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ABSTRACT 

 

Spectroscopic and Kinetic Investigation of the Catalytic Mechanism of Tyrosine 

Hydroxylase. (December 2009) 

Bekir Engin Eser, B.S., Bilkent University, Ankara, Turkey 

Co-Chairs of Advisory Committee:  Dr. Paul F. Fitzpatrick 
                                                          Dr. Frank M. Raushel 

 

 Tyrosine Hydroxylase (TyrH) is a pterin-dependent mononuclear non-heme iron 

oxygenase. TyrH catalyzes the hydroxylation reaction of tyrosine to 

dihydroxyphenylalanine (DOPA). This reaction is the first and the rate-limiting step in 

the biosynthesis of the catecholamine neurotransmitters. The active site iron in TyrH is 

coordinated by the common facial triad motif, 2-His-1-Glu. A combination of kinetic 

and spectroscopic techniques was applied in order to obtain insight into the catalytic 

mechanism of this physiologically important enzyme. 

Analysis of the TyrH reaction by rapid freeze-quench Mössbauer spectroscopy 

allowed the first direct characterization of an Fe(IV) intermediate in a mononuclear non-

heme enzyme catalyzing aromatic hydroxylation. Further rapid kinetic studies 

established the kinetic competency of this intermediate to be the long-postulated 

hydroxylating species, Fe(IV)O.  

Spectroscopic investigations of wild-type (WT) and mutant TyrH complexes 

using magnetic circular dichroism (MCD) and X-ray absorption spectroscopy (XAS) 

showed that the active site iron is 6-coordinate in the resting form of the enzyme and that 
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binding of either tyrosine or 6MPH4 alone does not change the coordination. However, 

when both tyrosine and 6MPH4 are bound, the active site becomes 5-coordinate, creating 

an open site for reaction with O2. Investigation of the kinetics of oxygen reactivity of 

TyrH complexes in the absence and presence of tyrosine and/or 6MPH4 indicated that 

there is a significant enhancement in reactivity in the 5-coordinate complex in 

comparison to the 6-coordinate form. Similar investigations with E332A TyrH showed 

that Glu332 residue plays a role in directing the protonation of the bridged complex that 

forms prior to the formation of Fe(IV)O.  

Rapid chemical quench analyses of DOPA formation showed a burst of product 

formation, suggesting a slow product release step. Steady-state viscosity experiments 

established a diffusional step as being significantly rate-limiting. Further studies with 

stopped-flow spectroscopy indicated that the rate of TyrH reaction is determined by a 

combination of a number of physical and chemical steps. 

Investigation of the NO complexes of TyrH by means of optical absorption, 

electron paramagnetic resonance (EPR) and electron spin echo envelope modulation 

(ESEEM) techniques revealed the relative positions of the substrate and cofactor with 

respect to NO, an O2 mimic, and provided further insight into how the active site is 

tuned for catalytic reactivity upon substrate and cofactor binding.  
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CHAPTER I 

INTRODUCTION 

 

The utilization of molecular oxygen by biological systems is crucial for aerobic 

life. Molecular oxygen is the terminal electron acceptor in the synthesis of energy rich 

molecules, which are used by aerobic organisms for their metabolic energy needs.  The 

other important function of molecular oxygen is its role in the biosynthesis of significant 

biomolecules through reactions with organic substrates (1). Although these reactions are 

thermodynamically favorable, they face high kinetic barriers due to the spin mismatch 

between molecular oxygen and organic substrates. Molecular oxygen has a triplet spin 

due to the presence of two unpaired electrons in its ground state molecular orbital 

configuration; however, the organic substrates that are targets for O2 reactivity are in the 

singlet spin state (2).  

In order to eliminate the kinetic barrier due to this spin mismatch, aerobic 

organisms utilize transition metals for most of their metabolic oxidation and oxygenation 

reactions. Due to their strong ability to change valance, transition metals can activate O2 

by acting as electron donors. Thus, a remarkable number of metalloenzymes, with 

mononuclear or multinuclear iron and copper active sites, are functional in a wide variety 

of oxidative transformations that require activation of molecular oxygen for reaction with  

 

____________ 
This dissertation follows the style of Biochemistry. 
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organic substrates (1-7). In addition to their role in oxygen activation, these enzymes also 

tightly control the reactivity of their activated oxygen species so that they only react with 

specific substrates at specific positions without side reactions that can harm the organism 

(1).  

The metalloenzymes that use iron for oxidative transformations of biomolecules 

can be classified into two main groups; heme enzymes, which contain a porphyrin ring 

coordinated to the active site iron, and non-heme enzymes, which include dinuclear and 

mononuclear members with varying number of protein derived ligands (2, 5). The 

mechanisms of heme enzymes are well established from extensive studies on heme 

peroxidases and cytochrome P450s (8, 9). Studies on dinuclear non-heme enzymes, 

especially on ribonucleotide reductase R2 protein and soluble methane monooxygenase 

in 1990s, have led to a significant understanding of the mechanism of these enzymes and 

of the iron based intermediates involved in the activation processes (2, 7, 10).  

Although studies on mononuclear non-heme enzymes lagged behind those of their 

heme and dinuclear non-heme counterparts, crystallographic and spectroscopic 

investigations in the last decade contributed significantly to our understanding of how 

these enzymes work (1, 2, 4-6). These studies also revealed that the mononuclear non-

heme family is even more versatile then the heme and dinuclear non-heme families. The 

reactions catalyzed by various members of this family include hydroxylation of aliphatic 

and aromatic substrates, epoxidation, aromatic ring cleavage, desaturation, cyclization, 

halogenation, and dihydroxylation. In most of the mononuclear non-heme enzymes, the 

iron is coordinated by a 2-His-1-Glu/Asp motif, termed a facial triad (11, 12), although 

variations from this motif have been observed (13). Heme containing enzymes have a 
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porphyrin ring that occupies four coordination sites and a protein derived axial ligand to 

fill the fifth ligation site, leaving only one open coordination to be the oxygen binding 

site. In contrast, in mononuclear non-heme enzymes, three coordination sites (other than 

those occupied by the facial triad) are available for binding O2 or other possible 

exogenous ligands such as substrates and/or cofactors, giving these enzymes great 

flexibility for catalysis (11). Thus, although most of the mononuclear non-heme family 

members are similar in their core catalytic active site structure, the way that different 

subfamilies of these enzymes handle their substrates can be very different, resulting in a 

versatile set of catalyzed reactions (2, 5). 

Mononuclear non-heme enzymes can be divided into two categories; oxygen-

activating and substrate-activating. Enzymes that activate oxygen with their ferrous iron 

sites constitute a very large and diverse group, whereas the substrate-activating category 

consists of a small group of enzymes, including lipoxygenases and intradiol 

dioxygenases, which activate their substrates with ferric iron sites for reaction with 

oxygen (2). The oxygen-activating group of enzymes catalyzes a very broad array of 

transformations and can be classified into four main groups, as shown in Figure 1 (5, 11). 

In addition to those four main classes, there is also a “catch-all” category, which mostly 

includes enzymes with oxidase functionality (1). Although all of these classes have a 

similar active site structure; a mononuclear non-heme ferrous iron coordinated by the 2-

His-1-Asp/Glu facial triad, they exhibit significant diversity in the reactions they catalyze 

and in the strategies they use to catalyze these reactions. Some of these classes use a 

cofactor to supply electrons for the reductive activation of O2, whereas others obtain 

reducing equivalents from their substrates. The use of cofactors and substrates by these 
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enzymes and the structures of the iron intermediates that carry out the reactions also 

exhibit differences among classes. In some cases, cofactors and/or substrates bind 

directly to the iron for catalysis, but for some groups they do not. Some of the common 

iron species that appear as reactive intermediates in the reaction cycles of mononuclear 

non-heme enzymes are shown in Scheme 1.  

 

 

FIGURE 1. Classes of oxygen-activating mononuclear non-heme enzymes and their 

representative reactions. 
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Scheme 1 

 

 

 

Extradiol dioxygenases and Rieske dioxygenases incorporate both atoms of 

molecular oxygen into their aromatic substrates (1, 5). The substrates of extradiol 

dioxygenases are catechols, which can make bidentate coordination to the iron. This 

family of enzymes carries out a 4-electron oxidation process in which all the electrons are 

supplied by the substrate; thus, they do not need an external electron source. Iron(III)-

superoxo and iron(II)-alkylperoxo species have been identified as reactive intermediates 

in the extradiol dioxygenases (Scheme 1). In the case of Rieske dioxygenases, in contrast, 

the substrate provides two-electrons and the two additional electrons required for the 

reduction of oxygen are supplied by NADH. The substrate binds close to the iron, and 

either a iron(III)-(hydro)peroxide or a HO-Fe(IV)O intermediate carries out the cis-

dihydroxylation of the aromatic substrate. The most versatile class in the mononuclear 

non-heme family is the α-ketoglutarate (α-KG) dependent enzymes (5, 14). The enzymes 

in this class use α-KG as a cofactor; this goes through oxidative decarboxylation during 

turnover, providing the additional two electrons required for reductive activation of O2. 
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The α-KG cofactor coordinates to the iron in a bidentate fashion, next to the oxygen-

binding site, similar to the substrate binding in extradiol dioxygenases. Substrates of α-

KG dependent enzymes bind close to the active site, but do not ligate to the iron. Attack 

of an iron(III)-superoxo intermediate onto α-KG incorporates one of the atoms of O2 into 

the cofactor and forms a high valent Fe(IV)O intermediate that is capable of carrying out 

various oxidative transformations such as aliphatic hydroxylation, ring formation, and 

desaturation.  

The other oxygen activating mononuclear non-heme family is a small but 

physiologically important group of pterin-dependent enzymes, the aromatic amino acid 

hydroxylases (AAH) (1, 5, 15, 16). The members of this family use tetrahydropterin as a 

cofactor to activate dioxygen for hydroxylation of their amino acid substrates (Scheme 

2). Contrary to the other classes of mononuclear non-heme enzymes, both the aromatic 

amino acid substrate and the tetrahydropterin cofactor incorporate one atom of O2, but 

neither of them is directly bound to the iron during catalysis. Tyrosine hydroxylase 

(TyrH) catalyzes conversion of tyrosine to dihydroxyphenylalanine (DOPA), the first and 

the rate limiting step in the biosynthesis of catecholamine neurotransmitters (dopamine, 

adrenaline and noradrenaline). TyrH is found in the brain and adrenal gland. A deficiency 

of this enzyme leads to various neurological disorders such as DOPA-responsive 

Parkinson’s disease, progressive encephalopathy, DOPA-non-responsive dystonia and 

DOPA-responsive dystonia (Segawa’s disease) (17, 18). Phenylalanine hydroxylase 

(PheH), another member of the family, is a liver enzyme and catalyzes hydroxylation of 

phenylalanine in the diet to tyrosine. Mutations in this enzyme cause a genetically 

inherited disorder, phenylketonuria (PKU), which can lead to irreversible mental 
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retardation without early treatment (15). Tyrptophan hydroxylase (TrpH) catalyzes the 

conversion of tyrptophan to 5-hydroxytryptophan, the rate-limiting step in the 

biosynthesis of the neurotransmitter serotonin. A deficiency in serotonin, which is 

involved in various brain functions such as sleep and mood regulation, leads to disorders 

such as depression, schizophrenia and obsessive-compulsive disorder (15, 19, 20). TrpH 

is found in the brain and in the pineal gland (15, 20).   

 

Scheme 2 
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All eukaryotic enzymes of the family are homotetramers (15, 21). There is also a 

bacterial form of PheH that is a monomer. The structures of all three enzymes are made 

up of three domains: A regulatory domain of 100 to 160 amino acids at the N-terminus, a 

catalytic domain of about 280 residues close to the C-terminus and a small (40-50 

residues) tetramerization domain at the C-terminus. The regulatory domains of the family 

members exhibit <14% sequence identity, consistent with their different mechanisms of 

regulation. TyrH is regulated by the phosphorylation of a number of serine residues in the 

regulatory domain, which decreases the inhibition by catecholamines giving the active 

ferrous form of the enzyme. PheH and TrpH are also regulated to some extent by 

phosphorylation of serine residues in their regulatory domains (15, 21) . In contrast to the 

regulatory domains, the catalytic domains of all three enzymes are very similar and show 

52% identity for the rat enzymes. This is in agreement with their similar catalytic 

properties.  

The only crystal structure having both the regulatory domain and the catalytic 

domain has been determined for PheH (22). Three-dimensional structures for the catalytic 

domain have been obtained for all three enzymes (23-26), and the structure of the 

tetramerization domain is also available for TyrH (23, 27). This structure shows the 

coiled-coil that is responsible for tetramer formation (23, 27). All three enzymes have one 

iron per monomer located in an active site cleft that is ~10 Å deep (Figure 2). The 

common mononuclear non-heme motif, a facial triad of 2-His and 1-Glu (His-(X)4-His-

(X)39-Glu) coordinates the active site iron in the AAHs (12, 21).  For TyrH, the facial 

triad is made up of His 331, His 336 and Glu 376. Structures of the catalytic domains 

with a tetrahydropterin or a pterin analogue have been determined for all the members of 
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AAH family (26-28). These structures show that the backbone of a flexible loop 

consisting of the residues 247-251 in PheH interact with the N(1)-N(8) side of the pterin 

ring. The only electrostatic interaction between the protein and pterin is from the 

carboxylate of Glu286 for PheH (Glu332 for TyrH). Mutation of this residue in TyrH has 

been shown to lead significant uncoupling and a 10-fold increase in Km for pterin (29).  

The structures that are most relevant to catalysis have been determined only for 

PheH (25, 30). In this case, structures have been obtained with both tetrahydrobiopterin 

and a substrate analogue, thienylalanine or norleucine bound. These structures show 

significant differences compared to the resting and binary forms. The monodentate Glu 

ligand now becomes bidentate and pterin moves ~1.5 Å towards the iron such that the 

distance of the C-4a of the pterin from the iron decreases from 6 Å to 4.5 Å, a distance 

close enough for a reaction involving oxygen, pterin and iron. Contrary to the structures 

of the binary complexes, the active site is now 5-coordinate, with only one water 

molecule bound. MCD and XAS spectroscopies also supported the observations that the 

iron active site becoming five coordinate and the glutamate becoming bidentate (31, 32). 

In addition to the active site changes, a movement of a mobile loop consisting of the 

residues 131-150 occurs in the ternary complex. The side chain of Tyr138, the residue in 

the middle of the loop, moves almost 20 Å from a surface position towards the active site 

and pack against the residues that make the amino acid binding site. Mutation of this 

residue results in a significant decrease in activity (33). Although the movement of this 

loop is only observed in the ternary structure, fluorescence anisotropy studies suggested 

pterin binding as being the initiator of this conformational change in TyrH (34). Overall, 

the combination of structural and spectroscopic data on the ternary complex of PheH 
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indicate that binding of the substrate and the cofactor makes the active site ready for 

reaction with oxygen and for the catalysis to proceed. 

 

 

 

FIGURE 2. (Left) Overlay of the catalytic domains of human PheH (1J8U), rat TyrH 

(2TOH) and human TrpH (1MLW). The active site iron is in orange. (Right) The active 

site iron of TyrH (1TOH) coordinated by the 2-His-1Glu facial triad. 

 

The ternary complex structure also reveals the residues making up the amino acid 

binding site. A hydrophobic cage made up of the side chains of aromatic amino acid 

residues surrounds the aromatic ring of the substrate side chain (21, 25). Site-directed 

mutagenesis studies showed that amino acids that pack against the residues forming the 

aromatic cage determine the substrate specificity of the enzymes (35).  

Steady-state studies established the binding order for TyrH, with tetrahydropterin 

being the first substrate to bind, followed by oxygen in rapid equilibrium and then 

tyrosine as the last (36). Although studies on PheH and TrpH have not established a 
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consensus binding order, studies with all three enzymes show that all three substrates 

must be bound before any catalytic reaction takes place (21). 

One important aspect of the reaction of TyrH and other members of AAHs is that 

for each product molecule formed, a pterin molecule is oxidized. This gives 100% 

coupling between DOPA formation and pterin oxidation. Mutations of the residues close 

to the active site or use of unnatural substrates leads to uncoupling, more pterin being 

oxidized than the amino acid being hydroxylated (21, 29, 37).  

All members of the AAH family share a similar mechanism (38-41). The 

proposed mechanism for TyrH is shown in Scheme 3 (21). Both the amino acid substrate 

and tetrahydropterin cofactor are required to bind to the active site before any catalytic 

reaction takes place. The reaction can be considered as the combination of two major 

steps. The first step, similar to the other oxygen activating non-heme enzymes (11), is 

formation of the hydroxylating intermediate. This part of the catalysis involves a reaction 

between iron, tetrahydropterin and molecular oxygen to give an iron µ-peroxypterin. 

Heterolytic cleavage of this intermediate leads to the formation of the hydroxylating 

intermediate, a high valence Fe(IV)O species, and the product 4a-hydroxypterin, which is 

released from the active site and dehydrates in solution to give quinonoid dihydropterin 

(42). NADH-dependent dihydropteridine reductase recycles quinonoid dihydropterin 

back to tetrahydropterin (43). 
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Scheme 3 
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The second part of the mechanism is the reaction of the Fe(IV)O species with the 

amino acid to give the hydroxylated product. In order to probe the mechanism of this 

hydroxylation step, the amount of the hydroxylated product was determined using various 

4-substituted phenylalanines as substrates for TyrH. The results yielded a good 

correlation with the σ values of the substituents, with a ρ value of ~ -5, which indicates a 

cationic transition state for the hydroxylation step, consistent with electrophilic aromatic 

substitution mechanism (44). The inverse isotope effects obtained for of all three 

enzymes further support this mechanism (38, 40). 

A combination of many experimental and computational observations supports 

Fe(IV)O  as being the hydroxylating species for the AAH family (21). Fe(IV)O  species 

have been characterized as hydroxylating intermediates in some heme containing 

enzymes (e.g., heme peroxidases and cytochrome P450s) and in a number of dinuclear 

and mononuclear non-heme enzymes (e.g., soluble methane monooxygenase, α-KG 

enzymes) (8-10, 45). Isotope effect studies showed that all three members of the AAH 

family can catalyze benzylic hydroxylation with a reactivity similar to heme based 

cytochrome P450s, which also use Fe(IV)O for hydroxylation of aliphatic substrates (39, 

46). Computational studies on AAHs are also consistent with the formation of Fe(IV)O 

through heterolytic cleavage of iron µ-peroxypterin intermediate and the ability of this 

intermediate to carry out aromatic and benzylic hydroxylation (47, 48).  

Steady-state kinetic studies with TyrH indicated that kcat of the reaction is not 

dependent on the identity of the amino acid (36, 49). This suggested that the slow step in 

the mechanism is oxygen activation. 18O isotope effects on V/K  are in agreement with the 

effect being due to combination of equilibrium binding of oxygen to the iron and then an 
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inner sphere electron transfer mechanism during formation of iron µ-peroxypterin 

intermediate (50). 

This dissertation will report experimental results from a combination of 

spectroscopic and kinetic studies on the catalytic mechanism of TyrH. Kinetic dissection 

of individual steps, characterization of reaction intermediates and the correlation of the 

active site structural changes to reactivity in TyrH reaction will be described. 
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CHAPTER II 

KINETIC AND CHEMICAL CHARACTERIZATION OF THE FERRYL-OXO 

INTERMEDIATE IN TYROSINE HYDROXYLASE REACTION BY RAPID 

REACTION TECHNIQUES* 

 

INTRODUCTION 

The aromatic amino acid hydroxylases (AAH) form a small family of 

mononuclear non-heme enzymes. The members of this family use tetrahydropterin as a 

cofactor for the hydroxylation of their amino acid substrates (15, 16). Tyrosine 

hydroxylase (TyrH) catalyzes the conversion of tyrosine to dihydroxyphenylalanine 

(DOPA) as the first and the rate-limiting step in the biosynthesis of catecholamine 

neurotransmitters (dopamine, adrenaline and noradrenaline) (Scheme 4). TyrH is found in 

the brain and adrenal gland. Deficiency of this enzyme leads to various neurological 

disorders such as DOPA-responsive Parkinson’s disease, progressive encephalopathy, 

DOPA-non-responsive dystonia and DOPA-responsive dystonia (Segawa’s disease) (17, 

18).  

 

 

 

 
 
 
 
____________ 
*Reproduced in part with permission from Eser, B. E., Barr, E. W., Frantom, P. A., 
Saleh, L., Bollinger, J. M., Jr., Krebs, C., and Fitzpatrick, P. F. J.Am.Chem.Soc. 2007,        
129, 11334–11335. Copyright 2007 American Chemical Society. 
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The other members of the family are phenylalanine hydroxylase (PheH) and 

tyrptophan hydroxylase (TrpH). PheH is a liver enzyme and catalyzes hydroxylation of 

phenylalanine in the diet to tyrosine. A deficiency of PheH is responsible for 

phenylketonuria, one of the most common genetically inherited diseases of amino acid 

metabolism (15).  TrpH, the rate-limiting enzyme in the biosynthesis of serotonin, 

converts tyrptophan to 5-hydroxytryptophan and is found in the central nervous system 

and in the pineal gland (15, 20).  

 

Scheme 4 

 

 

All three enzymes of the AAH family, consistent with their analogous catalytic 

domain, share a similar mechanism (38-41). They have similar active sites where the 

mononuclear non-heme iron is coordinated by a 2-His-1-Glu facial triad (23, 51), a 

common catalytic motif responsible for the various reactivities of  non-heme systems 

(12). The proposed mechanism for TyrH is shown in Scheme 3 (21). The mechanism can 
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be divided into two partial reactions. The first part involves formation of an iron µ-

peroxypterin bridge after a reaction between iron, oxygen and tetrahydropterin. In order 

for this reaction to occur, the amino acid substrate must be bound (21). The heterolytic 

cleavage of the O-O bond gives the hydroxylating intermediate, the proposed Fe(IV)O, 

and the side product 4a-hydroxypterin. In the second part of catalysis, the reaction of the 

hydroxylating intermediate with the aromatic ring gives the product, DOPA, through 

electrophilic aromatic substitution (44). Although the proposed mechanism for AAHs has 

been supported by many experimental and computational observations, no intermediate 

has been characterized directly to date. A Fe(IV)O  has for long been postulated to be the 

hydroxylating species for amino acid hydroxylases (21).  Fe(IV)O  species have been 

characterized as hydroxylating  intermediates in some heme protein systems (e.g., heme 

peroxidases) (8, 9) as well as in a number of non-heme systems (e.g., ribonucleotide 

reductase protein R2 and soluble methane monooxygenase) (7, 10), and the ability of this 

species to oxygenate unactivated molecules has also been shown with inorganic non-

heme model complexes (52). Previous studies demonstrated that all three members of 

AAH family are capable of carrying out benzylic hydroxylation, in addition to their 

unique aromatic hydroxylation reactions (16). PheH can also catalyze difficult aliphatic 

hydroxylation and epoxidation reactions (16). Investigation of the mechanism of benzylic 

hydroxylation by all three enzymes demonstrated their similar reactivity to heme based 

cytochrome P450s, which use Fe(IV)O for hydroxylation of aliphatic substrates (39, 46). 

