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SUMMARY 
   Work in progress – still a lot of be done 
 
Introduction 
Figure 1 shows a tilting pad journal bearing comprised of four pads. Each pad tilts about 
its pivot making a hydrodynamic film that generates a pressure reacting to the static load 
applied on the spinning journal. This type of bearing is typically installed to carry a static 
load on a pad (LOP) or a static load in between pads (LBP). Commercial tilting pad 
bearings have various pivot designs such as rocker pivots (line contact), spherical pivots 
(point contact) and  flexure supported pivots. 

 
 

Figure 1. Schematic view of a four pad tilting pad bearing, Ref. [1] 
 
Accurate prediction of tilting pad bearing forces and force coefficients is essential to 
design and predict the dynamic performance of rotor-bearing systems. Parameters 
affecting tilting pad bearing force coefficients include elastic deformation of the bearing 
pads and pivots, thermal effects affecting the lubricant viscosity and film clearance, etc. 
[2,3].  
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ANALYSIS 
Rocker and spherical pivots in tilting pad allow nearly frictionless pad rotation. An ideal 
rocker TPB, shown in Fig. 3(a), allows the pad to roll without slipping around a 
cylindrical pivot inside the curvature of the bearing. A spherical TPB, seen in Fig. 3(b), 
allows the pad to rotate about a spherical pivot fixed to the inside curvature of the 
bearing.   

     
 

(a) (b) 
 
Figure 3. Rocker pivot (a) and spherical pivot (b) in a tilting pad journal bearing 
[15] 
 
The flexure pivot TBP, depicted in Fig. 4, is a modern advancement in TBP designs. It is 
a two piece configuration that uses electron discharge machining to manufacture the pad, 
connected by a flexure thin web to the bearing housing. This design eliminates tolerance 
stack ups that usually occur during manufacturing and assembly, pivot wear, and 
unloaded pad flutter problems which occur in conventional tilting pad bearings [16].  

 

 
 
 

Figure 4. Schematic view of flexure pivot TPB [13] 
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As seen in Fig. 5, pivot flexibility makes the pad to displace along the radial (ξ ) and 
transverse (η ) directions. The pad also tilts or rotates with angle (δ ).  
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Figure 5. Displacement coordinates in a tilting pad with idealized depiction 
of pivot stiffnesses 

 
Coordinate system and film thickness 
Figure 6 shows the geometry and coordinate system for a tilting pad journal bearing. A 
local coordinate is placed on the bearing surface with the }{x  axis in the circumferential 
direction and the }{z  axis in the axial (in plane) direction. Inertial axes },,{ ZYX have 
origin at the bearing center. YX ee ,  represent the journal center displacements along the 

X,Y axes. The position of a tilting-pad is referenced to the angular coordinate 
R
x

=θ , 

with lΘ  as the pad leading edge angle, tΘ  as the pad trailing edge angle, and PΘ as the 
pad pivot point angle.  ( )kkk ηξδ ,,  denote the thk  pad rotation and radial and transverse 
displacements; padNk ,...1= . 
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Figure 6.  Geometry and nomenclature for a tilting pad with flexible pivot 
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The fluid film thickness in the thk  pad is [17], 
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where pC  is the pad machined radial clearance, and mpp CCr −=  is the pad preload with 

mC  as the bearing assembled clearance. Presently, for simplicity, a bearing pad is 
assumed rigid. 
 
Journal motion perturbation analysis 
The bearing supports a static load with components { }YoXo WW , . At speed Ω, the static 
load determines operation with the journal at its static equilibrium position ( YoXo ee , ). At 
equilibrium, in the thk pad, the ensuing film thickness is{ }k

oh  generating a hydrodynamic 

pressure field { }k
oP . Each pad undergoes a rotation k

oδ  and the pivot deflects or displaces 

( ),k k
o oξ η .  

