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ABSTRACT 
  

Modeling Time-Dependent Responses of Piezoelectric Fiber Composite. 

(December 2009) 

Kuo-An Li, B.E., National Taiwan University 

Chair of Advisory Committee: Dr. Anastasia Muliana 

 

      The existence of polymer constituent in piezoelectric fiber composites (PFCs) 

could lead to significant viscoelastic behaviors, affecting overall performance of PFCs. 

High mechanical and electrical stimuli often generate significant amount of heat, 

increasing temperatures of the PFCs. At elevated temperatures, most materials, especially 

polymers show pronounced time-dependent behaviors. Predicting time-dependent 

responses of the PFCs becomes important to improve reliability in using PFCs. We study 

overall performance of PFCs having unidirectional piezoceramic fibers, such as PZT 

fibers, dispersed in viscoelastic polymer matrix. Two types of PFCs are studied, which 

are active fiber composites (AFCs) and macro fiber composites (MFCs). AFCs and 

MFCs consist of unidirectional PZT fibers dispersed in epoxy placed between two 

interdigitated electrode and kapton layers. The AFCs have a circular fiber cross-section 

while the MFCs have a square fiber cross-section. Finite element (FE) models of 

representative volume elements (RVEs) of active PFCs, having square and circular fiber 

cross-sections, are generated for composites with 20, 40, and 60% fiber contents. Two FE 

micromechanical models having one fiber embedded in epoxy matrix and five fibers 

placed in epoxy matrix are considered. A continuum 3D piezoelectric element in 
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ABAQUS FE is used. A general time-integral function is applied for the mechanical, 

electrical, and piezoelectric properties in order to incorporate the time-dependent effect 

and histories of loadings. The effective properties of PZT-5A/epoxy and 

PZT-7A/LaRC-SI piezocomposites determined from the FE micromechanical models are 

compared to available experimental data and analytical solutions in the literature. 

Furthermore, the effect of viscoelastic behaviors of the LaRC-SI matrix at an elevated 

temperature on the overall electro-mechanical and piezoelectric constants are examined. 

 

   



v 

 

 

 

ACKNOWLEDGEMENTS 

I want to thank my advisor, Dr. Anastasia Muliana for her patience in teaching 

and guidance. I could not finish the thesis successfully without her suggestions and 

instructions. Next, I want to thank my girl friend, Yi-Ting Huang. With her careful 

checking and correcting my grammar and structure errors, I could complete my thesis 

faster and more correctly. Finally, I want to thank my parents. Without their support and 

encouragement, I could not finish my master degree in America. 

   



vi 

 

 

 

TABLE OF CONTENTS 
Page 

ABSTRACT ....................................................................................................................... iii 

ACKNOWLEDGEMENT………………………………………………………………...v 

TABLE OF CONTENTS ................................................................................................... vi 

LIST OF FIGURES ......................................................................................................... viii 

LIST OF TABLES ........................................................................................................... xiv 

CHAPTER 

I   INTRODUCTION ....................................................................................................... 1 

1.1 State of the Art Knowledge in Understanding Performance of 

Piezocomposite and Their Applications .................................................................. 5 

1.2 Research Objective ...................................................................................................... 14 

II   LINEARIZED PIEZOELECTRIC RESPONSES WITH A TIME-DEPENDENT 

EFFECT .................................................................................................................... 16 

2.1 General Piezoelectric Equations ............................................................................. 17 

2.2 Time-dependent Piezoelectric Equations ............................................................. 24 

2.3 Parametric Studies ....................................................................................................... 37 

III  MICROMECHANICAL MODELS FOR PIEZOCOMPOSITES ........................... 51 

3.1 Characteristics of PFC ............................................................................................... 51 

3.2 Micromechanical Models of PFC Microstructures .......................................... 55 

3.3 Effective Electro-mechanical Properties of AFC and MFC .......................... 63 

3.4 Effects of Viscoelastic Matrix at Elevated Temperatures on the     

Effective Properties of AFC and MFC ................................................................. 86 

IV  CONCLUSIONS AND FURTHER RESEARCH.................................................. 116 



vii 

 

 

 

Page 

4.1 Discussions ................................................................................................................. 116 

4.2 Conclusions ................................................................................................................. 120 

4.3 Further Research ....................................................................................................... 123 

REFERENCES ............................................................................................................... 124 

VITA ............................................................................................................................... 127 

 

   



viii 

 

 

 

LIST OF FIGURES 
Page 

Fig. 1.1  Sinusoidal loading ........................................................................................... 9 

Fig. 2.1  Linear and nonlinear modulus ....................................................................... 20 

Fig. 2.2  Maxwell model ............................................................................................. 25 

Fig. 2.3  Relaxation stress of the Maxwell model ....................................................... 26 

Fig. 2.4  Creep strain of the Maxwell model ............................................................... 27 

Fig. 2.5  Kelvin-Voigt model ...................................................................................... 28 

Fig. 2.6  Relaxation stress of the KV model ................................................................ 28 

Fig. 2.7  Creep strain of the KV model ....................................................................... 29 

Fig. 2.8  Standard Linear Solid model ......................................................................... 30 

Fig. 2.9  Stress relaxation of SLS model ..................................................................... 31 

Fig. 2.10  Strain creep of SLS model .......................................................................... 31 

Fig. 2.11  A step stress input ....................................................................................... 32 

Fig. 2.12  Strain response ............................................................................................ 33 

Fig. 2.13  Load and unload stress for superposition .................................................... 33 

Fig. 2.14  Two step response use superposition .......................................................... 34 

Fig. 2.15  Approximation of a stress input by a superposition of step stress .............. 35 

Fig. 2.16  Approximation of a stress history by pulses ............................................... 36 

Fig. 2.17  The charge response of PZT ceramic under constant stress ........................ 38 



ix 

 

 

 

Page 

Fig. 2.18  Strain response under constant stress .......................................................... 41 

Fig. 2.19  Electrical displacement response under constant stress .............................. 42 

Fig. 2.20  Strain response under constant electrical field ............................................ 43 

Fig. 2.21  Electrical displacement response under constant electrical field ................ 43 

Fig. 2.22  Strain response under time-dependent stress .............................................. 44 

Fig. 2.23  Electrical displacement response under time-dependent stress................... 45 

Fig. 2.24  Strain response under time-dependent electrical field ................................ 46 

Fig. 2.25  Electrical displacement response under time-dependent          

electrical field ............................................................................................. 46 

Fig. 2.26  Strain response under constant stress and time-dependent         

electrical field……………………………………………………………..48 

Fig. 2.27  Electrical displacement response under constant stress and  

time-dependent electrical field ................................................................... 48 

Fig. 2.28  Strain response under time-dependent stress and time-dependent  

electrical field ............................................................................................. 49 

Fig. 2.29  Electrical displacement response under time-dependent stress and 

time-dependent electrical field ................................................................... 50 

Fig. 3.1  Flexibility of PFC .......................................................................................... 52 

Fig. 3.2  Structure of active fiber composite ............................................................... 53 

Fig. 3.3  Structure of macro fiber composite ............................................................... 53 

Fig. 3.4  (a) Photo of AFC  (b) Photo of MFC .......................................................... 54 



x 

 

 

 

Page 

Fig. 3.5  Micromechanical models with a single fiber ................................................ 55 

Fig. 3.6  Five fiber micromechanical model (vf=40%) ............................................... 56 

Fig. 3.7  Finite element model of AFC ........................................................................ 57 

Fig. 3.8  Finite element model of MFC ....................................................................... 57 

Fig. 3.9  5 fibers finite element model of AFC ........................................................... 58 

Fig. 3.10  5 fibers finite element model of AFC ......................................................... 58 

Fig. 3.11  Surface numbers of boundary conditions .................................................... 61 

Fig. 3.12  RVE model .................................................................................................. 66 

Fig. 3.13  Von Mises Stress Contour due to σ11 .......................................................... 70 

Fig. 3.14  Effective elastic modulus Y11 ...................................................................... 74 

Fig. 3.15  Effective elastic modulus Y33 ...................................................................... 74 

Fig. 3.16  Effective shear modulus G12 ....................................................................... 75 

Fig. 3.17  Effective shear modulus G13=G23 ................................................................ 76 

Fig. 3.18  Effective piezoelectric constant e311 ............................................................ 77 

Fig. 3.19  Effective piezoelectric constant e333 ............................................................ 77 

Fig. 3.20  Effective piezoelectric constant e113 ............................................................ 78 

Fig. 3.21  Effective dielectric constant κε11/κo ........................................................... 79 

Fig. 3.22  Effective dielectric constant κε33/κo ........................................................... 79 

Fig. 3.23  Effective compliance SE
3333......................................................................... 83 



xi 

 

 

 

Page 

Fig. 3.24  Effective piezoelectric constant d311 ........................................................... 83 

Fig. 3.25  Effective piezoelectric constant d333 ........................................................... 84 

Fig. 3.26  Effective dielectric constant κσ33/κo ........................................................... 84 

Fig. 3.27  Effective coupling coefficient k33 ............................................................... 85 

Fig. 3.28  Effective compliance SD
3333 ........................................................................ 85 

Fig. 3.29  Creep compliance for LaRC-SI ................................................................... 90 

Fig. 3.30  Relaxation modulus for LaRC-SI ................................................................ 90 

Fig. 3.31  ABAQUS finite element model. ................................................................. 91 

Fig. 3.32  Creep compliance from the FE analysis ...................................................... 91 

Fig. 3.33  Relaxation modulus from FE analysis ........................................................ 92 

Fig. 3.34  Comparing creep result ............................................................................... 92 

Fig. 3.35  Error function of creep ................................................................................ 93 

Fig. 3.36  Comparing relaxation result ........................................................................ 93 

Fig. 3.37  Error function of relaxation ......................................................................... 94 

Fig. 3.38  Effective compliance in transverse direction S1111 in assumption 1 ....... 101 

Fig. 3.39  Effective compliance in axial fiber direction S3333 in assumption 1 ....... 102 

Fig. 3.40  Effective shear compliance S2323 in assumption 1 .................................. 102 

Fig. 3.41  Effective shear compliance S1212 in assumption 1 .................................. 103 

Fig. 3.42  Effective piezoelectric constant d311 in assumption 1 ............................. 103 



xii 

 

 

 

Page 

Fig. 3.43  Effective piezoelectric constant d333 in assumption 1 ............................. 104 

Fig. 3.44  Effective piezoelectric constant d113 in assumption 1 ............................. 104 

Fig. 3.45  Effective relative permittivity in transverse direction                

κ11/κo in assumption 1 .............................................................................. 105 

Fig. 3.46  Effective relative permittivity in axial fiber direction                

κ33/κo in assumption 1 .............................................................................. 105 

Fig. 3.47  The electrical field in FE model in d113 boundary conditions ................... 106 

Fig. 3.48  Effective compliance in transverse direction S1111 in assumption 2 ....... 108 

Fig. 3.49  Effective compliance in axial fiber direction S3333 in assumption 2 ....... 108 

Fig. 3.50  Effective shear compliance S2323 in assumption 2 .................................. 109 

Fig. 3.51  Effective shear compliance S1212 in assumption 2 .................................. 109 

Fig. 3.52  Effective piezoelectric constant d311 in assumption 2 ............................. 110 

Fig. 3.53  Effective piezoelectric constant d333 in assumption 2 ............................. 110 

Fig. 3.54  Effective piezoelectric constant d113 in assumption 2 ............................. 111 

Fig. 3.55  Effective relative permittivity in transverse direction                

κ11/κo in assumption 2 .............................................................................. 111 

Fig. 3.56  Effective relative permittivity in axial fiber direction                

κ33/κo in assumption 2 .............................................................................. 112 

Fig. 3.57  Effective Piezoelectric constant d333 for checking assumption 1 .............. 113 

Fig. 3.58  Effective Piezoelectric constant d333 for checking assumption 2 .............. 113 

Fig. 3.59  Effective compliance S3333 ........................................................................ 114 



xiii 

 

 

 

Page 

Fig. 3.60  Effective piezoelectric constant d333 ......................................................... 115 

Fig. 4.1  Displacement history of a host structure ..................................................... 117 

Fig. 4.2  Counter displacement to minimize vibration in the host structure.............. 118 

Fig. 4.3  The phase lagging response in the actuator ................................................. 118 

Fig. 4.4  Time-dependent result of suppression......................................................... 119 

Fig. 4.5  Cantilever beam attached 4 PFCs ............................................................... 120 

Fig. 4.6  Cantilever beam under loading ................................................................... 120 

 

   



xiv 

 

 

 

LIST OF TABLES 
Page 

Table 1.1  Properties of piezoelectric ceramics ............................................................. 3 

Table 3.1  The fiber sizes of micromechanical models ............................................... 56 

Table 3.2  Boundary conditions to determine effective properties.............................. 62 

Table 3.3  Properties of PZT-7A ................................................................................. 63 

Table 3.4  Properties of LaRC-SI ................................................................................ 64 

Table 3.5  Properties of PZT-5A by Sol-Gel process .................................................. 64 

Table 3.6  Properties of PZT-5A ................................................................................. 64 

Table 3.7  Properties of epoxy ..................................................................................... 64 

Table 3.8  Results of volume fraction 60 .................................................................... 71 

Table 3.9  Results of volume fraction 40 .................................................................... 71 

Table 3.10  Results of volume fraction 20 .................................................................. 72 

Table 3.11  Results of 5 fibers model .......................................................................... 73 

Table 3.12  AFC modeling results ............................................................................... 82 

Table 3.13  MFC modeling results .............................................................................. 82 

Table 3.14  Viscoelastic parameter of LaRC-SI .......................................................... 87 

Table 3.15  Comparing piezoelectric constant in assumption 1 .................................. 97 

Table 3.16  Comparing dielectric constant in assumption 1........................................ 98 

Table 3.17  Comparing piezoelectric constant in assumption 2 .................................. 99 

Table 3.18  Comparing dielectric constant in assumption 2 ...................................... 99



1 

 

 

 

CHAPTER I 
INTRODUCTION 

 

     Piezoelectric materials are being used as sensors and actuators due to their 

mechanical and electrical transforming ability. In 1880, Pierre and Jacques Curie 

published a paper on piezoelectric phenomena on a stressed crystal. They conducted 

experiments measuring surface charges of several stressed crystals, such as tourmaline, 

quartz, topaz, cane sugar and Rochelle salt. This study is believed to be the first record of 

piezoelectricity. In 1917, French physicist, Paul Langevin and his co-worker placed a 

quartz crystal based transducer, comprising of a quartz crystal sandwiched between two 

metals, on sonar. The quartz was used to convert the electric energy into vibration and 

generate ultrasonic wave for underwater sound transmission in submarine. 

Between 1920 and 1940, piezoelectric based engineering components like 

microphones, accelerometer and ultrasonic transducers were developed. In these 

applications, the mechanical forces are converted into electrical potential. Performances 

of these piezoelectric devices were generally restricted by the limitation of the material 

properties, i.e., relatively low piezoelectric characteristics of the natural crystals. The 

piezoelectric properties of natural crystals are 0.01 to 0.1 times of those of the current 

piezoelectric ceramics like PZT. For example, the piezoelectric constant d of quartz is 

about 2.3 (10-12C/V) and d333 of PZT-7A is 153 (10-12C/V). Since the development of  

_________ 
This thesis follows the style of Composite Science and Technology. 
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ferroelectric materials, scientists discovered that ferroelectric materials have dielectric 

constants up to 100 times higher than the common crystals. After being polarized, these 

ferroelectric materials showed significant improvements in piezoelectric properties. 

There are several types of piezoelectric materials including natural materials and 

man-made materials. Natural crystals are berlinite (AlPO4), can sugar, quartz, topaz and 

tourmaline-group minerals. Examples of man-made crystals: gallium orthophosphate 

(GaPO4) and Langasite (La3Ga5SiO14). Man-made ceramics are barium titanate (BaTiO3), 

lead titanate (PbTiO3), lead zirconate titanate (Pb[ZrxTi1-x]O3 0<x<1), potassium niobate 

(KNbO3), lithium niobate (LiNbO3), lithium tantalite (LiTaO3), and many others. There 

are some lead-free piezoceramics such as sodium potassium niobate (KNN) and bismuth 

ferrite (BiFeO3). Moreover, some polymers such as polyvinylidene fluoride (PVDF) and 

polyimide are also piezoelectric materials. The piezoelectric constant d of PVDF varies 

between 1.5 to 32pC/N, which is much smaller than those of piezoelectric ceramics and 

the stiffness of PVDF is generally small, making it rather daunting for providing large 

actuation. PVDF is often used as sensor in smart composite. [1] 

The widely used piezoelectric ceramics are lead zirconate titanate (PZT), lead 

titanate (PT) and barium titanate (BT). The electro-mechanical properties of PZT, PT, 

and BT are given in Table 1.1. PZT has relatively high compliance and high piezoelectric 

properties, making them suitable as actuators. 
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Table 1.1  Properties of Piezoelectric ceramics(Morgan Ceramics Co.) 

