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ABSTRACT 

A Molecular Mechanics Knowledge Base

 

Applied to Template Based Structure Prediction.

 

(December 2009)

 

Xiaotao Qu, B.S., Fudan University, Shanghai, China

 

Co-Chair

s

 of Advisory Committee: Dr. Jerry Tsai

  
                                                                     

Dr. J. Martin Scholtz

 
  

 

Predicting protein structure using its primary sequence has always been a 

challenging topic in biochemistry. Although it seems as simple as finding the minimal 

energy conformation, it has been quite difficult to provide an accurate yet reliable 

solution for the problem. On the one hand, the lack of understanding of the hydrophobic 

effect as well as the relationship between different stabilizing forces, such as 

hydrophobic interaction, hydrogen bonding and electronic static interaction prevent the 

scientist from developing potential functions to estimate free energy. On the other hand, 

structure databases are limited with redundant structures, which represent a non-

continuous, sparsely-sampled conformational space, and preventing the development of 

a method suitable for high-resolution, high-accuracy structure prediction that can be 

applied for functional annotation of an unknown protein sequence. Thus, in this study, 

we use molecular dynamics simulation as a tool to sample conformational space. 

Structures were generated with physically realistic conformations that represented the 

properties of ensembles of native structures. First, we focused our study on the 
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relationship among different factors that stabilize protein structure. Using a well-

characterized mutation system of the β-hairpin, a fundamental building block of protein, 

we were able to identify the effect of terminal ion-pairs (salt-bridges) on the stability of 

the β-hairpin, and its relationship with hydrophobic interactions and hydrogen bonds. In 

the same study, we also correlated our theoretical simulations qualitatively with 

experimental results. Such analysis provides us a better understanding of beta-hairpin 

stability and helps us to improve the protein engineering method to design more stable 

hairpins. Second, with large-scale simulations of different representative protein folds, 

we were able to conduct a fine-grained analysis by sampling the continuous 

conformational space to characterize the relationship among backbone conformation, 

side-chain conformation and side-chain packing. Such information is valuable for 

improving high-resolution structure prediction. Last, with this information, we 

developed a new prediction algorithm using packing information derived from the 

conserved relative packing groups. Based on its performance in CASP7, we were able to 

draw the conclusion that our simulated dataset as well as our packing–oriented 

prediction method are useful for template based structure prediction.  
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This dissertation follows the style of Journal of Molecular Biology. 
 

CHAPTER I 

INTRODUCTION 

 

 

It has been a principal goal for biochemists to predict protein structure from its 

sequence since Anfinsen’s work showing that a protein is able to refold on its own.1 

With the completion of many genome projects, the application of more accurate protein 

structure prediction methods would have a broad impact on function determination, 

genome annotation and even comprehending cellular processes by helping to defined 

protein pathways. The most direct way to predict the protein structure is energy 

minimization, based on the fact that the native conformation always has the lowest free 

energy in the folding funnel. By following the folding pathway towards energy minimal 

on a given sequence, we should be able to identify the native conformation in the end. 

But the problem, better known as “Levinthal Paradox”,2 which indicates that with too 

many degrees of freedom, it is impossible to sample all available conformations for a 

given sequence of 100 residues. More practically, the energy function used to evaluate 

the structure is not robust enough to discriminate native conformation from decoys (near 

native conformation). Furthermore, the forces that keep protein structure folded, 

hydrophobic effect, hydrogen bond, salt-bridges and etc, are not well understood, as well 

as their contribution and relationship during the folding process.   

Thus, the most accurate way to predict a protein structure now is to use a known 

homologue structure as a template based on the concept that similar sequences usually 
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have similar structures thus similar functions. Methods have been developed for years to 

predict the protein structure using such approach. And it has been improved dramatically 

since the exponential explosion of protein structure database, PDB.3 Even though such 

increase in the number of available structures provides more possible templates for 

sequences with unknown structures, the structure database sill sparsely samples the 

native conformational space and partially because of such non-continuous sampling, the 

current prediction methods fail to provide high resolution and high accuracy structure 

models that is required for biological meaningful interpretation of the predicted 

structures. There is no guarantee that whether or not there will be any valuable 

information can be derived from the predicted structure as well as how much 

information derived from the predicted structure is accurate.  

To have a better understanding of protein folding and the relationship between 

the primary sequence and the tertiary structure, we use molecular dynamics simulation 

as a tool and make use of the molecular mechanics potential within it to sample the near 

native conformational space for ensemble of structures with physical realistic 

conformation. We first study one of the simplest structure elements,  β-hairpin, to try to 

understand the relationship among different forces that can stabilize protein: 

hydrophobic interaction, hydrogen bond and electrostatic interaction between ion-pairs. 

We found that the terminal ion pairs could stabilize hairpin structure with reduced 

hydrophobic core interaction at the strand region. Second, we conducted a large-scale 

analysis on ensemble structures of different protein folds that represent the native 

conformation. We focus on understanding the relationship among side-chain packing, 
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sidechain conformation, and backbone conformation, in another word, on understanding 

what are the characteristics of the native conformation in terms of packing (residue’s 

volume), backbone conformation (torsion angles) and rotamer conformation (rotamer 

angles). We find that the backbone conformation and the packing of the residue 

intervene with each other and can be characterized using backbone torsion angles (φ and 

ψ). We also provide a detailed, steric based explanation of such relationship that 

summarizes previous studies with more details. At last, we developed a method to 

predict structure using the conserved packing information derived from the packing of 

template structures and a scoring function by analyzing the backbone dependent side-

chain packing and conformation in the dynameome dataset. Using CASP7 targets as a 

double-blinded test set, we were able to show that this method is able to improve the 

template structure and provide a different approach of refining the template structure. 

Furthermore, the large-scale molecular simulation, on which our scoring function is 

based, is also proved to provide a fine-grained, continuous ensemble for high-resolution 

study of native conformation and properties of native structure.  

Molecular Dynamics 

Molecular dynamics simulation uses the molecular mechanics potential function 

based on Newton’s second law to simulate movement of atoms over time. Based on the 

Ergodic Hypothesis,4 time averaged properties (simulation of one single molecule over 

long time) are equal to ensemble averaged properties (experimental observation of the 

equilibrium system). Molecular dynamics simulation holds a great potential to represent 

real folding environment especially when the protein flexibility is concerned.5-9 Protein 
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flexibility is important for protein function, such as molecular recognition, enzyme 

activity and protein turnover. Because it is very difficult to determine the protein 

flexibility experimentally, the atomistic simulation becomes the only viable alternation 

for such kind of study.9 Besides studying protein flexibility, molecular dynamics 

simulations can also be used to study the interactions between protein and water 

molecules as well as ions, and to generate model structures in the protein structure 

prediction. Also, molecular dynamics simulations are commonly used in the NMR 

structure determination to determine the protein structure based on experimental data 

because it is the only way to sample the conformational space with physical realistic 

conformations.  

More recently, beyond studying individual molecular system, a lot of effort has 

been applied to create large scaled, systematic molecular dynamics simulations on 

different protein folds to study the overall dynamics of native conformations. A recent 

study using different package of molecular dynamics simulations on 30 protein meta-

folds10 shows that even though the force field applied in different package is different, 

the overall dynamics and stability of all simulations are in consensus,9 which indicates 

the ability of molecular dynamics simulation to sample the near native conformation 

space consensually. Database collecting different molecular dynamics simulation are 

generated and can be used as a knowledge base for understanding native structures.  

Template Based Structure Prediction 

Template based modeling/prediction (TBM) of protein structure, was commonly 

known as homology modeling and more recently, comparative modeling.11,12 It creates a 
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prediction of an unknown structure using a close structural homolog. The new 

designation, TBM, which is started to be used since CASP7,13 is more general and 

allows for the distinct contrast to template free structure prediction, more commonly 

known as ab initio or de novo modeling.14-16 Because it is believed that a representative 

of every protein fold will eventually be solved,17-23 template based structure prediction 

holds a great deal of promise. The availability of a representative fold as a starting 

template for a sequence of unknown structure offers the quickest path to generating a 

model of the real structure. Furthermore, template based methods produce the most 

reliable and accurate predictions of the protein structure aside from experimental 

determination24,25 and have been used successfully in a variety of applications, such as 

studying the effect of mutations, designing site-directed mutagenesis, predicting binding 

sites and docking small molecules in structure-based drug discovery. Unfortunately, the 

imprecise variations between the close template and the real structure produce the major 

source of challenges facing in this field today.  

In general, any TBM method can be classified into four steps26-28 as outlined in 

Figure 1,29 although the delineation between steps is somewhat arbitrary since many 

methods combine steps. First, the parent structure(s) are identified using sequence 

searches against the known structure database (the Protein Data Bank3). Second, the 

initial template structure(s) are constructed by aligning the target sequence to the parent 

structure and by identifying conserved and variable regions. Third, the template 

structure(s) are refined through a combination of backbone moves, side-chain packing, 

and loop modeling of highly variable regions. This step is an attempt to sample the
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conformational space where the native conformation exists and usually a number (on the 

order of hundreds to thousands) of potential models are created. Thus, the last step is to 

evaluate these models and choose the best one whose conformation is closest to the 

native conformation. Usually, the first and second steps occur concurrently, and the 

same can be said for the third and fourth steps. Newer approaches include de novo 

prediction of variable regions during the refinement as well as procedures that iterate 

within different steps to optimize the final structure.29 For the last 14 years, template 

based structure prediction has evolved steadily during 7 CASP experiments13,30-36 and 

now it was able to provide “added value” to the best template structure generated from 

best homologues.37,38 

Packing of Protein 

Packing of the protein is usually addressed using two different models based on 

experimental analysis of protein structure. The “jig-saw puzzle” model states that the 

principle behind the protein folding was the stereo-specific packing of the protein side-

chain and was supported by the evidence that side-chain to side-chain contacts in the 

protein core was highly complimentary.39 Based on it, it is not surprise to find that the 

packing densities in protein cores are close to those of small organic molecules 

crystals.40 On the other hand, “nuts and bolts” model based its theory on the 

experimental finding that protein structure has amazing capability to withstand changes 

by repacking the core as mutations necessitate. For example, it has been found that 7 

methionine mutation of T4 lysozyme can still retain its overall fold41 and two proteins 

with only low sequence identity (24%) have very similar overall folds but different core 
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flexibility.42 A more details review and comparison of two models can be found 

elsewhere.43,44 

Knowledge Based Scoring Function 

Comparing to physical based potential function as used in molecular dynamics 

simulations. Knowledge based scoring function or sometimes called statistical based 

potential function in terms of their different applications has become a standard in the 

structure prediction, especially as the PDB database grows exponentially to provide 

more structural diversity. Knowledge based potentials are derived from statistics of 

native protein structures, where statistics refers to the frequency distribution of a 

calculated property in a set of protein structures.45,46 These frequency distributions can 

be transformed into energy terms as a potential of mean force.47 The focus of these 

statistical functions is to categorize the general features of the native structure. Most of 

these features are simple chemical properties and in effect discriminate based on what is 

more native protein-like. Examples include bond lengths, atom contact distances 

(directly or indirectly based on the analysis of contacts, either inter residue contacts, 

inter atom contacts, or contacts with solvent48). WHAT_CHECK49 and Verify3D50 are 

example of standalone programs that provide such scores and are widely used as a quick 

approach to discriminate non-native conformation from native structure. The greatest 

strengths of statistical based scores are that they are computationally more efficient, and 

they provide reasonable estimates of the characteristics that make up a folded protein.   
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CASP 

CASP (Critical Assessment of Structure prediction) is a large-scale community 

experiment held biannually.38,51 From CASP1 (1994) to CASP7 (2006),13,52-57 prediction 

teams from all over the world applied their prediction algorithms in a double blind test 

against unknown, but solved protein structures. After each CASP, a meeting is held, 

where the performance of all the groups is examined based on their model quality 

compared to the experimentally determined structures. Also, an important aspect of the 

CASP meeting is the sharing/dissemination of successful methods, which has speeded 

the development in the protein prediction field. After the meeting, a special issue of 

Proteins is published, where progress, drawbacks, and future goals are discussed. Given 

its blind prediction feature, CASP has become a standard for testing the merits of any 

structure prediction algorithm.  

Besides CASP, CAFASP58-60 (Critical Assessment of Fully Automated Structure 

Prediction experiment) was used to evaluate automatic structure prediction methods and 

has run in parallel with CASP since 1998 on the same target set. More continuous 

assessment has been done by LiveBench61 and EVA,62 which is also done on a relatively 

large number of prediction targets compiled every week from newly released PDB 

structure. The evaluation from all of these endeavors has been vital to pushing the 

structure prediction field forward.  In addition, they have exposed the exact areas where 

resources and effort need to be placed for advancement of the structure prediction. As a 

byproduct of sharing knowledge and information, much productive collaboration has 

grown from the interactions promoted by this meeting and its assessment of TBM. 
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Beta Hairpin 

Beta hairpin is one of the fundamental structure elements, which are considered 

as building block of the protein structure as alpha helix. But unlike alpha helix,63-65 there 

is relative less study on the conformation and stability of the beta hairpin due to it is 

intrinsic unstableness in solution. Fortunately, with the discovery of self-folded hairpin 

in solution, for example, the second hairpin of protein G, which is one of the first 

hairpins that can form solution structures,66-68 more studies have been done on this 

structure element. Using it as a model system, specific non-covalent interactions that are 

crucial to the secondary structure formation as well as those are important at early events 

of protein folding can be studied.  

The second hairpin of protein G is an anti-parallel, 16-residue hairpin. It contains 

a 4:4 type IV turn69,70 making up by residues 47-50 (sequence DATK), seven possible 

main-chain-to-main-chain hydrogen bonds, a hydrophobic core involves residue Trp43, 

Tyr45, Phe52 and Val 54 and a possible ion pair at the termini.71 These four component 

represent 4 major factors that contribute to the folding and stability of the G-hairpin, the 

intrinsic β-turn propensity,72-74 the hydrophobic interaction of side-chain across two 

strands,75-80 the hydrogen bonds that define and maintain hairpin architecture,81-83  and 

the favored electrostatic interaction.71,84-86 Besides G-hairpin, a lot of other hairpin 

systems have been studied as well as a lot of well-folded “designed beta-hairpins” using 

existing information have also be developed. Our understanding of beta-hairpin 

formation and stability has been progressing in recent years.87 
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CHAPTER II 

MODELING THE PERTURBATIONS OF A TERMINAL  

ION PAIR ON β-HAIRPIN GEOMETRY AND STABILITY 

 

 

Overview 

β-hairpin is one of the fundamental secondary structure elements, which are 

considered as building blocks of protein structure as alpha helix. To understand the 

relationship between β-hairpin stability and its conformational geometry, a series of 

peptides with mutations based on the second  β-hairpin from the B1 domain of protein G 

were studied. In total, eight peptides differing at their N-termini are studied with added 

or deleted potential terminal ion pair interactions. The same set of peptides was used to 

experimentally show that ion pairing between the termini increases β-hairpin stability. 

While each peptide exhibits different ion pair orientations, we find that the ion pair 

interactions between the termini are significant sampling over 60% of our ensemble 

structures. The effects of such terminal interactions were correlated to other β-hairpin 

regions (turn, hydrophobic core, and main-chain hydrogen bonds) in terms of persistence 

and geometry. All the structures in the ensemble maintain a stable turn and significant 

hydrophobic contacts across the strands, which is consistent with previous experimental 

and theoretical studies that the turn and hydrophobic core are important for hairpin 

stability. While the changes in terminal ion-pair interactions do not significantly affect 

the overall hairpin geometry, the results show that terminal interactions increase the 
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stability of hairpin by fixing the termini with a pseudo hydrogen bond ring as well as by 

cooperating with hydrophobic interactions between the strands. Also, the results show 

that the hydrophobic core can accommodate small perturbations and still keep its 

conformational stability. 

Background 

The hairpin we are interested in this study is the second  β-hairpin from the B1 

domain of protein G and we denoted it as G-hairpin throughout this discussion. The G-

hairpin consists of 3 regions defining 4 areas of important interactions: the turn, the 

strand’s anti-parallel main-chain hydrogen bonding, the strand’s hydrophobic core and 

the termini. The G-hairpin’s turn sequence of Asp47-Ala48-Thr49-Lys50 produces a 

type IV turn that shows a high level of stability in both experiments88,89 and 

simulation.90-93 It has also been shown that a well formed turn can increase the stability 

of β-hairpin. For example, changing the turn sequence to D-Pro-Gly to form a Type II’ 

turn has been shown to increase the stability of the G-hairpin.94 Between the β-hairpin’s 

anti-parallel strands, two types of interactions occur: main-chain hydrogen bonds and 

side-chain hydrophobic contacts. Which one is more important to β-hairpin stability is 

under debate since different β-hairpins inconsistently exhibits a preference for either 

one. In the G-hairpin, the zipper model, which is supported by experiments81 and 

simulations,83 emphasizes the importance of main-chain hydrogen bond formation. In 

contrast, a body of theoretical work suggests that the side-chain hydrophobic contacts 

occur early in folding95 and are important in maintaining the β-hairpin conformation.75-80 

By comparison, relatively few studies on the role of interactions between the β-hairpin’s 
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termini have been performed because of the belief that fraying of the termini doesn’t 

permit significant contribution to the β -hairpin stability. In contrast, a MD study 

suggested that a disulfide bond connecting the termini of a 19-residue β-hairpin from 

tendamistat was necessary for the stability.96 For the G-hairpin, in a previous MD study 

shows that ion-pair interactions can form across the termini of the G-hairpin92 between 

the free N-terminal amino group of Gly41 and one of the two carboxyl groups of C-

terminal Glu56 (Figure 2) and these interactions help prevent G-hairpin from unfolding. 

