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ABSTRACT 

 

Robust Generator System Using PM Assisted Synchronous Reluctance Generator  

with Current-fed Drive. 

(December 2009) 

Jeihoon Baek, B.S.; M.S., Hongik University;  

M.S., University of Wisconsin-Madison  

Chair of Advisory Committee: Dr. Hamid A. Toliyat 

 

The growth of embedded generation and portable electrical installations has led 

to an increased demand for low cost, flexible and reliable generator systems for military 

and commercial applications. An interior permanent magnet (IPM) machine has high 

power density due to its reluctance torque and magnetic torque components so it can 

produce a large constant power-speed range. However, an IPM machine needs 

demagnetizing current at high-speed during the flux-weakening region and thus develops 

an inverter shutdown problem in an uncontrolled generator mode operation. In order to 

overcome the disadvantages of the IPM machine, the permanent magnet assisted 

synchronous reluctance generator (PMa-SynRG) can be a good solution for low cost, 

high efficiency reliable generator systems. A PMa-SynRG can produce a high efficiency 

drive by utilizing the proper amount of magnet and reluctance torque. This work 

proposes a PMa-SynRG with two flux barriers and permanent magnets embedded in the 

second layer of the rotor. A neodymium magnet (NdFeB) was used as permanent 
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magnets in the rotor to prevent demagnetization. Finding the minimum amount of 

magnet is one of the goals of the optimization process. 

The objectives of this work are to build an optimal design for the 3kW generator 

and an advanced power electronics converter for the PMa-SynRG drive system. In order 

to find the optimized 3kW machine, a Lumped Parameter Model (LPM) was used to 

achieve fast computation, and Differential Evolution Strategy (DES) was used to embed 

the LPM in an efficient numerical optimization routine to identify optimum designs. 

Finite Element Analysis (FEA) was used for test performance of optimum designs. On 

the basis of differences between LPM and FEA, model predictions were used to fine 

tune the LPM model. For new optimum design converges, numerical optimizations and 

iterations were performed to produce LPM and FEA predictions.  

For the drive system, the thyristor based, current-fed drive is much simpler and 

has lower power losses compared to the pulse width modulation (PWM) drive. 

Eliminating the requirement for self-controlled switches is a distinct advantage for lower 

cost. Another feature of the developed current-fed drive is its inherent capability to 

provide generating action by making the PMa-SynRG operates as a generator, rectifying 

the phase voltages by means of the three-phase rectifier and feeding the power into the 

load. These features make the current-fed drive a good candidate for driving any type of 

synchronous generators including the proposed PMa-SynRG. 
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CHAPTER I 

INTRODUCTION 

 

1.1. Overview 

This dissertation investigates a robust and low cost generator system using a 

Permanent Magnet assisted Synchronous Reluctance Generator (PMa-SynRG) and 

control system using a current-fed drive with a direct power control (DPC) algorithm.  

Chapter I reviews the introduction of the PMa-SynRG and thyristor based current 

fed drive. The objective of the proposed research is described and the specific objectives 

are discussed. 

Chapter II provides formulations of equivalent circuit modeling of PMa-SynRG 

based on the Lumped Parameter Model (LPM); the generator operating capability 

includes loss calculation. 

Chapter III introduces machine design parameters in order to satisfy generator 

specifications and the optimal design process. The Differential Evolution Strategy (DES) 

and the iteration method by Finite Element Analysis (FEA) were developed for 

maximizing efficiency and minimizing machine cost. In this study, two different 

winding configurations were compared to achieve a wide constant power speed range 

(CPSR) and high efficiency. Test performance of optimum designs using FEA and the 

differences between LPM and FEA model predictions were used to fine tune the LPM 

model. 

____________ 
This dissertation follows the style of IEEE Transactions on Industry Applications. 
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Chapter IV discusses the machine fabrication process and characteristics of the 

3kW PMa-SynRG. To verify the design parameters, experimental and simulation results 

are compared. 

Chapter V introduces the new control topology by current fed drive for the 3kW 

generator system. The proposed drive topology of the current-fed drive system has 

advantages such as a low switching loss, robust and low cost. The various advantages 

and disadvantages of the proposed current-fed drive and the voltage-fed pulse width 

modulation drive are summarized. 

Chapter VI suggests a voltage based direct power control (V-DPC) strategy for 

the PMa-SynRG system because it has a lower sampling frequency. V-DPC has simple 

and noise-resistant power estimation algorithm which makes it easy to implement in a 

Digital Signal Processor (DSP). Other advantages of V-DPC are good dynamic response 

and no current regulation loop.  

Chapter VII summarizes the key observations from all chapters and discusses 

potential future directions. 

 

1.2. Permanent Magnet Assisted Synchronous Generator 

Electric generators can be classified by principles. The classification by principle 

includes commercial and military types together with new configurations still in the 

laboratory stages. By principle, there are three main types of electric generators: (a) 

synchronous generators (b) induction generators and (c) parametric with magnetic 

anisotropy and permanent magnets. 
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Synchronous generators generally have a stator made of silicon steel laminations 

with a multiphase winding and a rotor. It is usually the rotor design that leads to a 

variety of synchronous generator configuration. Those that are DC excited require a 

power electronics excitation control, while those with permanent magnets (PMs) or 

variable reluctance rotors have to use full power electronics in the stator to operate at 

variable speeds. However, electrically excited synchronous generators maybe provided 

with power electronics converters in the stator when they work in stand alone 

applications or in power grids with DC high voltage capable transmission lines.  

For powers in the MW/unit range and less, induction generators were used 

specially for wind power applications. They are: (a) single-phase cage induction 

generator, (b) dual stator windings with different number of poles and cage rotor, (c) 

doubly-fed or wound field rotor. Pulse-width modulation (PWM) converters are 

connected to the stator for the single-phase stator winding and also to the auxiliary stator 

winding for the dual stator windings configurations. Because the PWM converter 

supplies the auxiliary winding its rating is notably lower than that of the full power of 

the main winding and it is proportional to the speed variation range.   

Parametric generators rely on the variable reluctance principle, but may also use 

PMs to enhance the power and volume and to reduce generator losses. There are a 

number of configurations that suit this category such as the switched reluctance 

generator, the transverse flux PM generator, and the flux reversal generator. In general, 

the principle on which they are based relies on co-energy variation due to magnetic 
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anisotropy (with or without PMs in the rotor or on the stator), in the absence of a pure 

traveling field with constant speed like synchronous or induction generators.  

The requirement for the development of inexpensive, flexible and reliable 

generator systems has expanded in the last few years, due to growth in the use of 

portable electrical installations. The prime mover based on the needed power level may 

vary form high speed gas turbine equipment to low speed wind turbines or to internal 

combustion engines.   

It is accepted that power electronic conversion to match the generator output to the 

load requirement is going to be essential and with a wide range of potential input shaft 

speeds no existing generator topology is going to be appropriate for all applications. The 

need has arisen specially for military applications for the development of a simple, 

rugged generator system which can produce power effectively across the range of shaft 

speeds.  The generator should produce a flexible yet controllable electrical output for 

potential utilization with many variations in load.   

Current and proposed generators include systems based mainly on DC machine, 

synchronous and AC induction machine technologies as well as reluctance machines.  

While extracting more energy from the prime mover, most proposed variable-speed 

systems suffer a cost disadvantage due to the required power electronic converter. This 

cost penalty may eventually render the additional energy capture meaningless. Thus, 

reducing the cost of the power electronic hardware is essential for variable-speed 

generating systems to achieve viable and competitive $/kWh ratios. 
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Synchronous generators are characterized by a uniformly slotted stator laminated 

core that hold a multiphase alternating current winding and a DC excited or PM excited 

or variable saliency rotor. The two traveling fields of the stator and rotor at relative 

standstill interact to produce a smooth torque. The shaft speed is rigidly tied to stator 

frequency, because the rotor produced magnetic field is DC, typically hetropolar in 

synchronous generators. These generators are built with both salient and non salient 

poles rotors. For lower speed synchronous generators with a large number of poles, the 

rotors are made of salient rotor poles provided with concentrated DC excitation coils. 

However, for higher speed applications such as in turbogenerators round rotors are used. 

The rotor pole shoes maybe made of laminations, in order to reduce additional rotor 

losses, but the rotor pole bodies and core are made of mild magnetic solid steel. 

A wide constant power-speed range (CPSR), high efficiency and high reliability 

are required in auxiliary generator systems for commercial and military applications. An 

interior permanent magnet (IPM) machine derives high power density from magnetic 

torque and reluctance torque components and can provide a large constant power speed 

operation [1]-[4]. However, IPM needs demagnetizing current in the flux-weakening 

region and it also has an inverter shutdown problem under the uncontrolled generator 

mode of operation [5]-[6]. In order to overcome the disadvantages of IPM machines, the 

Permanent Magnet assisted Synchronous Reluctance Machine (PMa-SynRM) is a good 

candidate due its low cost, high efficiency and reliability [7].  

Adding the proper quantity of permanent magnets into the synchronous 

reluctance generator (SynRG) rotor core is another way to improve the operating 
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performance of this machine. In this case, the motor is similar to an IPM machine. 

However, the amount of permanent magnets used and the permanent magnet flux-

linkages are smaller with respect to the conventional IPM. Thus, the proposed generator 

can be called a Permanent Magnet assisted Synchronous Reluctance Generator (PMa-

SynRG). The PMa-SynRG has a multilayer flux barrier and permanent magnet rotor 

synchronous machine. The rotor core is built of conventional transverse laminations with 

stamped multiple flux barriers per pole filled with permanent magnet layers. The high 

magnetic saliency created by the multiple flux barriers in the rotor make reluctance 

torque predominant at low speeds when higher torque is required [8]-[10].  

In this research, the PMa-SynRG was developed with two flux barriers and 

permanent magnets embedded in the second layer of the rotor. NdFeB permanent 

magnets were selected to prevent unwanted demagnetization of the magnets. One of the 

goals of the optimization process was to find a minimum amount of magnet to be used in 

the rotor. The rotor structure of IPM and PMa-SynRG is shown in Fig. 1. In the IPM 

machine, permanent magnets were placed in the d-axis. Otherwise, it is considered a q-

axis in the PMa-SynRG. In the proposed generator, the high magnetic saliency created 

by the multiple flux barriers in the rotor make reluctance torque dominant at low speeds 

when higher torque is required. In order to achieve a wide constant-power and a high 

power-factor operation in synchronous reluctance machine drives, a large saliency ratio 

is required. However, achieving such a design using lumped models of a motor is very 

difficult. 
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(a) IPM Machine,     (b) PMa-SynRM  

Fig. 1 d q-axis model for IPM and PMa-SynRM. 

 

A large saliency ratio can be achieved by both axially and transversally 

laminated rotor structures. An axially laminated rotor can present a high-anisotropy and 

provide a very high unsaturated saliency ratio. However, from the mechanical stress 

point of view, this rotor has some drawbacks with respect to the transversally laminated 

one. The effective saliency ratio of transversally laminated rotors can be enhanced by 

proper placement, proper shape and the proper number of flux barriers [11]. To optimize 

the motor design, a reasonably good magnetic design can be obtained without using 

numerical techniques. However, the finite-element method must be used to consider the 

nonlinear magnetic behaviors of the materials which play a key role whenever overload 

performance prediction is essential.  

One of the main objectives of this study was to optimize the design of PMa-

SynRG by performing a set of finite element analyses on a transversally laminated 
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synchronous reluctance machine. In this procedure, different rotor parameters and their 

relative effects on the motor performance in terms of output torque and saliency ratio 

were studied. Moreover, improvement of generator performance due to the permanent 

magnets placed in the rotor core was investigated by studying their effect on developed 

torque and the d- and q-axes inductances [12]. The dimension of permanent magnets 

used in the motor was limited by the cost and flux barrier shapes.  

In this study, the size of the generators for output power was determined to be 

3kW.  Also, the number of poles, stator slots, armature and field windings turns, stator 

and rotor outer diameters, stator and rotor inner diameters, machine length, and the rotor 

geometry were specified [13]. Special attention was given to the power density for 

portable applications and also proper use of permanent magnets on the rotor. The proper 

dimension of permanent magnets can increase the power density.  However, it is crucial 

to use the permanent magnet properly and at the right location on the rotor for good 

overall efficiency over a wide speed range.  It is important to mention that the so-called 

permanent magnet brushless DC motor/generator suffer from a low efficiency over a 

wide speed range although efficiency at a particular speed might be high [14]-[15].  

However, the proposed PMa-SynRG, because of its rotor structure that resembles a 

synchronous reluctance machine, has high efficiency over a wide speed range.   

 

1.3. Thyristor Based Current-fed Drive 

Current and proposed generators include systems based mainly on DC machine, 

synchronous and ac induction machine technologies as well as reluctance machines.  
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While extracting more energy from the prime mover, most proposed variable-speed 

systems suffer a cost disadvantage due to the required power electronic converter.  This 

cost penalty may eventually render the additional energy capture meaningless. Thus, 

reducing the cost of the power electronic hardware is essential for variable-speed 

generating systems to achieve viable and competitive $/kWh ratios. 

The thyristor based, current-fed drives are traditionally used in very high power 

applications such as pump and compressor drives, gas-turbine start-ups, and fan drives 

[16]. A typical schematic of such a drive is shown in Fig. 2.  

 

 

Fig. 2 Current-fed thyristor-based load commutated inverter. 

 

The current-fed drive uses a three-phase controlled rectifier at the input and a 

current source inverter at the output with a large DC link inductor [17]-[18]. The 

conventional voltage-fed drive uses a large DC link capacitor to provide a steady DC 

link voltage. The DC link capacitor supplies the circulating current and hence the input 

supply current is of a pulsating nature and has a lot of high frequency components, 
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leading to poor displacement factor and distortion factor. Therefore, the overall power 

factor of the system is very poor [19]. On the other hand, the current-fed drive eliminates 

the need for such an expensive capacitor by replacing it with a DC link inductor. The 

current source topology at the input stage of the proposed drive insures that the machine 

currents are always within the normal limits of operation even under short circuit 

conditions. This eliminates the need for any current sensor and short circuit protection 

circuit. The only function of the inverter in the proposed topology is to distribute the DC 

link current through the appropriate phase, while the input controlled rectifier controls 

the amplitude of the current. This leads to a very simple inverter without any hard 

switching and hence no switching losses [20]-[21]. More advantages of the current-fed 

drives are: 

1. Whenever regenerative braking is required, the output three-phase converter acts 

as a rectifier while the input single-phase converter acts in an inversion mode. 

During this mode of operation, rotational energy trapped in motor shaft inertia is 

transferred back to the input supply. The amount of energy transferred is 

controlled by changing the delay angle of the input rectifier. This feature is very 

desirable for some home appliance drives such as washing machines and 

handheld tools. Otherwise, this regenerated energy is dumped into a resistive 

element, reducing system efficiency and increasing cost as the power rating of 

the resistor used needs to be very high. 

2. No external commutation circuits are used. Even during the start up when back-

EMF is small, the commutation is achieved by controlling the input rectifier. 
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This makes the proposed converter topology less expensive, more compact to 

design and more reliable. 

3. Usually specially designed electrolytic capacitors with very low series inductance 

are used to increase life expectancy. In the case of the VSI drive, the capacitor 

supplies the circulating current and hence the input supply current is of a 

pulsating nature, leading to a very poor power factor and large frequency current 

harmonics. The proposed drive, on the other hand, eliminates the need for such 

an expensive capacitor by replacing it with a DC link inductor. 

4. The current source topology at the input stage of the proposed drive insures that 

the motor currents are always within the normal limits of operation even under 

short circuit conditions. This eliminates the need for any current sensor and a 

short circuit protection circuit. 

5. Thyristors, on the other hand, make the proposed drive more reliable. The built-

in current protection, lack of any commutation circuits and replacement of the 

DC link capacitor with a highly reliable inductor further extend the reliability of 

the proposed drive. 

6. All the switches used in the input rectifier and the output three-phase inverter are 

line commutated. The input alternating current is responsible for commutation of 

the rectifier thyristors while the leading motor phase current commutates the 

inverter thyristors. The lower switching frequencies lead to very low switching 

losses as compared to a conventional PWM drive. Thermal losses are low, 
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increasing system efficiency and reducing overall system cost as the heat sink 

requirement is low. 

