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ABSTRACT 

 

A Risk-based Optimization Modeling Framework for Mitigating Fire Events for Water 

and Fire Response Infrastructures. (December 2009) 

Lufthansa Rahman Kanta, B.S., Bangladesh University of Engineering and Technology; 

M.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Kelly Brumbelow 

Dr. Emily M. Zechman 

 

The purpose of this dissertation is to address risk and consequences of and 

effective mitigation strategies for urban fire events involving two critical infrastructures 

– water distribution and emergency services.  Water systems have been identified as one 

of the United States‟ critical infrastructures and are vulnerable to various threats caused 

by natural disasters or malevolent actions. The primary goals of urban water distribution 

systems are reliable delivery of water during normal and emergency conditions (such as 

fires), ensuring this water is of acceptable quality, and accomplishing these tasks in a 

cost-effective manner. Due to interdependency of water systems with other critical 

infrastructures – e.g., energy, public health, and emergency services (including fire 

response) – water systems planning and management offers numerous challenges to 

water utilities and affiliated decision makers.  

 The dissertation is divided into three major sections, each of which presents and 

demonstrates a methodological innovation applied to the above problem.  First, a risk 

based dynamic programming modeling approach is developed to identify the critical 
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components of a water distribution system during fire events under three failure 

scenarios: (1) accidental failure due to soil-pipe interaction, (2) accidental failure due to 

a seismic activity, and (3) intentional failure or malevolent attack. Second, a novel 

evolutionary computation based multi-objective optimization technique, Non-dominated 

Sorting Evolution Strategy (NSES), is developed for systematic generation of optimal 

mitigation strategies for urban fire events for water distribution systems with three 

competing objectives: (1) minimizing fire damages, (2) minimizing water quality 

deficiencies, and (3) minimizing the cost of mitigation. Third, a stochastic modeling 

approach is developed to assess urban fire risk for the coupled water distribution and fire 

response systems that includes probabilistic expressions for building ignition, WDS 

failure, and wind direction. Urban fire consequences are evaluated in terms of number of 

people displaced and cost of property damage. To reduce the assessed urban fire risk, the 

NSES multi-objective approach is utilized to generate Pareto-optimal solutions that 

express the tradeoff relationship between risk reduction, mitigation cost, and water 

quality objectives. The new methodologies are demonstrated through successful 

application to a realistic case study in water systems planning and management. 
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1. INTRODUCTION 

 

Water systems have been identified as one of the United States‟ critical 

infrastructures (White House 2003) and are vulnerable to various threats caused by 

natural disasters or malevolent actions (such as terrorist attack, vandalism, or insider 

sabotage).  Water supply infrastructure is also strongly connected to the critical 

infrastructures of energy, public health, chemical industry, agriculture and food, and 

emergency services such as fire response. Thus, any potential damage in water supply 

infrastructure would be a threat to those infrastructures as well, and vice versa.  

The primary goals of urban water distribution systems are to provide water to 

consumers with adequate quantity and with acceptable quality. Water systems also play 

a critical public safety role: delivering water in emergency conditions such as pipe 

failure, power outage, and fire. Thus water systems planning and management offer 

numerous challenges to water utilities, affiliated decision makers, and regulators 

throughout the country. Effective planning and management of the system helps in 

achieving both the primary goals of the system and better security against natural and 

manmade hazards. For many years significant studies have been performed to recognize 

and manage the threats toward water systems; however, much recent attention has 

focused on chemical and biological threats. 

 

This dissertation follows the style of Journal of Water Resources Planning and Management. 
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This dissertation addresses a subject area within two critical infrastructures – 

water and emergency services – which is currently underdeveloped: the risk and 

consequences of and effective mitigation strategies for urban fire events. Most urban fire 

services depend upon the fire suppression capacity of urban water distribution systems 

(WDS). However, the hydraulic behavior of WDS‟s is complex, and the occurrence of 

fire events is variable yet uncertain. 

The objective of this research is to development of a risk-based optimization 

methodology to analyze the vulnerability and risk of water utilities; and to design 

mitigation for urban fire events for both water and fire response infrastructure. This new 

approach generates a risk-based WDS vulnerability assessment tool, a set of Pareto-

optimal WDS fire mitigation designs, and a set of Pareto-optimal risk management plans 

for urban fire events. The desired outcome of this project is to serve as a guide for 

utilities, emergency response personnel, and affiliated decision makers to address and 

assess urban fire risk and appropriate risk management strategies. The specific goals of 

this research are to: 

 Develop a risk-based optimization model to assess vulnerability and risk to a 

water distribution system against possible fire events; 

 Develop a new evolutionary algorithm-based multi-objective modeling 

framework to mitigate WDS‟s fire damage; 

 Develop a stochastic modeling framework of risk analysis for simulating fire 

damage consequences from urban fire spread model; and 
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 Develop a multi-objective simulation-optimization framework to mitigate and 

manage urban fire risk. 

A risk based dynamic programming (DP) modeling approach is developed to 

identify the critical components of a water distribution system during fire events under 

three failure scenarios: (1) accidental failure due to soil-pipe interaction, (2) accidental 

failure due to a seismic activity, and (3) intentional failure or malevolent attack. The risk 

analysis framework is used to understand the changing nature of system vulnerability 

versus failure causes. The risk associated with the failure of each component under the 

above mentioned failure scenarios along with the corresponding damage consequences 

can help utility managers understand the value of risk mitigation. 

A new evolutionary algorithm (EA) based multi-objective technique, Non-

dominated Sorting Evolution Strategy (NSES), is developed for systematic generation of 

optimal mitigation strategies for urban fire events. A WDS hydraulic simulation model is 

coupled with this evolutionary multi-objective modeling framework to mitigate 

vulnerability and risk with three competing objectives: (1) minimizing fire damages, (2) 

minimizing water quality deficiencies, and (3) minimizing the cost of mitigation. This 

multi-objective approach produces a set of Pareto-optimal solutions in the objective-

space of fire damage, water quality, and cost that helps utility managers understand the 

trade-offs between those objectives. 

Finally, an urban fire risk assessment methodology is developed by introducing a 

stochastic modeling approach. Three major fire variables: ignition, wind direction, and 

water system‟s failure, are considered during this analysis by introducing both fire 
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hazard and wind direction probabilities and an actual WDS failure scenarios along with 

their failure probabilities. A coupled model of water and fire response infrastructure is 

utilized to evaluate the fire consequences in terms of building specific data such as 

number of people displaced and cost of property damage. A Monte Carlo simulation is 

utilized to generate all possible fire scenarios as well as the distribution of consequences. 

Finally, fire mitigation strategies are developed based on scenario-based results using an 

evolutionary multi-objective optimization framework to manage the system wide urban 

fire risk. 

The above described research is presented here as three sections written as 

journal articles that illustrate the methodological developments, applications, and results. 

The vulnerability and risk assessment procedure of WDS for insufficient fire flows is 

presented in Section 2. Section 3 illustrates the development of a novel multi-objective 

approach (NSES) to mitigate urban fire events for WDS. Section 4 describes the 

development of a stochastic modeling framework for fire hazard and fire risk assessment 

methodology by utilizing a coupled model of water and fire response infrastructure. 

Finally, Section 5 presents conclusions based on the whole body of the dissertation and 

potential future areas of research. 
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2. VULNERABILITY, RISK, AND MITIGATION ASSESSMENT OF 

WATER DISTRIBUTION SYSTEMS FOR INSUFFICIENT         

FIRE FLOWS 

 

2.1. Introduction 

Water systems have been identified as one of the United States‟ critical 

infrastructures (White House 2003) and are naturally vulnerable to physical, 

chemical/biological, and cyber threats. These threats towards water systems had been 

recognized long before September 11, 2001 and the water utility industry had taken 

some security measures against such threats, but not as many as since September 11, 

2001. Water infrastructure is also strongly connected to the critical infrastructures of 

energy, public health, chemical industry, agriculture and food, and emergency services 

such as fire response. Thus, any potential damage in water infrastructure would be a 

threat to those infrastructures as well, and vice versa.  The present study of vulnerability, 

risk, and mitigation assessment for water distribution systems is motivated by the need 

to determine the most critical components of a water distribution system during fire 

events and the risks associated with those system components. 

Typically, vulnerability means susceptibility to damage; therefore vulnerability 

analysis can be defined as the process that identifies the risk areas and the mechanisms 

by which potential damages can occur without considering the likelihoods of damages. 

Risk, on the other hand, is the “combination of the probability of an event and its 

consequence” (ISO 2001). Traditionally, the process of risk analysis has three core 
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elements – risk assessment, risk management, and risk communication (National 

Research Council 1994). Thus risk assessment is the systematic analysis to identify 

probabilities and magnitudes of losses to the recipients from failures involving natural 

and/or manmade events; risk management is the process of minimizing the assessed risk; 

and risk communication is the process of exchanging and sharing the risk information 

between stakeholders and decision makers (Modarres 2006). 

Vulnerability analysis for water systems has been a topic of intense study in 

recent years. Haimes et al. (1998) recognized the potential threats against water supply 

systems as physical threats, chemical/biological threats, and cyber threats and proposed a 

methodology to reduce the vulnerability by hardening of water systems based on the 

philosophy of Hierarchical Holographic Modeling (HHM) (Haimes 1981). Haimes 

(2002) proposed a strategic plan combined with the hardening of the water supply 

system by applying a well planned maintenance program and by standardizing the 

components of water supply and distribution systems. The HHM philosophy was also 

adopted by Ezell et al. (2000) in development of the probabilistic Infrastructure Risk 

Analysis Model to identify, assess, and manage risks to infrastructure. Tidwell et al. 

(2005) proposed an alternative approach of threat assessment of water supply systems 

using Markov Latent Effect modeling in which an assessment score was obtained to 

provide a measure of the credibility of a threat. Lewis (2006) developed a 

comprehensive method to analyze infrastructure vulnerability in different sectors called 

Model Based Vulnerability Analysis (MBVA) and thereby suggested a method of 

allocating limited resources to improve infrastructure security and to reduce the risks. 
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The United States Environmental Protection Agency (USEPA), in association with 

American Water Works Association Research Foundation (AWWARF) and the U.S. 

Department of Energy‟s Sandia National Laboratories, developed Risk Assessment 

Methodology for Water Utilities (RAM-W) to identify water system vulnerabilities and 

thereby to determine the level of security needed to reduce risk (AWWARF and Sandia 

National Laboratories 2002). 

 The studies cited above have taken a somewhat generic approach to 

vulnerabilities, but others have used an approach focused on more specific threats and 

consequences. Ostfeld and Salomons (2004) presented a methodology applying a genetic 

algorithm to find the optimum locations for a set of monitoring stations, called an early 

warning detection system, in a distribution network to detect accidental or deliberate 

intrusions of harmful chemicals and microorganisms to the water distribution system. 

Al-Zahrani and Moied (2001), among others, performed a similar study. Skolicki et al. 

(2006) used an evolutionary computation-based approach to identify vulnerable 

distribution system components with loss of nodal service pressures used as an 

assessment criterion. 

This article departs from previous studies in its emphasis on firefighting flows 

provided by the water distribution system. The main goal of this research is to extend the 

basic knowledge of vulnerabilities in the water systems during occurrence of fire and to 

incorporate the risk associated with the water system failure for fire events in decision 

making processes to address potential problems. The specific goals of this research are 

to: 
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 Develop a methodology to examine the vulnerability and risk to water 

distribution systems during urban fire events; 

 Develop strategies to mitigate the assessed risk to water distribution systems; and 

 Examine the effectiveness of proposed mitigation strategies using benefit-cost 

analysis. 

 

2.2. Water Systems’ Vulnerability, Risk, and Fire Flows 

Water systems are generally constructed to provide sufficient water to the users 

with specific pressure, volume, and quality. These systems consist of various physical 

components for example, pipes, valves, junctions, pumps, elevated storage tanks, water 

treatment plants, etc. To ensure safe delivery to water users, water systems are generally 

designed to fulfill base demands with additional capacity for emergency demand 

conditions such as broken pipes and valves, firefighting demands, pump and power 

outages, etc. (Mays 2004).  These types of emergency demand conditions might arise 

because of mechanical failure of the system during a natural disaster or due to 

intentional attacks.  In such conditions the system might not deliver water to end users 

with sufficient flow and/or pressure. Local design requirements vary, but a typical set of 

standards is that of the cities of Bryan and College Station, Texas, where under normal 

conditions, a static pressure of 241.3 kilonewtons per square meter (kN/m
2
) (35 pounds 

per square inch [psi]) is maintained throughout the system under normal conditions, and 

a minimum of 137.9 kN/ m
2
 (20 psi) pressure is to be maintained throughout the system 

during fire flow events (Cities of Bryan and College Station [BCS] 2005); with this 
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minimum pressure requirement a flowrate of 63 liters per second (l/s) (1,000 gallons per 

minute [gpm]) is required at fire hydrants serving single family residential buildings, and 

a flowrate of 158 l/s (2,500 gpm) is required at hydrants for multi-family 

residential/commercial/industrial buildings during fire flow events (BCS 2005). The 

minimum pressure requirement is needed to overcome head losses between hydrants and 

fire-engine pumps (Mays 2004). Additional fire flow information is included in AWWA 

(1998) and Mays (2000), among others. 

Water systems can be viewed as a collection of links connected to the nodes 

(Rossman 2000). The performance of the system depends upon the performance of the 

individual system components. To ensure reliable delivery of water for fire fighting and 

other uses, water mains are generally constructed in a grid pattern so that if a single 

section fails, the damaged section can be isolated and the remainder of the system will 

still provide adequate flows and pressures at hydrants and other demand locations. 

However, if multiple segments fail the water distribution system may not include 

sufficient redundancy to ensure adequate service conditions. Thus, the process of 

vulnerability assessment is one of identifying critical combinations of system failures 

that impair the water system from meeting its designed capacity. 

While vulnerability assessment identifies the potential risk areas, risk assessment 

measures probabilities and magnitude of losses to recipients. Traditionally, risk 

assessment addresses four basic questions: (1) what can go wrong? (2) how likely is it? 

(3) what are the consequences if it does go wrong? (4) how certain is this knowledge? 

(Stern and Fineberg 2003). Thus the first step in WDS‟s risk assessment would be 
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identification of failure scenarios during fire events; the second step would be estimation 

of probabilities for identified failure scenarios; the third step would involve estimation of 

potential losses during fire due to failure of the water system‟s ability in delivering fire 

fighting flows; and the last step would be analysis of uncertainty. The following sections 

describe in detail the specific steps to accomplish the vulnerability and risk assessment 

for WDS during urban fire events, implementation of the proposed methodology to a 

case study, and results. 

 

2.3. Water Systems’ Failure Scenarios and Estimation of Failure Probabilities 

In WDS vulnerability and risk assessment the first two steps are identification of 

all possible failure scenarios and estimation of the corresponding failure probabilities. 

During this analysis, three failure scenarios are considered for examining vulnerability 

and risk to water distribution system during fire events: (1) accidental failure due to soil-

pipe interaction, (2) accidental failure due to a seismic event, and (3) malevolent actions 

or terrorist attack.  

Deterioration of pipes due to aging often cause pipe breaks and leaks and has 

been a major concern of water utility industries. Yamijala et al. (2009) proposed a 

logistic generalized linear model (logistic GLM) for estimating the probability of pipe 

breakage due to soil-pipe interaction. Using historical (2000-2005) pipe break data from 

a major U.S. city, they developed a statistical model to estimate the probability of pipe 

failure for a water distribution system. The results from their analysis showed that the 

variables that are statistically significant at a level of 5% for the studied system were: (1) 
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pipe diameter, (2) pipe material, (3) pipe length, (4) land use type, and (5) soil type. For 

any given water system with known soil profile and zoning data, the likelihood of pipe 

failure at least once in a five year period caused by soil-pipe interaction for each 

individual pipe in the system can be estimated using the logistic GLM (Yamijala et al. 

2009). Hence, in this article the logistic GLM (Yamijala et al. 2009) is used to estimate 

pipe failure probabilities due to pipe aging. 

Seismic wave propagation often causes transient soil deformation and can 

produce well-dispersed damage to buried pipelines (Eidinger 2005). Studies showed that 

pipes that are made of cast iron or asbestos cement perform poorly during seismic 

events; ductile iron pipes, being more durable than cast iron, generally perform better 

than the other two. The level of ground shaking at any pipeline location is generally 

measured in terms of peak horizontal ground velocity (PGV). When the soil mass 

experiences long duration strong ground shaking, then landslides or liquefaction occurs 

and causes severe damage to the pipes. The amount of landslide or liquefaction 

movement is generally measured in terms of permanent ground displacement (PGD). 

Eidinger (2005) developed a set of fragility curves using available pipe damage data 

from historical earthquakes. These curves are expressed as repair rates per unit length of 

pipe, and as a function of peak ground velocity (PGV) or permanent ground deformation 

(PGD). The pipe damage algorithm or fragility curves (Eidinger 2005) are expressed as: 

 

RR = K1*(0.00187)*PGV (for wave propagation)    (2.1) 

RR = K2*(1.06)*PGD 
0.319

 (for permanent ground deformation)  (2.2)  
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where, RR = repairs per 1000 ft (305 m) of main pipe; PGV = peak ground velocity in 

inch/second (1 inch = 0.0254m); PGD = permanent ground deformation in inch 

(0.0254m); K1 = ground shaking constants for fragility curve; and K2 = permanent 

ground deformations constants for fragility curve. The constants K1 and K2 vary with 

different pipe material, joint type, soil, and pipe diameter. Detailed list of values for K1 

and K2 can be found in Eidinger (2005). In this article only ground shaking hazard is 

considered, hence, equation (2.1) is applied.  

Intentional attacks have been a major concern in the U.S. since the events of 

September 11, 2001. Although the threat of terrorist attacks to water supply systems 

have been well-studied and documented both before and after September 11, 2001, the 

probability of occurrence of a potential terrorist attack on water infrastructure is 

impossible to predict and difficult to estimate. Thus a parametric approach is conceived 

to estimate the risks. Detailed description of this approach is discussed in section 2.6.1. 

 

2.4. Methodology for Vulnerability and Risk Assessment 

 The next step in traditional risk assessment procedure is consequences 

evaluation. Any inadequacy or diminished capacity of the WDS due to system failure 

would lead to severe consequences during fire events such as loss of homes, loss of 

businesses, loss of lives, or all of the above. Thus the consequences can be expressed in 

terms of WDS performance during critical combination of system failure. Therefore, 

assessed risk to WDS would be the product of probability of component failure and the 

diminished system performance. This problem of vulnerability and risk assessment for 
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water distribution system can be viewed as an optimization problem which maximizes 

the system risk during urban fire event caused by failure or disruption of specific system 

components. Mathematically the problem can be formulated as follows: 

 

Maximize R = J (U | D, hydraulics) * P(U)    (2.3) 

 

where, R = system risk; J = a damage function calculated on the basis of pressure and/or 

flow at an active fire hydrant node; U = set of damaged system components (decision 

variables); D = set of non-firefighting demands imposed on the water system and the fire 

flow needed at an active hydrant; hydraulics = the governing physical principles on the 

water supply system; and P(U) = total probability of failure for the set of decision 

variables under all three failure scenarios. 