 PZT(PZT701) PT(PT1) BT(BT301) 

Relative Permittivityߝ௥்33/εo 425 210 1140 

Piezoelectric Constant d333ൈ10-9C/V 153 68 127 

Compliance SE
3333ൈ10-12m2/N 13.9 8.6 8.1 

Curie Temperature ℃ 
350 255 130 

 

Traditional piezoelectric ceramics are brittle and easy to break during handling and 

service. Piezoelectric Fiber Composite (PFC) was developed to improve the fault of 

piezoelectric ceramics. It is formed by combining piezoelectric ceramic fibers and epoxy 

matrix sandwiched between two electrode layers. PFC has the following features [2]: 

1. They have high stiffness and large bandwidth, making it possible to use a wide 

range of signals in actuator applications. 

2. They have better strength and conformability than PZTs, creating more flexible 

and pliable structure and improving resistant to brittle damage. 

3. They can be integrated into laminated composite structures or other host 

structures and used for health monitoring, energy harvesting, and controlling 

shape changes. 

This study investigates coupled electro-mechanical and time dependent behaviors 

of two kinds of PFCs, active fiber composite (AFC) and macro fiber composite (MFC). 



4 

 

 

 

Active fiber composite (AFC) was developed by Bent and Hagood[2] at Massachusetts 

Institute of Technology and macro fiber composite (MFC) was developed at NASA 

Langley Research Center. These two active composites do not have significant 

differences in their overall structures, but only in the types and shapes of the fibers. The 

AFC uses fibers with a circular cross-section and MFC has fiber with a rectangular 

cross-section. The overall performance of the PFC is driven by the behaviors and 

microstructural arrangements of the constituents. The use of polymer matrix constituents, 

while known for their viscoelastic behavior, could result in the overall time-dependent 

behaviors of the PFC. Time-dependent effect is even more significant at elevated 

temperatures and high stress levels. This study deals with understanding coupled 

electro-mechanical and viscoelastic effects, of the PZT fibers and epoxy polymer, on the 

effective properties of AFC and MFC. Finite element (FE) method is used to generate 

simplified microstructures of AFC and MFC. The simplified microstructures consist of 

unidirectional fibers embedded in epoxy polymers and the existence of electrode layers is 

neglected. It is assumed that electric fields continuously flow along the axial fiber 

direction. The overall electro-mechanical responses obtained using the FE models are 

compared to experimental data and analytical solutions available in the literature. This 

chapter presents literature studies on the performance of AFC and MFC and 

micromechanical modeling approaches of piezoelectric composites. The second part of 

this chapter discusses research objectives. 
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1.1 STATE OF THE ART KNOWLEDGE IN UNDERSTANDING 

PERFORMANCE OF PIEZOCOMPOSITES AND THEIR APPLICATIONS 

1.1.1 ACTIVE FIBER COMPOSITE 

      In order to improve performance of sensor and actuator for aerospace applications, 

Bent and Hagood [2] developed an active fiber composite (AFC) which was composed of 

piezoelectric fibers, epoxy matrix and interdigital electrodes (IDE). The AFC overcomes 

some disadvantages of the traditional PZT wafer. AFC inherits high stiffness and wide 

bandwidth of the PZT. Traditional piezoelectric ceramics have high stiffness but have 

low robustness to brittle damage. AFC prevents catastrophic failure due to fiber breakage 

as the epoxy can still transfer some of the load when the fiber breaks. Moreover, AFC 

enhances performance of actuator since it is flexible and can undergo large out of plane 

deformation. Nelson et al. [3] measured electrical and mechanical properties of 1-3 piezo 

composites at different fiber volume fractions and compared these experimental 

measurements to analytical solutions. They also compared properties of several 

piezoelectric fibers manufactured by Extrusion, Sol-Gel, Viscous Plastic Processing 

(VPP) and Viscous Suspension Spinning Process (VSSP). They found that the fibers 

produced by the VPP have the highest piezoelectric constants and dielectric constants 

than the ones obtained from other manufacturing processes. Wickramasinghe and 

Hagood [4] used AFC as an actuator system on Boeing active material rotor (AMR) 

blade, a helicopter blade application. The AFC system was integrated into the blade 

laminate forming an integrated structure and control unit. In order to integrate the AFC 

and AMR successfully, they conducted nominal actuation performance tests which 

measure longitudinal and transverse actuation strains of AFC integrated to E-Glass 
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woven fabric (E120) laminated systems. They also measured performance of the AFC 

itself. Different ranges of excitation voltages were applied to determine the optimum 

voltage cycle to be used in the AMR blade. They also conducted stress-strain tests and 

monitored the actuation performance under tensile loads on the AFC and AMR integrated 

systems. The average nominal actuation strain measured on the actuators was 1200 με at 

1 Hz for 3000 Vpp with 0 Vdc, the optimum voltage cycle selected for the blade 

operation. The undamaged AFC longitudinal and transverse moduli were 39.1 and 14.5 

GPa. The tested AFC recovered approximately 100%, 90%, 80% of actuation after 

completely unloading from 2000, 4000 and 6000με load levels. These test data help 

install the AFC actuator system on the AMR optimally. Wickramasinghe and Hagood [5] 

used the AFC actuator system on the AMR blade and performed long-term durability 

characterization tests. The tests included electrical and mechanical fatigue tests to 

examine the durability of the AFC actuator system. The results showed no degradation in 

strains up to 20 million cycles of the electrical fatigue test. The microscopic inspection 

showed that the electrode fingers burned under the test, but none of these burns were 

large enough to cause electrical failure. The mechanical fatigue test showed no 

significant deterioration in the modulus or actuation capability up to 10 million cycles. 

The actuator that is used in the AMR blade retained the stiffness and performance 

properties. It even retained its stiffness properties and actuation performance after 10 

million cycles at a load level that is 50% higher than the original fatigue load level. 

Melnykowycz et al. [6] used two sizes of AFCs to perform several mechanical tests. The 

long type of AFC is 150 mm ൈ 20 mm, and the short type is 33 mm ൈ 40 mm. The 

long AFC was used for tensile test. The short AFC was integrated with glass fiber 
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reinforced plastic (GFRP) laminate and used for the mechanical oscillation test, surface 

bonded fragmentation test and Acoustic emission (AE) monitoring. The results showed 

that the average stress at failure was 47 MPa and Young’s modulus was 29 GPa. They 

also showed that the performance of AFC sensor was linear and stable up to a strain of 

0.2%. A degradation behavior was seen between 0.2% and 0.4% strain and was attributed 

to the fragmentation in the PZT fibers, which saturated beyond 0.45% strain. The AE 

monitoring technique detected damage in the laminates during testing and found that the 

damage was due to micro-crack. 

 

1.1.2 MACRO FIBER COMPOSITE 

     Macro Fiber Composites (MFCs) were established by NASA Langley Research 

Center. While fibers in the AFCs have a circular cross-section, MFCs have a rectangular 

fiber cross-section, which make manufacturing of MFC easier than the AFC. In addition, 

MFC results in larger fiber volume contents than the AFC. The maximum fiber volume 

content of AFC is less than 0.785 because of the restriction in the fiber geometry. The 

fiber volume content of MFC could reach up to 0.824 [7]. High fiber volume content 

enhances the performance of the composite and improves the stiffness and strength of the 

composites. Azzouz et al. [8] used MIN6 element to establish a FE model for 

piezoelectric fiber actuators. MIN6 is a three-node shell element. They modeled the MFC 

bonded to rectangular and triangular cantilever beams and compared the results with the 

ones having traditional PZT-5A actuator. The twisting amplitudes of the MFC were 

better than that of PZT-5A actuator. Sodano [9] used a MFC as self-sensing actuator. He 



8 

 

 

 

designed a circuit to sense and control vibration in an aluminum beam. The results 

showed that the MFC actuator successfully suppressed 90% vibration of the aluminum 

beam. Moreover, he used multiple MFCs as sensors and actuators on an inflatable 

structure to control the vibration in the structure. He took an inflated torus as inflatable 

structure and put 4 MFCs on four sides as sensors and actuators. The inflatable structure 

was disturbed. The results showed that MFC was effective in attenuating the vibration in 

the first mode of vibration but ineffective for the second mode of vibration due to the 

location of sensors and actuators. Finally, he tested the electrical converting ability of 

MFC and designed a power harvesting device. The results showed that the MFC 

produced lower current than PZT and was not suitable to charge the battery.  

Williams et al. [7] derived non-linear models for coefficient of thermal expansion 

(CTE) of MFC. Temperature dependent CTE of each constituent in the MFC, i.e., 

Kapton, acrylic, copper, epoxy and PZT, was incorporated. They used ANSYS to 

establish a quarter unit cell FE model of an MFC actuator. The predictions of the 

effective CTE obtained from the theoretical results were compared to the FE modeling 

results. Williams et al. [10] measured four independent linear elastic engineering 

constants E1, E2, ν12 and G12 of the orthotropic MFC actuator. They used non-linear 

constitutive relations including Elastic-linear hardening, Ramberg-Osgood, Quadratic 

Least-Squares methods to fit the experimental data. Williams et al. [11] derived a 

non-linear constitutive model from the Gibbs thermodynamic potential function for a 

piezoelectric continuum. They applied the non-linear model for MFC and measured the 

piezoelectric coefficient of MFC under mechanical and electrical loadings. The studied 

electrical loading is illustrated in Fig. 1.1. The DC offset voltage means the sinusoidal 
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signal offset from zero. Figure 1.1 illustrates 0 VDC offset, 250 VDC offset and 500 

VDC offset input. They found that the absolute values of d31 and d33 increase under 

higher DC offset voltage and the strain-field behaviors of the MFC become more linear 

under higher DC offset voltages. The induced DC offset strains were nearly a linear 

function of DC biasing voltage. 

 

Fig. 1.1  Sinusoidal loading 

 

Dano and Julliere [12] investigated behaviors of a smart cantilever beam having 

two MFC actuators which were used to control deformations due to temperature changes. 

They developed a FE model of the system and subjected the beam to a thermal stimulus. 

They applied electrical field to the MFC actuator in the FE model to compensate the 

deflection. The input value from the given function was Eሺ୩ሻ ൌ Eሺ୩ିଵሻ ൅ G כ ∆U୸
ሺ୩ିଵሻ, 

where E is the electrical field, G is the control gain parameter and ΔU is the incremental 

displacement. The model successfully compensated the deformation. They also 
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conducted experiment to verify their model. They used a PID (proportional, integral, 

derivative) feedback controller to actively control the deformation. The measured voltage 

is 13% higher than the voltage predicted by the numerical simulation. Dano et al. [13] 

established FE models of two active beams. The first beam was a cantilever plate with 

one MFC actuator, and the other was a cantilever plate with two MFC actuators. They 

tested the two cantilever beams in an environmental chamber subject to temperature 

changes and the thermal deflections were monitored. They applied an electrical field to 

the actuator to control the deflection. Finally, they compared the experimental data to the 

FE results. The FE model can accurately predict the thermal deflections and the MFC 

compensations. 

 

1.1.3 MICROMECHANICAL MODELS 

Micromechanical models enable us to integrate different material properties of 

constituents to predict effective responses of composites. This study classifies the 

micromechanical models into two categories. The first category uses simplified 

microstructures of composites to obtain the effective behaviors. The composites are 

treated as a fictitiously homogeneous body and an assumption on simple (unit-cell) 

microstructures is made to reduce complexity in analyzing overall responses of 

composites. The second category generates detailed microstructures of composites, which 

can include variations and nonuniformities in constituents and geometries of the 

microstructures. FE method is commonly used to create microstructural details of 

composites and boundary value problems (BVP) are solved on the selected 
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heterogeneous microstructures of composites. This approach allows determining local 

field variables, but increases complexity and computational cost. 

Dunn and Taya [14] compared four micromechanical models based on simplified 

microstructural geometries: the dilute distribution, self-consistent, Mori-Tanaka and 

differential models to predict linear piezoelectric constants for several piezoelectric 

composites with different volume fractions. They compared the numerical results to 

experimental data available in the literature. The results showed that the dilute 

distribution model over-predicts the e311 values when the PZT fiber content is higher than 

0.1. The self-consistent method could not simulate effective properties over an entire 

range of volume fractions when the elastic and piezoelectric moduli of the reinforcing 

phase vanish. The Mori-Tanaka model coincides with the upper and lower bounds for the 

uncoupled electro-mechanical behavior of composites reinforced with ellipsoidal 

inclusions. Tan and Tong [15] established a rectangle model (R model) and a 

rectangle-cylinder model (RCR model) for piezoelectric-fiber-reinforced composites to 

predict mechanical and piezoelectric properties of composites at several fiber volume 

contents. They compared the predictions of the effective properties to the ones obtained 

from the FE model of detailed composite microstructures and existing experimental data. 

Odegard [16] established a homogenization model to calculate overall properties of four 

piezoelectric composites: graphite/PVDF fiber composite, SiC/PVDF particulate 

composite, PZT-7A/LaRC-SI fiber composite, and PZT-7A/LaRC-SI particulate 

composite. Responses generated from this micromodel are compared to the results of the 

Mori-Tanaka, self-consistent and FE models of the unit cells of the composites. The 

results showed that the proposed micromechanical model gives better predictions than the 



12 

 

 

 

Mori-Tanaka and self-consistent models at 90% volume fraction for the E11 and E22 in 

PZT-7A/ LaRC-SI fiber composite. The proposed model also showed better predictions 

for the E11, E22 and E33, at 60 % volume fraction for e15, e31=e32, κ1/κo=κ2/κo, and above 

40% volume fraction for e31=e32 in PZT-7A / LaRC-SI particle composite. 

Lee et al. [17] established a micromechanical model based on a representative 

volume element to simulate two-phase and three-phase electro-magneto-elastic 

composites. The two-phase model contains piezomagnetic matrix with a piezoelectric 

fiber. The three-phase model contains piezoelectric fiber, piezomagnetic fiber and epoxy 

matrix. They implemented their model by using FE method and compared the FE results 

with the ones from the Mori-Tanaka method. The results showed that the FE data are well 

matched with the Mori-Tanaka prediction for the effective stiffness, piezoelectric 

constants, dielectric permeability, piezomagnetic constants, magnetic permeability and 

magnetoelectric constants. Aboudi [18] used a high fidelity asymptotic homogenization 

approach with nonlinear constitutive relations for ferroelectric composites and 

implemented it for piezoelectric fiber composites. He examined the hysteresis behavior of 

piezoelectric fiber composites. The nonlinear hysteresis behavior is strongly dependent 

on the applied electric field and mechanical stress. Lin and Sodano [19] suggested a new 

piezoelectric composite called active structure fiber (ASF). The ASF structure consisted 

of a circular carbon fiber as the core covered by layers of piezoelectric material and 

electrode. They established a theoretical model to predict the piezoelectric constant d31 of 

the ASF and used FE method to implement it. The result showed that the piezoelectric 

coupling coefficients of the ASF could reach up to 65-70% of the piezoelectric ceramics 

as the ratio of the piezoelectric material thickness(t) to the fiber radius(ro) reaches 0.85. 
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Therefore, the material is good for damping, power harvesting, and structural health 

monitoring. Dunn and Wienecke [20] used Eshelby’s method to analyze responses of 

piezoelectric materials having inclusions and inhomogeneitites. The closed-form 

expressions were formulated using four Eshelby tensors for spherical inclusions in 

transversely isotropic piezoelectric materials. 

Liu et al. [21] developed a micromechanical model to study the interaction 

between fiber deformations, pull-out stress and corresponding electrical field for AFC. 

The model consists of a single fiber surrounded by matrix. One part of the fiber was not 

bonded to the matrix and the other part was bonded to the matrix called a bridging area. 

The bridging fiber experienced elastic deformation, debonding from the surround matrix, 

and frictional pull out crack growth, which is called “fiber pull-out.” The result showed 

that both pull-out stress and electrical field changed with the pull-out displacement. 

Moreover, changes in the electric field can influence the pull-out stress and fiber 

displacement. From this study, they concluded the possibility to monitor and control the 

fracture behaviors electrically. Beckert and Kreher [22] established two micromechanical 

models for analyzing bulk film Interdigitaded Electrode (IDE)-actuator and composite 

IDE-actuator. For the bulk film, the FE model consists of 2D IDE containing electrode, 

isolator coating, and piezoelectric materials. For the composite model, they generated FE 

having 3D IDE containing isolator coating, electrode layer, dielectric interlayer, polymer 

matrix, homogenized composite layer and piezo-fiber. The results suggested that for a 

piezoelectric layer with thickness of 200μm, the electrode width should be 300μm and 

the space between the electrodes should be 1000μm. The results also suggested that 

reducing the thickness of the dielectric interlayer or enhancing the dielectric constant of 
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the layer can improve the overall performance. Nelson et al. [3] used a representative 

volume element (RVE) model generated using FE to study responses of an IDE on a bulk 

PZT substrate. The model was used to optimize the IDE design. They observed that an 

optimal actuation occurred at electrode widths equal to half of the substrate thickness. For 

thin substrates, the electrode spacing can be reduced to enable lower driving voltages. 

