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ABSTRACT 

 

Integrated Economic-Epidemic Modeling of Avian Influenza Mitigation Options: A 

Case Study of an Outbreak in Texas. (December 2009) 

Aklesso Egbendewe-Mondzozo, B.S., Université de Lomé; 

M.A., Université de Cocody; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Bruce A. McCarl 

 

Recent World Animal Health Organization (OIE) reports on Avian Influenza (AI) 

outbreaks in Asia, Europe and Canada suggest that there is a nonzero probability that an 

outbreak may occur anywhere in the world, including the US. To help evaluate possible 

policy in the face of such an event, this dissertation does an economic evaluation of the 

implications of using two mitigation strategies: one corresponding to the currently 

response strategy; and the other an OIE recommended one utilizing vaccination. To do 

this, the dissertation develops and uses an integrated economic-epidemic model. In this 

effort, I first estimate the cost of an AI outbreak under a deterministic disease spread 

assumption where a new vaccination strategy and the current strategy are compared. 

Subsequently, I introduce risk in the model and construct 95% confidence intervals for 

the outbreak costs, and I rank the outcomes of the alternative strategies using stochastic 

dominance criteria. In addition, during both phases, I develop and estimate the 
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breakeven probability for an event where ex-ante fixed costs of vaccine stockpiling are 

justified by the reduction in disease event damages. 

Results under deterministic disease spread assumption suggest that the 

vaccination strategy lowers the cost of outbreaks as opposed to the current strategy.  This 

happens because vaccination reduces the number of culled and quarantined flocks. The 

study is conducted in three locations, yielding the finding that the costs of an outbreak 

vary depending on the densities of poultry flocks.  I also find that when consumer 

demand shifts due to the outbreak, the costs are much larger. Finally, I find that ex-ante 

vaccine stockpiling is justified for all the sub-regions if the probability of outbreak 

exceeds 0.07. 

The stochastic disease spread assumption results also show that the vaccination 

strategy dominates in first degree stochastic dominance sense. Consistent with stochastic 

dominance results, the 95% confidence intervals have narrower ranges under the 

vaccination strategy than without it. Finally, the distribution of the breakeven probability 

for vaccine stocking has a mode of 0.07 and that the probability is accurate with 82% 

likelihood. However, the threshold varies with the disease transmission parameters and 

could reach up to 0.32. 
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1. INTRODUCTION 

Recent avian influenza (AI) outbreaks and their economic consequences raise concerns 

about prevention methods, mitigation options and their cost effectiveness. Some of the 

most recent events include outbreaks in Japan and Korea in January 2004 (Nishiguchi et 

al. 2005) and outbreaks in numerous countries in 2008 (Nigeria, Benin, Togo, Egypt, 

United Kingdom and Canada)1. Historically, the United States experienced several AI 

outbreaks (Delaware, New Jersey, Maryland and Texas in February 2004). The outbreak 

in Texas occurred in Gonzales County east of San Antonio. During that outbreak the 

index flock (6,608 broiler) and 5 live bird markets were depopulated. The outbreak was 

quickly controlled by the Texas Animal Health Commission (TAHC) within a month 

and half (Pelzel, McCluskey and Scott 2006).  

The spectrum of diseases called avian Influenza involves various combinations 

of 16 hemagglutinin (H) and neuraminidase (N) proteins subtypes (Pelzel, McCluskey 

and Scott 2006), which could be classified into high pathogenic and low pathogenic 

groups based on the ability to cause disease.  High pathogenic strains include subtypes 

H5 and H7, while low pathogenic strains include all of the other subtypes. However, 

under the right circumstances the low pathogenic strains can mutate into more serious 

threats (Alexander 2000). Of particular significance are the H5N1 and H5N2 subtypes, 

which could exhibit mortality rates of 100 percent in poultry and serious illness and even 

                                                 
This dissertation follows the style of the American Journal of Agricultural Economics. 
 
1 OIE 2009 Update on highly pathogenic avian influenza in animals (type h5 and h7)  
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death in humans. The virus spreads through direct bird to bird contact as well as through 

indirect contact via contaminated feed, equipment, water, air and workers. 

Even though the disease is zoonotic and presents a threat to humans, US deaths 

from the highly pathogenic avian influenza (HPAI) among humans have not been 

observed. Most human deaths have been observed in Asian countries (Vietnam, China, 

and Indonesia with respectively 5, 3 and 17 deaths in 2008)2. Nevertheless, the economic 

effect of an outbreak can be quite costly for the poultry industry in particular, and for the 

economy in general. This study focuses on a potential regional outbreak (In South east 

Texas) examining the economic consequences for the commercial poultry sector in the 

United States. Human health implications or considerations for wild bird populations are 

not examined in this study. 

There are two major implications of an AI outbreak for the poultry industry; 

domestic damages and loss of international markets. Domestically, an AI outbreak 

would cause losses in production as poultry would be diverted from the market in 

disease control efforts. Furthermore, the associated risks of human illness could likely 

cause a perhaps temporary change in consumers’ preferences for poultry products. Such 

events would also cause losses for upstream input suppliers like feed producers. The 

Domestic implications of an outbreak would heavily depend on the level of preparedness 

and on quick control. If the outbreak is quickly controlled, consumers’ negative 

reactions and damages in the upstream industries would be minimized. However, quick 

response at any cost may not be economically effective. 

                                                 
2 WHO 2009 publication at http://www.who.int/csr/disease/avian_influenza/country/en/ 
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International trade consequences might also be significant. During past outbreaks in the 

US international trade partners have been observed to ban poultry imports from the 

affected country or at least a region therein with the ban persisting until that country is 

declared AI free. For example, after the Gonzales’ outbreak, 44 countries imposed 

import restrictions on either Texas or U.S poultry products (Pelzel, McCluskey and Scott 

2006).  

Finally unlike other economic impact analysis, economic analysis of the costs of 

infectious animal disease outbreaks depends not only on economic variables but also on 

biological disease. Because of these attributes, the cost assessment of a hypothetical 

outbreak requires interdisciplinary interaction between economists and biological 

scientists.  

1.1 Research Objectives and Methodology 

The principal objective of this study is to improve ways of managing animal diseases. In 

pursuing this objective, this dissertation has a more specific goal that is to conduct an 

evaluation of whether the use of vaccination is a superior practice to currently 

recommended policy.  In pursuing this goal efforts are devoted to  1) developing an 

integrated economic-epidemic model of Avian Influenza (AI) that includes disease 

control and mitigation options, 2) applying the developed model to simulate the case of a 

hypothetical outbreak in Texas under a deterministic disease spread assumption, and 3) 

ranking alternative stochastic disease control strategies results using stochastic 

dominance criteria. More specifically, the study examines the welfare implications of 

two disease control options: 
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• the current USDA recommended approach that establishes a quarantine zone in a 

5-miles radius around the outbreak site within which every flock is depopulated, 

and then a varying surveillance radii around that zone plus movement restrictions 

and testing (Pelzel, McCluskey and Scott 2006); and  

• an alternative mitigation strategy which is recommended by the World Animal 

Health Organization that vaccinates all susceptible flocks in near proximity to the 

quarantine zone in addition to the current strategy stated above (OIE 2007and 

2008)  

Both strategies are evaluated under a set of economic and epidemic constraints in the 

context of Texas commercial poultry operations. 

Further, since vaccination use is contingent on the vaccine availability, an ex-

ante vaccine investment decision is investigated. Following Elbakidze and McCarl 

(2006), the critical outbreak probability level for which an upfront investment should be 

made is determined.  

1.2 Organization of the Study 

The dissertation is organized as follows. Section one introduces the study and presents 

the objectives of the study. Section two gives an overview of the literature on the costs 

of an avian influenza outbreak. The integrated epidemic-economic partial equilibrium 

model used in the study is also discussed. Section three applies the integrated model to 

evaluate the cost of a hypothetical outbreak in Texas commercial poultry operations. A 

decision making criteria and process that calculates the critical outbreak probability level 

for an upfront investment in vaccines to be economically efficient is also presented. 
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Section four introduces risk and decision maker risk aversion into the analysis and 

carries out a risk version of the vaccination study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

6 

 2. LITERATURE REVIEW AND AN INTEGRATED ECONOMIC-EP IDEMIC 

AVIAN INFLUENZA MITIGATION MODEL 

Studies on infectious animal disease management generally fall into three classes (1) 

purely epidemiological (e.g. Bates, Thurmond and Carpenter 2003), (2) epidemiological 

with some economic implications (e.g. Garner and Lack 1995) or (3) epidemiological 

with an associated module (e.g. Schoenbaum and Disney 2003). Recent literature 

reviews of animal disease outbreak impact evaluations (Paarlberg, Seitzinger and Lee. 

2005; Pritchett and Johnson 2005) suggested that studies combining integration of 

economic and epidemic models would improve the quality of the analysis. Examples of 

integrated animal disease models are given in the papers of Rich and Winter-Nelson 

(2007) and Carpenter et al. (2007) which studied simulated foot-mouth-disease (FMD) 

outbreaks. The few published studies that investigate avian influenza (AI) outbreaks (e. 

g. Paarlberg, Seitzinger and Lee 2007; Djunaidi and Djunaidi 2007, Beach, Poulos and 

Pattenayak 2007 and Brown et al. 2007) have not used integrated models. 

This section outlines an integrated epidemic and economic AI model designed 

for evaluations of outbreak mitigation strategies and conducting vulnerability and cost 

assessments. The work by Rich and Winter-Nelson has been extended to include a latent 

category in our disease spread formulation. Specifically, a Susceptible-Latent-Infected-

Removed (SLIR) epidemic model (Elbakidze 2008; Ward, 2007) is used within a partial 

equilibrium economic model. In particular, the model will be used to evaluate the 

effectiveness of operating with and without vaccination. Also, a pre-event investment 

analysis is conducted on prior vaccination investment before the outbreak. 
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The remainder of the section is structured as follows. Section 1 presents a 

literature review on economic cost of animal disease outbreaks. Section 2 gives a 

selected review of empirical methods that have been used in animal disease modeling. 

Section 3 to section 5 present the theoretical formulation of the integrated epidemic-

economic model of AI mitigation. Section 6 to section 7 discusses some econometric 

specification issues. Section 8 presents a pre-event post-event decision making model 

formulation and section 9 concludes this section. 

2.1 Background on the Costs of an AI Outbreak 

Previous studies have found that economic impacts of animal disease outbreaks in terms 

of mitigation costs, consumers' and producers' surpluses losses, production losses and 

international trade losses could be significant (Cupp, Walker and Hillison 2004; 

Paarlberg, Seitzinger and Lee 2007; CAST 2006). 

Cupp, Walker and Hillison (2004) estimated that the U.S 1983-1984 AI 

outbreaks cost $63 million and the 2002 case led to a producer loss of roughly $130-

$140 million. Most AI outbreaks have spillover effects on the non affected regions as 

well. Paarlberg, Seitzinger and Lee (2007) studied the economic impact of 

regionalization of highly pathogenic AI outbreak in the U.S. They find that depending on 

the regionalization scenario, returns to capital in the poultry and egg sector would fall 

between $602 and $853 million over 16 quarters. Consumers of poultry meat were found 

to lose $900 million in consumer surplus in the first four quarters.  

In terms of international trade, a study by the Council for Agricultural Science 

and Technology (CAST 2006) shows that the U.S was the world's largest exporter of 
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broiler before the 2004 outbreaks (Delaware, New Jersey, Maryland and Texas in 

February 2004)3. The U.S exports were about 2,300 million tons in 2003 followed by 

Brazil with 1,550 million tons. After the 2004 outbreaks, the U.S export fell to 2,170 

million tons behind Brazil who increased exports to about 2,416 million tons. Since then, 

the Brazilians have been the world's largest broiler exporters. As of 2009, U.S exports 

are about 2,744 million tons with Brazils at 3,306 million tons.  

The economic impacts of foot-and-mouth disease (FMD) and bovine spongiform 

encephalopathy (BSE) outbreaks have also been significant (Jin, Mccarl and Elbakidze, 

forthcoming). Blancou and Pearson (2003) reported that the 1997 Taiwanese FMD 

outbreak cost the pork industry about $15 billion. The National Audit Office (NAO 

2002) reported that the UK government spent roughly $2.6 billion in controlling and 

eradicating the 2001 FMD outbreak. Leeming and Turner (2004) reported that 

immediately after the announcement of the human infections associated with the 1996 

BSE outbreak, beef product sales decreased by 40% and household consumption 

dropped by 26%.  

The study of the Japanese’ outbreak showed that wild birds are in fact natural 

carriers of the disease even though they do not show any pathologic signs. International 

movements of poultry products and people are the probable source of the Japanese and 

the Korean outbreaks (Nishiguchi et al., 2005). This shows that the threat of an outbreak 

is always present and international coordination is needed for an effective control of the 

disease. In their guidelines, the World Animal Health Organization (OIE), the World 

                                                 
3 The Center of Disease Control (CDC) 2009 at http://www.cdc.gov/flu/avian/outbreaks/past.htm 



 

 

9 

Health Organization (WHO) and the USDA are collaborating to mitigate the probable 

future impact of the disease spread on the economy as well as on the human health. To 

achieve improvements in economic efficiency of the mitigation of an AI outbreak, a cost 

effectiveness analysis is needed.   

2.2 Methodology and Typology of Models in Animal Disease Study 

Generally, the economic questions raised by an animal disease outbreak modeling 

include one or more of the following issues.  

• Costs to producers,  

• Public agency costs of alternative mitigation strategies,  

• Effects on prices and resultant implications for welfare and international trade, 

• Consumers' reaction to outbreaks,  

• National welfare changes, 

• Inter-industry impacts,  

• Employment implications in the livestock industry and  

• Human health implications.  

To answer these questions, several approaches have been developed in the 

literature4. Here, some of the major approaches have been reviewed below.  

Risk modeling is often used to estimate farms' cost or profit distribution as 

function of the probability of occurrence of an outbreak. Available risk modeling studies  

                                                 
4 An excellent review of animal disease outbreak issues and methods for an economic cost assessment of 

the impact are discussed in Rich, Miller and Winter-Nelson (2005). 
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have used indicators such as the net present value (NPV), the benefit cost ratio (BCR), 

and the internal rate of return (IRR) to study whether preventive animal disease 

investments are worth making. Examples are found in Romero and Rehman (1989) and 

Meuwissen et al. (1999). Researchers using risk modeling frameworks have mainly 

addressed farm level impacts without examining the impact on other agents such as 

upstream industries and consumers. 

