
NETWORK AND INDEX CODING

WITH APPLICATIONS TO ROBUST AND SECURE COMMUNICATIONS

A Dissertation

by

SALIM YAACOUB EL ROUAYHEB

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2009

Major Subject: Electrical Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4281305?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NETWORK AND INDEX CODING

WITH APPLICATIONS TO ROBUST AND SECURE COMMUNICATIONS

A Dissertation

by

SALIM YAACOUB EL ROUAYHEB

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Co-Chairs of Committee, Costas N. Georghiades
Alexander Sprintson

Committee Members, Aniruddha Datta
Jean-Francois Chamberland
J. Maurice Rojas

Head of Department, Costas N. Georghiades

December 2009

Major Subject: Electrical Engineering

iii

ABSTRACT

Network and Index Coding

with Applications to Robust and Secure Communications. (December 2009)

Salim Yaacoub El Rouayheb, B.En., Lebanese University;

M.En., American University Of Beirut

Co–Chairs of Advisory Committee: Dr. Costas N. Georghiades
Dr. Alexander Sprintson

Since its introduction in the year 2000 by Ahlswede et al., the network coding

paradigm has revolutionized the way we understand information flows in networks.

Traditionally, information transmitted in a communication network was treated as a

commodity in a transportation network, much like cars on highways or fluids in pipes.

This approach, however, fails to capture the very nature of information, which in

contrast to material goods, can be coded and decoded. The network coding techniques

take full advantage of the inherent properties of information, and allow the nodes in a

network, not only to store and forward, but also to “mix”, i.e., encode, their received

data. This approach was shown to result in a substantial throughput gain over the

traditional routing and tree packing techniques.

In this dissertation, we study applications of network coding for guarantying

reliable and secure information transmission in networks with compromised edges.

First, we investigate the construction of robust network codes for achieving network

resilience against link failures. We focus on the practical important case of unicast

networks with non-uniform edge capacities where a single link can fail at a time. We

iv

demonstrate that these networks exhibit unique structural properties when they are

minimal, i.e., when they do not contain redundant edges. Based on this structure,

we prove that robust linear network codes exist for these networks over GF (2), and

devise an efficient algorithm to construct them.

Second, we consider the problem of securing a multicast network against an

eavesdropper that can intercept the packets on a limited number of network links.

We recast this problem as a network generalization of the classical wiretap channel

of Type II introduced by Ozarow and Wyner in 1984. In particular, we demonstrate

that perfect secrecy can be achieved by using the Ozarow-Wyner scheme of coset

coding at the source, on top of the implemented network code. Consequently, we

transparently recover important results available in the literature on secure network

coding. We also derive new bounds on the required secure code alphabet size and an

algorithm for code construction.

In the last part of this dissertation, we study the connection between index coding,

network coding, and matroid linear representation. We devise a reduction from the

index coding problem to the network coding problem, implying that in the linear

case these two problems are equivalent. We also present a second reduction from the

matroid linear representability problem to index coding, and therefore, to network

coding. The latter reduction establishes a strong connection between matroid theory

and network coding theory. These two reductions are then used to construct special

instances of the index coding problem where vector linear codes outperform scalar

linear ones, and where non-linear encoding is needed to achieve the optimal number

of transmission. Thereby, we provide a counterexample to a related conjecture in the

literature and demonstrate the benefits of vector linear codes.

v

To my parents

vi

ACKNOWLEDGMENTS

I wish to express my gratitude to my advisor, Dr. Costas Georghiades, for his

continued support and guidance throughout my doctoral studies. I greatly benefited

from his openness to explore new problems and his constant encouragement to pursue

my own research interests. The questions and ideas he brought up in our meetings

contributed largely to deepening my understanding of my research and many times

steered it into new fruitful directions. I was also fortunate to have Dr. Alex Sprintson

as a second advisor. I would like to thank him for always being ready for a meeting

to discuss and enrich my ideas. His help, trust and determination were crucial factors

in keeping alive within me the enthusiasm that lead to bringing to light many of

the results presented in this dissertation. I would also like to thank the remaining

members of my advisory committee: Dr. Jean-Francois Chamberland, Dr. Aniruddha

Datta and Dr. J. Maurice Rojas. My thanks are also due to Paula Evans for her daily

assistance at the Wireless Communication Lab.

Very special thanks go to Dr. Emina Soljanin who gave me the great opportunity

of working with her as an intern at the Mathematics of Communication Research

Department at Bell Labs during the summer of 2006. Her genuine care for students,

in conjunction with her friendly and humane mentoring skills, resulted in a fruitful

collaboration and a very enjoyable internship experience. I would like also to take

this opportunity to thank Prof. Joaquim Hagenauer and my friend, Christoph Hausl,

for their invitation to spend a couple of months in the Institute for Communications

Engineering at the Technical University of Munich during the fall of 2007. During

that period, I was very lucky to meet the late Prof. Ralf Koetter and collaborate with

him. This led to a second visit to Munich in the summer of 2007 where I worked with

vii

him and Prof. Michelle Effros. I wish to thank both of them for their hospitality and

engaging and exciting research discussions. I would like also to acknowledge the help

of my friend, Fakheredine Keyrouz, who always provides me accommodation when

I am in Munich and makes my stay there very comfortable. My visits to Munich

marked an important event in my life and that is meeting the two wisest men I have

ever known: Fr. Dany Younes and Dr. William Bellis. I am deeply grateful to them

for teaching me how to stay focused on what is important in life.

During my five years at Texas A&M, I shared my office with several friends: Dana

Jaber, Fan Zhang and Daehyun Choi. I would like to thank them all for making our

office a fun and stimulating workplace. Special thanks also to my friend, Mustapha

El-Halabi, for his exquisite culinary skills and for his help in proofreading parts of

this document. I am also grateful to many other friends who made living in College

Station much more enjoyable. Among them I list Mary Abou Nader, Sujan Dan,

Babak Fariabi, Chadi Geha, Jing Jiang, Haejun Kim, Andriy Nemchenko, Parimal

Parag, Pheba Thomas, David and Debbie Rivera, and Golnaz Vahedi. I ask for

forgiveness for those who were not mentioned for their real place is in my heart.

Last but not least, I owe my deepest gratitude to my parents. Without their

sacrifice and unconditional love, this work would have not been possible.

viii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Communications Over Networks 1

B. Routing Vs. Network Coding 2

C. Background on Index Coding 6

D. Overview and Contributions 9

1. Network Coding for Network Robustness 10

2. Secure Network Coding 14

3. Index Codes and Matroid Representation 18

E. Literature Overview . 23

F. Dissertation Outline . 26

II ROBUST NETWORK CODES FOR UNICAST CONNECTIONS 28

A. Introduction . 28

B. Model and Preliminaries 34

1. Network Codes . 34

2. Flow and Cut Conditions 35

C. Minimal and Simple Networks 36

1. Reduced Capacity Function 36

2. Simple Networks . 39

D. Structure of Simple Networks 43

1. Node Properties of Simple Unicast Networks 43

2. Residual Graphs and Residual Cycles 44

3. Block Decomposition 46

4. Proof of Lemma D.4 49

E. Network Codes for Simple Networks 53

F. Minimizing the Required Amount of Network Resources . . 58

III SECURE NETWORK CODING

FOR WIRETAP NETWORKS OF TYPE II 61

A. Introduction . 61

B. Wiretap Channel II . 64

C. Wiretap Network II . 65

D. Network Code Design and Alphabet Size 72

ix

CHAPTER Page

E. Wiretapper Equivocation 76

1. Wiretap Channel of Type II 78

2. Underestimated Wiretapper 79

3. Restricted Wiretapper 79

F. Connections with Other Schemes 81

1. Secure Network Coding and Filtered Secret Sharing . 81

2. Universal Secure Network Codes 83

3. Byzantine Adversaries 84

IV NETWORK CODING, INDEX CODING AND MATROID

THEORY . 86

A. Introduction . 86

B. Model . 90

1. Index Coding . 90

2. Network Coding . 92

C. Connection to Network Coding 93

D. Connection to Matroid Theory 98

1. Overview of Matroid Theory 98

2. From Matroids to Index Codes 102

E. Properties of Index Codes 104

1. Scalar Vs. Vector Linear Codes 104

2. Linear Vs. Non-Linear Codes 106

F. From Matroids to Networks 107

V CONCLUSION . 114

REFERENCES . 117

APPENDIX A . 128

VITA . 132

x

LIST OF TABLES

TABLE Page

I Packets received by the destination of the network of Figure 5(a)

for the different single edge failure possibilities. In all cases, the

destination receives two linearly independent combinations of x

and y. 13

xi

LIST OF FIGURES

FIGURE Page

1 (a) A unicast network with a single source n1 and a single desti-

nation n7. (b) A maximal flow of value 2 from the source to the

destination represented by two edge-disjoint paths depicted with

dashed edges. 2

2 (a) The butterfly network is an example of a multicast network

with a single source node n1 and two destinations n6 and n7.

There are two information sources, x and y, that need to be de-

livered to both destinations. (b) A routing scheme: x is routed

to both destinations along the tree formed by the dashed edges,

y is only sent to n7. It is impossible to simultaneously satisfy the

demands of both destinations using a routing scheme. 4

3 A network code for the butterfly network [1]. Each destination

receives two linearly independent combinations, and thus can de-

code x and y. 5

4 An instance of the index coding problem with four messages x1, . . . , x4

at the transmitter and four receivers each demanding one of the

messages and has some side information. 8

5 (a) A unicast network with two sources x and y. All edges have

unit capacities except edges (1, 2) and (1, 3) which are of capacity

2. The labels on the edges describe a proposed robust network

code.(b) The network behavior when edge (1, 2) fails. A failed

edge can only forward all-zeros packets. Nevertheless, the desti-

nation can still decode. 11

6 (a) Basic building blocks for a unicast network. (b) Block decom-

position of a simple unicast network [2, 3]. 12

xii

FIGURE Page

7 The wiretapped butterfly network with a linear multicast network

code over F3. Security is achieved against a wiretapper that can

access one edge by using a coset code of parity check matrix H =

[1 1] on top of the network. 16

8 (a) The M-Network [4] with four packets x1, x2, x3, x4 at the source

nodes and four destination nodes with non-multicast demands.

(b) A vector linear network code of dimension 2 for the M-network. 18

9 The network constructed in [5] as a counterexample to the con-

jecture on the sufficiency of linear network codes. This network

does not have a vector linear network code over any field, but has

a non-linear one over a quaternary alphabet. 20

10 A network that is equivalent to the index coding instance of Figure

4. Dashed edges represent the side information available to the

receivers in the index coding problem. 21

11 A network based on the non-Pappus matroid with three source

nodes carrying three distinct information packets x1, x2 and x3.

This network does not admit a scalar linear network code but a

vector linear code of dimension 2 over F3. The network comprises

additional destinations that are not represented here for sake of

clarity (see Chapter IV). 22

12 (a) Dedicated path protection method (1 + 1 path protection);

(b) Diversity coding method for h = 2. The network edges are

labeled by their capacities. 30

13 A network coding approach for h = 2. 32

14 (a) Node v of degree eight; (b) The intermediate step in construct-

ing the gadget Γv; (c) The final step in constructing the gadget

Γv. 40

15 The four possible types of nodes in a simple unicast network. 43

xiii

FIGURE Page

16 (a) A graph G(V,E) with edges of unit capacity and a flow θ of

value three. Each edge e ∈ E is labeled with the amount of flow

θ(e) it carries. Ê = {(v1, v4), (v1, v5), (v2, v4), (v2, v6), (v3, v5), (v3, v6)}.
(b) Residual graph for E1 = {(v1, v5), (v2, v4), (v3, v6)}. The graph

contains a residual cycle W = {v1, v5, v3, v6, v2, v4, v1}. (c) The

flow θ′ obtained from θ by augmenting along cycle W . Note that

edges (v1, v5), (v2, v4), and (v3, v6) are redundant and can be re-

moved from the network without violating its feasibility. 46

17 (a) The three basic building blocks of types A, B and C, for simple

unicast networks. (b) An example of the block decomposition of

a simple unicast network. 47

18 (a) and (b) Examples of cuts of Type 1; (c) and (d) Examples of

cuts of Type 2. 48

19 (a) An example of a Type 1 cut with two nodes of Type I and

one node of Type IV. (b) The corresponding graph G′ with E1 =

{(u2, x), (u3, y)}. 51

20 Robust network code for simple unicast networks: (a) Encoding

for blocks of Type A; (b) Encoding for blocks of Type B; (c)

Encoding for blocks of Type C. 54

21 Network equivalent to the wiretap channel of type II. 66

22 Single-edge wiretap butterfly network with a) non-secure network

code and b) secure network code. Security is achieved by using a

coset encoder on top of the network. 67

23 The combination network B(n,M) 70

24 A secure network code for the B(3, 4) combination network based

on a [6,3] Reed-Solomon code over F7. 71

25 A coding scheme achieving perfect secrecy against a limited Byzan-

tine wiretapper. 85

xiv

FIGURE Page

26 An instance of the index coding problem with four messages and

four receivers ρ1, . . . , ρ2. Each receiver ρi is represented by a cou-

ple (x,H), where x ∈ X is the packet demanded by the receiver,

and H ⊆ X represent its side information. 88

27 An instance of the network coding problem equivalent to the in-

stance of the index coding problem depicted in Figure 26. 94

28 A geometrical representation of the non-Pappus matroid [6, p.43].

The matroid circuits are represented by straight lines. 100

29 The M-Network N1 introduced in [4]. 105

30 The network N2 of [5]. N2 does not admit any vector linear net-

work code, but has a non-linear one over a quaternary alphabet. . . 107

31 Part of the network resulting equivalent to the non-Pappus ma-

troid resulting from the construction of Definition F.1. 110

32 A subnetwork of the network N3. 111

33 A cut of Type 2. Each edge is labeled by the corresponding flow

value. 130

34 Examples of subgraphs of non-minimal unicast graph that include

a cut of Type 2. The labels on the edges represent the amount

of flow they carry. Edge in E1 are depicted by dashed lines. (a)

An example of the case when all the nodes adjacent to u1 and u2

are distinct. (b) The corresponding residual graph with residual

cycle W = {u1, u
2
1, u

2
2, u

1
1, u1}. (c) An example of the case when u1

1

coincides with u2
2, but u2

1 and u1
2 are distinct nodes. The residual

cycle in this case is W = {u2, u
1
1, u1, u

2
1, v, u

1
2, u2}. 131

1

CHAPTER I

INTRODUCTION

A. Communications Over Networks

We live in an information age where easy access to information, anywhere and any-

time, is no more a privilege, but rather a necessity for daily life. The huge commercial

success of wireless systems in the recent decades, such as cellular and WiFi networks,

has played a major role in making information accessibility even easier and more

ubiquitous.

This progress is accompanied, in what seems to be a common trend in many

sectors of information technology, by an ever-growing demand for bandwidth by pop-

ular services and applications on the user side. To satisfy this increasing demand,

service providers are forced to invest in costly resources, such as base stations, optical

fibers and cables, to be added to their networks. Under such circumstances, it is very

crucial, before upgrading a network, to make sure that it is operating in an optimal

way, and that the existing infrastructure is fully exploited.

From a theoretical point of view, studying the optimal operation of communica-

tion networks, which are typically characterized by noise and interference, can be a

very difficult task, even for very small and simple networks such as the relay channel

whose capacity is still unknown [7]. Even for network models where all the commu-

nication channels are assumed to be perfect and free of noise and interference, the

problem of information transmission is far from being well understood, and many

related interesting and challenging questions remain unanswered.

This dissertation studies wired and wireless communication networks under the

The journal model is IEEE Transactions on Automatic Control.

2

Source

Destination

Source

Destination

(a) (b)

Fig. 1. (a) A unicast network with a single source n1 and a single destination n7. (b)

A maximal flow of value 2 from the source to the destination represented by

two edge-disjoint paths depicted with dashed edges.

noise-free and interference-free model. Different mathematical aspects of the use of

the novel techniques of network coding are investigated for guarantying a flow of

information that is reliable, secure, and cost-effective.

B. Routing Vs. Network Coding

Consider the communication network represented by the directed graph depicted in

Figure 1(a). The graph vertices, or nodes, represent transceivers such as servers,

routers, mobile phones, TV sets, etc. The graph edges, or links, represent commu-

nication channels such as optical fibers, telephone lines, DSL cables, radio channels,

etc. Those channels are assumed to be perfect and of unit capacity. The signal re-

ceived at the head node of an edge is an exact replica of the one transmitted at its

tail node. This network is called a unicast network since it has a single source node

3

n1, and a single destination node n7. The following question naturally arises: what is

the maximum information rate, or maximum flow, that can be sent from the source

to the destination, and how can it be achieved?

The answer to this question is given by the famous max-flow min-cut theorem [8]

which states that, in a unicast network, the maximum value of a flow from the source

to the destination is equal to the minimum capacity of a cut in the underlying graph1.

Moreover, there are efficient algorithms, such as the Ford-Fulkerson algorithm, that

can find a maximum flow in a graph in polynomial time. In unicast networks with

unit capacity edges, the value h of a maximum flow is always an integer and can be

achieved by finding h edge-disjoint paths starting at the source and ending at the

destination, and routing the information along those paths. The maximum value of

a flow in the network of Figure 1(a) is equal to 2, and can be achieved by routing

the information along the two edge-disjoint paths:(n1, n2, n5, n7) and (n1, n3, n6, n7),

depicted in Figure 1(b) with dashed edges, each carrying a unit rate information

stream.

The problem becomes more challenging with networks with multiple sources and

multiple destinations. Multicast networks form an important class of networks having

a single source node and multiple destinations each demanding all the information

available at the source. Figure 2 depicts a famous example of a multicast network,

known as the butterfly network, where there are two information sources x and y at

node n1, and two destinations, n6 and n7, that both demand x and y. The information

sources x and y are assumed to produce streams of incompressible bits at a rate of

1 MB/s, the links are also assumed to be perfect channels of capacity 1 MB/s. The

1The concepts of flows and cuts in graphs will be defined rigourously in the next
chapter.

4

Source:

Demands:

(a) (b)

Fig. 2. (a) The butterfly network is an example of a multicast network with a single

source node n1 and two destinations n6 and n7. There are two information

sources, x and y, that need to be delivered to both destinations. (b) A rout-

ing scheme: x is routed to both destinations along the tree formed by the

dashed edges, y is only sent to n7. It is impossible to simultaneously satisfy

the demands of both destinations using a routing scheme.

traditional approach for the multicast case consists of looking at it as an instance

of the packing Steiner trees problem, which is known to be an NP-hard [9] problem.

A corresponding solution relies on finding two edge-independent trees in the graph

(called Steiner trees), each having the source node as root, and the destination nodes

as leaves. Each tree can then be used to forward the data along its edges from the

source node to the destinations. One can check that any two different Steiner trees

in the butterfly network would necessarily have to share an edge. Therefore, the

demands of the two destinations cannot be satisfied simultaneously, and one can send

only information at a rate of 1 MB/s from n1 to both n6 and n7 along a single Steiner

5

Fig. 3. A network code for the butterfly network [1]. Each destination receives two

linearly independent combinations, and thus can decode x and y.

tree. For instance, x can be sent to both destination along the tree depicted in Figure

2(b) [1] with dashed edges. The redundant edges in the network can be used to send

source y only to n7. A symmetric solution can deliver x and y to n7 and x to n6. By

time sharing between these two solutions, one can send a maximum average rate of

1.5 MB/s to both destinations. But, can we do better?

In the above approach, the operation of each node was restricted to routing, i.e.

copying and forwarding the incoming data. This reflects the implicit assumption that

information, similar to commodities, needs to be carried through the network in the

same form that is available at the source. However, this is not really necessary, and the

only requirement should be that all the destinations must be able to reconstruct their

demands from what the information received on their incoming edges. Specifically,

each node can be allowed to send on each of its outgoing edges any function of its

incoming data as long as the above requirement is met.

6

By allowing this generalization, one can find a scheme that can satisfy the de-

mands of the two destinations each at a rate of 2 MB/s. Such scheme is depicted

in Figure 3 where each edge is labeled by the information it carries. The novelty of

this scheme is that the output of node n4 is neither x nor y, but x + y, where “+′′

denotes the Xor operation. Destination n6 receives x and x+ y and thus can decode

y by subtracting the two received packets (y=(x+y)-y). Similarly, destination n7 can

solve for x and y.

In this solution, node n4 is said to be performing network coding. Network coding

is the generalization of the operation of network nodes, beyond routing, to outputing

any function of their incoming information, making it possible, as in the example

above, to increase the throughput in networks. This simple and original idea was

first introduced by Ahlswede et al. in their seminal paper [1] in year 2000 and has

generated since then a huge interest in the research community.

C. Background on Index Coding

The example of the butterfly network demonstrates the benefits of encoding the data

which can result in an increase of throughput in wired networks, even in noise-free

and interference-free settings. In this section, we focus on wireless scenarios, and

show that coding can be very advantageous in this case too, and may lead to many

benefits such as energy savings and delay reduction.

The wireless medium has the particular characteristic of allowing a transmitter

to deliver data to several neighboring receivers with a single transmission. Moreover,

a wireless receiver can opportunistically listen to the wireless channel and store the

overheard data, including those designated for other destinations. As a result, it can

obtain side information which, in combination with proper encoding techniques, can

7

lead to a substantial improvement in the performance of the overall wireless network.

Consider for example a wireless scenario consisting of a single transmitter and

a number of receivers. The transmitter has a set of information messages, say bits,

X = {x1, . . . , xk}, that need to be delivered to the receivers. Each receiver demands

a single message xi ∈ X, and has a prior knowledge of a subset of X that he may

have previously overheard. The transmitter can transmit information to the receivers

through a noiseless broadcast channel having a capacity of one message per channel

use. That is, in each transmission, the transmitter can broadcast a single message

to all the receivers who will get it with no errors. Moreover, we assume that the

transmitter knows the side information of each receiver, and that the receivers cannot

communicate or cooperate among each others. Our objective is to find an optimal

encoding scheme that satisfies all the receivers demands with minimum number of

transmissions, i.e., with minimum uses of the broadcast channel.

An example of the scenario described above is depicted in Figure 4 which in-

cludes a transmitter with four messages x1, . . . , x4 ∈ {0, 1}, and four receivers with

different demands and side information sets. Evidently, the transmitter can satisfy

the demands of all the receivers, in a straightforward manner, by broadcasting all

four messages over the wireless channel. This solution requires four transmissions.

However, this number can be reduced by half by encoding the information at the

transmitter. Indeed, it is sufficient to send just the two messages x1 + x2 + x3 and

x1 + x4 (addition is over F2) to satisfy the receivers demands. This example demon-

strates that by using an efficient encoding scheme, the sender can significantly reduce

the number of transmissions, which reduces the system delay and the energy con-

sumption.

The source coding problem described above is referred to as the index coding

8

Transmitter

Receiver 1 Receiver 2

Receiver 3

Receiver 4

Demands

Side Info

Demands

Side Info

Demands

Side Info

Demands

Side Info

Fig. 4. An instance of the index coding problem with four messages x1, . . . , x4 at the

transmitter and four receivers each demanding one of the messages and has

some side information.

problem [10] in the literature, and may arise in different practical communication

scenarios. For instance, Birk and Kol who first studied this problem in [11] were mo-

tivated by a satellite communication problem where a server broadcasts data packets

to a number of caching clients in an attempt to reduce latency in the network, and

balance the communication load. In a first stage, the server starts by transmitting the

data to all the clients who store the received packets in their caches. Typically, each

client is interested in a different set of data, and will only be able to store a subset

of the transmitted data due to packets lost during transmission or even insufficient

9

storage capacity. In the second stage, the clients notify the server of their cache con-

tent via a low rate feedback channel. The server then initiates a second transmission

session to fill the gaps in the client caches.

Index coding can also be useful in many other practical applications. For exam-

ple, consider a peer-to-peer content distribution network that needs to deliver a set of

large multimedia files to a number of clients. In this setting, if some parts of the files

are already available to some clients, the distribution can be efficiently implemented

by multicasting encoded chunks of the original files.

The previous problem leads to interesting questions pertaining to index codes:

What is the minimum number of transmissions for a given instance? Is there an

efficient algorithm to construct optimal or a near-optimal index codes? Are linear

index codes always optimal? How do the alphabet size and other parameters affect

the optimal solution? Some of these questions and other ones have already been

answered in the literature [11, 10, 12]. In this dissertation, we present a new approach

to understand this problem and answer some of the above questions by exploring its

connection to network coding and matroid theory.

D. Overview and Contributions

The contributions of this dissertation can be organized in three categories. The

first category consists of results on the design of robust network codes for protec-

tion against link failures in networks. The second category comprises results on the

construction of network codes for achieving security in networks in the presence of

an eavesdropper. The third category is focused on the index coding problem and its

relation to network coding and matroid linear representation. Below, we summarize

the results in each category.

10

1. Network Coding for Network Robustness

We consider the problem of establishing reliable unicast, i.e., single-source single-

destination, connections across a communication network with non-uniform edge ca-

pacities. We assume that the edges in the network can fail, and thus, can no longer

be useful for information transmission. Our objective is to provide communication

schemes that are robust to such failures, and that achieve instantaneous recovery.