Along with the objective function in Eq. (2.3), a constraint on the problem is the 

maximum number of component failures that may be included in U, which is 

representative of a number of pipe failures due to physical attacks and/or accidents. 

 

2.5. A Dynamic Programming Solution for Vulnerability and Risk Assessment 

 The proposed model is formulated in an optimization-simulation framework 

where an optimal solution to the problem is achieved by interfacing the dynamic 

programming (DP) optimization model (Mays 1996) with a hydraulic simulation model, 

EPANET 2.0 (Rossman 2000). The hydraulic simulation model is used to solve the pipe 

hydraulics to evaluate the objective function at each iteration. 
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“Dynamic Programming transforms a sequential or multistage decision problem 

that may contain many interrelated decision variables into a series of single stage 

problems, each containing only one or a few variables” (Mays 1996). Thus the DP 

procedure is recursive which includes the following attributes (Mays 1996): 

 Each problem can be disintegrated into a sequence of single-decision 

problems at various stages (points where decisions are made). 

 Each stage has a number of feasible state variables that connect the 

subsequent stages. 

 The decision at each stage transforms the current state into some state at the 

next stage through the state transition function. 

 The optimal policy at any stage is independent of the strategies adopted at 

antecedent stages. 

 A recursive relationship is developed to choose the best solution from state to 

state across the stages.  

 Classical optimization techniques such as Linear Programming, Dynamic 

Programming, Lagrange Multiplier, and Gradient Method, among others, are commonly 

used in many hydrosystems application. However, the proposed methodology is 

developed by utilizing a DP-based optimization technique for two primary reasons: (1) 

identifying the most critical components of a water supply system (i.e., those whose 

failure maximizes the risk) can be considered as a multistage decision problem, which is 

DP‟s forte; and (2) the hydraulics of pipe networks include significant non-linearities 
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that would prohibit application of other techniques, but to which DP is immune. The 

structure and implementation of DP to the WDS problem are described below. 

 

2.5.1. Dynamic Programming Algorithmic Attributes 

The DP decision variables correspond to the elements of the system which are to 

be damaged or fail (U in Eq. 2.3).  It is obvious that failure of a pump station or elevated 

storage tank would likely cause maximum damage to the system, and consequence 

determination would be a matter of straightforward hydraulic simulation. On the other 

hand, failure of multiple pipes in the system to cause maximized risk is a more complex 

matter of multistage decisions. Therefore, only water mains are considered in this study 

as potential failure elements, and the decision variables are defined as binary decisions 

of damage/no damage for each pipe in the system. The stages of the DP solution are 

defined as the pipes for which a decision variable must be determined. Thus, if there are 

500 pipes in a water system model, 500 stages would exist, and 500 decision variables 

would need to be determined. Thus, 

 

0, /

1, /
k

if pipe k is undamaged does not fail
u

if pipe k is damaged fails


 


    (2.4) 

 

where, k = index on system stage; uk = decision variable at stage (pipe) k. 

 With system stages defined as progression through damage/failure decisions for 

each system pipe, system state at a given stage is defined as the cumulative number of 
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positive damage/failure elements (i.e., the cumulative sum of this and all previous 

decision variables). A terminal constraint on state value is needed to reflect the 

maximum number of damaged/failed pipes that should be considered, and an 

initialization constraint is required to begin accumulation at zero. The state transition 

function, initialization constraint, and terminal constraint, respectively, are thus:  

 

 Xk = Xk-1 + uk       (2.5) 

 X0 = 0        (2.6) 

 XN ≤ Xmax       (2.7) 

 

where, Xk = state variable at stage k; X0 = state variable at “zero-th” stage; N = number of 

stages; XN = state variable at final stage; and Xmax = maximum number of damaged/failed 

pipes to be considered. 

As discussed above, fire flow requirements include both pressure and flow 

criteria. The damage function J is thus formulated and described below. 

 

2.5.2. Formulation of Damage Function 

To determine the available flow at an active fire hydrant node during a fire event, 

the pressure at that node is fixed at its minimum allowable value (as discussed above, 

137.9 kN/m
2
 [20 psi]) and available flow is determined using the hydraulic model. In the 

hydraulic model, the flow through a fire hydrant can be modeled at fixed pressure by 

specifying the node to be an “emitter” (Rossman 2000), i.e., a discharge of water to the 
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atmosphere through an open orifice. Flow through an emitter is proportional to the 

square root of pressure available at that node:  

 

em em emQ C P       (2.8) 

 

where, Qem = flow through the emitter (l/s or gpm); Pem = available pressure at the 

emitter node (kN/ m
2
 or psi); and Cem = emitter discharge coefficient [l/s/(kN/ m

2
)
0.5

 or 

gpm/psi
0.5

] (Rossman 2000). To determine the maximum flow available at a fire hydrant, 

the available pressure is assumed to be 137.9 kN/ m
2
 (20 psi), and a discharge coefficient 

for that emitter is determined according to the hydrant‟s physical characteristics. For a 

25.4 cm (10 in) diameter connection fire hydrant Cem = 44.5 l/s/(kN/ m
2
)
0.5

 (1850 

gpm/psi
0.5

), and for a 7.62 cm (3 in) diameter connection Cem = 4.01 l/s/(kN/ m
2
)
0.5

 

(166.5 gpm/psi
0.5

). Then a single period hydraulic simulation is performed, and the free 

orifice flow at the hydrant is determined. The maximum available flow at the fire node is 

the emitter flow minus any base demand (Rossman 2000); that is, if normal consumer 

demands were also associated with a node, they would be subtracted to find the flow 

available exclusively for fire fighting. The damage function J is thus calculated as: 

 


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   (2.9) 
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where, Qreq = required flow for firefighting according to regional fire code; Qavailable = 

maximum net available flow at fire node from hydraulic simulation. 

 The rationale behind the formulation in Eq. (2.9) is to indicate “damage” as 

positive when available flows are less than required at the active fire hydrant, and that 

damage value is amended by a normalized distance to the nearest operable backup 

hydrant. If more than the required flow is available, the “damage” value is negative. 

Negative damage values indicate residual flow capacity at the hydrant. To transform this 

damage function to a more tangible quantity, potential property losses can be calculated 

as the product of the damage function and total building replacement cost within some 

radius of the hydrant under analysis.  In this study, a radius of 244 m (800 ft) was used. 

 

2.5.3. Total Probability of Failure 

The estimation of P(U) involves both event tree and fault tree analysis (Pate-

Cornell 1984). The three failure scenarios discussed in section 2.3 are broadly grouped 

into two independent events: (1) accidental failure, which involves both soil-pipe 

interaction and seismic activity, and (2) intentional failure. Considering the case of 

accidental failure, a pipe k can fail either due to aging (i.e., soil-pipe interaction) or due 

to seismic activity. If there is an earthquake, the pipe k is more susceptible to failure due 

to earthquake than due to soil-pipe interaction; if there is no earthquake, the only 

accidental failure mode is soil-pipe interaction. The sequence of failure of a set of pipes 

(decision variables) linked by conditional probabilities of an earthquake event was 

modeled using an event tree. Assuming the accidental failures (due to soil-pipe 
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interaction and seismic event) are independent of intentional failures, the failure 

probability due to all three failure modes for a set of pipes was modeled using a fault tree 

(Pate-Cornell 1984). 

The DP solution algorithm defined in the equations above is implemented in a 

computer code that utilizes iterative solution of the water distribution system hydraulics 

as each stage‟s decision variable is evaluated under the constraint values defined in Eq. 

(2.5) through Eq. (2.7). The EPANet Programmer‟s Toolkit (Rossman 1999) was used in 

a Microsoft Visual Basic 6.0 code for this purpose. At each stage, flows and pressures in 

the distribution system are solved for both possible values of the decision variable, and 

the decision variable value maximizing the objective function is retained. Computation 

of the DP solution for a given set of constraints produces several outputs: the optimal 

decision set U* (= [u1
*
, u2

*
, …]) that represents the set of pipes whose collective failure 

maximizes the risk; a total probability of failure value, P(U*), for the optimal decision 

set; a maximized risk value, R*; and operational status of all non-active fire hydrants 

(i.e., could those hydrants supply needed fire flow at minimum pressure). Thus the 

optimal decision set U* represents the vulnerable system components; total probability 

P(U*) represents the likelihood of system damage; and the maximized risk value R* 

represents the system risk during a specific fire event. Further details on development of 

the DP algorithm are discussed by Kanta (2006). 
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2.5.4. Dynamic Programming Algorithmic Steps 

The algorithmic steps of the DP procedure are: 

Step 1. Initialize the system risk R and the decision set U. 

Step 2. Incorporate current decision values, U, into the water model and update the 

network accordingly. The current decision values include both the previous stages‟ 

decisions and the current stage‟s decision. 

Step 3. Run EPANET to obtain damage function J using current values of decision 

variables U.  

Step 4. Calculate total probability of failure value, P(U), for the current decision set U. 

Step 5. Calculate system risk using Eq. (2.3). 

Step 6. Compute maximum system risk, R
*
, by comparing risk values between the 

current stage and the previous stage. Update the decision set U as the optimal decision 

set U
*
 accordingly. 

Step 7. If terminal constraint, Eq. (2.7), is satisfied then stop; otherwise, go to Step 2. 

 

2.6. Application of Risk-based DP Model to a Case Study 

To demonstrate the vulnerability and risk assessment methodology for WDS fire 

events, a hypothetical case study was performed for the virtual small town “Micropolis” 

(Brumbelow et al. 2005, 2007). Detailed description of available data and 

implementation of the methodology to Micropolis WDS are presented in the following 

sections. 
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2.6.1. Description of Data and Estimation of Probabilities 

“Micropolis” (Brumbelow et al. 2005, 2007) has an approximate area of 5.2 km
2
 

(2 mi
2
) and a population of 5,000. The city has two major sources of water, a surface-

water reservoir and a well field. Water from these sources is treated in a treatment plant. 

The current version of its water system model consists of a pumping station consisting of 

3 pumps, one elevated storage tank, 1088 pipes, 1210 non-hydrant nodes, 52 fire 

hydrants, and 196 valves (Fig.2.1). Among the 1088 pipes there are 577 water mains and 

the remaining pipes are service and hydrant connections. In addition to the water 

distribution system model, there is a detailed building map, a soil map, and a geographic 

information system (GIS) database for Micropolis that were used throughout the 

vulnerability, risk, mitigation, and benefit-cost analysis. 

 From the GIS database of Micropolis and the soil map of the area, the detailed 

information about pipe diameter, length, pipe material, pipe corrosivity to soil, soil type, 

and overlying land use data were extracted for each of the 577 water mains. Then using 

the logistic generalized linear model of Yamijala et al. (2009) the annual probability of 

failure of each of those 577 pipes was calculated. 

 To estimate pipe damage due to seismic risks the PGV-dependent model of 

Eidinger (2005) – Eq. (2.1) – was used. Data from the 1994 Northridge, California, 

earthquake on PGV values was used to estimate an exponential distribution for PGV.  

Repair rates for cast iron (CI), asbestos cement (AC), and ductile iron (DI) pipes were 

estimated using Eidinger‟s fragility curves. Ten thousand Monte Carlo (Hasofer et al. 

2007) simulations of PGV magnitude were carried on with repair locations randomly 
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assigned to pipes within each material class. The results of the Monte Carlo simulations 

were then aggregated to produce a seismic failure probability for each individual pipe. 

 

 

 

Fig. 2.1. Building map of Micropolis with water distribution network shown with thin lines, 

sources shown with black squares, “likely” pipes for intentional attack with black thick dotted 

lines, and hydrants included in the vulnerability and risk analysis indicated with stars 

 

Single Family Residential Building 

Multi Family / Commercial / Industrial Building  

Hydrants  

Service Area for Fire Hydrants included 
in Vulnerability and Risk Analysis 
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To estimate the probability of pipe failure due to intentional attack a parametric 

approach was used. The 577 water mains were grouped into: (1) “likely” pipes for 

terrorist attack, and (2) “unlikely” pipes for terrorist attack. The likely pipes were pipes 

that are more accessible, unprotected, and/or above ground, such as pipes that run under 

bridges. Ten pipes were chosen as “likely” pipes, and the rest were assumed to be 

“unlikely pipes” (Fig.2.1). “Likely” pipes were assumed to have probability of attack as 

much as  ( {1,2,3,…,10}) times that of “unlikely” pipes. Probability of failure for the 

“likely” pipes was set at values of 0.01, 0.02, 0.03, 0.04, 0.05, 0.075, 0.1, 0.2, 0.4, 0.6, 

0.8, and 1 in different risk analysis trials to determine the effect of changing likelihood 

of malevolent attack versus constant probability of accidental failure. A risk threshold 

was hypothesized as the value of the probability of attack on the “likely” pipes which 

dominates the intentional failure over accidental failure. A sensitivity analysis was 

performed with varying  to assess the risk threshold between accidental failure and 

intentional failure. 

 

2.6.2. Application of Risk-based DP Algorithm 

The risk-based DP algorithm defined above is here demonstrated for the case of 

“Micropolis” (Brumbelow et al. 2005, 2007). To reduce computation time, a subset of 

470 mains was selected out of the total of 577 on the basis of the pipe significance index 

(SI) (Arulraj and Rao 1995). For simplicity of analysis, only a single active fire hydrant 

is considered at a time in this application, although the specific hydrant is varied. Five 

fire hydrants throughout the city were selected for intensive analysis.  Among these five 
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hydrants, HY17, HY29, and HY61 are located in single family residential areas; HY53 

is located in a multifamily residential area; and HY66 serves both a single family 

residential area and a commercial/ industrial area of the city of Micropolis. The service 

areas are circles around each of the five hydrants (Fig.2.1) of radius 244 m (800 ft); it is 

assumed that a fire inside a service area might lead to the hydrant being tapped for fire 

suppression.  In the analyses, required fire flows at each hydrant were determined on the 

basis of the surrounding area type and the requirements. Because Micropolis is a small 

municipal system serving a population of about 5,000, a lesser fire flowrate of 31.5 l/s 

(500 gpm) was used for analysis (Mays 2000). Minimum residual pressure was 137.9 

kN/m
2
 (20 psi) for all hydrants. The maximum search radius Rmax for a nearby operable 

hydrant was set at 244 m (800 ft) for all analyses. 

Kanta (2006) presents the vulnerability analysis at all five hydrants mentioned 

above, and those results indicate that the Micropolis water system‟s fire protection 

capabilities possess no robustness to attack on or failure of pipe elements, and limited 

resilience. This observation is not surprising as the system is intended to replicate the 

imperfect circumstances of a typical small municipal system. The algorithm was applied 

in an iterative fashion. For each of the five chosen fire hydrant locations, the maximum 

allowable number of failures (Xmax) was increased from 1 to a value where the damage 

function reached a plateau. Values of the weighting coefficients α and β were set at 0.99 

and 0.01, respectively through a sensitivity analysis after Kanta (2006). The hydraulic 

model simulation was performed at 9:00 am in the morning as the demand at that 

particular time of the day reached maximum. 
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2.6.3. Sensitivity Analysis on the Ratio of Probability of Attack on “likely” Pipe to 

“unlikely” Pipe 

To understand the changing nature of vulnerability and risk with respect to the 

ratio of probability of attack on “likely” pipes to “unlikely” pipes, , a sensitivity 

analysis was performed with fire at hydrants HY29 and HY66 with varying   

{1,2,3,…,10}. A risk threshold between accidental failure and intentional failure was 

also noted. From the sensitivity analysis it has been observed that when the hydrant is far 

away from the “likely” pipes, for instance the case of hydrant HY66, the decisions on 

vulnerable pipes from the risk-based DP model are insensitive to the ratio ; and the risk 

threshold is 0.2 for any value of . In contrast, the DP solutions based on the active fire 

hydrants close to the “likely” pipes are quite sensitive to the ratio, . This is the case of 

hydrant HY29. In such a case it was observed from the analysis that higher the ratio, , 

lower is the risk threshold and vice versa. Moreover, the risk threshold between 

accidental failure and intentional failure remains 0.2 for  ≤ 5 and decreases with an 

increase in . Based on the observation, a value of  = 5 was used for the subsequent 

analysis. 

 

2.7. Results of Vulnerability and Risk Assessment 

The vulnerability and risk assessment results for hydrants HY29 and HY66 are 

discussed in detail in the following sections. Kanta (2006) discusses the full set of results 

of vulnerability analysis (excluding risk) for all five hydrants with fire flow requirements 

specified by BCS (2005). 



 26 

2.7.1. Results at Hydrant HY29 

System risk versus number of failures at hydrant HY29 are shown in Fig.2.2 and 

Fig.2.3. A required flowrate of 31.5 l/s (500 gpm) was considered for analysis. The 

optimal decision set (points of vulnerability) is shown in Fig.2.4.  
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Fig. 2.2. Number of failures versus risk at hydrant HY29 with fire flow = 31.5 l/s (500 gpm)  

 

For a single failure (Xmax=1) the risk function reaches a value 0.011 when the 

probability of attack on “likely” pipes (P_LP) is 0.0. This risk function value for a single 

failure increases as the probability of attack on “likely” pipes (P_LP) increases and 

reaches its maximum at 0.269 when probability of attack on “likely” pipes (P_LP) 

equals 1.0. As the number of failures increases the system risk value increases with   



 27 

increase in intentional failure probability and reaches its maximum value at P_LP = 1.0. 