Mathematical programming techniques optimizing some objective function (e.g. 

minimizing total cost of an outbreak, or maximizing total profit) have also appeared in 

the literature. Examples include the papers by Carpenter et al. (2007) and Elbakidze 

(2008). However, the need of information on data sometimes difficult to obtain and the 

complexity of mathematical modeling itself have limited its use in the animal disease 

outbreak analysis. These mathematical programming approaches also have possibilities 

of accounting for risk.  

Partial equilibrium single-sector or multi-market analysis complements 

mathematical programming techniques when market supply and demand functions can 

be properly estimated. Partial equilibrium5 models are useful for in assessing the total 

welfare effects on affected markets. The aggregate welfare changes induced by the 

outbreak on producers, consumers and the upstream industries can be calculated using 

market supply and demand curves. In particular, price endogenous mathematical 

programming can solve endogenously for prices. This allows for a more realistic 

                                                 
5 A theoretical treatment of welfare assessments in partial equilibrium framework is discussed in Just, 
Hueth and Schmitz (2004). 
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representation of the market dynamics during an outbreak. Studies by Paarlberg, 

Seitzinger and Lee (2002), Schoenbaum and Disney (2003) and Rich and Winter-Nelson 

(2007) have illustrated the application of these approaches. 

Other popular methods are input-output models (Miller and Blair 1985) and 

computable general equilibrium models (Shoven and Whalley, 1992) that operate in 

social accounting framework. These models focus on inter-industry or inter-sector 

impacts. However, they are expensive to build and are beyond the scope of this study. 

Further they do not often have the detail needed to address issues in the animal disease 

setting. Among others, an example of animal disease impact assessment using Input-

output methods is the study by Ekboir (1999). Regarding computable general 

equilibrium models, an example is Perry et al. (2003) could be mentioned. 

In the next sections, a modeling framework combining mathematical 

programming and partial equilibrium market analysis will be presented. This model will 

be used in the next chapters for the economic cost assessment under two alternative AI 

outbreak mitigation strategies. Specifically, economic implications of using or not using 

vaccination in a hypothetical AI outbreak are modeled. Once the partial equilibrium 

model is developed, an epidemic model will be formulated to simulate the spread of AI. 

The resulting integrated dynamic epidemic-economic model includes simultaneously 

biological spread, economic consequences and possible mitigation strategies. Also, the 

integrated model is used to study an ex-ante vaccines production investment under 

uncertainty (Elbakidze and McCarl, 2006). 
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2.3 Economic Partial Equilibrium Model Formulation 

A partial equilibrium model which estimates changes in producers' and consumers' 

surplus resulting from an AI outbreak can be established following standard textbook 

expositions (Mas-Colell, Whinston and Jerry, 1995; Deaton and Muellbauer, 2006; 

Tirole, 2003). Historical market equilibrium prices and quantities are assumed to be 

observed in the m  markets being analyzed. Using information on prices and quantities, 

the supply and demand curves for these commodities can be estimated, and the welfare 

calculated as the sum of the consumers' surplus )(CS  and producers' surplus )(PS over 

the entire discrete outbreak period [1, T]. The consumers are assumed to have weakly 

separable preferences for poultry products and minimize their total expenditure6 

})(:'{),( uxuxpMinpue
x

≥=  with the corresponding indirect utility function being ),( peψ . 

u is a direct utility function which is quasi-concave in its arguments and p is a vector of 

market prices. x  is a vector of quantities and e is the expenditure on these commodities. 

Using Roy’s identity, the marshallian demand functions are derived as ),( t
d
kt epx  and the 

corresponding inverse demand functions are ),,( tjt
d
kt

d
kt epxp .k  and t  are respectively 

commodity and time indexes.jtp  is the vector of substitute and complement  prices 

(other prices). 

                                                 
.6 Weak separability assumption is a very important econometric device allowing estimation of a demand 
system only over a group of commodities. Also, expenditure can be used instead of income, as individual 
incomes are rarely observed in practice. A discussion of weak and strong separability can be found in 
Deaton and Muellbauer (2006). 
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Similarly, producers are assumed to maximize their profit 

}')({),( zwzfpMaxpw kt
z

kt −=φ , where w  is a vector of input prices,ktp  is the market 

price of commodityk  andz is the vector of input quantities used in production. By 

Hotelling’s lemma, the supply functions are given as ),( kt
s
kt pwx and the corresponding 

inverse supply functions are ),( wxp s
kt

s
kt . 

The partial equilibrium welfare measure could be calculated by solving the 

following mathematical program for each outbreak sub-region: 

(1) 
s
kt

d
kt xx

Max
,

=Ω ∑∑ ∫∑∑ ∫
= == =

−
T

t

s
ktkt

m

k

x
s
kt

s
kt

T

t

d
ktjt

m

k

x
d
kt

d
kt dxwxpdxepxp

s
kt

d
kt

1 1 01 1 0

),(),,(                              

Subject to: 
 
(2) 0≤− s

kt
d
kt xx , For all mk ...1=  and Tt ...1=                                                 

(3) 0, ≥s
kt

d
kt xx  , For all mk ...1=   and Tt ...1= .                                               

This maximization problem is motivated by the fact that outbreaks impact both supply 

and demand conditions for poultry products. The objective of the decision maker is to 

implement mitigation strategies that yield maximum economic welfare or minimize the 

potential losses for consumers and producers. Changes in the formulated welfare 

function due to the outbreak represent a measure of an economic cost on consumers and 

producers. 

The RHS of equation (1) is the total welfare measured as the sum of consumers' 

and producers' surpluses. The first term on the RHS represents the sum of the areas 

underneath the demand curves of all the k  commodities over the outbreak period [1, T].  
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The second term represents the areas underneath the supply curves of all the k  

commodities over the outbreak period. Ω  is the total welfare value. 

Equation (2) indicates that demand must be less than or equal to supply in all the 

k markets for all theT periods. Note that following Takayama and Judge (1971) the 

shadow prices of these constraints at the optimum are equivalent to the competitive 

market equilibrium prices of all thek commodities for the T periods. 

Equation (3) represents the non negativity constraints of all the quantities at any 

periodt . 

This welfare function can be evaluated at the average data points of the 

variableswand e which become exogenous parameters in the solution of the model, 

since the integration is over quantities only. Variables d
ktx  and s

ktx  are choice variables in 

this problem. 

This approach is a price endogenous model formulation and is widely used in 

applied economic analysis. Further discussion can be found in McCarl and Spreen 

(1980). By incorporating the supply shocks resulting from an outbreak from an epidemic 

model to this formulation, the changes in the welfare can be measured. 

2.4 Epidemic Model 

The AI epidemic analysis is based on the Susceptible Latent Infected and Removed 

(SLIR) approach (Durand and Mahul 2000; Schoenbaum and Disney 2003; Bates, 

Thurmond and Carpenter 2003; Elbakidze 2008, Ward 2007). At each time period, 

individual flocks are assumed to be in one of the four states of the disease progression. 

Those states are Susceptible )(S , Latent Infectious )(L , Symptomatic Infectious )(I and 
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Removed )(R . A flock that becomes infected flows through the four states as illustrated 

by the figure 2.1 below.  

 
 

 
      
 
Figure 2.1 Susceptible latent infected removed model 
 
 
 

Given that the spread of the disease is being modeled in k flocks of different 

species at each time period t ; let )(tSk be the number of susceptible flocks, )(tLk be the 

number of latent infectious flocks, )(tI k be the number of infected infectious flocks and 

)(tRk be the number of flocks removed from the population. At each period t  of an 

outbreak, the sum of the susceptible flocks, latent flocks, infected flocks and removed 

flocks gives the total flocks in the outbreak sub-region as in the following identity. 

(4) kkkkk NtRtItLtS =+++ )()()()( , .1 mk K=∀                                                

where, kN  is the total population of flocks of type k . Alternatively, identity (4) can be 

rewritten in terms of the proportion of flocks in each disease state by dividing all the 

identity by kN . The identity becomes. 

(5) 1)()()()( =+++ trtitlts kkkk  , .1 mk K=∀ .                     

This form of the identity will be useful in terms of the optimization model and it 

is easier to interpret because all the variables are scaled down to a number in the interval 

Susceptible Latent infectious Symptomatic infectious Removed 
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(0, 1). kkkkkkkkk NIiNLlNSs /,/,/ === and kkk NRr /=  are respectively the 

proportion of susceptible, latent, infected and removed flocks of type k . 

Following Rushton and Mautner (1955) suppose that the variation of susceptible 

flocks over time depends only on their contacts with the infectious (symptomatic and 

latent) flocks. If kjb  is the probability of effective contacts sufficient to spread the 

disease from symptomatic infectious flocks of type k  to susceptible flocks of typej , 

and kjd  is the probability of effective contacts sufficient to spread the disease from latent 

asymptomatic flocks of type k to a susceptible flock of typej , changes in the proportion 

of susceptible flocks over time following the differential equation below. 

(6) )]()([)(
)(

1

tldtibts
dt

tds
jkjj

m

j
kjk

k +−= ∑
=

, mk K1=∀ .                       

Equation (6) indicates that at each period t  the proportion of susceptible flocks of type 

k decreases by the number of new infections generated by latent infectious and 

symptomatic infectious flocks of their own type and of other typesj that they might be 

in contact with7. In other words, the spread of the disease comes from contacts of 

susceptible flocks with latent flocks and infected flocks. 

Alternatively if vaccines are utilized during the outbreak period, the vaccinated 

flocks are immune and are therefore subtracted out each period t  from the susceptible 

flocks because they are not vulnerable to the disease anymore. This implies that 

                                                 
7 This is a very general SLIR model where inter-flocks contact infections of heterogeneous flocks are 
modeled. A simple case where only intra flocks’ contacts are considered is given in Ward (2007). 
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vaccinated flocks would not need to go through the latent and the infected states. This is 

illustrated in the figure below. 

 
 
                              
            
 Vaccination effect 
  
 
Figure 2.2 The vaccination effect on the model 
 
 
 
If the proportion of vaccinated flocks kk NV /  is )(tvk , then the identity (5) becomes the 

following.  

(7) 1)()()()()( =++++ tvtrtitlts kkkkk , mk K1=∀ .     

Equation (6) must be rewritten to account for the reduction in susceptible flocks due to 

vaccination. The differential equation that accounts for the reduction of the susceptible 

flocks due to the vaccination is given below. 

(8) )]()([)(
)(

1

tldtibts
dt

tds
jkjj

m

j
kjk

k +−= ∑
=

- )(tvk , mk K1=∀ .      

If it takes π periods for latent infectious flocks to become symptomatic (show the first 

clinical signs), changes in the latent flocks can be calculated as follows. 

(9) ∑∑
==

−+−−−+=
m

j
jkjjkjkjkjj

m

j
kjk

k tldtibtstldtibts
dt

tdl

11

)]()([)()]()([)(
)( πππ  

   mk K1=∀ . 

Susceptible 

Latent Infectious Infected Infectious 

Remove 
Immune 
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This equation (9) indicates that changes in the proportion of latent flocks equal the 

proportion of new infections generated by latent and symptomatic flocks at period t  

minus the proportion of infections generated π  periods ago.  

If it takes h  periods for a symptomatic flock to remain in the system after 

showing the first signs of the disease then, changes in the number of infected flocks over 

time are described by the following differential equation. 

(10) ∑∑
==

−−+−−−−−−+−−=
m

j
jkjjkjk

m

j
jkjjkjk

k htldhtibhtstldtibts
dt

tdi

11

)]()([)(])()([)(
)(

ππππππ      

mk K1=∀ .  
 
Equation (10) indicates that changes in the proportion of symptomatic flocks equal the 

proportion of flocks that were latent π  periods ago and now are symptomatic minus the 

proportion of flocks that became symptomatic )( h+π periods ago and are now leaving 

the symptomatic category. The second part of the RHS of equation (10) represents flocks 

that are removed. The removed flocks can be calculated using equation (11) below.  

(11) )]()([)(
)(

1

htldhtibhts
dt

tdr m

j
jkjjkjk −−+−−−−= ∑

=

πππ , mk K1=∀ .    

This category normally consists of flocks that are dead due to the disease or human 

disease control. 

Finally taking the derivative of identity (7) and solving for changes in the number 

of vaccinated flocks8 over time yields the following differential equation. 

(12) )(
)(

tv
dt

tdv
k

k = , mk K1=∀ . 

                                                 

8  )()(0 tv
dt

dr

dt

di

dt

dl

dt

ds

dt

dv

dt

dv

dt

dr

dt

di

dt

dl

dt

ds
k=+++−=⇒=++++  
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Equations (8) to (12) represent the system of differential equations defining the epidemic 

model as follows. 

 (13) 






















=

−−+−−−−=

−−+−−−−−−+−−=

−+−−−+=

−+−=
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=

==

==

=

)(
)(

)]()([)(

)]()([)()]()([)(
)(

)]()([)()]()([)(
)(

)()]()([)(
)(

1

11

11

1

tv
dt

tdv

htldhtibhts
dt

dr

htldhtibhtstldtibts
dt

tdi

tldtibtstldtibts
dt

tdl

tvtldtibts
dt

tds
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k
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j
kjkjk
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jkj
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j
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The above epidemic model can be solved numerically if the initial states of the model 

)1(ks , )1(kl , )1(ki , )1(kr , )1(kv  and the probability of disease transmission kjb  and kjd  are 

known. The latency period π and the symptomatic periodhmust also be defined to solve 

this system. The numerical solution will require the use of difference equations (the 

discrete time counterpart of the differential equations) instead of the continuous time 

equations defined in (13). Mathematically, for a small time interval, discrete models can 

be used as an approximate for continuous models (Judd 1998, ch.12).   