This initial theoretical work has been followed by a number of NMR studies showing 

that ion-pair and aromatic-aromatic contacts placed across the termini exhibit notable 

contributions to β-hairpin stability.97-99 These studies provide a clear picture of the 

nature and contribution of the various interactions to β-hairpin stability. 

Overall, the stability of hairpin is in equilibrium among different types of 

interactions. In this study, by performing MD simulations on the same set of peptides 

that have experimentally shown ion pair stabilization of the G-hairpin structure. We are 

interested in characterizing the peptide geometry necessary to properly present these 

interactions and how/whether these conformations allow the interactions to cooperate in 

the stabilization of β-hairpin structure. Table 1 shows the eight G-hairpin based peptides 

that have been characterized experimentally as well as the number of simulations and the  
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Figure 2: The second hairpin of protein G (G-hairpin). 
Diagrams of the β-hairpin were shown. a) A ribbon diagram of the structure of the B1 
domain of protein G (PGB1100) produced from the crystal structure coordinates (PDB: 
1PGB) using MOLSCRIPT.101 The G-hairpin, residues 41 to 56, is highlighted in red. b) 
Main-chain backbone atoms of the G-hairpin taken from the crystal structure. The 
dashed lines represent the hydrogen bonds formed between backbone atoms. The N-
terminal amino nitrogen (blue ball) and the carboxyl oxygen atoms of Glu56 (red ball) 
are also highlighted. 
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Table 1: β-Hairpin peptide variants 

 
a. Modifications are in bold. Ac stands for acetylation. 
b. Number of simulations performed for each peptide. 
c. Size of the simulation box. 
d. Total number of water molecules surrounding protein in the simulation box. 
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average box size of each simulation. This set of peptides perturbs the interaction 

between the G-hairpin’s termini by differing only in their N-termini. Such modifications 

change the potential for the terminal salt-bridge (hydrogen bonded ion pair interactions) 

involving N termini amide group and C termini carboxyl groups (main chain and side 

chain), while keeping the interactions from other parts of the β-hairpin untouched. The 

following shorthand notations were used to refer to each peptide as well as a brief 

description of each peptide. G41 is the native G-hairpin consisting of residues 41 to 56 

from Protein G (see Figure 1), which can make one of two possible ion pairs between the 

N-terminus amino group and the C-terminus carboxyl group or side-chain carboxyl 

group of the Glu56. K41 is the mutation G41K with increased potential of forming 

terminal ion pairs by adding the positive amino group of the lysine side chain to the N-

terminus, where now extra ion pairs can form.  G40 is one residue longer towards the N-

terminus, which moves the potential salt-bridging interactions out of symmetry. E42 

does the same by eliminating one residue from the N-terminus. For all of these peptides, 

we also study the corresponding N-terminal acetylated versions (Ac-G41, Ac-K41, Ac-

G40, and Ac-E42) that prevent any ion pairs from forming at the N-terminus.  The 

peptides Ac-G41, Ac-G40, and Ac-E42 cannot form any ion-pair interactions between 

the termini, while Ac-K41 can possibly form one between the Lys41 side-chain’s amino 

group and the carboxyl groups of the C-terminus or the side-chain of Glu56.  

Results and Discussion 

Theoretically, the time-averaged properties of structures in ensembles can 

approximate the ensemble equilibrium state and by extension, the properties observed in 
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experiments.  In this study, the ensembles generated by MD simulations are not only 

used to characterize the interactions important to stabilize the β-hairpin conformation but 

also to provide a detailed molecular view of specific interactions. Referring to the 

experimental results, the ensembles generated by MD simulation qualitatively represent 

the experimental observed properties. As a first step, the idealized conformation of the β-

hairpin was used to point out the conformational adjustments caused by the β-hairpin’s 

stabilizing interactions. Then, three regions: turn, strands and termini were analyzed for 

their contribution to β-hairpin stability in various measures of properties, such as 

conformation, hydrogen bonding, ion pair and hydrophobic contact surface area 

(HCSA). Previously, it have been showed that the simulated G41 ensemble produces 

many features similar to the experimental results,92 especially the stability measurement 

of 50% folded for the G41 peptide.102 Therefore, we use the G41 ensemble as a reference 

point for the β-hairpin. In general, we find that the non-acetylated hairpins are more 

stable than their acetylated counterparts are. The terminal interaction doesn’t perturb the 

β-hairpin’s turn conformation and overall geometry, which is consistent with the belief 

that the turn is the folding core of the β-hairpin. However, our results indicate that the 

terminal interaction shows strong salt-bridge features as hydrogen bonded ion pair and 

stabilizes the β-hairpin conformation by acting like a β-sheet hydrogen-bond ring in a 

concerted manner that closes off the hydrophobic core. 

The ideal β-hairpin structure 

Figure 3 shows the ideal β-hairpin structure as the perfect planer structure with 

optimized inter-strand hydrogen bonds (Figure 3a). To highlight the geometric 
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Figure 3: Conformational difference between ideal hairpin and G-hairpin. 
The conformation of G-hairpin in its theoretical, ideal geometry is compared to its native conformation. a) The transparency cartoon 
view shows the β-hairpin conformation in its “ideal/perfect” geometry. All main-chain atoms are in the same plan and the black dash 
line shows the well-organized hydrogen bonds between 2 strands. b) View of the ideal hairpin perpendicular to the hairpin plane. 
Green spheres show the position of Cβ atoms and distance between selected Cβ atoms are measured as dash line. c) View of the 
hairpin in its native conformation at the same angle as b). Side-chains are shown for residues involved in hydrophobic interactions. 
Distance between Cβ atoms corresponding to those in b) are also shown. d) View of the hairpin in c) as the hairpin rotating 90 degree 
into the paper. The size of the sphere for the Cβ atoms is reduced for better illustration. 
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perturbations of the G41 β-hairpin structure, this ideal conformation is used as a 

reference point (Figure 3b). On the hydrophilic side of the ideal β-hairpin, all side-chain 

Cβ atoms point away from each other. On the hydrophobic side, the Cβ atoms point 

towards each other and result in a highly unfavorable Van der Waals clashes. The 

planarity of the backbone atoms as well as the perfect backbone hydrogen bonds places 

the Cβ atoms of the hydrophobic core (residues Trp43, Tyr45, Asp47, Lys50, Phe52 and 

Val54) in such position that they overlap with each other: the 3.1 Å distance between Cβ 

atoms, which is averaged over three pairs of distance shown in Figure 3b, is smaller than 

the sum of radii of two carbon atoms 3.6 Å (Figure 3b). Because they occur between Cβ 

atoms, changing side-chain rotamers cannot relieve such clashes. Furthermore, the 

hydrophobic residues only pack in overlapping pairs and are restrained from forming a 

cluster with each other. To favorably accommodate the Cβ atoms of the hydrophobic 

core, the G41 β-hairpin makes a number of deviations from this ideal. In a comparison of 

the native G41 that is part of the protein G B1 domain to the ideal β-hairpin (Figure 3c 

and 3d), it shows that the changes in the torsion angle rotate the strands along their own 

axes so that the Cβ atoms on both sides of the β-hairpin are nearly perpendicular to the 

hairpin plane. Also, the non-planar turn, which bends over to the hydrophilic side, is 

stabilized by interactions involving Asp46 and it allows for both horizontal and vertical 

shearing between the strands. As seen in Figure 3c, the horizontal shear displaces the 

residues within the β-hairpin plane. Such shearing not only relieves the Cβ clashes 

between residues 52 and 45, but also makes it possible for residues 52 and 43 to packing 

against each other, which completes the hydrophobic core.  As seen from Figure 3d, the 
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vertical shearing of 8° relieves the clash between residues 54 and 43 but keeps them 

packed. In summary, these conformational “rearrangement” not only increase the 

distance between Cβ atoms on the hydrophobic side from 3.1Å to up to 6.6 Å, but the 

twisting of the strands from the ideal planer conformation also improves hydrophobic 

packing by increasing the interactions diagonally across the strands.103 

Turn 

Experimentally, the stability of the four-residue, type IV turn is crucial for the 

formation of the isolated β-hairpin104,105 as well as the overall stability of protein G.88 

Theoretical studies support such findings by verifying that the turn formation is the early 

step during the β-hairpin folding.106,107 It has also been shown that a well formed turn 

can increase the stability of the β-hairpin.72-74 Table 2 lists a number of averaged 

properties of the turn for each β-hairpin variant. Overall, terminal ion pairs effect this 

portion of the structure the least. For the turn, all the ensemble structures have a stable 

turn with CαRMSD values no larger than 0.3 Å and very little variation. We find that the 

side-chain carboxyl group of Asp47 and the side-chain amino group of Lys50 forms an 

ion pair with its occupancy nearly 100% for all the variants. Also, all the structures 

increase the bending of the turn from 70º to around 110° towards the hydrophilic side 

and the torsion angles of such bending are very similar with comparable variations. As 

mentioned above, such bending enables the turn residues to form more interactions, 

especially hydrogen bonds. In particular, a number of hydrogen bonds with high 

frequency listed in Table 2 involve the side-chain carboxyl of Asp46 with other turn
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Table 2: The properties of interactions in the turn region 

 
a The average CαRMSD for the four-residue turn using G41 turn as reference 

structure. The numbers in parentheses are the standard deviation of the CαRMSD. 
b The percentage of structures that have the ion pair formed at the turn region for each 

hairpin respectively. The ion pair forms between the sidechain carboxyl group of Glu50 
and the sidechain amino group of Lys47. 

c Conformation of turn in torsion angles. The Bend angle is measures as the torsion 
angle by pairing Cα atoms of residue 47 to 48 and Cα atoms of 49 to 50. The numbers 
in parentheses are the standard deviation of the torsion angle. 

d The percentage of structures that have hydrogen bonds formed at the turn region. 
Different types of hydrogen bonds are labeled as follows: the amino group of donor and 
carboxyl group of acceptor is shown using 6 letters respectively. Three-letter residue 
code is followed by the residue number and then followed by the atom type, “m” 
indicates mainchain atom while “s” indicates sidechain atom. The amino group of the 
donor is always shown first. Only hydrogen bonds with occupancy bigger than 5% are 
shown.  
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residues that occur across all the variants. Asp46’s carboxyl group interacts 

predominantly with both the backbone and side-chain of Thr49. The significance of 

Asp46 has been noted experimentally.88 The high hydrogen bonding frequency between 

the side-chains of Asp47 and Lys50 indicates that the ion pair formed between these two 

groups is a true salt-bridge. In terms of water penetration, the side chains of the four turn 

residues prefer forming hydrogen bonds within the protein to the water molecules. For 

all of the eight hairpin variants, the turn shows similar conformation, with similar torsion 

angles, small CαRMSD values compared to the native turn, and similar occupancies of 

all the important interactions. As a result, the turn is insulated from changes at the 

termini by the interactions between the strands.  

Strands 

1. Backbone conformation 

As pointed out above, the native G41 structure deviates from an ideal planar 

conformation to allow for better hydrophobic packing. We also expect more deviation 

from our analysis as the β-hairpins are isolated in the solution. Therefore, we used a 

broad range of torsion angles to define the β-sheet conformation: the backbone torsion 

angles of  φ = –180 to –30° and ψ = 60 to 180° and –180 to –150°.108,109 Table 3 

summarizes the variation of the strand conformation for each β-hairpin variant. No 

patterns are found across all the variants, which suggest that the ensembles of these 

peptides are rather heterogeneous within the isolated β-hairpin region. The only 
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Table 3: The properties of strands 
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Table 3: Continued 
 

 
a  The percentage of ensemble structures that have hairpin conformation.  
b The shearing angle between two strands. Standard deviations are shown in 

parentheses. 
c The total number of all hydrogen bonds formed in the ensemble structure. Native 

strands for hydrogen bonds can be observed in the native structure while Total stands for 
all hydrogen bonds in the ensemble structure. 

d The average number of native hydrogen bonds formed in the ensemble structures. 
(*) indicates that the hydrogen bond is not significantly formed (below 5%) while (-) 
shows that it is not formed at all. The hydrogen bonds are labeled from the amino group 
of the donor to the carbonyl group of the acceptor. Standard deviations are shown in 
parentheses. 

e The average number of non-native hydrogen bonds formed in the ensemble of 
structures. 

f The hydrophobic contact surface area (HCSA) between strands.  The Total averages 
over the sum of all the side-chain hydrophobic contacts, while the Cluster averages over 
only the largest hydrophobic cluster. Standard deviations are shown in parentheses. (see 
Methods) 
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observation across all variants is that residues closest to the turn region (Asp46 and 

Thr51) are most consistently in the β-sheet conformation across all the variants. The 

remaining residues are less often in the β-sheet conformation and the occupancy 

decreases as the residue become closer to the termini. Similarly, the residues on the 

hydrophobic side that makes up the hydrophobic core (Trp43, Tyr45, PHe52, and Val54) 

sample the β-sheet conformation more often than those do on the hydrophilic side 

(Glu42, Thr44, Thr53, and Thr55). In Table 3, the vertical shear angle between the two 

strands of the β-hairpin is also measured. If we assume the G41 ensemble as a reflective 

of the native conformation, then the non-acetylated peptides remain closest to the G41 

ensemble’s average value of 18°. Of these variants, the K41 ensemble shows the highest 

average of shearing, which again indicates some perturbation on the conformation to 

accommodate the K41 side chain. The acetylated ensembles’ averages differ 

substantially from the G41 ensemble average.  Ac-G41 and Ac-G40 are upwards 30° and 

28° respectively, while Ac-K41 and Ac-E42 have a low value of 8° with large deviations 

extending into values of negative shearing. Overall, these results show that the ion pair 

at the termini does not restrict conformational sampling by the backbone, but instead 

inhibits the strands from separating.  

2. Main-chain hydrogen bonds 

There are seven main-chain to main-chain hydrogen bonds observed in the native 

G41 from the PGB1 structure as shown in Figure 2b. These hydrogen bonds represent 

the signature interactions of the anti-parallel strands in the β-hairpin. The frequency is 

shown in Table 3 and a schematic representation is shown in Figure 4, where broken 
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Figure 4: A schematic representation of the backbone hydrogen bonds. 
A schematic representation of the backbone hydrogen bonds observed in the ensemble 
structures generated from the MD simulations. Residue is represented as two arms 
(amino group and carboxyl group) with their residue number in the middle. Lines are 
drawn between two arms indicating hydrogen bonds. The dashed lines represent possible 
hydrogen bonds in the crystal structure of PGB1 (native hydrogen bonds in Table 3) and 
the solid lines represent hydrogen bonds only observed in the ensemble structures (non-
native hydrogen bonds in Table 3).  
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lines represent native hydrogen bonds.  In all of the variants, the native hydrogen bond 

closest to the termini (amino of Glu42 to carbonyl of Thr55) is virtually never made, 

which is direct evidence that the ends have frayed.  As with the backbone conformation, 

no strong patterns of hydrogen bonding are observable across β-hairpin variants, with or 

without ion pairs. In general, stronger hydrogen bonding is found nearer the turn. Also, 

an interesting periodicity based on strand direction is noticeable. Native main-chain 

hydrogen bonds are more stable between backbone amino groups of the incoming strand 

(residue Gly41 to Asp46) to the carbonyl groups of the outgoing strand (Thr51 to 

Glu56). Following these observations, the most consistent backbone hydrogen bonds 

occur between the amino group of Asp46 and the carbonyl group of Thr51. Table 3 also 

shows frequencies of non-native hydrogen bonding, which are represented by solid lines 

in Figure 4. All of these are low in frequency, which is less than 50% for all the β-

hairpin variants. It suggests that the variants can sample more conformations that may 

deviate from conformation of the native β-hairpin but still keep that general hairpin 

structure.  For instance, the hydrogen bond between the amino group of Thr44 and the 

carbonyl group of Phe52 involves the wrapping of the two strands around each other, 

which effectively causes a flipping of the carbonyl group of Phe52 from the outside to 

the inside of the β-hairpin. On the other hand, it is also interesting to note that on 

average the K41, which makes a very consistent terminal ion pair, makes fewer native 

and non-native backbone hydrogen bonds than other β-hairpin variants do. Again, the 

terminal interaction involving the long side-chain of Lys41 causes a distortion that 

appears to prevent proper backbone hydrogen bonds. As a measure of strand separation, 
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we also analyzed the hydrogen bonding of main-chain groups to the surrounding water 

molecules (data not shown). Because of the fraying at the ends, it is not surprising that 

the polar groups at the termini are more exposed to the water molecules. Of all the 

variants, the Ac-G40 ensemble shows a tendency for more exposure to water, which 

suggests a relative open structure or less stability. Consistent with the analysis on the 

backbone conformation of the β-hairpin, the terminal ion pairs help to stabilize the β-

hairpin structure by preventing the strands from opening up, but do not significantly 

restrict the structural conformation, except in the case of the K41 ensemble. 

