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ABSTRACT 

 

Influence of Insulin Resistance on Contractile Activity-induced Anabolic Response of 

Skeletal Muscle. (December 2009)  

Mats Inge Nilsson, B.S., University of Alabama;  

M.S., University of Texas at El Paso 

Chair of Advisory Committee: Dr. James D. Fluckey 

 

Although the long-term therapeutic benefits of exercise are indisputable, contractile 

activity may induce divergent adaptations in insulin-resistant vs. insulin-sensitive 

skeletal muscle. The purpose of this study was to elucidate if the anabolic response 

following resistance exercise (RE) is altered in myocellular sub-fractions in the face of 

insulin resistance. Lean (Fa/?) and obese (fa/fa) Zucker rats were assigned to sedentary 

and RE groups and engaged in either cage rest or four lower-body RE sessions over an 

8-d period. Despite obese Zucker rats having significantly smaller hindlimb muscles 

when compared to age-matched lean rats, basal 24-h fractional synthesis rates (FSR) of 

mixed protein pools were near normal in distally located muscle groups (gastrocnemius, 

plantaris, and soleus) and even augmented in those located more proximally (P < 0.05; 

quadriceps). Although 2 x 2 ANOVA indicated a significant main effect of phenotype on 

mixed FSR in gastrocnemius and soleus (P < 0.05), phenotypic differences were 

partially accounted for by an exercise effect in the lean phenotype. Interestingly, obese 

rats exhibited a significant suppression of myofibrillar FSR compared to their lean 



 iv 

counterparts (P < 0.05; gastrocnemius), while synthesis rates of mitochondrial and 

cytosolic proteins were normal (gastrocnemius and quadriceps), suggesting a mechanism 

whereby translation of specific mRNA pools encoding for metabolic enzymes may be 

favored over other transcripts (e.g., contractile proteins) to cope with nutrient excess in 

the insulin-resistant state. Immunoblotting of the cytosolic fraction in gastrocnemius 

muscle indicated an augmented phosporylation of eIF4EBP1 (+ 9%) and p70s6k (+85%) 

in obese vs. lean rats, but a more potent baseline inhibition of polypeptide-chain 

elongation as evidenced by an increased phospho/total ratio of eEF2 (+78%) in the obese 

phenotype. Resistance exercise did not improve synthesis rates of myofibrillar, cytosolic, 

or mitochondrial proteins to the same extent in obese vs. lean rats, suggesting a 

desensitization to contractile-induced anabolic stimuli in the insulin-resistant state. We 

conclude that insulin resistance has diverse effects on protein metabolism, which may 

vary between muscle groups depending on fiber type distribution, location along the 

proximodistal body axis, and myocellular sub-fraction, and may blunt the anabolic 

response to voluntary resistance exercise.  
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CHAPTER I 

INTRODUCTION 

Epidemiology of Type 2 Diabetes 

Although the genetic makeup of homo sapiens sapiens has remained relatively 

unchanged over the past 10.000 years, our culture has been transformed almost beyond 

recognition during the same time period, leading to a mismatch between our genetically 

controlled biology and the bio-environmental milieu (38). The discordance between 

modern lifestyle factors (physical activity levels and quality of diet) and our ancient 

genome has undoubtedly contributed to the epidemic-like rise in chronic degenerative 

diseases (CDD), which currently account for ~75% of all deaths in developed nations 

(38). Exact etiologies of these debilitating diseases are in many cases unknown, but 

alterations of candidate genes (single nucleotide polymorphisms or mutations) and/or 

inherited epigenetic modifications may confer an increased susceptibility upon which 

bio-environmental factors act to regulate disease progression (38).    

  

 
 
 
 
 
 
 
 
 
 
 
____________ 
This dissertation follows the style of American Journal of Physiology Endocrinology 

and Metabolism. 
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Since the industrial revolution, the incidence of obesity and type 2 diabetes 

(henceforth also referred to as diabetes and T2DM) has increased concomitantly with the 

global spread of technology and affluence. Excessive consumption of calorie-

dense/nutrient-poor foods (i.e. Western-style diets) and physical inactivity are behaviors 

in stark contrast to the lifestyles led by our hunter-gatherer ancestors, and have caused 

ballooning waistlines all over the world. The World Health Organization currently 

estimates that over 1 billion adults are overweight (Body Mass Index [BMI] 25-29.99 

kg/m2
) and at least 300 million of them are obese (BMI ≥30 kg/m

2). In 1995 and 2001, 

the global prevalence of diabetes was ~135 million and ~170 million, respectively, and 

this number is projected to be ~300 million in 2025 (82), with the greatest increases in 

the developing countries of Africa, Asia, and South America. The total number of deaths 

attributed annually to diabetes is around 2.9 million (134) and diabetes mellitus alone 

claims on average around 8% of total healthcare budgets in developed countries (135). 

Direct healthcare costs associated with the metabolic syndrome, a cluster of medical 

disorders commonly co-expressed with type 2 diabetes, currently dominate Western 

healthcare budgets (137).  

The equivalent US statistics from 1999-2000 make equally grim reading 

considering that 14.4% of the population had impaired fasting glucose or 

diagnosed/undiagnosed diabetes [T2DM disease progression is defined in the next 

paragraph1] (19), 8.3% of the population was officially diagnosed with type 2 diabetes 

(19), and ~60% of the population was classified as either overweight or obese (46).  

Statistics from 1999-2002 indicate that ~65% of the US population was either 
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overweight or obese (62), and that the prevalence of obesity among US type 2 diabetics 

was 54.8% (20). The average weight gain over the last decade was estimated to be 0.45-

0.90 kg/yr (66), corresponding to a total increase in body weight of 4.5 kg (5.5 lbs)-9kg 

(20 lbs) per American. Considering that for every kilogram gained in body mass there is 

a linear increase in risk of diabetes and cardiovascular comorbidities such as coronary 

heart disease (CHD), the health implications of excessive weight gain is potentially life 

threatening.  In addition, conditions that predispose to overt diabetes, including impaired 

fasting glucose and glucose intolerance (and thus indirectly obesity), are not merely of 

academic interest, since, unless treated, ~7% of people with these problems will progress 

to type 2 diabetes every year (122). Approximately 1.3 million new US cases occur 

annually (i.e. incidence) and the total direct and indirect costs of treating diabetes, as 

estimated by the American Diabetes Association (ADA), exceed $130 billion per year.  

1Stage of disease is determined by A) Fasting venous plasma glucose test (FG; 

administrated after at least 8 hours fasting) and/or B) Oral glucose tolerance test (OGTT; 

measured 2 hours post glucose load in venous blood) as established by WHO in 1998 

and the American Diabetes Association in 2003 (1, 32).  If the fasting glucose 

concentration is in the diagnostic range for diabetes, an OGTT is not required for 

diagnosis, but a confirmatory test should be performed due to intraindividual variations. 

Normal glucose regulation can only be verified using both FG and OGTT since subjects 

with fasting glucose values below diagnostic criteria may exhibit impaired glucose 

tolerance. Insulin resistance is defined as a reduced responsiveness of a cell, an organ, or 

the whole organism to insulin concentrations to which it is exposed (112) and is 
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generally present before any abnormalities in glucose regulation are detected. Insulin 

resistance is tightly coupled to plasma hyperinsulinemia with approximately twofold 

elevations in basal insulin concentrations in obese and/or type 2 diabetic patients (112).  

  

A) FG: Normal glucose regulation (<100 mg/dL; <5.5 mmol/L) → impaired glucose 

regulation (100-125 mg/dL; 5.6-6.9 mmol/L) → diabetes mellitus (≥126 mg/dL; 

≥7.0 mmol/L).  

B) OGTT: Normal glucose regulation (<140 mg/dL; <7.8 mmol/L) → impaired 

glucose regulation (140-199 mg/dL; 7.8-11.0 mmol/L) → diabetes mellitus 

(≥200 mg/dL; ≥11.1 mmol/L).  

 

Pathophysiology and Etiology of Type 2 Diabetes 

The defining pathophysiologies (i.e. biological manifestations of a disease) of 

T2DM include a chronic elevation in blood sugar and plasma insulin levels (i.e. 

hyperglycemia and hyperinsulinemia, respectively), increased plasma amino acid levels 

(hyperaminoacidemia), and elevated plasma, intra-organ, and cellular lipid levels 

(dyslipidemia). Although cause and effect mechanisms still remain elusive, it is believed 

that disturbances in carbohydrate, lipid, and to a lesser extent protein metabolism lead to 

insulin resistance and ultimately type 2 diabetes. The comorbidities typically associated 

with T2DM, in addition to hyperglycemia and hyperinsulinemia, are collectively 

referred to as the metabolic syndrome, which is a cluster of pro-atherogenic conditions 

including hypertension, dyslipidemia, and abdominal obesity.  It is estimated that 20% of 

http://en.wikipedia.org/wiki/Biological
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US adults suffer from the metabolic syndrome (51), and that these individuals are at a 

3.5 times greater risk of death from CHD, as well as an increased risk of liver and kidney 

disease, and possibly cancer. All in all, type 2 diabetics have a two- to fourfold increased 

risk of developing cardiovascular complications and a threefold increased risk of 

suffering a mortal stroke compared to healthy individuals. Even the less benign “pre-

diabetic” stages (impaired fasting glucose [IFG] and/or glucose intolerance) are strongly 

associated with cardiovascular disease (CVD) [including cerebrovascular and peripheral 

vascular disease], dyslipidemia, and various forms of cancer (61). Not surprisingly, 

micro- and macrovascular2 complications cause 70% of deaths in this population (57), 

where retinopathy, nephropathy, and neuropathy (i.e. microvascular complications) 

account for the majority of morbidity and mortality (75). An estimated ~40-70% of all 

non-traumatic amputations world-wide are performed in diabetics due to ulcerations of 

the lower limb, and an astounding 1200 amputations are performed every week among 

the 16 million US diabetics (17). Less benign manifestations of T2DM include polyuria 

(frequent urination), polydipsia (increased thirst and fluid intake), 

polyphagia/hyperphagia (overeating), gastroparesis (delayed gastric emptying), 

depression, impotence, and blurred vision.  

2Hypertension, atherosclerosis, arterial-wall stiffening/reduced compliance, 

coronary artery disease, endothelial dysfunction leading to increased permeability and 

decreased vasodilation (eNOS and tetrahydrobiopterin [BH4] levels decreased), arterial 

calcification, stenosis, thromboembolism, myocardial microangiopathy, 

cardiomyopathy, myocardial infarctions, aneurysms/hemorrhages/ruptures of 
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carotid arteries/vessels in brain, and peripheral vascular disease caused by ischemia, 

tissue damage, and inflammation.  

Significant advances have been made in type 2 diabetes research over the last 

100 years, but the etiology of the disease is ill-defined and cause-and-effect mechanisms 

remain elusive. Although there is a strong linear correlation between obesity and 

diabetes on an epidemiological level (20), and compelling evidence that disturbances in 

fat metabolism underlie many of the metabolic dysfunctions associated with the disease, 

the etiological reason(s) why most type 2 diabetics suffer from dyslipidemia and 

excessive adiposity remain unclear. Physical inactivity and consumption of calorie-

dense/nutrient-poor foods are undeniably key factors in the development of the 

metabolic syndrome, but both environmental and inheritable factors may contribute to 

the advancement of the disease. It has been estimated that ~10%  of type 2 diabetes cases 

are attributed to genetic factors (105), where single nucleotide polymorphisms (defined 

as occurring in >1% of the population), mutations (defined as occurring in <1% of the 

population), and/or epigenetic modifications of candidate genes collectively confer an 

increased susceptibility upon which environmental factors act to regulate disease 

progression (34). In other words, genes cock the gun and the environment pulls the 

trigger. There is indirect evidence that our genes are still programmed for the lifestyles 

associated with our historical ancestors (i.e. regular daily physical activity and 

consumption of the “stone-age diet”), and that the mismatch between the modern 

bioenvironment and the human genome sets the stage for the development of chronic 

degenerative diseases (38). The maladaptation between modern lifestyle factors and our 
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genetically controlled biochemistry have promoted a dramatic increase in incidence of 

chronic degenerative diseases since the industrial revolution (38). The effects of dietary 

factors and sedentary activity patterns account for about 365,000 deaths each year in the 

US and represent a leading contributor to death, second only to tobacco use (96).  

Although the global cause of the exponential increase in chronic degenerative 

diseases in modern times has been identified (hence CDDs are commonly referred to as 

life style-related disorders), organ and cellular level mechanisms are generally poorly 

defined. In the case of overt type 2 diabetes, there is strong evidence that hyperglycemia 

is caused by a decreased insulin sensitivity [e.g., insulin resistance] of target cells in 

peripheral/splanchnic tissues [primarily fat, muscle and liver cells] and/or insufficient 

insulin production due to a gradually declining pancreatic β cell function (Fig. 1).  

Pancreatic failure is indeed the last stage in the progression of type 2 diabetes, but it is 

believed that impaired substrate clearance by skeletal muscle and adipose tissue, and to a 

lesser degree over-secretion of substrate by hepatocytes and portal adipocytes, are the 

immediate physiological causes of the clinical manifestation of the disease [i.e. 

hyperglycemia] (86). In addition to a reduced uptake/increased release of fatty acids by 

adipocytes and decreased glucose disposal in skeletal muscle, type 2 diabetes is 

characterized by an increased postabsorptive (basal; fasting) hepatic glucose production 

(HGP) and a reduced ability of insulin to suppress HGP (i.e. hepatic insulin resistance) 

(103). The glucose released by the liver can be derived from either glycogenolysis or 

gluconeogenesis.  The mechanisms responsible for an increased hepatic gluconeogenesis 

in type 2 diabetics include hyperglucagonemia, increased circulating levels of 
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gluconeogenic precursors (lactate, alanine, glycerol), increased FFA oxidation, enhanced 

sensitivity to glucagon and decreased sensitivity to insulin. Although the majority of 

evidence indicates that a chronic elevation in gluconeogenesis is the major cause of the 

increase in HGP in type 2 diabetic subjects, it is likely that accelerated glycogenolysis 

also contributes. 

In healthy individuals, increased gluconeogenesis and glucose release is 

compensated by decreased glycogenolysis, due to concomitant hyperinsulinemia, 

increased levels of glucose-6-phosphate, and lipolysis-derived ATP (inhibition of 

glycogen phosphorylase and activation of glycogen synthase), thereby maintaining 

hepatic glucose output at an optimal level (so called hepatic autoregulation) (85). In 

obese individuals, chronically elevated serum free fatty acids (FFAs) and high insulin 

levels lead to increased FFA uptake by the liver and increased synthesis of lipids, 

resulting in hepatic triglyceride (TG) accumulation, which is accompanied by hepatic 

insulin desensitization caused by lipid-mediated activation of protein kinase C (33). 