From the optimal decision sets (Fig.2.4.) it can be noted that the accidental failure modes 

dominate solutions when probability of attack on “likely” pipes (P_LP) is less than 0.2; 

the intentional failure modes dominate solutions when P_LP equals or exceeds 0.2. 
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Fig. 2.3. Number of failures versus risk at hydrant HY29 with fire flow = 31.5 l/s (500 gpm) 

 

2.7.2. Results at Hydrant HY66 

System risk versus number of failures at HY66 are shown in Fig.2.5 and Fig.2.6 

for a required flowrate of 31.5 l/s (500 gpm). The optimal decision set is shown in 

Fig.2.7. 
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Fig. 2.4. Results at hydrant HY29 for maximum failure number Xmax = 5 and ratio of probability 

of attack on “likely” pipes to “unlikely” pipes  = 5, vulnerable pipes (decision variables) shown 

in solid blue lines for P_LP = 0.1, vulnerable pipes (decision variables) shown in solid red lines 

for P_LP = 0.2, and “likely” pipes for intentional attack shown in black thick dotted lines 

 

Referring to Fig.2.5 and Fig.2.6, for a single failure with probability of attack on 

“likely” pipes (P_LP) equals 0.0, the system risk is 0.011, this risk function value 

increases as P_LP increases and reaches its maximum (0.175) when P_LP = 1.0. As it  
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Fig. 2.5. Number of failures versus risk at hydrant HY66 with fire flow = 31.5 l/s (500 gpm)  
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Fig. 2.6. Number of failures versus risk at hydrant HY66 with fire flow = 31.5 l/s (500 gpm)  



 30 

 

 

Fig. 2.7. Results at hydrant HY66 for maximum failure number Xmax = 5 and ratio of probability 

of attack on “likely” pipes to “unlikely” pipes  = 5, vulnerable pipes (decision variables) shown 

in solid blue lines for P_LP = 0.2, vulnerable pipes (decision variables) shown in solid red lines 

for P_LP = 0.4, and “likely” pipes for intentional attack shown in black thick dotted lines 

 

was the case of hydrant HY29, the optimal decision sets of the results from hydrant 

HY66 (Fig.2.7.) indicates that the accidental failure modes dominate solutions when 

probability of attack on “likely” pipes (P_LP) is less than or equals to 0.2; the intentional 
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failure modes dominate solutions when P_LP exceeds 0.2. Similar results were found in 

other hydrant locations. System risk obviously increases as intentional failure probability 

increases. These results suggest a definite quantifiable threshold where system elements 

generating greatest risk change due to changing failure sources. 

 

2.8. Analysis and Recommendation of Mitigation Strategies 

To reduce the assessed risk to Micropolis WDS during fire events a risk 

management approach was adopted through mitigation. Mitigation is the course of 

action which, if taken in advance, will reduce the threat toward the water system and will 

help in improving the system‟s performance. Considering all three failure scenarios 

discussed in WDS vulnerability and risk assessment, there are several ways to mitigate 

WDS fire consequences: (1) complete seismic replacement of all pipes in the network, 

(2) design and construction of alternate new pipelines within the service area of the 

system, (3) installing multiple water storage tanks designed with seismic load resistant. 

All of these alternatives would reduce the risks from water system‟s failure hazard, but 

they might not be cost-effective. Therefore, a hardening approach of optimal decision 

sets, identified from the risk-based DP methodology, was considered.  

From the risk-based DP solutions presented in above sections, it was found that 

some elements of the Micropolis WDS were repeatedly among the most vulnerable 

components for fire flows at different hydrants (i.e., they were frequently included in the 

optimal decision set U* determined by the risk-based DP algorithm). On the basis of 

these results, four mitigation strategies were considered: (1) low-cost mitigation focused 
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on accidental failure (LC-AF) (hardening 18 vulnerable pipes), (2) high-cost mitigation 

focused on accidental failure (HC-AF) (hardening 32 vulnerable pipes), (3) low-cost 

mitigation focused on intentional failure (LC-IF) (hardening 10 “likely” pipes for 

intentional failure; among 10 “likely” pipes, pipe enlargement applied at MA536, 

MA549, MA672, MA691, MA692, and MA693 with hardening), and (4) high-cost 

mitigation focused on intentional failure (HC-IF) (hardening 24 vulnerable pipes 

including 10 “likely” pipes for intentional failure; among 10 “likely” pipes, pipe 

enlargement applied at MA536, MA549, MA672, MA691, MA692, and MA693 with 

hardening). The mitigation designs are shown in Fig.2.8. All of these mitigation 

strategies involve hardening a specific set of pipes, i.e., replacing the existing pipes with 

more durable cement lined class 50 ductile iron pipes of same diameter or larger 

diameter (as included in mitigation design (3) and (4)) and further simulations were 

performed on the hardened water supply system to assess its changed vulnerability and 

risk under each mitigation strategy. In the mitigation scenario simulations, “hardened” 

pipes were assumed to have 0 probability of failure. 

During mitigation scenario simulation, accidental failure methods were evaluated 

using probability of attack on “likely” pipes, P_LP = 0.02 and intentional failure 

methods were simulated with P_LP = 0.6. From mitigation scenario simulation it was 

found that the proposed mitigation measures reduced the system risks to varying 

degrees. As an example, system risk versus number of failures at hydrant HY29 with 

mitigation design (1) and (3) are shown in Fig.2.9 and Fig.2.10 respectively.   
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Fig. 2.8. Mitigation designs for Micropolis water distribution system 
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Fig. 2.9. Number of failures versus risk at hydrant HY29 with low cost mitigation for accidental 

failure (mitigation package 1) with P_LP = 0.02 and  = 5 
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Fig. 2.10. Number of failures versus risk at hydrant HY29 with low cost mitigation for 

intentional failure (mitigation package 3) with P_LP = 0.6 and  = 5 
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2.9. Benefit-cost Analysis for Proposed Mitigation Strategies 

Benefit-cost analysis was used to determine the economic feasibility of the 

mitigation options.  The annual failure probabilities presented above were transformed to 

probabilities over 50 year service lives/planning horizons using the binomial distribution 

(Clemen and Reilly 2001). Benefits were calculated as the product of risk reduction over 

the 50 year planning horizon – reduction in the product of damage function value (J) and 

probability of simultaneous failure of pipes in the optimal decision set (P(U)) – and the 

total building replacement cost within each hydrant service area. The benefit from 

adopting mitigation is thus equivalent to how much building replacement cost is saved 

from fire damage by implementing mitigation. Cost of each mitigation option is the cost 

of pipe replacement, estimated as $58.17/m ($17.73/ft) for 0.051 m (2-inch), $59.55/m 

($18.15/ft) for 0.102 m (4-inch), $69.91/m ($21.31/ft) for 0.152 m (6-inch), $74.0/m 

($22.31/ft) for 0.203 m (8-inch), and $107.0/m ($32.62/ft) for 0.305 m (12-inch) 

diameter pipes (Saylor 2004). Accidental failure methods are evaluated using P_LP = 

0.02, intentional failure methods are evaluated using P_LP = 0.6. Table 2.1 and Table 

2.2 present the benefit-cost analysis at all five hydrants for this system. 

 The benefit-cost analysis for the Micropolis water system reflects the system‟s 

added resiliency by implementing the mitigation measures. The mitigation strategies that 

focused on accidental failures ((1) and (2)) reduced the system‟s vulnerability and risk 

for any number of pipe failure (Xmax ≥ 1) during a fire event and produced positive net-

benefits. However, mitigation strategies that are focused on intentional failure ((3) and 

(4)) produced a negative net benefit for all of the five hydrant locations with Xmax = 1; 
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Table 2.1. Benefit-cost Comparison for Proposed Mitigation Strategies for 2 Failed Pipes 

Service Mitigation Estimated Property Change Estimated Net Benefit

Area Method Cost Value in Risk Benefit

($) ($) Index ($) ($)

HY17 LC-AF 58,375 8,907,202 0.0141 125,906 67,531

HC-AF 98,903 0.0255 226,795 127,892

LC-IF 59,954 0.1010 899,203 839,248

HC-IF 100,846 0.1131 1,007,416 906,570

HY29 LC-AF 58,375 17,302,280 0.0125 216,381 158,006

HC-AF 98,903 0.0484 837,616 738,713

LC-IF 59,954 -0.2407 -4,164,719 -4,224,673

HC-IF 100,846 -0.2172 -3,758,739 -3,859,585

HY53 LC-AF 58,375 48,972,083 0.0043 210,264 151,889

HC-AF 98,903 0.0320 1,565,913 1,467,010

LC-IF 59,954 0.1616 7,911,980 7,852,026

HC-IF 100,846 0.1606 7,865,523 7,764,677

HY61 LC-AF 58,375 12,755,650 0.0061 78,266 19,891

HC-AF 98,903 0.0379 482,923 384,020

LC-IF 59,954 0.1434 1,829,489 1,769,535

HC-IF 100,846 0.1728 2,203,793 2,102,947

HY66 LC-AF 58,375 21,717,610 0.0196 426,226 367,851

HC-AF 98,903 0.0104 226,513 127,610

LC-IF 59,954 0.0641 1,391,680 1,331,726

HC-IF 100,846 0.0792 1,719,525 1,618,679

 

 

but produced positive net benefits for all of the fire locations when Xmax ≥ 2 except for 

hydrant HY29. This condition implies that the proposed mitigation designs for 

intentional failure are not effective for a small scale attack; however, for a large scale 

attack that mitigation strategies may be effective in producing positive net-benefits in the 
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long run. This behavior of the proposed mitigation calls for a more systematic design. 

Optimizing the mitigation designs may help produce plans that would be cost effective 

in case of fire flow condition at all of the above mentioned hydrant locations.  

 

Table 2.2. Benefit-cost Comparison for Proposed Mitigation Strategies for 4 Failed Pipes 

Service Mitigation Estimated Property Change Estimated Net Benefit

Area Method Cost Value in Risk Benefit

($) ($) Index ($) ($)

HY17 LC-AF 58,375 8,907,202 0.0080 71,384 13,009

HC-AF 98,903 0.0231 205,816 106,913

LC-IF 59,954 0.2484 2,212,321 2,152,367

HC-IF 100,846 0.2710 2,414,292 2,313,446

HY29 LC-AF 58,375 17,302,280 0.0152 263,258 204,883

HC-AF 98,903 0.0146 252,108 153,205

LC-IF 59,954 0.1228 2,124,117 2,064,163

HC-IF 100,846 0.1630 2,821,020 2,720,174

HY53 LC-AF 58,375 48,972,083 0.0047 231,076 172,701

HC-AF 98,903 0.0264 1,293,047 1,194,144

LC-IF 59,954 0.3009 14,737,021 14,677,067

HC-IF 100,846 0.2987 14,629,026 14,528,180

HY61 LC-AF 58,375 12,755,650 0.0082 104,345 45,970

HC-AF 98,903 0.0385 491,200 392,297

LC-IF 59,954 0.2811 3,586,153 3,526,199

HC-IF 100,846 0.3107 3,963,181 3,862,335

HY66 LC-AF 58,375 21,717,610 0.0066 142,267 83,892

HC-AF 98,903 0.0105 228,778 129,875

LC-IF 59,954 0.2206 4,791,524 4,731,570

HC-IF 100,846 0.2296 4,986,459 4,885,613
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2.10. Final Remarks 

This paper illustrates an optimization-simulation methodology for water 

distribution system which addresses the risk, consequences, and mitigation strategies 

during fire events. Although research on vulnerability of water supply systems has been 

studied intensively in recent years; this paper introduces a new risk-based DP 

optimization approach which enables the water utilities to analyze the vulnerability and 

risk of the system during fire events. 

The proposed methodology has three major steps. First, the pipe failure 

probabilities are estimated considering three failure scenarios: (1) accidental failure due 

to soil pipe interaction, (2) accidental failure due to a seismic event, and (3) malevolent 

action. Next, the total probability of failure due to all three modes is incorporated in a 

DP optimization methodology to evaluate the system risk during occurrence of fire. This 

step produces the optimal risk value; the points of vulnerability of the system, which is 

the set of solutions (pipes) whose collective failure maximizes the risk; and the total 

probability of failure for the optimal decision set. Finally, based on the solutions of the 

DP methodology, four mitigation strategies are proposed and the suggested mitigation 

plans are evaluated with a benefit cost analysis. 

The results from the case study illustrate that even though the vulnerable 

components/pipes of a WDS vary depending upon the location of fire, some of the same 

water mains appeared as the most vulnerable components for fire at all locations under 

consideration. The proposed mitigation designs are generated in an iterative fashion by 

implementing simulation approach based on the concept of hardening specific sets of 
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water mains. Simulations of the mitigation strategies show that the system risk can be 

reduced significantly by adapting some of the mitigation measures (mitigation package 

(1) and (2)) and the system‟s resiliency can be improved as well. However, some of the 

proposed mitigation plans are not adequate for small scale attack (mitigation design (3) 

and (4)); evidently those are much more effective during a large scale attack scenario. 

This observation calls for an investigation on the mitigation measures in a more 

systematic way. 

Prior research on fire mitigation demonstrated that while pipe enlargement 

increases the water distribution system‟s resiliency for fire protection, it also increases 

water age problem under normal demand condition (Bristow et al. 2007). To design an 

optimal mitigation plan for water systems‟ fire events, a multi-objective optimization 

approach will be examined next. To address both the fire mitigation and the water age 

problem, a multi-objective framework will be developed to yield a Pareto optimal front 

for optimal mitigation of water distribution system‟s fire events based on three primary 

objectives: (1) minimizing fire damage, (2) minimizing water quality problem, and (3) 

minimizing mitigation cost. The new investigation in fire mitigation and its findings is 

discussed in detail as a separate article in Section 3. 
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3. A MULTI-OBJECTIVE EVOLUTIONARY COMPUTATION 

APPROACH TO HAZARDS MITIGATION DESIGN                     

FOR WATER DISTRIBUTION SYSTEMS 

  

3.1 Introduction 

Water systems have been identified as one of the United States‟ critical 

infrastructures (White House 2003) and are vulnerable to various threats caused by 

natural disasters or malevolent actions (such as terrorist attack, vandalism, or insider 

sabotage). The goal of a water distribution system (WDS) is to deliver water to the 

consumers in sufficient quantity and quality, even in case of emergencies such as pipe 

failure, power outage, and urban fire events. Previous studies have examined WDS 

vulnerability and risk during urban fire events and investigated rehabilitation for 

mitigation of potential fire events with a major focus on attaining adequate fire flows by 

pipe hardening and pipe enlargement (Kanta and Brumbelow 2008). Any changes in 

water demand or water use pattern caused by pipe rehabilitation or new development 

often cause slower flow through the network which, in turn, results in greater decay of 

disinfectant (USEPA 2002). Thus pipe enlargements can also place public health at risk 

during normal operational periods. This type of water quality problems can be reduced 

by installing chlorine booster units in the system other than at the water treatment plant. 

Excess amounts of chlorine however, causes bad taste and the disinfectant by-products 

are harmful to human health. 
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Bristow et al. (2007) studied different mitigation strategies to improve water 

distribution systems‟ ability to meet fire fighting demand, and water main enlargements 

were found to be the most effective but involved relatively high costs. Brumbelow and 

Bristow (2008) investigated tradeoffs between WDS emergency supply and daily water 

quality needs and proposed 17 mitigation packages to improve the system‟s capacity to 

provide fire fighting flows without compromising the daily water quality needs. It was 

found from the investigation that some tradeoff exists between normal water quality and 

emergency demands of the WDS. All of the previous studies for WDS hazard mitigation 

cited here utilized simulation based methodologies which were iterative and hence call 

for a systematic approach. Thus a novel approach is required to effectively address the 

conflicting goals of the WDS: reliable delivery of water during normal as well as 

emergency conditions, meeting water quality standards, and finding cost-effective design 

and rehabilitation options.  

The goal of this project is to develop a methodology to design effective 

mitigation strategies for urban fire events for water distribution systems with three 

objectives: (1) minimizing fire damages, (2) minimizing water quality deficiencies, and 

(3) minimizing the cost of mitigation. This goal can be achieved by identifying pipes for 

replacement and their corresponding diameters and the location of additional chlorine 

booster units. When more than one objective is considered in an optimization problem, 

no single solution may produce the best result with respect to all objectives. In such a 

case a set of solutions known as the Pareto optimal solutions or non-dominated solutions 

exist (Hans 1988), none of which is worse than any other with respect to all objectives. 
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The Pareto optimal solutions provide the decision makers more information and 

flexibility in selection of a solution. This article presents a novel multi-objective 

evolutionary algorithm named Non-Dominated Sorting Evolution Strategy (NSES) to 

effectively address the conflicting goals of the WDS. The application of the algorithm is 

first demonstrated to a set of test problems then to the multi-objective problem in WDS. 

The following sections describe the development of the methodology, implementation, 

and results in detail. 

 

3.2 Problem Statement 

The proposed model has three objectives: (1) minimizing the aggregated fire 

damage (f1), (2) minimizing the maximum water quality deficiency (f2), and (3) 

minimizing normalized mitigation cost (f3). The multi-objective optimization problem, 

therefore, can be mathematically formulated as follows:  
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where, 
reqiQ required fire flow (l/s [gpm]) for hydrant i; 

AvailableiQ available flow (l/s 

[gpm]) at minimum allowable residual pressure at hydrant i (typically set at 137.9 kN/m
2
 

[20 psi] by local code); i weighting coefficient for hydrant i; n= total number of fire 

hydrants considered for fire flow evaluation; 
jCD chlorine deficiency (unitless) at 

monitoring node j; 
AvailablejC available residual chlorine concentration (mg/l) at 

monitoring node j; m= total number of monitoring nodes; P

kC = cost of pipe k ($); B

lC = 

installation cost of booster station l ($); worstC worst cost ($); kD =diameter (m [inch]) 

of pipe k; d= commercially available discrete pipe sizes (m [inch]); N = total number of 

pipes in the network; np= number of pipe decision variables;  = user defined maximum 

number of pipes to be replaced; nb= number of booster station decision variables; and  

= user defined maximum number of boosters to be installed. 
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3.3 Multi-objective Evolutionary Algorithms 

Evolutionary algorithms are population based heuristic search algorithms based 

on the process of natural selection. Traditional optimization models sometimes pose 

difficulties in application to water distribution systems analysis due to the non-linearity 

of the water systems operation, hence require simplification of the WDS problems. 

Evolutionary algorithms, in contrast, are becoming increasingly popular in application of 

water resources systems analysis because of its capability of incorporating the complex 

simulation models into heuristic search (Ranjithan 2005). Evolutionary computation 

(EC) based algorithms also support efficient search to identify Pareto optimal solutions 

in multi-objective problems. 

Genetic Algorithm (GA) (Holland 1975) is the most common evolutionary 

computation (EC) based approach among engineering applications. GA based methods 

have been successfully applied to WDS design and management (e.g., Atiquzzaman et 

al. (2004), Prasad and Park (2004), Prasad et al. (2004), Farmani et al. (2005), and Jeong 

and Abraham (2006)). Similar to a GA, Evolution Strategy (ES) (Rechenberg 1965) is 

another EC-based approach which uses a population of individuals to search for the best 

solution. Each individual (or solution) in the population consists of a set of „genes‟ that 

represent the decision variables, and the performance of each individual is evaluated by 

a fitness function. While GA uses both crossover and mutation, ES is typically based 

solely on a probabilistic mutation operator. To mutate a value of a real-valued decision 

variable, the new value is taken from a normal distribution with mean as the current 

value of the variable and standard deviation as an algorithmic parameter. The 
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performance of the ES-based search is very sensitive to the value of the standard 

deviation; thus determination of this parameter may require extensive adjustment. 

Alternatively, adaptive mutation may be used in which the standard deviations are also 

included in the chromosome representation (Eiben and Smith 2007). 