In addition, some of the mononuclear non-heme families are also capable of aliphatic 

hydroxylation reactions and Fe(IV)O species have been proposed to be the hydroxylating 

intermediates in these enzymes (e.g., α-KG dependent enzymes and IPNS)  (2, 21). 
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Further evidence comes from computational studies carried out for the AAH family by 

Bassan and coworkers. Reaction models investigated using hybrid density functional 

theory are in agreement with the formation of Fe(IV)O through heterolytic cleavage of 

iron µ-peroxypterin intermediate and the ability of this intermediate to carry out aromatic 

and benzylic hydroxylation (47, 48).  

Mössbauer spectroscopy is a powerful technique for the characterization of the 

electronic and magnetic properties of iron species (10, 53). 57Fe exhibits transitions 

between the nuclear ground state, I=1/2, and the first excited-state, I=3/2, that can be 

perturbed by the electronic structure of the chemical environment around the iron via 

hyperfine interactions, thus revealing information about the oxidation state of iron as well 

as the spin state (Figure 3). RFQ method coupled with Mössbauer spectroscopy enables 

us to trap intermediates by freezing reaction samples in a cryosolvent after allowing the 

reaction to proceed for a defined period of time (53). These frozen samples then can be 

analyzed by Mössbauer spectroscopy, allowing characterization of the iron species 

present in the sample. In addition, the absorption intensity of the Mössbauer signal can be 

correlated to the quantity of the iron species; thus, the kinetics of an intermediate can be 

studied by collecting samples at various time points.  RFQ EPR is a complementary 

technique to RFQ Mössbauer spectroscopy and often used in conjunction with 

cryoreduction in order to obtain EPR active Fe(III) species from EPR inactive Fe(IV) 

intermediates (53).  Combination of these two techniques provides detailed information 

about the kinetics and chemical nature of iron intermediates. 
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FIGURE 3. The theoretical basis for Mössbauer spectroscopy. Left is a typical 

quadrupole doublet Mössbauer spectrum in the absence of magnetic field. δ is the isomer 

shift and ∆EQ is the quadrupole splitting parameter. Right are the nuclear energy levels of 
57Fe and the transitions that give rise to the Mössbauer quadrupole doublet spectrum. 

 

RFQ 57Fe Mössbauer technique has been successfully utilized for direct detection 

of the high-valent ferryl-oxo species proposed for a number of heme-containing and 

dinuclear non-heme systems and has brought significant insight into the catalytic 

mechanisms of these enzymes (53-56). Recently, a high-spin Fe(IV) intermediate was 

directly characterized for the first time for a mononuclear non-heme enzyme, 

taurine/alpha-ketoglutarate dioxygenase (TauD) (57). Further investigation of this 

intermediate using continous flow resonance Raman and X-ray absorption spectroscopies 

confirmed the presence of a Fe(IV)=O bond (58, 59). Stopped-flow absorption 

spectroscopy and deuterium kinetic isotope effect studies brought further evidence for the 

catalytic competency of this intermediate as the hydroxylating species in the TauD 

reaction (60). The studies on TauD were followed by the characterization of Fe(IV)O 
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intermediates in some other mononuclear non-heme enzymes, including prolyl-4-

hydroxylase and halogenase cytc3, both of which are also α-KG-dependent (45).   

For the AAH family, as stated above, computational studies and the ability of the 

family members to catalyze difficult benzylic and aliphatic hydroxylation reactions 

similar to heme and non-heme enzyme systems strongly support the presence of a high-

valent Fe(IV)O species as the hydroxylating intermediate (21). In order to address the 

involvement of such an intermediate directly, the reaction of TyrH with oxygen was 

studied by RFQ Mössbauer and RFQ EPR spectroscopies in collaboration with the 

laboratories of J. Martin Bollinger, Jr., and Carsten Krebs at Pennsylvania State 

University. Further studies were carried out using rapid chemical quench and stopped-

flow spectroscopy in order to demonstrate the kinetic competency of this intermediate in 

TyrH reaction.  

 

EXPERIMENTAL PROCEDURES 

Materials. 6-Methyltetrahydropterin (6MPH4) was from Schircks Laboratories 

(Jona, Switzerland). Ferrous ammonium sulfate, hepes, potassium chloride and 

ammonium sulfate were purchased from Fisher (Pittsburgh, PA). Glycerol and tyrosine 

were from Sigma-Aldrich (Milwaukee, WI). Ampicillin was from USB Corporation 

(Cleveland, OH). Isopropyl �-thiogalactopyranoside (IPTG) was purchased from Inalco 

(Milano, Italy). All other reagents were of the highest purity commercially available. 

Enzyme Expression and Purification. Wild-type TyrH was expressed in E. coli 

and purified as previously described (61). In order to make the enzyme apo, the 

ammonium sulfate pellet at the end of purification was resuspended in 5 mM EDTA, 200 
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mM Hepes (pH 7.5), 10% glycerol and 0.1 M KCl, and incubated on ice for one hour. 

The enzyme solution was then dialyzed against the same buffer without EDTA. The iron 

content of the apo-enzyme was measured using a Perkin-Elmer AAnalyst600 atomic 

absorption instrument. The typical iron content of an apoenzyme preparation was 0.1-

0.15 equivalents. 

Preparation of Mössbauer and EPR Samples. The concentration of TyrH was 

determined using an extinction coefficient of 58.24 mM-1cm-1 at 280 nm (62). Highly 

concentrated stock solution of tyrosine (~50 mM) was prepared in a solution with a final 

pH of ~10. The exact concentration of the tyrosine stock solution was determined using 

an extinction coefficient of 1.34 mM-1cm-1 at 275 nm in 0.1 M HCl. Stock solution of 6-

methyltetrahydropterin was prepared in 2 mM HCl and an extinction coefficient of 17.8 

mM-1cm-1 in 2 M perchloric acid was used to determine the concentration. Anaerobic 

solutions of the TyrH:57Fe(II) :tyr:6MPH4  complex (2.15 mM TyrH, 1.95 mM Fe(II), 3.7 

mM 6MPH4 and 3.7 mM Tyr in 200 mM Hepes, 10% glycerol, 0.1 M KCl at pH 7.5) 

were prepared in a MBraun anoxic chamber with a nitrogen atmosphere (Peabody, MA). 

57Fe(II) was prepared by dissolving 57Fe(0) in oxygen-free H2SO4 (2 N). In order to avoid 

denaturation of the protein solution, the acidic 57Fe(II) stock (50 mM) was mixed with an 

anaerobic solution of 1 M Tris•HCl, pH 7.6, prior to its addition. The 0 ms time sample 

was prepared by taking an aliquot of the TyrH:
57Fe(II):Tyr:6MPH4  complex and 

transferring it directly to a Mössbauer cell. The cell was sealed in a vial and frozen in 

liquid nitrogen after being removed from the glove box. The procedure for the 

preparation of freeze-quenched Mössbauer and EPR samples using the rapid-quench 

instrument has previously been described (63).  The TyrH:
57Fe(II) :Tyr:6MPH4   complex 
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was loaded into a rapid quench syringe in the glovebox. The syringe was then removed 

from the glovebox and attached to the instrument. A second syringe of O2-saturated (1.9 

mM) buffer (200 mM Hepes, pH 7.5, 10% glycerol, 0.1 M KCl) was also connected to 

the instrument. These solutions were mixed at 5 °C in a volume ratio of 1:2 

(TyrH:
57Fe(II):Tyr:6MPH4 vs. O2-saturated buffer). The resulting reaction mixture was 

allowed to flow through an aging line with the appropriate length to give the desired 

reaction time before it was quenched by direct injection into 2-methylbutane at -150 °C. 

The total reaction time was determined by adding a quench time of about 10 ms to the 

calculated reaction time for the delay through the aging line (64). 

Mössbauer Spectroscopy. Mössbauer spectra were recorded on spectrometers 

(WEB Research; Edina, MN) operating in the constant acceleration mode in a 

transmission geometry (57). The temperature of the samples was kept at 4.2 K during 

spectrum collection. A magnetic field of 40 mT was applied parallel to the γ-beam for 

collection of low-field spectra of the samples inside a SVT-400 dewar from Janis 

(Wilmington, MA). For high-field spectra, the samples were inside a 12SVT dewar 

(Janis) with a superconducting magnet that allows application of variable magnetic fields 

between 0 and 8 T parallel to the γ-beam. Data analysis was carried out using the 

program WMOSS from WEB Research (Edina, MN). The 8 T Mössbauer spectrum was 

analyzed with the spin Hamiltonian given in equation 1. The first term of the equation 

describes the electron Zeeman effect, the second and third terms describe the axial and 

rhombic zero field splitting of the electronic ground state, the fourth term represents the 

interaction between the electric field gradient and the nuclear quadrupole moment of the 

Fe sites, the fifth term describes the magnetic hyperfine interaction of the electronic spin 
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with the 57Fe nucleus, and the last term represents the nuclear Zeeman interaction. 

Simulations were carried out with respect to the spin of the ground state, S = 2. All 

tensors were assumed to be collinear. 
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Cryoreduction by Low-Temperature γ-Radiolysis. The freeze-quenched 20-ms 

sample was irradiated by γ-irradiation using a 60Co-source (total radiation dose: 3.5 

MRad). The temperature of the samples was maintained at 77 K during the γ-irradiation 

process. 

EPR Spectroscopy. EPR spectra were recorded on an ESP300 spectrometer 

(Bruker; Billerica, MA) equipped with an ER 041 MR Microwave Bridge and a 4102ST 

X-band Resonator. Spectrometer conditions were as following; temperature, 13 K; 

microwave frequency, 9.45 GHz; microwave power, 20 mW; modulation amplitude, 10 

G; modulation frequency, 100 kHz. 

Rapid Chemical Quench. Rapid chemical quench experiments of TyrH were 

performed using an SFM-400/Q rapid-mixing instrument from Bio-Logic (Claix, France) 

in quenched-flow mode. The instrument was made anaerobic through incubation with 

excess sodium dithionite solution for at least two hours. A solution of 500 µM apo-TyrH 

and 1 mM tyrosine  in 200 mM Hepes (pH 7.5), 10% glycerol and 0.1 M KCl was made 

anaerobic in a tonometer on ice, through at least 20 argon-vacuum cycles. Ferrous 
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ammonium sulfate (480 µM) was then added to the tonometer under argon. 6MPH4 stock 

solution was prepared in 2 mM HCl and a volume corresponding to a final concentration 

of 2 mM (in tonometer) was placed in the side arm of the tonometer under argon. 

Additional argon-vacuum cycles were performed prior to mixing the 6MPH4 solution 

with the tonometer contents, which was then loaded to one of the syringes of the rapid-

mixing instrument. A buffer solution of 200 mM Hepes (pH 7.5), 10% glycerol and 0.1 

M KCl was bubbled with pure oxygen gas for at least 20 min on ice (to obtain a 

concentration of 1.9 mM O2) and was loaded to a second syringe of the instrument. The 

quenching solution, 5 M HCl, was loaded into a third syringe. The tonometer contents 

were mixed with the oxygenated buffer at 5 °C and quenched with acid after being aged 

through a 190 µl (N° 5) delay line. Collected samples were analyzed for their DOPA 

content using a colorimetric assay as described previously (36).  

Stopped-Flow Spectrophotometry. Single turnover kinetics of TyrH were monitored 

using an Applied Photophysics (Leatherhead, UK) SX20 stopped-flow spectrophotometer 

in absorbance mode. The instrument was made anaerobic through incubation with excess 

sodium dithionite solution for at least two hours. The solutions were prepared in the same 

way as described above for the rapid chemical quench experiments. TyrH:Fe(II):Tyr:6-

MePH4 in 200 mM Hepes, 10% glycerol and 0.1 M KCl, pH 7.5 was mixed with an equal 

volume of the same buffer containing oxygen (950 µM final) at 5 °C. The concentrations 

after mixing were 35 µM  TyrH:Fe(II),  80 µM Tyr and 80 µM 6-MePH4 for the 248 nm 

trace, and 100 µM TyrH:Fe(II), 235 µM Tyr and 235 µM 6-MePH4 for the 318 nm trace. 

Data analysis. Time-dependent product formation traces obtained from rapid 

chemical quench experiments and single wavelength absorbance traces from stopped-
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flow spectroscopy consisted of one or more exponential kinetic phases. These data were 

analyzed by first fitting to single or multiple exponentials using the program 

KaleidaGraph (Synergy Software). Results from these fits were than taken as initial 

estimates for global fits and simulations. Initial estimates for unknown extinction 

coefficients were determined by global fitting of multiple traces using the program 

DynaFit (65). Initial concentrations were allowed to float within 10% of the experimental 

values. Global fitting process was performed in an iterative fashion, in which one or two 

parameters were varied at a time and the rest of the parameters were kept constant. Best 

fit parameters obtained this way were than employed for the kinetic simulation (DynaFit) 

of the experimental data to appropriate mechanisms. 

 

RESULTS 

RFQ Mössbauer Spectroscopy. The anaerobic TyrH:Fe(II):Tyr:6-MPH4 complex 

(2.15 mM TyrH, 1.95 mM Fe(II), 3.7 mM, 6-MPH4 and 3.7 mM tyrosine) was mixed with 

oxygenated buffer (1.9 mM) in a volume ratio of 1:2 at 5 °C. The reaction mixture was 

allowed to age from 20 ms to 390 ms before being quenched with cryosolvent (53). The 

collected samples were analyzed by Mössbauer spectroscopy (Figure 4). The control 

sample has two asymmetric broad lines having parameters associated with a typical high 

spin Fe(II) complex. The asymmetry suggests the presence of at least two distinct Fe(II) 

complexes.  
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FIGURE 4. Mössbauer spectra at 4.2-K of the reaction at 5 °C of the 

TyrH:Fe(II):6MPH4:Tyr complex with oxygen-containing buffer. Reaction times and 

magnetic field strengths are as indicated. Left panel: spectra (hashed marks) at various 

reaction times. The solid lines are quadrupole doublet simulations of the spectra of the 

Fe(IV) intermediate (δ = 0.25mm/s and ∆EQ =1.27 mm/s). Right panel: deconvolution of 

the spectrum of the 20-ms sample in zero-field (top panel) and an 8-T field (bottom 

panel). The spectrum of the anaerobic control scaled to 60% of the total intensity is 

shown as a solid line overlaid with the raw data at the top spectrum within each panel. 

The hashed lines in the below spectra within each panel are the difference spectra that 

were obtained by subtracting the solid line from the hashed line at the top spectra. The 

solid line in the below spectrum is the simulation of the difference spectra for the Fe(IV) 

intermediate (24% intensity) with the following spin Hamiltonian parameters: S = 2, D = 

12.5 cm-1, E/D = 0.05, δ = 0.25 mm/s, ∆EQ = -1.27 mm/s, η = -0.5, A/gNβN = (-18.0, -

18.0,-31.0) T. 
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In the samples collected at times from 20 ms to 150 ms, a new line at ~0.9 mm/s 

is present. This peak exhibits a quadrupole doublet in a weak external magnetic field, and 

the second line of the doublet overlaps with the low-energy line of the Fe(II) doublet at -

0.5 mm/s, which is apparent from the higher  intensity of this line than the high-energy 

band of the Fe (II) complex at +2.8mm/s.  These parameters are similar to those observed 

in other mononuclear non-heme enzymes for Fe(IV) intermediates (45).  

To characterize this intermediate further, spectra of the 20-ms sample (this sample 

contains a maximum amount of the intermediate, 24% of total Fe) were recorded without 

an applied field (Figure 4, top right panel) and with an 8-T applied field (bottom right 

panel). The spectrum of the 20-ms sample is shown as the top spectrum in each panel 

(vertical bars). Removal of the spectral contribution of the starting material (55% of the 

total intensity, shown as a solid line in the top spectra) results in the spectra depicted as  

vertical bars (lower spectrum in each panel). The zero-field spectrum reveals the position 

of the low-energy line and allows the isomer shift (δ) and quadrupole splitting (∆EQ) of 

the intermediate to be determined: δ = 0.25 mm/s and ∆EQ = 1.27 mm/s. These 

parameters are similar to those experimentally observed (45, 53) and theoretically 

predicted (66, 67) for non-heme Fe(IV) intermediates, suggesting the presence of such a 

complex in TyrH. In addition, the spectrum reveals two broad lines at 0 and 2.4 mm/s. 

These features are associated with a new high-spin Fe(II) complex formed during the 

reaction.  

The 8-T spectrum provides further insight into the electronic structure of the 

Fe(IV) intermediate. In particular, the sharp line at 4 mm/s is associated with the 

intermediate and not the reactant complex. The spectrum resulting after removal of the 
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55%-contribution of the reactant complex reflects the Fe(IV) intermediate (24%) and a 

new high-spin Fe(II) complex (20%). The contribution of the Fe(IV) complex was 

simulated according to the spin Hamiltonian formalism with parameters typical of high-

spin Fe(IV) complexes (45, 53, 66, 68). 

RFQ EPR. The RFQ-EPR sample that was quenched after 20 ms in the same way 

and conditions as the Mössbauer sample was reduced by gamma radiation at 77 K and the 

EPR spectrum was taken. The resulting spectrum shows features at g = 4.3 region that are 

specific to Fe(III) (Figure 5). This suggests that Fe(IV) was present in the freeze-

quenched sample and Fe(III) formed upon cryoreduction. Similar results have been 

obtained for other non-heme Fe(IV)O intermediates (57). 

Rapid Chemical Quench. The anaerobic complex of TyrH:Fe(II):Tyr:6-MPH4  

(500 µM TyrH, 480 µM Fe(II), 1 mM Tyr, and 2 mM 6-MPH4) was reacted with an equal 

volume of oxygen containing buffer (1.9 mM) in the same way as for the Mössbauer 

study, except the reaction mixture was quenched by concentrated acid (5 M HCl)  instead 

of cryosolvent. The samples collected at various time points were analyzed by a 

colorimetric DOPA assay (36). The time-dependent data obtained from this analysis 

could be fit reasonably well as a single exponential increase with a rate constant of 15 ± 2 

s-1. This is significantly faster than the kcat value at this temperature. The kinetics of 

formation of both DOPA and the Fe(IV) species were then analyzed according to the 

mechanism of Scheme 5, with the single rate constant for DOPA formation as an initial 

estimate. In this kinetic mechanism, the first step is the concomitant formation of 

Fe(IV)O and 4a-hydroxypterin. Fe(IV)O and tyrosine then react to form the product 

DOPA. Both time courses were well fit with values for the rate constants k1 and k2 of 24 
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and 35 s-1, respectively, consistent with the Fe(IV) intermediate being the hydroxylating 

species (Figure 6). 

 

 

 

 

Figure 5. X-band EPR spectra of a sample in which the TyrH:Fe(II):6MPH4:Tyr complex 

was reacted with an O2-saturated buffer solution for 20 ms (the experimental conditions 

are identical to those reported for the Mössbauer sample). The spectra were recorded 

before (red) and after (blue) γ-irradiation of the sample at 77 K with a 60Co source (total 

radiation dose: 3.5 MRad). Spectrometer conditions are given in Experimental 

Procedures. 
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Scheme 5 

 

 
 

 

FIGURE 6. Comparison of time courses for Fe(IV)O formation and decay (diamonds) 

and for DOPA formation (circles). DOPA was quantified by rapid-quench of the reaction 

at 5 °C of the complex of 500 µM TyrH, 480 µM Fe(II), 1 mM Tyr, and 2 mM 6MPH4 

with an equal volume of 1.9 mM oxygen-containing buffer. The lines are simulations 

using the mechanism of Scheme 5 and values of k1 and k2 of 24 s-1 and 35 s-1, 

respectively, assuming that 80% of the enzyme complex is active. 
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Stopped-Flow Absorbance Spectroscopy. Investigation of the kinetics of the 

possible intermediates with diagnostic absorbance signatures was carried out using 

stopped-flow absorbance spectroscopy. The progress of the reaction of an anaerobic 

solution of TyrH:Fe(II):Tyr:6-MPH4 in 200 mM Hepes, 10% glycerol and 0.1 M KCl, pH 

7.5, with an equal volume of the same buffer containing oxygen (950 µM final) at 5 °C 

was monitored by the stopped-flow spectrophotometer. The absorbances of the pterin 

species (69) which form during the course of the reaction were dominant in single 

wavelength traces from 240 nm to 450 nm (57). Traces for the absorbance changes at 248 

nm, where 4a-hydroxypterin has the largest change, and for 300 nm-350 nm, where both 

4a-hydroxypterin and quinonoid dihydropterin absorb, were analyzed using the global 

fitting software DynaFit (65) as described in Experimental Procedures. 

Absorbance changes up to 1 s at 248 and 318 nm exhibit biphasic pattern. Global 

simulation of these traces to a two-step mechanism given in Scheme 6 accounted well for 

the data (Figure 7). Since 4a-hydroxypterin and Fe(IV)O should form concomitantly 

(Scheme 3), the rate constant (24 s-1) obtained for the formation of Fe(IV) from RFQ 

Mössbauer and chemical quench time courses (Scheme 3) was directly used for the first 

rapid phase in the simulation analysis. A slower second step with a rate constant of 1.4 s-1 

is necessary to account for the absorbance changes of the second phase. The extinction 

changes of each step used for the simulation analysis are given in Table 1.  
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Scheme 6 

 

 

 

 

 

 

FIGURE 7. Stopped-flow absorbance traces at 248 nm (left) and at 318 nm (right), 

acquired by mixing an anaerobic solution of TyrH:Fe(II):Tyr:6-MPH4 in 200 mM Hepes, 

10% glycerol and 0.1 M KCl, pH 7.5, with an equal volume of the same buffer containing 

oxygen (950 µM final) at 5 °C. The concentrations after mixing were 35 µM  

TyrH:Fe(II),  80 µM Tyr and 80 µM 6-MPH4 for the 248 nm trace, and 100 µM 

TyrH:Fe(II), 235 µM Tyr and 235 µM 6-MPH4 for the 318 nm trace. Experimental data 

are shown as circles. Solid lines are the simulations using the mechanism and rate 

constants shown in Scheme 6 as described in Experimental Procedures.  
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Table 1. Rate Constants and Extinction Changes Obtained from the Global Kinetic 

Analysis of the Stopped-Flow Data Traces for the Reaction of TyrH. 