3. Hydrophobic contacts 

Experimental studies supported by the theoretical work showed that moving the 

hydrophobic cluster closer to the termini on the hydrophobic side is destabilizing while 

moving it closer to the turn is stabilizing. Furthermore, G-hairpin’s four middle 

hydrophobic residues (Trp43, Tyr45, Phe52 and Val54) are necessary for its stability. In 

experiments, when either Tyr45 or Phe52 are replaced with Ala, the stability of the G-

hairpin substantially decreased. Molecular dynamics (MD) simulations indicate that at 

least three of these four hydrophobic residues are required to maintain the β-hairpin 

conformation.90 As shown in Table 3, more than 75% of the total HCSA (hydrophobic 

contact surface area) in all the peptide variants is made up of the clustered hydrophobic 

interactions (see Methods). Consistent with previous studies, all the hydrophobic clusters 

involves the 4 interior hydrophobic residues: Trp43, Tyr45, Phe52 and Val54. The 

overall averages in Table 3 show that K41 and Ac-K41 produce the largest clustered 

HCSA, while Ac-E42 has the least. Even so, only small differences separate the peptide 
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ensembles based only on the overall side-chain contribution to hydrophobic burial. 

Providing in greater details, Figure 5 diagrams the contribution of different residues to 

the HCSA that is averaged for each β-hairpin variant, where the line thickness relates to 

the frequency in the ensemble population. For all the ensemble structures, residues 

Asp47 and Lys50 also contribute to the hydrophobic cluster and thereby connect the β-

hairpin turn with the hydrophobic core. The variation among different variants can be 

seen as an interchange between the residues at the termini and the four residues that 

make up the hydrophobic core.  For G41, the ion pair at the termini is tenuously joined 

to the hydrophobic cluster through a hydrophobic contact between Val54 and Glu56.  

The acetylated form of G41 exhibits the same cluster, but it is less prevalent.  Including 

all the interactions of the G41 ensembles, the K41 ensemble strongly links the terminal 

ion pair from Lys41 through both Trp43 and Val54. This capping of the hydrophobic 

core may explain the rigidity of the K41 ensemble.  The Ac-K41 ensemble also shows a 

similar capping pattern of its terminal ion pair.  The remaining four peptides exhibit 

different but interesting behavior. The acetylated versions of G40 and E42 produce 

interactions within their hydrophobic core with higher frequency than their non-

acetylated counterparts do. This result reveals a trend supported generally by all the β-

hairpin variants as well as previously noted:92 the stability relies on the hydrophobic core 

much more without terminal ion-pair interactions. 
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Figure 5: The contribution of different hydrophobic contacts. 
The contributions of different hydrophobic contacts to the hydrophobic core are shown. Residue numbers 
are used to indicate position of residues in the hairpin conformation and lines connecting two residues are 
used to represent hydrophobic interactions. The thickness of the line is proportional to the occurrence of 
the hydrophobic contact in the corresponding ensemble structures. Residue numbers in gray have side 
chains that locate in the hydrophilic side of the hairpin.  
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To further investigate this phenomenon, we analyzed the HCSA distribution in 

the G41 based on whether or not the terminal ion pair forms (Figure 6). The distributions 

clearly show that the terminal ion-pair interaction compensates for a certain amount of 

hydrophobic interaction, such that formation of the terminal ion pair requires less HCSA 

to form a stable hairpin. 

4. Termini 

Table 4 shows how often and what type of terminal ion-pair interaction is formed 

for each β-hairpin variant with the total number of possible ion pairs and a schematic 

representation of different chemical groups that can form ion pairs. The frequency of 

ion-pair interaction can be loosely classified based on the peptide variant’s potential to 

make ion pairs, which begins from K41 with two of four possible ion pairs to G40, Ac-

K41, G41, and E42 with one out of two, and lastly to Ac-G41, Ac-E42, and Ac-G410 

with no ion pairs. K41 and G40 form ion pairs close to 100% during their simulations. 

Since K41 could possibly form four different types of ion pairs (2 at same time), we 

observe that more than one is populated (average of 1.1 per structure for K41). The 

observed NOE contact between the Cα proton of Glu56 and the methylene protons of 

Lys4171 corroborate these findings that an ion pair is well formed in the K41 peptide. 

Because G40 can form only one out of two possible ion pairs, the result for G40 is 

surprising and suggests that such extension of one residue favors ion pair between the 

G40 amino group and the E56 side-chain carboxyl group. 
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Figure 6: HCSA distribution of G41 for structure with/without terminal 
interaction. 
HCSA (hydrophobic contact surface area) distribution of ensemble structures with and 
without terminal ion pairs is shown for the hairpin G41.  Large HCSA values indicate 
strong hydrophobic interaction. The thin line is the distribution of structures without 
terminal ion pairs formed while the thick line is the distribution of structures with 
terminal ion pairs formed.  
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Table 4: Terminal ion pair (IP) and CαRMSD for the MD structures 

 
a The total number of possible ion pairs involving the N- and C- terminal residues. 
b The average number of ion pairs in the ensemble of structures. The dashed lines 

indicate no ion pairs. 
c  The percent occurrence that the ion pairs also form salt bridges, defined by distance 

and angle restraints for hydrogen bonds. 
d  The type of possible terminal ion pairs include N-terminal (Nm) or Lys41 side chain 

amino group (Ns) to C-terminal (Om) or Glu56 side-chain carboxyl (Os).  
e  Representation of possible terminal ion pairs between the backbone and side chains 

with amino groups in black, carboxyl groups in grey, and the acetyl group in white. 
f The average CαRMSD from the structure of G-hairpin in the crystal structure of 

PGB1. The CαRMSD values for the hairpin were subdivided into structures that have or 
do not have terminal ion pairs, respectively and the CαRMSD value using the ideal 
hairpin as reference structure is also listed. The numbers in parentheses are the standard 
deviations of the CαRMSD. 
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For all the remaining three variants that can form one out of two possible ion 

pairs, the Ac-K41 forms the ion pair between the side-chain amino group of Lys41 and 

main-chain carboxyl group of Glu56 with frequency of 90%, which is very similar to 

what is observed in the K41 variant. G41 and E42, the remain two variants that can form 

one out of two ion pairs, show reduced frequencies at about 60%. G41 splits its ion pair 

between two types while E42 favors the ion pair forming between the main-chain 

groups. Because the majority (at least >65%) of the ion pairs can also be classified as 

hydrogen bonds, we could also consider these interactions as salt-bridges. 

The importance of ion pairs in sustaining low CαRMSD values during the 

simulations is shown in Figure 7 where three individual simulations of G41 are shown 

with CαRMSD values (Figure 7a) and the distance between the two charged terminal 

groups that can form ion pair, Gly41 and Glu56 (Figure 7b). When ion pairs are formed, 

which is defined as the distance of two opposite charged groups is smaller than 3.5 Å, 

(the blue curve in Figure 7b), lower and stabilized CαRMSD values are observed (blue 

curve in Figure 7a). Whereas, when ion pairs are not formed (the black curve in Figure 

7b), larger and increasing CαRMSD values are observed (black curve in Figure 7a), that 

increase over the entire trajectory. In particular, the appearance of an ion pair forming in 

the middle of simulation (red curve in Figure 7b), the CαRMSD value decreased and 

become stable for the rest of the simulation (red curve in Figure 7a). Similar trends can 

be observed for other β-hairpin, which indicates that the forming of terminal ion pair can 

stabilize the hairpin.  
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Figure 7: The CαRMSD value and distance of terminal ion pair over time.  
CαRMSD values and distance of terminal ion pair over time are shown. Data were 
plotted for three individual simulations of G41 over 10 ns. a) shows the CαRMSD 
values over time for 3 simulation. b) shows the distance between two terminal groups 
(amino group and carboxyl group) that can form ion pair over time. The distance was 
calculated as the shortest between two terminal groups and whenever the distance is 
smaller than 3.5 Å (dash line), the ion pair is formed. The blue line indicates the ion pair 
is formed at the very beginning of the simulation, red line indicates the ion pair is 
formed in the middle of simulation and the black line indicates no ion pair is formed 
during the simulation. (Fig 7 in Huyghues-Despointes, B. M. and et al. (2006) Proteins 
63, 1005-1771).
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In Table 4, CαRMSD values of the eight G-hairpin variants are shown with 

different classifications, which can be used to indicate the relative stability of the 

hairpin. The CαRMSD values were measured against the coordinates of the G41 in X-

ray structure for each variant. We assume that larger CαRMSD values with larger 

deviations indicate less stability. In general, the ensemble-measured stability is 

consistent with the experimental results that the acetylated hairpins are less stable than 

the non-acetylated ones.71 Of the non-acetylated peptides, it is surprising that the K41 

peptide ensemble exhibits the largest average CαRMSD value, suggesting that the β-

hairpin conformation have to be changed to maintain its ion-pair interactions.  

 To better compare to the experimental determined stability of eight G-hairpin 

variants, the distribution of the CαRMSD values for each hairpin variant are shown in 

Figure 8. For all the variants, there is an initial of ~1.2 Å CaRMSD change in the value 

because the G41 was modified for each particular variant and minimized in the presence 

of water before each simulation (see Methods). Although, the same CαRMSD value 

doesn’t directly imply the same structure, a single peak in the CαRMSD distribution 

suggests a single population of hairpin conformation with less variation in the structure, 

in another word, more stable structures. Based on this, the difference between non-

acetylated and acetylated  β-hairpin variants is clear: the non-acetylated variants show 

populations generally exhibit narrow CaRMSD distributions with mean values below 2.5 

Å, while the acetylated distributions are wider with mean values above 6 Å.  
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Figure 8: The distribution of CαRMSD for each β-hairpin. 

The probability distribution of the average CαRMSD in the MD-generated ensemble of 
structures of a) G41/Ac-G41, b) K41/Ac-K41, c) G40/Ac-G40, d) E42/Ac-E42. Non-
acetylated peptides are in black, and acetylated peptides are in red. (Fig 8 in Huyghues-
Despointes, B. M. and et al. (2006) Proteins 63, 1005-1771).
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Conclusion 

Although the contribution of weak interactions on β-hairpin stability, such as an 

ion pair, is believed to be hard to observe, a previous study110 showed that the total effect 

of 2 ion pairs (one near the turn, the other near the end) is bigger than the sum of each 

single ion pair. Given the fact that there is one ion pair interaction observed in the G41 

structure between the side-chain carboxyl of Asp47 and the side-chain amino group of 

Lys50, which is with 100% occupancy in all eight β-hairpin variants in our study, we 

expected to be able to observe the effects of terminal ion-pair interactions in our study. 

We have studied the changes in CαRMSD, backbone torsion angles, hydrogen bonds, 

hydrophobic interactions and turn conformation for β -hairpin structures with different 

ion pair interactions at the termini. Our results indicate that the presence of the terminal 

ion pair(s) doesn’t fix a structure into a more β-hairpin like conformation.  Instead, the 

ion pair improves the hairpin stability by preventing the β-hairpin’s strands from fraying. 

In a survey of protein structures, it was found that anti-parallel β-sheets more often finish 

with non-hydrogen bonded residues.111 Thus the presence of a terminal interaction can 

act like another pseudo hydrogen bond ring that caps the open end of the β-hairpin. Such 

a pseudo hydrogen bond ring has the potential to prevent the end from opening up, 

which is believed to be the first event of the unfolding of the β-hairpin. Also, terminal 

ion pair can cooperate with the hydrophobic core interactions in two ways: first, by 

directly take part in the hydrophobic cluster, as seen in the K41 variant, to increase the 

overall strength of hydrophobic interaction. Second, while fixing the ends with a 

terminal ion pair decreases the entropy, such entropy loss can be compensated by the 
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added entropy gain in the hydrophobic core as seen in Figure 5 and Figure 6, which 

suggests that by forming a terminal ion pair, it reduce the requirement of forming a tight-

pacing hydrophobic core as well as increase number of conformation with different 

combination of hydrophobic interactions. In other words, the forming of the terminal ion 

pair can potentially broaden the energy well to allow more flexibility in the β -hairpin 

conformation.  

Materials and Methods 

Generating the ensembles 

We ran a total of 108 simulations lasting 10 ns each using the potential energies 

and the F3C water model in the ENCAD program.112-114 The coordinates of G41 (C-

terminal residues 41 to 56) were taken from the crystal structure of 1PGB,100 placed in a 

box of water, and minimized. The box of water was trimmed so that the edges were at 

least 8 Å away from the closest protein atom. All water molecules within 1.67 Å of the 

protein were removed and the box sides were corrected to match the density of water 

(0.997 g/ml) at 298 K.115,116 Box sizes and number of water molecules for each variant 

are given in Table 1.  Sodium or chloride ions were used to replace water molecules at 

random positions to yield an electrically neutral system. This system was relaxed by 

performing 3,000 conjugate gradient energy minimization steps in the following order. 

First, the protein was fixed, and the water molecules were minimized over 1,000 steps. 

The protein was then minimized in 1,000 steps, holding the water molecules fixed.  

Finally, the whole system was relaxed in the last 1,000 steps. To obtain different runs, 

the system was equilibrated to 298 K with different random seed numbers. During the 
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simulation, the coordinates of the structure were updated at two femtosecond intervals 

and sampled every picosecond (or 500 steps). Therefore, each 10 ns simulation 

generated 10,000 structures. Modifications were made by modifying the structure file of 

the G41. The coordinates of backbone atoms remained unchanged while the side-chain 

atoms that were to be changed were deleted and regenerated within ENCAD using 

standard residue conformations before the water was added.  

Ideal “planer” hairpin 

The “ideal” β-hairpin structure was built based on the following criteria. First, all 

the backbone atoms were placed in the same plane. Second, for proper anti-parallel 

structure, main-chain hydrogen bonding rings should be made between residues 46 to 

51, 44 to 53, and 42 to 55, respectively. Hydrogen bond distances needed to be below 

3.5 Å and hydrogen bond angle greater than 120° but less than 180º between atoms N, O 

and C. Third, the turn beginning at residue 47 and ending at residue 50 was placed in the 

same plane as the strands are. Based on these requirements and a standard residue 

conformation,117 the backbone was first defined. The angles between each bond formed 

by backbone atoms are all set to 120º and the bond length for N-Cα, Cα-C and C-N is 

set to 1.44 Å, while it is 1.24 Å for C=O. Then 2 anti-parallel strands with 8 residues 

were aligned with each other to allow proper hydrogen bonding between strands. 

Finally, keeping Cα atoms of residue 46, 47, 48 and residue 49,50,51 in a line 

respectively with Cα atoms of residue 46 and 51 fixed, the turn is made by rotating these 

two lines towards each other simultaneously in the same plane of strands until the Cα 

atoms of residue 48 and 49 are within 3.8 Å, which is the distance between Cα atoms for 
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2 peptide bonded standard residues. Finally, the side chains are built on using the native 

conformation from the X-ray structure of G-hairpin.  

Analysis 

Programs written in C and PERL were used to analyze the structures resulting 

from the various MD simulations. The structures were viewed using Pymol.118 Only the 

structures within the last 9 nanoseconds were used to analyze the β-hairpin structural 

features and patterns of stabilizing interactions (hydrogen bonds, hydrophobic contacts, 

and ion pairs).  For each β-hairpin variant, properties were averaged over all ensemble 

structures. CαRMSD values were calculated using the method of Kabsch and Sander.119 

The frequency were calculated and represented using the R package.120  

Hydrogen bonds were defined as those between the donor hydrogen and the 

acceptor oxygen, where the distance between hydrogen and oxygen was less than 2.6 Å 

and the angle formed by the acceptor oxygen, hydrogen, and the donor atom had to 

be greater than 120º. The definition of an ion pair was based on a simple distance cutoff, 

which is 3.5 Å between the positively charged nitrogen of the amino group and the 

negatively charged oxygen of the carboxyl group. Because a salt-bridge is a hydrogen-

bonded ion pair, its definition required satisfying both the hydrogen bond and ion pair. 

The hydrophobic contact surface area or HCSA was calculated using the Voronoi 

Polyhedra method.121 Two carbon atoms sharing a polyhedron face are considered as a 

contact and the area of that face is defined as HCSA of such contact. Finally, 

hydrophobic clusters were defined by the biggest side-chain to side-chain contact 
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network. For example, if residue 41 contacts residue 42 and residue 42 contacts residue 

43, then all residues were considered to belong to one cluster.  