7. A high power factor is a much desired feature for appliance drives where the 

input current is limited to 15 A at a household outlet. A higher power factor 

means better utilization of the available current for the same voltage. The 

proposed system offers a high power factor as compared to a conventional drive, 

especially at higher loads. 

 

However, current-fed drives have disadvantages such as: 

1. The only controlled circuit in the proposed drive system is the input rectifier.  

The firing angle of the input rectifier can only be changed as fast as twice the 

frequency of input voltage. The dynamic response of the proposed drive is slow, 

making it unsuitable for servo applications. 

2. Although the DC link inductor is more reliable than the electrolytic capacitor and 

less expensive, it can be bigger both in volume and weight. 

3. Various self-starting schemes can be used to start the motor but the commutation 

process can fail at lower speeds.  Therefore, the proposed system has a limited 

low frequency operation capability. 

 

Table 1 summarizes the various advantages and disadvantages of the proposed 

current-fed drive and the voltage-fed back-to-back PWM drive [22]-[24]. 
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Table 1   Advantages and disadvantages of inverters. 

 Current-fed Drive Voltage-fed 
back-to-back PWM Drive 

Advantages 

Four-quadrant operation 
No external commutation circuit
No DC link capacitor 
Built-in current protection 
High reliability 
Low switching loss 
High input power factor 

Four-quadrant operation 
Fast system response 
Compact system volume, weight 
Line voltage sag compensation 
Programmable line power factor 

Disadvantages 
Slow system response 
Big system volume and weight 
Limited at low frequency 

Low reliability 
High switching loss 
Low input power factor 

 

1.4. Research Objectives 

The purpose of this research is to develop a PMa-SynRG and drive system for 

portable power applications. In order to design a robust, simple and low cost PMa-

SynRG, the optimal design process is suggested using Lumped Parameter Model (LPM), 

Differential Evolution Strategy (DES) and Finite Element Analysis (FEA). Moreover, 

this high power density and rugged generator drive will be supplied by a thyristor-based 

converter for added reliability and cost effectiveness. Therefore, the purpose of this 

research is two-fold.  

The first task is to develop the optimal design process for a low cost and high 

efficiency 3kW PMa-SynRG. The LPM program provides a fast means for analyzing 

electromagnetic characteristics and the DES is applied to find the most promising design. 

The iteration method between the optimized design from the DES and FEA is suggested 

to find the low cogging torque and low torque ripple. 
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The second task is to show the experimental performance by using a thyristor 

based, current-fed drive for portable generator applications. The thyristor based, current-

fed drive is much simpler and has lower losses compared to voltage-fed pulse width 

modulation (PWM) drives. Eliminating the requirement for self-controlled switches is a 

distinct advantage for lower cost.  

Another feature of the developed current-fed drive is direct power control to 

provide generator power control action by the three-phase rectifier control angle. 

Generator power can be controlled by the maximum power per voltage function block 

while the input power command is decided by means of measuring the DC link voltage.  

These features make the current-fed drive using direct power control a good candidate 

for driving any type of synchronous generators including the proposed PMa-SynRG. 

Another area of concern is to protect the PMa-SynRG from a short circuit fault.  

An induction machine is self protected and the brush DC motor can always be 

demagnetized.  However, in the case of permanent magnet machines, the high inrush 

current from the short circuit may permanently demagnetize the machine and may even 

cause a fire.  Therefore, it is necessary to take sufficient measures to prevent this mode 

of operation.  In the proposed generator system, a novel current source converter is used 

where the current is inherently regulated by the DC link inductor.  Therefore, the 

proposed drive is inherently protected against a short circuit. If the converter terminals 

are shorted the current through the machine phases will be at the most the rated current. 
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CHAPTER II 

LUMPED PARAMETER MODEL FOR A PERMANENT MAGNET ASSISTED 

SYNCHRONOUS RELUCTANCE GENERATOR  

 

2.1. Lumped Parameter Model of PMa-SynRG 

This research presents an analytical model using equivalent magnetic circuits for 

the PMa-SynRG. The lumped parameter model (LPM) is developed from machine 

geometry, stator winding and machine operating specifications. In the LPM, magnetic 

saturation of rotor bridges is incorporated into the model and provides an effective means 

of predicting machine performance for a given machine geometry [25]. The LPM is not 

as accurate as finite element analysis but the equivalent magnetic circuits provide a fast 

means to analyze the electromagnetic characteristics of PMa-SynRG. The main goal is to 

develop an initial and optimum design. The LPM with an efficient numerical 

optimization routine is used to identify optimum designs. The linear LPM and the 

nonlinear LPM are programmed using MATLAB so all the machine parameters are 

calculated very quickly. The design of stator core dimensions and stator winding 

parameters are well established and the stator of PMa-SynRG is the same as other types 

of machines. The rotor structure of PMa-SynRG has significant electromagnetic saliency 

because of cavities in the rotor and it can be modeled using a d, q-reference frame. In this 

section, simple linear LPM analysis is developed for q-axis magnetizing inductance and 

PM flux linkage. Otherwise, nonlinear LPM analysis is applied to the d-axis inductance. 

Fig. 3 depicts the flow chart of the LPM analysis.  
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Fig. 3   Lumped Parameter Model analysis flow-chart. 

 

2.1.1. Linear LPM for q-axis Inductances 

For the q-axis magnetizing inductance calculation, the round rotor synchronous 

inductance sL  is replaced by q-axis and d-axis synchronous inductances, qL  and dL . 

The q-axis synchronous inductance can be separated into magnetizing and leakage 

inductance as  

 q qm lL L L= +  (2.1) 
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The stator winding produces flux leakages and harmonics of magneto motive 

force (MMF) wave. The slot leakage, end-turn leakage and zig-zag leakage are 

components of flux leakage; zig-zag leakage inductance is developed when the stator 

winding is not concentrated in a single slot. Another leakage inductance component of 

harmonics of the MMF is belt inductance and the fifth and seventh harmonics are 

dominant as leakage inductance. Therefore, total leakage lL  is 

 
beltbeltzagzigendslotl LLLLLLL 75 +++++=  (2.2) 

Fig. 4 shows the magnetic circuit for the PMa-SynRG with two layers. In the 

figure, the angle α  is defined as the angular distance of the rotor surface between the 

magnet flux-path. Therefore, kαΔ  is defined as (k: number of layer) 

 
1−+=Δ kkk ααα  (2.3) 

 

Fig. 4 Equivalent q-axis inductance circuit. 
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Per unit reluctances for air-gap and cavities can be calculated by the cross-

sectional areas and average length. The stator MMF source for the thk  segment is 

expressed by applying Fourier analysis. 

 1(cos( ) cos( ))k k
qsk

k
f α α

α
− −

=
Δ

 (2.4) 

The per unit reluctances for the thk  rotor cavity and airgap segment are 

 2 mk s s
mk gk

mk k

d Ar r
gA

α
α

Δ
= =

Δ
 (2.5) 

where g is airgap, sA  and mkA  are cross-sectional area for the stator tooth pitch, magnet.  

The rotor surface MMF potential for thk  layer is 

 1
1[(1/ ) ] [ / ]qrk kj qsj gj j to kf r f r−
==  (2.6) 

with the elements of the per unit reluctance given by 
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 (2.7) 

The q-axis magnetizing inductance qmL  is a combination of the through 

component qtL  and circulating component qcL . 

 qm qt qcL L L= +  (2.8) 
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qtL  and qcL can be estimated by magnetic circuit analysis based on fully-

saturated bridges and fixed magnet remanence in the rotor and constant magnetic 

potentials in the stator core. The q-axis through and circulating inductance components 

are calculated using the following ratios: 

 4 ( )qt
qsk qsk qrk k

kdm

L
f f f

L
α

π
= − ⋅Δ∑  (2.9) 

 241qc
k qsk

kdm

L
f

L
α

π
= − Δ∑  (2.10) 

Finally, d-axis magnetizing inductance can be calculated as 
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qt qc
qm dm

dm dm

qsk qrk k dm
k

L L
L L

L L

f f Lα
π

⎛ ⎞
= − ⋅⎜ ⎟
⎝ ⎠
⎛ ⎞

= − ⋅ ⋅Δ ⋅∑⎜ ⎟
⎝ ⎠

 (2.11) 

 

2.1.2. Linear LPM for q-axis PM Flux Linkage 

The PM flux linkage can be calculated using a linear magnetic circuit analysis 

similar to the q-axis inductance calculation. Figs. 5 and 6 depict the cross-section of PMa-

SynRG and the magnetic circuit when the permanent magnet is placed in the first and 

second layers.  
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Fig. 5 Equivalent q-axis circuit with the first layer PM. 

 

 

Fig. 6 Equivalent q-axis circuit with the second layer PM. 
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Permanent magnets are located in the first layer; the PM flux is oriented along the 

q-axis and the per-unit PM flux source added in the first layer instead of the stator MMF 

source. Otherwise, the estimated saturation flux source is in the opposite direction to the 

magnetic circuit. In the same way, the PM flux and the saturation flux sources are located 

in the second layer when the PM is in the second layer. With the same assumptions of q-

axis inductance calculation, the flux density can be calculated as 

 1

1

1 [(1/ ) ]
2

r mj
gk kj s bj

s j tok

B A
B r B A

A
−

=

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
 (2.12) 

In this equation, 1gB  is zero when permanent magnets are located in the first layer and 

2gB  is zero in the second layer. From the winding parameters and flux density 

calculations, the PM flux linkage can be calculated as 

 
2 gk a a

PM
RlB N k

p
λ =  (2.13) 

 

2.1.3. Nonlinear LPM for d-axis Inductances 

In the linear LPM, the q-axis is modeled with constant saturation because cavity 

layers make a flux barrier and prevent saturation along the q-axis core. Otherwise, at the 

d-axis excitation, the rotor core is saturated by the concentrated flux flowing along the 

narrow area where sections are separated by the cavity layers. The nonlinear LPM for 

the saturable d-axis reluctances is based on the core material characteristics. In the 

nonlinear LPM, the saturable core magnetic characteristic is modeled by curve fit to the 
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M19 B-H data. The permeability of the core can be found at a particular point from the  

B-H curve as 

 B
H

μ =  (2.14) 

The nonlinear LPM for the d-axis presents an accurate calculation for the d-axis 

inductance. The nonlinear equivalent circuit for the d-axis is shown in Fig. 7. The 

saturable reluctance for each cross-section of stator and rotor core can be calculated by 

average length, area and flux density (k = number of segments) [26]. 

 k
k

k k

lr
B Aμ

=  (2.15) 

 

 

Fig. 7 Nonlinear d-axis equivalent magnetic circuit. 
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In this circuit, the reluctance of the stator core is separated into the teeth and the back iron 

because the magnetic flux flows through the teeth to the back iron. Otherwise, the air-gap 

reluctance of the thk  area is  

 
0 1( )gk

k k

gr
rlμ α α −

=
−

 (2.16) 

The stator MMF source for the thk  segment is [27] 
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1 ( sin )
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k
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α
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α α
−−

= ∫
−

 (2.17) 

From the given excitation, the saturable d-axis flux linkage and inductance are  

 1ds a a dN kλ = Φ  (2.18) 

 /dm ds dL Iλ=  (2.19) 

The total d-axis inductance is  

 d dm lL L L= +  (2.20) 

Finally, by the q-axis and d-axis inductance calculations, the saliency ratio of the PMa-

SynRG is defined as  

 /r d qS L L=  (2.21) 

 

2.2. Equivalent Circuit Modeling of PMa-SynRG 

In this section, the electrical performance characteristics of a PM assisted 

synchronous machine are analyzed in the d q synchronously rotating reference frame [28]. 

The most powerful means of analyzing PM synchronous machine uses current, voltage 
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and back-EMF phasors in a synchronously rotating reference frame locked to the rotor. 

Fig. 8 shows d q-frame equivalent circuit for the equivalent circuit.  

 

dL

dV

aR

qV
r qω λ r dω λ

aR

qL PM

qL
λ

dI qI

 

(a) d-axis equivalent circuit  (b) q-axis equivalent circuit 

Fig. 8 PMa-SynRG d q-frame equivalent circuit. 

 

The d- and q-axis flux linkages are 

 d d d q q q PML I L Iλ λ λ= ⋅ = ⋅ −  (2.22) 

and terminal voltage equations are, 

 ( )d
d a d d r q q PM

dIV R I L L I
dt

ω λ= + + −  (2.23) 

 q
q a q q r d d

dI
V R I L L I

dt
ω= + −  (2.24) 

and the back-EMF is  

 a r PME pω λ=  (2.25) 

where p  is the number of pole pairs, rω is the rotor angular frequency in electrical 

radians per second and PMλ  is the permanent magnet flux linkage. 
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2.2.1. The Steady State d and q-axis Equations 

In Fig. 9, the q-axis is aligned with the PM flux linkage phasor PMλ  so that the 

d-axis is aligned with the back-EMF phasor E . The torque angle δ  is defined from aV  

to aE  and the power factor angle φ  is defined from aI  to aV  [29]-[30]. 
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(a) Phasor diagram for motoring  (b) Phasor diagram for generating 

 Fig. 9 Phasor diagrams during motoring and generating. 

 

In the phasor diagram operation, the AC terminal voltage is 

 a d q aa a d qV R I jX I jX I E= + + +  (2.26) 

The current control angle, 

 1tan q

d

I
I

γ − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (2.27) 

and the stator current vectors can be represented as, 
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 cos sind a q aI I I Iγ γ= =  (2.28) 

 

The steady state d- and q-axis reference terminal voltage components are 

 ( ) ( )d r q q PM q r d dV L I V L Iω λ ω= − ⋅ − = ⋅  (2.29) 

The general form of the electromagnetic torque in the d q-frame is given by 

 
( )

3 ( )
2 2
3 ( )
2 2

e d q q d

PM d d q d q

pT I I

p I L L I I

λ λ

λ

= ⋅ − ⋅

= ⋅ + − ⋅
 (2.30) 

In the torque equation, the first component is magnetic torque and the second component 

is reluctance torque.  

 

2.2.2. Machine Losses Calculations 

For the electrical loss calculation in the design of PMa-SynRG, three machine 

losses are considered: armature losses, core losses and slot harmonic losses. However, 

mechanical losses such as windage and friction are ignored in this research. 

The armature losses are given as  

 23a a aP I R=  (2.31) 

where aI  is the RMS phase current and aR  is the phase resistance. The phase resistance 

is calculated from the winding configurations and stator dimensions as 

 a
a

a a

lR
Aσ

=  (2.32) 
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where al is the total machine length include end turns, aA  is the conductor cross-sectional 

area and  aσ  is conductivity of the winding. 

 The core loss has hysteresis and eddy-current loss component [31]. The eddy 

current core loss of stator teeth and yoke are defined as  

 2 212
et e s tP qk Bω

π
=  (2.33) 

 2 2
2

1 8
ey e s bP k Bω

α π
=  (2.34) 

and hysteresis core loss of stator teeth and yoke are 

 2 n
ht h s tP k Bω=  (2.35) 

 2 n
hy h s bP k Bω=  (2.36) 

Therefore, the total core loss is 

 ( ) ( )c et ht t ey hy yP P P V P P V= + ⋅ + + ⋅  (2.37) 

where tV  is the total volume of teeth and yV  is the total volume of yoke.  

 Finally, the slot harmonic loss is considered here because the air-gap flux 

harmonics produced by the stator open slot result in rotor surface eddy currents. A slot 

harmonic loss model includes the rotor lamination effect such as 

 1
i

if
δ

π σμ
=  (2.38) 

 i
i

dλ
δ

=  (2.39) 
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where if  is the slot harmonic frequency, σ  is the core surface conductivity and d  is the 

lamination thickness. Therefore, the slot harmonic loss can be express as 

 sinh( ) sin( )3
cosh( ) cos( )

i i
sk

i i i
F λ λ

λ λ λ
−

= ⋅
−

 (2.40) 

 
2 2

2 2
6h i h sk

dP f B Fσπ
= ⋅  (2.41) 

where hB  is the slot harmonic flux density. 