Thus, lipid-induced breakdown of hepatic autoregulation may underlie the increase in 

hepatic glucose output and ultimately whole-body hyperglycemia in type 2 diabetics. 
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Fig. 1. The „four horsemen‟ of diabetes (pancreas, adipose tissue, liver, and skeletal muscle). Type 2 diabetes is associated with 

insulin resistance of target cells in peripheral/splanchnic tissues, collectively causing hyperglycemia and increased circulating 

levels of free fatty acids. An impaired insulin action on adipose lipoprotein lipase (LPL), hormone sensitive lipase (HSL) and 

triglyceride lipase (TGL) leads to an attenuated uptake but augmented release of non-esterified (free) fatty acids (FFA) into the 

blood stream. Chronically elevated plasma FFA levels lead to ectopic lipid deposition in the liver and augmented hepatic lipid 

oxidation followed by an increase in gluconeogenesis/glycogenolysis and release of glucose. A chronic increase in circulating 

FFAs also trigger intramuscular lipid accumulation and amplified lipid oxidation in skeletal muscles, which induces lipotoxicity 

(buildup of lipid intermediates such as ceramide and diacylglycerol [DAG]) and a reduction in glucose uptake by inhibiting 

insulin receptor signaling and GLUT-4 translocation. Pancreatic β-cells will initially augment insulin release in response to 

elevated plasma glucose levels in insulin-resistant individuals, but will gradually lose its ability to secrete the hypoglycemic 

hormone leading to overt type 2 diabetes and eventually β-cell failure.             
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Several theories regarding the etiology of insulin resistance have been proposed, 

all of which have support in literature. Prior do describing these theories it is important 

to mention that they are not mutually exclusive. According to the adipose tissue 

expandability hypothesis (52, 129), the capacity of an individual to expand their fat-mass 

to store lipid is a more important determinant of metabolic problems than absolute 

amount of adipose tissue. The failure to buffer lipid appropriately leads to elevated fatty 

acids and triglycerides, causing ectopic deposition of lipid (i.e. lipotoxicity) and insulin 

resistance in non-adipose organs such as liver, muscle, and pancreatic β-cells. The 

impaired adipose expandability hypothesis may explain the paradoxical finding that 

lipodystrophic individuals cannot accumulate fat, yet suffer from diabetes, dyslipidemia, 

and other metabolic complications. Further indirect support of this hypothesis can be 

seen in morbidly obese individuals who do not exhibit metabolic syndrome, indicating 

that they have yet to reach the point where they cannot expand their adipose tissue 

further. Another plausible theory pertains to an inherent or acquired mitochondrial 

deficiency (organelle number and/or function) causing a reduced capacity of organs to 

adjust lipid oxidation according to lipid bioavailability, which ultimately lead to ectopic 

fat deposition and lipid-induced toxicity in non-adipose tissues. Although not measuring 

substrate oxidation directly, Kelley and colleagues (2002) demonstrated that skeletal 

muscle mitochondria in type 2 diabetic and obese subjects are smaller and may exhibit 

impaired bioenergetic capacity compared to lean individuals (81). In contrast, more 

recent research in humans with T2DM and metabolic rodent models have suggested that 

impaired mitochondrial fatty acid oxidation does not account for an increased 



 11 

intramuscular lipid content (15, 69). As a matter of fact, an elevated intramuscular lipid 

load, as observed in insulin-resistant rodent models (69), causes an elevation in fatty acid 

oxidation rates and improves mitochondrial density (69). It appears that when the rate of 

fatty acid transport across cytosolic and mitochondrial membranes exceeds the 

concurrently augmented capacity for mitochondrial oxidation (69), intramuscular lipids 

begin to accumulate and eventually cause damage in a time-dependent manner, possibly 

through oxidative stress (2, 12)  Indeed, high-fat diet initially induces an increase in 

mitochondrial biogenesis and fatty acid oxidative capacity, with deteriorations in 

mitochondrial structure and function occurring first after several months of high-fat 

feeding (12). Consequently, mitochondrial dysfunction may be a consequence rather 

than a cause of cellular perturbations in substrate metabolism in T2DM (12). Lastly, the 

metabolic inflexibility theory suggests that T2DM is associated with a reduced ability to 

adapt glucose/lipid oxidation rates in response to changes in substrate availability (54). 

For example, an impaired capacity of oxidative tissues to adapt rates of lipid oxidation to 

lipid supply may ultimately lead to an increased triglyceride storage [ectopic lipid 

deposition] and insulin resistance. Metabolic flexibility to a high-carbohydrate meal, 

defined as an increase in RQ post feeding, has consistently been shown to be impaired in 

T2DM subjects during euglycemic-hyperinsulinemic clamp conditions compared to lean 

individuals (54). In addition, metabolic flexibility to a high-fat meal, defined as a drop in 

RQ, has previously been shown to be significantly different between diabetic and 

weight-matched non-diabetic subjects, with diabetics exhibiting a higher RQ following 

feeding (79). Although metabolic flexibility to long-term diets (fat or carbohydrate) does 
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not appear to be impaired in insulin-resistant individuals when assessed several days 

after the onset of feeding, the speed of adaptation appears to be compromised in this 

population, ultimately causing an increased accumulation of fat and possibly insulin 

resistance (54). Other plausible theories of insulin resistance are discussed in detail 

elsewhere (122), and include genetic factors (mutations or single nucleotide 

polymorphins of candidate genes), glucose toxicity, inadequate expansion of pancreatic 

β cells in response to increased insulin demand, and accumulation of amyloid (amylin) 

deposits in pancreatic islets.      

Protein Metabolism and Type 2 Diabetes   

Approximately 50% of whole body protein is synthesized and stored in skeletal 

muscle, which is an insulin-sensitive tissue that accounts for ~30-40% of total body 

weight (65), and is responsible for ~90% of glucose uptake after intravenous glucose 

administration (114) and ~25% after oral glucose load (80). Over 50% of skeletal muscle 

tissue (54.9% for males and 57.7% females) is located in the lower extremity (74), with 

much of this muscle positioned in the thighs and buttocks. Considering that skeletal 

muscle is one of the major sites of insulin resistance due to its importance in insulin-

mediated glucose uptake, and that the lower body makes up >50% of total muscle mass, 

structural and functional maintenance of the larger muscle groups in the lower 

extremities may have clinical relevance for T2DM patients. Data from a recent NIH-

sponsored multicenter randomized clinical trial indicate that type 2 diabetics have an 

altered tissue distribution with an excess of fat and lean tissue in the truncal region and a 

deficit of fat and lean tissue in the leg region (65). The clinical significance of a reduced 
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lean mass in the lower body is unknown, but a larger thigh and hip circumference, 

leading to a lower waist to hip ratio (WHR), has been shown to be  associated with 

increased glucose tolerance on multiple occasions (116). Chowdhury and colleagues 

reported that differences in fasting glucose levels (FG) between age- and BMI-matched 

Indian and Swedish males (FG: 4.9 mmol/L and 4.5 mmol/L, respectively) were not due 

to differences in visceral fat, but rather a decreased muscle mass in the lower extremities 

of the former (24). Thus, despite exhibiting greater bodyweight, BMI, total fat mass, and 

total lean mass compared to healthy individuals, type 2 diabetics appear to have an 

altered lean mass distribution, which may act in parallel with insulin resistance to reduce 

glucose uptake and glycogen storage capacity of the lower body. Although the 

importance of maintaining lower body muscle mass compared to other muscle depots 

and the implications for whole body glucose tolerance in type 2 diabetics remain to be 

elucidated, indirect support of this notion may be provided by cross-sectional studies 

performed in the geriatric field. Age-related sarcopenia has repeatedly been shown to 

affect lower extremities more dramatically than upper extremities (74), and this loss 

parallels the progressive decline in glucose tolerance that begins in the third or fourth 

decade of life (30, 39).    

Despite substantial alterations in glucose/lipid metabolism and reduced lower 

limb lean mass, perturbations in protein metabolism appear to be subtle in the human 

T2DM condition. Although significant methodological variations exist between studies 

(tracer choice, age, glycemic status, and gender of subject) making it difficult to draw 

any definite conclusions, assessments of protein synthesis and degradation rates in large 
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proximal muscle groups (e.g., quadriceps) have indicated an increased turnover or no 

difference between insulin-resistant and insulin-sensitive individuals (9, 60). 

Considering that type 2 diabetes-related complications such as peripheral neuropathy 

and microvascular dysfunction preferentially affect more distal regions of the limb 

(110), future research should aim to assess protein turnover in muscle groups such as 

gastrocnemius, plantaris, and soleus.  Furthermore, despite subtle differences in the 

mixed protein pool, significant perturbations may still be present in cellular 

compartments of the muscle fiber that regulate substrate metabolism (mitochondria and 

cytosol) and energy utilization/muscle contraction (myofibrils). Glucose and lipid 

metabolism is ultimately dependent upon energy-demand, activation, and turnover of 

metabolic enzymes, and more research is needed to elucidate the individual 

contributions of each myocellular sub-fraction to the overall metabolic condition. Lastly, 

to fully understand the etiology of insulin resistance, efforts should be made to measure 

protein turnover over a 24-hour period without significantly perturbing circadian 

rhythms, sleep patterns, or normal nutrient intake.  

Insulin-regulated glucose uptake, storage, and protein anabolism operate through 

the same pathway (Fig. 2), and it would make intuitive sense if impaired glucose 

handling in T2DM is associated with perturbations in protein anabolism. As described in 

previous paragraphs, recent research indicates that the balance between free fatty acid 

(FFA) availability, cellular uptake, and lipid oxidation is perturbed in the insulin-

resistant state, which causes intramyocellular lipid accumulation and ultimately insulin 

resistance. The current theory on skeletal muscle insulin resistance is that an already 
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augmented lipid oxidation rate is unable to match an excess FFA uptake, which leads to 

an increased accumulation of lipid signaling intermediates (primarily diacylglycerol 

[DAG] and ceramide) and other lipid compounds (sphingolipids, eicosanoids, and 

phospholipids). These compounds interfere with insulin- and possibly contraction-

mediated signal transduction by activating serine/threonine kinases such as PKCθ, 

thereby altering myocellular and whole-body glucose metabolism and potentially protein 

anabolism/breakdown. Perturbations in the association of IRS-1/2 to the insulin receptor 

and subsequent docking of phosphatidylinositol 3-kinase (PI3K) to IRS-1/2 appears to 

be prevalent in conditions of insulin resistance regardless of tissue type,  leading to a 

decreased activation of protein kinase B (PKB/Akt).  Akt-mediated inhibition of AS-160 

[Akt-substrate 160; GTPase activating protein] is impaired in the insulin-resistant state, 

which maintains Rab proteins in GDP-bound states, and ultimately suppresses GLUT-4 

translocation to the plasma membrane leading to reduced glucose uptake. In regards to 

skeletal muscle growth and insulin resistance, downstream signaling of Akt remains 

largely unelucidated. Although purely speculative, guanine nucleotide exchange factor 

(GEF) eIF2Bε may be partially inhibited (serines 535 and 539 phosphorylated) due to a 

decreased Akt-mediated GSK-3 repression [e.g., serine 21(GSK-3 α) and serine 9 (GSK-

3β) becomes dephosphorylated]. Considering that obesity-induced insulin resistance is 

associated with an increased intramuscular branched chain amino acid concentration, at 

least in metabolic rodent models, a partial repression of eIF2Bε may be rescued by 

prevailing aminoacidemia and subsequent phosphorylation of serine 525. Nevertheless, 

due to an increased lipid-associated metabolic stress of the endoplasmic reiticulum, 
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activation and/or expression of PKR-like endoplasmic reticulum associated protein 

kinase (PERK) may be increased as a part of the unfolded protein response, which may 

lead to an inhibition of eukaryotic initiation factor eIF2 by keeping the α subunit 

phosphorylated (serine 51), ultimately preventing an interaction and GDP/GTP exchange 

between of eIF2 and eIF2Bε. This would reduce ternary complex formation, translation 

initiation, and potentially reduce myocellular protein synthesis rates.  mTOR/raptor 

[mammalian target of rapamycin/regulatory associated protein of mTOR] dependent 

serine/threonine phosphorylations of ribosomal protein S6 kinase (p70S6k) and total 

p70S6k expression has previously been shown to be up-regulated in type 2 diabetes, 

perhaps as a result of BCAA-induced  amino acid activation of mTOR. Phosphorylation 

state of the other major substrate of the mTOR/raptor complex, eukaryotic initiation 

factor 4E binding protein 1 (eIF4EBP1) would potentially be augmented due to 

aforementioned hyperaminoacidemia as well. This would in turn increase eIF4 

complexation with eIF4G and eIF4A (eIF4F complex), which ultimately would lead to 

an increased 7-methyl-guanosine cap dependent mRNA translation. Considering that 

activation of downstream mTOR substrates p70S6K and eIF4EBP1 may be elevated in 

the insulin-resistant state, regulatory steps downstream of translation initiation must be 

inhibited (e.g., peptide-chain elongation), particularly if T2DM is associated with a 

suppression of global protein synthesis rates.      
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Exercise and Type 2 Diabetes  

Similar to other life style-associated maladies, individuals who ultimately 

manifest overt T2DM pass through several clinical stages during the development of the 

disease, which may be reversed or halted with lifestyle modifications (diet and exercise) 

and/or pharmacological treatment. The bad news is that only ~50% of adults in the US 

engages in regular, leisure-time, physical activity [46.7% of women and 49.7% of men; 

(21)] and exercise adherence among clinical populations is generally poor outside 

clinical settings. Clearly, the development of cost-effective preventive and treatment 

strategies that increase long-term patient compliance must be considered of prime 

importance to reduce the economic burden and suffering associated with type 2 diabetes. 

Exercise, independent of caloric restriction and weight-loss, has proven to be an 

effective, low-cost, and non-pharmacological alternative to traditional diabetes 

medications (86). Regular physical activity has been shown to reduce the risk of 

Fig. 2. Insulin-regulated glucose uptake, storage, and protein anabolism.  
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developing diabetes with 30-50% in healthy individuals (8), slow/reverse the progression 

of impaired insulin resistance in high-risk populations (31, 101, 126), improve glycemic 

control in overt type 2 diabetics (14), and confer additional protection against 

cardiovascular complications. Across all ranges of glycemic status, aerobically fit men 

have lower age-adjusted all-cause death rates than their less fit counterparts (83). In a 

Finnish heart disease risk factor study, men with maximal oxygen uptake (VO2max) of 

≤ 25.8 ml /kg/min were more than four times as likely to develop diabetes than men with 

VO2max of ≥31.1 ml/kg/min after adjustment for BMI, baseline blood glucose, and 

other covariates (93). Several studies have confirmed an inverse correlation between 

aerobic fitness levels and incidence of cardiovascular events as well as relative risk for 

all-cause mortality in populations suffering from obesity, impaired fasting glucose, 

and/or overt diabetes (86, 131). Thus, there is compelling evidence that higher levels of 

cardiorespiratory fitness confers substantial protection against all-cause mortality, 

macrovascular disease, and type 2 diabetes in diverse populations with various degrees 

of insulin resistance (86). 

Life style interventions (dietary modifications and exercise) have been shown to 

play a more substantial role in the prevention of type 2 diabetes in insulin-resistant 

individuals compared to traditionally used pharmacological agents (31). The American 

Diabetes Prevention Program reported that a lifestyle-modification program, with the 

goals of at least a 7 percent weight loss and at least 150 minutes of physical activity per 

week, reduced the incidence of diabetes by 58% and 27% compared to placebo and 

metformin, respectively, in an at-risk population (31). Although, metformin is one of the 
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most frequently prescribed drugs in the country overall and is the most popular anti-

diabetic drug, recent research suggests that it may inhibit complex I of the electron 

transport system and impact aerobic capacity negatively (16).  