Model (13) can also be used to account for randomness of the probabilities of 

disease transmission kjqb  and kjqd . This approach is explored in section 4 of this 

dissertation. Other stochastic modeling taking time periods of transition to various states 

as random has been analyzed by Schoenbaum and Disney (2003) and Garner and Lack 

(1995). Once stochasticity is introduced, the distribution of the key output variables 
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involved in the model can be obtained using Monte Carlo simulation. The epidemic and 

the economic models thus defined can be linked to formulate the integrated model 

described below.  

2.5 Integrated Epidemic-Economic Model 

Here the integrated model combining the economic and the epidemic model is 

introduced to study the impact of simulated AI outbreak shocks on the poultry industry 

and households. The key assumption is that the outbreak produces a supply shock that 

reduces the market supply (Lloyd et al. 2006). Three main elements can affect the size of 

the supply shock during the outbreak. Namely, the rate of spread of the disease, the 

mitigation methods adopted, and the spatial characteristics of the affected sub-region. 

For instance supply would be reduced under: 

• a fast moving disease affecting many flocks, 

• a strategy where all infected flocks within the affected zone are depopulated and 

movements are restricted (currently the USDA recommended outbreak control 

strategy),  

• a densely occupied region where many flocks are in near proximity to the 

outbreak. 

   According to the LPAI (Low pathogenic Avian Influenza) Surveillance 

Standards in Texas (May, 2006), the currently recommended strategy for mitigating an 

AI outbreak would work as follows. Create within the disease sub-region three distinct 

zones with varying surveillance standards in an attempt to eradicate the disease in a 

maximum of one month. The first zone is called the affected zone and is roughly 5 miles 
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(8 km) in radius surrounding the infected flocks where all birds in that zone are quickly 

depopulated. The second zone is the surveillance zone and is about 10 miles (16 km) in 

radius including the affected zone. In this second zone, intensive surveillance plus 

movement restrictions and AI testing will be enforced through the entire mitigation 

period. The third zone is called the buffer zone and is about 31 miles (50 km) in radius 

including the two previous zones. The combination of this strategy with particular 

regional characteristics (i.e. density of flocks) and whether the disease spreads beyond 

this containment will determine the impact of the disease on the market supply during 

the outbreak period.  

Figure 2.3 below obtained from Pelzel, McCluskey and Scott (2006) portrays the 

zoning strategy actually implemented during the Gonzalez County (East of San Antonio) 

outbreak in 2004.  
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Figure 2.3 Map of zones initiated around the index farm in Gonzales, Texas  
 

To be complete, we must address the question of how to handle any demand 

shifts in the welfare changes estimation. Demand for poultry products can decrease 

because consumers become suspicious of all poultry products and would prefer buying 

substitute products such as beef, pork and lamb. This effect is aggravated by the 

zoonotic nature of the AI disease. For instance Leeming and Turner (2004) found that 

the BSE outbreak in the UK depressed beef prices and increased lamb prices. Beach et 

al. (2008) conducted a study of AI outbreak in Italy and found that the outbreak reduced 

domestic demand for fresh poultry by 22%. An outbreak in the U.S might cause smaller 

or larger demand shock. Using the Italian case as a benchmark, scenarios of 10%, 20% 

and 30% U.S demand shocks will be analyzed in the next empirical sections of this 

dissertation. Figure 2.4 below describes welfare changes induced by supply shock 

only )(∆ and both supply and demand shocks together )( A+∆ . These two cases will be 

extensively studied in the next two empirical sections. 
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Figure 2.4 Welfare changes after supply and demand shifts 
Finally, our integrated model can be written as the maximization of the following 

mathematical program for any given outbreak sub-region.  
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m

j
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m

j
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=
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−−+ ∑∑ )()(
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(18)     ∑
=

−−−−−−+ ∆+−−
m

j
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1
1 )( πππ                                                =0 tk,∀     

(19)     tvvv ktktkt ∆−−+1                                                                                         =0 tk,∀   

(20)     )]([ ktktkk
s
kt

d
kt crNxx +−− δ                                                                        0≤ tk,∀    

(21)     ktkkkt sc γθ−                                                                                                =0 tk,∀     

(22)     
kF/5−π                                                                                                      =0 k∀  

(23) kktktktkt
s
kt

d
kt Frilsxx ,,,,,, , ktv , ktc                                                                 0≥ tk,∀   

(24) kF                                                                                                              1≥ k∀       

 
The objective function of this maximization program is given in equation (14) 

and includes five terms. The first two terms represent the demand and supply terms as 

discussed in the economic model formulation. The negative supply shocks induced by 

removed flocks (ktr ) plus quarantined flocks ( )ktc are accounted for in the supply 

functions. The expression of the supply shock at any given period is )(* ktktkk crN +δ . In 

this expression kδ  is the yield of poultry product k  and kN  is the size of the flock. The 
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third term is the surveillance cost which depends on the testing frequencykF and the 

proportion of birds submitted to the test ktkk sNε . The parameterkε  is the proportion of 

birds tested during each period t  of the outbreak (The exact number of birds to be tested 

is defined in the “manual of standard operating procedures for Texas LPAI response”, 

May 2006). 1α is the testing unit cost taken to be identical over flock types. The fourth 

term is the carcass disposal costs calculated as the cost of disposing all dead flocks ktkrN  

with k2α being the cost of disposing the dead flock of typek . The fifth expression is the 

vaccination costs. 3α  is the unit cost of vaccinating one bird and ktkvN  is the number of 

flocks vaccinated. Changes in this welfare function relative to its base of no outbreak 

represent the estimate of the total cost of the AI outbreak. 

Constraints (15), (16), (17), (18) and (19) are the five main equations of the 

epidemic model except that discrete time model is being used instead of continuous time 

model.  

Constraint (20) contains the economic market equilibrium conditions modified to 

include the supply shocks resulting from depopulation and movement restrictions. t∆ is 

an interval of time period which is daily in this model. 

 The constraint (21) reduces access to market for flocks under quarantine.kθ  is a 

vector of disease control parameter. The construction of the movement restriction 

function will be discussed further below.  

The constraint (22) accounts for early detection as influenced by surveillance. 

That is, as the surveillance becomes intense during the outbreak period, the likelihood of 
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earlier detection increases and this will decrease the rate of the disease spread to other 

premises. The construction of the early detection function is discussed further below as 

well. 

Constraints (23) and (24) are respectively non negativity constraints and a lower 

bound restriction constraint on the surveillance intensity (in order to avoid zero 

denominator problems). 

This integrated model contains both epidemic and economic state and choice 

variables. The epidemic state variables arekts , ktl , kti  and ktr and the choice variables are 

ktc , ktF and kθ for all k and t . The latency periodπ is exogenous. Since the surveillance 

intensity and the latency period are linked, a sensitivity analysis on the values taken by 

π  is necessary to determine the optimal surveillance intensity. The economic choice 

variables are the supply and the demand quantities of all the market commodities for 

everyt .  

The other parameters are exogenous to the model and have to be calculated. 

Those parameters are the unit cost of surveillance1α , the unit costs of carcass 

disposal k2α , the unit cost of vaccination3α , and the proportions of susceptible flocks 

under surveillancekε . The epidemic parameters kjb and kjd which are the probabilities of 

disease transmission have to be calculated through survey data. Finally, the densities of 

flocks of each type in each region kγ are to be calculated as the number of flock of type 

k  in each sub-regions divided by the area of the region in squared miles. The initial 

flock populations kN have to be obtained from secondary sources. 
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2.5.1 Movement Restrictions and Quarantine Flocks Constraint Formulation 

The number of flocks affected by the movement restriction is a function of the density of 

flocks kγ and the number of susceptible flocks located in the disease area. Therefore, the 

expression can be written as ),( kktkt sc γ which is an increasing function of its arguments. 

Sub-regions that have more susceptible flocks per squared mile are likely to have more 

flocks restricted to market during the outbreak period. Postulating a multiplicative 

relationship, the explicit function can be expressed as ktkkktkkt ssc γθγ =),( , for allk ,and 

t .The parameter kθ is endogenous and is between 0 and 1. It accounts for the fact that 

flocks types of higher density in the outbreak sub-region will imply more restricted flock 

movements. The proportion of restricted flocks iskkγθ . The choice of kθ is critical 

because it gives the optimal proportion of flocks to be restricted in any region during the 

outbreak. If kθ is near 0, then the number of flocks of type k  to be restricted in the sub-

region is smaller than kk sγ , and if kθ  is near 1 then the proportion has to be aboutkk sγ . 

2.5.2 Early Detection Constraint Formulation 

The surveillance initiated through repetitive sample testing during the outbreak will 

increase the speed of detection of the disease during the latency period.  Therefore, faster 

detection will be translated into a reduction in the length of the latency period. The 

latency period is a function of the surveillance intensity kF . That is, )( kFf=π  

with 0/ ≤∂∂ kFπ . The specified function is kF/5=π  with 1≥kF . 

The number 5 in the numerator is the average number of days of latency based on 

the OIE estimations. For example, a surveillance intensity of 2=kF  implies one 
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surveillance testing of flock type k  in the circumference around the affected zone during 

the one month mitigation period. Therefore, the latency period π will be reduced from 5 

days to 2.5 days if the surveillance frequency doubles.  

2.6 Market Supply and Demand Specification and Estimation 

Here we define a general model of supply and demand for estimating the poultry (Egg, 

Chicken and Turkey) supply and demand parameters. The approach follows closely 

resembles the analysis of Bullock, Jeong and Garcia (2003). The demand functions in 

the three cases are specified as a function of own price, complement and substitute 

prices, and demand shifters as in the table 2.1 below. 

 
 
Table 2.1 The General Structural Model 
  
             Chicken )(ch demand and supply for retail 

Demand: ),,,,( tt
tk
t

eg
t

ch
t

ch
dt

ch
dt popepppxx =  

Supply: ),,( tt
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ch
st

ch
st rateswpxx =  

Market clearing ch
st

ch
dt xx =  

              Eggs )(eg demand and supply for retail 

Demand: ),,,,( tt
tk
t

ch
t

eg
t

eg
dt

eg
dt popepppxx =  

Supply: ),,( tt
eg
t

eg
st

eg
st rateswpxx =  

Market clearing eg
dt

eg
dt xx =  

              Turkey )(tk demand and supply for retail 

Demand: ),,,,( tt
ch
t

eg
t

tk
t

tk
dt

tk
dt popepppxx =  

Supply: ),,( tt
tk
t

tk
t

tk
st rateswpxx =  

Market clearing tk
dt

tk
dt xx =  

 
Note: The notation is consistent with the economic model defined in the section 2.3 
where tpop  and trates  are respectively the human population and the interest rates at 

timet . 
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Economic theory does not give any indication about which functional form one 

must specify in the econometric estimation. Several demand function specifications have 

been used in the economic literature9.  

Elasticity estimations studies, usually employ the almost ideal demand system 

(AIDS) specification and estimate the reduced form parameters of the demand system. 

The AIDS specification uses a flexible functional form specification and has the 

advantage that it imposes theoretical restrictions such as adding up, homogeneity and 

symmetry on the demand system. Examples of empirical studies using AIDS 

specifications include Deaton and Muellbauer (1980), Golan, Perloff and Shen (2001).  

Alternatively, some authors such as Alston and Chalfant (1993), Bryant and 

Davis (2001) use a Rotterdam model specification. The Rotterdam specification can 

impose all the above restrictions as well. Even though these specifications are appealing, 

they do not have explicit forms that are needed for this study. Other functional forms 

which are more explicit in quantity-price relation are the linear and the log-linear 

demand system. These specifications have been widely used in the demand estimation 

literature. Examples of studies using those models are Brester and Wohlgenant (1993) 

and Capps (1989) who used log linear demand specification. Also, Leeming and Turner 

(2004) used a log linear demand system to study the impact of the BSE (bovine 

spongiform encephalopathy) outbreak on prices in UK. This study will use log linear and 

linear specifications to estimate the demand and supply system coefficients because of 

their explicit price-quantity relationship. 

                                                 
9 A review of demand and supply analysis in agricultural economics is in Sadoulet and De Janvry (1995). 
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2.7 Pre-event versus Post-event Decision Making Model  

AI outbreaks can involve one of several virus strains.  Commercial vaccines are not 

always readily available for all the possible strains. Therefore, pre-outbreak preparation 

of vaccines production might be necessary for effective outbreak control. Following 

Elbakidze and McCarl (2006), the integrated model can be reformulated to analyze the 

critical outbreak probability level that will require an upfront investment in vaccines. 

The pre-event and post-event activities related to the occurrence or not of the outbreak 

can be analyzed as in the figure 2.5 below. 

 
 
 )1( eP−  

 

 

   

 eP  

 

Figure 2.5 Event probability and decision making stages  
 
 
 
  In the context of this integrated model, the pre-outbreak activity involves 

whether investment in vaccine production must be undertaken or not. Since the pre-

outbreak activity must be decided upon before an outbreak ever occurs it is irreversible 

and involves a sunk cost plus vaccines can be used for control only if they were made 

available before the outbreak. Following this logic, let Y be a binary decision variable 

Pre-outbreak Invest in:   
Prevention 

         Detection 
         Install for response  
 

Outbreak occurs  
 Invest in: 
           Response 
           Detection 

Normal: No outbreak 
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that takes 1=Y  if indeed investment in vaccines is made and 0=Y  if not. Let FC be 

the fixed cost incurred by the vaccine production and stocking. Thus, the modified 

version of the integrated model can be written as an expected welfare maximization 

problem. Below the objective function representing the total welfare function has been 

rewritten and the irreversibility constraint has been added to the existing set of 

constraints previously defined in the integrated model. 
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Subject to: 

(26) ktvYFC +− * 0≤  tk,,∀                                        

where, the three parts of this new expected objective function include the incurred fixed 

costs if vaccines are made )*( YFC− , the outbreak probability (eP ) times the welfare 

level in case of outbreak and ( eP−1 ) times the welfare level in case of no outbreak. 

Constraint (26) is the irreversibility constraint used to allow vaccination ktv  to be 

nonzero only when the Y  variable for stocking the vaccine is 1, otherwise the number of 

vaccinated flocks is zero. That is, for any non zero vaccination activity to occur, the 

fixed cost must be incurred. Maximizing this expected welfare objective function under 

constraint (25) added to all other existing constraints of the integrated model, the critical 
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probability eP  above which upfront investment in vaccines is necessary can be 

determined.  