A wide variety of Pareto-based multi-objective evolutionary algorithms have 

been reported in the literature (e.g., NPGA (Horn et al. 1994), NSGA (Srinivas and Deb 

1995), SPEA (Zitzler and Thiele 1999), PAES (Knowles and Corne 1999), NSGA-II 

(Deb et al. 2002), and HM2EA (Dorn 2004)). The goals of a Pareto-based multi-

objective optimization problem are to find: (i) solutions that are close to the Pareto front, 

and (ii) solutions that are well distributed and spread out along the Pareto front. It has 

been found in the literature that NSGA-II can converge toward the true Pareto-front 

uniformly and can distribute non-dominated solutions along the front evenly (Prasad et 

al. 2004). 

 

3.4 Non-dominated Sorting Evolution Strategy (NSES) 

To solve the multi-objective optimization problem defined in section 3.2, the fast 

elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) is modified by 

incorporating an ES to address difficulties for heuristic algorithms posed by WDS 

problems. Proposed by Deb et al. (2002), NSGA-II is a population based multi-objective 

genetic algorithm which produces Pareto-optimal solutions in the objective spaces. 

Traditionally as in GA, NSGA-II utilizes both crossover and mutation operators to 

facilitate both exploration and exploitation during the heuristic search and generates 
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better solutions in subsequent generations. The implementation of traditional crossover 

operator to a WDS problem could end up in a random search which might not reflect the 

feasible flow path within the system. To overcome this issue, a path search algorithm 

could be introduced which would explore an alternate flow path within the distribution 

network during crossover. This approach however, would significantly increase the 

computation time. Therefore, NSGA-II algorithm is here modified as Non-dominated 

Sorting Evolution Strategy (NSES) by implementing ES based search technique with the 

elitist non-dominated sorting algorithm. The structure and implementation of NSES 

operators to the WDS problem are described in the following sections. A flowchart of 

the NSES algorithm is provided in Fig. 3.1. 

 

3.4.1. Representation 

In any population based search, the decision variables are encoded as an array, 

which, when decoded, represents a solution. The efficiency of an ES-based search 

depends upon the representation of a solution. For example, if an individual is 

represented by a large array of decision variables, it may increase the time of 

convergence of the algorithm. Typically, ES uses real-valued vectors for representing an 

individual.  

To represent the multi-objective problem, it is assumed that a maximum number 

of pipes to be replaced for mitigation/rehabilitation is known. In this paper it is assumed 

that additional chlorine boosters will not be added, but the general problem formulated  
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Fig. 3.1. Flowchart for NSES 
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above includes this possibility. Therefore, the only sets of decision variables are the 

pipes to be replaced and their corresponding diameters. Rehabilitation locations are 

represented by an array of integer values, each of which specifies the pipe ID; and the 

pipe diameters are represented by a separate array of integer values. 

An adaptive search is applied during implementation of this methodology. For an 

adaptive search, each decision variable is represented by a set of two genes. One gene 

represents the value of the variable, xj, and another gene represents the standard 

deviation,
jx , which is used to mutate the gene representing the variable value. 

Assuming the number of pipe rehabilitation decisions is n, the chromosome 

representation of the problem is shown in Figure 3.2. 
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Fig. 3.2. Chromosome representation 

 

 

 

Representation: Pipe ID (rehabilitation location) 

Representation: Pipe diameter 



 49 

3.4.2. Mutation 

In ES, there is a strong emphasis on the mutation operator for creating offspring. 

Mutation is migration from the current set of solutions to better solutions using small 

incremental steps. In ES, the adaptive mutation for each variable value xj is performed in 

two steps: first, the standard deviation, 
jx , is mutated using a separate normal 

distribution to generate '

jx ; then using the mutated standard deviation, '

jx , the variable 

value xj is mutated as '

jx . The mutation mechanism is specified as follows (Eiben and 

Smith 2007): 

 

   1,01,0'
'

j

jj

NN

xx e





       (3.8) 

 1,0''

jxjj Nxx
j
       (3.9) 

 

Here,  and  are parameters such that 
n2

1'  and n2 ; n is the problem size 

(number of decision variables); N(0,1) denotes a draw from the standard normal 

distribution; and Nj(0,1) denotes a separate draw from the standard normal distribution 

for each variable j. The proportionality constants for both  and  are external 

parameters to be set by the users. 

To mutate the location of pipe rehabilitation, a special mutation operator is 

adopted from Zechman and Ranjithan (2009). The current pipe is mutated by random 

assignment of another topologically close potential pipe using an adjacency list. The 
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adjacency list of each pipe of a water distribution system represents a connectivity map 

of one pipe to other pipes in the network. In such a case, the standard deviation value, 

kI , associated with a pipe ID, Ik, indicates the maximum number of links between that 

pipe and the pipe to be selected. 

 

3.4.3. Selection 

In ES-based algorithm, two different types of selection operators are used: 

Parent selection and survivor selection (Eiben and Smith 2007). In the first generation, 

an initial population of size  is generated. In each generation, parent selection operator 

is applied based on a uniform distribution to randomly select  individuals from the pool 

of  individuals, where   . Each of these  individuals is then mutated to create  

offspring. 

 After creating  offspring, their fitness values are calculated. The survivor 

selection operator is applied to select best  individuals deterministically, either from the 

set of offspring individuals only (denoted as (,) selection) or from the combined set of 

parent and offspring individuals (denoted as () selection). In this article, the 

investigation is based on a () selection. 

 

3.4.4. Non-dominated Sorting 

The non-dominated sorting approach was adopted from Deb et al. (2002). First, 

elitism is introduced by combining both parent individuals () and offspring (). Then 
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each solution is compared with every other solution in the combined population and the 

individuals are sorted into several fronts such as F1, F2, F3, etc. The first front F1 contains 

the best non-dominated solutions in the combined population. Solutions in this front 

have a non-dominated rank = 1. The second front F2 contains the solutions that are 

dominated by the solutions in the first front F1 but dominate all other solutions in the 

combined population. Solutions in this front have a non-dominated rank = 2. Similarly, 

the front F3 contains the solutions that are dominated by the solutions in the fronts F1 and 

F2 but dominate all other solutions in the combined population. Solutions in this front 

have a non-dominated rank = 3; and so on. 

 

3.4.5. Crowding Distance Estimation 

To maintain the diversity in the population a density estimation technique is 

adopted from NSGA-II (Deb et al. 2002). This operator measures the density of a 

particular solution in terms of the average distance of two other solutions on either side 

of this solution along each of the m objectives. This distance is referred to as the 

crowding distance. Solution with larger crowding distance indicates better diversity in 

the population. An illustration of crowding distance estimation in NSGA-II for m = 2 is 

shown in Fig. 3.3. 

 

3.5. Performance Measure of NSES Algorithm 

The performance of an EC-based algorithm is generally evaluated to validate the 

Pareto optimality. The goals of a population-based multi-objective optimization are to  



 52 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3. Crowding distance estimation in NSGA-II 

 

find a set of non-dominated solutions that are: (1) close to the true Pareto front and (2) as 

diverse as possible along the Pareto front. Therefore, the performance should be 

measured in terms of both accuracy and diversity. Different multi-objective metrics have 

been proposed in the literature such as deviation metric  (Deb et al. 2002), coverage 

(Zitzler and Thiele 1999), S-factor (Zitzler and Thiele 1998) and hypervolume (Fleischer 

2003). In this article the NSES algorithm has been applied to a number of test problems 

to measure two multi-objective metrics: deviation metric  and hypervolume. The 

following sections describe the applied multi-objective metrics.  
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3.5.1 Measure of Diversity 

To measure the diversity of the NSES solutions in the non-dominated objective 

space, the proposed algorithm is applied on three test problems, which have been 

adopted in Deb et al. (2002). A detailed description of these test problems are given in 

Table 3.1. All these test problems have variable degrees of difficulty. The true Pareto  

 

Table 3.1. Multi-objective Test Problems Where n Denotes the Number of Decision Variables 

Test Problem 
 

Domain Objective Functions 
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fronts for all of the test problems are known. The Pareto optimal solutions obtained with 

NSES for MOP2 and MOP4 are presented in Fig. 3.4 and Fig. 3.5 respectively. 

A performance metric  is evaluated for each of the test problems. The metric  

represents a measure of deviation of the solutions of the best non-dominated front in the 

final population (Deb et al. 2002). In multi-objective problems diversity among the 

Pareto-optimal solutions is very important. Thus the algorithm with a smaller deviation 

metric  shows better performance. The deviation metric  is computed as follows (Deb 

et al. 2002): 

 







1

1 1

F

i

i

F

dd
     (3.10) 

 

where, 1F best non-dominated front in the final population; 1F number of solutions 

in front 1F ; id Euclidean distance in the objective space between two consecutive 

solutions in 1F ; and d =average of these distances id . 
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Fig. 3.4. Pareto optimal solutions obtained with NSES for MOP2 
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Fig. 3.5. Pareto optimal solutions obtained with NSES for MOP4 
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Fig. 3.6. Mean of the deviation metric  obtained for each of the test problems is shown in 

column graph, standard deviation of the deviation metric  is shown with error bar, lower value 

of  indicates better performance 

 

To perform a fair comparison of the performance of NSES algorithm with that of 

NSGA-II and PAES, as listed in Deb et al. (2002), 10 random trials were conducted with 

25,000 function evaluations ( = 15 (MOP2) and 50 (MOP3 and MOP4),  = 100, 

number of generations = 250) and all three test problems were real-value encoded. The 

mean deviation   and its variance from 10 iterations for each of the test functions using 

NSES is compared with that of NSGA-II and PAES and presented in Fig. 3.6. The 

smallest mean values of   achieved for all test functions using NSES indicate that the 

proposed algorithm performs better than the other two. Overall, the test problem results 
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indicate that the NSES algorithm is able to attain diversity among the solutions in the 

non-dominated objective space. 

 

3.5.2 Measure of Pareto Optimality 

 Zitzler and Thiele (1998) introduced a measure of accuracy, S-factor, of the 

Pareto front in the non-dominated objective space. The „S-factor‟ refers to the size of the 

non-dominated objective space covered by the non-overlapping area of all the rectangles 

formed by the set of solutions in the Pareto front and a global worst point (objective 

function values) for any 2-objective problem. Fleischer (2003) extended this concept 

into higher dimensions and defined a set function that maps the Pareto optimal solutions 

to a scalar quantity. This single scalar is defined as „hypervolume‟. Fleischer (2003) 

developed a computationally efficient algorithm, the LebMeasure Algorithm, to 

calculate the hypervolume metric for any multi-objective (2-objective or higher) 

problem. 

Fleischer (2003) proved through several Theorems, Lemmas, and their 

corollaries that a maximum value of the hypervolume metric for any multi-objective 

problem indicates the Pareto optimality of the associated points in the objective space in 

terms of both the diversity and accuracy. The deviation metric  (Deb et al. 2002) 

measures only the diversity of the points (solutions) in the best non-dominated front; 

thus is useful when the true Pareto front is known for the problem. However, for most 

real world problems the true Pareto front is unknown; hence deviation metric  (Deb et 

al. 2002) is not quite applicable. Therefore, the hypervolume metric is evaluated with 
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NSES for all above mentioned test problems to check both the accuracy and diversity of 

the proposed algorithm. Each test problem was solved for 10 random trials and the 

results for the different trials were similar. The results indicate the robustness of the 

NSES algorithm applied to the test problems. As an example, the calculation of 

hypervolume and the Pareto front for the test problem MOP2 for a representative trial is 

shown in Fig. 3.7. 
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Fig. 3.7. The calculation of „Hypervolume‟ in NSES for the test problem MOP2 using 

LebMeasure algorithm; solutions on the Pareto front are shown in black dots; each rectangle 

represents incremental hypervolume in the non-dominated objective space contributed by each 

point on the front; the worst point is (1,1) 

 

 



 59 

3.6. Application of NSES to Water Distribution System Problem 

A virtual city water distribution system data, Micropolis (Brumbelow et al. 2005, 

2007), is used to demonstrate the NSES procedure to solve the multi-objective problem. 

“Micropolis” has an approximate area of 5.2 km
2
 (2 mi

2
) and a population of 5,000. The 

city has two major sources of water, a surface-water reservoir and a well field. Water 

from these sources is treated in a treatment plant. The current version of its water system 

model consists of a pumping station consisting of three pumps, one elevated storage 

tank, 1088 pipes, 1210 non-hydrant nodes, 52 fire hydrants, and 196 valves. Currently, a 

disinfectant dose of 4 mg/l is added at the treatment plant and there is no additional 

chlorine booster station in the system. Among 1088 pipes, there are 577 water mains 

each of which is considered as a potential pipe rehabilitation location. The diameter of 

rehabilitated pipes could be selected from the set of {0.15, 0.20, 0.25, 0.30, 0.36, 0.41, 

0.46, 0.51, 0.61} m [{6, 8, 10, 12, 14, 16, 18, 20, 24} inch] diameter commercially 

available class 50 ductile iron pipes. The fire fighting capacity of the water system could 

be evaluated at all 52 fire hydrants, which would make the analyses computationally 

expensive. Therefore, to represent the system-wide fire fighting performance without 

contributing to computational burden, three fire hydrants are considered which cover the 

central business district, industrial area adjacent to the central business district, and 

heavily populated multi-family residential area on the north-eastern part of the city.  

To evaluate the aggregate fire damage (Eq. 3.1), the weighting coefficients, i, 

are determined as replacement building cost of assets within a search radius of 304.8 m 

(1000 ft) of each hydrant over the total cost of assets within the search radius of all three 
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fire hydrants. A required fire flow of 63 l/s (1000 gpm) is considered at all three fire 

hydrants. Apart from the fire hydrants and the demand nodes, there are a total of 751 

nodes representing valve nodes and junctions. From the set of 751 nodes, ten are 

selected as representative water quality monitoring nodes. The Surface Water Treatment 

Rule (SWTR) requires the water distribution systems to maintain a “detectable” 

disinfectant residual level of 0.2 mg/l (for chlorine) throughout the system. Moreover 

under the Stage 1 Disinfectant/Disinfection By-Products Rule, the residual should not 

exceed 4.0 mg/l for chlorine in any reach of the system (USEPA 2004). This is due to 

the fact that excessive levels of chlorine produces taste and odor problems, forms 

disinfectant by-products, and might accelerate pipe corrosion. Thus the water quality 

deficiency, expressed in Eq. (3.2), is defined to map the government regulation for 

drinking water quality and is evaluated at all ten monitoring nodes during each iteration. 

Finally, a normalized cost is evaluated as cost of pipe replacement for a current solution 

over the worst possible cost of rehabilitation (Eq. 3.4). The worst possible cost is 

evaluated by setting up a set of scenarios which maximizes the fire flow without cost or 

water quality constraints. The network is shown in Fig. 3.8. 

The solution approach defined in the previous section is implemented in a 

computer code in Visual Basic 6.0 that utilizes iterative solution of the water distribution 

system‟s hydraulics and water quality under the objectives and constraints defined by 

Eq. (3.1) through Eq. (3.7). The NSES model is coupled with EPANet Programmer‟s 

Toolkit (Rossman 1999) to simulate the hydraulics and water quality in the network. 
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Fig. 3.8. Building map of Micropolis with water distribution network shown with thin lines 

 

To evaluate the aggregated fire damage, the fire demands are added to the hydrants (one 

at a time) and a single period simulation is performed. To evaluate the water quality 

deficiency the hydraulics and water quality in the network are simulated separately 

without a fire flow demand over a 168-hour time period to allow the system to reach a 
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dynamic equilibrium condition with respect to disinfectant concentrations. It is assumed 

that a maximum number of 50 pipes or less needed to be replaced to increase the system-

wide firefighting capability. 

 

3.7 Results  

Two sets of independent trials are performed to solve the water distribution 

system problem. The first set of trials is conducted to identify the algorithmic parameters 

and the second set of trials is conducted to test the robustness of the algorithm. The 

results from various trials are discussed in detail in the following sections. 

 

3.7.1. Algorithmic Parameters 

A number of trials are performed to investigate the appropriate setting for the 

parameters  and , and the number of generations is used as stopping criterion. During 

initial trial a 1/7 ratio of  was used as recommended in Eiben and Smith (2007). 

Different settings of  and  were also investigated with varying the  ratio such as 1, 

½, among others. For each parameter setting the hypervolume is calculated at every 

generation and the convergence of the algorithm is tested with respect to the 

hypervolume metric. Since the true Pareto front for the WDS problem is not known, the 

hypervolume metrics at convergence of the algorithm with different parameter values are 

compared. The parameter values those yield the maximum value of the hypervolume 

metric for the WDS problem are chosen as the best setting found so far. The best 
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parameter values identified during implementation of NSES-based search are:  = 75,   

= 150, and stopping criterion = 150 generations. 

 

3.7.2. Algorithmic Convergence 

After identifying the appropriate parameter values for the NSES algorithm 

applied to WDS multi-objective problem, 30 independent trials are conducted to test and 

evaluate the robust behavior of the proposed methodology. The convergence of the 

algorithm is measured in terms of hypervolume metric. The global worst point for this 

problem is identified as (1,1,1) in „fire flow-water quality-cost‟ objective space. 

From all 30 trials it is observed that the hypervolume increases with the 

progression of generation and reaches a plateau at 150 generation. The average 

hypervolume at convergence from 30 different trials are found to be 0.5324 with a 

standard deviation of 0.019. Such a small standard deviation value represents the robust 

behavior of the algorithm. The number of non-dominated solutions in the first front is 

also plotted with progression of generation. The convergence of NSES is shown in Fig. 

3.9 and Fig. 3.10.  

Although there are cases where the hypervolume fluctuates at the initial 

generations showing the loss of fitness quality (Fig. 3.9), however, this kind of response 

is due to the fact that the hypervolume is measured, not optimized in NSES 

methodology. Overall, the figures indicate that both hypervolume and number of non-

dominated solutions appear to converge after 150 generation and further iterations of the 

algorithm would not likely to improve the results. 
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Fig. 3.9. Convergence of NSES for multi-objective water distribution system problem in terms 

of hypervolume metric 
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Fig. 3.10. Convergence of NSES for multi-objective water distribution system problem in terms 

of number of non-dominated solutions 
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3.7.3. Comparison of Non-dominated Solutions 

The X-Y-Z scatter plots of the Pareto fronts from all of the 30 trials are compared 

in „fire flow-water quality-cost‟ objective space where each point represents a solution 

indicating the aggregated fire flow, minimum residual chlorine, and the corresponding 

mitigation cost to implement that solution. Since the model minimizes the aggregated 

fire damage, the maximum chlorine deficiency, and the normalized cost of mitigation, 

consequently, the model returns maximized aggregated fire flow, maximized minimum 

residual chlorine, and minimum cost solutions. The scatter plots of the Pareto fronts 

from all 30 trials represent that the search is consistent. To get a better understanding of 

the Pareto front for the WDS problem, final solutions from the best trial are shown in a 

scatter plot in Fig. 3.11. 