 

2.2.3. Generator Operating Capability 

For the generating operation, elecP  is negative and the power balance model is 

 elec shaft a c hP P P P P= + + +  (2.42) 

where shaftP  is the power transferred from the shaft. The mechanical converted power 

mechP  is defined as  

 mech eP T ω=  (2.43) 

and the electric power is  

 3 coselec a aP V I φ=  (2.44) 

where aV  is the RMS phase voltage and cosφ  is the power factor. In the generating 

operation, the generator efficiency is  

 1elec a c h
g

shaft shaft

P P P P
P P

η
+ +

= = −  (2.45) 
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 For generating, cP  and hP  are not negligible when the generator operates at high 

speed. The generator power capability at a constant speed is an iterative solution because 

there is no closed-form solution such as maximizing output torque to simultaneously 

minimize the efficiency of the motoring operation [32]-[33]. Therefore, the generating 

operation requires searching current space for maximizing the rear power and 

minimizung the required torque input.  
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CHAPTER III 

OPTIMAL DESIGN PROCESS USING DIFFERENTIAL EVOLUTION 

STRATEGY AND FINITE ELEMENT ANALYSIS 

 

3.1. Optimal Design Using LPM and Differential Evolution Strategy 

This section summarizes the development of the machine design process based on 

the LPM with Differential Evolution Strategy (DES). Fig. 10 describes the basic 

optimization flow-chart. In the flowchart, the LPM provides a fast means for analyzing 

the electromagnetic characteristics of the PMa-SynRG. It is not as accurate as finite 

element analysis, but much faster. LPM provides an effective means for predicting 

machine performance for a given machine geometry.  

 

Start
Prepare 

Candidate 
Design

Reject?
(Based on physical 

constraints)

Calculate Machine 
Performance Using 

LPM Model

Save Results for 
Use in Evolving 

New Design

Evaluate Objective
Function for 

Candidate Design

Meets 
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Yes

Yes

No

No

 

Fig. 10   Basic optimization flow-chart. 
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 Each candidate design will be evaluated at specified generator operating points 

with reasonable geometry limits. The LPM will be used to determine whether the 

candidate design can deliver the required performance within variable limits. The adopted 

approach uses a lumped parameter magnetic circuit model representing the 

electromagnetic behavior of the machine with equivalent circuits. The LPM is created by 

approximately partitioning the geometry and excitation under a specific set of 

assumptions. A differential evolution genetic algorithm is used to explore the multi-

dimensional variable design space in order to identify the most promising designs to meet 

performance criteria that include efficiency, power factor and cost [34]. Required power 

and optimal control angle must be found for the specific operating point. Each candidate 

design that meets all requirements for delivering sufficient required power, etc., is then 

evaluated for “goodness” using an objective function. An objective function can be 

configured using a variety of quantitative evaluation criteria such as PM flux linkage, 

efficiency, or power factor. Weighting coefficients can be added to adjust the importance 

of multiple criteria in the penalty function. For this design exercise, predicted generator 

cost and stator current were used as the basis for the penalty function. A differential 

evolution program was used to explore large multi-dimensional design space to find the 

best design [35]. 

The optimization program will be configured to find the design that minimizes 

machine materials cost while also keeping the efficiency and power factor as high as 

possible. Also, the weighting coefficients ( 1k , 2k ) can be added to adjust the importance 

of multiple criteria in the penalty function [36]. For the first generation, predicted 
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generator cost and stator current were used as the basis for the objective function, 

expressed as 

 2 2
1 2 ( )aObjective Function k I k co st gen= ⋅ + ⋅  (3.1) 

 

3.1.1. Generator Specifications 

Table 2 provides a summary of the stated specifications for electrical limits, key 

machine dimensions and machine materials.  

Table 2   Specified machine parameters. 

Parameters Specifications 
Speed [rpm] 3,600 

Maximum Output Power [W] 3,000 max 
Stator Outer Diameter [mm] 190 max 

Active Length Including Housing [mm] 127 max 
Maximum Stack Length [mm] 70 max 

Maximum Rotor Inner Diameter [mm] 25.4 max 
Air-gap [mm] 0.7 min 

Maximum Current Density [A/mm 2 ] 15 
Stator winding insulation Class H (180 C ) 

Peak Mechanical Stress of Rotor [MPa] 470 
Core Lamination Material M19 

Permanent Magnet Material Sintered NdFeB 
 

The lamination steel material specified for the stator and the rotor core is M19, 

reflecting a desire to minimize machine cost. The sintered NdFeB magnet material 

selected for this machine has a residual flux density rB  value of 1.3T. However, the 

magnet properties were adjusted for an operating temperature in the vicinity of 130 C
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when developing the machine design; the stator winding temperature was assumed to be 

180 C  when calculating machine losses and efficiency. 

 

3.1.2. Machine Design Parameters 

The stator tooth and slot geometric parameters are shown in Fig. 11. The tooth 

pitch is decided by the slots/pole/phase and it is used to decide the series turns per phase 

with stator geometric parameters. The stator winding can determine the distributed or 

concentrated winding and will be performed in the optimal design process. 

 

Fig. 11   Stator one slot pitch design parameters. 

,ri ror r  : inner and outer diameter of the rotor core 

,si sor r  : inner and outer diameter of the stator core 
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In the optimal design of PMa-SynRG, the outer stator diameter is fixed. The inner 

rotor diameter and the outer rotor diameter depend on the ratio considering the outer 

diameter of the shaft. The pole pitch is decided by the number of poles.  

Table 3 summarizes the design parameters for the optimal design process in LPM 

and DES. The first variable to the fifth variable are the design parameters for the stator. 

The stator stack length and the winding numbers per slot per phase decide machine 

output characteristics. The back iron depth, slot height and width are design parameters 

in LPM for the slot fill factor and torque pulsation by the stator shape design,. These five 

variables are optimized in DES by the iteration between the minimum and maximum 

values. 

Table 3   Design parameters for optimal design process. 

Design parameter in LPM Minimum 
for DES 

Maximum 
for DES 

Converged by 
DES 

Axial stack length [mm] 50 80 65 
Num of winding per slot per phase 5 40 24 

Stator back iron depth [mm] 5 20 8.34 
Ratio of slot height to slot width 0.5 2.5 2.1044 
Ratio of slot to slot + tooth width 0.4 0.6 0.4402 

rri/rro 0.5 0.8 0.659 
(dm1+dm2)/(rro-rri) 0.2 0.5 0.3772 

dm1/(dm1+dm2) 0.3 0.5 0.4651 
dr1/(dr1+dr2+dr3) 0.15 0.4 0.3958 
dr2/( dr1+dr2+dr3) 0.2 0.4 0.3094 

Span ratio of the second layer 0.6 0.9 0.7388 
 

 

The shape of rotor cavities depends on many geometric parameters. Fig. 12 shows 

the cross-section of the rotor and design variables of the cavity and the width of rotor core. 
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Fig. 12   Rotor design parameters. 

1, 2m md d  : thickness of the first and second layer in the rotor 

ml   : permanent magnet length 

1, 2, 3r r rd d d  : thickness of the first, second and third bridge in the rotor 

 

The bridge thickness bw  and width of the cavity md  should consider for the 

saturation effects. The generator output characteristics are affected by the shape of the 

cavity and are determined by the angular spans and radius of the center point. 



 
 

36

In order to minimize the rotor core and permanent magnets volume using the 

objective function, six variables for the rotor core are used in the LPM. The inner 

diameter of the rotor core is decided by the ratio of the outer diameter to the inner 

diameter rri/rro. The permanent magnet thickness and the bridge thickness are decided 

by the ratio between the two variables of magnet thickness and the three variables of 

bridge thickness. Finally, the span ratio of the second layer is optimized by the DES to 

minimize torque pulsation and cogging torque. 

In the optimal design process, two different types of rotor structure are evaluated. 

The first type of rotor structure shows that permanent magnets are inserted in the first 

layer and the other is in the second layer. For the high efficiency and power factor, the 

first type of design is worse than the second type because it uses only a small portion of 

the magnetic torque. Therefore, the first type needs more current and creates a bigger 

power loss. In order to minimize the phase current and the amount of permanent magnet, 

the optimization process will be performed based on the second type of design. 

 

3.1.3. Stator Winding Configurations 

The adoption of concentrated windings for the PMa-SynRG makes it possible to 

significantly reduce the volume of copper used in the coil end windings compared to 

conventional distributed windings. In addition, the shorter end windings provide 

opportunities to reduce the winding copper losses, improving machine efficiency when 

compared to its counterpart with distributed windings [37]. The concentrated winding 

structure provides opportunities for simplifying the manufacturing process for the stator, 
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including minimizing the number of stator coils. Key parameters associated with the two 

windings are summarized in Table 4. 

Table 4   Key Parameters for distributed and concentrated windings. 

Parameter slot/pole/phase number of 
slots 

number of 
poles 

slots short 
pitched 

Distributed 1 12 4 1 
Concentrated 0.5 12 8 0 

 

Fig. 13 shows examples of a 4-pole PMa-SynRG with distributed windings on 

the left and an 8-pole PMa-SynRG with concentrated windings on the right.  In this 

particular comparison, the distributed winding has 1 slots/pole/phase, while the 

concentrated winding has a slot/pole/phase value of 0.5. The span of the stator coils is 

150 electrical degrees for the distributed winding (i.e., 1 slot short-pitched) and 120 

electrical degrees for the concentrated winding configuration [38]. 

 

  

Fig. 13   PMa-SynRG with distributed and concentrated windings. 
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The combinations of slots and poles that allow the realization of a balanced winding can 

be determined by the number of slots-per-pole-phase, ppS , defined as 

 
mp

SS pp ⋅
=

2
 (3.2) 

where S  is the number of stator slots, p is the number of pole pairs and m is the number 

of phases.  Three-phase machines with concentrated windings have ppS  values less than 

or equal to 0.5 [39].  The magnet flux linkage of concentrated and distributed winding 

can be calculated using the winding function technique summarized in the following 

equations. 

 _ 1 1 max
4

a con g eff wr l K N B
p

λ = ⋅  (3.3) 

 _ 2 max2a dis g effr l N Bλ = ⋅  (3.4) 

where aλ  is the magnet flux linkage of phase A [in Wb], gr  is the airgap radius [in m] 

and effl  is active length of the machine [in m]. 1wK  is the fundamental component 

winding factor that has a value of 0.866 for ppS = 0.5 [40]. 

From equation (3.3) and (3.4), the relationship between the number of turns per 

coil needed in the two different windings to insure equality of the total magnet flux 

linkage can be determined to be 

 21 31.2 NN ⋅=  (3.5) 

The d-axis inductance values for the two different windings can be calculated as follows: 
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_ 3

g eff
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The ratio of the d-axis inductances for the two different windings under the constraint of 

the same magnet flux linkage can be evaluated by the combining equation (3.6) and (3.7) 

 67.2
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cond  (3.8) 

This result shows that the value of dL  for the concentrated-winding machine is 

higher than for the corresponding dL  value for the distributed-winding machine. This 

higher value of dL  with concentrated windings makes it easier to reduce the value of the 

characteristic current to meet the conditions for optimal flux weakening in comparison to 

the distributed-winding machine [41].  

 

3.1.4. Optimized Design Results by the DES 

In this section, design parameters and optimized results by DES are compared for 

each stator winding configuration. By the optimal design process, the number of stator 

slots per pole for the distributed winding converged from 72/12 to 12/4. Fig. 14 depicts 

the initial and optimized machine dimensions.  

The rated phase current decreases from 29.89A to 15.17A and reduces the total loss 

of the machine. Using the objective function in the DES, the phase current is minimized 

to maximize the machine efficiency and the total magnet mass is minimized to reduce 

machine cost. In the results, the optimized design parameters show much better 

performance than the initial design.  
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Fig. 14   Initial and optimized design with distributed windings. 

 

The initial and optimized designs with concentrated machine are shown in Fig. 15 

and the number of stator slots per poles are 6/4 and 12/8 each.  

 

  

Fig. 15   Initial and optimized design with concentrated windings. 
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The stator current of the first generation optimized design is improved from 23.6A 

to 18.5A and it is effective in reducing the price of the switching devices. As the stator 

current decreases, the total loss of the first generation optimized design is reduced even 

though the number of series turns of the stator is increased. Moreover, the important 

design parameter in generator design is power factor which is improved from 0.77 to 0.98 

by optimizing the current angle. Table 5 summarizes the optimized machine parameters 

for each winding configuration using the optimal design process after 10,000 iterations.  

 

Table 5   Optimized machine parameters for distributed and concentrated windings. 

Stator Winding Distributed Concentrated 
Design Initial Optimized Initial Optimized

Number of Slots/poles 72/12 12/4 6/4 12/8 
SPP 2 1 0.5 0.5 

Series Turns per Slot 24 100 60 88 
Rated Stator Current [Arms] 28.89 15.17 23.6 18.5 

Axial Length [mm] 70 75 70 75 
PM flux linkage [mWrms] 14.9 83.77 30 55 
Total Magnet Mass [Kg] 1.3 0.887 0.535 0.595 

Total Loss [W] 180.1 105.92 106.7 96.6 
Efficiency [%] 94.2 96.3 96.6 96.8 
Power Factor 0.99 1 0.77 0.98 

 
 

Using differential evolution strategy, the stator current of each design converged 

at 15A and the armature loss of concentrated winding machine is reduced to 43%. 

Moreover, the active length of the machine and the total magnet mass are decreased to 

17% and 40%, respectively. Therefore, the concentrated winding machine is optimized 

with lower cost and better output characteristics than the conventional distributed 

winding machine.  
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3.2 Optimal Design Process Using Iteration between LPM and Finite Element Analysis  

Two-dimensional finite element analysis software is used for a fundamental 

accuracy check of the LPMs that are developed and applied to the candidate machine. 

Test performance of optimum designs using FEA and the differences between LPM and 

FEA model predictions fine tune the LPM model. The numerical optimization and 

iteration were relaunched until LPM and FEA predictions for new optimum design 

converged [42]-[43]. Fig. 16 shows the flow chart of the optimal design process using 

LPM and FEA. 

 

Fig. 16   Flow-chart of iteration between the optimized LPM and FEA. 



 
 

43

The output torque is obtained using direct computation of force on the stator from 

the Lorenz force on the conductors and magnet’s torque calculation derived from virtual 

work on the rotor. Test performance of the optimum designs is conducted using FEA and 

the difference between LPM and FEA model predictions to fine tune the LPM. The 

numerical optimization and iteration were relaunched until LPM and FEA predictions 

for new optimum design converged [44]-[45]. Convergence typically requires two or 

three iterations. 

 

3.2.1. Final Optimized Model by the FEA 

Based on the optimized model using LPM and DES, the final optimized model is 

designed through several iterations and fine tuning between LPM and FEA. In the final 

optimized model, the rated power increased to 3,300W in order to provide a 10% margin 

for the actual machine operation performance. Also, the unity power factor and the 

maximum efficiency with the minimum amount of permanent magnet are the objective 

functions during the optimization process. With these conditions, the center bridges are 

removed and machine output performance is improved. Fig. 17 shows the cross section of 

the final optimized model. In the d q-current plane, the operation point can be found by 

the intersection between the voltage limit ellipse and constant power hyperbola in the 

generating quadrant. From the operating point, the d, q-axis currents and current angle are 

decided for the control of the generator.   

 



 
 

44

 

Fig. 17   Cross section of the final optimized model. 

 
For analysis of the optimized model and comparison between the optimized 

model by DES and the final optimized models, the two-dimensional FEA is used. The 

LPM model is limited to analyze the cogging torque and output torque ripple. Therefore, 

FEA needs to analyze the distributions of the output characteristics in a transient 

condition. Fig. 18 shows the distribution of flux line and Fig. 19 describes the distribution 

of flux density to show saturation. When the distribution of the flux density is compared 

to the optimized model by DES, the final optimized model has a smaller saturation area 

and the level of flux density at the bridges is lower. Also, leakage flux lines in the first 

layer are reduced by increasing the thickness of the first layer. Therefore, the machine 

performance of the final optimized model is much better than the optimized model by 

DES in terms of leakage and saturation effects. 
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Fig. 18   Flux lines distribution from FEA. 

