governing equations are expressed in integrated formula in the whole system

regardless distinguishing the interface from old phases and new phases. Plus, inter-

face positions don’t need to be tracked during numerical calculation. Currently, some

phase field models have been introduced for a unary solidification system [9, 10, 11]

and meanwhile they have been developed to a binary solidification system with a

single solid phase [3, 12] or with two solid phases [4, 14, 99]. Parameters used in

the phase-field models can be represented by material parameters with relationships

which are usually obtained from the approximation solutions of the phase-field equa-

tion in zero interface thickness in classical techniques.

To physically verify phase field models with respect to classical models, produc-

tion of solute trapping is required. If the liquid have solute, there is preferential

equilibrium compositions in both solid composition and liquid composition at a in-

terface. Because of that, preferential rejection or incorporation of solute happens.

According to solubility, the rejection composition will be diffused away from the in-

terface through the solid phase, liquid phase, or both phases resulting in concentration

gradient at the interface. The performance of the solute trapping by using phase-field

models had been done by Wheeler et al. [3, 69].
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Meanwhile, Kim et al. [5] proposed a new concept for the phase field model that

has a different definition of solid and liquid composition at a interface. The model

reported by Wheeler [3] is postulated under the consistency of thermodynamics and

assumed the same composition of solid and liquid at the interface. However, Kim

et al. [5] found a certain limitation in the interface thickness that is not free from

the interface energy and the difference between the same composition of solid and

liquid due to the chemical energy distribution in the interface. They introduced a

new concept regarding the chemical energy distribution in the interface. It is that

the chemical potential is equal at the interface. The composition of the solid and

liquid at the interface can be obtained from the chemical potential equilibrium, and

then each composition will be different. To verify their phase field model, they also

simulated the common phenomenon, and it was successful.

Another common phenomenon in solidification process is dendrite growth. So,

simulations of dendrite growth are required for effectiveness of a model. For the

dendrite growth, one should know that the most important factor of internal char-

acteristic is physically the anisotropy at the solid-liquid interface, and it is a key

parameter affecting the evolution of crystal morphology. Adaption of anisotropy ef-

fect in the phase-field model is a key issue in computational work [1, 10, 19, 70, 100].

Therefore, simulation of dendrite solidification is one of the common works in com-

putational work. Once a phase-field model is introduced, the model is handled to

obtain the verification from simulations compared with results of classical models.

The models of dendrite solidification have been developed initially in undercooled

pure melt [1, 9, 10, 19, 24, 25] and extended to binary alloy system [70, 100].

In this chapter, before moving to complicated applications, we will present dis-

cussions on phase transition in 1-D and dendrite growth in 2-D using the phase field

model by Kim et al. [5] in Al-2mole%Si alloy at 870 K. We will show the composi-
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tion and phase-field profile at a interface for verification. I will show the variation of

composition of solid and liquid at interface with different interface velocities and mo-

bilities in one dimensional calculation. Additionally, we will introduce an anisotropic

phase field model and simulate dendrite solidification in 2-D.

B. Governing equations

1. An isotropic model

Based on the theory [3], we need free energy density of the solid-liquid mixture that

can be written as

f(c, ϕ) = h(ϕ)fS(c) + [1− h(ϕ)] fL(c) + wg(ϕ), (3.1)

where fS is the free energy density of solid, and fS is the free energy density of

liquid. ϕ is phase field. ϕ = 0 and ϕ = 1 correspond liquid phase and solid phase,

respectively. Therefore 0 < ϕ < 1 indicates solid-liquid interface. h and g are a

constitutive equation for free energy density of solid-liquid mixture and double well

potential, respectively. The two functions vary according to numerical techniques.

However, h should have the similar shape of the predicted phase-field according to ϕ

, and g should be ’w’ formation with respect to ϕ and has two minima at ϕ = 0 and

ϕ = 1. The preferential form of h and g are

h(ϕ) = ϕ3
(
6ϕ2 − 15ϕ+ 10

)
(3.2)

and

g(ϕ) = ϕ2 (1− ϕ)2 , (3.3)

where w is the barrier height of double-well potential. The value w can be taken

with a constant value because of independence of composition in the case with finite
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interface thickness, which means that it does not indicate that the interface energy

is independent of the temperature. The interface energy is mostly dependent on

the shapes of the free energy curves of interfacial phases that vary with respect to

temperature and equilibrium concentration at the interface. Because the form of

free energy density at the solid-liquid interface is only a function of phase filed, any

solution model or thermodynamic data can be applied.

Time dependent equations of substances for enthalpy and phase field are given

by [5]:

∂H

∂t
= ∇ [k∇T ] (3.4)

∂ϕ

∂t
= M

(
ϵ2∇2ϕ− fϕ

)
, (3.5)

H = h(ϕ)HS + [1− h(ϕ)]HL, (3.6)

TS(x, t) = TL(x, t) = T (x, t), (3.7)

f(H,ϕ) = h(ϕ)fS(HS) + [1− h(ϕ)] fL(HL) + wg(ϕ). (3.8)

Eqs. (3.4)-(3.8) can be reduced with two equations as

cp
∂T

∂t
− L

∂h

∂ϕ

∂ϕ

∂t
= ∇ [k∇T ] , (3.9)

∂ϕ

∂t
= M

[
ϵ2∇2ϕ+

∂h

∂ϕ

(
fL − fS

)
− w

∂g

∂ϕ

]
. (3.10)

Replacing H for c and T for fc in Eqs. (3.9)-(3.10) yields the phase field equation

and diffusion equation as

∂ϕ

∂t
= M

(
ϵ2∇2ϕ− fϕ

)
, (3.11)

∂c

∂t
= ∇

(
D(ϕ)

fcc
∇fc

)
(3.12)

with

c = h(ϕ)cS + [1− h(ϕ)]cL, (3.13)
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fS
cS
[cS(x, t)] = fL

cL
[cL(x, t)], (3.14)

f(c, ϕ) = h(ϕ)fS(cS) + [1− h(ϕ)]fL(cL) + wg(ϕ), (3.15)

where D(ϕ) = h(ϕ)DS + (1− h(ϕ))DL is the diffusivity.

The model parameters, ϵ and ω, obtained from the definition of the interface

energy [5], are functions of phase field and interface width, and the interface width is

analytically obtained from finite interface limit condition, where the model parameters

are required only in the interface region and the interface region in this chapter is

0.1 < ϕ < 0.9. Mobility M is related to the kinetic coefficient β [5]. They are given,

under the dilute solute approximation [5], as

σ =
ϵ
√
w√
18

, (3.16)

λ = 1.55
ϵ√
w
, (3.17)

β =
vm
RT

me

1− ke

[
σ

Mϵ2
− ϵ

Di

√
2w

ζe
]
. (3.18)

ζe =
RT

vm
(ceL − ceS)

2

×
∫ 1

0

1

ϕ(1− ϕ)

h[1− h]

[1− h] 1
ceS

+ h 1
ceL

dϕ. (3.19)

whereme is the equilibrium slope of liquidus from phase diagram, ke is the equilibrium

partition coefficient, and Di is the diffusion coefficient at the interface [see Appendix

A].

2. An anisotropic model

The phase field equation should be modified in order to include the anisotropy of

interface. The four-fold anisotropy is introduced by putting the coefficient in the

phase-field parameter [70] as
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ϵ(θ) = ϵ0 {1 + ν cos(4θ)} , (3.20)

where ν is the anisotropic coefficient. θ is the angle between normal direction of

interface and x-axis, which can be given by

θ = tan−1 (ϕi)y
(ϕi)x

. (3.21)

In order to modify the phase-field equation ϵ2 should be located inside the diver-

gence in equation (3.10). The following terms

∂

∂x

[
ϵϵ′

∂ϕ

∂y

]
− ∂

∂y

[
ϵϵ′

∂ϕ

∂x

]
(3.22)

should be added in the phase field equation [12], so that the phase field equation

becomes

1

M

∂ϕ

∂t
= ∇ · (ϵ2∇ϕ) +

∂

∂x

[
ϵϵ′

∂ϕ

∂y

]
− ∂

∂y

[
ϵϵ′

∂ϕ

∂x

]
+
∂h

∂ϕ

(
fL − fS

)
− wg′(ϕ). (3.23)

The phase-field and diffusion equations are discretized on uniform grids using

an explicit finite difference scheme. During the calculation, a stochastic noise on

the liquid composition in the vicinity of interface is imposed in order to simulate the

fluctuations, which give the well-developed secondary arms. Note that the free energy

densities are obtained by using the thermodynamic data for binary alloys under the

assumption of a dilute solution approximation.
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C. Numerical analysis and discussions

1. Phase transition simulation in 1-D

Eqs. (3.11) and (3.12) are discretized by finite difference method for spatial derivatives

and a simple explicit Euler scheme for temporal derivative, considering mass conser-

vation. Phase dependent diffusivity in Eq. (3.12) is imposed as D(ϕ) = h(ϕ)DS +

[1− h(ϕ)]DL. Initial liquid composition is uniform with 2.0 silicon mole % and the

temperature of the system is uniformly fixed as 870 K. The phase diagram of the

system can be given by Fig. 14. In order to guarantee existence of stationary solution

at long time, we put a moving solute sink point in liquid, keeping a given distance

from the interface. In every time step, the solute sink is moved by just the interface

migration distance and enforced to put the initial bulk composition. The system ini-

tially states in transition and then reaches a steady state. The interface velocity at

the steady state could be varied by changing the given distance between solute sink

and interface.

We impose a initial condition in calculation as an undercooled state with a given

temperature in the system, and then a solid phase with the same composition as the

bulk liquid nucleates and starts to grow. After a long time, the interface velocity

decreases monotonically and finally stops at an equilibrium state due to the solute

trapping behavior as shown in Fig. 15(a).

The material parameters we selected for Al-2mole%Si alloy at 870 K are the

followings; diffusivity of solid (DS) and liquid (DL) are 1× 10−12 and 1× 10−9m2/s.

Moral volume (vm) and interface energy (σ) are 1.06× 10−5m3/mole and 0.093J/m2.

Melting point (Tm) is 993.6K. Equilibrium composition of solid and liquid in at 870 K

are 0.006387 and 0.79. Equilibrium partition coefficient (ke) and equilibrium liquidus

slop in phase diagram me are 0.08 and 939.0. The free energy density for solid and
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liquid are

fS =
1

vm

[
G0

Al(1− c) +G0
Sic+RT [clnc+ (1− c)ln(1− c)] + ASc(1− c)

]
, (3.24)

fL =
1

vm
RT [clnc+ (1− c)ln(1− c)]

+c(1− c)
[
AL +BL(1− 2c) + CL(1− 6c− 6c2)

]
, (3.25)

where

G0
Al = −10792 + 11.56T, G0

Al = 12.12T,AS = −220− 7.594T,

AL = −107.4− 1.82T, BL = −4274.5− 3.0T, CL = 670.7− 0.46T.

The grid size ∆x is taken as 0.5 nm, and the interface thickness 2λ is imposed

as 3 nm, which will give w and ϵ from Eqs. (3.16) and (3.17) as 2.10 × 108J/m3

and 1.91 × 10−5(J/m)1/2, respectively. The total grid number was fixed to be 1000.

The phase field mobility M and the corresponding interface kinetics coefficient β are

variables related to the compositions of solid and liquid at interface. Eqs. (3.18) and

(3.19) allow to evaluate M and β under assumption of dilute solution approximation.

Fig. 15(a) shows stationary composition profiles with three different fixed dis-

tances when M = 44m3/Js , where the distance is taken from the position of ϕ = 0.5

and the solute sink point in liquid phase. The solute sink position that is set to be

the initial bulk composition can be seen in each profile. The interface velocities can

be measured according to the figure. They are 0.060m/s for solid line, 0.20m/s for

dashed line and 0.50m/s for dotted line. We can found that the maximum and the

minimum compositions are different with different interface velocity resulting from

different the distances.

Because different interface velocities resulted from the different distances of solute

sink point cause different maximum and minimum compositions for solid and liquid,
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Fig. 14. Phase diagram for Al-2mole%Si alloy at 870 K.

we can compare the solid and liquid compositions at the interface considering high/low

interface velocity condition. According to the increase of velocity the effect of solute

trapping decreases because high velocity can not drag less solute composition to solid

phase during solidification process. Thus, lower solid composition appears in high

interface velocity than in low velocity. Because of less solute composition is dragged

into the solid phase, large amount of solute composition diffuse to the liquid phase,

thus higher composition appears in low interface velocity than in high velocity.

The mobility also affects solute trapping during solidification process. Two cases

(M = 44 & 2.2) are taken in order to investigate solute trapping. M = 2.2 and M =

44 corresponds interface kinetics coefficients which are calculated as 0.0165m/Ks and
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Fig. 15. Steady-state concentration profiles (a) with M=44 m3/Js for Al-2mole%Si

alloy at 870 K. The origin was taken as the position with ϕ=0.5. The interface

velocities are 0.060 m/s for solid line, 0.20 m/s for dashed line, and 0.50 m/s

for dotted line. (b) Zoom-in profiles of interface corresponding to Fig. 15(a).

0.0043m/Ks, respectively, [5] under the dilute solute approximation. Fig. 16 shows

variations of the liquid and solid composition dependent of interface velocities at the

interface, respectively. In the figures, filled circles (M = 44m3/Js) and open circles

(M = 2.2m3/Js) are the results obtained by numerical simulation, and solid curves

(M = 44m3/Js) and dashed curves (M = 2.2m3/Js) are from the analytical solu-

tion based on low interface velocity limit. From Fig. 16, small M causes both solid

and liquid compositions decreased with respect to the increasing interface velocity

while large M causes the increase of solid composition and decrease of liquid compo-

sition. We can find that high mobility affects the degree of solute drag to the solid

phase, which means that large amount of solute composition associates with solid

composition because phase transformation occurs faster.
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Fig. 16. Variations of the (a) liquid composition and (b) solid composition at the inter-

face with the interface velocity. The solid (M=44 m3/J s) and dashed curves

(M=2.2m3/J s) are the predictions with low interface velocity limit condition,

and the filled circles (M=44 m3/J s) and open circles (M=2.2 m3/J s) are the

results obtained from numerical simulations with the same parameters.

2. Dendrite solidification simulations

Eqs. (3.11) and (3.23) are discretized by finite difference method for spatial deriva-

tives and a simple explicit Euler scheme for time derivative, considering mass con-

servation. Phase dependent diffusivity in Eq. (3.11) is imposed as D(ϕ) = h(ϕ)DS +

[1− h(ϕ)]DL. Initial liquid composition is uniform with 2.0% silicon mole and the

temperature of the system is uniformly fixed as 870 K. The phase diagram of the

system is given in Fig. 14.

The grid size ∆x is taken as 0.03µm, and the interface thickness 2λ is imposed
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as 0.12µm, which will give w and ϵ from Eqs. (3.16) and (3.17) as 2.10 × 108J/m3

and 1.91× 10−5(J/m)1/2, respectively. The grid number is fixed to be 2000 by 2000.

The phase field mobility M and the corresponding interface kinetics coefficient β are

variables related to the compositions of solid and liquid at interface. Eqs. (3.18) and

(3.19) allow to evaluate M and β under the assumption of dilute solution approxima-

tion. As shown in Eq. (3.20), four-fold dendrite solidification will be performed with

a reference angle (45o). The free energy density for solid and liquid are Eqs. (3.24)

and (3.25).

Fig. 17. Dendrite solidification under Al-2mole%Si alloy at 870 K (ν=0.02).

(a)t=0.00045(sec), (b)=0.0012(sec), (c)t=0.0021(sec) and (d)t=0.003(sec).

,

The morphologies of dendrite growth will be performed with different anisotropic
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coefficients which lead to changing the growth of the primary arms and secondary

arms during the dendrite solidification. Noise of the phase on the solid/liquid interface

is employed to produce well-developed secondary arms and added into the governing

equation.

Fig. 18. Dendrite solidification under Al-2mole%Si alloy at 870 K (ν=0.04).

Figs. (17)-(19) show the dendritic morphology with different anisotropic coeffi-

cients (ν=0.02, 0.04, 0.08). A dendrite is initially seeded in the center of the calcula-

tion domain. According to the figures, we can find that the each arm grows forming

parabolic tip at the leading edge according to the preferred directions, and secondary

and tertiary arms grows well until they are blocked by other arms. Although the

growth of primary arms initially start at the same time, the shape of the primary

arms and secondary arms branching from the primary arm are independently differ-
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ent because of the imposed noise on the interface. It is clear to see that the thickness

of secondary arm in figures increases with the distance behind the primary dendrite

tip. Growth procedure inbetween arms can be classified with two successive stages.

At first, near the primary arm, the small secondary arms compete with each other

and some over-grown secondary arms survive. In second, the competition between

the survived arms is rather weak due to large spacing and can grow until further

growth are screened by the tertiary arms. Only a few secondary arm can outgrow the

neighboring tertiary arms.

The primary arms in the figures grow preferably and other arms stop advancing

or slightly melt back. After melt between the primary and secondary arms, they start

solidifying again resulting in the coarsening of the primary arms and secondary arms.

This melt back process was experimentally observed by [101, 102]. It is interesting

to know that the coarsening is observed in high anisotropic coefficient as shown in

Figs. (17)-(19). High anisotropic coefficient leads to high difference of interface kinet-

ics according to the orientation (see Eq. (3.20)), resulting in increasing the change of

arms’ birth, their competition, and the sharpness of dendrite tip.

Asymmetry branching is found for the secondary and tertiary arms. The side

branching occurs only at one side of the arms, which has been observed in experiments

[35, 102]. It is noted that the asymmetry is related with the thermal field distribu-

tion. The side branching prefers to the direction to release the latent heat. One-side

branching of tertiary arm is found on the secondary arm. The tertiary branching

depends on the liquid-layer thickness between secondary arms, rather than the length

of the secondary arm. Also, there seems to be a critical thickness of the liquid-layer

between secondary arms for the growth of tertiary arms. Although it is unclear that

the same criterion for tertiary branching in real experiments can operate, the large-

scale evolution of well-developed tertiary branches in a thermal dendrite promises the
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computational development of the dendrite solidification.

Fig. 19. Dendrite solidification of Al-2mole%Si alloy at 870 K (ν=0.08).

D. Conclusions

We introduced a phase-field model for solidification of an alloy and presented isother-

mal solidification of Al-2mole%Si alloy at 870 K performed by a numerical method

under one and two dimensions. The interfacial compositions of solid and liquid based

on a low interface velocity limit were in good agreement with those from the numerical

simulations when interface velocity is especially less than 0.2m/s. we can find that

the interface kinetics coefficients vary according to the thermophysical properties of

alloys.

For 2-D we simulate the patten of dendrite solidification in the same solidification
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system by using an anisotropic phase field model. The simulated dendrite showed

similar microstructure observed in experimental researches [35, 102]. There were

many interesting phenomenon to know. They are the follows: (1) the each arms

grows forming parabolic tip at the leading edge, (2) the primary arms in the figures

grow preferably and other arms stop advancing or slightly melt back. After melt

between the primary and secondary arms, they start solidifying again resulting in the

coarsening of the primary arms and secondary arms, and the coarsening rate is related

to the anisotropic coefficient, (3) asymmetry branching is found for the secondary and

tertiary arms, and (4) one-side branching of tertiary arm is found on the secondary

arm. All phenomena shown in conclusion can be observed in experimental researches

[35, 102].
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CHAPTER IV

EUTECTIC SOLIDIFICATION

A. Introduction

Understanding the evolution of eutectic patterns during solidification has been a very

interesting and difficult problem in materials processing for a long time. Although

considerable attention has been allocated to the understanding of this phenomenon

in cases in which the solidification front advances freely into the liquid, the actual

microstructure of eutectic solidification is strongly dependent of interfacial interac-

tions. If there would be extraneous secondary insoluble impurities, predicting the

actual microstructure of eutectic solidification and interfacial interactions becomes

more difficult. Several researches reported the beneficial aspects of adding insoluble

nanoparticles to solidifying alloys [78, 103, 104, 105].

Mergy et al. [37] worked on the experimental investigation of the eutectic growth

pattern considering factors such as interfacial energies and diffusion coefficients. The

value of the parameters for the transparent organic alloy (CBr4-C2Cl6) was deter-

mined by experiments under directional solidification. Ginibre et al. [38] investigated

the instability of lamellar growing pattern under directional solidification by control-

ling lamellar spacing, concentration and solidification velocity with the same organic

alloy. The experimental characterization of the instability of eutectic growth was

found to be in very good agreement with stability diagrams previously computed by

Karma [4, 18]. A better understanding of the conditions that drive the (in)stability of

eutectic patterns have provided researchers with the fundamental inspiration to con-

trol lamellar growth pattern [39], which in turn can provide significant enhancements

to the structural properties of eutectic structures.



65

Chernov et al. [106] studied interactions between an impurity and a solidification

front governed by van der Waals interactions and viscous lubrication force. They de-

rived an approximate analytical expression for the impurity behavior as a function of

its size, temperature gradient and interfacial energy. Similar treatment of the prob-

lem proposed by Uhlmann et al. [107] was based on the change of chemical potential.

The effect of impurities on the structure and stability of the impinging solidification

front is determined by an interplay among van der Waals interactions, thermal con-

ductivity differences between the impurity and the melt, interfacial energy and the

density change during phase transition [108, 109]. Experimental observations have

corroborated that all these factors affect the stability of solidification fronts inter-

acting with insoluble particles [110]. Ode et al. [111] investigated the evolution of

solid-liquid interface shape with an insoluble impurity using a phase field model with

different initial solute concentrations and solidification front velocities in the Fe-C

system. The solid-solid interface shape change produced by impurities considered as

a second phase field was reported by Moelans et al. [112, 113, 114].

Akamatsu et al. [76] accidentally observed the decay of eutectic lamellae through

interaction with glass particles. Although it happened accidentally, the evolution of

eutectic lamellae is worthy of note. One of the first investigations to look into the

effect of particles was performed by Lin et al. [78] who showed an experimental study

of the solidification kinetics and microstructure development in tin/lead solders by

mechanically mixing nanopowders of either copper or TiO2 with tin/lead powders.

They found that the solidified composite solder results in the reduction of grain size

and spacing of the eutectic lamellae. They concluded that nanopowders increase

hardness of microstructure.

In the first section in this chapter, isotropic (and anisotropic) multi-phase field

and diffusion equations for eutectic solidification will be derived. The relationships
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between thermodynamic variables and parameters in eutectic phase diagram and the

relationship between the phase-field mobility and interface kinetics coefficient are de-

rived. Computation methods will be described in detail. 2D simulation results on the

lamella eutectic patterns in directional solidification of a organic alloy (CBr4-C2Cl6)

will be shown under the same physical parameters and conditions with experimental

result [37, 38].

In the second section, we address the problem by employing a relative simple

phase-field formulation that will enable us to understand the behavior of a solidifying

eutectic front encountering an insoluble particle. We build on already developed

descriptions for phenomena associated with the problem at hand, namely, eutectic

solidification, the interaction between interfaces and insoluble, secondary particles as

well as the encapsulation of impurities by a solidification front. By combining all

these different models within a coherent, self-consistent mathematical description,

we have been able to address this complex phenomenon in a systematic manner.

We then proceed to formulate the model, and then we present the results from an

extensive numerical experimentation that had the objective of mapping the behavior

of the system as a function of controlled parameters, such as particle size, lamella

spacing, temperature gradient at the solid/liquid interface as well as the velocity of

the solidification front. In the third section, we add the term of particle conductivity

on the calculation based on the description of second section. By combining all these

different models as done in the second section, we address this complex phenomenon

including system conductivity. We then proceed to formulate the model and then we

present and compare results with the second section by mapping the behavior of the

system as a function of controllable parameters, such as particle size, temperature

gradient, the velocity of the solidification front as well as conductivity difference

between a system and a particle.
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B. Phase field model for eutectic solidification

1. Free energy functional

During eutectic solidification in a binary system, two solid phases—in this mathe-

matical model represented as α-phase (ϕ1) and β-phase (ϕ2)—and a liquid phase—L-

phases (ϕ3)— coexist at equilibrium. Within the context of multi-phase field modeling

already described in previous chapters, it is assumed the unitarity of the phase-fields

sums at any point in the computational domain, i. e.:

3∑
i=1

ϕi = 1. (4.1)

It is also assumed that the composition at any point and time interval is given

by a simple rule of mixtures, taking into account the contribution of any phase with

non-zero phase-field parameter:

c(x, t) =
3∑

i=1

ϕici. (4.2)

The free energy functional for a system of given volume V can be defined as [6]:

F =

∫
V

[fP + fT ] dV (4.3)

with fp being defined as

fP =
∑
j>i

∑
i

[
−ϵij

2
∇ϕi · ∇ϕj + ωij (ϕiϕj)

]
, (4.4)

where ϵ is the gradient energy coefficient and ω is the double well potential represent-

ing the energy barrier separating two phases ϕi and ϕj.

The thermodynamic potential can be obtained from the mixture rule as

fT =
∑
i

ϕif
i (ci) , (4.5)
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where f i (ci) is the free energy density of i phase as a function of composition ci. At

any point in the computational grid, when multiple phases coexist, their composition

can be determined by assuming a condition of local thermodynamic equilibrium [5],

which can be defined as:

f 1
c1
[c1] = f 2

c2
[c2] = f 3

c3
[c3] (4.6)

Local thermodynamic equilibrium enforces continuity in the chemical potential

of all the species across the interfaces, eliminating the extra chemical potential that

introduces additional interfacial energetic contributions to the total free energy of a

system. This approach in turn relaxes the restrictions on the width of the numerical

interfaces during the simulations [6], as mentioned in previous chapters.

The composition can be obtained from a function of ϕi and ci at any point in

the computational domain:

c(x, t) =
3∑

i=1

ϕici. (4.7)

2. Phase field and diffusion equations

From [6] the number of phases coexisting in a given point can be obtained as

N(x, t) =
3∑
i

χi(x, t). (4.8)

According to [20] and [6], we can get a phase field description for coexisting

phases at interfaces as:

Ψij = ϕi − ϕj. (4.9)

With Eq. (4.9) we can obtain a description of the kinetics of the evolution of the

phase-field as a function of time through the use of the so-called Allen-Cahn evolution

equation:

∂ϕi

∂t
=

1

N

(∑
i̸=j

χiχj
∂Ψij

∂t

)
, (4.10)
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where χi is equal 1 when corresponding phase exists, otherwise 0, and N presents the

number of the coexisting phases. This equation is only valid on the phase interfaces

since the presence of only on phase in any point of the calculation domain would

make χi or χj zero, resulting in the cancelation of the whole equation.

Eqs. (4.9) and (4.10) lead to the ansatz of the phase field [6, 27] as [see Appendix

B]

∂ϕi

∂t
− ∂ϕj

∂t
= −2Mij

[
∂F

∂ϕi

− ∂F

∂ϕj

]
, (4.11)

where Mij is mobility. It is noted that the derivative of the free energy functional

∂F/∂ϕi is

∂F

∂ϕi

=
∂FP

∂ϕi

+
∂FT

∂ϕi

. (4.12)

The functional derivatives can be obtained from Eqs. (4.4) and (4.5) by differen-

tiation with respect to ϕi as

∂FP

∂ϕi

=
∑
i̸=j

[
ϵ2ij
2
∇2ϕj

]
(4.13)

and

∂FT

∂ϕi

= f i(ci)− fcci, (4.14)

so that Eq. (4.12)

∂F

∂ϕi

=
∑
i̸=j

[
ϵ2ij
2
∇2ϕj + ωijϕj

]
+ f i(ci)− fcci, (4.15)

where ϵ(ϵij = ϵji) is gradient energy coefficient and ω (ωij = ωji) is the height of

double well potential. Finding these two parameters will be explained in the next

section. Thus the phase field equation can be obtained from the combination of

Eqs. (4.10) and (4.11) as

∂ϕi

∂t
= − 2

N

∑
i ̸=j

Mijχiχj

[
∂F

∂ϕi

− ∂F

∂ϕj

]
. (4.16)
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In order to get a diffusion equation, we can set a formulation consisting of dif-

fusion coefficient and the derivative of free energy functional with respect to compo-

sition. The diffusion equation with diffusivity that remains constant in a bulk phase

can be written as:

∂c

∂t
= ∇

(
D(ϕ)

fcc
∇fc

)
. (4.17)

Eq. (4.17) can be modified with the consideration of multiphase field as

∂c

∂t
= ∇D∇c+∇ D

fcc

∑
i

fcϕi
∇ϕi. (4.18)

With fcϕi
/fcc = −ci we can modify Eq. (4.19) again as

∂c

∂t
= ∇ · [D∇c] +∇ ·

[
D
∑
i

ci∇ϕi

]
. (4.19)

Because each phase has different diffusion coefficient (D), the formulation can be

modified depending on phase-field by inserting Eq. (4.2) into Eq. (4.19), resulting in

an equivalent diffusion equation under dilute solute approximation [5, 27, 39] as

∂c

∂t
= ∇ ·

(
D

3∑
i=1

ϕi∇ci

)
. (4.20)

3. Evaluation of model parameters

In order to get model parameters in the phase field equation, we should obtain a

stationary solution of the phase field equation in a planar interface. For example of α

phase and L phase, 1-dimensional stationary equation of the phase field and diffusion

equation can be changed as

ϵ2αL
dϕα

dx2
− ωαL(1− 2ϕα)−

[
fα − fL − (cα − cL)fc

]
= 0 (4.21)
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and

d

dx
D

[
ϕα

dcα
dx

+ (1− ϕα)
dcL
dx

]
= 0 (4.22)

with

fα
c [cα] = fL

c [cL] = fc (4.23)

and

c = ϕαcα + ϕLcL. (4.24)

From Eq. (4.23) the phase field equation (4.21) will be change as a function of

equilibrium composition of each phases. Combining this equation with Eq. (4.23)

leads to

ϵ2αL
dϕα

dx2
= ωαL(1− 2ϕα), (4.25)

and then integrating this equation yields

ϕα
1

2

(
1− sin

√
2ωαL

ϵαL

)
. (4.26)

The solution will then be associated with interfacial energy and interfacial width.