In existing condition, the available fire flows at hydrants HY29, HY53, and 

HY66 are 30 l/s (469 gpm), 55 l/s (873 gpm), and 55 l/s (869 gpm), respectively which 

generates an aggregated fire flow of 50 l/s (793 gpm). Although fire flow requirements 

vary regionally based on the development of the city and the population density, 

typically a fire flowrate of 63 l/s (1000 gpm) is  required at fire hydrants serving single 

family residential buildings, and a flowrate of 158 l/s (2,500 gpm) is required at hydrants 

for multi-family residential/commercial/industrial buildings (BCS 2005). Thus in 

existing condition the Micropolis WDS fails to provide required fire fighting flows at all 

three hydrant locations. The minimum residual chlorine level in the existing condition is 

above the regulated minimum value of 0.2 mg/l. 
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Referring to Fig. 3.11 most of the Pareto-optimal solutions yield moderate to 

significant gain in both system wide fire flow and water quality with a few exceptions, 

however, each solution contributes to cost of mitigation with varying degrees. To 

understand the tradeoff relations between the conflicting objectives in detail, four non-

dominated solutions, solution 1, solution 2, solution 3, and solution 4 are selected from 

the Pareto front, as shown in Fig. 3.11; the achieved objective values are listed in Table 

3.2 and the decision variables (pipes) are shown in Fig. 3.12. 

 

 

  

Fig. 3.11. X-Y-Z scatter plot of the Pareto-optimal solutions for the WDS after 150 generations, 

the WDS performance at existing condition is shown with a black square, solutions chosen for 

further discussion are enclosed in circles  
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Table 3.2. Comparison of Solutions in Fireflow Water Quality Cost Objective Space 

Solution Aggregated Minimum Cost

ID HY29 HY53 HY66 Fireflow Residual Chlorine

l/s l/s l/s l/s mg/l $

Existing 30 55 55 50 0.71 0

1 77 58 55 61 0.94 33,364

2 74 64 56 64 1.50 82,132

3 131 79 64 85 1.41 57,187

4 160 85 67 95 1.42 107,290

Hydrant Fireflow

 

 

Referring to Table 3.2, solution 1 provides sufficient fire flow at hydrant HY29 

and less than required fire flows at both hydrants HY53 and HY66 resulting in an 

aggregated system wide flow of 61 l/s (967 gpm) which is a little less than the required 

one. The minimum residual chlorine level among ten water quality sensors for this 

solution is higher than the existing level. This solution involves 20 pipe enlargements 

with total length of 350 m (1,146 ft). Solution 2 involves 25 pipe enlargements (838 m 

[2748 ft]) and meets requirement of the system wide aggregated fire flow condition. This 

solution involves pipe enlargements near both the hydrants HY29 and HY53 thus 

provides improved fire flows at both the locations. Solutions 3 and 4 provide sufficient 

fire flows both at individual hydrant level and at aggregated level; solution 3 involves 23 

pipe enlargements (630 m [2068 ft]) and solution 4 involves 28 pipe enlargements (949 

m [3112 ft]). In the fire flow – water quality – cost objective space solution 1 is better 

than the other three in terms of the third objective: cost, but inferior to the others in 

terms of both aggregated fire flow and minimum residual chlorine; although the residual 

chlorine level is above the value required by government regulation. Solution 2 is better 

than solution 1 in terms of aggregated fire flow, however, is inferior to both solution 1 



 68 

 

 

 

 

 

 

Fig. 3.12. Results (decision variables) of application of NSES to the multi-objective WDS 

problem 
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and solution 3 in terms of cost. Moreover, solution 2 produces the highest residual 

chlorine level among the four selected solutions. Similarly, solution 3 is better than both 

solution 1 and solution 2 in terms of the first objective, aggregated fire flow, and 

dominates solutions 2 and solution 4 in terms of cost and produces very different 

residual chlorine level than solution 1 and solution 2. Finally, solution 4 gives the most 

protection against fire event among the above mentioned solutions although it is inferior 

to solution 1, solution 2, and solution 3 in terms of cost. 

From the above comparison it was observed that although the water quality 

fitness was mapped to satisfy the government regulation, however, there was not much 

of a variation in water quality between solution 3 and solution 4. This is due to the 

discontinuous set of decision variables which poses less effect on water age in this 

system. Overall, this comparison indicates that a tradeoff relationship does exist between 

the conflicting goals of WDS: fire flow, water quality, and cost. 

 

3.8 Sensitivity to Variation in Water Distribution System’s Fireflow Locations 

 To investigate the proposed methodology‟s applicability for different fire hydrant 

arrangements, NSES procedure is tested on Micropolis WDS with six fire hydrant 

locations. Among those six hydrants three are kept unchanged from previous 

investigation and three new fire hydrants are chosen from different parts of the city: one 

from the northwest region, one from the central business district, and one from the 

southeast region (Fig. 3.13). The weighting coefficients, i, to evaluate system wide 

aggregated fire flow are determined as described in section 3.6 and a required fire flow  
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Fig. 3.13. Sensitivity analysis of application of NSES to the multi-objective WDS problem with 

six hydrant arrangements 
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of 63 l/s (1000 gpm) is considered at all six fire hydrants.  The water quality sensors are 

kept unchanged. In this new problem the fire flow objective is optimized at more number 

of hydrant locations which makes the problem even harder. For this new arrangement, 

three different trials are conducted with the previously identified algorithmic parameters. 

The average hypervolume for this new arrangement is 0.4928 and the standard deviation 

of the hypervolume metrics is 0.005. Since the model optimizes fire flows at all six fire 

hydrants, the fitness values with respect to all three objectives changes and the Pareto 

fronts shifts from the previous analysis thus generates a slightly different hypervolume 

metric at convergence, which is as expected. The overall progression of both the 

hypervolume and the average number of non-dominated solutions with generation are 

consistent with that of previous analysis. Moreover, the Pareto fronts obtained with both 

previous and new analysis are similar in shape and in range. The X-Y-Z scatter plot of 

the Pareto optimal solutions from the best trial for this analysis is presented in Fig. 3.14. 

Three Pareto optimal solutions – solution 1, solution 2 and solution 3 - are chosen to 

further discuss the tradeoff relationship between the objectives. 

 As discussed in section 3.7.3 the system poses no fire protection at existing 

condition; the available fire flow at aggregated level as well as individual hydrant level 

is below the required fire flowrate of 63 l/s (1000 gpm) at all hydrant locations except at 

hydrant HY17. This condition obviously seeks for a new solution. Most of the solutions 

in the Pareto front yield moderate to significant gain of fire flow at all six fire hydrants. 

The minimum residual chlorine levels are also above the regulated value of 0.2 mg/l. 

Table 3.3 presents the objective values attained with solutions 1, 2, and 3. The locations  
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Fig. 3.14. X-Y-Z scatter plot of the Pareto-optimal solutions for the WDS with six hydrant 

arrangements after 150 generations, the WDS performance at existing condition is shown with a 

black square, solutions chosen for further discussion are enclosed in circles  

 

Table 3.3. Comparison of Pareto-optimal Solutions from Sensitivity Analysis 
Solution Aggregated Minimum Cost

ID HY17 HY29 HY40 HY53 HY61 HY66 Fireflow Residual

Chlorine

l/s l/s l/s l/s l/s l/s l/s mg/l $

Existing 71 30 19 55 59 55 46 0.71 0

1 72 72 48 56 59 56 59 0.28 34,728

2 100 96 52 62 73 60 68 1.01 52,148

3 160 171 59 74 98 71 93 1.33 99,071

Hydrant Fireflow

 

 

of pipe enlargement (optimal decisions) for the three selected solutions are shown in Fig. 

3.13.  Referring to Table 3.3, solution 1 is better than the other two in terms of cost but 
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inferior to the others with respect to both fire flow and water quality objectives. Solution 

2 is better than solution 1 in terms of both fire flow and water quality and better than 

solution 3 in terms of cost, however inferior to solution 3 with respect to fire flow. As a 

matter of fact, solution 3 produces the best fire flow for the new hydrant arrangements. 

The water quality attained with this solution is also very different than the other two; the 

cost is however the worst among the three solutions. It is worth to mention that hydrant 

HY40 is the most problematic in the system with a fire flow volume of 19 l/s (304 gpm) 

in existing condition. Fire flow volume at this location is significantly improved with all 

of the three solutions and also with all other solutions in the Pareto front; although 

solution 1 yields a little less than required fire flow. Finally it can be concluded from the 

analysis that the NSES procedure clearly demonstrates both persistency and robustness 

when applied to the Micropolis WDS with changed fire flow sensor arrangements. 

 

3.9. Final Remarks 

This paper illustrates a multi-objective optimization methodology for water 

distribution system which addresses the mitigation strategies during fire events. 

Although research on water systems‟ mitigation from natural and manmade hazard has 

been studied intensively in recent years; this paper introduces a new evolutionary 

computation-based multi-objective approach which effectively addresses the conflicting 

goals of the WDS: reliable delivery of water during normal as well as emergency 

conditions, meeting water quality standards, and finding cost-effective design and 

rehabilitation options. 
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An elitist non-dominated sorting genetic algorithm, NSGA-II (Deb et al. 2002), 

is modified by incorporating an ES-based search to develop the new approach, non-

dominated sorted evolutionary strategy (NSES), to address difficulties for heuristic 

algorithms posed by WDS problems. The NSES algorithm has been applied to a number 

of test problems to measure the Pareto optimality. First, a deviation metric , proposed 

by Deb et al. (2002), was evaluated for each of the test problems and the results were 

compared with NSGA-II. The test problem results indicate that the NSES algorithm is 

able to attain diversity among the solutions in the non-dominated objective space. Next, 

a scalar multi-objective metric, hypervolume (Fleischer 2003), was evaluated with the 

test problems. Hypervolume is a measure of both Pareto optimality and diversity. An 

efficient methodology for calculating hypervolume has been adopted from Fleischer 

(2003). NSES utilizes this metric explicitly at each generation and the results provide the 

evidence of both Pareto optimality and algorithmic convergence. 

NSES methodology is then applied to a realistic problem in water distribution 

system‟s fire mitigation. Three objectives were considered during the analysis: (1) 

minimizing fire damages, (2) minimizing water quality deficiencies, and (3) minimizing 

the cost of mitigation. This methodology clearly generates Pareto-optimal solution 

surfaces that express the tradeoff relationship between fire damage, water quality, and 

least cost objectives; thus provides decision makers with the flexibility to choose a 

mitigation plan for urban fire events best suited for their circumstances. Each Pareto-

optimal solution comprises a set of pipes to be enlarged to achieve increased fire flow 

and the corresponding diameters of these pipes. Although the model has the possibility 
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to add chlorine booster units as another set of decision variable, during the application of 

the model to the hypothetical case study, Micropolis, it was assumed that additional 

chlorine boosters will not be added. This is due to the fact that at existing condition the 

Micropolis WDS poses no system wide water quality deficiency. The Pareto optimal 

solutions also indicate that although there were variations among the solutions in terms 

of all three objectives, however, there were limited or no solutions in „high fire flow-low 

water quality-high cost‟ region. Thus for this specific system it is difficult to conclude 

that a significant tradeoff relation exists between the emergency demand during an urban 

fire event and the water quality during normal demand condition. However, simulation 

of urban fire, if coupled with the water system, might show the actual fire consequences, 

mitigation strategies effectiveness, and the tradeoff relationship between fire damage, 

water quality, and least cost objectives.  

Previous study of vulnerability and risk analysis (Section 2) introduced a new 

risk-based DP optimization approach which enables the water utilities to analyze the 

vulnerability and risk of the system during fire events. The probabilities of fire hazards, 

however, were not incorporated to perform a fire risk assessment for a coupled system of 

both water and fire response infrastructure. Previous studies also showed that the 

existing fire hazard and fire risk assessment methodologies neither consider probability 

of fire occurrences nor incorporate the actual WDS‟s conditions, resulting in a defect in 

fire hazard assessment. Therefore, a novel methodology is needed to: (1) simulate the 

realistic fire consequences in a coupled system of water and fire model, (2) evaluate the 

real risks involved with it, and (3) the effectiveness of the Pareto-optimal mitigation 
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designs for the coupled system. The new investigation in fire hazard risk and mitigation 

assessment and its findings is discussed in detail as a separate article in Section 4. 
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4. A STOCHASTIC MODELING APPROACH FOR URBAN FIRE 

RISK ANALYSIS INCLUDING PERFORMANCE OF WATER AND 

FIRE RESPONSE INFRASTRUCTURES 

 

4.1. Introduction 

Urban fires can cause substantial damage to life and property, and fire safety is a 

major concern for infrastructure and emergency response planners, managers, and 

regulators. Fire hazard risk assessment has been practiced in regulatory systems for 

decades. However, avoidance and response to fire hazards is accomplished through a 

complex combination of systems (buildings, emergency responders, water distribution, 

being primary), and these systems are typically not assessed in a holistic manner with 

full understanding of dynamics and probabilities.  Hence, a novel fire risk assessment 

approach is useful to estimate the probability of occurrence of fire variables and system 

performance metrics as well as to evaluate urban fire consequences. 

A fire hazard is a condition or physical situation with a potential for undesirable 

consequences which results from a specific fire scenario in a specific environment. A 

fire scenario can be defined as a specific fire including its developmental variables, i.e., 

origin of fire, time of the day, wind speed and direction, temperature curve, etc. 

(Brannigan and Kilpatric 1997). Water supply plays a vital role during fire. Studies of 

historical urban fires (Scawthorn et al. 2005) show that consequences from both 

earthquake fires (1906 San Francisco, California earthquake and fire, 1989 Loma Prieta, 

California earthquake and fire, 1994 Northridge, California earthquake and fire, among 



 78 

others) and non-earthquake fires (1923 East Bay Hills, Berkeley, California fire, and 

1991 East Bay Hills, San Francisco, California fire, among others) greatly depend upon 

water distribution system (WDS) performance during the events. Thus WDS failure can 

be considered as another variable to a fire scenario. 

Scawthorn et al. (2005) view the occurrence of fire as a process which involves 

ignition, discovery, report, response, fire growth and spread, and suppression. Other key 

factors associated with a fire event are period of delay; which may occur during a report 

and/or during response, and liaison between the water and fire departments. Delays are 

particularly common following an earthquake and may promote fire growth and spread. 

Frank Blackburn, a former Fire Chief of San Francisco Fire Department has written:   

Consistently providing adequate water supply for fire protection requires close 

liaison and cooperation between the fire and water departments. Unfortunately, 

these agencies are in most cases not part of the same governmental jurisdiction. 

As a result, understanding and awareness between the organizations can be 

lacking … Coordination between the organizations can be complex and difficult 

to achieve… (Ballantyne et al. 1997) 

 

Various combinations of the above mentioned fire variables along with the 

numerous factors of the fire process will result in varying degrees of consequences, both 

in terms of life and property. Bristow (2006) has developed a model of the 

interdependent water distribution and fire response infrastructures, to simulate various 

multi-mode attack and failure (MMAF) events and has outlined the process of effective 

mitigation design to reduce consequences of these MMAF scenarios. The method is 

however, iterative and does not provide any measure of urban fire risk. A need exists for 

an approach to effectively address the key aspects of urban fire risk including both the 

probabilities of occurrence and the consequences of fire scenarios. 
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In this study a novel urban fire risk assessment methodology was developed that 

includes simulation of urban fire dynamics, water distribution system performance, fire 

response, and the following risk factors: building ignition, WDS failure, and wind 

direction.  The total annual probability of a given fire scenario was estimated as a joint 

probability of building ignition, wind direction, and WDS failure. A coupled model of 

water and fire response infrastructure (Bristow 2006) was utilized to evaluate fire 

consequences in terms of number of displaced people and cost of property damage. 

Urban fire risk (number of displaced people/year) for a particular scenario was then 

estimated as a product of total probability (per year) of a fire scenario and the fire 

consequences (number of displaced people). A Monte Carlo (MC) simulation (Hasofer 

et al. 2007) was utilized to generate numbers of possible fire scenarios sufficient to 

estimate the distribution of consequences with high confidence. Finally, a multi-

objective approach, Non-dominated Sorting Evolution Strategy (NSES) was utilized to 

design effective mitigation strategies to manage the urban fire risk. The objectives 

considered in mitigation design were: (1) minimizing fire damages, (2) minimizing 

mitigation cost, and (3) minimizing water quality deficiencies. A virtual city was then 

used to demonstrate the application of the proposed methodology to an integrated water 

and fire response system. The specific goals of this research are to: 

 Develop a methodology to assess urban fire risk including key aspects of and 

potential failure of water and fire response infrastructures; 

 Identify critical scenarios based on the probabilities as well as consequences; and 
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 Design effective fire mitigation strategies in a multi-objective framework based 

on scenario-based results to manage the system wide urban fire risk. 

The methodological steps involved in urban fire risk analysis with coupled water 

distribution and fire response services are presented in Fig. 4.1. The next section 

provides a brief introduction to existing fire models for consequence evaluation and the 

following sections describe the development of the methodology, implementation, and 

results in detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1. Methodological steps in urban fire risk analysis 
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4.2. Computerized Fire Models 

Many mathematical models of fire and smoke have developed throughout 

different countries in the world to study various aspects of fire risk and fire protection. 

These models include compartment fire models, fire-sprinkler interaction models, fire 

endurance models, fire spread models, fire suppression models, and smoke movement 

models (Friedman 1992). Scawthorn et al. (2005) discuss different fire growth and 

spread models developed during the last few decades. Some of those are discussed in 

detail below from Scawthorn et al. (2005). 

 The Hamada Model. The most widely used urban fire spread equations are 

Hamada equations (Hamada 1951, 1975) which are derived empirically based on 

historical data from 1923 Kanto earthquake in Tokyo, Japan. Hamada equations 

are based on the assumption that the urban areas are series of equal blocks of 

buildings, and the buildings are equally spaced. The Hamada model estimates 

fire spread within one city block or a built-up district but does not account for 

fire spread across streets. Many subsequent fire spread models used the Hamada 

model as a foundation. 

 HAZUS. HAZUS is a simulation modeling and planning tool which is used to 

produce loss estimates for earthquake risk mitigation (HAZUS 1999). The fire 

following earthquake module of HAZUS uses a fire ignition model, the Hamada 

fire spread model, and a fire suppression model that varies with availability of 

water during fire events. This tool is currently used by the Federal Emergency 

Management Agency (FEMA) as well as by federal, regional, and local 
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governments in planning for earthquake risk mitigation, emergency 

preparedness, response, and recovery. The ignition model under HAZUS 

operation predicts the urban fire‟s ignition points based on a design earthquake 

event; the model does not permit the user to specify ignition points. HAZUS 

utilizes the original Hamada fire spread model as described earlier. Finally, the 

model generates the urban fire‟s consequences in terms of potential dollar loss 

caused by fires. One of the major limitations of HAZUS is that the model 

assumes the water system inventory based on population density, not the actual 

characteristics of a water system. 