Step Rate Constant (s-1) ∆∆∆∆εεεε248nm (M-1cm-1) ∆∆∆∆εεεε318nm (M-1cm-1) 

k1 24 s-1 +2400 -1400 

k2 1.4 s-1 +11700 -2400 

 

 

DISCUSSION 

A high-valent Fe(IV)O species has for long been proposed to be the hydroxylating 

intermediate in the reaction of TyrH. Although there is extensive spectroscopic data 

demonstrating the involvement of such an intermediate in heme enzymes and dinuclear 

non-heme enzymes (53-56), the first direct evidence for the presence of an Fe(IV)O 

intermediate in a mononuclear non-heme system has only become available very recently 

(57). Similarities between the reactions catalyzed by TyrH and the enzyme systems that 

use Fe(IV)O as intermediates (21) strongly suggest the involvement of Fe(IV)O as the 

hydroxylating species in TyrH reaction, encouraging us to carry out rapid reaction studies 

in conjunction with spectroscopy for direct characterization of this intermediate. 

RFQ Mössbauer spectroscopy, a powerful technique for kinetic and chemical 

characterization of iron-based intermediates (53), has been used to obtain evidence for 

the presence of an Fe(IV)O intermediate in TyrH reaction. Mössbauer spectroscopic 

analysis of the samples collected by rapid freeze quench clearly demonstrate that an 

Fe(IV) species indeed forms during the catalytic cycle of TyrH. Samples collected at 

various time points for Mössbauer spectroscopic analysis also allowed kinetic analysis of 

the intermediate. The highest amount of Fe(IV), about 20% of the starting complex, was 

quantified for the 20 ms sample, and the signal for Fe(IV) had decayed almost completely 
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at 390 ms. Mössbauer analysis of the 20 ms sample at zero magnetic field allowed the 

isomer shift (δ) and quadrupole splitting (∆EQ) parameters to be calculated as 0.25 mm/s 

and -1.27 mm/s, respectively. Further analysis of this 20 ms sample at high magnetic 

field (8 T) is in agreement with a high spin (S=2) Fe(IV). 

Although some Fe(III) species can give isomer shift values in a similar range to 

that of TyrH, these Fe(III) species are generally low spin and are not expected to give a 

quadrupole doublet at low magnetic field. In addition, the Mössbauer parameter values 

obtained for TyrH are very similar to the parameters observed for the Fe(IV)O 

intermediates in TauD, prolyl-4-hydroxylase and cytc3 halogenase (Table 2) (57, 70, 71). 

In the case of TauD, the evidence provided by Mössbauer spectroscopy for the presence 

of an Fe(IV)O intermediate was supported by additional experiments. The continuous-

flow resonance Raman spectrum of the intermediate exhibits a stretching mode 

characteristic of Fe(IV)=O, and EXAFS spectra show the appropriate bond distance for a 

Fe(IV)=O unit (58, 59). RFQ EPR spectroscopy further supports the presence of an 

Fe(IV) intermediate in TyrH reaction. The cryoreduced sample showed increased signal 

intensity at g=4.3, which is characteristic of an Fe(III) species. This can only occur if 

there is Fe(IV) present in the sample before cryoreduction. One-electron reduction of 

Fe(IV) will then result in Fe(III), giving increased intensity for g=4.3 signal. A similar 

result was also observed with TauD (57). 
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Table 2. Comparison of Mössbauer Parameters of TyrH with Those of Other 

Mononuclear Non-heme Systems. 

Enzyme δδδδ (mm/s) ∆∆∆∆EQ (mm/s) 

TyrH 0.25 -1.27 

TauDa 0.31 -0.88 

Prolyl-4-hydroxylaseb 0.30 -0.82 

Cytc3 halogenasec 0.30 -1.09 
a Reference 36. b Reference 69. c Reference 70. 

 

Although the RFQ Mössbauer and RFQ EPR experiments showed direct evidence 

for the involvement of an Fe(IV) intermediate in TyrH reaction, they do not provide 

direct support for this species to be the proposed hydroxylating intermediate, Fe(IV)O. 

According to the proposed mechanism (Scheme 3), the initial reaction of Fe(II), O2 and 

tetrahydropterin leads to the formation of an iron µ-peroxypterin bridge. The heterolytic 

cleavage of this intermediate should result in Fe(IV)O and 4a-hydroxypterin 

concomitantly. In the next step of the reaction, the electrophilic attack of Fe(IV)O on the 

aromatic ring of tyrosine gives the product DOPA. If the Fe(IV) intermediate detected by 

Mössbauer spectroscopy is indeed the hydroxylating species, the decay of this 

intermediate should be coupled to DOPA formation. In agreement with this proposal, the 

Fe(IV) formation and decay and DOPA formation kinetics can be simulated globally 

(Figure 6) according to the mechanism in Scheme 5, supporting the kinetic competency 

of Fe(IV) intermediate as the hydroxylating species.  

Stopped-flow analysis of the reaction of TyrH further suggests that the Fe(IV) 

intermediate observed by Mössbauer spectroscopy is indeed the postulated Fe(IV)O 

species. Since the formation of the Fe(IV)O intermediate and 4a-hydroxypterin occur in 
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the same step, the kinetics for their formation should also be identical. Pterin species have 

unique absorbances in 200-450 nm region (69). The global kinetic analysis of the 

stopped-flow data traces at 248 and 318 nm are in good agreement with a two-step 

mechanism (Scheme 6). The signs of the absorbance changes at both wavelengths (an 

increase at 248 nm and a decrease at 318 nm) for this step are in agreement with the 

known absorbance spectra of 4a-hydroxypterin (69, 72, 73). These observations support 

the conclusion that this first rapid step is the formation of 4a-hydroxypterin and Fe(IV)O 

upon cleavage of the putative iron µ-peroxypterin bridged intermediate. 

When compared to the reported spectra of pterin species in solution (69), the 

magnitudes of absorbance changes for the first step are less than those that would be 

expected for the formation of 4a-hydroxypterin species (Table 1). This difference 

suggests that either the spectrum of 4a-hydroxypterin is perturbed inside the enzyme 

active site or the initial pterin product from the heterolytic cleavage of the iron µ-

peroxypterin bridge is a deprotonated form, thus leading to smaller extinction changes. In 

fact, a second step with a rate constant of 1.4 s-1, a value close to the kcat of the catalysis, 

is needed to account for the later time points (up to ~1 s), and the sum of the absorbance 

changes associated with the first and the second steps match the change that would be 

expected for the formation of 4a-hydroxypterin from 6MPH4 in solution at neutral pH 

(72, 73). This strongly implies that this step is either protonation of 4a-hydroxypterin or 

release of 4a-hydroxypterin from the active site of the enzyme.  

Although studies with TauD revealed that formation of Fe(IV)O is associated 

with an increasing absorbance change at 318 nm (57), no such absorbance pattern related 

with the formation of Fe(IV) species has been observed for TyrH reaction. A reasonable 
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explanation is that in the case of TauD, Fe(II) is coordinated by the α-KG cofactor in 

addition to the protein derived facial triad, whereas for TyrH, there are not any external 

ligands present other than water molecules. Given the different iron environments, the 

absorbance spectra for Fe(IV)O in TyrH and TauD might be quite different. However, 

investigation of the 200-500 nm region did not reveal any absorbance change that might 

be attributed to an Fe(IV)O intermediate. It is very likely that any absorbance from an 

Fe(IV)O species is being obscured by the highly absorbing pterin species in this 

wavelength region. 

When the results of kinetic analysis from the RFQ Mössbauer, rapid chemical 

quench and stopped-flow experiments are taken together, the mechanism and rate 

constants presented in Scheme 7 can be established for TyrH reaction. The first step is the 

concomitant formation of Fe(IV)O and 4a-hydroxypterin. Then, the Fe(IV)O species 

attacks tyrosine to give DOPA and the resting form of the enzyme. The third step 

represents a change in the state of 4a-hydroxypterin that forms in the first step. This 

might be either product release or a protonation event. 
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Scheme 7 

 

 

  Overall, this work shows direct spectroscopic evidence for a high-spin Fe(IV) 

species, presumably the postulated Fe(IV)O, as the hydroxylating intermediate in the 

reaction catalyzed by TyrH. This is the first example for this family of enzymes as well 

as the first for a mononuclear nonheme enzyme which catalyzes aromatic hydroxylation.  



                                                                                                                                            39 
 

CHAPTER III 

MECHANISTIC INSIGHT INTO O2 ACTIVATION: SPECTROSCOPY AND 

KINETICS OF WILD-TYPE AND MUTANT TYROSINE HYDROXYLASE* 

 

INTRODUCTION 

The aromatic amino acid hydroxylases (AAH) is a small family of mononuclear 

non-heme enzymes (15, 16). The members of this family use tetrahydropterin as a 

cofactor for hydroxylation of their amino acid substrates. Tyrosine hydroxylase (TyrH) 

catalyzes conversion of tyrosine to dihydroxyphenylalanine (DOPA), as the first and the 

rate limiting step in the biosynthesis of catecholamine neurotransmitters (dopamine, 

adrenaline and noradrenaline). TyrH is found in the brain and adrenal gland. A deficiency 

of this enzyme leads to various neurological disorders such as DOPA-responsive 

Parkinson’s disease, progressive encephalopathy, DOPA-non-responsive dystonia and 

DOPA-responsive dystonia (Segawa’s disease) (17, 18). The other members of the family 

include phenylalanine hydroxylase (PheH) and tyrptophan hydroxylase (TrpH). PheH is a 

liver enzyme and catalyzes hydroxylation of phenylalanine to tyrosine. TrpH, the rate-

limiting enzyme in the biosynthesis of serotonin, converts tyrptophan to 5-

hydroxytryptophan and is found in the central nervous system.  

 

 

 
 
____________ 
*Reproduced in part with permission from Chow, M. S., Eser, B. E., Wilson, S. A., 
Hedman, B., Hodgson, K. O., Fitzpatrick, P. F., and Solomon, E. I. J.Am.Chem.Soc. 
2009, 131, 7685–7698. Copyright 2009 American Chemical Society. 
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All members of the AAH family share a similar mechanism (38-41). The 

mechanism involves formation of the hydroxylating intermediate, Fe(IV)O and 

subsequent attack of this intermediate on to the aromatic ring to give the product, DOPA, 

through electrophilic aromatic substitution (21). One important aspect of the reaction of 

TyrH and other members of AAHs is that for each product molecule formed, a pterin 

molecule is oxidized. This gives 100% coupling between DOPA formation and pterin 

oxidation for the WT reaction. Certain mutations and use of unnatural substrates lead to 

uncoupling, which means more pterin being oxidized than the hydroxylated amino acid 

product being formed (21, 29, 37). Another crucial requirement for this family of 

enzymes is that both cofactor and substrate must be bound before any catalytically 

relevant reaction takes place between iron, oxygen and pterin (21).  

 Although formation and reactivity of the hydroxylating intermediate, Fe(IV)O, 

has been explored with recent studies as described in Chapter II, the effects of substrate 

and cofactor binding on the electronic and geometric structure of the active site and  

initial reactivity of Fe(II) with oxygen have not been studied in detail. Steady-state 

studies with TyrH demonstrated a binding sequence of tetrahydropterin binding first and 

then oxygen second, followed by tyrosine, before any catalytic reaction occurs (36). The 

crystal structure of PheH with both substrate and cofactor bound shows significant 

changes of the active site in comparison to pterin bound binary complex (25, 30). The 

Fe(II) site becomes 5-coordinate and the glutamate ligand becomes bidentate. XAS and 

MCD studies with PheH support this observation (31, 74). However, there is no such 

crystal structure available yet for TyrH. Crystal structures of the resting form and 

oxidized pterin-bound forms of TyrH with Fe(III) show 5C ligation with a similar pattern 
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including two His, one Glu and two water molecules (23, 27). In contrast, earlier XAS 

studies showed that both resting Fe(II) and tetrahydrobiopterin bound TyrH:Fe(II) are 6C 

(75). In order to gain more insight into the structure/reactivity relationship, the electronic 

and geometric structures of the Fe(II) active site in various TyrH complexes were 

investigated by means of MCD and XAS spectroscopies in collaboration with Dr. 

Edward I. Solomon’s lab at Stanford University. The kinetics of oxygen reactivity of 

these complexes was then analyzed by stopped-flow absorption spectroscopy, enabling us 

to correlate active site structure to reactivity. 

 

EXPERIMENTAL PROCEDURES 

Materials. 6-Methyltetrahydropterin (6MPH4) was purchased from Schircks 

Laboratories (Jona, Switzerland). L-tyrosine and glycerol were from Sigma-Aldrich (St. 

Louis, MO). D2O and glycerol-d3 were from Cambridge Isotopes (Andover, MA). 

Potassium chloride, EDTA, Hepes, Mops and ferrous ammonium sulfate were from 

Fisher (Pittsburg, PA). Amicon Ultra-15 and Ultra-4 centrifugal filters were obtained 

from Millipore Corp. (Billerica, MA). All other chemicals were of the highest purity 

commercially available. 

Enzyme Purification and Preparation. WT, E332A, and S395A rat TyrH were 

overexpressed in Escherichia coli and purified as previously described (29, 37, 61). After 

purification, the enzyme was precipitated with 70% ammonium sulfate. The enzyme 

samples for stopped-flow spectroscopy were prepared by dissolving the ammonium 

sulfate pellet in 200 mM Hepes (pH 7.5), 10% glycerol, 0.1 M KCl and 5 mM EDTA. 

After incubation with this buffer for an hour, the enzyme was dialyzed against the same 
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buffer without EDTA. The enzyme samples for MCD were prepared by dissolving the 

ammonium sulfate pellet in deuterated Mops (100 mM)/KCl (300 mM) buffer, pD 7.3, 

(containing either 5 mM EDTA for WT and E332A or 1 equiv of ferrous ammonium 

sulfate per monomer for S395A), followed by dialysis against the same buffer. At the end 

of the dialysis, enzyme samples were centrifuged at 15 K to remove the precipitated 

protein. The samples were then transferred to Amicon Ultra-15 centrifugal filters 

(Millipore Corp., MA) for concentration process. After a concentration of ~ 1 mM is 

achieved, glycerol-d3 was added to a final concentration of 30% (v/v) and the 

centrifugation process was continued till a concentration of ~2 mM is reached. At this 

stage more glycerol-d3 was added bringing the final buffer condition to 100 mM MOPS, 

pD 7.3, 65% glycerol-d3 and 300 mM KCl. The samples were transferred to smaller 

centrifugal filters (Amicon Ultra-4) and subjected to more centrifugation until a final 

enzyme concentration of ~1.5 mM is reached. The samples for XAS were prepared in the 

same way as the MCD samples, except that buffer conditions were 100 mM Hepes (pH 

7.0), 300 mM KCl and the final concentration of glycerol was 50%. The concentration of 

TyrH was determined using an extinction coefficient of 58.24 mM-1cm-1 at 280 nm. The 

iron content of the apo-enzyme was measured using a Perkin-Elmer AAnalyst600 atomic 

absorption instrument. Typical iron content of an apo enzyme preparation was ~0.1 

equivalent. 

Preparation of XAS and MCD Samples. XAS and MCD samples were prepared 

by Dr. Marina Chow, in the laboratory of Dr. Edward I. Solomon at Stanford University. 

Samples for spectroscopy included resting enzyme (TyrH-[ ]), enzyme with only tyrosine 

bound (TyrH-[L-tyr]), enzyme with only 6MPH4 bound (TyrH-[6MPH4]), enzyme with 
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only 5-deaza-6MPH4 bound (TyrH-[5-deaza-6MPH4]) and ternary enzyme complex with 

both tyrosine and 6MPH4 bound (TyrH-[L-tyr, 6MPH4]). The samples typically contained 

0.8-2 mM TyrH, ~0.85 equivalent of ferrous ammonium sulfate, 2-5 mM tyrosine, 3-5 

mM 6MPH4 (or 5-deaza-6MPH4) and approximately 60% v/v glycerol-d3. 6-

Methyltetrahydropterin was dissolved in an anaerobic solution of 10 mM HCl.  The 

concentration of the 6MPH4 stock solution was determined from the absorbance at 266 

nm (ε266nm = 17.8 mM-1cm-1). The redox inactive cofactor 5-deaza-6MPH4 was 

synthesized according to literature procedures (76). Concentrated solutions of L-tyrosine 

(L-tyr) were prepared in D2O adjusted to pD = 10 using NaOD.  After the apo enzyme 

solution was made anaerobic, ferrous ammonium sulfate was added, followed by 

reducing equivalent of dithionite. The TyrH:Fe(II) samples were incubated for 10 

minutes, then tyrosine and 6MPH4 were added as needed and the samples incubated for 

another 10 to 20 minutes. After removal from the glovebox, the samples were frozen in 

liquid nitrogen. 

XAS and EXAFS. X-ray absorption spectra were recorded at Stanford Synchrotron 

Radiation Laboratory (SSRL) in collaboration with Dr. Keith O. Hodgson and Dr. Britt 

Hedman. Experiments and data analysis were carried out by Samuel A. Wilson of 

Stanford University. 

MCD Spectroscopy. Low temperature near-IR MCD data were collected (using a 

Jasco J200D spectropolarimeter, 600 – 2000 nm) and analyzed (using the program 

PeakFit, SPSS Science) by Dr. Marina Chow, in the laboratory of Dr. Edward I. Solomon 

at Stanford University. 



                                                                                                                                            44 
 

Single Turnover Kinetics. Single turnover reactions of WT TyrH and E332A 

TyrH were monitored using an Applied Photophysics SX20 stopped-flow 

spectrophotometer in single wavelength absorbance mode. The stopped-flow instrument 

was made anaerobic by incubation with a solution of excess sodium dithionite for at least 

two hours. Concentrated stock solution of tyrosine (~20 mM) was prepared by bringing 

the solution to a final pH of ~10. The concentration of the tyrosine stock solution was 

determined using an extinction coefficient of 1.34 mM-1cm-1 at 275 nm in 0.1 M HCl. 

Stock solution of 6MPH4 (~40 mM) was prepared in 2 mM HCl and an extinction 

coefficient of 17.8 mM-1cm-1 in 2 M perchloric acid was used to determine the 

concentration. Ferrous ammonium sulfate solutions were prepared fresh by dissolving the 

appropriate amount of powder in 2 mM HCl. A solution of ~300 µM apo-TyrH and 500 

µM tyrosine in 200 mM Hepes (pH 7.5), 10% glycerol and 0.1 M KCl was made 

anaerobic in a tonometer on ice, through at least 20 argon-vacuum cycles. Ferrous 

ammonium sulfate (0.9 equivalent of enzyme) was then added to the tonometer under 

argon. 6MPH4 (final 2 mM in tonometer) was placed in the side arm of the tonometer 

under argon. Additional argon-vacuum cycles were performed prior to mixing the 6MPH4 

solution with the tonometer contents, which was then loaded to one of the syringes of the 

stopped-flow instrument. Different oxygen concentrations in buffers were achieved by 

using a modified MaxBlend medical oxygen blender (Maxtec) to mix argon and oxygen 

in different ratios and then bubbling through buffer-containing syringes on ice for at least 

15 min. The buffer-containing syringes were then attached to the second syringe of the 

instrument. Data was collected at 5 °C. Concentrations specific to each experiment are 

given in figure legends. Single wavelength absorbance changes consisted of one or more 
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exponential kinetic phases, which were analyzed by first fitting to single or multiple 

exponentials using the program KaleidaGraph (Synergy Software); results from these fits 

were than taken as initial estimates for global fits and simulations. Initial values for kon 

and koff for the reversible oxygen complex formation steps and estimates for unknown 

extinction coefficients were determined by global fitting of multiple traces (obtained at 

multiple wavelengths for varying O2 concentrations) using the program DynaFit (65). 

Initial concentrations were allowed to float within 10% of the experimental values. The 

global fitting process was performed in an iterative fashion, in which one or two 

parameters were varied at a time and the rest of the parameters were kept constant. Best 

fit parameters obtained this way were than employed for the kinetic simulation (DynaFit) 

of the experimental data to appropriate mechanisms. Further details are given in figure 

legends of each simulation. 

 

RESULTS 

X-ray Absorption Spectroscopy: Pre-Edge. The pre-edge and edge spectra of four 

TyrH complexes are shown in Figure 8. Energy bands and intensity values for each 

complex, obtained by fitting pre-edge peaks, are given in Table 3. Total intensities for 

TyrH-[ ], TyrH-[6MPH4], and TyrH-[L-tyr] are larger than typical values observed for Oh 

6C model complexes with uniform ligation, but they are similar to those found for 6C 

structures in Fe(II) metalloenzymes (32, 75, 77, 78). The normalized data for TyrH-[ ] 

(resting, in red), TyrH-[L-tyr] (substrate, in blue) and TyrH-[6MPH4] (cofactor, in 

orange) all look very similar in terms of pre-edge shape and intensity. When both 

cofactor and substrate are present, TyrH-[L-tyr, 6MPH4] (green), the pre-edge shows a 
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significant increase in intensity and a shift to lower energy both of which are reflected in 

the second derivative (Figure 8, inset). This pattern is similar to the 4 units of increase in 

intensity observed for model complexes in which going from 6C to 5C distorts the ligand 

field of the Fe(II) (79). There is also difference in the edge slope as well as the maximum 

intensity of the rising edge. In addition, small differences are observed at higher energies 

above the edge (7150 eV in Figure 8), suggesting that a structural change has occurred 

when both substrate and cofactor are bound to TyrH. 

 

 

FIGURE 8. Fe K edge spectra (Left) and enlarged pre-edge (Right) regions of TyrH-[ ] 

(red), TyrH-[L-tyr] (blue), TyrH-[6MPH4] (orange) and TyrH-[L-tyr, 6MPH4] (green). 