2.8 Summary 

A dynamic integrated economic-epidemic model that evaluates the cost effectiveness of 

avian influenza mitigation options is postulated. The economic model uses a price 

endogenous formulation so that a possible change of prices can be captured dynamically. 

The epidemic model is a susceptible, latent, infected and removal (SLIR) model. Disease 

mitigation strategies such as earlier detection, quarantine and movement restrictions and 

vaccination are introduced in the epidemic model formulation to control the disease 

spread. To link the economic and the epidemic model, supply shocks induced by 

quarantined and depopulated flocks are integrated into the economic model formulation. 

Finally, a decision making under uncertainty problem is formulated to determine the 

threshold outbreak probability above which ex-ante vaccine production could be 

undertaken.  

 
 

 
 
 
 
 
 
 
 
 
 



 

 

32 

3. EVALUATING THE COSTS OF AN AI OUTBREAK IN TEXAS:  A 

DETERMINISTIC ANALYSIS APPROACH 

This section uses the deterministic version of the integrated economic-epidemic model 

developed in the previous section to study the impact of a hypothetical outbreak. The 

impact is measured as the total welfare loss due to the outbreak as incurred by 

households and the national poultry industry. The total outbreak costs are estimated with 

and without vaccination as a control strategy and the outcomes of these two strategies 

are compared. The total welfare losses include the effects on producers, and consumers 

plus the cost of mitigation. Welfare losses to producers and to consumers are measured 

respectively as the changes in producers' and consumers' surpluses induced by the 

outbreak. The cost of mitigation corresponds to the amount spent on the control of the 

outbreak. This includes the surveillance cost, the carcass disposal cost and the 

vaccination cost. The analysis uses the procedures developed by Lloyd et al. (2006) to 

provide estimated price responses to the outbreak. 

Since vaccines would be used to control the outbreak ex-post only if they have 

been produced ex-ante, this section uses the integrated model to determine the critical 

outbreak probability level above which an ex-ante investment in vaccines would be 

economically optimal. This critical outbreak probability level above which ex-ante 

investment is optimal has been calculated following a framework developed in 

Elbakidze and McCarl (2006). 

The remainder of this section is organized as follows. . Section 1 presents a brief 

overview of Texas poultry farm case study used in this study. The economic and the 
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epidemic data used are presented in section 2.  The econometric results of the demand 

and supply functions estimated for use in the study are given in section 3. The estimated 

outbreak costs are presented in Section 4 followed by the results on ex-ante vaccine 

investment in section 5. Section 6 concludes the section.  

3.1 Brief Overview of Texas Poultry Operations  

In the 2007 USDA poultry inventory10, Texas is divided into four main poultry sub-

regions based on the number of birds produced. In order of poultry population, the four 

sub-regions are District 8-N ( 7,087,000 birds), District 5-N (5,300,000 birds), district 5-

S (867,000 birds) and rest of the state which is composed of less dense districts 

including the District 1-N High Plains, District 1-S High Plains, District 2-N Low Plains, 

District 2-S Low Plains, District 3 Cross Timbers, District 4 Backlands, District 6 Trans-

Pecos, District 7 Edwards Plateau, District 10-N South Texas, District 10-S Lower 

Valley, District 8-S Coastal Bend, District 9 Upper Coast. These last 12 less dense 

Districts have a total of 5,291,000 birds. The total number of birds in Texas totals to 

18,545,000. This study will focus only on the first three of the four sub-regions (District 

8-N, District 5-N and District 5-S), the last sub-region includes Districts that are less 

dense and far away from each other making it difficult to analyze in the context of the 

epidemic disease spread model used in this study. 

Based on the US Agriculture Census of 2002, poultry farms in each district can 

be categorized into five types of farms as follows. 

 

                                                 
10http://www.nass.usda.gov/Statistics_by_State/Texas/Publications/County_Estimates/CE_maps/CE_poul.
htm 
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• large size layers operations of more than 100,000 birds (Layersl), 

• small size layers operations between 400 birds to 100,000 birds (Layerss),  

• broiler operations (Broiler),  

• turkey operations (Turkey) and  

• Backyard operations of layers less than 400 birds (Backyard). 

The total number of flocks in each of these three relevant sub-regions is given in the 

table1 below. Here a flock is defined as the number of premises of same farm type as 

given above. This is shown in the table 3.1 below.  

 
 
Table 3.1 Number of Farms per Sub-region 

 Layersl Layerss Broiler Turkey Backyard 
1. District 8-N 10 54 395 235 1526 
2. District 5-N 4 95 663 127 998 
3. District 5-S 2 16 260 155 849 
4. Other Districts  8 22 1162 1072 6331 
Total Texas 23 187 2480 1589 9705 

Source: Calculated from US Agricultural Census 2002 Data  
 
 
The density of flocks in each sub-region calculated as the ratio of the number of farms to 

the area in squared miles of the sub-region is given in table 3.2 below.  

 

Table 3.2 Density of Poultry Farms in Farms per Square Mile 
 Layersl Layerss Broiler Turkey Backyard 

1. District 8-N 0.0006 0.0031 0.0224 0.0133 0.3587 
2. District 5-N 0.0002 0.0055 0.0383 0.0073 0.0577 
3. District 5-S  0.0001 0.0010 0.0166 0.0099 0.0543 
4. Other Districts 0.0001 0.0001 0.0055 0.0051 0.0299 
Total Texas 0.0001 0.0006 0.0092 0.0059 0.0361 
Source: Calculated from US Agricultural Census 2002  
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The tables show that backyard farms are the most prevalent types of flocks in each of the 

three sub-regions. This situation is of specific concern because backyard farms do not 

usually apply strict biosecurity measures. As a result, they are the most susceptible to the 

disease. Broiler farms have the second highest density. 

3.2 Data for the Study 

Two categories of data sets are used in the study. The first is the epidemic data which are 

contact rates between flocks. These data were calculated by surveying poultry producers. 

The second category is the production, consumption and price data used in the 

econometric estimation. Most of these data are obtained from the USDA-ERS database. 

3.2.1 Epidemiologic Data 

The epidemic data are the direct and the indirect daily contact rates. To estimate these 

contacts, a survey was conducted on Broiler, layers and turkey farms in collaboration 

with poultry science and veterinary school professors. The objective of the survey was 

to understand how the industry functions and to obtain necessary information to 

calculate the direct and the indirect contact rates. The survey instrument is given in the 

appendix. Direct contacts are calculated using the following information. 

• Layers farms: Egg production begins when layers farms receive chicks from 

hatcheries (every 6 weeks).  Then they feed them until they become adults and 

enter the egg production process. The chicks are the only live birds that enter the 

layer farms. These farms have also direct contact with other farms when 

receiving other types of eggs that are not produced in their premises and vice 
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versa (for instance a surveyed farm was found to receive brown eggs once every 

4 weeks from another farm located in Dallas area).  

• Broiler farms: Chicken process begins when farms receive chicks from 

hatcheries (every 4 weeks). These chicks are fed until their seventh week when 

they are sent to the factory for processing into meat.  

• Turkey farms: their production process is more complex. The only direct contact 

occurs when birds are moved to another place. This happens five times a year.   

Following Ward (2007) the average direct contact rate for each flock type can be 

calculated as ∑
i contactsofdays

contactsrealofnumber

)(
 for each type of contacti  using the above 

information. 

            Direct average contact for layers farms: 1/42 + 1/28 =0.06 contact per day 

            Direct average contact for broiler: 1/28= 0.04 contact per day 

            Direct average contact for turkeys: 5/365=0.01 contact per day 

Indirect contacts are calculated using the following information. 
 

• Layer farms: there are multiple indirect contacts with other layer farms and these 

include feed trucks' movements, veterinarians and nutritionists' movements and 

others. Feed trucks come about 6 to 9 times a week to bring feed and vitamins 

into the farms. Other truck movements also occur such as propane tanks fill up 

(2/month), utility services (1/month), Electricity and plumbing (1/month), broken 

egg pick up (every 6 week), disable animal pick up (every 6 week), local volume 
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retailer (2/week), food distribution (1/month), eggs transport (9/week), and 

veterinarian visits (4-6 times a year).    

• Broiler farms: indirect contacts for broiler farms are similar to those of layer 

farms. Feed trucks come about 25 times per 7 weeks, consulting veterinarians 

visit 5 times a year, electricity and plumbing workers come once a year, utility 

services come once a month and the propane tanks come once every seven week.  

• Turkey farms: indirect contacts include truck movements, veterinarians and 

nutritionists' movements similar to the case of layers and Broiler. Feed trucks 

come once a week, the veterinarian come 3 times every 3 months, the nutritionist 

comes once a year, the propane trucks come 4 times a week and the loading 

crews come 4 times a week. 

From the information above the indirect contacts are calculated as follows. 

          Indirect average contacts for layers' farms: 

          7.5/7+2/30+1/30+1/30+1/42+1/42+2/7+1/30+9/7+5/365=2.87 contacts per day 

          Indirect average contacts for broiler farms: 

           25/49+5/365+1/365+1/30+1/49=0.57 contacts per day 

          Indirect average contacts for turkeys' farms: 

         1/7+4/7+1/90+1/365+4/7=1.29 contacts per day 

Base on these calculations, the following matrix (table 3.3 below) is constructed to 

represent the number of average contacts as the sum of the direct and the indirect 

contacts on the diagonals and only the indirect contacts elsewhere. 
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Table 3.3 Infected Daily Contact Rates  
 Layesl Layerss Broiler  Turkey Backyard 

Layersl (More than 100,000) 2.93 2.87 2.87 2.87 2.87 
Layerss (400 to 100,000) 2.87 2.93 2.87 2.87 2.87 
Broiler 0.57 0.57 0.61 0.57 0.57 
Turkey 1.29 1.29 1.19 1.30 1.29 
Backyards (less than 400) 2.87 2.87 2.87 2.87 2.93 

 
 
 

Similarly, taking the latency contacts as equivalent to the direct contacts on the 

diagonals and the indirect contacts off-diagonals, the matrix of latency daily contacts is 

given in the table 3.4 below. 

 
 
Table 3.4 Latent Daily Contact Rates 

 Layesl Layerss Broiler Turkey Backyard 
Layersl (More than 100,000) 0.06 2.87 2.87 2.87 2.87 
Layerss (400 to 100,000) 2.87 0.06 2.87 2.87 2.87 
Broiler 0.57 0.57 0.57 0.57 0.57 
Turkey 1.29 1.29 1.19 0.01 1.29 
Backyards (less than 400) 2.87 2.87 2.87 2.87 0.06 

 
 
 
The above daily contacts are used to calculate the probability of disease transmission 

also called the probability of effective contacts. Again, following Ward (2007), the 

probability of disease transmission equals the number of daily contacts divided by the 

population of flocks involved. 

The infectious probability of disease transmission is calculated as
1−N

contactsdaily
, 

where N is the total number of flocks involved in the contact. After calculation, these 
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probabilities of disease transmission are compiled in the table 3.5 and table 3.6 below for 

the three epidemic sub-regions. 

 
 
Table 3.5 Probability of Disease Transmission from Symptomatic Flocks 

Effective contacts rates (District 8-N) 
  Layersl Layerss Broiler Turkey Backyard 

Layersl 0.32555 0.04629 0.00712 0.01181 0.00187 
Layerss 0.04629 0.05528 0.00642 0.01000 0.00181 
Broiler 0.00141 0.00127 0.00154 0.00090 0.00029 
Turkey 0.00530 0.00449 0.00189 0.00555 0.00073 
Backyard 0.00187 0.00187 0.00149 0.00163 0.00192 

Effective contacts rates (District 5-N) 
Layersl 0.97666 0.02958 0.00431 0.02224 0.00287 
Layerss 0.02958 0.03117 0.00379 0.01304 0.00263 
Broiler 0.00085 0.00075 0.00092 0.00072 0.00034 
Turkey 0.01000 0.00586 0.00151 0.01031 0.00114 
Backyard 0.00287 0.00263 0.00173 0.00255 0.00293 

Effective contacts rates (District 5-S ) 
Layersl 0.97666 0.15944 0.01095 0.01828 0.00337 
Layerss 0.15944 0.19533 0.01047 0.01698 0.00332 
Broiler 0.00217 0.00208 0.00235 0.00138 0.00051 
Turkey 0.00821 0.00763 0.00288 0.00844 0.00128 
Backyard 0.00337 0.00332 0.00259 0.00286 0.00345 
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Table 3.6 Probability of Effective Contact from Latent Flocks 
Effective indirect contacts(District 8-N) 

  Layersl Layerss Broiler Turkey Backyard 
Layersl 0.00666 0.04629 0.00712 0.01181 0.00187 
Layerss 0.04629 0.00113 0.00642 0.01000 0.00181 
Broiler 0.00141 0.00127 0.00144 0.00090 0.00029 
Turkey 0.00530 0.00449 0.00189 4.2E-05 0.00073 
Backyard 0.00187 0.00181 0.00149 0.00163 3.9E-05 

Effective indirect contacts(District 5-N) 
Layersl 0.02000 0.02958 0.00431 0.02224 0.00287 
Layerss 0.02958 0.00063 0.00379 0.01304 0.00263 
Broiler 0.00085 0.00075 0.00086 0.00072 0.00034 
Turkey 0.01000 0.00586 0.00151 7.9E-05 0.00114 
Backyard 0.00287 0.00263 0.00173 0.00255 6.0E-05 

Effective indirect contacts(District 5-S ) 
Layersl 0.02000 0.15944 0.01095 0.01828 0.00337 
Layerss 0.15944 0.00400 0.01047 0.01698 0.00332 
Broiler 0.00217 0.00208 0.00220 0.00138 0.00051 
Turkey 0.00821 0.00763 0.00288 6.4E-05 0.00128 
Backyard 0.00337 0.00332 0.00259 0.00286 7.0E-05 

 
 
 
These probabilities of disease transmission calculated here are similar to those calculated 

in the literature (e.g. in Carpenter et al., 2007 similar probabilities are given for cattle in 

California). 
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3.2.2 Economic Data 