 

1.2 RESEARCH OBJECTIVE 

This study investigates the effects of fiber geometries and constituent’s properties 

on the overall electro-mechanical performance of piezoelectric fiber composites (PFC) 

which is composed of unidirectional PZT fibers and epoxy matrix. FE models are used to 

generate simplified microstructures of PFC. One fiber and five fiber micromechanical 

models are considered for the PFCs. Two kinds of PFCs are studied, which are AFC and 

MFC. AFC has a circular fiber while MFC has a square fiber. The effects of viscoelastic 

behaviors of the polymer matrix which is pronounced at elevated temperatures on the 

overall electro-mechanical response of composites are also examined. Responses of PFC 

are compared to theoretical and experimental data available in the literature. This thesis 

consists of the following major components: 

      Chapter II presents a general constitutive material model of piezoelectric materials 

that include time-dependent effect. Gibbs energy functions were used to derive coupled 

electro-mechanical relations with several independent field variables. A general 

time-integral function is applied for the mechanical, electrical, and piezoelectric relations. 

Parametric studies on the effects of applied field variables, i.e., stress and electric field, 
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on the overall time-dependent behavior are presented.    

      Chapter III presents micromechanical models using FE for AFC and MFC at three 

different fiber volume contents. Micromechanical models with a single fiber and five 

fibers dispersed in epoxy matrix are generated. The effective material properties obtained 

from the FE micromodels are compared to the analytical solutions and experimental data 

available in the literatures. Furthermore, we investigate the effect of the viscoelastic 

behavior of polymer matrix, i.e., LaRC-SI, at high temperature on the overall 

electro-mechanical properties of AFC and MFC. PZT fibers are considered for the AFC 

and MFC. Due to limited experimental data available for PZT properties at high 

temperatures, we made two assumptions during the modeling. First, only certain PZT 

properties that are available in the literature vary with temperatures while other PZT 

properties are kept constant at room temperature. Second, all PZT properties vary with 

temperatures following the available data. Finally, the effect of time-dependent 

piezoelectric constants of PZT combined with viscoelastic matrix on the long-term 

electro-mechanical responses of AFC and MFC is examined. 

      Chapter IV presents conclusion and future work. 
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CHAPTER II 
LINEARIZED PIEZOELECTRIC RESPONSES WITH A 

TIME-DEPENDENT EFFECT 

 

      PFC is a smart composite combining piezoelectric ceramics fibers and epoxy 

matrix. At room temperature, piezoelectric ceramics show mild time-dependent 

mechanical responses, while at high temperatures ceramics would experience significant 

creep. Heiling and Hardtl [23] showed that surface charges of piezoelectric ceramics 

under constant stress increase with time. Dielectric properties of most materials including 

piezoelectric ceramics are dependent on frequency and loading rates. Moreover, epoxy 

matrix has significant viscoelastic characteristics. Thus, overall electro-mechanical 

responses of PFCs can exhibit time-dependent behaviors, which become more 

pronounced at elevated temperatures.  

In this chapter, we examine time-dependent responses of piezoelectric materials. 

The first section of this chapter presents a general constitutive material model of linear 

piezoelectric materials under a constant temperature. The second section presents a 

general time-dependent relation for coupled electro-mechanical responses. 

Time-dependent responses of piezoelectric materials subject to various loading histories 

are then examined, which are discussed in section 2.3. 
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2.1 GENERAL PIEZOELECTRIC EQUATIONS 

      A general constitutive model for linear piezoelectric materials has been 

formulated, e.g., Damjanovic [24], Lines and Glass [25]. The constitutive model is 

derived by satisfying conservation of energy and balance of linear and angular 

momentum. The energy equation is described as in Eq. (2.1). Where G is the Gibbs free 

energy, U is the internal energy, T is the temperature and S is the entropy. The variable 

σ୧୨ is the scalar component of the stress tensor, ε୧୨ is the scalar component of the strain 

tensor, E୧ is the scalar component of the electric field and D୧  is the scalar component 

of the electrical displacement. 

G ൌ U െ TS െ σ୧୨ε୧୨ െ E୧D୧                    (2.1) 

Differentiating Eq. (2.1) with respect to each independent variable, we obtain relations in 

Eq. (2.2).  

dG ൌ dU െ TdS െ SdT െ σ୧୨dε୧୨ െ ε୧୨dσ୧୨ െ E୧dD୧  െ D୧ dE୧      (2.2) 

From the first law of thermodynamics, the change of the internal energy dU can 

be converted into heat dQ and work dW. The heat change dQ is equal to TdS. In 

piezoelectric material, the work done on a system is described by the mechanical work 

σ୧୨dε୧୨ and electrical energy E୧dD୧ . The change of the internal energy is written as: 

dU ൌ TdS ൅ σ୧୨dε୧୨ ൅ E୧dD୧                   (2.3) 

Substituting dU in Eq. (2.3) into Eq. (2.2) gives: 

dG ൌ െSdT െ ε୧୨dσ୧୨ െ D୧ dE୧                 (2.4) 
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      In this study, we focus on responses of materials under a constant temperature, 

which eliminates the temperature change dT. We can rewrite Eq. (2.4) as: 

dG ൌ െε୧୨dσ୧୨ െ D୧ dE୧                     (2.5) 

By taking σ୧୨ and E୧ as independent variables, strain and electric displacement are 

expressed as: 

ε୧୨ ൌ െ ൬ பG
பσ౟ౠ

൰
E
                        (2.6) 

D୧ ൌ െቀபG
பE౟
ቁ
σ
                        (2.7) 

The strain ε୧୨ is equal to the partial derivation of the Gibbs free energy w. r. t. the 

stress σ୧୨  at a constant electrical field E and the electrical displacement D୧  is 

determined by differentiating the Gibbs free energy w. r. t. the electrical field E୧ at a 

constant stress σ. 

dε୧୨ ൌ ቀபε౟ౠ
பσౡౢ

ቁ
E
∂σ୩୪ ൅ ቀபε౟ౠ

பEౡ
ቁ
σ
∂E୩                 (2.8) 

dD୧ ൌ ൬பD౟
பσౠౡ

൰
E
∂σ୨୩ ൅ ൬பD౟

பEౠ
൰
σ
∂E୨                 (2.9) 

      Equations (2.8) and (2.9) represent total derivative of the strain and electrical 

displacement fields. The coefficients of Eq. (2.8) and Eq. (2.9) are the first derivative 

functions under a constant electrical field or a constant stress. The electro-mechanical 

properties are defined as: 

ቀபε౟ౠ
பσౡౢ

ቁ
E
ൌ S୧୨୩୪E                          (2.10) 
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ቀபε౟ౠ
பEౡ

ቁ
σ
ൌ ൬பD౟

பσౠౡ
൰
E
ൌ d୧୨୩                    (2.11) 

൬பD౟
பEౠ
൰
σ
ൌ κ୧୨σ                          (2.12) 

     Where S୧୨୩୪E  is the scalar component of the elastic compliance, which relates a 

mechanical stress to strain under a constant electrical field; d୧୨୩ is the scalar component 

of the piezoelectric constant that measures the amount of strain generated by an applied 

electric field at zero (constant) stress or the amount of electric displacement due to an 

applied stress at zero (constant) electric field; κ୧୨σ  is the scalar component of the 

dielectric permittivity, which relates an electric field to an electric displacement under 

zero (constant) stress. 

      For a linearized piezoelectric relation, the above material parameters are constant, 

which are independent on field variables. Figure 2.1 illustrates a linear modulus as 

compared to a nonlinear (stress or strain dependent) modulus. Linearized piezoelectric 

relation gives reasonable predictions of electro-mechanical responses when prescribed 

loadings are sufficiently small. 
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Fig. 2.1  Linear and nonlinear modulus 

Substituting the material parameters in Eqs. (2.10)-(2.12) into Eq. (2.8) and Eq. (2.9), the 

linearized piezoelectric constitutive models are written as: 

ε୧୨ ൌ S୧୨୩୪E σ୩୪ ൅ d୩୧୨E୩                    (2.13) 

D୧ ൌ d୧୨୩σ୨୩ ൅ κ୧୨σE୨                     (2.14) 

Different constitutive relations can be obtained by choosing different independent 

variables as discussed in Damjanovic [24]. The relations are listed in Eq. (2.15) to Eq. 

(2.20). 

σ୧୨ ൌ C୧୨୩୪E ε୩୪ െ e୩୧୨E୩                    (2.15) 

D୧ ൌ e୧୨୩ε୨୩ ൅ κ୧୨ε E୨                      (2.16) 

ε୧୨ ൌ S୧୨୩୪D σ୩୪ ൅ g୩୧୨D୩                    (2.17) 

E୧ ൌ െg୧୨୩σ୨୩ ൅ β୧୨
σD୨                    (2.18) 
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σ୧୨ ൌ C୧୨୩୪D ε୩୪ െ h୩୧୨D୩                    (2.19) 

E୧ ൌ െh୧୨୩ε୩ ൅ β୧୨
εD୨                    (2.20) 

      Where C୧୨୩୪E  is the scalar component of the elastic stiffness under a constant 

electrical field. Variables e୧୨୩ , g୧୨୩  and h୧୨୩  are the scalar components of the  

piezoelectric constants; κ୧୨ε  is the scalar component of the dielectric permittivity under a 

constant strain; S୧୨୩୪D  is scalar component of the compliance under a constant electrical 

displacement; β୧୨
σ  is the inverse of dielectric susceptibility under a constant stress; C୧୨୩୪D  

is the scalar component of the elastic stiffness under a constant electrical displacement; 

β୧୨
ε  is the inverse of dielectric susceptibility under a constant strain. The relations among 

these material constants are summarized as follows: 

C୧୨୩୪E ൌ ቀபσ౟ౠ
பεౡౢ

ቁ
E
                       (2.21) 

e୧୨୩ ൌ ൬பD౟
பεౠౡ

൰
E
ൌ െቀபσ౟ౠ

பEౡ
ቁ
ε
                   (2.22) 

κ୧୨ε ൌ ൬பD౟
பEౠ
൰
ε
                        (2.23) 

S୧୨୩୪D ൌ ቀபε౟ౠ
பσౡౢ

ቁ
D

                       (2.24) 

g୧୨୩ ൌ ቀபε౟ౠ
பDౡ

ቁ
σ
ൌ െ൬பE౟

பσౠౡ
൰
D

                   (2.25) 

β୧୨
σ ൌ ൬பE౟

பDౠ
൰
σ
                        (2.26) 

C୧୨୩୪D ൌ ቀபσ౟ౠ
பεౡౢ

ቁ
D

                       (2.27) 
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h୧୨୩ ൌ ൬பE౟
பεౠౡ

൰
D
ൌ െቀபσ౟ౠ

பDౡ
ቁ
ε
                   (2.28) 

β୧୨
ε ൌ ൬பE౟

பDౠ
൰
ε
                        (2.29) 

The mutual relations among all piezoelectric constants are shown in Eq. (2.30) to Eq. 

(2.33). 

d୩୧୨ ൌ e୩୫୬S୫୬୧୨E ൌ κ୩୫
σ g୫୧୨                  (2.30) 

e୩୧୨ ൌ d୩୫୬C୫୬୧୨E ൌ κ୩୫
ε h୫୧୨                  (2.31) 

g୩୧୨ ൌ h୩୫୬S୫୬୧୨D ൌ β୩୫
σ d୫୧୨                  (2.32) 

h୩୧୨ ൌ g୩୫୬C୫୬୧୨D ൌ β୩୫
ε e୫୧୨                  (2.33) 

There are coupling between the properties determined at constant ε or σ and at 

constant D or E. Different loading conditions can result in different stiffness, compliance 

and dielectric constants of piezoelectric materials. For example, in absence of the 

mechanical strain, stress in Eq. 2.15 is written as: 

 σ୧୨ ൌ െe୩୧୨E୩                         (2.34) 

Substituting Eq. (2.31) into Eq. (2.34), the stress is given as: 

σ୧୨ ൌ െd୩୫୬C୫୬୧୨E E୩                      (2.35) 

Using σ୧୨ in Eq. (2.35), the electric displacement in Eq. 2.14 is rewritten as: 

D୧ ൌ െd୧୮୯d୨୫୬C୫୬୮୯E E୨ ൅ κ୧୨஢E୨                 (2.36) 
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Furthermore, in absence of the mechanical strain, the electric displacement in Eq. 2.16 is 

given as: 

D୧ ൌ κ୧୨க E୨                           (2.37) 

      Comparing the electric displacement in Eq. 2.36 and 2.37, we obtain the 

following relation: 

κ୧୨க E୨ ൌ െd୧୮୯d୨୫୬C୫୬୮୯E E୨ ൅ κ୧୨஢E୨ ൌ ൫κ୧୨஢ െ d୧୮୯d୨୫୬C୫୬୮୯E ൯E୨      (2.38) 

Thus, the relation between the dielectric constants determined at zero (constant) strain to 

the one at zero (constant) stress is given as: 

κ୧୨க ൌ κ୧୨஢ െ d୧୮୯d୨୫୬C୫୬୮୯E ൌ κ୧୨஢ ൬1 െ
ୢ౟౦౧ୢౠౣ౤Cౣ౤౦౧

E

ச౟ౠ
ಚ ൰ ൌ κ୧୨஢ሺ1 െ kଶሻ     (2.39) 

where k is the coupling coefficient. 

Following the similar procedure as above, we also can relate S୫୬୨୩E  to S୫୬୨୩D , 

which is given as: 

S୫୬୮୯D ൌ S୫୬୮୯E ൬1 െ ୢ౟౦౧ୢౠౣ౤Cౣ౤౦౧
E

ச౟ౠ
ಚ ൰ ൌ S୫୬୮୯E ሺ1 െ kଶሻ         (2.40) 

The coupling coefficient is given as: 

kଶ ൌ ୢ౟౦౧ୢౠౣ౤

ச౟ౠ
ಚ  C୫୬୮୯E                          (2.41) 
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2.2 TIME-DEPENDENT PIEZOELECTRIC EQUATIONS 

Responses of viscoelestic materials depend not only on the current loadings, but 

also histories of loadings. Examples of viscoelastic phenomena are creep and relaxation. 

Creep is increase in the deformation of materials under a constant stress. Relaxation is 

when a material is subject to a constant strain, the stress continuously decreases with 

time. 

This section adopts and extends the concept of linear viscoelastic materials for 

determining time-dependent responses of linear piezoelectric materials. There are several 

common linear viscoelastic material models, such as the Maxwell, Kelvin-Voigt (KV) 

and Standard Linear Solid (SLS) models. Spring-dashpot mechanical analogs are 

commonly used to describe behaviors of the above viscoelastic models. 

The mechanical analogy of the Maxwell model is shown in Fig. 2.2. It is a spring 

and a dashpot arranged in series. Suppose F(t) is the applied uniaxial force, Y is the 

spring constant, μ is the dashpot constant, ΔS(t) is the elongation of the spring, ΔD(t)  is 

the elongation of the dashpot, and Δ(t) is the total elongation due to the applied force. 

Satisfying compatibility and equilibrium relations and using constitutive models for the 

spring and dashpot lead to: 

∆ሺtሻ ൌ ∆Sሺtሻ ൅ ∆Dሺtሻ                     (2.42) 

Fሺtሻ ൌ E∆Sሺtሻ                        (2.43) 

Fሺtሻ ൌ µ∆ሶ Dሺtሻ ൌ µ ୢ
ୢ୲
∆Dሺtሻ                   (2.44) 

Taking time derivative of Eq. (2.42) gives 
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∆ሶ ሺtሻ ൌ ∆ሶ Sሺtሻ ൅ ∆ሶ Dሺtሻ                     (2.45) 

Substituting the constitutive models for the spring and dashpot to Eq. 2.45 leads to 

Fሶ

Y
൅ F

µ
ൌ ∆ሶ Sሺtሻ ൅ ∆ሶ Dሺtሻ ൌ ∆ሶ ሺtሻ                  (2.46) 

Associating the elongation ∆ሺtሻ to the strain ε(t) and the force F(t) to the stress σ(t), we 

obtain the governing equation for the Maxwell model. 

εሶ ൌ ஢ሶ
Y
൅ ஢

µ
                          (2.47) 

 

 

Fig. 2.2  Maxwell model[26] 

 

When a constant strain is applied, the solution to the governing equation in Eq. 

(2.47) gives a relaxation modulus Y(t) in Eq. (2.48); where τR is called the relaxation 

time. When a constant stress is prescribed, we obtain a creep compliance J(t) in Eq. 

(2.49). The relaxation stress and creep strain for the Maxwell model are illustrated in Fig. 

2.3 and Fig. 2.4, respectively. 