The instantaneous recovery mechanisms ensure a continuous flow of the data from

the source to the destination node with no interruption or data loss in the event of

a failure. Such mechanisms eliminate the need for packet retransmission and rerout-

ing. To that end, we study the construction of network codes that would achieve

network robustness and guaranty instantaneous recovery in the event of a link failure

as illustrated in the following example.

Figure 5(a) depicts a unicast network where, in each communication round, two

packets x and y, belonging to some finite field, need to be sent from source node n1 to

the destination node n5. In this network, edges (n1, n2) and (n1, n3) can deliver two

packets per communication round, whereas all the other edges have unit capacities.

We assume that at most one link can fail at a time in the network, and that the

output of the failed link is always the zero symbol. We propose the robust network

code, depicted in the same figure which is capable of achieving instantaneous recovery

from single edge failures. The crucial feature of this code is letting the intermediate

node n4 encode the packets received over its two incoming edges. Figure 5(b) depicts

the behavior of this code when edge (n1, n2) fails. Despite the failure, the destination

receives x on edge (n4, n5) and y on edge and (n3, n5), and thus can instantaneously

decode without notifying the source and retransmitting the information. This is

actually true for any single edge failure, and Table I lists the messages received by

11

2

Source

Destination

(a)

2

Source

Destination

(b)

2 2

Fig. 5. (a) A unicast network with two sources x and y. All edges have unit capacities

except edges (1, 2) and (1, 3) which are of capacity 2. The labels on the edges

describe a proposed robust network code.(b) The network behavior when edge

(1, 2) fails. A failed edge can only forward all-zeros packets. Nevertheless, the

destination can still decode.

the destination for the different failure possibilities. An underlying assumption here

is that the transmitted packets always contain a header, typically of negligible length,

indicating the encoding coefficients, which will be used by the destination to decode.

It will be shown in Chapter II that instantaneous recovery is not possible without

the encoding operation at the intermediate node n4. In particular, a scheme based

on encoding the information at the source then routing it throughout the network

cannot achieve instantaneous recovery.

We focus on the unicast case with two information sources, or equivalently, on

the case where the stream of data at the source is allowed to be split into two sub-

streams. This assumption is of practical importance because, in the typical operation

12

1
1

2 2

1

Block A

Block B

1

2 2

1
1

1

2 2

1

Block C

1 1

2 2

1 1

2 2

1

1 1

1

2 2

11 1

Block A

Block B

1
1

1

1 1

2 2

Block A

Block C

1

1
1

1 1

s

t

Block B

(a) (b)

1 1

1 1

Fig. 6. (a) Basic building blocks for a unicast network. (b) Block decomposition of a

simple unicast network [2, 3].

of real networks, it is unlikely that more than three disjoint paths will be allocated

for a single connection.

First, we show that there is no loss of generality in restricting the study to a

family of networks that we call simple networks, which are essentially characterized

by the following two properties:

1. minimality: simple networks do not include redundant edges or edges of exces-

sive capacity.

13

(n2, n5) (n4, n5) (n3, n5)

no failure x x+ y y

(n1, n2) x y 0

(n1, n3) 0 x y

(n2, n4) x x y

(n3, n4) x y y

(n2, n5) 0 x+ y y

(n3, n5) x 0 y

(n4, n5) x x+ y 0

Table I. Packets received by the destination of the network of Figure 5(a) for the

different single edge failure possibilities. In all cases, the destination receives

two linearly independent combinations of x and y.

2. uniform node degree: all the nodes in simple networks have a total degree of 3.

We demonstrate that simple networks have a unique combinatorial structure

[2, 3]. More specifically, any simple network can be decomposed into the three basic

building blocks of types A, B, and C depicted in Figure 6(a). Figure 6(b) depicts

an example of such a network and its decomposition into five consecutive blocks of

types A, C, B, A and B. Second, we use the block decomposition property of such

networks to show the existence of robust network codes over the binary field F2, and

devise an algorithm that constructs such codes in an efficient manner [2, 3].

A robust network code for both unicast and multicast networks can be established

through the standard network coding algorithm presented in [13]. However, this

algorithm is designed for general failure patterns, and for our special single failure

case, it requires a field size of O(|E|), where E is the set of network edges. In

14

contrast, our scheme requires a small field size (F2) which does not depend on the

number of edges in the underlying network. The size of the finite field is a very

important factor in practical implementation schemes [14] as it determines the amount

of communication and computational overhead. Our algorithm has a significantly

smaller computational complexity associated with finding a robust network code then

the existing solutions. Specifically, the computational complexity of our algorithm is

O(|V |2), V is the number of nodes in the network, compared with O(|E|2) incurred

by application of the algorithm due to [13].

We also address the problem of efficient allocation of network resources for a

robust network. Again, we exploit the properties of minimal networks to devise

another algorithm for finding a feasible solution whose cost is at most two times more

than the optimum [2, 3]. To the best of our knowledge, this is the best approximation

ratio for the problem at hand reported in the literature.

2. Secure Network Coding

We consider here networks that are susceptible to another type of vulnerability, which

is wiretapping. We focus on networks with multicast demands in the presence of a

wiretapper that can access data on a limited number of edges of his choice and where

there are no shared randomness (“keys”) between the source and the destination

nodes. Our primary goal is to design efficient network coding schemes that deliver

data at a maximum rate to all the destinations and does not reveal any information

about the transmitted data to the wiretapper.

The problem of making a linear network code information-theoretically secure in

the presence of a wiretapper that can look at a bounded number of network edges was

first studied by Cai and Yeung in [15]. In a network where the min-cut value between

the source and each destination is n, and an adversary can access up to µ edges of

15

his choice, they constructed codes over an alphabet with at least
(|E|
µ

)
elements which

can support a secure multicast rate of up to n − µ. The algorithm due to [15] has

high computational complexity and requires a very large field that is exponential in

the number of wiretapped edges.

We propose an alternative approach [16, 17] to this problem by regarding it as a

network generalization of the Ozarow-Wyner wiretap channel of type II introduced in

[18] and [19]. Our method consists of using a coding scheme at the source node that

ensures information-theoretic security, and that is based on the Ozarow-Wyner coding

scheme for the wiretap channel of type II, where the source transmits n symbols to

the receiver and an adversary can access any µ of those symbols. Ozarow and Wyner

showed that the maximum number k of symbols that the source can communicate

securely through the wiretap channel of type II to the receiver is equal to n − µ.

They also proposed the coset coding scheme to achieve this secure transmission rate.

Clearly, if the n channel symbols are multicast over a network using a routing scheme,

the k source symbols remain secure in the presence of an adversary with access to any

µ edges. We will illustrate in Chapter III that, however, this is not necessarily the

case when network coding is used. We will show that a secure network code based

on the Ozarow-Wyner scheme can still be designed over a sufficiently large field.

The coset code scheme proposed by Ozarow and Wyner is defined by an [n, n−k]

linear block code C ⊂ Fnq with a k × n parity check matrix H (HXT = 0;∀X ∈ C).

In contrast to classical error-correcting codes which are deterministic in general, a

coset code is a random encoding function that operates in the following way: to

send a message S = (s1, . . . , sk) ∈ Fkq , the coset code outputs a random element

Y = (y1, . . . , yn) ∈ Fnq picked uniformly from the coset S + C of the code C, i.e., a

random element of the coset that has S as syndrome. The output Y of the encoder

16

Information

Coset

Code

Fig. 7. The wiretapped butterfly network with a linear multicast network code over

F3. Security is achieved against a wiretapper that can access one edge by using

a coset code of parity check matrix H = [1 1] on top of the network.

is thus a randomly picked solution of the under-determined linear system HY =

S. Figure 7 shows how we propose to use this scheme for multicast networks by

encoding the information using a coset code at the source before injecting the output

in the network. The figure shows the butterfly network with min-cut n = 2 and a

corresponding linear multicast network code over F3 in the presence of a wiretapper

that can access a single edge of his choice (µ = 1). At most one symbol S ∈ F3 can

be sent securely in this case, and this can be achieved by using a coset code with

parity check matrix H = [1 1] on top of the network. In other words, the output

Y = (y1, y2) of the coset code is a random solution of the equation y1 + y2 = S over

F3. It can been seen that the wiretapper does not gain any information by observing

17

the messages on any single link. For instance, suppose that the wiretapper observes

that the message on edge (n4, n5) is 0, i.e., y1 + 2y2 = 0. Then, he would know

that there are three possible values of (y1, y3), namely (0, 0), (1, 1) and (2, 2), and

therefore, the corresponding possible values of S, based on the coset code equation

S = y1 + y2, are respectively 0, 2 and 1 which can occur with equal probabilities.

Therefore, the wiretapper is still as uncertain about the value of S as prior to making

his observation. An important issue in the design of a coset code is the choice of the

parity check matrix H, which is crucial in achieving security. For instance, using a

coset code with H = [1 2] will breach the security constraint since the wiretapper

would be able to know exactly the value of S by tapping into any of the three edges

(n4, n5), (n5, n6) or (n5, n7).

Given a multicast network with a linear network code, we derive the necessary

and sufficient conditions on the parity check matrixH of an Ozarow-Wyner coset code

to guaranty perfect secrecy and prevent revealing any information to the wiretapper

[16, 17]. We show that our scheme is equivalent to the one proposed in the work of Cai

and Yeung in [15]. However, with our approach, we can quickly and transparently

recover many of the results available in the literature on secure network coding.

Furthermore, we use the results on the encoding complexity of the network coding

schemes [20], [21] to derive new bounds on the required field size for a secure linear

network code that are independent of the number of edges in the network, and that

depend only on the number k of source symbols and the number of destinations. We

also propose an algorithm for the construction of secure network codes that achieve

these bounds. Furthermore, we look at the dual problem and analyze the security

of a given coset code by studying the amount of information that is leaked to the

wiretapper as a function of the number of wiretapped edges.

18

(a) (b)

demands

Fig. 8. (a) The M-Network [4] with four packets x1, x2, x3, x4 at the source nodes

and four destination nodes with non-multicast demands. (b) A vector linear

network code of dimension 2 for the M-network.

3. Index Codes and Matroid Representation

The network coding literature distinguishes between several categories of network

codes based on the type of the edge encoding functions. The first natural distinction

is between linear and non-linear codes. Linear codes have been extensively studied

due to their tractability and importance for practical implementations, and, in their

turn, they are divided into two subclasses: scalar linear and vector linear. In a vector

linear network code, the original information packets available at the source nodes

are modeled as vectors of dimension n with coordinates in Fq, and therefore can

be regarded as elements of Fnq . In addition, the edge encoding operations are linear

functions of the packets coordinates over the base field Fq. Scalar linear network codes

are vector linear codes of dimension one n = 1. The network coding examples given

19

previously, for instance the one in Figure 3, are all scalar linear. A network admitting

a scalar linear network code will consequently have a vector linear network code of

any dimension over the same field. The converse, however, is not true. Médard et al.

presented in [4] a counterexample consisting of the M-network depicted in Figure 8(a)

which has the interesting property that it does not admit a scalar linear network code

but it has a vector linear one. Figure 8(b) depicts a vector linear network code of

dimension 2 for the M-network which corresponds to a simple routing scheme. The

dimension n of vector linear codes can have two interpretations. From an information-

theoretic perspective, it can be regarded as equivalent to the block length of linear

error correcting codes, where, in this case, the network is used n-times. From a

networking perspective, vector linear codes can be looked at as a fractional solution

where each packet at the source is divided into n sub-packets.

Médard et al. conjectured in [4] that linear network codes, in their vector form,

are sufficient to achieve the capacity of general networks. This conjecture was later

disproved by Dougherty et al. in [5] where the network of Figure 9 was constructed.

It was shown that this network does not admit any vector linear network code, but

has a non-linear vector code over an alphabet of size 4. The authors based their con-

struction on the linear representation properties of the Fano and non-Fano matroids

to build two networks, one admitting vector linear network codes over fields with even

characteristic, and the other over fields with odd characteristic. The counterexample

network of Figure 9 is then obtained by juxtaposing these two networks.

Index codes can be subject to the same taxonomy. One can distinguish among

non-linear, scalar linear and vector linear index codes. A question that naturally

arises here is whether scalar or vector linear index codes are optimal, i.e., whether

the minimum number of transmissions can be always achieved by linearly encoding the

20

x1 x2 x3

x4 x5

x3 x2 x1 x3 x2 x1 x3 x4 x5 x3

Fig. 9. The network constructed in [5] as a counterexample to the conjecture on the

sufficiency of linear network codes. This network does not have a vector lin-

ear network code over any field, but has a non-linear one over a quaternary

alphabet.

information, in a scalar or vector manner, at the transmitter. Motivated by a number

of instances where scalar linear index codes over the binary field were optimal, Bar-

Yossef et al. conjectured in [10] that these codes are optimal in general. Lubetzky and

Stav disproved this conjecture in [12] and constructed a family of counterexamples

where non-linear index codes are optimum and scalar linear codes are not. They

concluded their paper by asking whether vector linear codes can outperform scalar

linear codes. This question was answered positively later by Alon et al. in [22].

In this dissertation, we concurrently answer the questions on the optimality of

scalar and vector linear index codes by exploring the connection between index coding

and network coding. Index coding can be thought of as a special case of network

21

Sources

Demands

Fig. 10. A network that is equivalent to the index coding instance of Figure 4. Dashed

edges represent the side information available to the receivers in the index

coding problem.

coding. For instance, the index coding scenario of Figure 4 is equivalent to the

network in Figure 10 where the information packets at the transmitter correspond

to source nodes in the network, the receivers to destination nodes, and the side

information to direct edges from the source to the destinations. In this case, it can

be seen that a network code exists for this network if and only if there exists an index

code consisting of two transmissions.

We also demonstrate in Chapter IV that, when restricted to linear codes, the

index coding problem is equivalent to the more general network coding problem. To

that end, we establish a reduction that maps any instance of the network coding

problem to a corresponding instance of the index coding problem such that a vector

linear network code for the given network implies an optimal vector linear index code

of the same dimension over the same field and vice versa [23, 24, 25]. As a result,

22

demands

Fig. 11. A network based on the non-Pappus matroid with three source nodes carrying

three distinct information packets x1, x2 and x3. This network does not admit

a scalar linear network code but a vector linear code of dimension 2 over F3.

The network comprises additional destinations that are not represented here

for sake of clarity (see Chapter IV).

several important properties of the network coding problem can be carried over to

index coding. Specifically, by applying our reduction to the network of [5] depicted

in Figure 9, we construct another counterexample to the conjecture in [10] where,

not only binary scalar linear index codes are suboptimal, but also vector linear index

codes are as well. Moreover, using this reduction in conjunction with the properties

of the M-network, we construct an instance of the index coding problem in which

vector linear index codes yield a smaller number of transmissions than scalar linear

ones.

We also follow another direction in studying index codes by investigating their

relation to matroid representation. We present a second reduction that maps any

given matroid to an index coding problem where optimal vector linear index codes

23

corresponds to the matroid linear representation, and vice versa [23, 24, 25]. This

construction also establishes a strong relation between network coding and matroid

theory, and constitutes a means to apply numerous results in the rich field of matroid

theory to communication problems in networks.

In contrast to the method described in [26], the network obtained by this con-

struction has the property that any corresponding linear network code will directly

induce a linear representation of the given matroid. This is due to the fact that the

constructed network reflects all the dependency and independency relations of the

given matroid. As an application of this reduction, we present the new network par-

tially depicted in Figure 11, based on the non-Pappus matroid, that, similarly to the

M-network, does not admit a scalar linear code but has a vector linear one.

E. Literature Overview

The network coding technique has been introduced in the seminal paper of Ahlswede

et al. in [1]. Initial works on network coding focused on establishing multicast con-

nections. It was shown in [1] and [27] that the capacity of a multicast network, i.e.,

the maximum number of packets that can be sent from the source node to a set of

terminals per time unit, is equal to the minimum capacity of all the cuts that sepa-

rates the source from any terminal. In a subsequent work, Koetter and Médard [28]

developed an algebraic framework for network coding and investigated linear network

codes for directed graphs. This framework was used by Ho et al. [29] to show that

linear network codes can be efficiently constructed through a randomized algorithm.

Network coding for networks with cycles has been also studied in [30] and [31]. Com-

prehensive surveys on network coding theory can be found in the books [32, 33, 34],

and [35].

24

The idea of using network coding for instantaneous recovery from edge failures

was first described by Koetter and Médard [28]. They showed that if the network

has a sufficient capacity to recover (e.g., by rerouting) from different separate failure

scenarios, then there exists a linear network code, referred to as robust network code,

that can simultaneously protect against all these failures and achieve instantaneous

recovery. Jaggi et al. in [13] presented a polynomial-time algorithm for finding ro-

bust linear network codes. A different model for protection against erasures and also

errors in networks was introduced by Koetter and Kschischang in [36] where com-

munication is established by transmitting subspaces instead of vectors through the

network. In [37], an information-theoretic framework for network management for

recovery from edge failures has been presented. Failure protection schemes based on

network coding were devised in [38, 39] for overlay networks. Using network coding

for reliable communication was also discussed in [40] and [41]. References [14] and [42]

describe practical implementations of network coding, and demonstrate its benefits

for improving the reliability and robustness of networks. The problem of minimizing

the amount of network resources allocated in a network has been considered in [43].

The problem of making a linear network code information-theoretically secure

in the presence of a wiretapper that can look at a bounded number of network edges

was first studied by Cai and Yeung in [15]. They considered directed graphs and

constructed codes that can achieve the network multicast secrecy capacity. In [44],

they proved that these codes use the minimum amount of randomness required to

achieve the security constraint. However, the algorithm due to [15] has high compu-

tational complexity and requires a very large field size (exponential in the number of

wiretapped edges). Feldman et al. derived trade-offs between security, code alphabet

size, and multicast rate of secure network coding schemes in [45], by using ideas from

secret sharing and abstracting the network topology. Another approach was taken by

25

Jain in [46] who obtained security by merely exploiting the topology of the underlying

network. Weakly secure network codes that insure that no meaningful information is

revealed to the adversary were studied in [47, 48].

Secure network coding in the presence of a Byzantine adversary that can modify

the packets on the edges it controls has been studied by Ho et al. in [49] and Jaggi

et al. in [50, 51, 52]. The problem of error correction in networks was also studied

by Cai and Yeung in [53, 54] where they generalized classical error-correction coding

techniques to network settings. The use of rank-metric codes for error control under

this model was investigated in [55]. Silva and Kschischang used some of the results

presented in [16] to construct universal secure network codes based on maximum

rank-distance (MRD) codes [56, 57], and by Mills et al. in [58] to achieve secrecy for

wireless erasure networks.

The index coding problem has been introduced by Birk and Kol [10] and was ini-

tially motivated by broadcast satellite applications2. They developed several heuris-

tic solutions for this problem and proposed protocols for practical implementation in

satellite networks. Bar-Yossef et al. studied the index coding problem from a graph-

theoretical perspective [10] and showed that the number of transmissions of an optimal

linear index coding problem can be expressed as a certain functional, referred to as

minrank, of a certain graphs. Finding the minrank of a graph, however, was proved to

be an intractable problem [59]. Lubetzky and Stav [12] showed that non-linear scalar

codes have a significant advantage over linear ones by constructing a family of in-

stances with an increasing gap between the optimal number of transmissions required

by non-linear and linear codes. Alon et al. studied in [22] the asymptotic behavior of a

number of parameters pertaining to the index coding problem and showed that vector

2Reference [10] refers to the index coding problem as Informed Source Coding on
Demand problem (ISCOD).

26

linear codes can have a better performance than scalar ones. Wu et al. [60] studied

the information-theoretic aspects of the problem with the goal of characterizing the

admissible rate region3. Reference [61] analyzed the hardness of approximation of the

index coding problem. References [62] and [63] presented several heuristic solutions

based on graph coloring and SAT solvers.

Matroids were first introduced and studied by Whitney [64] in 1935 in an effort

to capture the abstract properties of the notion of dependence encountered in several

disciplines, such as linear algebra. References [6] and [65] can be consulted for a

detailed exposition of this theory. Dougherty et al. [5, 26] investigated the application

of matroid theory to the general problem of information flow in networks. They

introduced the class of matroidal networks, and described a method for building

a matroidal network from a given matroid. This construction has been applied to

specific matroids to prove important results in the field such as the insufficiency of

Shannon-type information inequalities and linear network coding for, respectively,

computing and achieving network capacity. The authors of [66] also studied the

relation between the structure of multicast networks and certain matroids.

F. Dissertation Outline

This dissertation is organized as follows. In Chapter II, we present our results on

the construction of robust network codes for unicast networks. In Chapter III, we

discuss our generalization of the wiretap channel of type II of Ozarow and Wyner

to the network setting and describe our secure network code scheme based on coset

coding. In Chapter IV, we focus on the index coding problem and its relation to

network coding and matroid linear representation and show that vector linear index

3Reference [60] refers to the index coding problem as the “Local Mixing Problem”.

27

codes are not always optimal.

28

CHAPTER II

ROBUST NETWORK CODES FOR UNICAST CONNECTIONS

We consider the problem of establishing reliable unicast connections across a commu-

nication network with non-uniform edge capacities. Our goal is to provide instanta-

neous recovery from single edge failures. With instantaneous recovery, the destination

node can decode the packets sent by the source even if one of the network edges fails,

without the need of retransmission or rerouting.

It has been recognized that, for this problem, network coding offers significant

advantages over standard solutions such as disjoint path routing and diversity coding.

Focusing on a practically important case in which the sender needs to deliver two

packets per communication round, we present an efficient network coding algorithm

over a small finite field (GF (2)). The small size of the underlying field results in a

significant reduction in the computational and communication overhead associated

with the practical implementation of the network coding technique. Our algorithm

exploits the unique structure of minimum coding networks, i.e., networks that do not

contain redundant edges.

We also consider the related capacity reservation problem and present an algo-

rithm that achieves an approximation ratio of two compared to the optimal solution.

The results reported in this chapter have appeared in [2, 3].

A. Introduction

In recent years, a significant effort has been devoted to improving the resilience of

communication networks to failures and increasing their survivability. Edge failures

are frequent in communication networks due to the inherent vulnerability of the com-

munication infrastructure [67]. With the dramatic increase in data transmission rates,

29

even a single failure may result in vast data losses and cause major service disrup-

tions for many users. Accordingly, there is a significant interest in improving network

recovery mechanisms that enable a continuous flow of data from the source to the

destination with minimal damage in the event of a failure.

Edge failures may occur due to several reasons, such as physical damage, miscon-

figuration, or a human error. Networks are typically designed to be resilient against

a single edge failure. Indeed, protection from multiple failures incurs high costs in

terms of network utilization, which is usually not justified by the rare occurrence of

such failures.

We consider here the problem of establishing reliable unicast (single-source single-

destination) connections across a communication network with non-uniform edge ca-

pacities. Our goal is to provide instantaneous recovery from single edge failures. The

instantaneous recovery mechanisms ensure a continuous flow of data from the source

to the destination node, with no interruption or data loss in the event of a failure.

Such mechanisms eliminate the need of packets retransmission and rerouting. Instan-

taneous recovery is typically achieved by sending packets over multiple paths in a

way that ensures that the destination node can recover the data it needs form the re-

ceived packets. Below, we discuss three major techniques for achieving instantaneous

recovery: dedicated path protection scheme, diversity coding, and network coding.

Network model. We model the communication network as a directed graph

G(V,E). We assume that each packet is an element of a certain finite field F =

GF (2m), where m is the packet length (in bits). We also assume that the data

exchange is performed in rounds, such that each edge e ∈ E can transmit c(e) packets

per communication round. We assume that c(e) is an integer number, and refer to

it as the capacity of edge e. The goal of a unicast connection is to transmit data

from the source node s ∈ V to the destination node t ∈ V . The rate h of the unicast

30

(a)

ts

2

2 ...

...

2

2

2

2

2

2

p2 p1

p1

2

2

P1

P2

(b)

ts

1

1 ...

...

1

1

1

1

1

1

1

1

P1

P2

p2

1 ... 11 1

p1

p2

P3

p1 + p2

Fig. 12. (a) Dedicated path protection method (1 + 1 path protection); (b) Diversity

coding method for h = 2. The network edges are labeled by their capacities.

connection is defined as the number of packets that are to be delivered from s to t

per communication round. The capacity of an (s, t)-path P , from node s to node t,

is defined to be the minimum capacity of an edge that belongs to P . In the normal

state, each edge represents a lossless delay-free communication channel. However,

network edges can fail, but at most one of the network edges can be faulty at any

given time. We assume that a failed edge cannot transmit any data, and that an edge

failure can be detected by its head node.