 MUFS. One of the most recent developments in urban fire spread model is the 

MUFS (Model of Urban Fire Spread) (Bristow 2006). MUFS is a numerical 

model of fire ignition, fire spread, and fire suppression which can measure the 

span of burnt area resulting from a single or multi-ignition fire when the water 

system is partially or severely damaged. Unlike the Hamada model, MUFS can 

implement topology related building parameters for each individual building to 

determine the fire spread. Some of the topology related parameters include 

coordinates of vertices of each building, floor area and height, number of 

occupants, and building‟s fire proof construction. A building‟s fire proof 

construction parameters are: (i) Occupancy Hazard Classification (OHC) – an 

integer measure of fire danger posed by the building‟s contents, (ii) Exposure 

Factor (EF) – adjacency to other buildings, and (iii) Construction Classification 

Number (CCN) – level of fire proof construction techniques employed in 
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constructing the building. MUFS requires detailed information about the layout 

and connectivity of the community‟s water distribution system. MUFS utilizes 

building specific parameters, for instance: building size, construction materials, 

fireproofing techniques, to calculate the amount of water needed for fire 

suppression. MUFS also allows the user to specify the fire ignition points. Thus 

the inputs to MUFS are fire ignition points, building map and building properties, 

water distribution system information, fire truck availability schedule, wind 

speed, and wind direction. MUFS generates the fire spread vectors in terms of 

burn front coordinates, and estimates the fire consequences in terms of a list of 

burned buildings and the number of dislocated people from each burned building. 

 

4.3 Components of Urban Fire Risk Assessment 

 Risk is the combination of the probability of an event and its consequences (ISO 

2001). Traditionally, risk assessment addresses four basic questions: (1) What can go 

wrong? (2) How likely is it? (3) What are the consequences if it does go wrong? and (4) 

How certain is this knowledge? (Stern and Fineberg 2003). To answer these questions, 

the first step would be hazard identification; the second step would be estimation of 

probabilities for identified hazard scenarios; the third step would involve estimation of 

potential losses; and the last step would be analysis of uncertainty. Thus fire risk 

assessment would incorporate identification of fire scenarios; prediction of the 

probability distribution of fire hazards; evaluation of consequences resulting from fire 

growth and spread; and incorporation of uncertainty during both quantitative analysis 
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and risk characterization. The following sections describe the steps adopted in urban fire 

risk assessment. 

 

4.3.1. Building Ignition Frequency 

For quantitative assessment of urban fire risks, ignition frequency derived from 

regional fire statistics is the first step in fire risk assessment. From previous studies it has 

been found that ignition frequency depends upon both on floor area of buildings and 

building category (Tillander and Keski-Rahkonen 2002, Rahikainen and Keski-

Rahkonen 2004, Lin 2005). Barrois, a French statistician, has proposed a generalized 

model where the ignition frequency is presented in the following form (Hasofer et al. 

2007): 

      (4.1) 

 

where,  average annual probability of a fire starting in a building in the category 

under study with area A (1/m
2
-anum); floor area of the building (m

2
);  = 

coefficients to be determined experimentally from observations for different building 

categories. 

Tillander and Keski-Rahkonen (2002) study structural fires in Finland for the 

period 1996-1999 and fit the generalized Barrios model to observations on three 

different categories of buildings: (1) residential buildings, (2) industrial buildings and 

warehouses, and (3) all other buildings. It has found from the study that the generalized 

Barrois model is useful in determining the ignition frequency of buildings with a floor 



 85 

area between 100 and 20,000  (square meters) (Tillander and Keski-Rahkonen 2002). 

During the present study, the generalized Barrois model (Eq. 4.1) was used to estimate 

the probability of building fires in three categories of buildings: (1) residential buildings, 

(2) industrial buildings and warehouses, and (3) all other buildings. The model 

parameters used in the Finland study were applied accordingly and are presented in 

Table 4.1. 

 

Table 4.1. Parameters of the Generalized Barrois Model Fitted to Observations in Finland 

(Tillander and Keski-Rahkonen 2002) 

Building category 
    

Residential buildings 

 

Industrial buildings and warehouses 

 

All buildings except residential and industrial 

buildings and warehouses 

 

0.01 

 

0.07 

 

0.01 

5 

 

6 

 

3 

-1.83 

 

-1.48 

 

-1.25 

-0.05 

 

-0.05 

 

-0.05 

 

 

4.3.2. Wind Properties 

 Wind, particularly the wind direction, plays a vital role in determining the extent 

of fire spread in an urban area. Generally, fire does not spread only in the dominant wind 

direction or downwind direction - the direction wind is blowing to. Based on the 

dominant wind direction and speed, fire propagates in three other directions: upwind 

direction, the direction of the wind‟s origin; sidewind-left, the direction which is 90 

degrees counter-clockwise from downwind direction; and sidewind-right, which is 90 

degrees clockwise from downwind direction (Bristow 2006). The dominant wind 
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direction of a region varies geographically. The distribution of dominant wind direction 

for any region therefore, can be estimated from historical observations of meteorological 

data. 

 

4.3.3. Water System Failure Probabilities 

 Water systems are vulnerable to various physical, chemical/biological, and cyber 

threats (Haimes et al. 1998) which could cause potential damages to the systems. During 

this analysis, two failure scenarios of a water distribution system were considered during 

a fire event: (1) accidental failure due to soil-pipe interaction, and (2) accidental failure 

due to a seismic event.  

Deterioration of pipes due to aging often cause pipe breaks and leaks and has 

been a major concern of water utility industries. Yamijala et al. (2009) have proposed a 

logistic generalized linear model (logistic GLM) for estimating the probability of pipe 

breakage due to soil-pipe interaction. Using historical (2000-2005) pipe break data from 

a major U.S. city, they have developed a statistical model to estimate the probability of 

pipe failure for a water distribution system. The results from their analysis showed that 

the variables that are statistically significant at a level of 5% for the studied system were: 

(1) pipe diameter, (2) pipe material, (3) pipe length, (4) land use type, and (5) soil type. 

For any given water system with known soil profile and zoning data, the likelihood of 

pipe failure at least once in a five year period caused by soil-pipe interaction for each 

individual pipe in the system can be estimated using the logistic GLM (Yamijala et al. 
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2009). Hence, in this article the logistic GLM (Yamijala et al. 2009) was used to 

estimate pipe failure probabilities due to pipe aging. 

Seismic wave propagation often causes transient soil deformation and can 

produce well-dispersed damage to buried pipelines (Eidinger 2005). Studies showed that 

pipes that are made of cast iron or asbestos cement perform poorly during seismic 

events; ductile iron pipes, being more durable than cast iron, generally perform better 

than the other two. The level of ground shaking at any pipeline location is generally 

measured in terms of peak horizontal ground velocity (PGV). When the soil mass 

experiences long duration strong ground shaking, then landslides or liquefaction occurs 

and causes severe damage to the pipes. The amount of landslide or liquefaction 

movement is generally measured in terms of permanent ground displacement (PGD). 

Eidinger (2005) has developed a set of fragility curves using available pipe damage data 

from historical earthquakes. These curves are expressed as repair rates per unit length of 

pipe, and as a function of peak ground velocity (PGV) or permanent ground deformation 

(PGD). The pipe damage algorithm or fragility curves are expressed as follows (Eidinger 

2005): 

 

RR = K1*(0.00187)*PGV (for wave propagation)    (4.2) 

RR = K2*(1.06)*PGD 
0.319

 (for permanent ground deformation)  (4.3)  

 

where, RR = repairs per 305 m (1000 ft) of main pipe; PGV = peak ground velocity in 

0.0254 m/second (inch/second); PGD = permanent ground deformation in 0.0254 m 
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(inch); K1 = ground shaking constants for fragility curve; and K2 = permanent ground 

deformations constants for fragility curve. The constants K1 and K2 vary with different 

pipe material, joint type, soil, and pipe diameter. Detailed list of values for K1 and K2 can 

be found in Eidinger (2005). In this article only ground shaking hazard was considered, 

hence, equation (4.2) was applied. 

 

4.3.4. Determination of Fire Consequences 

 Urban fires may result in several outcomes, such as property losses, dislocation 

of occupants, injuries, and human fatalities, among others. According to Stern and 

Fineberg (2003) „risk‟ is a complex phenomenon and it has multiple dimensions. Thus 

urban fire risk also poses multi-dimensional risks such as social risk, economic risk, and 

risk to the ecosystem. All of the computerized fire models discussed in section 3 can 

generate consequences in terms of dollar losses or human fatalities. However, none of 

the fire models can handle the multi-dimensional nature of urban fire risk. Reviews of 

the literature show that there are arguments about converting human fatalities and 

injuries into monetary units (Stern and Fineberg 2003). MUFS can determine which 

buildings are burned at the end of the fire simulation period and can report the total 

number of dislocated people from those burned buildings as the urban fire‟s final 

consequences. MUFS thus simplifies the dimensionality of urban fire risk without 

aggregating different dimensions into a single overall measure. 

MUFS also has several advantages over other fire models, for example, it allows 

user defined inputs of the fire ignition point (or points), delay in report and response to 
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urban fire, building topology and spacing, and water supply system topology. Therefore, 

MUFS was used for consequence evaluation during urban fire. 

 

4.3.5. Estimation of Urban Fire Risk 

 Risk estimation involves identification and probabilistic evaluation of failure 

scenarios (Hasofer et al. 2007); quantitatively: 

 

Risk = (Probability of an event) * (Consequence of an event)  (4.4)  

  

In this dissertation two expressions of risk will be defined and evaluated 

following from Eq. (4.4).  First, “scenario risk” is determined for a specific convergence 

of probabilistic events; here, a fire scenario is considered as a “triplet” consisting of (i) 

ignition, (ii) wind direction, and (iii) WDS condition. Each element of this triplet itself is 

a random event and a combination of these events would result in another random event 

– consequences. The previous sections described the methods of estimating probabilities 

for different fire variables and evaluation of consequences. The probability of a specific 

scenario is the joint probability of the three events in the triplet. A common way to 

model different failure events during a fire hazard would be event tree and fault tree 

analysis (Pate-Cornell 1984); this could be extremely complex and would require great 

expense of time. On the other hand, a Monte Carlo method can generate a sample of fire 

consequences based on the probability distribution of the underlying random events - 

ignition, wind direction, and WDS failure. Therefore, a Monte Carlo simulation 
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approach was used to generate a large number of fire scenarios and thereby to estimate 

scenario risks. Fig. 4.2 shows the steps involved in Monte Carlo procedure to evaluate 

scenario risk. 

A second expression of risk is “global risk,” defined as the aggregation of risk for 

a region (e.g., a city) across the universe of scenarios. Two different methods to estimate 

global risk are used herein. First, global risk can be estimated as: 

 

E(GlobalRisk) = E(Conseqs.|FireEvent) * E(FireEvent)   (4.5)  

 

where, E(GlobalRisk) = expectation of global risk expressed in consequences per year; 

E(Conseqs.|FireEvent) = expectation of consequences per fire event assuming that a fire 

event occurs; and E(FireEvent) = expectation of the number of fire events per year. Eq. 

(4.5) is based on the assumption that the random variables Conseqs. and FireEvent are 

independent; i.e., the consequences of any particular fire event are independent of the 

number of fire events that occurs in a given year. To estimate the global risk for an urban 

area using this method, both distribution of consequences per fire event and distribution 

of fire events for any given year are required.  

 A second means of estimating global risk is:  

 

E(GlobalRisk) = E(Conseqs.{NoCond})    (4.6) 
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where, E(Conseqs.{NoCond}) = expectation of consequences per year with no 

conditioning on occurrence of fire events (i.e., probability of non-ignition is included in  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2. Flowchart for Monte Carlo procedure to evaluate scenario risk 
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the expectation operator). To estimate the global risk using this method, the distribution 

of consequences per year (including non-ignition probability) is required. A Monte Carlo 

simulation can be utilized to estimate the annual distribution of consequences per year. 

A major difference between scenario risk and global risk is that scenario risk can be 

regarded as a “building-specific” risk; thus, individual building owners might be 

interested in scenario risks; global risk on the other hand provides risk for a particular 

region as it combines all possible scenario risks; thus, a city council might be interested 

in it. Generally, the global risk values are much higher than the scenario risk values. 

 

4.4. Application of Urban Fire Risk Assessment Methodology to a Coupled Water 

and Fire Model 

 To demonstrate the risk assessment methodology for urban fire events, a 

hypothetical case study was performed for the virtual small town “Micropolis” 

(Brumbelow et al. 2005, 2007). Detailed description of available data and 

implementation of the methodology are presented in the following sections. 

 

4.4.1. Description of Data and Estimation of Probabilities 

“Micropolis” has an approximate area of 5.2 km
2
 (2 mi

2
) and a population of 

5,000. It has a detailed water system model, a detailed building map, a soil map, and a 

geographic information system (GIS) database which are used throughout the analysis. 

The city has 868 buildings which include single-family, multi-family, commercial, and 

industrial buildings and warehouses. The WDS of the city has two major sources of  
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Fig.4.3. Building map of Micropolis with WDS shown in thin lines, water sources are shown in 

black squares, and fire hydrants are shown in black dots 

 

water, a surface-water reservoir and a well field. Water from these sources is treated in a 

treatment plant. The current version of its water system model consists of a pumping 

station consisting of three pumps, one elevated storage tank, 1088 pipes, 1210 non-

hydrant nodes, 52 fire hydrants, and 196 valves. Among the 1088 pipes there are 577 
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water mains and the remaining pipes are service and hydrant connections. Fig. 4.3 shows 

the building map of Micropolis with the water distribution system in thin lines. 

The generalized Barrois model (Hasofer et al. 2007) was utilized to evaluate the 

ignition frequency of the buildings in Micropolis. First, all buildings were grouped into 

three categories: (1) residential buildings, (2) industrial buildings and warehouses, and 

(3) all other buildings. Using Barrois model for different building categories (Eq. 4.1), 

fifteen thousand Monte Carlo simulations were performed to estimate the annual 

probability of single fire in each building. Since the city‟s fire response unit solely 

depends upon the city‟s WDS capacity for firefighting flows and the daily demand of the 

WDS changes during the 24-hour period of a day, it is also important to estimate the 

probability of multiple ignitions during any day of the year for the city. The estimated 

annual probabilities of single ignition for buildings were converted to a daily probability 

of fire by a simple division by 365 days/year. Then fifteen thousand Monte Carlo 

simulations were performed to generate a distribution for number of building ignitions 

per day for the city. From this distribution it was found that the city has negligible threat 

of multiple ignitions in any day during a year (the probabilities of having 0, 1, and more 

than 1 ignition on a given day were 0.997, 0.003, and 0.000, respectively). Therefore, 

only single building ignition events were considered for further analysis. 

The historical wind data (1984 – 2008) from Amarillo, Texas, was analyzed to 

determine a realistic frequency distribution of wind direction that could be used for 

Micropolis. The estimated annual wind frequencies in all eight directions are listed in 
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Table 4.2. A wind speed of 4.47 m/s (10 mph) was considered throughout this analysis 

following the findings of Bristow (2006). 

 

Table 4.2. Annual Frequency Distribution of Wind Direction 

Wind Direction 

 

Probability 

North (N) 

Northeast (NE) 

East (E) 

Southeast (SE) 

South (S) 

Southwest (SW) 

West (W) 

Northwest (NW) 

0.127 

0.084 

0.050 

0.086 

0.303 

0.211 

0.087 

0.053 

  

From the GIS database of Micropolis and the soil map of the area, the detailed 

information about pipe diameter, length, pipe material, pipe corrosivity to soil, soil type, 

and overlying land use data were extracted for each of the 577 water mains. Then using 

the logistic generalized linear model of Yamijala et al. (2009) the annual probability of 

failure of each of those 577 pipes was estimated. 

To estimate pipe damage due to seismic risks the PGV-dependent model of 

Eidinger (2005) – Eq. (4.2) – was used. Data from the 1994 Northridge, California, 

earthquake on PGV values were used to estimate an exponential distribution for PGV.  
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Repair rates for cast iron (CI), asbestos cement (AC), and ductile iron (DI) pipes were 

estimated using Eidinger‟s fragility curves. Ten thousand Monte Carlo simulations of 

PGV magnitude were carried on with repair locations randomly assigned to pipes within 

each material class. The results of the Monte Carlo simulations were then aggregated to 

produce an annual seismic failure probability for each individual pipe. 

 

4.4.2. Evaluation of Fire Consequences 

 The scenario risk approach described in section 4.3.5 was implemented in a 

computer code in Visual Basic 6.0 which utilizes iterative Monte Carlo solutions of 

MUFS evaluated under each scenario based on the distribution of the fire triplets – 

ignition, wind direction, and WDS failure. The specific outputs from MUFS under each 

scenario are: (1) a fire spread profile, (2) list of burned buildings, and (3) number of 

displaced people. Sample size (number of possible scenarios) of the Monte Carlo 

simulation was determined based on sample size convergence for stochastic analysis 

provided by Montgomery and Runger (1999) as follows: 

 

     (4.7)  

 

where, n = sample size; z/2 = upper 100/2 percentage point of the standard normal 

distribution;  = sample standard deviation; and E = specified error (absolute difference 

between the true mean and the sample mean).  
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Morgan and Henrion (1990) recommended that a small Monte Carlo run of ten 

simulations be used to get an initial estimate of sample standard deviation. Therefore, to 

determine the sample size using Eq. (4.7), ten Monte Carlo simulations were performed 

to get an initial estimate of the standard deviation of the consequences in terms of 

number of displaced people. It was found that  = 553 displaced people. Then assuming 

the error E ≤ 15 displaced people and desiring a 95% confidence interval  

( 1.96), the necessary sample size was determined to be 5,221. 

Therefore, it was decided that 5,250 Monte Carlo simulations would be performed. 

 For each Monte Carlo run, the total probability of a scenario was estimated as a 

joint probability of ignition, wind direction, and WDS failure. Assuming independence 

of the three factors, the total probability of a fire scenario was estimated as: 

 

Probability of Fire Scenario = P(I) * P(W) * P(F)     (4.8) 

 

where, P(I) = annual probability of building ignition; P(W) = annual probability of wind 

direction; and P(F) = annual probability of pipe failure. Finally, the risk from each 

scenario was estimated using Eq. (4.4). 

 

4.5. Analyzing and Characterizing the Results     

 The methodology presented above generated 5,250 urban fire scenarios for the 

city Micropolis, each of which includes an ignition point, wind direction, and WDS 

condition. The model also generated the output for each scenario in terms of number of 
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displaced people as well as urban fire risks associated with those scenarios. Property 

losses were also estimated based on the replacement construction cost of burned 

buildings. Fig. 4.4 shows the histogram of fire consequences (number of displaced 

people) per scenario where each scenario is conditioned to a fire event.  
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Fig.4.4. Histogram of fire consequences conditioned on ignition for Micropolis 

 

To estimate the global urban fire risk for the city using Eq. (4.5), first the 

consequences from 5,250 scenarios were fitted to a gamma distribution (Haan 2002). 