 
Consider small amplitude journal center motions ( XeΔ , YeΔ ) of frequency ω about the 
static equilibrium point ( YoXo ee , ). Hence, the journal center position, pad rotation angle 
and pivot displacements are  
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The pads film thicknesses and hydrodynamic fluid film pressures are also the 
superposition of equilibrium (zeroth order) and perturbed (first order) fields, i.e.,   
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Pad fluid film forces and pad moment 
Fluid film reaction forces acting on the rotating journal are a result of the hydrodynamic 
pressure fields, 
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The fluid film moment acting on a tilting pad is a result of these forces. i.e.  
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where R is the pad radius and t is the pad thickness. See Appendix A for details on the 
derivation of Eq. (8) 
 
The fluid forces and moment are decomposed into static and dynamic parts, i.e. 
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where the zeroth order fluid film forces ( k
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Xo FF , ), and pad moment ( k
oM ) are: 
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In Eq. (9), ( )kZαβ  are fluid film impedance coefficients whose real part and imaginary 
part give stiffness and damping coefficients, respectively. For the force impedances due 
to journal center displacements ( XeΔ , YeΔ ),   
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where )cos(θ=Xh  and )sin(θ=Yh . 
 
San Andrés [2] carries out the substitution of Eqs. (3-4) into the Reynolds equation to 
obtain a nonlinear PDE for the equilibrium pressure { }oP  and linear PDEs for the first 
order fields. In Ref. [2], San Andrés shows that the first order pressure fields satisfy 
homogeneous boundary conditions. Hence, the dynamic pressure fields due to angular 
( kδ ), radial ( kξ ), and transverse ( kη ) motions of the thk  pad satisfy the following 
relationships  
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A major simplification follows from Eq. (13), i.e., ( kkk PPP ηξδ ,, ) are linear combinations of 

( k
Y

k
X PP , ).  Thus impedance coefficients due to pad rotation, and pad-pivot radial and 

transverse displacements ( kZαβ , ηξδβα ,,, = ) are readily expressed as functions of the force-

displacement impedances ( kZαβ , YX ,, =βα ). Reference [18] details the formulae for each 
fluid film impedance coefficient.  
 
Pad Equilibrium Equations and Pad Equations of Motion 
The sum of the pads fluid film reaction forces must balance the external load ( YX WW , ) 
applied on the journal. The external forces add a static (equilibrium) ( YoXo WW , ) load to a 

dynamic part ( ), i t
X YW W e ωΔ Δ .  
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The equations of motion for the thk  pad are  
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where k
PM , k

PF ξ , k
PF η  are the pad pivot reaction moment and forces, and kM , kFξ , kFη  

are the fluid film forces  acting on the thk  pad.  
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with b and c as the radial and transverse distances from the pad center of mass to the pad 
pivot, respectively. km  and k

PI  are the pad mass and mass moment of inertia about the 
pad pivot. )( 22 bcmII kk

G
k
P ++= , where k

GI  is the pad moment of inertia about its center 
of mass. See Appendix A for details on the derivation of Eq. (16) 
  
The hydrodynamic pressure field determines the fluid film forces and moment acting on a 
pad. The pressure fields are obtained from solution of the fluid flow equations, either the 
Reynolds equation or bulk-flow equations. See Notes 7 and Notes 10 for details on the 
equations and the method of solution. 
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Evaluation of pivot nonlinear stiffness 
The pivot stiffness is, in general, a nonlinear function of the applied (fluid film) load 
acting on a pad. Consider, as sketched in Figure 7, a typical radial force ξPF  versus pivot 
nonlinear radial deflection (ξ ). 
 

 
Figure 7. Typical force versus pivot (nonlinear) radial deflection 

 
The local pivot stiffness is the slope of the load versus displacement curve, i.e., 
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The assumption of small amplitude motions about an equilibrium position allows the 
pivot reaction radial force to be expressed as 
 

PoPoPP KFF ξξξξξ Δ+=      (18) 
 
where )( PooP fF ξξ =  is the static load on the pivot, and PoPK ξξξ Δ  is the force due to 
radial displacement ( ξΔ ) of the pad.  
 