 

 

Fig. 19   Flux density distribution from FEA. 
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3.2.2. Comparisons between the Optimized Model by DES and Final Optimized Model 

In this chapter, comparisons between the optimized model by DES and final 

optimized models are performed based on the LPM and FEA. The final optimized model 

is optimized by fine tuning between LPM and FEA and Table 6 to summarize the 

machine parameters and output performances. The final optimized model is designed 

based on the same stator winding and the number of slots per pole. The rated current is 

converged to 15A and it decreased 19% compared to the optimized model by DES. Also, 

the active length of machine and total magnet mass decreased to 17% and 11% 

respectively. Moreover, the machine efficiency and power factor improved. Therefore, 

the optimized model is satisfied machine performance and has a better output 

performance than the optimized model by DES.  

 

Table 6   Design results of the optimized model by DES and final optimized model. 

Design parameter in LPM Optimized by 
DES 

After Iteration 
by FEA 

Stator winding Concentrated Concentrated 
Number of Slots/poles 12/8 12/8 
Series turns per phase 88 96 
Rated current [Arms] 18.5 15.15 

Stator OD [mm] 190 190 
Axial length [mm] 75 62 

PM flux linkage [mWbrms] 55 56.62 
Total Magnet mass [Kg] 0.595 0.535 

Armature loss [W] 74.3 60.27 
Efficiency [%] 96.8 97.3 
Power factor 0.98 1 
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Figs. 20 and 21 compare the back-EMF and PM flux linkage between the optimized 

model by DES and the final optimized designs. As we can see, even though the axial 

length and the magnet mass are decreased, back-EMF and PM flux linkage of the final 

optimized model are very close to the optimized model by DES.  
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Fig. 20   Back-EMF of optimized design by DES and final optimized design. 
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Fig. 21   PM flux linkage of optimized design by DES and final optimized design. 

 

The cogging torque and output torque ripple are simulated to analyze machine 

output performance and shown in Figs. 22, 23. The cogging torque of the final optimized 

model is 0.5 Nm and it performed better than the optimized model by DES with 1.5 Nm 

cogging torque. The average output torque is reduced from 11.4 Nm to 8.7 Nm for the 3.3 

kW output power by fine tuning between LPM and FEA which makes it possible to 

decrease the rated current and increase machine efficiency. However, the output torque 

ripple is somewhat higher than the optimized model by DES because in the LPM, the 

DES optimization process focuses on machine cost and output performance. The output 

torque ripple will be handled by the direct output power control in the generating mode. 
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 Fig. 22   Cogging torque of optimized design by DES and final optimized design. 
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Fig. 23   Output torque of optimized design by DES and final optimized design. 
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3.2.3. Comparisons between Optimized Design Results with the Distributed and 

Concentrated Winding Machines 

Finite element analysis is performed in order to verify the optimized design from 

LPM and DES. Using FEA, the back-EMF and the PM flux linkage are compared to 

results obtained from LPM. Also, the output torque ripple and the cogging torque can be 

analyzed. Figs. 24, 25 depict the Back-EMF and the PM flux linkage for comparisons 

between distributed and concentrated winding configurations. To compare the cogging 

torque and the output torque ripple, FEA is performed and results are shown in Figs. 26, 

27. 
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Fig. 24   Back-EMF of distributed and concentrated winding machines. 
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Fig. 25   PM flux linkage of distributed and concentrated winding machines. 
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Fig. 26   Cogging torque of distributed and concentrated winding machines. 
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Fig. 27   Output torque of distributed and concentrated winding machines. 

 

From the FEA results, the cogging torque is reduced from 2N.m to 0.5N.m in the 

concentrated winding machine. Moreover, output torque ripple is decreased from 68.8% 

to 33.5%. Therefore, the final optimized model with concentrated winding has better 

output performance and low torque ripple.  

Figs. 28 and 29 show the back-EMF waveforms from FEA and its fundamental 

component. From the FEA result, the back-EMF is not pure sinusoidal. Therefore, it 

needs to be transformed to a fundamental value using the Fourier transform. Through 

FFT analysis, the peak value of the fundamental component is 116 V and the rms value of 

back-EMF can be calculated as 82 Vrms. In the final optimized model using Lumped 

Parameter Model (LPM), the back-EMF design result is 85.38 Vrms. Therefore, the back-
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EMF results from LPM and FEA are very close and the error between FEA and LPM is 

4%.  

 
Fig. 28   Back-EMF result from FEA. 

 

 
Fig. 29   Fundamental component of back-EMF. 
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From the transient FEA simulation, the PM flux-linkage can be obtained; Fig. 30 

shows the result. The peak value of the PM flux-linkage fundamental component is 

0.076Wb from FFT as shown in Fig. 31. Therefore, the rms value of the PM flux- linkage 

can be calculated as 0.0538Wbrms from FEA while the PM flux-linkage result from the 

LPM is 0.0566Wbrms. From these results, the PM flux-linkage results from LPM and 

FEA are very close and the error between FEA and LPM is 5%. 

 

 

Fig. 30   PM flux-linkage result from FEA. 
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Fig. 31   Fundamental component of PM flux-linkage. 

 

This chapter summarizes the comparisons between the final optimized model of 

LPM and FEA. The final optimized model is fine tuned between LPM and FEA after 

several iterations. Finite element analysis is performed to verify the optimized design 

from LPM and DES. Using FEA, the output power, the back-EMF and the PM flux 

linkage are compared to results obtained from LPM.  

In the final design by LPM, the rated power is set to 3,300W to consider a 10% 

margin for the actual machine operation performance. From FEA, the simulation result of 

average output power is 3,287W; the same rated current is 15.15A with LPM. In terms of 

back-EMF, the rms value from FEA is 82Vrms and the LPM design result is 85.38Vrms. 

Also, the rms value of PM flux- linkage is 0.0538Wbrms from FEA; the result from the 
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LPM is 0.0566Wbrms. In the final optimized design, errors between FEA and LPM are 

less than 5%. Therefore, the final optimized model is good enough to finalize fabrication. 
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CHAPTER IV 

FABRICATED 3KW PMA-SYNRG AND MACHINE CHARACTERISTICS 

 

4.1. Machine Fabrication Process 

Fig. 32 shows the machine fabrication process for the 3kW PMa-SynRG. The 

stator core needs the winding process and the rotor needs to be assembled with cover and 

shaft.  

 

Fig. 32   Block diagram of machine fabrication process. 
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4.1.1. Stator Core and Winding 

Table 7 summarizes characteristics of the stator core and Fig. 33 depicts the stacked 

lamination. The thickness of each lamination is 0.35mm and the total stack length is 

65mm. Therefore, 185 laminations are stacked and six points at the edge of core are 

notched for welding. In order to isolate the coil and stator core, all stator slots are covered 

by isolation papers. 

Table 7   Stator core characteristics. 

Grade Thickness 
[mm] Density [g/cm2] Core loss 

[w/kg] Lamination [%]

35PN440 0.35 7.7 4.4 95 
 

 

Fig. 33   Stacked lamination stator core. 
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Concentrated stator winding was selected for the 3kW PMa-SynRG.  Figs. 34 

and 35 picture the produced stator core and winding. The number of turns per each stator 

slot is 24 and the total number of turns per each phase is 96. The estimated phase 

resistance was 0.175ohm in the LPM and the measured value was 0.2ohm. Therefore, 

the actual machine has 10% greater resistance because the volume of the end-turn is 

bigger than expected. The slot fill factor of the stator winding set 40% in the design 

process to consider the winding by hand. 

 

 

Fig. 34   Side-view of the stator winding configuration. 
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Fig. 35   Top-view of the stator winding configuration. 

 

4.1.2. Rotor Core and Permanent Magnets 

The total stack length of the rotor core is 65mm and NdFeB permanent magnets 

are embedded in the second layer of the rotor bridge. In order to prevent magnets 

escaping at high speed, a hub will be inserted between the rotor core and the shaft will be 

fixed by two square shaped keys. Table 8 summarize characteristics of NdFeB.  

Table 8 Characteristics of NdFeB permanent magnet. 

Grade Remanence 
Br [T] 

Maximum energy 
BHmax [MGoe] 

Recoil 
permeability 

Thermal 
Characteristic 

N42SH 1.27 ~ 1.32 39 ~ 43 1.05 ~ 150 degree 
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Fig. 36   B-H curve of NdFeB permanent magnet. 

 

 

Fig. 37   NdFeB permanent magnets. 
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Figs. 36, 37 depict B-H curve and feature of NdFeB. NdFeB permanent magnets 

are inserted in the second layer of the rotor core and they are fixed by notches at the end 

of corners. The stacked lamination rotor core and inserted PMs are shown in Fig. 38. 

 

 

Fig. 38   Stacked lamination rotor core and inserted PMs. 

 

4.2. Experimental Results 

Fig. 39 shows the 3kW PMa-SynRG test bed. A 7.5hp three phase induction motor 

is controlled by the Allen-Bradley 1336 plus adjustable frequency AC drive for 3,600rpm 

constant speed and works as a prime mover. The fabricated 3kW PMa-SynRG is 

connected to the induction motor directly by a coupling. 
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Fig. 39   Fabricated 3kW PMa-SynRG test bed. 

 

The rotating frequency of the induction motor is 60Hz for 3,600rpm and the 

PMa-SynRG is 240Hz because the induction motor has two rotor poles and the PMa-

SynRG has eight rotor poles. In order to detect the mechanical rotating position, an 

encoder installed on the PMa-SynRG shaft is being used. The fabricated test bed for the 

3kW PMa-SynRG is shown in Fig. 39. The adjustable frequency AC drive is 

programmed to keep the constant speed (3,600rpm) of the three phase induction motor. 

The 3kW PMa-SynRG is working as a generator; the phase conductors are connected to 

the three phase rectifier and voltage sensors.  
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4.2.1. Comparisons for Back-EMF  

Fig. 40 shows experimental waveforms of the line-to-line back-EMF. When the 

induction motor runs at 3,600 rpm, the peak value of the line-to-line back-EMF between 

phase A and B is around 150V. Each rotor pole has a uniform peak value indicating that 

each permanent magnet has equal remanent flux density Br. 

 

 

Fig. 40   Waveforms of line-to-line and line-to-neutral back-EMF. 

From top to bottom : (a) line-to-line back-EMF(50V/div) (b) line-to-neutral back-

EMF(50V/div) 
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Figs. 41 and 42 describe the back-EMF waveform from the experiment and 

calculated fundamental component. The shape of the waveforms is different because of 

the saturation effect in the experiment. The peak value of the fundamental component of 

the experimental result is higher than the FEA simulation result. 

 

 

Fig. 41   Waveform of the line-to-line back-EMF from the experiment. 

 

 

Fig. 42   Fundamental component of the line-to-line back-EMF from the experiment. 
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Table 9 summarizes the back-EMF design results from the LPM, FEA and 

experiments. The rms value of the experimental result is 91.8V which is 10V higher than 

the FEA result. The smaller ripple waveform of the back-EMF in the experiment can 

produce bigger rms and reduce the size of the DC link inductance to rectify pure DC 

current and voltage.  

 

Table 9   Comparisons of the back-EMF from the experiment. 

 LPM FEA Experimental Error 
back-EMF [Vrms] 85.4 82 91.8 10 % 

 

 

4.2.2. Comparisons for d q-axis Inductances 

Figs. 43 and 44 show comparisons between experimental results and estimations 

for d q-axis inductances. The measured d-axis inductance by the experiment is close to 

the LPM and FEA predictions. At lower currents, the inductance measurements are off 

from the LPM predictions because of the uncertainty associated with the low value of 

currents and voltages. However at higher currents, the measurement plots follow the 

LPM predictions closely. The FEA prediction plots have a similar trend with 

experimental result. However, while being lower than the experimental result at overall 

currents. The d-axis inductance measurements by experiment are very close to the LPM 

predictions at higher currents. The FEA predictions are close the measurements and 

seem to be higher at higher currents. From these results, agreement between measured 

and predicted value for d q-axis inductances are reasonably good. 
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Fig. 43   Measured d-axis inductance characteristics, compared with LPM and FEA. 

 

Fig. 44   Measured q-axis inductance characteristics, compared with LPM and FEA. 
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CHAPTER V 

CURRENT-FED DRIVE FOR THE GENERATOR SYSTEM 

 

5.1. Current-Fed Drive for the 3kW PMa-SynRG 

This section discusses the basic operation of the proposed low loss PMa-SynRG 

drive system. The proposed drive topology of a low loss current-fed drive system is 

shown in Fig. 45. Three-phase input power is produced by the 3kW PMa-SynRG with 

the engine working as a prime mover. There is a three-phase controlled rectifier at the 

input and a current source inverter at the output with a large DC link inductor.  The 

output inverter distributes the DC link current to single-phase load. In order to simplify 

the analysis, all the stray elements are neglected.  The machine is assumed ideal and all 

the saturation effects are neglected.   

 

 

Fig. 45   The proposed thyristor-based current-fed drive. 
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5.2. Thyristor Based Three-Phase Controlled Rectifier 

The input stage is made up of a three-phase line commutated controlled rectifier.  

The triggering signals for the input rectifier thyristors are synchronized with the line-to-

line input voltage Vac.  A software timer generates an adjustable delay from the rising 

and falling edges of the zero crossing detector (ZCD) output to control the output 

voltage of the controlled rectifier. The DC link current is changed by changing the delay 

angle of the input rectifier. This DC link inductor acts as a filter to smooth out the ripple 

in the output of the rectifier. The DC link inductor, along with the controlled rectifier, 

forms a variable current source. The delay angle of the controlled rectifier can be varied 

as fast as twice the frequency of the input supply. This means that with a 60 Hz input 

one could control the rectifier output only as fast as 8.33 milliseconds [46]-[47].  

In case the alpha is zero, the switching sequence of the three-phase rectifier starts 

at Vac zero. For the starting point of the switching sequence, a zero crossing point of the 

phase AC line-to-line voltage is detected. From the zero crossing point, thyristor T1 is  

conducted during 60 . In Fig. 46, phase voltages of the PMa-SynRG and the switching 

sequence of the three-phase rectifier appear when the rectifier control angle alpha is zero. 

The output voltage of the input rectifier is a cosine function of the delay angle.  

The effective output voltage of the input rectifier is positive for the delay angle below 90 

degrees. Fig. 47 shows the output voltage waveforms of the controlled rectifier for 

various values of the delay angle. In Fig. 47, the switching sequence is delayed from 

0tω =  point to the alpha angle and the DC link voltage decreases from the alpha zero 

case.  
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Fig. 46   Switching sequence for the three-phase rectifier at alpha zero case. 



 
 

71

1
4

3
66

5
2

wt = 0

Va Vb Vc

Vab Vbc VcaVac Vba VcbVcb

5

Vdc

 

Fig. 47   Switching sequence for the three-phase rectifier with alpha control. 
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5.3. Thyristor Based Single-Phase Controlled Inverter 

At zero delay angle, the input current of the rectifier is an ideal square wave and 

in phase with the input voltage. Under these conditions, the displacement factor is unity 

and the power factor is equal to the distortion factor of the system. A square wave 

current waveform in phase with the voltage results in a unity power factor  

 

5.3.1. Load Commutated Inverter 

A typical schematic of current-fed load commutated inverter (LCI) for the 

motoring mode is shown in Fig. 48. The LCI drive uses a single-phase controlled 

rectifier at the input and a current source inverter at the output with a large DC link 

inductor. The output converter distributes the DC link current to three-phases of the load. 

The back-EMF generated by the load is used for natural commutation of the inverter 

thyristors; line commutation is used to commutate the input rectifier thyristors. 

 

 

Fig. 48   Load commutated inverter topology. 
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For the successful commutation of the thyristor, it is necessary for the motor 

phase current to lead the corresponding phase back-EMF. The leading angle is a function 

of various system parameters such as switching time of thyristor, load and DC link 

inductance [48]-[49]. 

 

5.3.2. Forced Commutated Inverter by the Auto-Sequential Circuit 

A current-fed inverter requires forced commutation if the load back-EMF is not 

sufficient for load commutation. The load commutation of an inverter with PMa-SynRM 

load depends on the back-EMF. Therefore, the machine should not operate below a 

critical speed. Typically, the load commutation does not work satisfactorily below 5% of 

base speed. Also, for the synchronous reluctance machine, the inverter needs some type 

of forced commutation because this type of machine has very limited back-EMF at low 

speeds [50].  