National monthly data from USDA-ERS covering the period of 1995 to 2003 or a total 

of 108 observations per variable were first collected. To match the market equilibrium 

with daily disease spread, daily frequency of market equilibrium data were estimated 

using cubic spline (Li and Racine, 2007) interpolation. SAS software has a program that 

is used to disaggregate the production (adjusted for imports and exports) and the 

consumption data from monthly frequency to daily frequency. The monthly average 

prices are also adjusted into daily averages. The supply and the demand system for three 

poultry products (Chicken, Eggs and Turkey) were estimated using these daily frequency 

data. Other independent variables used such as population and interest rates are taken 

respectively from the US Census Bureau and the Federal Reserve. The income variable 

is the total expenditure on poultry products. The estimated demands are at the retail 

level. The complete summary statistics describing the monthly and the daily frequency 

data is given in the table 3.7 below. 
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Table 3.7 Summary Statistics of the Economic Data  
Variable  Daily Data Monthly Data 

Egg Demand and Supply variables Mean Std. Dev. Mean Std. Dev. 
cegg           Consumption (Million dozens of eggs) 15.675 1.066 477.085 35.208 
prodegg      Production (Million of pounds) 15.612 0.992 475.168 33.039 
ppeg           Price received by producers (Dollars) 0.663 0.093 0.663 0.090 
peg             Retail prices (Dollars) 1.022 0.129 1.022 0.128 
feedpegg    Feed price for eggs production (Dollars) 0.284 0.052 0.284 0.053 

Chicken Demand and Supply variables     
cch             Consumption (Million of pounds) 66.493 7.497 2023.736 228.591 
prodch       Production (Million of pounds) 67.270 7.583 2047.394 230.201 
ppch          Price received by producers (Dollars) 0.589 0.040 0.589 0.040 
pch            Retail prices (Dollars) 1.545 0.060 1.545 0.060 
feedpch     Feed price for chicken production(Dollars) 0.164 0.024 0.164 0.024 

Turkey Demand and supply variables     
ctkey         Consumption (Million of pounds) 13.447 3.836 409.288 107.109 
prodtkey    Production (Million of pounds) 13.539 1.104 412.072 32.609 
pptkey       Price received by producers (Dollars)    0.644 0.054 0.643 0.053 
ptkey         Retail prices (Dollars) 1.041 0.052 1.041 0.050 
feedptkey  Feed price for turkey (Dollars) 0.054 0.011 0.054 0.011 
tkeydum    Thanksgiving month dummy 0.082 0.274 0.083 0.277 

Other independent variables     
expd       Expenditure on the poultry (Million of Dollars) 133.086 17.214 4050.753 530.913 
rates         Interest Rates (percentage)                0.074 0.017 0.074 0.018 
pop          Population ( Million of people) 276.086 9.918 276.086 9.918 
pbeef       Beef retail prices (Dollars) 2.769 0.278 2.769 0.279 
ppork       Pork Retail prices (Dollars) 2.475 0.199 2.475 0.199 
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3.3 Demand and Supply System Estimation Results 

Given that daily consumption, production quantities are approximated from monthly 

data to daily data; the estimation is subject to measurement error problems. According to 

Cameron and Trivedi (2006 pp.899-921), the measurement error on the dependent 

variables (consumption and production in this case) do not affect the consistency of the 

estimated coefficients although they may be less efficient (big variance of the estimated 

coefficients). In contrast, the measurement error on the independent variable (prices in 

this case) leads to correlation between that independent variable and the error term of the 

regression. This causes endogeneity in the model and produces biased and inconsistent 

estimates of the coefficients. To correct these problems instrumental variables (IV) such 

as pork prices and beef prices are used as suggested in Cameron and Trivedi (2006) and 

Wooldridge (2002). 

 Demand and supply systems of these three poultry products (Chicken, Eggs and 

Turkey) are estimated simultaneously using three stage least square (3SLS) to improve 

the efficiency of the estimated coefficients. Symmetry is imposed on the cross price 

coefficients during the estimation. The results from the econometric estimation are 

presented in the table 3.8 below. These results are presented for both linear and log-

linear demand and supply system specifications. 
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Table 3.8 Estimation Results 
Models Linear Log-Linear 

Egg Demand (1) Coef. Z-stat Coef. Z-stat 
pegg  -0.56781 -6.14 -0.07392 -12.22 
pch  -9.75866 -53.99 -0.14397 -43.89 
ptkey  -0.68738 -2.49 -0.09557 -5.66 
expd  0.095322 124.01 0.51176 92.04 
constant 19.35192 147.58 0.318428 11.7 

Statistics−2χ              36279.88   12930.01 
Egg Supply (2)     

pegg  16.83625 90.98 0.269137 33.56 
feedpeg -6.30533 -9.61 -0.26193 -53.19 
constant    2.409064 378.92 

Statistics−2χ    191657.40   3020.63 
Chicken Demand(3)     

pch  -41.9218 -58.74 -1.06529 -58.66 
pegg  -9.75866 -53.99 -0.14397 -43.89 
ptkey 18.7085 17.93 0.309222 18.2 
expd  0.519326 198.05 1.079478 161.35 
constant  52.67307 99.25 -0.62722 -22.4 

Statistics−2χ   44405.69  36492.72 
Chicken Supply (4)     

prodch  57.50628 209.99 2.002151 58.29 
feedpch  -83.7949 -33.95 -0.25065 -29 
rates -105.794 -30.42   
constant    2.877051 155.64 

Statistics−2χ   632938.11  5598.27 
Turkey Demand (5)     

ptkey -46.5392 -26.18 -2.54547 -21.5 
pegg  -0.68738 -2.49 -0.09557 -5.66 
pch  18.7085 17.93 0.309222 18.2 
expd  0.06917 16.67 0.899133 26.86 
constant  24.47036 37.54 -1.85804 -11.33 

Statistics−2χ   4052.25  1198.16 
Turkey Supply(6)     

ptkey  13.15901 201.98 0.673761 17.53 
feedptkey   -0.05157 -7.76 
tkeydum  2.277807 39.52 0.13695 27.1 
rates -4.96886 -5.62   
constant   2.413095 122.4 
 Statistics−2χ    541781.22  812.67 
Note: Variables are defined in table 3.7. 
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The signs of the estimated coefficients are consistent with economic theory 

predictions. In the demand equations, quantities are negatively related to prices and 

positively related to expenditures. In the supply equations, quantities are positively 

related to prices and negatively related to input prices. 

In the Egg demand equation, chicken price and turkey price have negative 

coefficients that are statistically significant meaning that the two goods behave as 

substitutes for eggs. In the Chicken demand equation, turkey price has a positive and 

significant coefficient showing that chicken and turkey are complementary goods. 

Finally, in the Turkey equation the egg price coefficient is negative and significant 

meaning that the two goods are substitutes.  

Holding exogenous variables in each demand equation at their mean, the inverse 

demand curves can be expressed as depending only on own quantities: 

The linear model specification becomes: 

(27) 
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Similarly, fixing the exogenous variables of the supply equation at their mean 

yields the following linear inverse supply equations depending on own quantities: 

(28) 
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Based on the chi-squared statistics presented in the table 3.8 above, the linear 

specification is preferred to the log-linear model. For that reason only the linear 

specification will be used in the remainder of this work.  

Investigation shows the estimated elasticities in this linear specification are 

comparable to the existing estimated elasticities in the literature. In particular eggs, 

chicken and turkey own price and expenditure elasticities calculated from our 

specification are similar to the elasticities found in the literature. Huang and Lin (2000) 

used AIDS specification and found that egg own price elasticity is -0.0569 and the 

expenditure elasticity is about 0.8039 and our linear specification found the own price 

elasticity to be -0.0364 and the expenditure elasticity to be 0.806. Alston and Chalfant 

(1993) used a Rotterdam model and found that the own price elasticity for chicken is -

0.94 and the expenditure elasticity is 1.06 and our model found the own price elasticity 

to be -0.97 and the expenditure elasticity to be 1.03. Hahn (2001) estimated the own 

price elasticity for turkey as -0.553 and our specification found the own price elasticity 

for turkey to be -3.58. Our estimated elasticity value for turkey is different from the 

literature because Hahn's model did not account for the seasonal consumption of turkey 

during the Thanksgiving period. Not accounting for thanksgiving in our model yields a 

result similar to Hahn (2001).  

These demand and supply functions are used to calculate the total welfare 

changes induced by the AI outbreak. 
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3.4 Empirical Results of AI Cost Outbreak  

Several sets of empirical results are now presented. First, the base results of the market 

equilibrium prior to the outbreak are given and are compared to the original data for 

consistency. Second, the epidemic model simulation results are compared to the existing 

literature. Finally, results of the integrated model are presented. 

3.4.1 Base Welfare Level Prior to the Outbreak 

Here the national market equilibrium and the calculated welfare values prior to the 

outbreak are presented using the linear demand and supply functions estimated above. 

The results are obtained by maximizing the sum of the welfare in the three poultry 

product markets over 30 days under market equilibrium constraints. The summary of the 

GAMS software maximization output is given in the table 3.9 below. 

 
 
Table 3.9 Market Equilibrium and Welfare Level before the AI Outbreak 
Market Equilibrium (daily)  Equilibrium quantities  Equilibrium Price  
Eggs  15,659,000 (dozens) 1.031 (dollars)  
Chicken  67,195,000 (pounds) 1.518 (dollars)  
Turkey 13,567,000 (pounds) 1.045 (dollars)  
Welfare (30 days) Producer Surplus Consumer Surplus (dollars) 
Surpluses  1,578,220,000 (dollars)  8,160,799,000 (dollars)  

 
 
 
These results are consistent with the market data used in the econometric estimation in 

the previous section. Equilibrium prices and quantities are in the range of the market 

data used in the estimation. The total welfare level prior to the outbreak is estimated as 

$9,738,019,000 (This is a sum of welfare in a 30 day period).  The producers' surplus 

prior to the outbreak is estimated as $1,578,220,000 and the consumers' surplus is 
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$8,160,799,00011. Change in these surpluses induced by the simulated outbreak will be 

used when calculating the cost of the outbreak.  

3.4.2 Epidemic Model Simulation  

Here the epidemic model presented in section 2 is used to simulate an outbreak. The 

epidemic simulation is based on the following assumptions: 

• The hypothetical outbreak starts in a backyard farm similar to the 2004 outbreak 

in Gonzales Texas and spreads through daily contacts. 

• The outbreak is simulated in one Texas poultry sub-region of District 8-N and is 

assumed to spread only within that region. 

 
 

Epidemic simulated curves
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Figure 3.1 District 8-N: simulated epidemic model of large layers 

                                                 
11 Results of the log-linear specification are not consistent with the data and are not presented here for that 
reason.  
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These simulated epidemic curves in Figure 3-1 are consistent with several studies 

reported in the literature (e.g. Durand and Mahul, 2000; Ward, 2007). As the disease 

spreads, the proportion of latent infectious and infected symptomatic flocks rises to a 

maximum on the 8th day and starts dropping thereafter. At the same moment, the 

proportion of dead or removed flocks increase and the proportion of susceptible flocks 

decrease until all the infected or removed flocks are dead. Similar epidemic curves are 

obtained using the three other sub-regions contact rates data but are not presented here. 

3.4.3. Empirical Results of the Integrated Epidemic-economic Model  

In the following, the outbreak cost is estimated based on the 30 days simulated outbreak. 

This outbreak is simulated using Texas poultry industry data but the impact is measured 

at the national scale.  The results obtained here are based on the following assumptions: 

• Only some proportion of the susceptible flocks is under surveillance and the 

surveillance cost depends only on the number of birds tested for the disease. 

Consistently with Texas AI response document (2006), 20 birds are tested in 

every farm. Dividing the 20 bird sample by the total birds in a flock gives the 

proportion under surveillance. The unit cost of testing is estimated as $15 per 

bird and is obtained from farmers during the survey. 

• Yields of eggs, chicken and turkey meat used in the model are drawn from 

McCarl Forestry and Agriculture Sector Optimization Model (FASOM) data. 

• The cost of carcass disposal is taken as the digging and the burial costs of the 

removed or depopulated flocks. These costs are obtained from farmers during the 

survey and are estimated respectively as $8,000 for large layer farms, $6,000 for 
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small layers and broiler farms, $4,000 for turkey farms, and $1000 for backyard 

farms. 

• The outbreak starts in one backyard flock and spreads through contacts to other 

farms. In the simulation, the disease starts with one latent flock and spreads from 

there to the other flocks. 

• Vaccination unit costs are estimated using information obtained from the 

literature, the survey, and AI vaccine manufacturers. Based on the Food and 

Agriculture Organization (FAO) report on the AI disease control in Vietnam 

(Smith, 2007), vaccine production cost is about 1.2 cents/dose. The Center for 

Infectious Disease Research and Policy (CIDRAP, 2005) reported on their 

website that an Iowa based vaccine manufacturer was willing to produce 

vaccines at 1.2 cents/dose for the USDA. Finally, during the survey farmers 

reported that including labor costs vaccines can be acquired and administrated at 

5 cents/dose. The estimated 5 cents per doze are used in the simulation. Only one 

doze is needed per bird. The solutions are presented in the table 3.10 below.
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Table 3.10 Costs of the Outbreak without Any Demand Shift 
Without Vaccination With Vaccination 

 District 8-N District 5-N District 5-S  District 8-N District 5-N District 5-S  
Initial Welfare 9739.019 9739.019 9739.019 9739.019 9739.019 9739.019 
New Welfare 9689.021 9696.541 9710.129 9691.853 9698.480 9711.730 
Total Cost 49.998 42.478 28.890 47.166 40.539 27.289 
Decomposition of the total cost     
Producer's cost 0.008 1.77E-4 3.14E-4 1.58E-4 1.74E-4 3.11E-4 
Consumer's cost 0.046 8.00E-5 4.15E-4 0.000 7.08E-5 4.06E-4 
Mitigation cost 49.944  42.478 28.889 47.166 40.538 27.288 

 
Note: Results are in million U.S dollars. 
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The following important findings are obtained when the consumption level stay 

the same during the outbreak (no demand shift). 