A recent meta-analysis of 14 well-controlled randomized studies showed that 2 to 

12 months of resistance and/or endurance exercise over a range of intensities improves 

glycemic control ( ~0.6% decreases in glycated hemoglobin; HbA1c), reduces visceral 

and subcutaneous adipose tissue while maintaining bodyweight, decreases plasma 

triglycerides, and increases insulin sensitivity in type 2 diabetics (124). The aerobic 

exercise interventions, which, on average, consisted of three 53-min session per week of 

walking or cycling over an 18-wk period, were associated with a mean 0.67% reduction 

in HbA1c levels, while resistance training (2-3 sets ranging from 10-20 repetitions at 

50% of respondents‟ repetition maximum) yielded a comparable reduction of 0.64%.  

An exercise-induced reduction of 0.6% HbA1c compares well with monotherapy of 

pharmacological agents such as biguanides, more specifically metformin, 

sulphonylureas, meglitinides, alpha-glucosidase inhibitors, DPP-4 inhibitors, and may be 

more effective than certain thiazolidinediones. Stratton et al. (2000) reported that a 1% 

rise in glycated hemoglobin represents a 21% increase in risk for any diabetes-related 

death, a 14% increased risk for myocardial infarction, and a 37% increased risk for 

microvascular complications (120). Although the decreases in HbA1c through physical 

activity are substantial and are likely to markedly reduce the risk of diabetes-related 

complications, the optimal type, frequency, intensity, and duration of exercise for 

achieving these therapeutic goals are not known (124).  
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The American Diabetes Association, American Cancer Society, and American 

Heart Association advocate 0.5 hour/day of moderately intense exercise for the 

prevention of type 2 diabetes, CVD, and some types of cancer (40). Although raising the 

bar even higher may erode the motivation of chronically sedentary populations, there is 

strong evidence that intensity of exercise may be an important factor to enhance glucose 

homeostasis and ultimately prevent diabetes and CVD. Because long-term compliance 

remains a challenge for adult fitness and rehabilitation/intervention programs, which are 

traditionally based on aerobic endurance training, regular resistance exercise (RE) may 

provide a means for maintaining interest and increasing adherence. Nevertheless, studies 

in men suggest that vigorous exercise is associated with even greater reductions in risk 

of CVD than is moderate-intensity exercise (8). For example, each 1-MET (3.5 ml 

O2/kg/min) increase in exercise intensity was associated with a 4% reduction in CHD 

risk independent of total exercise energy expenditure (123). Furthermore, it has been 

postulated that 2500-2800 kcal/wk (60-90 min/ day of moderate-intensity physical 

activity) may be required to maintain substantial loss of weight, which is an important 

goal in lifestyle modification programs for most type 2 diabetics. Exercise is often 

prescribed concurrently with caloric restriction in order to produce an energy deficit of 

500-1000 kcal/day while maintaining lean mass and basal metabolic rate (66).  
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LaMonte and colleagues (2005) reviewed some of the acute and chronic 

exercise-induced muscle and systemic adaptations that enhance glucose homeostasis and 

confer protection against diabetes (86). Acute responses to exercise are immediate 

improvements in glucose uptake, transport, and/or disposal, but may be augmented with 

repeated bouts of exercise. Chronic adaptations to exercise include structural changes to 

the cardiovascular and musculoskeletal systems and require regular exposure to exercise 

to occur. Recent research has indicated that the acute anabolic response to contractile 

activity is blunted in the insulin resistant state. Although exercise has previously been 

shown to reduce whole-body glycosylated hemoglobin (HbA1c) levels to a similar extent 

traditional diabetes medications (124), recent reports suggests that differences exist 

between normal and insulin-resistant skeletal muscle in their adaptation to mechanical 

loading (78, 95, 125), and that insulin resistance may blunt the anabolic response to 

resistance-type exercise (59, 77, 119).   
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CHAPTER II 

CONTRACTILE ACTIVITY-INDUCED ANABOLIC RESPONSE IS 

ATTENUATED IN INSULIN-RESISTANT SKELETAL MUSCLE 

Introduction 

Since the industrial revolution, the incidence of life style-related diseases has 

increased concomitantly with the global spread of technology and affluence.  Excessive 

consumption of calorie-dense/nutrient-poor foods and physical inactivity are behavioral 

patterns strongly associated with the development of obesity and type 2 diabetes 

(T2DM), which are rare conditions in cultures whose essential features mimic those of 

our hunter-gatherer ancestors (38). One of the first maladies associated with obesity is 

skeletal muscle insulin resistance, currently believed to be attributed to an increased 

accumulation of intracellular lipid metabolites (e.g., fatty acyl-CoA, diacylglycerol, and 

ceramide) that antagonize insulin action via activation of serine/threonine kinases and 

phosphorylation of IRS1 (67, 132, 141). Acquired or inherited mitochondrial deficiency, 

more specifically a reduction in the number or intrinsic function of the organelle, has 

been postulated to decrease the capacity to oxidize fat, causing a net lipid accumulation 

and insulin resistance in various metabolic disease conditions (92). This notion has been 

questioned lately (68), and recent research suggests that impaired mitochondrial fatty 

acid oxidation does not account for an increased intramuscular lipid content (15, 69). As 

a matter of fact, an increased intramuscular lipid load, as observed in insulin-resistant 

rodent models (69), causes an elevation in fatty acid oxidation rates and improves 

mitochondrial density (69).      
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Insulin resistance is associated with profound alterations in lipid and 

carbohydrate metabolism and has been linked to a down-regulation of Akt/mTOR 

growth signaling cascades (e.g. regulation of protein synthesis) in both humans and 

rodents. Although perturbations in basal state whole-body protein metabolism appear to 

be subtle in the human condition (9, 60), there are substantial methodological variations 

between studies (tracer choice, age, glycemic status, and gender of subject), making it 

difficult to draw any definite conclusions. Assessments of protein synthesis and 

degradation rates in large proximal muscle groups (e.g., quadriceps) in type 2 diabetics 

have indicated an increased turnover or no significant differences between insulin-

resistant vs. insulin-sensitive skeletal muscle (9, 60). Considering that type 2 diabetes-

related complications such as peripheral neuropathy and microvascular dysfunction 

preferentially affect more distal regions of the limb (110), future research should aim to 

assess protein turnover in muscle groups such as gastrocnemius, plantaris, and soleus.  

Furthermore, despite subtle differences in the mixed protein pool, significant 

perturbations may still be present in cellular compartments of the muscle fiber that 

regulate substrate metabolism (mitochondria and cytosol) and energy utilization/muscle 

contraction (myofibrils). Glucose and lipid metabolism is ultimately dependent upon 

energy-demand, activation, and turnover of metabolic enzymes, and more research is 

needed to elucidate the individual contributions of each myocellular sub-fraction to the 

overall metabolic condition.  
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At the turn of the 20th century, the economic burden of chronic diseases was 

estimated to be a mind-boggling 1 trillion dollars/year (13), with 35.3% of the US 

population exhibiting type 2 diabetes or impaired fasting glucose (25), 5.9-6.3% of the 

population had previously diagnosed T2DM (19, 25), and a staggering 65.7% of the 

population was classified as overweight or obese (62), including a 54.8% prevalence of 

obesity among type 2 diabetics (20).  Clearly, the development of cost-effective 

interventions to delay or prevent the global obesity/diabetes pandemic must be 

considered of primary importance to improve health and relieve the burden of healthcare 

costs. Considering that type 2 diabetes is associated with a reduced glucose storage 

capacity, muscle weakness, and cardiovascular dysfunction, alternative 

intervention/treatment strategies should optimally augment muscle mass, strength, and 

oxidative capacity. Exercise, independent of caloric restriction and weight-loss, has 

proven to be an effective, low-cost, and non-pharmacological alternative to traditional 

diabetes medications. Because long-term compliance remains a challenge for adult 

fitness and rehabilitation/intervention programs, which are traditionally based on aerobic 

endurance training, regular resistance exercise (RE) may provide a means for 

maintaining interest and increasing adherence. Although resistance training has 

previously been shown to reduce whole-body glycosylated hemoglobin (HbA1c) levels to 

a similar extent compared to chronic endurance exercise and traditional diabetes 

medications (124), recent reports suggests that differences exist between normal and 

insulin-resistant skeletal muscle in their adaptation to mechanical loading (78, 95, 125), 
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and that insulin resistance may blunt the anabolic response to resistance-type exercise 

(59, 77, 119).  

The main purpose of the current study was to determine if skeletal muscle insulin 

resistance affects the 24-h anabolic response (cumulative plasticity) of cellular sub-

fractions regulating metabolism (mitochondria and cytosol) and energy utilization 

(myofibrils). However, considering the paucity of information on insulin resistance and 

how it influences turnover rates of proteins in aforementioned compartments, a 

secondary goal was to characterize basal differences in protein synthesis rates between 

insulin-resistant and insulin-sensitive muscle. For these purposes we employed a novel 

primed-constant infusion method, centering on the use of deuterium oxide (2H2O) as a 

tracer [for review see (18, 35)], to assess 24-h cumulative protein synthesis of 

mitochondrial-, cytosolic-, and myofibrillar-rich fractions in proximal and distal muscle 

groups of sedentary and resistance exercised lean and obese Zucker rats. The primary 

event of obesity and insulin resistance is an increased food intake, irrespective of cause, 

making the obese Zucker rat, which carries a missense mutation in the leptin receptor 

gene, an almost ideal animal model for studying the effects of insulin resistance on 

protein synthesis. Similar to type 2 diabetic patients with metabolic syndrome, it exhibits 

hyperphagia (up to 19 wks of age), hyperinsulinemia, hyperleptinemia, 

hypertriglyceridemia, hypercholesterolemia, glucose intolerance, angiopathy, and 

neuropathy (99). The 2H2O method has a practical advantage in that animal or human 

subjects are not required to be in a post-absorptive state, which allows us to measure 

protein synthesis over long periods of time and ultimately get a more realistic assessment 



 26 

of muscle anabolism in a free-living environment, thus, accounting for sleep, feeding, 

and 24-h fluctuations in hormone secretion. We report that cumulative fractional 

synthesis rates (FSR) of mixed proteins are suppressed in gastrocnemius and soleus 

muscles of obese Zucker rats, but significantly elevated in quadriceps muscle, indicating 

that the effects of insulin resistance on protein metabolism are diverse and dependent 

upon proximodistal location of the muscle group. We also provide evidence that protein 

synthesis rates are normal in myocellular compartments containing oxidative and 

glycolytic enzymes (e.g., mitochondria and cytosol) regardless of proximodistal location. 

Accordingly, the observed suppression in mixed protein synthesis rates in distal muscle 

groups are exclusively accounted for by a reduction in myofibrillar FSR, suggesting a 

preferential down-regulation of contractile proteins over metabolic enzymes. We 

surmise that rate-limiting steps in polypeptide elongation are more strongly inhibited in 

the obese phenotype, or that translational capacity and/or translational efficiency of 

specific mRNA pools are altered to cope with nutrient overload. Lastly, voluntary 

resistance exercise does not improve cytosolic, myofibrillar, or mitochondrial FSR to the 

same extent in obese vs. lean rats, which may be indicative of a blunted capacity to 

respond to contractile stimuli in the insulin-resistant state.
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Methods 

Animals 

 The obese Zucker rat exhibits similar dysfunctions in substrate metabolism that 

are present in type 2 diabetics with metabolic syndrome, making it a near ideal candidate 

for studying the effects of insulin resistance on protein turnover. Thus, thirty 4-mo-old 

male obese (fa/fa, Crl: ZUC-Leprfa/fa) and lean (Fa/?, Crl: ZUC-LeprFa/?) Zucker rats 

(Charles River Laboratories, Wilmington, MA) were individually housed in a climate-

controlled environment with a reversed 12:12-h light-dark cycle, having free access to 

water and standard commercial rat chow (Harlan 2016 Teklad Global) throughout the 

study period. Following 1 wk of acclimation, the rats were matched according to body 

composition (GE Lunar Prodigy DXA [small animal software]; total body-, lean-, fat-, 

and bone-mass) within each phenotype and thereafter grouped into sedentary (Fatty-SED 

[FS; n = 6], Lean-SED [LS; n = 8]) and resistance exercised (Fatty-RE [FE; n = 8], 

Lean-RE [LE; n = 8]) cohorts (Fig. 3). As expected, obese rats had a significantly higher 

% fat and bone mass compared to the lean phenotype (P < 0.001), while exhibiting 

significantly depressed % lean mass (P < 0.001). No differences in DXA-derived 

parameters were present between experimental conditions within phenotypes.  
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Fig. 3. Body composition of lean (Fa/?) and obese (fa/fa) Zucker rats (dual energy X-ray absorptiometry scans [DXA]). Animals (n = 30) were 

matched according to lean body mass within each phenotype and grouped into sedentary (lean sedentary, LS [n=8]; fat sedentary, FS [n=6]) and 

resistance exercised (lean resistance exercised, LE [n=8]; resistance exercised, FE [n=8]) cohorts. Total body mass, bone mineral content, or fat 

mass were significantly higher in obese vs. lean rats (P < 0.001), while muscle mass was significantly lower (P < 0.001). Bars/groups sharing the 

same letter are not significantly different in any of the aforementioned outcome parameters (P > 0.05). Values are expressed in grams (g; y-axis) 

and relative to total body mass (%, within bars), and presented as means ± standard error (SE).      
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Experimental protocol 

For this study, we employed a well-established (42-45, 48, 49, 56, 63, 97, 133) 

voluntary resistance exercise (RE) paradigm to induce an anabolic response in protein 

sub-fractions of rat skeletal muscle. Although this 4-d progressive RE protocol can be 

considered “acute” since it does not result in appreciable changes of muscle mass, rates 

of protein synthesis in mixed gastrocnemius typically remain elevated 24-h post exercise 

(63). We have previously shown that this type of voluntary exercise increases bone mass 

in healthy rats (97, 133) and posterior crural muscle mass in insulin-deficient animals 

(44) if applied chronically. Despite a „minimalistic approach‟ when it comes to the 

effective exercise duration (~2.5 min/session), the high work intensity (~75 reps/session 

at 105-175% BW) emphasizes muscular endurance and may promote mitochondrial 

adaptations. Since obesity-induced insulin resistance has been coupled to mitochondrial 

dysfunctions, an in vivo voluntary RE paradigm that induces mitochondrial growth may 

be favorable over other commonly used RE protocols when studying metabolic 

disorders.  
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We realize that direct electrical stimulation (E-STIM) of the lower limbs may 

provide better control over force production, however, the drive for muscle contraction 

does not begin in the brain in E-STIM protocols making them hard to compare to the 

voluntary lifting regimens performed by humans. Furthermore, the administration of 

anesthesia during simulated resistance exercise affects skeletal muscle contractility (72), 

compromises cardiopulmonary function (29), and may alter blood flow to and from 

working muscles, which may be particularly problematic when assessing protein 

turnover in metabolic models already exhibiting cardiovascular and neural dysfunctions. 

Compensatory hypertrophy models, such as synergistic ablation or synergistic 

denervation, are effective in inducing muscle growth by increasing satellite cell 

incorporation (myonuclei addition) into myofibers, but may not be reflective of the 

anabolic response to voluntary exercise (107).        