Fig. 49 depicts a three-phase bridge inverter with an auto-sequential method of 

forced commutation. The PMa-SynRM model is approximately represented by a per-

phase equivalent circuit consisting of a sinusoidal back-EMF in series with an 

inductance L. At the stalled condition of the machine, the back-EMF is zero and the 

motor becomes an inductive load. Thyristors T1-T6 are the principal switching devices 

of the inverter where each of them conducts in sequence, ideally for 3/2π , to establish 

the usual six-stepped current waveforms in the machine. The series diodes and delta-

connected capacitor banks, which are connected to each of the upper and lower groups 

of thyristors, constitute the forced commutation elements. The capacitors store a charge 
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with the correct polarity for commutation while the series diodes tend to isolate them 

from the load [51]. 

Fig. 49   Auto-sequential current-fed inverter (ASCI) with three-phase load. 

 

Fig. 50 shows the overall system for the single phase inverter and three-phase 

force commutated converter using an auto-sequential circuit. This system is used if the 

machine back-EMF is not large enough for load commutation or the machine is stalled. 

In this simulation, 100uF capacitor banks are used to store an electric charge for 

commutation. Fig. 51 describes simulation results of the DC link current and voltage by 

ASCI circuit. 
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Fig. 50   Schematic of force commutated inverter system. 

 

 

Fig. 51   Waveforms of the DC link current and voltages. 

From top to bottom : (a) DC link current, DC link current command (b) DC link voltage 

before the inductance, average value (c) DC link voltage after inductor 
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Fig. 52   Waveforms of the output current and voltages. 

From top to bottom : (a) phase A current  (b) phase A voltage (c) line-to-line voltage 

 

During the current transfer interval, a large voltage spike is induced which will 

be added to the back-EMF and it is shown in Fig. 52. The response time of an auto-

sequential current-fed inverter is much longer than the load commuted inverter because 

the capacitor banks charge linearly with the DC current and the linear charge period ends 

when the capacitor bank voltage equals the line voltage.  

 

5.3.3. Forced Commutated Inverter by a Line Capacitor 

When the generator connected to a single phase inductive load, the inductive load 

will work at a lagging power factor. Therefore, an output capacitor is installed to convert 

the lagging power factor of the inductive load to the leading power factor of the inverter 
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terminal to turn off the thyristors. A schematic configuration of the LCI using an 

external capacitor and its vector diagram are shown in Fig. 53. The output load current 

Io in the inductive loads always lags the corresponding load voltage oV  with lagging 

angle θ  depending on the inductive load characteristics. On the other hand, the output 

current Iinv must lead the load voltage for the thyristor commutation. The phase shift 

required from Io to Iinv is obtained by the output capacitor. The angle φ  denotes the 

leading angle of the inverter terminal for safe commutation [52]. Furthermore, the output 

capacitor provides a smooth sinusoidal output current and voltage waveform for the 

60Hz/120V single phase output. 

 

φ

θ

invI

oV

oI

cI

 

Fig. 53   The proposed LCI drive and forced commutated inverter vector diagram. 
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Using an output capacitor for the leading power factor allows commutation 

above the critical frequency of inductive load currents. However, in low frequency 

regions, an output capacitor cannot make a large enough phase shift because the 

capacitor current is too small due to high impedance of the capacitor. Since increasing 

the capacitance enough for the low frequency region could yield an unreasonably large 

capacitor, a forced commutation circuit is appended for low frequency operation. For the 

low frequency operation of a current-fed inverter, several forced commutation methods 

can be applied. The forced commutation control of a current-fed inverter using chopper 

commutation with an auxiliary thyrisotor (Ta) is introduced. The DC link current 

chopper commutation using an auxiliary thyristor can be applied to the generating 

operation for the single phase inverter. In this work, an output capacitor and forced 

commutation are considered for the overall frequency region of the inductive load. This 

scheme requires only one auxiliary thyristor to allow stable operation at standstill and 

low speed. The system is composed of a three-phase bridge converter, an auxiliary 

thyristor in DC link and a single-phase inverter. In this inverter, forced commutation 

devices such as capacitors and diodes can be dispensed with. In the present scheme, such 

chopping is combined with control of an auxiliary thyristor anti-parallel to the DC link 

inductor to improve starting commutation ability for PMa-SynRM at the starting 

motoring mode [53]. The DC link voltage is chopped by increasing the rectifier delay 

angle more than 90 degrees. A negative voltage is applied to the ON thyristors and the 

current decreases to zero to turn off the inverter thyristors. An auxiliary thyristor with a 

chopping operation can improve commutation ability because current flows through the 
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thyristor at the reverse voltage interval. The simulation result is described in Fig. 54 

from PSIM. 

 

Fig. 54   DC link output voltage and current waveforms with the auxiliary thyristor. 

From top to bottom : (a) single phase AC input voltage (b) DC link voltage  

(c) DC link current 

 

A thyristor is connected anti-parallel to the DC link inductance where a trigger 

signal arrives during the off time. Therefore, an auxiliary thyristor with a chopping 

operation can improve commutation ability. When the switching frequency of the 

rectifier is 60Hz, the DC link current is 5A and the turn off time of the thyristor is 

decreased. This is an ideal case for increasing the inverter switching frequency and 

operating it at a higher current. 
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CHAPTER VI 

VOLTAGE BASED DIRECT POWER CONTROL FOR THE  

CURRENT-FED DRIVE 

 

6.1. Direct Power Control for the Current-fed Drive 

The DC link voltage-based direct power control (V-DPC) is proposed in order to 

control the output power directly in the current-fed drive. In current-fed drives, voltage 

vectors are used for output power control and the DC link voltage can be used as the 

reference command for controlling the power. The goal of the direct power control is to 

maintain the output DC link voltage at the required output power operating point [54]. 

The V-DPC has advantages such as a simple algorithm for fixed switching frequency 

and good dynamic response for the current-fed drive. However, the DC link voltage 

feedback should be avoided at the moment of switching because the DC link voltage 

ripple causes a high number of errors from the DC link voltage feedback signal [55]-[59]. 

In this research, current-fed drive based on V-DPC is simulated which applied to the 

actual system. In the d and q-axis reference frame, the d and q-axis voltage vectors can 

be represented by the stator voltage magnitude and the torque angle. The d and q-axis 

reference voltages  

 cos sind s q q i q s d dV V X I E V V X Iδ δ= = − + = =  (6.1) 

 sin coss i s
d q

d q

V E VI I
X X

δ δ−
= =  (6.2) 

 cos cos sins d qI I Iθ δ δ= +  (6.3) 
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where 

δ   : torque angle 

θ   : power factor angle 

iE   : back-EMF 

,d qX X  : d and q-axis reactances 

The output power equation is given by  
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From the output power equation, the torque angle at extracted power operating point can 

be calculated for the maximum power per voltage (MPPV) using 0dP
dt

=  [60]-[62]. 
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The torque angle for the MPPV can be delivered as 
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+ : motoring, - : generating 

Fig. 55 shows the proposed block diagram of power estimation based on the DC 

link voltage for a 3kW generator system and Fig. 56 describes power control block. The 

estimated line voltages and DC link voltage are delivered to the power controller block. 

The power command is transferred to the maximum power per voltage control block and 

the amplitude of the voltage and torque angle produce the d and q-axis voltage vectors. 

The voltage vectors are compared to measured voltage vectors and the DC link current 

command is decided by the d and q-axis current vectors using 

 * *2 *2
dc d qI I I= +  (6.9) 

For three phase rectifier control, the alpha controller produces the DC link current 

command which can be transferred to the alpha angle by a proper gain. 

In the single-phase load commutated inverter with the series R-L load, line 

capacitance is used for the phase shift and the real and reactive components of the load 

current are given by: 

 cos sinL L
P L Q L

c

V VI I I I
R X

β β= ⋅ = = ⋅ =  (6.10) 

where 

 1||cX j L
j C

ω
ω

=  (6.11) 

through some algebraic manipulation, 
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2 222 2
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π
π

+⋅
= =  (6.12) 

From the above equation, we can calculate the commutation angle beta at a given 

load voltage and current condition. The switching frequency of the single phase output is 

fixed to 60Hz and the beta angle is given by *
LI  with the proper gain.  

 

 

Fig. 55   Block diagram of the overall control system. 

 

 

Fig. 56   Block diagram of power controller. 
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6.2. Simulation Results of the Direct Power Control System 

For the verification of voltage oriented direct power control with current-fed drive, 

the three-phase rectifier with alpha controller and the single phase inverter with beta 

controller have been simulated using PSIM. The control system for 3kW output power is 

shown in Fig. 57. In this control system, the DC link voltage is detected for the out power 

command and it is delivered to commands of phase voltage and the torque angle delta by 

the PMa-SynRG power equations. From the measured three-phase line voltages, d and q-

axis voltage vectors are compared by PI controllers. Two voltage vector commands are 

transferred to the DC link current command by the machine equations. The alpha angle is 

decided by the DC link current command with a PI controller. 

 

 

Fig. 57   Schematic of voltage based direct power control for current-fed drive. 
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Figs. 58 and 59 show simulation results of 3kW output power control for the 

current-fed drive. As speed reaches a steady state condition (3,600rpm), the DC link 

voltage reaches 120V by the alpha angle control of the three-phase rectifier. For 3kW 

output power, the amplitude of the voltage command is 75V and the torque angle 

command is 1230. 

 

 

Fig. 58   Generator speed and alpha control angle for the three phase rectifier. 
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Fig. 59   DC link current and voltage waveforms. 

 

From the amplitude of voltage command and torque angle, d and q-axis voltage 

vectors are decided for the 3kW output power. Simulations results are shown in Fig. 60.  
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Fig. 60   d and q-axis voltage vectors and single phase output power. 

 

Using the single-phase current-fed inverter and the accompanying low pass filter, 

the system can deliver the required sinusoidal 60Hz, 120V single-phase output. The 

simulation results are shown in Fig. 61. The waveform of the single phase output is not 

sinusoidal as much as a voltage-fed inverter because, in the current-fed, drive fast PWM 

switching for sinusoidal output is not used. Therefore, the THD value is much higher than 

the voltage-fed drive but the current-fed drive has lower switching losses and is more 

robust than the voltage-fed drive. 
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Fig. 61   Single phase AC output current and voltage waveforms. 

 

6.3. Experimental Results of the Direct Power Control System 

Fig. 62 shows the block diagram for the current-fed drive and the 3kW PMa-

SynRG test bed and Figs. 63, 64 are picture of the experimental setup. In the current-fed 

drive, four voltage sensors are used for voltage based direct power control. Three voltage 

sensors detect line-to-line voltages which are transferred to d, q axis voltage vectors for 

comparison to the output power command. The fourth sensor is the DC link voltage 

sensor which detects the DC link output voltage; this feedback signal is used for the 

output power command. These voltage sensor signals are connected to the interface board 

in order to realize the voltage based direct power control algorithm and sense the zero 
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crossing detection. In order to detect the starting point of the rectifier switching, the zero 

crossing technique is applied to the current-fed drive.  

 

 

Fig. 62   Block diagram of the current-fed drive system. 

 

 

Fig. 63   Experimental setup for the current-fed drive. 
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Fig. 64   Overall experimental setup. 
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The experimental setup was fabricated based on the block diagram of the current-

fed drive. In order to realize the voltage-based direct power control, four voltage sensors 

are connected to the DSP interface board. The TI2812 DSP board produces gate signals 

to the three phase rectifier and the single phase inverter through the pulse transformer 

board which applies the turn on signal to thyristors and isolates the DSP board from 

thyristors for circuit protection. 

In the DC link, a 58mH inductor is connected between the three phase rectifier 

and the single phase inverter in series and a 5uF line capacitor is used for the force 

commutation of the single phase inverter. A 10mH inductor and a 10 ohm resistor bank 

provided by a resistor panel are used for the single phase inductive load,. 

 
6.3.1. Three-Phase Rectifier with Zero Alpha 

From the 3kW PMa-SynRG, three phase voltages and currents are generated and 

the three phase input power converted to DC power by the three phase thyristor rectifier. 

The DC link inductance is connected between the three-phase thyristor rectifier and the 

single-phase inverter in order to reduce the DC link current ripple. In the experiment, the 

DC link inductance is 58mH and the internal resistance is 0.48Ω  to minimize the DC 

link voltage drop. 

In the case of the alpha=0 control, the switching sequence of the three-phase 

rectifier starts at Vac zero. For the starting point of the switching sequence, the zero-

crossing point of the phase AC line-to-line voltage is detected. From the zero-crossing 

point, thyristor T1 conducted during 60 .  
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Fig. 65 shows the experimental waveforms of the input phase voltage and the 

three-phase rectifier switching sequence. In the steady-state, the PMa-SynRG has eight 

poles and rotates at 3,600rpm. Therefore, the switching frequency of the three-phase 

rectifier is 240Hz.  

 

 

Fig. 65   Experimental waveforms of the input voltage and switching sequence. 

From top to bottom : (a) line-to-line phase voltage Vab (50V/div) (b) switching signal 

for T1(2V/div) (c) switching signal for T3 (2V/div) (d) switching signal for T5 (2V/div) 

 

From the three-phase rectifier, the three-phase input power of the PMa-SynRG 

transferred to the DC link at alpha is zero. In this case the three-phase thyristor rectifier 
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operates as a diode rectifier and the DC link output voltage is 125V and the DC link 

current is 27A at load condition. Therefore, maximum DC link output power that can be 

achieved from the PMa-SynRG is 3,375W. Fig. 66 shows that the experimental 

waveforms of the DC link output voltage and current at alpha was zero. 

 

 

Fig. 66   Experimental waveforms of the DC link voltage and current at zero alpha. 

From top to bottom : (a) DC link voltage (50V/div) (b) DC link current (10V/div) 

 

6.3.2. Three-Phase Rectifier with Alpha Control 

In order to control the output power, the three-phase thyristor rectifier can control 

the DC link output voltage and current with the control angle alpha. In this research, the 
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control angle alpha is decided by DC link voltage command feedback converted to the 

output voltage command. Using direct power control blocks, PI controller can decide the 

DC link current command. With the three-phase thyristor rectifier control angle alpha, 

the DC link voltage is reduced from 125V to 120V for the single phase output voltage. 

Fig. 67 shows the experimental results using control angle alpha with direct power 

control. 

 

 

Fig. 67   Experimental waveforms of the DC link voltage and current with alpha control. 

From top to bottom : (a) line-to-line phase voltage Vab (50V/div) (b) three-phase 

rectifier gate signal (2V/div) (c) DC link voltage (50V/div) (d) DC link current 

(10A/div) 
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As the control angle alpha is increased by the DC link power command, the DC 

link voltage is regulated to 120V and the DC link current decreases from 27A to 20A. 

Therefore, the DC link output power is decreased to 2,400W. 

 

6.3.3. Single-Phase Forced-Commutated Inverter 

The three-phase rectifier converts three-phase input power to DC power using the 

direct power control block. The produced DC link voltage and current needs to be 

inverted to the single phase output power. In order to supply 120V/60Hz output power, 

the single-phase thyristor based inverter is applied. Fig. 68 shows the switching 

sequence of the three-phase rectifier and single-phase inverter. The switching frequency 

of the single-phase inverter is 60Hz and the thyristor S1 is synchronized to the three-

phase rectifier thyristor T1.  

When the single-phase inverter operates, the DC link voltage has a big ripple 

because of the inverter switching. However, it does not affect the single phase output 

voltage and current because it changes to AC output. Fig. 69 shows the experimental 

waveforms that occur when the single-phase inverter operates at the three-phase rectifier 

control angle alpha zero. The single-phase AC output voltage has 125V peak and the 

current is 30A peak.  
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Fig. 68   Experimental waveforms of the phase voltage and gate signals. 

From top to bottom : (a) line-to-line phase voltage Vab (50V/div) (b) three-phase 

rectifier gate signal (2V/div) (c) DC link voltage (50V/div) (d) single-phase inverter gate 

signal (2V/div) 
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Fig. 69   Experimental waveforms of single-phase output with alpha control. 