The geometry of the equilibrium ensemble β-hairpin variants was compared to 

the “ideal” planar conformation in the following features in the turn bend angle and the 

strand shear. The bend angle of the turn was defined as the torsion angle between Cα 

atoms of residue Asp47, Ala48, Thr49, and Lys50. The strand-shearing angle is 

measured between the lines formed by the Cα atoms of residues Gly41 to Asp46 and 

Lys50 to Thr55, respectively.  
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CHAPTER III 

CHARACTERIZING THE BACKBONE CONFORMATIONAL 

DEPENDENCIES OF RESIDUES USING  

MOLECULAR DYNAMICS SIMULATION 

 

 

Overview 

In a fine-grained analysis of protein structure, we investigated the relationship 

that a residue’s backbone conformation has with its side-chain packing as well as 

conformation. To produce continuous distributions for each amino acid, we ran 

molecular dynamics simulations over a set of protein folds (dynameome). In effect, this 

dynameome samples the near-native conformational space of protein structures. As an 

extensive set of data, the dynameome has the advantage of representing known 

conformations that are not well represented in the structure database (PDB). In our 

analysis, we characterized the mutual influence that the backbone φ,ψ angles have with 

the first side-chain torsion angle χ1 and the volume occupied by a side chain, 

respectively. Furthermore, we explored the dependency of these relationships on side-

chain environment and amino acid identity. Generally, our results imply somewhat 

counterintuitively that side-chains pack more densely in regions where extended β-sheet 

backbone conformation is preferred and less densely in regions where α-helical is 

preferred. As expected, residue volumes on the protein surface were larger than those in 

the interior. For the first side-chain torsion angle χ1, our results are consistent with 
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previous studies of known protein structures, but with higher resolution. We found that 

the gauche-, gauche+, and trans rotamer conformation show ψ dependent patterns, and 

variations in the χ1 value are only skewed to one side of their canonical values. By 

demonstrating the utility on dynameomic modeling of the native state ensemble, this 

study reveals the interplay among backbone conformation, residue volume and side-

chain conformation. 

Background 

During the past 14 years, the progress made in predicting protein structure from 

amino acid sequence has been accomplished with simple representations of side chains, 

for example, as a single centroid. As a step to improve prediction accuracy, we pursue a 

higher resolution description of the relationship between backbone and side-chain 

conformation. In particular, our study seeks to better understand the determinants of this 

relationship.  

It has been proposed that the local main-chain conformation has the greatest 

influence in determining the side-chain conformation.122 Given the native backbone 

conformation, accurate packing of side chains can be achieved.123 At the same time, 

side-chain conformation also effects the backbone conformation.124 The most widely 

used description relating backbone and side-chain conformation are rotamer libraries.125-

130 A rotamer library clusters the observed conformations of side-chains into groups, 

from which Bayesian distributions can be derived. Populated rotamers are thought to 

reflect local minima on a potential energy map or to represent an average conformation 

over some region of dihedral angle space.128 Even though recent rotamer libraries have 
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benefited from the increased number of structures (especially high-resolution structures) 

in the PDB,3 these libraries’ coverage of conformational space is still limited due to the 

sparse sampling in the PDB and the fact that PDB structures are closely clustered around 

the minimum-energy X-ray crystal structure. Furthermore, structures deposited in the 

PDB seldom reflect the simplified states of side-chain conformation in rotamer 

libraries.131 Broad distributions of side-chain dihedral angles are often observed.132,133 

Many rotamer conformations that can be accommodated by residues, such as those on 

the surface, are highly under-represented in crystallographic structures. Thus, sampling 

side-chain conformations from a continuous conformational space would provide higher 

accuracy.  

Second, to reduce system complexity as well as to address the inadequate 

sampling, rotamer libraries bin side-chain conformations based on the three most 

populated rotamer conformations around each bond between heavy atoms: gauche+, 

gauche- and trans. In addition, the backbone conformation is also binned to discrete 

areas of secondary structure space. By defining side-chain conformations in this way, 

rotamer libraries decrease the combinatorial complexity of packing/placing side chains 

in protein structure prediction. The result of this approximation is that rotamer libraries 

are a low-resolution description of the relationship between backbone and side-chain 

conformation. Suggested library improvements include adding extra information, such as 

a side-chain-orientation-dependent term134,135 or the addition of solvated rotamers, in 

which several water molecules accompany the rotamer.136 Moreover, a refined rotamer 

library, in which only high resolution, non-clashed side-chains are included with smaller 
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and more continuous bins has greatly improved the accuracy over other rotamer 

libraries.129 However, current approaches using rotamer libraries are reaching their 

limits.137,138 In template-based modeling, starting templates cannot be refined towards 

the native structure because current methods cannot resolve over- or mis-packed side 

chains.  

As a step towards improving the refinement of protein models, we have 

undertaken a study that provides a more detailed description of the relationship between 

a residue’s backbone conformation and its side chain conformation. To produce a more 

complete view of the native state in the conformation space, we follow the approach of 

previous work139 and generate a dataset of molecular dynamics (MD) simulations over a 

set of protein folds (dynameome).140 These dynameomic approaches have been shown to 

accurately sample the structures in the near native conformational space across different 

protein folds and reproduce the ensemble properties of the native state environment.9,141-

143 Therefore, the purpose of our dynameome dataset is to model a more continuous set 

of native conformations, as opposed to the classic use of molecular dynamics 

simulations for time dependent information. Containing over 4 million structures, this 

dynameome allows a more refined view of protein structure. Specifically, we investigate 

the mutual dependence of backbone conformation (φ,ψ), the volume occupied by the 

residue and the first side-chain rotamer angle (χ1). Our analysis finds that side-chain 

volumes exhibit a somewhat counterintuitive dependence on secondary structure. In 

addition to previous analysis of the PDB database, we detail the backbone’s influence on 
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each of the 3 χ1 rotamer angles. We also investigate the effect that χ1 has upon residue 

volume. Furthermore, we discuss the physical basis for each of this analysis. 

Results and Discussion 

The dynameome dataset 

In this study, the purpose of the dynameome dataset is to provide a more 

complete sampling of the native conformational space instead of the usual kinetic 

properties measured in MD simulations. As a first step, we chose a set of structures that 

broadly represents all protein folds. Using the SCOP144 classification (Table 5), the set of 

85 starting structures consists of 25 α-helical proteins, 19 β-sheet; 27 are mixed α/β, and 

14 belong to the “other” classification. The largest structure (1AKR145) is an α/β protein 

with 147 residues, while the smallest one (1G7A146) has 21 residues and is classified as a 

small protein in SCOP. To insure that the MD simulations not only sampled the near 

native conformations but also sample as many as rotamer configurations, an averaged 

CαRMSD of 4 Å from their starting structures was used as cutoff. This cutoff reduces 

artifacts from non-native conformations but ensures plenty of conformation sampling. 

The dynameome drifts on average 2.6 Å CαRMSD from the native structure with a 

standard deviation 0.5 Å per fold. Such a small deviation demonstrates that our 

dynameome dataset only samples conformational space close to the native conformation. 

Table 6 summarizes some simple properties for each protein fold. With each simulation  
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Table 5: SCOP classification of simulated folds 

 
a  Number of residues.  
b SCOP classification of “other” contains classification of small proteins: 1g7aA, 

1sgpI, 1isuA, 1nxb, 1f94A, 1vfyA and 1i71A; coiled coil proteins: 1jekB, 1jekA and 
1svfA; peptides: 1et1A, 1ppt and 1wfbA; designed proteins:1g6uA 
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Table 6: Summary of MD simulation 
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Table 6: Continued 
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Table 6: Continued 

 
a The number of water molecules surrounding protein molecules in the simulation box. 
b The size of simulation box. 
c The averaged CαRMSD value for all the simulations when comparing to the native 

structure. 
d The average of all the simulations in the dynameome dataset 
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resulting in 9,000 structures (see Methods),our dynameome dataset contains near 4 

million structures for analyzing the ensemble-averaged properties of the native state. 

Our analysis focused on the relationship among the backbone conformation, residue 

packing, and side-chain conformation. 

Residue volumes of the 20 amino acids 

In Table 7, the average residue volumes were measured over the dynameome 

dataset for each of the 20 amino acids and compared to the residue volumes calculated 

from the ProtOr, a standard set of protein atom volumes representing well-packed 

residues.147 As expected, the average residue volumes calculated from the dynameome 

are larger than the ProtOr set on average by about 3%. It has been shown that residues 

are more regularly packed the deeper they are buried in the protein, which results in 

smaller volumes, as opposed to the heterogeneous packing at the protein/water interface, 

which results in larger volumes.147,148 As contrasted in the middle columns of Table 7, 

buried residues exhibit smaller volumes by about 4% on average than their respective 

exposed residues. For example, the difference between buried and exposed GLY is 3 Å3 

or about 5% of its calculated volume. Comparing the volumes of buried residues 

calculated from the dynameome dataset to the volumes from the ProtOr, they are more 

similar to each other, but there are some notable differences between the two sets. The 

CYS, TRP, and MET residues are significantly larger, whereas the charged ASP, GLU, 

and LYS are smaller. The largest volume difference comes from the ProtOr’s CYS 

volume, which is 19 Å3 smaller than ours, corresponding to 15% of its average volume. 
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Table 7: Residue volumes for the 20 amino acids 

 
a Residue’s volume averaged over all the structures in the dynameome dataset 
b Residue’s volume based on previous calculation of ProtOr dataset of buried residue. 
c Residue’s volume in different secondary structure conformation, E: strand, H: helix, 

C:coil and T:turn.   
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The primary factor for this difference is that the CYS residues used to define the ProtOr 

set were mostly disulfide bonded,147 which significantly reduces a CYS residue’s 

volume. The dynameome possessed mostly reduced CYS residues, which are expected 

to show larger volume values. The volumes for buried charged groups ASP, GLU, and 

LYS from dynameome dataset are 13%, 11%, and 8% smaller respectively, than those 

from the ProtOr set. Since these are all buried, we find that they are forming salt-bridges. 

Due to the strong electro-constriction in a salt-bridge,149 the overall residue volumes for 

these are smaller. However, the remaining 14 residues deviate by an average of less than 

3% from the ProtOr values. Therefore, volume values of buried residue calculated using 

the dynameome dataset are generally consistent with the ProtOr volumes calculated from 

crystal structure data. Furthermore, this result supports the idea that our dataset is a good 

approximation of the native conformation.  

Table 7 also shows the averaged volume of 4 classifications of secondary 

structure. When comparing an individual residue’s volume across the secondary 

structure, two interesting features are observed.  First, there is no large difference 

between the volumes associated with different kinds of secondary structure. It is 

commonly assumed that residues in α-helices and β-strands pack well; in turns 

moderately well; and in coils more loosely. However, Table 7 shows a maximum residue 

volume variation within secondary structure of only about 10% (data not shown), and 

the average difference between secondary structures is only 1%. Such small volume 

differences suggest that packing is not optimized for helices and sheets over other 

secondary structures. The second feature is that these small differences show a different 
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order to how well the residue can be packed into secondary structure. Even though the 

volume differences reported in Table 7 among all the secondary structure elements are 

small, from 1 to 2 Å3, the large size of our dataset strongly supports that these minor 

differences are meaningful properties. There is a general trend that residues in strands 

exhibit the smallest volumes followed by coils/turns and then those attached to helices 

usually show the largest residue volumes. On average, comparing strand to helix, a 

residue in a strand occupies only 98% as much volume as the same residue in a helix. If 

we assume that smaller volume indicates denser packing, our results demonstrate that 

sheets pack best, followed by turns/coils and lastly by helices. This ordering is somewhat 

counterintuitive since the helical and coil backbones pack the tightest, whereas sheet and 

coil backbones less well. Yet, when including the full residue’s side chain, it makes 

sense that regular sheet conformations allow tighter residue packing than helices do with 

side-chains extended radially from a helical cylinder. 

Volume variation with backbone conformation (φ,ψ) 

To show the dependence of side-chain volume on the backbone conformation in 

more detail, the residue volume dependence on backbone torsion angles φ,ψ is plotted in 

Figure 9.  Residue volumes were “normalized” for comparisons by expressing them as 

the percent of the corresponding amino acid’s mean volume or vol% (see Methods for 

details). Using the color scale with bluer indicates larger than average volumes (looser 

packing) and redder indicates smaller than average volumes (tighter packing). Figure 9a 

plots the vol% versus φ,ψ for 408 experimentally determined structures selected from 

the PISCES.150 This distribution from the PDB data is somewhat irregular even with the 
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Figure 9: Residue volume versus backbone conformation. 
The percentage of the mean volume (vol%) is shown as contour plots in backbone 
torsion angle spaces (φ,ψ). A color scale is used, where blue indicates larger volumes 
and red indicates smaller volumes. a) Analysis over a set of 408 PDB structures. Using a 
5º resolution for φ,ψ values, vol% ranges from 82% to 110%. b) Results from our 
dynameome dataset with 1º resolution. The vol% ranges from 96% to 103%. Comparing 
the two plots, both a) and b) share similar patterns. The extra area in left-handed helical 
region in Figure 9b when comparing to the PDB plots in Figure 9a is due to the 
increased conformational sampling of exposed residues.  
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interpolation performed by the R statistical package.120 This is especially true in the 

right-handed helical region that shows non-uniform patches of residue volumes. Even so, 

the distribution shows certain areas of the Ramachandran plot pack differently than 

others, where smaller residue volumes are seen φ,ψ values of -180°, 180° and larger 

volumes can also be seen in the right handed helical region (discussed in more detail 

below). Our dynameome dataset (Figure 9b) was able to reproduce this distribution 

exhibited by the experimental PDB data. The dynameome results are also consistent with 

other Ramachandran analysis151-154 by showing no values in strongly disallowed regions. 

For example, the blank region around φ = 0 in Figure 9b represents steric clashes 

between Oi-1...Ni+1, Oi-1...O and Oi-1...C. An increase population in the αL 

conformation was also observed as expected from other studies using MD simulation to 

sample the conformational space, corresponding to the residues in the exposed portions 

of the protein that lacking regular secondary structure155,156 and these residues are 

believed to be critical for β-structure.157 The range of residue volumes from the 

dynameome is not as broad as those from the PDB. Since the PDB structures don’t 

include all water molecules that surrounding the protein, we have to put protein 

molecule into fixed water box (see Methods) to calculate the volume, such 

approximation could cause cavities at the water-protein interface, produces larger 

volumes for the surface residues, thus increase the variation of volume values in the 

PDB dataset (Figure 9a).  Basically, the dynameome data plotted in Figure 9b can be 

seen as representing an energy landscape hosting a collection of conformations with free 

energy close and slightly higher than the native conformation, supporting the idea that 
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our dynameome dataset is an approximation of the near native ensembles. Comparing to 

the sparsely sampled conformational space using the experimental structures from the 

PDB, the dynameome’s broad sampling of protein structures is seen in recent MD 

simulation of studying backbone conformation propensities156,158 and it produces a far 

smoother distribution. The plot of this data in Figure 9b clearly depicts the smooth 

dependency of residue volumes on backbone conformation. The connected region 

between right handed helical and sheet region can also be seen as well as the expected 

increment of population in region where the αL conformation is preferred. This ability to 

sample over many possible conformations in the native ensemble allows us greater detail 

in the characteristics of native structure. 

Figure 9b and Table 7 both show that packing volumes don’t vary greatly. In 

Figure 9b, the range of variation is about 7%, from 96% to 103% of the mean volume of 

each residue; in Table 7, it is about 1% for different secondary structure. The reason that 

the volume differences associated with different types of secondary structure in Table 7 

are smaller than the volume differences seen as a function of φ and ψ is that the values in 

Table 7 are averaged over large regions of φ,ψ space. However, when considering a 

dense packing environment like the native conformation, even this limited amount of 

variation, which ranges from about 5 to 25 Å3 in volume or 1 to 2 Å in radius, is 

significant.  It is about the same size as the static variability seen among structures with 

clear sequence homology, and corresponds roughly to the volume of one atom. In 

another word, even a small backbone or side-chain conformational changes in one 

residue can cause significant changes in its packing environment. Meanwhile, the 
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average standard deviation is 7% of the mean volume and shows no dependency on the 

backbone torsion angles (data not shown), indicating that the flexibility of side-chain or 

the flexibility of the protein packing is not determine by the backbone conformation. 

In keeping with Table 7, Figure 10a and 10b show the differences in residue 

volumes and therefore packing between buried and exposed residues, respectively. All 

volumes in Figure 10a below the mean volume of the residue (vol% < 100), which 

indicates that buried residues generally occupy smaller volumes and pack tighter than 

exposed residues in Figure 10b. Furthermore, buried residues in regions where β-sheet is 

preferred pack even tighter than Figure 9b indicates. The vol% values of up to 4% 

smaller or 92% were found consistently in this region for buried residues (data not 

shown). In order to keep a consistent scale without losing details, data point with volume 

value lower than 96% in Figure 10a were rounded as 96% in Figure 10. By optimizing 

the main-chain hydrogen bonds, this region of φ,ψ space has the potential to promote the 

tightest packing of side-chains, and even more so for buried residues. Figure 10a and 

10b also reveal dramatic differences in the backbone conformational freedom between 

buried and exposed residues. For buried residues, Figure 10a shows very limited 

sampling of φ,ψ space, populating only the regions of well-defined secondary structure 

near the center of the sheet region and right handed helical regions. Therefore, residues 

on the protein interior are conformationally restricted. On the other hand, exposed 

residues in Figure 10b exhibit the same range of sampling as seen in the dynameome 

dataset in Figure 9b. Figure 10a and 10b shows the different influences that non-loc
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environment has on protein volumes and packing. In addition to the tighter interior 

packing, the very restricted conformational space sampled by buried residues in this 

study suggests that theoretical studies of protein folding (as well as structural 

verification procedures) which use crystal structures from the PDB could benefit from 

integrating information of solution-like structures.  