26 

 

 

 

Yሺtሻ ൌ Yeିቀ
Y
µቁ୲ ൌ Yeି

౪
ಜR                   (2.48) 

Jሺtሻ ൌ ଵ
Y
ሺ1 ൅ ୲

µ
ሻ                       (2.49) 

 

 

Fig. 2.3  Relaxation stress of the Maxwell model 
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Fig. 2.4  Creep strain of the Maxwell model 

It is seen that the stress relaxes to zero in the Maxwell model. The creep strain of 

the Maxwell model linearly increases with time. The Maxwell model is suitable to 

simulate responses of viscoelastic fluid-like materials.  

      The mechanical analog for the KV model is shown in Fig. 2.5. It has a spring and 

a dashpot arranged in parallel. Following a procedure as in the Maxwell model, we can 

form the governing equation of the KV model in Eq. (2.50). Applying a constant strain, 

the relaxation modulus Y(t) of the KV model is obtained as given in Eq. (2.51) where 

δሺtሻ is the Dirac delta function. Applying a constant stress to the governing equation, we 

obtain the creep compliance J(t) of the KV model, which is given in Eq. (2.52). The 

relaxation stress and creep strain of the KV model are illustrated in Fig. 2.6 and Fig. 2.7. 

σ ൌ Yε ൅ µεሶ                          (2.50) 
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Yሺtሻ ൌ µδሺtሻ ൅ Y                       (2.51) 

Jሺtሻ ൌ ଵ
Y
ሺ1 െ eିቀ

Y
µቁ୲ሻ                     (2.52) 

 

Fig. 2.5  Kelvin-Voigt model[26] 

 

Fig. 2.6  Relaxation stress of the KV model 
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Fig. 2.7  Creep strain of the KV model 

 

The relaxation stress in the KV model is immediately reached to a constant value. 

Thus, the KV model is not suitable to simulate relaxation of viscoelastic materials.  

Creep strain shows a gradual increase with time, approaching an asymthotic value, but it 

is unable to incorporate the elastic (instantaneous) response due to a sudden applied 

stress. 

      Both Maxwell and KV models are not suitable for viscoelastic solid-like 

materials. A mechanical analog model that is suitable for viscoelastic solid-like material 

is the SLS model, which is shown in Fig. 2.8. The SLS model combines a spring and a 

Maxwell model in parallel or a spring and a KV model in series. The governing equation 

of the SLS model is shown in Eq. (2.53). Applying a constant strain, we obtain a 

relaxation modulus Y(t) of the SLS model which is given as Eq. (2.54). Applying a 
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constant stress, we determine a creep compliance J(t) of the SLS model as shown in Eq. 

(2.55). The relaxation time is defined as τR ൌ
Y
µ
, while the creep time is given as 

τC ൌ
YାYభ
YYభ

µ. The relaxation stress and creep strain of the SLS model is illustrated in Fig. 

2.9 and Fig. 2.10. 

஢
µ
൅ ஢ሶ

Y
ൌ Yభ

µ
ε ൅ ሾ1 ൅ Yభ

Y
ሿεሶ                      (2.53) 

Yሺtሻ ൌ Yeି
౪
ಜR ൅ Yଵ                       (2.54) 

Jሺtሻ ൌ ଵ
Yభ
ሺ1 െ Y

YభାY
eି

౪
ಜCሻ                    (2.55) 

 

 

Fig. 2.8  Standard Linear Solid model[26] 
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Fig. 2.9  Stress relaxation of SLS model 

 

Fig. 2.10  Strain creep of SLS model 
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      The relaxation stress shows a gradual decrease to a constant value and the creep 

strain exhibits a gradual increase to a constant value. Under both prescribed boundary 

conditions, the SLS model is capable of incorporating the elastic (instantaneous) 

responses. Thus, the SLS model is suitable to represent a viscoelastic solid. 

      The above expressions for the creep compliance and relaxation modulus are valid 

under a constant stress and a constant strain, respectively. For a general loading 

condition, the constitutive relations for linear viscoelastic materials can be derived by 

adopting principles of superposition and proportionality. Due to a step stress input 

applied at time=0, illustrated in Fig. 2.11, the strain response is written in Eq. (2.56), 

which is illustrated in Fig. 2.12. 

 

 

Fig. 2.11  A step stress input 

 

εሺtሻ ൌ σ୭Jሺtሻ                         (2.56) 
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Fig. 2.12  Strain response[26] 

 

      Figure 2.13 shows a constant stress that is applied for a finite time and at time tଵ, 

the stress is removed. We use the superposition principle to determine the strain 

responses due to the above prescribed stress history. The first load starts at time=0 with a 

magnitude σ୭and this load is held constant. The second load is applied at tଵ with a 

magnitude of െσ୭. The strain response at time t after tଵ is written in Eq.(2.57) and 

illustrated in Fig. 2.14. 

 

 

Fig. 2.13  Load and unload stress for superposition[26] 

 

εሺtሻ ൌ σ୭Jሺtሻ െ σ୭Jሺt െ tଵሻ                  (2.57) 
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Fig. 2.14  Two step response use superposition[26] 

 

      For an arbitrary stress input in Fig. 2.15, we can use the superposition principle by 

considering the arbitrary input as multiple step inputs applied at different times. The 

arbitrary stress input is written in Eq. (2.58) where σ෥ is an approximate value of σ and 

1(t) represents a unit step function. The strain response is the sum of each strain due to 

the multiple step stresses, which is given in Eq. (2.59). 

σ෥ሺsሻ ൌ σሺ0ሻ1ሺsሻ ൅ ሾσሺtଵሻ െ σሺ0ሻሿ1ሺs െ tଵሻ ൅ ൅ڮ ሾσሺt୩ାଵሻ െ σሺt୩ሻሿ1ሺs െ t୩ାଵሻ ൅

൅ڮ ሾσሺt୬ሻ െ σሺt୬ିଵሻሿ1ሺs െ t୬ሻ                 (2.58) 

ε෤ሺtሻ ൌ σሺ0ሻJሺtሻ ൅ ሾσሺtଵሻJሺt െ tଵሻ െ σሺ0ሻJሺt െ tଵሻሿ ൅ ڮ

൅ ሾσሺt୬ሻJሺt െ t୬ሻ െ σሺt୬ିଵሻJሺt െ t୬ሻሿ 

ൌ ∑ Jሺt െ t୩ሻሾσሺt୩ሻ െ σሺt୩ିଵሻሿ୬ିଵ
୩ୀ଴ ൅ σሺ0ሻJሺtሻ                     (2.59) 
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Fig. 2.15  Approximation of a stress input by a superposition of step stress[25] 

 

In Eq. (2.59), ε෤ሺtሻ denotes an approximate value of strain. We both multiply and divide 

∑ Jሺt െ t୩ሻሾσሺt୩ሻ െ σሺt୩ିଵሻሿ୬ିଵ
୩ୀ଴  by ሺt୩ െ t୩ିଵሻ in Eq. (2.59). We could rewrite it as: 

ε෤ሺtሻ ൌ σሺ0ሻJሺtሻ ൅ ∑ Jሺt െ t୩ሻ
ሾ஢ሺ୲ౡሻି஢ሺ୲ౡషభሻሿ

ሺ୲ౡି୲ౡషభሻ
୬ିଵ
୩ୀ଴ ሺt୩ െ t୩ିଵሻ     (2.60) 

As the number of steps approaches infinite and t୩ െ t୩ିଵ  approaches zero, σ෥ሺtሻ 

approaches σሺtሻ and ε෤ሺtሻ approaches εሺtሻ. Equation (2.60) is rewritten as  

εሺtሻ ൌ σሺ0ሻJሺtሻ ൅ න Jሺt െ sሻ
dσሺtሻ
ds ds

୲

଴
 

ൌ σሺ0ሻJሺtሻ ൅ ׬ Jሺt െ sሻσሶ ሺsሻds୲
଴                 (2.61) 

Alternative superposition method can be used to express a strain response due to 

an arbitrary stress input, as illustrated in Fig. 2.16. The arbitrary input is regarded as 

multiple impulse loadings. The approximated stress function is given in Eq. (2.62) and 

the approximated strain response is written in Eq. (2.63). 
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Fig. 2.16  Approximation of a stress history by pulses[26] 

 

σ෥ሺsሻ ൌ σሺ0ሻሾ1ሺsሻ െ 1ሺs െ tଵሻሿ ൅ ൅ڮ σሺt୩ሻሾ1ሺs െ t୩ሻ െ 1ሺs െ t୩ାଵሻሿ ൅ ൅ڮ

σሺt୬ሻ1ሺs െ t୬ሻ                       (2.62) 

ε෤ሺtሻ ൌ σሺ0ሻሾJሺtሻ െ Jሺt െ tଵሻሿ ൅ σሺtଵሻሾJሺt െ tଵሻ െ Jሺt െ tଶሻሿ…

൅ σሺt୩ାଵሻሾJሺt െ t୩ାଵሻ െ Jሺt െ t୩ାଶሻሿ ൅ ൅ڮ σሺt୬ሻJሺ0ሻ 

ൌ ∑ σሺt୩ሻሾJሺt െ t୩ሻ െ Jሺt െ t୩ାଵሻሿ ൅ σሺt୬ሻJሺ0ሻ୬ିଵ
୩ୀ଴        (2.63) 

By multiplying and dividing ∑ σሺt୩ሻሾJሺt െ t୩ሻ െ Jሺt െ t୩ାଵሻሿ୬ିଵ
୩ୀ଴  in Eq. (2.63) by 

ሺt୩ାଵ െ t୩ሻ the strain is rewritten as: 

ε෤ሺtሻ ൌ σሺt୬ሻJሺ0ሻ െ ∑ σሺt୩ሻ
ሾJሺ୲ି୲ౡశభሻିJሺ୲ି୲ౡሻሿ

୲ౡశభି୲ౡ
୬ିଵ
୩ୀ଴ ሺt୩ାଵ െ t୩ሻ     (2.64) 

As the number of pulses approaches infinite and limit of t୩ାଵ െ t୩ goes to zero, σ෥ሺsሻ 

will approach σሺsሻ and ε෤ሺsሻ will approach εሺsሻ. The strain at time t is given as: 

εሺtሻ ൌ σሺtሻJሺ0ሻ െ න σሺsሻ
dJሺt െ sሻ

ds ds
୲

଴
 

ൌ σሺtሻJሺ0ሻ ൅ ׬ σሺsሻJሶሺt െ sሻds୲
଴                 (2.65) 
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Using similar procedures, the relaxation function is written as: 

σሺtሻ ൌ εሺtሻYሺ0ሻ ൅ ׬ Yሺt െ sሻεሶሺsሻds୲
଴                (2.66) 

σሺtሻ ൌ εሺtሻYሺ0ሻ ൅ ׬ εሺsሻYሶ ሺt െ sሻds୲
଴                (2.67) 

The above relations express time-dependent mechanical behaviors which are 

generalized for determining time-dependent electro-mechanical behaviors for 

piezoelectric material, written as: 

ε୧୨ሺtሻ ൌ ׬ S୧୨୩୪E ሺt െ sሻ ୢ஢ౡౢ
ୢୱ

ds୲
଴ ൅ ׬ d୩୧୨ሺt െ sሻ ୢEౡ

ୢୱ
ds୲

଴          (2.68) 

D୧ሺtሻ ൌ ׬ d୧୨୩ሺt െ sሻ ୢ஢ౠౡ
ୢୱ

ds୲
଴ ൅ ׬ κ୧୨஢ሺt െ sሻ୲

଴
ୢEౠ
ୢୱ
ds          (2.69) 

It is also possible to form time-dependent integral models for other piezoelectric relations 

in Eqs. (2.15)-(2.20). 

 

 

2.3 PARAMETRIC STUDIES 

In this section, we examine the time-dependent piezoelectric responses in 

Eq.(2.68) and Eq.(2.69) subject to various electro-mechanical loadings. Most materials 

exhibit time-dependent responses. Depending on the loading and environmental 

conditions, the time-dependent effects could be negligible. In some cases, the 

time-dependent effect is pronounced in that it is necessary to incorporate its effect on the 

overall performance of materials. Polyvinylidene fluoride (PVDF) is a thermoplastic 
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polymer which has piezoelectric properties. It has significant time-dependent mechanical 

behaviors such as creep and relaxation [27] [28] even at room temperature. Like most 

polymers, dielectric properties of PVDF also relax with time. Fett and Thun [29] 

conducted creep tests at room temperature and various stresses on poled and unpoled 

PZTs for 30000 seconds. Significant time-dependent behaviors are observed for both 

poled and unpoled PZTs. Heiling and Hardtl [23] discussed an experimental observation 

on time-dependent surface charge of PZT. A soft PZT ceramic is tested under various 

constant stresses at zero electric field during 100 seconds and the charge responses are 

monitored. The recorded charges at several constant stresses are shown in Fig. 2.17 and 

the charge function of time is given in Eq. (2.70). Where Q୧ is the instantaneous charge. 

The value of α  is from 0.0498 to 0.0442 for stresses below 80MPa and t୭ ൌ

1, Q୭=1μC. 

Qሺtሻ ൌ Q୧ ൅ Q୭ሺ
୲
୲౥
ሻ஑                   (2.70) 

 

 

Fig. 2.17  The charge response of PZT ceramic under constant stress[30] 
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Where Q divided by a surface area, having a unit normal vector ni, is the electrical 

displacement Di. The time-dependent response of the electrical displacement is expressed 

as: 

D୧ ൌ d୧୨୩ሺtሻσ୨୩ 

σ୨୩ ൌ σ୭                            (2.71) 

σ୭ is the constant stress. We take the piezoelectric constant d୧୨୩ as: 

d୧୨୩ሺtሻ ൌ di୧୨୩ ൅ do୧୨୩ሺtሻ஑                    (2.72) 

Where di୧୨୩ is the scalar component of the instantaneous charge response and do୧୨୩ is 

the scalar component of the transient charge response. 

Fett and Thun [29] showed that the PZT strain increases by 100% under 15.4 MPa 

in 100 seconds. To simulate the creep data, we use exponential functions to express the 

time-dependent compliance. The function is given in Eq. (2.73). The corresponding linear 

elastic Poisson’s ratios νij are assumed to be constant. 

S୧୨୩୪E ሺtሻ ൌ So୧୨୩୪ሺCଵ െ CଶeିB୲ሻ                    (2.73) 

The time-dependent dielectric constants of the above PZT samples are not 

available in the literatures. However, the dielectric constant relaxes with time under 

applied electrical fields as discussed by Hall [30]. The dielectric constant decreases about 

10% in 100 seconds [30]. To simulate the available data, we use an exponential function 

of time: 
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κ୧୨஢ሺtሻ ൌ κo୧୨஢ሺCଷ ൅ CସeିB୲ሻ                     (2.74) 

In this study, we take properties of PZT5J1 to examine the time-dependent 

behaviors. The x3 axis is the polarization axis. The following values are used at initial 

time (constant values): சయయ
ಚ

ச౥
ൌ 2600, κ୭ ൌ 8.854 ൈ 10ିଵଶ F

୫
, SଷଷଷଷE ൌ 22.7 ൈ 10ିଵଶmଶ/, 

dଷଷଷ ൌ 500 ൈ 10ିଵଶC/N. Referring to Fig 2.17, we use a stress of 50 MPa and take α to 

be 0.0498. The value of Q୧ ൌ Q୭ ൌ 1µC for 50 MPa stress, which results in diଷଷଷ ൌ

doଷଷଷ ൌ 500 ൈ 10ିଵଶC/N. The piezoelectric constant is given in Eq. (2.75). Moreover, 

we assumed that the compliance increases by 100% after 100 seconds, so we take 

Cଵ ൌ 2 and Cଶ ൌ 1. We assumed that the dielectric constant relax by 10% after 100 

seconds so we take Cଷ ൌ 1, Cସ ൌ 0.1, and B=0.05. The compliance and permittivity 

functions are given in Eq.(2.76) and Eq.(2.77).  

dଷଷଷሺtሻ ൌ ሺ500 ൅ 500ሺtሻ଴.଴ସଽ଼ሻ  ൈ 10ିଵଶC/N             (2.75) 

SଷଷଷଷE ሺtሻ ൌ 22.7ሺ2 െ 1eି଴.଴ହ୲ሻ ൈ 10ିଵଶGPaିଵ            (2.76) 

κଷଷ஢ ሺtሻ ൌ 2600ሺ1 ൅ 0.1eି଴.଴ହ୲ሻ ൈ 8.854 ൈ 10ିଵଶ F
୫

          (2.77) 

Here, we investigate time-dependent responses of piezoelectric materials subject 

to various boundary conditions. We applied the same scale of stress as in the literature 

[30] which is 50 MPa and we choose the electrical field 10଺V/m to have comparable 

strain responses as the mechanical strains. The following case studies are considered. 
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Case 1: Response due to a constant stress σଷଷ ൌ σ୭ ൌ 50MPa and zero electric field. 