According to the definition of the interface energy as a function of gradient energy

coefficient and phase field with a referred interface width, we can get two relationships

between model parameters and material parameters, as shown in [5]:

ξ =
1√
8

πϵαL√
ωαL

and σαL =
πϵαL

√
ωαL

4
√
2

, (4.27)

In the same manner, we can get a general forms of the model parameter as

ξ =
1√
8

πϵij√
ωij

and σij =
πϵij

√
ωij

4
√
2

, (4.28)

where ξ is the half width of the interface, and σij is the interface energy for the

corresponding phases. Based on the approximation of the interface thickness [27], ξ

has a fixed value for interfaces.
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The phase field mobilityM can be determined according to the solution of kinetic

coefficient in the previous chapter. It is

MiL =
vm
RT

σiL

(1− ki)2

√
2ωiL

cL{i}ϵ
3
iLζiL

, (4.29)

where

ζiL =

∫ 1

0

p(ϕ)[1− h(ϕ)]

D
√
g(ϕ) [1− (1− ki)h(ϕ)]

dϕ (4.30)

and i can be either α and β. The functions p(ϕ), h(ϕ) and g(ϕ) are referred from the

equations in the previous chapter.

4. An anisotropic phase field model

We can extend it for the anisotropic model by changing two model parameters: inter-

face energy σij and kinetic coefficient βij. These parameters are a function of an angle

between the x-axis and the directions normal to the ϕi = constant and ϕj = constant

lines. It is

θi = tan−1 (ϕi)y
(ϕi)x

. (4.31)

Because mobility M , σ, ω are a function of ϵ, all model parameters can be

regarded as a function of θ so that we should focus on the gradient coefficient. It is

denoted that

ϵij = ϵ(θij), and Mij = M(θij) (4.32)

and

θij =
1

2
(θi + θj), (4.33)

which follows

(ϵij)θi =
1

2
ϵ′ij, (4.34)

(ϵij)θiθi =
1

4
ϵ′′ij. (4.35)
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For simplicity, we consider the free energy functional

F =

∫
V

[
−
ϵ2ij(θij)

2
∇ϕi∇ϕj

]
dV. (4.36)

The variation δϕi in ϕi results in the variation of the functional

δF = −
∫
V

[ϵijδϵij∇ϕi∇ϕj] dV +

∫
V

[
ϵ2ij
2
∇δϕi∇ϕj

]
dV. (4.37)

The variation δϵij in the first integral in Eq. (4.37) can be modified as

δϵij =
(ϵij)θj
|∇ϕi|2

[(ϕi)x(δϕi)y − (ϕi)y(δϕi)x] . (4.38)

In order to get the final form of the anisotropic phase field equation, we should

obtain the first integral in Eq. (4.37), obtain the functional derivatives and factor this

equation. The final result of the functional derivatives is [see Appendix C]

∂Fij

∂ϕi

= −
ϵ2ij
2
∇2ϕj +

1

2
ϵijϵ

′
ijBij +

1

2

[
(ϵ′ij)

2 + ϵijϵ
′′
ij

]
Aij (4.39)

with

Aij = Pij

[
∇2ϕi + [(ϕi)yy − (ϕi)xx] cos(2θi)− 2(ϕi)xy sin(2θi)

]
+

1

8
[1 + cos(2θi) cos(2θj) + sin(2θi) sin(2θj)]∇2ϕj

+
1

8
[cos(2θi) + cos(2θj)] [(ϕj)yy − (ϕj)xx]

− 1

4
[sin(2θi) + sin(2θj)] (ϕj)xy (4.40)

and

Bij = (ϕj)xy [cos(2θj) + cos(2θi)]

+
1

2
[(ϕj)yy − (ϕj)xx] [sin(2θj) + sin(2θi)]

+Wij

[
∇2ϕi + [(ϕi)yy − (ϕi)xx] cos(2θi)− 2(ϕi)xy sin(2θi)

]
, (4.41)



74

where

Wij =
(ϕj)y(ϕi)x − (ϕj)x(ϕi)y

|∇ϕi|2
(4.42)

and

Pij =
(ϕj)x(ϕi)x − (ϕj)y(ϕi)y

|∇ϕi|2
. (4.43)

Therefore the anisotropic phase field equation is

∂ϕi

∂t
= − 2

N

∑
i ̸=j

Mijχiχj

[
∂F a

∂ϕi

− ∂F a

∂ϕj

]
, (4.44)

where

∂F a

∂ϕi

=
1

2

[
ϵ2ij
2
∇2ϕj + ϵijϵ

′
ijBij +

[
(ϵ′ij)

2 + ϵijϵ
′′
ij

]
Aij + 2ωijϕj

]
+f i(ci)− cifc. (4.45)

5. Thermodynamic terms

In order to apply the thermodynamic data from a eutectic phase diagram into a ther-

modynamic potential of the model, equilibrium liquidus slopes, equilibrium partition

coefficients and eutectic composition near eutectic temperature should be certain val-

ues. So, we assume that the linearity of the phase boundaries in the diagram from the

temperature dependence of the chemical potentials of pure solvent and pure solute

where A is the pure solvent and B is a pure solute and their Gibb’s free energy are

GA and GB, respectively. We can write the chemical potentials of component A and

B in the i phase of an ideal dilute solution as

µi
A = Gi

A − RTe

vm
ci, (4.46)

µi
B = Gi

B − RTe

vm
lnci, (4.47)

From the chemical potential equilibrium, we can get µα
A = µL

A and µα
B = µL

B in
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case of α phase and L phase, so that

Gα
A − RTe

vm
cα{L} = GL

A − RTe

vm
cL{α}, (4.48)

Gα
B − RTe

vm
lncα{L} = GL

B − RTe

vm
lncL{α}, (4.49)

which follows

cα{L} − cL{α} =

(
Te − T

m1

− c

)
(1− kα), (4.50)

ln
cα{L}
cL{α}

= lnkα. (4.51)

Therefore

GL
A −Gα

A =
RTe

vm

(
c− Te − T

mα

)
(1− kα), (4.52)

GL
B −Gα

B =
RTe

vm
lnkα, (4.53)

where R, Te, vm, kα are gas constant, eutectic temperature, moral volume and parti-

tion coefficient of α and L phases, respectively. With the same manner, we can get

for β and L phases

GL
A −Gβ

A =
RTe

vm

(
c− Te − T

mβ

)
(1− kβ), (4.54)

GL
B −Gβ

B =
RTe

vm
lnkβ, (4.55)

If we regard GL
A = 0 and GL

B = 0 as a standard state, the chemical potential can

be obtained as

for α phase:

µα
A =

RTe

vm

(
c− Te − T

mα

)
(1− kα)−

RTe

vm
cα, (4.56)

µα
B =

RTe

vm
ln
cα
kα

, (4.57)
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for β phase:

µβ
A =

RTe

vm

(
c− Te − T

mβ

)
(1− kβ)−

RTe

vm
cβ, (4.58)

µβ
B =

RTe

vm
ln
cβ
kβ

, (4.59)

and for L phase:

µL
A = −RTe

vm
cL, (4.60)

µL
B =

RTe

vm
cL, (4.61)

where we can expect kL = 1 in Eqs. (4.60) and (4.61).

From the chemical potential equilibrium condition (µα
A − µα

B = µβ
A − µβ

B = µL
A −

µL
B) and dilute solute approximation (cα/cL = kα and cβ/cL = kβ), we can get the

thermodynamic terms as

for α and β phases:

f i(ci)− cifc = −RTe

vm

(
c− Te − T

mi

)
(1− ki)−

RTe

vm
ci (4.62)

and for L phase

fL(cL)− cLfc = −RTe

vm
cL, (4.63)

where i can be either α or β.

6. Numerical implementation

The phase-field equation and the diffusion equation will be numerically solved by

using finite difference method with different size of particle, temperature gradient and

solidification front velocity. The calculation domain is 400× 2000 for the horizontal

and vertical coordinates, respectively. The particle is located at the lower position

in the calculation domain. Periodic boundary conditions are applied to the sides of

the calculation domain and Neumann boundary condition is applied to the top and
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Fig. 20. Lamella spacing with respect to a couple of phases and undercooling spacing

with respect to Te and interface.

bottom of the calculation domain. The initial configuration is shown in Fig. 20.

The physical parameters for the present study will be used as follows [37]; diffu-

sion coefficients of the liquid, solid and particle are respectivelyDL = 5×10−10(m2/s),

Dα = Dβ = 5×10−14(m2/s). Eutectic temperature and composition are Te = 357.6K

and ce = 0.118, respectively. The slopes of the liquidus boundary aremα = −81K and

mβ = 165K. Partition coefficients are kα = 0.75 and kβ = 1.6. Interfacial energies are

σαL = 6.6× 10−3(m2/s), σβL = 5.8× 10−3(m2/s) and σαβ = 11.5× 10−3(m2/s) . The

molar volume is vm = 1.12×10−4(m3/mol). The temperature gradient (G) and the so-

lidification front velocity (V ) applied into the system are fixed as G = 8.0×103(K/m)

and V = 2.0 × 10−6(m/s), respectively. We apply the interface width for 2ξ = 7△x

where △x = 2.0× 10−7m.

Directional eutectic solidification is set to be isotropic or anisotropic, and the

dimensionless lamellar spacing λ = λs/λJH is set to be variable. According to Jackson

and Hunt [115], the definition of lamella spacing λs is given by Fig. 20 where λJH is

the undercooling distance.
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7. Results and discussions

Figs. 21(a-b) and Fig. 21(c) are applied with isotropic and anisotropic phase filed

equations, respectively. The regular lamella eutectic structure with straight α/β

boundaries parallel to the thermal gradient direction appeared to be stable up to

λ=2.1 as shown in Fig. 27(b). However, an oscillatory pattern with periodic change

in widths of α and β phases appeared at λ=2.3. This pattern (1λO pattern) was

observed also at λ=2.5, as shown in Fig. 21(a). By increasing λ above 2.5, transition

of the lamella pattern occurs at the initial stage of growth. At first, the 1λO-like

pattern occurred, but after a transient stages, the lamella pattern transformed into

another oscillatory pattern with a wavelength of twice the lamellar spacing, which

is called 2λO pattern, and experimental observation of this pattern was reported by

Mergy et al. [37].

This transient stage from 1λO pattern to 2λO pattern occurred earlier with

increasing λ further. Fig. 21(b) is a computation result obtained with at λ=2.7,

showing behavior of typical transition pattern. Thus, it is noted that the regular

lamella eutectic structure with straight α/β boundaries can be found at λ <2.2, 1λO

pattern can be found at 2.2< λ <2.5, and The transient stage from 1λO pattern to

2λO can be found at 2.5< λ. Also, these patterns based on the values of λ can be

reported by Grinbre et al. [38].

The experimental results, such as oscillatory lamellar growth in Figs. 21(a) and

(b) [38], are realized as follows. At first, a sample is pulled with a pulling velocity Vi

(for example, Figs. 21(a) and (b) have different Vi for a sufficiently long time to reach

a initial steady state having equilibrium undercooling spacing (λJH) and lamellar

spacing (λS). Then the pulling velocity is suddenly increased by a sufficiently small

quantity for not triggering creations of lamellae or tilt domains (an upward V jump).
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This practically makes the average and the local values of λs unchanged. But, because

of the V change, we can expect an instability behavior of lamellar growth. Once it

happens, the system is likely to restabilize into a different type of lamella growing

pattern that is another steady state of lamellar growth according to the V jump

without the change of λs. This means that experimental run of different V jump, such

as Fig. 21(a) and (b), is supposed to give us a series of points representing the various

pattern of lamellar growth. Grinbre et al. [38] performed many such experiments

with various values of the concentration and spacing until the interesting zone of

the parameter space was satisfactorily scanned. In practice, numerous difficulties

complicate this idealized picture.

Here, I select two cases of the experimental results described above for isotropic

lamella growth to reproduce Figs. 21(a) and (b). The simulation of Figs. 21(a1)

adapted λ=2.5 and the simulation of Figs. 21(b1) adapted λ=2.7. The simulation

results are shown in Figs. 21(a1) and (b1). They provide a good agreement each

other. In the consideration of undercooling and lamella spacing as shown Fig. 22,

we can expect that the system has lamella growth approaching another steady state

that is satisfied with λS,min, but the initial lamella spacing (X in Fig. 22) is higher

than λS,min. Therefore, local decrease of a lamella spacing occurs and local under-

cooling decreases afterwards. If it happens, the lamella are stabilized by the resulting

change in the interface shape. When the stabilization process occurs, the lamella

tends to grow normal to the existing local interface. Because the lamella spacing

decreases, the neighboring lamella spacing increases simultaneously. Once the neigh-

boring lamella spacing decreases enough, the lamella spacing decreases again based

on the re-stabilization behavior.

This increase/decrease of lamella spacing can be explained with Fig. 22. When a

lamella spacing moves to Point B, it is certain that the neighbor moves to Point A in
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Fig. 21. Phase field simulation for directional eutectic solidification of organic alloy

(CBr4-C2Cl6). (a) λ=2.5 and (b) λ=2.7 are simulated under isotropic con-

dition. (c) λ=2.2 with θ=22o as anisotropic condition. Solidification front

velocity and temperature gradient are 2.0 × 10−6(m/s) and 8.0 × 103(K/s),

respectively. The left figures are from experimental results [38] and the right

figures are generated by using parameters from [38].(Reprinted with Permis-

sion of American Physical Society.)
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Fig. 22. Schematic drawing of the variation of interface undercooling (∆T = Te − Ti)

with lamella spacing (λs). An important factor from the experimental research

in order to reproduce lamellar growth using computational method is the

dimensionless lamellar spacing λ = λs/λJH that can be set to be variable.

According to [38, 115], λs is the lamella spacing and λJH is the undercooling

distance.

Fig. 22. The growth condition moves to the left (Point B), a local decrease in lamella

spacing results in a narrowing depression of interface (higher ∆T ), while a local

increase in lamella spacing results in a widening uplift of interface. The depressing

lamellar spacing is more unstable, because of higher ∆T , than the uplifting one. The

fluctuation that decreases the local lamella spacing (point B) becomes more unstable

compared with the right (Point A), and the unstable lamella spacing moves to point C

(increase of lamella spacing)in order to be stable, while the other neighboring lamella

spacing that moved to Point A moves back to Point C resulting in the decrease of

lamella spacing. This indicates the fluctuation of lamella spacing, and this fluctuation

is continuously repeated. This behavior presents oscillatory lamella growth, and

the degree of the oscillation during lamella growth depends on the lamella spacing

corresponding to a initial pulling velocity .

The minimum lamellar spacing (λS,min) can be obtained from Gibb-Thompson
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relations as [115]

∆T

m
= vλsQ

L +
aL
λs

, (4.64)

where

1

m
=

1

mα

+
1

mβ

QL =
P (1 + ξ)2C0

ξLD
,

aL = 2(1 + ξ)

(
aLα
mα

+
aLβ
ξmβ

)

aLα =

(
TE

L

)
α

σL
α sinθLα

aLβ =

(
TE

L

)
β

σL
β sinθLβ (4.65)

and v is the pulling velocity, P is a constant, ξL is the ratio of α and β lamella

widths, D is the diffusion coefficient, m is the liquidus slop corresponding to phase,

L is the latent heat, TE is the eutectic temperature, σ is the liquid/solid interface

energy corresponding to phase, and θ is the angle of the solid/liquid interface at a

triple point.

From Eq. (4.64), λS,min at constant pulling velocity can be obtained as [115]

λS,min =
2maL

∆T ·
. (4.66)

λS,min depends on aL that is a interfacial energy as shown in Eq. (4.65), when

∆T , λJH andm are fixed. Here, we can define σL
α sinθLα+σL

β sinθLβ = σαβ, not = σS/L,

which is called interfacial energy between α and β phases [see Fig. 23]. Therefore,

λ = 2.7 in Fig. 21(a) indicates higher σαβ occupied than λ = 2.5 in Fig. 21(b).
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Fig. 23. A sketch of a lamella eutectic with the contact angles θα and θβ and interfacial

energies σα, σβ and σαβ.

C. Phase-field simulations of the eutectic solidification of binary alloy containing

encapsulated impurities

1. Free energy density and the constraints

Fig. 24. A particle near a advancing eutectic solidification front in a temperature gra-

dient G. Each phases are identical.

From this section, the term ’impurity’ denotes a circular (spherical) particle that

is insoluble in both the liquid as well as any of the two solid phases present in the

system. Consider that a directional solidification front approaches a particle of radius

R located in front of solid-liquid interface which has velocity V and temperature
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gradient G as seen in Fig. 24. There is a spontaneous formation composed of two

phases (α and β)from the liquid phase (i. e. eutectic solidification). During the

eutectic solidification, a system has four phases such as α-phases (ϕ1) and β-phases

(ϕ2) for solid phase, L-phases (ϕ3) for liquid and P -phases (ϕ4) for the particle as

seen in Fig. 24. Because the sum of the phases in a point in the system is equal to 1,

we can note that

∑
i

ϕi = 1 and i = 1, ..., 4. (4.67)

The presence of the particle can be introduced into a model by adding a positive

contribution to the total free energy of the system due to the presence of the insoluble

particle, as suggested by [112, 113, 114]. The free energy functional can be defined as

F =

∫
V

[fP + fT ] dV. (4.68)

With fp being defined regarding the present of the particle as

fP =
∑
j>i

∑
i

[
−ϵij

2
∇ϕi · ∇ϕj + ωij

(
ϕiϕj + Φ

(
1

4
ϕ2
i −

3

2
ϕiϕj +

1

4
ϕ2
j

))]
, (4.69)

where ϵ is the gradient energy coefficient and ω is the double well potential represent-

ing the energy barrier separating two phases i, j.

Φ is a spatially dependent parameter which is equal 1 in the particle phase and

0 out of the particle phase. Φ can be considered to be a foreign phase field variable

which is static (invariant) in time. Having Φ = 0 leads to a typical double well

potential [27]. When Φ = 1, the free energy density as a function of ϕi has one

minimum at which ϕ is equal to 0.5. For Φ = 0, the free energy density has two

minima at ϕi = 0 and ϕi = 1, which represents double-well potential. The shapes of

the free energy density as a function of phase field variable for Φ = 1 and Φ = 0 are
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shown in the Fig. 25.

Fig. 25. Free energy density as a function of phase fields. (a) Φ =0: the free energy

density has two minima at ϕi = 0 and ϕi = 1, which means that there is a

phase separation. (b) Φ =1: the free energy density as a function of ϕi and

ϕj has one minimum at which ϕ equal 0.5. The number of the minima can be

determined by Φ.

The thermodynamic potential can be obtained from the mixture rule as

fT =
∑
i

ϕif
i (ci) , (4.70)

where f i (ci) is the free energy density of i phase as a function of composition ci. At

any point in the computational grid, when multiple phases coexist, heir composition

can be determined by assuming a condition of local thermodynamic equilibrium [5],

which can be defined as:

f 1
c1
[c1] = f2

c2
[c2] = f3

c3
[c3] = f4

c4
. [c4] (4.71)

Local thermodynamic equilibrium enforces continuity in the chemical potential

of all the species across the interfaces, eliminating the extra chemical potential that

introduces additional interfacial energetic contributions to the total free energy of a
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system. This approach in turn relaxes the restrictions on the width of the numerical

interfaces during the simulations [6].

The composition can be obtained from a function of ϕi and ci at any point in

the computational domain:

c(x, t) =
4∑

i=1

ϕici. (4.72)

2. Phase field and diffusion equations

According to [20] and [6], we can get a phase field description for coexisting phases

at interfaces as:

Ψij = ϕi − ϕj. (4.73)

With Eq.(4.73) we can obtain a description of the kinetics of the evolution of the

phase-field as a function of time through the use of Allen-Cahn evolution equation:

∂ϕi

∂t
=

1

N

(∑
i̸=j

sisj
∂Ψij

∂t

)
, (4.74)

where si is equal 1 when corresponding phase exists, otherwise 0, and N presents the

number of the coexisting phases. This equation is only valid on the phase interfaces

which tells that the equation is valid on the phase interfaces since the presence of only

on phase in any point of the calculation domain would make si or sj zero, resulting

in the cancelation of the whole equation.

Eqs. (4.73) and (4.74) lead to the ansatz of the phase field [27] as

∂ϕi

∂t
− ∂ϕj

∂t
= −2Mij

[
∂F

∂ϕi

− ∂F

∂ϕj

]
, (4.75)

where Mij is the mobility. It is noted that the derivative of the free energy functional

∂F/∂ϕi is the sum of ∂FP/∂ϕi and ∂FT/∂ϕi.

The functional derivatives can be obtained from Eqs. (4.69) and (4.70) by dif-
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ferentiation with respect to ϕi as

∂F

∂ϕi

=
∑
i̸=j

[
ϵ2ij
2
∇2ϕj + ωijϕj +

1

2
Φωijϕi −

3

2
Φωijϕj

]
+ f i(ci)− fcci, (4.76)

where ϵ(ϵij = ϵji) is gradient energy coefficient and ω(ωij = ωji) is the height of double

well potential. Finding these two parameters will be explained in the next section.

Thus the phase field equation can be obtained from the combination of Eqs. (4.74)

and (4.75) as

∂ϕi

∂t
= − 2

N

∑
i ̸=j

Mijsisj

[
∂F

∂ϕi

− ∂F

∂ϕj

]
. (4.77)

In order to get a diffusion equation, we can set a formulation consisting of diffu-

sion coefficient and the derivative of free energy functional with respect to composi-

tion. The formulation can be modified with a function of free energy density with Eqs.

(4.68), (4.71) and (4.72). Because each phase has different diffusion coefficient (D),

the formulation can be modified depending on phase field, resulting in an equivalent

diffusion equation under dilute solute approximation [5, 27, 39] as

∂c

∂t
= ∇ ·

(
D

4∑
i=1

ϕi∇ci

)
. (4.78)

3. Evaluation of model parameters

In order to get model parameters in the phase field equation, we should obtain a

stationary solution of the phase field equation in a planar interface. The solution

will then be associated with interfacial energy and interfacial width. According to

the definition of the interface energy as a function of gradient energy coefficient and

phase field with a referred interface width, we can get two relationships between model

parameters and material parameters, as shown in [5] and [27]:
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ξ =
1√
8

πϵij√
ωij

and σij =
πϵij

√
ωij

4
√
2

, (4.79)

where ξ is the half width of the interface, and σij is the interface energy for the

corresponding phases. Based on the approximation of the interface thickness [27],

ξ has a fixed value at the solid-liquid interface. However, in order to incorporate

the effects of insoluble particles, the value of ξ for particle-solid and particle-liquid

interfaces should be different. According to Eq.(4.69), this phase does not undergo any

phase transformation (i. e., the phase field is invariant in time). The corresponding

interfaces should then be very thin comparing with the solid-liquid interface resulting

in a small value of ϵij. A small value of ϵi4 in turn requires a large value for the energy

barrier between any phase and the insoluble particle, ωi4. It is noted that interface

energy between the insoluble particle and any of the two solid eutectic phases or the

liquid can be given from the determination of the proper interface width of particle-

phase interface as well as from the energy barrier ωi4.

From the phase field diagram of the organic alloy investigated by [38], we can

get a simple form of the thermodynamic potential [27]. The linearity of the phase

boundaries in the diagram can help to obtain a chemical potential equation which is

a function of Gibb’s energy of individual composition and the energy of the mixture

within the ideal dilute solute approximation. Although the Gibb’s energy of individual

phases at any given composition is fixed, the total free energy of the mixture varies

because it is a function of the corresponding composition.

Since the insoluble particle is incorporated into the model as a fourth phase

containing any or both species of the organic alloy, the presence of such a fourth

phase could in principle affect the topology of the eutectic phase diagram. Such a

fourth phase would then evolve over time according to the proper kinetics as well as
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the local thermodynamic conditions established at the interface between this particle

and any of the three other phases. Although in principle we could actually designate

this particle as being composed of a third species, such a description would only

complicate the model without gaining much advantage. In this work, we constrain

the composition of the particle to very small amounts of one of the species of the

alloy. We restrict the evolution of this insoluble particle by suppressing the mobility

of any interface involving this phase as well as any diffusion within the particle phase

field. Essentially, what we are doing in this work is to establish this fourth particle as

being a metastable phase that, under normal considerations would dissolve but that

it is kinetically constrained to do so due to the extremely small interface and atomic

mobilities. Full incorporation of this particle within the computational domain and

subject to the constraints described above allows us to keep global mass conservation

during the simulation.

The thermodynamic potential terms (the last two terms in Eq. (4.76)) for solid,

liquid and particle phases can be respectively obtained under the a standard state as

RT

vm

[(
cE − TE − T

mi

)
(1− ki)− ci

]
, − RT

vm
c3 and

RT

vm

[(
cE − TE − T

mi

)
− c4

]
,

(4.80)

where R is the gas constant, vm is the molar volume, mi is the slope of the liquidus

boundary in the phase diagram, TE is eutectic temperature of the system, ki is the

partition coefficient. When k3 = 1 and k4 ≈ 0 are applied into the first thermody-

namic potential in Eq. (4.80), we can obtain the last two thermodynamic potentials

because partition. Note that the thermodynamic potential for the fourth phase does

not have any relation to the actual thermodynamics of the eutectic system. The math-

ematical functional form in this case is just selected to facilitate the implementation



90

of the numerical model. Since the particle is kinetically prevented from evolving, its

actual thermodynamic description is actually inconsequential.

The mobility (Mi3) can be obtained based on the thin interface limit [27] ne-

glecting a kinetic coefficient as

Mi3 =
vm
RT

σi3

(1− ki)2

√
2ωi3

cei3ϵ
3
i3

Dϕ3∫ 0

1

√
ϕ2−ϕ

(ϕ−1)(ki+1)+ki
dϕ

. (4.81)

However, obtaining mobility (Mi4) requires further consideration. Some parameters

in Eq. (4.81) should be based on the particle parameters. According to Eq. (4.81),

Dϕ3 is referred by Mi3, which means that when we consider the mobility based on the

particle phase, we can denote Dϕ4 for Mi4, and the diffusivity of the particle phases

is close to zero due to the insoluble particle. Therefore Mi4 can be selected with a

negligible value as well.

4. Numerical implementation

The phase field equation and the diffusion equation will be numerically solved by

using finite difference method with different size of particle, temperature gradient and

solidification front velocity. The calculation domain is 400× 2000 for the horizontal

and vertical coordinates, respectively. The particle is located at the lower position

in the calculation domain. Periodic boundary conditions are applied to the sides of

the calculation domain and Neumann boundary condition is applied to the top and

bottom of the calculation domain. The initial configuration is shown in Fig. 25.

The physical parameters for the present study will be used as the following

[37]; diffusion coefficients of the liquid, solid and particle are respectively DL = 5 ×

10−10(m2/s), DS = 5×10−14(m2/s) andDP = 5×10−24(m2/s). Eutectic temperature

and composition are TE = 357.6 and cE = 0.118, respectively. The slopes of the



91

liquidus boundary are m1 = m4 = −81K and m2 = 165K. Partition coefficients

are k1 = 0.75, k2 = 1.6 and k4 = 0.0001. k4 = 0.0001 is caused by the small

value of particle composition. Interfacial energies are σ13 = 6.6× 10−3(m2/s), σ23 =

5.8× 10−3(m2/s), σ12 = 11.5× 10−3(m2/s) and σi4 = 22.5× 10−3(m2/s). The molar

volume is vm = 1.12× 10−4(m3/mol).

Directional eutectic solidification is set to be isotropic, and the lamellar spac-

ing is uniformly 10µm. The radius of the particle varies from 5µm to 12µm. The

distance between the bottom of a particle and solidification front is set to be 30 µm

which is enough to grow lamellae stable until the lamellae impinge the particle. The

temperature gradient (G) and the solidification front velocity (V ) applied into the

system also vary from 1.0× 103(K/s) to 3.2× 104(K/s) and from 2.0× 10−7(m/s) to

4.× 10−6(K/s), respectively. The solidification front velocity is controlled by moving

eutectic temperature in the calculation domain, and the temperature gradient is im-

posed on the system based on the eutectic temperature position. The referred G and

V are 8.0×103(K/s) and 2.0×10−6(m/s), respectively. We applied different interface

width between the solid-liquid interface (2ξ = 7△x) [27] and the particle-liquid (or

particle-solid) interface (2ξ = 2△x), where △x = 2.0× 10−7m.

5. Results and discussions

The eutectic growth pattern containing an encapsulated particle appears to be highly

complex due to many mechanisms, caused by the existence of the particle and system

parameters which are the size of the particle, the interface energies of phase-coexisting

areas, lamella spacing, temperature gradient, solidification front velocity and so on.

Understanding of the morphology of eutectic lamellar growth with the effect of the en-

capsulated particle can be attained by investigating the instability of lamellar growing

and the number of the growing lamellae. Here we consider the instability of lamellar
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growing and the number of the growing lamellae according to the variation of the size

of a particle, the temperature gradient and solidification front velocity.

Eutectic solidification growth patterns with different particle sizes are presented

in Fig. 26, where V = 2.0 × 10−6(m/s) and G = 8.0 × 103(K/s). There are a lot of

possible sizes of the particle applied to the calculation, but representative figures for

the morphology of solidification are selected with R = 5&12µm. In case of simple

solidification impinging an insoluble and immobile particle [111], the particle at an

early stage does not affect interface shape even though solute trapping has occurred.