As mentioned earlier, the most striking feature of Figure 9 is that they show a 

clear dependence of the residue volumes on the backbone conformation. In other words, 

different φ,ψ regions foster different packing environments. To further investigate this 

relationship, we split up Figure 9b into the four classes of the secondary structure as seen 

in Figure 10c to 10f. Because PROMOTIF defines secondary structure primarily on 

hydrogen bond patterns instead of torsion angles,159 secondary structure classes aren’t 

necessarily restricted to the backbone torsion angle space as the Ramachandran plot 

normally suggests, we find residues classified as α helices have backbone conformation 

in the region where β-sheet is preferred (Figure 10c), and vice versa (Figure 10d). 

Regardless of these inconsistencies, Figure 10c to 10f show that the pattern of residue 

volumes over φ,ψ is consistent across and therefore independent of different secondary 

structure classifications. Therefore, the backbone conformation only can be used to 

discuss the plots in terms of the dependence. Overall, Figure 10 confirms that residues 

pack more loosely in regions where right-handed helical is preferred than they do in 

regions where β-sheet is preferred. The helical region shows a saddle-like pattern, where 

residues pack more loosely toward the saddle’s edges, in the H, C, & T classes of 
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secondary structure where it is populated (Figure 10c, 10d, and 10f, respectively). For an 

α-helix, this less dense packing corresponding to the conformational requirement for the 

sidechain to point radically away from the cylinder formed by the backbone. In contrast, 

the sheet region in the upper-left corner defined by -180 < φ < -125º and 125º < ψ < 180° 

exhibits tighter packing. Structurally, this region corresponds to an alignment of the 

CO…HN dipole-dipole interaction between two strands,154 indicating that strand to 

strand main-chain hydrogen bonds promote/permit tighter packing.. In addition, this 

region is dominated by the gauche+ conformation of the side-chain χ1 rotamer, which 

has a relatively small packing environment (discussed later). Interestingly, these figures 

all show some dependency on ψ values. A “belt” shape (-100º < ψ < 80º), including 

regions where the left handed helical conformation is preferred, prefer an overall looser 

packing of residue, while outside the “belt”, tighter packing that extends into sheet 

region is observed.  

Figure 11 shows the variation of vol% with respect to φ,ψ for individual amino 

acids. We will discuss them in terms of their distribution of vol% and population. In 

general, the vol% patterns show that the residue occupies more volume when its 

backbone conformation falls into the right-handed helical region than it does in the β-

sheet region. There are some interesting consistencies among residues very similar to 

what we have seen in Figure 9: a shape of saddle is usually observable in the region 

where right-handed helical is preferred and the packing is less dense towards the edges. 

CYS and VAL are exceptions that they pack consistently less densely through the 

middle of this helical region. In region where β-sheet is preferred, all amino acids pack a 
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Figure 11: Residues’ volume of 20 amino acids versus the backbone 
conformation. 
The percentage of the mean volume (vol%) is shown as contour plots in the backbone 
torsion angle spaces (φ,ψ) for each amino acid. A color scale is used, where blue 
indicates larger volumes and red indicates smaller volumes. The scale is kept consistent 
across all plots for easy comparison. The order of residues is the same as it is in Table 7, 
starting from GLY and ending up with GLU from top to bottom and left to right. Gray 
background was used to distinguish different physical properties of amino acid’s R 
group. From left to right, top to bottom, area a) consists amino acids with nonpolar, 
aliphatic R groups, area b) consist amino acids with polar but uncharged R groups, area 
c) are amino acids with aromatic R groups and area d) and e) are amino acid with 
charged R groups, in which d) are positively charged and e) are negatively charged.  
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little more densely than average. The amino acids HIS, GLY, MET, PHE, SER, THR, 

TRP, TYR, CYS all show smaller volumes or pack more tightly packed in the φ,ψ 

region toward -180°, 180°. Residues LEU, VAL, and GLN exhibit an island of tight 

packing (though the volumes are not the smallest vol% when comparing to other 

residues) in a region centered around φ = -125° and ψ = 160°. ASP shows an interesting 

spur of larger than average volumes in region where -45 < φ < -90 and -45 < ψ <-90. 

Closer inspection of these conformations reveals that these larger than average ASP 

volumes belong to residues in the turn conformation, which also have contacts with 

water molecules and these very small populations are considered marginal significance 

with the cutoff values we used to eliminate extreme observations. For all residues, 

bridging areas between right-handed helical and sheet regions are packed less densely.  

For sampling of Ramachandran space shown in Figure 11, the 20 residues exhibit 

the expected distributions, where GLY samples the most conformational space and PRO 

samples the most restricted one. Surprisingly, GLY does not populated extensively in 

regions where β-sheet is preferred, probably due to the lack of side chain interactions. If 

we assume that the more φ,ψ space a residue can populate, the easier it can replace other 

residues or be replaced, the clear difference among the amino acids in their populated 

regions may be clues as to which amino acids are least responsible for maintaining the 

folded state of a protein: namely, GLY, ALA, SER, THR, and ASP.  In contrast, TRP 

and MET show quite restricted conformational possibilities (as does of course, PRO).  

HIS, CYS, PHE, and TYR also have relatively limited backbone conformational 

freedom.  These 7 conformation-restricting amino acids represent 20% of the residues in 
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our dynameome data set, while the 5 least-restricting amino acids represent 34% of the 

dynameome data set (data not show).  In the BLOSUM62 matrix,160 which represents 

how well amino acids are conserved during evolution, as well as the likelihood that each 

will substitute for another, the most conserved amino acids, in order of conservation, are 

TRP, CYS, HIS, TYR, PRO (BLOSUM62 diagonal elements of 11,9,8,7,7).  The least-

conserved are ALA, SER, THR, VAL, LEU, ILE (BLOSUM62 diagonal elements all 

equal 4). Thus, with the “full-range” sampling over the conformational space for each 

residue provided by our dynameome dataset, further analysis can be done to understand 

whether the more conformational restrictive amino acids are responsible for determining 

the fold. These results match well to an in-depth statistical analysis of Ramachandran 

distributions of the 20 amino acids.161 

Backbone dependency of side-chain conformation  

Figure 12 shows the population and value distribution of the first side-chain 

torsion angle χ1 plotted against backbone torsion angles. Similar studies have been done 

using several rotamer libraries.125-127,129,162-164 As mentioned before, due to the limited 

sampling of the PDB data, such libraries are usually studied by clustering the observed 

conformations or by dividing the torsion angle space into bins and determining the 

average conformations in each bin. Rare side-chain conformations that sparsely populate 

the Ramachandran space are underestimated even with a continuous statistical 

approximation. As shown above, our dynameome dataset exhibits a continuous sampling  
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Figure 12: Population and angle distribution of 3 χ1 rotamer versus backbone 
conformation.  
The population and angle distribution of 3 χ1 rotamer are plotted respectively for different backbone 
conformation. PRO, ALA and GLY are excluded from plots. a), b) and c): χ1 rotamer populations in 
percentages are plotted against backbone  φ, ψ torsion angles. A color scale is used from blue (higher 
occupancy) to red  (lower occupancy). a) Population of rotamer conformation gauche-: M. b) Population 
of rotamer conformation gauche+: P. c) Population of rotamer trans: T. At any given  φ, ψ angle, the 
percentage of the population in each of the 3 rotamer conformations sums to 100%. d), e) and f): average 
χ1 rotamer angles are plotted against backbone  φ,ψ torsion angles. d) Angle distribution for rotamer M. e) 
Angle distribution for rotamer P. f) Angle distribution for rotamer T. A color scale is used from red 
(smaller angles) to blue (larger angles) for each rotamer respectively. Rotamer M has angles range from -
82º to -54º, rotamer P has angles range from 35º to 70º and rotamer T has angles range from 180º to 200º 
(-160º to -180º before conversion). 
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of the native conformational space that allows us to highlight some unique features of 

the native state that are less clear when data size is limited.  

The plots in Figure 12 are split based on the 3 rotamer conformations: gauche-, 

gauche+ and trans, which we designate with M, P and T, respectively. To begin with, we 

discuss the first rotamer angle χ1 in broad terms, namely, population. The three panels of 

Figure 12a, 12b and 12c show the population of side-chains found in each of these three 

χ1 rotamers (M, P, and T, respectively) as a function of φ and ψ (except residue PRO, 

ALA and GLY). At any given φ,ψ angle, the population percentages from each of the 

three rotamers sums to 100%. Figure 12a shows that the M rotamer is highly populated 

in the β-sheet region where -135º < φ  <-90º and ψ > 135º and the fringe of the two 

helical regions. In Figure 12b, the P rotamer only populates limited regions due to its 

nudged conformation and mostly where both T and M rotamers are not favored (-180º < 

φ < -150º, 150º < ψ < 180º). Interestingly, this region is where the packing is tightest 

(Figure 9b). In contrast, T is scarce in the region where ψ > 150º but becomes the 

preferred rotamer in the sheet region where φ < -135º (far left hand side), where the M 

rotamer rarely populates. In the remaining portions of the sheet region, Figure 12a and 

12c show that T and M both populate equally with T being slightly favored at where 90º 

< ψ < 135º and around ψ =  -45º. Consistent with other analysis of the rotamer 

dependence on backbone conformation, rotamer P is only favored by SER (data not 

shown) due to the hydrogen bond interaction with C=O of residue i-1.127 Also, the high 

population of M seen in Figure 12a where 180<φ<-150 and 150<ψ<180 was previously 

observed as the results of rotamer distributions from the experimental data.126  
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In Figure 12d, 12e and 12f, plots of the first side-chain torsion angle χ1 reveals 

that its preferred value depends strongly on the backbone conformation. This has also 

been found previously, but defined more coarsely due to the sparse sampling of the 

PDB. The advantage of our dynameome data is the continuous sampling of the 

conformational space, which produces smooth transition in each χ1 rotamer class. Figure 

12d clearly shows that the M rotamer is dependent on φ in most of its region except the 

region with extreme ψ values (ψ > 150º) where left handed helical is preferred. Its 

optimal value of -60° is shown around area where the M population is the highest 

(Figure 12a). However, the most preferred value of χ1 for the M rotamer is -70°, lower 

than its optimal value (see below for discussion). The value of χ1 angle for the M 

rotamer ranges from -55° to -85°. The P rotamer in Figure 12e is dependent on both φ,ψ 

with larger χ1 values towards 70° centered approximately at φ = -125° and ψ = 145° or φ 

= -120° and ψ = 0°. Again, the P rotamer has it optimal χ1 value of 60° in its most 

populated area at φ = -180° and ψ = 180° (Figure 12b). However, the χ1 value of the P 

rotamer ranges from 40° to 70°. The T rotamer (Figure 12f) shows a dependency on ψ in 

regions where β-sheet and right-handed helical are preferred and such dependency is 

stronger that what is seen with the M rotamer. The T rotamer also exhibits weak 

dependency on φ in the region where left-handed helix is preferred. Optimal χ1 values 

for the T rotamer occur in bands where -90° < ψ < -40° or 90° < ψ < -135°. The χ1 

distribution for the T rotamer is also skewed and ranges from 175° to 205°.  
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Packing in different χ1 rotamer conformation 

For completeness, we plotted the percentage of the mean volume (%) against the 

rotamer χ1 angles in Figure 13. The plot does not include data from the amino acid PRO, 

since the residue also restricts the χ1 value in the P rotamer around 0º. In general, there is 

no dependency observable between the percentage of the mean volume and χ1 angles, 

which suggests that these two values are independent of each other. Consistent with 

Figure 12, the M, P, and T rotamers show their most populated χ1 angles of -70º, 65° and 

180º, respectively at vol% value of 100. As χ1 moves away from its mean in the 3 

rotamers, residue volumes still peak around their mean volume, but with a drop off in the 

population. Also, we see that the M and T rotamer distributions are connected and that 

the P rotamer is isolated. This is expected as well since the P rotamer is bounded on both 

sides by the N-Cα and the Cα-C bonds, whereas the connection between M and T is not 

impeded by the hydrogen attached to the Cα atom. The primary difference between three 

χ1 rotamers is their range of volumes. With vol% extending up to 132%, the T rotamer 

has relatively more volumes to sample than either M or P does. P samples the least 

amount of residue volumes, which is consistent with the fact that P is only favored in 

limited backbone conformations (Figure 12b). These distributions suggest different 

flexibility of different χ1 rotamers. For the T rotamer, especially in regions where right-

handed helix and β-sheet are preferred, the φ value stays negative, which makes the 

backbone bend away from the side-chain and allows side-chain of residues in the T 

conformation be able to occupy more space, about 10% of their volume. For each given 

residue, different volume can be treated as different conformations. Thus, residues with 
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Figure 13: Residues’ volume distribution versus χ1 rotamer. 
Distribution of vol% (percentage of mean volume) for all residues except GLY, ALA, 
and PRO was plotted against their χ1 value. The counts are shown on a log scale and a 
total count cutoff of 500 was used to eliminate extreme values. The darker the color is, 
the more the observations, and the lighter the color is, the fewer. Three peaks were 
observed around percentage of mean volume of 100% at χ1 value of -70º, 65º, and 180º 
for rotamer M, P and T, respectively.   
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their  sidechain in the conformation of the T rotamer tends to be more flexible than the 

same residue with their sidechain not in the conformation of the T rotamer. Figure 13 

shows that all rotamer conformations can sample all of the packing environments 

(volume) available no matter what its sidechain conformation is. This suggests that 

packing is not determined by different χ1 rotamers or in another words, excluded volume 

is not sufficient enough to define the explicit rotamer conformations.165  

Rationalization of the interdependence between χ1 and φ,ψ 

The relationship between the χ1 angle and the backbone conformation can be 

explained in detail using physically based steric interactions as diagrammed in Figure 

14. Similar explanations have been made using butane and syn-pentane interactions as 

well as similar Newman projections.125-128 Here, because our dynameome provides a 

more continuous sampling of the protein conformational space, our description of the 

Newman projection samples at the single degree resolution over all the allowable χ1 

angles. Furthermore, the dynameome also allows us to visualize the interdependence of 

the backbone and χ1 angle by directly modeling the steric repulsions between a residue’s 

with its main-chain N-Cα or Cα-O bonds and atoms over various conformations. For 

simplicity, disallowed conformations caused by the backbone clashes are not discussed 

in detail and the influence of backbone conformation on side-chain conformation is only 

discussed for observed backbone conformations. In the following section, we base our 

discussion on clashes from the Ramachandran map as well as syn-pentane interaction 

between Cγ and corresponding backbone atoms. Also, to simplify the discussion, we 
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Figure 14: Schematic view of backbone influence on side-chain conformation.  
A portion of a peptide chain (from Cαi-1 to Cαi+1) is shown in extended conformation. 
Because of the extended conformation, the main chain atoms all lie in a single plane.  
However, the planarity of the diagram has been “polluted” by the addition of a side-
chain Cβ atom to the central Cα.  The single plane defined by the extended chain has 
been tilted toward the viewer by 55 degrees necessary to let the viewer look straight 
down the Cβ – Cα bond. The individual peptide planes can be rotated out of the plane of 
the extended conformation. φ plane is shown at the left side as well as ψ plane at the 
right side. The arrow and the dashed lines in each plane minimally indicate the plane. 
Generously allowed regions (as determined in this work) from the Ramachandran plots 
are indicated by the very light gray shading. Completely forbidden regions are white. 
Heavy black arc is used to indicate where β-sheet is preferred, heavy red arc is used for 
α-helix and short purple arc for left-handed helix. In the center “dial”, the preferred 
regions for side-chain rotamers (χ1) found in this work are shown. The “dial indicator” 
on the χ dial is the Cβ– Cγ bond, which is placed in “T” conformation (the magenta arc).  
“M” (yellow) and “P” (cyan) conformation positions are indicated with dashed-outline 
Newman-projection-style bonds.  
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do not use the i subscript for atoms on the reference residue, but do use it to refer to 

atoms preceding or adjacent to the reference residue. In Figure 14, the χ1 angle of three 

rotamers is indicated by the Cγ position where the “dial indicator” on the χ1 dial is the 

Cβ – Cγ bond, and the positions of  “T” (crossing the magenta arc), “M” (yellow) and 

“P” (cyan) conformation are indicated with dashed-outline Newman-projection-style 

bonds. 

Figure 14 shows a schematic view of the allowable φ, ψ, and χ1 torsion angle 

values. The position of the χ1 rotamer relative to the φ or ψ angles helps to explain its 

dependence. Rotamer T is closer to the “ψ side” and is influenced by the next residue, 

i+1. Rotamer M is closer to the “φ side” and is influenced by the previous residue, i-1. 

Rotamer P is between φ and ψ, thus it can be influenced by both residues i-1 and i+1. 

However, all 3 χ1 rotamers show dependency on ψ. The ψ torsion angle involves the 

atoms N, Cα, C and N i+1 atoms and can occupy any angle from cis to trans 

conformations. This flexibility brings two heavy atoms N i+1 and O to pack against the 

Cβ and Cγ atoms. For the M and T rotamers, this pushes the Cγ atom towards the Hα 

atom, so that χ1 of M rotamers become more negative and that of T rotamers becomes 

more positive as the ψ changes. For the P rotamer, these interactions move the Cγ 

towards the N atom and lower values of χ1. The φ torsion angle involves the atoms Ci-1, 

N, Cα and C, but only Ci-1 can form syn-pentane interactions that can affect the Cγ atom 

and the χ1 angle. Furthermore, the φ angle is negative except in the region where left-

handed helix is preferred, which means the atoms Ci-1 and Oi-1 are positioned mostly in a 

trans conformation relative to Cγ. As shown in Figures 12d and f, the φ takes on more of 
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a cis interaction with Cγ in the left handed helical region and therefore, has stronger 

influence on χ1 in this region. 