      The mechanical and electrical responses are shown in Eq. (2.78). Figure 2.18 

illustrates the creep strain response under the constant stress. Figure 2.19 represents the 

electrical displacement response under the constant stress. The strain creeps 100% during 

100 seconds and the electrical displacement creeps 15% during 100 seconds. In this case, 

the time-dependent responses mainly depend on the material properties. 

εଷଷሺtሻ ൌ SଷଷଷଷE ሺtሻσ୭ 

Dଷሺtሻ ൌ dଷଷଷሺtሻσ୭                      (2.78) 

 

Fig. 2.18  Strain response under constant stress 
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Fig. 2.19  Electrical displacement response under constant stress 

 

Case 2: Response due to constant electrical field Eଷ ൌ E୭ ൌ 10଺V/m and zero stress. 

The strain and electric displacement are given in Eq. (2.79). Figure 2.20 shows 

the strain response under the constant electrical field. The strain creeps 15% during 100 

seconds. Figure 2.21 shows the electrical displacement response under the constant 

electrical field. The electrical displacement relaxes 10% under constant electrical field. 

The above two cases present significant time-dependent responses due to the significant 

time-dependent piezoelectric and dielectric constants. 

εଷଷሺtሻ ൌ dଷଷଷሺtሻEଷ 

Dଷሺtሻ ൌ κଷଷ஢ ሺtሻEଷ                       (2.79) 

 



43 

 

 

 

 

Fig. 2.20  Strain response under constant electrical field 

 

 

Fig. 2.21  Electrical displacement response under constant electrical field 
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Case 3: Response due to a ramp stress σଷଷ ൌ βt ൌ 0.5t MPa and zero electrical field 

The expressions for the mechanical and electrical responses are given in Eq. 

(2.80). Figure 2.22 shows the strain response with the time-dependent compliance, which 

is compared to the response with constant (time-independent) compliance. The strain 

with the time-dependent compliance rises from 0 to 0.002 which is higher than the 

response with the constant compliance. The strains also show some nonlinearity with 

time, which is due to the accumulated responses from previous loading histories. Figure 

2.23 shows the electrical displacement response due to the ramp stress. The electrical 

displacement rises from zero to 0.055 with the time-dependent piezoelectric constant and 

is higher than the response with the constant piezoelectric constant, which is expected. 

εଷଷሺtሻ ൌ βන SଷଷଷଷE ሺt െ sሻds
୲

଴
 

Dଷሺtሻ ൌ β׬ dଷଷଷሺt െ sሻds୲
଴                    (2.80) 

 

Fig. 2.22  Strain response under time-dependent stress 
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Fig. 2.23  Electrical displacement response under time-dependent stress 

Case 4: Response due to a ramp electrical field Eଷ ൌ αt ൌ 10ସt V/m 

The mechanical and electrical responses are expressed in Eq. (2.81). Figure 2.24 

shows the strain responses due to the above electric field. The strain with the 

time-dependent piezoelectric constant is much more significant than the one with a 

constant material property. The strain rises from 0 to 1.1 ൈ 10ିଷ and the response is less 

than response under a constant load in Fig. 2.18. Figure 2.25 shows the electrical 

displacement responses. We found that the time-dependent response shows less electrical 

displacement due to the relaxation permittivity. 

εଷଷሺtሻ ൌ αන dଷଷଷሺt െ sሻds
୲

଴
 

Dଷሺtሻ ൌ α׬ κଷଷ஢ ሺt െ sሻ୲
଴ ds                   (2.81) 
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Fig. 2.24  Strain response under time-dependent electrical field 

 

Fig. 2.25  Electrical displacement response under time-dependent electrical field 
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Case 5: Responses due to constant stress and time-dependent electrical field σଷଷ ൌ σ୭ ൌ

50MPa, Eଷ ൌ αt ൌ 10ସt V/m 

The mechanical and electrical responses are given in Eq. (2.82). Fig. 2.26 shows 

the strain response having the time-dependent compliance and time-dependent 

piezoelectric constant under constant stress and ramp electric field. The response is much 

more pronounced that the one obtained with constant properties. We show that the 

time-dependent properties significantly affect the strains. Figure 2.27 shows the electrical 

displacement response under a constant stress and ramp electrical field. It is seen that 

under the combined electro-mechanical loading, the time-dependent responses show 

more pronounced response. 

εଷଷሺtሻ ൌ SଷଷଷଷE ሺtሻσ୭ ൅ αන dଷଷଷሺt െ sሻds
୲

଴
 

Dଷሺtሻ ൌ dଷଷଷሺtሻσ୭ ൅ α׬ κଷଷ஢ ሺt െ sሻ୲
଴ ds              (2.82) 
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Fig. 2.26  Strain response under constant stress and time-dependent electrical field 

 

 

Fig. 2.27  Electrical displacement response under constant stress and time-dependent electrical field 
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Case 6: Response due to time-dependent stress and time-dependent electrical field 

σଷଷ ൌ βt ൌ 0.5t MPa, Eଷ ൌ αt ൌ 10ସt V/m 

The mechanical and electrical responses are shown in Eq. (2.83). Figure 2.28 

shows the strain response having time-dependent compliance and time-dependent 

piezoelectric constant under ramp stress and electrical field. Figure 2.29 shows the 

electrical displacement response having time-dependent piezoelectric constant and 

permittivity subject to the ramp stress and electrical field. It is seen that when the 

time-dependent effects are considered, response of materials could be differ significantly 

compared to when constant properties are considered.  

εଷଷሺtሻ ൌ βන SଷଷଷଷE ሺt െ sሻds
୲

଴
൅ αන dଷଷଷሺt െ sሻds

୲

଴
 

Dଷሺtሻ ൌ β׬ dଷଷଷሺt െ sሻds୲
଴ ൅ α׬ κଷଷ஢ ሺt െ sሻ୲

଴ ds            (2.83) 

 

Fig. 2.28  Strain response under time-dependent stress and time-dependent electrical field 
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Fig. 2.29  Electrical displacement response under time-dependent stress  

and time-dependent electrical field  
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CHAPTER III 
MICROMECHANICAL MODELS FOR PIEZOCOMPOSITES 

 

      This chapter determines effective electro-mechanical and piezoelectric responses 

of piezoelectric fiber composites (PFCs) using micromechanical models. Microstructures 

of active fiber composites (AFCs) and macro fiber composites (MFCs) are modeled using 

finite element (FE). To reduce complexity in generating the microstructures of the AFC 

and MFC, the existence of the interdigitated electrode fingers placed on the top and 

bottom surfaces is ignored and an electric field is assumed uniformly distributed along 

the fiber longitudinal axis. Available micromechanical models and experimental data in 

the literatures are used to validate the presented micromechanical models. The effect of 

viscoelastic matrix, which is pronounced at elevated temperatures, on the overall 

performance of PFCs is also examined. 

 

3.1 CHARACTERISTICS OF PFC 

      Piezoelectric ceramics have high electro-mechanical properties compared to 

those of piezoelectric polymers, but their brittle characteristic makes them easy to break 

and less flexible. PFC made of PZT fibers dispersed in epoxy matrix improves the 

flexibility of transducers and enhances the resistance to brittle failure. The existence of 

polymer matrix prevents catastrophic failure due to fiber breakage and forms pliable 

piezocomposites, which makes PFC suitable for large scale actuation. Figure 3.1 shows 

the flexibility of PFC. 
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Fig. 3.1  Flexibility of PFC(Materials Systems Inc.) 

 

      The microstructure of PFC consists of interdigitated electrode (IDE), epoxy 

matrix and piezoceramic fibers. The IDE is printed on a Kapton substrate which is placed 

on the top and bottom surfaces of the PFC. The PZT fibers are aligned and embedded in 

epoxy matrix. The IDEs are used to induce electric field that runs through the 

longitudinal fiber axis. The space between the fiber sheet and IDEs are filled with epoxy 

which bonds the fibers and IDEs and prevents crack propagation in the ceramic fibers. 

This study deals with two kinds of PFCs, which are AFC and MFC. The microstructure 

of AFC is schematically shown in Fig. 3.2. The microstructure of MFC is illustrated in 

Fig. 3.3. 
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Fig. 3.2  Structure of active fiber composite[2] 

 

 

Fig. 3.3  Structure of macro fiber composite (Smart Material Corp.) 
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The microstructures of AFC and MFC are similar except in the shape and type of 

the fibers. The MFC uses fibers with a rectangular cross-section and AFC uses fibers 

with a circular cross-section. Various PZT fibers have been used for both AFC and MFC. 

Increasing fiber volume fractions in the piezo composites leads to better actuation and 

higher overall properties. MFC can have higher volume fractions than the AFC due to the 

restriction in the fiber cross-section. For example in a unit area of a square cross-section, 

the largest area that a circular cross-section can be superposed inside the square 

cross-section is 0.785. The fiber volume content of MFC could reach up to 0.824[9]. 

Although it is possible to create MFC with higher fiber contents than 0.824, less amount 

of epoxy matrix decreases the bonding between the fiber and matrix constituents. Figure 

3.4(a) and 3.4(b) illustrate the representations of AFC and MFC.  

 

(a)                                                (b) 

Fig. 3.4  (a) Photo of AFC (CeraNova Corp.)  (b) Photo of MFC (Smart Material Corp.) 
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3.2 MICROMECHANICAL MODELS OF PFC MICROSTRUCTURES 

Micromechanical models for AFC and MFC are generated using FE. Two 

unit-cell models are considered. The first unit-cell model consists of a single fiber of a 

square or circular cross-section surrounded by epoxy matrix. The second unit-cell model 

consists of five fibers embedded in epoxy. We ignore the existence of the Kapton 

substrate and electrodes as the size of the Kapton substrate and electrodes are small 

compared to the size of the epoxy and fiber. The average diameter of PZT fibers in the 

AFC is 0.25mm. The thickness of Kapton substrate is 0.0254mm and the thickness of 

copper electrode is less than 0.0196mm [4]. We assume that the electric field is 

distributed uniformly along the longitudinal fiber axis. Different sizes of fibers constitute 

different fiber area (or volume fractions). In this study, AFC and MFC having 20%, 40% 

and 60% fiber contents are generated by varying the fiber dimensions. Figure 3.5 shows 

schematic representations of unit-cell models of AFC and MFC having a single fiber and 

Table 3.1 reports the sizes of fibers for the three volume contents. Where R represents the 

radius of the AFC fiber and L represents the side length of the MFC fiber. 

 

Fig. 3.5  Micromechanical models with a single fiber 
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Table 3.1  The fiber sizes of micromechanical models 

Type/volume 
fractions 

60 40 20 

AFC R=0.437 R=0.357 R=0.252 

MFC L=0.775 L=0.632 L=0.447 

 

In addition, multi-fiber models are generated. We create unit-cells with multiple 

fibers and compare the effective responses of the micromechanical models with one and 

five fibers. We generate the multiple fiber unit-cell models for composite with 40% fiber 

volume fraction, which are shown in Fig. 3.6. 

 

 

Fig. 3.6  Five fiber micromechanical model (vf=40%) 
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The micromechanical models are generated using ABAQUS FE software. 

Three-dimensional solid element, C3D8E, is used. The single fiber model has 10000 

elements and 5 fibers model has 50000 elements. The AFC and MFC FE unit-cell models 

are presented in Figs. 3.7 - 3.10. 

 

Fig. 3.7  Finite element model of AFC 

 

 

Fig. 3.8  Finite element model of MFC 
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Fig. 3.9  5 fibers finite element model of AFC 

 

Fig. 3.10  5 fibers finite element model of AFC 
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      To determine effective properties of the AFC and MFC, we prescribe different 

boundary conditions. Figure 3.11 illustrates a cubic element with surface boundaries 1 - 

6. The surfaces 1, 2, 3 denote surfaces with a unit outward normal in the positive x1,x2 

and x3 directions, respectively. The surfaces 4, 5, 6 indicate surfaces with a unit outward 

normals in the negative x1, x2, and x3 directions, respectively. Different boundary 

conditions are prescribed to determine the effective electro-mechanical and piezoelectric 

constants, which are summarized in Table 3.2. Variable U1=0 represents the 

displacement component in x1 direction, σ11=σo represents the stress applied to a surface, 

whose unit outward normal in x1 direction with a traction component in x1-direction. 

C=Q represents the applied charge Q. 

     To characterize the moduli Y11 and Y33, we apply constant stresses σ11=σo and 

σ33=σo, respectively. The strain responses ε11 and ε33 are monitored and the elastic moduli 

are determined by: 

Yଵଵ ൌ
σଵଵ 
εଵଵ

, Yଶଶ ൌ Yଵଵ 

Yଷଷ ൌ
஢యయ
கయయ

                             (3.1) 

The Poisson’s ratios are calculated as: 

νଵଷ ൌ െ
εଷଷ
εଵଵ

 due to σଵଵ 

νଵଶ ൌ െ
εଶଶ
εଵଵ

 due to σଵଵ 

νଶଷ ൌ െ கయయ
கమమ
 due to σଶଶ ൌ σଵଵ                    (3.2) 
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For characterizing the shear moduli G12 and G13, we apply constant stresses σ12=σo 

and σ13=σo, respectively. We calculate the shear strains γ11 and γ33 and determine the 

shear moduli as: 

Gଵଶ ൌ
σଵଶ
γଵଶ

 

Gଷଵ ൌ
ଷଵߪ
ଷଵߛ

 

Gଶଷ ൌ Gଷଵ                             (3.3) 

      For determining the piezoelectric constants, we use piezoelectric relation in Eq. 

2.15 and the compliance matrix in Eq. 3.4. The elastic moduli and Poisson’s ratio in the 

compliance matrix are given in Eqs. (3.1)-(3.3). The compliance matrix is the inverse of 

the stiffness matrix (Eq. 3.5). We apply σ31=σo and surface charge Q for calculating 

eଵଵଷ. We apply σ11=σo and surface charge Q for determining eଷଵଵ. Then we apply σ33=σo 

and surface charge Q for obtaining eଷଷଷ. The detailed calculation is presented in Eq. 3.6. 

 

ሾSሿ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

ଵ
Yభభ

ିVమభ
Yమమ

ିVయభ
Yయయ

0 0 0
ିVభమ
Yభభ

ଵ
Yమమ

ିVయమ
Yయయ

0 0 0
ିVభయ
Yభభ

ିVమయ
Yమమ

ଵ
Yయయ

0 0 0

0 0 0 ଵ
ଶGమయ

0 0

0 0 0 0 ଵ
ଶGయభ

0

0 0 0 0 0 ଵ
ଶGభమے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

             (3.4) 
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ሾCሿ ൌ ሾSሿିଵ                          (3.5) 

eଷଵଵ ൌ
CଵଵଵଵE εଵଵ ൅ CଵଵଶଶE εଶଶ ൅ CଵଵଷଷE εଷଷ െ σଵଵ

Eଷ
, eଷଶଶ ൌ eଷଵଵ 

eଷଷଷ ൌ
CଷଷଵଵE εଵଵ ൅ CଷଷଶଶE εଶଶ ൅ CଷଷଷଷE εଷଷ െ σଷଷ

Eଷ
 

eଵଵଷ ൌ eଵଷଵ ൌ eଶଶଷ ൌ eଶଷଶ ൌ
CభయభయE கభయି஢భయ

Eభ
              (3.6) 

      For characterizing the dielectric constants, we only apply surface charge on x1 and 

x3 direction, respectively. The dielectric constants are determined from: 

κଵଵ஢ ൌ
Dଵ
Eଵ
, κଶଶ஢ ൌ κଵଵ஢  

κଷଷ஢ ൌ Dయ
Eయ

                             (3.7) 

 

Fig. 3.11  Surface numbers of boundary conditions 
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Table 3.2  Boundary conditions to determine effective properties 

Property/surface 1 2 3 4 5 6 

Y11=Y22 σ11=σo   U1=0 U2=0 U3=0 

Y33   σ33=σo U1=0 U2=0 U3=0 

G23=G31 
U2=0 

U3=0 

U2=0 

U3=0 

σ31=σo 

U2=0 

U3=0 

U2=0 

U3=0 

U1=0 

U2=0 

U3=0 

U2=0 

U3=0 

G12 

σ12=σo 

U2=0 

U3=0 

U2=0 

U3=0 

U2=0 

U3=0 

U2=0 

U3=0 

U2=0 

U3=0 

U1=0 

U2=0 

U3=0 

eଵଵଷ ൌ eଵଷଵ
ൌ eଶଶଷ ൌ eଶଷଶ 

C=Q 

U2=0 

U3=0 

U2=0 

U3=0 

σ31=σo 

U2=0 

U3=0 

C=-Q 

U2=0 

U3=0 

U2=0 

U3=0 

U1=0 

U2=0 

U3=0 

eଷଵଵ ൌ eଷଶଶ σ11=σo  C=Q U1=0 U2=0 
C=-Q 

U3=0 

e333   
σ33=σo 

C=Q 
U1=0 U2=0 

C=-Q 

U3=0 

κ11/κo 

C=Q 

U2=0 

U3=0 

U2=0 

U3=0 

U2=0 

U3=0 

C=-Q 

U2=0 

U3=0 

U2=0 

U3=0 

U1=0 

U2=0 

U3=0 

κ33/κo   C=Q U1=0 U2=0 
C=-Q 

U3=0 
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3.3 EFFECTIVE ELECTRO-MECHANICAL PROPERTIES OF AFC AND MFC 

We now verify the micromechanical models by comparing the calculated 

effective material properties with the ones obtained from the analytical results and 

experimental data available in the literatures. We use analytical solutions in Odegard [16] 

and experimental data reported by Nelson [3]. Odegard studied piezocomposites having 

PZT-7A fibers and LaRC-SI matrix. The properties of the constituents at room 

temperature are given in Table 3.3 and Table 3.4. The longitudinal fibers are placed in the 

x3-direction. The piezocomposites reported by Nelson et al. [3] consist of PZT-5A fibers 

manufactured by Sol-Gel process and epoxy. The reported properties of the PZT-5A 

fibers are given in Table 3.5. All other electro-mechanical properties for the PZT-5A are 

taken from a general PZT-5A ceramics which are given in Table 3.6. Table 3.7 presents 

the properties of the epoxy matrix. 