Dedicated path protection scheme. There are several techniques to achieve

instantaneous recovery. A standard one employed in networks nowadays is the 1 +

1 dedicated path protection scheme [67]. This approach requires provisioning two

disjoint paths P1 and P2 between s and t (see Figure 12(a)). Each packet generated

31

by the source node is sent over both paths, P1 and P2. In the case of a single edge

failure, at least one of the paths remains operational, hence the destination node will

be able to receive the data without interruption. With this scheme both P1 or P2

must be of capacity at least h. While the dedicated path protection scheme is simple

and easy to implement, it incurs high communication overhead due to the need to

transmit two copies of each packet. In addition, it requires two disjoint paths which

include edges of high capacity.

The diversity coding technique. The diversity coding technique [68] extends

the dedicated path protection scheme by using multiple disjoint paths for sending

the data. Figure 12(b) shows an example of a diversity coding scheme that uses

three disjoint paths P1, P2, and P3 between s and t. The first two paths, P1 and

P2 transmit the original packets, while P3 transmits parity check packets. More

specifically, for h = 2, paths P1 and P2 transmit packets p1 and p2, respectively, while

path P3 transmits the packet p1 + p2, where p1 and p2 are the packets that need to

be transmitted during the current communication round. Note that three disjoint

paths can also be used for larger values of h by appropriate scaling of the edge

capacities. Specifically, suppose that h is an even number and let p1, p2, p3, . . . ph be

a set of packets that need to be transmitted during the current round. Then, path P1

transmits odd packets p1, p3, . . . , ph−1, path P2 transmits even packets p2, p4, . . . , ph,

and path P3 transmits parity check packets p1 + p2, . . . , ph−1 + ph (all operations are

over GF (2)). Note that each path P1, P2, and P3 must have capacity of at least h
2
. In

general, the diversity coding scheme may include k > 3 disjoint paths. In this case,

each of the paths transmits d h
k−1
e packets per round. Hence, the capacity of each of

the paths must be at least d h
k−1
e.

The network coding technique. While the disjoint coding technique offers

32

v3

v2v1

t

2

s

2p2

p1

p2

p1

p1 p2

p2
p1

p1+p2

Fig. 13. A network coding approach for h = 2.

more flexibility than the dedicated path protection scheme, it is not the most general

approach. For example, consider the network depicted in Figure 13. In this network,

edges (s, v1) and (s, v2) have capacity two, while all other edges have unit capacity.

Our goal is to establish a unicast connection that delivers two packets from s to t

per communication round. We note that this network does not contain two disjoint

paths of capacity two between s and t, hence the dedicated path protection scheme

cannot be used. Furthermore, the diversity coding approach cannot be used as well

because this network does not have three disjoint paths from s to t. However, in-

stantaneous recovery from edge failures can be achieved by using the network coding

approach. With this approach, the intermediate node v3 combines packets received

on its two incoming edges. The destination node can decode the packets sent by the

33

source node in any single edge failure scenario (see Table I). Note that without the

encoding operation at the intermediate node v3, instantaneous recovery would not

be possible. In fact, network coding is the most general approach for providing in-

stantaneous recovery from edge failures. In particular, the network coding approach

enables instantaneous recovery for any settings where such recovery is possible.

Path diversity vs. capacity requirements. Note that in diversity coding ,

there is a trade-off between the path diversity and the capacity requirement of the

disjoint paths. In particular, the larger is the number of paths between the source and

the destination nodes the lower is the capacity requirement on the paths, and, as a

result, the smaller is the total communication overhead. Specifically, for the diversity

coding scheme with k disjoint paths, the capacity requirement is equal to d h
k−1
e, and

the total amount of data sent over the network is equal to k · d h
k−1
e per round. We

observe that we can assume here, without loss of generality, that h = k − 1. Indeed,

the larger values of h can be handled by scaling edge capacities.

A similar trade-off exists for the network coding approach. In this chapter, we

restrict our attention to network topologies that correspond to h = 2. Intuitively, each

network topology we consider can be divided into several parts, each part is either

comprised of two disjoint paths of capacity two or three disjoint paths of capacity one.

The network coding operations must be performed on some of the nodes that connect

these parts. This has practical importance because, in a typical network scenario, it

is unlikely that more than three disjoint paths will be used for a single connection.

Note that our approach can be used for sending more than two packets per time unit

by appropriate scaling of edge capacities.

34

B. Model and Preliminaries

1. Network Codes

For clarity of presentation, we define an auxiliary graph Ĝ(V,A) formed by the net-

work graph G(V,E) where each edge e ∈ E is substituted by c(e) parallel arcs that

have the same tail and head nodes as e; each arc can transmit one packet per round.

We denote by A(e) ⊆ A the set of arcs that correspond to edge e. In what follows we

only refer to packets sent at the current communication round. The packets sent in

the subsequent rounds are handled in a similar manner.

We denote by P = {p1, p2, . . . , ph} the set containing the h packets that need

to be delivered from s to t at the current communication round. A network code is

defined by associating with each arc a(v, u) ∈ A in the network an encoding function

fa that specifies the packet transmitted on arc a each time unit. For each arc a(s, u) ∈

A(E), fa is a function of the original h packets P, i.e., fa : Fh → F. For each arc

a(v, u) ∈ A(E), v 6= s, fa is a function of the packets received by node v at the

current round, i.e., fa : Fl → F, where l is the number of incoming arcs of v in Ĝ. A

network code C is a set of encoding functions associated with the arcs in A(E), i.e.,

C = {fa | a ∈ A(E)}. In this chapter, we only consider scalar linear network codes

where all packets are elements of a finite field and all encoding functions are also

linear over that field. Our results show that there is no loss of generality incurring

from this assumption.

As mentioned in the introduction, we assume that only one of the edges in the

network can fail at a time. Since a failed edge e cannot transmit packets, we assume

that the encoding function fa of each arc a ∈ A(e) is identically equal to zero, i.e.,

fa ≡ 0. To guaranty instantaneous recovery, it is sufficient to ensure that for each

edge failure there exists a set of h linearly independent packets among the packets

35

received by t.

Definition B.1 (Robust Network Codes). A network code C is said to be robust, or

resilient to single edge failures, if for each e ∈ E it holds that the destination node t

can decode the h packets sent by the source node s when all arcs in A(e) fail.

2. Flow and Cut Conditions

A cut C = (V1, V2) in the graph G(V,E) is a partition of the nodes of V into two

subsets V1 and V2 = V \ V1. We say that a cut C = (V1, V2) is an (s, t)-cut if it

separates nodes s and t, i.e., if s ∈ V1 and t ∈ V2. We say that an edge e ∈ E belongs

to the cut (V1, V2) if its tail node belongs to V1, and its head node belongs to V2. The

capacity of the cut is defined as the total capacity of all the edges that belong to the

cut.

An (s, t)-flow θ in a graph G(V,E) is a function θ : E 7→ R that satisfies the

following two properties:

1. For all e(u, v) ∈ E, it holds that 0 ≤ θ(e) ≤ c(e);

2. For each internal node v ∈ V , v 6= s, v /∈ t, it holds that

∑

(w,v)∈E

θ((w, v)) =
∑

(v,w)∈E

θ((v, w)).

The value |θ| of a flow θ is defined as

|θ| =
∑

(s,v)∈E

θ((s, v))−
∑

(v,s)∈E

θ((v, s)).

The cost ω(θ) of a flow θ is defined as

ω(θ) =
∑

(u,v)∈E

θ((u, v)) ·me,

36

where me is the cost of reserving a unit capacity on edge e. Throughout this chapter,

except for Section F, we assume that me = 1 for all e ∈ E.

A necessary condition for instantaneous recovery is that, for each e ∈ E, a

network Ge formed from G by removing e must admit an (s, t)-flow of value h. By

the max-flow min-cut theorem [69] this condition is equivalent to

min
C

 ∑

e∈E(C)

c(e)− max
e∈E(C)

c(e)

 ≥ h, (2.1)

where the minimum is taken over all (s, t)-cuts C(V1, V2) that separate s and t in

G, and E(C) is the set of edges that belong to C. In [28], it was shown that this

condition is also sufficient for providing instantaneous recovery from edge failures.

Moreover, it was shown that instantaneous recovery can be always achieved by using

linear network codes. Therefore, we refer to a graph G(V,E) that satisfies condition

(2.1) as a feasible network.

C. Minimal and Simple Networks

A network G(V,E) is said to be minimal with respect to the capacity function c(e)

if it satisfies the following two conditions:

1. G(V,E) is a feasible network;

2. Removing an edge from G, or reducing its capacity, results in a violation of the

network feasibility property.

1. Reduced Capacity Function

Networks can be made minimal by iteratively removing redundant edges and de-

creasing the capacity of the remaining edges. However, this approach may incur a

37

significant computational overhead. Accordingly, we introduce the reduced capacity

function c̄ that allows to identify minimal networks in a very efficient way through

the application of network flow techniques. This function is also instrumental for

establishing the unique combinatorial structure of simple networks.

The reduced capacity function c̄ is defined as follows.

c̄(e) =

1.5 if c(e) ≥ 2;

1 otherwise.
(2.2)

We refer to c̄(e) as the reduced capacity of e, as opposed to the original capacity

c(e) of e. The following theorem establishes a connection between the feasibility of a

network G(V,E) with respect to the capacity function c, and the existence of a flow

of value three in the network G(V,E) with reduced edge capacities.

Theorem C.1. Let G(V,E) be a network, s ∈ V be the source node, t ∈ V be a

destination node. Then, the network G(V,E) is feasible with respect to the capacity

function c, if and only if it admits a flow of value three with respect to the reduced

capacity function c̄.

Proof. First, we show that if G(V,E) is feasible, then it admits a flow of value three

with respect to the reduced capacity function c̄. Let C be an (s, t)-cut in G(V,E),

we show that the reduced capacity of this cut is at least three. The lemma will then

follow from the max-flow min-cut theorem. We observe that by Equation (2.1), C

contains at least two edges. If C contains exactly two edges, then both edges must

be of capacity two; hence their reduced capacity is equal to 1.5, or three in total. If

C contains more than three edges, then their total reduced capacity is also at least

three.

Second, suppose that network G(V,E) admits a flow of value three with respect

38

to the reduced capacities. This implies that the reduced capacity of any (s, t)-cut C

in G(V,E) is at least three. Since the reduced capacity of any edge is at most 1.5,

the cut C has at least two edges. If C contains exactly two edges, then the reduced

capacity of each edge is equal to 1.5, which implies that their original capacity is

equal to 2. If C contains three edges, then the original capacity of each edge is at

least one. In both cases, the conditions of Equation (2.1) is satisfied for h = 2.

The function c̄ can be used to verify whether a given network G(V,E) is feasible

with respect to a given capacity function c. This function will also serve as a building

block for the algorithm that finds minimal sub-networks.

Suppose that G(V,E) admits a flow of value three with respect to the reduced

capacity function. Then, by the integrality property [69, Theorem 9.10], there always

exists a minimum-cost flow of value three, such that θ(e) ∈ {0, 0.5, 1, 1.5} for each

e ∈ E. We refer to such flow as a half-integral flow.

The following lemma establishes a relation between the original capacities in a

minimal network and the corresponding edge flow in the network with the reduced

capacities.

Lemma C.2. Let G(V,E) be a minimal network and let θ be a half-integral flow of

value three in the network G(V,E) with the reduced capacity function c̄. Then, the

following conditions hold:

1. For each edge e ∈ E for which c̄(e) = 1.5 it holds that θ(e) = 1.5;

2. For each edge e ∈ E for which c̄(e) = 1 it holds that either θ(e) = 0.5 or

θ(e) = 1.

Proof. Suppose that there exists an edge e such that c̄(e) = 1.5 and θ(e) ≤ 1. Let c′ be

the capacity function formed from c by reducing the capacity of e by one. Then, the

39

network G(V,E) will be feasible with respect to c′, which contradicts the minimality

assumption. Using a similar argument it can be shown that the existence of an edge

e such that c̄(e) = 1 and θ(e) = 0 also contradicts the minimality of the network.

The next lemma shows that a minimal network G(V,E) is acyclic.

Proposition C.3. Let G(V,E) be a minimal network with respect to the capacity

function c. Then G(V,E) does not contain cycles.

Proof. Suppose, by way of contradiction, that G(V,E) contains a cycle W . Let θ be

a minimum cost flow in G(V,E) with the reduced capacities. The Negative Cycle

Optimality condition [69, Theorem 9.1] implies that there does not exist a cycle in

G(V,E) with strictly positive flow on each edge. Thus, there exists an edge e ∈ W

for which it holds that θ(e) = 0, in contradiction to Lemma C.2.

2. Simple Networks

As mentioned in the Introduction, our goal is to establish the combinatorial structure

of minimal networks. For clarity of presentation, we focus on a special class of such

networks, referred to as simple networks. For any minimal network a corresponding

simple network can be constructed through an efficient procedure.

Definition C.1 (Simple Unicast Networks). A unicast network G(V,E) is said to

be simple with respect to the capacity function c if it satisfies the following four

conditions:

1. G(V,E) is a minimal network with respect to c;

2. The source node s has exactly three outgoing edges of capacity one; the desti-

nation node t has exactly three incoming edges of capacity one;

3. The degree of each node v /∈ {s, t} is exactly three;

40

v

(a)

x1 x2 x3 x4

y1 y2 y3 y4

(b)

x1 x2 x3 x4

y1 y2 y3 y4

x′
1 x′

2 x′
3 x′

4

y′
1 y′

2 y′
3 y′

4

(c)

x1 x2 x3 x4

y1 y2 y3 y4

Fig. 14. (a) Node v of degree eight; (b) The intermediate step in constructing the

gadget Γv; (c) The final step in constructing the gadget Γv.

4. For every two nodes u and v, there is at most one edge in E from u to v, i.e.,

E does not contain parallel edges.

We proceed to describe an efficient algorithm for finding for any arbitrary network

G(V,E) with capacity function c an “equivalent” simple network. The transformation

includes a sequence of steps that remove redundant edges and reduce the excessive

edge capacities. The transformation preserves the feasibility of the graph. Moreover,

any feasible network code for the simple network can be used for the original net-

work as well, with some straightforward modifications. Our algorithm includes the

following steps:

1. Add a new source node ŝ to G and connect it to s by three edges of capacity

one. Similarly, add a new destination node t̂ and connect t to t̂ by three edges

of capacity one.

2. Find a minimum cost half-integral flow θ of value three with respect to the

reduced capacity function c̄ as defined by Equation (2.2) and assuming unit

41

edge costs .

3. Remove redundant edges and decrease capacities:

(a) Remove from G(V,E) all edges e for which it holds that θ(e) = 0;

(b) For each edge e ∈ E for which it holds that θ(e) ∈ {0.5, 1}, set c(e) = 1;

(c) For each edge e ∈ E for which it holds that θ(e) = 1.5, set c(e) = 2.

4. Substitute each internal node v ∈ V , v /∈ {ŝ, t̂}, in the resulting network of

degree larger than three by a gadget Γv, constructed as follows:

(a) Let Ein
v and Eout

v be the incoming and outgoing edges of v, respectively.

For each edge (x, v) ∈ Ein
v we add a node x′ to Γv and substitute edge (x, v)

by edge (x, x′) (of equal capacity). Similarly, for every edge (v, y) ∈ Eout
v

we add a node y′ to Γv and substitute edge (v, y) by edge (y′, y) (of equal

capacity). Next, for each edge (x, v) ∈ Ein
v and each edge (v, y) ∈ Eout

v we

connect the nodes x′ and y′ by edges of capacity two. Figure 14(b) depicts

an example of the resulting gadget;

(b) Each node whose in-degree is equal to one and out-degree is more than

two is substituted by a binary tree as depicted in Figure 14(c). A similar

operation is performed for nodes whose out-degree is equal to one and

whose in-degree is greater than one. Note that in the resulting network,

the total degree of each node is at most three.

5. For each edge e ∈ E we check whether the removing it from E results in a

violation of the feasibility condition of Equation (2.1). To this end, we check

whether there exists an (s, t)-flow of size three in the network G(V,E) with

respect to the reduced capacities. A similar procedure is performed to reduce

42

the capacity of each edge to the minimum possible amount while keeping the

network feasible.

6. If v ∈ G(V,E) is of degree two, then v has one incoming edge (u, v), and one

outgoing edge (v, w). For each such node v, we substitute edges (u, v) and (v, w)

by a single edge (u,w) of the same capacity and remove node v.

7. For every two nodes v and u ∈ V \{s, t} connected by two parallel edges e′(v, u)

of capacity c′, and e′′(v, u) of capacity c′′, we substitute the edges e′(v, u) and

e′′(v, u) by a single edge e(v, u) of capacity c′ + c′′.

The purpose of Step 1 is to ensure that the source node s has exactly three

outgoing edges and the destination node t has exactly three incoming edges of capacity

one. In Step 2, we find a flow of minimum cost and of value three which is used in

Step 3 to remove the redundant edges and decrease the capacity of other edges. The

goal of Step 4 is to ensure that the degree of each node is bounded by three. The goal

of Step 5 is to ensure the minimality of the resulting graph. In Step 6, we remove

nodes of degree two. In Step 7, we substitute parallel edges by a single edge of larger

capacity. Note that the transformation to a simple network is not unique in general.

The previous construction of a simple network can be accomplished in O(V 2)

time. Indeed, Step 1 requires linear time O(V), while steps 2 and 3 require O(E)

time. We also note that, after Step 2, the network contains only O(V) edges. This

implies that the computational complexity of Steps 5, 6, and 7 is O(V). Finally,

Step 4 requires O(V 2) time.

43

1

1 1

Node of type I Node of type II

1

1 1
2

1 1

Node of type III Node of type IV

2

1 1

Fig. 15. The four possible types of nodes in a simple unicast network.

D. Structure of Simple Networks

1. Node Properties of Simple Unicast Networks

Let G(V,E) with source node s and destination node t be a simple network with

respect to the capacity function c. We say that a node v ∈ V is of Type I if it has

one incoming edge and two outgoing edges, all of capacity one; of Type II if it has

two incoming edges and one outgoing edge, all of capacity one; of Type III if it has

one incoming edge of capacity two and two outgoing edges of capacity one; of Type

IV if it has two incoming edges of capacity one and one outgoing edge of capacity

two. Figure 15 depicts nodes of Types I, II, III, and IV.

The next theorem proves that each node v ∈ V \ {s, t} in a simple network is

either of Type I, II, III, or IV.

Lemma D.1. Let G(V,E) be a simple network. Then, each node v ∈ V \ {s, t} is of

the type I, II, III, or IV.

Proof. Since G(V,E) is a feasible graph, Theorem C.1 implies that there exists a flow

of value three in G(V,E) with reduced edge capacities. Let θ be a minimum cost

half-integral flow in G(V,E) with respect to c̄. Let v ∈ V \ {s, t} be an internal

44

node of the network. Since the network is simple, the total degree of v is equal to

three. Assume first that v has one incoming edge e and two outgoing edges. If the

capacity of e is equal to one then, by Lemma C.2, it holds that θ(e) ∈ {0.5, 1}. It

is easy to verify that θ(e) = 1, otherwise one of the outgoing edges has zero flow, in

contradiction to the minimality of G(V,E). In this case, the flow on the outgoing

edges of v is equal to 0.5 and by Lemma C.2 their capacity is equal to one, which

implies that v is a Type I node. If the capacity of e is equal to two, then, by Lemma

C.2, it must be the case that θ(e) = 1.5. Then, the outgoing edges of v have flow of

value 0.5 and 1. Thus, by the same lemma, the capacity of these edges is equal to

one, which implies that v is a Type III node.

By using a similar argument, we can show that if v has two incoming edges and

one out-going edge than it is either of Type II or IV.

2. Residual Graphs and Residual Cycles

Let G(V,E) be a simple network, and let θ be a minimum cost half-integral flow of

value three in G(V,E) with respect to the reduced capacity function c̄.We define the

set Ê ⊆ E as follows:

Ê = {e ∈ E | c̄(e) = 1 and θ(e) = 0.5}. (2.3)

Note that Ê includes every edge e ∈ E for which θ(e) ≤ c̄(e), i.e., edges that have

residual capacity and can take up more flow. Let E1 be a subset of Ê. We define the

subset E2 to be:

E2 = {e ∈ E | θ(e) = 1.5} ∪ {e ∈ Ê | e /∈ E1} (2.4)

Note that the set E2 depends on the choice of the set E1. Intuitively, the set E2

includes edges for which the amount of flow can be reduced by adding more flow to

45

edges in E1.

Definition D.1 (Residual Graph). Let E1 be a subset of Ê. Then, the residual graph

GE1(θ) of G(V,E) is formed from G(V,E) by reversing all edges in E \ E1.

Let W be a cycle in the residual graph. Since the graph network is acyclic, W

must contain at least one edge in E1. By augmenting the flow θ along W we can

increase the flow on edges in W ∩E1 and decrease the flow on other edges of W . We

refer to a cycle in the residual graph that includes an edge in E2 as a residual cycle.

The existence of a residual cycle implies that the amount of the flow on some edge

in E2 can be reduced. The following lemma shows that if G(V,E) is minimal, then

GE1(θ) does not contain a residual cycle.

Lemma D.2. Let G(V,E) be a simple network, let θ be a minimum cost half-integral

flow of value three in G(V,E) with respect tothe capacity function c̄, and let E1 be a

subset of Ê. Then, the residual graph GE1(θ) does not contain a residual cycle.

Proof. Suppose, by contradiction, that there exists a residual cycle W in GE1(θ).

Such cycle must include at least one edge e ∈ E2. Let θ′ be the flow obtained by

augmenting θ along W , i.e.,

θ′(e) =

θ(e) + 0.5 if e ∈ E1 ∩W ;

θ(e)− 0.5 if e ∈ W \ E1;

θ(e) otherwise.

It is easy to verify that θ′ is a feasible half-integer flow of value three in G(V,E) with

respect to c̄. Let e be an edge of the residual cycle that belongs to E2. Then one of

the two following conditions hold:

1. c̄(e) = 1 and θ′e = 0;

2. c̄(e) = 1.5 and θ′e = 1.

46

1 1

s
1

t

v1 v2 v3

v4 v5 v6

0.5
0.5 0.5

11

0.50.5

1

0.5

(a)

s

t

v1 v2 v3

v4 v5 v6

(b)

1 1

s
1

t

v1 v2 v3

v4 v5 v6

1
1 0

11

10

1

0

(c)

Fig. 16. (a) A graph G(V,E) with edges of unit capacity and a flow θ of value

three. Each edge e ∈ E is labeled with the amount of flow θ(e) it car-

ries. Ê = {(v1, v4), (v1, v5), (v2, v4), (v2, v6), (v3, v5), (v3, v6)}. (b) Residual

graph for E1 = {(v1, v5), (v2, v4), (v3, v6)}. The graph contains a residual cycle

W = {v1, v5, v3, v6, v2, v4, v1}. (c) The flow θ′ obtained from θ by augmenting

along cycle W . Note that edges (v1, v5), (v2, v4), and (v3, v6) are redundant

and can be removed from the network without violating its feasibility.

By Lemma C.2, this contradicts the minimality of G(V,E).

Figure 16 provides an example of a non-minimal network, the construction of a

residual graph, and the result of augmenting flow θ along a residual cycle.

3. Block Decomposition

Let G(V,E) be a simple unicast network with at least one node other than s and t.

We show that any such network can be decomposed into a set of blocks of Types A,

B, and C, as depicted in Figure 17(a).

Theorem D.3. Let G(V,E) be a simple unicast network with |V | > 2. Then, G(V,E)

47

1
1

2 2

1

Block A

Block B

1

2 2

1
1

1

2 2

1

Block C

1 1

2 2

1 1

2 2

1

1 1

1

2 2

11 1

Block A

Block B

1
1

1

1 1

2 2

Block A

Block C

1

1
1

1 1

s

t

Block B

(a) (b)

1 1

1 1

Fig. 17. (a) The three basic building blocks of types A, B and C, for simple unicast

networks. (b) An example of the block decomposition of a simple unicast

network.

can be decomposed into a sequence of the blocks of type A, B or C which are depicted in

Figure 17(a). The blocks can be appear in an arbitrary order, subject to the following

rules:

1. The first block is of Type A, and s is incident to its input edges;

2. The last block is of Type B, and the destination node t is incident its output

edges;

3. A block of Type A is always followed by a block of Type B or TypeC;

4. A block of Type B is either followed by a block of Type A or connected to the

48

(a) (b) (c)

v2 v3

1 1 1

1 1

2 2

u2

u1 u3

v1 v2 v3v1

t

1 1 1

v2

2 2

1 1

1 1

u1

v1

1

u2

(d)

v2

2 2

11 1

u1 u3

v1

1

22

w
w1 w2

Fig. 18. (a) and (b) Examples of cuts of Type 1; (c) and (d) Examples of cuts of Type

2.

destination;

5. A block of Type C is followed by a block of Type B or Type C.

Let G(V,E) be a simple network and C(V1, V2) an (s, t)-cut of G(V,E). We

denote by E(C) ⊆ E the set of edges that belong to C. We say that C(V1, V2) is a

cut of Type 1 if E(C) includes three edges of unit capacity. A cut C(V1, V2) is said

to be of Type 2 if it includes two edges of capacity two. Figure 18 shows examples of

cuts of Types 1 and 2.

In what follows we prove two lemmas that capture the properties of simple net-

works. The first lemma implies that any cut of Type 1 is followed by either the

destination node t or a block of Type A.