Briefly, after a 1-wk acclimation period, RE cohorts were conditioned in a dark 

room to depress an illuminated bar in a Plexiglas exercise cage while wearing a Velcro 

vest adjustable for progressive increases in weights. Negative reinforcement via an 

electrical foot shock (< 2 mA, 60 Hz) was used to train the animals to perform the 

desired movement, which closely mimics a traditional leg squat as performed by 

humans, and requires full extension of hind legs and activation of associated muscle 

groups (mainly quadriceps and gastrocnemius complexes).  
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To account for possible confounding effects of negative reinforcement and 

handling on muscle metabolism, the sedentary cohorts wore the same Velcro vest and 

received the same average number of foot shocks as exercised animals, but without 

performing the actual exercise. In our experience, the obese rats mastered the movement 

pattern equally fast compared to their lean counterparts and did not require an altered 

absolute exercise intensity or increased shock-frequency. Following six operant 

conditioning (OC) sessions over 2 weeks, entrained rats of both phenotypes underwent a 

voluntary lower-body resistance exercise paradigm, consisting of four progressive 

sessions separated by either 48 h (RE1-RE3) or 72 h (RE3-RE4) [Fig. 4]. The RE 

cohorts performed the same number of sets and repetitions per weight (5 sets/session; 50 

reps RE1, 68 reps RE2, 84 reps RE3, and 92 reps RE4;) and were allowed 2 seconds of 

rest between reps and 2 minutes of rest between sets. Weights were progressively 

increased throughout each session (30-230 g RE1; 80-230 g RE2; 80-230g RE3; and 80-

280 g RE4) and the total amount lifted increased from 5500 g (RE1) to 15460 g (RE4). 

In accordance to previously published work using this exercise model in rats (42), the 

final bout (RE4) was completed 16 h prior to muscle harvest (4:30-5:00 PM). 
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Fig. 4. Schematic display of the study design. After one week of acclimation, rats in RE groups were operantly conditioned to perform a squat-like movement while 

wearing a Velcro vest adjustable for progressive increases in weights. All entrained rats underwent the same resistance exercise paradigm with minimal negative 

reinforcement, which consisted of four progressive sessions separated by either 48 h (RE1-RE3) or 72 h (RE3-RE4). The final exercise bout (RE4) was completed 16 h 

prior to muscle harvest. To measure cumulative muscle protein synthesis, an intraperitonal 99.9% 2H2O bolus injection was administered 24 h prior to sacrifice, and 4% 

2H2O was provided ad libitum in the drinking water throughout the last day.     
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To measure cumulative protein synthesis in skeletal muscle of sedentary and 

trained cohorts, an intraperitoneal (IP) 99.9% 2H2O bolus injection (20ul/g BW) was 

administered to each animal 24 h prior to sacrifice (08:30-09:00 AM, 8 hours prior to 

last exercise session), and 4% 2H2O was provided ad libitum in the drinking water 

throughout the last day. Rat chow was withdrawn 4 hours prior to muscle harvest (04:30-

5:00 AM). On the morning of sacrifice (08:30-09:00 AM), the 5-mo-old rats were 

anesthetized with ketamine hydrochloride (Ketaset; 37.5 mg/kg BW) and medetomidine 

(Domitor; 0.25 mg/kg BW) via IP route. Two mL of whole blood were collected by 

cardiac puncture followed by quick excision of quadriceps and posterior crural muscle 

groups (mixed gastrocnemius, soleus, and plantaris) prior to euthanasia. Fat, blood, and 

connective tissue were removed from muscles before snap-freezing in liquid nitrogen, 

pulverization, and storage at -80°C.  

Measurement of  
2
H enrichment in body water 

As with all precursor-product labeling methods, the assessment of protein 

synthesis using heavy water requires reliable quantification of 2H enrichment of the 

precursory pool (i.e. body water/plasma). 2H-labeling of body water (EBW) was measured 

by gas chromatography-mass spectroscopy (Agilent 7890 GC/5975 VL MSD) following 

24-h isotopic exchange between 2H-enriched plasma samples and acetone, a method 

allowing for as low as 0.008% 2H enrichments of body water to be assayed (140). 

Briefly, 20 uL of calibration standards (0-5% 2H2O, prepared by mixing naturally 

labelled water with 99.9% 2H2O) or plasma samples were allowed to react for 24 hours 

at room-temperature with 2 uL of 10N NaOH and 4uL of a 5% (v/v) solution of acetone 
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in acetonitrile. After the 24-h incubation period, the solution was extracted by adding 

0.5g of Na2SO4 followed by 600 ul of chloroform and vigorous vortex. A small aliquot 

(50-100 µL) was transferred to a GC/MS vial and automatically injected (1 µL) into an 

Agilent 7890A GC system, volatilized, and separated on a capillary column (HP-5ms, 30 

m x 0.25 mm x 0.24 µm) using helium as the carrier gas (1 µL/min) at a 40:1 split ratio. 

The GC injector temperature was set at 220°C and the transfer line was held at 220°C. 

The initial temperature of the column program was 60°C followed by an increase of 

20°C/min to 100°C, which was further increased to 220°C at a rate of 50°C/min and held 

constant for 1 min. Acetone eluted from the column ~1.7 min post injection and was 

ionized with an Agilent 5975C VL MSD operating in electron impact mode using an 

ionization energy of 70eV. Selective ion monitoring (SIM) of mass to charge ratios (m/z) 

58 (M) and 59 (M+1) using a dwell time of 10 ms/ion were conducted after autotune. 

Peak abundances of ions 58 and 59 were extracted from chromatograms and M+1/M 

ratios were used to calculate % enrichment of body water based on a linear regression 

formula generated by deuterium oxide standards (R2 = 0.999). 2H-labeling of body water 

was readily detected in both phenotypes (3.04 ± 0.11%; mean ± SE), with an average of 

3.05 ± 0.17% in sedentary groups and 3.04 ± 0.15% in resistance exercised groups. All 

plasma samples were measured twice (prepared on two separate occasions) and an 

average value of the two runs was used for all calculations.  
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Measurement of  
2
H enrichment in skeletal muscle 

Enrichments of mixed, myofibrillar-, cytosolic-, and mitochondrial-rich fractions 

in quadriceps, gastrocnemius, and plantaris/soleus (mixed only) were determined by 

measuring protein-bound 2H-alanine (EA) as described by Dufner et al. (36). Pulverized 

mixed muscle (30 mg) or isolated sub-fractions (obtained from 100 mg mixed muscle) 

were homogenized in 0.3 mL of a 10% (w/v) TCA solution and centrifuged at 800 x g 

for 15 min at 4°C. For each sample, the supernatant was discarded and the pellet was 

centrifuged and washed three additional times in TCA to remove unbound amino acids. 

After the wash steps, the protein-rich pellet was hydrolyzed for 24 hours in 6N HCl at 

110°C (~0.13 mL/0.01g tissue; 400 µL for all fractions except mitochondria [200 µL]). 

An 100 µL aliquot of the hydrolysate (50 µL for mitochondria) was dried down for 1 

hour at 110°C and thereafter derivitized with a 3:2:1 (vol:vol:vol) solution of methyl-8, 

methanol, and acetonitrile for 1 hour at 70°C (1 µL/1 µL hydrolysate). The resulting 

methyl-8 /2H-alanine derivative was transferred to a GC/MS vial and analyzed with an 

Agilent 5975C VL MSD equipped with an Agilent 7890A GC system (HP-5ms capillary 

column, 30 m x 0.25 mm x 0.24 µm) to determine 2H-labeling of protein-bound alanine. 

The initial temperature of the column program was set at 90°C and held for 5 min, 

increased by 5°C/min to 130°C, which was further increased at a rate of 40°C/min to 240 

°C and held for 5 min, all steps performed at a constant helium flow of 1 mL/min. Peak 

abundances of ions 99 and 100 were extracted from chromatograms and M+1/M ratios 

were used to calculate % enrichment of protein-bound alanine using a regression 

formula generated by 2H-alanine standards (R2 = 0.999). 2H-labeling of alanine were 
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readily detected in all sub-fractions using a 20:1 split ratio for mixed proteins, 10:1 split 

ratio for myofibrillar and cytosolic proteins, and 5:1 split ratio for mitochondrial 

proteins. All samples were analyzed three times, which included complete re-preparation 

of the frozen hydrolysate on each occasion, to account for variations in preps as well as 

GC/MS analysis. An average value was used for all FSR calculations. 

Calculations 

The fractional synthesis rates (FSR) of mixed, myofibrillar, cytosolic, and 

mitochondrial fractions were calculated using the equation 

EA x [EBW x 3.7 x t (h)]-1 x 100 

where EA represents amount of protein-bound 2H alanine (mole % excess), EBW is the 

quantity of 2H2O in body water (mole % excess), and 3.7 represents the exchange of 2H 

between body water and alanine [i.e. 3.7 of 4 carbon-bound hydrogens of alanine 

exchange with water, (36)]. This equation assumes that 2H-labeling of body water 

equilibrates with free alanine more rapidly than alanine is incorporated into newly made 

protein and that protein synthesis is linear over the study (139).  

In certain circumstances, the intrinsic ability of making proteins (FSR) may not 

accurately reflect differences when accounting for the total amount of proteins being 

made over a unit of time in the entire muscle (total or absolute FSR). Because muscle 

mass and sub-fractional protein contents/concentrations (i.e. protein pools) can differ 

markedly between healthy and diseased individuals, it is possible that one group with a 

reduced muscle mass but elevated FSR will have a lower rate of absolute FSR when 

compared to another group with slower FSR but a larger muscle mass. Previous studies 
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assessing protein turnover in the obese Zucker rat model using in vitro incubation (37), 

flooding dose (106), or 5-6 hours continuous infusion protocols (22, 130) have shown 

that calculated rates of absolute protein synthesis merely exaggerate differences in FSR 

since the obese phenotype exhibits a lower protein mass. However, considering the 

plausibility that the obese phenotype has an increased intrinsic ability of making certain 

proteins (as measured over 24-h with the 2H2O method), but a lower absolute FSR due to 

a reduced protein pool size, we adjusted FSR for sub-fractional protein contents 

(absolute FSR3). Additionally, potential differences in intramyocellular protein 

concentrations, which may affect total enrichment of protein-bound alanine, were 

accounted for by adjusting for sub-fractional protein concentrations (relative FSR4).    

3Absolute FSR: Sub-fractional protein content x (EA x [EBW x 3.7 x t (h)]-1 x 100) 

4Relative FSR:  Sub-fractional protein concentration x (EA x [EBW x 3.7 x t (h)]-1 x 100) 

Isolation of skeletal muscle sub-fractions 

The differential centrifugation protocol for the isolation of subsarcolemmal 

mitochondria and cytosolic proteins was adapted from Rooyackers (108) and 

intermyofibrillar mitochondria and myofibrillar proteins from Wilkinson (136). 

Enrichments of sub fractions were confirmed with Western blotting using cytochrome c 

oxidase IV- [mitochondrial], α-actinin- [myofibrillar], and GAPDH- [cytosolic] specific 

antibodies. A recent study by the Endocrine Research Unit at Mayo Clinic College of 

Medicine reported a 75% purity of the sub-fraction containing subsarcolemmal 

mitochondria with a similar isolation procedure (73). The protocol used to isolate 
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contractile proteins and intermyofibrillar mitochondria has previously been confirmed to 

yield robust enrichments as evidenced by electron microscopy (136). 

Briefly, 100 mg snap-frozen quadriceps/gastrocnemius muscle was thawed and 

gently homogenized with 50 slow and compressive strokes of a glass-pestle (i.e. Dounce 

homogenization technique) in ice-cold mitochondrial isolation buffer 1 (10 mM Hepes, 

200 mM Sucrose, 50 mM Mannitol, 2 mM EDTA disodium salt, Sigma P8340 protease 

inhibitor cocktail, pH 7.4). The homogenate was centrifuged at 600 g for 10 min at 4°C, 

followed by careful removal of the supernatant (cytosolic proteins and subsarcolemmal 

mitochondria [SS]) from the pellet (myofibrillar, nuclear, and stromal proteins, 

intermyofibrillar mitochondria [IMF]). SS mitochondria were obtained by centrifugation 

of the supernatant at 10,000 x g for 10 min (4°C) and were stored in mitochondrial 

isolation buffer 2 (50 mM Hepes, 5 mM EGTA, 1 mM ATP, 100 mM KCl, 5 mM 

MgSO4, Sigma P8340 protease inhibitor cocktail, pH 7.4) until combined with the IMF 

mitochondria for assessment of protein synthesis. The remaining supernatant, containing 

cytosolic proteins, was precipitated with 95% ethanol (50% [v/v] in total solution) 

during low-speed centrifugation at 700 x g for 10 min (4°C) and thereafter dried.  

The pellet produced by the centrifugation of the original homogenate was 

suspended in mitochondrial isolation buffer 3 (100 mM KCl, 50 mM Tris, 5 mM MgCl2 

hexahydrate, 1 mM EDTA disodium salt, 10 mM β-glycerophosphate disodium salt, 50 

mM NaF, 1.5% BSA, Sigma P8340 protease inhibitor cocktail, pH 7.5) and centrifuged 

at 650 x g for 3 min (4°C). The resulting pellet was homogenized in the same buffer with 

a glass pestle using shear and compression to release the intermyofibrillar mitochondria, 
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followed by centrifugation at 650 g for 4 min at 4°C to collect the organelle-rich 

supernatant. IMF mitochondria were then pelleted by centrifugation at 10,000 x g for 10 

min (4°C) and combined with the SS mitochondrial fraction. The mitochondrial-rich 

sub-fractions were washed in isolation buffer 2 and ethanol, followed by high-speed 

centrifugation and drying in preparation for protein synthesis measurements.  

The myofibrillar-rich pellet was washed in mitochondrial isolation buffer 4 

(same as buffer 3 but without BSA) and centrifuged at 1,200 x g for 10 min (4°C) twice, 

which was followed by the addition of 0.3 M NaOH and heating of the sample in a water 

bath for 30 minutes. The myofibrils and collagen were separated by low-speed 

centrifugation at 650 x g for 10 min, and the myofibrillar proteins (supernatant) were 

collected after precipitation with 1 M PCA during low-speed centrifugation, washed 

with ethanol, and dried.  

Muscle protein concentration and content 

Protein concentrations and total protein contents of mixed (i.e. total), 

myofibrillar-, cytosolic-, and mitochondrial-rich sub-fractions were assessed using a 

commercially available colorimetric protein assay and calculated as previously described 

by Frier and Locke (53). Briefly, mitochondrial isolation buffer 1 (250 uL for 

myofibrillar and cytosolic; 50 uL for mitochondria) were added to isolated sub-fractions, 

followed by determination of protein concentration by the BCA method (115). The 

homogenate volumes were multiplied by the concentrations to obtain the total amount of 

protein within each isolated sub-fraction. The resulting values were divided by the mass 

of the homogenized muscle (~75 mg for mitochondrial; ~25 mg for myofibrillar and 
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cytosolic) to yield protein-to-mass ratios (ug/mg wet mass), which were reported as sub-

fractional protein concentrations. Lastly, protein-to-mass ratios were multiplied by the 

mass of the entire quadriceps/gastrocnemius to obtain total protein contents (mg/total 

wet mass).   

Western blotting 

Because muscle harvest was performed 16 h after the last exercise session to 

allow ample time for 2H2O enrichment of slow-turnover proteins (myofibrillar), and the 

window of opportunity to detect changes in Akt-mTOR signaling is ~1-3 h post acute 

RE, the main purpose of this study was to determine basal phenotypical differences in 

total expression of enzymes regulating growth/survival. Thus, if no main effect of RE or 

interaction between phenotype and RE was detected by 2 x 2 ANOVA, data were 

collapsed within phenotypes. Results from sedentary cohorts are presented alongside the 

collapsed data to allow for comparisons of animals in a truly unperturbed state (from an 

acute exercise perspective). Notwithstanding, evaluation of phosphorylation states were 

completed on proteins expected to be activated for many hours post RE, and all groups 

are included in graphs if results were significant.     