As the interface moves to the particle, solute diffusion is obstructed by the particle

resulting in the concave morphology of the solid/liquid interface. The concentration

of solute in the liquid phase between the interface and the particle is gradually higher,

and then the particle is encapsulated by the advancing interface front. Instantly, a

solute-enriched thin liquid film exists along the surface of the particle, but it becomes

solid as the evolution progresses. While passing the particle, the interface near the

surface of the particle is likely to slide on the surface of the particle with less velocity

due to the higher solute concentration [5], comparing with other areas that have no

contact with the particle, which pattern of the interface is likely to render the deep-

valley shape of the interface at the top of the particle once the particle is completely

engulfed. After that, the interface does not return its original flat configuration, but

becomes swallow-dipped shape due to the higher solute concentration even at the late

stage, as discussed by [110], in Fig. 27.

The behavior of the interface shape upon particle impingement and engulfing

affects the instability and growth of lamellae during solidification. According to the

particle size relative to the lamella spacing, there are several cases showing different

morphologies of eutectic solidification. For example, in some cases, lamellae keep

growing without changing the number of initial lamellae. The behavior in Fig. 26(a)



93

can be obtained at R < 6µm, which corresponds to a particle size less than half the

lamella spacing. Under these conditions, the lamella seem to be almost unperturbed

by the presence of the particle.

(a) (b)

Fig. 26. Eutectic solidification according to various particle sizes (R = 5&12µm) with

fixed solidification front velocity (V = 2.0 × 10−6m/s) and temperature gra-

dient (G = 8.0× 103 K/s). β is minor phase.

When the particle is comparable in size to the lamella spacing, instabilities in the

growth pattern can emerge. For example, Fig. 26(b) shows the interaction between a

eutectic solidification front and an insoluble particle of radius of 12 µm. In this case,

two inner lamellae grow along surface of the particle, and then they coalesce as the

particle is completely engulfed by the solidification front. Because of the reduction of

the number of lamellae caused by the change of interface shape, equilibrium condition

between lamella spacing and undercooling rate is broken, resulting in unstable growth

of lamellae at the later stage. This instability is manifested as morphological pertur-

bations with a wavelength of about the lamella spacing. These sorts of instability

patterns can be seen to occur under different conditions, according to the particle

size, but the behavior was observed to occur whenever particle size was between one

and two times the lamella spacing.

Morphologies of eutectic solidification with smaller solidification front velocity
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(a) (b)

Fig. 27. Interface shape around an insoluble particle from Ode et al. [111] and a typ-

ical eutectic solidification from Kim et al. [27]. (a):V = 2.0 × 10−7m/s and

G = 8.0 × 103 K/s in a radius (R = 5µm). (b):V = 2.0 × 10−7m/s and

G = 8.0× 103 K/s.

(V = 2.0 × 10−7(m/s)) and larger solidification velocity (V = 4.0 × 10−6(m/s))

are shown in Figs. 28(a)∼(c) and in Figs. 28(d)∼(e), respectively. Comparing with

Fig. 26, lamellae grow stably but their number is decreased under the low solidification

front velocity without the transition zone in Figs. 28(a)-(c), while lamellae grow also

stable but the number is increased under the large solidification front velocity with

the transition zone (Figs. 28(d)-(e)). The lamellae grow stably and slowly at the early

stage, but due to the smaller solidification front velocity lamellae passing adjacent

the particle grow bending toward the particle as shown in Fig. 28(a)-(c), or lamellae

growing toward the bottom of the particle stop growing by particle’s blocking as shown

in Fig. 28(c). Unlike the cases in Fig. 26, the lamellae grow stably even though they

bend toward the surface of the particle because of the low solidification front velocity

which distributes insufficient energy for the lamellae to arrive at an out-of-equilibrium

state, so that they are likely to grow stably although the lamellar spacing becomes

different from that prior interaction with the particle.

Contrary to the cases of the low solidification front velocity, the lamellae growing

under the higher solidification front velocity show morphological instabilities in the
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(a) (b) (c)

(d) (e)

Fig. 28. Eutectic solidification according to various particle sizes with fixed solidi-

fication front velocity and temperature gradient. (a)-(c) are applied with

V = 2.0 × 10−7m/s and temperature gradient (G = 8.0 × 103 K/s) in each

radius (R = 5, 7,&12µm) . (d)-(e) are applied with V = 4.0 × 10−6m/s and

temperature gradient (G = 8.0× 103 K/s) in each radius (R = 6&12µm).

eutectic phases prior their interaction with the insoluble particle. Upon encapsulation,

transition zones are formed in all cases investigated, irrespective of the particle size.

The number of transition zones formed after particle encapsulation actually decreases

as the particle size increases, as shown in Figs. 28(d)-(e). Contrary to the case shown

in Fig. 28(c), the two inner lamellae in Fig. 28(e) are not stopped from growing by

the particle but actually grow around it, contributing eventually to the formation of

the transition zone. It can be found that all cases in Figs. 28(d)-(e) show that the

lamellae grow in an stable manner after particle encapsulation. Growth apparently is
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stabilized due to the decrease in lamella spacing in accordance with previous numerical

investigations [27]. It is interesting to note that the larger size of particle and larger

solidification front velocity result in an increase in the number of growing lamella

after encapsulation.

Because there are three controllable parameters; size of the particle, solidification

front velocity and temperature gradient, numerous cases can be obtained from the nu-

merous combination of three parameters. In order to avoid redundant explanations,

the stability maps of the lamella growth according three parameters are required.

The stability maps according the solidification front velocity and temperature gradi-

ent with some fixed particle’s radii are useful to understand physics of the eutectic

growth containing a particle because the particle may be regarded as an unnecessary

object in the system and the other parameters can be under control in solidification

manufacturing. In this work, more than a hundred different cases involving different

particle sizes, solidification front velocities as well as temperature gradients were used

to construct stability maps for the problem in question.

The temperature gradient (G) and the solidification front velocity (V ) applied

into the system were varied from 1.0 × 103(K/s) to 3.2 × 104(K/s) and from 2.0 ×

10−7(m/s) to 4.0 × 10−6(K/s), respectively. Three sizes of the particle are selected.

One case (similar to that shown in Fig. 26(a)) should involve a particle should show

that the diameter of a particle is smaller than the largest width of the lamella (dark-

colored lamellar) among a set of lamella. In this case the lamella (white-colored

lamella) will not touch the surface of the particle based on general eutectic lamella

growth. In a second case (similar to that shown in Fig. 26(b)), the particle has the

same size as the lamella spacing, resulting in the lamella structure definitely touching

the particle and ’sliding’ on the surface of the particle as it is being engulfed. The

third case should involve a particle with size twice that of the lamella spacing. This
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Fig. 29. Instability of eutectic solidifications according to front velocities and

temperature gradients with two fixed particle radius, (a)R = 5µm

and (b)R = 10µm. The range of the solidification front velocity is

2.0 × 10−7 < V < 4.0 × 10−6(m/s) and the range of the temperature gra-

dient is 1.0 × 103 < G < 3.4 × 104 (K/s). (0), (-) and (+) in the figures

indicate that the system has the same number, less number and large num-

ber of lamellae after particle impingement compared with initial number of

lamellae, respectively.

can result in the interruption of the growth of some of the lamellae. The two radii of

particles representing the three different situations just described are 5µm and 10µm.

Fig. 29 shows the resulting maps of stability of eutectic solidification and the

number of growing lamella sets after complete encapsulation according to the varia-

tion of temperature gradient and solidification front velocity with two different par-

ticle sizes. In Fig. 29, (0), (-) and (+) indicate that the system has the same num-

ber, less number and large number of lamellae after particle impingement compared

with initial number of lamellae, respectively, while the shaded regions indicate the

unstable growth of lamellae after engulfment. In general, larger G stabilizes lamel-

lae while smaller G and larger V tend to induce morphological instabilities during

solidification. Larger V increases the number of lamellae formed after particle en-
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Fig. 30. Configuration of the eutectic solidification containing insoluble impurities in

3D. 400× 400× 2000 of calculation domain is used.

capsulation. However due to the two different formation between particle and initial

lamella spacing, the results of the instability are slightly different. For unstable re-

gions, R = 5µm shows that the unstable zone exists in large V and small G and

disappears with V < 3.0 × 10−6(m/s), and R = 10µm shows that the unstable zone

exists in large V and small G, but occupies large area even in V ≈ 1.5 × 10−6(m/s)

and G ≈ 5.0 × 103(K/s) because of the positional characteristics between lamella

spacing and particle size mentioned above. For the number of the growing lamella

set, R = 5µm shows four growing lamella sets are widely occupied in the middle of

Fig. 29(a). More than four growing lamella sets occur in V > 3×10−6(m/s)and mostly

grow stably. R = 10µm shows that the area of the less than four growing lamella sets

becomes wider, and four growing lamella sets becomes narrower. However, the area

presenting more than four growing lamella sets in this case is equilibrant to the area

of the R = 5µm case except low V .

Fig. 31 shows the three different lamella growth after impinging a particle (R =
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(a)

(b)
(c)

Fig. 31. 3D simulation of eutectic solidifications impinging particle (R = 5µm) ac-

cording to (a) V = 2.0 × 10−6(m/s) and G = 8.0 × 103 (K/s), (b)

V = 2.0× 10−7(m/s) and G = 8.0× 103 (K/s) and (c) V = 4.0× 10−6(m/s)

and G = 16.0× 103 (K/s).

5µm) from 3D simulation. Initially configuration of the 3D eutectic solidification

containing insoluble impurities is adopted in Fig. 30. As we discussed before, we

found that there are three different significant features of lamella growth due to the

existence of the particle. The first one is the feature that initial number of lamellae

is not changed and the lamellae grows stable as shown in Fig. 26(a). According to

the position of the particle, the morphology of lamella growth would be different, but

the case of Fig. 26(a) shows that the particle does not affect the growth of lamella.

The 3D simulation in Fig. 31(a) gives us more realistic evolution of lamella growth

including the neighboring ones. The second one is the feature that initial number

of lamellae is reduced and the lamellae grows stable as shown in Fig. 28(a). From
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fig. 28(a), two inner lamella is merged after impinging a particle, and the thickness

of lamella increases. The case of Fig. 26(b) shows that the particle cause the inner

lamella merged, but does not affect to stability of lamella growth. The 3D simulation

in Fig. 31(b) gives us different evolution of lamella growth near the particle. Because

of the existence of the far-away lamellae, contrary to Fig. 28(a) the lamella near the

particle is not merged together, but becomes separated and stable. The last one is the

feature that initial number of lamellae increases and the lamellae grows stable after

impinging a particle as shown in Figs. 28(d)-e. 3D simulation in Fig. 31(c) provides

more detail evolution of lamella growth which number increases.

D. Eutectic solidification of binary alloy containing impurities of different conduc-

tivity

In this section, we will use the phase field model, diffusion equation, and model

parameters from the previous section. We will investigate morphology of eutectic

growth adjacent to the encapsulating impurity, that has a different conductivity with

system and plot engulfments for each case based on the effects, which results in

obtaining instability of the growing lamellar pattern in the CBr4-C2Cl6 system. It

is expected that this description will allow the qualitative investigation of stability

phenomena as a function of some of the most important factors that can be controlled

during actual experimental investigations.

1. Conductivity difference between impurity and system

Because we consider the conductivity difference between a particle and system, the

heat equation derived from Fourier’s law must be included in the calculation. Obtain-

ing temperature distribution is only for getting model parameter that is involved in
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the governing equations. Therefore time-independent heat equation required in the

calculation is

Tt = kc∇T, (4.82)

where kc is the conductivity which varies with material of particles (kp) and system

(km) according to calculation points in this study. While it is true that the system

conductivity during eutectic solidification is slightly different because the system has

different phases and different compositions, we use a bulk conductivity for the whole

system in order to focus on the difference between a impurity and system. Fig. 32

shows that non-dimensional temperature distribution according to the value of k =

km/kp.

(a) (b)

Fig. 32. Temperature distribution with different conductivity of a system and an impu-

rity. The values of the temperature are non-dimensionalized. k = km/kp=100

and k = km/kp=0.01 are plotted in Fig. 32(a) and (b), respectively.

2. Numerical implementation

The phase field equation and the diffusion equation will be numerically solved by

using finite difference method with different size of particle, temperature gradient

and solidification front velocity. The calculation domain is set to be three dimensions

(400 × 400 × 2000). The particle is located at the lower position in the calculation
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domain. Periodic boundary conditions are applied to the sides of the calculation

domain and Neumann boundary condition is applied to the top and bottom of the

calculation domain. The initial configuration is shown in Fig. 30.

The physical parameters and initial system configurations for the present study

will be the same as those shown in the previous section. Directional eutectic solidifi-

cation is set to be isotropic, and the lamellar spacing is uniformly 10µm. The radius

of the particle is selected from 5µm to 10µm. The distance between the bottom of a

particle and solidification front is set to be 30 µm which is enough to grow lamellae

stable until the lamellae impinge the particle. The temperature gradient (G) and

the solidification front velocity (V ) applied into the system will be used as the same

with the previous section. The ratio of the conductivity between the system and im-

purity (k = km/kp) varies from 0.01 to 100. Therefore the temperature distribution

on the system and will be varied according to k while temperature distribution in

the previous section has gradient only for solidification direction. The temperature

gradient in this section is imposed on the system based on the eutectic temperature

position and results from heat equation. We applied different interface width between

the solid-liquid interface (2ξ = 7△x) [27] and the particle-liquid (or particle-solid)

interface (2ξ = 2△x), where △x = 2.0× 10−7m.

3. Results and discussions

We discussed that the eutectic growth pattern containing an encapsulated particle

should be considered with many mechanical factors, such as size of the particle, tem-

perature gradient, solidification front velocity, and discussed the results based on the

factor. Conductivity of materials is also one of the important mechanical factors that

may change the evolution of lamella growth. Here we additionally include conductiv-

ity difference in the system, and show the effect of the conductivity difference on the
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instability of lamellar growing.

As discussed in the previous section, we found that the lamella growth pattern

after impinging an impurity can be classified into three different cases. The first

case is that the number of lamellae is not changed compared with the initial number

of lamellae as shown in Fig. 33. The second case is that the number of lamellae is

reduced as shown in Fig. 34. In 2D simulation as shown in Fig. 28(a), two lamellae

seem to be merged together, but 3D simulation shows a different behavior. The two

lamellae near the impurity are merged together resulting in the change of growth

pattern of adjacent lamellae. The last case is that the number of lamellae is increased

as shown in Fig. 35. In previous section, the solidification interface is performed as

a flat surface except the time that the interface engulfs the impurity resulting that

the previous cases do not have convex shape of solidification front, but have concave

shape of solidification front. Now, we consider the shape of the solidification front

by using the conductivity difference between a system and an impurity. Thus, we

can find that cases applied with the same V and G may provide the different growth

pattern due to the shape of the interface brought by the conductivity in this section.

The first case shown in Fig. 33 shows that the change of the lamellae during the

solidification does not happen. The 3D growth pattern in Fig. 33(a) agrees with the

result of the previous section [see Fig. 29(a)]. The growth pattern in Fig. 33(b) shows

possibility of second cases. If the case of Fig. 33(b) would be simulated without the

effect of the conductivity difference, it definitely results that the change of the lamellae

pattern at the adjacent the impurity do not happens, and the lamellae grow stably.

k >1 changes the solidification front into convex shape when the solidification front

is located under the impurity. On the other hand, the solidification front becomes

concave shape when it is located over the impurity due to heat flux distribution

around the impurity. The concave shape of the solidification front would drive two
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(a1)

(a2)

(a3)

(a4)

(b1)

(b2)

(b3)

(b4)

Fig. 33. Growth pattern of eutectic lamellae according to (a) G = 32.0 × 103(K/m),

V = 2.5 × 10−6(m/s) and k = 0.5 and (b) G = 32.0 × 103(K/m),

V = 2.0× 10−6(m/s) and k = 100 with R = 5µm.
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lamella to be merged. but, it does not happen afterward. If driving to merge two

lamellae together is applied strongly, the lamellae near the impurity will be merged

together, and the next growth pattern is well simulated in Fig. 35.

Fig. 34 shows that merging of two lamellae near an impurity. Once the two

lamellae are merged together near the impurity, the wavy pattern of the lamella is

observed in Fig. 34(a). Moreover, the degree of the mergence of two lamellae near

the impurity is observed strongly as shown in Fig. 34(b), then the two lamellae are

broken apart, and new lamella forms on top of the impurity. Because the broken

lamellae are unstable, other independent lamellae appear by cutting the tail of the

broken lamellae. The newborn lamellae will affect the growth pattern of the lamellae

in the system according to value of k, V and G. If the break of the longitudinal set

of lamellae happens continuously, the set of lamellae are eventually broken into small

pieces of lamellae, and the growth of small pieces turns to be stable [see Fig. 35].

In order to understand the growth pattern of lamellae in detail, the stability

maps of the growth pattern should be required as shown in Figs. 36-38. Fig. 36

shows growth pattern map of eutectic solidification according to the conductivity

difference (0.01 < k < 100) and the solidification velocity (4.0 × 107(m/s)< V <

4.0× 106(m/s)) at a fixed temperature gradient (G = 8.0× 103(K/m)) in Fig. 36(a)

and the conductivity difference (0.01< k <100) and the temperature gradients (1.0×

103(K/m)< G < 32.0 × 103(K/m)) at a fixed solidification velocity (V = 6.0 ×

107(m/s)) in Fig. 36(b). The total areas in Fig. 36(a) shows the stable growth pattern.

From Fig. 36 one can find that high solidification front velocity produce mores lamellae

pieces after impingement, and small k is likely to reduce the number of lamellae unless

solidification from velocity is larger than 1.9× 106(m/s). In Fig. 36(b), one can find

that unstable region of growth pattern is observed at low G and high k. It is expected

that high k pushes away due to the convex shape of the front. The pushed lamellae
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(a1)

(a2)

(a3)

(a4)

(b1)

(b2)

(b3)

(b4)

Fig. 34. Growth pattern of eutectic lamellae according to (a) G = 5.0 × 103(K/m),

V = 2.0 × 10−6(m/s) and k = 100 and (b) G = 1.0 × 103(K/m),

V = 3.5× 10−6(m/s) and k = 10 with R = 5µm.
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(a1) (a2)

(a3)
(a4)

Fig. 35. Growth pattern of eutectic lamellae according to G = 1.0 × 104(K/m),

V = 4.0× 10−6(m/s) and k = 100 with R = 5µm.

becomes unstable, and the low G stimulate the instability of the lamellae because

unstable regions is likely to be formed at low G in the case without the effect of

conductivity difference as shown in Fig. 29.

Fig. 37 shows growth pattern map of eutectic solidification according to front

velocities and temperature gradients with R = 5µm, (a) k = 0.01 and (b) k = 100.

The range of the solidification front velocity is 2.0 × 10−7 < V < 4.0 × 10−6(m/s)

and the range of the temperature gradient is 1.0× 103 < G < 3.4× 104 (K/s). When

conductivity difference was not taken into account in the previous section, larger G

stabilizes lamellae while smaller G tends to induce morphological instabilities during

solidification and larger V increases the number of lamellae formed after particle

encapsulation. Under the consideration of conductivity difference, one can find that

the reduction of the lamella’s number newly appear atG > 2.0×104 andG < 2.0×103,
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(a) (b)

Fig. 36. Growth pattern map of eutectic solidification according to (a) the conductiv-

ity difference and the solidification velocity at a fixed temperature gradient

(G = 8.0×103(K/m)) and (b) the conductivity difference and the temperature

gradients at a fixed solidification velocity (V = 6.0× 10−7(m/s)). (0), (-) and

(+) in the figures indicate that the system has the same number, less number

and large number of lamellae after the particle impingement compared with

initial number of lamellae, respectively. It is notes that all area in Fig. 36(a)

appears stable for lamellae.

and the unstable region is extended to V = 2.0× 10−6 in case of k = 0.01 while the

reduction of the lamella’s number appears at only G < 5.0 × 103, and the unstable

region is extended to V = 6.0×10−7 in case of k = 100. Fig. 38 shows growth pattern

map of eutectic solidification according to front velocities and temperature gradients

with R = 10µm, (a) k = 0.01 and (b) k = 100. The range of the solidification

front velocity is 2.0× 10−7 < V < 4.0× 10−6(m/s) and the range of the temperature

gradient is 1.0× 103 < G < 3.4× 104 (K/s). In the case, it is interesting to note that

unstable region becomes wider.
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(a) (b)

Fig. 37. Growth pattern map of eutectic solidification according to front velocities and

temperature gradients with R = 5µm, (a) k = 0.01 and (b) k = 100. The

range of the solidification front velocity is 2.0× 10−7 < V < 4.0× 10−6(m/s)

and the range of the temperature gradient is 1.0×103 < G < 3.2×104 (K/s).

(0), (-) and (+) in the figures indicate that the system has the same num-

ber, less number and large number of lamellae after the particle impingement

compared with initial number of lamellae, respectively.



110

(a) (b)

Fig. 38. Growth pattern map of eutectic solidification according to front velocities and

temperature gradients with R = 10µm, (a) k = 0.01 and (b)k = 100. The

range of the solidification front velocity is 2.0× 10−7 < V < 4.0× 10−6(m/s)

and the range of the temperature gradient is 1.0×103 < G < 3.2×104 (K/s).

(0), (-) and (+) in the figures indicate that the system has the same num-

ber, less number and large number of lamellae after the particle impingement

compared with initial number of lamellae, respectively.



111

E. Conclusions

The multiphase-field model for eutectic solidification was introduced using the diffuse

interface method under chemical potential equilibrium between solid and liquid. An

anisotropic phase field model considering the behavior of anisotropic materials was

also introduced. A phase field model developed to describe the interaction between a

eutectic solidification front and an insoluble impurity. A modified phase field model

was introduced for the impurities. We found that the morphology of the growing

lamellae can vary according to size of the impurity, solidification front velocity and

temperature gradient and conductivity difference between the system and the im-

purity which allows us to investigate various eutectic growth patterns adjacent and

behind to the encapsulation of the impurity.

In the treatment of the phase field model of eutectic solidification, we compared

with experimental results, and found about good agreement. In the treatment of

the phase field model for the existence of the impurities, we put a particle as a

second-phase field in the calculation domain, not out of the calculation domain. This

treatment requires evaluation of model parameters for the particle phase associated

with liquid and solid phases. Based on the variation of the size of the particle, the

solidification front velocity and the temperature gradient, we addressed various so-

lidification patterns with some figures and showed the instability and the number of

growing lamella sets after complete encapsulation according to the solidification front

velocities, the temperature gradients and conductivity difference between a system

and a particle with the fixed particle sizes (R = 5&10µm). Using real properties

of the organic alloy (CBr4-C2Cl6), it is possible to demonstrate simple eutectic so-

lidification phenomena which can be observed experimentally in simple cases, even

it can hardly be performed by experiments, such as containing the encapsulated
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particles and controlling the front velocity and temperature gradient within physi-

cal approaches. According to our results, we found that large G makes the growing

lamellae stable while small G makes them unstable, and larger V makes more number

of the growing lamella sets than the initial number of the lamella set. That means

that if a system contains any size of impurity during solidification manufacturing,

it is expected the patterns of growing lamellae will be modified according the size

of the impurity, the solidification front velocity and the temperature gradient. In

other words, it is possible to control the size of the impurity, the solidification front

velocity and the temperature gradient in order to obtain an expected microstructure

of an selected alloy according to the instability maps during eutectic solidification as

shown in Figs. 29, 37 and 38.
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CHAPTER V

MULTIPHASE FIELD SIMULATIONS OF INTERMETALLIC COMPOUND

GROWTH DURING SOLDERING REACTIONS

A. Introduction

When a molten solder alloy is put in contact with a substrate, interfacial reactions

result in the formation and growth of complex intermetallic compound (IMC) phases

at the substrate/solder interface. Due to the imposed chemical potential gradients,

the substrate initially dissolves into the molten solder alloy once they come into

contact. Dissolution then results in local supersaturation at the solder/substrate

interface. The supersaturation in turns makes the precipitation (nucleation) of IMC

phases thermodynamically possible. This stage is important for further evolution

of the IMCs because initial IMC growth determines the reliability of metallurgical

bonding at the solder joint in a soldering process. The nature of the interfacial

reactions depends on the individual alloy systems and soldering temperatures [41,

46, 96, 116, 117, 118, 119] and ultimately is a very complex process affected by both

thermodynamics and kinetics.

In soldering reactions involving the Cu-Sn binary system, the intermetallic layers

typically formed at the substrate/solder interface have been observed to consist mainly

of Cu6Sn5 and subsequently Cu3Sn. Understanding the solder/substrate interactions

and their microstructural evolution at the interface is important as this can provide

valuable insights on the nature of the interfacial evolution from a metallurgical point

of view [30, 31, 120, 121, 122] and serve the way of accurate control during these

reactions for the optimization of the soldering process [123].

Thermodynamics provides the fundamental information for analyzing reactions
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between different components and their phase stability and it also provides the driving

forces for chemical reactions and diffusion processes occurring in solder interconnec-

tions or thin film structures [124]. However, knowledge of the global equilibrium state

of the system is not sufficient to understand the complex phenomena for the solder

interaction with the substrate, as the actual path selected for the likely interfacial

reactions and structural evolution are highly dependent on the local minimization of

the free energy of the system. Recently, it has been shown that phase-field modeling

[6, 27] can be used to simulate soldering reactions [28, 125] which in turn provide us

with a powerful tool to describe the complex microstructural evolution of IMCs in

which significant topological changes in the microstructure take place as the reaction

progresses.

Experimental investigations on IMC growth during soldering previously pub-

lished by other groups have been used to elucidate some of the most important mech-

anisms responsible for the formation and growth of IMC layers [41, 43, 44, 45, 46, 96].

These investigations have reported that a Cu6Sn5 layer is formed as scallop-type

grains in contact with liquid solder, while Cu3Sn is formed as a reactive diffusion

layer between Cu6Sn5 and the solid substrate. These studies have also investigated

the influence of IMC morphology on the solid-state microstructural processes that af-

fect reliability of interconnects during normal operation. Although many groups have

observed the morphological change of IMC layers, it is still unclear how kinetics of

the soldering process is related to IMC growth. Although only through experimental

work it is actually possible to gain a fundamental understanding of the complex phe-

nomena occurring at substrate/solder interfaces, computer simulations can be used,

through controlled ’virtual experiments’, to elucidate some of the likely mechanisms

controlling the observed morphologies.

In this chapter, we will simulate different morphologies of the soldering reaction
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as a function of different material parameters involving the presence of Cu6Sn5 in

Section B and the presence of both Cu6Sn5 and Cu3Sn in Section C. We will briefly

introduce the development of a phase-field model to simulate the microstructural

evolution of the intermetallic compound layer formed by the interface reaction. The

phase-field model accounts for the fast grain boundary diffusion in the intermetallic

compound layer and the intermetallic compound grain coarsening. The results will

show you the effects of the fast grain boundary diffusion, concurrent coarsening of

the intermetallic compound grains and dissolution of Cu from the substrate and

intermetallic compound layer. They bring on the growth kinetics of the intermetallic

compound layer formed by the soldering reaction between Sn-Cu solders and a Cu

substrate with different grain boundary diffusions, the different interfacial energies,

and dissolution of Cu from the substrate and intermetallic compound layer based on

the different liquid solder compositions with/without Cu3Sn layer.

B. Intermetallic compound growth during soldering reaction for Cu6Sn5

1. Phase field and diffusion equations

We consider an isothermal Cu-Sn binary system. The system is composed of a Sn-

rich liquid solder (L), a Cu-rich solid substrate (α), and an intermetallic layer of

Cu6Sn5 (η). The intermetallic layer forms between the liquid solder and the solid

substrate. The intermetallic layer is polycrystalline consisting of many grains and they

are differentiated only by the crystallographic orientation. The spatial distribution of

the liquid solder, the substrate, and the grains in the intermetallic layer on the system

is mathematically expressed by using N arrays of phase fields ϕi(x, t)(i = 1, ..., N)

and can obey a multiphase field model. The phase field variables in this model can

be defined with ϕ1 for solid substrate, ϕ2,...,N−1 for the grains in the intermetallic
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layer and ϕN for liquid solder, respectively. ϕi = 1 indicates that a point of the

computational domain is occupied exclusively by phase i, while ϕi = 0 indicates that

there is no i phase in a particular region of the domain. Additionally 0 < ϕi < 1

corresponds to a point within the interface. From the previous works [5, 6, 126] the

interface is considered as a finite region consisting of a mixture of different phases or

grains and the N phase field variables at any position in the system are subjected to

the two constraints as

N∑
i=1

ϕi = 1 (5.1)

and

c(x, t) =
N∑
i=1

ϕici. (5.2)

The free energy density f can be defined with the summation of potential energy

and thermodynamic energy as

f =
∑
j>i

∑
i

[
−ϵij

2
∇ϕi · ∇ϕj + ωijϕiϕj

]
+
∑
i

ϕif
i (ci) (5.3)

so that the total free energy functional with respect to system volume can be defined

[6, 27] as

F =

∫
V

[∑
j>i

∑
i

[
−ϵij

2
∇ϕi · ∇ϕj + ωijϕiϕj

]
+
∑
i

ϕif
i (ci)

]
dV, (5.4)

where f i is the chemical free energy density of phase i and it depends on the phase

composition ci. ϵ is gradient energy coefficient and ω is double well potential rep-

resenting the energy barrier separating two phases ϕi and ϕj. The advantage of

using the double well potential helps the temporal evolution of the phase fields to be

computed for the finite region of the interface.

At any point in the computational grid, when multiple phases coexist, composi-
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tions can be determined by Eq. (5.2) and assuming a condition of local thermodynamic

equilibrium [5], which can be defined as

f 1
c1
[c1] = f 2

c2
[c2] = f 3

c3
. [c3] = ... = fN

cN
[cN ] . (5.5)

This equilibrium allows continuity in the chemical potential of all the species across

the interfaces. Elimination of the extra chemical potential in turn relaxes the restric-

tions on the width of the numerical interfaces during the simulations [6].