Lemma D.4. Let G(V,E) be a simple network. Let C = (V1, V2) be a cut of Type 1

in G(V,E), i.e., E(C) contains three unit capacity edges e1(v1, u1), e2(v2, u2), and

e3(v3, u3), originating at V1 and ending in V2. Then, either:

• u1 = u2 = u3 = t,

49

• or, one of the nodes u1, u2, or u3 is of Type I, while two other nodes are of

Type IV. Moreover, the node of Type I is adjacent to the two other nodes as

depicted in Figure 18(a).

The next lemma implies that any cut of Type 2 is followed by either a block of

Type B or Type C.

Lemma D.5. Let G(V,E) be a simple network. Let C = (V1, V2) be a cut of Type 2

in G(V,E), i.e., E(C) includes two edges e1(v1, u1), e2(v2, u2), each one of them is of

capacity two. Then, there exist

• either a Type II node w ∈ V2, and two edges (u1, w) and (u2, w) of unit capaci-

ties,

• or two nodes w1 and w2 of Type IV and four edges (u1, w1), (u1, w2), (u2, w1),

and (u2, w2) of unit capacity 1, as depicted in Figures 18(c) and (d).

The proof of Lemma D.4 appears in Section 4, while the proof of Lemma D.5

appears in Appendix A. It is easy to verify that Lemmas D.4 and D.5 are sufficient

for proving the correctness of Theorem D.3.

4. Proof of Lemma D.4

Let G(V,E) be a simple network, and let θ be a flow of value three with respect to

the reduced edge capacities c̄. Also, let C(V1, V2) be an (s, t)-cut C(V1, V2) of Type 1

in G(V,E). We denote by E(C) = {(v1, u1), (v2, u2), (v3, u3)} the set of edges in to C.

First, we observe that each of the nodes ui, i = 1, 2, 3, is either a destination node

or a node of Type I or IV. Indeed, ui cannot be of Type III because the capacity of

edge (vi, ui) is equal to one. Also, for the flow θ and for each edge ei = (vi, ui) ∈ E(C),

it must hold that θ(ei) = 1, which implies that the nodes ui cannot be of Type II.

50

Next, we assume that t /∈ {u1, u2, u3} and show, by contradiction, that at most

one of the nodes u1, u2, and u3 is of Type I. We consider two cases. In the first case,

the three nodes u1, u2, and u3 are Type I nodes. In the second case, two of the nodes

are of Type I, while the other node is of Type IV.

Case 1. Suppose that all three nodes u1, u2, and u3 are of Type I. In this case,

all the outgoing edges of u1, u2, and u3 belong to Ê (defined by Equation (2.3)).

Since the in-degree of any node of G \ {s, t} is either 1 or 2, we can always pick three

edges e1, e2, and e3 such that, for i = 1, 2, 3, ei is an outgoing edge of ui, and e1,

e2, and e3 are independent, i.e., there does not exist a node v which is incident to

any two edges ei, ej (i 6= j). For example, in Figure 16, we can chose e1 = (v1, v5),

e2 = (v2, v4), and e3 = (v3, v6).

Let E1 = {e1, e2, e3} and let E2 be the set defined by Equation (2.4). Let GE1(θ)

be the residual graph of G(V,E) with respect to E1, and let G′ be the subgraph of

GE1(θ) induced by the nodes in V2. We observe that each node in G′ has an out-degree

at least one due to the following facts:

1. None of the edges incident to the destination node t belongs to E1. Hence, t

has three outgoing edges in G′;

2. Any node in G′ \ {t} which is not a head or a tail of an edge in E1, has at least

one incoming edge that does not belong to E1. Hence, its out-degree in G′ is at

least one.

3. Nodes u1, u2 and u3 have outgoing edges e1, e2 and e3, respectively. Since these

edges belong to E1, they have the same direction as in the original graph G.

4. Lemma C.2 implies that any head node v of an edge in E1 is either of Type II

or IV. In both cases, v has an outgoing edge that does not belong to E1. Hence,

51

(a)

v2 v3

1

1 1

1 1

2
2

u2

u1

u3

v1

1 1

11

x y

(b)

1
1

2 2

u2

u1

u3

1
1

11

x y

Fig. 19. (a) An example of a Type 1 cut with two nodes of Type I and one node of

Type IV. (b) The corresponding graph G′ with E1 = {(u2, x), (u3, y)}.

its out-degree in G′ is at least one.

We conclude that G′ contains a cycle. Such a cycle must include at least one

edge ei, for some i ∈ {1, 2, 3}, because G′ \ {e1, e2, e3} is an acyclic graph. This

implies that this cycle includes at least one edge in E2, which is the edge incident to

ui. Therefore, G′ and, in turn, GE1(θ), include a residual cycle, which by Lemma D.2

contradicts the minimality of G(V,E).

Figure 16 depicts a reduced capacity network with a cut C(s, E \ s) of Type I

in which all the nodes u1, u2 and u3 are of Type I. The corresponding residual graph

contains a residual cycle, and thus the original unicast network is not minimal.

Case 2. In this case, one of the nodes, say u1 is of Type IV, while the two

other nodes u2 and u3 are of Type I. We choose E1 = {e2, e3} ⊆ Ê such that e2 is

an outgoing edge of u2, e3 is an outgoing edge of u3, neither one of them is incident

to u1, and no node is incident to both e2 and e3. It can be verified that such choice

is always possible. Let E2 be the set defined by Equation (2.4). An example of this

case is depicted in Figure 19.

52

Following the same argument as above, we denote by GE1(θ) the residual graph

of G(V,E) with respect to E1, and by G′ the subgraph of GE1(θ) induced by nodes

in V2. It is easy to verify that each node in G′ has out-degree at least 1, hence G′

includes a cycle. Such a cycle must include either e2 or e3, or both. This implies that

the cycle includes an edge in E2, which, by Lemma D.2, contradicts the minimality

of the network.

Next, we prove that if one of the nodes in {u1, u2, u3} is of Type I, then it must

be adjacent to the two other nodes which are of Type IV. We assume, without loss

of generality, that u1 is a Type I node and u2 and u3 are of Type IV. Suppose, by

way contradiction, that u1 is not adjacent to at least one of the nodes u1 and u2. We

denote by e an outgoing edge of u1 which is not adjacent to u2 and u3. Let E1 = {e}

and let E2 be set defined by Equation (2.4).

Let GE1(θ) be the residual graph of G(V,E) with respect to E1, and G′ the

subgraph of GE1(θ) induced by the nodes in V2. It is easy to verify that the out-

degree of each node in G′ is at least one, hence G′ includes a cycle. Such a cycle must

include the edge e, and, in turn, one edge in E2 which is incident to u1. As a result,

G′ and, in turn, GE1(θ) include a residual cycle, in contradiction to Lemma D.2.

It can be proven, by using a similar argument that if one of the nodes {u1, u2, u3}

is identical to t, then all other nodes in {u1, u2, u3} are identical to t, otherwise at least

one of the nodes {u1, u2, u3} must be of Type I, in contradiction to the minimality of

the original network.

We have shown that all cases other than those mentioned in the condition of the

Lemma contradict the minimality of the coding network, hence the result follows.

53

E. Network Codes for Simple Networks

In this section, we present a robust network code over GF (2) for the network con-

sisting of a simple network G, source node s and destination node t, and prove its

correctness.

As shown in the previous section, a simple unicast network consists of a sequence

of blocks of types A, B, and C, depicted in Figure 17(a). The source node s has

three outgoing edges of capacity one, connected to a block of Type A. We denote by

p1, p2 ∈ GF (2) the two packets that the source node has to transmit to the destination

t during the current round. Our network code can be specified as follows. First, the

source node sends packets p1, p2, and p1 + p2 on its outgoing arcs. Second, the

encoding functions for the arcs of blocks A, B, and C are depicted in Figure 20. The

figure shows for each edge ei of capacity one the corresponding arc ai, and for each

edge ei of capacity two the corresponding arcs a1
i and a2

i . We choose the notation

such that if edge ei of block X coincides with edge ej of block Y , then arcs a1
i and

a2
i of block X coincide with arcs a1

j and a2
j of block Y , respectively. Note that all the

arcs that belong to the blocks of Types A and C just forward their incoming packets,

while each block of Type B has two encoding nodes.

We proceed to prove that the network code described above is robust, i.e., the

destination node can always recover the original packets even if one of the edges in

the original network fails. Consider a simple network G(V,E) that contains n blocks

of Type A. Recall that each block of Type A is either followed by a block of Type

B, or by several blocks of Type C, which, in turn, are followed by a block of Type

B. We denote by Ai, 1 ≤ i ≤ n, the ith block of Type A from the source. We also

denote by Bi, 1 ≤ i ≤ n, the ith block of Type B from the source such that B1 is the

first block of Type B after A1.

54

(a)

a1
a2

a3

a1
6 a2

6 a2
7 a1

7

p1

p2

p3

p2p2

p2 p2 p3p1

1

2

1
1 1

2 2

2 2

e1 e2

e3 e4

e5 e6

e7
e8

2

a2
1a1

1 a2
2 a2

1

a2
7a1

7 a2
8 a1

8

p1

p1

p2

p2

p3 p4

p1

p3

p3 p2

p4

p4

a2
1a1

1 a2
2 a2

1

a5

a6

a7

p1 p2 p3 p4

p2

p3

p4

p1 + p2 p2 + p4

1

2 2

1
1

1 1

e2

e3 e4

e5

e6

e7

e1

1

1

2 2

1

e2 e3

e4 e5

e6 e7

e1

(b) (c)

Fig. 20. Robust network code for simple unicast networks: (a) Encoding for blocks of

Type A; (b) Encoding for blocks of Type B; (c) Encoding for blocks of Type

C.

We define IAi := (pia1
, pia2

, pia3
) to be the vector of packets entering block Ai, where

pia1
, pia2

and pia3
are the packets carried by arcs a1, a2 and a3 of block Ai, respectively.

We also define OAi = (pi
a1
6
, pi

a2
6
, pi

a2
7
, pi

a1
7
) to be the vector of packets leaving block Ai,

where pi
a1
6
, pi

a2
6
, pi

a2
7
, and pi

a1
7

are the packets carried by arcs a1
6, a

2
6, a

2
7 and a1

7 of block

Ai, respectively. Similarly, we let IBi = (pi
a1
1
, pi

a2
1
, pi

a2
2
, pi

a1
2
) and OBi = (pia5

, pia6
, pia7

) be

the vectors of packets leaving block Bi, respectively. Recall that if edge e fails, then

the encoding function of each arc a ∈ A(e) that corresponds to e is identically zero,

i.e., fa ≡ 0.

Lemma E.1. Consider a block Ai, i ∈ {1, . . . , n}. Suppose that there are no failures

55

in Ai, Bi, or the blocks of Type C located between Ai and Bi. Suppose also that the

input vector IAi of Ai is a permutation of (p1, p2, p1 + p2). Then, the output vector

OBi of Bi is a permutation of (p1, p2, p1 + p2).

Proof. The proof immediately follows from the network code for blocks of types A,

B, and C, depicted in Figure 20.

From Lemma E.1 it follows that if there are no failures in the blocks located

between s and Bi, then the output vector OBi of Bi is a permutation of (p1, p2, p1+p2).

The following lemma characterizes the output of block Bi in the case of an edge failure

in the blocks Ai, Bi, or a block of Type C located between Ai and Bi.

Lemma E.2. Consider a block Ai, i ∈ {1, . . . , n}. Suppose that there is an edge

failure in Ai, Bi, or the blocks of Type C located between Ai and Bi. Suppose also

that the input vector IAi of Ai is a permutation of (p1, p2, p1 + p2). Then, one of the

following holds:

1. The output vector OBi of Bi is a permutation of (p1, p2, p1 + p2);

2. The output vector OBi of Bi includes two distinct elements from the set {p1, p2, p1+

p2} and a zero;

3. The output vector OBi of Bi includes two distinct elements from the set {p1, p2, p1+

p2}, one of which appearing twice.

Proof. First, we consider the case in which the failed edge belongs to block Ai. Let

OAi = (pi
a1
6
, pi

a2
6
, pi

a2
7
, pi

a1
7
) be the output vector of block Ai, and IBi = (pi

a1
1
, pi

a2
1
, pi

a2
2
, pi

a1
2
)

the input vector of block Bi. For all failure scenarios in block Ai, one of the following

conditions holds:

1. Vector (pi
a1
6
, pi

a2
6
, pi

a2
7
, pi

a1
7
) includes two distinct elements from the set {p1, p2, p1 +

p2} and two zeros;

56

2. Vector (pi
a1
6
, pi

a2
6
, pi

a2
7
, pi

a1
7
) includes three distinct elements from the set {p1, p2, p1+

p2} and one zero;

3. Packets pi
a1
6

and pi
a2
6

correspond to two distinct elements from the set {p1, p2, p1+

p2}, pia2
7

= pi
a2
6
, and pi

a1
7

is zero;

4. Packets pi
a1
7

and pi
a2
7

correspond to two distinct elements from the set {p1, p2, p1+

p2}, pia2
6

= pi
a2
7
, and pi

a1
6

is zero.

Due to the structure and the form of the encoding functions of the blocks of Type

C, it can be seen that the same condition holds if we substitute packets pi
a1
6
, pi

a2
6
, pi

a2
7
,

pi
a1
7

by input packets (pi
a1
1
, pi

a2
1
, pi

a2
2
, pi

a1
2
) of block Bi, respectively. Then, the output

vector OBi of Bi satisfies the condition of the lemma.

Next, we consider the case in which the failed edge belongs to one of the blocks of

Type C located between Ai and Bi. Let Ĉ be a block with a faulty edge. We denote

by pa1
1
, pa2

1
, pa2

2
, and pa1

2
the packets that are incoming to arcs a1

1, a2
1, a2

2, and a1
2 of

Ĉ, respectively. Since the preceding blocks of Ĉ do not contain failed edges it holds

that the vector (pa1
1
, pa2

1
, pa2

2
, pa1

2
) contains three distinct packets from (p1, p2, p1 + p2)

and pa2
1

= pa2
2
. Let pa1

7
, pa2

7
, pa2

8
, and pa1

8
the packets carried by the output arcs a1

7,

a2
7, a2

8, and a1
8 of Ĉ. It is easy to verify that these packets satisfy one of the following

conditions:

1. Vector (pa1
7
, pa2

7
, pa2

8
, pa1

8
) includes two distinct elements from the set {p1, p2, p1 +

p2} and two zeros;

2. Vector (pa1
7
, pa2

7
, pa2

8
, pa1

8
) includes three distinct elements from the set {p1, p2, p1+

p2} and one zero.

Due to the structure and the form of the encoding functions of blocks of Type C,

the same condition holds if we substitute packets pa1
7
, pa2

7
, pa2

8
, pa1

8
by input packets

57

(pi
a1
1
, pi

a2
1
, pi

a2
2
, pi

a1
2
) of block Bi, respectively. It can be verified that the output vector

OBi of Bi satisfies the condition of the lemma.

Finally, we consider the case in which the failed edge belongs to block Bi, and

let (pi
a1
1
, pi

a2
1
, pi

a2
2
, pi

a1
2
) be the input packets of block Bi. Since the preceding blocks

of Ĉ do not contain failed edges, it holds that the vector (pi
a1
1
, pi

a2
1
, pi

a2
2
, pi

a1
2
) contains

three distinct packets from the set {p1, p2, p1 + p2} and pi
a2
1

= pi
a2
2
. It can be verified

that the output vector OBi of Bi satisfies the condition of the lemma.

Lemma E.3. Consider a block Ai, i ∈ {1, . . . , n}. Suppose that there is no edge

failure in Ai, Bi, or in the blocks of Type C located between Ai and Bi. Suppose

also that the output vector IBi−1
of the previous block Bi+1 satisfies the conditions of

Lemma E.2. Then the output vector IBi of block Bi also satisfies the conditions of

that lemma.

Proof. First, we note that if the output vector OBi−1
of Bi−1 is a permutation of

(p1, p2, p1 + p2), then by Lemma E.1 the same holds for the input vector IBi of Bi.

Next, we consider the case in which the output vector OBi−1
of Bi−1 includes two

distinct elements of (p1, p2, p1 + p2) and a zero. Note that this case is equivalent to

the failure of one of the incoming edges of block Ai, hence by Lemma E.2 the output

vector IBi of Bi satisfies the conditions of the lemma.

Finally, we consider the case in which the output vector OBi−1
of Bi−1 includes

two distinct elements of (p1, p2, p1 + p2), one of which appears twice. In this case the

output vector OAi = (pi
a1
6
, pi

a2
6
, pi

a2
7
, pi

a1
7
) of Ai satisfies the following conditions:

1. (pi
a1
6
, pi

a2
6
, pi

a2
7
, pi

a1
7
) includes two distinct elements of the set {p1, p2, p1 + p2};

2. pi
a2
6

= pi
a2
7
;

3. (pi
a1
6
, pi

a2
6
, pi

a2
7
, pi

a1
7
) does not any contain zero packets.

58

The structure of the blocks of Type C implies that the same holds if the packets

OAi are substituted by the packets from IBi = (pi
a1
1
, pi

a2
1
, pi

a2
2
, pi

a1
2
). Thus, there are two

possible cases

• Case 1: pi
a1
1

= pi
a2
1

= pi
a2
2
, pi

a1
2
6= pi

a2
2
,

• Case 2: pi
a2
1

= pi
a2
2

= pi
a1
2
, pi

a1
1
6= pi

a2
1
.

In both cases, all of the packets pi
a1
1
, pi

a2
1
, pi

a2
2
, pi

a1
2

are non-zero. It can be verified that

the encoding functions of block B ensure that the output vector IBi of Bi satisfies

the conditions of the lemma.

We conclude with the following theorem:

Theorem E.4. The proposed network code depicted in Figure 20 guarantees an in-

stantaneous recovery from single edge failures.

Proof. Follows from lemmas E.1, E.2, and E.3.

Network coding algorithm. The algorithm for finding a feasible network code

includes the following steps. First, we identify the corresponding simple network

using the algorithm described in Section 2. Then, we visit the nodes of the graph

in topological order and group them into blocks of types A, B, and C. Next, for

each block we apply the coding scheme as described above. Finally, we determine the

network code for the original network. The computation complexity of the algorithm

is O(V 2).

F. Minimizing the Required Amount of Network Resources

In this section we present an efficient algorithm for capacity allocation for robust uni-

cast networks. Our algorithm takes advantage of the properties of minimum networks,

59

established in the previous section. In the general case, the capacity reservation prob-

lem can be formulated as follows. Consider a directed graph G(V,E) with a source

node s ∈ V , a destination node t ∈ V and where each edge e ∈ E is associated with

two parameters:

1. ce: the capacity of e, i.e., the upper bound on the number of packets that can

be transmitted by ce at each communication round;

2. me: the cost of reserving a unit capacity on edge e.

A reservation x in the graph G(V,E) is a map x : E → {0, 1, . . . , }, that assigns

to each edge e the non-negative integer value xe and satisfies the following conditions

1. The reservation xe on each edge cannot exceed its capacity, i.e., xe ≤ ce;

2. For every (s, t)-cut C that separates nodes s and t it must hold that:

∑

e∈E(C)

c(e)− max
e∈E(C)

c(e) ≥ h. (2.5)

The problem consists of finding an optimum reservation x̂ that minimizes the total

cost
∑

e∈E xe ·me.

The problem of efficient allocation of network resources for coding networks has

been considered in [43]. The approach presented therein is based on linear program-

ming techniques and does not provide provable performance guarantees for integral

capacity reservations. Resilient capacity reservations has been addressed in [70, 71];

however, the case of h = 2 has not been addressed. In [70], it was shown that the

general version of this problem is NP-hard. In what follows, we present a simple

algorithm that finds the capacity reservation scheme whose cost is at most two times

more than the optimum for the special case of h = 2. The algorithm is a variation of

the algorithm presented in Section 2 and includes the following steps:

60

1. Find a minimum cost integral flow θ of value three with respect to the reduced

capacity function c̄ (as defined by Equation (2.2)) and with respect to the edge

costs {me |e ∈ E}.

2. For each edge e ∈ E set x(e)← dθ(e)e.

In the following theorem we show that the resulting reservation is 2-optimal.

Theorem F.1. The algorithm above provides a capacity reservation vector whose cost

is at most two times more than the optimal one.

Proof. Let x̂(e), e ∈ E be the optimal capacity reservation scheme and let OPT be

the cost of x̂. We define the reduced capacity function ĉ as follows:

ĉ(e) =

1.5 if x̂(e) = 2;

1 if x̂(e) = 1;

0 otherwise.

(2.6)

Note that, since ĉe ≤ x̂e, it holds that
∑

e∈E ĉe ·me ≤
∑

e∈E x̂e ·me = OPT . Since x̂ is

a feasible reservation vector, Theorem C.1 implies that the reduced capacity function

admits a flow θ̂ of value three from the source to the destination. Moreover, the cost

of this flow is at most
∑

e∈E ĉe ·me ≤ OPT .

We note that since ĉe ≤ x̂e, the cost of the flow θ found by the algorithm is less

than that of θ̂. Since θ is a half-integer flow and x(e) = dθ(e)e, we conclude that

∑

e∈E

xe ·me ≤ 2 ·
∑

e∈E

θe ·me ≤ 2 ·
∑

e∈E

θ̂e ·me ≤ 2 ·OPT.

61

CHAPTER III

SECURE NETWORK CODING

FOR WIRETAP NETWORKS OF TYPE II

We consider in this chapter the problem of securing a multicast network against a

wiretapper that can intercept the packets on a limited number of arbitrary network

edges of its choice. We assume that the network employs network coding to simul-

taneously deliver the packets available at the source to all the receivers. We show

that this problem can be looked at as a network generalization of the wiretap channel

of Type II introduced in a seminal paper by Ozarow and Wyner. In particular, we

show that the transmitted information can be secured by using the Ozarow-Wyner

approach of coset coding at the source on top of the existing network code. This

way, we easily recover many important results available in the literature on secure

network coding. Moreover, we derive new bounds on the required alphabet size that

are independent of the number of edges in the network, and devise an algorithm for

the construction of secure network codes. In addition, we look at the dual problem

and analyze the amount of information that can be gained by the wiretapper as a

function of the number of wiretapped edges. The results presented in this chapter

have appeared in [16, 17].

A. Introduction

Consider a communication network represented as a directed graph G = (V,E) with

unit capacity edges and an information source S that multicasts information to t

receivers R1, . . . , Rt located at distinct nodes. Assume that the minimum size of

a cut that separates the source and each receiver node is n. It is known that a

multicast rate of n is achievable by using a linear network coding scheme [?, 72]. In

62

this chapter, we focus on secure multicast connections in the presence of a wiretapper

that can access data on a limited number of edges of its choice. Our primary goal

is to design a network coding scheme that delivers data at maximum rate to all the

destinations, and does not reveal any information about the transmitted message to

the wiretapper.

The problem of making a linear network code information-theoretically secure in

the presence of a wiretaper that can look at a bounded number µ of network edges

was first studied by Cai and Yeung in [15]. They considered directed graphs, and

constructed codes over an alphabet with at least
(|E|
µ

)
elements which can support a

secure multicast rate of up to n − µ. In [44], they proved that these codes use the

minimum amount of randomness required to achieve the security constraint. However,

the algorithm due to [15] has high computational complexity and requires a very large

field size that is exponential in the number of wiretapped edges. Feldman et al. derived

trade-offs between security, code alphabet size, and multicast rate of secure linear

network coding schemes in [45] by using ideas from secret sharing and abstracting

the network topology.

In a network where the min-cut value between the source and each receiver node

is n and where there is an eavesdropper who can access up to µ edges of his choice, we

introduce a coding at source scheme that ensures information-theoretic security based

on the Ozarow-Wyner wiretap channel of Type II, introduced in [18] and [19]. In this

channel, the source transmits n symbols to the receiver and a wiretapper can access

any µ of those symbols. Ozarow and Wyner showed that the maximum number of

symbols, denoted k, that the source can securely communicate to the receiver is equal

to n − µ. Furthermore, they proposed a coding scheme that achieves this rate. how

to encode the k source symbols into the n channel symbols for secure transmission.

Clearly, if the n channel symbols are multicast over a network using a routing scheme,

63

the k source symbols remain secure in the presence of a wiretapper with access to any

µ edges. We will illustrate later that this is not necessarily the case when network

coding is used. Nevertheless, we will show that a network code based on the Ozarow-

Wyner scheme that preserves security of the k source symbols, which are coded into

the n multicast symbols, can be designed over a sufficiently large field.

Using the observations made by Feldman et al. in [45], we show that our scheme

is equivalent to the one proposed in the pioneering work of Cai and Yeung in [15].

However, with our approach, we can quickly and transparently recover some of the

results available in the literature on secure network coding for wiretapped networks.