The analysis of tilting pad bearings typically assumes either an ideal point contact or an 
ideal line contact, along with a negligible resistance to pad rotation [7]. The prediction 
of pivot stiffness in Ref. [7] is based upon Hertzian contact stress formulas in Ref. [11]. 
Ref. [7] details stiffness equations for a spherical pivot (point contact) and cylindrical 
pivot (line contact). Assuming the material properties of the pad pivot and its contact 
housing are the same, Kirk and Reedy [7] state the following pivot stiffness equations for 
physical parameters in US units: 
 
Spherical pivot (point contact model) 

Radial  
Force  

ξξPK

ξ
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oPF ξ
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Radial Deflection 

)(ξξ fFP =
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Cylindrical (rocker) pivot (line contact model) 
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Above E and  ν  are the pivot material Young Modulus and Poisson ratio, respectively. 

HD  and PD  are the pivot housing diameter and pivot diameter, respectively. PoF  is the 
applied load on the pivot.  
 
For an idealized flexure pivot pad bearing, Chen [9] treats the pad as a lumped inertia at 
the free end of a cantilever beam, see Fig. 8.  

 
Figure 8: Cantilever beam model of a tilting pad with flexural web 

 
The web deforms radially (ξ ) and transversely (η ) and the pad rotates with angular 
dispalcement (δ ).  The flexure pivot stiffness matrix is written as  
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Above A , webL , I , and E  are the web cross sectional area, length of the flexure web, 
web area moment of inertia, and web modulus of elasticity, respectively. PoF  is the load 
passing through the support thin web. The equations above show the flexure stiffness 
coefficients are nonlinear. 
 
Bearing rotordynamic force coefficients 
Tilting pad bearing force coefficients are determined at the journal static equilibrium 
position and for a particular excitation frequency (ω ), usually synchronous ( Ω=ω ), or 
subsynchronous ( Ω<ω ).  
 
The journal center displaces along the },{ YX  axes = two degrees of freedom (DOF). Each 
pad, on the other hand, has one rotation and two deflections, k),,( ηξδ  = three DOF. The 
total number of DOF in the bearing = 2 + 3 Npads. Hence, the motion of the journal 
combined with those of the pads is complicated.  
 
A simplification follows by assuming the pads move with the same frequency as the 
journal whirl frequency (ω ).  Substitution of Eq. (9) into Eq. (15) leads to the frequency 
reduced impedance coefficients [17]  
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The frequency reduced stiffness and damping coefficient matrices are [ ]RK  and [ ]RC , 
respectively. The pivot stiffness matrix ][ k

pivotK  for the thk  pad of a flexure tilting pad 
bearing is found according to Eq. (21).  
 
Under ideal operating conditions, the pads of a spherical or rocking tilting pad bearing 
will only deflect radially. Therefore, the matrix ][ k

pivotK  will contain an entry for the 
radial stiffness ( ξξPK ) only. For simplicity and absence of empirical data, pivot damping 

][ k
pivotC  coefficients are negligible.   

 
Iterative method for finding the static equilibrium position 
The applied static load ( YoXo WW , ) determines the journal static equilibrium position 
( Xoe , Yoe ). The analysis must calculate this operating eccentricity along with the static 
deflections and rotation for each pad.  
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On each pad, the pivot reaction moment and forces must equal the pad fluid film moment 
and forces. From Eq. (15) 
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A Newton-Raphson iterative procedure is devised to simultaneously satisfy the moment 
and forces balance of each pad as well as the static load condition on the journal. During 
the thn  iteration, Eq. (31) may not be satisfied, i.e., 

{ } 0≠=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
nk

n

k

k

kn

k
P

k
P

k
P

r
F
F
M

F
F
M

η

ξ

η

ξ     (32) 

In order for the residual vector { } { }0
nkr → , pad displacements are incremented such 

that in the next iteration 
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Assuming that the displacement increments { }Tk k kδ ξ ηΔ Δ Δ  are small, Eq. (31) is 

rewritten as  
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where ][ k
cK , the real part of ][ k

cZ , represents the static fluid film stiffnesses due to pad 
rotation and translations. Thus, the pad displacement vector is updated incrementally 
using the following: 
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In the process above, the journal position ( Xoe , Yoe ) remains invariant while the iterative 
method balances the static forces on each pad.  
 