 

Table 3.3  Properties of PZT-7A 

CE
1111(GPa) CE

1122 CE
1133 CE

2222 CE
2233 CE

3333 CE
2323 CE

3131 CE
1212 

148.0 76.2 74.2 148.0 74.2 131.0 25.4 25.4 35.9 

e113(C/m2) e311 e322 e333 κε11/κo κε22/κo κε33/κo   

9.2 -2.1 -2.1 9.5 460 460 235   

(κo=8.854187816*10-12F/m) 
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Table 3.4  Properties of LaRC-SI 

C1111(GPa) C1122 C1133 C2222 C2233 C3333 C2323 C3131 C1212 

8.1 5.4 5.4 8.1 5.4 8.1 1.4 1.4 1.4 

e113(C/m2) e311 e322 e333 κε11/κo κε22/κo κε33/κo   

0.0 0.0 0.0 0.0 2.8 2.8 2.8   

 

Table 3.5  Properties of PZT-5A by Sol-Gel process 

d333(10-12CN-1) d311 k33 κσ33/κo SE
3333(10-12Pa-1) SD

3333(10-12Pa-1)

263 -102 0.61 1350 15.3 9.7 

 

Table 3.6  Properties of PZT-5A 

CE
1111(GPa) CE

1122 CE
1133 CE

3333 CE
3232 

120 75.2 75.1 111 21 

e113(C/m2) e311 e333 κσ11/κo κσ33/κo 

12.3 -5.2 15.8 1700 1730 

 

Table 3.7  Properties of epoxy 

S1111(10-12Pa-1) S1122 κ11/κo 

357 -136 5 
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3.3.1 RESPONSES OF PZT-7A / LARC-SI COMPOSITES 

Odegard [16] derived a micromechanical model to predict electro-mechanical 

behaviors of piezo-composites, which are presented in Eq. (3.8). Where Y is the 

electromechanical modulus, c୰ is the volume fraction of phase r, N is the number of 

phase, ۯ୰ is the concentration tensor of phase r, ܁୰ is the constraint tensor of phase r 

which is analogous to the Eshelby tensor used in determining elastic properties of the 

composite materials, ܇଴ is the electroelastic moduli of the reference medium, and r=1 is 

the matrix phase. These equations are used to calculate the mechanical and electrical 

properties of piezoelectric composites. 

܇ ൌ ଵ܇ ൅෍c୰ሺ܇୰ െ ୰ۯଵሻ܇

N

୰ୀଶ

 

୰ۯ ൌ ሾ۷ ൅ ୰܇଴ିଵሺ܇୰܁ െ  ଴ሻሿିଵ܇

Y୧JM୬ ൌ

ە
۔

ۓ
C୧୨୫୬,   J, M ൌ 1,2,3,

e୬୧୨,   J ൌ 1,2,3;  M ൌ 4,
e୧୫୬,   J ൌ 4;M ൌ 1,2,3,

െκ୧୬,   J, M ൌ 4,

 

Y୧JK୪଴ ൌ Y୧JK୪ଵ ଵା∑ ஗౟JKౢ
౨ ୡ౨N

౨సమ

ଵି∑ ஗౟JKౢ
౨ ୡ౨N

౨సమ
, where η୧JK୪୰ ൌ

Y౟JKౢ
౨ ିY౟JKౢ

భ

Y౟JKౢ
౨ ାY౟JKౢ

భ          (3.8) 

               

Odegard[16] also generated FE models of a representative volume element (RVE) 

of fiber reinforced piezocomposites and compared the responses of the micro-mechanical 

and RVE-FE models. The RVE model consists of a hexagonal packing arrangement of 

fibers dispersed in polymers, as illustrated in Fig. 3.12. To determine the effective 
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mechanical and electrical properties of the RVE models, an internal energy is first 

calculated (Eq. 3.9). Where V is the volume of the RVE; Cijkl, κij and eijk are the scalar 

components of the stiffness, permittivity and piezoelectric constants. Variables ε୧୨୭ and 

E୨୭ are the applied strain and electrical field. 

Uୣ ൌ
V
2 C୧୨୩୪ε୧୨

୭ε୩୪୭  

Uୢ ൌ
V
2 κ୧୨E୧

୭E୨୭ 

Uୣ୫ ൌ V
ଶ
e୧୨୩ε୨୩୭ E୧୭                          (3.9) 

 

Fig. 3.12  RVE model 

 

We compare the effective properties of the Odegard micro-mechanical model, the 

RVE value, and the micromechanical models of the AFC and MFC for composites 

having 20, 40, and 60% fiber contents, which are given in Table 3.8 - Table 3.11. We 
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calculated errors between the properties determined from the AFC model and the ones 

from the Odegard and RVE models. Table 3.8 to Table 3.11 show the effective properties 

of AFC and MFC at different fiber volume fractions. 

Table 3.8 presents the results of a single fiber micromechanical model for AFC 

and MFC at volume fraction 60%. It is seen that the properties in the axial fiber direction 

(x3-direction) are comparable for all models. However, the transverse and shear 

properties show some mismatches. Comparing with the Odegard model, the value of 

Y11=Y22 from the AFC is 15% higher than Odegard model, and the values for G23=G13, 

G12 and κ11/κo are 30% lower than the Odegard model. The properties of Y33, e333 

andκ33/κo are comparable with the Odegard model. Comparing with the RVE model, we 

find that Y11=Y22 and G12 of the AFC are 60 % higher than the RVE model, κ11/κo is 30% 

higher than the RVE model while Y33, e333 andκ33/κo are compatible with the RVE model. 

The mismatches in the transverse and shear properties are attributed to the shape and 

microstructural arrangement of fibers. When loaded in the transverse fiber direction, 

contact between fibers could result in localized stresses between the fibers, which cannot 

be captured by the AFC and MFC models having a single fiber. The effect of the 

localized stresses on the overall transverse and shear properties are more pronounced for 

composites with high fiber contents, as shown in Table 3.8. As volume content decreases, 

the errors also decrease (Tables 3.9-3.10). 

Table 3.9 presents the responses at volume fraction 40%. Good comparisons are 

observed for properties in the axial fiber directions. Similarly, transverse and shear 

properties show some discrepancies, as discussed above. Comparing with Odegard 
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model, we could find that the values of G23=G13 from the AFC is 16% lower than the 

Odegard model, G12 is 24% lower than the Odegard model, and Y11=Y22, Y33, e333, κ11/κo 

andκ33/κo are less than 10% difference with the Odegard model. Comparing with the RVE 

model, we find that Y11=Y22 is 41% higher than the RVE model, G12 is 58 % higher than 

the RVE model, and κ11/κo is 45% higher than the RVE model. 

Table 3.10 presents responses for composites with volume fraction 20%. Similar 

observations as the composites with 60 and 40% fiber contents are shown. However, the 

percentage errors of the properties in the transverse fiber and shear directions decrease. 

This is due to the decrease in the fiber area, increasing spacing between the fibers and 

reducing the stress concentration and contact between fibers. Comparing with the 

Odegard model, we find that the G23=G13 is 11% higher than the Odegard model, G12 is 

20% lower than the Odegard model, and Y11=Y22, Y33, e333, κ11/κo andκ33/κo are 

compatible with the Odegard model. Comparing with the RVE model, we could find that 

Y11=Y22 is 14% higher than the RVE model, G12 is 21 % higher than the RVE model, and 

κ11/κo is 17% higher than the RVE model. 

Table 3.11 presents the effective properties of AFC and MFC having five fibers at 

volume fraction 40%. Similar results as the single fiber models are observed as discussed 

above. Comparing Table 3.11 to Table 3.9, we find that the shear moduli, G23=G31 and 

G12 of the single fiber model and five fibers model show significant differences. It is due 

to the prescribed boundary conditions. The single fiber model does not capture shearing 

between fibers as in the five-fiber model. It makes the single fiber model stiffer compared 

to the five-fiber model. 
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Comparing the MFC and AFC models, we find that most properties of the two 

composite models are similar. However, the transverse moduli Y11=Y22 of the MFC and 

AFC show some discrepancies, which is due to the shape of the fibers. The AFC uses a 

circular shape fiber and the MFC uses a rectangular shape of fiber. The circular fiber 

results in smooth variations in the local stresses near the fiber-matrix interphases, 

minimizing stresses discontinuities. While a rectangular fiber results in sudden jump or 

discontinuities in stresses at the interphase due to the transverse loading. Because of this 

reason, the overall AFC has less stiffness in the transverse direction than the MFC. The 

MFC has higher modulus in the transverse direction than the AFC. The Von Mises stress 

contour of AFC and MFC due to prescribed σ11 is presented in Fig. 3.13. 
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Fig. 3.13  Von Mises Stress Contour due to σ11 
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Table 3.8  Results of Volume fraction 60 

 
Odegard 

Model 

AFC 
model 

Error with 
Odegard 
value% 

RVE 
Value 

Error with 
RVE value 

% 

MFC 

Model 

Volume 
fraction% 

60  60  60 

Y11=Y22 17.307 19.736 -14.03 12.103 -63.07 20.186 

Y33 50.711 50.994 -0.56 50.106 -1.77 50.942 

G23=G13 9.181 6.139 33.13 6.213 1.19 5.889 

G12 8.207 5.86 30.49 3.617 -57.72 5.77 

e113 N/A 0.0914 N/A N/A N/A 0.09323 

e311=e322 N/A -0.222 N/A N/A N/A -0.217 

e333 6.38 6.423 -0.67 6.16 -4.3 6.425 

κ11/κo 15.89 11.478 27.76 8.7 -31.9 12.89 

κ33/κo 144.96 142.181 1.9 142.8 0.43 143.55 

 

Table 3.9  Results of Volume fraction 40 

 
Odegard 

Model 

AFC 
model 

Error with 
Odegard 
model% 

RVE 

Value 

Error with 
RVE value 

% 

MFC 
model 

Volume 
fraction% 

40  40  40 

Y11=Y22 10.045 10.413 -3.66 7.383 -41.04 11.704 

Y33 35.098 35.125 -0.08 34.493 -1.83 35.236 

G23=G13 4.961 4.151 16.33 3.802 -9.18 4.12 

G12 4.498 3.444 23.43 2.179 -58.05 3.352 

e113 N/A 0.03815 N/A N/A N/A 0.0348 

e311=e322 N/A -0.112 N/A N/A N/A -0.1014 



72 

 

 

 

 Table 3.9 Continued 

 
Odegard 

Model 

AFC 
model 

Error with 
Odegard 
model% 

RVE 

Value 

Error with 
RVE value 

% 

MFC 
model 

Volume 
fraction% 

40  40  40 

e333 4.29 4.296 -0.14 4.14 -3.77 4.306 

κ11/κo 8.14 7.549 7.26 5.2 -45.17 6.513 

κ33/κo 97.29 95.73 1.6 95.9 0.17 95.639 

 

Table 3.10  Results of Volume fraction 20 

 
Odegard 

Model 

AFC 
model 

Error with 
Odegard 
model% 

RVE 

Value 

Error with 
RVE value 

% 

MFC 
model 

Volume 
fraction% 

20  20  20 

Y11=Y22 6.293 6.223 1.11 5.446 -14.27 6.725 

Y33 19.365 19.414 -0.25 18.881 -2.82 19.505 

G23=G13 2.597 2.301 11.4 2.318 0.73 2.317 

G12 2.411 1.918 20.45 1.577 -21.62 1.911 

e113 N/A 0.0123 N/A N/A N/A 0.0131 

e311=e322 N/A -0.037 N/A N/A N/A -0.0376 

e333 2.16 2.15 0.46 2.11 -1.9 2.162 

κ11/κo 4.65 4.565 1.82 3.9 -17.05 4.25 

κ33/κo 50.38 49.25 2.24 49.5 0.51 49.21 
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Table 3.11  Results of 5 fibers model 

 
Odegard 

Model 

AFC 
model 

Error with 
Odegard 
model% 

RVE 

Value 

Error with 
RVE value 

% 

MFC 
model 

Volume 
fraction% 

40  40  40 

Y11=Y22 10.045 10.434 -3.87 7.383 -41.32 11.784 

Y33 35.098 35.137 -0.11 34.493 -1.87 35.236 

G23=G31 4.961 4.002 19.33 3.802 -5.26 4.013 

G12 4.498 2.701 39.95 2.179 -23.96 2.627 

e113 N/A 0.041 N/A N/A N/A 0.03553 

e311=e322 N/A -0.0861 N/A N/A N/A -0.0765 

e333 4.29 4.304 -4.83 4.16 -3.5 4.315 

κ11/κo 8.14 8.64 -6.14 5.2 -66.2 6.627 

κ33/κo 97.29 95.08 2.27 95.9 0.86 99.952 

 

We also compare the effective properties of the AFC and MFC models with other 

micromechanical models, i.e., Mori-Tanaka and Self-Consistent. Responses of the 

transverse moduli Y11=Y22 of various fiber contents are presented in Fig. 3.14. The 

predicted values of the AFC and MFC models are between the Self-Consistent and 

Odegard models. The longitudinal modulus E33 is presented in Fig. 3.15. Responses for 

all micromechanical models agree closely for the entire fiber volume fractions.  
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Fig. 3.14  Effective elastic modulus Y11 

 

Fig. 3.15  Effective elastic modulus Y33 
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Figure 3.16 presents the effective shear moduli G23=G13. In Fig. 3.16, we find that 

the AFC and MFC models are closer to the Mori-Tanaka model. The Self-Consistent 

model over predicts the longitudinal shear modulus for composites with fiber contents 

greater than 0.2. Figure 3.17 presents shear modulus G12. The AFC and MFC models 

show lower values than other micromechanical models and are closer to the Mori-Tanaka 

model. The Self-Consistent model over predicts the transverse shear modulus for 

composites with fiber contents greater than 0.2. 

 

Fig. 3.16  Effective shear modulus G12 



76 

 

 

 

 

Fig. 3.17  Effective shear modulus G13=G23 

 

Figure 3.18 presents the prediction of the piezoelectric constant e311. We observe 

that the AFC and MFC models agree with the Odegard and Mori-Tanaka models. The 

Self-Consistent model under predicts the piezoelectric constant e311 for composites with 

fiber content greater than 0.4. Figure 3.19 shows responses of e333 for all models. All 

models show good agreement. Figure 3.20 shows responses of e113. The AFC and MFC 

models, the Odegard, and Mori-Tanaka models agree for the fiber volume fractions. The 

Self Consistent model over-predicts the piezoelectric constant e113 for composites with 

fiber content greater than 0.3.  
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Fig. 3.18  Effective piezoelectric constant e311 

 

Fig. 3.19  Effective piezoelectric constant e333 
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Fig. 3.20  Effective piezoelectric constant e113 

Figure 3.21 presents the transverse dielectric constant κ11/κo. Responses from the 

AFC and MFC models agree with the Mori-Tanaka and Odegard models for the entire 

range of fiber volume fractions. The Self Consistent model over-predicts the transverse 

dielectric constant for composites with fiber contents greater than 0.4. Figure 3.22 

presents the axial dielectric constant κ33/κo. The results show that all micromechanical 

models agree well. 
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Fig. 3.21  Effective dielectric constant κε11/κo 

 

Fig. 3.22  Effective dielectric constantκε33/κo 
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It is seen that for the electro-mechanical and piezoelectric properties along the 

longitudinal fiber direction, all micromechanical models are in good agreement. This 

indicates that the effective properties for long unidirectional fiber composites along the 

longitudinal fiber axis are independent on the shape, size, and arrangement of the fibers 

in the matrix medium, but they mainly depend on the fiber volume contents and 

constituent properties. All properties in the transverse fiber directions predicted by the 

different micromechanical models are in good agreement for composites with lower fiber 

volume contents, i.e., less than 40% fiber contents. At higher fiber volume contents, some 

mismatches are observed. This might be due to an existence of localized field variables, 

i.e., stress, electric field, in the matrix constituents between the fiber spacing when the 

composites are loaded in the transverse fiber directions. As fiber contents increase, the 

spacing between the fibers decreases, resulting in higher localized field variables, whose 

magnitudes and distributions strongly depend on the shape, size, and arrangements of the 

fibers. Observing the shear properties, all micromechanical models show some 

mismatches even at low fiber contents (less than 20%). This condition is expected, since 

performance of heterogeneous materials subject to shear boundary conditions is strongly 

influenced by microstructural arrangements of the constituents. 