The algorithm due to [15] is based on the code construction proposed by Li et al. in

[72], however, more efficient network coding algorithms have been proposed recently

(see, e.g., [13] and [73]). We use the results on the encoding complexity of the network

coding presented in [73], [20], [21] to derive new bounds on the required field size of

a secure network code, which are independent of the number of edges in the network,

and which depend only on the number k of source symbols and the number t of

destinations. We also propose an algorithm for constructing secure network codes

achieving these bounds. Furthermore, we look at the dual problem and analyze the

security of a given Ozarow-Wyner code, by studying the amount of information that

can be gained by the wiretapper as a function of the number of wiretapped edges.

This chapter is organized as follows: In Section B, we briefly review the Ozarow-

Wyner wiretap channel of type II problem. In Section C, we introduce the network

generalization of this problem. In Section D, we present an algorithm for secure

network code design and establish new bounds on the required code alphabet size.

In Section E, we study the security performance of the Ozarow-Wyner codes. In

Section F, we highlight some connections of this work with other works on secure

network coding and network error correction.

64

B. Wiretap Channel II

We consider first a point-to-point scenario in which the source can transmit n symbols

to the receiver, and an adversary can access any µ of those symbols [18, 19]. For this

case, we know that the maximum number of symbols that the source can communicate

to the receiver securely in the information-theoretic sense is equal to n− µ.

The problem is mathematically formulated as follows. Let S = (s1, s2, . . . , sk)
T

be the random variable associated with the k information symbols that the source

wishes to send securely; Y = (y1, y2, . . . , yn)T , the random variable associated with

the symbols that are transmitted through the noiseless channel between the source

and the receiver, and Z = (z1, z2, . . . , zµ)T the random variable associated with the

wiretapped symbols of Y . When k ≤ n − µ, there exists an encoding scheme that

maps S into Y such that:

1. The uncertainty about S is not reduced by the knowledge of Z (perfect secrecy

condition), i.e.,

H(S|Z) = H(S), (3.1)

and,

2. The information S is completely determined by the complete knowledge of Y ,

that is,

H(S|Y) = 0. (3.2)

For n = 2, k = 1 and µ = 1, such coding scheme can be constructed as follows.

If the source bit is 0, then either 00 or 11 is transmitted through the channel with

equal probability. On the other hand, if the source bit is 1, then either 01 or 10 is

transmitted through the channel with equal probability:

65

source bit s1 0 1

codeword y1y2 chosen

at random from {00, 11} {01, 10}

It is easy to see that knowledge of either y1 or y2 does not reduce the uncertainty

about s1, whereas the knowledge of both y1 and y2 is sufficient to completely determine

s1, namely, s1 = y1 + y2.

In general, k = n − µ symbols can be transmitted securely by a coding scheme

based on an [n, n− k] linear maximal distance separable (MDS) code C ⊂ Fnq . In this

scheme, the encoder is a probabilistic device which operates on the space Fnq parti-

tioned into qk cosets of C, where q is a large enough prime power. The k information

symbols are taken as the syndrome which specifies a coset, and the transmitted word

is chosen uniformly at random from the specified coset. The decoder recovers the in-

formation symbols simply by computing the syndrome of the received word. Because

of the properties of MDS codes, knowledge of any µ = n − k or fewer symbols will

leave the uncertainty of the k information symbols unchanged. For instance, the code

used in the above example is the [2, 1] repetition code with the following parity check

matrix

H =

[
1 1

]
. (3.3)

C. Wiretap Network II

We now consider an acyclic multicast network G = (V,E) with unit capacity edges, an

information source, t receivers, and the value of the min-cut to each receiver is equal

to n. The goal is to maximize the multicast rate with the constraint of revealing no

information about the multicast data to the wiretapper that can access data on any µ

edges. We assume that the wiretapper knows the implemented network code, i.e., all

66

y1, . . . , yn

S

R

. . .y1 y2 yn

Fig. 21. Network equivalent to the wiretap channel of type II.

the coefficients of the linear combinations that determine the packets on each edge.

Moreover, we assume that there is no shared randomness between the source and the

receivers. The latter assumption rules out the use of traditional “key” cryptography

to achieve security.

It can be seen that the wiretap channel of type II is equivalent to the simple

unicast network of Figure 21 comprising n disjoint edges between the source and

the destination, each carrying a different symbol. For this network, the source can

multicast k ≤ n−µ symbols securely by first applying a secure wiretap channel code

(as described above) mapping k information symbols into n transmitted symbols

(y1, . . . , yn).

For general networks, when security is not an issue, a multicast rate n is possible

with linear network coding [?, 72]. It is interesting to ask whether, using the same

network code, the source can always multicast k ≤ n − µ symbols securely using a

wiretap channel code at the source. Naturally, this would be a solution if a multicast

67

E

B

CA

D F

WTC II Encoder

S

(a)

E

B

CA

D F

WTC II Encoder

S

(b)

Fig. 22. Single-edge wiretap butterfly network with a) non-secure network code and

b) secure network code. Security is achieved by using a coset encoder on top

of the network.

rate of value n can be achieved just by routing.

Example C.1 (Butterfly Network). Consider this approach for the butterfly network

shown in Figure 22 where we have n = 2, k = 1 and µ = 1. If the source applies the

coding scheme described in the previous section and the usual network code as in Fig-

ure 22(a), the wiretapper will be able to learn the source symbol if it taps into any of

the edges BE, EF or ED. Therefore, a network code can break down a secure wiretap

channel code. However, if the network code is changed so that node B combines its

inputs over, e.g., F3 and the coding vector of edge BE is

[
1 α

]
where α is a primitive

element of F3 (i.e., the message sent on edge BE is x1 + αx2 as in Figure 22(b)),

the wiretap channel code remains secure, that is, the adversary cannot gain any in-

68

formation by accessing a single edge in the network. Note that the wiretap channel

code based on the MDS code with H =

[
1 1

]
remains secure with any network code

whose BE coding vector is linearly independent of

[
1 1

]
.

Next, we will show that the source can multicast k ≤ n − µ symbols securely

if it first applies a secure wiretap channel code based on an MDS code with a k ×

n parity check matrix H if the network code is such that no linear combination

of µ = n − k or fewer coding vectors belongs to the space spanned by the rows

of H. Let W ⊂ E denote the set of |W | = µ edges the wiretapper chooses to

observe, and ZW = (z1, z2, . . . , zµ)T the random variable associated with the packets

carried by the edges in W . Let CW denote the matrix whose rows are the coding

vectors associated with the observed edges in W . As in the case of the wiretap

channel, let S = (s1, s2, . . . , sk)
T denotes the random variable associated with the k

information symbols that the source wishes to send securely, and Y = (y1, y2, . . . , yn)T

the random variable associated with the n wiretap channel code symbols. The n

symbols of Y will be multicast through the network using a linear network code.

Writing H(S, Y, ZW) in two different forms, and taking into account the decodability

condition of Equation (3.2), we get

H(S|ZW) +H(Y |SZW) = H(Y |ZW) +H(S|Y ZW)︸ ︷︷ ︸
=0

. (3.4)

Our objective is to conceal all the information data from the wiretapper. The perfect

secrecy condition implies

H(S|ZW) = H(S),∀W ⊂ E s.t. |W | = µ.

Thus, we obtain

H(Y |SZW) = H(Y |ZW)−H(S). (3.5)

69

This implies, in turn, that

n− rank(CW)− k ≥ 0. (3.6)

Since there is a choice of edges such that rank(CW) = µ, the maximum rate for secure

transmission is bounded as

k ≤ n− µ.

If the bound is achieved with equality, we have H(Y |SZW) = 0 and, consequently,

the system of equations

S

Zw

 =

H

CW

 · Y

has to have a unique solution for all W for which rank(CW) = µ. That is,

rank

H

CW

 = n for all CW s.t. rank(CW) = µ. (3.7)

This analysis proves the following result:

Theorem C.2. Let G = (V,E) be an acyclic multicast network with unit capacity

edges and an information source such that the size of a minimum cut between the

source and each receiver is equal to n. Then, a wiretap code at the source based on a

coset code with a k×n parity check matrix H and a network code such that no linear

combination of µ = n − k or fewer coding vectors belongs to the space spanned by

the rows of H make the network information-theoretically secure against a wiretapper

who can observe at most µ ≤ n− k edges. Any adversary able to observe more than

n− k edges will have uncertainty about the source smaller than k.

Next, we give an application of the previous theorem to the family of combination

networks illustrated in Figure 23.

70

· · ·

· · ·

· · ·

· · · · · ·
n

M

n

R1
R(M

n)

Fig. 23. The combination network B(n,M) .

Example C.3 (Combination Networks). A combination network B(n,M) is defined

over a 3-partite graph comprising three layers. The first layer contains a single source

node, the second layer M intermediate nodes and the last layer is formed by
(
M
n

)

receiver nodes such that every set of n nodes of the second layer is connected to a

receiver.

The result of Theorem C.2 can be used to construct a secure network code for

B(n,M) using a [M + k,M + k − n] MDS code which would achieve perfect secrecy

against a wiretapper that can observe any µ = n− k edges. Let H be an n× (M + k)

parity check matrix of such MDS code over Fq. A secure network code can be obtained

by taking the first k rows of HT to form the matrix of the coset code at the source,

and the rest of the rows of HT to be the coding vectors of the M edges going out of the

source. Equation (3.7) is satisfied since the considered code is MDS and, therefore,

any n columns of H form a basis of Fnq . For instance if M + k + 1 is equal to a

prime power q, a secure network code can be derived based on an [M + k,M + k− n]

71

(s1, s2)

H =

1 1 1

3 2 6

Coset Code

(y1, y2, y3)

2y1 + 4y2 + y3

6y1 + y2 + 6y3 4y1 + 2y2 + y3

5y1 + 4y2 + 6y3

R1 R4R2 R3

Fig. 24. A secure network code for the B(3, 4) combination network based on a [6,3]

Reed-Solomon code over F7.

Reed-Solomon code with the following Vandermonde parity check matrix

H =

1 α . . . αM+k−1

1 α2 . . . α2(M+k−1)

...
...

...
...

1 αn . . . αn(M+k−1)

, (3.8)

where α is a primitive element of Fq. Figure C depicts a secure network code for

the network B(3, 4) and k = 2 using a [6,3] Reed-Solomon code over F7 whose parity

check matrix is given by Equation (3.8) for α = 3.

The above analysis shows that the maximum throughput can be achieved by

applying a coset code at the source and then designing the network code while re-

specting certain constraints. The decoding of source symbols S is then merely a

72

matrix multiplication of the multicast symbols Y since HY = S. The method gives

us a better insight on how much information the adversary can obtain if he can access

more edges than the code is designed to combat. It also enables us to design secure

network coding schemes over smaller alphabets. These two issues are discussed in

detail in the next two sections.

D. Network Code Design and Alphabet Size

The approach described previously in the literature for finding a secure multicast

network code consisted of decoupling the problem of designing the multicast network

code from making it secure by using a coset code. Feldman et al. showed in [45]

that there exist networks where the above construction requires a large field size.

We present here a different construction that exploits the topology of the network

by incorporating the security constraints into the Linear Information Flow (LIF)

algorithm of Jaggi et al. [13] for constructing linear multicast network codes. As a

result, we obtain an improved lower bound on the sufficient field size. However, the

modified algorithm does not have polynomial time complexity like the original one.

We start by giving a brief high level overview of the LIF algorithm of [13]. The

inputs of the algorithm are the network, the source node, the t receivers and the

number n of information packets. Assuming the min-cut between the source and any

receiver is at least n, the algorithm outputs a linear network code that guaranties the

delivery of the n packets to all the receivers.

The algorithm starts by 1) finding t flows F1, F2, . . . , Ft of value n each, from the

source to each receiver and 2) defining t n × n matrices BFj (one for each receiver)

formed by the global encoding vectors of the n last visited edges in the flow Fj.

Initially, each matrix BFj is equal to the identity matrix. Then, the algorithm loops

73

over all the network edges, visiting them in topological order. In each iteration, the

algorithm finds a suitable local encoding vector for the visited edge, and updates

accordingly all of the t matrices BFj . The algorithm maintains the invariant that the

matrices BFj remain invertible after each iteration. Therefore, when it terminates,

each receiver will get n linear combinations of the original packets that form a full

rank system. Thus, each destination can solve for the original packets by inverting

the corresponding matrix.

The analysis of the algorithm due to [13] implies that a field of size at least t

(the number of destinations) is sufficient for finding the desired network code. In

particular, as shown in [13, Lemma 8], a field of size larger or equal to t is sufficient

for satisfying the condition that the t matrices BFj are always invertible.

To construct a secure network code, we modify the LIF algorithm in the following

way. We select a k × n parity check matrix H. Without loss of generality, we

assume that the µ packets observed by the wiretapper are linearly independent, i.e.,

rankCW = µ. We denote by ei the edge visited at the i-th iteration of the LIF

algorithm, and by Pi the set of edges that have been processed in previous i − 1

iterations. Then, we extend the set of invariants to guaranty that the encoding

vectors are chosen so that the matrices MW =

[H
CW

]
are also invertible; which,

by Theorem C.2, achieves the security condition. More precisely, using the same

technique as the original LIF algorithm, we make sure that by the end of the i-th

iteration, the matrices BFj and the matrices MWi
are invertible; where Wi = {ei}∪W ′

and W ′ is any subset of Pi containing µ− 1 = n− k − 1 edges. The total number of

matrices that need to be kept invertible in this modified version of the LIF algorithm

is at most
(|E|−1
µ−1

)
+ t. Thus, similarly to [13, Lemma 8], we obtain the following

improved bound on the alphabet size for secure multicast:

74

Theorem D.1. Let G = (V,E) be an acyclic network with unit capacity edges and

an information source such that the min-cut value between the source and each of the

t receivers is equal to n. A secure multicast at rate k ≤ n − µ in the presence of a

wiretapper who can observe at most µ ≤ n edges is possible over the alphabet Fq of

size

q ≥
(|E| − 1

µ− 1

)
+ t. (3.9)

The bound given by Equation (3.9) can be further improved by realizing, as was

first done in [73], that not all edges in the network carry different linear combinations

of the original packets. Langberg et al. showed in [20] that the number of encoding

edges in a minimal acyclic multicast network is bounded by 2n3t2. Encoding edges

create new packets by combining the packets received over the incoming edges of their

tail nodes. A minimal multicast network does not contain redundant edges, i.e., edges

that can be removed from the network without violating its optimality. Reference

[21] presents an efficient algorithm for constructing a minimal acyclic network Ĝ from

the original one G. This work also shows that a feasible network code for a minimal

network can be used for the original network, albeit slight modifications.

The main idea of our scheme is to find a secure network code for the minimal

network Ĝ, and then use the procedure described in [21] to construct a network code

for the original network G which will also be secure. Consider the problem of finding

secure network codes for Ĝ. This problem will not change if the wiretapper is not

allowed to wiretap the forwarding edges, i.e., the edges that just forward packets re-

ceived by their tail nodes. Therefore, the set of edges that the wiretapper might have

access to consists of the encoding edges and the edges outgoing from the source. The

number of such edges is bounded by 2n3t2. Now, applying Theorem D.1 on Ĝ and

75

taking into consideration the restriction on the edges that can be potentially wire-

tapped, we obtain the following bound on the sufficient field size which is independent

of the size of the network.

Corollary D.2. For the communication scenario of Theorem D.1, a secure linear

multicast network code always exists over the alphabet Fq of size

q ≥
(

2k3t2

µ− 1

)
+ t. (3.10)

For networks with two sources, we can completely settle the question on the

required alphabet size for a secure network code. Note that the adversary has to be

limited to observing at most one edge of his choice. Based on the work of Fragouli

and Soljanin [73], we know that the coding problem for these networks is equivalent

to a vertex coloring problem of some specially designed graphs, where the colors

correspond to the points on the projective line PG(1, q):

[0 1], [1 0], and [1αi] for 0 ≤ i ≤ q − 2, (3.11)

where α is a primitive element of Fq. Clearly, any network with two sources and any

arbitrary number of receivers can be securely coded by reducing the set of available

colors in (3.11) by removing one point (color) [1 1], and applying a wiretap code

based on the matrix H = [1 1] as in the example above. Alphabet size sufficient to

find secure codes for all networks with two sources also follows from [73]:

Theorem D.3. For any configuration with two sources and t receivers, the code

alphabet Fq of size

b
√

2t− 7/4 + 1/2c+ 1

is sufficient for a secure network code. There exist configurations for which it is

necessary.

76

E. Wiretapper Equivocation

In this section, we analyze the performance of coset codes in the case of a wiretapper

with variable strength, i.e., the number µ of edges he can observe is not fixed. For a

given coset code, we seek to quantify the amount of information that is leaked to the

wiretapper as a function of µ.

Assume that at the source s of a multicast network a coset code defined by a k×n

parity check matrix H is used as described in the previous section. The equivocation

∆(µ) of the wiretapper, i.e., the uncertainty it has about the information source

vector S = (s1, . . . , sk)
T , is defined, as in [19], based on the worst case scenario, by

∆(µ) := min
W⊂E;|W |=µ

H(S|ZW), (3.12)

where ZW = (z1, . . . , zµ)T is the random variable representing the observed packets

on the set W ⊆ E of wiretapped edges. We have ZW = CWY where CW is an µ× n

matrix, and Y = (y1, . . . , yn)T is the output of the coset code at the source. It can

be seen that ∆(µ) can be written as:

∆(µ) = min
W⊂E;|W |=µ
rank(CW)=µ

H(S|ZW). (3.13)

Therefore, we will assume from now on, without loss of generality, that W is such

that rank(CW) = µ. For a given choice of such W , let C⊥W be the parity check matrix

of the [n, µ] code generated by CW . Let In be the n× n identity matrix. Define Jn,µ

to be the n× (n− µ) matrix where the first µ rows are all zeros, and the last n− µ

rows form In−µ. Theorem E.1 below gives the expression of ∆(µ) which depends on

the network code and the coset code used.

77

Theorem E.1.

∆(µ) = min
W⊂E;|W |=µ
rank(CW)=µ

rank

H

CW

C⊥W

−1

Jn,µ

 . (3.14)

Proof. First, let AW =

CW

C⊥W

 . By Equation (3.4), we have

H(S|ZW) = H(Y |ZW)−H(Y |SZW)

= n− rank(CW)−

n− rank

H

CW

= rank

H

CW

A−1

W

− rank(CW)

= rank

HA−1

W

CWA
−1
W

− rank(CW)

= dim(〈HA−1
W 〉) + dim(〈CWA−1

W 〉)

− dim(〈HA−1
W 〉 ∩ 〈CWA−1

W 〉)− rank(CW)

= k − dim(〈HA−1
W 〉 ∩ 〈J ′n,µ〉),

(3.15)

where 〈·〉 denotes the row space of a matrix, and J ′n,µ is the µ × n matrix where

the first µ columns form Iµ and the last n − µ columns are all zeros. Note that

dim(〈HA−1
W 〉 ∩ 〈J ′n,µ〉) is exactly k minus the rank of the last n− µ column vectors of

HA−1
W .

A relevant concept to our work here is that of the generalized Hamming weights

d1(C), . . . , dk(C) of a linear code C introduced by Wei in [74], and that characterize

the performance of coset codes over the classical wiretap channel of Type II. The

generalized Hamming weights were extended to the wiretap networks setting in [75].

78

Given a certain network with an associated network code and coset code, Theorem E.1

provides an equivalent expression of the network formulation of the r-th generalized

Hamming weight dr as the minimum number of edges that should be wiretapped to

leak r symbols to the wiretapper. Then, we can write

dr := min{µ; ∆(µ) = k − r}

:= min{µ; min
W⊂E;|W |=µ
rank(CW)=µ

rank

H

CW

C⊥W

−1

Jn,µ

 = k − r}.

(3.16)

Next, we focus on three special cases. First, we revisit the model of the wiretap

channel of type II of [18]. Second, we consider the case where the wiretapper may

gain access to more edges than what the secure code is designed to combat. Third,

we study the scenario where only a part of the network edges are vulnerable to

wiretapping.

1. Wiretap Channel of Type II

Consider, again, the wiretap channel of type II studied in [18]. Theorem E.1 can be

used to easily recover the following classical result.

Corollary E.2. The equivocation rate of the wiretapper in the wiretap channel of

type II is given by

∆(µ) = min
U⊆{1,2,...,n}
|U |=n−µ

rank{Hi; i ∈ U}, (3.17)

where Hi denote the ith column of the parity check matrix H.

Proof. The wiretap channel of type II is equivalent to the network depicted in Fig-

ure 21. Assume that the edges between the source and the destination are indexed

from 1 to n, so that E = {1, . . . , n}. For any W ⊆ {1, . . . , n}, define IW to be the

79

matrix formed by the rows of the n × n identity matrix indexed by the elements of

W in an increasing order. Since edge i carries the packet yi, for a given set W ⊆ E

of wiretapped edges, CW = IW and C⊥W = IU , where U = {1, . . . , n} \W . Therefore,

A−1
W =

IW

IU

−1

= ATW , and the last n− µ columns of HATW are exactly the columns

of H indexed by U .

2. Underestimated Wiretapper

Suppose the coset code defined by the k × n parity check matrix H satisfies Theo-

rem C.2 and achieves perfect secrecy against a wiretapper that can observe λ edges.

If, however, the wiretapper can access µ edges, where µ > λ, then the amount of

information leaked to the wiretapper can be shown to be equal to µ − λ, i.e., the

number of additional wiretapped edges.

Corollary E.3. For the case of an underestimated wiretapper, the equivocation of the

wiretapper is given by:

∆(µ) = k − (µ− λ).

Proof. Since the coset code achieves perfect secrecy for λ wiretapped edges, by The-

orem C.2, we have k = n− λ and H(S|Y ZW) = 0. Thus, Equation (3.4) gives

H(S|ZW) = H(Y |ZW) = n− rank(CW) = k + λ− rank(CW).

The minimum value of H(S|ZW) is obtained when CW has maximal rank, i.e., when

rank(CW) = µ.

3. Restricted Wiretapper

In practice, for instance in large networks, the wiretapper may not have access to

all the network edges, and his choice of µ edges is limited to a certain edge subset

80

E ′ ⊂ E. For this model, the equivocation rate of the wiretapper is determined by

Equation (3.14) where E is replaced by E ′. An interesting case arises, however, when

the edges in E ′ belong to a cut of n edges between the source and one of the receivers.

In this case, the performance of the coset code is the same as when it is used for a

wiretap channel of type II.

Corollary E.4. In the case of a restricted wiretapper that can observe any µ edges

in a cut between the source and one of the destinations, the equivocation rate of the

wiretapper is given by Equation (3.17).

Proof. Assume the edges that are vulnerable to wiretapping are indexed from 1 to n,

so that E ′ = {1, . . . , n}. Let ZE′ = (z1, . . . , zn)T denote the packets carried by those

edges, such that edge i carries packet zi. We can write ZE′ = CE′Y , where CE′ is an

n×n matrix. Since the cut has n edges, the matrix CE′ is invertible; otherwise, by the

properties of linear network codes, the destination corresponding to the considered

cut cannot decode Y . For a choice W ⊆ E ′ of wiretapped edges, we have ZW = CWY ,

where CW = IWCE′ . Moreover, C⊥W = IWCE′ , where W = E ′ \W . Therefore,

H

CW

C⊥W

−1

= H

CE′

IW

IW

−1

= HC−1
E′

IW

IW

T

.

Similar to the proof of Corollary E.2, the last n − µ columns of HA−1

IW

IW

T

are

exactly the columns of HA−1 indexed by U . So, by Theorem E.1, we have

∆(µ) = min
U⊆{1,2,...,n}
|U |=n−µ

rank{(HA−1)i; i ∈ U}

= min
U⊆{1,2,...,n}
|U |=n−µ

rank{Hi; i ∈ U}.

81

Note that the previous result still holds for any subset E ′ of possible wire-

tapped edges such that CE′ is invertible. For this scenario, the equivocation rate

of the wiretapper can be alternatively given by the generalized Hamming weights [74]

d1(C), . . . , dk(C) of the linear code C generated by H. In this case, for a given µ, ∆(µ)

is the unique solution to the following inequalities [74, Cor. A]:

dn−µ−∆(µ)(C)) ≤ n− µ < dn−µ−∆(µ)+1(C).

F. Connections with Other Schemes

In this section, we explore the relationship between our proposed scheme and previ-

ously known constructions.

1. Secure Network Coding and Filtered Secret Sharing

Cai and Yeung were first to study the design of secure network codes for multicast

demands [15]. They showed that, in the setting described above, a secure network

code can be found for any k ≤ n−µ. Their construction is equivalent to the following

scheme:

1. Generate a vector R = (r1, r2, . . . , rµ)T choosing its components uniformly at

random over Fq,

2. Form vector X by concatenating the µ random symbols R to the k source

symbols S:

X =

[
S

R

]
= (s1, . . . , sk, r1, . . . , rµ)T

82

3. Choose an invertible n× n matrix T over Fq and a feasible multicast network

code [72] to ensure the security condition given by Equations (3.1) and (3.2) 1.

4. Compute Y = TX, and multicast Y to all the destinations by using the con-

structed code.