In order to balance the static load, i.e. ( ) 0, =+ YXoo FW , a similar Newton-Raphson 
procedure is used to estimate improved journal eccentricity displacements, 
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as the matrix of reduced (bearing) static stiffness coefficients. Note that for the static 
case 0=ω , the impedances ][ k
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fPZ + , and ][ k

bZ  have no imaginary part. Hence, 
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Comparison between predicted static and dynamic coefficients and Ref. 
[14] test measurements. 
Figure 9 depicts a schematic view of a five pad, rocker back, TPB tested by Carter and 
Childs [14]. Bearing force coefficients were experimentally obtained for shaft speeds 
from 4k-12k rpm and static loads from 0-19.5 kN.    
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Figure 9: Five pad tilting pad bearing, Ref. [14] 
 
Mineral oil (Mobil DTE) ISO VG32 lubricated the bearing. The lubricant inlet supply 
pressure and temperature are 1.55 bar (gauge) and 43° C, respectively. The load applied 
to the bearing is along the -Y direction. Table 1 details the bearing geometry and fluid 
properties. 

 
Table 1: Test bearing geometry and operating conditions, Ref. [14] 
 

Rotor diameter, D 101.587 mm 

Pad axial length, L 60.32 mm 

Pad number and arc length 5 (57.87°) 

Pivot offset 60% 

Loaded radial pad clearance, pC  110.5 mm 

Loaded radial bearing clearance, bC  79.2 mm 

Pad preload, 
p

b
p C

Cr −=1  0.283 

Pad mass, pm  1.0375 kg 

Pad mass moment of inertia (at pivot), pI  0.000449 kg- 2m  

Fluid Properties, Ref. [19] Mobile DTE ISO VG32 

Viscosity @ 40° C 31 cSt 

Viscosity @ 100° C 5.5 cSt 

Density @ 15°C 850 kg/ 3m  

Specific heat 1951 J/(kg-K) 

Journal speed Ω  

Y 

X

Static Load 
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For load-between-pad configuration (LBP), Carter and Childs [14] present 
nonsynchronous force coefficients versus load. Figure 10 shows Ref. [14] predicted and 
experimental direct stiffnesses for a journal speed of 4 krpm. Experimental direct 
stiffness YYK  is over predicted by ~28% for a static load of 14.8 kN.   
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Figure 10: Predicted and experimental direct stiffness for operation shaft 

speed of 4 kprm, Ref. [14] 
 
The experimental direct stiffness XXK  is over predicted at low loads (0-6 kN), but is 
under predicted at high loads (7-14.8 kN). The tilting pad bearing model assumes the 
pivot to be rigid, thus, when a flexible pivot is implemented into the model, the predicted 
direct stiffnesses will decreases.  
 
Pad rocker pivot 
The rocker pivot deflection equation as a function of load is given according to Kirk and 
Reedy [7]. Figure 11 shows rocker pivot deflection as a function of load. 
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Figure 11: Rocker pivot deflection versus load 

 



NOTES 16.  ANALYSIS OF TILTING PAD BEARINGS © Luis San Andrés (2010) 14

Rocker pivots usually cover the full axial length of the bearing pad, and thus are 
generally stiffer than spherical pivots. 
 
Journal eccentricity and static stiffness coefficient predictions are predicted at a journal 
speed of 4,000 rpm. Figure 12 shows the predicted direct static force coefficients versus 
static load given a flexible rocker pivot and a rigid pivot for an isothermal flow case.  The 
direct static stiffnesses decrease for a flexible pivot, the difference amounting to a large  
percentage, ~ 33%.  
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Figure 12: Predicted static direct stiffnesses versus static load 

 
 
Figure 13 shows the predicted bearing static eccentricity versus applied load when 
considering both a rigid pivot and a flexible pivot. As the static load increases, the journal 
eccentricity increases. At a given static load, the journal eccentricity given a flexible 
pivot is larger than the eccentricity given a rigid pivot. This is because at a particular 
static load, the film thickness on a pad remains the same whether the pivot is flexible or 
rigid thus ensuring that the static load remains the same. If the pivot is flexible, the pad 
displaces radially, allowing the journal to displace. For a flexible pivot, the radial pad 
displacement increases with increasing static load, hence the difference between the 
journal eccentricity of a rigid pivot and a flexible pivot increases as the static load 
increases. 
 