From top to bottom : (a) line-to-line phase voltage Vab (50V/div) (b) DC link voltage 

(50V/div) (c) single-phase AC output voltage (50V/div) (d) single-phase AC output 

current (10A/div) 

 

In order to commutate thyristors in the single-phase inverter, a line capacitor is 

used in the single-phase load for the forced commutation. In the experiment, a 5uF line 

capacitor is applied for the leading power factor and a 45mH inductor is used to test the 

inductive load condition. Fig. 70 shows the experimental output currents of the inverter 

output current, load current and the current through line capacitor.  
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Fig. 70   Experimental waveforms of output currents. 

From top to bottom : (a) single-phase output voltage (50V/div) (b) inverter output 

current (20A/div) (c) load current (20A /div) (d) line capacitor current (20A /div) 
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6.3.4. Direct Power Control at Transient Condition 

When the PMa-SynRG speeds up from zero to 3,600rpm, the switching 

frequency of the three-phase rectifier needs to be synchronized to generator speed and 

the PI controller gains of the direct power control block has to be recalculated during the 

transient condition. In this case, the direct power controller is not stable and the DC link 

output voltage and current has a big ripple. Fig. 71 shows the experimental result in the 

transient condition. 

 

Fig. 71   Experimental waveforms of DC link output at transient condition. 

From top to bottom : (a) line-to-line phase voltage Vac (50V/div) (b) three-phase 

rectifier gate signal (2V/div) (c) DC link voltage (50V/div) (d) DC link current 

(10A/div) 
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The ripple from the DC link voltage and current affects the single-phase AC 

output. Fig. 72 dictates the unstable output waveforms. For stable control in the transient 

condition, generator parameters and control gains need to be recalculated as real time 

with a more complex algorithm. Therefore, a constant control angle alpha for the three-

phase rectifier is applied during the starting in this research.  

 

 

Fig. 72   Experimental waveforms of single-phase output at transient condition. 

From top to bottom : (a) DC link voltage (50V/div) (b) single-phase output voltage 

(50V/div) (c) single-phase output current (10A/div) 
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6.3.5. Direct Power Control at Steady-State Condition 

When the generator speed reaches 3,600rpm after 10 seconds, the direct power 

controller starts operating the three-phase rectifier. In the steady-state condition, the 

control angle alpha is decreased from the constant alpha in the transient condition, 

respectively. Figs. 73 and 74 show stable DC link output voltage and current and single-

phase AC outputs.  

 

 

Fig. 73   Experimental waveforms of DC link output at steady-state condition. 

From top to bottom : (a) line-to-line phase voltage Vac (50V/div) (b) three-phase 

rectifier gate signal (2V/div) (c) DC link voltage (50V/div) (d) DC link current 

(10A/div) 
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Fig. 74   Experimental waveforms of single-phase output at steady-state condition. 

From top to bottom : (a) DC link voltage (50V/div) (b) single-phase output voltage 

(50V/div) (c) single-phase output current (10A/div) 

 

 

 

 

 

 

 

 



 
 

103

CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

 

7.1. Conclusions 

This dissertation has investigated the optimal design process of PMa-SynRG for 

different stator winding configurations and thyristor based current-fed drives for 

generator control. Based on the developed optimal design process, this work has 

designed a 3kW optimized PMa-SynRG and proposed a new converter topology and 

control algorithm to improve generator performance. 

Various machine types for generator applications and converter topologies are 

presented in Chapter I. The most robust and low cost generator system by PMa-SynRG 

and thyristor based current fed drive is introduced. Advantages and drawbacks of each 

machine type and converter topologies have been reviewed. Dissertation outlines and 

research objectives are included. 

Chapter II presents an analytical model using equivalent magnetic circuits for the 

PMa-SynRG. In order to develop the optimal design process, the lumped parameter 

model is applied. LPM provides a fast means for analyzing the electromagnetic 

characteristics of PMa-SynRG. Linear LPM and the nonlinear LPM are programmed 

using MATLAB so all the machine parameters are calculated very quickly. For the 

generator operating capability calculation, machine losses have been presented. 

In order to find an optimized design for PMa-SynRG, an optimal design process 

using DES and FEA is developed in Chaper III. The proposed design process can deliver 



 
 

104

an optimized design using LPM, DES backed by FEA after several iterations. The 

proposed concentrated winding PMa-SynRG can achieve better efficiency and lower 

cost than the distributed winding machine because copper and magnet volume can be 

reduced. With respect to output performance, the maximum generated power is designed 

to be equal for each winding configuration with wide CPSR. However, the output torque 

ripple and cogging torque are improved using multiple poles for the concentrated 

winding machine. Simulation results and comparisons of each optimal design results and 

winding configurations have been included. 

 The fabricated 3kW PMa-SynRG for portable military application has been 

presented in Chapter IV. In order to verify performance of the designed PMa-SynRG test 

setup, simulation and experimental results have been compared. 

 In Chapter V, a new converter topology for a current-fed drive has been proposed 

which utilizes a thyristor based three-phase rectifier to convert generator power to DC 

link power and a single-phase forced commutated inverter to supply single- phase 

inductive load with a line capacitor. The proposed topology is much simpler than other 

forced commutation methods such as an auto-sequential circuit. Thus, it reduces the cost 

of the power electronic hardware. The simulation results of each topology are compared.  

 A new control algorithm for current-fed drive has been developed in Chapter VI. 

A DC link voltage-based direct power control is proposed in order to control the output 

power directly in the current-fed drive,. The goal of the direct power control is to 

maintain the output DC link voltage at the required output power operating point. The 

direct power control has advantages such as a simple algorithm for fixed switching 
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frequency and good dynamic response for the current-fed drive. The simulation and 

experimental results have verified the developed control algorithm. 

 

7.2. Future Work 

Future investigation for the current-fed drive would continue to improve the 

single-phase voltage waveform. In phase II+, the output waveform from the current-fed 

drive has non-sinusoidal and it has low THD. To improve the output waveform, a new 

control topology would be developed for the single-phase inverter. 

 Based on the results of this research, the actual generator system using 

combustion engine as a prime mover could be continued. In the phase II+, the three-

phase induction motor is applied instead of the engine and it runs with fixed speed. 

However, current and voltage-fed drives have been developed for the variable speed 

control. Therefore, constant power control for the high-speed range would be another 

research issue for the PMa-SynRG control system.  
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APPENDIX A 

VOLTAGE BASED DIRECT POWER CONTROL FOR THE CURRENT-FED 
DRIVE 
 
PERFORMANCE DATA [rms]: 
Rating [W] =   -3300    Speed [RPM] =                       3600 
Armature Cur Den =     6.15913e+006    Current =                            15.1515 
Id =                                  -13.6153    Iq =                                    -6.64782 
Vd =                                  65.2763  Vq =                                    31.7768 
Terminal Voltage =                      72.6    Field Voltage =                   85.3803 
B RMS Air Gap =                 0.387677    B RMS Teeth =                 0.623455 
B RMS Back Iron =              0.895591    B RMS Rotor =                 0.645464 
Core Loss =                             27.6225    Armature Loss =                 60.2704 
Total Loss =                            91.0991    Harmonic Loss =                 3.20619 
S.C. Current =                          -21.921    Coercive Force =                1.19976 
Shear [psi] =                            1.13816    delta [deg] =                          64.043 
psi [deg] =                              -180.067    gamma [deg] =                   -116.025 
Efficiency =                           0.973136    Power Factor =                 -0.999999 
 
STATOR SPECS: 
Slots/pole/phase(ma) =                   0.5    Pole Pairs(p) =                               4 
Phases =                                  3    lots(ns) =                                      12 
N_Coil_Slot                                2    nc/npar =                                      24 
Series Turns(na)  =                      96   # Slots Shorted =                           0 
Tooth Width =                     0.0171067    Opening Width =             0.0063586 
Slot Bottom Width =           0.0282696    Slot Top Width =             0.0134499 
Opening Height =                        0.001    Slot Depression =            0.0031793 
Base Current =                         12.3001    ia =        0.615913 
Ia =                             15.1515    length of series wire =          19.1601 
area of wires =                2.46001e-006    Resistance of wire =           0.175025 
Slot Height =                        0.0283034    Back Iron Depth =          0.00833775 
raths =                                   2.10435    lams =                             0.440165 
lamus =                               0.220082 
 
ROTOR SPECS: 
Rotor A.G. Radius =            0.0544795    Air Gap =                               0.0007 
Bridge Width =                       0.001  Inner Radius =                  0.0359044 
Sm. Magnet Depth =            0.0032587  Lg. Magnet Depth =         0.0037477 
Sm Mag Span [deg] =              12.8917    Lg Mag Span [deg] =           33.2464 
Rotor Core Depth 1 =               3.41093    Rotor Core Depth 2 =           4.57878 
Rotor Core Depth 3 =               3.57905    L_Magnet Span Length =     6.04192 
 
INDUCTANCES [Henries]: 
d-Axis =                          0.00258248    q-Axis =                         0.0066514 
d-Magnetizing =                  0.00170845   q-Magnetizing =             0.00594499 
d-Thru Over q-Mag =              0.223779   d-Thru =                          0.00133036 
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d-Circ Over q-Mag =             0.0635979   d-Circ. =                        0.000378089 
End Turn Leakage =         7.43597e-005   Slot Leakage =              0.000440542 
5th Belt Leakage =             0.000237799  7th Belt Leakage =        0.000121326 
Forward Zig-Zag =                        0   Backward Zig-Zag =                        0 
 
FIELD SPECS: 
Magnet Remanence =                       1.2    Fund Field =                        0.498537 
Air-Gap Field 1 =                                0    Air-Gap Field 2 =                0.729376 
Max Core Density =                0.895591   PM Flux Linkage =            0.0566195 
 
MACHINE SPECS: 
Diameter =                           0.19    Length of series wire =          19.1601 
Active Length =                         0.06142   Iron Mass =                            7.14666 
Saliency Ratio =                        2.57559   Active Rotor Vol. =        0.000572699 
Copper Mass =                           1.26696  Magnet Mass =                     0.535102 
Total Mass =                              8.94872   Reflected Moment =         0.00513873 
Max RMS Ph. Curr. =                15.1515   Converter Cost =                     428.347 
Machine Cost =                          78.3327   Total Cost =                              506.68 
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APPENDIX B 

DSP PROGRAM OF THE DIRECT POWER CONTROL FOR THE CURRENT-
FED DRIVE SYSTEM 
 
// Include header files used in the main function 
#include "target.h" 
#include "DSP281x_Device.h" 
#include "IQmathLib.h" 
#include "FCM.h" 
#include "parameter.h" 
#include "build.h" 
#include <math.h> 
 
#define ADC_usDELAY2 20L 
#define CPU_CLOCK_SPEED      6.6667L   // for a 150MHz CPU clock speed 
#define ADC_usDELAY 5000L 
#define DELAY_US(A)  DSP28x_usDelay(((((long double) A * 1000.0L) / (long 
double)CPU_CLOCK_SPEED) - 9.0L) / 5.0L) 
#define BOUND_THETA(x,y) ( ( x >= y ) ? ( x-y ) : ( x < 0 ) ? ( x + y ) : ( x ) ) 
 
#define sqrt8_by_PI  0.900316 
 
extern void DSP28x_usDelay(unsigned long Count); 
interrupt void MainISR(void); 
interrupt void ADC_Offset(void); 
interrupt void QepISR(void); 
 
// Global variables used in this system 
// BASE_FREQ = 240Hz, Refer to parameter.h  
float32 SpeedRef = 0.20;          // Speed reference (pu) 
float32 SpeedRef_Rect = 1.0;      // Speed reference for Rectifier (pu), 1,0 means 240Hz 
float32 SpeedRef_Inveter = 0.25; // Speed reference for Inverter (pu), 0.25 means 60Hz 
float32 alpha=0.143;     // Delay angle for Rec., 0.5 = 180 [deg] 
float32 beta=0.0;   // Delay angle for Inv.  1.0 = 360 [deg] 
long IQ_alpha=0, IQ_beta=0; 
Uint16 U_High,V_High, W_High, U_Low, V_Low, W_Low; 
 
float32 T = 0.001/ISR_FREQUENCY;   // Samping period (sec), see parameter.h 
Uint32 VirtualTimer = 0; 
Uint16 ILoopFlag = FALSE; 
Uint16 SpeedLoopFlag = FALSE; 
int16 DFuncDesired = 0x1A00;      // Desired duty cycle (Q15) 
_iq CurrentSet = _IQ(0.0031); 
Uint16 IsrTicker = 0; 
Uint16 BackTicker = 0; 
unsigned SW_ON, SW_OFF, sector=0,sector_conv=0,ZC_Enable=0; 
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long dummy=0,rg2Out_old=0; 
long Deg_0, Deg_30, Deg_60, Deg_120, Deg_180, Deg_240, Deg_300, Deg_360; 
long var1=0, var2=0, var3=0, var4=0, var5=0, var6=0; 
int16 DlogCh1 = 0; 
int16 DlogCh2 = 0; 
int16 DlogCh3 = 0; 
int16 DlogCh4 = 0; 
volatile Uint16 EnableFlag = FALSE; 
 
// clarke instantiation 
CLARKE clarke1_fdb = CLARKE_DEFAULTS; 
PARK park1_fdb = PARK_DEFAULTS; 
IPARK ipark1 = IPARK_DEFAULTS; 
// Instance PID regulator to regulate the DC-bus current and speed 
PIDREG3 pid1_idc = PIDREG3_DEFAULTS; 
PIDREG3 pid1_spd = PIDREG3_DEFAULTS; 
PIDREG3 pid1_vdc = PIDREG3_DEFAULTS; 
 
// Instance a PWM driver instance 
PWMGEN pwm1 = PWMGEN_DEFAULTS; 
 
// Create an instance of the ADC driver 
ILEG2DCBUSMEAS ilg2_vac1 = ILEG2DCBUSMEAS_DEFAULTS; 
 
// Create an Zero Cross Trigger driver for Motor Back emf. 
ZCT zc1 = ZCT_DEFAULTS; 
 
// Instance a ramp controller to smoothly ramp the frequency 
RMPCNTL rc1 = RMPCNTL_DEFAULTS; 
 
// Instance a ramp generator to simulate an Anglele 
RAMPGEN rg1 = RAMPGEN_DEFAULTS; 
 
// Instance a ramp controller to smoothly ramp the frequency 
RMPCNTL rc2 = RMPCNTL_DEFAULTS; 
 
// Instance a ramp generator to simulate an Anglele 
RAMPGEN rg2 = RAMPGEN_DEFAULTS; 
 
// Instance a RAMP2 Module 
RMP2 rmp2 = RMP2_DEFAULTS; 
 
// Instance a MOD6 Module 
MOD6CNT mod1 = MOD6CNT_DEFAULTS; 
 
// Instance a SPEED_PR Module 
//SPEED_MEAS_CAP speed1 = SPEED_MEAS_CAP_DEFAULTS; 
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// Instance a QEP interface driver  
QEP qep1 = QEP_DEFAULTS; 
// Instance a speed calculator based on QEP 
SPEED_MEAS_QEP speed1 = SPEED_MEAS_QEP_DEFAULTS; 
 
// Create an instance of DATALOG Module 
DLOG_4CH dlog = DLOG_4CH_DEFAULTS;  
Uint16 AdcInt = 0; 
Uint16 trigReset = 1; 
_iq TRIG_POINT = _IQ(0.0); 
_iq IQ_alpha_offset = _IQ(0.1); 
 
// MPC parameters 
_iq E_pm_Xq = _IQ(0.997);   // (72.4 / 72.6) * 1 
_iq E_pm_Xq_sqr = _IQ(0.994);  
_iq Xq_Xd = _IQ(2.342);    // (1 - (3.014/7.27)) * 4 
_iq Xq_Xd_sqr = _IQ(2.742);     // (Xq - Xd)^2 * 8 
_iq _G = _IQ(1); 
 
// Vd, Vq 
float32 VdcRef = 0.866; 
_iq VdRef, VqRef, IdRef, IqRef, Idfdb, Iqfdb, Vs, mpv_angle, Idc_cmd; 
 
// alpha gain 
_iq GainAlfa = _IQ(0.0275); 
 