Briefly, pulverized mixed gastrocnemius muscle (40 mg) was homogenized in 

400 uL Norris buffer (25 mM Hepes, 5mM β-glycerophosphate, 200µM ATP, 25 mM 

Benzamidine, 2mM PMSF, 4mM EDTA, 10 mM MgCl2, 100 mM NF, 10 mM Na3VO4, 

Sigma protease inhibitor cocktail P8340, 1% TritonX100, pH 7.4). Samples were 

thereafter vortexed at regular intervals in ice-cold conditions for 1 hour and centrifuged 

at 13,000 x g for 30 minutes to separate the cytosolic-rich (supernatant) and the 
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myofibrillar-rich (pellet) protein fractions. The pellets were discarded and a small 

aliquot of each supernatant was used to determine protein concentrations as previously 

described.  

We used the traditional discontinuous Tris-Glycine buffer system developed by 

Ornstein and Davis (28, 100) and further perfected by Laemmli (84) to separate proteins 

using SDS-PAGE. Samples were placed in modified Laemmli buffer (250 mM Tris 

base, 8% SDS, 40% Glycerol, 0.004% Bromophenol Blue, 400 mM DTT) and heated for 

10 minutes at 100°C for denaturation of native proteins into individual subunits.  

Depending upon abundance and molecular weight of the target antigen in rat skeletal 

muscle tissue, 30-100 ug of cytosolic protein were loaded in equal amounts onto 4-15% 

polyacrylamide gels (10 cm x 10 cm x 1.6 mm; 37.5:1 acrylamide/bisacrylamide ratio) 

and subjected to 1 hour electrophoresis in electrode buffer (25 mM Tris base, 19.2 mM 

Glycine, 0.1% SDS, pH 8.3) at 40 mA, holding voltage and power output constant 

(Thermo Scientific Owl P8DS System, Rochester, NY). Each experimental group was 

represented on all gels to minimize confounding effects of gel composition and 

electrophoresis condition.  

Following electrophoresis, filter papers (Munktell Grade 1F) and nitrocellulose 

membranes (~55 cm2, 0.2µm pore size, Amersham Biosciences) were soaked for 10 

minutes in Otter buffer (49.6 mM Tris, 384 mM glycine, 20% methanol [v/v] and 0.01% 

SDS [w/v]) in preparation for semi-dry or wet transfers. Gels were sandwiched between 

wet filter paper, nitrocellulose, and another layer of filter paper, but were not pre-

equilibrated in transfer buffer in order to avoid loss of proteins.  A wet 16-h three-step 
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transfer (Thermo Scientific VEP-2 Mini Tank Electroblotting System, Rochester NY) or 

a or 40-min semi-dry transfer (Thermo Scientific Owl HEP-1 Semi Dry Electroblotting 

System, Rochester, NY) was used to transfer proteins onto the membranes. A 

progressive three-step wet transfer, consisting of 1 h at 1.3 mA/cm2, 14 h at 3.8 mA/cm2, 

and lastly 1 hr at 7.5 mA/cm2, maximizes chances of eluting high-molecular weight 

proteins from the gel while maintaining binding of low molecular weight proteins to the 

membrane. Although a 40-min semi-dry transfer at 400 mA (~7.5 mA/cm2) was 

sufficient for most molecular weight proteins, elution efficiency of proteins such as 

mTOR (289 kD) and raptor (150 kD) were significantly improved with the wet method. 

Loading consistency and transfer efficiency were verified with Ponceau S stain (0.1% 

Ponceau S [w/v], 5% acetic acid [v/v]) of the membranes and Coomassie blue staining 

(50% trichloroacetic acid [w/v], 0.1% Coomassie Brilliant Blue [w/v]) followed by 

destaining (50% methanol [v/v], 10% acetic acid [v/v]) of the gels.  

Membranes were blocked for 1 hour in blocking buffer (20 mM Tris base, 5% 

dry milk [w/v], 8% NaCl [w/v], 100 mM NF, 10 mM Na3VO4 ), and thereafter incubated 

overnight at 4°C under gentle agitation in a heat-sealed plastic bag containing 1:1000 

primary antibody/blocking buffer. Following a 15 min (3 x 5 min) wash-step in wash 

buffer (20 mM Tris base, 8% NaCl [w/v], 100 mM NF, 10 mM Na3VO4),  membranes 

were incubated for 1 hour at room temperature with a 1:2000 secondary 

antibody/blocking buffer solution under continual agitation. After repeating the 15 min 

wash-step, membranes were incubated for 5 minutes in 10 mL of enhanced 

chemiluminescent substrate (ECL; 50% [v/v] Pierce Super Signal West Pico Luminol 
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Enhancer Solution, 50% [v/v] Super Signal West Pico Stable Peroxidase Solution) and 

protein bands were developed with a CCD camera, mounted in a FluorChem SP imaging 

system (Alpha Innotech, San Leandro, CA). Optical density was determined using 

AlphaEase FC software (Alpha Innotech), which was automatically set to subtract non-

specific binding from densitometry values. All bands were analyzed three times and the 

average density values were normalized between membranes and expressed as arbitrary 

units. Expression of proteins regulating growth/survival and mRNA translation 

initiation/elongation were of prime interest and membranes were probed for protein 

kinase B (PKB; Akt), mammalian target of rapamycin (mTOR), regulatory associated 

protein of mTOR (Raptor), regulated in development and DNA damage responses 1 

(REDD1), proline-rich Akt substrate (PRAS40), p70 ribosomal S6 kinase (p70s6k), 

phospho-p70s6k [threonine 389], eukaryotic initiation factor 4E binding protein 1 

(eIF4EBP1), phospho-eIF4EBP [threonine 37/46], eukaryotic elongation factor 2 

(eEF2), phospho-eEF2 [threonine 56], eEF2K, extracellular signal-regulated kinases 1 

and 2 (ERK1/ERK2; P44/P42), eukaryotic initiation factor 2B epsilon (eIF2Bε), and 

atrogin-1/MAFbx. Immunodetection of phosphorylated antigens were completed before 

assessment of total protein. Membranes were stripped for 15 minutes at room-

temperature (Restore Western Blot Stripping Buffer, Thermo Scientific) and reincubated 

with ECL to ensure no residual chemiluminescence. All primary (rabbit and mouse) and 

secondary antibodies (anti-rabbit and anti-mouse) were purchased from Cell Signaling 

(Beverly, MA, USA) except atrogin-1 (ECM Biosciences, Versailles, KY) and eIF2Bε, a 

kind gift from Scot Kimball, Pennsylvania State University. 
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Immunoprecipitation 

Complexation of eIF4EBP1 and eIF4G with eIF4E in gastrocnemius muscle was 

measured using a standard immunoprecipitation technique based on the high binding 

affinity of bacterial membrane proteins A/G to immunoglobulins. Briefly, 100 µg 

cytosolic proteins in modified Norris buffer [total volume of ~70µL] (0.3% Chaps, 1 

mM DTT, 25 mM Hepes, 5mM β-glycerophosphate, 200µM ATP, 25 mM Benzamidine, 

2mM PMSF, 4mM EDTA, 10 mM MgCl2, 100 mM NF, 10 mM Na3VO4, Sigma 

protease inhibitor cocktail P8340, pH 7.4) were gently agitated overnight at 4°C with 1 

µL rabbit monoclonal eIF4E antibody (1:70 ratio; Cell Signaling). Collection of 

antigen/antibody complexes was achieved by adding 20 µL 50% protein A agarose bead 

slurry to each sample followed by 3-h incubation at 4°C.  Samples were then centrifuged 

at 10,000 x g for 1 min at 4°C and pellets resuspended in 500 µL Norris buffer for a total 

of three times to remove unbound antibodies. The final pellet was denatured in 20 µL 4X 

Laemmli buffer (250 mM Tris base, 8% SDS, 40% Glycerol, 0.004% Bromophenol 

Blue, 400 mM DTT) by heating at 95°C for 10 minutes and thereafter centrifuged at 

10,000 x g for 1 min. The resulting supernatant was subjected to electrophoresis using a 

7.5% (eIF4G) and 15% (eIF4EBP1) polyacrylamide gel followed by semidry transfer to 

nitrocellulose membranes as previously described. The blots were then gently agitated 

overnight at 4°C with mouse monoclonal eIF4E (Santa Cruz Biotechnology, CA, USA), 

mouse monoclonal eIF4EBP (Santa Cruz), and rabbit polyclonal eIF4G (Cell Signaling) 

at a 1:200-1:1000 ratio. Lastly, membranes were incubated with anti-rabbit or anti-
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mouse secondary antibodies (1:2000 ratio; Cell Signaling) for 1 hour at room 

temperature and developed with ECL.                      

Statistical analyses 

The effects of phenotype (obese vs. lean) and physical activity (sedentary vs. 

resistance exercise [RE]) on expression and synthesis of proteins were assessed with 2 x 

2 ANOVA using SigmaStat version 3.5. When significant F-ratios were present, a 

Student-Newman-Keuls post hoc procedure was used to evaluate differences among 

group means. If there was no main effect of RE or interaction between RE and 

phenotype using 2-way analysis of variance, Western blotting data were collapsed within 

phenotypes (Fat [F; n = 14 and Lean [L; n = 16]). To allow for comparisons of animals 

in truly unperturbed states (from an acute exercise perspective), differences between 

sedentary cohorts (FS vs. LS) were assessed for significance with independent t-tests and 

presented as inserts in the graphs depicting the collapsed data (for further rationale see 

methods). If homogeneity of data failed, analyses of variance were conducted on 

transformed values (square-root) and statistical comparisons between two independent 

group means were completed with Mann-Whitney-Wilcoxon rank sum tests. 

Significance was set at P ≤ 0.05 and all data are presented as means ± SE.   
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Results 

Wet mass, protein content, and protein concentration  

As expected, quadriceps and gastrocnemius wet mass and total protein content, 

but not protein concentration, were significantly suppressed in the obese phenotype (P < 

0.05), and acute resistance exercise (RE) did not significantly affect muscle weights or 

protein contents/concentrations in either cohort (Figs. 5-6). The ~22% difference in 

mixed protein content of gastrocnemius muscle between phenotypes (P < 0.001) was 

primarily attributed to ~25% lower myofibrillar protein content (P < 0.001; 176 ± 9 mg 

and 236 ± 9 mg in obese vs. lean rats, respectively) and secondarily ~15% lower 

cytosolic protein content (P = 0.04; 77 ± 5 mg and 91 ± 5 mg in obese vs. lean rats, 

respectively) in obese rats. Similarly, the ~35% difference in mixed protein content of 

quadriceps muscle between phenotypes (P < 0.001) was attributed to ~36% lower 

myofibrillar protein content (P < 0.05; 296 ± 44 mg and 461 ± 55 mg in obese vs. lean, 

respectively), ~35% lower cytosolic protein content (P < 0.001; 109 ± 11 mg and 167 ± 

6 mg in obese vs. lean, respectively), and ~28% lower mitochondrial protein content (P 

= 0.021; 5.7 ± 0.41 mg and 7.9 ± 0.77 mg in obese vs. lean) in obese rats. Although total 

mitochondrial content was significantly suppressed in quadriceps muscle of obese rats, 

mitochondrial density/concentration was not significantly different between phenotypes 

(P = 0.635; 3.41 ± 0.22 µg/mg and 3.15 ± 0.36 µg/mg in obese vs. lean, respectively). 

The most interesting and novel finding in this study in regards to muscle composition 

was that total mitochondrial protein content in gastrocnemius muscle was not 

significantly different between phenotypes (2.73 ± 0.23 mg and 2.57 ± 0.23 mg in obese 
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vs. lean, respectively) due to a ~31% higher mitochondrial density/concentration in 

obese rats (P = 0.01; 1.86 ± µg/mg and 1.42 ± µg/mg in obese vs. lean, respectively). 

From a biological standpoint it makes sense that the obese phenotype, which exhibits a 

higher amount of  intramuscular lipids due to an upregulation of plasmalemmal and 

mitochondrial FAT/CD36 in gastrocnemius muscle (69), has more mitochondria per unit 

muscle in order to handle an increased lipid load (6, 69). Wet weights of solues and 

plantaris were significantly suppressed in obese vs. lean rats (P ≤ 0.001), but no 

significant differences were found between experimental conditions within phenotypes 

(Table 1).      

In agreement with previous research, we show no differences in total protein 

concentration between phenotypes (37) and a significantly lower total protein content in 

obese rats (113). The relative contributions of myofibrillar (~55-65%), stromal (~10-

15%), and cytosolic fractions (~20-30%) to the mixed protein pool compare well with 

what has been published previously in this model (87). Mitochondrial content generally 

ranges from 1 to 3% of total cellular volume (70) and corresponding values obtained in 

our study are at the lower end of this spectrum.  
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Fig. 5. Wet mass (Panel A), protein contents (Panel B), and protein concentrations (Panel C) of mixed gastrocnemius muscle. Panel A: Average wet mass of left and right 

gastrocnemius muscle. Main effect of phenotype (P < 0.001; 1.81 ± 0.03 g vs. 1.44 ± 0.03 g in lean vs. obese rats, respectively). Panel B: Mixed (total value), myofibrillar (bottom 

dark gray stack), sarcoplasmic (middle light gray stack), and mitochondrial (top white stack) protein contents. Main effect of phenotype on mixed (P ≤ 0.001), myofibrillar (P ≤ 

0.001), and sarcoplasmic (P = 0.04) protein contents, but not mitochondrial (P = 0.556). Panel C: Mixed (total), myofibrillar (bottom), sarcoplasmic (middle), and mitochondrial 

(top) protein concentrations. Main effect of phenotype on mitochondrial protein concentrations (P = 0.01), but not mixed (P = 0.417), myofibrillar (0.194), or sarcoplasmic (0.552). 