Flexible Pivot 

Rigid Pivot 
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Figure 13: Predicted bearing static eccentricity versus static load (-Y 

direction) 
 
 
 
Some observations 
At a given load, journal eccentricity for a flexible pivot is larger than journal eccentricity 
for a rigid pivot bearing. Pivot flexibility decreases the direct static stiffness coefficients,  
a ~33% difference is noted between direct static stiffnesses of a flexible pivot and a rigid 
pivot bearings  
 
Future work 
Further work will be conducted to perform extensive comparisons between predicted 
force coefficients and Childs et al. [1,12-14] test data.  
 
References [20-24] note that for a spherical pivot tilting pad bearing, the pad slides 
about the pivot instead of rotating about a point (rolling without slipping). 
References [20,22,24] find that as the pad slides about the pivot, friction impedes the 
tilting motion of the pad, thus affecting the journal eccentricities and increasing cross-
coupled stiffness. Future work will be performed to account for the sliding motion and 
friction of a spherical pivot.  
 
References [20,22] also note that for a rocker pivot, cross-coupled stiffnesses are small 
and journal eccentricities are well predicted when assuming the pad rotates about a line 
contact. 
 
 

Rigid Pivot 

Flexible Pivot 
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Literature Review  (written by Jared Wilson, edited by Luis San Andres) 
Lund (1964) [4] presented one of the first computational models predicting tilting pad 
bearing force coefficients. Even though predicted bearing force coefficients differ from 
experimental force coefficients obtained by Hagg and Sankey [5], Lund sets the 
foundation for modeling tilting pad bearing force coefficients. Sine Lund’s original work, 
improved bearing models have followed that account for fluid inertia and turbulence flow 
effects, mechanical energy dissipation and heat transfer, and elastic deformation of the 
bearing pads, for example. Pad pivot stiffness has also been included in predictive models 
to bring about agreement with test data [6-9]. 
 
A review follows on the advances in modeling tilting pad bearing stiffness and damping 
force coefficients and the importance of pivot stiffness on the bearing dynamic force 
coefficients.  
 
Lund [4] presents a comparison between predicted force coefficients and test results 
obtained by Hagg and Sankey [5] for a six pad, 50 degree arc tilting pad bearing. Figure 2 
depicts the coordinate system and a representation of the bearing stiffness and damping 
coefficients as mechanical springs and dashpots. The bearing stiffness K and damping C 
coefficients include both direct (XX, YY) and cross-coupled (XY, YX) components. 
 
 

 
 

Figure 2: Conceptual depiction of stiffness and damping coefficients in a 
fluid film journal bearing 
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With the applied static load along the X direction, Ref. [4] shows predictions of direct 
stiffnesses ( XXK , YYK ) decreasing with increasing Sommerfeld1 numbers (S). Predicted 

XXK  is consistently about three times larger than YYK , but experimental results show that 

XXK  becomes larger than YYK  as S decreases, with XXK  about twice as large as YYK  at 
S~ 0.1. At a low Sommerfeld number2  of 0.1, the predicted direct stiffness YYK is similar 
to the experimental YYK ; however, the predicted XXK  is larger than the experimental 

XXK . At a higher Sommerfeld number3 of 3, the experimental YYK  is substantially under 
predicted with the experimental XXK  slightly under predicted. Comparison between 
theoretical and experimental damping shows that experimental direct damping XXC  is 
substantially over predicted at a low S~ 0.1; while at a high S=3, the experimental direct 
damping coefficient is predicted fairly well.  Experimental direct damping YYC  is slightly 
over predicted at a low Sommerfeld number of 0.1; however, as S increases, YYC  is 
increasingly under predicted. Lund’s bearing model does not account for flexibility in the 
pad pivot. In actuality, the pivot stiffness is in series with the fluid film stiffness, 
hence affecting the bearing pad overall stiffness and damping coefficients.  
 