The inset shows the smoothed 2nd derivatives of the pre-edge spectra (2nd derivative 

smoothed for clarity, smoothing = 0.5). 
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Table 3. XAS Pre-edge Energies and Intensities.a 

 
Sample Peak (eV) Area Total Intensity 

TH-[ ] 7112.0 4.4 8.3 ± 0.6 

 7113.8 3.9  
    

TH-[L-tyr, 6MPH4] 7111.8 6.4 12.5 ± 1.5 

 7113.5 6.1  
    

TH-[6MPH4] 7111.9 4.6 8.2 ± 0.7 

 7113.8 3.6  
    

TH [L-tyr] 7111.9 4.4 8.5 ± 1.0 

 7113.7 4.1  
a Pre-edge fit values obtained using EDG_FIT according to established methods. Peak 

energies are listed at peak maximum, areas are multiplied by 100 for comparison to other 

data. Total intensity is the sum of both areas. Error values calculated from total intensity 

standard deviations across all 9 fits per sample. 

 

EXAFS. EXAFS data and their Fourier Transforms (FT) are shown in Figure 9. 

For all complexes, EXAFS data were collected to k = 15 Å-1 and fits were performed to k 

= 14 Å-1, k = 13 Å-1, k = 14 Å-1, and k = 12 Å-1 for TyrH-[ ], TyrH-[L-tyr], TyrH-

[6MPH4] and TyrH-[L-tyr, 6MPH4], respectively. 5C and 6C models based on the ferric 

crystal structure of tyrosine hydroxylase (PDB 1TOH) (23) were used for the fits. TyrH-

[L-tyr, 6MPH4] was also fit to a 5C model with a bidentate Glu (Figure 10), since a 

bidentate Glu has been observed in PheH-[L-phe, pterin] (25). 
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FIGURE 9.  Fourier Transforms to k = 13 Å-1 for tyrosine hydroxylase.  TyrH-[ ] (Red), 

TyrH-[L-tyr] (blue), TyrH-[6MPH4] (orange) and TyrH-[L-tyr, 6MPH4] (green). The 

inset shows EXAFS data for the respective samples. 

 

 

 

FIGURE 10. TyrH active site models for EXAFS fitting. The 6C model (left), based on 

active site crystal structure of TyrH:Fe(III) (PDB 1TOH), was used in fitting all EXAFS 

spectra. The 5C bidentate Glu model (right), from the crystal structure of the ternary 

complex of PheH (PDB 1MMT), was necessary for successful fitting of TyrH-[L-tyr, 

6MPH4]. The iron is shown in green, oxygen in red, carbon in black, and nitrogen in blue. 
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  The EXAFS spectrum for TyrH-[ ] could be fit equally well either to a single 6C 

first shell where all 6 ligands have a bond distance of ~2.15 Å or to a split first shell in a 

1:5 ratio with a bond distance of ~2.10 Å for the shorter bond and a distance of ~2.17 Å 

for the remaining 5 bonds. The 6C iron site is also supported by the pre-edge data for 

TyrH-[ ] (presented above) and by the MCD data (vide infra). Fits to the EXAFS data 

when only cofactor is bound (TyrH-[6MPH4]) are very similar to those of TyrH-[ ], with 

the best fit indicating a 6C split first shell (1:5 ratio) with a short bond distance of ~2.1 Å 

and longer distances of ~2.2 Å. When only substrate is bound, the best fit is the one in 

which all ligands are incorporated into one 6C shell at a single bond distance of 2.16 Å. 

Thus, TyrH-[ ], TyrH-[6MPH4] and TyrH-[L-tyr] forms of tyrosine hydroxylase all 

contain a distorted 6C site. 

A fit to a 5C first shell model of the EXAFS data for TyrH-[L-tyr, 6MPH4] gives 

better overall results. There is also an additional single scattering feature at ~2.53 Å and 

an accompanying multiple scattering feature at 2.65 Å for outer shell. A best fit to the 

data is obtained in a split 5C model (2:3 ratio) with bond distances of ~2.05 Å and ~2.15 

Å, taking into account that the additional outer shell features are due to presence of a 

bidentate glutamate as shown in Figure 10. A comparison of the residual waves for the 

monodentate and bidentate coordination modes (Figure 11) clearly shows that the fit to 

the bidentate Glu model accounts much better for the features at ~ 2.5 Å. The data do not 

support His dissociation and thus, the ligand which was lost is water, similar to the 

behavior observed in PheH (31).  
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FIGURE 11. (Top) Comparison of Fourier Transforms of the EXAFS fits for the 

monodentate and bidentate Glu model, illustrating the requirement for a 2.5 Å signal 

coming from the fixed Glu carbon backscatter. (Bottom) k-space data, fits and residual 

corresponding to the Fourier transforms above.  
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MCD Spectroscopy of Wild-type Tyrosine Hydroxylase. MCD spectra of TyrH 

complexes are shown in Figure 12. Energy values of the two Gaussian bands that 

correspond to the excited state ligand field (d-d) transitions for each complex are listed in 

Table 4. For TyrH-[ ], two transitions are observed at around 10 000 cm-1   (split by 2030 

cm-1), indicating a 6C distorted octahedral ferrous site (80). The MCD spectra of TyrH-

[L-tyr] and TyrH-[6MPH4] are also consistent with both species having distorted 6C 

geometries. The narrower splitting and less intense high energy band observed in these 

spectra (Figure 12B and 12C) indicate slightly stronger ligand fields (10 Dq ~ 400 cm-1 

higher in energy) and less axial distortion compared to TyrH-[ ]. In agreement with the 

XAS results (vide supra), MCD spectra also show that resting, substrate, or cofactor 

bound forms of TyrH are 6C.  

In contrast, the pattern of the MCD spectrum of TyrH-[L-tyr, 6MPH4] is 

consistent with the Fe(II) site being 5C. The spectrum exhibits only one band at 8960 cm-

1 (Figure 12D), suggesting that the second transition expected at lower energy, should lie 

below the cutoff of the MCD instrument (80). The 5C site in TyrH-[L-tyr, 6MPH4] 

complex is also supported by the the XAS results (vide supra) and by the VTVH MCD 

results presented in the next section. The < 10 000 cm-1 energy of the band is consistent 

with a trigonal bipyramidal site, but analysis of VTVH MCD data gives a +ZFS system  

indicating that the site is closer to square pyramidal (81, 82).  The shift of the transition to 

less than 10 000 cm-1 suggests a strong axial perturbation to the iron site which would 

decrease the equatorial ligand field.  
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FIGURE 12. Near-IR MCD spectra (Left Panel) and saturation behavior (Right Panel) for 

TyrH-[ ] (A & E, in red), TyrH-[L-tyr] (B & F, in blue), TyrH-[6MPH4] (C & G, in 

orange) and TyrH-[L-tyr, 6MPH4] (D & H in green).  In A, B and C, the sum of the 

Gaussian-resolved bandshapes (dotted lines) yield the generated spectrum (solid black 

lines), which reproduce the observed spectrum well.  

 

VTVH MCD. The VTVH MCD spectra of TyrH complexes are shown in Figure 

12E-H. Excited and ground state parameters obtained from the MCD and VTVH analyses 

are summarized in Table 4. The saturation data of the TyrH-[ ] bands exhibit a very small 

nesting (Figure 12E), which can be fit with a – ZFS model yielding 5T2 ground state 

parameters with small t2g d orbital splitting (Table 4). This is typical of a 6C Fe(II) site 
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with moderate rhombic distortion (|V/2�| ~ 0.15) (80). An experimental d-orbital energy 

level diagram for TyrH-[ ] can be constructed by combining the splitting of the 5T2 

ground state with the excited state splitting obtained from the MCD spectrum (Figure 13, 

left). 

The VTVH MCD data for TyrH-[L-tyr] (Figure 12F) show increased nesting 

compared to resting TyrH, but still can be fit best as a –ZFS system. The spin-

Hamiltonian and ground state parameters (Table 4) are indicative of an Fe(II) site with a 

higher degree of rhombicity, giving rise to larger splitting of the t2 orbitals (80). As the 

earlier MCD data shows, tyrosine binding shifts the e orbitals to higher energy (10 Dq = 

10,170 cm-1), and decreases their splitting to 1560 cm-1. Taken together, the experimental 

orbital energy levels for TyrH-[L-tyr] (Figure 13, second panel) are consistent with a 

distorted 6C Fe(II) site. 

The saturation data of TyrH-[6MPH4] also shows more nesting than TyrH-[  ] and 

can be fit equally well to both –ZFS and +ZFS models. Pterin binding results in a larger 

total splitting of the orbitals of the ground state, regardless of the sign of the ZFS (Figure 

13, third panel). However, the XAS data (vide supra) indicates that TyrH-[6MPH4] is 6C, 

which is consistent with a –ZFS.  In addition, the orbitals of the 5E excited state of TyrH-

[6MPH4] are shifted to higher energy, supporting an overall stronger 6C LF at the Fe(II) 

center compared to the resting form. 

The VTVH data of TyrH-[L-tyr, 6MPH4] showed remarkable difference in 

comparison with TyrH-[ ]. The saturation curves are significantly more nested and must 

be fit with a +ZFS system. The large t2 orbital splittings and +ZFS for TyrH-[L-tyr, 

6MPH4] are consistent with a 5C site that is closer to square pyramidal in geometry and 
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the ground state analysis yields a high degree of rhombic distortion (Table 4) (80). As the 

MCD data indicated, the excited state transitions for TyrH-[L-tyr, 6MPH4] are also in 

agreement with a 5C site with a strong axial distortion. The similarity of the MCD data of 

PheH (74) to that of TyrH further supports these findings. Only for the ternary complex 

of  PheH (cofactor and substrate analog bound), is there a crystal structure available 

(PDB ID 1MMT (83)), and this structure shows a 5C Fe(II) site that has one short axial 

bond and rhombically distorted equatorial ligand TyrH. 
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FIGURE 13. Experimental d-orbital energies of TyrH:Fe(II) complexes. The excited state 

splittings are obtained from band positions in the NIR-MCD spectra and ground state 

splittings from VTVH MCD. Dotted lines are for uncertainty in the energy positions of 

the orbitals.  
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Table 4. Excited State Transition Energies, Spin-Hamiltonian and Ground State 

Parameters for TyrH:Fe(II) Complexes. All Values in cm-1. 
Sample Band 1 Band 2 10 Dq �

5E d g// D |E| � |V| V/2� 

TyrH-[ ] 8720 10 750 9735 2030 3.1 9.1 - - -200 60 0.15 

TyrH-[L-tyr] 9390 10 950 10 170 1560 5.4 9 - - -250 130 0.26 

TyrH[6MPH4] 9250 ~10 900 ~10 100 1610 3.7 9.2 - - -500 220 0.22 

     5.6 8.0 11.4 2.4 600 324 0.27 

TyrH[L-tyr, 6MPH4] 8960 - - > 4000 5.2 8.0 11.2 2.6 700 420 0.30 

 

 

MCD Spectroscopy of TyrH Mutants: E332A and S395A. The MCD spectrum of 

S395A-[ ] (Figure 14A) exhibits two transitions at 8850 cm-1 and 10,870 cm-1, similar to 

wild-type TyrH-[ ], but with two fold higher intensity. The saturation behavior of the LF 

bands in VTVH MCD shows small nesting (Figure 14B) and fits to a –ZFS system. 

Together, these indicate that the iron site in S395A-[ ] is distorted 6C. For S395A-[L-tyr, 

6MPH4], only one resolvable transition (9330 cm-1) is observed in the MCD spectrum 

(Figure 14C tan) and the VTVH data (Figure 14D) exhibits a large increase in nesting 

and yield a +ZFS system, similar to WT TyrH-[L-tyr, 6MPH4], and thus support a 5C 

square pyramidal active site in S395A-[L-tyr, 6MPH4]. 
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FIGURE 14. MCD spectra at 5K and 7T of S395A mutant. Dashed lines are Gaussian-

resolved bandshapes for each spectrum. (A) S395A-[ ] (brown) compared to WT TyrH-[ ] 

(black), (B) VTVH data (�) and fit (—) of S395A-[ ] collected at 7830 cm-1, (C) S395A-[ 

L-tyr, 6MH4]  (tan) compared to WT TyrH-[L-tyr, 6MH4] (black), (D) VTVH data (�) 

and fit (—) of S395A-[L-tyr, 6MPH4] collected at 8333 cm-1. 

 

The MCD spectrum of E332A-[ ] (Figure 15A, purple) shows two bands at 8880 

cm-1 and 10 610 cm-1. Compared to WT TyrH-[  ], the higher energy band of E332A-[ ] 

has more intensity than the lower energy band. The smaller excited state splitting 

suggests less distortion of this 6C site than WT TyrH-[  ]. The saturation data (Figure 

15B) of this mutant show small nesting and are fit to a –ZFS system, confirming that the 

ferrous site is 6C. The MCD spectrum of E332A-[L-tyr, 6MPH4] exhibits only one band 

at 9150 cm-1 (Figure 15C, light blue). A large amount of nesting is observed in the VTVH 

data (Figure 15D) and the fitting parameters are in agreement with a +ZFS system. These 

confirm that the iron site in E332A-[L-tyr, 6MPH4] is 5C distorted square pyramidal.  
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FIGURE 15.  MCD spectra at 5K and 7T of E332A mutant. Dashed lines are Gaussian-

resolved bandshapes for each spectrum. (A) E332A-[ ] (purple) compared to WT TyrH-[ 

] (black), (B) VTVH data (�) and fit (—) of E332A-[ ] collected at 8650 cm-1, (C) 

E332A-[ ] (light blue) compared to WT TyrH-[L-tyr, 6MH4] (black), (D) VTVH data (�) 

and fit (—) of E332A-[L-tyr, 6MPH4] collected at 8306 cm-1. 

 

Stopped-Flow Kinetics of WT TyrH Complexes. In order to gain insight into the 

initial steps in the reaction of oxygen with TyrH:Fe(II) and tetrahydropterin, stopped-

flow single-turnover kinetic experiments were performed for various complexes of WT 

and E332A TyrH. The oxidation of TyrH:Fe(II) to TyrH:Fe(III) results in a broad 

increase in the absorbance spectrum between 200 and 450 nm (Figure 16A), due to ligand 

to Fe(III) charge transfer transitions (61). In addition, the reduced and oxidized pterin 

species involved in the catalytic cycle of TyrH have distinctive absorbance spectra over 

the same wavelength region (Figure 16B) (69). In the stopped-flow experiments, the 

oxidation of Fe(II) was followed as absorbance increases at 246 and 350 nm (Figure 16A, 

black to orange) and the oxidation of 6MPH4 to quinonoid 6MPH2 (q-6MPH2) was 

detected at 350 – 450 nm (red to green in Figure 16B). The formation of 4a-OH-6MPH3 

from 6MPH4 can be best followed by absorbance changes at two diagnostic wavelengths: 
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a maximal initial absorbance increase at 246 nm and an accompanying decrease at 300 – 

340 nm (red to blue in Figure 16B). The slow dehydration of 4a-OH-6MPH3 to q-6MPH2 

is accompanied by a decrease at 246 nm and an increase at 300 – 450 nm (blue to green 

in Figure 16B). 

 

 

FIGURE 16. Left, absorbance spectra of Fe(II)TyrH (A) and pterin species (B) at neutral 

pH. Right, structures of pterin species. 

 

Comparison of the stopped-flow absorbance traces from the reactions of the 

resting form and various binary forms of TyrH (~100 µM final concentration) with varied 

concentrations of O2 (95 µM to 950 µM) at 5 °C are shown in Figure 17. All the reactions 

could be successfully simulated using one of the mechanisms in Scheme 8. The rate 

constants used in the simulations are summarized in Table 5. Addition of O2 to resting 
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Fe(II)TyrH-[ ] results in monophasic absorbance increases at 246 nm and 350 nm (Figure 

17, dashed red trace) and these traces can be well simulated as a single step second-order 

mechanism with a rate constant of 0.037 mM-1s-1 (Scheme 8A and Figure 18), in 

agreement with previous studies at 20 °C (61). Similarly, the oxidation of 6MPH4 to q-

6MPH2 in the apo-TyrH-[6MPH4] is well-described as a single second-order reaction 

with a rate constant of 1.7 x 10-4 mM-1s-1 (Table 5), comparable to the rate of 

tetrahydropterin auto-oxidation in solution under the same conditions (1.3 x 10-4 mM-1s-1, 

results not shown), indicating that the presence of apo-TyrH does not affect the rate of 

tetrahydropterin oxidation. 

 

 

FIGURE 17. Kinetic traces at 246 nm (A) and 350 nm (B) upon mixing a final 

concentration of 950 µM O2 with the following TyrH:Fe(II) complexes (90 to 140 µM): 

TyrH:Fe(II)-[ ] (dashed red line), TyrH:Fe(II)-[6MPH4] (dashed orange line), 

TyrH:Fe(II)-[5-deaza-6MPH4] (solid grey line), TyrH:Fe(II)-[L-tyr] (solid blue line) and 

TyrH:Fe(II)-[6MPH2] (dotted black line). 
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Scheme 8. Reactions of various TyrH complexes with O2 
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Table 5. Rate Constants for the Reactions of WT and E332A TyrH Complexes with 

O2 at 5 °°°°C. 

 
FeIITyrH + O2  →→→→ FeIIITyrH 

(mM-1s-1) 
  

FeIITyrH-[  ] 0.037   

 FeIITyrH + O2   

⇔⇔⇔⇔  FeIITyrH:O2 
FeIITyrH:O2 →→→→ FeIIITyrH 6MPH4 →→→→ q-6MPH2 

 kon (mM-1s-1) koff (s-1) (s-1) (mM-1s-1) 

FeIITyrH-[6MPH4] 1.5 0.5 0.16 40 
apoTyrH-[6MPH4]    0.00017 
FeIITyrH-[5-deaza-6MPH4]   No reaction  
FeIITyrH-[6MPH2] 2.0 0.5 0.032  
FeIITyrH-[L-tyr] 2.0 0.5 0.040  
FeIITyrH-[5-deaza-6MPH4,L-
tyr] 2.0 0.4 0.026  

FeIITyrH-[6MPH2, L-tyr] 6.0 0.5 0.050  
  FeIITyrH:O2 →→→→ FeIV=O + 4a-HO-6MPH3 

FeIITyrH-[L-tyr, 6MPH4] 300 50 24 s-1 
  FeIITyrH:O2 →→→→ FeII + HOO-6MPH3 
E332A-[L-tyr, 6MPH4] 10 3 0.3 s-1 
 

FIGURE 18. Stopped-flow absorbance traces at 246 (left) and 350 nm (right), acquired 

by mixing an anaerobic solution of ~ 120 µM (final) TyrH:Fe(II)-[ ] in 200 mM Hepes, 

10% glycerol and 0.1 M KCl, pH 7.5, with an equal volume of oxygenated buffer at 5 oC. 

The symbols are the experimental data at final O2 concentrations of 950 (blue circles), 

480 (green squares), or 120 µM (red triangles). The solid lines are simulations according 

to the mechanism of Scheme 8A, using extinction coefficients from Figure 16.  
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The absorbance changes accompanying the reaction with oxygen of TyrH 

complexes containing substrates or analogs are more complex (Figure 17). All are better 

described by an initial reversible oxygen binding step to form Enz:O2 complexes 

followed by chemical transformations (Schemes 8B-D and Figure 19). The presence of 

only tyrosine or only cofactor analogue 6MPH2 has little effect on the kinetics of Fe(II) 

oxidation, and the reactions of both TyrH:Fe(II)-[6MPH2] and TyrH:Fe(II)-[tyr] can be 

simulated with similar rate constants for the oxidation step (Figures 17&19, Table 5). The 

TyrH:Fe(II)-[5-deaza-6MPH4] complex is an exception; in this case, the rate constants 

are the same as for TyrH:Fe(II)-[6MPH2], but the magnitudes of the absorbance changes 

are much smaller and are consistent with the amount of the free enzyme in these samples 

(Figure 17, grey dotted and black solid lines, respectively), suggesting that binding of 5-

deaza-6MPH4 to TyrH significantly decreases the reactivity with oxygen. 

The kinetic analysis of the reaction of oxygen with TyrH:Fe(II)-[6MPH4] 

complex shows that the rate constant for Fe(II) oxidation in this complex is about 5-fold 

faster than that for the other binary complexes containing the redox-inactive pterins 

(6MPH2 or 5-deaza-6MPH4). This suggests that a change in the oxidation state of the 

pterin accompanies oxidation of the Fe(II). Scheme 8C, in which the reaction of O2 with 

Fe(II)TyH-[6MPH4] results in concomitant oxidation of Fe(II) to Fe(III) and 6MPH4 to 

6MPH3
• in the first step, followed by disproportionation of 6MPH3

• to give q-6MPH2 and 

6MPH4
•, accounts well for the absorbance traces at 246 nm and 350 nm (Figures 17 and 

19). The rate constant for 6MPH4 oxidation in the TyrH:Fe(II)-[6MPH4]  complex shows 

a three order of magnitude acceleration over the auto-oxidation reaction in apo-TyrH-

[6MPH4] (0.16 s-1 vs 1.7 × 10-4 s-1,  respectively).  Such  rate enhancements  observed  for  
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FIGURE 19. Stopped-flow absorbance changes at 246 and 350 nm upon mixing an 

anaerobic solution of ~ 85 µM (final) WT TyrH:Fe(II)-[L-tyr] (left panels) or ~ 150 µM 

(final) WT TyrH:Fe(II)-[6MPH4] (right) in 200 mM Hepes, 10% glycerol and 0.1 M KCl, 

pH 7.5, with an equal volume of oxygenated buffer at 5 oC. The symbols are the 

experimental data with final O2 concentrations of 950 (blue circles), 480 (green squares), 

or 95 µM (red triangles). The solid lines are simulations using mechanisms in Scheme 8 

D (left) or E.  
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both Fe(II) and 6MPH4 in the TyrH:Fe(II)-[6MPH4] are quite reasonable when the redox 

potentials of the individual species are considered for the mechanism of Scheme 8C. 

Using an E0 of + 210 mV for the Fe(II) in TyrH (84), the 1-electron oxidation of Fe2+ + 

O2 � Fe3+ + O2
-• (O2 + e- → O2

-•, E0 = -330 mV) (85) has �E0 = - 537 mV and is uphill 

by 12.5 kcal/mol. Similarly, the reaction of 6MPH4 to 6MPH3
•H+ (Eo = - 270 mV) (86) 

with O2 has �E0 = - 600 mV and is energetically uphill by 14 kcal/mol. However, the two 

electron reaction between Fe(II), O2 and 6MPH4, (O2 + 2e- → H2O2, E0 = + 280 mV) (85) 

has �E0 = + 83 mV, and is downhill at - 1.9 kcal/mol. Taken together, all these results 

indicate that the concerted 2-electron transfer to O2 from 6MPH4 and Fe(II) (equation 2) 

is more favorable than the individual 1-electron oxidation processes.  