As expected, two-way analyses of variance indicated no main effect of RE or interaction between RE and phenotype on any of the aforementioned outcome variables. Values 

(means ± standard error [SE]) are expressed in grams (g; Panel A), milligrams/total wet mass (mg; Panel B), micrograms/milligrams wet mass (µg/mg; Panel C), and relative to 

total protein contents/concentrations (%, within bars). Letters superscripted within bars denote significance in absolute values between experimental conditions according to SNK 

post hoc analysis or t-test (P ≤ 0.05 if groups do not share the same letter).    
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Fig. 6. Wet mass (Panel A), protein contents (Panel B), and protein concentrations (Panel C) of mixed quadriceps muscle. Panel A: Average wet mass of left and right 

quadriceps muscle. Main effect of phenotype (P < 0.001; 2.61 ± 0.08 g vs. 1.69 ± 0.07 g in lean vs. obese rats, respectively). Panel B: Mixed (total value), myofibrillar (bottom 

dark gray stack), sarcoplasmic (middle light gray stack), and mitochondrial (top white stack) protein contents. Main effect of phenotype on mixed (P = 0.007), myofibrillar (P = 

0.048), mitochondrial (P = 0.021), and sarcoplasmic (P < 0.001) protein contents. Panel C: Mixed (total), myofibrillar (bottom), sarcoplasmic (middle), and mitochondrial (top) 

protein concentrations. No main effect of phenotype on mitochondrial (P = 0.635), mixed (P = 0.643), myofibrillar (0.982), or sarcoplasmic (0.989) protein concentrations. Two-

way analyses of variance indicated no main effect of RE or interaction between RE and phenotype on any of the aforementioned outcome variables. Values (means ± standard 

error [SE]) are expressed in grams (g; Panel A), milligrams/total wet mass (mg; Panel B), micrograms/milligrams wet mass (µg/mg; Panel C), and relative to total protein 

contents/concentrations (%, within bars). Letters superscripted within bars denote significance in absolute values between experimental conditions according to SNK post hoc 

analysis or t-test (P ≤ 0.05 if groups do not share the same letter). *Denotes borderline significant: Myofibrillar protein content, LE vs. FE (P = 0.063); mitochondrial protein 

content, LE vs. FS (P = 0.076).    
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Table 1. Wet mass of soleus and plantaris  

 

 

 

Cumulative fractional rates of protein synthesis (FSR) 

We used heavy water (deuterium oxide, 2H2O) to assess 24-h cumulative 

synthesis rates of mixed, mitochondrial (mito), cytosolic (cyto), and myofibrillar (myo) 

proteins in skeletal muscle of sedentary and resistance exercised lean and obese Zucker 

rats. Considering that uncertainties still exist regarding relative turnover rates of skeletal 

muscle sub-fractions, primarily attributed to considerable methodological variations 

between studies, comparisons between myocellular compartments should be viewed 

cautiously. In this study, the average synthesis rates of mixed (3.41%/d and 4.57%/d), 

myofibrillar (2.48%/d and 2.81%/d), and cytosolic (8.93%/d and 6.49%/d) sub-fractions 

in quadriceps and gastrocnemius muscle, respectively, are qualitatively similar to 

previous observations in humans and rats (i.e. Myo FSR < Mixed FSR < Cyto FSR). An 

approximate two- to three-fold difference between cytosolic and myofibrillar protein 

synthesis rates is viewed as normal in the postabsorptive state, and mixed FSR is 

typically 30-40% higher compared to myofibrillar FSR. In our hands, the average 

 

                                           FS                              FE                             LS                           LE                    Phenotype      Activity           P*A 

 

Wet Mass (g) 

 

Soleus  

 

 

 

0.183 ± 0.009ac 

 

 

 

 

0.174 ± 0.009a 

 

 

 

 

0.216 ± 0.007b 

 

 

 

 

0.198 ± 0.007bc 

 

 

 

 

P = 0.001 

 

 

 

P = 0.108 

 

 

 

P = 0.597 

 

Plantaris 

 

 

  0.275 ± 0.02a 

 

 

  0.279 ± 0.01a 

 

 

  0.387 ± 0.01b 

 

 

  0.364 ± 0.02b 

 

 

P < 0.001 

 

P = 0.548 

 

P = 0.359 

        

Table 1. Wet mass of soleus and plantaris 

 

Values are means ± SE and expressed in grams (g). 2 x 2 ANOVA main effects (Phenotype, Activity) and interactions (P x A) are 
included to the far right in the table. Groups not sharing the same letter are significantly different as evaluated by SNK post hoc or 
t-tests (P ≤ 0.05).   
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synthesis rate of the two pools of mitochondria is ~5-15% higher compared to the mixed 

protein pool (4.00%/d vs. 3.41%/d and 4.76%/d vs. 4.57%/d) in quadriceps and 

gastrocnemius muscle, respectively.  

Distal muscle groups (gastrocnemius, soleus, and plantaris) 

We found that the obese phenotype exhibited a mild, but significant, suppression 

of 24-h protein synthesis rates in mixed and myofibrillar sub-fractions (-11%, P = 0.015; 

-12%, P = 0.007, respectively) of gastrocnemius muscle, while cytosolic and 

mitochondrial FSR were not different from lean rats (Fig. 7A; 8A,C,E). In lieu of the fact 

that there was no statistical difference in mixed FSR between sedentary groups (P = 

0.437; FS vs. LS), the observed phenotypical suppression was partly attributed to a 

modest exercise effect in the lean phenotype (P = 0.165; 4.62 ± 0.22 %/d and 5.00 ± 0.18 

%/d in LS vs. LE, respectively). Myofibrillar FSR was significantly lower in obese vs. 

lean rats (2.64 ± 0.06 %/d and 2.99 ± 0.10 %/d in obese vs. lean rats, respectively), but 

there were no differences in this sub-fraction between exercised and sedentary cohorts. 

Similarly, mitochondrial FSR was not statistically different between exercised vs. 

sedentary obese rats (P = 0.349; 4.23 ± 0.28 %/d and 4.72 ± 0.34 %/d in FS vs. FE, 

respectively), but the 12% higher synthesis rate in the FE cohort indicates a mild 

exercise effect on this organelle in the obese phenotype. In contrast to obese rats, 

mitochondrial FSR was significantly higher in exercised vs. sedentary lean rats (+20%, P 

= 0.049; 4.41 ± 0.44 %/d and 5.54 ± 0.39 %/d in LS vs. LE, respectively), suggesting an 

increased mitochondrial sensitivity to contractile stimuli compared to the obese 

phenotype. Despite a blunted anabolic response to exercise in obese rats, there was no 
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significant difference in the ability of making mitochondrial proteins between 

phenotypes in the sedentary state (P = 0.738). Synthesis rates of mixed proteins in 

soleus, but not plantaris, were significantly lower in obese vs. lean rats (-7%, P = 0.044, 

Table 2), but sub-fractional synthesis rates were not explored in these muscle groups due 

to tissue quantity necessary for fractionation. Considering that there was no statistical 

difference between sedentary cohorts in lean vs. obese rats (P > 0.05), the observed main 

effect of phenotype was partially attributed to a modest exercise effect in lean rats (+6%, 

LE vs. LS). Our finding that FSR may be preferentially suppressed in predominately 

slow/red muscles over fast/white muscles supports previous findings by Fluckey and 

colleagues  who reported a significantly lower FSR in red but not white gastrocnemius 

muscle in this rats strain (47).  

As expected, when analyzing rate at which proteins were made in each sub-

fraction on a whole muscle level (Fig. 7B; Fig. 8B,D,F), absolute FSR of mixed and 

myofibrillar proteins were significantly lower in the obese phenotype (-30%, P < 0.001; -

34%, P < 0.001). However, when cytosolic and mitochondrial FSR were adjusted for 

total protein content (Fig. 8DF) and protein concentration (Fig. 8DF, inserts), no 

significant differences were detected between phenotypes. As a matter of fact, 

mitochondrial FSR adjusted to protein concentration was ~20% higher in obese vs. lean 

rats, but this did not reach statistical significance (P = 0.269). Because the intrinsic 

ability of synthesizing mitochondrial proteins was similar between phenotypes, a 

significantly higher mitochondrial protein concentration solely accounted for the 

elevated adjusted FSR in obese rats.  
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Fig. 7. Mixed protein synthesis rates of gastrocnemius muscle. Panel A: Intrinsic capacity of synthesizing mixed proteins (FSR) over a 24-h period. Main effect of phenotype 

(P = 0.015); FE vs. LE, P = 0.006; FE vs. LS, P = 0.153; FS vs. LE, P = 0.049; LS vs. LE, P = 0.165. Panel B: Protein synthesis over a 24-h period adjusted for mixed protein 

content (Absolute FSR). Main effect of phenotype (P < 0.001); FS vs. LS, P = 0.022; FS vs. LE, P = 0.011; FE vs. LS, P = 0.006; FE vs. LE, P < 0.001. Insert: 24-h FSR 

adjusted for mixed protein concentration. Main effect of phenotype (P = 0.042); FS vs. LE, P = 0.126; FE vs. LS, P = 0.197; FE vs. LE, P = 0.025. Two-way analyses of 

variance indicated no main effect of RE or interaction between RE and phenotype on any of the aforementioned outcome variables. Bars/groups sharing the same letter are not 

significantly different (P > 0.05) according to SNK post hoc analyses or t-tests. Data are expressed as %/d, with or without adjustments for protein content and protein 

concentration, and presented as means ± standard error (SE).    
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Fig. 8.  Sub-fractional protein synthesis rates of gastrocnemius muscle. Panel A: MYO FSR. Main effect of phenotype (P = 

0.007); FS vs. LS, P = 0.035; FS vs. LE, P = 0.008; FE vs. LS, P = 0.130, FE vs. LE, P = 0.072. Panel B:  Absolute MYO 

FSR. Main effect of phenotype (P < 0.001); FS vs. LS, P = 0.004; FS vs. LE, P = 0.008; FE vs. LS, P = 0.005, FE vs. LE, P 

< 0.001. Insert: 24-h FSR adjusted for MYO protein concentration. Main effect of phenotype (P = 0.018); FS vs. LS, P = 

0.156; FS vs. LE, P = 0.137; FE vs. LS, P = 0.066, FE vs. LE, P = 0.042. Panel C-D:  Two-way ANOVA indicated no 

significant effects of phenotype, RE, or interactions (RE x phenotype) on CYTO outcome variables. Panel E: MITO FSR. 

Main effect of resistance exercise (P = 0.042) but not phenotype (P = 0.19); FS vs. FE, P = 0.349; FS vs. LE, P = 0.028; FE 

vs. LE, P = 0.111; LS vs. LE, P = 0.042. Panel F: No effects of phenotype or RE on adjusted MITO FSR. Bars/groups 

sharing the same letter are not significantly different (P > 0.05) according to SNK post hoc analyses or t-tests. Data are 

expressed as %/d, with or without adjustments for protein content and protein concentration, and presented as means ± 

standard error (SE). 

 

Table 2. Fractional protein synthesis rates (FSR) of soleus and plantaris 
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Table 2. Fractional protein synthesis rates (FSR) of soleus and plantaris 

 

 

Proximal muscle groups (quadriceps) 

In contrast to gastrocnemius and soleus, 24-h protein synthesis rates of mixed 

proteins in quadriceps muscle were significantly higher in obese vs. lean rats (+14%, P = 

0.007, Fig. 9A), which in part was due to a mildly elevated FSR in the cytosolic fraction 

of the obese phenotype (+8%, P = 0.221, Fig. 10C). No significant differences were 

found between phenotypes in the intrinsic capacity to synthesize myofibrillar (P = 0.517, 

Fig. 10A) or mitochondrial proteins (P = 0.996, Fig. 10E). Myofibrillar (P = 0.062; 2.14 

± 0.14 %/d and 2.98 ± 0.42 %/d in LS vs. LE, respectively) and cytosolic (P = 0.042; 

7.95 ± 0.51 %/d and 9.32 ± 0.55 %/d in LS vs. LE, respectively) FSR were 40% and 

17% higher, respectively, in exercised vs. sedentary lean rats.  

 

 

 

 

                                           FS                           FE                              LS                               LE                     Phenotype        Activity           P*A 

 

FSR (%/d) 

 

Soleus 

 

 

Plantaris                                                                                                                                            

 

 

 

6.38 ± 0.16ab 

 

 

4.72 ± 0.39 

 

 

 

6.23 ± 0.23a 

 

 

4.42 ± 0.25 

 

 

 

6.62 ± 0.14ab 

 

 

4.97 ± 0.52 

 

 

 

7.00 ± 0.34b 

 

 

4.75 ± 0.54 

 

 

 

 

P = 0.044 

 

 

P = 0.505 

 

 

 

P = 0.635 

 

 

P = 0.573 

 

 

 

P = 0.281 

 

 

P = 0.916 

 

        

       
Values are means ± SE and expressed as percent per hour (%/h). 2 x 2 ANOVA main effects (Phenotype, Activity) and 
interactions (P x A) are included to the far right in the table. Groups not sharing the same letter are significantly different as 
evaluated by SNK post hoc or t-tests (P ≤ 0.05).   
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The exercise response was blunted in the obese phenotype with non-significantly 

higher myofibrillar (P = 0.667; 2.31 ± 0.23 %/d and 2.46 ± 0.25 %/d in FS vs. FE, 

respectively) and cytosolic (P = 0.366; 8.90 ± 0.47 %/d and 9.55 ± 0.55 %/d in FS vs. 

FE, respectively) FSR in exercised vs. sedentary obese rats. Interestingly, a diminished 

exercise response in obese rats may in part be due to an elevated basal state, at least in 

the cytosolic sub-fraction, as exercise levels were similar between phenotypes.     

When analyzing the rate of proteins made in each sub-fraction on a whole muscle 

level, absolute FSR of mixed, myofibrillar, cytosolic, and mitochondrial proteins in 

quadriceps were significantly suppressed in the obese phenotype (P < 0.05; Fig. 9B; Fig. 

10B,D,F). No significant differences were detected between phenotypes or experimental 

conditions when FSR was adjusted for mixed (Fig. 9B, insert) or sub-fractional protein 

concentrations (Fig. 10B,D,F, inserts). Similar to gastrocnemius muscle, mitochondrial 

FSR adjusted to protein concentration was elevated ~16% in quadriceps of obese vs. lean 

rats, but this did not reach statistical significance (P = 0.29).  
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Fig. 9. Mixed protein synthesis rates of quadriceps muscle. Panel A: Intrinsic capacity of synthesizing mixed proteins (FSR) over a 24-h period. Main effect of phenotype (P = 0.007); FS 

vs. LS, P = 0.019; FS vs. LE, P = 0.133; FE vs. LS, P = 0.014; FE vs. LE, P = 0.112. Panel B: Protein synthesis over a 24-h period adjusted for mixed protein content (Absolute FSR). Main 

effect of phenotype (P = 0.02); FS vs. LS, P = 0.176; FS vs. LE, P = 0.132; FE vs. LS, P = 0.056; FE vs. LE, P = 0.038. Insert: 24-h FSR adjusted for mixed protein concentration. No main 

effect of phenotype (P = 0.462). Two-way analyses of variance indicated no main effect of RE or interaction between RE and phenotype on any of the aforementioned outcome variables. 

Bars/groups sharing the same letter are not significantly different (P > 0.05) according to SNK post hoc analyses or t-tests. Data are expressed as %/d, with or without adjustments for 

protein content and protein concentration, and presented as means ± standard error (SE).    
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Fig. 10.  Sub-fractional protein synthesis rates of quadriceps muscle. Panel A: MYO FSR. Borderline main effect of RE (P = 

0.081); LS vs. LE, P = 0.062. Panel B:  Absolute MYO FSR. Main effect of phenotype (P = 0.034) and borderline main effect 

of RE (P = 0.11); FS vs. LE, P = 0.043; FE vs. LE, P = 0.05; LS vs. LE, P = 0.129. Insert: 24-h FSR adjusted for MYO protein 

concentration. Two-way ANOVA indicated no effects of phenotype (P = 0.856), RE (P = 0.196), or interaction (RE x 

phenotype; P = 0.791). Panel C: CYTO FSR. Main effect of RE (P = 0.042); LS vs. LE, P = 0.037; FE vs. LS, P = 0.052. Panel 

D: Absolute CYTO FSR. Main effect of phenotype (P = 0.007); FS vs. LS, P = 0.023; FS vs. LE, P = 0.01; FE vs. LS, P = 

0.065; FE vs. LE, P = 0.1. Insert: 24-h FSR adjusted for CYTO protein concentration. Two-way ANOVA indicated no 

significant effects of phenotype (P = 0.606), RE (P = 0.27), or interaction (RE x phenotype; P = 0.332).  Panel E: MITO FSR. 

No significant effects of phenotype, RE, or interaction. Panel F: Absolute MITO FSR. Main effect of phenotype (P = 0.037); 

FS vs. LS, P = 0.043; FS vs. LE, P = 0.147; FE vs. LS, P = 0.105. Insert: 24-h FSR adjusted for MITO protein concentration. 