The expectation of consequences per fire event conditioned on fire 

[E(Conseqs.|FireEvent)] was estimated to be 739 displaced people/fire event. Then a 

binomial distribution (Haan 2002) was used to estimate the expectation of number of fire 

events in Micropolis for any given year [E(FireEvent)] based on the estimated 



 99 

probability of a single fire in any given day described in section 4.4.1. It was found that 

the expectation of fire [E(FireEvent)] for the case study was 1.216 fires/year. Therefore, 

using Eq. (4.5) the expectation of risk or the global urban fire risk for the city was 

estimated to be 899 displaced people/year. To verify this global risk value, the second 

method [Eq. (4.6)] was used by implementing another Monte Carlo run not conditioned 

on ignition and the distribution of consequences per year was fitted to a gamma 

distribution (Fig. 4.5). The global risk using this method was estimated to be 825 

displaced people/year. Implementation of both the methods of estimating global risk 

clearly verifies that the global urban fire risk for the city is pretty high.  
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Fig.4.5. Gamma fitted distribution of consequences not conditioned on ignition for Micropolis 
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There are several reasons for evaluation of such a high global risk value for the 

city. First, MUFS output is highly dependent on the topology of an urban area. Currently 

in Micropolis database, several high occupancy buildings such as schools, churches, and 

industrial buildings, are located in the center of the city. Frequent occurrences of such 

high occupancy buildings constitute to larger consequences. Second, during consequence 

evaluation any building within the burn polygon is considered as fully burned; MUFS 

does not differentiate between partially burned and fully burned conditions resulting an 

overestimation of consequences in terms of displaced people. Third, determination of the 

extent of burned area is based on the interpolation of front points at each time step. This 

approach results in an exponential growth of burn polygon at each time step.  Finally, as 

has been seen in previous sections the Micropolis WDS is in many locations insufficient 

to provide standard fire fighting flows even for single hydrants.  Ignition of a fire near 

one of these poor performing sections of the WDS could allow the fire to grow 

unchecked to a large conflagration.          

To analyze the scenario-based urban fire risk, the 5,250 scenarios were sorted in 

non-decreasing order of the risk value in terms of number of displaced people per year 

per scenario and 30 highest risk scenarios were chosen. Table 4.3 shows 30 highest risk 

scenarios for Micropolis. Based on the probabilities of fire triplets, the scenario-based 

urban fire risk was estimated in terms of both number of displaced people per year and 

property losses per year. Referring to Table 4.3, three important observations were 

made. First, none of the 30 highest risk scenarios involved any number of pipe failures; 

this indicates that the WDS was functioning with its usual capacity. Second, the  



 101 

Table 4.3. Highest Risk Scenarios for Micropolis Generated from Monte Carlo Analysis 

Scenario Ignition Facility Wind No. of Joint

No. Point Type Direction Failed Probability No. of Property No. of Property

Pipes Displaced Losses Displaced Losses

People ($) People/yr ($/yr)

1 764 Warehouse SW 0 0.0011 4,246 79,172,478 4.5 84,645

2 770 Industry S 0 0.0020 2,155 40,542,987 4.4 81,888

3 833 Commercial S 0 0.0010 3,590 69,079,623 3.7 71,122

4 822 Commercial S 0 0.0010 3,689 67,856,386 3.6 65,753

5 762 Industry SW 0 0.0012 2,958 62,004,610 3.4 71,521

6 787 Warehouse S 0 0.0020 1,626 29,711,287 3.2 58,211

7 785 Warehouse SW 0 0.0012 2,657 45,967,445 3.1 54,282

8 783 Warehouse SW 0 0.0011 2,810 49,754,349 3.1 54,558

9 823 Commercial SW 0 0.0007 4,265 81,533,444 3.1 58,457

10 771 Industry S 0 0.0017 1,739 33,959,412 3.0 58,924

11 852 Commercial S 0 0.0011 2,737 44,049,187 2.9 47,086

12 768 Warehouse S 0 0.0020 1,442 28,585,973 2.9 57,131

13 784 Warehouse SW 0 0.0013 2,242 38,364,959 2.9 49,107

14 769 Warehouse N 0 0.0007 3,853 77,765,825 2.9 57,886

15 759 Industry S 0 0.0019 1,488 29,681,094 2.8 56,354

16 785 Warehouse S 0 0.0017 1,652 26,693,292 2.8 45,266

17 838 Apartment S 0 0.0007 3,741 63,741,216 2.8 47,675

18 771 Industry SW 0 0.0012 2,247 47,623,599 2.7 57,544

19 758 Industry S 0 0.0015 1,661 33,401,738 2.6 51,281

20 863 Apartment S 0 0.0007 3,818 67,026,592 2.5 44,653

21 757 Commercial S 0 0.0009 2,922 55,371,339 2.5 48,122

22 791 Industry SW 0 0.0019 1,313 20,369,698 2.5 38,959

23 741 Commercial S 0 0.0012 2,014 33,262,806 2.5 40,995

24 825 Commercial SW 0 0.0005 4,607 70,311,619 2.5 37,512

25 840 Apartment S 0 0.0007 3,457 59,031,939 2.4 41,651

26 767 Warehouse S 0 0.0019 1,246 26,249,229 2.4 49,838

27 782 Warehouse S 0 0.0016 1,474 22,981,563 2.3 36,188

28 769 Warehouse W 0 0.0005 4,458 92,923,729 2.3 47,334

29 823 Commercial S 0 0.0010 2,189 43,036,428 2.3 44,309

30 821 Commercial SW 0 0.0008 2,841 58,778,276 2.2 46,232

Consequences Risk

 
 

dominant wind direction or downwind direction was predominantly to south and to 

southwest. This accords with the wind frequency analysis in section 4.4.1 where the 
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probability of wind blowing to south and to southwest were the highest (0.303) and the 

second highest (0.211) respectively. Finally, the buildings with ignitions were mostly the 

industrial, warehouse, and commercial buildings which generally have larger floor areas. 

This reflects Tillander and Keski-Rahkonen‟s (2002) idea of ignition frequency‟s 

dependency on floor area. 

It was initially surprising to observe that none of the highest risk scenarios 

included pipe failures, and further analysis appeared warranted.  Of the 5,250 scenarios 

generated, 88 included at least one pipe failure.   These 88 scenarios were sorted by 

order of consequences and the top twenty highest consequence scenarios with pipe 

failures are tabulated in Table 4.4. While these scenarios have very high levels of 

consequences, it can be seen for each scenario in Table 4.4 that the joint probability of 

simultaneous pipe failure and building ignition is so low that the risk values are far less 

than those presented in Table 4.3.  This result is a classic example of the value of risk 

assessment versus consequences simulation alone. 

To analyze the scenario-based urban fire risk further, the highest risk scenario 

(scenario-1 in Table 4.3) is selected and the progress of urban fire over time is mapped 

in Fig. 4.6. This scenario would cause 322 burned buildings with a property value of 

$79.2 million and would cause 4246 displaced people if there were a 100% probability 

of ignition at the warehouse (Building # 764) and if the wind blew to southwest. The 

estimated risk was 4.5 displaced people per year or $ 0.08 million of property losses per 

year. This scenario clearly burns the central business district and part of the multi-family 

residential area, destroying 50% of the city. To investigate further the reason for such a  
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Table 4.4. Scenarios Involved Pipe Failures for Micropolis Generated from Monte Carlo 

Analysis 

Scenario Ignition Wind No. of Joint

No. Point Direction Failed Probability No. of Property No. of Property

Pipes Displaced Losses Displaced Losses

People ($) People/yr ($/yr)

P-1 677 E 1 0 4,763 78,632,931 0.0E+00 0.0E+00

P-2 5 E 495 1.3E-30 4,731 90,880,705 6.2E-27 1.2E-22

P-3 724 SE 503 2.9E-30 4,087 75,834,257 1.2E-26 2.2E-22

P-4 808 W 498 7.9E-31 4,074 66,089,777 3.2E-27 5.2E-23

P-5 90 SW 494 1.1E-27 3,982 71,787,568 4.2E-24 7.6E-20

P-6 856 S 496 2.8E-27 3,892 65,591,907 1.1E-23 1.9E-19

P-7 769 N 486 3.5E-27 3,885 78,650,758 1.4E-23 2.8E-19

P-8 134 SW 492 5.7E-27 3,884 71,046,948 2.2E-23 4.1E-19

P-9 638 E 494 4.5E-29 3,756 62,676,975 1.7E-25 2.8E-21

P-10 55 NE 497 4.2E-31 3,374 68,612,800 1.4E-27 2.9E-23

P-11 778 S 489 9.1E-29 3,326 64,263,850 3.0E-25 5.9E-21

P-12 393 W 495 1.4E-28 3,290 63,525,417 4.7E-25 9.1E-21

P-13 265 W 489 2.2E-29 3,282 62,891,271 7.2E-26 1.4E-21

P-14 714 E 487 1.9E-28 3,209 56,724,840 6.1E-25 1.1E-20

P-15 169 S 496 3.8E-29 3,143 60,254,854 1.2E-25 2.3E-21

P-16 264 N 492 1.9E-29 2,973 52,970,650 5.8E-26 1.0E-21

P-17 145 SE 504 1.0E-31 2,938 49,425,043 3.0E-28 5.1E-24

P-18 281 W 481 4.4E-27 2,921 53,625,965 1.3E-23 2.4E-19

P-19 649 E 497 0 2,776 55,242,194 0.0E+00 0.0E+00

P-20 310 N 480 4.4E-26 2,482 45,780,763 1.1E-22 2.0E-18

Consequences Risk

 
 

wide spread fire in a small town like Micropolis, three building characteristics were 

examined carefully; these are occupancy hazard classification (OHC), exposure 

factor(EF), and construction classification number (CCN).  A building‟s OHC value 

indicates whether a building contains hazardous materials or not. Generally, OHC values 

are assigned as 3, 4, 5, 6, and 7 to indicate respectively severe hazard, high hazard, 

moderate hazard, low hazard, and light hazard occupancies (Eckman 1994). MUFS 

utilizes these values to prioritize the fire truck assignments. It was observed that 
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Fig. 4.6. Building map of Micropolis with fire spread profile for highest risk scenario (scenario-

1) 

 

8% of the total burned buildings under this scenario had high hazard occupancies such as 

building material storage, departmental stores, warehouses, etc.; 7% had moderate 

hazard occupancies for instance restaurants, libraries, etc; and the rest were low and light 

hazard occupancies such as churches, schools, residential dwellings, etc. This indicates 

that approximately 15% of the burned buildings were high to moderate hazard 

occupancies. A building‟s exposure factor (EF) indicates how close the building is from 
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its neighboring structures. Generally, the EF value of 1.0 indicates either the building 

has an area smaller than 9.3 m
2
 (100 ft2) or the building is more that 15.24 m (50 ft) 

away from the nearest structure; the EF value of 1.5 indicates that the building is close 

enough to the nearest neighbor to pose an exposure risk in case the surrounding 

structures catch a fire (Eckman 1994). While examining the EF values of the burned 

buildings, it was found that about 97% of the burned buildings had EF value of 1.5; 

which indicates the buildings were pretty close to each other. Finally, the burned 

buildings‟ CCN values were examined. A building‟s CCN value represents the type of 

fireproof construction techniques employed. A CCN value of 1.0 indicates a level of 

general fireproof construction, and lower CCN values indicate level of fire-resistant 

construction. From the Micropolis database it was found that all the burned buildings 

have CCN values of 1; indicating no fire-resistant construction techniques was employed 

in this region. 

Following the above analysis, it can be concluded that there are several factors 

that caused the fire incident described by scenario-1 to spread rapidly. The two most 

important factors are the wind direction and WDS performance during fire event. 

Although the WDS was functioning normally during this fire scenario however, the 

system was unable to provide sufficient firefighting flows; this indicates that the highest 

risk factor is dominated by the poor design of WDS for this case study. Other major 

factors are the buildings nearness to each other and level of fireproof construction 

techniques. A combination of all these factors contributed to a higher urban fire risk for 

this community. Similar results were found for other high risk scenarios. 
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4.6. Managing Urban Fire Risk for the Case Study 

Findings from the above analysis indicate that among the variables of fire hazard, 

both wind direction and WDS condition plays a vital role in fire propagation. Wind 

direction, however, depends upon a region‟s geographical location and atmospheric 

conditions; therefore, cannot be controlled. WDS performance, on the other hand, can be 

improved by pipe enlargement, among other measures. Previous studies have examined 

WDS vulnerability and risk during urban fire events and investigated rehabilitation for 

mitigation of potential fire events with a major focus on attaining adequate fire flows by 

pipe hardening and pipe enlargement. Pipe enlargement, however, can cause water 

quality problems and place public health at risk during normal operational periods. Thus 

a multi-objective approach is required to effectively address the conflicting goals of the 

WDS: reliable delivery of water during normal as well as emergency conditions such as 

fire, meeting water quality standards, and finding cost-effective design and rehabilitation 

options. 

These goals can be achieved by identifying pipes for enlargement and their 

corresponding diameters, and the location of additional chlorine booster units. When 

more than one objective is considered in an optimization problem, no single solution 

may produce the best result with respect to all objectives. In such a case a set of 

solutions known as the Pareto optimal solutions or non-dominated solutions exist (Hans 

1988), none of which is worse than any other with respect to all objectives. The Pareto 

optimal solutions provide the decision makers more information and flexibility in 

selection of a solution. 
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To mitigate the urban fire risk for this case study, a multi-objective evolutionary 

algorithm, Non-Dominated Sorting Evolution Strategy (NSES) (Kanta et al. 2009), was 

applied. NSES is a population based multi-objective evolutionary algorithm which 

produces Pareto-optimal solutions in an objective space. Implementing an evolution 

strategy (ES) (Rechenberg 1965) based search technique NSES utilizes a non-dominated 

sorting approach adopted from NSGS-II (Deb et al. 2002). Detailed discussion of NSES 

algorithm and its algorithmic performance in finding Pareto optimal solutions can be 

found in Kanta et al. (2009). The following sections describe the implementation of 

NSES approach to Micropolis WDS to mitigate potential urban fire events. 

 

4.6.1. Model Formulation 

The proposed model has three objectives: (1) minimizing the aggregated fire 

damage (f1), (2) minimizing the maximum water quality deficiency (f2), and (3) 

minimizing normalized mitigation cost (f3). The multi-objective optimization problem, 

therefore, can be mathematically formulated as follows:  
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subject to: 

 dDk  ; k = 1, 2,…., np       (4.13) 

np           (4.14) 

nb           (4.15) 

 

where, 
reqiQ required fire flow (l/s [gpm]) for hydrant i; 

AvailableiQ available flow (l/s 

[gpm]) at minimum allowable residual pressure at hydrant i (typically set at 137.9 kN/m
2
 

[20 psi] by local code); i weighting coefficient for hydrant i; n= total number of fire 

hydrants considered for fire flow evaluation; 
jCD chlorine deficiency (unitless) at 

monitoring node j; 
AvailablejC available residual chlorine concentration (mg/l) at 

monitoring node j; m= total number of monitoring nodes; P

kC = cost of pipe k ($); B

lC = 

installation cost of booster station l ($); worstC worst cost ($); kD =diameter (m [inch]) 

of pipe k; d= commercially available discrete pipe sizes (m [inch]); N = total number of 

pipes in the network; np= number of pipe decision variables;  = user defined maximum 

number of pipes to be replaced; nb= number of booster station decision variables; and  

= user defined maximum number of boosters to be installed. 
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4.6.2. Implementation of NSES to Mitigate WDS Fire Damages 

The model decision variables are the pipes to be enlarged and the corresponding 

diameters; it is assumed that additional chlorine boosters will not be added, but the 

general problem formulated above includes this possibility. Micropolis WDS has 577 

water mains among 1088 pipes each of which was considered as a potential pipe 

rehabilitation location. The diameter of rehabilitated pipes could be selected from the set 

of {0.15, 0.20, 0.25, 0.30, 0.36, 0.41, 0.46, 0.51, 0.61} m [{6, 8, 10, 12, 14, 16, 18, 20, 

24} inch] diameter commercially available class 50 ductile iron pipes. 

To manage the urban fire risk for Micropolis, all of the 30 highest risk scenarios 

were considered. Based on the location of the ignited buildings and the propagation of 

fire for each of the 30 scenarios, two unique sets of fire hydrants, each consisting of 

three hydrants, were chosen to improve the fire flow in high risk region. The first set 

consists of hydrants HY40, HY53, and HY66; the second set consists of hydrants HY1, 

HY42, and HY45 (Fig. 4.7). The aggregated fire damage (Eq. 4.9) was evaluated based 

on individual fire flow at each hydrants under study and the weighting coefficients, i, 

were selected to represent an average fire flow rate for the system. For this case a weight 

value of 0.333 was used for all hydrants, however, different i values can be assigned to 

prioritize the specific hydrant flows under study. A required fire flow of 63 l/s (1000 

gpm) was considered at all fire hydrants. 

Micropolis WDS has 751 valve nodes and junctions among 1210 non-hydrant 

nodes. To evaluate the system-wide residual chlorine levels, ten out of 751 nodes were 

selected as representative water quality monitoring nodes. The Surface Water Treatment 
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Rule (SWTR) requires the water distribution systems to maintain a “detectable” 

disinfectant residual level of 0.2 mg/l (for chlorine) throughout the system. Moreover, 

under the Stage 1 Disinfectant/Disinfection By-Products Rule, the residual should not 

exceed 4.0 mg/l for chlorine in any reach of the system (USEPA 2004). This is due to  

 

 

 

Fig.4.7. Building map of Micropolis with WDS shown in thin lines and water quality 

monitoring locations are shown in black dots 

 

N 
30 Highest Risk Buildings 

Hydrant Set-2  

Hydrant Set-1  
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the fact that excessive levels of chlorine produces taste and odor problems, forms 

disinfectant by-products, and might accelerate pipe corrosion. Thus the water quality 

deficiency, expressed in Eq. (4.10), is defined to map the government regulation for 

drinking water quality and is evaluated at all ten monitoring nodes. Currently, a 

disinfectant dose of 4 mg/l is added at the treatment plant and there is no additional 

chlorine booster station in the system. 

Finally, a normalized cost was evaluated as cost of pipe replacement for a current 

solution over the worst possible cost of rehabilitation (Eq. 4.12). The worst possible cost 

was evaluated by setting up a set of scenarios which maximizes the fire flow without 

cost or water quality constraints. The network is shown in Fig. 4.7. 