• The welfare loss in terms of producers' and consumers' surpluses is negligible 

compared to the mitigation cost. Most of the outbreak cost is in the mitigation 

costs. In District 8-N, the total outbreak cost is $49.998 million with only $0.008 

million and $0.046 million as losses in producers' and consumers' surpluses 

respectively. In the District 5-N, the total outbreak cost is $42.478 million with 

only $1.77E-4 million losses in producers' surplus and $8.00E-5 million losses in 

consumers' surplus. In the less dense sub-region (District 5-S), the total outbreak 

cost is $28.890 with only 3.14E-4 million and $4.15E-4 million in producers' and 

consumers' surpluses respectively. 

• When vaccination is used, the total outbreak cost drops to $47.166 million in 

District 8-N, $41.953 million in District 5-N and $28.246 in District 8-N. In other 

words, there is a saving of $2.832 million in District 8-N, $1.939 million in 

District 5-N and $1.601 million in District 8-N. These savings are higher if the 

outbreak occurs in the densest region. The savings are imputable to the reduction 

of the quantity of dead flocks during the outbreak if vaccination strategy is 

implemented. For instance without vaccination in District 8-N, the supply shock 

caused by depopulated and quarantined flocks will reduce total egg supply by 

0.18% but with vaccination, the shock will reduce the total egg supply by 

0.00074%. This implies that the vaccination strategy significantly reduces the 

impact of the outbreak. 
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• Prices stayed at their levels prior to the outbreak since the supply shocks were 

not big enough to significantly shift the supply curves. 

           Next, we estimated the costs of the AI outbreak if shifts in demand curves occur 

as a result of media coverage of the outbreak. Due to limited AI outbreak in the U.S, 

studies regarding the impact of AI outbreak on the U.S demand for poultry products are 

rare or nonexistent. A study that investigates the impact of AI outbreak on poultry 

product consumption in Italy found that the outbreak reduced domestic demand for fresh 

poultry by 22% in average (Beach et al, 2008). Further, the study showed that due to 

similarities and differences between Italian and the U.S economy, an outbreak in the U.S 

may have smaller or larger impact. The simulation scenarios in table 3.11 below uses 

10%, 20% and 30% to represent small, medium and large demand shift to analyze the 

welfare impact of the outbreak. 
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Table 3.11 Total Outbreak Costs under Demand Shifts Scenarios 
Without Vaccination With Vaccination 

 District 8-N District 5-N District 5-S  District 8-N District 5-N District 5-S  
Initial Welfare 9739.019 9739.019 9739.019 9739.019 9739.019 9739.019 
Small shock (10%)       
New Welfare 7766.003 7773.392 7786.981 7768.695 7775.339 7788.582 
Total Cost 1973.016 1965.627 1952.038 1970.324 1963.680 1950.437 
Producer's cost 328.487 328.481 328.481 328.481 328.481 328.481 
Consumer's cost 1594.707 1594.668 1594.668 1594.668 1594.668 1594.668 
Mitigation cost 49.822 42.478 28.889 47.175 40.531 27.288 
Medium shock (20%)       
New Welfare 6054.955 6062.340 6075.928 6057.643 6064.286 6077.529 
Total Cost 3684.064 3676.679 3663.091 3681.376 3674.733 3661.490 
Producer's cost 618.566 618.560 618.560 618.560 618.560 618.560 
Consumer's cost 3015.676 3015.642 3015.642 3015.642 3015.642 3015.642 
Mitigation cost 49.822 42.478 28.889 47.175 40.531 27.288 
Small shock (30%)       
New Welfare 4555.568 4562.949 4576.537 4558.252 4564.895 4578.138 
Total Cost 5183.451 5176.070 5162.482 5180.767 5174.124 5160.881 
Producer's cost 858.124 858.120 858.120 858.120 858.120 858.120 
Consumer's cost 4275.505 4275.473 4275.473 4275.472 4275.472 4275.473 
Mitigation cost 49.822 42.478 28.889 47.175 40.531 27.288 

 
Note: Results are in million U.S dollars 
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 The following results are found under the three demand shifts scenarios: 

• Mitigation costs values are identical to the case without demand shifts but the 

total costs explode here due to substantive losses in producers' and consumers' 

surpluses. In the densest sub-region (District 8-N), the total outbreak costs 

become $1,973.016 million under a small demand shift (10%) scenario with 

losses in producers' and consumers' surplus being respectively $328.487 million 

and $1,594.707 million. Under medium demand shift scenario, the total costs will 

be $3,684.064 million with losses in producers' and consumers' surplus being 

respectively $618.566 million and $3,015.676 million. Under large demand shift 

scenario, the total cost will be $5,183.451million with losses in producers' and 

consumers' surplus being $858.124 million and $4,275.505 million. These total 

costs will decrease if the outbreak occurs instead in the less dense sub-regions 

(District 5-N and District 5-S) but the cost are substantively higher comparatively 

to the case without demand shift. 

• Similarly to the case without demand shift, the vaccination strategy reduces the 

mitigation costs but generates similar losses in consumers' and producers' 

surpluses. As we can see in table 3.11 above, except that mitigation costs are 

reduced under vaccination strategy, other total costs components stay identical 

with and without vaccination. 

• Here price levels have changed due to demand shifts. Because of the zoonotic 

nature of this disease, significant media coverage will likely create a demand 
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shift that can lower prices. Table 12 below gives the price dynamic consistent 

with demand shift scenarios. 

 
 
Table 3.12 Price Changes in the Three Demand Shift Scenarios 
Prices Egg Chicken Turkey 
Pre-outbreak levels  1.031 1.518 1.045 
Small shift (10%)  0.938 1.388 0.941 
Percentage change - 9% -8.5% -9.9% 
Medium shift (20%) 0.846 1.259 0.837 
Percentage change -18% -17% -19.9% 
Large shift (30%) 0.753 1.129 0.774 
Percentage change -26.9% -25.6% -25.9% 

 
Note: Egg prices are in dollars per dozen, chicken and turkey prices are in dollars per 
pounds. 
 
 
 

Under small demand shift scenario egg prices will drop about 9%, chicken prices 

will drop about 8.5% and turkey prices will drop about 9.9%. Under medium demand 

shift scenario, egg, chicken and turkey prices will drop respectively about 18%, 17% and 

19.9%. Lastly under the large demand shift scenario, egg price will drop about 26.9%, 

chicken prices will drop about 25.6% and turkey prices will drop about 25.9%. Recall 

that without demand shifts, an outbreak in Texas will not have a significant impact on 

prices. The reason is that Texas production is a small proportion of the national 

production and cannot provoke a significant drop in supply. 

Next, empirical results of decision making under uncertainty for ex-ante 

investment are presented. 
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3.5 Empirical Results of Pre-event Vaccines Investment Decision Making  

This subsection answers the question of whether it is economically optimal to invest in 

vaccines prior to the outbreak. This question is addressed from the perspective of 

outbreak probability threshold level at which this investment should be made. The 

critical information needed to solve this problem is the fixed investment cost to be made 

prior to the outbreak.   

The Center for Infectious Disease Research and Policy (CIDRAP, 2005) reported 

on their website that an Iowa based vaccine manufacturer (Fort Dodge Animal Health ) 

signed a contract with USDA in 2005 to produce 40 million doses of AI vaccines for 

$800,000 and these vaccines can be stored frozen for 5 years. After this investment each 

additional dose would cost about 1.2 cents. The FAO (Smith, 2007) also reported that 

vaccines can be produced by a China based company at 1.2 cents per dose.  

Using these numbers for Texas poultry industry where the total population of 

birds is roughly 20 million, the fixed investment cost would be about the half of the 

investment made by the USDA or $400,000.  

After solving the decision making problem described in the last subsection of 

section 2, pre-event investment in vaccines will be economically optimal if the 

probability of AI outbreak in any of the sub-regions is bigger than 0.07. This result 

suggests that for any positive probability comprised in the interval of [0.07, 1], an ex-

ante investment in vaccines production and stocking could be made. When this analysis 

is conducted for each district separately, the results showed that ex-ante investment in 

vaccines will be economically optimal if the probability of outbreak is bigger than 0.39 



 

 

58 

in District 8-N, 0.61 in District 5-N and 0.68 in District 5-S. Intuitively, this results 

suggested that the higher the damage the lower the outbreak probability threshold will 

be. 

3.6 Summary 

Hypothetical AI outbreak impact on the US poultry industry and households have been 

studied under disease mitigation strategies with vaccination and without vaccination. Ex-

ante investment decision in vaccines was also analyzed. The outbreak costs vary 

depending on the density of the poultry sub-region and on whether demand shocks 

during the outbreak are negligible, small, medium or large. 

If the demand shock during the outbreak is negligible, the total outbreak costs 

depend only on the mitigation costs and prices will be at their base level. An outbreak in 

the District 8-N will cost about $49.998 million dollars and an outbreak in the District 5-

N and the District 5-S will cost respectively $42.478 million and $28.890 million. 

Should vaccination strategy be used, the total costs in the District 8-N will be reduced by 

$2.832 million, the total costs in the District 5-N will be reduced by $1.939 million and 

the total costs in the District 5-S will be reduced by $1.601 million. The advantage of the 

vaccination strategy is that it reduces the number of quarantined and culled flocks. 

If the demand shock is not negligible, three scenarios of demand shocks of 10% 

(small shock), 20% (medium shock) and 30% (large shock) have been studied. In these 

cases, the total costs increase dramatically due to significant losses in producers' and 

consumers' surpluses in the poultry market. For instance, if the demand shock is small 

(10%), the total costs of an outbreak in the District 8-N will be about $1,973.016 million 
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with $328.487 million losses in producers' surplus. The total costs in the District 5-N 

will be about $1,965.627 million with $328.481 million in producers' surplus. Lastly the 

total costs in District 5-S will be about $1,952.038 million with $328.481 million in 

producers' surplus. These costs increase when the demand shocks are medium or large. 

Consistent with the results without demand shocks, the vaccination strategy reduces the 

total cost by lessening the mitigation cost. The other costs components related to the loss 

in consumers' and producers' surpluses remain identical to the case without vaccination 

being used.  

Negative demand shocks during the outbreak reduce poultry products market 

prices. This study found that under a small shock scenario, egg prices will drop about 

9% of the pre-outbreak level. Chicken and turkey prices will drop about 8.5% and 9.9% 

respectively. Under a medium demand shock scenario, egg price will drop about 18% 

while chicken and egg prices will drop about 17% and 19.9% respectively. Under a large 

demand shock scenario, egg price will drop about 26.9% while chicken and turkey will 

drop about 25.6% and 25.9% respectively. 

Finally, the study found that the ex-ante investment decision in vaccines 

production is economically optimal if the probability of occurrence of the AI outbreak in 

Texas is 7%. Given that ex-ante vaccines investment cost ($0.4 million) is reasonably 

lower than the gain in vaccination strategy ex-post (the minimum gain being $1.939 

million), it will be economically recommended to invest ex-ante in vaccines should the 

outbreak threat be high enough. 
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4. EVALUATING THE COSTS OF AI OUTBREAK IN TEXAS: A 

STOCHASTIC ANALYSIS APPROACH 

This section examines the effects of considering risk and risk aversion in the integrated 

economic-epidemic model accounting for the stochastic spread nature of the disease. 

Indeed, the epidemic model contains risky parameters that are not known with certainty. 

Risky parameters in the epidemic model are the degree of damages as affected by the 

uncertain probability of effective contacts between infectious flocks and susceptible 

flocks.  

The objective of the work in this section is to examine the effects of including 

risk on the results of the integrated economic-epidemic model. To achieve this objective, 

distributions of the epidemic risky parameters are estimated and Monte Carlo simulation 

is used to obtain probabilistic distributions of the total cost of a hypothetical AI 

outbreak. This approach follows closely the methodology of risk analysis proposed by 

Pouliquen (1983) who suggested that the estimated results be associated with their 

likelihood of occurrence or with confidence intervals.  

The remainder of this section is organized as follows. Section 2 presents 

estimates on the parametric cumulative distribution functions (CDF) of the risky 

parameters. Section 3 uses these distributions with Monte Carlo simulation to estimate 

confidence intervals of the costs of a hypothetical AI outbreak in Texas. Section 4 

revisits the ex-ante vaccines production decision making problem but addresses it in a 

risk framework. Section 5 concludes the section. 
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4.1 Estimating the Cumulative Distribution Functions of the Risky Parameters 

Two sets of risky parameters are present in the epidemic model. The first set is the 

infectious symptomatic probability of effective contact, and the second set is the 

infectious latent probability of effective contact.  

 As shown in tables 3.5 and 3.6, probabilities of contact between the five types of 

flocks are used to construct 25 observations data in each sub-region. These 25 

observations are utilized to estimate parameters for 10 parametric distributions including 

Double Exponential, Exponential, Gamma, Logistic, Log-Log, Log-Logistic, 

Lognormal, Normal, Pareto and Uniform. Parameters of each of these distributions were 

estimated using Maximum Likelihood (ML) estimation methods. The ML estimated 

parametric distributions were compared with the empirical distributions 

( )xXPxF i ≤= ()( of the same data. The closest parametric distribution to the empirical 

distribution is selected using a version of the Anderson-Darling (1952) goodness-of-fit 

test. The various steps used in the estimation of these parametric distributions follow 

Richardson (2008). 

The version of Anderson-Darling test used here is designed to penalize the 

distribution at the tails in order to select the closest distribution to the empirical 

distribution not only at the mean but also at the tails. The formula for the test is given 

below. 

[ ] dxxfXXIxFxFXXIxFxFxFxFA xinninnnn )(ˆ)(*))(ˆ)(()(*))(ˆ)(())(ˆ)(( 222 θσσ∫
∞

∞−

−>−+−<−+−=

where  
)(ˆ1)((ˆ

12

xFxF nn

x −
=θ  is a weight function 
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)(ˆ xfn  is an estimated parametric density function and )(•I is an indicator function. 

The statistic A  of this test is compared to the perfect fit of 0=A . The best fit is the 

parametric distribution for which A  is the closest to 0. In the formula above, the 

expression )(*))(ˆ)(( 2 σ−<− XXIxFxF inn adds a penalty when the estimated 

parametric distribution deviates from the true distribution at the left tail. The expression 

)(*))(ˆ)(( 2 σ−>− XXIxFxF inn adds a penalty at the right tail. 