No significant effects of phenotype, RE, or interaction.  Bars/groups sharing the same letter are not significantly different (P > 

0.05) according to SNK post hoc analyses or t-tests. *Denotes borderline different (see text caption). Data are expressed as 

%/d, with or without adjustments for protein content and protein concentration, and presented as means ± standard error (SE). 
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Expression and regulation of growth/survival signals (Akt-mTOR pathway) 

Considering that acute RE is less likely to induce permanent adaptations in 

skeletal muscle compared to resistance training, and that muscle harvest occurred 16 

hours after the last exercise session, we did not expect major differences in expression or 

activity of anabolic signals between sedentary and resistance-exercised groups. As 

anticipated, we did not find a higher expression/activity of the typical regulators of 

protein synthesis [Akt-mTOR- p70s6k] in gastrocnemius muscle when assessed 16 hours 

post RE (Fig. 11A-C; collapsed data), despite elevated 24-h mixed and mitochondrial 

FSR in the exercised lean cohort. The most notable exception was a more robust 

phosphorylation of eIF4EBP1 in obese (+ 54%) and lean (+17%) RE groups compared 

to sedentary controls (Fig. 12B), but no statistical differences in eIF4E·eIF4EBP1 or 

eIF4E·eIF4G association between experimental conditions were found (Fig. 13). As a 

result, Western blotting data from sedentary and exercised groups were collapsed within 

each phenotype (Fatty [F] vs. Lean [L]) unless there was a main effect of RE or 

interaction between phenotype and RE. 

 Obese rats exhibited a lower expression of key anabolic proteins including Akt 

(-16%, P = 0.074), mTOR (-26%, P = 0.058), and Raptor (-24%, P = 0.013), but no 

differences in P44/P42, eIF2Bε, and eIF2α were detected (Fig. 11A-F). Despite a lower 

cytosolic abundance of these important upstream mediators of muscle growth, the 

activation of downstream targets regulating mRNA translation initiation were not 

compromised compared to lean rats, as evidenced by a more robust phosphorylation of 

mTOR substrates eIF4EBP1(+28%, Fig. 12B), the major binding protein regulating 
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eIF4E activity and 5‟cap-dependent translation, and p70s6k (+162%, Fig. 14B), the main 

enzyme responsible for phosphorylating the S6 protein in the 40S ribosomal subunit. A 

tendency for a decreased association between eIF4E and eIF4EBP1 was noted in the 

obese phenotype (-28%, obese vs. lean), but this did not reach statistical significance (P 

= 0.417, Fig. 13). In lieu of the fact that we observed a more robust phosphorylation of 

down-stream initiators of mRNA translation, we decided to measure the 

abundance/activity of key regulatory proteins in peptide-chain elongation in an attempt 

to explain the observed suppression in mixed and myofibrillar protein synthesis rates in 

the obese phenotype. Collapsed data did not indicate a lower expression of eukaryotic 

elongation factor 2 (eEF2) or a more potent inhibition of eEF2 (Thr 56) in obese vs. lean 

rats (Fig. 15A-D). However, when sedentary groups were analyzed separately, we found 

that the obese phenotype exhibited a stronger deactivation of peptide-chain elongation 

compared to lean rats, as evidenced by 87% higher phospho/total ratio of eEF2 (Fig. 

15C, insert). We did not detect any significant phenotypical differences in expression of 

eEF2-inihibitory factor eEF2K or the negative mTOR regulators PRAS40 and REDD1 

(Fig. 16A-C). Albeit not directly affecting protein synthesis per se, atrogin-1 (E3 ligase 

of the ubiquitin-proteasome proteolytic pathway) expression was significantly higher in 

the sedentary obese group compared to its lean counterpart (Fig. 16D, insert), indicating 

that other mechanisms, such as protein degradation, may contribute to the skeletal 

muscle atrophy observed in the obese phenotype.    
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Fig. 11. Expression of proteins regulating growth in gastrocemius muscle. If no main effect of RE or interaction between RE 

and phenotype were detected by 2-way ANOVA, data were collapsed within each phenotype and presented as Fatty (F) vs. 

Lean (L). The sedentary conditions represent unperturbed states from an exercise standpoint and are included as inserts. 

Panel A-C: The obese phenotype exhibited borderline lower Akt and mTOR expression (P = 0.077 and P =0.058, 

respectively), and significantly lower Raptor expression (F vs. L, P = 0.013; FS vs. LS, P =0.006) compared to its lean 

counterpart. No differences were detected in expression of proteins considered to be independent of traditional mTOR 

signaling, including ERK1/ERK2 (Panel D), eIF2Bε (Panel E), and eIF2α (Panel F). Optical density values are means ± SE 

and expressed in arbitrary units. Groups that do not share the same letter are significantly different (P ≤ 0.05) as evaluated 

by two-way ANOVA (F vs. L, main effect of phenotype), SNK post analyses (FS vs. LS, Raptor expression), or 

independent t-tests (all other comparisons). * Denotes borderline difference between phenotypes (see text caption).   
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Fig. 12. Expression of total, phospho-specific, and phospho/total ratio eIF4EBP1 in gastrocnemius muscle. The number of animals used for each blot is indicated in the table along with 

2 x 2 ANOVA main effects (Phenotype, Activity) and interactions (P x A) (Panel D). A representative blot of each experimental condition is included below the table. Optical density 

values are means ± SE and expressed in arbitrary units. Groups not sharing the same letter are significantly different as evaluated by SNK post hoc or t-tests (P ≤ 0.05).    
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Fig. 13. Association of eIF4EBP1 (Panel A) and eIF4G (Panel B) with eIF4E in gastrocnemius muscle. 

Immunoprecipitation (IP) of eIF4E was followed by electrophoresis and quantification of amount of eIF4EBP1 and 

eIF4G bound to eIF4E by immunoblotting (IB). A representative Western blot is included above the figures (n = 4 in each 

group). Optical density values are means ± SE and expressed in arbitrary units. No significant differences were found 

between groups (P > 0.05).   
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Fig. 14. Expression of total, phospho-specific, and phospho/total ratio p70s6k in gastrocnemius muscle. The number of animals used for each blot is indicated in the table along 

with significance values obtained from 2 x 2 ANOVA [F vs. L, main effect of phenotype] (Panel D). A representative blot of each experimental condition is included below the 

table. Optical density values are means ± SE and expressed in arbitrary units. Groups not sharing the same letter are significantly different (P ≤ 0.05).     
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Fig. 15. Expression of total, phospho-specific, and phospho/total ratio of eEF2 in gastrocnemius muscle. The number of animals used for each blot is indicated in the table along with 

significance values obtained from 2 x 2 ANOVA (F vs. L, main effect of phenotype) (Panel D). A representative blot of each experimental condition is included below the table. Optical 
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Fig. 16. Expression of inhibitors of growth in gastrocnemius muscle. If no main effect of RE or interaction between RE 

and phenotype were detected by 2-way ANOVA, data were collapsed within each phenotype and presented as Fatty (F) 

vs. Lean (L). No phenotypical differences were detected in expression of proteins inhibiting mTOR signaling, including 

PRAS40 (Panel A) and REDD1 (Panel B). Basal expression of AMPK-activated eFE2K, an inhibitor of eukaryotic 

elongation factor 2, was borderline different between sedentary groups (P = 0.133). Although not directly involved in 

protein synthesis, atrogin-1 expression was significantly elevated in sedentary obese rats (P = 0.029). Optical density 

values are means ± SE and expressed in arbitrary units. Groups that do not share the same letter are significantly different 

(P ≤ 0.05) as evaluated by independent t-tests.  
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Discussion 

The primary aim of this study was to determine if insulin resistance alters the 

adaptive response of sub-cellular compartments regulating substrate metabolism and 

energy utilization in skeletal muscle following contractile activity. To achieve this goal, 

we employed a well-established resistance exercise (RE) model in diabetic rats (44) in 

conjunction with a novel precursor-product labeling technique that centers on the use of 

heavy water (deuterium oxide, 2H2O) to measure protein turnover. The attractiveness of 

2H2O as a metabolic label lies in its proven utility for assessing long-term biosynthesis of 

macromolecules in a variety of species under free-living conditions (18), including obese 

rodent models (3). We extended previous research by measuring 24-h (cumulative) 

protein synthesis rates of mixed, mitochondrial, cytosolic, and myofibrillar sub-fractions 

in skeletal muscle of lean and obese Zucker rats following resistance exercise. To our 

knowledge, the current study is the first to address whether or not insulin resistance 

alters the cumulative anabolic response to voluntary resistance exercise in sub-fractions 

of skeletal muscle.  

Insulin resistance is typically associated with mitochondrial dysfunction and the 

current RE paradigm was designed to promote muscular endurance as well as protein 

anabolism (see methods). We were partially successful in achieving this goal since 

mitochondrial FSR in gastrocnemius was significantly augmented in the lean phenotype 

(+20%), which was accompanied by a modest increase in cytosolic and mixed protein 

synthesis rates (+6% and +8%, respectively), but no change in myofibrillar FSR (-0.4%). 

We did, however, observe a robust amplification of myofibrillar and cytosolic synthesis 
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rates in quadriceps muscle of lean rats (+40% and +17%, respectively), which strongly 

suggests that our RE protocol indeed was anabolic. Interestingly, the exercise-induced 

anabolic response was altered in gastrocnemius of the obese phenotype, but this was 

primarily due to a blunted increase in mitochondrial FSR (+12%), with no significant 

changes in cytosolic, myofibrillar, or mixed FSR (-1%, + 3%, -4%, respectively). These 

results suggest that there is a fraction-specific resistance to contractile stimuli in this 

muscle group. In addition, obese rats were unable to augment synthesis rates of 

myofibrillar and cytosolic proteins in quadriceps to the same extent as lean rats, further 

supporting the notion of a reduced sensitivity to contractile activity-induced stimuli in 

the insulin-resistant state. These findings are partly supported by studies that have 

utilized compensatory loading models, insulin, or nutrients to promote protein synthesis 

in insulin-resistant humans and rodent models, although diverging results exist (9, 50, 

59, 60, 94, 102, 121). Muscle growth was recently shown to be blunted in soleus muscle 

(84% SO fibers) of obese Zucker rats following synergistic ablation of gastrocnemius 

and plantaris (59). In contrast, a near identical hypertrophic response was demonstrated 

in plantaris muscle (94% FG/FOG fibers) of obese rats compared to their lean 

counterparts following synergistic denervation of soleus and gastrocnemius (102), 

indicating that the hypertrophic response in this rat strain may be muscle group- and/or 

fiber type-specific. Nevertheless, compensatory loading models induce significant 

increases in satellite cell proliferation, and it is widely debated whether or not satellite 

cell incorporation into myofibers is obligatory for muscle growth to occur following 

voluntary exercise (107). Therefore, it is difficult to compare the results of the current 
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study to previous research since different means were used to induce anabolism and to 

assess protein turnover.  

The most novel finding, in regards to the plasticity of myocellular sub-fractions 

following resistance exercise in gastrocnemius muscle, is that mitochondria appear to be 

desensitized to contractile activity in the insulin-resistant state. Long-standing metabolic 

disease is associated with morphological changes of mitochondria in humans (81) and 

obese Zucker rats (6), which potentially could alter the organelle‟s typical adaptive 

response to exercise (71). Menshikova (95) and Toledo (125) reported that chronic 

endurance training preferentially augments mitochondrial biogenesis in obese and type 2 

diabetic individuals by increasing surface area of the inner mitochondrial membrane 

(cristae), rather than inducing mitochondrial proliferation (mtDNA content), as typically 

seen in healthy subjects. Whether or not this differential adaptation in the insulin-

resistant state is attributed to an attenuated acute anabolic response, in terms of synthesis 

or import of mitochondrial proteins, is less clear. Since mitochondrial FSR, as measured 

in our study, represents 2H-alanine incorporation in both nuclear- and mtDNA-encoded 

proteins over a 24-h period, any defects in the replication, transcription, or translation of 

either genome could theoretically have attributed to a blunted exercise response in the 

obese phenotype. Considering that the vast majority of mitochondrial matrix and 

membrane proteins are encoded by nuclear DNA (only 13 out of ~1500 proteins are 

encoded by the organelle‟s own genome), in addition to the fact that replication, 

transcription, and translation of mtDNA are ultimately controlled by nuclear-encoded 

proteins (41), we believe that insulin resistance may be associated with multiple 
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dysfunctions in the manufacture and import of nuclear proteins, leading to a blunted 

anabolic response (i.e. mitochondrial FSR) following acute contractile activity.    

To our knowledge, the molecular mechanisms causing differential mitochondrial 

adaptations in obese and insulin-resistant individuals following exercise remain largely 

unknown. Since we were unable to measure signal transduction immediately following 

RE (~0-3 h post) due to the necessity of a 24-h 2H2O enrichment period, the intracellular 

events responsible for an attenuated increase in mitochondrial FSR will be elucidated in 

future studies. Mitochondrial biogenesis is thought to be highly dependent upon the 

activation of AMPK-regulated transcriptional coactivator PPARγ coactivator-1 (PGC1α) 

and its interaction with sequence-specific DNA binding proteins, mainly nuclear 

respiratory factors 1 and 2 (NRF-1/NRF-2). Previous research has indicated that acute 

muscle contractions do not stimulate AMPKα1 activity in obese Zucker rats, whereas the 

same contractile stimulus causes ~2-fold increase in AMPKα1 activity in lean rats (7). 

Although it is generally accepted that PGC1α is regulated by AMPK, PGC1α activation 

following acute exercise is not dependent upon either α1 or α2 isoforms of this enzyme 

(76). In further support of those findings, acute aerobic exercise amplifies PGC1α and 

NRF-1 mRNA expression in obese and type 2 diabetic subjects to the same extent as in 

lean individuals, despite a robust down-regulation of AMPK-signaling in the former 

(117). That same research group reported that obese Zucker rats are able to augment 

PGC1α protein expression equally well compared to their lean counterparts with chronic 

endurance exercise, although the obese phenotype exhibits a reduced expression of 

LKB1 and attenuated activation of AMPK (118). The underlying molecular mechanisms 
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are currently unknown, but LKB1 is a „master kinase‟ that regulates the activity of 13 

AMPK-related kinases and CaMK (in conjunction with calmodulin and intracellular 

Ca2+), all of which may compensate for the lack of contractile-induced stimulation of 

AMPK. MAPK signaling has also been shown to be necessary to release PGC1α from its 

competing repressor protein (p160MBP), but compared to lean humans and rodents the 

time-course and magnitude of ERK1/ERK2, p90RSK, and p38 phosphorylation 

following a single bout of contractile exercise is preserved or greater in their obese 

counterparts (27, 78, 88). Although cytosolic to nuclear abundances of PGC1α and 

SIRT-1 (or SIRT1-mediated deacetylation of the former) have not been assessed in 

exercise intervention studies, it appears that activation of PGC1α subsequent to physical 

activity is normal in the insulin-resistant state and may therefore not be responsible for 

altered mitochondrial adaptations. Numerous other transcription factors, corepressors, 

and coactivators have been implicated in mediating the anabolic response of 

mitochondria in concert with PGC1α, including yin-yang 1, peroxisome proliferator-

activated receptors (PPARα, PPARβ/δ, and PPARγ), RIP140, and PRC, but few 

comparative studies have been conducted to date. 