Besides the above general effects, each rotamer has certain unique properties of 

their χ1 dependence on the backbone conformation. Facing toward the N atom, the M 

rotamers is expected to depend on φ and is influence by the Oi-1 clashes with the Cγ. As 

explained above, even the M rotamer facing away from the C atom shows some 

dependence on ψ. It can be explained as the influence of other rotamers, we find the M 

rotamer’s dependence on ψ angle is due to the packing of the Cβ atom with the O atom 

as ψ changes. The major deviation is in the regions where right-handed helix is preferred 

around φ,ψ value of -45º,-45º, where χ1 angle are highly skewed (Cγ closer to Hα). This 

can be attributed to the hydrogen bond made by HN with the Oi-4. This hydrogen bond 

packs an Oi-4 atom against the Cγ and forces the Cγ towards Hα for a more negative 

χ1value.  

For rotamer P, due to the clashes of Cγ atoms “pinched” between N-Cα and Cα-

O bonds, it rarely populates in the left-handed helical region. For the same reason, 

rotamer P shows clear dependency on both φ and ψ. The P rotamer’s φ dependence is 

due to the packing of the Cγ with the N and Oi-1 atoms. The ψ dependence of the P 

rotamer is due to the C and O atoms. At around ψ = 0º or ψ = 180º, χ1 values stay around 

65º. As the ψ angle changes, atom Ni+1 (when ψ < 0º) or atom O (when ψ > 0º), moves 

closer to the Cγ atom and causes the χ1 angle to decrease. Also worth noticing, the lack 

of the P rotamer in the region where right-handed helix is preferred could be attributed to 
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the requirement of forming hydrogen bonds in the α helix, which prevents the Cγ from 

occupying this rotameric conformation.  

As expected, the rotamer T is ψ dependent in regions where right-handed helix 

and β-sheet are preferred. Rotamer T stays in its optimal conformation around ψ = 120º 

and ψ = -60º where atoms O and Ni+1 both have the least interaction with residue’s Cγ 

atom. From either point, when the Cα–C bond rotates and either atom Ni+1 or atom O 

approaches atom Cγ, the Cγ is pushed towards the Hα, which increases the χ1 value (χ1 

angle of -160º corresponds to 200º in Figure 12f). In the region where left-handed helix 

is preferred, rotamer T shows a slight φ dependency due to possible interaction with the 

Oi-1 atom. 

Conclusion 

In this study, we took advantage of MD simulations to generate near 4 million 

structures that sample the native conformational space. In contrast to the sparse data 

provided by the PDB, we were able to sample from a continuous conformational space 

and to better characterize the dependency of the side-chain packing and conformation 

upon the backbone conformation. We were able to determine the contribution of the 

local environment (backbone conformation) and non-local environment (solvent 

exposure) on the volume of residues with implications about the side-chain packing. A 

comparison between buried and exposed residues shows that buried residues (protein 

core) prefer tight packing and are found only in a rather limited conformational space 

(Figure 10a). We also found that the packing is only slightly but noticeably different for 

different secondary structures, where strands promote tighter packing while α helices 
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promote looser packing (Table 7 & Figure 9). In addition, the packing has a strong 

dependency on the backbone conformation regardless of different side-chain 

conformations (Figure 13). Because the dynameome dataset allows more fine-grained 

analysis, we were also able to more precisely define the relationship between the first 

side-chain rotamer χ1 and the backbone conformation. First, all rotamers show 

dependence on the ψ torsion angle due to clashes of the O atom with the Cγ, while the 

influence of the φ torsion angle is less so due to weaker interactions of the Ci-1 and Oi-1 

with the Cγ. Second, the variance of all 3 χ1 rotamers from their canonical conformation 

are skewed to one side due to syn-pentane interactions. Third, “non-local” interactions, 

such as hydrogen bond from i-4 residues in α helices play important role in the side-

chain conformation. These results help to define the exact role that the backbone 

conformation plays in the determination of protein folds. Although we have couched our 

discussion in terms of the dependence of side-chain characteristics on the backbone 

conformation, in fact it is a two-way street. While the backbone conformation sets the 

placement for the side chain, the packing of side chains determines the position of the 

backbone atoms.  

Materials and Methods 

Dataset 

We ran 5 independent 10 ns MD simulations on each protein using the ENCAD 

program112 and the F3C explicit water model.113 The ENCAD program and the associate 

force-field provide a useful means to approach this problem, as it does not suffer from 

some of the problems that the CHARMM and Amber force-fields exhibited (and which 
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have since been corrected. The ENCAD suite has been used successfully and recently in 

many applications including folding/unfolding studies and replica-exchange studies, In 

addition, some comparisons have been made between different force fields. 

For each simulation, the coordinates of each structure were placed in a box of 

water and then energy-minimized. Each box of water was trimmed so that the edges 

were at least 8 Å away from the closest protein atom. All water molecules within 1.67 Å 

of the protein were removed, and the box sides were corrected to match the density of 

water (0.997 g/ml) at 298 K. Sodium or chloride ions were used to replace water 

molecules at random positions to yield an electrically neutral system. Conjugate gradient 

energy minimization was performed in the following order: The protein was fixed while 

the water molecules were minimized over 1,000 steps. The protein was then minimized 

in the next 1,000 steps, holding the water molecules fixed. Finally, the entire system was 

minimized over 1,000 steps. To begin each of the simulations from a unique starting 

point, the system was equilibrated to 298 K using a different random-seed number to 

assign initial velocities. During the calculations, the coordinates of the structure were 

updated at two femtosecond intervals and sampled every picosecond (500 steps), such 

that each 10 ns simulation generated 10,000 steps. All simulations are summarized in 

Table 6. The largest simulation has a water box of 60.5 Å by 55.1 Å by 50.0 Å in size 

and 4590 water molecules around a 122-residue protein 1QTO166 while the smallest 

simulation has a water box of 40.5 Å by 28.0 Å by 34.4 Å in size and 1211 water 

molecules around a 21-residue protein 1G7A.146 
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Data analysis 

Because the initial steps in the simulation equilibrate the system to 298 K, we 

decided to disregard the first nanosecond (ns) of the simulation and performed the 

analysis using only the last 9 ns of the simulation (1-10 ns). Programs written in C and 

PERL were created to analyze the native ensemble of structures. Coordinates were 

viewed using PyMol.118 Figures were generated using the R statistical package.120 

1. Secondary structure assignment 

For each structure generated from the simulation, the secondary structure of the 

protein was defined using PROMOTIF159 and categorized in the following manner. 

Residues without any assignment were assigned to the random coil (C) class. Both β-

turns and G-turns were combined as turn (T). All the helices were classified as (H). 

Strand and β-bulges were combined as extended strand (E).  

2. Volume calculations 

The volume were calculated using the Voronoi Polyhedra method167 for heavy 

atoms, which is explained in more detail in a previous study.121 Only contacts with 

surface area larger than 1 Å2 were considered. An exposed residue is defined as directly 

contacting the water molecules, while buried residues were those that only contacted 

protein. For each residue, the total volume is the sum of each atom’s volume.  

To compare volumes of different residues in different sizes in the dynameomic 

dataset, we normalized all 20 residues’ volumes to a common scale: percentage of mean 

volume or vol%. First, mean volumes, <vol>, for each of the 20 amino acids were 

calculated over the whole dynameome dataset. As shown in equation (1), the vol% is 
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derived by dividing the volume, vol, of a residue in a particular structure at a particular 

timestep by the respective residue’s <vol>.  

 

€ 

vol% =
vol

< vol >                                                    (1) 

The residue volume plots in the Figure 9 and 10 show the average value of all the vol% 

values at a particular  backbone conformation (φ,ψ) over certain sets of residues and/or 

conditions like secondary structure, buried or exposed residues. Only values with more 

than 1,000 observations at each backbone conformation  (φ,ψ) were plotted. 

For the PDB dataset, each structure was placed in the center of a water box to 

mimic the protein solution environment. This water box was taken from a MD 

simulation of pure water using the same parameters as in the protein simulations. 

Duplication of water box is applied if necessary to generate large enough box for 

protein. Any water atom within a distance of 1.8Å of protein atoms was removed. 

Volumes, torsion angles are calculated using the same method for simulated structures as 

described above. The same approach was used to plot the PDB data as it has been done 

on the dynameomic data (described above), mean volumes were calculated for each type 

of residue and the average percentage of mean volume was plotted accordingly. An 

observation cutoff of 250 was used and a different backbone bin size was used (see 

below). 

3. Calculation of torsion angles 

The  φ, ψ and χ1 values for each residue in every structure were calculated using 

PROMOTIF and values were rounded up to the next whole number. In effect, we used 
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1° bins for the dynameomic data and a 5° bins for the data from the PDB. The values for 

the first and last residue were omitted from the calculation. For χ1value analysis, ALA, 

GLY and PRO are excluded.  

The χ1 values (except those from PRO, ALA and GLY) were classified using 

similar nomenclature to a previous study.129 As a simplification, M, P and T are used to 

refer the 3 χ1 rotamers, respectively. M stands for gauche- where -120º < χ1 < 0º, P 

stands for gauche+ conformation where 0º < χ1 < 120º, and T stands for trans 

conformation where 120º < χ1 < 240º. Since torsion angles are calculated from -180° to 

180°, the χ1 values in the T rotamer from -180° to -120° needed to be converted to their 

positive values by adding 360º to insure a continuous transition between -180º and 180º 

in various plot. For ILE and THR, since χ1 is defined differently than other residues, the 

calculated χ1 values were translated to reflect corresponding Cγ atoms in other residues 

by subtracting 120º. These translated values were then evaluated as M, P, or T as defined 

above.   

The plots in Figure 12 were made using certain criteria. For the χ1 rotamer 

population plots, a count cutoff of 1000 was used. At each backbone conformation, the 

values over the 3 χ1 rotamers add up to 1 or 100%. For example, at the φ,ψ value of -

60°, -40° in the α-helical region, M population is 28%, P is 2% and T is 70%, which 

adds up to 1. Since P populations are often small, a count cutoff of 500 was used for the 

P rotamer instead of using the 1000 used on T and M rotamer value.  
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The distribution of vol% versus χ1 angle (Figure 13) required that the counts be 

on a log scale. The count cutoff was 500. While the bin size for χ1 values was 1° (as 

explained above), the bin size for vol% is 0.5%. 
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CHAPTER IV 

USING CONSERVED PACKING INFORMATION FOR 

TEMPLATE BASED STRUCTURE PREDICTION 

 

 

Overview 

Template based structure prediction is becoming more important in the structure 

prediction field because it is believed that a representative of every available protein fold 

can be obtained, and all structure predictions will eventually become template based. 

Currently, most template based structure prediction methods concentrate on finding the 

right backbone conformation of the target sequence, and refine it using various 

refinement procedures. For the past decade, template based structure prediction methods 

have always suffered from the same problem: compared to the template structure derived 

from close homologues, the refined structures are less accurate or further away from 

their native conformation. In this study, we test our template based structure prediction 

method using 52 prediction units from CASP7 experiments. Our packing orientated 

method predicts structure using spatial constraints derived from the conserved relative 

packing groups, which were obtained from available multiple template structures. By 

mimicking the experimentally determined NMR data, but with longer constraints 

reflecting conserved packing environments at the sequence level, we were able to 

provide “added value” to the starting structure. The long-range spatial constraints (>8Å) 

derived from the relative packing groups were important to improve the starting 
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structure. We believe that our method provides a new angle on template based structure 

prediction.  

Background 

Template based structure prediction, in contrast to template free structure 

prediction, creates a prediction of an unknown structure using close structural 

homologue(s). It holds a great deal of promise due to the belief that a representative of 

every protein fold will eventually be solved.17-23 Template based methods produce the 

most reliable and accurate predictions of protein structures aside from experimental 

determinations.24,25 The availability of a representative fold as a starting template offers 

the quickest path to generating a model of the real structure. Because its capability of 

providing conformational information about proteins that lack experimental structures, 

template based structure predictions have been used successfully in a variety of 

applications, such as studying the effects of mutations, designing site-directed 

mutagenesis, predicting binding sites, and docking small molecules in structure-based 

drug discovery. For the past 14 years, template based structure prediction has evolved 

steadily during seven CASP experiments, and now is able to provide “added value” to 

the best template structures (starting structure) generated from the best homologue(s).  

Template based structure prediction usually involves 4 different steps.26-29 First, 

the parent structure(s) are identified using sequence searches against the known structure 

database (the Protein Data Bank3). Second, the initial template structure(s) (starting 

structure) are constructed by aligning the target sequence to the parent structure(s) with 

identification of conserved and variable regions. Third, the starting structure(s) are 
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refined through a combination of backbone moves, side-chain packing, and loop 

modeling of highly variable regions and during this refinement, hundreds or thousands 

of model structure are generated. The last step is to evaluate these models and choose the 

one that is closest to the native conformation. In general, template based structure 

prediction tries to find the closest backbone conformation first, and then refine the 

backbone conformation towards the native conformation. Unfortunately, the imprecise 

variations between the close template(s) and the real structure produce the major source 

of challenges that have existed in this field. To be more specific, while template 

structure(s) possess backbone conformations that were well packed for the template 

sequence, these backbone conformations may represent an over-packed environment for 

side chains of the target sequence.33 Thus, current refining protocols tend to move the 

starting structure (derived from templates) away from the native conformation.168,169 In 

many cases, just submitting the starting structure without perturbations from the refining 

protocols provides the best model. On the other hand, as compared to the best available 

template structure (a known structure with a high sequence identity), even though the 

final prediction may be closer to the native conformation, it often lacks the resolution 

and accuracy necessary for practical applications, such as molecular replacement.170 

One of the problems with template structure prediction is the mapping of 

sequence changes in the multiple sequence alignment to structural changes among 

homologues. A recent study on relative packing groups (RPGs) suggests a new angle to 

approach this problem.171 A relative packing group, which can represent the smallest 

tertiary packing unit in a protein structure, contains a simplified packing environment 
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within a tertiary conformation. The unique pair-wise contacts derived from these groups 

can be used to accurately and automatically classify folds within a super family. 

Furthermore, these contacts correlate well with the sequence identity, and thus provide a 

direct relationship between the changes in the sequence and the changes in the structure; 

for example, a minor 10% change in the sequence causes the packing of the globin fold 

to change by up to 50 contacts. These contacts are also useful for understanding the 

structural quality of the sequence or the structure alignments, and for providing the 

context necessary for calculating a value for structural randomness, both of which are 

important for properly accessing the quality of a structural alignment. Most importantly, 

the information that a relative packing group contains can be used to predict unknown 

folds.  

To utilize the packing information of the relative packing groups, pair-wise 

contacts can be expressed in terms of distance or spatial constraints. Spatial constraints 

are widely used in NMR structure determination172 where the chemical shifts that reflect 

interactions between atoms are translated into spatial constraints.  By solving the 

distance matrix to satisfy the maximum number of spatial constraints with conformation 

with lowest energy, an ensemble of native structures can be defined. Several structure-

predicting methods have already made use of spatial constraints in order to improve the 

prediction accuracy. MODELLER173 uses spatial constraints in various steps, including 

homology-derived distance (Cα-Cα and backbone N-O distances), dihedral angles 

(backbone and side-chain dihedral angles), non-bonded inter-atomic distances from 

representative sets of known protein structures, and optional manually curated restraints. 
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All constraints are expressed as probability density functions and combined with 

CHARM22 force-field terms174 in order to enforce proper stereochemistry. TASSER and 

TASSER-based methods,36,175,176 on the other hand, use spatial restraints (only Cα and 

side-chain centers of mass) extracted from threading alignments in their Monte Carlo 

simulation to generate candidate structures with native-like conformations. By 

mimicking the experimentally determined data in NMR, spatial constraints provide a 

reliable way to reproduce native conformations, and have been found to be less 

susceptible to alignment errors.177-179  

In this study, in an effort to refine the starting structure, we use spatial constraints 

derived from the conserved relative packing groups based upon multiple sequence and 

structure alignment. Using 52 prediction units (single domain proteins) in the CASP7 

experiment, including both structures selected for submission and all the other structures 

generated during the structure refinement, we were able to test our packing orientated 

structure prediction method in a double-blind test and drew the conclusions that 1): 

constraints derived from the conserved relative packing groups are able to provide 

“added value” to the starting structure; 2) correct constraints (true positives), especially 

long-range constraints (>8Å), are important for improving predictions; and 3) wrong 

constraints (false positives) don’t affect the quality of the refinement upon the starting 

structure. With the right constraints, a template structure derived from multiple 

homologues can be improved as much as 2Å in CαRMSD from 4Å away from the 

native conformation. Meanwhile, 4) scoring functions based on an extensive 
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dynameome dataset, which is orthogonal to our structure refinement method, show great 

potential for selecting most native-like conformations. 

Results and Discussion 

In order to compare our results with the results from other CASP7 experiments, 

we based our analysis on assessment units (AU), or single domains of protein in CASP7. 