The number of phases coexisting in a given point can be obtained as [6]

Np(x, t) =
N∑
i

χi(x, t). (5.6)

According to the consideration of a phase-field description for coexisting phases

at interfaces, we can obtain the kinetics of the evolution of the phase-field as a function

of time as

∂ϕi

∂t
=

1

N

[∑
i̸=j

χiχj

(
∂ϕi

∂t
− ∂ϕj

∂t

)]
, (5.7)

where χi is equal 1 when corresponding phase exists, otherwise 0, and Np presents the

number of the coexisting phases at a given position. This equation is only valid on

the phase interfaces since the presence of only on phase in any point of the calculation

domain would make χi or χj zero.

Eq. (5.7) leads to the ansatz of the phase field [27] as [see Appendix B]

∂ϕi

∂t
− ∂ϕj

∂t
= −2Mij

[
∂F

∂ϕi

− ∂F

∂ϕj

]
, (5.8)

where Mij is mobility. It is noted that the derivative of the free energy functional

∂F/∂ϕi is

∂F

∂ϕi

=
∑
i̸=j

[
ϵ2ij
2
∇2ϕj

]
+ f i(ci)− fcci. (5.9)
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Inserting Eq. (5.9) into Eq. (5.7) leads to

∂ϕi

∂t
= − 2

Np

N∑
i ̸=j

χiχjMij

[
ϵ2ij
2

(
∇2ϕj −∇2ϕi

)
+ ωij (ϕj − ϕi)

+
N∑

k ̸=i,j

{(
ϵ2ik
2

−
ϵ2jk
2

)
∇2ϕk + (ωik − ωjk)ϕk

}

+ {(fi − cjf
′)− (fj − cjf

′)}

]
, (5.10)

where ϵ (ϵij = ϵji) is gradient energy coefficient and ω (ωij = ωji) is the height of

double well potential.

For a diffusion equation, we set the flux equation with respect to diffusion co-

efficient, free energy density and composition gradient for multiphase system. The

flux equation can be modified into a diffusion equation by using spatial differentiation

with a diffusivity that is a function of the local phase-field variable. The diffusion

equation is

∂c

∂t
= ∇ ·

(
D(ϕ)

N∑
i=1

ϕi∇ci

)
. (5.11)

2. Evaluation of model parameters

In order to get model parameters in the phase-field equation, we should obtain a

stationary solution of the phase field equation in a planar interface. The solution

will then be associated with interfacial energy and interfacial width. According to

the definition of the interface energy as a function of gradient energy coefficient and

phase field with a referred interface width, we can get two relationships between model

parameters and material parameters, as shown in [5] and [27]:

ϵ =
4
√
ξσij

π
and ωij =

2σij

ξ
, (5.12)
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where ξ is half width of the interface, and σij is interface energy for the corresponding

phases. Based on the approximation of the interface thickness [5], ξ has a fixed value.

3. Numerical implementation

Two dimensional simulations of phase field equation and the diffusion equation will

be numerically solved by using finite difference method on the cross section of the

Cu/Sn solder joint at 523K. In all cases, dimensional grid spacing of ∆x and the half

width of the interface ξ are used for 4.0 × 10−8(m) and 4∆x, respectively. Fig. 39

shows a schematic configuration for the computational domain. The size of the system

is set to be 184∆x × 290∆x. For the initial array of phases, intermetallic grains (η

phase) are placed from 20∆x to 25∆x between the liquid solder (from 25∆x to 90∆x)

and the solid substrate (from 0 to 20∆x). The intermetallic layer initially consists

of 30 rectangular grains that has different widths between 4∆x and 8∆x. Periodic

boundary conditions are applied to the sides of the calculation domain and Neumann

boundary condition is applied to the top and bottom of the calculation domain. The

calculation will be finished when thickness of the Cu-substrate will be used up.

We put an buffer solder region of 184∆x× 200∆x at the top (90∆x× 290∆x) of

liquid solder since the fast diffusivity in the liquid phase makes composition gradients

far away from the solder/substrate interface negligible. This allows the reduction in

size of the computational domain considered in the simulation. The composition of

the buffer region is initially the same as that of the solder in the computational solder.

The average composition of the buffer region may change with time, depending on

the mass flux across the solder/buffer interface. However, the composition assumes a

single value throughout the buffer zone.

The free energy densities per unit moral volume of individual phases were ob-
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Fig. 39. A schematic configuration for the computational domain.

tained from the CALPHAD method [124] and they are

fα = (1− c)Gα
Cu + cGα

Sn +RT [(1− c)ln(1− c) + clnc]

+c(1− c) [Lα
0 + Lα

1 (1− 2c)] , (5.13)

fη = 2.0× 105(c− 0.435)2 + 0.545Gα
Cu + 0.455GSER

Sn

−6869.5− 0.1589T, (5.14)

fL = 1− c)GL
Cu + cGL

Sn +RT [(1− c)ln(1− c) + clnc]

+c(1− c)
[
LL
0 + LL

1 (1− 2c) + LL
2 (1− 4c− 4c2)

]
, (5.15)
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where

Gα
Cu = −19073.0, Gα

Sn = −27280.0,

GSER
Sn = 346160.0, GL

Cu = −11083.0, GL
Sn = −28963.0,

Lα
0 = −11448.0, Lα

1 = −11694.0,

LL
0 = −10487.0, LL

1 = −18198.0, LL
2 = 10528.4

We assumed that all phases have the same molar volume (vm = 16.29 × 10−6),

and fη is formulated as a parabolic function due to allowance of solubility range in

the η phase. The equilibrium phase compositions can be solved by using Eqs. (5.13),

(5.14) and (5.15) [see Appendix D]. They are

cαηα = 0.1954, cηαη = 0.380, cηLη = 0.441, cLηL = 0.9767, (5.16)

where cαηα is the equilibrium composition of the α phase at the α−η interface and the

other terms are defined correspondingly. The initial compositions of the substrate

and intermetallic layer are taken to be uniform as cα = 0.002 and cη = 0.4105,

respectively. The initial composition of the liquid solder phase is chosen to be either

cL = cLηL corresponding to a Cu-saturated solder, or cL = cLηL + 0.02, corresponding

to a nearly pure Sn solder.

The diffusivities and other material parameters employed in the numerical calcu-

lation are summarized in followings: Diffusion coefficients of the liquid solder, inter-

metallic layer and cu-substrate areDL = 2.0×10−12(m2/s), Dη = 2.0×10−5DL(m
2/s)

and Dα = 1.0× 10−6DL(m
2/s), respectively. Diffusion coefficients of the η−L, η−α

and η− η interfaces are DηL = 2.0× 10−1DL(m
2/s), Dηα = 2.0× 10−3DL(m

2/s) and

Dηη = 2.0×10−2DL(m
2/s), respectively. The interfacial energies for η−L, η−α and

η−η interfaces are σηL = 0.1, σαη = 0.3 and σηη = 0.3(J/m2), respectively. Mobilities
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of η − L, η − α and η − η interfaces are MηL = 1.0 × 10−6, Mαη = 7.0 × 10−8 and

Mηη = 7.0× 10−8, respectively.

Fig. 40. Microstructural evolution of the intermetallic compound layer for the case of

the fast grain boundary diffusion (Dηη = 2.0×10−2DL andDη = 2.0×10−5DL)

is depicted for times: (a) t=0.02(sec), (b) t=6(sec), (c) t=14(sec) and (d)

t=20(sec). The initial solder composition was the one saturated with Cu

(cL = cLηL ).

4. Results and discussions

In this work, the evolution of IMC layer morphology as the soldering reaction pro-

gresses is investigated through a systematic study of the effects of different material

parameters on the kinetics of IMC layer evolution. In order to examine how the

growth kinetics of the η phase is affected by diffusion along η grain boundaries, sim-

ulations are carried out with three different grain boundary diffusion coefficients.
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Fig. 41. Microstructural evolution of the intermetallic compound layer for the

case of the regular grain boundary diffusion (Dηη = 2.0 × 10−4DL and

Dη = 2.0 × 10−5DL) is depicted for times: (a) t=0.02(sec), (b) t=6(sec),

(c) t=19(sec) and (d) t=21(sec). The initial solder composition was the one

saturated with Cu (cL = cLηL ).
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The first one is for the fast diffusion coefficient where Dηη = 2.0 × 10−2DL and

Dη = 2.0 × 10−5DL which shows us that more mass will diffuse through the grain

boundaries then through the grains. The second one is for the regular diffusion coeffi-

cient where Dηη = 2.0× 10−4DL and Dη = 2.0× 10−5DL which can be obtained from

the interdiffusion formulations. The last one is for the regular diffusion coefficient

where Dηη = 2.0× 10−4DL and Dη = 2.0× 10−4DL which tells us that diffusing rate

of mass through the grains is the same with the that through the grain boundaries.

For the cases, the initial solder composition was equal to the one saturated with Cu,

cL = cLηL and L− η interfacial energy is taken to be the value shown in the previous

section.

Fig. 42. Microstructural evolution of the intermetallic compound layer for the case of

the low grain boundary diffusion (Dηη = 2.0×10−4DL andDη = 2.0×10−4DL)

is depicted for times: (a) t=0.02(sec), (b) t=6(sec), (c) t=19(sec) and (d)

t=21(sec). The initial solder composition was the one saturated with Cu

(cL = cLηL ).

Fig. 40 shows that intermetallic compound growth for the case of fast grain



125

boundary diffusion (Dηη = 2.0× 10−2DL and Dη = 2.0× 10−5DL) in time (Case 1);

(a) t=0.02(sec), (b) t=6(sec), (c) t=14(sec) and (d) t=20(sec). As the Intermetallic

grain layer grows thicker with time, there is a concurrent coarsening of the η grains,

resulting in fewer grains remaining in the intermetallic compound layer. Although

σηη > 2σηL is assumed, the liquid solder does not wet the grain boundaries entirely

through the layer, since the driving force for the η phase formation from the diffusion

fluxes through the grain boundary is large enough to overcome the difference between

σηη and σηL . Fig. 41 shows intermetallic compound growth for the case of the regular

grain boundary diffusion (Dηη = 2.0 × 10−4DL and Dη = 2.0 × 10−5DL) in time

(Case 2); (a) t=0.02(sec), (b) t=6(sec), (c) t=19(sec) and (d) t=21(sec), and Fig. 42

shows intermetallic compound growth for the case of the low grain boundary diffusion

(Dηη = 2.0× 10−4DL and Dη = 2.0× 10−4DL) in time (Case 3); (a) t=0.02 (sec), (b)

t=10 (sec), (c) t=20(sec) and (d) t=22(sec). They show the microstructural evolution

of the intermetallic compound layer for the case neglecting the fast grain boundary

diffusion. Since the diffusion across the intermetallic compound layer is sluggish, the

system tends to decrease its energy predominantly by reducing the grain boundary

area. Therefore, compared to Case 1 shown, the liquid solder penetrates deeper into

the grain boundary and the η grain coarsening occurs much faster.

The microstructural evolution of the intermetallic compound layer may be de-

scribed in terms of a competition between two diffusion processes: (a) the fast grain

boundary diffusion to increase the intermetallic compound layer thickness and (b)

the diffusion driven by the interface curvature effect (i.e., Gibbs-Thomson effect) to

reduce the interface and grain boundary areas. The former provides the initial mass

fluxes necessary for η phase growth: the Cu flux to the grain boundary junction with

the liquid solder and the Sn flux to the grain boundary junction with the α substrate.

The latter distributes the diffusion fluxes from the grain boundary over the η − L
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and α − η interfaces. Competition between the two diffusion processes determines

the groove shapes at the grain boundary junctions. The individual η grains have a

morphology such that the η−L and α−η interfaces have opposite signs of curvature.

This is due to the fact that the latter diffusion process is sufficiently fast at the η−L

interface but more sluggish at the α− η interface. The η grain coarsening is initiated

by a competitive grain growth at the η − L interface at which the diffusion process

caused by the Gibbs-Thomson effect occurs rapidly.

Fig. 43. Evolution of (a) solid substrate thickness, (b) intermetallic compound layer

thickness, (c) number of grains and (d) buffer zone composition in time for

the three cases that is shown in figures 40–42.

Fig. 43 shows the evolution of solid substrate thickness, intermetallic compound

layer thickness, number of grain and buffer zone composition in time for the three

cases. Based on the change in the Cu-substrate and intermetallic compound layer
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thickness, the evolution of the system from its initial state may be understood by

dividing it into three stages, regardless of the presence of the fast grain boundary

diffusion. The initial stage of simulation up to 0.1 second, for which the intermetallic

compound layer thickness does not change, corresponds to the stage of interface (and

grain boundary) broadening. The initial stage is followed by a transient stage in

which the grain boundary grooves develop between η grains and the initially flat

η − L interface becomes rounded. Thus, the liquid composition decreases due to the

curvature effect at the η − L interface. This is accompanied by the dissolution of

η grains into the liquid solder, as shown by the slight decrease in the intermetallic

compound layer thickness for Case 2 and Case 3 neglecting the fast grain boundary

diffusion comparing with Case 1. At the same time, for the case with the fast grain

boundary diffusion, fast diffusion through the broadened grain boundaries takes place

so that η grains can grow. Apparently, the grain growth kinetics for the case with

the fast grain boundary diffusion is fast enough so that there is a net increase in

the intermetallic compound layer thickness during this transient stage. The transient

stage is then followed by ”normal” stage in which the liquid composition increases

slightly as the η grains coarsen. The transient stage ends much earlier for the case

with the fast grain boundary diffusion since a part of the Cu flux from the fast grain

boundary diffusion enters the liquid solder.

The effects of the concurrent coarsening of the η grains on the intermetallic

compound layer growth kinetics in the calculation are carried out with changing

the interface energy in Fig. 44 (σηL = 0.05(J/m2), Case 4) and in Fig. 45 (σηL =

0.15(J/m2), Case 5). Because of the lower and higher value of σηL, there is a smaller

and larger tendency for competitive grain growth at the η − L interface comparing

with Case 1. As you compare with Case 5, you can see more grains in Case 4 are alive

during the soldering reaction. Thus the coarsening rate of the η grains is reduced,
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which results in an increased growth rate of the intermetallic compound layer.

Fig. 44. Microstructural evolution of the intermetallic compound layer for the case

of the low interfacial energy (σηL = 0.05(J/m2) is depicted for times: (a)

t=0.02(sec), (b) t=5(sec), (c) t=10(sec) and (d) t=20(sec). The initial solder

composition was the one saturated with Cu (cL = cLηL ).

Fig. 46 shows the evolution of solid substrate thickness, intermetallic compound

layer thickness, number of grain and buffer zone composition in time for the three

cases. The changes in the average intermetallic compound layer thickness and the

number of η grains with time for Case 4 are compared with those for Case 1. The

growth rate of the intermetallic compound layer thickness in the normal stage of

simulation is estimated to be 0.42 for Case 4 and 0.33 for Case 1, the increase of
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Fig. 45. Microstructural evolution of the intermetallic compound layer for the case

of the high interfacial energy (σηL = 0.15(J/m2) is depicted for times: (a)

t=0.02(sec), (b) t=5(sec), (c) t=12(sec) and (d) t=20(sec). The initial solder

composition was the one saturated with Cu (cL = cLηL ).
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Fig. 46. Evolution of (a) solid substrate thickness, (b) intermetallic compound layer

thickness, (c) number of grain and (d) buffer zone composition in time for the

three cases; Case 1, Case 4 and Case 5.
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growth rate by reducing σηL is attributed to the slow coarsening of the η grains. If

the η grain coarsening does not occur at all, and thus the number of η grains remains

constant until consuming Cu-substrate.

Microstructural evolution of the intermetallic compound are simulated based on

the initial solder composition of the system that is changed as cL = cLηL + 0.02 in

Fig. 47 (Case 6) and cL = cLηL − 0.02 in Fig. 48 (Case 7) which represent nearly

pure Sn and Cu-enriched liquid solder, respectively. The corresponding changes in

the Cu-substrate thickness and the intermetallic compound layer thickness and the

number of the η grains and the buffer zone composition with time are shown in Fig. 49,

respectively.

Since the initial solder is set to be Pure Sn in Case 6, dissolution of Cu from the

intermetallic compound layer and Cu-substrate occurs at the early stages of solder-

ing, and the intermetallic compound layer grows at the α− η interface due to the Sn

flux through the grain boundary in the intermetallic compound layer while the inter-

metallic compound layer growth at the η − L interface hardly occurs due to the lack

of Cu flux from liquid solder. Because of the insufficient Cu flux from liquid solder,

the intermetallic compound layer thickness decreases, and the concurrent dissolution

and growth of the intermetallic compound layers appear downward at the early stages

of soldering. As the liquid solder composition becomes Cu enriched in time, the dis-

solution rate of Cu from the intermetallic compound layer and Cu-substrate slowly

increases and the intermetallic compound layer thickness starts to grow at α − η in-

terface. When the largeness of the Cu flux by the grain boundary diffusion is involved

into the intermetallic compound formation at the η − L interface, the intermetallic

compound layer also slightly grows at the ηL interface, and the solder composition

with time, as measured at the top surface of liquid solder zone, will is reduced, and it

touches below cLηL , because of the involvement of the Cu flux from Cu-substrate, and
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increase until the composition of the top surface of liquid solder zone reaches cLηL .

It is noted that the grain coarsening at η − L interface is suppressed when the

liquid solder is set to be pure Sn, which means that the lower Cu flux from the η−L

interface into the liquid zone reduces the composition gradient generated by low in-

terfacial curvature of the η−L interface. Therefore the coarsening rate of the grains

is lowered by using the initially pure Sn. When the liquid solder composition is set

to be Cu-supersaturated (Case 7), the dissolution rate is fast and the intermetallic

compound layer thickness starts to grow both at α−η interface and at η−L interface.

Furthermore, since diffusion in the liquid solder is stronger, most Cu diffuses into in-

termetallic compound layer, so that the composition of the top surface initially closes

to pure Sn composition, and then decreases. After the initial stage, the soldering

in Case 7 shows us the similar process comparing to Case 6. Although the detailed

values, such as the number and size distribution of the intermetallic compound grains

and the material parameters, depend on the initial condition, the simulation results,

after initial stage, follow a generic feature for the effect of the fast grain boundary dif-

fusion on the growth of the intermetallic compound layer during soldering reactions.

Fig. 50 shows Cu flux into the solder liquid at the η−L interface with respect to

different curvatures of the η −L interface for three cases ((a) Case 1, (b) Case 3 and

(c) Case 6). Three figures have different curvature of η − L interface. The contour

in the figures indicates the magnitude of the Cu flux, the black lines are for phase

field, and the arrows are for Cu flux direction. The length of the arrows represents

the magnitude of the Cu flux. High and low curvature of the η − L interface can

be obtained by many possible combinations of the material parameter. Among a

lot of cases, Case 1, Case 3 and Case 6 can represent the intermediate, high and

low curvature cases, respectively. Three figures tell us the Cu flux from the η − L
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Fig. 47. Microstructural evolution of the intermetallic compound layer for the case of

the pure Sn liquid solder (cL = cLηL +0.02 is depicted for times: (a) t=0.02(sec),

(b) t=4(sec), (c) t=10(sec) and (d) t=20(sec). The diffusion coefficients are

taken as Dηη = 2.0 × 10−2DL and Dη = 2.0 × 10−5DL. Interfacial energy is

taken as σηL = 0.1(J/m2).
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Fig. 48. Microstructural evolution of the intermetallic compound layer for the case of

the Cu-supersaturated liquid solder (cL = cLηL − 0.02) is depicted for times:

(a) t=0.02(sec), (b) t=4(sec), (c) t=12(sec) and (d) t=20(sec). The diffu-

sion coefficients are taken as Dηη = 2.0 × 10−2DL and Dη = 2.0 × 10−5DL.

Interfacial energy is taken as σηL = 0.1(J/m2).
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Fig. 49. Evolution of (a) solid substrate thickness, (b) intermetallic compound layer

thickness, (c) number of grain and (d) buffer zone composition in time for the

three cases; Case 1, Case 6 and Case 7.
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interface into the bulk liquid have effect to composition gradient, and the change of the

composition gradient is related to interface curvature. We can say that say the change

of the interface curvature may change Cu flux from the η − L interface. The η − L

Fig. 50. Cu flux into the solder liquid at the η − L interface with respect to different

curvatures of the η − L interface for three cases ((a) Case 1, (b) Case 3 and

(c) Case 6).

interface in each case contains various curvature values according to the temporal and

spatial value along the η−L interface in Fig. 50(b), but the curvatures of each case

are positioned in a group area in Fig. 51(a). The line in Fig. 51(a) is plotted by using

trend line. According to the curvature and the corresponding Cu flux, high curvature

causes the low Cu flux, which results in that the η−L interface can penetrate into the

intermetallic compound layer deeply in Fig. 50(b). The increasing penetration depth

provides the large difference in curvature between the two positions on the η − L
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interface, and result in that the composition gradient along the liquid solder between

the neighboring intermetallic compound grains is reduced, as shown the figure (the

’valley’ area of the two grains in Fig. 50(b)), so that the intermetallic compound

dissolution rate at the grain boundary junction decreases (when the intermetallic

compound dissolution rate is rather low, the growth of intermetallic compound layer

is slow because not much Cu will be involved into make grains) and the increasing rate

of intermetallic compound layer is reduced, which is proved in Fig. 51(b), comparing

with the case of low curvature. Therefore, the high Cu flux from the η − L interface

into the bulk liquid produces the η − L interface plateau (low curvature) while low

Cu flux from the η − L interface into the bulk liquid produces the η − L interface

curved (high curvature). In other words, high curvature reduces composition gradient

while low curvature increases the composition gradient. It is worth to say that the Cu

flux from the η − L interface into the liquid solder reduces the composition gradient

engendered by the Gibbs-Thomson effect (i.e. interface curvature).

Fig. 51. Comparison of (a) Cu flux due to different curvatures and (b) number of

intermetallic compound grains for three cases; (a) Case 1, (b) Case 3 and (c)

Case 6.
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C. Intermetallic compound growth during soldering reaction for Cu6Sn5 and Cu3Sn

We consider an isothermal Cu-Sn binary system at 523K again. The system is com-

posed of a Sn-rich liquid solder (L), a Cu-rich solid substrate (α), an intermetallic

compound layer of Cu6Sn5 (η) and an intermetallic compound layer of Cu3Sn (ε).

The IMC layers form between the liquid solder and the Cu substrate, and the η-IMC

lies on the ε-IMC.

The IMC layers consist of many grains that are differentiated by non-conserved

phase fields [45]. The spatial distribution of the liquid solder, the substrate, and the

grains in the intermetallic layer of the system is mathematically expressed by using N

arrays of phase fields ϕi(x, t)(i = 1, ..., N), which can be expressed with multi-phase

field variables. The phase field variables in this model can be defined as ϕ1 for solid

substrate, ϕ2,...,N−1 for the grains in the two IMC layers and ϕN for liquid solder.

ϕi = 1 indicates that phase i exists in that point of space, while ϕi = 0 indicates that

i phase does not exist in the region. Additionally, interfaces are defined in the system

whenever 0 < ϕi < 1. Within the interface, ϕi is considered to change continuously

within the 0 < ϕi < 1 range. For example, if 0 < ϕ1 < 1 and 0 < ϕ2 < 1 at a point

in an interface region, the point indicates the presence of the η-IMC layer and a solid

substrate. In the same way, we can expect phase information at any point from phase

field variables.

All explanations about constraints, total free energy functional, multiphase field

model, diffusion model and model parameters were introduced well in the previous

section. Multiphase field model, diffusion model , their constraints and model param-

eters are used as, respectively,
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∂ϕi

∂t
= − 2

Np

N∑
i ̸=j

χiχjMij

[
ϵ2ij
2

(
∇2ϕj −∇2ϕi

)
+ ωij (ϕj − ϕi)

+
N∑

k ̸=i,j

{(
ϵ2ik
2

−
ϵ2jk
2

)
∇2ϕk + (ωik − ωjk)ϕk

}

+ {(fi − cjf
′)− (fj − cjf

′)}

]
, (5.17)

∂c

∂t
= ∇ ·

(
D(ϕ)

N∑
i=1

ϕi∇ci

)
, (5.18)

N∑
i=1

ϕi = 1 and c(x, t) =
N∑
i=1

ϕici, (5.19)

ϵ =
4
√
ξσij

π
and ωij =

2σij

ξ
. (5.20)

1. Numerical implementation

Multi-phase field equation and the diffusion equation will be numerically solved by

using finite difference method on the cross section of the Cu/Sn solder joint at 523K

with two dimensional analysis. In all cases, the values of dimensional grid spacing

h(= ∆x) and the half width of the interface ξ used are 1.0× 10−8(m) and 4h, respec-

tively. It is important to note that in this work we neglect treatment of nucleation

at the substrate/solder interface. Although this in principle can be tackled either

through thermal noise or by applying classical nucleation theory, this component of

the problem is outside the scope of the present work.

Fig. 52 shows a schematic configuration for the computational domain. The size

of the system is set to be 158h× 101h. Cu substrate, ε-IMC layer, η-IMC layer and

liquid solder layer are positioned from bottom to top for initial array of phases.

η-IMC layer is 4 or 5 times thicker than ε-IMC layer a grain in η phase is 4
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or 5 times wider than a grain in ε phase [45]. ε and η IMC layer are placed from

21h to 26h and from 27h to 41h, respectively, between the liquid solder (from 42h to

101h) and the solid substrate (from 0 to 20h). The η-IMC layer initially consists of

12 rectangular grains that have different widths between 10h and 15h, and the ε-IMC

layer initially consists of 34 rectangular grains that have different widths between

5h and 6h [see Fig. 52]. Periodic boundary conditions are applied to the sides of

the calculation domain and Neumann boundary condition is applied to the top and

bottom of the calculation domain. The calculations are finished when the thickness

of the Cu-substrate is close to zero.

Fig. 52. A schematic configuration for the computational domain.

The free energy densities per unit moral volume of individual phases were ob-

tained from the CALPHAD method [124] and they are

fα = (1− c)Gα
Cu + cGα

Sn +RT [(1− c) ∈ (1− c) + clnc]

+c(1− c) [Lα
0 + Lα

1 (1− 2c)] , (5.21)
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fε = 2.0× 105(c− 0.249)2 + 0.75Gα
Cu + 0.25GSER

Sn

−8194.2− 0.2043T, (5.22)

fη = 2.0× 105(c− 0.435)2 + 0.545Gα
Cu + 0.455GSER

Sn

−6869.5− 0.1589T, (5.23)

fL = 1− c)GL
Cu + cGL

Sn +RT [(1− c)ln(1− c) + clnc]

+c(1− c)
[
LL
0 + LL

1 (1− 2c) + LL
2 (1− 4c− 4c2)

]
, (5.24)

where

Gα
Cu = −19073.0, Gα

Sn = −27280.0,

GSER
Sn = 346160.0, GL

Cu = −11083.0, GL
Sn = −28963.0,

Lα
0 = −11448.0, Lα

1 = −11694.0,

LL
0 = −10487.0, LL

1 = −18198.0, LL
2 = 10528.4

We assumed that all phases have the same molar volume [vm = 16.29(cm3/mole)],

and fη and fε are formulated as a parabolic function in order to allow a limited

solubility range in the η and ε phases. The equilibrium phase compositions can be

solved by using Eqs. (5.21)-(5.24) [see Appendix D]. They are

cαεα = 0.027, cεαε = 0.227, cηεη = 0.433,

cεηε = 0.247, cηLη = 0.436, cLηL = 0.977. (5.25)

where cαεα is the equilibrium composition of the α phase at the α−ε interface and the

other terms are defined correspondingly. The initial compositions of the substrate

and ε and η intermetallic compound layers are taken to be uniform as cα = 0.002
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cε = 0.237 and cη = 0.435, respectively. The initial composition of the liquid solder

phase is chosen to be either cL = cLηL corresponding to a Cu-saturated solder, or

cL = cLηL + 0.02, corresponding to a nearly pure Sn solder.

The diffusivities and other material parameters employed in the numerical cal-

culation are summarized in followings: Diffusion coefficients of the liquid solder

(L), the intermetallic compound layers (ηand ε) and cu-substrate (α) are DL =

2.0 × 10−12(m2/s), Dη = 2.0 × 10−5DL(m
2/s), Dε = 5.0 × 10−6DL(m

2/s) and

Dα = 1.0×10−6DL(m
2/s), respectively. Diffusion coefficients of interfaces are DηL =

2.0 × 10−1DL(m
2/s), Dεα = 1.0 × 10−4DL(m

2/s), Dηα = 2.0 × 10−4DL(m
2/s),

Dηη = 2.0 × 10−2DL(m
2/s) and Dεε = 1.0 × 10−4DL(m

2/s). The interfacial en-

ergies are taken as σηL = 0.1, σαε = σαη = 0.3 and σηη = σεε = 0.3(J/m2). Mobilities

are taken as MηL = 1.0×10−6, Mαε = 7.0×10−8, Mηε = 7.0×10−8, Mεε = 7.0×10−8

and Mηη = 7.0× 10−8.

2. Results and discussions

Determination of material parameters used in the simulation is very difficult (but

possible) because material properties of single phases, for example, the material pa-

rameters of α, η, ε and L in this study are dependent on theoretical approach based on

experimental data [41, 43, 127, 128, 129]. Additionally, in a region of phases mixture,

for example interface regions, it is even more difficult to determine the material prop-

erties for the simulation. So, the simulation in this study will follow the morphology

of IMC grain growth that will be affected by the different material properties, such as

changing diffusion coefficient of grain boundary, changing interfacial energy between

η-IMC layer and liquid solder and changing initial Cu content in liquid solder.

In order to examine how the kinetics of the η-IMC growth is affected by diffusion

in grain boundary, simulations are carried out with three different grain boundary
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(a)

(b) (c)

Fig. 53. Microstructural evolution of the intermetallic compound layer for the case of

(a) high grain boundary diffusion (Dηη = 4.0× 10−14), (b) intermediate grain

boundary diffusion (Dηη = 4.0× 10−15) and (c) low grain boundary diffusion

(Dηη = 8.0× 10−17) at t=20(sec).

diffusion coefficients. The first one is for the high diffusion coefficient where Dηη =

4.0×10−14 which shows us that more mass likely diffuses through the grain boundaries

than through the grains. The second one is for the intermediate diffusion coefficient

where Dηη = 4.0 × 10−15, which can be obtained from interdiffusion formulations.