// average varaiables 
_iq vd_avg[5] = {0,0,0,0,0}; 
_iq vq_avg[5] = {0,0,0,0,0}; 
_iq vdc_avg[5] = {0,0,0,0,0}; 
_iq vac_avg[5] = {0,0,0,0,0}; 
_iq VdcOffset = _IQ(0.0); 
_iq test_beta; 
 
// single phase inverter variables 
_iq dcVolt, loadVolt, TotalLoad, ActiveLoad, ReactiveLoad = _IQ(0.5); 
Uint16 dc_sample = 25; 
Uint2 dpcDelayTimer = 0; 
Uint32 DPC_DELAY_TIME = 400000; 
void main(void) 
{ 
 InitSysCtrl(); 
 
    EALLOW;   
    SysCtrlRegs.HISPCP.all = 0x0000;      
    EDIS;    
 DINT; 
 IER = 0x0000; 
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 IFR = 0x0000; 
 InitPieCtrl(); 
 InitPieVectTable();  
 
/*    EvaRegs.GPTCONA.all = 0; 
    EvaRegs.T2PR = SYSTEM_FREQUENCY*1000000*T;  
    EvaRegs.T2CNT = 0x0000; 
    EvaRegs.T2CMPR = 0x0000;      
   while (EnableFlag==FALSE)  
    {  
      BackTicker++; 
    } 
EvaRegs.EVAIMRB.bit.T2PINT = 1; 
    EvaRegs.EVAIFRB.bit.T2PINT = 1; 
    EvaRegs.T2CON.all = 0x9040; 
 EALLOW;  
 PieVectTable.T2PINT = &ADC_Offset; 
 EDIS;   
*/ 
EvaRegs.GPTCONA.all = 0; 
    EvaRegs.T1PR = SYSTEM_FREQUENCY*1000000*T;  
    EvaRegs.T1CNT = 0x0000; 
    EvaRegs.T1CMPR = 0x0000;      
   while (EnableFlag==FALSE)  
    {  
      BackTicker++; 
    } 
    EvaRegs.EVAIMRA.bit.T1PINT = 1; 
    EvaRegs.EVAIFRA.bit.T1PINT = 1; 
    EvaRegs.T1CON.all = 0x9040; 
 EALLOW;  
 PieVectTable.T1PINT = &ADC_Offset; 
 PieVectTable.CAPINT3 = &QepISR; 
 EDIS; 
    PieCtrlRegs.PIEIER2.all = M_INT4; 
    PieCtrlRegs.PIEIER3.all = M_INT7; 
 //IER |= M_INT3; 
 IER |= (M_INT2 | M_INT3); 
 
// Initialize RAMPGEN module 
    rg1.StepAngleMax = _IQ(BASE_FREQ*T); 
 
// Initialize RAMPGEN module 
    rg2.StepAngleMax = _IQ(BASE_FREQ*T); 
 
// Initialize PWM module 
    pwm1.PeriodMax = (SYSTEM_FREQUENCY/PWM_FREQUENCY)*1000;  // Asymmetric 
PWM 
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    pwm1.DutyFunc = DFuncDesired;                            // DutyFunc = Q15   
    pwm1.init(&pwm1); 
// Initialize DATALOG module         
    dlog.iptr1 = &DlogCh1;   
    dlog.iptr2 = &DlogCh2; 
    dlog.iptr3 = &DlogCh3; 
    dlog.iptr4 = &DlogCh4; 
    dlog.trig_value = 0x01; 
    dlog.size = 0x400; 
    dlog.prescalar = 1; 
    dlog.init(&dlog); 
 
// Initialize ADC module 
    ilg2_vac1.init(&ilg2_vac1); 
 
/* Initialize the SPEED_PR module (150 MHz, N = 1 event period/rev) 
  speed1.InputSelect = 0; 
  speed1.BaseRpm = 120*(BASE_FREQ/P); 
  speed1.SpeedScaler = (Uint32)(ISR_FREQUENCY/(1*BASE_FREQ*0.001)); 
*/ 
 
// Initialize QEP module 
    qep1.LineEncoder = 1024; //1000; 
    qep1.MechScaler = _IQ30(0.25/qep1.LineEncoder); 
    qep1.PolePairs = 4; //P/2; 
 
//    qep1.CalibratedAngle = -2365; 
 qep1.CalibratedAngle = -1250; 
    qep1.init(&qep1); 
 
// Initialize the Speed module for QEP based speed calculation 
    speed1.K1 = _IQ21(1/(BASE_FREQ*T)); 
    speed1.K2 = _IQ(1/(1+T*2*PI*30));  // Low-pass cut-off frequency 
    speed1.K3 = _IQ(1)-speed1.K2; 
    speed1.BaseRpm = 120*(BASE_FREQ/P); 
 
// Initialize RMPCNTL module for Rectifier 
    rc1.RampDelayMax = 0.1; 
    rc1.RampLowLimit = _IQ(0); 
    rc1.RampHighLimit = _IQ(1); 
 
// Initialize RMPCNTL module for Inverter 
    rc2.RampDelayMax = 2; 
    rc2.RampLowLimit = _IQ(0); 
    rc2.RampHighLimit = _IQ(1); 
 
// Initialize the PID_REG3 module for dc-bus current 
    pid1_idc.Kp = _IQ(1);                   
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 pid1_idc.Ki = _IQ(T/0.003);    
 pid1_idc.Kd = _IQ(0/T);      
  pid1_idc.Kc = _IQ(0.2); 
    pid1_idc.OutMax = _IQ(0.99); 
    pid1_idc.OutMin = _IQ(0);  
 
// Initialize the PID_REG3 module for speed 
    pid1_spd.Kp = _IQ(1); 
 pid1_spd.Ki = _IQ(T/0.1); 
 pid1_spd.Kd = _IQ(0/T); 
    pid1_spd.Kc = _IQ(0.2); 
    pid1_spd.OutMax = _IQ(0.99); 
    pid1_spd.OutMin = _IQ(0);  
 
// Initialize the PID_REG3 module for VDC 
 pid1_vdc.Kp = _IQ(1); 
// pid1_vdc.Ki = _IQ(0.001); 
 pid1_vdc.Ki = _IQ(0.01);  
 pid1_vdc.Kd = _IQ(0); 
 pid1_vdc.Kc = _IQ(0.1); 
 pid1_vdc.OutMax = _IQ(0.99); 
 pid1_vdc.OutMin = _IQ(0); 
    SW_OFF = 0, SW_ON = pwm1.PeriodMax; 
 Deg_0 = _IQ(0); // 1/12 = 0.083333333 
 Deg_30 = _IQ(0.083333333); // 1/12 = 0.083333333 
 Deg_60 = _IQ(0.16666667); // 1/6 = 0.1666666667 
 Deg_120 = _IQ(0.33333333); // 2/6 = 0.3333333333 
  Deg_180 = _IQ(0.5);   // 3/6 = 0.5 
  Deg_240 = _IQ(0.66666666); // 4/6 = 0.6666666666 
  Deg_300 = _IQ(0.83333333); // 5/6 = 0.8333333333 
  Deg_360 = _IQ(1);   // 6/6 = 1 
 U_High = 0x0003; 
 V_High = 0x0030; 
 W_High = 0x0300; 
 U_Low = 0x000C; 
 V_Low = 0x00C0; 
 W_Low = 0x0C00; 
    EvaRegs.ACTRA.all=U_High+V_High+W_High; 
 EINT;    
 ERTM; 
 for(;;) BackTicker++; 
 
}   
interrupt void ADC_Offset(void) 
{   
 int16 DatQ15; 
    int32 Tmp;  
 extern void DSP28x_usDelay(unsigned long Count); 
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 AdcRegs.ADCTRL2.all |= 0x2000;//Software trigger . Start SEQ1 
 DELAY_US(ADC_usDELAY2);  
    IsrTicker=IsrTicker+1; 
    //Currents use PU unit and Q15 format. 
 //Current limitation of BLDC motor used this experiment is 10Adc. 
 //So, 1PU is 10A and If we change this into Q15 then it is 32767. 
 
DatQ15 = AdcRegs.ADCRESULT0^0x8000;       // Convert raw result to Q15 (bipolar signal) 
    Tmp = (int32)ilg2_vac1.ImeasAGain*(int32)DatQ15;  // Tmp = gain*dat => Q28 = Q13*Q15 
    ilg2_vac1.ImeasA = (int16)(Tmp>>13);              // Convert Q28 to Q15 
    ilg2_vac1.ImeasA += ilg2_vac1.ImeasAOffset;         // Add offset 
    ilg2_vac1.ImeasA *= -1;                          // Positive direction, current flows to 
motor 
    DatQ15 = AdcRegs.ADCRESULT1^0x8000; 
    Tmp = (int32)ilg2_vac1.ImeasBGain*(int32)DatQ15; 
    ilg2_vac1.ImeasB = (int16)(Tmp>>13);  
    ilg2_vac1.ImeasB += ilg2_vac1.ImeasBOffset; 
    ilg2_vac1.ImeasB *= -1;  
    DatQ15 = AdcRegs.ADCRESULT2^0x8000;       
    Tmp = (int32)ilg2_vac1.VaMeasGain*(int32)DatQ15;  
    ilg2_vac1.VaMeas = (int16)(Tmp>>13);              
    ilg2_vac1.VaMeas += ilg2_vac1.VaMeasOffset;      
 
//    ilg2_vac1.VaMeas *= -1;                       
    DatQ15 = AdcRegs.ADCRESULT3^0x8000;       
    Tmp = (int32)ilg2_vac1.VbMeasGain*(int32)DatQ15;  
    ilg2_vac1.VbMeas = (int16)(Tmp>>13);              
    ilg2_vac1.VbMeas += ilg2_vac1.VbMeasOffset;      
 
//    ilg2_vac1.VbMeas *= -1;  
    DatQ15 = AdcRegs.ADCRESULT4^0x8000;       
    Tmp = (int32)ilg2_vac1.VcMeasGain*(int32)DatQ15;  
    ilg2_vac1.VcMeas = (int16)(Tmp>>13);              
    ilg2_vac1.VcMeas += ilg2_vac1.VcMeasOffset;      
 
//    ilg2_vac1.VcMeas *= -1;  
    DatQ15 = AdcRegs.ADCRESULT5^0x8000; 
    Tmp = (int32)ilg2_vac1.VdcMeasGain*(int32)DatQ15; 
    ilg2_vac1.VdcMeas = (int16)(Tmp>>13);             
    ilg2_vac1.VdcMeas += ilg2_vac1.VdcMeasOffset;   
 
//    AdcRegs.ADCTRL2.all |= 0x4040;          
 
/* DatQ15 = (AdcRegs.ADCRESULT5>>1)&0x7FFF;   // Convert raw result to Q15 
(unipolar signal) 
 Tmp = (int32)ilg2_vac1.VdcMeasGain*(int32)DatQ15; // Tmp = gain*dat => Q28 = 
Q13*Q15 
 if (Tmp > 0x0FFFFFFF)                      // Limit Tmp to 1.0 in Q28 
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    Tmp = 0x0FFFFFFF; 
 ilg2_vac1.VdcMeas = (int16)(Tmp>>13);             // Convert Q28 to Q15 
 ilg2_vac1.VdcMeas += ilg2_vac1.VdcMeasOffset;            // Add offset 
 ilg2_vac1.VdcMeas *= -1; 
*/ 
 // reset the sequence 
 AdcRegs.ADCTRL2.all |= 0x4040; 
       if (IsrTicker>=7201){ 
     var1 += ilg2_vac1.ImeasA;  //+-1.0 max, min 
     var2 += ilg2_vac1.ImeasB; //Q15 format 
     var3 += ilg2_vac1.VaMeas; //Q15 format 
     var4 += ilg2_vac1.VbMeas; //Q15 format 
     var5 += ilg2_vac1.VcMeas; //Q15 format 
     var6 += ilg2_vac1.VdcMeas; //Q15 format      
    }    
      if(IsrTicker==8200){  
      EALLOW; 
      IsrTicker=0; 
      ilg2_vac1.ImeasAOffset=(long)var1/(long)1000; 
      ilg2_vac1.ImeasBOffset=(long)var2/(long)1000; 
      ilg2_vac1.VaMeasOffset=(long)var3/(long)1000;       
      ilg2_vac1.VbMeasOffset=(long)var4/(long)1000;       
      ilg2_vac1.VcMeasOffset=(long)var5/(long)1000;         
      ilg2_vac1.VdcMeasOffset=(long)var6/(long)1000;         
   //PieVectTable.T1UFINT = &EvaTimer1; 
  PieVectTable.T1PINT = &MainISR; 
   EDIS; 
    } 
 EvaRegs.EVAIMRA.bit.T1PINT = 1; 
    EvaRegs.EVAIFRA.all = BIT7; 
 PieCtrlRegs.PIEACK.all |= PIEACK_GROUP2; 
} 
 
// To check out system parameters such as ISR, sys_freq and so on 
// Refer to parameter.h 
interrupt void MainISR(void) 
{ 
 _iq temp; 
 
// Verifying the ISR 
     IsrTicker++; 
 if(AdcInt == 0) 
  AdcInt = 1; 
 else 
  AdcInt = 0; 
 
// ------------------------------------------------------------------------------ 
//    Call the Ramp control & generator calculation function for three-phase Rect. 
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//    SpeedRef_Rect=1 means 240Hz,  SpeedRef_Rect=0.5 means 60Hz 
// ------------------------------------------------------------------------------ 
/*    rc1.TargetValue = _IQ(SpeedRef_Rect); 
    rc1.calc(&rc1); 
    rg1.Freq = rc1.SetpointValue;//16777152; 
    rg1.calc(&rg1); 
*/  
 
// ------------------------------------------------------------------------------ 
//    Call the Ramp control & generator calculation function for single-phase Inv. 
//    SpeedRef_Inverter=1 means 240Hz, SpeedRef_Inverter=0.25 means 60Hz 
// ------------------------------------------------------------------------------ 
    rc2.TargetValue = _IQ(SpeedRef_Inveter);// SpeedRef_Inveter=0.25, 60Hz/240Hz = 0.25 
    rc2.calc(&rc2); 
    rg2.Freq = rc2.SetpointValue;//_IQ(SpeedRef_Inveter); 
 rg2.calc(&rg2); 
/* dummy=_IQabs(rg2.Out-rg2Out_old); 
 if(dummy >= _IQ(0.9)) {  
  IsrTicker=0; 
 }*/ 
 
// ------------------------------------------------------------------------------ 
//    Call the ILEG2_VAC read function. 
// ------------------------------------------------------------------------------ 
    ilg2_vac1.read(&ilg2_vac1); 
 
// CLARKE module - Vabc -> Valpha, Vbeta 
 clarke1_fdb.As = _IQ15toIQ((int32)ilg2_vac1.VaMeas); 
 clarke1_fdb.Bs = _IQ15toIQ((int32)ilg2_vac1.VbMeas); 
 clarke1_fdb.calc(&clarke1_fdb); 
 
// PARK module - Valpha, Vbeta -> Vd, Vq 
 park1_fdb.Alpha = clarke1_fdb.Alpha; 
 park1_fdb.Beta = clarke1_fdb.Beta; 
 park1_fdb.Angle = speed1.ElecTheta - _IQ(1);  
 park1_fdb.Angle = -(park1_fdb.Angle); 
 if(park1_fdb.Angle >= _IQ(1)) park1_fdb.Angle -= _IQ(1); 
 
// park1_fdb.Angle = rg1.Out; 
 park1_fdb.calc(&park1_fdb); 
 
// Average Vd & Vq 
   vd_avg[0] = park1_fdb.Ds; 
   park1_fdb.Ds = vd_avg[0]+vd_avg[1]+vd_avg[2]+vd_avg[3]+vd_avg[4]; 
   park1_fdb.Ds = _IQmpy(park1_fdb.Ds, _IQ(0.2)); 
   vd_avg[4] = vd_avg[3]; 
   vd_avg[3] = vd_avg[2]; 
   vd_avg[2] = vd_avg[1]; 
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   vd_avg[1] = vd_avg[0]; 
   vq_avg[0] = park1_fdb.Qs; 
   park1_fdb.Qs = vq_avg[0]+vq_avg[1]+vq_avg[2]+vq_avg[3]+vq_avg[4]; 
   park1_fdb.Qs = _IQmpy(park1_fdb.Qs, _IQ(0.2)); 
   vq_avg[4] = vq_avg[3]; 
   vq_avg[3] = vq_avg[2]; 
   vq_avg[2] = vq_avg[1]; 
   vq_avg[1] = vq_avg[0]; 
 