Later, in 1988, Someya [10] publishes experimental force coefficients for a five pad 
(LOP) tilting pad bearing.  A static load in the X direction is applied on the bearing, as 
shown in Figure 2. Predictions of the direct stiffnesses ( XXK , YYK ) versus increasing 
Sommerfeld numbers (S) show a decreasing trend while the experimental results show an 
increasing trend. Thus, experimental direct stiffness coefficients at low S (high bearing 
loads) are over predicted and at high S (low bearing loads) are under predicted. Predicted 
damping coefficients ( XXC , YYC ) increase with increasing S, as the experimental direct 
damping coefficients also do. At low S, experimental direct damping coefficients are over 
predicted by a factor of three, but at S~ 0.5 they are only over predicted by 5% to 10%. 
This signifies that experimental damping coefficients become more over predicted as the 
bearing load increases, similar to the results in Ref. [4]. Someya does not consider pivot 
stiffness in the analytical model, and as a result, bearing stiffness and damping 
coefficient are over predicted at high loads.  
 
Over a decade after Lund’s analysis, Rouch [6] observes that the behavior of pivoted-pad 
bearings can be significantly affected by the flexibility of pad pivots, especially in large, 
heavily loaded bearings. To account for pivot flexibility, pad translation in the radial 
direction is included in the bearing analysis. Using a typical five pad bearing, Rouch 
shows the effects of pivot stiffness on the bearing frequency reduced (pads move with the 
same frequency as the shaft rotational speed) force coefficients for operation at three 

                                                 
1 The Sommerfeld number is a non-dimensional number relating bearing static performance characteristics 

and is written as 
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

PC
R

W
NLDS μ

 where μ =fluid viscosity, N=shaft speed(rev/s), L=pad length, 

D=bearing diameter, R=bearing radius, PC =pad clearance, and W=applied load 
2 Large bearing loads, or low shaft speeds, or light lubricant viscosity, or large journal eccentricity 
3 Low bearing loads, or high shaft speeds, or large lubricant viscosity, or small journal eccentricity 
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shaft speeds. In the analysis, all pads have the same pivot stiffness, but it is noted that in 
actuality, pivot stiffness is a function of the static load acting on each pad, hence each 
pad has a different pivot stiffness. Rouch applies a static load in the Y direction, see 
Figure 2, and determines how pivot stiffness affects the bearing dynamic force 
coefficients. Direct damping coefficients ( XXC , YYC ) increase rapidly with an increase in 
pivot stiffness and then level out at a pivot stiffness over 1010  N/m.  The bearing direct 
stiffnesses ( XXK , YYK ) increase with increasing pivot stiffness, leveling off at a pivot 
stiffness higher than 1010  N/m.  The cross-coupled stiffness YXK  decreases with 
increasing pivot stiffness and goes to zero around a pivot stiffness between  810  and 910  
N/m, and then increases until leveling off at a pivot stiffness over 1010  N/m. Rouch also 
varies pivot stiffness to determine how it affects rotor stability. He finds that for large 
rotors, pivot stiffness and corresponding foundation flexibility can be significant 
factors in determining the stability of the rotor. 
 
In 1988, Kirk and Reedy [7] review Hertzian contact stress analysis in an effort to 
improve tilting pad bearing pivot designs. Typical pivot designs range from line 
contact applicable to a rocker tilting pad bearing, to a point contact found in a ball-
in-socket bearings. The analysis considers an ideal line or point contact and negligible 
resistance to pad rotational motion. The calculation of pivot stiffness is based upon the 
results of Hertzian contact stress as given by Roark [11]. Using Hertzian contact stress 
formulas, pivot stiffness is a function of its material properties, contact area, and applied 
load.  Kirk and Reedy report stiffness equations for pivot designs of a sphere contacting a 
flat plate, a sphere contacting a sphere, a sphere inside a cylinder, and a line contact 
pivot.  Comparing predicted synchronous speed bearing stiffness coefficients with and 
without pivot stiffness over a range of shaft speeds, Ref. [7] notes that pad pivots 
representing a line contact and a point contact pivot behave similarly. For these cases, 
when pivot stiffness is considered, both synchronous speed reduced bearing damping and 
stiffness coefficients decrease. Kirk and Reedy also present the percentage differences 
between calculated pivot stiffness using the Hertzian approximation and a more exact 
general solution with pad pivot curvature effects. The authors find there is only a small 
difference between calculated pivot stiffness using the Hertzian approach and the exact 
solution.  Ref. [7] concludes that pivot flexibility can reduce the bearing damping 
coefficients, synchronous speed reduced, by as much as 72% if small radii spherical 
pivots are used. 
 