Fe2+ + O2 + 6MPH4 � Fe3+ + H2O2 + 6MPH3
•  (2) 
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FIGURE 20. Kinetic traces at 246 nm (A) and at 318 nm (B) upon mixing a final 

concentration of 95 µM O2 with the following TyrH:Fe(II) complexes: 150 µM WT 

TyrH:Fe(II)-[L-tyr,6MPH4] (dashed green line), 150 µM E332A TyrH:Fe(II)-[L-

tyr,6MPH4]  (light blue line), 100 µM WT TyrH:Fe(II)-[L-tyr,5-deaza-6MPH4] (solid 

grey line) and 120 µM WT TyrH:Fe(II)-[L-tyr,6MPH2] (dotted brown line). 
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When O2 is mixed with TyrH:Fe(II)-[L-tyr,6MPH4] to form a catalytically 

competent complex, a reversible oxygen complex is initially formed with no observable 

absorbance change (Figure 20, dashed green trace). This is followed by biphasic 

absorbance changes at 246 nm, 318 nm and 330 nm over approximately 4 s. This rapid 

initial first phase corresponds to the formation of 4a-HO-6MPH3 with a rate constant of 

24 s-1 (Scheme 8D and Figure 21). The 4a-HO-6MPH3 is formed in the same step as the 

Fe(IV)=O intermediate (Scheme 8D). Rapid-quench Mössbauer spectroscopy has shown, 

as described in the previous chapter, that the Fe(IV)=O intermediate is also formed with a 

rate constant of 24 s-1 under the same conditions used here. No absorbance change 

associated with the formation of the Fe-OO-pterin could be detected, so we assume that 

this step occurs after the reversible formation of the initial oxygen adduct, with a rate 

constant faster than 24 s-1. The slower second phase was successfully modeled as the 

release of 4a-HO-6MPH3 from the enzyme active site into the solution with a rate 

constant of 0.42 s-1 (Figure 21), a value which matches kcat under these conditions. The 

4a-HO-6MPH3 subsequently dehydrates in solution to produce q-6MPH2, resulting in a 

gradual decrease at 246 nm and increases at 318 nm and 330 nm, with a rate constant of 

~0.02 s-1. Although there is no structural data on TyrH:Fe(II)-[L-tyr,5-deaza-6MPH4] and 

TyrH:Fe(II)-[L-tyr,6MPH2], earlier studies on PheH:Fe(II)-[L-phe,5-deaza-6MPH4] (31, 

74) and PheH:Fe(II)-[thienylalanine,BH4] (25, 30) showed that Fe(II) is 5C in these 

complexes. This suggests that TyrH:Fe(II)-[L-tyr,5-deaza-6MPH4] and TyrH:Fe(II)-[L-

tyr,6MPH2] presumably have similar 5C sites. The reactions of O2 with TyrH:Fe(II)-[L-

tyr,5-deaza-6MPH4] and TyrH:Fe(II)-[L-tyr,6MPH2] are similar to Fe(II) oxidation in 

TyrH:Fe(II) with either 6MPH2 or tyrosine bound (Figure 20A and Table 5). This 
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indicates that both a 5C Fe(II) and a redox active pterin are needed for the two (and 

greater) orders of magnitude rate enhancement in the reactivity with O2 seen with 

TyrH:Fe(II)-[L-tyr,6MPH4] compared to TyrH:Fe(II)-[ ], TyrH:Fe(II)-[L-tyr], and 

TyrH:Fe(II)-[6MPH4].  

 

 

FIGURE 21. Stopped-flow absorbance traces at 246 and 330 nm for WT TyrH (left) upon 

mixing an anaerobic solution of TyrH:Fe(II)-[L-tyr,6MPH4] (160 µM final for WT)  in 

200 mM Hepes, 10% glycerol and 0.1 M KCl, pH 7.5, with an equal volume of 

oxygenated buffer at 5 oC. The symbols are the experimental data with final O2 

concentrations of 140 (blue circles), 95 (green squares) and 50 µM (red triangles) for WT 

TyrH. The solid lines are simulations using the mechanism in Scheme 8D. The extinction 

coefficients were from Figure 16. For unknown extinction coefficients, global analysis 

was used to obtain initial estimates. The decay of Fe(IV)=O to form the product DOPA 

was not included in this model, since there is no detectable absorbance change for these 

species. The slow formation of the q-6MPH2 (~0.02s-1) at later time points was omitted in 

this analysis. 
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  Stopped-Flow Kinetics of E332A TyrH. The absorbance changes upon addition of 

O2 to E332A-TyrH:Fe(II)-[L-tyr,6MPH4] are shown in Figure 20 (solid blue traces). The 

enzyme clearly catalyzes a reaction between Fe(II), O2 and tetrahydropterin, but the 

absorbance changes are distinct from those seen with WT TyrH:Fe(II)-[L-tyr,6MPH4]. In 

the case of the E332A mutant, the observed absorbance changes can be accounted for by 

initial reversible oxygen addition followed by formation of an intermediate in a single 

slow step with a rate constant of 0.3 s-1; this value almost matches kcat for this mutant 

enzyme (Figure 22). The intermediate decays nonenzymatically with almost the same rate 

constant (~0.02 s-1) as the dehydration of 4a-HO-6MPH3 to q-6MPH2. The reaction 

catalyzed by the E332A mutant is clearly slower than that of the wild-type enzyme. The 

rate constant for the second step is similar to the rate constant for release of the 4a-HO-

6MPH3 from the wild-type enzyme. This raises the possibility that the observed rate 

constant is a net rate constant which includes formation of the intermediate and its release 

from the enzyme; however, these two rate constants are too similar to resolve. Compared 

to WT TyrH, the magnitudes of the absorbance changes at 246 nm and 330 nm and the 

sign of the absorbance change at 318 nm after O2 binding are different for E332A TyrH 

(Figure 20, solid blue traces). The spectrum of the intermediate could be obtained by 

global analysis of the absorbance changes between 240 and 450 nm, fitting the data to a 

three step kinetic model (Scheme 9 and Figure 23). The starting spectrum and those of 

the final two species match those for 6MPH4, q-6MPH2, and 7,8-6MPH2. The spectrum 

of the unknown intermediate exhibits a number of differences from that of 4a-HO-

6MPH3, including a much lower absorbance at 246 nm and a red-shifted absorbance 

maximum. These differences establish that, in contrast to WT TyrH, a 4a-HO-6MPH3  is 
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not formed in the reaction of E332A-TyrH:Fe(II)-[L-tyr, 6MPH4] with O2. However, the 

decay of the intermediate in the E332A TyrH reaction to q-6MPH2 with a rate constant 

nearly identical to that for 4a-HO-6MPH3 suggests that this intermediate is similar to it. 

Spectral differences similar to those between this intermediate and that of 4a-HO-6MPH3 

have been observed previously for 4a-HO and 4a-HOO-flavins, intermediates in the 

reaction of the flavoprotein phenol hydroxylases (87). Thus, a possible candidate for this 

intermediate species in the E332A TyrH reaction is a hydroperoxy-pterin, HOO-6MPH3.  

 

 

FIGURE 22. Stopped-flow absorbance traces at 246 and 330 nm for E332A TyrH upon 

mixing an anaerobic solution of TyrH:Fe(II)-[L-tyr,6MPH4] (125 µM final for E332A)  

in 200 mM Hepes, 10% glycerol and 0.1 M KCl, pH 7.5, with an equal volume of 

oxygenated buffer at 5 oC. The symbols are the experimental data with final O2 

concentrations of 950 (blue circles), 480 (green squares), or 190 µM (red triangles). The 

solid lines are simulations using the mechanism in Scheme 8E. The E332A TyrH reaction 

was modeled similarly to WT TyrH, except that the final two steps were replaced by a 

single step corresponding to the formation of a hydroperoxy-pterin (HOO-6MPH3). 
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The rapid single-turnover kinetics experiments presented above allow the 

dissection of individual steps of TyrH reaction, and show that the presence of a 5C Fe(II) 

site and a redox-active pterin greatly accelerates the enzyme reaction with O2. The data 

on the WT vs E332A reactions also provide insights into the nature of the intermediates 

formed in the coupled vs uncoupled reaction. 

 

 

FIGURE 23. Left panel: UV-visible spectra of intermediates in the E332A TyrH reaction 

(40 µM 6MPH4, 10 µM E332A TyrH, 200 µM tyrosine and 250 µM oxygen, in 10 µM 

ferrous ammonium sulfate, 200 mM Hepes at pH 8.0 and 25 oC) calculated by globally 

fitting the absorbance changes (collected at 1 s intervals for a total of 400 s) to the model 

in Scheme 9 using the program Specfit (Spectrum Software Associates). The spectra that 

are shown are for 6MPH4 (red), A (orange) and B (green). Right panel: Comparison of 

intermediate A (orange) spectrum with that of 4a-HO-6MPH3 (blue). 

 

Scheme 9 

6MPH4
k1 k2 k3B CA  
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DISCUSSION 

In this study, new kinetic and spectroscopic information on various TyrH 

complexes are presented in order to gain more insight into the reactivity of ferrous active 

site of TyrH with oxygen and to determine the influence of tyrosine and 6-

methyltetrahydropterin (6MPH4) binding on this reactivity. XAS and MCD 

spectroscopies show that the Fe(II) active site is 6C in resting TyrH. The geometric and 

electronic structure of the Fe(II) site is slightly perturbed when either tyrosine or pterin is 

bound to TyrH, but the site remains 6C in both cases. The active site becomes 5C when 

both tyrosine and pterin are bound, possibly opening up a coordination position for the O2 

reaction. The EXAFS data for TyrH-[L-tyr, 6MPH4] are also consistent with a 5C Fe(II) 

site with 2 His, 1 bidentate Glu and 1 water as ligands, comparable to the crystal structure 

determined for PheH:Fe(II) with thienylalanine and BH4 bound (PDB ID 1KWO) (25). 

The 6C to 5C change in the TyrH active site is consistent with the general mechanistic 

strategy observed in other non-heme iron enzymes that use redox-active cofactors to 

activate O2 for reaction with substrates (80, 88, 89).  

Earlier steady-state kinetic studies on WT TyrH were consistent with an ordered 

binding sequence of pterin followed by oxygen in rapid equilibrium and then tyrosine 

before the DOPA product is released (36). This suggests that the Fe(II) site in TyrH 

undergoes a structural change upon pterin binding that allows the Fe(II), pterin and O2 to 

react before tyrosine binds. The protein itself does undergo conformational changes upon 

pterin binding (34). However, our spectroscopic data show only a slight perturbation to 

the 6C Fe(II) site upon pterin binding.  
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For the resting form of the enzyme, TyrH:Fe(II)-[ ], the single turnover kinetic 

results indicate that the isolated one-electron oxidation reactions of Fe(II) to Fe(III) is 

slow due to unfavorable thermodynamics. The oxidation of Fe(II) in binary complexes of 

TyrH, either with only tyrosine bound or with a cofactor analogue (a non-redox active 

pterin) bound, also exhibits slow kinetics. Even in the case of non-catalytic ternary 

complexes (bound with both tyrosine and a non-redox active pterin), which are expected 

to have 5C Fe(II) active site, there is not any rate acceleration, with the oxidation rate of 

Fe(II) being very similar to that of the resting enzyme. Oxidation kinetics of 

tetrahydropterin to quinonoid dihydropterin (q-6MPH2) in apoTyrH-[6MPH4] is no 

different than the autoxidation reaction of tetrahydropterin in solution. However, the 

combination of Fe(II) and redox-active pterin in TyrH: Fe(II)-[6MPH4] accelerates both 

the Fe(II) oxidation and uncoupled pterin oxidation reactions, even though the Fe(II) site 

remains 6C, as indicated by the spectroscopic investigation. The faster reaction rates in 

TyrH: Fe(II)-[6MPH4] can be ascribed to the favorable thermodynamics of the two-

electron reduction of O2 to peroxide by the combined reaction of FeII � FeIII and 6MPH4 

� 6MPH3
•. 

The catalytically relevant complex of TyrH, TyrH: Fe(II)-[L-tyr, 6MPH4], as the 

MCD and XAS data clearly showed, has a 5C TyrH: Fe(II) site. In the reaction of TyrH: 

Fe(II) -[L-tyr, 6MPH4]  complex with oxygen, the first observable step, corresponding to 

the breakdown of the putative Fe(II)-OO-pterin intermediate, is 2 – 3 orders of magnitude 

faster than the Fe(II), 6MPH4 and Fe(II) + 6MPH4 oxidation reactions involving the 6C 

and non-catalytic 5C forms of TyrH (Table 5). The measured rate constant for this step 

necessarily sets a lower limit for the rate constant for the initial reaction with oxygen to 



                                                                                                                                            72 
 

form this intermediate. Thus, the two electron transfer from the 5C Fe(II) and reduced 

pterin to O2 is far more favorable than in the 6C TyrH: Fe(II)-[6MPH4] site and than in 

the 5C TyrH: Fe(II)-[L-tyr,5-deaza-6MPH4] and TyrH: Fe(II)-[L-tyr,6MPH2] sites, 

confirming that the open coordination position on the Fe(II) and the presence of a redox 

active pterin are both critical for catalytic TyrH reactivity. The requirement for the 

presence of both cofactor and substrate for a catalytically relevant oxygen reactivity of 

the active site iron has been demonstrated in other groups of mononuclear non-heme 

enzymes. In the case of α-KG dependent TauD, binding of the substrate taurine has been 

shown to activate Fe(II) active site for O2 reactivity by 3 orders of magnitude (10). 

Although there is no direct structural evidence for a coordination change of the active site 

of TauD, MCD studies on another α-KG dependent enzyme, clavaminate synthase, 

showed that iron center becomes 5-coordinate when both cofactor and substrate are 

bound (90).  Thus, sluggish reactivity of protein active sites with oxygen in the absence 

of substrate has been considered as a control mechanism of these enzymes with two 

significant benefits; preventing consumption of cofactors in the absence of the target 

substrates and protecting enzymes from self-inactivation by avoiding formation of 

reactive radical species (10).  

Earlier observations under steady-state conditions with E332A TyrH suggested 

that 4a-hydroxypterin is not formed in the uncoupled reaction of E332A TyrH (29).  

Stopped-flow kinetic studies were performed in order to compare the individual reaction 

steps of the uncoupled E332A reaction with those of the coupled WT reaction. The first 

step with observable kinetics of WT TyrH is the decay of the putative Fe(II)-OO-pterin 

intermediate to form 4a-HO-pterin, which occurs at a rate of 24 s-1. The 4a-HO-pterin 
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that forms in WT TyrH and in the S395A mutant (37) is not observed in the E332A 

mutant, which also does not hydroxylate tyrosine, indicating that the Fe(IV)=O 

intermediate also does not form. The first observable step of the E332A TyrH reaction is 

the formation of an oxidized pterin species, possibly the HOO-pterin, with a rate constant 

of 0.3 s-1. This intermediate may form either by direct reaction of O2 with 6MPH4 

(however this reaction is much slower at 1.7 × 10-4 mM-1s-1), or, more likely, through a 

Fe(II)-OO-pterin intermediate as in WT TyrH. In the latter case, the E332A mutation 

may change the reactivity of the Fe(II)-OO-pterin intermediate such that it decomposes 

with a slower rate and through a different mechanism than WT. In both, decay of the 

intermediate likely involves protonation of the Fe(II)-OO-pterin. In WT TyrH, the nature 

of the cleavage products, Fe(II)=O and 4a-OH-pterin indicate that the O distal (Odis) to 

the Fe(II) is protonated to heterolytically cleave (Scheme 10, top). In the E332A mutant, 

an oxidized pterin species, possibly the HOO-pterin, is formed. This would involve the 

protonation of the O proximal to Fe (Oprox) in the Fe(II)-OO-pterin, followed by the 

cleavage of the Fe-Oprox bond (Scheme 10, bottom). These results suggest that the E332 

residue participates in the reactivity of TyrH by directing the distal protonation of the 

Fe(II)-OO-pterin intermediate.  

 

Scheme 10. Proposed protonation sites in WT and E332A TyrH 
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The crystal structure of Fe(II)-PheH with thienylalanine and tetrahydrobiopterin 

bound (PDB 1KWO, Figure 24) indicates that the E332 carboxylate group is oriented 

towards the pterin, and could hydrogen bond to it, either through direct interaction with 

the proton on the N3, or through solvent molecules (25). The E332 residue could either 

directly transfer the proton from N3 to Odis (N3 is deprotonated in the final quinonoid 

pterin product) or direct a solvent water via an H-bond to the Odis. The water ligand is not 

likely to be the proton source for heterolytic O-O cleavage, because the MCD data of the 

TyrH-[L-tyr, 6MPH4] complexes in WT and E332A indicate that the geometric and 

electronic structures of the 5C sites are very similar. Apparently, when E332 is mutated 

to an alanine, the enzyme can no longer direct a proton to Odis, and the Oprox is protonated 

instead, leading to the cleavage of the Fe-O bond to regenerate Fe(II) and HOO-pterin.  

 

 

FIGURE 24. Crystal structure of the Fe(II) active site of PheH showing the binding 

positions of the amino acid substrate (TA, thienylalanine, cofactor (BH4, 

tetrahydrobiopterin), metal ligands and the E332 residue (using the TyrH numbering). 

The figure was created from the PDB file 1KW0.  

 



                                                                                                                                            75 
 

In summary, this study shows through XAS and MCD spectroscopy that the 

Fe(II) active site in TyrH is 6C until both tyrosine and pterin are bound. This 6C → 5C 

conversion is consistent with the general mechanistic strategy observed in other 

mononuclear non-heme iron enzymes. Single turnover kinetic data on WT TyrH indicate 

that at a 6C active site, the two electron reduction of O2 to peroxide by Fe(II) and pterin 

is favored over individual one electron reactions. However, this reaction is still slow. 

Importantly, this reaction is greatly accelerated in the TyrH: Fe(II)-[L-tyr, 6MPH4] 

complex, indicating that both 5C Fe(II) and pterin are required for the O2 reaction.  

Comparison of the kinetics of WT and E332A TyrH: Fe(II)-[L-tyr, 6MPH4] reactions 

with O2 indicate that the E332 residue plays a role in directing the protonation of the 

bridged Fe(II)-OO-pterin complex to produce the Fe(IV)=O hydroxylating intermediate 

and hence is important for tuning the TyrH active site for productive coupled turnover.   
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CHAPTER IV 

INVESTIGATIONS OF THE CHEMICAL AND PHYSICAL STEPS IN THE 

CATALYTIC MECHANISM OF TYROSINE HYDROXYLASE: RAPID 

REACTION AND VISCOSITY STUDIES 

 

INTRODUCTION 

Tyrosine hydroxylase (TyrH) is a member of the pterin dependent aromatic amino 

acid hydroxylase family, which utilize a mononuclear non-heme iron and a reduced 

pterin cofactor to activate molecular oxygen for the hydroxylation of their corresponding 

amino acid substrates. TyrH, which is found in the brain and adrenal gland, catalyzes 

conversion of L-tyrosine to L-dihydroxyphenylalanine (DOPA) (Scheme 1). This is the 

first and rate-limiting step in the biosynthesis of catecholamine neurotransmitters 

dopamine, noradrenaline and adrenaline (15, 21). A deficiency of TyrH is related to 

several neurological disorders including DOPA-responsive Parkinson’s disease, 

progressive encephalopathy, DOPA-non-responsive dystonia and DOPA-responsive 

dystonia (Segawa’s disease) (17, 18). The other members of the family are also of 

physiological significance; phenylalanine hydroxylase, a liver enzyme, catalyzes the 

conversion of phenylalanine in the diet to tyrosine, and tyrptophan hydroxylase, a brain 

enzyme, converts tryptophan to 5-hydroxytryptophan as a precursor to the 

neurotransmitter serotonin (15, 21). 

All members of the aromatic amino acid hydroxylase family have similar active 

sites, where the mononuclear non-heme iron is coordinated by the common motif of 2-

His-1-Glu facial triad (12, 23). Studies of the three enzymes show that they share a 
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common catalytic mechanism (38-41). The proposed mechanism for TyrH is shown in 

Scheme 2 (21). The earlier steps in this mechanism include a reaction between iron, 

tetrahydropterin and molecular oxygen to give an iron µ-peroxypterin. Heterolytic 

cleavage of this intermediate leads to the formation of the hydroxylating intermediate, a 

high valence Fe(IV)O species, and the side product 4a-hydroxypterin. In the later stage, 

reaction of the Fe(IV)O with the aromatic ring gives the hydroxylated amino acid product 

through electrophilic aromatic substitution (44). Studies in Chapter II provided direct 

evidence from Mössbauer spectroscopy for the postulated Fe(IV) intermediate in the 

reaction pathway of TyrH. Complementary single turnover rapid chemical quench 

experiments and stopped-flow absorption spectroscopy further showed that Fe(IV) and 

4a-hydroxypterin intermediates are kinetically competent to be on the reaction pathway 

of the proposed mechanism(Scheme 2). These experiments also revealed that the rate 

constant for the formation of DOPA is much faster than the steady-state kcat value (36). In 

this study, we employed a combination of rapid reaction and steady-state kinetics to 

elucidate the nature of the rate-limiting step or steps in the mechanism of WT TyrH.  

 

EXPERIMENTAL PROCEDURES 

Chemicals. 6-Methyltetrahydropterin was from Schircks Laboratories (Jona, 

Switzerland). Hepes, ferrous ammonium sulfate, sucrose and trehalose were purchased 

from Fisher (Pittsburgh, PA). Glycerol and tyrosine were from Sigma-Aldrich 

(Milwaukee, WI). The GEMINI reverse-phase C 18 HPLC column was obtained from 

Phenomenex (Torrance, CA). All other reagents were of the highest purity commercially 

available.                                                                                                                    
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 Expression and Purification of TyrH. TyrH was expressed in E. coli and purified 

as previously described (61). After purification, the enzyme was dissolved in 200 mM 

Hepes (pH 7.5), 10% glycerol and 0.1 M KCl containing 5 mM EDTA and incubated for 

one hour on ice before dialyzing against the same buffer without EDTA. The iron content 

was determined using a Perkin-Elmer Analyst 700 atomic absorption spectrophotometer. 

For experiments where viscogen was used, the enzyme was dialyzed into the buffer that 

contains no glycerol (200 mM Hepes, pH 7.5, 0.1 M KCl). 