// DC link regulation  
 //pid1_vdc.Fdb = _IQ15toIQ((int32)ilg2_vac1.VdcMeas); 
   // filter DC Link voltage 
 
/*   if(dc_sample == 25) 
   { 
    pid1_vdc_raw = _IQ15toIQ((int32)ilg2_vac1.VdcMeas); 
    dc_sample = 0; 
   } 
   else 
    dc_sample++; 
    vdc_avg[0] = pid1_vdc_raw; 
    pid1_vdc.Fdb = vdc_avg[0]+vdc_avg[1]+vdc_avg[2]+vdc_avg[3]+vdc_avg[4]; 
    pid1_vdc.Fdb = _IQmpy(pid1_vdc.Fdb, _IQ(0.2)); 
    vdc_avg[4] = vdc_avg[3]; 
    vdc_avg[3] = vdc_avg[2]; 
    vdc_avg[2] = vdc_avg[1]; 
    vdc_avg[1] = vdc_avg[0]; 
*/ 
 pid1_vdc.Ref = _IQ(VdcRef); 
 pid1_vdc.Fdb = _IQ15toIQ((int32)ilg2_vac1.VdcMeas) - VdcOffset; 
 pid1_vdc.calc(&pid1_vdc); 
 Vs = pid1_vdc.Out; 
 
// Vs = _IQ(0.5); 
// pid1_vdc.Out; convert to Va* and delta! 
// MPC -> angle 
 temp = _IQmpy(Vs, Vs); 
 temp = _IQmpy(temp, Xq_Xd_sqr);  
    temp =  temp + E_pm_Xq_sqr; 
 temp = _IQsqrt(temp); 
 temp = E_pm_Xq - temp; 
 mpv_angle = _IQmpy(Vs, Xq_Xd); 
 mpv_angle = _IQdiv(temp, mpv_angle); 
 //mpv_angle = _IQdiv(_IQ(1), _IQcos(mpv_angle)); 
 
// Vd & Vq Cmd >>> Vq = Va* cos(delta) >>> Vd = Va* sin(delta) 
 VqRef = _IQmpy(Vs, mpv_angle);  
 temp  = _IQmpy(Vs, Vs) - _IQmpy(VqRef, VqRef); 
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 VdRef = _IQsqrt(temp); 
 IdRef = _IQmpy(VdRef, _G); 
 IqRef = _IQmpy(VqRef, _G); 
 
// Iq = -vd/(we Lq) >>> Id = (-vq+E)/weLd // 
 Iqfdb = -park1_fdb.Ds;   
 Idfdb = _IQdiv((_IQ(0.997245) + park1_fdb.Qs), _IQ(0.41458));  
 ipark1.Ds = IdRef + Idfdb;  
 ipark1.Qs  = IqRef + Iqfdb; 
// ipark1.Angle = park1_fdb.Angle; 
// ipark1.calc(&ipark1); 
 ipark1.Ds = _IQmpy(ipark1.Ds, ipark1.Ds); 
 ipark1.Qs = _IQmpy(ipark1.Qs, ipark1.Qs); 
 Idc_cmd = _IQsqrt(ipark1.Ds+ipark1.Qs); 
 Idc_cmd = _IQmpy(Idc_cmd, GainAlfa); 
 
// ------------------------------------------------------------------------------ 
 /*if((speed1.ElecTheta >= _IQ(0.001)) && (trigReset == 1)) 
 { 
  zc1.ZeroCrossTrig = 0x0007FFF; 
  trigReset = 0; 
 } 
 else 
 { zc1.ZeroCrossTrig = 0x0; 
  if(speed1.ElecTheta < _IQ(0.001))trigReset = 1; 
 }*/ 
 
// ------------------------------------------------------------------------------ 
//    Call the Zero Crossing Trigger read function for Motor Back-EMF 
// ------------------------------------------------------------------------------ 
// zc1.IN_A=ilg2_vac1.VabMeas;   
 zc1.IN_A = _IQ15toIQ((int32)ilg2_vac1.VaMeas); 
 if(ZC_Enable ==1){ 
//  zc1.calc(&zc1); // Start Zero crossing 
  //rg1.calc(&rg1); // Start theta calculation for Converter 
  

// ------------------------------------------------------------------------------ 
 //    Call the QEP calculation function  
 // ------------------------------------------------------------------------------ 
      qep1.calc(&qep1); 
 // ------------------------------------------------------------------------------ 
 //    Connect inputs of the SPEED_FR module and call the speed calculation function  
 // ------------------------------------------------------------------------------ 
   speed1.ElecTheta = _IQ15toIQ((int32)qep1.ElecTheta); 
   speed1.DirectionQep = (int32)(qep1.DirectionQep); 
   speed1.calc(&speed1); 
   //rg1.Out = speed1.ElecTheta; 
   rg1.Out = park1_fdb.Angle; 
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   rg1.Out = rg1.Out + TRIG_POINT; 
   if(rg1.Out >= _IQ(1)) rg1.Out -= _IQ(1); 
   if(rg1.Out < _IQ(0.1))zc1.ZeroCrossTrig = 0x0007FFF; 
   else zc1.ZeroCrossTrig = 0x0; 
  } 
 else { 
  rg1.Out = 0;  
  rg1.Angle=0; 
  } 
 /*if(zc1.ZeroCrossTrig == 0x0007FFF){ 
  rg2.Out = Deg_30;  
  rg2.Angle = Deg_30;  
  zc1.ZeroCros_Count++; 
  }*/ 
 
// single phase voltage control 
 dcVolt = pid1_vdc.Fdb; 
 temp = _IQ15toIQ((int32)ilg2_vac1.VcMeas); 
 if(temp > _IQ(0)) 
 { 
     vac_avg[0]  = temp; 
  loadVolt = vac_avg[0]+vac_avg[1]+vac_avg[2]+vac_avg[3]+vac_avg[4]; 
  loadVolt = _IQmpy(loadVolt, _IQ(0.2)); 
  vac_avg[4] = vac_avg[3]; 
  vac_avg[3] = vac_avg[2]; 
  vac_avg[2] = vac_avg[1]; 
  vac_avg[1] = vac_avg[0];   
 } 
 temp = _IQdiv(loadVolt, dcVolt); 
 TotalLoad = _IQmpy(temp, _IQsqrt(8));//_IQ(sqrt8_by_PI)); 
 TotalLoad = _IQmpy(temp, ReactiveLoad); 
 // Real Load Component 
 ActiveLoad = _IQmpy(TotalLoad, TotalLoad); 
 ActiveLoad -= _IQmpy(ReactiveLoad, ReactiveLoad); 
 ActiveLoad = _IQsqrt(ActiveLoad); 
 // Load Current Calculation 
// temp = _IQmpy(temp, loadVolt); 
// temp = _IQmpy(temp, _IQ(sqrt8_by_PI)); 
// iL_cmd = _IQdiv(temp, ActiveLoad); 
 
// -------------------------------------------------------------------------------------------------------- 
//    Determine Sector depending on theta_generation(rg2.Out) 
//    beta is the delay angle for single phase Inverter,  
//    beta cannot be over  _IQ(0.5), which is 180 [deg]. 
//    Now, SpeedRef_Inverter=0.25 means 60Hz, beta=0.0 
//    For Inverter. 
// -------------------------------------------------------------------------------------------------------- 
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 test_beta = _IQatan2PU(ActiveLoad, ReactiveLoad); 
 IQ_beta = _IQ(beta); 
// IQ_beta = _IQmpy(test_beta, _IQ(0.1)); 
 if(IQ_beta >= Deg_360) IQ_beta=Deg_360; 
 var3= BOUND_THETA(rg2.Out-IQ_beta,Deg_360); 
 
/* if(var3 < Deg_180 && rg2.Out < Deg_180)    sector=1; // 
0+beta <= theta < 180 
 //else if(rg2.Out > Deg_360)  sector=0;   // theta > 360, 
Unexpected value  else if(var3 >= Deg_180 && rg2.Out >= Deg_180) 
 sector=2; // 180+beta <= theta <= 360 
 //else sector=0;        
    // Unexpected value 
*/ 
 if(Deg_0 <= rg2.Out && rg2.Out < Deg_180){ 
  if(Deg_0 <= var3 && var3 < Deg_180) sector=1; 
  } 
 else if(Deg_180 <= rg2.Out && rg2.Out < Deg_360){  
  if(Deg_180 <= var3 && var3 < Deg_360) sector=2; 
  } 
 
// -------------------------------------------------------------------------------------------------------- 
//    Switching pattern generation for Single-phase Inverter using sector information 
//    Rotation Direction ==> CCW,  
//    Do not consider CW direction. 
//    For Inverter. 
// -------------------------------------------------------------------------------------------------------- 
   if(sector == 1)  {EvbRegs.ACTRB.all = U_High + V_Low;} // Uph = High, Vph = 
Low  
   else if(sector == 2)  {EvbRegs.ACTRB.all = U_Low  + V_High;} // Vph = High, 
Uph = Low  
   else      {EvbRegs.ACTRB.all = U_High + V_High;} // Uph = High, Vph = 
High 
 
// -------------------------------------------------------------------------------------------------------- 
//   Switching pattern generation for Three-phase SCR Converter. 
//  Alpha is the delay angle for Three-phase converter. 
//   alpha cannot be over _IQ(1/6), which is 60[deg]. 
//   Eab is used for Zero Crossing signal  
//   For SCR Converter 
// -------------------------------------------------------------------------------------------------------- 

if(dpcDelayTimer >= DPC_DELAY_TIME) { IQ_alpha = Idc_cmd + 
IQ_alpha_offset; } 

 else{ IQ_alpha = _IQ(alpha); dpcDelayTimer++;} 
 if(IQ_alpha >= Deg_60) IQ_alpha =  Deg_60; 
 var4= BOUND_THETA(rg1.Out-IQ_alpha,Deg_360); 
 if(Deg_0 <= rg1.Out && rg1.Out < Deg_60){ 
  if(Deg_0 <= var4 && var4 < Deg_60) sector_conv=1; 
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  //else sector_conv=0; 
  } 
 else if(Deg_60 <= rg1.Out && rg1.Out < Deg_120){  
  if(Deg_60 <= var4 && var4 < Deg_120) sector_conv=2; 
  //else sector_conv=0; 
  } 
 else if(Deg_120 <= rg1.Out && rg1.Out < Deg_180){ 
  if(Deg_120 <= var4 && var4 < Deg_180) sector_conv=3; 
  //else sector_conv=0; 
  } 
 else if(Deg_180 <= rg1.Out && rg1.Out < Deg_240){ 
  if(Deg_180 <= var4 && var4 < Deg_240) sector_conv=4; 
  //else sector_conv=0; 
  } 
 else if(Deg_240 <= rg1.Out && rg1.Out < Deg_300){ 
  if(Deg_240 <= var4 && var4 < Deg_300) sector_conv=5; 
  //else sector_conv=0; 
  } 
 else if(Deg_300 <= rg1.Out && rg1.Out < Deg_360){ 
  if(Deg_300 <= var4 && var4 < Deg_360) sector_conv=6; 
  //else sector_conv=0; 
  } 
 else           
 {sector_conv=0;} 
   if (sector_conv == 1)  {EvaRegs.ACTRA.all = U_High + V_Low;} 
   else if(sector_conv == 2)  {EvaRegs.ACTRA.all = U_High + W_Low;} 
   else if(sector_conv == 3)  {EvaRegs.ACTRA.all = V_High + W_Low;} 
   else if(sector_conv == 4)  {EvaRegs.ACTRA.all = V_High + U_Low;} 
   else if(sector_conv == 5)  {EvaRegs.ACTRA.all = W_High + U_Low;} 
   else if(sector_conv == 6)  {EvaRegs.ACTRA.all = W_High + V_Low;}    
 else     {EvaRegs.ACTRA.all = U_High + V_High + 
W_High;} 
 
/* 
   if(sector_conv == 1)   {EvbRegs.CMPR5=SW_OFF;
 EvbRegs.CMPR6=SW_ON;} // W_High, V_Low 
   else if(sector_conv == 2)  {EvbRegs.CMPR4=SW_ON;
 EvbRegs.CMPR5=SW_OFF;} // U_High, V_Low 
   else if(sector_conv == 3)  {EvbRegs.CMPR4=SW_ON;
 EvbRegs.CMPR6=SW_OFF;} // U_High, W_Low 
   else if(sector_conv == 4)  {EvbRegs.CMPR5=SW_ON;
 EvbRegs.CMPR6=SW_OFF;} // V_High, W_Low 
   else if(sector_conv == 5)  {EvbRegs.CMPR4=SW_OFF;
 EvbRegs.CMPR5=SW_ON;} // V_High, U_Low 
   else if(sector_conv == 6)  {EvbRegs.CMPR4=SW_OFF;
 EvbRegs.CMPR6=SW_ON;} // W_High, U_Low   else  
 {EvbRegs.CMPR4=SW_ON; EvbRegs.CMPR5=SW_ON;
 EvbRegs.CMPR6=SW_ON;} 
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*/ 
 
// -------------------------------------------------------------------------------------------------------- 
//    Connect inputs of the DATALOG module  
// -------------------------------------------------------------------------------------------------------- 
 
    DlogCh1 = (int16)ilg2_vac1.VaMeas;       
    //DlogCh2 = (int16)zc1.ZeroCrossTrig; 
 DlogCh2 = (int16)ilg2_vac1.VbMeas; 
// Vab_temp = _IQ15toIQ((int32)ilg2_vac1.VabMeas); 
 
    //DlogCh3 = (int16)_IQtoIQ15(zc1.IN_A); 
 //DlogCh3 = (int16)zc1.ZeroCrossTrig; 
    //DlogCh4 = (int16)_IQtoIQ15(park1_fdb.Angle); 
// DlogCh3 = (int16)_IQtoIQ15(loadVolt); 
// DlogCh4 = (int16)_IQtoIQ15(var4); 
 //DlogCh4 = (int16)ilg2_vac1.VdcMeas; 
    //DlogCh3 = (int16)_IQtoIQ15(Idfdb); 
 //DlogCh4 = (int16)_IQtoIQ15(Iqfdb); 
    //DlogCh3 = (int16)_IQtoIQ15(rg1.Out);// rg1.Out is theta for Converter 
//    DlogCh4 = (int16)_IQtoIQ15(dcVolt);// rg2.Out is theta for Inverter 
 DlogCh3 = (int16)_IQtoIQ15(rg1.Out); 
 DlogCh4 = (int16)_IQtoIQ15(var4); 
 
// ------------------------------------------------------------------------------ 
//    Increase virtual timer and force 15 bit wrap around 
// ------------------------------------------------------------------------------ 
 VirtualTimer++; 
 VirtualTimer &= 0x00007FFF; 
// rg2Out_old = rg2.Out; 
// ------------------------------------------------------------------------------ 
//    Call the DATALOG update function. 
// ------------------------------------------------------------------------------ 
    dlog.update(&dlog); 
 EvaRegs.EVAIMRA.bit.T1PINT = 1; 
    EvaRegs.EVAIFRA.all = BIT7; 
 PieCtrlRegs.PIEACK.all |= PIEACK_GROUP2; 
} 
interrupt void QepISR(void) 
{ 
 
// ------------------------------------------------------------------------------ 
//    Call the QEP_DRV isr function. 
// ------------------------------------------------------------------------------ 
   qep1.isr(&qep1); 
// Enable more interrupts from this timer 
 EvaRegs.EVAIMRC.bit.CAP3INT = 1; 
 // Note: To be safe, use a mask value to write to the entire 
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 // EVAIFRC register.  Writing to one bit will cause a read-modify-write 
 // operation that may have the result of writing 1's to clear  
 // bits other then those intended.  
    EvaRegs.EVAIFRC.all = BIT2; 
 // Acknowledge interrupt to recieve more interrupts from PIE group 3 
 PieCtrlRegs.PIEACK.all |= PIEACK_GROUP3;   
} 
// ------------------------------------------------------------------------------ 
// No more. 
// ------------------------------------------------------------------------------ 
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