For simplicity, we used “target” to identify each assessment unit, “template” for the 

homologue structure, “starting structure” for the structure we try to refine (which is 

generated by MODELLER based on multiple sequence and structure alignment), 

“candidate structure” for any structure that was refined from the starting structure, and 

“submitted structure” or “submission” for structures we selected to submit to the CASP 

(up to five per target).  

Table 8 shows the general description of all CASP7 targets used in this study. 

There are a total of 52 targets, 51 of which belong to a TBM (template based modeling) 

classification. T0309 is an FM (free modeling) target. 19 out of the 52 targets are high 

accuracy targets (HA). In Table 8, CαRMSD value of the starting structure, the best 

candidate structure and the difference between these two are shown. Targets are ordered 

based on their CαRMSD difference between the starting and best candidate structure 

(column 8: “CαRMSD Improvement”). Table 8 also shows the relative ranks of the best 

submissions of each target as compared to all of the submissions as percentages. Out of 

these 52 targets, two ranked #1 (T0340 and T0339D1), six ranked within the top 50 
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Table 8: Description of prediction units used in CASP7 
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Table 8: Continued 
 

 
a. Target name as single domain prediction unit, D1 and D2 indicate different domains 

of the same target. 
b. Number of residues 
c. CASP7 official classification of prediction type. HA: high resolution. TBM: template 

based modeling. FM: free modeling. (HA is part of TBM but has higher resolution)  
d. Total number of candidate structures generated during structure refinement 
e. Rank of the best submitted structure as percentile among all prediction groups 

(average 500 per target)  
f. CαRMSD value of the starting structure and the best candidate structure comparing 

to native structure. 
g CαRMSD value difference between the best candidate structure and the starting 

structure. Rows are ordered by the value. Positive values mean improvement over the 
starting structure while negative value means no improvement. 

h Number of constraints derived from the conserved relative packing groups as 
percentage of total constraints calculated based on the native structure. TP: True Positive 
(right constraints), FP: False Positive (wrong constraints, FN: False Negative (missing 
constraints) 

i. Total number of constraints calculated based on the native structure  
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(T0302, T0315, T0341D1, T0381D2, T0318D1 and T0345), and more than half of the 

submissions ranked within the top 50%. Our results suggest that the accuracy of the 

predicted structure when using our method was above average among the over 500 

prediction groups. With a relatively smaller number of constraints, our method provides 

a reliable way to sample the conformational space near the native conformation. 

The “added value” 

It has been shown that including information from multiple templates provides 

“added value”37,38 to the starting structure, which moves the starting structure closer to 

its native conformation. Unfortunately, no group has consistently performed better than 

the “virtual prediction group,” which simply replaces the corresponding residues using 

the best template found in the PDB database. In order to evaluate the capabilities of our 

method to provide “added value”, in another word to improve the starting structure, we 

only compared our candidate structures to the starting structure we generated for each 

target. Since the native structure was not available when the candidate structures were 

generated, we assumed that our starting structure was the best representation of native 

conformation at the time of refinement, even though it may not have been the best 

available template structure identified after the CASP7 experiments.  

Figure 15 shows the CαRMSD values of the starting structure and the best 

candidate structure comparing to the native structure for each target. The best candidate 

structure is the structure generated during the refinement, but not necessarily selected for 

submission after the scoring. The smaller the CαRMSD value, the closer the structure is 
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Figure 15: CαRMSD value of best candidate structure and starting structure. 
CαRMSD values of the best candidate structure and the starting structure were plotted 
when compared to the native structure for each target. A line was draw where these two 
values were equal to each other. Any data points below this line indicate a smaller value 
for the best candidate structure, which means an improvement on the starting structure. 
About two thirds of the targets have a candidate structure with smaller CαRMSD value 
and the majority of the rest of the targets are concentrated in an area where the starting 
structure has CαRMSD values range between 2 and 3.5 Å.  



94 

 

94 
94 

to the native conformation, and thus the better the prediction is. In Figure 15, any data 

point below the diagonal line indicates that there is at least one candidate structure better 

than the starting structure. About two thirds of the targets have a better candidate 

structure, and it is clear that we were able to sample the conformational spaces towards 

the native conformation from the starting structure. In other words, our prediction 

method is able to refine the starting structure towards the native conformation. Targets 

without any better candidate structures cluster into regions where the CαRMSD is 

smaller than 3.5Å. Structure improvement in this region is relatively moderate (except 

T0315, which shows 15% improvement, about 0.2 over 1.3 Å on CαRMSD value) 

compared to that in regions where larger CαRMSD values were observed. Such a 

decrease in the level of improvement is well-known in the field of template based 

structure prediction: the closer the template structure is to the native conformation, the 

harder the refinement becomes, and the more the refining procedure tends to push the 

template away from the native conformation. At the same time, the magnitude of the 

structure improvement (the difference between the starting structure and the best 

candidate structure) depends upon the quality of the starting structure; our method can 

only sample the conformational space close to the starting structure towards the native 

conformation and it will be trapped in the local minima if the starting structure is too far 

away from the native conformation. For a few targets, structure refinement was started 

using only the primary sequence as an extended chain instead of using the starting 

structure. With the same set of constraints derived from the conserved relative packing 

groups, we were hoping to sample the conformational space more freely without being 
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trapped at the local minima. Candidate structures with comparable quality were 

generated using such method, but due to the time limit of CASP7 experiments and the 

limited computer resources, there was not enough data for a reliable analysis and further 

investigation is expected to make full us of this approach. In summary, with a starting 

structure based on close homologues and constraints based on conversed packing 

information, our method was able to refine the starting structure towards the native 

conformation. In other words, we provided “added value” to the template structure. 

RPG derived constraints 

One of the differences of our method from other methods using spatial 

constraints is that the constraints used in our method were derived from the conserved 

relative packing groups. It is believed that these relative packing groups are able to 

characterize the packing environment of the protein tertiary conformation and reflect the 

sequence changes onto structural changes when compared within the same folding 

family,171 or in other words, among homologue structures. To study the strengths and 

weakness of these constraints, we classified our constraints after converting them as the 

percentage of the total number of constraints calculated based on the input constraints 

(Table 8) as follows: TP - True Positive (correctly predicted constraints), FP - False 

Positive (incorrectly predicted), and FN - False Negative (missing constraints). Figure 16 

shows the averaged percentage of TP and FP for residues with different levels of 

structure deviation. For all the residues of all the candidate structures, the residues were 
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Figure 16: Percentage of constraints of residues with different structure 
deviation. 
The averaged percentages of two types of constraints were plotted for residues with 
different level of structure deviation in terms of Cα-Cα distance. The Cα-Cα distance 
was calculated between matching residues of the best candidate structure and the native 
structure after they were supposed on each other. Each histogram bar represents the 
average value of the percentage of constraints for residues with the same level of 
deviation. Black bar represents values for right constraints: TP or True Positive. They 
are the constraints we used as input and can be also identified in the native structure. 
Grey bar repents values for wrong constraints: FP or False Positive. They are the 
constraints we used but that can’t be identified in the native structure. A trend line was 
also shown for TP data to demonstrate that the quality of prediction decreases (increase 
in residue’s deviation) when number of right constraints (TP%) decrease.   
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grouped base on their structure deviation, which is measured as Cα-Cα distance between 

matching residues after superposing the candidate structure with the native structure. 

Different level of structure deviation can be seen to represent different accuracy of the 

structure prediction. The smaller the distance is, the better the prediction. Within each 

level, averaged percentage of two different constraints (TP and FP) was calculated for all 

the residues in the same level. The larger the TP percentile is, the better the input 

constraints used in the refinement represent the native conformation. 

Figure 16 clearly shows that larger TP values correspond to better predictions. As 

the TP percentage decreases, the Cα-Cα distance increases, indicating that the 

conformation of the predicted structure was moving away from the native conformation. 

Since the value of TP and FN added up to 100% or 1, the prediction quality decreases as 

the FN value increases (data points not shown), which means that lacking of the 

constraints that represent the native conformations will prevent our method from 

improving the starting structure. Wrong constraints (FP) showed no obvious correlation 

with the prediction quality. The FP value doesn’t change consistently as the Cα-Cα 

distance changes. Such lack of correlation between the FP and the prediction quality 

suggests that our method is able to retain starting structure conformations even though 

some of the constraints are wrong. For example, one of the number one ranked targets, 

T0340, has a starting structure of CαRMSD value 1.0 Å, which is very close to the 

native structure. Even though 24% (see Table 8) wrongly predicted constraints (FP) were 

used, only a few were satisfied in the candidate structure, and none of our submitted 

structures show obvious deviations from the starting structure. The error (FP) can arise 
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from various sources when the constraints are being calculated. For example, the “over-

packed” template structures may contain conserved secondary structure elements or 

packing environments that are not suitable for the target sequence. One of the 

explanations of such behavior of FP constraints relies on the use of the starting structure. 

Since the starting structure already contains a certain level of native structural 

information from the multiple sequence alignment, satisfying wrongly predicted 

constraints will result in higher energy conformations.  

For relative packing groups, members with two residues contacting each other 

are most abundant (data not shown). To be considered as RPG, all residues within the 

RPG group have to contact one another. Figure 17 shows the schematic view of all 

contacts among residues. Example of residues forming RPG with 4 members is colored 

blue and residues not forming RPG of 4 members are colored red, which instead form 

two RPGs with 3 members each. For one RPG with four members, average constraints 

between Cα atoms are labeled. These constraints are averaged among residues that align 

together in the multiple sequence alignment. There are only a few groups with five 

members and rarely any groups with six members due to the strict criteria for defining 

such relative packing groups. Thus, constraints derived from these groups won’t exceed 

20Å, and a lot of these constraints are short distance constraints that define secondary 

structure (which are the major components of FP constraints). Compared to the 

constraints derived from NOSEY experimental data, which are between 1.8 and 6.0 Å,172 

constraints derived from the RPGs are more sensitive to weak interactions (constraints 

longer than 8Å). Based on our analysis, these long-range distance constraints that 
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Figure 17: Schematic view of RPG and derived constraints. 
Schematic view of all contacts among residues for protein 1PGB100 are shown. Examples 
of residues forming RPG with 4 members are colored blue and residues not forming 
RPG with 4 members are colored red. Example of constraints between Cα atoms in Å 
are labeled for one of the blue RPGs. 



100 

 

100 
100 

beyond the NMR data range are of great importance for improving the starting structure. 

Figure 18 shows the relationship between the quality of the prediction (GDT 

score from the CASP7 official assessment for the best submitted structure) and the 

percentage of the correct long-range constraints belonging to the TP class, which stands 

for the percentage of constraints that are longer than 8Å and can be observed in the 

native structure. The GDT score measures how well the candidate structure and the 

native structure can be superimposed on each other. A perfect match will give a score of 

100, and the higher the score is, the better the prediction is. Figure 18 clearly shows that 

the better we reproduce the long-range constraints, the closer the final structure is to the 

native conformation. Target T0326 is one exception, which shows a relatively high TP 

percentage (50%) but a lower GDT_TS score, around 50, as compared to other 

predictions with the same TP percentage. Such exception is due to the fact that we chose 

to include residues 1 to 33 in the model for refinement. Since no conserved RPGs were 

found for these residues, no long-range constraints were used to refine the starting 

structure. As a result, these residues became an extended chain in our submitted 

structure, thus lowered the GDT score even though the rest of the protein had more than 

70% of the correct long-range constraints in it.  

By combining multiple sequence and structure alignment, the conserved relative 

packing groups across the homolog structures represent a set of residues close in space, 

or in other words, a conserved packing environment. These packing groups have the 
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Figure 18: GDT score of best candidate versus the percentage of long range 
constraints. 
The GDT score of the best candidate structure was plotted against the percentage of the 
long-range constraints (distance > 8Å) that can be identified as TP constraints (True 
Positive or right constraints) for every target. The higher the GDT score, the closer the 
candidate structure is to native conformation. As shown above, larger values in the 
percentages correspond to a better structure, which indicates that the long-range 
constraints are important in our structure predictions.  
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potential to represent the packing conservation (rather than the sequence conservation) 

over the process of evolution. With constraints similar to the experimental NMR data 

and the long-range constraints representing weak interactions, our method provides an 

alternative way to sample conformational space and was able to refine the starting 

structure towards the native conformation as shown in Figure 15. Moreover, a recent 

study shows that the relative orientation of protein sidechain can be used to improve the 

template based structure prediction.180 The constraints in our method not only contain 

such information (by defining constraints between every atom) but also offer higher 

resolution by providing the relative position of side-chain Cβ atoms.  

Successful refinement  

There are several elements in our method that contribute to the success of 

improving the starting structure towards the native conformation. First, similar to other 

successful methods in CASP7, our method makes full use of multiple sequence 

alignment instead of only one template. By collecting pair-wise constraints derived from 

the conserved relative packing groups, we mapped the structural conservation to the 

sequence changes. Second, by using MODELLAR to generate a starting structure close 

to the native conformation, we were able to narrow our conformation space search. 

Third, with long-range constraints representing weak interactions in the specific folding 

environment, we were able to sample conformational space more efficiently towards the 

native conformation, and provide more candidate structures in a limited time for scoring, 

especially for larger proteins with well-defined long-range constraints. Last, by using a 

scoring function that is independent of our structure refinement method and derived 



103 

 

103 
103 

from a huge dynameome dataset containing structures with near-native conformation, we 

were able to reinforce the selection of structures that best represent the native 

conformation. 

Figure 19 shows a case study of our capability of providing “added value” to the 

starting structure for target T0302. The starting structure is generated based on 14 

templates, including the best template identified by CASP7 assessors (1argE/H181). 426 

out of a total of 701 candidate structures had a smaller value of CαRMSD than the one 

the starting structure had, which is 4.1 Å when compared to the native structure. Our 

best submitted structure ranked at 20 and has a CαRMSD value of 1.7 Å, which is about 

a 60% improvement over the starting structure. Figure 19a shows the superposition of 

the starting structure (red), the best candidate structure (blue), and the native structure 

(green). Target T0302 is an all-alpha protein with 132 residues; the starting structure had 

all the secondary structure elements correct due to the use of the multiple sequence 

alignment, but the distance between the three termini alpha helices is clearly different 

from their native value, which results in the larger structure deviation observed in the 

starting structure. Figure 19b shows the map of the pair-wise constraints derived from 

the native structure (the upper left region above the diagonal line) and constraints 

derived from the conserved relative packing groups (the bottom right region below the 

diagonal line), which we used to refine the starting structure. The data points parallel to 

the diagonal line indicate the local interaction of the alpha helix and the data points 

perpendicular to the diagonal line indicate the interactions between two helices. There
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were several conserved relative packing groups (in the bottom right of Figure 19b) can 

be identified by the constraints as the conserved packing environment, such as the region 

defined by constraints between residues 60-80 and 40-50. The termini helices mentioned 

above in the starting structure with larger deviations were defined by the constraints 

between residues 10-30 and 100-130. Compared to the native constraints, our input 

constraints captured most of the recognizable packing regions belong to the native 

structure, especially those involve termini helices. The bottom-right section in Figure 

19b is almost a mirror image of the top-left section. Figure 19c shows the relationship 

between residue’s structure deviation for each residue of the starting structure and the 

best candidate structure (right y-axis) and the number of correctly predicted long-range 

constraints (left y-axis). It shows that the biggest structure improvement from the 

starting structure (blue) to the best candidate structure (red) comes from the two termini 

regions. It also shows that when the number of correct long-range constraints decreases 

(the region around residue 55 and residue 75), the improvement is minimized or doesn’t 

exist at all. All together, with the correct constraints derived from the conserved relative 

packing groups, our method is able to refine the starting structure towards the native 

conformation. It is worth noticing that T0302 is the only target we predicted that uses 

NMR structures as the native structure, which indicates that our method may have the 

potential to expedite the structure determination procedure with significantly reduced 

constraints from the experimental NMR data.   

Another unique element that makes our method successful is the use of a scoring 

function that scoring candidate structures based on their packing efficiency and side-
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chain conformation preferences. These two properties were measured as the volume of 

the residue and the first rotamer angle χ1 of the side-chain, which is not directly modeled 

by the spatial constraints we used, but rather as a result of proper packing. In other 

words, our scoring function is totally independent of our refinement method, and a 

higher score will reflect a truly better packing environment as the result of structure 

refinement.  Furthermore, the volume and χ1 score are based on a large dynameome 

dataset generated by the molecular dynamics simulations. Such datasets provide a fine-

grained, high-resolution estimation of the native ensembles, thus gave us a chance to 

develop a scoring function that could sample structures more continuously into the 

conformational space. Figure 20 shows the example of performance of our scoring 

function. Figure 20a and b show χ1 value score and volume score for target T0302 as an 

example of successful scoring. Figure 20c and d show the score for target T0288 as an 

example of unsuccessful scoring. We define successful scoring as the ability to find 

structures with lowest CαRMSD values and unsuccessful scoring as it fails to find such 

structure when it exists among the candidate structures. In Figure 20a and 20b, both χ1 

score and volume score are able to identify relative better structures for submission (red 

circle) from all the candidate structure (green cross) and those submission structures are 

better than the starting structure (blue cross). While in Figure 20c and d, even though 

some submitted structures are better than the starting structure, the scoring function fail 

to find the best candidate structure. During scoring, in order to achieve structural 

diversity for submissions in CASP7, candidate structures are first subject to cluster 



 

 

108 

F
ig

u
re

 2
0
: 

E
x
a
m

p
le

s 
o
f 

su
cc

es
sf

u
l 

a
n

d
 u

n
su

cc
es

sf
u

l 
sc

o
ri

n
g
. 