The last one is for the low diffusion coefficient where Dηη = Dη, which indicates that

the diffusing rate of mass through the grain boundaries is the same as that through

the grains. For all three cases, the initial solder composition is set to cL = cLηL and

L− η interfacial energy is taken to be the value as shown in the previous section.

Fig. 53 shows intermetallic compound growth for the case with different grain

boundary diffusion at t=20(sec). As the intermetallic compound layer grows thicker

with time, there is a concurrent coarsening of the η and ε grains resulting in fewer
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grains remaining in the intermetallic compound layer. But the number of grains that

have survived in both layers are similar. However, the thickness of ε-IMC and η-IMC

layer varies according to the different grain boundary diffusion as shown in Fig. 54.

We can find that η−L and ε− η interfaces have opposite signs of curvature resulting

in the scollop shape for η grains and thin film shape for ε grains [28, 45].

Fig. 54. Evolution of ε-IMC layer and η-IMC layer thickness with respect to time

corresponding (a), (b) and (c) in Fig. 53.

In the case of high grain boundary diffusion, we can see that the thickness of η-

IMC layer increases at a faster rate than in the other cases, while that of ε-IMC layer

decreases. Reduction of Cu substrate thickness occurs at the same rate regardless of

different grain boundary diffusion. Precisely speaking, the thickness of ε-IMC layer

increases but the η-ε interface moves down faster than α-ε interface, which can be

called encroachment, so that the thickness of ε-IMC layer turn out decreases although

more Sn flux from the liquid solder through grain boundary is expected. When Sn

flows through the grain boundary of η-IMC layer to form η-IMC and ε-IMC, both

η-IMC and ε-IMC layer simultaneously increase together. However, excess of Sn flux

at the η-ε interface results in the conversion of Cu3Sn to Cu6Sn5 because Cu6Sn5 is
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the most stable product of the chemical reaction in the Cu-Sn system. The behavior

of encroachment has been observed by many experimental researches [78, 116, 130]

and explained by using additional chemical reaction between η-IMC and ε-IMC [131].

In the case of intermediate grain boundary diffusion, we can expect that there is

a high probability that Sn diffuses from the liquid solder through the grain boundaries

resulting in the simultaneous growth of η-IMC and ε-IMC together. This means that

there is no more extra Sn supply from the liquid solder for the phase transition from

ε-IMC to η-IMC. The growing speed of η-IMC in Fig. 54(b) is likely to be less than

that in Fig. 54(a) because no encroachment is expected.

When grain boundary diffusion is the same as that for the grains in the η layer,

we can see that the thickness of η-IMC layer decreases while that of ε-IMC layer

increases. This behavior can be explained by considering Cu flux from the substrate.

Contrary to the two previous cases, we can expect that less Cu flux is delivered to

both IMC layers. However, forming Cu3Sn requires less Cu and Sn compared with

Cu6Sn5 resulting in the increased thickness of ε-IMC layer and lowering of ε− α.

(d) (e)

Fig. 55. Microstructural evolution of the IMC layer for the case of (d) the low η − L

interfacial energy (σηL = 0.05(J/m2)) and (e) high η − L interfacial energy

(σηL = 0.15(J/m2)) at t=20(sec).

The concurrent coarsening of the η grains on the IMC layer growth in calculations
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are carried out by changing the η − L interfacial energy as shown in Fig. 55(d)

(σηL = 0.05(J/m2)) and in Fig. 55(e) (σηL = 0.15(J/m2)). Other material parameters

for Fig. 55 are adopted from the case of Fig. 54(a).

Fig. 56. Evolution of thickness of two IMC layers with respect to time for Figs. 55(d)

and (e) compared with Fig. 54(a).

Although high grain boundary diffusion is employed in the η phase, there is a

smaller tendency for competitive grain growth at the η−L interface compared to the

case shown in Fig. 54(a) because of the lower value of σηL. The coarsening rate is

related to the grain boundary diffusion and difference between σηL and σηη [28]. In

this case high grain boundary diffusion causes grain growth, but higher difference of

two interfacial energies leads to grain boundary wetting, which essentially acts to limit

horizontal coarsening of the grains. Thus, the grains grow upward with less coarsening

with neighboring grains in η-IMC layer, which is faster than the other case as shown

in Fig. 54(a). Because of more Sn flux through the grain boundary, encroachment of

the ε-IMC layer in Fig. 55(d) occurs faster than the case shown in Fig. 54(a). On

the other hand, if relatively higher interfacial energy is applied at the η−L interface,

the reversed behavior of grain growth can be expected. This means that high σηL
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stimulates faster spreading of a grain and faster coarsening with neighboring grains,

resulting in less-upward grain growth and less grains that survive at any given time.

Less Sn flux caused by reduced fast diffusion paths causes a slight increase of ε-IMC

layer because of the phenomena we already discussed while explaining Fig. 54(c).

High Cu consumption can be expected in the case of low interfacial energy because

Cu consumption is affected by total thickness of the two IMC layers. All explanation

for morphologies of IMC development can be accompanied with Fig. 56.

(f) (g)

Fig. 57. Microstructural evolution of the IMC layer for the case of (f) the pure Sn

liquid solder (cL = cLηL + 0.02) and (g) Cu-supersaturated liquid solder

(cL = cLηL − 0.02) at t=20(sec).

Microstructural evolution of the IMC is also simulated based on the initial solder

composition that is changed from pure Sn liquid solder (cL = cLηL +0.02) as shown in

Fig. 57(f) and Cu-supersaturated liquid solder (cL = cLηL −0.02) as shown in Fig. 57(g).

Liquid solder composition far from the IMC layers and two IMC layer thickness with

respect to time are shown in Fig. 58.

Since the initial liquid solder is set to be pure Sn in Fig. 57(f), dissolution of

Cu from the η-IMC layer and Cu-substrate occurs at the early stages of soldering.

Because of the dissolution of Cu from the η-IMC layer to liquid solder (caused by

liquid solubility), the η-IMC layer shrinks at the η−L interface quickly, which causes
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Fig. 58. Evolution of liquid solder composition far from the IMC layers in case of

Fig. 57(f) and (g) compared with Fig. 54(a).

faster grain coarsening. After shrinkage of the η-IMC layer with less number of sur-

vived grains, we can expect that the liquid solder composition becomes Cu-enriched,

the dissolution rate of Cu from the intermetallic compound layer and Cu-substrate

decreases and the η-IMC layer thickness starts to grow at the η − ε interface by en-

croachment behavior. From the point of view of ε-IMC layer, its thickness decreases

due to suppression at an early stage as well as encroachment at the late stage from

η-IMC layer.

When initial liquid solder is set to be supersaturated with Cu, the composition

of the liquid solder is likely to approach equilibrium composition according to liquid
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solubility. In order to reach the equilibrium composition, liquid solder requires more

Sn from all phases, which causes slight excess of Sn flux on the liquid solder, but not

more than the case of the pure Sn liquid solder. After the excess of Sn flux towards the

liquid solder area, the thickness change of two IMC layers during soldering reaction

follows the same physics of the case in Fig. 54(a).

D. Conclusions

The morphological evolution and growth of the IMC (Cu6Sn5) layer during soldering

reaction in Cu-Sn alloys on a Cu substrate was investigated by using a multi-phase

field model and was computed with two configurations, considering the existence

(or absence) of Cu3Sn. The multi-phase field simulations were performed by using

two different grain boundary diffusion coefficients in η-IMC layer and two different

interfacial energies of L/η interface causing the concurrent coarsening of the IMC

grains. The microstructural evolution of the η-IMC layer appeared more complicated

according to either the presence of Cu3Sn or not, but describable with two controllable

parameters (grain boundary diffusion, L/η interfacial energy) that deliver us the

following: (a) The presence of Cu3Sn retards increase of η-IMC layer in spite of high

grain boundary diffusion coefficient affecting grain coarsening of η-IMC layer. (b)

The growth of Cu3Sn affects morphological evolution and growth of the η-IMC layer.

(c) High L/η interfacial energy leads to decrease of grain boundary wetting effect

resulting in increase of grain coarsening.

In view of the interaction between η and ε IMC layers, we found that the change

of their thickness is important to understand the morphology of soldering reaction

at an early stage because growth ratio of the two IMC layers possibly affects the

mechanical properties of solder joints due to the degree of brittleness of IMCs. In
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the case of the Cu3Sn presence, the interaction between η-IMC and ε-IMC layers (or

grains) should be studied. Some parts of this chapter are from [58].
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CHAPTER VI

EARLY STAGES OF INTERMETALLIC COMPOUND FORMATION AND

GROWTH DURING LEAD-FREE SOLDERING

A. Introduction

Further optimization of lead-free soldering alloys and processes requires proper un-

derstanding of the interfacial interactions–including intermetallic compounds (IMCs)

layers formation and growth–occurring at solder/substrate interfaces. IMC layer for-

mation generally consists of several distinct physical processes, such as nucleation,

growth and coarsening. Among these processes, IMC nucleation is one of the most

important ones as the particular sequence of IMC formed has a significant effect on

the morphology and evolution of IMC layers, consequently affecting the reliability of

soldered assemblies [30, 31, 32].

In Cu-Sn systems, two IMCs (Cu6Sn5 (η phase) and Cu3Sn(ε phase)) have been

observed to form at the substrate (Cu)/solder (Sn) interface [40, 41, 43, 44, 45, 46,

96, 117, 119, 120, 122, 123, 128, 129, 130]. The actual formation sequence of these

phases has been shown to be determined by the local thermodynamic conditions at the

Cu/Sn interface. Specifically, the η phase has been shown to precipitate during the

earliest stages of solder/substrate interactions due to the fact that its driving force for

precipitation under metastable local equilibrium conditions at the solder/substrate

interface is much higher than the driving force for the precipitation of the ε phase

[98, 132]. Experimentally, it has been observed that the η phase precipitates in

a random fashion along the solder/substrate interface. After the precipitation of

the η phase, the precipitation of the ε phase at the η/substrate interface becomes

thermodynamically possible and it is thus usually observed at later stages of the



152

soldering reactions [132].

A significant number of experimental investigations had been focused on the

late stages of growth and coalescence of η phase [40, 41, 43, 44, 45, 46, 96, 117,

119, 120, 122, 123, 128, 129, 130]. Recently, the formation of η phases during early

stages of soldering reaction had been studied by several groups [97, 98, 133]. These

recent experimental works have found that individual Cu6Sn5 grains appear at random

locations along the (metastable) solid-liquid interface within a few milliseconds. After

the η grains appear, they have been found to spread along the interface without much

growth perpendicular to the solder/substrate interface until they meet with other

spreading grains, forming a relatively uniform IMC layer of Cu6Sn5. After the initial

formation of the IMC layer, its thickness increases at the expense of the underlying

substrate, with the individual grains acquiring a scallop-like morphology [45] that

continues to grow perpendicularly to the interface.

Very recently, the growth and morphological evolution of IMC layers during

soldering reactions have been simulated by using phase-field models [6, 27]. These

mathematical models have been proved to be a very useful tool to investigate the

microstructural evolution of IMC as a function of factors such as solid/liquid interfa-

cial energies, grain boundary energies, relative mass transport enhancement by grain

boundaries and so forth [28, 125]. None of these works have studied the early stages

of IMC formation by considering the nucleation of individual IMC grains along the

solder/substrate interface.

In this study, we will briefly introduce a nucleation model for the formation of

the η phase along a Cu/Sn interface which was derived from previous nucleation mod-

els developed within the context of phase-field modeling of solidification phenomena

[33, 34, 56]. The proposed nucleation model will be incorporated to a multi-phase

field model derived from previous works [6, 27] for the evolution of grains of (Cu6Sn5)
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under isothermal conditions. We will show different morphologies of IMC grains and

layers during lead-free soldering as a function of material parameters. In this work,

we will assume that the Cu6Sn5 phases are the only ones to precipitate, essentially

limiting this investigation to the early stages of the soldering reaction. The rate of

growth of the IMC individual grains will be controlled by the diffusion rates while

the coarsening of the IMC grains as well as the nucleation kinetics will be controlled

by using different solder/IMC interface energies. Investigation of nucleation and mi-

crostructural evolution during the solder/substrate interactions will provide a deeper

insight into the nature of IMC layer formation and growth in model lead-free solder

systems, which in turn can be used to better control of the soldering reactions.

B. Nucleation modeling

Within the context of phase-field modeling, the incorporation of realistic models for

the nucleation of a new phase is still a very hard problem. The usual approach to

simulate nucleation is to introduce Langevin noise in the phase-field evolution equa-

tions with the proper amplitude to ensure that the system samples configurations

corresponding to the nucleating phase. For this approach to work, it is usually re-

quired that the required perturbations of the local configuration of the system are

small enough so they can actually be sampled within the normal running time of

the simulation. More sophisticated versions of this approach [36] can be realized by

explicitly calculating the barrier for nucleation by explicitly considering the structure

of the forming nuclei in terms of thermodynamic driving forces and nuclei/matrix

interfacial energies.

An alternative method for incorporating nucleation into phase-field simulations

relies on explicitly incorporating nuclei throughout the simulation time by relying on
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classical nucleation theory and stochastic approaches [33, 34, 56]. In this approach,

the probability for the nucleation of a new phase at an arbitrary point in space and

time is determined and the microstructure is ’seeded’ accordingly. This approach

assumes that the time necessary for the new phase to nucleate is much smaller than

the time interval of the simulation. Furthermore, the expectation value of the number

of nuclei that form during a time interval ∆t corresponds to the nucleation rate,

J , which can be calculated from classical nucleation theory. This approach further

assumes that once the nuclei forms, it occupies a definite volume of space which in turn

yields a ”zero event probability” for the formation of subsequent nuclei [33, 34, 56].

The stochastic nucleation process can be thus approximated by unity minus the zero

event probability of a Poisson distribution:

Pn = 1− exp [−P ] , (6.1)

where P = J · v ·∆t. ∆t is the time interval over which the probability of nucleation

is to be determined while v represents the volume over which the nucleation proba-

bility is calculated. As mentioned above, the nucleation rate J can be obtained from

a classical nucleation model, and the parameters in the model can be obtained in

principle from experimental data. In this work,, we adopt the model used to simulate

nucleation in an undercooled liquid developed by [56]:

J = J0 exp

[
− 16πσ3

sl

3kT (∆GV )2

(
cos3 θ − 3 cos θ + 2

4

)]
, (6.2)

where J0 is a frequency factor with order of magnitude 1039±1(m−3s−1) in volume

nucleation and 1031±1(m−2s−1) for surface nucleation. σsl represents the energy of

a solid/liquid interface. k is the Boltzmann constant. θ is the contact angle of a

nucleus with respect to the solid substrate. ∆GV is the driving force between the

crystal (η-phase) and the melt.
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Nucleation of Cu6Sn5 is revealed easily by observing the free energy diagram

shown in Fig. 59. Free energy profiles for each of the phases (substrate, solder, and

η phase) can be obtained from the CALPHAD thermodynamic assessments by [124].

During the initial stages of the soldering reaction, the only coexisting phases may be

the substrate (α) and the liquid (L) solder. The free energy of the α/L interface can

be obtained by applying the common tangent construction between these two phases.

By comparing this tangent with the position of the free energy curve of the η phase

it is clear that the α/L equilibrium is metastable. The formation of the η phase

is thus thermodynamically possible. The strength of the thermodynamic driving

force (∆GV for the nucleation of this phase can be calculated from the difference

between the free energy of this phase and the chemical potentials of the system

components corresponding to the metastable α/L equilibrium. Although there is

another phase (Cu3Sn, ε) that may nucleate at α/L interface, under normal conditions

this is precluded during early stages of the interfacial reaction due to its smaller

driving force for precipitation. After the nucleation of η phase, ε has a change to

nucleate since now the α/η interface is metastable with respect to its formation [132,

134].

At first, we need the free energies of individual phases that can be obtained from

the CALPHAD model by [124]:

Gα = (1− c)Gα
Cu + cGα

Sn +RT [(1− c)ln(1− c) + clnc]

+c(1− c) [Lα
0 + Lα

1 (1− 2c)] , (6.3)

Gη = 2.0× 105(c− 0.435)2 + 0.545Gα
Cu + 0.455GSER

Sn

−6869.5− 0.1589T, (6.4)
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GL = (1− c)GL
Cu + cGL

Sn +RT [(1− c)ln(1− c) + clnc]

+c(1− c)
[
LL

0 + LL
1 (1− 2c) + LL

2 (1− 4c− 4c2)
]
, (6.5)

where the parameters in Eqs. (6.3)-(6.5) are

Gα
Cu = −19073.0, Gα

Sn = −27280.0,

GSER
Sn = 346160.0, GL

Cu = −11083.0, GL
Sn = −28963.0,

Lα
0 = −11448.0, Lα

1 = −11694.0,

LL
0 = −10487.0, LL

1 = −18198.0, LL
2 = 10528.4

Here, we note that the free energy of the nearly stoichiometric η phase was modified

by introducing quadratic terms that allow for a finite degree of non-stoichiometry

which facilitate the numerical treatment of the problem.

The driving force for the η phase for nucleation can be calculated from:

∆GV = µCu/Sn − µCu6Sn5 , (6.6)

where the chemical potentials of the constituents (Cu and Sn) are defined at the

metastable equilibrium between the substrate and the liquid solder.

Determination of the driving force thus requires the determination (at any time

during the simulation) of the common tangent line connecting the free energy curves

of the α and L phases. The compositions of Cu and Sn in the equation above cor-

respond to the equilibrium composition of the η phase which in turns correspond to

the composition of the forming Cu6Sn5 nucleus. It should be mentioned that in this

work, the local metastable equilibrium at any point where the α and L phases coexist

are calculated at every time step of the simulation. The resulting driving force for the

nucleation of the η phase is thus a dynamical quantity that is not to be determined

a priori, as done in [33]. The actual implementation of the nucleation of the η phase
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is discussed in the section below.
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Fig. 59. Gibb’s free energy of individual phases (S, L and η) with respect to the

composition at 523K. Driving force can be obtained from the free energy

profiles.

C. Multi-phase field and diffusion equations

A system initially consists of Sn-based liquid solder (L) and Cu solid substrate (α).

When considering the evolution of a two-phase system, a simple phase-field model

with a single (with its complement) phase-field variable can be used [5]. However, the

introduction of third (and more) phases requires one to introduce additional phase-

fields. Moreover, if the third phase is supposed to represent the formation of multiple

grains of the same phase, one must introduce either orientation fields that allow

the differentiation of individual grains of the same phase [36], or differentiated non-

conserved phase fields that represent individual grains [45]. In this work, the spatial

distributions of the liquid solder, the substrate, and the nucleated grains in the system
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is mathematically expressed by using N arrays of phase fields ϕi(x, t) (i = 1, ..., N),

which can be expressed with multi-phase field variables. The phase-field variables in

this model can be defined as ϕ1 for solid substrate, ϕ2,...,N−1 for the nucleating grains

and ϕN for liquid solder. Each of these non-conserved field variables represents the

occupation of a given point in the computational domain by the solid substrate, the

liquid solder and/or any of N − 2 individual grains of the η phase.

From previous works [5, 6], the free energy density f of the multi-phase system

can be defined as follows:

f =
∑
j>i

∑
i

[
−
ϵ2ij
2
∇ϕi · ∇ϕj + ωijϕiϕj

]
+
∑
i

ϕif
i (ci) , (6.7)

where f i is the chemical free energy density of the i − th phase and it depends on

the phase composition ci. ϵij is the gradient energy coefficient which is related to

the energy penalty involved in forming an interface and ωij is a double well potential

representing the energy barrier between two phases ϕi and ϕj. Within the phase-field

approach, the structure of the interface can in principle be defined in an arbitrary

manner. In some instances, for example, the composition of the different coexist-

ing phases is assumed to correspond to the bulk compositions. In this work, we

instead determine the compositions of coexisting phases at any given point of the

computational domain by establishing the chemical potential equilibrium condition

as suggested by [5]. This approach has the advantage that it somewhat relaxes the

maximum interfacial thickness allowable in the numerical implementation of phase-

field simulations and avoids the formation of extraneus secondary ’energy barriers’

resulting from discontinuities in the chemical potentials of the constitutes across an

interface [5].

According to the previous descriptions for coexisting phase fields at interfaces,
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we can obtain the evolution of two different field equations as a function of time [27].

They are the phase-field equation:

∂ϕi

∂t
= − 2

Np

∑
i̸=j

χiχjMij

[
∂F

∂ϕi

− ∂F

∂ϕj

]
, (6.8)

where

∂F

∂ϕi

=
∑
i̸=j

[
ϵ2ij
2
∇2ϕj + ωijϕj

]
+ f i(ci)− fcci (6.9)

with a constraint:
N∑
i=1

ϕi = 1, (6.10)

and diffusion equation:

∂c

∂t
= ∇ ·

(
D(ϕi)

N∑
i=1

ϕi∇ci

)
(6.11)

with a constraint:

c(x, t) =
N∑
i=1

ϕici. (6.12)

where χi is equal to 1 when the corresponding phase exists, otherwise χi is 0, and Np

represents the number of the coexisting phases at a calculated position: Np(x, t) =∑N
i χi(x, t). This equation is only valid on the phase interfaces since the presence of

only one phase in any point of the calculation domain renders χi or χj equal to zero.

Mij represents the mobility of the interfacial region.

Model parameters can be obtained from a stationary solution of the phase-field

equation in a planar interface, which turns out two relationships between model pa-

rameters and material parameters based on the definition of the interface energy as a

function of gradient energy coefficient and phase-field with a referred interface width

[27, 28]:

ϵij =
4
√

ξσij

π
and ωij =

2σij

ξ
, (6.13)

where ξ is the half of the width of the interface, and σij is the interface energy for
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the corresponding phases.

D. Numerical implementation

A Cu-Sn binary system at 523K will be regarded. The system is initially composed

of a Sn-rich liquid solder (L), a Cu-rich solid substrate (α). Meanwhile, IMC grains

of Cu6Sn5 (η) will are randomly seeded based on nucleation theory discussed above.

The phase-field equation and diffusion equation will be numerically computed by using

finite difference method for spatial domain and Euler scheme for temporal domain in

two dimensions. Mesh size of the calculation domain is fixed as ∆x = 4.0× 10−8(m)

and the half width of the interface ξ is used 4∆x.

For nucleation, the nucleation probability Pn will be calculated according to the

material parameters at each time step and every 4 nodal points in the interface. Mean-

while, a random number is generated. If the generated number is smaller than average

Pn from every 4 nodal points, the nodes will be transformed to a single nucleus. Be-

cause the nodes is transformed, the composition of the surrounding subdomains must

change in order to enforce mass conservation. The amount of residuary composition

after the phase transformation should be added into the neighboring liquid nodes. It

is reasonable to add the residuary composition into liquid phase due to the fact that

diffusion in the liquid phase is much higher than that in the substrate (DL >> Dα).

To ensure smooth compositional gradients at the nuclei/matrix interface, the steady

state diffusion equation is solved after each of the nuclei are introduced. If Pn is not

satisfied with the criteria described above, no nucleus is transformed, and calculation

will be continued at the next interface position to be satisfied with the nucleation

probability. It is noted that a new born nucleus is not allowed to overlap with other

nuclei in the simulation.
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The size of the nucleus is determined by the critical radius of nucleus from the

classical nucleation theory [97]. From Simmons [34], the typical size of a nucleus was

obtained empirically. However, we use the size of a nucleus from the radius of the

critical nucleus rcri = (2σLηsin(θ)/∆GV ) brought by a classical nucleation theory

[97], and it is 4∆x × 4∆x in the study. The size of the nuclei is also observed in

an experimental result [98]. The contact angle (θ) of a nucleus with respect to the

substrate is adopted as θ = 23 [97], and frequency factor (J0) is set to be 10
32(m−2s−1)

[56].

Fig. 60. A schematic configuration for the computational domain. The system is

184∆x × 89∆x. Cu substrate and liquid solder are positioned between 0

and 20∆x and between 22∆x and 89∆x. The position between 20∆x and

22∆x is set to be the α − L interface. Nuclei (a rectangular in the interface

on figure) will be randomly positioned at the interface based on the Poisson

distribution function.

Fig. 60 shows a schematic illustration of the computational domain and the

position of the nuclei as it appears at the interface. The size of the system is set

to be 184∆x × 89∆x. Cu substrate and liquid solder are positioned between 0 and

20∆x and between 22∆x and 89∆x. The position between 20∆x and 22∆x is set to
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Table I. Material parameter values for use in simulating the formation and growth of

IMC layer during lead-free soldering.

DL = 2.0× 10−12(m2/s), Dη = 2.0× 10−5DL(m
2/s)

Dα = 1.0× 10−6DL(m
2/s), DηL = 2.0× 10−1DL(m

2/s)

Dηα = 2.0× 10−3DL(m
2/s), DGB = 2.0× 10−2DL(m

2/s)

σηL = 0.1(J/m2), σηα = σGB = 0.3(J/m2)

MηL = 1.0× 106DL(m
2/s), Mηα = MGB = 7.0× 104DL(m

2/s)

be the α − L interface. Periodic boundary conditions are applied to the sides of the

calculation domain and Neumann boundary conditions are applied to the top and

bottom of the calculation domain. The calculations are finished when the thickness

of the Cu-substrate is broadly close to zero.

The free energy densities per unit molar volume of individual phases can be

obtained from the CALPHAD method [124] as shown in Eqs. (6.3)-(6.6) with molar

volume [vm = 16.29 (cm3/mole)]. The equilibrium phase compositions can be used

as cαLL = 0.977 and cαLα = 0.1957 and the equilibrium composition of η phase can be

calculated by using free energy equations as shown in the previous section (cη = 0.435)

where cαLα is the equilibrium composition of the α phase at the α−L interface and the

other terms are defined correspondingly. The initial compositions of the Cu-substrate

and liquid solder are set to be cα = 0.002 and cL = cαLL .

Critical parameters for the simulation, such as interfacial energies and mobilities

are notoriously hard to obtain from experimental results. They are thus used as

simulation parameters which are carried by theoretical approaches from experimental

data [41, 43, 128, 129]. The diffusivities and other material parameters employed in

the numerical calculation are summarized in the Table I.
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E. Results and discussions

The morphologies of IMC grain growth, including nucleation behavior, will be per-

formed by using the different material properties such as the diffusion coefficient of

grain boundary and the interface energy between L/η interface.

(a1)

(a2)

(a3)

(a4)

(b2)

(b3)

(b4)

(b1)

(c2)

(c3)

(c4)

(c1)

Fig. 61. Microstructural evolution of the IMC grains for the case of (a) high grain

boundary diffusion (DGB = 4.0×10−14(m2/s)), (b) intermediate grain bound-

ary diffusion (DGB = 4.0×10−15(m2/s)) and (c) low grain boundary diffusion

(DGB = 8.0 × 10−17(m2/s)) at t= (1) 0.05, (2) 1.8, (3) 6.8 and (4) 17 (sec).

We denote that Figures a, b and c corresponds Case 1 and Case 2 and Case

3 for convenience respectively.

Simulations are carried out with three different diffusion coefficients within grain

boundaries in order to investigate the kinetics of the η-IMC growth affected by short-
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cut diffusion paths. The values of the diffusion coefficients along grain boundary will

be defined related to the diffusion coefficient within Cu6Sn5 (η) grains. According to

the magnitude of the diffusion coefficient difference between the grain boundary and

the Cu6Sn5 (η) grains, the grain boundaries can play a role of channels of fast mass

transport or not.

The fast diffusion through the grain boundaries,rather than through η grains,

can be performed by using DGB = 2.0× 103Dη. The low diffusion through the grain

boundaries can be performed by using where DGB = Dη = 2.0 × 101Dη which tells

that the diffusion rate of mass through the grain boundaries and through the η grains

are the same. The intermediate diffusion coefficient where DGB = 2.0×102Dη, which

is just set to be the mean value of high and low diffusion coefficients. The value of

Dη in the case of low diffusion is chosen different with that in the cases of fast and

intermediate diffusion in order to compare with the previous work by [28]. For all

three cases, the initial solder composition is set to cL = cLηL and other simulation

parameters in the three cases, such as L− η interface energy and so on, are taken to

be the value as shown in the Table I.

Fig. 61 shows nucleation of the IMC grains with three different grain boundary

diffusion coefficients at t=0.05, 1.8, 6.8 and 17 (sec). IMC grains randomly nucleate in

space and time according to the role of nucleation statistic. The number of nuclei at

early stages depends on the soldering conditions. 20 nuclei appear in initial times in

all three cases, and they grow without an additional nucleus in the interface because

overlapped nucleation is prohibited in spite of the agreement of nucleation condition.

About 0.05 sec, one can find triple junctions that contains α, η and L phases. Because

of the existence of the triple junction of three phases, some nuclei are allowed to grow

without coarsening, which is a behavior supported by experimental investigations by

[98]. The grains under these conditions likely grow in width rather than in height.
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This behavior can be explained in the following. Composing Cu6Sn5 phase requires

Cu components and Sn components. In the vertical growth of Cu6Sn5 phase, Cu

should be supplied from the cu-substrate to the η−L interface. However, because of

the diffusion coefficients, it takes longer time. On the other hand, Cu supply at the

triple junction likely occurs easily because the component to make Cu6Sn5 are close

together, so that forming Cu6Sn5 at the edge of the grain occurs faster than forming

Cu6Sn5 at the top of the grains, which means that grains have a tendency to grow

to the horizontal direction, rather than to the vertical direction until neighboring η

grains meet each other.