Feldman et al. considered also the same problem in [45]. Adopting the same

approach of [15], they showed that in order for the code to be secure, the matrix T

should satisfy certain conditions ([45, Thm. 6]). In particular, they showed that in

the above transmission scheme, the security condition of Equations (3.1) and (3.2)

holds if and only if any set of vectors consisting of

1. at most µ linearly independent edge coding vectors, and

2. any number of vectors from the first k rows of T−1

is linearly independent. They also showed that if one sacrifices in the number of

information packets, that is, take k < n−µ, then it is possible to find secure network

codes over fields of size much smaller than the very large bound q >
(|E|
µ

)
.

We will show now that our approach based on the coset codes for the wiretap

channel at the source is equivalent to the scheme of [15] with the conditions of [45].

Proposition F.1. For any n× n matrix T satisfying the security conditions defined

above, the k× n matrix H = T ∗ formed by taking the first k rows of T−1 satisfies the

condition of Theorem C.2.

Proof. Consider the secure multicast scheme of [15] as presented above. For a given

information vector S ∈ Fkq , let B(S) be the set of all possible vectors Y ∈ Fnq that

1It is shown in [15, Thm. 1] that such code and matrix T exist provided that

q >
(|E|
µ

)
.

83

could be multicast through the network under this scheme. More precisely,

B(S) =
{
Y ∈ Fnq |Y = TX,X =

[
S

R

]
, R ∈ Fn−kq

}
.

Then, for all Y ∈ B(S), we have T ∗Y = T ∗T

[
S

T

]
= S. Therefore, any Y ∈ B(S)

also belongs to the coset of the space spanned by the rows of T ∗ whose syndrome is

equal to S. Moreover, since T is invertible, |B(S)| = 2n−k implies that the set B(S)

is exactly that coset. The conditions of [45] as stated above translate directly into

Equation (3.7), the remaining condition of Theorem C.2.

2. Universal Secure Network Codes

In practical implementations of linear multicast network codes over Fq, the informa-

tion sources are typically packets of a certain length m, i.e., s1, . . . , sk are vectors

in Fmq . Applying our approach here which appeared in a preliminary version in [16],

Silva and Kschischang devised in [56] a scheme that achieves a complete decoupling

between the secure code and the network code design. Their scheme is universal in

the sense that it achieves secrecy by applying a coset code at the source with no

knowledge of the network code used. The main idea is to use a special class of MDS

codes called maximal rank-distance codes (MRD) which are non-linear over Fq, but

linear over the extension field Fqm . The parity check matrix of an MRD code over

Fqm has the interesting property that it always satisfies the condition of Theorem C.2

when the edge coding vectors are over Fq, as stated in the theorem below.

Lemma F.2. [56, Lemma 3] Let H be the parity check matrix of an [n, n− k] linear

MRD code over Fqm. For any full rank (n−k)×n matrix B over Fq, the n×n matrix

H

B

 is invertible.

84

Therefore, MRD codes will always achieve perfect secrecy irrespective of the

network code used. The choice of the MRD code will only depend on the underlying

field Fq of the network code used.

3. Byzantine Adversaries

The malicious activity of the wiretapper in the model considered here was restricted

to eavesdropping. A more powerful wiretapper, with jamming capabilities, may not

only listen to the data in the network but also alter it. This may lead to flooding the

whole network with erroneous packets. Schemes to combat such wiretappers, known

in literature as Byzantine adversaries, were studied in [52, 36, 55], and the references

within.

Consider a scenario where the wiretapper can, not only observe µ edges, but also

jam α edges of his choice that are unknown to the destinations. In this case, we

will describe a coding scheme that achieves a multicast rate of k = n − 2α − µ and

guaranties that the information will remain hidden from the wiretapper. This can

be achieved by using a coset code as described in Section C, followed by a powerful

network error-correcting code [53, 54]. First, we recall an important result from [54,

Theorem 4].

Theorem F.3. For an acyclic network G(V,E) with min-cut n, there exists a linear

α-error-correcting code of dimension (n− 2α) over a sufficiently large field.

Let G be the generator matrix of a linear α-error-correcting code of dimension

(n − 2α) whose existence is guaranteed by the previous theorem, and Let G⊥ be its

parity check matrix. A block diagram of the coding scheme that achieves secrecy

against a Byzantine wiretapper at a rate k = n − 2α − µ is depicted in Figure 25.

First, the information S = (s1, . . . , sk)
T is encoded using a coset code of parity check

85

(s1, . . . , sk)
H

coset code

G⊥
(t1, . . . , tm)

Network
Error-Correcting

Code

Network
(y1, . . . , yn)

Fig. 25. A coding scheme achieving perfect secrecy against a limited Byzantine wire-

tapper.

matrix H into the vector T = (t1, . . . , tm)T , with m = k + µ. The vector T is then

encoded into Y = (y1, . . . , yn)T = GT using the network error-correcting code. To

achieve perfect secrecy, H should satisfy the condition of Theorem C.2, which can be

expressed here as:

rank

H

CWG

 = k + µ, for all CW s.t. rank(CW) = µ. (3.18)

We assume that the code is over a field large enough to guaranty the existence

of the network error-correcting code and the existence of the matrix H satisfying the

above condition as well. At each destination, a decoder corrects the errors introduced

by the wiretapper and recovers T . The information S is then obtained as the unique

solution of the system HS = T . It was shown in [76] that the rate k = n− 2α− µ is

optimal and another construction for codes with the same properties was presented

there.

86

CHAPTER IV

NETWORK CODING, INDEX CODING AND MATROID THEORY

We analyze in this chapter the relation between index coding, network coding, and

matroid linear representation. We devise a reduction from the index coding problem

to the network coding problem, implying that in the linear case these two problems are

equivalent. We also present a second reduction from the matroid linear representabil-

ity problem to index coding, and therefore to network coding. The latter reduction

establishes a strong connection between matroid theory and network coding theory.

These two reductions are then used to construct special instances of the index cod-

ing problem where vector codes outperform scalar linear ones, and where non-linear

encoding is needed to achieve the optimum number of transmissions. Thereby, we

provide a counterexample to a related conjecture in the literature and answer a ques-

tion on the benefits of vector linear codes. The results presented in this chapter have

appeared in [23, 24, 25]1.

A. Introduction

In recent years, there has been a significant interest in utilizing the broadcast nature

of wireless signals for improving the throughput and reliability of ad-hoc wireless

networks. The wireless medium allows the transmitter to deliver data to several

neighboring nodes with a single transmission. Moreover, a wireless receiver can op-

1Parts of this chapter are reprinted with permission from “On the Relation Be-
tween the Index Coding and the Network Coding Problems,” by S. El Rouayheb, A.
Sprintson, and C. Georghiades, In proceedings of 2008 IEEE International Sympo-
sium on Information Theory (ISIT), Toronto, Canada, July, 2008, pages 1823- 1827
and “A New Construction Method for Networks From Matroids,”by S. El Rouay-
heb, A. Sprintson and C. N. Georghiades, 2009 IEEE International Symposium on
Information Theory (ISIT), Seoul, Korea, June, 2009, pages 2872-2876, copyright
IEEE.

87

portunistically listen to the wireless channel and store all the overheard packets,

including those designated for different users. As a result, wireless nodes can obtain

side information which, in combination with proper encoding techniques, can lead to

a substantial improvement in the performance of the wireless network.

Several recent studies focused on wireless architectures that use coding tech-

niques to take advantage of the inherent properties of wireless communications. In

particular, [77, 78] proposed new architectures, referred to as COPE and MIXIT, in

which routers mix packets from different information sources to increase the overall

network throughput. Birk and Kol [11, 79] discussed applications of coding tech-

niques in satellite networks with caching clients with a low-capacity reverse channel

[11, 79].

The major challenge in the design of opportunistic wireless networks is to identify

an optimal encoding scheme that minimizes the number of transmissions necessary

to satisfy all the receiver nodes. This can be formulated as the index coding problem

[10] that includes a single transmitter node s and a set of receiver nodes R. The

sender has a set of information messages X = {x1, . . . , xk} that need to be delivered

to the receiver nodes. Each receiver ρ = (x,H) ∈ R needs to obtain a single message

x ∈ X and has prior side information in the form of a subset H of X. The sender

can broadcast the encoding of messages in X to the receivers through a noiseless

channel that has a capacity of one message per channel use. The objective is to find

an optimal encoding scheme, referred to as an index code, that satisfies all the receiver

nodes with a minimum number of transmissions.

With linear coding, all messages in X are taken to be elements of a finite field, and

all encoding operations are linear over that field. Figure 26 depicts an instance of the

index coding problem that includes a transmitter with four messages x1, . . . , x4 and

88

ρ4(x4, {x1}) ρ3(x3, {x2, x4})

ρ1(x1, {x2, x3}) ρ2(x2, {x1, x3})

Fig. 26. An instance of the index coding problem with four messages and four re-

ceivers ρ1, . . . , ρ2. Each receiver ρi is represented by a couple (x,H), where

x ∈ X is the packet demanded by the receiver, and H ⊆ X represent its side

information.

four receivers. We assume in this example that each message is an element of GF (2n),

represented by n bits. Note that the sender can satisfy the demands of all clients in

a straightforward way by using four transmissions to broadcast all the messages over

the wireless channel. The encoding operation allows to reduce the number of messages

by a factor of two. Indeed, it is sufficient to only send the two messages x1 + x2 + x3

and x1 + x4 (all operations are in GF (2n)) to satisfy the requests of all clients. This

example demonstrates that by using an efficient code, the sender can significantly

reduce the number of transmissions which, in turn, results in reduction in delay and

energy consumption.

The above example utilizes a scalar linear encoding scheme that performs coding

over the original messages. In a vector encoding scheme, each message is divided into

a number of smaller size messages, referred to as packets. The vector encoding scheme

89

combines packets from different messages to minimize the number of transmissions.

With vector linear index coding, all packets are elements of a certain finite field F,

and each transmitted packet is a linear combination of the original packets. For

example, consider the instance depicted in Figure 26, and suppose that each message

xi is divided into two packets, x1
i , x

2
i ∈ GF (2n−1). Then, a valid vector-linear solution

is comprised of four packets {x1
1 + x1

4, x
2
1 + x2

4, x
1
1 + x1

2 + x1
3, x

2
1 + x2

2 + x2
3}.

In this chapter, we study the relation between the index coding problem and the

more general network coding problem. In particular, we establish a reduction that

maps any instance of the network coding problem to a corresponding instance of the

index coding problem. We show that several important properties of the Network

coding problem carry over to index coding. Specifically, by applying our reduction to

the network constructed in [5], we show that vector linear index codes are suboptimal.

We also present an instance of the index coding problem in which splitting a message

into two packets yields a smaller number of transmissions than a scalar linear solution.

We also study the relation between index coding and matroid theory. In particu-

lar, we present a reduction that maps any matroid to an instance of the index coding

problem such that the problem has a “special” optimal vector linear code if and only

if the matroid has a multilinear representation. Using results on the non-Pappus

matroid, we give another example where vector linear index codes outperform scalar

linear ones. Moreover, this reduction establishes a strong connection between network

coding and matroid theory and constitutes a means to apply numerous results in the

rich field of matroid theory to communication problems in networks.

The rest of this chapter is organized as follows. In Section B, we discuss our model

and give a formulation of the index and network coding problems. In Section C, we

present a reduction from the network coding problem to the index coding problem

that shows that these two problems are equivalent for the case of linear codes. In

90

Section D, we present our second reduction that establishes the relation between

index codes and matroid linear representation. In Section E, we discuss applications

of our reductions to derive results on the optimality of linear codes. In Section F, we

discuss the connection between matroids and networks.

B. Model

In this section, we give the mathematical model for the index coding problem. In

addition, we present a formulation of the network coding problem that is equivalent

to the one described in the previous chapters but that is more suitable to the study

here.

1. Index Coding

An instance of the index coding problem I(X,R) includes

1. A set of k messages X = {x1, . . . , xk},

2. A set of clients or receivers R ⊆ {(x,H);x ∈ X,H ⊆ X \ {x}}.

Here, X represents the set of messages available at the transmitter. Each message

xi can be divided into n packets each belonging to a finite alphabet Σ, and we write

x = (xi1, . . . , xin) ∈ Σn. We denote by ξ = (x11, . . . , x1n, . . . , xk1, . . . , xkn) ∈ Σnk the

concatenation of all the packets available at the transmitter.

A receiver is represented by a pair (x,H), where x ∈ X is the message it demands

and H ⊆ X \ {x} is the set of messages representing its side information. Note that

in this model each receiver requests exactly one message. This does not incur any

loss of generality since any receiver requesting multiple messages can be substituted

by several receivers that demand a single different message and have the same side

information as the original one.

91

Definition B.1 (Index Codes). An (n, q) index code for I(X,R) is a function

f : Σnk −→ Σc, for a certain positive integer c, such that for each client ρ = (x,H) ∈ R,

there exists a function ψρ : Σc+n|H| −→ Σn such that ψρ(f(ξ), (xi)xi∈H) = x, ∀ξ ∈ Σnk.

We refer to c as the length of the index code and c/n as its normalized length.

Since the wireless broadcast channel has a capacity of one message per transmission,

the normalized length of the index code represents the corresponding number of trans-

missions. Define `(n, q) to be the smallest integer c such that the above condition

holds for the given alphabet size q and block length n. If the index code satisfies

c = `(n, q), it is said to be optimal. Given n and q, the index coding problem consists

of finding an optimal (n, q) index code for an index coding instance. We denote by

λ(n, q) = `(n, q)/n the normalized length, i.e., minimum number of transmissions, for

an (n, q) index code solution of a given instance I(X,R) of the index coding problem.

We are also particularly interested in the minimum number of transmissions that can

be achieved by (n, q) linear codes, and we denote it by λ∗(n, q).

We refer to ψρ as the decoding function for client ρ. In the case of a linear index

code, the alphabet Σ is a field and the functions f and ψρ are linear in the variables

xij. In this case, if n = 1 the index code is called a scalar linear code, and for n > 1,

it is called a vector linear index code of dimension n. Note that in our formulation

model, a message can be requested by several clients. This is a slightly more general

model than the one considered in references [10] and [12] where it was assumed that

each message can only be requested by a single client.

Let µ(I) be the largest number of messages requested by a set of clients with iden-

tical side information, i.e., µ(I) = maxY⊆X |{xi; (xi, Y) ∈ R}|. Then, it is easy to ver-

ify that the minimum number of transmissions λ(n, q) is lower-bounded by µ(I), inde-

pendently of the values of n and q. To see this, let Y ∗ = arg maxY⊆X |{xi; (xi, Y) ∈ R}|

92

and W = {xi; (xi, Y
∗) ∈ R} and remove all clients that do not have the set Y ∗ as side

information. We note that, since Y ∗∩W = ∅, the minimum number of transmissions

corresponding to the resulting instance is equal to |W | = µ(I) and since it cannot be

larger then λ(n, q), we get λ(n, q) ≥ µ(I).

2. Network Coding

Let G(V,E) be a directed acyclic graph with vertex set V and edge set E. For each

edge e(u, v) ∈ E, we define the in-degree of e to be the in-degree of its tail node u,

and its out-degree to be the out-degree of its head node v. Furthermore, we define

P(e) to be the set of the parent edges of e, i.e., P(e(u, v)) = {(w, u); (w, u) ∈ E)}.

Let S ⊂ E be the subset of the edges in E of zero in-degree, and let D ⊂ E be the

subset of the edges of zero out-degree. We refer to the edges in S as input edges, and

those in D as output edges. Also, we define m = |E| to be the total number of edges,

k = |S| be the total number of input edges in the graph G, and d = |D| be the total

number of output edges. Moreover, we assume that the edges in E are indexed from

1 to m such that E = {e1, . . . , em}, S = {e1, . . . , ek} and D = {em−d+1, . . . , em}.

We model a communication network by a pair N (G(V,E), δ) formed by a graph

G(V,E) and an onto function δ : D −→ S from the set of output edges to the set of

input edges. We assume that the tail node of each input edge ei, i = 1, . . . , k holds the

message xi, also denoted as x(ei). The edges of the graph represent communication

links that can transmit one message. The function δ(·) specifies for each output edge

ei, i = m−d+ 1, . . . ,m, the source message x(δ(ei)) demanded by its head node. We

refer to δ(·) as the demand function. Each message xi can be divided into n packets,

each belonging to a finite alphabet Σ; and we write xi = (xi1, . . . , xin) ∈ Σn. We

also denote by ξ = (x11, . . . , x1n, . . . , xk1, . . . , xkn) ∈ Σnk the concatenation of all the

packets available at the input edges.

93

Definition B.2 (Network Code). A q-ary network code of block length n, or an (n, q)

network code, for the network N (G(V,E), δ) is a collection

C = {fe = (f 1
e , . . . , f

n
e); e ∈ E, f ie : Σnk −→ Σ, i = 1, . . . , n},

of functions, called global encoding functions, indexed by the edges of G, that satisfy,

for all ξ ∈ Σnk, the following conditions:

(N1) fei(ξ) = xi, for i = 1, . . . , k;

(N2) fei(ξ) = x(δ(ei)), for i = m− d+ 1, . . . ,m;

(N3) For each e = (u, v) ∈ E \ S with P(e) = {e1, . . . , epe}, there exists a func-

tion φe : Σnpe −→ Σn, referred to as the local encoding function of e, such that

fe(ξ) = φe(fe1(ξ), . . . , fepe (ξ)), where pe is the in-degree of e, and P(e) is the set

of parent edges of e.

We are mostly interested here in linear network codes where Σ is a finite field F,

and all the global and local encoding functions are linear functions of the packets xij.

In this case, when n = 1, the network code is referred to as a scalar linear network

code, otherwise, it is called a vector linear network code of dimension n. Note that,

a scalar linear network code over GF (q) will naturally induce a vector linear network

code of block length n over GF (qn); however, the converse is not necessarily true.

C. Connection to Network Coding

Index coding can be regarded as a special case of network coding. Indeed, for every

instance of the index coding problem and a given integer c, there exists an equivalent

instance of the network coding problem that has an (n, q) network code solution if

and only if there exists an (n, q) index code of normalized length c. For example,

94

x1 x2 x3 x4

x1 x2 x3 x4

...

︸ ︷︷ ︸
c

Fig. 27. An instance of the network coding problem equivalent to the instance of the

index coding problem depicted in Figure 26.

Figure 27 depicts the instance of the network coding problem that is equivalent to

the instance of the index coding problem presented in Figure 26, where the broadcast

channel is represented by c “bottleneck” edges. The construction of this network will

be detailed in Section F.

In this section we present a reduction that goes in the opposite direction, i.e., from

the network coding problem to the index coding problem. This reduction shows that

these two problems are equivalent for the linear case. Specifically, for each instance

N (G(V,E), δ) of the network coding problem, we construct a corresponding instance

IN (Y,R) of the index coding problem, such that IN has an (n, q) optimal linear index

code achieving the minimum number of transmissions λ(n, q) = µ(IN) = |E| if and

only if there exists an (n, q) linear network code for N .

Definition C.1. For any instance N (G(V,E), δ) of the network coding problem,

define the corresponding instance IN (Y,R) of the index coding problem as follows:

95

1. The set of messages Y := {x1, . . . , xk}∪{y1, . . . , ym} where k and m are respec-

tively the number of messages and the number of edges in N .

2. The set of clients R := R1 ∪ · · · ∪R5, where follows:

(a) R1 = {(xi, {yi}); ei ∈ S}

(b) R2 = {(yi, {xi}); ei ∈ S}

(c) R3 = {(yi, {yj; ej ∈ P(ei)}); ei ∈ E \ S}

(d) R4 = {(x(δ(ei)), {yi}); ei ∈ D}

(e) R5 = {(yi, X); i = 1, . . . ,m}

It is easy to verify that instance IN (Y,R) satisfies µ(IN) = m.

Theorem C.1. Let N (G(V,E), X, δ) be an instance of the network coding problem,

and let IN (Y,R) be the corresponding instance of the index coding problem, as defined

above. Then, there exists an (n, q) optimal linear index code with normalized length

m for IN , if and only if, there exists a linear (n, q) network code for N .

Proof. Let X = (x1, . . . , xk), Y = (y1, . . . , ym) and Z = (x1, . . . , xk, y1, . . . , ym). Sup-

pose there is a linear (n, q) network code C = {fe(X); fe : (Fnq)k → Fnq , e ∈ E} for N

over the finite field Fq of size q for some integer n.

Define g : (Fnq)m+k → (Fnq)m such that ∀Z ∈ (Fnq)m+k, g(Z) = (g1(Z), . . . , gm(Z))

where gi(Z) = yi + fei(X), i = 1, . . . ,m.

More specifically, we have

gi(Z) = yi + xi i = 1, . . . , k,

gi(Z) = yi + fei(X) i = k + 1, . . . ,m− d,

gi(Z) = yi + x(δ(ei)) i = m− d+ 1, . . . ,m.

96

Next, we show that g(Z) is in fact an index code for IN by proving the existence

of the decoding functions. We consider the following five cases:

1. ∀ρ = (xi, {yi}) ∈ R1, ψρ = gi(Z)− yi,

2. ∀ρ = (yi, {xi}) ∈ R2, ψρ = gi(Z)− xi,

3. ∀ρ = (yi, {yi1 , . . . , yip}) ∈ R3, since C is a linear network code for N , there

exists a linear function φei such that fei(X) = φei(fei1 (X), . . . , feip (X)). Thus,

ψρ = gi(Z)− φei(gi1(Z)− yi1 , . . . , gip(Z)− yip),

4. ∀ρ = (x(δ(ei)), {yi}) ∈ R4, ei ∈ D,ψρ = gi(Z)− yi,

5. ∀ρ = (yi, X) ∈ R5, ψρ = gi(Z)− fei(X).

Note that this index code is optimal since it achieves the lower bound µ(IN) = m =

|E|.

To prove the converse, we assume that g(Z) = (g1(Z), . . . , gm(Z)) is an optimal

linear (n, q) index code for IN over the field Fq, with gi : (Fnq)m+k −→ Fnq . We write

gi(Z) =
k∑

j=1

xjAij +
m∑

j=1

yjBij,

for i = 1, . . . ,m, and Aij, Bij ∈MFq(n, n), where MFq(n, n) is the set of n×n matrices

with elements in Fq.

The functions ψρ exist for all ρ ∈ R5 if and only if the matrix M = [Bij] ∈

MFq(nm, nm), which has the matrix Bij as a block submatrix in the (i, j)-th position,

is invertible. Define h : (Fnq)m+k −→ (Fnq)m, such that h(Z) = g(ZM−1),∀Z ∈

(Fnq)m+k. So, we obtain

hi(Z) = yi +
k∑

j=1

xjCij,

for i = 1, . . . ,m and where Cij ∈MFq(n, n). We note that h(Z) is a valid index code

for IN . In fact, for any receiver ρ = (x,H) ∈ R with a decoding function ψρ(g, (z)z∈H)

97

corresponding to the index code g(Z), the function ψ′ρ(h, (z)z∈H) = ψρ(hM, (z)z∈H))

is a valid decoding function corresponding for the index code h(Z).

For all ρ ∈ R1∪R4, ψ′ρ exists if and only if for i = 1, . . . , k,m−d+1, . . . ,m, j =

1 . . . k and j 6= i, it holds that Cij = [0] ∈ MFq(n, n) and Cii is invertible, where [0]

denotes the all zeros matrix. This implies that

hi(Z) = yi + xiCii, i = 1, . . . , k

hi(Z) = yi +
k∑

j=1

xjCij, i = k + 1, . . . ,m− d

hi(Z) = yi + x(δ(ei))Cii, i = m− d+ 1, . . . ,m

(4.1)

Next, we define the functions fei : (Fnq)k −→ Fnq , ei ∈ E as follows:

1. fei(X) = xi, for i = 1, . . . , k

2. fei(X) =
∑k

j=1 xjCij, for i = k + 1, . . . ,m− d

3. fei(X) = x(δ(ei)), for i = m− d+ 1, . . . ,m.

We will show that C = {fei ; ei ∈ E} is a linear (n, q) network code for N by

showing that it satisfies condition N3.

Let ei be an edge in E \S with the set of parent edges P(ei) = {ei1 , . . . , eip} . We

denote by Ii = {i1, . . . , ip} and ρi = (yi, {yi1 , . . . , yip}) ∈ R3. Then, there is a linear

function ψ′ρi such that yi = ψ′ρi(h1, . . . , hm, yi1 , . . . , yip). Hence, there exist matrices

Tij, T
′
iα ∈MFq(n, n) such that

yi =
m∑

j=1

hjTij +
∑

α∈Ii

yαT
′
iα (4.2)

Substituting the expressions of the hj’s given by Equation (4.1) in Equation (4.2), we

get the following:

• Tii is the identity matrix,

98

• T ′iα = −Tiα∀α ∈ Ii,

• Tij = [0] ∀j /∈ Ii ∪ {i}.

Therefore, we obtain

fei = −
∑

α∈Ii

feαTiα, ∀ei ∈ E \ S,

and C is a feasible network code for N .

Lemma C.2. Let N (G(V,E), δ) be an instance of the network coding problem, and

let IN (Y,R) be the corresponding index problem. If there exists an (n, q) network code

(not necessarily linear) for N , then there exists an optimal (n, q) index code for IN
with normalized length m.