Steady-State Assays. Steady-state kinetic parameters of WT TyrH were obtained 

using a colorimetric end point assay to measure DOPA production, as previously 

described (36). Conditions were 0.1-0.5 µM TyrH, 100 µg/ml catalase, 1 mM DTT, 10 

µM ferrous ammonium sulfate and either 1 mM 6MPH4 when tyrosine was the varied 

substrate (3-300 µM) or 200 µM tyrosine when 6MPH4 was the varied substrate (5 µM-1 

mM). The buffer was 200 mM Hepes (pH 7.5), 0.1 M KCl with or without viscogen. The 

viscosity of the buffer was varied by adding glycerol, sucrose or trehalose. The absolute 

viscosities for buffers (η) at 5 °C and 30 °C were calculated using values reported in 

literature (91-93). The small effect of buffer and salt on the viscosity of the solutions was 

neglected. 

Rapid Chemical Quench. Rapid chemical quench experiments of TyrH were 

performed using an SFM-400/Q rapid-mixing instrument from Bio-Logic (Claix, France) 

in quenched-flow mode. The instrument was made anaerobic through incubation with 

excess sodium dithionite solution for at least two hours. Water bath solution was made 

anaerobic through bubbling with nitrogen gas to prevent any possible diffusion of O2 to 

the system. Apo-TyrH (30-40 µM) in 200 mM Hepes (pH 7.5), 10% glycerol and 0.1 M 
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KCl (total volume of ~10 ml) was made anaerobic in a tonometer through at least 20 

argon-vacuum cycles. Ferrous ammonium sulfate (~20 µl, ~0.9 equivalent of enzyme) 

was then added to the tonometer under argon. The 6MPH4 stock solution (~40mM) was 

prepared in 2 mM HCl and an extinction coefficient of 17.8 mM-1cm-1 in 2 M perchloric 

acid was used to determine the exact concentration. A volume corresponding to a final 

concentration of 2 mM (in the tonometer) 6MPH4 was placed in the side arm of the 

tonometer under argon. Additional argon-vacuum cycles were performed prior to mixing 

the 6MPH4 solution with the tonometer contents, which was then loaded into one of the 

syringes of the rapid-mixing instrument. A second syringe was loaded with buffer 

containing 500 µM tyrosine that had been bubbled with pure oxygen gas for at least 20 

min. This was done either on ice to obtain a concentration of 1.9 mM oxygen or at room 

temperature to get a concentration of 1.2 mM. The quenching solution, 5 M HCl, was 

loaded into a third syringe. The tonometer contents were mixed with the tyrosine-

containing oxygenated buffer and quenched with acid after being aged through a 90 µl 

(N° 3) delay line. Tyrosine and DOPA present in the collected samples were separated on 

a C18 Phenomenex HPLC column (250-4.6 mm) with an isocratic mobile phase of 15 

mM sodium phosphate, pH 7.0, at a flow rate of 1 ml/min. The amount of DOPA was 

quantified using a Waters 2475 Multi λ fluorescence detector with an excitation 

wavelength of 270 nm and an emission wavelength of 310 nm.    

Stopped-Flow Spectrophotometry. Single turnover kinetics of TyrH, at conditions 

of varied viscosities, were monitored using an Applied Photophysics (Leatherhead, UK) 

SX20 stopped-flow spectrophotometer in absorbance mode. The instrument was made 

anaerobic in the same way as described above for the rapid chemical quench experiment. 
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A solution of apo-TyrH (430 µM) and tyrosine (750 µM) in 200 mM Hepes (pH  7.5),  

0.1 M KCl (with or without sucrose, 22%, w/w) was made anaerobic in a tonometer 

through at least 20 argon-vacuum cycles. A stoichiometric amount of ferrous ammonium 

sulfate (~20 µl, ~0.9 equivalent of enzyme) was then added to the tonometer under argon. 

6MPH4 solution, corresponding to a final concentration of 1.3 mM (in the tonometer), 

was placed in the side arm of the tonometer under argon. Additional argon-vacuum 

cycles were performed before mixing the 6MPH4 solution with the tonometer contents. 

The tonometer was then loaded into one of the syringes of the stopped-flow instrument. 

The second syringe was loaded with the same buffer as in tonometer, having oxygen 

concentrations corresponding to the O2 solubility at 5 °C (400 µM for buffer without 

viscogen, 270 µM for buffer with 22% sucrose) (94). The mixing of the contents of the 

two stopped-flow syringes was initiated through the instrument software and wavelengths 

of 246 nm and 318 nm were monitored. In cases where the viscosity of the reaction 

medium was varied, each side of the stopped-flow instrument contained exactly the same 

concentration of viscogen to prevent mixing artifacts.  

Data Analysis. Kinetics of DOPA formation obtained through rapid chemical 

quench experiments were analyzed using the global analysis program KinTek Explorer 

Pro (KinTek Corp., Austin, TX). The active enzyme concentration was varied within 5 % 

of the experimental values to account for pipetting errors or inactivation of the enzyme 

during the experiment. The agreement of the data points with simulation traces were 

visually inspected in the live display option of KinTek by varying the rate constants. 

Thus it was possible to observe the change in the quality of the simulations within the 

varied limits of the enzyme concentration upon a range of rate constants.   
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Analyses of the effects of viscosity on the steady-state kinetics were performed by 

a global analysis method.  All the initial rate data sets obtained with or without viscogen 

at a given temperature were fit simultaneously to equation 3 using the analysis program 

Igor Pro (Wavemetrics, Lake Oswego, OR). Equation 3 is a modified Michaelis-Menten 

equation that describes separate viscosity effects on kcat and kcat/Km values. In this 

equation, S is the concentration of the varied substrate, µ is relative viscosity (η/η°) 

minus 1 and m and n are the viscosity effects on kcat/Km and on  kcat, respectively. Due to 

severe substrate inhibition at high concentrations of tyrosine at 5 °C, initial rate data 

obtained at low tyrosine concentrations were fit globally to eq 4 instead of eq 3 to 

calculate the viscosity effects on kcat/Km for tyrosine. 
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Calculation of association rate constants (k1) and forward commitments (k2/k-1) 

was performed by a fit to eq 5 of the kcat/Km values for tyrosine at various relative 

viscosities from multiple experiments using the program Igor Pro. 
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 To analyze the stopped-flow kinetic data, the absorbance traces were first fit 

simultaneously to various sequential mechanisms using the program SpecFit (Spectrum 

Software Associates). The results from this analysis gave an estimate for the number of 

observable phases and for the corresponding rate constants for further analysis. The data 
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were then analyzed globally using the program KinTek Explorer Pro (KinTek Corp., 

Austin, TX). Estimates for the rate constants and extinction coefficients were taken from 

studies presented in Chapters II and III and from the SpecFit analysis. The global analysis 

by KinTek was first performed in an iterative fashion by fitting one or two parameters at 

a time and by keeping other parameters constant. This way the estimates for unknown 

parameters were determined. The best-fit parameters obtained in this fashion were then 

employed for a global simulation of the absorbance traces. 

 

RESULTS 

Rapid Chemical Quench Experiments. Single turnover experiments presented in 

Chapter II showed that the rate constant for the formation of the product DOPA in the 

first turnover of TyrH reaction is much faster than the kcat value observed in steady-state 

experiments (~15 s-1 vs. ~ 0.4 s-1 at 5 °C). This suggests that kcat is limited by subsequent 

slow steps. Since this should result in a pre-steady-state burst of DOPA formation in the 

first turnover (95), the reaction of TyrH was analyzed by rapid chemical quench. The 

anaerobic complex of ferrous TyrH(30-40 µM):6MPH4(2.0 mM) was mixed with an 

equal volume of buffer containing tyrosine (500 µM) and O2 (1.9 mM at 5 °C and 1.2 

mM at 30 °C). Tyrosine and 6MPH4 concentrations were chosen to be high enough to 

assure complete and rapid binding (Km values are ~30 µM and ~70 µM at 5 °C for 

tyrosine and 6MPH4, respectively). The reaction was quenched with 5 M HCl at various 

time points from 10 ms to several seconds and the samples collected were analyzed by 

HPLC to quantify the amount of the product DOPA. The time courses of product 

formation obtained from these analyses are shown in Figure 25. An initial burst can be 
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clearly seen at both temperatures. For quantitative analysis, the data were simulated 

according to the mechanism in Scheme 11. In the first step of this mechanism, binding of 

tyrosine, 6MPH4 and O2 is rapid (vide supra), thus kburst is determined by the much 

slower chemical rate for DOPA formation. Using the live simulation display option of the 

program KinTek, the agreement of the data points with the simulation traces were 

visually inspected. The data at 5 °C could be well simulated with rate constants in the 

range of 7-14 s-1 for the burst phase and 0.6-0.7 s-1 for the linear phase when the active 

enzyme concentration is varied in a range of 0.95-1.05 equivalent of the experimental 

concentration. This rate constant for the burst phase is close to the earlier value for 

DOPA formation from single turnover experiments at this temperature, 14 s-1 (vide 

supra). With the same approach, the kinetic data at 30 °C could be simulated well with 

rate constants in the range of 14-22 s-1 and 3-4 s-1 for the burst and the linear phases, 

respectively. Figure 25 shows the simulations obtained with kburst of 12 s-1 and klinear of 0.7 

s-1 for the data at 5 °C and kburst of 20 s-1 and klinear of 3.5 s-1 for the data at 30 °C. 

 

Scheme 11 
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FIGURE 25. Time course (A) at 5 °C or (B) at 30 °C for the formation of the product 

DOPA from the reaction of TyrH (30-40 uM):6MPH4 (2 mM) with an equal volume of 

Tyr (500 uM):O2 (1.9 mM at 5 °C and 1.2 mM at 30 °C). Circles are the data obtained 

from rapid chemical quench analyses for DOPA. The lines are from the simulations to the 

mechanism in Scheme 11 with rate constants given in the text. 
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Steady-State Viscosity Experiments. The rapid chemical quench experiments 

established that the chemical steps in the TyrH reaction that result in DOPA formation 

are significantly faster than the following steps. In many enzymatic systems, such 

subsequent steps are either product release steps or conformational changes associated 

with product release (96-103). Product release should be diffusion limited, so that the 

rates are dependent on the viscosity of the medium (96). To investigate if product release 

is a rate-limiting step in the TyrH reaction, kcat was measured in the presence of various 

viscogens. Three different viscogens were employed: glycerol, sucrose and trehalose. 

Experiments with glycerol showed inhibition at high concentrations. This might be due to 

the binding of relatively small glycerol molecules in the active site of the enzyme. In fact, 

PheH has been reported to be inhibited by glycerol due to the perturbation of the iron 

(104). Therefore, the analysis was carried out with sucrose and trehalose as viscogens. 

Viscosity effect is a measure of the rate decrease for a reaction upon increasing solvent 

viscosity and can take values between 0 and 1. A viscosity effect of 0 means the rate of 

the reaction is completely independent of solvent viscosity, whereas an effect of 1, which 

is the theoretical limit, indicates a completely diffusion-limited event. The steady-state 

rate data were analyzed by a global fit according to eq 3 or 4, a modified Michaelis-

Menten equation where viscosity effects are included as coefficient values and the 

relative viscosity is an independent variable. In this approach, all the initial rate data 

obtained at different viscogen concentrations are fit to a single set of rate parameters (kcat 

and kcat/Km). Results from the global analysis are given in Table 6.  
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Table 6. Viscosity Effects on Kinetic Parameters for TyrH Reactiona from Global 

Analysis. 

Viscogen Temp 

(oC) 
(kcat)η  b (kcat /Ktyr)η c (kcat/K6MPH4)η b 

Sucrose 5 0.89 ± 0.09 0.49 ± 0.09 1.41 ± 0.26 

Sucrose 30 0.83 ± 0.03 0.30 ± 0.11 1.93 ± 0.27 

Trehalose 5 0.78 ± 0.07 0.38 ± 0.10 0.27 ± 0.10 

Trehalose 30 0.94 ± 0.10 0.54 ± 0.15 1.26 ± 0.29 
 

a Conditions: 0.1-0.5 µM TyrH, 100 µg/ml catalase, 1 mM DTT, 10 µM ferrous 
ammonium sulfate, 200 mM Hepes (pH 7.5) and 0.1 M KCl. Appropriate amounts 
sucrose or trehalose was included in the reaction medium to obtain desired solvent 
viscosities. Global analysis was performed as described in experimental procedures. b 200 
µM tyrosine with varied concentrations of 6MPH4 (5 µM-1 mM). c 1 mM 6MPH4 with 
varied concentrations of tyrosine (3-300 µM).  
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Both sucrose and trehalose had almost the same effect on kcat at 5 °C and 30 °C. A 

viscosity effect of about 0.8-0.9 was determined (Table 6 and Figure 26). This indicates 

that kcat of TyrH reaction is significantly limited by a diffusional event. 
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FIGURE 26. Effect of solvent viscosity on the kcat value (A) at 5 °C and (B) at 30 °C for 

sucrose (circles) and trehalose (squares) as viscogens. The solid lines are linear 

regression fits with slopes corresponding to the viscosity effects reported in Table 6. 
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Effects of viscosity on kcat/Km values reflect contributions of diffusional events to 

the steps in catalysis up to and including the first irreversible step. Since substrate entry 

into the active site is expected to be diffusion limited, the degree of rate limitation for 

substrate binding can be deduced from viscosity effects on kcat/Km (96, 98-101). The 

effects of sucrose and trehalose on the kcat/Km values for both 6MPH4 and tyrosine were 

determined. The results are summarized in Table 6. Sucrose and trehalose had similar 

effects on kcat/Km for tyrosine at both 5 °C and 30 °C (Figure 27). The values suggest that 

the kcat/Km value for tyrosine is ~50% limited by diffusion of tyrosine into the active site.  
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FIGURE 27. Effect of solvent viscosity on the kcat/Km value for tyrosine at (A) 5 °C and 

(B) 30 °C for sucrose (circles) and trehalose (squares) as viscogens. The solid lines are 

linear regression fits with slopes corresponding to the viscosity effects reported in Table 

6. 
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The viscosity effects on kcat/Ktyr were also used to calculate the association rate 

constant (k1) and the forward commitment (k2/k-1) for tyrosine according to eq 5 (96), 

where k1 and k-1 are the rate constants for the association and dissociation of tyrosine, 

respectively, and k2 is the rate constant for the first irreversible step. The resulting 

numbers are given in Table 7. 

 

Table 7. Values of Association Rate Constants and Forward Commitments for 

Tyrosine Binding, Calculated from Viscosity Effects on kcat/Ktyr according to eq 5 as 

Described in Experimental Procedures. 

Temp (°°°°C) k1 (mM-1s-1) k2/k-1 

5 1.22×103 ± 320 1.03 ± 0.62 

30 7.04×103 ± 2.02×103 0.93 ± 0.60 

 

 

For 6MPH4, the viscosity effects on the kcat/Km value exhibited significant variation 

with temperature and with the viscogen used (Figure 28 and Tables 6). At 5 °C, for both 

sucrose and trehalose, the effect on kcat/K6MPH4 was much lower than at 30 °C (Figure 

28B and Table 6). Theoretically, the maximum value a viscosity effect can take is 1.0 

(96). At 30 °C, the values observed for kcat/K6MPH4 were significantly greater than 1.0 

with both viscogens. Such deviations from the expected limit have been attributed to 

internal movements in proteins that occur concomitantly with binding events or other 

diffusional processes (103, 105-107).  
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FIGURE 28. Effect of solvent viscosity on the kcat/Km value for 6MPH4 at (A) 5 °C and 

(B) 30 °C for sucrose (circles) and trehalose (squares) as viscogens. The solid lines are 

linear regression fits with slopes corresponding to the viscosity effects reported in Table 

6. 

 

Single Turnover Stopped-Flow Experiments. Pterin species that form during the 

reaction of TyrH can be monitored in the UV-Visible region (200-450 nm) using 

stopped-flow absorbance spectroscopy (69). Global kinetic analysis of the single-

wavelength absorbance traces up to ~5 s in Chapters II and III established the rate 

constants for the initial steps in TyrH reaction. In this study, an anaerobic solution of 

TyH(430 µM):6MPH4(1.3 mM):Tyr(750 µM) was mixed with an equal volume of the 

oxygenated  buffer (400 µM and 270 µM with and without sucrose respectively) at 5 °C 

in the absence and presence of sucrose (22%, w/w). The concentration of oxygen was 

limiting to assure single turnover conditions. The data up to 30 s were initially analyzed 

by fitting the absorbance traces at 246 nm and 318 nm concomitantly to various 

sequential mechanisms using the program SpecFit to get estimates for the number of 

observable phases and rate constants (10). A three step sequential mechanism accounted 
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well for the traces in the absence of sucrose, with rate constants of 15 s-1, 0.7 s-1 and 0.02 

s-1, respectively. However, a four step sequential mechanism was required to fit the 

absorbance data in the presence of sucrose, with rate constants of 15 s-1, 0.7 s-1 , 0.66 s-1 

and 0.02 s-1, respectively . This suggested that the additional phase is due to a viscosity 

sensitive step that becomes distinguishable only in the presence of sucrose. In order to 

address this issue, a more extensive kinetic analysis was carried out by simulating both 

absorbance traces simultaneously using the program KinTek. The analysis initially 

employed the known values for the rate constants and extinction coefficients for the steps 

that were studied in previous chapters and the estimates from SpecFit analysis. For the 

rest of the parameters, a step by step fitting procedure was carried out by Kintek in which 

only one or two parameters were varied at a time and the rest of the parameters kept 

constant. A five-step mechanism shown in Scheme 12 accounts well for the data in the 

absence and presence of sucrose (Figure 29). Both data sets can be simulated well with 

the same group of rate constants and extinction coefficients with the exception of the 

fourth step, which corresponds to the additional exponential term observed in the 

presence of sucrose when the data is fit as the sum of exponentials. The rate constants 

and extinction changes used in the simulations as parameters are given in Tables 8 & 9. 

The first step in this mechanism is the oxygen-binding step with no observable 

absorbance change and the rate constant used in the simulations for this step was taken 

directly from Chapter III. The second step is the first step with an observable absorbance 

change and corresponds to the concomitant formation of Fe(IV)O and 4a-hydroxypterin, 

with a rate constant of 24 s-1, in agreement with the results in Chapter II. The third step 

exhibits an increase at 246 nm and a decrease at 318 nm, with a rate constant of 0.8 s-1 
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and accounts for much higher absorbance changes at both wavelengths in comparison to 

the second step. The fourth step of the mechanism could not be simulated with the same 

rate constant for data sets obtained in the absence and presence of sucrose. There is 

almost a 2.3-fold decrease in this rate constant (1.3 s-1 vs. 3.0 s-1) when sucrose is present 

in the reaction medium, consistent with the relative viscosity of 2.4 at this sucrose 

concentration. The final step in the simulated mechanism is the slow dehydration of 4a-

hydroxypterin to give quinonoid dihydropterin in solution with a rate constant of 0.02 s-1 

(69). 
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FIGURE 29. Stopped-flow absorbance traces at 246 nm (A) and 318 nm (B) for the 

reaction of 215 µM TyH:Fe(II):6MPH4:Tyr with 200 µM O2 in the absence of sucrose 

(circles) and with 135 µM O2 in the presence of 22% (w/w) sucrose (squares). The solid 

lines are from simulations of the data at 5 °C to the mechanism in Scheme 12, using the 

rate constants and the extinction coefficients in Tables 8 & 9. 
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Scheme 12 

 
 
 
Table 8. Rate Constants and Associated Extinction Changes Obtained from 

Simulation of the Stopped-Flow Absorbance Traces in the Absence of Viscogen to 

the Mechanism in Scheme 12. Reaction Conditions Were 200 mM Hepes (pH 7.5), 

0.1 M KCl at 5 °°°°C.  

 

Step Rate Constant ∆∆∆∆εεεε 246 nm (mM-1cm-1) ∆∆∆∆εεεε 318 nm (mM-1cm-1) 
k1 300 mM-1s-1 0 0 
k-1 50  s-1 0 0 
k2 24  s-1 + 1.8 - 0.6 
k3 0.8 s-1 + 9.9 - 2.6 
k4 3.0 s-1 - 7.0 + 2.0 
k5 0.02 s-1 - 2.0 + 3.6 

 
 
Table 9. Rate Constants and Associated Extinction Changes Obtained from 

Simulation of the Stopped-Flow Absorbance Traces in the Presence of Viscogen to 

the Mechanism in Scheme 12. Reaction Conditions Were 200 mM Hepes (pH 7.5), 

0.1 M KCl, 22 % (w/w) Sucrose at 5 °°°°C. 

 

Step Rate Constant ∆∆∆∆εεεε 246 nm (mM-1cm-1) ∆∆∆∆εεεε 318 nm (mM-1cm-1) 
k1 300 mM-1s-1 0 0 
k-1 50 s-1 0 0 
k2 24 s-1 + 2.0 - 0.6 
k3 0.8 s-1 + 10.5 - 2.0 
k4 1.3 s-1 - 6.6 + 2.1 
k5 0.02 s-1 - 3.4 + 3.9 
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DISCUSSION 

Recent studies towards the elucidation of the mechanism of TyrH established 

direct evidence for the involvement of Fe (IV)O as the hydroxylating intermediate in the 

catalytic cycle. These studies also revealed that the rate of DOPA formation is 

significantly faster than kcat of the enzyme obtained in steady-state assays. Although 

earlier studies (21) suggested formation of the hydroxylating intermediate as being the 

rate-limiting step in TyrH reaction,  recent observation indicated that chemical steps up to 

and including the step for DOPA formation are not rate limiting. In this study, we used a 

combination of pre-steady-state and steady-state techniques to determine the nature of the 

steps that contribute to the overall rate of the catalysis.  

Rapid chemical quench experiments performed at multiple turnover conditions 

clearly show the presence of a DOPA burst during the first turnover of the reaction. The 

rate constant for this burst phase matches that for DOPA formation rate obtained in 

Chapter II at 5 °C. The presence of the burst indicates that a slow step subsequent to 

formation of DOPA is at least partially rate-limiting. A likely candidate for such a step is 

a product release step or a conformational change associated with product release (97, 

107).  

Product release is a diffusional event, thus the rate of this step is dependent on 

solvent viscosity (96). For a completely rate-limiting event, the viscosity effect takes a 

value of 1 and partial rate-limiting steps take values between 0 and 1 (96, 100). With 

TyrH, we obtained a slope of about ~0.9, close to the theoretical maximum value of 1, 

showing that kcat for the TyrH reaction is almost completely limited by diffusion. This 
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can be interpreted as product release, rather than a conformational change, being strictly 

rate limiting (97, 107).  

In order to further test the consistency of rapid chemical quench results with 

viscosity effects, the burst and linear phase rate constants from rapid chemical quench 

data were used to calculate the theoretical viscosity effects on kcat using eq 6 (99, 100). A 

value of 0.95 at 5 °C and a value of 0.85 at 30 °C were determined from this analysis. 