As horizontal growth ensues, the grains start to impinge on each other and

coarsening begins. During coarsening, one can see that η−L and α−η interfaces have

curvatures of opposite signs resulting in scallop-like morphology of individual η grains

as already reported by a theoretical result [28] and experimental results [45, 98]. The

scallop shape can be observed only in the stage of grain coarsening, not in the stage

of grain nucleation. Thus, the scallop morphology represents the byproduct of grain

competition, and it leads to ongoing of grain coarsening.

Contrary to the evolution of IMC grain in the early stage, one can find that the

morphologies of η grain growth in the late stage for the three cases are similar to

the results from the previous works [28, 45, 117]. The Cu substrate at intermediate

grain boundary diffusion and low grain boundary diffusion is not much dissolved to

form Cu6Sn5 phase, so that the thickness of IMC phase in the two cases shows a

small increase compared with the case of fast grain boundary diffusion, which is a

good agreement with the previous work [28]. More detailed information about the

similarity between the present work and the previous work can be found in Fig. 62.

At the early stage (t < 1 (sec)) during lead-free soldering in Fig. 62, the thickness

Cu-substrate remains unchanged, the thickness of IMC increases gradually, and the
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(a) (b)

(c)

Fig. 62. Evolution of Cu-substrate and η-IMC layer thickness and the number of grains

with respect to time corresponding (a), (b) and (c) in Fig. 61. Case 1, 2 and

3 show the current results with high grain boundary diffusion, intermediate

grain boundary diffusion and low grain boundary diffusion,respectively. Case

1*, 2* and 3* are obtained from the previous work [28] with the same diffu-

sion conditions. They were computed excluding nucleation. IMC thicknesses

are given from division of total η phase area by horizonal axis length for

convenience.
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number of IMC grains is not changed. Those phenomena is understandable because

the grains is likely to grow to horizontal direction. At first, a lot of nuclei are randomly

born at the α−L interface according to nucleation conditions, and the newly formed

nuclei grow in width until grain coarsening occurs. It is known that nucleation takes

place mainly in the interface region, slightly in the liquid phase. So, the change of Cu-

substrate thickness will be relatively small, and the number of IMC grains will remain

constant in spite of subsequential appearance of nuclei until the nucleated grains

coarsens while IMC thickness increases with respect to time [98]. It is important to

note that these features of soldering reaction at early stages can be observed in the

simulations regardless of the grain boundary diffusion coefficient used.

After the early stage, one can find that the soldering reaction shows behavior al-

ready observed computationally and experimentally [28, 45, 98]. The grain boundaries

are grooved and partial penetration (wetting) of the η grain boundaries is observed.

The initially flat η − L interface becomes rounded, and the grain coarsening starts.

The degree of grain coarsening depends on the grain boundary diffusion coefficient.

If fast grain boundary diffusion is applied, we can expect that the large flux Cu and

Sn is delivered through the grain boundary resulting in the fast grain growth and

coarsening. It agrees with case 1 in Fig. 61 and Fig. 62. On the other hand, if a

grain boundary diffusion coefficient smaller than case 1 is applied, less supply of Cu

and Sn lead to a little decrease of Cu-substrate thickness and a little increase of IMC

thickness. Eventually, at the late stage, the decrease of Cu-substrate, increase of IMC

thickness and number of the survived grains is similar compared with the previous

work [28] regardless of the incorporation of nucleation in our model, with only a 2-3

% difference for Cu-substrate and IMC thickness, and 1-2 grains difference is founded

for the number of the survived grains.

The different nucleation rate of the η grains on the IMC layer growth in the



168

(a1)
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(a3)

(a4)

(d2)

(d3)

(d4)

(d1)

(e2)

(e3)

(e4)
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Fig. 63. Microstructural evolution of the IMC grains for the case of (d) the low η − L

interface energy (σηL = 0.05(J/m2)) and (e) high η − L interface energy

(σηL = 0.15(J/m2)) at t= (1) 0.05, (2) 1.8, (3) 6.8 and (4) 17 (sec). Figures

(a) are the same in Figures 61(a). We denote that Figures (a), (d) and (e)

corresponds Case 1 and Case 4 and Case 5 for convenience respectively.

simulations are realized by changing the η−L interface energy as shown in Fig. 63(d)

(σηL = 0.05(J/m2)) and (e) (σηL = 0.15(J/m2)). Other material parameters for

Fig. 63 are adopted from the case of Fig. 61. The change of the interface energy in

the simulation is also helpful to understand the concurrent coarsening at a late stage

in soldering reaction.

Although fast grain boundary diffusion is employed along η grain boundaries, an

early stage of the soldering reaction depends on the nucleation rate that is determined

by the η − L interface energy. One can find that case 4 and case 5 have the different
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nucleation rate at an early stage. In mechanics of nucleation, it is well known that

η phases are transformed from α and L phases. Energy is used to form a new phase

creating interfaces that have specific energy [98]. The interfacial energy occupied in

new interface comes from the energy of the parent phases. Based on the relationship

between interface energy of a new phase and energies of parent phases and new born

phases, lower η − L interface energy of new phases is likely to create more nuclei

in a certain time interval than the number of nuclei created in case of higher η − L

interface energy in the same time interval in the nucleation stage.

As mentioned above, assigning low η/ − L interfacial energies results in higher

nucleation rates. Our results suggest that despite this larger number of grains nucle-

ated during the early stages of the soldering reaction, grain coarsening is delayed (by

about 6.8 seconds in our simulations) when compared to cases in which the interfacial

energies are higher. The same result can be found in other theoretical [135] and an

experimental investigations [136]. This behavior can be explained by observing that a

higher difference between the η − L interfacial energy η grain boundary energy leads

to grain boundary wetting, which essentially pins the η − L interfaces resulting in

the slowing of lateral growth of the η grains. Therefore, the grains grow upward and

downward with less coarsening with neighboring η grains. The growth rate in case 4

can be observed to be faster than the case 1 shown in Fig. 63.

Our simulations show that a few nuclei are nucleated when high α− L interface

energy is used until about 0.3 sec. The number of the nucleated grains gradually

increases up to 17. Due to the small nucleation rate, grain coarsening occurs at

t > 10(sec). However, once grain coarsening happens, the behavior of the IMC grain

follows the same behavior observed in the cases that exclude nucleation phenomenon

and in which the η grains are assumed to exist at the substrate/solder interface since

the beginning of the simulation. Our results show that the Cu-substrate thickness,
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(a) (b)

(c)

Fig. 64. Evolution of Cu-substrate, η-IMC layer thickness and the number of grains

with respect to time corresponding Figs. 63(a), (d) and (e). Case 1, 4 and

5 show the current results with (a) intermediate interface energy, (b) lower

interface energy and (c) higher interface energy, respectively. Case 1*, 4* and

5* are obtained from the previous work [28] with the same interface energy.

They were computed excluding nucleation. IMC thicknesses are given from

division of total η phase area by horizonal axis length for convenience.
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the IMC thickness and the number of the grains vary from case to case considered

during the early stages of the soldering reaction. However, as soon as coarsening

dominates, the behavior of the system converges to that obtained by [28]. This

essentially means that once full interface coverage by η grains is achieved, the system

’looses’ any memory of the particular differences in the nucleation of the IMC grains.

This observation, however, cannot be generalized in cases in which the concurrent

nucleation of the ε phase is considered. This latter cases will be the subject of future

work.

F. Conclusions

The study provided a phase-field modeling approach in order to investigate inter-

metallic compound phase transformation with extension of nucleation phenomenon

in an early stage in Cu-Sn soldering system. Also, the combination with CALPHAD

thermodynamic models offers a fundamental information to analyzes the phase birth

related to nucleation phenomenon of Cu6Sn5 and the phase death related to coarsen-

ing phenomenon of Cu6Sn5 grains. The combination of phase-field model with simple,

explicit nucleation models allows the investigation of the different material parame-

ters that changes the morphology of IMC grains formed at the early and late stages

of the reaction in Cu-Sn alloy system. The nucleation of the IMC (Cu6Sn5) grains

during lead free soldering was performed using nucleation model that contains Pois-

son distribution function, and the morphological evolution and growth of the IMC

(Cu6Sn5) grains after the nucleation stage was performed using a multi-phase-field

model.

The simulations were performed by using three different grain boundary diffu-

sion coefficients in η-IMC grains (or layer) and three different interface energies of



172

η − L interface causing the concurrent coarsening of the IMC grains along with the

IMC layer growth with applying nucleation probability. From the results, one can

found many results from the simulations corresponding to the change of material pa-

rameter. However, Several conclusions can be narrowed down overall compared with

the previous research [28] as follows: (1) Cu6Sn5 easily formed at the edge of the

grain occurs faster than at the top of the grains due to high diffusion coefficient of

liquid solder until η grains impinges. (2) Contrary to the stage of grain nucleation,

the scallop shape of the grains can be observed only in the stage of grain coarsening,

which result from the grain coarsening. (3) Although the formation and growth of

the IMC grains observed explicitly different from the research [28] in the early stages,

The behavior of the IMC grains (or layer) applied with different material parameters

(e.g. grain boundary diffusion coefficient and a η − L interface energy) at the late

stages eventually appears similar to the research [28].

The microstructural evolution of the IMC grains initially appeared more compli-

cated compared with previous works [28, 125]. However, it was found in this study

that phase-field simulation of IMC during soldering reaction containing nucleation

theory can show the nature of IMC layer formation, which in turn can be used to

better control of the soldering reactions. Moreover, it is now possible to qualita-

tively reproduce many previous experimental researches about nucleation behaviors

at early stages, lateral growth of IMC grains prior to coarsening as well as the evo-

lution of a scallop-like morphology of the IMC layer once complete coverage of the

substrate/liquid interface is achieved.
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CHAPTER VII

CRYSTALLOGRAPHIC PHASE-FIELD SIMULATIONS OF INTERMETALLIC

COMPOUND GROWTH DURING LEAD-FREE SOLDERING

A. Introduction

IMC layer formation during soldering reactions generally consists of several distinct

physical processes, such as nucleation, growth and coarsening. Individual IMC grains

form at the solder/substrate interface before the formation of the IMC layer. In

the formation process, it is interesting to know that each grains form containing

independent crystalline. During the formation, individual IMC grains with their

own crystallographic orientation simply grows reacting with liquid solder and solid

substrate. However once the grains impinge together, layer evolution involves grain

boundary migration through which a grain with a particular orientation with respect

to an external frame of reference grows at the expense of neighboring grains. Grain

misorientation may affect both the driving force for grain boundary migration and

the grain boundary mobility.

Two IMCs (Cu6Sn5 (η phase) and Cu3Sn(ε phase)) have been observed to form

at the substrate (Cu)/solder (Sn) interface in Cu-Sn systems [40, 41, 43, 44, 45, 46,

96, 117, 119, 120, 122, 123, 128, 129, 130]. The sequence of these phases’ formation

is determined by the local thermodynamic conditions of Cu/Sn interface. In case of

nucleation process, one can understand that the η phase , rather than ε phase, has

been shown to precipitate during the earliest stages of solder/substrate interactions

due to magnitude of driving force of the two phases. However, determining orientation

of individual grains can not be obtained from local thermodynamics conditions, but

would be chosen by random manners.
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In spite of the difficulty of introducing the effect of misorientation in mathe-

matical theories of microstructure evolution, several researches have been coupling

phase-field descriptions of phase transformations with crystalline orientational fields

by using mathematical and computational methods [7, 21, 22, 56, 137, 138, 139,

140, 141, 142, 143, 144, 145, 146]. Among the researches, Kobayashi [7] and Warren

[8] have produced the most rigorous study of the introduction of orientation fields

within the context of phase-field modeling. These authors have developed mathe-

matical descriptions of systems where the crystallographic orientation of a particular

phase changes, established the new model parameters in terms of grain boundary en-

ergies and have implemented these formalisms to the investigation of solidification of

polycrystalline materials [8]. Despite this progress, further extension of this approach

to the multi-phase field formalism has not been performed as extensively.

A huge number of experimental researches have been done in a lot of different

area of research field, and can be also found in the area of soldering processes [147,

148, 149, 150, 151, 152, 153]. These recent experimental works have focused on

the effect of crystallographic orientation of grains to the microstructural evolution,

orientation relationships between IMC grains and a substrate and growth kinetic

of IMC grains with morphologies affected by crystallographic orientations. In spite

of many experimental researches, unfortunately, the development of computational

researches in the area of soldering processes is behind experimental results.

In this study, we will briefly introduce a phase-field model including crystallo-

graphic orientation for the evolution of η phase along a Cu/Sn interface. The proposed

model is based on a multi-phase field model derived from previous works [6, 27] for

the evolution of grains of Cu6Sn5 under isothermal conditions. We will show different

morphologies of IMC grains and layers during lead-free soldering as a function of

material parameters. In this work, we will assume that the Cu6Sn5 phases are set up
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at the initial condition as shown in Fig. 65. The rate of growth of the IMC individual

grains will be controlled by the diffusion rates while the coarsening of the IMC grains

as well as the concurrent coarsening will be controlled by using different solder/IMC

interface energies with different gradient coefficients of misorientation. Investigation

of microstructural evolution affected by crystallographic orientation during the sol-

der/substrate interactions will provide one with a deeper insight for the nature of

IMC layer growth in model lead-free solder systems, which in turn can be used to

better control of the soldering reactions.

B. A free energy density of crystalline

The order parameters, ϕ and Θ, represent phase-field and the crystallographic ori-

entation, respectively. For the construction of a physically realistic model of phase

boundaries, schematic configuration of two impinged phases is required as shown in

Fig. 65.

Fig. 65. A schematic configuration for misorientation of two grains. (a) Bicrystal struc-

ture (b) Graph of misorientation of two grains along the line l.

For the explanation of ϕ and Θ, a interfacial region of two phases, shown in
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Fig. 65, should be considered where the orientation of an atomic bond (lattice vector)

with respect to a reference frame should be differentiated by a continuous modular (i.e.

cyclic) variable, Θi. For the interfacial region, we can simply define the relationship

between ϕ and Θ as

h(ϕ)Θ = Θi, (7.1)

where Θi is the orientation of a single phase (liquid solder, solid substrates and

individual grain) that is mathematically expressed by using N arrays Θi(x, t)(i =

1, ..., N). The orientation variables in this model can be defined as Θ1 for solid

substrate, Θ2,...,N−1 for the grains in the two IMC layers and ΘN for liquid solder.

Some approaches have considered an additional order parameter to represent the

degree of crystallinity of a particular region of the computational domain [7]. Because

this parameter and the usual (and non-physical) ϕ parameter have been physically

uncoupled [8], the model can be simplified by the selection of ϕ field parameter. The

crystalline phase field model now have two order parameter, ϕ and Θ, and now ϕ

is associated with the degree of crystalline orientational order (as well as with the

chemical identity of a particular region in the domain).

Misorientation (∆Θ) is the difference of orientation between two adjacent grains

and is a macroscopic quantity. The misorientation of a grain boundary can be defined

by spatially integrating ∇Θ from a side of a grain into the other side of the grain, and

gradient of misorientation is associated with grain boundary properties, particularly

grain boundary energy. Once the grain boundary energy can be related to of the

gradient in misorientation, it should be characterized as anisotropic [8]. Therefore,

free energy density involving the orientational order is postulated as

fO = a1h(ϕ)|∇Θ|, (7.2)
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where a1 is the gradient coefficient of misorientation and h(ϕ) = ϕ3(10− 15ϕ+ 6ϕ2)

is a function of phase-field. A term, a2g(ϕ)|∇Θ|2, can be included in the free energy

density [7, 8]. The term shows the curvature of the misorientation that is associated

with the effect of grain boundary motion, but in this study we will not use the term.

C. Models

We consider an isothermal Cu-Sn binary system. The system is composed of a Sn-rich

liquid solder (L), a Cu-rich solid substrate (α), and an intermetallic layer of Cu6Sn5

(η).

The IMC layers consist of many grains that are differentiated by non-conserved

parameters for phase fields [45] and crystalline fields [151]. The spatial distribution of

the liquid solder, the substrate, and the grains in the intermetallic layer of the system

is mathematically expressed by using N arrays of phase fields ϕi(x, t)(i = 1, ..., N),

which can be expressed with multi-phase field variables. The phase field variables in

this model can be defined as ϕ1 for solid substrate, ϕ2,...,N−1 for the grains in the two

IMC layers and ϕN for liquid solder. ϕi = 1 indicates that phase i exists in that point

of space, while ϕi = 0 indicates that i phase does not exist in the region. Additionally,

interfaces are defined in the system whenever 0 < ϕi < 1. Within the interface, ϕi

is considered to change continuously within the 0 < ϕi < 1 range. For example, if

0 < ϕ1 < 1 and 0 < ϕ2 < 1 at a point in an interface region, the point indicates the

presence of the η-IMC layer and a solid substrate. Moreover, the discrete orientation

of a grain can be obtained from Eq. (7.1).

From previous works [5, 6], the free energy density f of the multi-phase system
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including crystallographic orientation can be defined as follows:

f =
∑
j>i

∑
i

[
−
ϵ2ij
2
∇ϕi · ∇ϕj + ωijϕiϕj

]
+
∑
i

a1h(ϕi)|∇Θi|+
∑
i

ϕif
i (ci) , (7.3)

where f i is the chemical free energy density of the i − th phase and it depends on

the phase composition ci. ϵij is the gradient energy coefficient which is related to

the energy penalty involved in forming an interface and ωij is a double well potential

representing the energy barrier between two phases ϕi and ϕj. We will determine the

compositions of coexisting phases at any given point of the computational domain by

establishing the chemical potential equilibrium condition as suggested by [5]. This

approach has the advantage that it somewhat relaxes the maximum interfacial thick-

ness allowable in the numerical implementation of phase-field simulations and avoids

the formation of extraneus secondary ’energy barriers’ resulting from discontinuities

in the chemical potentials of the constitutes across an interface [5].

According to the previous descriptions for coexisting phase fields at interfaces

and crystallographic orientations, we can obtain the evolution of three different field

equations as a function of time [8, 27]. They are the phase field equation:

∂ϕi

∂t
= − 2

Np

∑
i̸=j

χiχjMϕ

[
∂F

∂ϕi

− ∂F

∂ϕj

]
, (7.4)

where

∂F

∂ϕi

=
∑
i̸=j

[
ϵ2ij
2
∇2ϕj + ωijϕj

]
+ a1h

′(ϕi)|∇Θi|+ f i(ci)− fcci, (7.5)

crystallographic field equation:

∂Θ

∂t
= MΘ∇ ·

(
a1

N∑
i=1

h(ϕ)
∇Θi

|∇Θi|

)
, (7.6)
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and diffusion equation:

∂c

∂t
= ∇ ·

(
D(ϕi)

N∑
i=1

ϕi∇ci

)
. (7.7)

where χi is equal to 1 when the corresponding phase exists, otherwise χi is 0, and Np

represents the number of the coexisting phases at a calculated position: Np(x, t) =∑N
i χi(x, t). This equation is only valid on the phase interfaces since the presence of

only one phase in any point of the calculation domain renders χi or χj equal to zero.

Mϕ and MΘ represent the phase mobility and orientation mobility of the interfacial

region, respectively.

The constraint for phase field equation and diffusion equation are

N∑
i=1

ϕi = 1 and c(x, t) =
N∑
i=1

ϕici. (7.8)

It is noted that the constraint for crystallographic field equation is used as Eq. (7.1).

Model parameters can be obtained from a stationary solution of the phase field

equation in a planar interface, which turns out two relationships between model pa-

rameters and material parameters based on the definition of the interface energy as a

function of gradient energy coefficient and phase field with a referred interface width

[27, 28]:

ϵij =
4
√

ξσij

π
and ωij =

2σij

ξ
, (7.9)

where ξ is the half of the width of the interface, and σij is the interface energy for

the corresponding phases.

D. Numerical implementation

A Cu-Sn binary system at 523K will be regarded. The system is initially composed of

a Sn-rich liquid solder (L), a Cu-rich solid substrate (α). Meanwhile, IMC grains of
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Cu6Sn5 (η) will are randomly seeded based on nucleation theory discussed above. The

phase field equation and diffusion equation will be numerically computed by using

finite difference method for spatial domain and Euler scheme for temporal domain in

two dimensions. Mesh size of the calculation domain is fixed as ∆x = 4.0× 10−8(m)

and the half width of the interface ξ is used 4∆x.

Fig. 66 shows a schematic configuration for the computational domain. The size

of the system is set to be 184∆x×290∆x. For the initial array of phases, intermetallic

grains (η phase) are placed from 25∆x to 30∆x between the liquid solder (from 30∆x

to 90∆x) and the solid substrate (from 0 to 25∆x). The intermetallic layer initially

consists of 30 rectangular grains that has different widths between 4∆x and 8∆x.

Orientational values for liquid solder and solid substrate are set to be 0 and 1, respec-

tively, and the orientational values of each grain are randomly chosen (0< Θ <1).

Periodic boundary conditions are applied to the sides of the calculation domain and

Neumann boundary condition is applied to the top and bottom of the calculation

domain. The calculation will be finished when thickness of the Cu-substrate will be

used up.

We put an buffer solder region at the top of liquid solder (90∆x×290∆x) because

the liquid solder is composed of the liquid metal in which no phase change appears so

that the composition change in region far from the soldering reaction can be negligible.

Therefore it can be defined that the composition of the buffer region is initially the

same as that of the solder in calculation.

The free energy densities per unit moral volume of individual phases were ob-

tained from the CALPHAD method [124] and they are

fα = (1− c)Gα
Cu + cGα

Sn +RT [(1− c)ln(1− c) + clnc]

+c(1− c) [Lα
0 + Lα

1 (1− 2c)] , (7.10)
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Fig. 66. A schematic configuration for the computational domain.

fη = 2.0× 105(c− 0.435)2 + 0.545Gα
Cu + 0.455GSER

Sn

−6869.5− 0.1589T, (7.11)

fL = 1− c)GL
Cu + cGL

Sn +RT [(1− c)ln(1− c) + clnc]

+c(1− c)
[
LL
0 + LL

1 (1− 2c) + LL
2 (1− 4c− 4c2)

]
, (7.12)

where

Gα
Cu = −19073.0, Gα

Sn = −27280.0,

GSER
Sn = 346160.0, GL

Cu = −11083.0, GL
Sn = −28963.0,

Lα
0 = −11448.0, Lα

1 = −11694.0,

LL
0 = −10487.0, LL

1 = −18198.0, LL
2 = 10528.4

The free energy densities per unit molar volume of individual phases can be

obtained from the CALPHAD method [124] as shown in Eqs. (7.10)-(7.12) with molar

volume [vm = 16.29 (cm3/mole)]. The equilibrium phase compositions can be used
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Table II. Material parameter values for use in simulating the growth of IMC layer

during lead-free soldering

DL = 2.0× 10−12(m2/s), Dη = 2.0× 10−5DL(m
2/s)

Dα = 1.0× 10−6DL(m
2/s), DηL = 2.0× 10−1DL(m

2/s)

Dηα = 2.0× 10−3DL(m
2/s), DGB = 2.0× 10−3DL(m

2/s)

σηL = 0.1(J/m2), σηα = σGB = 0.3(J/m2)

Mϕ,ηL = 1.0× 106DL(m
2/s), Mϕ,ηα = Mϕ,GB = 7.0× 104DL(m

2/s)

MΘ = 1.0× 10−6Mϕ,ηL

as cαLL = 0.977 and cαLα = 0.1957 and the equilibrium composition of η phase can be

calculated by using free energy equations as shown in the previous section (cη = 0.435)

where cαLα is the equilibrium composition of the α phase at the α−L interface and the

other terms are defined correspondingly. The initial compositions of the Cu-substrate

and liquid solder are set to be cα = 0.002 and cL = cαLL .

Critical parameters for the simulation, such as interfacial energies and mobilities

are notoriously hard to obtain from experimental results. They are thus used as

simulation parameters which are carried by theoretical approaches from experimental

data [41, 43, 128, 129]. The diffusivities and other material parameters employed in

the numerical calculation are summarized in Table II.

E. Results and Discussions

It is difficult to determination of material parameters used in the simulation because

material properties of single phases, for example, the material parameters of α, η

and L in this study are dependent on theoretical approach based on experimental

data, and gradient coefficient of misorientation a1 is not well established yet. But the
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material parameters except a1 are obtainable [41, 43, 127, 128, 129] while a1 can be

predictable, and can be related to interface energies [8, 144].

In a region of phases mixture, for example interface regions, it is even more

difficult to determine the material properties for the simulation (e.g. σηL and DGB).

So, the simulation in this study will follow the morphology of IMC grain growth

that will be affected by the different material properties, such as changing diffusion

coefficient of grain boundary, changing interfacial energy between η-IMC layer and

liquid solder and changing gradient coefficient of misorientation.

(a)

(c)

(b)

(d)

Fig. 67. Microstructure evolution of the intermetallic compound layer for the case of

(a) a1=0.0, (b) a1=0.001, (c) a1=0.01 and (d) a1=0.1 at t = 28(sec). The

other material parameters are referred from Table II.

In order to examine how the kinetics of the η-IMC growth is affected by a1,

simulations are carried out with four different a1 are used as a1 = 0.0, a1 = 0.001,

a1 = 0.01 and a1 = 0.1.For all four cases, the other material properties are used

shown in Table II.

Fig. 67 shows intermetallic compound growth for the case with different a1 at
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t = 28(sec). Fig. 67(a) shows the intermetallic compound grain growth that was,

in a previous chapter, explained as followings. As the intermetallic compound grain

grows thicker with time, there is a concurrent coarsening of the η grains, resulting in

fewer grains remained in the intermetallic compound layer. The liquid solder seems

not to wet the grain boundaries entirely through the layer, since the driving force for

the η phase formation from the diffusion fluxes through the grain boundary is large

enough to overcome the difference between σGB and σηL . However, once the effect

of misorientation is included like Figs. 67(b)-(d), the intermetallic compound growth

appears to be different.

a1 is associated with the degree of orientation transformation. Supposes that

there are two phases that has different orientations. Competition of phases occurs at

a phase boundary, and the phase boundary moves, which are affected by the difference

of local free energy density of each phases and the the misorientation of two phases.

Once phase transformation associated with a local misorientation eventually occurs,

and a point of abutting orientation is transformed into the other orientation, which

requires energetic cost [7, 22]. Therefore, the existence of misorientation in the multi-

phase field changes the mobility of phase transformation.

For the misorientation, it is a general note that large misorientation causes the

increase of grain boundary energy [8, 7]. The increase of grain boundary energy indi-

cated that the solid/liquid interface energy is relatively smaller than grain boundary

energy, so that small competition of grains occurs. Thus, coarsening rate of the

grains is reduced and the thickness of intermetallic compound increases compared

with the case (a1 = 0.0). As a1 increases we can find that grain coarsening is accel-

erated. As we mentioned above, a1 is the degree of the orientation transformation in

a given misorientation. Thus, large a1 accelerates the grain coarsening, and due to

the grain coarsening, more grain boundaries are eliminated compared with the case
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(a)

(c)

(b)

Fig. 68. Evolution of (a) solid substrate thickness, (b) η-IMC layer thickness and (c)

number of grains with respect to time corresponding the different a1=(0.0,

0.001, 0.01 and 0.1). Profiles correspond Fig. 67.
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(a1 = 0.001). The existence of less grain boundaries prohibits the IMC growth of

the lack of Cu supply [28]. This morphological behaviors of the IMC growth can be

evaluated by Fig. 68. It seems to be conflict because the increase of the grain bound-

ary energy retards the grain coarsening and increase the thickness of IMC thickness,

but the increase of a1 causes increase of the wetting effects. We expect that grain

boundary energy would be rather dominated in the phase transformation comparing

with the wetting effect because of the small value of a1 = 0.001. It is interesting

to note that η − L and α − η interfaces have opposite signs of curvature resulting

in the scollop shape for η grains with the inclusion of misorientation effect, which is

experimentally observed [151].

As we mentioned above, a1 should be likely chosen with similar values of solid/liquid

interface energy; that is a1 = 0.1 IMC growth by the variation of DGB is good to in-

vestigate morphological change of IMC. We select a high DGB as DGB = 2.0×10−3DL

(Fig. 69(a)) and a low DGB as DGB = 2.0 × 10−5DL (Fig. 69(b)) with t = 0.4, 8, 15

and 26(sec).

As intermetallic compound layer grows thicker with time, there is a fast coarsen-

ing of the η grains in both cases, resulting in fewer grains remained in the intermetallic

compound layer. Both cases are applied the effect of the misorientation. Essentially,

the system tends to decrease its energy predominantly by reducing the grain bound-

ary area [28], which expect that the fast coarsening of Fig. 69(b) would be accelerated

due to the inclusion of misorientation effect. However, Fig. 69(b) reveals less coarsen-

ing resulting in more eliminated grains. We expect that the phenomenon is caused by

low DGB. Low DGB leads to less survived grains, and less flux of composition through

the grain boundaries decreases the effect of misorientation. Contrary to the number

of grains, solid substrate and IMC thicknesses of Fig. 69(a) compared with Fig. 69(b)

appears normally increased due to the DGB that supply more flux of compositions
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(a4)

(a1)

(a2)

(a3)

(b4)

(b1)

(b2)

(b3)

Fig. 69. Microstructure evolution of the intermetallic compound layer for the case of

(a) high DGB (DGB = 4.0 × 10−15) and (b) low DGB (DGB = 4.0 × 10−17)

at t = 28(sec) with t = 0.4, 8, 15 and 26(sec). a1=0.1. The other material

parameters are referred from Table II.
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[see in Fig. 71].

(a4)

(a1)

(a2)

(a3)

(c4)

(c1)

(c2)

(c3)

Fig. 70. Microstructure evolution of the intermetallic compound layer for the case of

(a) high η − L interfacial energy (σηL = 0.1(J/m2)) and low η − L interfacial

energy (σηL = 0.05(J/m2)) at with t = 0.4, 8, 15 and 26(sec). a1 = 0.1. The

other material parameters are referred from Table II.