Proof. Suppose there is an (n, q) network code C = {fe(X); fe : (Σn)k → Σn, e ∈ E}

for N over a q-ary alphabet Σ. Without loss of generality, we assume that Σ =

{0, 1, . . . , q − 1}.

Define g : (Σn)m+k → (Σn)m such that ∀Z = (x1, . . . , xk, y1, . . . , ym) ∈ (Σn)m+k,

g(Z) = (g1(Z), . . . , gm(Z)) with

gi(Z) = yi + fei(X), i = 1, . . . ,m,

where “+” designates addition in GF (q)n. Then, the same argument of the previous

proof holds similarly here, and g is an optimal index code for IN .

D. Connection to Matroid Theory

1. Overview of Matroid Theory

There exist many different equivalent definitions of a matroid. The following one is

the most useful for our analysis.

99

A matroid M(Y, r) is a pair formed by a set Y and a function r : 2Y −→ N0,

where 2Y is the power set of Y and N0 is the set of non-negative integer numbers

{0, 1, 2, . . . }, satisfying the following three conditions:

(M1) r(A) ≤ |A|, ∀A ⊆ Y ;

(M2) r(A) ≤ r(B), ∀A ⊆ B ⊆ Y ;

(M3) r(A ∪B) + r(A ∩B) ≤ r(A) + r(B),∀A,B ⊆ Y.

The set Y is called the ground set of the matroid M. The function r is called

the rank function of the matroid. The rank rM of the matroid M is defined as

rM = r(Y).

We refer to B ⊆ Y as an independent set if r(B) = |B|, otherwise, it is referred

to as a dependent set. A maximal independent set is called a basis. It can be shown

that all the bases in a matroid have the same cardinality. In fact, for any basis B, it

holds that r(B) = |B| = rM. A minimal dependent subset C ⊆ Y is referred to as a

circuit. For each element c of C it holds that r(C \{c}) = |C|−1 = r(C). Let B(M)

be the set of all the bases of the matroid M, and C(M) be the set of all its circuits.

Matroid theory is a well studied topic in the field of discrete mathematics. Ref-

erences [6] and [65] provide a comprehensive discussion of this subject. Linear and

multilinear representations of matroids over finite fields are major topics in matroid

theory (see [6, Chapter 6], [80], and [81]).

Definition D.1. Let Y = {y1, . . . , ym} be a set whose elements are indexed by the

integers from 1 to m. For any collection of m matrices M1, . . . ,Mm ∈ MF(n, k), and

any subset I = {yi1 , . . . , yiδ} ⊆ Y , with i1 < · · · < iδ, define

MI = [Mi1| . . . |Miδ] ∈MF(n, δk).

100

1 2 3

7 8 9

4 5 6

Fig. 28. A geometrical representation of the non-Pappus matroid [6, p.43]. The ma-

troid circuits are represented by straight lines.

That is, the matrix MI is obtained by concatenating the matrices Mi1 , . . . ,Miδ from

left to right in the increasing order of the indices i1, . . . , iδ.

Definition D.2. A matroidM(Y, r) of rank rM = k and ground set Y = {y1, . . . , ym}

is said to have a multilinear representation of dimension n, or an n-linear represen-

tation, over a field F, if there exist m matrices M1, . . . ,Mm ∈MF(kn, n) such that

rank(MI) = n · r(I),∀I ⊆ Y. (4.3)

Linear representation corresponding to the case of n = 1 is the most studied case

in matroid theory, see for example [6, Chapter 6]. A Multilinear representation is a

generalization of this concept from vectors to vector spaces, and was discussed in [80]

and [81].

Example D.1. The uniform matroid U2,3 is defined on a ground set Y = {y1, y2, y3}

of three elements, such that ∀I ⊆ Y and |I| ≤ 2, r(I) = |I|, and r(Y) = 2. It is easy

to verify that the vectors M1 = [0 1]T ,M2 = [0 1]T ,M3 = [1 1]T form a linear

101

representation of U2,3 of dimension 1 over any field. This will automatically induce a

multilinear representation of dimension 2, for instance, of U2,3 over any field:

M1 =

1 0

0 0

0 1

0 0

,M2 =

0 0

1 0

0 0

0 1

,M3 =

1 0

1 0

0 1

0 1

Example D.2. The non-Pappus matroid (see e.g., [6, §1.5]) Mnp(Y, r) is defined

over a ground set Y = {y1, . . . , y9} and can be represented geometrically as shown in

Figure 28. Let Y0 = {{1, 2, 3}, {1, 5, 7}, {3, 5, 9}, {2, 4, 7}, {4, 5, 6}, {2, 6, 9}, {1, 6, 8}, {3, 4, 8}}.

The rank function of the non-Pappus matroid is

r(I) =

min(|I|, 3) ∀I ∈ 2Y \ Y0

2 ∀I ∈ Y0

Note that Y0 is the set of circuits of the non-Pappus matroid.

It is known from Pappus theorem [6, p.173], that the non-Pappus matroid is not

linearly representable over any field. However, it was shown in [80] and [81], that it

has a 2-linear representation over GF (3) given below by the following 6× 2 matrices

M1, . . . ,M9:

[M1| . . . |M9] =

10 10 00 10 00 10 10 10 00

01 01 00 01 00 01 01 01 00

00 00 00 10 10 21 01 10 10

00 00 00 02 01 20 12 02 01

00 10 10 01 00 01 00 11 10

00 01 01 21 00 21 00 10 01

. (4.4)

102

2. From Matroids to Index Codes

We describe now a reduction that associates to each matroid an instance of the index

coding problem that captures all the dependency and independency relations of the

matroid. The existence of corresponding vector linear index codes is then linked to

the matroid multilinear representations.

Definition D.3. Given a matroidM(Y, r) of rank k and ground set Y = {y1, . . . , ym},

we define the corresponding index coding problem IM(Z,R) as follows:

1. Z = Y ∪X, where X = {x1, . . . , xk},

2. R = R1 ∪R2 ∪R3, where

(a) R1 = {(xi, B);B ∈ B(M), i = 1, . . . , k}

(b) R2 = {(y, C \ {y});C ∈ C(M), y ∈ C}

(c) R3 = {(yi, X); i = 1, . . . ,m}

Note that µ(IM) = m, the cardinality of the matroid ground set.

Theorem D.3. LetM(Y, r) be a matroid of ground set Y = {y1, . . . , ym} and IM(Z,R)

the corresponding index coding problem. The matroid M has an n-linear represen-

tation over Fq if and only if there exists an optimal linear (n, q) index code with

normalized length m for IM.

Proof. First, we assume that all the messages in IM(Z,R) are split into n pack-

ets elements of Fq, and we write yi = (yi1, . . . , yin), xi = (xi1, . . . , xin) ∈ Fnq , ξ =

(x11, . . . , x1n, . . . , xk1, . . . , xkn) ∈ Fknq , and χ = (y11, . . . , y1n, . . . , ym1, . . . , ymn, x11, . . . , x1n,

. . . , xk1, . . . , xkn) ∈ F(m+k)n
q .

Let M1, . . . ,Mm ∈ MFq(kn, n) be an n-linear representation of the matroid M.

103

Consider the following linear map f(χ) = (f1(χ), . . . , fm(χ)), where

fi(χ) = yi + ξMi ∈ Fnq , i = 1, . . . ,m.

We claim that f is an optimal (n, q) linear index code for IM. To this end, we

show the existence of the decoding functions of Definition B.1 for all the clients in R:

• Fix a basis B = {yi1 , . . . , yik} ∈ B(M), with i1 < i2 < · · · < ik, and let

ρi = (xi, B) ∈ R1, i = 1, . . . , k. By Equation (4.3) rank(MB) = kn, hence the

kn × kn matrix MB is invertible. Thus, the corresponding decoding functions

can be written as ψρi = [fi1 − yi1| . . . |fik − yik]Ui, where the Ui’s are the kn× n

block matrices that form M−1
B in the following way: [Ui| . . . |Uk] = M−1

B .

• Let C = {yi1 , . . . , yic} ∈ C(M), with i1 < i2 < · · · < ic, and ρ = (yi1 , C
′) ∈ R2,

with C ′ = C − yi1 . We have rank(MC′) = rank(MC) by the definition of

matroid circuits. Therefore, there is a matrix T ∈ MFq(cn − n, n), such that,

Mi1 = MC′T . Now, note that [fi2 − yi2| . . . |fic − yic] = ξMC′ . Therefore, the

corresponding decoding function is ψρ = fi1 − [fi2 − yi2| . . . |fic − yic]T.

• For all ρ = (yi, X) ∈ R3, ψρ(f, ξ) = fi − ξMi.

Now, suppose that f(χ) = (f1(χ), . . . , fm(χ)), fi(χ) ∈ Fnq , is an optimal (n, q)

linear index code for IM. We will show that it induces an n-linear representation

of the matroid M over Fq. Due to the clients in R3, we can assume without loss of

generality that the functions fi(χ), i = 1, . . . ,m, have the following form

fi(χ) = yi + ξAi, (4.5)

where the Ai’s are kn × n matrices over Fq. We claim that these matrices form an

n-linear representation of the matroid M over Fq. To prove this, it suffices to show

that the matrices Ai’s satisfy Equation (4.3) for all the bases and the circuits of M.

104

Let B ∈ B(M) be a basis. Then, by Equation (4.5), the clients (xj, B), j =

1, . . . , k, will be able to decode their required messages iff AB is invertible. Therefore,

rank(AB) = nk = nr(B).

Let C ∈ C(M) a circuit. Pick yi1 ∈ C let C ′ = C − yi1 . We have r(C ′) =

|C| − 1 = |C ′|, i.e., C ′ is an independent set of the matroid, and there is a basis B

of M such that C ′ ⊆ B (by the independence augmentation axiom [6, chap. 1]).

Thus, from the previous discussion, AC′ has full rank, i.e. rank(AC′) = (|C| − 1)n.

Now consider the client ρ = (yi1 , C
′) ∈ R2, the existence of the corresponding linear

decoding function ψρ implies that there exists a matrix T ∈ MF(|C|n − n, n) such

that Ai1 = AC′T. So, rank(AC) = rank(AC′) = n(|C| − 1) = nr(C).

E. Properties of Index Codes

1. Scalar Vs. Vector Linear Codes

Index coding, as previously noted, is related to the problem of zero-error source coding

with side information, discussed by Witsenhausen in [82]. Two cases were studied

there, depending on whether the transmitter knows the side information available

to the receiver or not. It was shown that in the former case the repeated scalar

encoding is optimal, i.e., block encoding does not have any advantage over the scalar

encoding. We will demonstrate in this section that this result does not always hold

for the index coding problem, which can be seen as an extension of the point to point

problem discussed in [82]. Alon et al. concurrently demonstrated the advantages of

vector coding over scalar coding in [22] using graph theoretical techniques.

Let N1 be the M-network introduced in [4] and depicted in Figure 29. It was

shown in [26] that this network does not have a scalar linear network code, but has

a vector linear one of block length 2. Interestingly, such a vector linear solution does

105

x1 x2 x3 x4

x1 x3 x1 x4 x2 x3 x2 x4

Fig. 29. The M-Network N1 introduced in [4].

not require encoding and is based on a routing scheme (see Figure 8). A more general

result was proven in [26]:

Theorem E.1. The M-network has a linear network code of block length n if and

only if n is even.

Consider the instance IN1 of the index coding problem obtained by the construc-

tion of Definition C.1 applied to the M-network. By theorem E.1, IN1 does not admit

a scalar linear index code of normalized length µ(IN1). It has, however, an optimal

vector linear index code of dimension 2 and normalized length µ(IN1) over any field.

Thus, IN1 is an instance of the index coding problem where vector linear coding out-

performs scalar linear one. This result can be summarized by the following corollary

which follows directly from theorems C.1 and E.1.

Corollary E.2. For IN1 , λ(2, 2) = λ∗(2, 2) < λ∗(1, 2).

Another similar instance of the index coding problem is IMnp , which is obtained

by applying the construction of Definition D.3 to the non-Pappus matroidMnp. Since

106

the non-Pappus matroid Mnp does not admit a linear representation. Theorem D.3

implies that there is also no scalar linear index code for IMnp that can achieve a

transmission number of µ(IMnp). Nevertheless, the multilinear representation of the

non-Pappus matroid over GF (3) described in Example D.2 induces an optimal (3, 2)

vector linear index code for IMnp of normalized length µ(IMnp) = 9. Using Theorem

D.3, we get the following corrollary.

Corollary E.3. For the instance IMnp of the index coding problem it holds that

λ∗(2, 3) = λ(2, 3) < λ∗(1, 3).

2. Linear Vs. Non-Linear Codes

Linearity is a desired property for any code, including index codes. It was conjectured

in [10] that scalar linear index codes over GF (2) are optimal, meaning that λ∗(1, 2) =

λ(1, 2) for all index coding instances. Lubetzky and Stav disproved this conjecture

in [12] for the scalar linear case by providing, for any given number of messages k

and field Fq, a family of instances of the index coding problem with an increasing gap

between λ∗(1, q) and λ(1, q).

We present here another counterexample to the conjecture of [10] where even

vector linear index codes are suboptimal. In particular, we give an instance where

non-linear index codes outperform vector linear codes for any choice of field and

dimension n. Our proof is based on the insufficiency of linear network codes result

proved by Dougherty et al. [5]. Specifically, reference [5] showed that the network N2

depicted in Figure 30 has the following property:

Theorem E.4. The network N2 does not admit a vector linear network code, but has

a non-linear network code of block length 2 over a quaternary alphabet.

Let IN2 be the instance of the index coding problem that corresponds to N2,

107

x1 x2 x3

x4 x5

x3 x2 x1 x3 x2 x1 x3 x4 x5 x3

Fig. 30. The network N2 of [5]. N2 does not admit any vector linear network code,

but has a non-linear one over a quaternary alphabet.

constructed according to Definition C.1. Theorem E.4 implies that IN2 does not have

a linear index code of normalized length µ(IN2). However, by Lemma C.2, a (2, 4)

non-linear code of N2 can be used to construct a (2, 4) optimal non-linear index code

for IN2 of normalized length equal to the lower bound µ(IN2). We summarize this

result by the following corollary.

Corollary E.5. For the instance IN2 of the index coding problem, it holds that

λ(2, 4) = µ(IN2) < λ∗(n, q), for all integers n and prime powers q.

F. From Matroids to Networks

Dougherty et al. used in [5, 26] the results on the representability of matroids to

construct the network N2 of Figure 30, which served as a counterexample to the

conjecture of the sufficiency of linear network codes for achieving network capac-

108

ity. They also defined the concept of a matroidal network, and presented a method

for constructing networks from matroids [26, Section V.B]. Given a certain matroid,

they designed an instance of the network coding problem that forces the same inde-

pendency relations of the matroid to exist in the set of source and edge messages.

However, not all of the matroid dependency relations are reflected in this network.

As a result, a linear representation for the matroid will give a linear network code

for the corresponding network. However, the converse is not always true for this

construction.

In this section, we present a new construction that avoids this problem and that

is based on the result of Theorem D.3 which can be used as an intermediate step to

build a connection between network codes and matroid linear representability. We

describe below how to build a network from an index coding problem associated with a

matroid, which is obtained by the construction discussed in Section 2. The reduction

presented here provides a stronger connection between matroids and network codes.

Specifically, for a given matroid, we construct a network such that any multilinear

representation of the matroid will induce a vector linear network code for the obtained

network over the same field, and vice versa. This result will permit the application of

many important results on matroid linear representability to network coding theory.

Definition F.1 describes this reduction which is a generalization of the construc-

tion of the network of Figure 27. The obtained network consists of input edges repre-

senting all the messages available at the transmitter and output edges corresponding

to the clients. The availability of the side information is captured by direct edges

connecting a client to the corresponding nodes carrying the side information. The

noiseless channel is modeled in the network by a set of “bottleneck” edges connected

to all the input and output edges.

109

Definition F.1. Let M(Y, r) be a matroid of rank k defined on the set Y =

{y1, . . . , ym}, and IM(Z,R) the corresponding Index Coding problem as described

in Definition D.3. We associate to it the 6-partite network N (IM) over the graph

G(V,E) constructed as follows:

1. V ⊃ V1 ∪ V2 ∪ V3, where V1 = {s1, . . . , sm+k}, V2 = {n′1, . . . , n′m}, and V3 =

{n′′1, . . . , n′′m}.

2. Connect each node si, i = 1, . . . , k, to an input edge carrying an information

source xi at its tail node, and each node si, i = k + 1, . . . ,m + k, to an input

edge carrying an information source yi.

3. Add edges (si, n
′
j), for i = 1, . . . ,m+ k and j = 1, . . . ,m.

4. Add edges (n′j, n
′′
j) for j = 1, . . . ,m.

5. For each client ρ = (z,H) ∈ R, add a vertex nρ to the network, and connect

it to an output edge that demands source z. In addition, for each z′ ∈ H, add

edge (s′, nρ), where s′ ∈ V1 is connected to an input edge carrying source z′.

6. For each ρ ∈ R, add edge (n′′j , nρ), for j = 1, . . . ,m.

Theorem F.1. The matroidM has an n-linear representation over Fq iff the network

N (IM) has an (n, q) vector linear network code.

Proof. It can be easily seen that any (n, q) optimal linear index code of length m for

IM will imply an (n, q) linear network code for N (IM), and vice versa. The proof

follows, then, directly from Theorem D.3.

Theorem F.1 suggests that network codes can be regarded as a generalization of

the concept of matroid linear representation. As a matter of fact, matroids, as depen-

dency structures, have to satisfy constraints that do not usually apply to networks.

110

x1 x2 x3 y1

x2 x3 y1

...

︸ ︷︷ ︸
9

y1, · · · , y9

y2 y3 y4 y9

x1 y2 y3

...

...

n′
1 n′

9

n′′
1 n′′

9

n1 n2 n3 n4 n5

s1 s2 s3 s4 s5 s6 s7 s12

Fig. 31. Part of the network resulting equivalent to the non-Pappus matroid resulting

from the construction of Definition F.1.

For instance, any subset of the ground set of a matroid has to be either dependent

or independent. This is not, however, always the case for the set of edge messages

in a network. For instance, the simple network defined on three nodes s, t1 and

t2, where s carries two information sources x1, x2 both demanded by t1 and t2, and

where there are two edges e1, e2 that connect s to t1, and similarly two other edges

e3, e4 that connect s to t2. Two possible network codes over GF (2) might be either

{fe1 = fe3 = x1, fe2 = fe4 = x2} or {fe1 = x1, fe2 = fe4 = x2, fe3 = x1 +x2}. Both are

valid network codes, but the messages carried by e1 and e3 are linearly dependent in

the first case, while independent in the second one. So, the network does not dictate

beforehand any relation between the messages on e1 and e3. One can also associate

to a network code solution for a certain network a polymatroid resulting from apply-

ing Shannon entropy function to the set of random variables representing the edge

messages. The obtained polymatroid, however, essentially captures the properties of

the network code, but not that of the underlying network.

111

n5n1

n8

x1 x2 x3

n3

n7 n9n2

n4 n6

x1
x3

Fig. 32. A subnetwork of the network N3.

As an application to Theorem F.1, we construct a new network that is similar

to the M-network of Figure 29 in that it does not admit a scalar linear network code,

but has a vector linear one. This network is depicted partially in Figure 31 and is

obtained by applying the construction of Definition F.1 to the non-Pappus matroid.

Node n1 represents the clients in the set R3, n2 the basis {1, 2, 4} of the non-Pappus

matroid, and n3, n4, n5 the cycle {1, 2, 3}. By Theorem F.1, this network does not

have a scalar linear network code, but has a vector linear code of length 2 over GF (3).

The construction of networks from matroids is not unique. Next, we present

another network, referred to as N3 (see Figure 32), corresponding to the non-Pappus

matroid and that has the same property as the M-network.

Definition F.2. Let S0 = {{1, 2, 3}, {1, 5, 7}, {3, 5, 9}, {2, 4, 7}, {4, 5, 6}, {2, 6, 9},

112

{1, 6, 8}, {3, 4, 8}}, and S1 = {I ⊆ {1, 2, . . . , 9}; |I| = 3} \ S0. The network N3

is obtained by adding, to the network depicted in Figure 32, a node nI for each

I = {i, j, k} ∈ S1, the edges (ni, nI), (nj, nI), (nk, nI) and three output edges outgoing

from nI , each one of them demands a different xi.

Theorem F.2. There exists no scalar linear network code for the network N3 over

any field, but there is a (2, 3) linear one.

Proof. Let C = {fe; e ∈ N2} be a scalar linear network code for N3 over a certain

field F. Without loss of generality, we assume that for each node ni of N3, the

functions associated with its output edges are identical. We define fi = fe where e is

an outgoing edge to ni, i = 1, . . . , 9, and write fi = ai1x1 + ai2x2 + ai3x3 = ai ·XT ,

where X = (x1, x2, x3) and ai = (ai1, ai2, ai3).

Since, ∀I = {i, j, k} ∈ S1, the outgoing edges to node nI demand x1, x2 and x3,

we have rank{ai, aj, ak} = 3. Furthermore, from the connectivity of N3, we deduce

that a2 should be a linear combination of a1 and a3, giving rank{a1, a2, a3} < 3. But

rank{a1, a2, a4} = 3, which implies that rank{a1, a2, a3} > 1, hence rank{a1, a2, a3} =

2. Similarly, ∀{i, j, k} ∈ S0, rank{ai, aj, ak} = 2.

Therefore, letting A = {a1, a2, . . . , a9}, the matroid M(A, rank) is the non-

Pappus matroid shown in Figure 28 [6, p.43]. Therefore, the vectors ai form a linear

representation of M over F. But, by Pappus theorem [6, p.173], the non-Pappus

matroid is not linearly representable over any field, which leads to a contradiction.

So, N3 does not have a scalar linear solution.

Let x1 = (x, y), x2 = (w, z), x3 = (u, v) ∈ F2
3. Define f1(X) = x1, f2(X) =

(x+w, y+ z), f3(X) = x2, f4(X) = (x+ u+ 2z, y+ 2v+w+ z), f5(X) = x3, f6(X) =

(x+ 2u+ 2v + 2z, y + u+w + z), f7(X) = (x+ v, y + u+ 2v), f8(X) = (x+ u+w +

z, y + 2v +w), f9(X) = (u+w, v + z). These functions correspond to the multilinear

113

(or partition) representation of the non-Pappus matroid discussed in [80, 81]. For

each edge e ∈ G outgoing from node ni, i = 1, . . . , 9, define fe = fi, and for each edge

e ∈ D, let fe = δ(e). Then, {fe; e ∈ N2} is a (2, 3) network code for the non-Pappus

network.

114

CHAPTER V

CONCLUSION

The problem of communicating information in networks with noise-free and interference-

free links was traditionally addressed using techniques inspired by the study of com-

modity flows in transportation networks, where the only difference taken into account

between commodities and information was the possibility of duplicating information

by copying. In 2000, Ahlswede et al. [1] presented a novel and original approach

to this problem that formed the new paradigm of network coding. Network coding

extends the capability of intermediate nodes in the network from mere copying to

“mixing”, i.e., encoding, the different data packets received on their incoming edges.

This approach was shown to produce in many scenarios a substantial throughput

gain over the traditional routing and tree packing techniques [33, 34, 35]. In this

Dissertation, we investigated applications of network coding for network resilience to

link failures and security against wiretapping. Furthermore, we studied the relation

between network coding and index coding.

First, we addressed the problem of constructing robust network codes [28, 13]

achieving instantaneous recovery from single edge failures for unicast networks with

non-uniform edge capacities. We demonstrated that for the case of h = 2 information

sources at the source node, minimal networks, i.e., networks that do not contain

redundant edges or edges with excess capacities, are characterized by a special block

structure that we described. Moreover, we devised an algorithm that exploits this

structure to efficiently construct robust network codes over the binary field. We have

also addressed the problem of efficient resource allocation for this case. As a direction

for future research, it is interesting to generalize our results to the case of multicast

demands. The open question that arises in this context is whether it is possible to

115

characterize the structure of minimal networks for the general case of h > 2 or the

case of multiple edge failures. Another open question is whether it is possible to

construct robust network codes for h > 2 over a finite field whose size depends only

on h and does not depend on the number of edges in the network.

Second, we considered the problem of securing a multicast network implement-

ing network coding against a wiretapper capable of observing a limited number of

edges of his choice, as defined initially by Cai and Yeung [15]. We showed that this

problem can be formulated as a generalization of the wiretap channel of Type II

which was introduced and studied by Ozarow and Wyner, and decomposed into two

sub-problems: the first consists of designing a secure wiretap channel code, or a coset

code, and the second consists of designing a network code satisfying some additional

constraints. We proved that there is no penalty in adopting this separation. More-

over, this approach allowed us to derive new bounds on the required alphabet size for

secure network codes. These new bounds differ from those in the literature in that

they are independent from the network size and are functions of only the number

of information messages and destinations. We also analyzed the performance of the

proposed coset codes under various wiretapper scenarios. Many interesting questions

related to this problem remain open. For instance, the bounds presented here on

the code alphabet size can be large in certain cases and it is worthy to investigate

whether tighter bounds exist. Another issue, which was not addressed in this dis-

sertation, is that of designing efficient decoding algorithms at the destinations which

can be very important in practical implementations. Also, the work of [56] hinted at

some advantages of non-linear codes. The benefits of nonlinearity in security appli-

cations, whether at the source code or at the network code level, are still to be better

understood.