E
x
am

p
le

s 
o
f 

su
cc

es
sf

u
l 

an
d
 u

n
su

cc
es

sf
u
l 

sc
o
ri

n
g
 o

f 
tw

o
 t

ar
g
et

s 
ar

e 
sh

o
w

n
. 

a)
 a

n
d
 b

) 
ar

e 
su

cc
es

sf
u
l 

sc
o
ri

n
g
 o

f 
b
o
th

 C
h
iS

co
re

 

(s
co

re
 

b
as

ed
 

o
n
 

si
d
ec

h
ai

n
 

ro
ta

m
er

 
co

n
fo

rm
at

io
n
) 

an
d
 

V
o
lS

co
re

 
(s

co
re

 
b
as

ed
 

o
n
 

re
si

d
u
e’

s 
v
o
lu

m
e)

 
o
n
 

ta
rg

et
 

T
0
3
0
2
, 

re
sp

ec
ti

v
el

y
. 

c)
 a

n
d
 d

) 
ar

e 
u
n
su

cc
es

sf
u
l 

sc
o
ri

n
g
 o

f 
b
o
th

 C
h
iS

co
re

 a
n
d
 V

o
lS

co
re

 o
n
 t

ar
g
et

 T
0
2
8
8
, 

re
sp

ec
ti

v
el

y
. 

T
h
e 

o
v
er

al
l 

sc
o
re

 f
o
r 

st
ar

ti
n
g
 s

tr
u
ct

u
re

 (
b
lu

e 
cr

o
ss

),
 s

u
b
m

it
te

d
 s

tr
u
ct

u
re

s 
(r

ed
 c

ir
cl

e)
 a

n
d
 e

v
er

y
 c

an
d
id

at
e 

st
ru

ct
u
re

 (
g
re

en
 c

ro
ss

) 
ar

e 
p
lo

tt
ed

 

ag
ai

n
st

 C
!

R
M

S
D

 v
al

u
es

 o
f 

ea
ch

 t
ar

g
et

. 
 L

ar
g
e 

sc
o
re

 a
n
d
 s

m
al

l 
C
!

R
M

S
D

 v
al

u
e 

ar
e 

ex
p

ec
te

d
 f

o
r 

n
at

iv
e-

li
k
e 

co
n
fo

rm
at

io
n
. 
 



 

 

109 

 



110 

 

110 

110 

program based on their similarity. From the top five largest clusters, each cluster center 

and four other closest members in the same cluster were selected using the score 

function. As a drawback, structures that don’t belong to the five largest clusters are 

omitted from the selection procedure. As noticed by other groups,182 there are relatively 

few structures being sampled that very close to native conformation at the near-native 

conformational spaces when the sampling time is limited. As seen in Figure 20 c and d, 

though our method is able to sample towards the native conformation, our scoring 

function was unable to select the best structure available because they don’t belong to 

the 5 largest clusters. At the same time, better structures (low CαRMSD value) are not 

always corresponding to higher scores, especially in Figure 20d, where structures with 

larger CαRMSD value are having higher score. This is due to the use of static water box 

to calculate volume, in which cavity can be expected at the water-protein interface (see 

method for details).  

As a first attempt to utilize such a large dataset, our scoring function is based on 

simple statistics from the dynameome dataset on the frequency of packing (residue 

volume) and side-chain conformation (χ1 angles) at given backbone conformation. For 

each volume and χ1 angle in the candidate structure, the score was calculated as the log 

value of the frequency that the same value can be observed in the dynameome dataset 

with same conformation and residue type. Though our scoring function is in its primitive 

state, it shows great potential for selecting the most available “best” structures. We 

believe that a fine-grained scoring function on a more statistically sound basis will show 

improved selecting power. 
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Limitation of constraints derived from the RPGs 

During our prediction, relatively few and more specific constraints were used to 

generate the candidate structures. On one hand, the use of close template structures 

makes our method capable of maintaining the native conformation even with wrongly 

predicted constraints (FP in Figure 16). On the other hand, since the number of 

constraints is limited, our method shows its limitations when inadequate constraints are 

obtained from the template structures.  

Based on our analysis, a lack of proper constraints is the dominant fact for not 

being able to improve the starting structure.  Target T0334, for example, has a starting 

structure with a CαRMSD value of 2.5 Å, while the CαRMSD value of the best 

candidate structure is 3.9 Å (Table 8). For this target, we got most of the secondary 

structure elements right, but the orientation and the position of these secondary 

structures are wrong. Since T0334 is the largest target (530 residues) we used in this 

study, and only one template structure was available at the time of prediction, it has the 

smallest constraint to residue ratio among all the targets and most of them are short 

range constraints that define secondary structures (data not shown). Such lack of long-

range constraints defining conserved packing environments makes our structure 

refinement procedure inefficient to improve the starting structure. Figure 21 shows a 

case study for another target: T0303D1, as an example of unsuccessful prediction. 

Figure 21a, b and c are generated in the same way as Figure 19. Since T0303D1 has only 

147 residues and is defined as the residue of 1-17 and 95-224, residues 18 to 94 were 
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omitted from the plot. In Figure 21a, the starting structure (red) and the best candidate 

structure (blue) were superposed on the native structure (green), respectively. In Figure 

21b, constraints derived from the native structure are in the top left region, and 

constraints derived from the conserved relative packing groups are in the bottom right 

region. Similar to Figure 19b, the data points parallel to the diagonal line indicate the 

local interaction of the alpha helix, and the data points perpendicular to the diagonal line 

indicate interactions between helices. Contrary to Figure 19b, relative packing groups 

derived from the native structure did not have their counterparts in the input constraints, 

especially in the bottom right region from residues 160 to 220. At the corresponding 

region in Figure 19c, which shows the number of correct long-range constraints at the 

left y-axis and residue’s structure deviation in terms of Cα-Cα distance at the right y-axis 

for each residue, an increase in the structure deviation in the candidate structure (black) 

can be observed consistently along the sequence when compared to those values of the 

starting structure (red). For example, the native structure has a small helix centered on 

residue 206, and forms several packing groups between residues 190-210 and residues 

210-220 (top-left section in Figure 21b). These interactions were missing in the bottom 

right region. Thus the Cα-Cα distance in this region increased in our candidate structure. 

Also, due to the lack of information at the end of residue 17 and residue 95, both the 

starting structure and the candidate structure show large Cα-Cα distance around these 

residues. 

There are many factors that affect the quality of the prediction, such as the 

sequence identity, the resolution of the template structure, the efficiency of the 
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conformational sampling, and the selectivity and sensitivity of the scoring function. It 

becomes very hard to decide what went wrong if a structure is far away from its native 

conformation. Based on our analysis, a lack of constraints in our input played an 

important role when other factors were considered the same. In other words, in order to 

improve the starting structure, proper constraints are required. Without these constraints, 

the starting structure will have more flexibility when the conformational space is 

sampled.  Under such condition, either the structure refinement procedures won’t have 

enough time to sample the right conformation space or the energy function used in the 

refinement becomes inefficient to distinguish the low energy conformation from the 

high-energy conformation. Again, from another point of view, our method has the ability 

to predict important constraints and use these constraints to improve the starting 

structure.  

Conclusion 

In this study, by using 52 assessment units from the CASP7 experiment, we 

analyzed the ability of our packing orientated structure prediction algorithm on 

improving the starting structure that are generated based on homologues. Using spatial 

constraints derived from the conserved relative packing groups, we were able to provide 

“added value” to the starting structures for a majority of the CASP7 targets. TP 

(correctly predicted) constraints are important to the quality of the prediction, and FP 

(wrongly predicted) constraints have little effect on the prediction quality. With a 

relatively small number of constraints representing the conserved packing environment 

over multiple homologues, especially long-range constraints, we were able to improve 
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the starting structure up to 2Å in CαRMSD value. Meanwhile, the scoring function we 

developed based on the large dynameome dataset also shows its strength on selecting 

native-like conformations. We believe that our sidechain packing orientated structure 

prediction algorithm provides a new angle of mapping the sequence changes to the 

structure changes, and has the potential to improve the template-based structure 

predictions, as well as experimental NMR structure determinations.  

Materials and Methods 

Starting structure 

The starting structure was generated using the sequence alignment BLAST,183 

structure alignment MUSTANG,184 and structure modeling MODELLER.173 First, a 

target sequence was searched against the PDB database using BLAST, and template 

structures were selected based on the BLAST E-value. At least one template structure 

with a significant E-value was selected as the parent structure, and up to 43 templates 

were used for one target prediction (T0305). All template structural files were 

downloaded from the local PDB database and cleaned using in-house programs to 

remove heteroatoms and alternative conformations. MUSTANG was used to apply a 

structure alignment in order to calculate the conserved relative packing groups. Using 

structure-based alignment from MUSTANG as the guideline, up to 20 template 

structures were selected based on their similarity, and inputted to MODELLER to 

generate starting structures using the quick build algorithm. Several possible starting 

structures were generated, verified and compared to the parent structure by a human 
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expert before being selected as the final starting structure, the starting point of structure 

refinement.  

Candidate structure generation 

Candidate structures were built using the NIH-Xplor185 package with spatial 

constraints derived from the reserved relative packing groups, based upon multiple 

sequence and structure alignment. Three types of constraints were used: torsion angle 

constraints, distance constraints between main-chain atoms, and distance constraints 

between side chain Cβ atoms. Torsion angle constraints and main-chain distance 

constrains were applied to all targets, while side chain constraints were only applied to a 

few targets with the parent structure of high sequence identity. Two structure modeling 

methods were used: with and without a starting structure. For all targets, a starting 

structure was generated using MODELLER, and the constraints were applied to refine 

the starting structure towards the native conformation. For a few selected targets, which 

were either small or well packed or had only one template structure, an extended chain 

of target sequence was used as an alternative starting point. All generated structures 

were collected and scored by the same scoring function for conformations closest to the 

native structure. The average time for building 100 residues was about 10 hours on an 

Athon 1800+ CPU. In order to sample the conformational space more efficiently, 

different seed numbers were used for different XPLOR jobs. Around 300 candidate 

structures were generated for each target on average using an 84-node cluster, as well as 

11 desktops with Pentium IV 2.4G CPUs.  
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Torsion angel constraints  

Torsion angle constraints ( φ, ψ and  χ) were derived from MUSTANG-based 

multiple structural alignments of all template structures. For each target residue, the 

angle value was calculated as the average value of all the corresponding residues at the 

same aligned position, regardless of their residue type. For allowed variations,186 the 

value was calculated as the standard deviation from all the corresponding residues. If the 

standard deviation was not available, the variation was set to 30º. The φ value of the first 

residue and ψ value of the last residue were omitted, even when their alignment position 

was in the middle of the template sequence. 

Spatial constraints 

First, relative packing groups of every template structure were calculated 

separately, as described previously.171 Those relative packing groups were then 

annotated using target sequence numbers based on the multiple sequence alignments, 

regardless of their residue compositions. If any member of the relative packing groups is 

in non-aligned region, such relative packing groups were omitted from later calculations. 

A conservation cutoff (a default of 50%) was used to select conserved relative packing 

groups, for example, to be considered as a conserved RPGs, besides align together, five 

out of ten template structures had to form the same RPGs, which means not only their 

sequence is conserved but also the contacts between them have to be conserved, in 

another word, the same packing environment. Within each conserved relative packing 

group, for each pair of mainchain atoms between different residues (members), the 

average distance among different templates as well as the standard deviation of the 
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distance was used to define the spatial constraints and allowed variation of such 

interaction. Similar procedures were used to derive the spatial distance constraints 

between the Cβ atoms in the relative packing groups.  

PDB constraints 

For structures with only a few homologues, an alternative method was used to 

derive the spatial distance constraints. First, a database of relative packing groups based 

upon non-redundant, high resolution PDB structures150 was generated. All the relative 

packing groups in the database were clustered based on their number of members, 

secondary structure composition, and the structure similarity of all four main chain 

atoms (main-chain RMSD). The cluster center was used to represent the relative packing 

groups. In order to calculate the spatial distance constraints using the PDB-derived 

database, each relative packing group derived from the template structure was compared 

to the PDB generated database. The closest cluster center with the same number or 

members, the same secondary structure composition and the smallest main-chain RMSD 

value as chosen by aligning the calculate relative packing group to the center group. Up 

to 100 randomly selected cluster members were then used to calculate the average 

distance and the standard deviation as spatial distance constraints and allowed variations, 

respectively.  

Scoring function 

The scoring function is based on simple statistics of the dynameome dataset on 

the frequency of packing (residue volume) and side-chain conformation ( χ1 angles) at 

given backbone conformation. For each volume and χ1 angle in the candidate structure, 
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the score was calculated as the log value of the frequency that the same conformation 

can be observed in the dynameome dataset. In order to calculate the volume, each 

structure was placed in the center of a water box to mimic the protein solution 

environment. This water box was taken from a MD simulation of pure water using the 

same parameters as in the protein simulations. Duplication of water box is applied if 

necessary to generate large enough box for protein. Any water atom within a distance of 

1.8Å of protein atoms was removed.  

Analysis 

All the structural comparisons between the native structure and structure of 

interest, such as the starting structure, best candidate structure and submitted structure, 

use the same sets of residues consistent with the official CASP assessment. Residues in 

the target sequence that didn’t correspond to any native structure were omitted.  

Programs written in C and PERL were created to analyze the native structures. A 

MySQL database was used to store and analyze different properties for every structure 

and distance constraint. 3D structure models were viewed using MacPyMol.118 Figures 

were generated using the R120 and Microsoft Excel program. CαRMSD values were 

calculated using the Kabsch and Sander method.119 Using the same method, the structure 

deviation of each residue observed in Figure 19 and Figure 21 can be calculated as the 

Cα-Cα distance of corresponding residues after superpose two structures. Relative 

packing groups was calculated the same way as they were done in the structure 

generation procedure for both the native structure and the structure of interest.  
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To generate Figure 16, residues were first grouped by their structure deviation 

distance every 1 Å.  For every residue belongs to the same group, the percentage of three 

different constraints were calculated when compared to the number of constraints 

observed in the native structure for each residue. The percentage of true positive (TP), 

false positive (FP) and false native (FN) was calculated by comparing to the number of 

native constraints, based on which, the sum of percentage of TP and FN will always 

equal to 1. To distinguish the true positive (TP), false positive (FP) and false negative 

(FN) constraints, the distance constraints from the native structure were first aligned to 

the target sequence. Constraints were considered true positives if the constraints exist 

between two residues that can both be aligned. False positives were those constraints 

that only existed as input, and false negatives were those constraints that only existed in 

the native structure. The number of long-range constraints was defined as those 

constraints that are longer than the distance cutoff (8 Å) in the native structure. The 

number of constraints was converted into the percentage of either the total number of 

native constraints or the total number of input constraints so that cross target comparison 

become possible.  
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CHAPTER V 

SUMMARY AND CONCLUSION 

 

 

In this study, molecular dynamics simulations were used to generate ensembles 

of different protein structures to sample the native conformational space, in order to 

understand the stability and dynamics of protein structures. First β-hairpin, as a simple 

secondary structure element, was studied with an emphasis on the specific ion pair 

interactions at the ends of two free termini. Results show that termini ion-pairs are able 

to stabilize β-hairpin as “pseudo hydrogen bond” by directly keeping the termini from 

opening up and indirectly cooperating with the main-chain hydrogen bond network, as 

well as the core hydrophobic interactions. Such analysis helps us to have a better 

understanding of the hairpin conformation and give us the opportunity to optimize β-

hairpin stability. Second, near 4 million structures were generated and used to represent 

the ensemble of near-native conformations, providing us with a continuous 

conformational space to better characterize the side-chain packing and conformation 

upon the influence of backbone conformations. We were able to determine the 

contribution of the local and non-local environments on the residue volume with 

implications about side-chain packing. Because such dynameome datasets allow for 

more fine-grained analysis, we were also able to more precisely define the relationship 

between the first side-chain rotamer conformation and the backbone conformation. 

These results help us to define the exact role that the backbone conformation plays on 
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the determination of the protein fold. Last, based on the information we obtained from 

the molecular dynamics simulations, we developed a side-chain packing orientated 

method for template-based protein structure prediction. Using spatial constraints derived 

from the conserved relative packing groups to mimic the experimental NMR data, we 

were able to provide “added value” to the starting structure, which is derived from the 

multiple sequence and structure alignment. Our method depends upon the correct 

prediction of long-range constraints using homologous, but was not significantly 

affected by the wrongly predicted constraints (false positives). The scoring function we 

used base on the dynameome dataset also show its selective power against native-like 

conformations.  

In conclusion, MD simulations provide a way to sample conformations in the 

native conformational space with a realistic level of physical accuracy. Structures 

generated using MD simulations can be used to provide detailed, high-resolution 

representation and a better understating of protein structure at the molecular level. The 

information derived from the large-scale MD simulations (dynameome dataset) can be 

used as a knowledge base to improve current methods of protein structure prediction and 

structure refinement.  
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