Although highDGB is employed in η phase in Fig. 70, there is a different tendency

for competitive grain growth at the η − L interface compared to the cases shown in

Fig. 70(a) because of the lower value of σηL. The coarsening rate is related to the

DGB and difference between σηL and σGB [28].

Without the effect of misorientation, high DGB causes grain growth, but higher
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(a) (b)

(c)

Fig. 71. Evolution of (a) solid substrate thickness, (b) η-IMC layer thickness and (c)

number of grains with respect to time corresponding case 1, case 3 and case

4 a1=0.1. The case 1, 3 and 4 corresponds Figs. 69(a), (b) and Fig. 70(c).
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difference of two interfacial energies leads to grain boundary wetting, which essentially

acts to limit horizontal coarsening of the grains. Thus, the grains grow upward with

less coarsening with neighboring grains in η-IMC layer, which is faster than the other

case as shown in Fig. 40. Less coarsening with neighboring grains similarly happens

in both cases of Fig. 40 and Fig. 70(a). So, the solid substrate thickness decreases

and IMC thicknesses increase. However, due to the effect of misorientation grain

coarsening occurs. Therefore, contrary to the solid substrate and IMC thicknesses,

number of survived grains during lead-free soldering become less than the case in

Fig. 43. Evolution of solid substrate thickness, IMC layer thickness and number of

survived grains with respect to time are provided Fig. 71.

F. Conclusions

A multi-phase field model including crystallographic orientation [8] was used in order

to the evolution of η phase along a Cu/Sn interface. Different coefficient of grain

boundaries, solid/liquid interface energies and gradient coefficients of misorientation

were varied to understand the characteristics of each parameter on the behavior of

IMC layer. With the results, we addressed the characteristics of each parameter from

the simulations, and we will expect that the investigation of microstructural evolution

affected by crystallographic orientation during the lead-free soldering will hopefully

provide one with the nature of IMC layer growth and possibility of better control of

the soldering reactions.

The simulations were performed by using two different grain boundary diffusion

coefficients and two different η − L interface energies causing the concurrent coars-

ening of the IMC grains along with the IMC layer growth. From the results, one

can find useful results from the simulations corresponding to the change of material
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parameter. However, several conclusions can be narrowed down compared with the

previous research [8, 28] as follows: (1) grain boundary energy would be rather dom-

inated in the phase transformation comparing with the wetting effect if a1 is small

enough. (2) As gradient coefficient of misorientation increases, grain coarsening is

accelerated resulting that number of grains was changed but the solid substrate and

IMC thicknesses was barely changed but small increase of IMC thickness is observed

[Fig. 68]. (3) The effect of misorientation is more dominated when the high diffusion

coefficient of grain boundary is applied. (4) If solid/liquid interface energy would be

small, the effect of misorientation becomes less [see Fig. 71].

The inclusion of a physical characteristics of microstructure provides one with

complexity with respect to computational and experimental works. Especially, the

computational works appear more difficulty because of verification and acquisition

of series of model parameters, for example diffusion coefficient, interface energy and

gradient coefficient of misorientation, from experimental investigation. However, it is

realized in this study that a multi-phase field simulation is applicable with respect to

additional features, such as crystallographic orientation. Moreover, it is now possible

to qualitatively reproduce many previous experimental researches about nucleation

behaviors at early stages, lateral growth of IMC grains prior to coarsening as well as

the evolution of a scallop-like morphology of the IMC layer once complete coverage

of the substrate/liquid interface is achieved.
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CHAPTER VIII

SUMMARY

The objective of this work is to investigate solidification phenomena of solid-liquid

interactions, such as dendritic growth in pure and binary materials, eutectic solidifi-

cation in a binary alloy and intermetallic compounds growth during soldering reaction

in electronic material by using phase field models. After reviews of phase field models,

free energy density theory, thermodynamic potential and theory of crystallographic

orientation, I presented several simulation results of solidification comparing with

experimental results showing the details of my works.

At first I presented a single phase field model developed by [5] adopting chemical

potential equilibrium at interface region. His model appears to be equivalent to the

model [3] introduced in the several years ago, but this approach adopts a different

definition of the free energy density and assumption in interface region compared

with the previous model [3] that has extra potential originated from the free energy

density definition, but this approach makes the extra potential disappear by using the

chemical potential equilibrium in the interface region. With the model [5] I simulated

phase transition for isothermal solidification in binary alloys in 1D and introduced an

anisotropic phase field model to simulate dendrite solidification in 2D.

Secondly, I introduced a multi-phase field model developed by [6, 20] for solidifi-

cation modeling by using phase field approaches. Coexisting phases are postulated as

pairwise energy difference between the coexisting phases under the guarantee of the

minimum of free energy. The multiphase field equation was reformed by summing

contributions of each existing phase field at the interface. With the multi-phase field

model I simulated eutectic solidification problems based on the experimental results

[37], and addressed good agreements with them. For the extension of the eutectic so-
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lidification, I simulated eutectic solidification of binary alloy containing encapsulated

impurities with/without the effect of conductivity resulting in morphological changes

of lamellae, which expects better characteristics of microstructure with respect to

desired performances.

I also presented the possibilities of the multi-phase field model in use of in-

termetallic compound formation and growth during soldering reactions in electronic

materials. I simulated the morphological evolution and growth of the IMC (Cu6Sn5

only or Cu6Sn5 and Cu3Sn) layers during lead-free soldering with Sn-Cu solder alloys

on a Cu substrate. The multi-phase field simulations were performed by using three

different grain boundary diffusion coefficients in η-IMC layer, three different interfa-

cial energies of η − L interface causing the concurrent coarsening of the IMC grains

along with the IMC layer growth, and three different initial liquid solder compositions

inducing dissolution of Cu from the substrate and IMCs, and the results were com-

pared with previous works [28, 125]. Three controllable parameters (grain boundary

diffusion, η − L interfacial energy and initial liquid solder) delivered that (1) High

grain boundary diffusion leads to increase of η-IMC layer thickness and decrease of

ε-IMC layer thickness. (2) High η − L interfacial energy leads to decrease of grain

boundary wetting effect resulting in increase of grain coarsening. (3) As a net result

of the concurrent dissolution and growth of the η-IMC layers in the case of poor Sn

liquid solder, the η-IMC layer thickness decreases at the early stages of soldering. (iv)

ε-IMC is affected by the behavior of η-IMC layer and Sn flux from liquid solder.

For the extension of the multi-phase field modeling in lead-free soldering system,

I adopted nucleation phenomenon in an early stage in Cu-Sn soldering. For the theory

of the nucleation, I supplemented Poisson distribution function for the explanation of

nucleation of intermetallic compound gains during lead-free soldering, and compared

my current results and experimental results [?, 45, 97]. I found out that Cu6Sn5 easily
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formed at the edge of the grain occurs faster than at the top of the grains due to high

diffusion coefficient of liquid solder until η grains impinges and the behavior of the

IMC grains (or layer) applied with different material parameters (e.g. grain boundary

diffusion coefficient and a η−L interface energy) at the late stages eventually appears

similar to the research [28] although the formation and growth of the IMC grains

observed explicitly different from the research [28] in the early stages.

Finally, I included crystallographic orientation effect [8] in the multi-phase field

model in order to investigate the evolution of intermetallic compound phase along

a Cu/Sn interface. Different diffusion coefficients of grain boundaries, solid/liquid

interface energies and gradient coefficients of misorientation, provided one with un-

derstanding of the characteristics of each parameters according to the behavior of

IMC layer. With the results, I addressed the characteristics of each parameter from

the simulations, which expects that the investigation of microstructural evolution

affected by crystallographic misorientation during the lead-free soldering will hope-

fully give one the nature of IMC layer growth and possibility of better control of the

soldering reactions.

The inclusion of a physical characteristics of microstructure provides complex-

ity of computational and experimental works. Especially, the computational works

appear more difficult to establish because constitutive equations obtained from math-

ematical methods is required to be good for experimental investigations. Although

the constitutive equations are approximated, it is realized in this study that phase

field models and their supplemental model parameters are applicable with respect to

advanced solidification problems, and it is now possible to qualitatively reproduce

many previous experimental researches. This steps in my study look tiny, but signif-

icant steps in both the advancement of phase field modeling of microstructure and

the development of the next generation in material sciences are surly prospective.
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APPENDIX A

PHASE FIELD MODEL FOR BINARY ALLOYS

Free energy density is given as

f(ϕ(x), c(x)) = fS(cS)h(ϕ) + fS(cL) [1− h(ϕ)] + wg(ϕ), (A.1)

where

c(x) = h(ϕ)cS + [1− h(ϕ)] cL (A.2)

and

dfS(cS)

dcS
=

dfL(cL)

dcL
. (A.3)

Governing equations are given as

∂ϕ

∂t
= M

(
ϵ2∇2ϕ− fϕ

)
, (A.4)

and

∂c

∂t
= ∇

(
D(ϕ)

fcc
∇fc

)
. (A.5)

The explicit forms of governing equations can be obtained from equations (A.2) and

(A.3). They are

h(ϕ)
∂cS
∂c

+ [1− h(ϕ)]
∂cL
∂c

= 1, (A.6)

h(ϕ)
∂cS
∂ϕ

+ [1− h(ϕ)]
∂cL
∂ϕ

+
dh(ϕ)

dϕ
(cS − cL) = 0, (A.7)

d2fS(cS)

dc2S

∂cS
∂c

=
d2fL(cL)

dc2L

∂cL
∂ϕ

, (A.8)

and

d2fS(cS)

dc2S

∂cS
∂ϕ

=
d2fL(cL)

dc2L

∂cL
∂ϕ

. (A.9)
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Equations (A.6) and (A.8) yield

∂cL
∂c

=

d2fS(cS)

dc2S

h(ϕ)d
2fL

dc2L
+ [1− h(ϕ)] d

2fS

dc2S

(A.10)

and

∂cS
∂c

=

d2fL(cS)

dc2L

h(ϕ)d
2fL

dc2L
+ [1− h(ϕ)] d

2fS

dc2S

. (A.11)

Equations (A.7) and (A.9) yield

∂cL
∂ϕ

=
h(ϕ)(cL − cS)

d2fS(cS)

dc2S

h(ϕ)d
2fL

dc2L
+ [1− h(ϕ)] d

2fS

dc2S

(A.12)

and

∂cS
∂ϕ

=
h(ϕ)(cL − cS)

d2fL(cL)

dc2L

h(ϕ)d
2fL

dc2L
+ [1− h(ϕ)] d

2fS

dc2S

. (A.13)

These eight relationships are very useful in deriving the explicit forms of the governing

equations (A.3) and (A.4). From now on we use the notations

fL
cc ≡ d2fL(cL)

dc2L
,

fS
cc ≡ d2fS(cL)

dc2S
.

At first we find the explicit form for fϕ as

fϕ =
∂fS

∂ϕ
h(ϕ) +

∂fS

∂ϕ
[1− h(ϕ)] +

dh(ϕ)

dϕ

[
fS − fL

]
+ w

dg

dϕ

=
dfS

dcS

∂cS
∂ϕ

h(ϕ) +
dfL

dcL

∂cL
∂ϕ

[1− h(ϕ)] + h′
[
fS − fL

]
+ wg′.

By using equations (A.3) and (A.7), fϕ can be obtained as

fϕ =
dfL

dcL

[
∂cS
∂ϕ

h(ϕ) +
∂cL
∂ϕ

[1− h(ϕ)]

]
+ h′

[
fS − fL

]
+ wg′

= −h(ϕ)′
[
fL − fS − dfL

dcL
(cL − cS)

]
+ wg′. (A.14)
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Next we find the explicit form of fc as

fc =
∂fS

∂c
h(ϕ) +

∂fL

∂c
[1− h(ϕ)]

= h(ϕ)
dfS

dcS

∂cS
∂c

+ [1− h(ϕ)]
dfL

dcL

∂cL
∂c

. (A.15)

By using equations (A.3) and (A.6), equation (A.15) can be shown as

fc =
∂fL

∂cL

[
h(ϕ)

∂cS
∂c

+ [1− h(ϕ)]
∂cL
∂c

]
=

dfL(cL)

dcL
=

dfS(cS)

dcS
. (A.16)

Finally, we find the explicit form of fcc and fcϕ. From equation (A.16), we can see

fcc =
d2fL(cL)

dc2L

∂cL
∂c

=
d2fS(cS)

dc2S

∂cS
∂c

. (A.17)

After inserting equations (A.10) or (A.11) into equation (A.17), we can get

fcc =
fS
cc(cS)f

L
cc(cL)

[1− h] fS
cc(cS) + hfL

cc(cL)
. (A.18)

From equation (A.16), we can see

fcϕ =
d2fL(cL)

dc2L

∂cL
∂ϕ

=
d2fS(cS)

dc2S

∂cS
∂ϕ

. (A.19)

Also after inserting equations (A.12) or (A.13) into equation (A.19), we can get

fcϕ =
h′(cL − cS)f

S
cc(cS)f

L
cc(cL)

[1− h] fS
cc(cS) + hfL

cc(cL)
. (A.20)

Therefore, we can get

fcϕ
fcc

= h′ (cL − cS) . (A.21)

Inserting equations (A.14), (A.16) and (A.18) into equations (A.4) and (A.5), we cans
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get the finial forms of governing equations as

1

M

∂ϕ

∂t
= ∇ · ϵ2∇ϕ+ h′ [fL − fS − (cL − cS)f

L
cL
(cL)

]
− wg′ (A.22)

and

∂c

∂t
= ∇

[
D(ϕ)

[1− h] fS
cc(cS) + hfL

cc(cL)

fS
cc(cS)f

L
cc(cL)

∇fc

]
(A.23)

with

c = h(ϕ)cS + [1− h(ϕ)]cL and fS
cS

= fL
cL
.

The diffusion equation (A.5) may be written as the other form:

∂c

∂t
= ∇ [D(ϕ)∇c] +∇

[
D(ϕ)

fcϕ
fcc

∇ϕ

]
= ∇ [D(ϕ)∇c] +∇ [D(ϕ)h′(cL − cS)∇ϕ] , (A.24)

where we used equation (A.21).

At one dimensional stationary state, it must be

fS
cS

= fL
cL

= f e
c (A.25)

and

ϵ2
d2ϕ

dx2
+ h′ [fL − fS − (cL − cS)f

L
cL
(cL)

]
− wg′ = 0. (A.26)

Equation (A.25) yield cL = ceL and cS = ceS, and so the bracket in equation (A.26)

must be independent of position x. After multiplying dϕ/dx on both side of equation

(A.26), integrating equation (A.26) from −∞ to +∞ results in

fL(ceL)− fS(ceS)− (ceL − ceS)f
L
cL
(ceL) = 0. (A.27)

Equations (A.25) and (A.27) gives the well known equilibrium condition like

f e
c = fS

ceS
= fL

ceL
=

fL(ceL)− fS(ceS)

ceL − ceS
. (A.28)
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Because equation (A.27) must be hold at equilibrium state the phase field equation

(A.26) becomes

ϵ2
d2ϕ0

dx2
= −w

dg(ϕ0)

dϕ0

. (A.29)

When we take g = ϕ2(1 − ϕ)2 under the condition ϕ0 = 1(solid) at x = −∞ and

ϕ0 = 0(liquid) at x = +∞, the solution of the equation is

ϕ0(x) =
1

2

[
1− tanh

(√
w√
2ϵ

)]
. (A.30)

Therefore the equilibrium average composition is

c0(x) = h(ϕ0)c
e
S + [1− h(ϕ0)]c

e
L. (A.31)

When the phase-field equation is given by equation (A.4), the total free energy of the

inhomogeneous system at one dimensional stationary state is

ftotal =

∫ +∞

−∞

[
f(c0, ϕ0) +

ϵ2

2

(
dϕ0

dx

)]
dx. (A.32)

The excess free energy of the interface fx is

fx =

∫ +∞

−∞

[
f(c0, ϕ0) +

ϵ2

2

(
dϕ0

dx

)]
dx−

∫ 0

−∞
fSdx−

∫ +∞

0

fLdx, (A.33)

and the surface excess solute vmΓB is

vmΓB =

∫ +∞

−∞
c0dx−

∫ 0

−∞
ceSdx−

∫ +∞

0

ceLdx. (A.34)
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The interface energy is

σ = fx − f e
c vmΓB

=

∫ +∞

−∞

[
f(c0, ϕ0) +

ϵ2

2

(
dϕ0

dx

)]
dx−

∫ 0

−∞
fSdx−

∫ +∞

0

fLdx

−f e
c

[∫ +∞

−∞
c0dx−

∫ 0

−∞
ceSdx−

∫ +∞

0

ceLdx

]
=

∫ 0

−∞

[
f(c0, ϕ0)− fS(ceS)− fL

cL
c0 + fL

ceL
ceS

]
dx

+

∫ ∞

0

[
f(c0, ϕ0)− fL(ceL)− fL

cL
c0 + fL

ceL
ceL

]
dx

+
ϵ2

2

∫ ∞

−∞

(
dϕ0

dx

)2

dx. (A.35)

According to

f(c0, ϕ0) = h(ϕ0)f
S(ceS) + [1− h(ϕ0)]f

L(ceL) + wg(ϕ0),

c0 = h(ϕ0)c
e
S + [1− h(ϕ0)]c

e
L,

fL
cL
(ceL) =

fL(ceL)− fS(ceS)

ceL − ceS
,

equation (A.35) becomes

σ = w

∫ +∞

−∞
g(ϕ0)dx+

ϵ2

2

∫ +∞

−∞

(
dϕ0

dx

)2

dx. (A.36)

Here we integrate equation (A.29) from x = −∞ to x = x after multiplying dϕ/dx

on both sides, which yields

wg(ϕ0) =
ϵ2

2

(
dϕ0

dx

)2

, (A.37)

which can be obtained by direct differentiation of equation (A.30). Thus we can find

σ = ϵ2
∫ ∞

∞

(
dϕ0

dx

)2

dx. (A.38)
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Using equation (A.30), direct evaluation of the interface energy gives

σ =
ϵ
√
w√
18

. (A.39)

From equation (A.30), we can see that a measure of the interface thickness 2λ, over

which ϕ0 changes from 0.1 to 0.9, is given by

2λ = 2.2
√
2

ϵ√
w
. (A.40)

We rewrite the governing equation at one dimensional steady state

− vn
M

∂ϕ

∂x
= ∇ · ϵ2∇ϕ+ h

′ [
fL − fS − (cL − cS)f

L
cL
(cL)

]
− wg

′
(A.41)

and

−vn
∂c

∂x
=

d

dx

[
D(ϕ)

fcc

dfL
cL

dx

]
. (A.42)

When the diffusivity in solid can be negligible, from equation (A.23) we can get the

chemical potential

fc(x) = fL
cL
(cL) = fL

cS
(ciS)− vnint

λ
−λ

fcc
D(ϕ)

(c(x)− ciS)dx, (A.43)

where ciS is the composition at the solid side of the interface, and fcc is given in

equation (A.18). For the first order in the Peclet number (Pe= 2λvn/D), the chemical

potential profile fc can be written as

fc(x) = fL
cL
(cL) = fL

cS
(ciS)− vn

∫ x

−λ

f e
cc

D(ϕ)
(ce(x)− ceS)dx, (A.44)

where the superscript e denote the values that correspond to the case of vn = 0, that

is, the equilibrium state. Also for the fist order in the peclet number, we can expand

cL and cS as cL = ceL + δcL and cS = ceS + δcS. Thus the term in the bracket of the
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phase field equation of the first order becomes

fL(cL)− fS(cS)− (cL − cS)f
L
cL
(cL) = fL(ceL)− fS(ceS)

−(ceL − ceS)f
S
cS
(ciS) + vn(c

e
L − ceS)

∫ x

−λ

f e
cc

D(ϕ)
(ce(x)− ceS)dx. (A.45)

We insert equation (A.45) into (A.41), and after multiplying dϕ/dx on both sides of

(A.41) we integrate from x = −λ to x = +λ, which yields

− vn
M

∫ +λ

−λ

(
dϕ0

dx

)2

dx = −fL(ceL) + fS(ceS) + (ceL − ceS)f
S
cS
(ciS) + I. (A.46)

where

I = vn(c
e
L − ceS)

∫ 0

1

[∫ x

−λ

f e
cc

D(ϕ)
(ce(x′)− ceS)dx′

]
h′(ϕ0)dϕ0

= −vn(c
e
L − ceS)

∫ 0

1

h(ϕ0)
f e
cc

D(ϕ)
(ce(x)− ceS)

dx

dϕ0

dϕ0.

From equations (A.18), (A.30) and (A.31) we can get

I = − ϵ√
2wD

ζe, (A.47)

where

ζe = fS
cc(c

e
S)f

L
cc(c

e
L)(c

e
L − ceS)

2

×
∫ 1

0

h(ϕ0) [1− h(ϕ0)]

[1− h(ϕ0)] fS
cc(c

e
S) + h(ϕ0)fL

cc(c
e
L)

dϕ0

ϕ0(1− ϕ0)
. (A.48)

For example, if h = ϕ2(3− 2ϕ) under the dilute solute approximation, we can get

fS
cc(c

e
S) =

RT

vm

1

ceS
and fL

cc(c
e
L) =

RT

vm

1

ceL
, (A.49)

and then ζe becomes

ζe =
RT

vm
(ceL − ceS)

2

∫ 1

0

ϕ0(1− ϕ0)(3− 2ϕ0)(2ϕ0 + 1)

ceL(1− ϕ0)2(2ϕ0 + 1) + ceSϕ
2
0(3− 2ϕ0)

dϕ0. (A.50)
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Therefore equation (A.46) becomes

fL(ceL)− fS(ceS)− (ceL − ceS)f
S
cS
(ciS) = vn

[
σ

Mϵ2
− ϵ

D
√
2w

ζe
]
. (A.51)

The idea of Karma and Rappel is that the correct chemical potential of the liquid at

the interface should be taken as the extrapolated value fL
cL
(cL), instead of fL

cL
(ciL),

to the artificial sharp interface. When the diffusivity in solid is negligible, this value

should be the same with fS
cS
(ciS). Therefore from equation (A.52) can be rewritten as

(ceL − ceS)
[
f e
c − fS

cS

]
= αvn, (A.52)

where α = σ
Mϵ

− ϵζe

D
√
2w
, and f e

c is the equilibrium chemical potential given by Equation

(A.28). With the express of

f e
c − fS

cS
≈ RT

vm

(
1− ciS

ceS

)
(A.53)

for a dilute solution, we can write

vn
vm
RT

meα

1− ke
= (Tm − Ti)

(
1− ciS

ceS

)
= Tm − Ti −meciS. (A.54)

Thus we can obtain

T = Tm −me c
i
S

ke
− vn

vm
RT

meα

1− ke
, (A.55)

which is the well-known relationship between the interface temperature and the in-

terfacial composition of liquid, and we can define the interface kinetic coefficient as

β ≡ vm
RT

meα

1− ke
=

vm
RT

me

1− ke

[
σ

Mϵ2
− ϵ

D
√
2w

ζe
]
. (A.56)

Note that equation (A.56) is the same form with that derived by Karma and Rappel

for solidification of pure materials, and the relationship is correct only at the condition
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with a vanishing interface Peclet number. As shown by them, equation (A.56) permits

zero-interface kinetic coefficient by adjusting the parameters.
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APPENDIX B

MULTIPHASE TRANSFORMATIONS OF A PHASE FIELD METHOD USING

INTERFACE FIELDS

The description of first order phase transformations for multiphase contains differ-

ent phases ϕα, ϕβ,...,ϕN and different phase gradient ∇ϕα, ∇ϕβ,...,∇ϕN . The time-

dependent equation for ϕα with resect to minimization of the free energy functional

F is can be derived as

τ ϕ̇α =

(
∇ ∂

∂∇ϕα

− ∂

∂ϕα

)
f, (B.1)

where f indicates the free energy density of a phase and τ is a relaxation constant.

There is a constraint for phase fields as

N∑
α=1

ϕα = 1. (B.2)

Adding Lagrange multiplier λ into equation (B.1) with consideration of the phase

field constraint leads to

τ ϕ̇α =

(
∇ ∂

∂∇ϕα

− ∂

∂ϕα

)(
f + λ

(
N∑

α=1

ϕα − 1

))

=

(
∇ ∂

∂∇ϕα

− ∂

∂ϕα

)
f + λ. (B.3)

ϕ may be identified with the solid density. It varies continuously from 1 (solid) to

0 (liquid) at the interface region. The liquid density is then given by 1−ϕ. The mul-

tiphase system can be denoted with a set of N phase field variables ϕα(α=1,,2,...,N).

Each phase field is associated with the local density of a different phase and they are

connected by phase field constraint equation (B.2). We then define the open spaces
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Q̃α in Q where 0 < ϕα < 1 on Q̃ and the step function χα:

χα =

 1 on Qα,

0 elsewhere,
(B.4)

where Qα is the open space Q̃α plus its boundary. The closed space Qα can be

separated or overlapping and is changeable with respect to the evolution of ϕα. We

then set the number of locally existing phases Ñ(x, t) as

Ñ =
N∑

α=1

χα(x, t), (B.5)

and then the phase field constraint can be changed as

Ñ∑
α=1

ϕα(x, t) = 1, (B.6)

where the number of locally existing phases Ñ is 2 on dual interfaces, 3 on triple

interfaces. It is considered to be essential for a multiphase method that the transition

regions 0 < ϕαorβ < 0 between the phases are finite on Qαorβ < Q. Otherwise, all

phases would overlap and the multiple point of order N would extend over the whole

domain Q as seen in Fig. 72.

As can be seen from the constraint equation (B.2) with respect to equation

(B.6), the set of ϕα (α=1,,2,...,N) are dependent of set of phase field variables of the

multiphase system. They are defined on a Ñ − 1 dimension.

For Ñ phase ÑC2 interface between two phases α and β can be denoted, where

C is combination function. We define a set of ÑC2 antisymmetric interface fields Ψ.

For example, the antisymmetric interface field can be denoted on the two phases (ϕα

and ϕβ) coexisting region as

Ψαβ = ϕα − ϕβ. (B.7)
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Fig. 72. Simple configuration of three phases coexisting field (ϕα, ϕβ and ϕγ), where

ϕα∩ϕβ, ϕα∩ϕγ and ϕγ∩ϕβ indicate two phases interface each and ϕα∩ϕβ∩ϕγ

indicates three phases interface.

Application of equation (B.7) for Ñ > 2 projects the phase field distribution ϕα

(α=1,,2,.. .,N) into a N − 1 dimensional subspace of the Ψαβ that again is connected

by the constraint equation (B.2) as equation (B.7) is a linear transformation. The

reverse transformation is

ϕα =
1

Ñ

 Ñ∑
β=1

Ψαβ − 1

 , (B.8)

and Lagrange energy density l also defined from the phase field constraint as

l = f + λ

 Ñ∑
α=1

ϕα − 1

 . (B.9)

The minimum of the free energy functional F with respect to local phase fields

can be obtained by using the integrated Lagrange functional L that is the volume
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integration of l in Q space. It is obtained as

0 = − ∂L
∂ϕα

=

(
∇ ∂

∂∇ϕα

− ∂

∂ϕα

)
l, (B.10)

and phase fields ϕα can be independently treated with Kronecker delta as

∂ϕα

∂ϕβ

= δαβ. (B.11)

We then rewrite the relaxation formulation as

◦
ϕα = − ∂L

∂ϕα

= − ∂

∂ϕα

∫
Q

f + λ

 Ñ∑
α=1

ϕα − 1


= − ∂

∂ϕα

F + λ

∫
Q

 Ñ∑
α=1

ϕα − 1

 = − ∂F

∂ϕα

− λ, (B.12)

where
◦
ϕα denotes the motion of the ϕα towards the minimum of F without specifying

a timescale. Then it is also clear that

◦
Ψαβ =

◦
ϕα −

◦
ϕβ = − ∂F

∂ϕα

+
∂F

∂ϕβ

− λ+ λ = − ∂F

∂ϕα

+
∂F

∂ϕβ

. (B.13)

The motion
⊗
Ψαβ can be obtained from equation (B.7) and equation (B.12) as

⊗
Ψαβ ≡ ∂L

∂Ψαβ

=
1

Ñ

[
− ∂F

∂ϕα

+
∂F

∂ϕβ

]
. (B.14)

Comparing equation (B.14) with equation (B.12) we find that
◦
Ψαβ and

⊗
Ψαβ scales

by a factor 1/Ñ as
◦
Ψαβ =

(
∂

∂ϕα

− ∂

∂ϕβ

)
F (B.15)

and
⊗
Ψαβ =

∂F

∂Ψαβ

. (B.16)



227

Combining (B.13) and (B.15) leads to

⊗
Ψαβ =

1

Ñ

◦
Ψαβ. (B.17)

The standard multiphase field model can be obtained from equation (B.13) using

equation (B.8) or from equation (B.14) using equations (B.8) and (B.17) as

ϕ̇α = − ∂

∂ϕalpha

F + λ, (B.18)

λ =
1

Ñ

Ñ∑
β=1

∂

∂ϕbeta

F (B.19)

and

τ ϕ̇α = − ∂

∂ϕα

F +
1

Ñ

Ñ∑
β=1

∂

∂ϕβ

F

= −Ñ − 1

Ñ

∂

∂ϕα

F +
1

Ñ

∑
α ̸=β

∂

∂ϕβ

F

= − 1

Ñ

∑
α ̸=β

(
∂

∂ϕα

− ∂

∂ϕβ

)
F. (B.20)
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APPENDIX C

AN ANISOTROPIC PHASE FIELD EQUATION

We extend the model to the anisotropic case in the interface energy σij and kinetic

coefficient βij, that is, σij = σ(θi, θj) and βij = β(θi, θj), where θi and θj are the angles

of the direction normal to ϕi line and ϕj line from a reference axis, respectively, that

is,

θ = tan−1 (ϕi)y
(ϕi)x

. (C.1)

Throughout this section, the subscripts under the parentheses represents the

partial derivative by the subscripts. As in the previous method, we put ϵij = ϵ(θi, θj)

and Mij = M(θi, θj). Because the orientation dependence of the phase-field mobility

can be easily treated, we here focus on the gradient coefficient ϵij = ϵ(θi, θj). For

convenience, we introduce an average orientation

θij =
1

2
(θi + θj) . (C.2)

In a boundary between the two phases with ϕi + ϕj = 1, we see θij = θi = θj

according to equation (C.1). We then take

ϵij = ϵ(θi, θj) = ϵ(θij), (C.3)

Mij = M(θi, θj) = M(θij). (C.4)
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One should note that by equations (C.2) and (C.3) it follows

(ϵij)θi = (ϵ(θij))θij(θij)θij =
1

2

dϵ(θij)

dθij
=

1

2
ϵ′ij,

(ϵij)θiθi =
1

2
(ϵ′(θij))θi =

1

4

d2ϵ(θij)

dθ2ij
=

1

4
ϵ′′ij,

((ϵij)θi)
2 + (ϵij)θiθiϵij =

1

4

[
(ϵ′ij)

2 + ϵijϵ
′′
ij

]
,

(ϵij)θj =
1

2

dϵ(θij)

dθij
=

1

2
ϵ′ij,

(ϵij)θjθj =
1

4

d2ϵ(θij)

dθ2ij
=

1

4
ϵ′′ij,

((ϵij)θj)
2 + (ϵij)θjθjϵij =

1

4

[
(ϵ′ij)

2 + ϵijϵ
′′
ij

]
,

(ϵij)θiθj =
1

4

d2ϵ(θij)

dθ2ij
=

1

4
ϵ′′ij.