Finally, we focused on the index coding problem and its relation to network

116

coding and matroid theory. We presented a reduction that maps an instance N of

the network coding problem to an instance IN of the index coding problem such

that N has a vector linear network code over Fq if and only if there is an optimal

linear index code for IN with |E| transmissions Fq, where E is the set of network

edges. Our reduction implies that these two problems are equivalent when coding

is restricted to be linear. As a consequence, many important properties of network

codes carry over to index codes. In particular, using the M -network described in [4],

we showed that vector linear codes outperform scalar ones. In addition, by using

the results of Dougherty et al. in [5], we showed that non-linear codes outperform

vector linear codes. We also presented a second reduction that maps an instance

of the matroid representation problem to an instance of the index coding problem.

In particular, for any given matroid M, we constructed an instance of the index

coding problem IM, such that M has a multilinear representation if and only if

IM has a vector linear solution over the same field. Through this reduction, we

were able to establish a connection, which is stronger then what is already described

in the literature, between linear network codes and matroid linear representation.

Furthermore, using the properties of the non-Pappus matroid, we gave more instances

of the network coding and index coding problems highlighting the advantages of vector

linear codes. An important question that remains open here is whether the two

problems of network and index coding are also equivalent for the general non-linear

case.

117

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,”

IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204–1216, 2000.

[2] S. El Rouayheb, A. Sprintson, and C. Georghiades, “Simple network codes for

instantaneous recovery from edge failures in unicast connections,” in Workshop

on Information Theory and its Applications, San Diego, CA (Invited Paper),

February 2006.

[3] S. El Rouayheb, A. Sprintson, and C. N. Georghiades, “Robust network codes

for unicast connections: A case study,” submitted to IEEE/ACM Transactions

on Networking, 2009.

[4] M. Medard, M. Effros, T. Ho, and D. R. Karger, “On coding for non-multicast

networks,” in 41st Annual Allerton Conference on Communication, Control, and

Computing, Monticello, IL, October 2003.

[5] R. Dougherty, C. Freiling, and K. Zeger, “Insufficiency of linear coding in net-

work information flow,” IEEE Transactions on Information Theory, vol. 51, no.

8, pp. 2745–2759, 2005.

[6] J. G. Oxley, Matroid Theory, New York: Oxford University Press, January

1993.

[7] T. Cover and A. EL-Gamal, “Capacity theorems for the relay channel,” IEEE

Transactions on Information Theory, vol. 25, no. 5, pp. 572– 584, September

1979.

118

[8] P. Elias, A. Feinstein, and C. E. Shannon, “A note on the maximum flow through

a network,” IEEE Transactions on Information Theory, vol. IT-2, pp. 117–119,

December 1956.

[9] K. Jain, M. Mahdian, and M. R. Salavatipour, “Packing steiner trees,” in

14th ACM-SIAM Symposium on Discrete Algorithms (SODA), Baltimore, MD,

January 2003.

[10] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Ko, “Index coding with side infor-

mation,” in Proceedings of the 47th Annual IEEE Symposium on Foundations

of Computer Science (FOCS), Berkeley, CA, October 2006, pp. 197–206.

[11] Y. Birk and T. Kol, “Informed-source coding-on-demand (ISCOD) over broad-

cast channels,” in Proceedings of the 17th IEEE International Conference on

Computer Communications (INFOCOM), San Francisco, CA, March 1998, vol. 3,

pp. 1257–1264.

[12] E. Lubetzky and U. Stav, “Non-linear index coding outperforming the linear

optimum,” in Proceedings of the 48th Annual IEEE Symposium on Foundations

of Computer Science (FOCS), Providence, RI, October 2007, pp. 161–167.

[13] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L. M. G. M.

Tolhuizen, “Polynomial time algorithms for multicast network code construc-

tion,” IEEE Transactions on Information Theory, vol. 51, no. 6, pp. 1973–1982,

2005.

[14] P. A. Chou and Yunnan Wu, “Network coding for the internet and wireless

networks,” Signal Processing Magazine, IEEE, vol. 24, no. 5, pp. 77–85, Sept.

2007.

119

[15] N. Cai and R. W. Yeung, “Secure network coding,” in IEEE International

Symposium on Information Theory (ISIT), Lausanne, Switzerland, June 2002,

p. 323.

[16] S. El Rouayheb and E. Soljanin, “On wiretap networks II,” in Proceedings of

the IEEE International Symposium on Information Theory (ISIT), Nice, France,

June 2007, pp. 551–555.

[17] S. El Rouayheb, E. Soljanin, and A. Sprintson, “Secure network coding for

wiretap networks of type II,” submitted to IEEE Transactions on Information

Theory, 2009.

[18] L. H. Ozarow and A. D. Wyner, “The wire-tap channel II,” Bell System Tech-

nical Journal, vol. 63, pp. 2135–2157, 1984.

[19] L. H. Ozarow and A. D. Wyner, “Wire-tap channel II,” in Proceedings of the

EUROCRYPT 84 Workshop on Advances in Cryptology: Theory and Applica-

tion of Cryptographic Techniques. 1985, pp. 33–51, New York: Springer-Verlag.

[20] M. Langberg, A. Sprintson, and J. Bruck, “The encoding complexity of network

coding,” Information Theory, IEEE Transactions on, vol. 52, no. 6, pp. 2386–

2397, June 2006.

[21] M. Langberg, A. Sprintson, and J. Bruck, “Network coding: A computational

perspective,” IEEE Transactions on Information Theory, vol. 55, no. 1, pp.

147–157, Jan. 2009.

[22] N. Alon, E. Lubetzky, U. Stav, A. Weinstein, and A. Hasidim., “Broadcasting

with side information,” in Proceedings of the 49th Annual IEEE Symposium on

120

Foundations of Computer Science (FOCS), Philadelphia, PA, October 2008, pp.

823–832.

[23] S. El Rouayheb, A. Sprintson, and C. N. Georghiades, “On the relation between

the index coding and the network coding problems,” in Proceedings of the IEEE

International Symposium on Information Theory (ISIT), Toronto, Canada, July

2008, pp. 1823–1827.

[24] S. El Rouayheb, A. Sprintson, and C. N. Georghiades, “A new construction

method for networks from matroids,” in Proceedings of the IEEE International

Symposium on Information Theory (ISIT), Seoul, Korea, June 2009, pp. 2872–

2876.

[25] S. El Rouayheb, A. Sprintson, and C. N. Georghiades, “On the index coding

problem and its relation to network coding and matroid theory,” submitted to

IEEE Transactions on Information Theory, 2009.

[26] R. Dougherty, C. Freiling, and K. Zeger, “Networks, matroids, and non-shannon

information inequalities,” IEEE Transactions on Information Theory, vol. 53,

no. 6, pp. 1949–1969, June 2007.

[27] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE Trans-

actions on Information Theory, vol. 49, no. 2, pp. 371 – 381, 2003.

[28] R. Koetter and M. Medard, “An algebraic approach to network coding,”

IEEE/ACM Transactions on Networking, vol. 11, no. 5, pp. 782 – 795, 2003.

[29] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The benefits of coding

over routing in a randomized setting,” in Proceedings of the IEEE International

Symposium on Information Theory (ISIT), Yokohama, Japan, June 2003, p. 442.

121

[30] E. Erez and M. Feder, “Convolutional network codes,” in IEEE International

Symposium on Information Theory, Chicago, IL, June 2004, p. 146.

[31] A. I. Barbero and O. Ytrehus, “Cycle-logical treatment for ”cyclopathic” net-

works.,” IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2795–

2804, 2006.

[32] T. Ho and D. S. Lun, Network Coding: An Introduction, Cambrige, UK:

Cambridge University Press, 2008.

[33] C. Fragouli and E. Soljanin, Network Coding Fundamentals, Foundations and

Trends in Networking, Hanover, MA: Now Publishers Inc, 2007.

[34] R. W. Yeung, S.-Y. R. Li, N. Cai, and Z. Zhang, Network Coding Theory,

Hanover, MA: Now Publishers Inc, June 2006.

[35] R. Yeung, Information Theory and Network Coding, New York, NY: Springer,

2008.

[36] R. Koetter and F. Kschischang, “Coding for errors and erasures in random

network coding,” IEEE Transactions on Information Theory, vol. 54, pp. 3579–

3591, August 2008.

[37] T. Ho, M. Médard, and R. Koetter, “An information-theoretic view of network

management,” IEEE Transactions on Information Theory, vol. 51, no. 4, pp.

1295 – 1312, April 2005.

[38] A. E. Kamal and A. Ramamoorthy, “Overlay protection against link failures

using network coding,” in Proceedings of the 42nd Conference on Information

Sciences and Systems (CISS), Princeton, NJ, 2008, pp. 527–533.

122

[39] S. Li and A. Ramamoorthy, “Protection against link errors and failures using

network coding in overlay networks,” in Proceedings of the IEEE International

Symposium on Information Theory (ISIT), Seoul, Korea, July 2009, pp. 986–990.

[40] D. S. Lun, M. Médard, R. Koetter, and M. Effros, “Further results on coding

for reliable communication over packet networks,” in Proceedings of the IEEE

International Symposium on Information Theory (ISIT), Adelaide, Australia,

September 2005, pp. 1848–1852.

[41] D. S. Lun, M. Médard, and M. Effros, “On coding for reliable communication

over packet networks,” in Proceedings of the 42nd Annual Allerton Conference

on Communication, Control, and Computing, Monticello, IL, September 2004.

[42] C. Gkantsidis and P. R. Rodriguez, “Network coding for large scale content

distribution,” in Proceedings of the 24th IEEE International Conference on

Computer Communications (INFOCOM), Miami, FL, March 2005, pp. 2235–

2245.

[43] D. S. Lun, M. Médard, T. Ho., and R. Koetter, “Network coding with a cost

criterion,” in The International Symposium on Information Theory and Its Ap-

plications (ISITA), Parma, Italy, October 2004.

[44] S. W. Yeung and N. Cai, “On the optimality of a construction of secure network

codes,” in Proceedings of IEEE International Symposium on Information Theory

(ISIT), Toronto, Canada, July 2008, pp. 166–170.

[45] J. Feldman, T. Malkin, C. Stein, and R. A. Servedio, “On the capacity of secure

network coding,” in The 42nd Annual Allerton Conference on Communication,

Control, and Computing, Monticello, IL, September 2004.

123

[46] K. Jain, “Security based on network topology against the wiretapping attack,”

IEEE Wireless Communications, vol. 11, pp. 68–71, February 2004.

[47] K. Bhattad and K. R. Narayanan, “Weakly secure network coding,” in The

First Workshop on Network Coding, Theory, and Applications (NetCod), Riva

del Garda, Italy, April 2005.

[48] D. Silva and F. R. Kschischang, “Universal weakly secure network coding,” in

Proceedings of IEEE Information Theory Workshop, Volos, Greece, June 2009,

pp. 281–285.

[49] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and D. Karger, “Byzantine

modification detection in multicast networks using randomized network coding,”

in Proceedings of the IEEE International Symposium on Information Theory

(ISIT), Chicago, IL, June 2004, p. 442.

[50] S. Jaggi, M. Langberg, T. Ho, and M. Effros, “Correction of adversarial errors in

networks,” in Proceedings of the IEEE International Symposium on Information

Theory (ISIT), Nice, France, June 2007, pp. 1455–1459.

[51] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Medard, “Resilient

network coding in the presence of byzantine adversaries,” in Proceedings of

the 26th IEEE International Conference on Computer Communications (INFO-

COM), Miami, FL, March 2005, pp. 616–624.

[52] S. Jaggi, M. Langberg, S. Katti, T.Ho, D. Katabi, M. Medard, and M. Ef-

fros, “Resilient network coding in the presence of byzantine adversaries,” IEEE

Transactions on Information Theory, vol. 54, pp. 2596–2603, June 2008.

[53] N. Cai and R. W. Yeung, “Network error correction, part I: Basic concepts and

124

upper bounds,” Communications in Information and Systems, vol. 6, no. 1, pp.

19–36, 2006.

[54] N. Cai and R. W. Yeung, “Network error correction, part II: Lower bounds,”

Communications in Information and Systems, vol. 6, no. 1, pp. 37–53, 2006.

[55] D. Silva, R. Koetter, and F. Kschischang, “A rank-metric approach to error

control in random network coding,” IEEE Transactions on Information Theory,

vol. 54, pp. 3951–3967, Aug 2008.

[56] D. Silva and F. R. Kschischang, “Security for wiretap networks via rank-metric

codes,” in Proceedings of the IEEE International Symposium on Information

Theory (ISIT), Toronto, Canada, July 2008, pp. 176–180.

[57] D. Silva and F. R. Kschischang, “Universal secure network coding via rank-

metric codes,” arXiv:0809.3546v1, 2008.

[58] A. Mills, B. Smith, T. C. Clancy, E. Soljanin, and S. Vishwanath, “On secure

communication over wireless erasure networks,” in Proceedings of the IEEE

International Symposium on Information Theory (ISIT), Toronto, Canada, July

2008, pp. 161–165.

[59] R. Peeters, “Orthogonal representations over finite fields and the chromatic

number of graphs,” Combinatorica, vol. 16, no. 3, pp. 417–431, 1996.

[60] Y. Wu, J. Padhye, R. Chandra, V. Padmanabhan, and P. A. Chou, “The local

mixing problem,” in The Information Theory and Applications Workshop (ITA),

San Diego, CA, February 2006.

[61] M. Langberg and A. Sprintson, “On the hardness of approximating the network

coding capacity,” in Proceedings of the International Symposium on Information

125

Theory (ISIT), Toronto, Canada, June 2008, pp. 315–319.

[62] S. El Rouayheb, M.A.R. Chaudhry, and A. Sprintson, “On the minimum number

of transmissions in single-hop wireless coding networks,” in Proceedings of the

IEEE Information Theory Workshop (ITW), Lake Tahoe, CA, September 2007,

pp. 120–125.

[63] M. A. R. Chaudhry and A. Sprintson, “Efficient algorithms for index coding,”

in Proceedings of the 27th IEEE International Conference on Computer Com-

munications (INFOCOM), Phoenix, AZ, April 2008, pp. 1–4.

[64] H. Whitney, “On the abstract properties of linear dependence,” American

Journal of Mathematics, vol. 57, pp. 509–533, 1935.

[65] D. J. A. Welsh, Matroid Theory, London: Academic Press, 1976.

[66] Q. Sun, S. T. Ho, and S.-Y.R. Li, “On network matroids and linear network

codes,” in Proceedings of the IEEE International Symposium on Information

Theory (ISIT), Toronto, Canada, June 2008, pp. 1833 – 1837.

[67] W. D. Grover, Mesh-Based Survivable Transport Networks: Options and Strate-

gies for Optical, MPLS, SONET and ATM Networking, New York: Prentice-

Hall, 2003.

[68] E. Ayanoglu, C.-L. I., R. D. Gitlin, and J.E. Mazo, “Diversity coding for trans-

parent self-healing and fault-tolerant communication networks,” IEEE Transac-

tions on Communications, vol. 41, no. 11, pp. 1677–1686, 1993.

[69] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algo-

rithms, and Applications, Upper Saddle River, NJ: Prentice-Hall, Inc., 1993.

126

[70] G. Brightwell, G. Oriolo, and F. B. Shepherd, “Reserving resilient capacity in a

network,” SIAM Journal on Discrete Mathematics (SIDMA), vol. 14, no. 4, pp.

524–539, 2001.

[71] G. Oriolo G. Brightwell and F. B. Shepherd, “Reserving resilient capacity for a

single commodity with upper-bound constraints,” Networks, vol. 41, no. 2, pp.

87–96, 2003.

[72] S-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE Transac-

tions on Information Theory, vol. 49, pp. 371–381, February 2003.

[73] C. Fragouli and E. Soljanin, “Information flow decomposition for network cod-

ing,” IEEE Transactions on Information Theory, vol. 52, pp. 829–848, March

2006.

[74] V. K. Wei, “Generalized hamming weights for linear codes,” IEEE Transactions

on Information Theory, vol. 37, pp. 1412–1518, September 1991.

[75] C.-K. Ngai, R. W. Yeung, and Z. Zhang, “Network generalized hamming

weight,” in Proceedings of the Workshop on Network Coding, Theory and Ap-

plications (NetCod), Lausanne, Switzerland, June 2009, pp. 48–53.

[76] C.-K. Ngai and R. W. Yeung, “Secure error-correcting (SEC) network codes,”

in Proceedings of the Workshop on Network Coding, Theory and Applications

(NetCod), Lausanne, Switzerland, June 2009.

[77] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft, “XORs

in the air: Practical wireless network coding,” in Proceedings of the ACM

SIGCOMM Conference on Data Communication, New York, NY, USA, August

2006, pp. 243–254.

127

[78] S. Katti, D. Katabi, H. Balakrishnan, and M. Medard, “Symbol-level network

coding for wireless mesh networks,” in ACM SIGCOMM Conference on Data

Communication, Seattle, WA, August 2008.

[79] Y. Birk and T. Kol, “Coding-on-demand by an informed source (ISCOD) for ef-

ficient broadcast of different supplemental data to caching clients,” IEEE Trans-

actions on Information Theory, vol. 52, no. 6, pp. 2825–2830, June 2006.

[80] J. Simonis and A. Ashikhmin, “Almost affine codes,” Designs, Codes and Cryp-

tography, vol. 14, pp. 179–797, 1998.

[81] F. Matús, “Matroid representations by partitions,” Discrete Mathematics, vol.

203, pp. 169–194, 1999.

[82] H. S. Witsenhausen, “The zero-error side information problem and chromatic

numbers,” IEEE Transactions on Information Theory, vol. 22, no. 5, pp. 592–

593, 1976.

128

APPENDIX A

PROOF OF LEMMA D.5

Let G(V,E) be a simple network, and θ a flow of value three with respect to the

reduced edge capacities c̄. Also, let C(V1, V2) be an (s, t)-cut C(V1, V2) of Type 2 in

G(V,E). We denote by E(C) = {(v1, u1), (v2, u2)} the set of the edges that belongs

to C.

We note that nodes u1 and u2 must be of Type III, since only Type III nodes

have incoming edges of capacity two. Thus, nodes u1 and u2 have two outgoing edges

each of unit capacity. By Lemma C.2, one of the outgoing edges of u1 carries a flow

of one unit; we denote it by e1
1 = (u1, u

1
1). The other outgoing edge of u1 carries a

flow of 0.5 units; we denote it by e2
1 = (u1, u

2
1). Similarly, one of the outgoing edges

of u2 carries a flow of one unit, we denote it by e1
2 = (u2, u

1
2). The other outgoing

edge of u2 carries a flow of 0.5 units, we denote it by e2
2 = (u2, u

2
2). A cut of Type 2

is depicted in Figure 33.

First, suppose that none of the uji nodes coincide with the terminal node t. Then,

since simple networks do not have multiple edges between two nodes, we have u1
1 6= u2

1

(i.e., u1
1 and u2

1 are two distinct nodes) and u1
2 6= u2

2. Moreover, u1
1 6= u1

2 due to flow

constraints. We are then left with four possible cases.

1. All the nodes u1
1, u2

1, u1
2 and u2

2 are distinct;

2. u2
1 = u1

2 and u1
1 6= u2

2. In other words, node u2
1 coincides with node u1

2, but u1
1

and u2
2 are distinct;

3. u2
1 = u1

2 and u1
1 = u2

2;

4. u2
1 = u2

2.

129

We prove, by contradiction, that only the last two cases are possible in simple

networks. Consider the first case, and suppose that all the nodes u1
1, u

2
1, u

1
2 and u2

2 are

distinct. We choose E1 = {e2
1, e

2
2}. Let GE1(θ) be the residual graph of G(V,E) with

respect to E1, and G′ be the subgraph of GE1(θ) induced by nodes in V2. Also, let

E2 be set defined by Equation (2.4). Each node in G′ has out-degree at least one, for

the following reasons:

1. The terminal t is of out-degree three in G′;

2. All nodes in G \ {u1
1, u

2
1, u

1
2, u

2
2, t}, have at least one incoming edge that does

not belong to E1. In G′ these edges become outgoing edges. Thus, these nodes

have out-degree at least one;

3. Nodes u1 and u2 have respectively the following outgoing edges e2
1 and e2

2 that

belong to E1.

4. Nodes u1
1 and u1

2 have both incoming edges in G that do not belong to E1. Such

edges will become outgoing edges in G′.

5. Consider node u2
1 in G. This node is either of Type II or IV. If u2

1 is of Type

IV, then u2
1 has an incoming edge that does not belong to E1. In G′, this edge

becomes an outgoing edge of this node. If u2
1 is of Type II, then it has an

incoming edge of capacity one and carrying a flow of 0.5 units. This incoming

edge does not belong to E1, since u2
1 and u2

2 do not coincide. Thus, u2
1 has an

incoming edge that belong to E2, which in G′ becomes an outgoing edge. The

same holds for u2
2.

Therefore, G′ includes a cycle. This cycle should include either e2
1 or e2

2 (or both)

and, in turn, e1
1 or e1

2 (or both). Suppose, without loss of generality, it is e1
1. Thus,

130

v2

u1 u2

v1

u1
1 u1

2 u2
2u2

1

e1
1 e2

1
e2
20.5

1.5 1.5

1 1 0.5e1
2

Fig. 33. A cut of Type 2. Each edge is labeled by the corresponding flow value.

the cycle should include an incoming edge of u1
1. In G, u1

1 is either of Type I or IV.

In both cases u1
1 cannot have an incoming edge in E1 since u1

1, u2
2 and u2

1 are distinct

by assumption. Thus, all the incoming edges of u1
1 belong to E2. Thus, G′ must have

a cycle that includes an edge in E2, i.e., a residual cycle. Hence, G′ is not minimal.

This completes the proof of the Lemma.

For example, consider the network depicted in Figure 34(a). The corresponding

residual graph is depicted in Figure 34(a). This graph has a cycleW = {u1, u
2
1, u

2
2, u

1
1, u1}.

This cycle includes the Type I node u1
1 and its incoming edge (u2

2, u
1
1). Since (u2

2, u
1
1) ∈

E2, W is a residual cycle. Thus, at least two of the nodes uji ’s should coincide. Note

that no more than two non-terminal nodes can coincide in a simple graph because of

the restriction on the total degree of the nodes.

Consider now the second case, i.e., when u2
1 and u1

2 coincide, but u1
1 and u2

2 do

not. We can similarly prove here, by taking E1 = {e2
1, e

2
2}, that the graph is not

minimal. Figure 34(c) shows an example of this case. Thus, if u2
1 = u1

2, we must have

u1
1 = u2

2. Also, symmetrically, if u1
1 = u2

2, we must have u2
1 = u1

2. Now, if u1
1 6= u2

2

131

(a)

2

u1 u2

u1
2u2

1

1.5 1.5

0.5

u1
1

0.5

v

(c)

0.51

2

0.5

u1 u2

u1
1

u2
2

u1
2

u2
1

1.51.5

0.5

0.5

1
0.5

1

1.51.5

e1
1

e2
1

e1
2

e2
2

e1
2

e1
1e2

1

e2
2

1.5

1.5 1.5

1

1

(b)

1

2

0.5

u1 u2

u1
1

u2
2

u1
2u2

1

0.5

1
0.5

1

1.51.5

0.5

1

Fig. 34. Examples of subgraphs of non-minimal unicast graph that include a cut of

Type 2. The labels on the edges represent the amount of flow they carry.

Edge in E1 are depicted by dashed lines. (a) An example of the case when all

the nodes adjacent to u1 and u2 are distinct. (b) The corresponding residual

graph with residual cycle W = {u1, u
2
1, u

2
2, u

1
1, u1}. (c) An example of the case

when u1
1 coincides with u2

2, but u2
1 and u1

2 are distinct nodes. The residual

cycle in this case is W = {u2, u
1
1, u1, u

2
1, v, u

1
2, u2}.

and u2
1 6= u1

2, then by elimination, it follows that the only possible case left is when

u2
1 = u2

2. In the case when u1
1 or u1

2 coincide with the terminal node, then we can

show, by following the same steps as before, that both u1
1 and u1

2 coincide with the

terminal node, and u2
1 = u2

2.

132

VITA

Salim Yaacoub El Rouayheb received his Engineering Diploma in 2002 from

the Lebanese University, Faculty of Engineering, Branch II, Roumieh, Lebanon. He

obtained his Master’s in Computer and Communication Engineering at the American

University of Beirut in 2004, and his Ph.D. degree in Electrical Engineering at Texas

A&M University in 2009.

He may be reached at House of Yaacoub El Rouayheb, Koubba, Batroun, Lebanon.

His email is rouayheb@gmail.com.