These are very similar to the experimental values obtained from the analysis of the 

steady-state data (Table 6). Overall, rapid chemical quench and steady-state viscosity 

experiments are in good agreement, supporting the conclusion that the first turnover in 

TyrH reaction is substantially limited by a diffusion controlled event, most probably a 

product release step.  

(kcat)
η  = kburst/(kburst + klinear)                               (6) 

Further mechanistic insight was obtained through analysis of the viscosity effects 

on kcat/Km values for both tyrosine and 6MPH4. In general these effects are indicative of 

forward commitment (k2/k-1) to catalysis (96, 98). The viscosity effects on kcat/Km  for 

tyrosine allowed calculation of the forward commitments at 5 °C and 30 °C (Table 7). 

The commitment values indicate that the dissociation rate constant for tyrosine is 

comparable to the value of the rate constant for the first irreversible step of the reaction at 

both temperatures, consistent with a moderate forward commitment to catalysis for 

tyrosine binding. The first irreversible step in the TyrH reaction is either a chemical step 

preceding Fe(IV)O formation, most likely the formation of the proposed iron-

peroxypterin bridge, or formation of Fe(IV)O. In the latter case, the rate constant at 5 °C 

is known. This rate constant, 24 s-1, can be taken as the lower limit for the first 
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irreversible step, placing a lower limit on the dissociation rate constant for tyrosine of 15-

75 s-1. 

The viscosity effect on kcat/Km for 6MPH4 is well above 1 for all conditions 

(except when trehalose is the viscogen at 5 °C), the theoretical limit for a diffusion-

limited event. However, in systems where there is an accompanying conformational 

change upon binding of a substrate, slopes over 1 have been observed and this behavior 

attributed to the cumulative effect of more than one diffusional events (103, 105-107). 

According to Kramer’s theory, which relates the effects of friction on unimolecular 

diffusive events to their rate constants, the free energy barrier will be inversely 

proportional to the solvent friction, which is a function of solvent viscosity (η) (108, 

109). In the case of 6MPH4 binding, the solvent friction that retards the encounter of 

6MPH4 with the enzyme will increase the free energy barrier. In addition, for a protein 

conformational change coupled with binding event, the interaction of the moving portion 

of the protein with viscogen molecules will further increase the energy barrier, resulting 

in upward deviation from the maximum slope value, as in the case of 6MPH4 binding for 

TyrH. Since sucrose and trehalose molecules are not expected to diffuse inside the 

protein, this moving portion of the protein should be located on the protein surface.  

In fact, previous studies on TyrH using fluorescence anisotropy showed that the 

movement of a catalytically important mobile surface loop (consisting of amino acid 

residues 177-193) from a solvent exposed position towards the active site is associated 

with 6MPH4 binding (33, 34). This is in good agreement with the deviation observed for 

the viscosity effect on kcat/Km for 6MPH4. Hydrogen/Deuterium exchange studies 

revealed that this loop shows a high percentage of deuterium incorporation in the resting 
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state of the enzyme, suggesting significant interaction between loop residues and solvent 

molecules (110). Loop residues can make hydrogen bonding interactions directly with 

viscogen molecules as well as with water molecules surrounding viscogen molecules. In 

addition to their available groups for hydrogen bonding, both sucrose and trehalose can 

affect the dynamic structure of the water molecules in their vicinity (111, 112).  The 

altered interactions in the presence of viscogen molecules could stabilize the resting 

position of the loop before 6MPH4 binding, thus increasing the energy barrier for 

movement of the loop from the surface.  

The viscosity effects on kcat/Km for 6MPH4 show a dependency on the nature of 

the viscogen and on temperature. The effects obtained in the presence of sucrose are 

higher than those obtained in the presence of trehalose (Table 6). In addition, only in the 

case of trehalose at 5 °C is the viscosity effect on kcat/Km  for 6MPH4 below unity (~0.3), 

possibly indicating that the effect from internal movements of the protein is absent and 

only the effect on 6MPH4 diffusion is observed. These observations imply that there are 

differences in the interaction behavior of sucrose and trehalose molecules with the 

surface of the protein and with water molecules. Although sucrose and trehalose are both 

disaccharides of the same molecular weight, the differences in the orientation of their 

hydroxyl groups at chiral carbon atoms lead to different hydration and interaction 

patterns (111), thus sucrose and trehalose will set different energy barriers for loop 

movement. Such a pattern might arise from differences in either direct hydrogen bonding 

interactions between viscogen molecules and the protein surface or in the perturbations of 

the hydrogen bonding network between water molecules and the protein surface. For the 

latter case, studies show that dynamic structure of the water molecules are affected to 
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different extents by sucrose and trehalose (112, 113). Sucrose has been reported to make 

more hydrogen bonding interactions with the protein than trehalose in the case of 

carboxy-myoglobin (112). Trehalose molecules are more effective in decreasing the 

mobility of water molecules in their surroundings (113, 114).  These observations may 

account for the viscogen-dependent variations observed in TyrH system of the viscosity 

effects on kcat/Km values for 6MPH4.  

The viscosity effects for kcat/K6MPH4 also exhibits a temperature-dependent 

variation. The effects at 30 °C are much higher at 5 °C for both viscogens. This 

behaviour can be explained if the temperature dependence of the free energy barrier for 

the viscogen-loop interaction is different from the temperature dependence of the free 

energy barrier for diffusional encounter of the enzyme and 6MPH4. 

In order to gain more insight into the intrinsic rate constants that contribute to the 

kcat for TyrH reaction, the progress of the reaction was monitored by stopped-flow 

absorbance spectrophotometer in the absence and presence of the viscogen sucrose. 

These experiments allowed us to dissect the individual steps as viscosity dependent or 

viscosity independent. Single wavelength traces from the two experiments performed in 

the absence and presence of sucrose can be simulated with the same set of rate constants, 

except the fourth step, and with similar extinction coefficients (Scheme 12, Table 8&9). 

Slight differences in extinction changes between the experiments, with and without 

sucrose, can be attributed to the perturbed absorbance spectra of pterin species due to 

sucrose. The rate constants obtained for the first and second steps of this mechanism, the 

oxygen binding step and subsequent 4a-hydroxypterin formation step, respectively, are in 

agreement with the studies presented in Chapters II and III. The absorbance changes for 
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the second step are less than that would be expected for the formation of 4a-

hydroxypterin at neutral pH (69). However, the amplitude of the sum of the absorbance 

changes for the second and third steps at both wavelengths, 246 nm and 318 nm, are 

consistent with the formation of 4a-hydroxypterin from 6MPH4. This suggests that the 

species that form in the second step is a deprotonated form of 4a-hydroxypterin and the 

third step is the protonation of this species, giving the expected form of 4a-hydroxypterin 

at neutral pH. Absorption spectra of the basic and neutral forms of 4a-hydroxypterin 

derivatives reported in literature support this assumption for the extinction change at 246 

nm (42).  

The decrease in the rate constant of the fourth step of the mechanism (Scheme 12) 

upon increasing viscosity is indicative of a diffusion-limited step. The relative viscosity 

of the reaction medium with sucrose is 2.4 at the experimental conditions used. If this 

step is a product release step, the ratio of the rate constants for this step in the presence 

and absence of viscogen should be close to the relative viscosity value of 2.4 (97, 107). A 

rate decrease of 2.3-fold was obtained for the rate constants from simulations (3 s-1 vs. 

1.3 s-1), which strongly supports that this step is product release. The fourth step is also 

associated with absorbance changes at both 246 nm and 318 nm in the absence and 

presence of sucrose. Thus it is reasonable to attribute this step to the release of 4a-

hydroxypterin and not DOPA, which does not absorb at these wavelengths. The 

extinction changes for this step are possibly due to the differences in the absorbance 

spectra of 4a-hydroxypterin inside the enzyme active site and in solution.  

6MPH4 is the first substrate to bind in TyrH catalysis. This suggests that DOPA is 

the first product to be released followed by 4a-hydroxypterin. Although DOPA release is 
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not detectable by absorption spectroscopy, a step prior to 4a-hydroxypterin release can be 

added as a DOPA release step to the mechanism in Scheme 12 (Scheme 13). Since the 

first and the second steps are much faster than the subsequent steps, eq 7 can be used to 

calculate the rate for DOPA release (the final step is a non-enzymatic step in solution, so 

it was not taken into account in this calculation). Using an average value of 0.5 s-1 for kcat 

obtained from steady-state assays and the rate constants of k3 and k4 from simulations 

(Scheme 12, Table 8), a value of 2.4 s-1 was determined as the DOPA release rate in the 

absence of sucrose. If the same calculation is carried out to calculate the DOPA release 

rate in the presence of sucrose, using rate constants of 0.8 s-1 for k3 and 1.3 s-1 for k4 from 

Table 9 and a kcat value of 0.23 s-1 (calculated from the linear regression fit of relative kcat 

vs. relative viscosity) a rate of 0.6 s-1 is obtained. Theoretically the rate decrease for the 

DOPA release step can not be more than 2.4-fold, the relative viscosity value of the 

reaction medium. Since the rate calculated in the absence of viscogen for DOPA release 

step is 2.4 s-1, the lowest value that the rate constant of the same step in the presence of 

viscogen can take is 1 s-1. However, the actual value calculated as above is 0.6 s-1, much 

lower than 1 s-1, the theoretical lowest limit. This result suggests the presence of other 

slow diffusion-limited steps coupled with the release step, most possibly conformational 

changes. Since 6MPH4 binding has already been shown to be associated with a surface 

loop movement that causes significant effect on K6MPH4 (vide supra), it is reasonable to 

expect a viscosity effect that will further lower kcat, as the loop moves back to its initial 

position during the release event. Thus, a combination of release events and 

conformational changes are most likely to be responsible for the significant viscosity 

dependence of kcat of TyrH reaction. 
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    kcat = (k3k4kDOPA)/(k3+k4+kDOPA)              (7)     

                   

Scheme 13 

 

 

Overall this study brings further insight into the mechanism of TyrH. Product 

burst and viscosity studies showed that chemistry is not rate determining in TyrH 

catalysis and that product release makes a significant contribution to the rate-limiting 

step. Stopped-flow analysis further showed that kcat of the reaction is determined by a 

combination of chemical and physical steps; possibly protonation of 4a-hydroxypterin at 

the enzyme active site, diffusion-limited release of DOPA and 4a-hydroxypterin and an 

associated conformational change. The relative magnitude of the rate constants for these 

steps indicates that conformational change makes a significant contribution to the overall 

rate of the catalysis. Viscosity effects measured on kcat/Km  for  6MPH4 brings further 

insight, supporting the coupling of the movement of a surface loop with 6MPH4 binding, 

as indicated in earlier studies with different techniques. 
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CHAPTER V 

SPECTROSCOPIC INVESTIGATION OF THE NITRIC OXIDE COMPLEXES 

OF TYROSINE HYDROXYLASE 

 

INTRODUCTION 

All members of the AAH family share a similar mechanism (21). The proposed 

mechanism for TyrH is shown in Scheme 1. The mechanism involves formation of the 

hydroxylating intermediate, Fe(IV)O, and subsequent reaction of this intermediate with 

the aromatic ring to give the product, DOPA, through electrophilic aromatic substitution. 

Studies on TyrH presented in the previous chapters have revealed the active site structure 

in the absence and presence of amino acid substrate/pterin cofactor and brought insight 

into the oxygen reactivity of iron as well as provided evidence for the identity of the 

hydroxylating intermediate that forms when the O-O bond is cleaved (vide supra). 

However, it hasn’t been possible up to date to trap and investigate possible intermediate 

complexes before the cleavage of the O-O bond with bound molecular oxygen, due to the 

rapid reactivity of oxygen with the active site iron (vide supra).  

NO has been used as an O2 analogue for many non-heme enzyme systems and for 

model complexes (115-122). In addition to its advantage of being a dioxygen analogue, 

NO also converts EPR silent high-spin ferrous systems (S = 2) to an EPR active form 

with a spin of S = 3/2. This EPR active form is denoted as {FeNO}7, where 7 is the the 

sum of the Fe d and NO π* electrons and the spin state, S = 3/2, is described as the 

antiferromagnetic coupling of a S = 5/2 ferric center with S = 1 NO- (115, 118). NO 

binding to the active site iron also provides a visible chromophore that can be monitored 
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by optical absorption spectroscopy (115-117, 122). Thus, investigation of the NO 

complexes of Fe(II) enzymes have two significant benefits: 1) the electronic environment 

of active site Fe(II) upon binding of substrates and cofactors can be probed; and 2) 

spectroscopic information on the NO bound enzyme complexes provides insight into O2 

bound intermediates that would otherwise be impossible to trap due to the rapid reactivity 

of O2.   

This chapter will describe studies conducted on the NO complexes of TyrH by 

means of visible absorption and EPR spectroscopy in order to get a better understanding 

of the electronic structure of Fe(II) in TyrH. In addition to CW EPR, a pulsed-EPR 

technique, ESEEM (Electron Spin Echo Envelope Modulation) was also used for further 

investigation of the NO complexes of TyrH, in collaboration with the lab of Dr. John 

McCracken at Michigan State University.  

 

EXPERIMENTAL PROCEDURES 

Materials. 6-Methyltetrahydropterin (6MPH4) and 6-methylpterin were purchased 

from Schircks Laboratories (Jona, Switzerland). Methylamine hexamethylene 

methylamine (MAHMA NONOate), ethylenediamine tetraacetic acid (EDTA), L-

tyrosine and glycerol were from Sigma-Aldrich (St. Louis, MO). L-3,5-2H2-Tyrosine and 

deuterium gas were from Cambridge Isotopes (Andover, MA). Potassium chloride and 

ferrous ammonium sulfate were from Fisher (Pittsburg, PA). All other chemicals were of 

the highest purity commercially available. 

Protein Purification. Wild-type TyrH and F184A TyrH were expressed in E. coli 

and purified as previously described (33, 61) In order to remove iron from the protein, the 
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ammonium sulfate pellet at the end of the purification was resuspended in 5 mM EDTA, 

200 mM Hepes, (pH 7.5), 10% glycerol and 0.1 M KCl, and incubated on ice for one 

hour. The enzyme solution was then dialyzed against the same buffer without EDTA and 

concentrated using Amicon Ultra-15 and Ultra-4 centrifugal filters (Millipore Corp., 

MA). The enzyme samples for ESEEM were brought to a final glycerol concentration of 

30% (v/v) during the concentration stage. The iron content of the apo-enzyme was 

measured using a Perkin-Elmer AAnalyst600 atomic absorption instrument. Typical iron 

content of an apo enzyme preparation was ~0.1 equivalent. 

Snythesis of Deuterated 6MPH4. Deuterated 6MPH4 was synthesized by reduction 

of the commercially available 6-methylpterin to the level of tetrahydropterin using 

deuterium gas, as previously described (123).  

Preparation of NO Samples for Spectroscopy. Methylamine hexamethylene 

methylamine (MAHMA NONOate) was used as the nitric oxide donor. Stock solutions of 

MAHMA NONOate were prepared in 0.01 M NaOH just before the experiment and were 

always kept on ice. Exact concentrations of the MAHMA NONOate solutions were 

determined from the UV absorbance at 250 nm in 0.01 M KOH, using an extinction 

coefficient of 7.3 mM-1cm-1(124). Highly concentrated stock solutions of tyrosine and 

3,5-2H2-tyrosine (~50 mM) were prepared by bringing the solution to a final pH of ~10. 

The exact concentrations of the tyrosine stock solutions were determined using an 

extinction coefficient of 1.34 mM-1cm-1 at 275 nm in 0.1 M HCl. Stock solutions of the  

proteated and deuterated 6MPH4  were prepared in 2 mM HCl and an extinction 

coefficient of 17.8 mM-1cm-1 in 2 M perchloric acid was used to determine the 

concentrations. Ferrous ammonium sulfate solutions were prepared fresh by dissolving 
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the appropriate amount of powder in 2 mM HCl. Samples for the UV-Visible and EPR 

experiments were prepared inside an anaerobic cuvette at 25 °C. Apo TyrH (~100 uM for 

UV-Vis and EPR experiments, 0.9-1.2 mM for ESEEM experiments) and tyrosine (if the 

complex contains tyrosine) was placed at the bottom of the cuvette. Ferrous ammonium 

sulfate solution (0.9 equivalent  in ~10 µl) was placed on the lower neck of the cuvette. 

6MPH4 and MAHMA NONOate solutions were either placed in the side arms or on the 

upper neck of the cuvette, for large and small volumes, respectively. Buffer conditions 

were 250 mM Hepes (pH 7.4), 10% glycerol, 0.1 M KCl for UV-Visible and EPR 

experiments and 100 mM Mops (pH 7.0), 0.3 M KCl and 30% glycerol for ESEEM 

experiments. Each MAHMA NONOate molecule releases two molecules of NO (124) 

and the half-life of MAHMA NONOate  is ~35 s under these buffer and temperature 

conditions (data not shown). The contents of the cuvette (a total volume of 400-800 µl) 

were made anaerobic by the application of argon-vacuum exchange for at least 20 

minutes. The anaerobic enzyme solution was then mixed with ferrous ammonium sulfate 

and incubated for 10 minutes. This was followed by mixing with 6MPH4 (if the complex 

contained 6MPH4). After 3 minutes, a blank was taken by the UV-Visible 

spectrophotometer (Hewlett-Packard model HP 8453). Finally MAHMA NONOate (~1 

equivalent of the enzyme for UV-Visible and EPR samples and ~0.6 equivalent of the 

enzyme for ESEEM samples) at the upper neck of the cuvette was introduced to the 

enzyme-substrate mixture and the UV-Visible spectra were taken at 1 min periods until 

the maximum absorbance at 450 nm is reached, which takes about 3-5 minutes under the 

experimental conditions. At this point, ~200 µl of the reaction mixture was quickly 

transferred to the quartz EPR tubes (4 mm OD, 707-SQ-250M, Wilmad,  Buena, NJ) 



                                                                                                                                            106 
 

using a glass pipette and immediately frozen in liquid nitrogen. UV-Visible spectra 

collected at increasing concentrations of MAHMA NONOate showed that NO was 

saturating under the concentrations used. 

EPR Spectroscopy. EPR spectra were taken at 10 K using a Bruker EMX X-band 

EPR spectrometer operating in perpendicular mode with an Oxford instruments EM 910 

cryostat. The frequency was 9.45 GHz and the microwave power was 2 mW, which was 

non-saturating as determined from spectra taken at various powers. g-values of the EPR 

signals were determined from the peak positions measured directly from the spectra. 

Since the all the EPR spectra measured exhibited low rhombicity ((E/D < 0.15), E/D 

values were determined from gx and gy using eqs 8 and 9 (120). The E/D parameter 

represents the degree of distortion from axial symmetry (where D and E are the axial and 

rhombic zero-field splitting parameters, respectively).  

gx = g0[2-3(E/D)-3/2(E/D)2]            (8) 

gy = g0[2+3(E/D)-3/2(E/D)2]            (9) 

ESEEM Spectroscopy. ESEEM spectra were collected and analyzed in the 

laboratory of Dr. John McCracken at Michigan State University by Matthew Krzyaniak, 

as following. Measurements were made on a Bruker E-680X spectrometer operating at X 

band and equipped with a model ER 4118X-MD-X5-W1 probe that employs a 5 mm 

dielectric resonator. The temperature was maintained at 4K using an Oxford Instruments 

liquid helium flow system equipped with a CF-935 cryostat and an ITC-503 temperature 

controller. ESEEM data was collected using a three-pulse (stimulated echo) sequence, 

90°-τ-90°-T-90°, with 90° microwave pulse widths of 16 ns (FWHM). The deuterium 

contributions to ESEEM spectra were obtained using the ratio method introduced by 
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Mims (125) together with processing tools provided by Bruker. Three-pulse ESEEM data 

were normalized by dividing each data set by its maximum amplitude. These data were 

then divided by the corresponding, normalized 1H ESEEM data. This resulted in ESEEM 

data dominated by 2H. ESEEM spectra were obtained by taking the absolute value of the 

real part of the Fourier transforms of the time domain data. Simulations of the 2H 

hyperfine couplings were carried out using scripts written in MATLAB. Parameters for 

the spin Hamiltonian simulations are given in the figure legends.  

 

RESULTS 

UV-Visible Spectra of WT TyrH:Fe(II):NO Complexes. Studies on inorganic 

Fe:NO model complexes show that formation of an Fe:NO complex gives rise to a 

number of electronic transitions in the UV-Visible region with fairly low extinctions (less 

than 1000 M-1cm-1) (115). Absorptions at 443 nm, 510 nm and 575 nm have been 

assigned to the NO- to Fe(III) charge transfer transitions. The most intense of these 

transitions is the ~450 nm band, and the other two transitions (~510 nm and ~575 nm) 

generally appear as a shoulder with weaker intensities. The absorption magnitude of these 

transitions are indicative of the degree of orbital overlap between the d orbitals of Fe(III) 

and the 2π* orbital of NO-, which is dependent on the Fe-N-O bond angle (115, 122). 

Another significant transition is a Fe(III) ligand field band observed at ~650 nm (117). 

The binary (TyrH:Fe(II):NO), ternary (TyrH:Fe(II):NO:tyr and 

TyrH:Fe(II):NO:6MPH4) and quaternary complexes (TyrH:Fe(II):NO:tyr:6MPH4) of WT 

TyrH were investigated by UV-Visible absorption spectroscopy. The reaction of NO (60 

µM) with resting or substrate/cofactor bound TyH:Fe(II) (100 µM) was monitored over a 
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period of 20 min by acquiring diode-array absorption spectra in the UV-Visible region at 

every minute after the reaction was initiated. As the NO complex formed, the reaction 

mixture took on the characteristic bright yellow color of an Fe:NO species, and a well-

defined peak was observed at 450 nm with a shoulder extending up to ~600 nm. A broad 

peak at 650 nm was also observed with much less intensity compared to the 450 nm peak. 