The results of the estimation presented in table 4.1 below are based on sample 

sizes larger than the 25 observations generated though bootstrapping. Since consistency 

of maximum likelihood estimators relies on asymptotic properties (Pawitan, 2001), 

bootstrap samples are obtained through 1000 draws with replacement from the original 

sample of 25 observations. Efron (1979) and Efron and Tibshirane (1993) recommended 

a minimum of 250 observations for this type of bootstrap. These bootstrap samples have 

the same means as the original data but their variances are smaller because of the larger 

sample size.  

The Anderson-Darling test statistics for eight of the ten parametric distributions 

enumerated above are presented in the table 4.1 below. Parameters for Gamma and 

logistic distributions are inconsistent with most of the data and therefore those results are 

not presented here. 
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Table 4.1 Anderson-Darling Goodness-of-fit Statistics   
Infected Effective Contacts Latent Effective Contacts 

 District8-N District5-N  District5-S Texas District8-N  District5-N  District5-S Texas 

Double  
Exponential 0.0074 0.0732 0.1013 

 
0.0013 0.0002 9.6E-05 0.0029 

 
2.1E-05 

Exponential 0.0057 0.0644 0.0996 0.0010 0.0001 2.5E-05 0.0019 1.3E-05 
Log-Log 0.0062 0.0674 0.1009 0.0011 0.0001 3.6E-05 0.0022 1.6E-05 
Log- 
Logistic 0.0106 0.0689 0.0812 

 
0.0014 0.0074 0.0161 0.0487 

 
0.00056 

Lognormal 0.0045 0.0638 0.0869 0.0009 0.0009 0.0010 0.0066 6.5E-05 
Normal 0.0068 0.0769 0.0982 0.0012 0.0001 4.1E-05 0.0023 1.6E-05 
Pareto 65364 393207 2.E+13 82462. 2.E+13 5.1E+11 3.E+14 3.3E+12 
Uniform 0.0245 0.2689 0.0945 0.0044 0.0002 4.1E-05 0.0042 2.9E-05 
Parameter1 -5.50821 -5.4190 1.1445 -7.2420 0.0065 0.0063 0.0178 0.00700 
Parameter 2 1.5671 1.6584 0.0022 1.7970 4.E-05 4.0E-05 0.0003 5.5E-05 

 
Note: parameter 1 and parameter2 are the estimated parameters for the best parametric distribution selected. The test statistics 
of best parametric distributions are in bold. 
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The results above indicate the lognormal distribution is the best fit for the 

probability of effective symptomatic flocks contacts in District 8-N and District 5-N 

while the log-logistic distribution provides the best fit for the District 5-S data. For the 

probability of latent effective contacts data, the exponential distribution provides the best 

fit in the three sub-regions. 

4.3- Monte Carlo Simulation Results of the Cost of AI Outbreak 

The integrated model was solved simulating stochastic probabilities of effective contacts 

under four alternative demand shock scenarios (0% demand shock, a small shock of 10% 

demand shift, a medium shock of 20% shift and a large shock of 30% demand shift). 

Random draws of 256 observations from each parametric distribution are used in the 

simulation of the model for each sub-region. Experimentation showed 200 iterations are 

found to be sufficient as increasing the number of draws beyond 200 does not change the 

distribution of the key output variables. These outputs are used to estimate 95% 

confidence intervals and to plot Kernel cumulative distribution functions (CDF) of the 

total costs under the two alternative mitigation strategies. Once these CDFs are obtained, 

stochastic dominance criteria are used to rank the costs under the two alternative 

mitigation strategies following Meyer (1977), McCarl (1988) and Hardaker et al. (2004). 

The strategy that dominates in the stochastic dominance sense is the cost effective 

strategy in our model. The table 4.2 below gives the average total outbreak cost and the 

95% confidence intervals for the District 8-N under the four demand shock scenarios 

discussed previously. Separate results are compiled for each sub-region. 
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Table 4.2 Total Costs in District 8-N: Means and 95% Confidence Intervals  
Without Vaccination With Vaccination 

 Mean 95% Confidence interval Mean 95% Confidence interval 
No Shock (0%)  Lower Upper  Lower Upper 
Producer's cost 0.066 [0.000,      0.165] 0.060 [0.000 0.163] 
Consumer's cost 0.497 [0.000,      1.336] 0.460 [0.000 1.336] 
Mitigation cost 44.569 [28.010,    49.982] 42.918 [27.526 47.217] 
Total Cost 45.089 [29.616,    49.981] 43.438 [29.122 47.218] 
Small shock (10%)       
Producer's cost 328.543 [328.481,     328.637] 328.537 [328.481 328.636] 
Consumer's cost 1595.117 [1594.668,  1595.870] 1595.084 [1594.668 1595.870] 
Mitigation cost 28.010 [28.010,      49.982] 42.915 [27.526 47.217] 
Total Cost 1968.184 [1952.612,  1973.131] 1966.537 [1952.117 1970.366] 
Medium shock (20%)       
Producer's cost 618.623 [618.560 618.716] 618.614 [618.560 618.707] 
Consumer's cost 3016.073 [3015.642 3016.772] 3016.012 [3015.642 3016.709] 
Mitigation cost 43.999 [27.476 49.986] 42.914 [27.526 47.217] 
Total Cost 3678.695 [3662.999 3684.189] 3677.540 [3663.016 3681.419] 
Large shock (30%)       
Producer's cost 858.168 [858.120,     858.242] 858.161 [858.120 858.235] 
Consumer's cost 4275.864 [4275.472,   4276.467] 4275.809 [4275.472 4276.411] 
Mitigation cost 43.999 [27.502       49.987] 42.912 [27.526 47.217] 
Total Cost 5178.030 [5162.261   5183.580] 5176.882 [5162.255 5180.808] 

 
Note: The estimated costs are in millions of US dollars 
 
 



 

 

66 

The results of the table 4.2 are interpreted below as follows: 

• With no demand shock and no vaccination, there is 50% likelihood that the total 

cost will be less than or equal to $45.1 million. There is 95% confidence that the 

total cost of the outbreak will be between $29.6 million and $50 million. Should 

the vaccination strategy be used there is 50% likelihood that the total cost be less 

or equal to $43.4 million and the 95% confidence interval is narrower ranging 

from $29.1 million and $47.2 million. 

• With a 10% demand shock and no vaccination strategy used, there is 50% 

likelihood that the total cost will be less than or equal to $1,968 million and 

there is 95% confidence that the total cost will be between $1,953 million and 

$1,973 million. That confidence interval will be narrower if vaccination is used 

and the average total cost lower. In this case, there is 50% likelihood that the 

total cost will be less or equal to $1,967 million and the confidence interval will 

be between $1,952 million and $1970 million.  

• With 20% demand shock and no vaccination strategy used, there is 50% 

likelihood that the total cost will be less or equal to $3,679 million and the 95% 

confidence interval will be between $3,663 million and $3,684 million. With 

vaccination strategy used, there is 50% likelihood that the total cost will be less 

or equal to $3,677 and the 95% confidence interval will be between $3,663 

million and $3,681 million.  

• Finally, with a 30% demand shock and no vaccination, there is 50% likelihood 

that the total cost will be less or equal to $5,178 million and the 95% confidence 
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interval will be between $5,162 million and $5,184 million. Under vaccination, 

there is 50% likelihood that the total cost will be less or equal to $5,177 million 

and the 95% confidence interval of the total cost will be between $5,162 million 

and $5,159 million. 

To represent visually the above findings in terms of stochastic dominance, 

figures 4.1 to 4.4 show the cumulative distribution functions of the total cost. 
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Figure 4.1 District 8-N: total cost distributions under 0% demand shock  
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Figure 4.2 District 8-N: total cost distributions under 10% demand shock  
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Figure 4.3 District 8-N: total cost distributions under 20% demand shock   
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Figure 4.4 District 8-N: total cost distributions under 30% demand shock   
 
 
 

Figures 4.1 to 4.4 show that the proposed vaccination strategy dominates the 

current strategy by first degree stochastic dominance. That is, there are higher 

frequencies of realization of lower cost under vaccination strategy than a no vaccination 

strategy. Next, similar analyses are presented for the sub-region of the District 5-N.
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Table 4.3 Total Costs in District 5-N: Means and 95% Confidence Intervals  
Without Vaccination With Vaccination 

 Mean 95% Confidence interval Mean 95% Confidence interval 
No Shock (0%)  Lower Upper  Lower Upper 
Producer's cost 0.027 [0.000, 1.000] 0.023 [0.000, 0.098] 
Consumer's cost 0.211 [0.000, 0.920] 0.183 [0.000, 0.922] 
Mitigation cost 40.562 [30.174, 42.547] 39.073 [29.662, 40.607] 
Total Cost 40.799 [31.204, 42.548] 39.279 [30.695, 40.609] 
Small shock (10%)       
Producer's cost 328.506 [328.481, 328.576] 328.502 [328.481, 328.575] 
Consumer's cost 1594.859 [1594.668, 1595.496] 1594.834 [1594.668, 1595.497] 
Mitigation cost 40.560 [30.173, 42.547] 39.071 [29.661, 40.607] 
Total Cost 1963.925 [1954.255, 1965.696] 1962.407 [1953.745, 1963.757] 
Medium shock (20%)       
Producer's cost 618.584 [618.560, 618.650] 618.580 [618.560, 618.650] 
Consumer's cost 3015.812 [3015.642, 3016.378] 3015.790 [3015.642, 3016.379] 
Mitigation cost 40.559 [30.173, 42.547] 39.140 [29.970, 40.879] 
Total Cost 3674.955 [3665.209, 3676.749] 3673.510 [3665.009, 3675.081] 
Large shock (30%)       
Producer's cost 858.139 [858.120, 858.199] 858.137 [858.120, 858.199] 
Consumer's cost 4275.626 [4275.472, 4276.122] 4275.606 [4275.472, 4276.124] 
Mitigation cost 40.557 [30.173, 42.547] 39.140 [29.970, 40.879] 
Total Cost 5174.323 [5164.503, 5176.140] 5172.883 [5164.303, 5174.472] 

 
Note: The estimated costs are in millions of US dollars. 
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If the outbreak occurs in the District 5-N, the outbreak cost results given in the 

table 4.3 above under the four demand shift scenarios are interpreted as follows: 

• With no demand shock, there is 50% likelihood that the total cost will be less or 

equal to $40.8 million and the 95% confidence interval will be between $31.2 

million and $42.5 million. When vaccination strategy is used, there is 50% 

likelihood that the total cost will be less or equal to $39.3 millions and the 

confidence interval will be between $30.7 million and $40.6 million. 

• With 10% demand shock, there is 50% likelihood that the total cost will be less 

or equal to $1,964 million and the 95% confidence interval will be between 

$1,954 million and $1,966 million. Should the vaccination strategy be used, there 

is 50% likelihood that the total cost will be less or equal to $1,962 million and 

the 95% confidence interval will be between $1,954 million and $1,964 million. 

• With 20% demand shock, there is 50% likelihood that the total cost will be less 

or equal to $3,675 million and the 95% percent confidence interval will be 

between $3,665 and $3,677 million. When vaccination strategy is used, there is 

50% likelihood that the total cost will be less or equal to $3,674 million and the 

95% confidence interval will be between $3,665 million and $3,675 million. 

• With 30% demand shock, there is 50% likelihood that the total cost will be less 

or equal to $5,174 million and the 95% confidence interval will be between 

$5,165 million and $5,176 million. When vaccination strategy is used, there is 

50% likelihood that the total cost will be less or equal to $5,164 and the 

confidence interval will be between $5,164 and $5,174 million. 



 

 

71 

To analyze these results in terms of stochastic dominance criteria, cumulative 

distribution functions of total outbreak costs under the four demand shock scenarios for 

both strategies are given in figure 4.5 to 4.8 below. 
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Figure 4.5 District 5-N: total cost distributions under 0% demand shock   
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Figure 4.6 District 5-N: total cost distributions under 10% demand shock  
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Figure 4.7 District 5-N: total costs distributions under 20% demand shock 
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Figure 4.8 District 5-N: total costs distributions under 30% demand shock  
 
 
 

Similar to the results obtained from Districts 8-N, vaccination strategy first 

degree stochastically dominates the current strategy under the four demand shift 

scenarios. Next, CDF plots of the total outbreak cost in the less dense sub-region 

(District 5-S) are presented under the four demand shifts scenarios. 
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Table 4.4 Total Costs in District 5-S: Means and 95% Confidence Intervals  
Without Vaccination With Vaccination 

 Mean 95% Confidence interval Mean 95% Confidence interval 
No Shock (0%)  Lower Upper  Lower Upper 
Producer's cost 0.032 [0.000, 0.092] 0.026 [0.000, 0.086] 
Consumer's cost 0.204 [0.000, 0.604] 0.173 [0.000, 0.595] 
Mitigation cost 27.045 [20.006, 28.926] 25.950 [19.619, 27.335] 
Total Cost 27.281 [20.670, 28.928] 26.148 [20.281, 27.337] 
Small shock (10%)       
Producer's cost 328.511 [328.481, 328.562] 328.506 [328.481, 328.559] 
Consumer's cost 1594.856 [1594.668, 1595.187] 1594.831 [1594.668, 1595.187] 
Mitigation cost 26.972 [21.142, 28.951] 25.883 [20.747, 27.350] 
Total Cost 1950.339 [1944.873, 1952.101] 1949.220 [1944.479, 1950.502] 
Medium shock (20%)       
Producer's cost 618.588 [618.560, 618.637] 618.583 [618.560, 618.633] 
Consumer's cost 3015.810 [3015.642, 3016.103] 3015.787 [3015.642, 3016.102] 
Mitigation cost 26.971 [21.142, 28.951] 25.882 [20.747, 27.349] 
Total Cost 3661.369 [3655.865 3663.154] 3660.253 [3655.470, 3661.553] 
Large shock (30%)       
Producer's cost 858.139 [858.120, 858.170] 858.136 [858.120, 858.170] 
Consumer's cost 4275.630 [4275.473, 4275.889] 4275.607 [4275.473, 4275.889] 
Mitigation cost 26.970 [21.142, 28.951] 25.881 [20.747, 27.349] 
Total Cost 5160.738 [5155.195, 5162.545] 5159.624 [5154.801, 5160.943] 

 
Note: The estimated costs are in millions of US dollars. 
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If the outbreak occurs in the less dense sub-region of District 5-S, depending on 

the demand shock scenarios, the total outbreak cost and the table 4.4 above are 

interpreted as follows:  

• Without demand shift, there is 50% likelihood that the total cost will be less or 

equal to $27.3 million and the 95% confidence interval will be between $20.7 

million and $28.9 million. If vaccination strategy is used, there is 50% likelihood 

that the total cost will be less or equal to $26.1 million and the 95% confidence 

interval will be between $20.3 million and $27.3 million. 