The solution approach defined in this section was implemented in a computer 

code in Visual Basic 6.0 that utilizes iterative solution of the water distribution system‟s 

hydraulics and water quality under the objectives and constraints defined by Eq. (4.9) 

through Eq. (4.15). The NSES model is coupled with EPANet Programmer‟s Toolkit 

(Rossman 1999) to simulate the hydraulics and water quality in the network. To evaluate 

the aggregated fire damage, the required pressure head (14 m [46 ft]) was added 

simultaneously to all three hydrants‟ respective elevations and the emitter coefficient 

(Rossman 2000) at the corresponding hydrants was set to 44.5 l/s/(kN/ m
2
)
0.5

 (1850 

gpm/psi
0.5

); then a single period simulation was performed. After running the hydraulic 

model, the available fire flow at each of the three hydrants was noted and the aggregated 

fire damage was calculated. To evaluate the water quality deficiency the hydraulics and 

water quality in the network were simulated separately without a fire flow demand over 
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a 168-hour time period to allow the system to reach a dynamic equilibrium condition 

with respect to disinfectant concentrations. It was assumed that a maximum number of 

50 pipes or less needed to be replaced to increase the system-wide firefighting 

capability. 

 

4.6.3. Mitigation Results 

The multi-objective analysis was performed twice, one for each hydrant set, to 

check the robustness of the NSES algorithm. The algorithmic parameters used during 

implementation of NSES-based search were:  = 150,   = 300, and stopping criterion = 

350 generations. 

The X-Y-Z scatter plots of the Pareto front for hydrant set-1 is shown in Fig. 4.8 

where each point represents a solution indicating the aggregated fire flow, minimum 

residual chlorine, and the corresponding mitigation cost to implement that solution. In 

the following figure, the horizontal axis presents a maximization objective, and the 

vertical axis presents a minimization objective; thus, Pareto-front will be oriented from 

upper-right to lower-left with sub-optimal regions above and left of the front. Since the 

model simultaneously minimizes the aggregated fire damage, the maximum chlorine 

deficiency, and the normalized cost of mitigation, consequently, the model returns 

maximized aggregated fire flow, maximized minimum residual chlorine, and minimum 

cost solutions. In existing condition the system provides an aggregated fire flow of 23 l/s 

for hydrant set-1 and the minimum residual chlorine level was 0.71 mg/l which is above 

the regulated minimum value of 0.2 mg/l. Referring to Fig. 4.8 most of the Pareto-
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optimal solutions yield moderate to significant gain in both system wide fire flow and 

water quality with a few exceptions, however, each solution contributes to cost of 

mitigation with varying degrees. 

 

 

Fig. 4.8. X-Y-Z scatter plot of the Pareto-optimal solutions for the hydrant set-1 after 350 

generations, the WDS performance at existing condition is shown with a square 

 

The results from the risk assessment in section 4.5 showed that each highest risk 

scenario was unique, thus one Pareto-optimal solution which seemed very effective in 

reducing the risk for a particular scenario might not be as effective as for another 

scenario and vice versa. Therefore, the Pareto-optimal mitigation designs were evaluated 

for a number of scenarios. Finally, the average % of risk reduced for those scenarios by 
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each of the mitigation design was used as a measure of mitigation effectiveness for that 

particular design.   

 During the mitigation effectiveness analysis, first, 15 Pareto-optimal solutions 

were chosen from the Pareto front. Then, for each of the 15 solutions, the urban fire 

consequences were evaluated for each of the 30 highest risk scenarios. Finally, the 

average percent of risk reduced by implementing each of the 15 designs were evaluated. 

The achieved objective values are listed in Table 4.5. The 15 Pareto-optimal designs in 

fire flow-cost-water quality objective space for hydrant set-1 are shown in Fig. 4.9 and 

the Pareto front in scenario risk-cost-water quality objective space for hydrant set-1 is 

shown in Fig. 4.10. 

 

Table 4.5. Comparison of Pareto-optimal Solutions in the Objective Space for Hydrant Set-1 

Solution Aggregated Average Cost Minimum

HY40 HY53 HY66 Fireflow % Risk Residual

Reduced Chlorine

l/s l/s l/s l/s % displaced $ mg/l

people per yr

Existing 10 25 33 23 0 0 0.71

1 10 31 34 25 14 26,469 1.27

2 11 34 36 27 12 38,238 1.46

3 11 32 41 28 12 45,833 1.47

4 12 35 41 29 14 44,205 1.47

5 13 39 40 31 16 47,799 1.43

6 13 41 43 32 14 47,174 1.40

7 13 43 47 34 21 49,193 0.26

8 14 44 48 35 18 54,202 1.27

9 32 38 41 37 24 57,896 1.07

10 12 56 45 38 22 60,464 1.39

11 15 50 56 40 29 58,989 1.34

12 38 40 45 41 32 78,708 1.40

13 13 55 60 43 31 82,258 1.43

14 16 58 60 45 32 88,525 1.46

15 16 55 64 45 28 106,014 1.07

Hydrant Flow
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Fig. 4.9. X-Y-Z scatter plot of 15 Pareto-optimal solutions in fireflow-cost-water quality space 

(hydrant set-1), the WDS performance at existing condition is shown with a square 

 

 

Fig. 4.10. X-Y-Z scatter plot of the Pareto front in scenario risk-cost-water quality space 

(hydrant set-1), the WDS performance at existing condition is shown with a square 
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Referring to Table 4.5, in fire flow-cost-water quality objective space, solution 1 

is better than solution 2 in terms of cost, but inferior to solution 2 in terms of both 

aggregated fire flow and Water quality. This tradeoff relation between solutions 1 and 2 

while translated in risk-cost-water quality objective space showed that solution 1 is 

better than solution 2 in terms of both average % of scenario risk reduced and cost but 

inferior to solution 2 in terms of water quality. Similar comparisons could be made for 

all other Pareto-optimal solutions. Referring to Fig. 4.9, Fig. 4.10 and Table 4.5, there 

clearly a tradeoff relationship exists between fire flow and mitigation cost or average % 

of scenario risk reduced and mitigation cost. Although each of the Pareto-optimal 

solutions produced vary different water quality, it is difficult to conclude that a 

significant tradeoff relation exists between fire flow and water quality during normal 

demand condition for this case study. 

To test the robustness of the mitigation approach, both the multi-objective 

analysis and mitigation effectiveness analysis were performed using hydrant set-2. The 

achieved objective values are listed in Table 4.6. The Pareto-optimal designs in fire 

flow-cost-water quality objective space using hydrant set-2 are shown in Fig. 4.11 and 

the Pareto front in scenario risk-cost-water quality objective space for hydrant set-2 is 

shown in Fig. 4.12. Referring to Fig. 4.11, Fig. 4.12, and Table 4.6, a tradeoff 

relationship was found between fire flow and mitigation cost or average % of scenario 

risk reduced and mitigation cost; however, as in the case with hydrant set-1, there is not 

much of a tradeoff between fire flow demand and water quality under normal demand 

condition for this city. Results for both the hydrant sets were consistent in terms of 
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average % of scenario risk reduction and cost of mitigation; hence provides justification 

of robustness of the proposed methodology. 

 

 Table 4.6. Comparison of Pareto-optimal Solutions in the Objective Space for Hydrant Set-2 

Solution Aggregated Average Cost Minimum

HY1 HY42 HY45 Fireflow % Risk Residual

Reduced Chlorine

l/s l/s l/s l/s % displaced $ mg/l

people per yr

Existing 18 0 62 27 0 0 0.71

1 28 0 104 44 19 47,608 1.37

2 34 3 109 49 19 49,081 1.33

3 35 5 109 49 21 50,647 1.05

4 36 8 111 52 28 53,255 1.41

5 36 12 111 53 29 55,394 1.03

6 41 7 114 54 28 60,861 1.47

7 32 17 117 55 24 66,299 1.14

8 40 19 116 58 27 85,689 1.43

9 40 23 116 60 28 96,810 1.46

10 37 24 123 61 27 75,024 1.42

Hydrant Flow

 
 

4.7. Final Remarks 

This paper illustrates a new approach for urban fire risk assessment for a coupled 

water and fire response system utilizing a stochastic model. Although various fire hazard 

and fire risk assessment methodologies have been developed and studied for decades, 

this paper introduces a stochastic approach: (1) by incorporating three important fire 

variables: ignition, wind direction, and water distribution system‟s failure, and (2) by   
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Fig. 4.11. X-Y-Z scatter plot of 10 Pareto-optimal solutions in fireflow-cost-water quality space 

(hydrant set-2), the WDS performance at existing condition is shown with a square 

 

 

Fig. 4.12. X-Y-Z scatter plot of the Pareto front in scenario risk-cost-water quality space 

(hydrant set-2), the WDS performance at existing condition is shown with a square 
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introducing both building fire and wind direction probabilities as well as an actual WDS 

failure probabilities. 

The Barrois model (Hasofer et al. 2007) was used to estimate building ignition 

frequencies. Wind frequencies were estimated from historical wind data. Pipe failure 

probabilities due to soil-pipe interaction were estimated using Yamijala et al. (2009) 

model and pipe failure probabilities due to seismic event were estimated using Eidinger 

(2005) model. A computerized fire spread model, MUFS (Bristow 2006), was used to 

evaluate the fire consequences. Risk was quantified in two different levels: scenario risk 

and global risk. Scenario risk was evaluated in terms of number of displaced people/year 

per scenario. Each scenario for a fire event was defined as a triplet consisting of ignition, 

wind property, and WDS condition; and the probability of occurrence of a particular 

scenario was estimated as a joint probability of those fire variables. Scenario-based 

urban fire risk for a particular scenario was then estimated as a product of total 

probability of a fire scenario and the fire consequences. A Monte Carlo simulation was 

utilized to generate all possible fire scenarios as well as the distribution of consequences. 

Global risk on the other hand was evaluated in two different methods: with and without 

conditioning on fire events and expressed as number of displaced people/year. Global 

risk is an aggregation of all possible scenario risk and thus estimated much higher than 

individual scenario risk.  

The proposed methodology was implemented for a realistic case study, 

Micropolis. The results of Monte Carlo simulation showed that both global and scenario-

based urban fire risk for the case study was quite high and varied with different 
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scenarios. The two most important factors found to be critical during urban fire events 

were: the wind direction and WDS performance. Although the WDS was functioning 

normally (no failure) during most of the high risk fire scenarios under study, the system 

was unable to provide sufficient firefighting flows. This result indicates that the highest 

risk factor was dominated by the poor design of WDS for this case study. 

To mitigate the urban fire risk for this case study, a multi-objective evolutionary 

algorithm, Non-Dominated Sorting Evolution Strategy (NSES), was applied to 

effectively address the conflicting goals of the WDS: reliable delivery of water during 

normal as well as emergency conditions such as fire, meeting water quality standards, 

and finding cost-effective design and rehabilitation options. This methodology clearly 

generates Pareto-optimal solution surfaces that express the tradeoff relationship between 

fire damage, water quality, and least cost objectives; this provides decision makers with 

the flexibility to choose a mitigation plan for urban fire events best suited for their 

circumstances. Each Pareto-optimal solution comprises a set of pipes to be enlarged to 

achieve increased fire flow and the corresponding diameters of these pipes. To examine 

the effectiveness of the solutions in reducing urban fire risk, the Pareto-optimal 

mitigation designs were then evaluated for 30 highest risk scenarios. Finally, the average 

% of risk reduced for those scenarios by each of the mitigation design was used as a 

measure of mitigation effectiveness for that particular design.   

Analysis of the results showed that most of the Pareto-optimal solutions reduced 

the average risk for 30 scenarios with varying degrees. The results also showed that a 

tradeoff relationship exists between fire flow and mitigation cost or average % of risk 
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reduced and mitigation cost. Although each of the Pareto-optimal solutions produced 

vary different water quality, it was difficult to conclude that a significant tradeoff 

relation exists between fire flow during emergency condition and water quality during 

normal demand condition for this case study. The analysis was performed with two 

different sets of hydrant arrangements to examine the robustness of the mitigation 

methodology. Results for both the hydrant sets were consistent in terms of average % of 

risk reduction and cost of mitigation; hence provides justification of robustness of the 

proposed methodology. 
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5. SUMMARY AND CONCLUSIONS 

 

This dissertation has focused on developing new methodologies to address risk 

and consequences of and effective mitigation strategies for urban fire events focusing on 

two critical infrastructures – water systems and emergency services. While risk 

assessment is the preferred approach to address and assess fire hazards, estimation of 

probabilities of various fire variables as well as interdependency between water and fire 

services are often ignored. New risk-based techniques were developed to address these 

issues and were implemented to an illustrative case study to generate a risk-based WDS 

vulnerability assessment tool, a set of Pareto-optimal WDS fire mitigation designs, and a 

set of Pareto-optimal risk management plans for urban fire events.  

To extend the basic knowledge of vulnerabilities in the water systems during 

occurrence of fire and to incorporate the risk associated with the water system failure for 

fire events in decision making processes, a risk-based dynamic programming modeling 

approach was developed to identify the critical components of a WDS during fire events 

under three failure scenarios: (1) accidental failure due to soil-pipe interaction, (2) 

accidental failure due to a seismic activity, and (3) intentional failure or malevolent 

attack. Fire damage consequences for the water system were evaluated as the normalized 

differences in hydrant flows based on regional fire flow requirements. The risk-based DP 

methodology was then applied to a realistic case study, Micropolis WDS, to assess 

vulnerability and risk to the water system posed by fire hazard. Several mitigation 

designs were proposed based on the concept of hardening specific sets of water mains 
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(those appeared as the most vulnerable components for fire at all locations under 

consideration). Simulations of the mitigation strategies showed that the system risk 

could be reduced significantly by adapting some of the mitigation measures and the 

system‟s resiliency could be improved as well. However, some of the proposed 

mitigation plans were not adequate when the number of pipe failure due to malevolent 

actions was small. This observation called for an investigation on the mitigation 

measures in a more systematic way. 

For systematic generation of fire mitigation strategies for WDS, a new EA-based 

decision making tool Non-dominated Sorting Evolution Strategy (NSES), was developed 

and then applied to Micropolis WDS to yield Pareto-optimal mitigation designs for 

WDS fire events based on three primary objectives: (1) minimizing fire damage, (2) 

minimizing water quality problem, and (3) minimizing mitigation cost. Each Pareto-

optimal solution comprised a set of pipes to be enlarged to achieve increased fire flow 

and the corresponding diameters of those pipes. The objective of developing this tool 

was to identify a set of Pareto-optimal solutions in the „fire damage - water quality – cost 

objective space that could help utility managers understand the trade-offs between those 

objectives. The Pareto optimal solutions for the case study indicated that although there 

were variations among the solutions in terms of all three objectives, however, for this 

specific system it was difficult to conclude that a significant tradeoff relation exists 

between the emergency demand during an urban fire event and the water quality during 

normal demand condition. 
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To assess urban fire risk in a complex combination of systems, such as buildings, 

emergency responders, water distribution, being primary, a risk-based stochastic 

modeling approach was developed by introducing both fire hazard and wind direction 

probabilities and by incorporating actual WDS failure probabilities. A computerized fire 

spread model, MUFS (Bristow 2006), was used to evaluate the fire consequences in 

terms of number of displaced people. The methodology was applied to the Micropolis 

case study, and urban fire risk was estimated at two different levels: (1) scenario risk for 

a large number of possible fire scenarios, and (2) global risk aggregated across scenarios 

by utilizing separate Monte Carlo simulations. Results showed that both global and 

scenario-based urban fire risk for the case study were quite high and varied with 

different scenarios. The two most important factors found to be critical during urban fire 

events were: the wind direction and WDS performance. Although the WDS was 

functioning normally (no pipe failure) during most of the high risk fire scenarios under 

study, the system was unable to provide sufficient firefighting flows. This result 

indicates that the highest risk factor was the poor design of WDS for this case study. To 

mitigate the urban fire risk for this case study, NSES was applied with three objectives: 

(1) minimizing fire damage, (2) minimizing mitigation cost, and (3) minimizing water 

quality problem. The Pareto front in „fire flow – cost – water quality‟ objective space 

was then translated into „average percent of scenario risk reduction – cost – water 

quality‟ objectives to validate the effectiveness of the mitigation plans. Analysis of the 

results showed that most of the Pareto-optimal solutions reduced the average risk for the 

scenarios under study with varying degrees. The results also showed that a tradeoff 
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relationship exists between fire flow and mitigation cost or average % of risk reduction 

and mitigation cost. Although each of the Pareto-optimal solutions produced vary 

different water quality, it was difficult to conclude that a significant tradeoff relation 

existed between fire flow during emergency condition and water quality during normal 

demand condition for this case study. 

Although the vulnerability analysis for water systems has been a topic of intense 

study in recent years, it is a difficult decision how best to respond to the possibility of 

high-consequence but relatively low probability events when resources are limited. 

Therefore, a risk analysis framework was used for the water systems to understand the 

changing nature of system vulnerability versus failure probabilities. The risk-based 

vulnerability assessment tool can help utility managers understand the value of risk 

mitigation. The multi-objective approach (NSES) for WDS fire mitigation was 

developed to effectively address the conflicting goals of the water systems: reliable 

delivery of water during normal as well as emergency conditions, meeting water quality 

standards, and finding cost-effective design and rehabilitation options. The multi-

objective optimization tool generates Pareto optimal solutions in „fire flow-water 

quality-cost‟ objective space and thus can provide the decision makers more information 

and flexibility in selection of a particular mitigation design best suited for their situation. 

Finally, the urban fire risk analysis tool for the coupled water distribution and fire 

response model was develop to provide Pareto-optimal risk management plans for urban 

fire events. The tools were successfully implemented to the case study, thus provides 

enough justification of the applicability to any real world problem. Although the 
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outcome of the implementation of the proposed methodology showed that a significant 

tradeoff relation did not exist between fire flow during emergency condition and water 

quality during normal demand condition for this case study, it is expected that a real 

world application of this methodology would find a tradeoff relation between those 

conflicting goals beyond the illustrative case study. Finally, the application of the 

methodologies presented in this dissertation would guide the water utility managers, 

emergency response personnel, and affiliated decision makers to address and assess 

urban fire risk and appropriate risk management strategies and thereby would enhance 

decision making process in both water systems planning and management and 

emergency services throughout the country.     

Future research based on this dissertation is appropriate to address several 

remaining issues.  First, the mitigation design for urban fire events using the NSES 

approach was based on discontinuous/discrete decisions on small sections of water main. 

In real systems, however, pipe replacement typically involves much longer sections of 

water main.  Revisions to the methodology would be appropriate and could be done by 

skeletonizing the distribution network between major highway intersections and 

important hydrant locations. Second, a sensitivity analysis of NSES with respect to the 

number of hydrants under consideration in reducing urban fire risk should be 

investigated. Third, MUFS output is highly dependent on both the topology of an urban 

area and approximation of interpolation of burn polygon(s) at each time step. Moreover, 

MUFS does not account for estimation of number of displaced people based on 

percentage of building burned; thus any building within the burn polygon is considered 
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as fully burned during consequence evaluation. This approach results in an 

overestimation of consequences resulting in a higher risk values. This issues with MUFS 

need to be improved in future. At a larger scale of research, future efforts will address 

interdependence of critical infrastructures such as water supply, transportation, power, 

and emergency services. The risk and reliability of complex systems caused by 

cascading failures within critical infrastructures and development of mitigation measures 

through analysis and validation of modeling and optimization tools will also be 

investigated. 
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