The maximum absorbance at 450 nm was reached in 3-5 min and started decreasing 

slowly after ~10 min, indicating the reversibility of NO binding. In order to obtain 

spectra of the NO complexes of TyrH, the spectra of the enzyme complexes before NO 

addition were subtracted from the spectra with maximum intensity at 450 nm after NO 

addition (Figure 30). The largest absorbance intensity for the 450 nm transition was 

observed for the quaternary (TyrH:Fe(II):NO:tyr:6MPH4) complex with an extinction 

change of ~800 M-1cm-1. The transitions in 500-600 nm region corresponding to the other 

charge transfer bands and the peak at ~650 nm corresponding to Fe(III) ligand field 

transition were also much more intense in the quaternary complex in comparison to the 

binary and ternary complexes. The extinction coefficient varied from 250 to 400 M-1cm-1 

for the 450 nm transition among the binary and ternary complexes, with 

TyrH:Fe(II):NO:tyr complex having the most intense peak of all. The peak maximum for 

the 450 nm transition is shifted to higher energy (435 nm) for the 

TyrH:Fe(II):NO:6MPH4 complex. 
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FIGURE 30. UV-visible absorption difference spectra of the NO complexes of 

TyrH:Fe(II) (red), TyrH:Fe(II):tyr (blue), TyrH:Fe(II):6MPH4 (green) and 

TyrH:Fe(II):tyr:6MPH4 (orange). Difference spectra were obtained by subtracting the 

spectrum of each complex before NO addition from the spectrum that has the maximum 

absorbance value (at ~ 450 nm) after NO addition. Reaction conditions were as follows: 

100 µM ferrous TyrH, 300 µM tyrosine, 200 µM 6MPH4 and 100 µM MAHMA 

NONOate in 250 mM Hepes (pH 7.4), 10 % glycerol, 0.1 M KCl with a final volume of 

800 µl at 25 °C.  
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EPR Spectra of WT TyrH:Fe(II):NO and F184A TyrH:Fe(II):NO Complexes. 

Although high spin Fe(II) systems have an integer spin of S = 2 and thus are EPR silent, 

binding of NO to Fe(II) gives an EPR detectable {FeNO}7 system, with a spin of S = 3/2, 

due to the antiferromagnetic coupling of the S = 5/2 ferric center with S = 1 NO-  (115, 

117). Figure 31 shows the EPR spectra of the NO complexes of WT TyrH. Consistent 

with previous studies (115, 122), all complexes exhibited nearly axial signals with gx and 

gy close to 4 and gz close to 2. Due to the overlap with the signal of free NO at g = 2, only 

the informative g = 4 region is shown (115). Experimental g-values and E/D parameters 

are given in Table 10. An increase in the E/D parameter indicates an increase in the 

degree of the rhombicity of the {FeNO}7 spin system (119). EPR spectra of 

TyrH:Fe(II):NO and TyrH:Fe(II):NO:6MPH4 exhibit a single resonance with very similar 

E/D values suggesting that both complexes exist as a single population and the iron 

environment is not affected much by 6MPH4 binding. The EPR spectrum of the 

TyrH:Fe(II):NO:tyr is composed of a mixture of two components, indicating the presence 

of two different populations of enzyme with slightly different active site environments. 

The more intense component has an E/D value of 0.007 and the minor component 

exhibits a greater degree of rhombicity with an E/D value of 0.017. The EPR spectrum of 

the TyrH:Fe(II):NO:tyr:6MPH4 complex also exhibits two overlapping resonances. The 

major component has an E/D value of 0.018 whereas the minor component has a much 

larger E/D parameter of 0.053, indicating significant changes around the active site iron 

with this specific population of enzyme. 
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FIGURE 31. EPR spectra of the g = 4 region of the NO complexes of WT TyrH at 10 K. 

(A) TyrH:Fe(II):NO (B) TyrH:Fe(II):NO:6MPH4 (C) TyrH:Fe(II):NO:tyr (D) 

TyrH:Fe(II):NO:tyr:6MPH4. Spectra were taken at a frequency of 9.45 GHz and a 

microwave power of 2 mW. Experimental conditions are as given in the legend of Figure 

30. 
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Table 10. Experimental Parameters Obtained from g = 4 Region of EPR Spectra of 

the NO Complexes of WT and F184A TyrH. 

 

complex gx gy E/D 

WT TyrH:Fe(II):NO 4.09 3.96 0.011 

WT TyrH:Fe(II):NO:6MPH4 4.09 3.93 0.013 

WT TyrH:Fe(II):NO:tyr 4.05 3.97 0.007* 

 4.12 3.92 0.017 

WT TyrH:Fe(II):NO:tyr:6MPH4 4.13 3.91 0.018* 

 4.30 3.67 0.053 

F184A TyrH:Fe(II):NO 4.09 3.93 0.013 

F184A TyrH:Fe(II):NO:6MPH4 4.09 3.93 0.013 

F184A TyrH:Fe(II):NO:tyr 4.04 3.97 0.006 

 4.09 3.92 0.014 

F184A TyrH:Fe(II):NO:tyr:6MPH4 4.13 3.91 0.018 

 4.30 3.68 0.052 

* Components with higher intensities.  
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  F184 is in the middle of an ~20 amino acid long surface loop (residues 174-194) 

that moves toward the active site upon 6MPH4 binding and packs against the residues that 

make up the hydrophobic pocket for the side chain of the substrate tyrosine (21, 34). The 

movement of this loop is believed to play a role in the control of coupling of tyrosine 

hydroxylation to pterin oxidation by bringing the substrates closer and preventing 

discharge of the hydroxylating intermediate through prevention of water access to the 

active site (33). F184A TyrH shows a significant decrease in activity and exhibited only 

~15% coupling of DOPA formation to 6MPH4 oxidation. This was attributed to the 

decrease in the rate constant for tyrosine hydroxylation due to perturbation of the position 

of tyrosine in the active site (33). To determine if the activity loss and uncoupling is due 

to the perturbations of the iron environment of the active site, EPR spectra of the NO 

complexes of F184A TyrH were collected (Figure 32). Experimental EPR parameters are 

given in Table 10. The E/D values for the F184A TyrH are very similar to those of WT 

TyrH. The differences in the shape of the tyrosine and tyrosine/6MPH4 complexes of  

F184A TyrH spectra in comparison to WT TyrH are likely due to changes in the relative 

intensities of the components that overlap in g = 4 region. This suggests that the relative 

amounts of the different populations of the enzyme change in the mutant enzyme 

compared to WT TyrH. 
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FIGURE 32.  EPR spectra of the g = 4 region of the NO complexes of F184A TyrH at 10 

K. (A) TyrH:Fe(II):NO (B) TyrH:Fe(II):NO:6MPH4 (C) TyrH:Fe(II):NO:tyr (D) 

TyrH:Fe(II):NO:tyr:6MPH4. Spectra were taken at a frequency of 9.45 GHz and a 

microwave power of 2 mW. Experimental conditions are as given in the legend of Figure 

30. 
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  ESEEM Spectra of WT TyrH:Fe(II):NO Complexes. 2H ESEEM spectra were 

obtained for the complexes of TyrH:Fe(II):NO with deuterated and proteated substrate 

and/or cofactor (Figure 33). This enables identification of the deuterium couplings with 

Fe-NO spin system, thus giving information about the distance and angle of the 

substrate/cofactor with respect to the Fe-NO bond (126). The 2H ESEEM spectrum of 

TyrH:Fe(II):NO-[2H-6MPH4] can be simulated with a single deuteron at 5.9 Å from the 

paramagnetic center with an angle of 57° between the Fe-NO axis and the hyperfine 

principal axis (Figure 34). The TyrH:Fe(II):NO-[2H-tyrosine] ESEEM spectrum (Figure 

35) gives a signal that can be simulated with hyperfine parameters that correspond to a 

deuterium-Fe distance of 4.33 Å with an angle of 72° between the Fe-NO bond and the 

deuterium-Fe vector. 

 

 

 

 

 

 

 

 

 

 

FIGURE 33. Structures of 3,5-deuterated tyrosine (left) and deuterated 6MPH4. 
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FIGURE 34. 2H ESEEM spectra of TyrH:Fe(II):NO-[2H-6MPH4] at corresponding g 

values. Red lines are the simulations of the spectra with the following Hamiltonian 

parameters: principal deuterium hyperfine values of [-0.06, -0.06, 0.12] MHz with Euler 

angles for the hyperfine tensor of (0, 57°, 0); e2qQ = 0.2 MHz; Euler angles relating the 

nuclear quadrupole interaction to the hyperfine interaction of (0, 57°, 0). Concentrations 

were 1.05 mM ferrous TyrH, 1.7 mM 2H-6MPH4 and  0.7 mM MAHMA NONOate in 

100 mM Mops (pH 7.0), 0.3 M KCl and 30% glycerol. Samples were prepared at 25 °C. 
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FIGURE 35. 2H ESEEM spectra of TyrH:Fe(II):NO-[3,5-2H-tyrosine] at corresponding g 

values. Red lines are the simulations of the spectra with the following Hamiltonian 

parameters: principal deuterium hyperfine values of [-0.15, -0.15, 0.3] MHz with Euler 

angles for the hyperfine tensor of (0, 72°,0); e2qQ = 0.2 MHz; Euler angles relating the 

nuclear quadrupole interaction to the hyperfine interaction of (0, 40°,0).  Concentrations 

were 0.95 mM ferrous TyrH, 1.3 mM 3,5-2H-tyrosine and  0.7 mM MAHMA NONOate 

in 100 mM Mops (pH 7.0), 0.3 M KCl and 30% glycerol. Samples were prepared at 25 

°C. 
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The 2H ESEEM spectrum of TyrH:Fe(II):NO-[6MPH4, 2H-tyrosine] can be 

simulated with a single deuteron-Fe distance of 4.95 Å and with an angle of 69° between 

the Fe-NO axis and the hyperfine principal axis (Figure 36). The simulations of 2H 

ESEEM spectrum of TyrH:Fe(II):NO-[2H-6MPH4, tyrosine] are in agreement with a 

single deuteron at a distance of 4.23 Å from Fe center at an angle of 66° from the Fe-NO 

axis (Figure 37). 

The only available crystal structure of a ternary complex in the AAH family is for 

PheH (25). This crystal structure shows that the first coordination sphere of the iron is 

rather open on the side opposite from the facial triad. NO binding to this area will be 

restricted due to the steric hindrance from the substrate and the cofactor. Taking into 

account this restriction and using the Euler angles and distances obtained from the 

ESEEM data for TyrH:Fe(II):NO-[3,5-2H-tyrosine, 6MPH4] and TyrH:Fe(II):NO-

[tyrosine, 2H-6MPH4], the Fe-NO bond axis can be drawn on the crystal structure of the 

ternary complex of PheH as the gz axis (Figure 38).  
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FIGURE 36. 2H ESEEM spectra of TyrH:Fe(II):NO-[3,5-2H-tyrosine, 6MPH4] at 

corresponding g values. Red lines are the simulations of the spectra with the following 

Hamiltonian parameters: principal deuterium hyperfine values of [-0.1,-0.1, 0.2] MHz 

with Euler angles of (0, 69°, 0), e2qQ = 0.2 MHz; Euler angles relating the nuclear 

quadrupole interaction to the hyperfine interaction of (0, 90°, 0). Concentrations were 0.9 

mM ferrous TyrH, 1 mM tyrosine, 1.4 mM 2H-6MPH4 and 0.6 mM MAHMA NONOate 

in 100 mM Mops (pH 7.0), 0.3 M KCl and 30% glycerol. Samples were prepared at 25 

°C. 
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FIGURE 37. 2H ESEEM spectra of TyrH:Fe(II):NO-[tyrosine, 2H-6MPH4] at 

corresponding g values. Red lines are the simulations of the spectra with the following 

Hamiltonian parameters: principal deuterium hyperfine values of [-0.16,-0.16, 0.32] MHz 

with Euler angles of  (0, 66°, 0), e2qQ = 0.2 MHz; Euler angles relating the nuclear  

quadrupole interaction to the hyperfine interaction of (0, 43°,0). Concentrations were 

0.95 mM ferrous TyrH, 1 mM tyrosine, 1.5 mM 2H-6MPH4 and 0.6 mM MAHMA 

NONOate in 100 mM Mops (pH 7.0), 0.3 M KCl and 30% glycerol. Samples were 

prepared at 25 °C. 
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FIGURE 38. Position of the Fe-NO bond axis (gz axis) with respect to the substrate 

tyrosine and pterin cofactor deuterons in the quaternary complex. The model is based on 

the crystal structure of PheH with thienylalanine and tetrahydrobiopterin bound (PDB 

entry 1KW0). Tyrosine was modeled in the place of thienylalanine. 
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DISCUSSION 

Complexes of TyrH:NO were investigated by various spectroscopic techniques to 

reveal the active site structure in a catalytically relevant O2-mimic bound form. Since NO 

can bind to the active site iron, it acts as an oxygen mimic and thus provides information 

about the active site changes at the stage of oxygen binding and about possible oxygen 

intermediates. In addition, binding of NO to the iron produces a {Fe-NO}7 spin system 

with S = 3/2 that allows probing the active site by EPR techniques, which would be 

otherwise impossible due to the S = 2 of high spin ferrous iron (115). 

The ESEEM data for TyrH:Fe(II):NO-[2H-6MPH4] complex shows that the 

distance of 6MPH4 to the iron atom is 5.9 Å. At such a distance, no significant interaction 

of the active site iron is expected with 6MPH4. This is consistent with the similar pattern 

observed for the EPR spectra of TyrH:Fe(II):NO and TyrH:Fe(II):NO:6MPH4. Both 

complexes have very similar E/D values and exist as a single population.  

Based on the studies of nonheme enzyme systems and model complexes, the 

increase in rhombicity in a nonheme {Fe-NO}7 complex can be attributed to the effects 

on the Fe-NO environment due to a decrease in the Fe-N-O bond angle (127) and/or an 

increase in the strength of the equatorial ligands with respect to the axial Fe-NO bond 

(120, 121). The EPR spectrum of TyrH:Fe(II):NO:tyr indicates the presence of two 

populations of enzyme. The major component is more axial than TyrH:Fe(II):NO, 

whereas the minor component is more rhombic. These differences indicate that tyrosine 

binding affects the Fe-NO environment. This observation is further supported by the 

ESEEM data of TyrH:Fe(II):NO:tyr, which shows an interacting tyrosine deuteron at a 

distance of 4.33 Å from the iron, with an angle of 72° with respect to Fe-NO bond.  
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The most rhombic patterns in the EPR spectra were observed for the two distinct 

populations of the TyrH:Fe(II):NO:tyr:6MPH4 complex with the minor component being 

much more rhombic, suggesting larger changes in the Fe-NO environment than in the 

tyrosine bound complex. This is consistent with the previous crystallographic (25) and 

spectroscopic (vide supra) studies in the absence of a dioxygen analogue, which showed 

that a water ligand leaves and the glutamate ligand becomes bidentate upon binding of 

both the substrate and the cofactor. The ESEEM analysis of the 

TyrH:Fe(II):NO:tyr:6MPH4 indicates that 6MPH4 moves closer to the active site, 

resulting in a distance of  4.23 Å to the iron, in agreement with the crystal structure (25). 

Overall, the previous data and our current data together show that the active site iron 

environment goes through a number of significant changes that affect the Fe-NO bond 

angle. Since NO is a dioxygen mimic, presumably these changes are effective in fine 

tuning the O2 bonding mode of the active site for catalysis only when all substrates are 

present. 

The largest absorption peaks seen upon addition of NO to the resting, substrate 

and/or cofactor bound forms were observed at 450 nm, consistent with the formation of 

the corresponding Fe-NO complexes (115, 117). The absorbance changes at 450 nm and 

in the 500-600 nm region for the quaternary complex (when both tyrosine and 6MPH4 

were present) were much larger than the changes in the binary and ternary NO 

complexes. Since the intensity of the Fe(III) to NO- charge transfer band is dependent on 

the strength of the overlap between the iron d orbitals and NO 2π* orbitals, such an 

increase in intensity can be attributed to the decrease in the Fe-N-O bond angle, 

consistent with the observations from the EPR spectra. A similar pattern has been 
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observed with a number of other mononuclear nonheme enzymes (117, 122). A blue shift 

(~15 nm) with respect to the other complexes was also observed for the 450 nm transition 

in the pterin bound complex. This might be indicative of an effect on the Fe-N-O bond 

due to 6MPH4 binding or be due to the conformational change (vide supra) upon 6MPH4 

binding, even though the EPR and ESEEM data do not support such a conclusion. The 

similar EPR patterns of TyrH:Fe(II):NO and TyrH:Fe(II):NO:6MPH4 (Figure 31 and 

Table 10) suggest a similar angle for the Fe-N-O bond. However, as shown in Figure 36, 

an interaction between π system of 6MPH4 and π orbitals of NO is possible, giving rise to 

a change in the energy of the π* orbital of NO- without a corresponding change in the Fe-

N-O bond angle, thus making it compatible with the EPR spectra. Therefore, the absence 

of the blue shift in the quaternary NO complex can be explained by a diminished 

interaction between the π system of 6MPH4 and the π orbitals of NO, since the Fe-N-O 

angle decreases in the quaternary complex.  

When the ESEEM analyses of various complexes of TyrH:Fe(II):NO are 

compared, it can be concluded that binding of 6MPH4 pushes tyrosine away from the 

active site such that the 4.33 Å distance between tyrosine deuteron and the iron becomes 

larger than 4.95 Å. This is in agreement with earlier studies, which showed that binding 

of pterin is associated with the movement of a large surface loop and the residues in this 

loop pack against the amino acid binding pocket (34). This observation is also consistent 

with previous studies that demonstrated formation of a dead-end complex when tyrosine 

binds to the free enzyme and with the substrate inhibition observed at high concentrations 

of tyrosine (36). Overall it is clear that binding of 6MPH4 creates the binding site for 
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tyrosine by initiating protein conformational changes that position tyrosine for productive 

turnover. 

The distance of tyrosine from the iron in the presence of 6MPH4 is not close 

enough for a reaction between the Fe(IV)O intermediate and tyrosine (based on the 

approximate distance from N of Fe-NO to the ring position to be hydroxylated, estimated 

according to the positions in Figure 38). However, Fe(IV)O forms by the heterolytic 

cleavage of an iron-peroxy-pterin bridge, which also leads to the formation of 4a-

hydroxypterin. It is reasonable to assume that a different conformation of 4a-

hydroxypterin compared to 6MPH4 can pull tyrosine close to the iron. This observation 

indicates that only after the Fe(IV)O forms, does tyrosine become close enough for a 

productive reaction. This should prevent any direct reaction between the iron-peroxy-

pterin bridged intermediate and tyrosine. Such a mechanism ensures the strict coupling of 

tyrosine hydroxylation to 6MPH4 oxidation in TyrH. 

Earlier structural studies and kinetic studies presented in Chapter III are in 

agreement with the ESEEM data of the 6MPH4 bound complexes in the absence and 

presence of tyrosine, which show that the pterin deuteron is at a distance 5.9 Å from the 

iron in the absence of tyrosine and that this distance decreases to 4.23 Å when tyrosine is 

bound. A distance of 6 Å between the iron and the pterin C(4a) in the crystal structure of 

pterin bound PheH decreases to 4.5 Å in the ternary complex (both pterin and substrate 

analogue bound) (21). In addition, kinetic studies in Chapter III showed that the rate of 

the reaction between oxygen, iron and pterin in the absence of tyrosine is orders of 

magnitude slower than the rates in the presence of tyrosine. 



                                                                                                                                            126 
 

NO complexes of F184A TyrH were also investigated by EPR spectroscopy. The 

spectra obtained for all complexes were very similar to the WT enzyme in terms of E/D 

values. However, there is a decrease in the relative intensity of the major component of 

the EPR signals in both of the tyrosine complexes (Figure 32C and 32D), which exhibit a 

mixture of two different populations with slightly different iron environments. This 

suggests that the movement of the loop with the mutated residue shifts the equilibrium 

between the two forms of the enzyme, rather than directly affecting the active site. If the 

component that increases is an inactive form of the enzyme, the uncoupling observed in 

this mutant might be explained. However, such an assignment will require more detailed 

analysis of the EPR signals. 

Overall, this study brought has brought further insight into the electronic and 

geometric structure of the active site in TyrH.  Investigation of the effects of substrate 

and/or cofactor binding on the O2-mimic bound TyrH provided information on the events 

that occur prior to the chemical steps in the TyrH reaction. 
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CHAPTER VI 

SUMMARY 

 

Studies presented in this dissertation have focused on the catalytic mechanism of 

tyrosine hydroxylase. One important question in the mechanism of this mononuclear non-

heme enzyme and other members of the AAH family has been the identity of the 

hydroxylating intermediate. An Fe(IV)O species has for long been proposed to be the 

hydroxylating species. Chapter II describes the kinetic and spectroscopic characterization 

of an Fe(IV) intermediate in the TyrH reaction pathway by Mössbauer spectroscopy. 

Further kinetic studies using rapid chemical quench and stopped-flow absorption 

spectroscopy established this intermediate to be kinetically competent enough to be the 

Fe(IV)O hydroxylating intermediate. This was the first example for the involvement of 

an Fe(IV) species in a mononuclear enzyme catalyzing aromatic hydroxylation.   

Chapter III described the spectroscopic and kinetic investigation of various 

tyrosine hydroxylase complexes. Spectroscopic studies showed that resting form and only 

tyrosine or only 6MPH4 bound forms of TyrH have a 6-coordinate iron. In the presence 

of both tyrosine and 6MPH4, the active site iron changes its coordination state to 5-

coordinate form. Kinetic studies on the reactivity of oxygen with 5 and 6-coordinate 

complexes of TyrH indicated that there is a 2-3 orders of magnitude rate enhancement of 

the reaction of oxygen with the catalytic 5-coordinate complex over 6-coordinate 

complexes and non-catalytic 5-coordinate complexes. This strategy protects the enzyme 

from non-catalytic oxidation reactions in the absence of the required substrate and 

cofactor. 
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Chapter IV is a combination of rapid reaction and viscosity studies. Rapid 

chemical quench experiments demonstrated a DOPA burst, indicating a slower step after 

DOPA formation. Steady-state viscosity studies established this step as being a 

significantly diffusion-limited step. Stopped-flow studies indicate that a combination of 

chemical and physical steps, including conformational change, determines kcat of TyrH 

reaction.  

Chapter V focused on the investigation of the NO complexes of TyrH. A 

combination of UV-Vis, EPR and ESEEM spectroscopies revealed the active site changes 

upon substrate and cofactor binding in an O2-mimic bound form of the enzyme. 6MPH4 

binding creates the binding site for tyrosine and binding of tyrosine initiates fine tuning 

of the active site such that iron, oxygen and 6MPH4 becomes close enough to react to 

form the putative iron-peroxy-pterin bridged intermediate. Tyrosine is not close enough 

to interact with this intermediate, suggesting that tyrosine moves towards iron only after 

the hydroxylating intermediate, Fe(IV)O,  forms, which seems to be the strategy used by 

this enzyme to prevent unproductive turnover. 
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