 

3.3.2 RESPONSE OF PZT-5A / EPOXY 

The effective properties of PZT-5A/epoxy composites generated using the 

presented micromechanical models are compared to experimental data of Nelson et al. 

[3]. Responses of the AFC and MFC models are given in Tables 3.12 and 3.13, 
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respectively. The coupling coefficient k33 between the properties measured at short-circuit 

and open-circuit is given as: 

kଷଷଶ ൌ
dଷଷଷdଷଷଷ
SଷଷଷଷE κଷଷ஢

 

SଷଷଷଷD ൌ ሺ1 െ kଷଷଶ ሻSଷଷଷଷE                     (3.10) 

Where k33 is the coupling coefficient, SଷଷଷଷD  is the compliance measured at constant 

electrical displacement, SଷଷଷଷE  is the compliance measured at constant electrical field.  

Figures 3.23 to 3.28 compare the effective responses from the AFC and MFC 

micromodels and the experimental data. Figure 3.23 presents the response of the axial 

compliance SE
3333. The prediction results agree with the experimental data. Figure 3.24 

presents responses of the piezoelectric constant d311, which shows good agreement with 

the experimental data. Figure 3.25 presents responses of the piezoelectric constant d333. It 

is seen that the AFC and MFC predictions are close to the experimental data. Figure 3.26 

presents response of the axial dielectric constant κ33/κo. It is seen that the AFC and MFC 

predictions are close to the experimental data. Figure 3.27 presents responses of the 

coupling coefficient k33. Figure 3.28 presents responses of the axial compliance SD
3333. 

The AFC and MFC models agree with the experimental data for the volume fractions.  
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Table 3.12  AFC modeling results 

Type AFC 

Fiber Volume fraction% 20 40 40(5 fiber) 60 

SE
3333(10-12Pa-1) 66.1 36.1 36.1 24.8 

d311(10-12CN-1) -85.7 -94.6 -94.5 -98.3 

d333(10-12CN-1) 225.9 247.8 247.6 256.1 

κ33/κo 284.7 581.6 581.6 879.5 

k33 0.55 0.57 0.57 0.58 

SD
3333(10-12Pa-1) 46.1 24.4 24.4 16.5 

 

Table 3.13  MFC modeling results 

Type MFC 

Fiber Volume fraction 20 40 40(5 fiber) 60 

SE
3333(10-12Pa-1) 65.7 36 36 24.8 

d311(10-12CN-1) -85.8 -94.6 -94.6 -98.2 

d333(10-12CN-1) 226.1 247.9 247.8 255.6 

κ33/κo 284.7 581.9 581.9 876.9 

k33 0.56 0.58 0.58 0.58 

SD
3333(10-12Pa-1) 45.1 23.9 23.9 16.5 
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Fig. 3.23  Effective compliance SE
3333 

 

Fig. 3.24  Effective piezoelectric constant d311 



84 

 

 

 

 

Fig. 3.25  Effective piezoelectric constant d333 

 

Fig. 3.26  Effective dielectric constant κσ33/κo 
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Fig. 3.27  Effective coupling coefficient k33 

 

Fig. 3.28  Effective compliance SD
3333 
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3.4 EFFECTS OF VISCOELASTIC MATRIX AT ELEVATED TEMPERATURES 

ON THE EFFECTIVE PROPERTIES OF AFC AND MFC 

PFC is a piezo composite consisting of piezoelectric fibers and epoxy matrix. 

Piezoelectric ceramic has high stiffness and shows mild creep at room temperature, while 

at elevated temperatures ceramics could experience significant time-dependent behaviors. 

Fett and Thun [29] conducted creep tests on unpoled and poled PZT ceramics at room 

temperature under different stresses. Non-negligible creep strains are observed and the 

creep responses are more pronounced at higher stresses. Heiling and Hardtl [23] showed 

that the electric and piezoelectric responses of PZT materials change with time under 

constant stresses. PFCs are often utilized for applications under high mechanical and 

electrical stimuli. The driving voltage of PFCs can take up to +1500 V. Under such 

condition, significant amount of heat could be generated increasing the temperatures of 

the PFCs. At elevated temperatures, materials, especially polymers, show significant 

time-dependent behaviors. To better understand responses of PFCs at high applied 

stress-and voltage and elevated temperatures, we investigate and discuss the 

time-dependent behavior of PFC. It is noted that the time-dependent effect is often 

significant at elevated temperature and its behavior at room temperature is usually 

neglected. 

We use the micromechanical models of AFC and MFC with viscoelastic 

properties for the matrix. We apply constant stress and charge to observe the variations of 

the effective compliance, piezoelectric constants and permittivity with time. The studied 

AFC and MFC have PZT fibers and LaRC-SI matrix constituents. Viscoelastic data for 
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LaRC-SI at 213℃ to 223℃ are obtained from Nicholson et al[31]. Temperature 218℃ 

is taken as the reference temperature. 

 

3.4.1 PROPERTIES OF LARC-SI 

      Nicholson et al.[31] used Kolrausch – Williams - Watts (KWW) model to express 

the time-dependent compliance of LaRC-SI at different temperatures. The KWW model 

is expressed as: 

ܵሺݐሻ ൌ ቀ݁݋ܵ
೟
ഓቁ
ഁ

                       (3.11) 

Table 3.14 presents material parameters in the KWW model at various temperatures. 

 

Table 3.14  Viscoelastic parameter of LaRC-SI[31] 

 ഥ௪(g/mol) Ttest(℃) ΔT(℃) SO(GPa-1) τ(s) βܯ

24290 

213 25 0.375 8.51E+0.5 0.375 

218 20 0.371 3.21E+0.5 0.411 

223 15 0.313 1.52E+0.5 0.403 

 

Where ܵ݋ is the initial compliance, t is the current time, τ is the retardation time, β is the 

parameter, which influences the shape of the creep compliance, ܯഥ௪ is the average of the 

molecular weight, Ttest is the testing temperature and ΔT is the difference between the 
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testing temperature and glass transition temperature. At the reference temperature 218℃, 

the time-dependent compliance is: 

ܵሺݐሻ ൌ ቀ݁݋ܵ
೟
ഓቁ
ഁ

ൌ 0.371݁ቀ
೟

యమభబబቁ
బ.రభభ

              (3.12) 

      User subroutine USDFLD is used to incorporate the time-dependent properties in 

the C3D8E element in the FE micromechanical models. In order to determine the  

relaxation modulus of LaRC-SI from the compliance data, Laplace transform is used and 

the relation between compliance and modulus in the Laplace domain for a linear 

viscoelastic material is given as: 

ܵሺݏሻܻሺݏሻ ൌ ଵ
௦మ

                       (3.13) 

A polynomial function is then used to represent the time-dependent compliance in 

Eq. (3.12) and the Laplace transform is performed on the polynomial function, which are: 

Polynomial Fit 

ܵሺݐሻ ൌ െሺ2.07ܧ െ 012ሻݐଶ ൅ ሺ2.329ܧ െ 006ሻݐ ൅ 0.468     (3.14) 

Laplace Transform 

ܵሺݏሻ ൌ ିସ.ଵଷଽாି଴ଵଶ
௦య

൅ ଶ.ଷଶଽாି଴଴଺
௦మ

൅ ଴.ସ଺଼
௦

               (3.15) 

The relaxation modulus is now given as: 

ܻሺݐሻ ൌ  1.752eି଺.ଷ଺ଶEି଴଴଺୲ ൅ 0.383eଵ.ଷ଼ଽEି଴଴଺୲           (3.16) 
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The exponential and polynomial functions for the compliance are shown in Fig. 3.29. The 

plot of the relaxation modulus Eq. 3.16 is given in Fig. 3.30. 

We first use a one-element model to verify the implementation of the 

time-dependent modulus calculated from the above equations in the FE model. A cubic 

FE model is generated using a solid element C3D8E as shown in Fig. 3.31. User 

subroutine, USDFLD is used to incorporate the relaxation modulus. USDFLD is a 

subroutine that allows users to define properties at a material point as functions of time or 

any other field variables. Here, we define the elastic modulus of LaRC-SI that changes 

with time. We apply a constant stress and a constant strain to observe the creep and 

relaxation responses, respectively. The results are presented as follows. 

We first apply a constant stress in the x1 direction. The strain responses from the 

FE model are presented in Fig. 3.32. Next, we prescribe a constant strain and the 

relaxation responses are shown in Fig. 3.33. Responses from the FE models are compared 

to the analytical expressions in Eqs. 3.12, 3.14 and 3.16. Creep responses from the three 

functions are given in Fig. 3.34. The error function between the creep compliance (Fig. 

3.35) obtained from the FE analysis and analytical solution is defined as: 

ݎ݋ݎݎܧ ൌ ிாெି௖௢௠௣௔௥௘ௗ ௙௨௡௖௧௜௢௡
௖௢௠௣௔௥௘ௗ ௙௨௡௖௧௜௢௡

ൈ 100%              (3.17) 

Next, we compare the relaxation moduli obtained from the polynomial function 

and FEM result in Fig. 3.36. The error function is calculated and presented in Fig 3.37. 
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Fig. 3.29  Creep compliance for LaRC-SI   

 

Fig. 3.30  Relaxation modulus for LaRC-SI 
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Fig. 3.31  ABAQUS finite element model. 

 

Fig. 3.32  Creep compliance from the FE analysis 
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Fig. 3.33  Relaxation modulus from FE analysis 

 

Fig. 3.34  Comparing creep result 
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Fig. 3.35  Error function of creep 

 

Fig. 3.36  Comparing relaxation result 
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Fig. 3.37  Error function of relaxation 

Figure 3.35 presents the error between the KWW model and FE analysis and the 

error between the polynomial function and the FE analysis of the creep compliance. We 

found that the error is within 10% from the initial time up to 15000s and the error 

increases to 20% after 25000s. Figure 3.37 presents the error between the polynomial 

function and the FE analysis for the relaxation modulus, which show less than 0.03% 

error. The significant mismatches in the compliance from the FE analysis are due to the 

time-dependent properties that are given for the modulus via the USFLD subroutine. In 

determining the compliance, the FE analyses take value of ଵ
Yሺ୲ሻ

, which is not the correct 

time-dependent compliance for viscoelastic materials. The relation between the 

compliance and modulus for linear viscoelastic material is given in Eq. 3.13. This is why 

the FE analysis results in error prediction of the compliance. 
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From above discussion, the USFLD subroutine in FE analysis is valid for 

analyzing relaxation responses, but not for the creep responses. One way to solve this 

problem is using UMAT subroutine to incorporate material properties in the FE analysis. 

However, the element C3D8E that we used in the FE models does not support the UMAT 

subroutine. One could develop a user defined element (UEL) in the FE model to 

overcome this issue. However, the development of UEL is beyond the scope of this 

study. 

 

3.4.2 PROPERTIES OF PZT-7A 

Since the viscoelastic properties of LaRC-SI are available at elevated 

temperatures, the properties of PZT-7A should be obtained at those elevated 

temperatures. However, only limited properties of PZT-7A are available at high 

temperatures which are the dielectric constant ఑యయ
഑

఑೚
, and piezoelectric constant ݀ଷଵଵ. The 

rest of the mechanical and electrical properties of PZT-7A are available at room 

temperature. In order to perform time-dependent analyses of AFC and MFC, two 

assumptions are made for the remaining electro-mechanical properties of the PZT-7A. 

The first assumption is taking all other properties reported at room temperature as 

constant values and only ఑యయ഑

఑೚
 and ݀ଷଵଵ  vary with temperatures. For the second 

assumption, we take the mechanical properties (Young’s modulus and shear modulus) as 

reported at room temperature but the remaining piezoelectric constants and dielectric 



96 

 

 

 

constants are temperature dependent that are proportional to those of ఑యయ
഑

఑೚
 and ݀ଷଵଵ 

values. 

Assumption 1  

We assume only the permittivity ఑యయ
഑

఑೚
  and piezoelectric constant ݀ଷଵଵ vary with 

temperatures. Other properties remain unchanged. We use e311, e322, e333, e113, 
఑యయച

఑೚
 and 

఑భభച

఑೚
 in our FE model, which is suitable for the relaxation behaviors. We first relate the 

piezoelectric and dielectric properties ఑యయ
഑

఑೚
 and ݀ଷଵଵ  into the properties at a proper 

temperature. At 218℃ , ݀ଷଵଵ ൌ െ130.5 ൈ 10ିଵଶܥ/ܰ  and ఑యయ
഑

఑೚
ൌ 1463.1 . The other 

properties of fibers are constant (Eqs. 3.18-3.19). In FE ABAQUS software, we choose 

type S piezoelectricity to perform the analysis. We transfer the above piezoelectric and 

dielectric properties into ݁௜௝௞ and  
఑೔ೕ
ഄ

఑೚
. We use relations in Eq. 3.19 and Eq. 3.20 to 

determine ݁௜௝௞ and 
఑೔ೕ
ഄ

఑೚
, which are given in Eq. 3.22 and Eq. 3.23. The piezoelectric and 

dielectric properties at room and elevated temperatures are compared in Tables 3.15 and 

3.16. 

݀ ቀ஼
ே
ቁ ൌ ൥

0 0 0 0 362 0
0 0 0 362 0 0

െ૚૜૙. ૞ െ૚૜૙. ૞ 150 0 0 0
൩ ൈ 10ିଵଶ  (3.18) 

఑഑

఑೚
ൌ ൥

840 0 0
0 840 0
0 0 ૚૝૟૜. ૚

൩                (3.19) 
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݁ ൌ ݀௜௠௡ܥ௠௡௝௞
ா                      (3.20) 

௜௝ఢߢ ൌ ௜௝ఙߢ െ ݀௜௠௡ܥ௠௡௞௟
ா

௝݀௞௟ ൌ ଵଵఙߢ െ ݀ଵଵଷܥଵଷଵଷா ݀ଵଵଷ 

௜௝ఢߢ ൌ ௜௝ఙߢ െ ݀௜௠௡ܥ௠௡௞௟
ா

௝݀௞௟ ൌ ଷଷఙߢ െ ݀ଷଵଵܥଵଵଵଵா ݀ଷଵଵ െ ݀ଷଵଵܥଵଵଶଶா ݀ଷଶଶ െ

݀ଷଵଵܥଵଵଷଷா ݀ଷଷଷ െ ݀ଷଶଶܥଶଶଵଵா ݀ଷଵଵ െ ݀ଷଶଶܥଶଶଶଶா ݀ଷଶଶ െ ݀ଷଶଶܥଶଶଷଷா ݀ଷଷଷ െ

݀ଷଷଷܥଷଷଵଵா ݀ଷଵଵ െ ݀ଷଷଷܥଷଷଶଶா ݀ଷଶଶ െ ݀ଷଷଷܥଷଷଷଷா ݀ଷଷଷ      (3.21) 

 

݁௜௝௞ ൌ ൥
0 0 0 0 9.2 0
0 0 0 9.2 0 0

െ18.1281 െ18.1281 0.2838 0 0 0
൩     (3.22) 

఑ച

఑೚
ൌ ൥

460 0 0
0 460 0
0 0 ૢ૛૜. ૢ

൩                 (3.23) 

Table 3.15  Comparing piezoelectric constant in assumption1 

 e311ቀ
஼
௠మቁ e322 ቀ

஼
௠మቁ e333ቀ

஼
௠మቁ e113ቀ

஼
௠మቁ 

Room Temp -2.1 -2.1 9.5 9.2 

High Temp -18.1 -18.1 0.3 9.2 
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Table 3.16  Comparing dielectric constant in assumption1 

 
ଵଵఢߢ

௢ߢ
ଶଶఢߢ 

௢ߢ
ଷଷఢߢ 

௢ߢ
 

Room Temp 460 460 235 

High Temp 460 460 923.9 

 

Assumption 2 

The permittivity ఑యయ
഑

఑೚
 and piezoelectric constant ݀ଷଵଵ change with temperatures 

and all other properties vary with temperatures in the same way as the permittivity ఑యయ
഑

఑೚
 

and piezoelectric constant  ݀ଷଵଵ. We use the relations in Eq. 3.20 and Eq. 3.21 to 

determine ݁௜௝௞ and 
఑೔ೕ
ഄ

఑೚
, which are presented in Eq. 3.24 and Eq. 3.25. We compare their 

values in Table 3.17 and Table 3.18. 