For simplicity, we consider the free energy functional

F =

∫
V

[
−
ϵ2ij(θij)

2
∇ϕi∇ϕj

]
dV. (C.5)

The variation δϕi in ϕi results in the variation of the functional

δF = −δ

∫
V

[
ϵ2ij(θij)

2
∇ϕi∇ϕj

]
dV

= −
∫
V

[ϵijδϵij∇ϕi∇ϕj] dV −
∫
V

[
ϵ2ij
2
∇δϕi∇ϕj

]
dV. (C.6)

The last integral in equation (C.6) becomes∫
V

[
ϵ2ij
2
∇δϕi∇ϕj

]
dV = −1

2

∫
V

δϕi∇ ·
(
ϵ2ij∇ϕj

)
dV, (C.7)

where we used Gauss theorem. The variation δϵij in the first integral in equation
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(C.6) can be modified as

δϵij = (ϵij)θj δθj = (ϵij)θj δ

[
tan−1 (ϕi)y

(ϕi)x

]
=

(ϵij)θj
|∇ϕi|2

[(ϕi)x(δϕi)y − (ϕi)y(δϕi)x] . (C.8)

The first integral in equation (C.6) then can be written into∫
V

[ϵijδϵij∇ϕi∇ϕj] dV =

∫
V

ϵij (ϵij)θj
∇ϕi · ∇ϕj

|∇ϕi|2
[(ϕi)x(δϕi)y − (ϕi)y(δϕi)x] dV

= −
∫
V

∂

∂y

[
ϵij (ϵij)θj

∇ϕi · ∇ϕj

|∇ϕi|2
(ϕi)x

]
δϕidV

+

∫
V

∂

∂x

[
ϵij (ϵij)θj

∇ϕi · ∇ϕj

|∇ϕi|2
(ϕi)y

]
δϕidV, (C.9)

where we used Green theorem. We then obtain the functional derivative like

δF

δϕi

= ∇ ·
(
ϵ2ij
2
∇ϕi

)
+

∂

∂y

[
ϵij (ϵij)θj (ϕi)xPij

]
− ∂

∂x

[
ϵij (ϵij)θj (ϕi)yPij

]
= ∇ ·

(
ϵ2ij
2
∇ϕi

)
+

1

2

∂

∂y

[
ϵijϵ

′
ij(ϕi)xPij

]
− 1

2

∂

∂x

[
ϵijϵ

′
ij(ϕi)yPij

]
, (C.10)

where

Pij =
∇ϕi · ∇ϕj

|∇ϕi|2
. (C.11)

In order to modify the derivative into the more convenient form, we use

∇ ·
(
ϵ2ij
2
∇ϕi

)
=

ϵ2ij
2
∇2ϕj + ϵij∇ϵij · ∇ϕj

=
ϵ2ij
2
∇2ϕj + ϵij (ϵij)θi ∇θi · ∇ϕj + ϵij (ϵij)θj ∇θj · ∇ϕj

=
ϵ2ij
2
∇2ϕj + ϵijϵ

′
ij∇θij · ∇ϕj, (C.12)



231

then equation (C.10) becomes

δF

δϕi

=
ϵ2ij
2
∇2ϕj + ϵijϵ

′
ij

[
∇θij · ∇ϕj +

1

2
(ϕi)x(Pij)y −

1

2
(ϕi)y(Pij)x

]
+
1

2

[
(ϵ′ij)

2 + ϵijϵ
′′
ij

]
Pij [(θij)y(ϕi)x − (θij)x(ϕi)y]

=
ϵ2ij
2
∇2ϕj +

1

2
ϵijϵ

′
ij [∇(θi + θj) · ∇ϕj + (ϕi)x(Pij)y − (ϕi)y(Pij)x]

+
1

2

[
(ϵ′ij)

2 + ϵijϵ
′′
ij

]
Pij [(θij)y(ϕi)x − (θij)x(ϕi)y] . (C.13)

In simulations one may use the difference equation corresponding to equation

(C.10) or (C.13) directly. In such case, however, we can not maintain the same

second order accuracy for all the terms in the right side of equation (C.10) or (C.13)

because of the partial derivatives of Pij and θij. Therefore it is necessary to expand

explicitly the partial derivatives of Pij and θij in order to maintain the second order

accuracy in the difference equation. (The expansion procedure appeared to be very

tedious. For your kind checking of the possible mistakes, we wrote the procedure in

detail.) At first, by using equation (C.1), we can write

∇θi · ∇ϕj =
1

|∇ϕi|2
[(ϕi)x∇(ϕi)y · ∇ϕj − (ϕi)y∇(ϕi)x · ∇ϕj] (C.14)

and

∇θj · ∇ϕi =
1

|∇ϕj|2
[(ϕj)x∇(ϕij)y · ∇ϕj − (ϕj)y∇(ϕj)x · ∇ϕj] . (C.15)
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Also with the definition from the equation (C.11), we can write

(ϕi)x(Pij)y − (ϕi)y(Pij)x

= (ϕi)x
1

|∇ϕi|4
[
|∇ϕi|2 (∇ϕi · ∇ϕj)y − 2 (∇ϕi · ∇ϕj)∇ϕi · ∇(ϕi)y

]
−(ϕi)y

1

|∇ϕi|4
[
|∇ϕi|2 (∇ϕi · ∇ϕj)x − 2 (∇ϕi · ∇ϕj)∇ϕi · ∇(ϕi)x

]
=

1

|∇ϕi||2
[(ϕi)x(∇ϕi · ∇ϕj)y − (ϕi)y(∇ϕi · ∇ϕj)x]

−2(∇ϕi · ∇ϕj)

|∇ϕi|4
[(ϕi)x∇ϕi · ∇(ϕi)y − (ϕi)y∇ϕi · ∇(ϕi)x] . (C.16)

Combining equations (C.14) and (C.16) yields

(ϕi)x(Pij)y − (ϕi)y(Pij)x +∇θi · ∇ϕj

=
1

|∇ϕi|2
[(ϕi)x(∇ϕi · ∇ϕj)y − (ϕi)y(∇ϕi · ∇ϕj)x

+(ϕi)x∇(ϕi)y · ∇ϕj − (ϕi)y∇(ϕi)x · ∇ϕj]

−2(∇ϕi · ∇ϕj)

|∇ϕi|4
[(ϕi)x∇ϕi · ∇(ϕi)y − (ϕi)y∇ϕi · ∇(ϕi)x]

=
∇ϕi · ∇ϕi

|∇ϕi|4
[(ϕi)x∇ϕi · ∇(ϕj)y − (ϕi)y∇ϕi · ∇(ϕj)x]

+
2∇ϕi · ∇ϕi

|∇ϕi|4
[(ϕi)x∇(ϕi)y · ∇ϕj − (ϕi)y∇(ϕi)x · ∇ϕj]

−2∇ϕi · ∇ϕj

|∇ϕi|4
[(ϕi)x∇ϕi · ∇(ϕi)y − (ϕi)y∇ϕi · ∇(ϕi)x]

= R +
2

|∇ϕi|4
[(ϕi)xS − (ϕi)yT ] , (C.17)
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where R S and T are given by

R ≡ ∇ϕi · ∇ϕi

|∇ϕi|4
[(ϕi)x∇ϕi · ∇(ϕj)y − (ϕi)y∇ϕi · ∇(ϕj)x]

=
1

|∇ϕi|2
[(ϕi)x [(ϕi)x(ϕj)xy + (ϕi)y(ϕj)yy]− (ϕi)y [(ϕi)x(ϕj)xx + (ϕi)y(ϕj)xy]]

=
1

|∇ϕi|2
[
(ϕi)

2
x(ϕj)xy + (ϕi)x(ϕi)y(ϕj)yy − (ϕi)x(ϕi)y(ϕj)xx − (ϕi)

2
y(ϕj)xy

]
=

1

|∇ϕi|2
[[
(ϕi)

2
x − (ϕi)

2
y

]
(ϕj)xy + (ϕi)x(ϕi)y [(ϕj)yy − (ϕj)xx]

]
, (C.18)

S ≡ [∇ϕi · ∇ϕi] [∇(ϕi)y · ∇ϕj]− [∇ϕi · ∇ϕj] [∇ϕi · ∇(ϕi)y]

= [(ϕi)x(ϕi)x + (ϕi)y(ϕi)y] [(ϕi)xy(ϕj)x + (ϕi)yy(ϕj)y]

− [(ϕi)x(ϕj)x + (ϕi)y(ϕj)y] [(ϕi)x(ϕi)xy + (ϕi)y(ϕi)yy]

=
[
(ϕi)

2
x + (ϕi)

2
y

]
(ϕi)xy(ϕj)x +

[
(ϕi)

2
x + (ϕi)

2
y

]
(ϕi)yy(ϕj)y

−
[
(ϕi)

2
x(ϕi)xy + (ϕi)x(ϕi)y(ϕi)yy

]
(ϕj)x −

[
(ϕi)x(ϕi)y(ϕi)xy + (ϕi)

2
y(ϕi)yy

]
(ϕj)y

= (ϕi)
2
y(ϕi)xy(ϕj)x + (ϕi)

2
x(ϕi)yy(ϕj)y

−(ϕi)x(ϕi)y(ϕi)yy(ϕj)x − (ϕi)x(ϕi)y(ϕi)xy(ϕj)y

=
[
(ϕi)

2
y(ϕi)xy − (ϕi)x(ϕi)y(ϕi)yy

]
(ϕj)x

+
[
(ϕi)

2
x(ϕi)yy − (ϕi)x(ϕi)y(ϕi)xy

]
(ϕj)y (C.19)
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and

T ≡ [∇ϕi · ∇ϕi] [∇(ϕi)x · ∇ϕj]− [∇ϕi · ∇ϕj] [∇ϕi · ∇(ϕi)x]

= [(ϕi)x(ϕi)x + (ϕi)y(ϕi)y] [(ϕi)xx(ϕj)x + (ϕi)xy(ϕj)y]

− [(ϕi)x(ϕj)x + (ϕi)y(ϕj)y] [(ϕi)x(ϕi)xx + (ϕi)y(ϕi)xy]

=
[
(ϕi)

2
x + (ϕi)

2
y

]
(ϕi)xx(ϕj)x +

[
(ϕi)

2
x + (ϕi)

2
y

]
(ϕi)xy(ϕj)y

−
[
(ϕi)

2
x(ϕi)xx + (ϕi)x(ϕi)y(ϕi)xy

]
(ϕj)x

−
[
(ϕi)x(ϕi)y(ϕi)xx + (ϕi)

2
y(ϕi)xy

]
(ϕj)y

=
[
(ϕi)

2
y(ϕi)xx − (ϕi)x(ϕi)y(ϕi)xy

]
(ϕj)x

+
[
(ϕi)

2
x(ϕi)xy − (ϕi)x(ϕi)y(ϕi)xx

]
(ϕj)y. (C.20)
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We then obtain

(ϕi)xS − (ϕi)yT

= (ϕi)x
[
(ϕi)

2
y(ϕi)xy − (ϕi)x(ϕi)y(ϕi)yy

]
(ϕj)x

+ (ϕi)x
[
(ϕi)

2
x(ϕi)yy − (ϕi)x(ϕi)y(ϕi)xy

]
(ϕj)y

− (ϕi)y
[
(ϕi)

2
y(ϕi)xx − (ϕi)x(ϕi)y(ϕi)xy

]
(ϕj)x

− (ϕi)y
[
(ϕi)

2
x(ϕi)xy − (ϕi)x(ϕi)y(ϕi)xx

]
(ϕj)y

= (ϕi)x
[
2(ϕi)

2
y(ϕi)xy − (ϕi)x(ϕi)y(ϕi)yy

]
(ϕj)x

+ (ϕi)x
[
(ϕi)

2
x(ϕi)yy − 2(ϕi)x(ϕi)y(ϕi)xy

]
(ϕj)y

− (ϕi)y(ϕi)
2
y(ϕi)xx(ϕj)x + (ϕi)y [(ϕi)x(ϕi)y(ϕi)xx] (ϕj)y

= (ϕi)x
[
2(ϕi)

2
y(ϕi)xy − (ϕi)x(ϕi)y(ϕi)yy

]
(ϕj)x

− (ϕi)y(ϕi)
2
y(ϕi)xx(ϕj)x + (ϕi)y [(ϕi)x(ϕi)y(ϕi)xx] (ϕj)y

+ (ϕi)x
[
(ϕi)

2
x(ϕi)yy − 2(ϕi)x(ϕi)y(ϕi)xy

]
(ϕj)y

=
[
2(ϕi)x(ϕi)y(ϕi)xy − (ϕi)

2
x(ϕi)yy

]
(ϕj)x(ϕi)y − (ϕi)

2
y(ϕi)xx(ϕj)x(ϕi)y

+ (ϕi)y [(ϕi)y(ϕi)xx] (ϕj)y(ϕi)x +
[
(ϕi)

2
x(ϕi)yy − 2(ϕi)x(ϕi)y(ϕi)xy

]
(ϕj)y(ϕi)x

=
[
2(ϕi)x(ϕi)y(ϕi)xy − (ϕi)

2
x(ϕi)yy − (ϕi)

2
y(ϕi)xx

]
(ϕj)x(ϕi)y

+
[
(ϕi)

2
y(ϕi)xx + (ϕi)

2
x(ϕi)yy − 2(ϕi)x(ϕi)y(ϕi)xy

]
(ϕj)y(ϕi)x

= [(ϕj)y(ϕi)x − (ϕj)x(ϕi)y]

×
[
(ϕi)

2
y(ϕi)xx + (ϕi)

2
x(ϕi)yy − 2(ϕi)x(ϕi)y(ϕi)xy

]
. (C.21)
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Therefore we get

(ϕi)x(Pij)y − (ϕi)y(Pij)x +∇θi · ∇ϕj

=
1

|∇ϕi|2
[[
(ϕi)

2
x − (ϕi)

2
y

]
(ϕj)xy + (ϕi)x(ϕi)y [(ϕj)yy − (ϕj)xx]

]
+

2 [(ϕj)y(ϕi)x − (ϕj)x(ϕi)y]

|∇ϕi|4

×
[
(ϕi)

2
y(ϕi)xx + (ϕi)

2
x(ϕi)yy − 2(ϕi)x(ϕi)y(ϕi)xy

]
(C.22)

and

∇θj · ∇ϕj

=
1

|∇ϕj|2
[(ϕj)x∇(ϕj)y · ∇ϕj − (ϕj)y∇(ϕj)x · ∇ϕj]

=
1

|∇ϕj|2
[(ϕj)x [(ϕj)xy(ϕj)x + (ϕj)yy(ϕj)y]− (ϕj)y [(ϕj)xx(ϕj)x + (ϕj)xy(ϕj)y]]

=
1

|∇ϕj|2
[
(ϕj)xy

[
(ϕj)

2
x − (ϕj)

2
y

]
+ [(ϕj)yy − (ϕj)xx] (ϕj)x(ϕj)y

]
. (C.23)

Adding equations (C.22) and (C.23) yields

∇(θi + θj) · ∇ϕj + (ϕi)x(Pij)y − (ϕi)y(Pij)x

= ∇θj · ∇ϕj +∇θi · ∇ϕj + (ϕi)x(Pij)y − (ϕi)y(Pij)x

=
1

|∇ϕj|2
[
(ϕj)xy

[
(ϕj)

2
x − (ϕj)

2
y

]
+ [(ϕj)yy − (ϕj)xx] (ϕj)x(ϕj)y

]
+

1

|∇ϕi|2
[[
(ϕi)

2
x − (ϕi)

2
y

]
(ϕj)xy + (ϕi)x(ϕi)y [(ϕj)yy − (ϕj)xx]

]
+

2 [(ϕj)y(ϕi)x − (ϕj)x(ϕi)y]

|∇ϕi|4

×
[
(ϕi)

2
y(ϕi)xx + (ϕi)

2
x(ϕi)yy − 2(ϕi)x(ϕi)y(ϕi)xy

]
. (C.24)

Now we use

cos(θi) =
(ϕi)x
|∇ϕi|

, sin(θi) =
(ϕi)y
|∇ϕi|

(C.25)
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and

cos(θj) =
(ϕj)x
|∇ϕj|

, sin(θj) =
(ϕj)y
|∇ϕj|

, (C.26)

which are obtained from equation (C.1). then equation (C.24) can be written as

∇(θi + θj) · ∇ϕj + (ϕi)x(Pij)y − (ϕi)y(Pij)x

= (ϕj)xy cos(2θj) +
1

2
[(ϕj)yy − (ϕj)xx] sin(2θj)

+ (ϕj)xy cos(2θi) +
1

2
[(ϕj)yy − (ϕj)xx] sin(2θi)

+
2 [(ϕj)y(ϕi)x − (ϕj)x(ϕi)y]

|∇ϕi|2

×
[
(ϕi)xx sin

2(θi) + (ϕi)yy cos
2(θi)− (ϕi)xy sin(2θi)

]
. (C.27)

With the definition

Wij ≡
(ϕj)y(ϕi)x − (ϕj)x(ϕi)y

|∇ϕi|2
, (C.28)

Equation C.27 becomes

∇(θi + θj) · ∇ϕj + (ϕi)x(Pij)y − (ϕi)y(Pij)x

= (ϕj)xy cos(2θj) +
1

2
[(ϕj)yy − (ϕj)xx] sin(2θj)

+ (ϕj)xy cos(2θi) +
1

2
[(ϕj)yy − (ϕj)xx] sin(2θi)

+ 2Wij

[
(ϕi)xx

1− cos(2θi)

2
+ (ϕi)yy

1 + cos(2θi)

2
− (ϕi)xy sin(2θi)

]
= (ϕj)xy cos(2θj) +

1

2
[(ϕj)yy − (ϕj)xx] sin(2θj)

+ (ϕj)xy cos(2θi) +
1

2
[(ϕj)yy − (ϕj)xx] sin(2θi)

+ 2Wij

[
1

2
[(ϕi)xx + (ϕi)yy] +

1

2
[(ϕi)yy − (ϕi)xx] cos(2θi)− (ϕi)xy sin(2θi)

]



238

Therefore we find

Bij ≡ ∇(θi + θj) · ∇ϕj + (ϕi)x(Pij)y − (ϕi)y(Pij)x

= (ϕj)xy [cos(2θj) + cos(2θi)]

+
1

2
[(ϕj)yy − (ϕj)xx] [sin(2θj) + sin(2θi)]

+Wij

[
∇2ϕi + [(ϕi)yy − (ϕi)xx] cos(2θi)− 2(ϕi)xy sin(2θi)

]
(C.29)

which is the term of the first bracket in the right side of equation (C.13). By similar

ways, we expand the second bracket in the right side of equation (C.13). The term

can be written as

Pij [(θij)y(ϕi)x − (θij)x(ϕi)y]

=
Pij

2
[(θi + θj)y(ϕi)x − (θi + θj)x(ϕi)y]

=
Pij

2
[(θi)y(ϕi)x − (θi)x(ϕi)y] +

Pij

2
[(θj)y(ϕi)x − (θj)x(ϕi)y] , (C.30)

where

(θi)y(ϕi)x − (θi)x(ϕi)y

= (ϕi)x
(ϕi)x(ϕi)yy − (ϕi)y(ϕi)xy

|∇ϕi|2
− (ϕi)y

(ϕi)x(ϕi)xy − (ϕi)y(ϕi)xx
|∇ϕi|2

=
(ϕi)

2
x(ϕi)yy − 2(ϕi)x(ϕi)y(ϕi)xy + (ϕi)

2
y(ϕi)xx

|∇ϕi|2

= (ϕi)yy cos
2(θi)− (ϕi)xy sin(2θi) + (ϕi)xx sin

2(θi)

= (ϕi)yy
1 + cos(2θi)

2
− (ϕi)xy sin(2θi) + (ϕi)xx

1− cos(2θi)

2

=
1

2
∇2ϕi +

1

2
[(ϕi)yy − (ϕi)xx] cos(2θi)− (ϕi)xy sin(2θi) (C.31)
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and

Pij [(θj)y(ϕi)x − (θj)x(ϕi)y]

=
[(ϕi)

2
x(ϕj)x + (ϕi)x(ϕi)y(ϕj)y] (ϕj)x(ϕj)yy

|∇ϕi|2|∇ϕj|2

− [(ϕi)
2
x(ϕj)x + (ϕi)x(ϕi)y(ϕj)y] (ϕj)y(ϕj)xy

|∇ϕi|2|∇ϕj|2

−
[
(ϕi)x(ϕi)y(ϕj)x + (ϕi)

2
y(ϕj)y

]
(ϕj)x(ϕj)xy

|∇ϕi|2|∇ϕj|2

+

[
(ϕi)x(ϕi)y(ϕj)x + (ϕi)

2
y(ϕj)y

]
(ϕj)y(ϕj)xx

|∇ϕi|2|∇ϕj|2

=

[
cos2(θj) cos

2(θi) +
1

4
sin(2θi) sin(2θj)

]
(ϕj)yy

−
[
1

2
cos2(θi) sin(2θj) +

1

2
sin(2θi) sin

2(θj)

]
(ϕj)xy

−
[
1

2
sin(2θi) cos

2(θj) +
1

2
sin2(θi) sin(2θj)

]
(ϕj)xy

+

[
1

4
sin(2θi) sin(2θj) + sin2(θi) sin

2(θj)

]
(ϕj)xx

=
1

4
[1 + cos(2θi) cos(2θj) + sin(2θi) sin(2θj)]∇2ϕj

+
1

4
[cos(2θi) + cos(2θj)] [(ϕj)yy − (ϕj)xx]

− 1

2
[sin(2θi) + sin(2θj)] (ϕj)xy. (C.32)

Combining (C.31) and (C.32) gives

Aij ≡ Pij [(θij)y(ϕi)x − (θij)x(ϕi)y]

=
Pij

2
[(θi)y(ϕi)x − (θi)x(ϕi)y] +

Pij

2
[(θj)y(ϕi)x − (θj)x(ϕi)y]

=
Pij

4
[[(ϕi)yy + (ϕi)xx] + [(ϕi)yy − (ϕi)xx] cos(2θi)− 2(ϕi)xy sin(2θi)]

+
1

8
[1 + cos(2θi) cos(2θj) + sin(2θi) sin(2θj)]∇2ϕj

+
1

8
[cos(2θi) + cos(2θj)] [(ϕj)yy − (ϕj)xx]

− 1

4
[sin(2θi) + sin(2θj)] (ϕj)xy. (C.33)
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For summary, we have a total free energy as

Fij =

∫
V

[
−
ϵ2ij(θij)

2
∇ϕi∇ϕj

]
dV. (C.34)

The functional derivative for ϕi is

∂Fij

∂ϕi

= −
ϵ2ij
2
∇2ϕj +

1

2
ϵijϵ

′
ijBij +

1

2

[
(ϵ′ij)

2 + ϵijϵ
′′
ij

]
Aij (C.35)

with

Aij = Pij

[
∇2ϕi + [(ϕi)yy − (ϕi)xx] cos(2θi)− 2(ϕi)xy sin(2θi)

]
+

1

8
[1 + cos(2θi) cos(2θj) + sin(2θi) sin(2θj)]∇2ϕj

+
1

8
[cos(2θi) + cos(2θj)] [(ϕj)yy − (ϕj)xx]

− 1

4
[sin(2θi) + sin(2θj)] (ϕj)xy (C.36)

and

Bij = (ϕj)xy [cos(2θj) + cos(2θi)]

+
1

2
[(ϕj)yy − (ϕj)xx] [sin(2θj) + sin(2θi)]

+Wij

[
∇2ϕi + [(ϕi)yy − (ϕi)xx] cos(2θi)− 2(ϕi)xy sin(2θi)

]
, (C.37)

where

Wij =
(ϕj)y(ϕi)x − (ϕj)x(ϕi)y

|∇ϕi|2
(C.38)

and

Pij =
(ϕj)x(ϕi)x − (ϕj)y(ϕi)y

|∇ϕi|2
. (C.39)
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APPENDIX D

CONSTRUCTION OF A BINARY PHASE DIAGRAM

Knowledge of the free energy of each phase of a solution allows for the construction

of its phase diagram. As an example, we choose an A-B binary system and assume

that it exhibits ideal solution behavior. Thus the free energies of the liquid and solid

solutions are given by

Gl(T, x) = (1− x)Gl
A(T ) + xGl

B(T ) +RT [xlnx+ (1− x)ln(1− x)] (D.1)

and

Gs(T, x) = (1− x)Gs
A(T ) + xGs

B(T ) +RT [xlnx+ (1− x)ln(1− x)] , (D.2)

where x is the mole fraction of B and Gl
A, G

s
A, G

l
B and Gs

B are the standard free

energies for liquid A, solid A, liquid B and solid B, respectively. The heats of fusion

and melting points of A and B, for example, are ∆Sf
A = ∆Sf

B = 10J/mole · K,

Tm,A = 800K and Tm,B = 1200K, respectively.

Conditions for equilibrium between the liquid and solid phases at fixed T and P

are

µl
A = µs

A = µA (D.3)

and

µl
B = µs

B = µB, (D.4)

which just states that the chemical potential of each given element is equal in each

of the phases.

For some given temperature T , the free energies of the liquid and solid phases

as given by equations (D.1) and (D.2) can be plotted as functions of their all density
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variables ( x is the only density variable in the present case) for the common tangent

construction.

The unknown points xl and xs are the compositions of the phases that are in

equilibrium and must be calculated as the boundaries for the solid-liquid two-phase

region in the T -x phase diagram. Simultaneous expressions for xl and xs can be

obtained from geometrical construction. For the given T ,

µl
A(x

l) = Gl(xl)− xl

(
dGl

dx

)
x=xl

, (D.5)

µs
A(x

s) = Gl(xs)− xs

(
dGs

dx

)
x=xs

, (D.6)

µl
B(x

l) = Gl(xl)−
(
1− xl

)(dGl

dx

)
x=xl

, (D.7)

µs
B(x

s) = Gs(xs)− (1− xs)

(
dGs

dx

)
x=xs

, (D.8)

where

dGl

dx
= Gl

B −Gl
A +RT ln

x

1− x
, (D.9)

dGs

dx
= Gs

B −Gs
A +RT ln

x

1− x
. (D.10)

The conditions for equilibrium Equation (D.3) and (D.4) using Equation (D.5)-

(D.10) give, upon arrangement,

Gl
A −Gs

A +RT ln
1− xl

1− xs
= 0, (D.11)

Gl
B −Gs

B +RT ln
xl

xs
= 0. (D.12)

If it is assumed that enthalpy H is not a function of temperature, then from the data,

we can write

Gl
A −Gs

A = ∆Hf
A − T∆Sf

A = ∆Sf
A (Tm,A − T ) = 10(800− T ) J/mole, (D.13)
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Gl
B −Gs

B = ∆Hf
B − T∆Sf

B = ∆Sf
B (Tm,B − T ) = 10(800− T ) J/mole. (D.14)

Substitution of Equations (D.13) and (D.14) into Equations (D.11) and (D.12) gives

two simultaneous expression xl and xs:

10(800− T ) +RT ln
1− xl

1− xs
= 0, (D.15)

10(1200− T ) +RT ln
xl

xs
= 0. (D.16)

Equations (D.15) and (D.16) are two nonlinear equations of two unknowns xl and

xs. Thus, the two unknowns xl and xs for a given temperature T can be numerically

solved by the Newton-Raphson method using Jacobian:

J(xl,xs) =


− RT

1−xl
RT
1−xs

RT
xl −RT

xl

 .

For the construction of the temperature-chemical potential phase diagram, one

may perform a Legendre transformation of G(T, x) as

G(T, x)− x

(
∂G

∂x

)
T

= G(T, x)− (µB − µA)x = µ (T, µB − µA) . (D.17)

Therefore, in principle, a liquid-solid two-phase coexistence line in the T − µB

phase diagram can be calculated by finding the intersection line of µl
A and µl

B surfaces

in µA − T − (µB − µA) space, which guarantees the equilibrium conditions: T l = T s,

µl
A = µs

A and µl
B = µs

B. If one has a program to calculate a T − x phase diagram,

one can readily convert the T − x phase diagram to the corresponding T − µB phase

diagram simply by calculating µB for two-phase equilibria at a given temperature T .
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Algorithm to construct phase diagram is following:

(1) Find the set of equations such as (D.15) and (D.16) based on equilibrium condi-

tion.

(2) Select a temperature.

(3) Solve them for xl and xs.

(4) Change the temperature and repeat the algorithm.
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