• With 10% demand shock, there is 50% likelihood that the total cost will be less 

or equal to $1,950 million and the 95% confidence interval will be between 

$1,944 million and $1,951 million. If vaccination strategy is used, there is 50% 

likelihood that the total cost will be less or equal to $1,949 million and the 

confidence interval will be between $1,944 million and $1,951 million. 

•  With 20% demand shock, there is 50% likelihood that the total cost will be less 

or equal to $3,661 million and the 95% confidence interval will be between 

$3,656 million and $3,663 million. If vaccination strategy is used, there is 50% 

likelihood that the total cost will be less or equal to $3,660 million and the 95% 

confidence interval will be between $3,655 million and $3,662 million. 

• With 30% demand shock, there is 50% likelihood that the total cost will be less 

or equal to $5,161 million and the 95% confidence interval will be between 

$5,155 million and $5,163 million. If the vaccination strategy is used to control 

the outbreak, there is 50% likelihood that the total cost will be less or equal to 
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$5,160 million and the 95% confidence interval will be between $5,155 million 

and $5,161 million. 

To visualize the above results in District 5-S and rank in terms of first degree 

stochastic dominance, the total cost under both strategies are presented in figure 4.9 to 

4.12 below. 
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Figure 4.9 District 5-S: total costs distributions under 0% demand shock 
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Figure 4.10 District 5-S: total costs distributions under 10% demand shock  
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Figure 4.11 District 5-S: total costs distributions under 20% demand shock  
 
 
 

CDF Kernel (30% Demand Shock) 

0.000
0.200
0.400
0.600
0.800
1.000

5145.00 5150.00 5155.00 5160.00 5165.00 5170.00

Cost (in million)

P
ro

b
ab

ili
ty

Current Vaccination
 

Figure 4.12 District 5-S: total costs distributions under 30% demand shock 
 
 
 

Consistently with results showed in the other sub-regions, the vaccination 

strategy first degree stochastically dominates the current strategy under the four demand 

shift scenarios. 
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4.4 Ex-ante Vaccines Investment Decision under Stochastic Epidemic Spread 

Model 

In the following, results of the ex-ante investment in vaccines production decision are 

obtained under the hypothesis that the disease spreads through stochastic contacts. The 

assumption regarding the fixed investment cost is identical as in the previous section 

where the value of $0.4 million fixed investment cost is used in the estimation. Here, the 

threshold probabilities are estimated for the entire State of Texas (Combining all the 

districts) and each of the three districts separately. The obtained simulation results show 

that the threshold probabilities above which an ex-ante investment in vaccines could be 

made vary with the disease transmission parameters. The density of the threshold 

outbreak probability for Texas is given in the figure 4.13 below. 
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Figure 4.13 Distribution of the threshold probability in Texas  
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Simulated results for all Texas districts in figure 4.13 show that the threshold 

probability is 0.07 with 82% likelihood. That is, over 100 simulations of the contact 

rates, the threshold probability of 0.07 occurs 82 times and other higher threshold 

probabilities occur 18 times. In fact, the threshold of 0.11occurs with 12% likelihood 

and threshold of 0.14, 0.21 and 0.32 have equally likelihood of 2% to occur. 

Each district simulated separately shows that the threshold probabilities above 

which investment in vaccines should be made are respectively 0.39(or 0.40) in District 

8-N with 67% likelihood, 0.61 in District 5-N with 78% likelihood and 0.68(or 69) in 

District 92% likelihood. Figures 4.14 to 4.16 below are the densities of the threshold 

probabilities in the three districts separately. 
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Figure 4.14 District 8-N: distribution of the threshold probability  
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Figure 4.15 District 5-N: distribution of the threshold probability 
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Figure 4.16 District 5-S: distribution of the threshold probability 
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4.5 Summary 

This section presented estimates of the total cost of a hypothetical outbreak in Texas 

under stochastic disease spread. Consistent with risk analysis methods, 95% confidence 

intervals are constructed and the two disease mitigation strategies are compared using 

stochastic dominance criteria. Depending on the demand shock scenarios the findings 

are summarized as follows. 

The study show that in absence of a demand shift, vaccination reduces 

respectively the mean outbreak costs by $1.6 million in District 8-N, $1.5 million in 

District 5-N and $1.1 million in District 5-S. Also, It narrows the range in particularly 

reducing the upper bound of the 95% confidence intervals respectively by $2.7 million 

in District 8-N, $1.9 million in District 5-N and $1.6 million in District 5-S. The same 

type of results occur when demand shifts are factored in with the mean damage 

reduction being $1.6, $1.2, 1.1million under 10, 20 and 30% demand shifts respectively 

regardless of the district of outbreak. Similarly under the demand shifts scenarios, the 

range is reduced and the upper tail truncated.  

The stochastic dominance results suggested that the vaccination strategy 

dominates the current strategy in first degree stochastic dominance sense. These results 

applied to each of the three Texas districts regardless of the demand shift scenarios and 

the risk aversion coefficient of the decision maker. In fact, risk aversion of the decision 

maker become relevant when there are crossings in the cumulative distributions of the 

total costs. 
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Finally, this section estimated the distribution of the critical outbreak probability 

above which an ex-ante investment in vaccines is worth making under a stochastic 

disease spread. The results suggested that in the face of the possibility of a simultaneous 

outbreak in all districts an ex-ante investment in vaccines should be made if the 

probability of the outbreak is greater than 0.07. The likelihood of this threshold is about 

82%. If only individual outbreaks are considered, the thresholds will be respectively 0.39 

in District 5-N with 60% likelihood, 0.61 in District 5-N with 78% likelihood and 0.68 

in District 5-S with 92% likelihood. 
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5. CONCLUSION AND FUTURE RESEARCH OPPORTUNITIES 

This dissertation did an economic-epidemic evaluation of alternative AI disease control 

strategies as an input to disease response planning efforts.  Specifically the study 

evaluated two options: 

• the current USDA recommended approach that establishes a quarantine zone in a 

5-miles radius around the outbreak site within which every flock is depopulated, 

and then a varying surveillance radii around that zone plus movement restrictions 

and testing (Pelzel, McCluskey and Scott 2006); and  

• an alternative mitigation strategy which is recommended by the World Animal 

Health Organization that vaccinates all susceptible flocks in near proximity to the 

quarantine zone in addition to the current strategy stated above (OIE 2007 and 

2008). 

To carry out this evaluation an integrated economic-epidemic model was developed and 

applied to a hypothetical outbreak in selected Texas poultry producing regions.  

The total outbreak costs of the current and the vaccination strategies were 

estimated under deterministic and stochastic epidemic disease spread assumptions. Also, 

the outbreak probability that justifies ex-ante investment in vaccines was studied. 

Arising from this effort the following conclusions may be drawn: 

• Vaccination reduces total outbreak costs compared to the currently recommended 

USDA strategy. 

• The economic impact of an outbreak depends heavily on whether and by how 

much consumer demand for poultry products is affected during the outbreak. 
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• Not surprisingly AI outbreaks in sub-regions that have dense poultry populations 

yield more damages than less dense sub-regions.  

• In the absence of a demand shift losses are largely comprised of disease control 

costs with the animal losses being rather small. 

• When demand shifts, profit losses and consumers' surplus losses dramatically 

increase the total outbreak costs. 

• under the possibility of a widespread outbreak across all Texas sub-regions it is 

optimal to invest ex-ante in vaccines production if the probability of the outbreak 

is greater than 0.07. 

• If the outbreak is analyzed separately in each district, ex-ante investment in 

vaccines is optimal if the probabilities of outbreak are respectively 0.39 in 

District 8-N, 0.61 in District 5-N and 0.68 in District 5-S. 

The contributions of this work are several: 

• The modeling and analysis contribute to the analysis and understanding of the 

economic impact of animal diseases. 

• The model developed integrates both the epidemic and the economic analysis 

simultaneously to an extent not done before in the AI context and provides a 

framework for future evaluations.  

• The epidemic model includes control strategies that portray a more realistic 

representation of animal disease management.  
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• The use of partial equilibrium economic model allows analysis of disease effects 

across sub-regions details that a general equilibrium analysis framework could not 

incorporate. 

The study is not without limitations.  In particular the epidemic model was build 

by economists and could be improved with more work, data collection and disease 

understanding. Also, the lack of geographical information on poultry farms in Texas has 

limited the use of spatial modeling approach in the design of the epidemic model. 

Finally, the model has not directly included loss of international trade for some time and 

has not calculated the spill-over effect on substitutes for poultry products.  

Future research could be conducted in two directions. First, a more 

comprehensive research epidemic model of the poultry sector could be developed to 

better support the economic analysis and model live bird markets and wildlife effects 

among other factors. In this regard, the use of geographic information systems (GIS) 

data to the extent available would be greatly beneficial. Second, the economic model 

could be expanded to allow examination of the implications of the AI outbreak on 

substitute products markets, feed markets, other regions and international trade. In this 

regard, the forestry and agricultural optimization model developed by McCarl et al. 

(2005) could be used. 
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APPENDIX I 

 

 
Source: USDA TEXAS HENS & PULLETS OF LAYING AGE:  December 1, 2007 
Inventory  
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APPENDIX II 

 
CONTACT RATE SURVEY 

 
1-How many weeks are the average cycle of your poultry production? 
___________Weeks 
 
2-How would you classify the size of your poultry operation? (Please check all that 
apply) 

o Layers less than 400 birds 
o Layers comprise between 400 and 100,000 birds 
o Layers greater than 100,000 birds 
o Broilers 
o Turkeys 

 
3- If your operation is one or more of the above, please show how many times you 
send to other categories during an average cycle? 
 
 
    To   
  1. 2. 3. 4. 5. 
 1. Layers less than 400 birds      
From 2.Layers between 400 and 100,000 birds      
 3.Layers greater that 100,000 birds      
 4.Broilers      
 5.Turkeys      

 
4- How many times do you receive from other categories during the average cycle? 
 
    To   
  1. 2. 3. 4. 5. 
 1. Layers less than 400 birds      
From 2.Layers between 400 and 100,000 birds      
 3.Layers greater that 100,000 birds      
 4.Broilers      
 5.Turkeys      

 
 
5-What is the full capacity of your poultry feeding operation? 
_________________birds 
 
6-What borders your premises? (Please check all that apply) 
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o Other poultry premises 
o River/Stream/lake 
o Open lands 
o Other______________________ 

 
7-How many of your employees who work in your premise also raise chicken, 
turkey or other birds in their own home? (Please fill in the space or check box) 
 

o _______ Employees 
 
o Don’t know 

8- Are any of your employees allowed to work for other poultry producers? (Please 
check one) 

o Yes 
o No 

 
9-If your answer is “yes” to the question above; please show the number of times 
per week that your employees go to other premises through the following table. 
 
    To   
  1. 2. 3. 4. 5. 
 1. Layers less than 400 birds      
From 2.Layers between 400 and 100,000 birds      
 3.Layers greater that 100,000 birds      
 4.Broilers      
 5.Turkeys      

 
10- How often do the following visit your premise per average cycle? 
 
                                     Number of times 
Feed trucks  
Dead animals pick 
up 

 

Consulting 
veterinarian 

 

Consulting 
nutritionist 

 

Manager of multi 
farm 

 

Other_____________  

 
11- Do the following visit only your premises or multiple other premises per trip? 
(Please check the correct answer). 
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 Yes Only 

my    
premises 

No multiple other  
premises 

Don’t know 

Feed trucks    
Dead animals pick 
up 

   

Consulting 
veterinarian 

   

Consulting 
nutritionist 

   

Manager of multi 
farm 

   

Other_____________    

 
12- If your answer is “no” to the question above, please show how many times the 
trucks leave your property to other premises per week through the following table. 
 
    To   
  1. 2. 3. 4. 5. 
 1. Layers less than 400 birds      
From 2.Layers between 400 and 100,000 birds      
 3.Layers greater that 100,000 birds      
 4.Broilers      
 5.Turkeys      

13- Please show the movements of the veterinarian or the nutritionist from your 
property to other premises per average cycle through the following table. 
 
    To   
  1. 2. 3. 4. 5. 
 1. Layers less than 400 birds      
From 2.Layers between 400 and 100,000 birds      
 3.Layers greater that 100,000 birds      
 4.Broilers      
 5.Turkeys      

 
14- What other precautions do you take to avoid disease spread in your property? 
(Please check those that applies) 

o Plastic cloths and gloves for employees 
o Every employee must clean his hands before and after work  
o Clean the site after every production cycle 
o Other_________________________________ 
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15- If you answer one or more of the above, what is the estimated cost per average 
cycle? 
 
 Cost per cycle (or) every two 

Cycles 
Plastic cloths and gloves   
Detergents for cleaning   
Production cycle cleaning   
Other   

 
16- If your animals was not infected but are constrained in a quarantine zone and 
no birds movements are allowed in or out, how much will you estimate your loses? 
 
Scenarios Length of Movement ban Projected loss ($per head) 
1 0ne week  
2 Two weeks  
3 1 Months  

 
17- What is the projected monetary cost to pay work crews to vaccinate or test your 
birds one time? 
Vaccinate $__________________                             Hrs/days_____________ 
Test $_______________________                            Hrs/days_____________ 
 
18- In case of an outbreak how are you going to manage the carcasses disposal? 

o Incinerate the carcasses 
o Bury the carcasses 
o Other_________________ 
 

 19- If you choose one of the above options, how much can you estimate the cost? 
o Incinerate the carcasses___________ 
o Bury the carcasses_______________ 
o Other_________________________ 

 
Comments______________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________ 
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