݁௜௝௞ ൌ ൥
0 0 0 0 20 0
0 0 0 20 0 0

െ5.1 െ5.1 23.4 0 0 0
൩           (3.24) 

఑ച

఑೚
ൌ ൥

1113.4 0 0
0 1113.4 0
0 0 453

൩                 (3.25) 
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Table 3.17  Comparing piezoelectric constant in assumption2 

 e311ቀ
஼
௠మቁ e322 ቀ

஼
௠మቁ e333ቀ

஼
௠మቁ e113ቀ

஼
௠మቁ 

Room Temp -2.1 -2.1 9.5 9.2 

High Temp -5.1 -5.1 23.4 20 

 

Table 3.18  Comparing dielectric constant in assumption2 

 
ଵଵఢߢ

௢ߢ
ଶଶఢߢ 

௢ߢ
ଷଷఢߢ 

௢ߢ
 

Room Temp 460 460 235 

High Temp 1113.4 1113.4 453 

 

3.4.3 TIME-DEPENDENT ELECTRO-MECHANICAL RESPONSES OF AFC 

AND MFC 

Results from the assumption 1 

We present the time-dependent responses of AFC and MFC with fiber volume 

fractions of 20%, 40% and 60%. Figure 3.38 illustrates the creep compliance in the 

transverse direction. Composites with smaller fiber volume fractions exhibit more 

pronounced creep than the ones with higher fiber contents. This is due to the higher 

stresses in the epoxy that increase the overall creep behavior. Moreover, the AFC models 

creep 10% higher than the MFC model for fiber volume fractions 20% and 40%. This is 

due to the round shape of fiber that results in a more flexible system allowing more shear 

deformation in the matrix. The rectangular fibers provide higher resistant to the 
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transverse loading. Responses also show that the five-fiber models agree with the single 

fiber models. Figure 3.39 presents the creep compliance in the axial fiber direction. For 

composites with volume fractions 40% and 60%, insignificant creep is shown because 

most of the stress is carried by the PZT fibers. 

Figure 3.40 presents the time-dependent shear compliance S2323. We find a  

similar condition as in Fig 3.39 that the models at fiber volume fraction 40% and 60% 

show insignificant creep. The five-fiber models agree with the single fiber models. 

Moreover, we find that the AFC model creep more than the MFC model at 20% fiber 

volume fraction which is due to the shape of the fiber. Figure 3.41 presents the shear 

creep compliance S1212. More pronounced creep behaviors are observed in all composites. 

Figure 3.42 presents time-dependent responses for piezoelectric constant dଷଵଵ. 

Piezoelectric constant relaxes more in composites at low fiber volume fractions than 

those at high fiber volume fractions. Figure 3.43 presents creep in piezoelectric constant 

dଷଷଷ, which show significant creep at 20% fiber content. Responses of the AFC and MFC 

with single and five fiber models are also in agreement. Figure 3.44 presents creep in the 

piezoelectric constant dଵଵଷ. We find that piezoelectric constant d113 in MFC model is 

higher than that of the AFC model at 60% fiber volume fraction. Moreover, d113 value in 

the five-fiber AFC model is higher than the ones of MFC at fiber volume fraction 40%. 

Similar conditions are exhibited in the transverse dielectric constants κ11/κo (Fig. 3.44). In 

relations Eq. 3.6 and Eq. 3.7, we extract d113 and κ11/κo by assuming a constant electrical 

field. In table 3.2, we know that the behaviors of these models are shear behaviors. The 

shear behavior results in non-uniform distribution of the electric field as illustrated in Fig 
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3.47. We determine the average electric field by summing all electric field at integration 

points in the FE micromechanical models. 

Fig. 3.45 presents response of the transverse dielectric constants κ11/κo. We find 

that the dielectrics constant is unaffected by the viscoelastic matrix. Figure 3.46 presents 

responses of axial dielectric constants κ33/κo. 

 

 

Fig. 3.38  Effective compliance in transverse direction S1111 in assumption 1 
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Fig. 3.39  Effective compliance in axial fiber direction S3333 in assumption 1 

 

 

Fig. 3.40  Effective shear compliance S2323 in assumption 1 
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Fig. 3.41  Effective shear compliance S1212 in assumption 1 

 

Fig. 3.42  Effective piezoelectric constant d311 in assumption 1 
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Fig. 3.43  Effective piezoelectric constant d333 in assumption 1 

 

 

Fig. 3.44  Effective piezoelectric constant d113 in assumption 1 
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Fig. 3.45  Effective relative permittivity in transverse direction κ11/κo in assumption 1 

 

Fig. 3.46  Effective relative permittivity in axial fiber direction κ33/κo in assumption 1 

 

0.0 

2.0 

4.0 

6.0 

8.0 

10.0 

12.0 

14.0 

0 1000 2000 3000 4000 5000 6000

D
ie
le
ct
ri
c 
Co

ns
ta
nt

time(min)

κ11/κo

AFC20

AFC40

AFC60

AFC40 5 fibers

MFC20

MFC40

MFC60

MFC40 5 fibers

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000

D
ie
le
ct
ri
c 
Co

ns
ta
nt

time(min)

κ33/κo

AFC20

AFC40

AFC60

AFC40 5 fibers

MFC20

MFC40

MFC60

MFC40 5 fibers



106 

 

 

 

 

Fig. 3.47  The electrical field in FE model in d113 boundary conditions 

 

Results from the assumption 2 

Figure 3.48 presents the transverse compliance S1111. Figure 3.49 presents the 

longitudinal compliance S3333. Similar observations as in the assumption 1 are seen. Fig. 

3.50 presents the shear compliance S3131=S2323. The creeps in composites at 20% fiber 

volume fractions are more significant than those at 40% and 60% fiber volume fractions. 

Fig. 3.51 presents the shear compliance S1212. Comparing the compliances in the 

assumption 2 with the compliances in the assumption 1, we find that the value of  the 

compliances, S1111, S3333, S3131, and S1212 remain unchanged. It is due to the elastic 

properties that we applied in both assumptions are constant. The mechanical properties of 

PZT-7A at high temperature is not available and PZT ceramic has high stiffness so we 

neglect the temperature dependent elastic properties for the PZT-7A. 
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Figures 3.52 and 3.53 present piezoelectric constant d311 and d333, respectively. 

The piezoelectric constant in composites at low fiber volume fractions changes more 

significantly than those at high fiber volume fraction. Fig. 3.54 presents piezoelectric 

constant d113. Comparing the piezoelectric constants in both assumptions, we find that the 

value of d311 and d333 in the assumption 2 are larger than the values in the assumption 1, 

and the value of d113 in the assumption 2 are similar to that in the assumption 1. In the  

assumption 2, all of the piezoelectric constants increase proportionally to the 

piezoelectric constant d311, which show significant increase in the effective piezoelectric 

constants of the AFC and MFC. However, the values of piezoelectric constant d113 in the 

two assumptions are almost the same. Similar observations are shown in Fig. 3.20, 3.45 

and 3.55 for the dielectric constant κ11/κo. 

Fig. 3.55 presents the transverse dielectric constant κ11/κo, which is almost 

constant during the time-dependent analysis. Fig. 3.56 presents longitudinal dielectric 

constant κ33/κo. Comparing the dielectric constants in both assumptions, the value of 

κ33/κo in the assumption 2 are smaller than the value in the assumption 1, and the value of 

κ11/κo in the assumption 2 are the same as the value in the assumption 1. 
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Fig. 3.48  Effective compliance in transverse direction S1111 in assumption 2 

 

 

Fig. 3.49  Effective compliance in axial fiber direction S3333 in assumption 2 
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Fig. 3.50  Effective shear compliance S2323 in assumption 2 

 

 

Fig. 3.51  Effective shear compliance S1212 in assumption 2 
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Fig. 3.52  Effective piezoelectric constant d311 in assumption 2 

 

 

Fig. 3.53  Effective piezoelectric constant d333 in assumption 2 
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Fig. 3.54  Effective piezoelectric constant d113 in assumption 2 

 

Fig. 3.55  Effective relative permittivity in transverse direction κ11/κo in assumption2 
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Fig. 3.56  Effective relative permittivity in axial fiber direction κ33/κo in assumption 2 
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now use the type E piezoelectricity to characterize the piezoelectric constant d333 for 

composites with 40% fiber volume fraction. The differences between the type S and the 

type E are in the input material properties and piezoelectric functions. The input 

piezoelectric constant of the type S is eijk and the electro-mechanical functions are given 

in Eq. 2.15 and Eq. 2.16. The input piezoelectric constant of the type E is dijk and the 

piezoelectric functions are given in Eq. 2.13 and Eq. 2.14. Both AFC and MFC models 

are examined. The results are presented in Fig. 3.57 and 3.58. Comparing these results 

with Fig. 3.43 and Fig. 3.53, we find that the results are compatible. 
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Fig. 3.57  Effective Piezoelectric constant d333 for checking assumption1 

 

 

Fig. 3.58  Effective Piezoelectric constant d333 for checking assumption 2 
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      Form Chapter II, we know that the piezoelectric ceramics could also experience 

time-dependent compliance and piezoelectric constant. Here, we assume the elastic 

modulus and piezoelectric constant of PZT change with time and examine the responses 

of the effective compliance S3333 and d333. The input properties of ABAQUS are Y33 and 

e333. In Chapter II, the compliance creeps 100% so we assume the modulus E33 relaxes 

50%. The piezoelectric constant is reported in Chapter II. The time-dependent modulus 

and piezoelectric constant for the PZT-7A are given in Eq. 3.26. The responses of S3333 

and d333 are presented in Fig. 3.59 and Fig. 3.60. It is seen that more pronounced 

time-dependent responses are observed.  

Yଷଷ ൌ 81.886ሺ0.5 ൅ 0.5eି଴.଴଴଴଴ଶ୲ሻ 

eଷଷଷ ൌ 23.4 ൅ 23.4t଴.଴ସଽ଼                   (3.26) 

 

 

Fig. 3.59  Effective compliance S3333 
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Fig. 3.60  Effective Piezoelectric constant d333 
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CHAPTER IV 
CONCLUSIONS AND FURTHER RESEARCH 

 

4.1 DISCUSSIONS 

From this study, we investigated the time-dependent and long-term responses of 

piezoelectric fiber composites due to the existence of viscoelastic matrix. PFCs are 

generally used as sensors and actuators that can be exposed to various loading conditions, 

i.e., statics and dynamics, and several time scales, i.e., short- and long terms and different 

frequencies. For example, as actuators for controlling vibrations in the host structures 

(Fig. 4.1 depicts a sinusoidal displacement of the host structure), an electric charge can be 

applied to the PFCs to suppress the vibrations by generating a counter displacement (Fig. 

4.2). When the time-dependent effect of the PFC is negligible, we can apply an 

oscillation charge with the same frequency as the vibrating host structures to suppress the 

vibration. However, when the PFCs show pronounced time-dependent effects due to the 

viscoelastic matrix applying charge with the same frequency as the host structure may 

result in expected performance only at early time but as time progress, the 

time-dependence in the electro mechanical responses of the PFC lead to different output 

frequencies. This might lead to false counter displacement (Fig. 4.3), which is due to the 

phase-lag characteristic of the viscoelastic PFCs. Only when steady state (equilibrium/ 

related) condition is achieved in the PFC, the output displacement and the input charge 

have the same frequency. Thus, when a constant frequency is applied to PFCs to suppress 

oscillation displacement in the host structure, the pronounced time-dependent effect on 

the PFCs can amplify the displacement (Fig. 4.4) at later time. In practice, the PFCs 
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might need to operate for duration longer than 2 hours (e.g. controlling vibrations in 

helicopter blades or other components). Under these conditions, the PFC will be 

constantly loaded for a long period generating heat and raising the temperatures. The 

viscoelastic behaviors will become pronounced in PFC and the time-dependent effect will 

affect the control performance. Thus, knowing long-term performance of the PFCs could 

significantly improve the control performance. The existence of time-dependent 

(viscoelastic) effect in the PFCs makes the responses of the PFCs sensitive to rate of 

loading. 

 

Fig. 4.1  Displacement history of a host structure 
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Fig. 4.2  Counter displacement to minimize vibration in the host structure 

 

Fig. 4.3  The phase lagging response in the actuator 
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Fig. 4.4  Time-dependent result of suppression 

            Moreover, integrating the PFCs to the host structures would subject the PFCs 

under constant stress. Generally, we use adhesive to bond the PFCs to the host structure 

that could lead to high stress concentrations near the interphase. Take a cantilever beam 

having 4 PFCs (Fig. 4.5). Fig 4.6 presented the beam under bending that the localized 

stresses occur at interphase regions as identified by circles in Fig. 4.6. The 

time-dependent effects in the PFCs could lead to continuous deformation, accelerating 

debonding or detachment of the PFCs from the host structures. Having information on the 

long-term behaviors of the PFCs would improve the maintenance of the smart structure 
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Fig. 4.5  Cantilever beam attached 4 PFCs 

 

Fig. 4.6  Cantilever beam under loading 

 

4.2 CONCLUSIONS 

This study analyzes the time-dependent responses of PFCs. PFC is a piezoelectric 

fiber composite consisting of piezoelectric fibers, epoxy matrix, electrodes and kapton 

layers. There are two types of PFCs: AFC and MFC. The difference between the AFC 

and MFC is in the shapes and types of fibers. AFC uses circular cross-section fibers and 

MFC uses rectangular cross-section fibers. The epoxy matrix in the PFC could have 

significant viscoelastic characteristics, especially at elevated temperatures, affecting 

overall responses of PFCs. We established micromechanical models for PFCs using FE. 

We made several assumptions in generating the micromechanical models. The electrodes 
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and kapton layers are ignored since the sizes of the electrodes and kapton layers are much 

smaller than those of the epoxy regions and piezoelectric fibers. Thus, the electric fields 

are assumed uniformly distributed throughout the fiber longitudinal axis. We assumed 

that fibers are uniformly distributed in the matrix medium. Micromechanical models 

having one fiber placed at the center of the matrix medium are generated for the AFC and 

MFC. In addition, we also generated micromechanical models with five fibers placed in 

the matrix medium. 

Linearized constitutive models for piezoelectric materials that include 

time-dependent effects have been formulated. A general time-integral function is applied 

for the mechanical, electrical, and piezoelectric constants. Relaxation functions are 

chosen for the modulus and dielectric constant, while creep function is used for the 

piezoelectric constant. Parametric studies have been performed by applying different 

histories of stress and electric fields. It has been observed that the time-dependent effect 

could significantly influence overall performance of piezoelectric materials especially 

when histories of loadings are applied for sufficiently longer period.  

The micromechanical models are generated using FE software, “ABAQUS” with 

an electrical element C3D8E. Three different fiber volume fractions have been 

considered to predict the electro-mechanical and piezoelectric properties of the AFC and 

MFC. Predictions were compared with the analytical solutions and experimental data, 

which were available in the literature. Comparing to the analytical results, our predictions 

are compatible in the elastic modulus, piezoelectric constants and dielectric constants 

along the fiber longitudinal axis. Some mismatches are observed in the transverse and 
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shear properties especially at high fiber contents. Thus, it is concluded that properties in 

the longitudinal fiber directions depend only on the compositions and properties of the 

constituents, while the transverse and shear properties depend also on the microstructural 

arrangements. Predictions of the AFC and MFC models are comparable to the available 

experimental data. The five fiber model shows lower shear modulus than the single fiber 

model because in the five fibers model shearing between fibers can be incorporated 

increasing deformation in the PFCs. The MFC model shows higher transverse modulus 

E11 than the AFC because the rectangular fibers show higher resistant to local 

deformation in the matrix close to the interphase regions than in the circular fibers. 

PFCs are often utilized for applications at high mechanical loading and electric 

field. Under such conditions, significant amount of heat could be generated increasing 

temperatures. At elevated temperatures, materials could experience significant 

time-dependent behaviors. The effects of viscoelectric matrix on the overall properties of 

PFCs have been studied using the FE micromechanical models. PFCs which have larger 

fiber volume fractions show less significant time-dependent behaviors. It is also seen that 

the transverse and shear properties exhibited more pronounced time-dependent responses 

compared to the longitudinal (axial) properties. 
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4.3 FURTHER RESEARCH 

The current study can be extended as follows: 

1) FE micromodels can be refined to also include the electrode fingers and kapton layers, 

allowing to study the effects of electrode spacing and nonuniform distribution of the 

electric fields on the overall performance of PFCs. 

2) The predictions of the time-dependent electro-mechanical properties need to be 

compared to experimental data. Thus, we need to perform time-dependent 

electro-mechanical test, at elevated temperatures, on the PFCs. 

3) To enhance, the capability of the FE models in predicting creep compliance, which is 

the limitation of the USFLD, user element (UEL) subroutine can be developed. 
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