Calcium signaling through calcineurin, PKC, and CaMK are postulated to play 

significant roles in mitochondrial biogenesis since calcium-induced muscle contractions 

are ultimately dependent upon a steady energy supply from the organelle. The obese 

Zucker rat exhibits elevated intracellular Ca2+ levels and reduced Ca2+ ATP activity (89, 

90, 142), in addition to increased levels of intramuscular diacylglycerol and ceramide (5, 

127), which is associated with chronic activation/membrane translocation of 
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conventional [α and β] and novel PKCs [δ, ε, and θ] (5). Chronic activation of PKC (θ) 

is strongly linked to skeletal muscle‟s insulin resistance to glucose disposal (Lowell 

2005), but whether or not a constant basal activation of these enzymes dampens the 

ability to sense contractile-induced stimuli is unknown. A recent study reported a 

blunted augmentation in soleus muscle mass and fiber cross-sectional area following 

synergistic ablation in the obese Zucker rat, which was mirrored by an attenuated 

activation of calcineurin (59). Although the role of calcineurin in mitochondrial 

biogenesis have been questioned (55), these findings lend support to the notion that 

calcium-regulated enzymatic activity is attenuated in obese and insulin-resistant states. 

Lastly, emerging evidence for the role of the evolutionary conserved TOR pathway in 

the regulation of mitochondrial biogenesis (10, 26, 111) indicates that Raptor-mediated 

activation of mTOR is imperative to maintain mitochondrial morphology and function. 

Previous research has shown  that the obese Zucker rat exhibits a blunted activation of 

the Akt-mTOR-p70s6k pathway 1-3 h following high-force electrical stimulation, 

suggesting that global synthesis rates, including mitochondrial FSR, are attenuated 

compared to the lean phenotype (77). Considering that translation of the vast majority of 

mitochondrial proteins ultimately is under the control of TOR signaling, it makes 

intuitive sense that an alteration in this pathway could have a fundamental impact on 

mitochondrial FSR following exercise.   

Many of the metabolic aberrations associated with type 2 diabetes and obesity 

would be expected to cause abnormal protein turnover, but few studies have looked at 

the effect of obesity-induced insulin resistance on intracellular mechanisms governing 
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skeletal muscle growth (e.g., manufacture and degradation of proteins). Previous studies 

in type 2 diabetics have mainly focused on proximal muscle groups (e.g., quadriceps) 

despite documented peripheral vascular disease and neural dysfunction in distal limb 

regions of this population (110). Furthermore, assessments of protein turnover have 

typically been done on the mixed protein fraction, which is particularly problematic in 

metabolic disease conditions where subtle changes in synthesis/degradation of specific 

myocellular compartments may be masked in the total protein pool. Previous research in 

the obese Zucker rat has indicated that an increased rate of degradation (4) coupled with 

a reduced rate of protein synthesis (37) and suppressed satellite cell proliferation (102) 

collectively confer the atrophic phenotype in this rat strain. Nevertheless, most of the 

current knowledge pertaining to protein metabolism in this metabolic rodent model is 

limited to the mixed protein fraction and much less is known about the individual 

contribution of specific myocellular sub-compartments to the overall condition. Thus, an 

important goal of our study was to elucidate if insulin resistance is associated with 

uniform perturbations in FSR in regards to proximodistal location of muscle groups and 

biological function of various myocellular compartments (substrate metabolism 

[cytosol/mitochondria] vs. contractile activity [myofibrils]). As previously mentioned, 

we utilized a novel stable isotopic method that offers several methodological advantages 

over the traditional precursor-product techniques (flooding dose, in vitro incubation, and 

continuous infusion protocols). The most important distinction is that the 2H2O method 

allows for long-term assessments of biosynthesis rates in free living conditions, meaning 

that measurements can be done over long periods of time without perturbing normal 
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activity patterns (feeding and sleep) or introducing the muscle into an artificial 

environment (in vitro). Herein we provide evidence that basal protein synthesis rates in 

the insulin-resistant state are differentially affected depending upon proximodistal 

location of the muscle group. We demonstrate for the first time that 24-h fractional 

synthesis rates of mixed proteins in quadriceps muscle are significantly elevated in 

developmentally mature obese Zucker rats, but mildly suppressed in soleus and 

gastrocnemius. The latter results should be interpreted with caution since phenotypical 

differences in distal muscle groups were partially attributed to modest augmentations of 

mixed FSR following RE in the lean cohort. To our knowledge, there are no previously 

published reports on protein metabolism in isolated quadriceps muscle in this rat strain. 

Previous research has demonstrated that protein turnover of thigh muscles, which 

presumably included posterior flexor muscles, is lower in obese vs. lean rats and that this 

suppression becomes less marked with advancing age (106). Thus, although the obese 

phenotype may exhibit a significant repression of mixed protein synthesis rates in earlier 

developmental stages (106), the current study indicates that these perturbations disappear 

or even reverse when the animal reaches musculoskeletal maturity. A recent report 

involving human subjects supports the notion that basal protein synthesis and 

degradation rates are elevated in quadriceps muscle of obese subjects with poorly 

controlled type 2 diabetes (9), but more research is clearly needed to confirm these 

findings and elucidate underlying mechanisms. Considering that much less is known 

about the effects of human insulin resistance on protein metabolism in distal muscle 

groups such as the plantar flexors, most of our current knowledge have been inferred 
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from research completed in metabolic rodent models. The fact that the obese Zucker rat 

exhibits similar vascular and neural dysfunctions that are present in human obesity/type 

2 diabetic conditions makes it a particularly appealing candidate for studying the effects 

of insulin resistance on protein metabolism in distal muscle groups (99). Although our 

results generally corroborate earlier work that has assessed protein turnover in distal 

muscle groups in this rat strain (37, 47, 106), we extend previous observations by 

demonstrating that the suppression is less or non-existent in comparison to what has 

been previously reported, and when a suppression is observed, it is found in sub-

fractions involved in contractile function rather than substrate metabolism. In light of the 

observation that 24-h protein synthesis rates are significantly lower in the myofibrillar 

sub-fraction of the obese phenotype [gastrocnemius], and largely unaffected in 

mitochondrial and cytosolic compartments [gastrocnemius and quadriceps], we surmise 

that the metabolic syndrome is associated with a preferential down-regulation of 

contractile protein synthesis rates whereas manufacture of metabolic enzymes are 

maintained [or slightly elevated] to cope with nutrient excess.  

Perhaps the most interesting finding of this study is that basal mitochondrial FSR 

is not reduced in the gastrocnemius muscle (or quadriceps) of the obese phenotype, 

despite being unable to significantly augment rates of protein synthesis in this sub-

fraction in response to contractile activity. These results are supported by the fact that we 

did not find a phenotypic difference in mitochondrial protein content on a whole muscle 

level, which was attributed to a 31% increase in mitochondrial density in the obese 

cohort (Fig. 5BC). When adjusting protein synthesis rates for sub-fractional 
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concentrations, mitochondrial FSR was indeed elevated ~20% in the obese phenotype 

(Fig. 8F, insert). Our finding that the obese Zucker rat exhibited a robust augmentation 

in mitochondrial density in gastrocnemius muscle corroborates recent work by Holloway 

et al. (69), who reported a significant upregulation of COX-IV and mtDNA (+30% and 

+47%, respectively) in the same muscle group and rat strain. Although these values were 

reported as protein contents, protein expression obtained by Western blotting is 

technically a measure of protein concentration (expression/ug total protein loaded). The 

authors also found that mitochondrial oxidation rates, albeit significantly increased 

compared to the lean phenotype, are attenuated compared to rates of fatty acid transport, 

causing an increased esterification of fatty acids and intramuscular lipid accumulation 

(69). Bach and colleagues demonstrated that the obese Zucker rat exhibits smaller and 

misshapen mitochondria due to a dysregulation in mitochondrial fusion events 

(mitofusin-2), but total mitochondrial volume is normal since mitochondrial density is 

elevated compared to its lean counterpart (6). Taken altogether, these results lend 

support to the notion that mitochondrial dysfunctions per se, more specifically 

reductions in density, total content/volume, oxidation rates, and translational capacity 

(mtDNA), do not have to be present to induce intramuscular lipid accumulation and 

skeletal muscle insulin resistance. We extend these findings by showing that 

mitochondrial synthesis rates, which ultimately regulate biogenesis of the organelle, are 

not impaired in chronically obese states, but may be desensitized to contractile-induced 

stimuli.    
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To further elucidate differences in basal protein synthesis rates between 

phenotypes we performed studies focused on the expression of proteins known to 

regulate nuclear mRNA translation initiation and polypeptide elongation in 

gastrocnemius muscle. We found that the obese Zucker rat exhibits a reduced expression 

of Akt, mTOR, and Raptor, all of which are important upstream mediators of mRNA 

translation and polypeptide elongation. Considering that the Akt/mTOR pathway is up-

regulated during hypertrophy and down-regulated during muscle atrophy (11), it is not 

surprising that knockout models suffer from reduced growth and severe loss of muscle 

mass/function (10, 23, 98, 109). Although a suppressed Akt-mTOR-Raptor expression 

theoretically may attenuate rates of protein synthesis in the obese Zucker rat, our 

observation that phosphorylation states of downstream mTOR targets eIF4EBP1 

(eukaryotic initiation factor 4 binding protein) and p70s6k (p70 ribosomal protein S6 

kinase) are elevated does not support this notion. It is tempting to speculate that, 

although mTOR expression is suppressed in the obese phenotype, the activation of the 

enzyme may be constitutively increased compared to its lean counterpart. Although 

complexation/immunoprecipitation studies need to be completed to confirm this notion, 

several observations in literature support this concept. The current prevailing view is that 

mTOR regulates many fundamental biological processes by integrating both intracellular 

and extracellular signals, including growth factors (insulin) and nutrients (branched-

chain amino acids; BCAAs). A previous study demonstrated that the availability and 

concentrations of BCAAs (primarily leucine) are significantly elevated in hindlimb 

muscles of the obese Zucker rat (64). BCAAs are known to activate Rag GTPases, the 
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Ste-20 related kinase MAP4K3, and the class III PI3-K mVps 34, all of which mediate 

amino acid signaling to mTORC1 and promote p70s6k activation (58, 104). Chronic 

stimulation of p70s6k induces insulin resistance through a negative feedback loop upon 

IRS-1 [pSer 307, pSer 636/639] and knockout models have further corroborated p70s6k 

role in the development of metabolic disease by showing that its deletion protects against 

diet-induced obesity and improves insulin sensitivity (128). Thus, it is possible that 

nutrient overload in the obese phenotype facilitates a constitutively higher level of Akt-

independent mTOR activation, leading to a more pronounced phosphorylation of 

downstream targets of mTOR and insulin resistance. Although it may appear perplexing 

that an augmented phosphorylation of eIF4EBP1 and p70s6k is not mirrored by an 

elevation in global protein synthesis rates in the obese phenotype, we found that 

sedentary obese rats exhibited a more potent deactivation of peptide chain elongation 

compared to lean rats. In support of our findings, recent research has shown that ob/ob 

mice exhibit a greater repression in global rates of muscle mRNA translation compared 

to wild type mice, despite increased activation of p70s6k/rpS6/eIF4EBP1 and reduced 

raptor-associated mTOR (138). Another plausible explanation is that up- or down-

regulation of nuclear translation/elongation steps may preferentially target specific 

compartments of the muscle cell, although an increased/decreased translational 

efficiency of specific mRNA pools is yet to be proven. This would be a particularly 

appealing adaptive mechanism whereby the obese Zucker rat is able to maintain normal 

cytosolic and mitochondrial protein synthesis rates in response to an elevated 

intramuscular lipid load, but at the expense of myofibrillar FSR.  
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Our results demonstrate that the anabolic response of insulin-resistant skeletal 

muscle is blunted following voluntary resistance exercise, and that the effects of insulin 

resistance on cumulative protein synthesis rates are divergent and dependent upon 

myocellular sub-fraction and proximodistal location of the muscle group. We 

acknowledge that physiological adaptations to exercise are intensity-dependent and that 

obese Zucker rats are inherently inactive. In our hands, the obese phenotype mastered 

the movement pattern equally well compared to its lean counterpart and did not require 

an altered absolute exercise intensity or increased negative reinforcement. We believe 

that we promoted an anabolic response in exercised obese rats since phospho/total 

eIF4EBP1 was significantly elevated following resistance exercise when compared to 

sedentary counterparts and even augmented in comparison to the corresponding lean 

group (Fig. 10). Although the mitochondrial response was blunted in gastrocnemius 

muscle, a 12% increase in FSR of this organelle further supports a modest anabolic 

effect in the obese phenotype. The lean rats exhibited a potent augmentation of 

myofibrillar and cytosolic FSR in quadriceps muscle (+40% and +17%, respectively), in 

addition to the already discussed outcomes in mixed gastrocnemius muscle. Although 

unaccustomed exercise may induce muscle damage (91), our progressive RE protocol 

did not promote significant edema as evidenced by no change in wet mass or total 

protein concentrations in either phenotype at the end of the study (Fig. 5-6). 
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CHAPTER III 

SUMMARY AND CONCLUSIONS 

In summary, we provide evidence that protein synthesis of mixed muscle 

homogenates is similar in lean and obese rats, even though the obese phenotype exhibits 

markedly lower muscle mass. While it is tempting to consider that differences in muscle 

mass must be due to an elevated rate of protein degradation or reduced satellite cell 

differentiation, this study offers an exciting alternative possibility. While mixed 

synthesis rates may be similar between phenotypes, the manufacture of specific sub-

fractions of the cell may be very different. For example, our data strongly suggests that 

24-h protein synthesis rates are near normal (and sometimes augmented) in cellular 

compartments containing oxidative and glycolytic enzymes [mitochondria and cytosol], 

but may be relatively repressed in sub-fractions involved in energy utilization and 

muscle contraction [myofibrils] depending upon proximodistal location of the muscle 

group. To our knowledge, this study was the first to demonstrate that insulin resistance is 

not associated with reductions in density or synthesis rates of mitochondrial proteins in 

gastrocnemius or quadriceps muscles of the obese Zucker rat, perhaps at the expense of 

the contractile apparatus. Although at present we cannot provide the underlying 

mechanism(s), it is clear that this fraction-specific phenotypical suppression cannot be 

explained by a reduced expression/activity of proteins in the Akt/mTOR pathway, since 

basal phosphorylation of downstream translation initiation factors are augmented in the 

obese vs. lean phenotype. We surmise that steps involved in polypeptide elongation are 

more strongly controlled in obese rats, or that translational capacity (total mRNA and/or 



 81 

ribosome content) and/or translational efficiency (number of transcripts translated for 

any given mRNA/ribosome content) of specific mRNA pools are altered to cope with 

nutrient overload. Whether translation of specific mRNA pools are determined 

exclusively by the availability of transcripts and/or if there is a preferential regulation of 

what transcripts are targeted for translation remain to be elucidated.  

Although exercise is commonly prescribed to reduce whole-body glycemia in 

type 2 diabetics, the optimal type, frequency, intensity, and duration to achieve 

therapeutic goals are not known. The current study demonstrates a blunted anabolic 

response in myofibrillar, cytosolic, and mitochondrial sub-fractions following acute 

resistance exercise in the insulin-resistant state, suggesting that alternative 

implementation strategies of traditional RE protocols may be necessary for insulin-

resistant individuals to achieve similar gains in muscle growth as healthy subjects. Taken 

together, these findings underscore the importance of assessing synthesis rates of 

specific sub-fractions or individual proteins to fully elucidate the subtle differences in 

protein turnover associated with insulin resistance, and to determine the intracellular 

mechanisms underlying a differential anabolic response to exercise in insulin-resistant 

skeletal muscle.   
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