In 1990, Brockwell et al. [8] present predicted and experimental stiffness and damping 
force coefficients of a five pad, rocker tilting pad bearing for shaft speeds of 15, 30, 45, 
and 60 Hz over a bearing load range of 1.7 to 4.5 kN. The analysis considers pivot 
stiffness as a function of load using the line contact pivot stiffness equation in Ref. [7].  
Brockwell et al. present the bearing direct stiffness coefficients ( XXK , YYK ) and direct 
damping coefficients ( XXC , YYC ) versus applied static load in the Y direction, see Fig. 2. 
The authors find the trend of predicted and experimental force coefficients versus load to 
be similar. Ref. [8] includes a comparison of predicted bearing direct damping 
coefficients using a pad rigid pivot and a pad flexible or elastic pivot. Predicted direct 
damping coefficient derived using a pad flexible pivot compare fairly well with the 
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experimental values as the bearing load increases; while the direct damping coefficients 
derived using a pad rigid pivot increasingly over predict experimental coefficients as the 
bearing load increases. Taking into account the pad pivot flexibility leads to a significant 
improvement in predicting the damping coefficients at high loads, in particular. However, 
in general, the force coefficients are still over predicted.  Brockwell et al. attribute this 
over prediction in part to noise associated with signals from the displacement transducers.  
 
In 1995, Kim et al. [3] analyze the dynamic force characteristics of a tilting pad journal 
bearing similar to that in Ref. [8]. The analysis considers cross film variable viscosity, 
heat transfer effects in the lubricant flow, pad elastic deformation, heat conduction effects 
in the pads, and elastic deformation effects in the pivot. Modal deflection modes are used 
to approximate the deformation of the pads top surface.  Using the same bearing 
characteristics and load and frequency range, Kim et al. compare predicted 
synchronously reduced bearing stiffness and damping force coefficients with the 
experimental and analytical results reported by Brockwell et al. [8].  At shaft speeds of 30 
and 45 Hz, Kim et al. predict direct stiffnesses ( XXK , YYK ) which correlate very well 
with the experimental coefficients.  The predicted direct damping coefficients ( XXC , YYC ) 
match the experimental coefficients better than in Ref. [8] predictions, but a slight 
divergence between predicted and experimental values appears at high bearing loads.  
 
In 1994, Chen [9] presents a general method for calculation of the dynamic force 
coefficients in tilting pad journal bearings. Flexibility of the tilting pad pivot in the radial, 
transverse, and rotational directions is taken into account. The analysis also models, at 
that time, the newly developed flexure-pivot tilting pad bearing.  The pad is taken as a 
lumped inertia on the free end of a slender cantilever beam, and whose stiffnesses are 
found from simple bending formulas. For a five pad (LBP) flexure picot bearing, Chen 
compares predicted and experimental stiffness and damping force coefficients for a rigid 
pivot and a flexible pivot with load dependent pivot stiffness. Modeling with the flexible 
pivot, damping coefficients decrease by ~ 8% and stiffness coefficients by ~ 3% as 
compared to the coefficients obtained assuming a rigid pivot. Comparing a flexure-pivot 
with a line in contact pivot configuration, the damping coefficients are found to be lower 
for the flexure-pivot while the cross-coupled coefficients that result from the transverse 
resilience of the support web increase.  
 
Al-Ghasem and Childs [12] present experimental rotordynamic coefficients for a four pad 
LBP) flexure pivot tilting pad bearing (FPB)4. The bulk flow model by San Andrés [2] is 
used to predict the static and dynamic forced performance of the FPB. The model takes 
into account pivot rotational stiffness, but neglects pivot deflection along the pad radial 
and transverse directions. Predicted direct stiffness coefficients ( XXK , YYK ) versus 
applied load show a trend similar to the experimental ones. However, predicted direct 
stiffnesses are larger than experimental ones, most noticeably at large static loads. 
Predicted XXK  at an applied load of ~ 9 kN and shaft speed of 8 krpm shows the largest 

                                                 
4 Childs et al. static load is applied on the bearing in the –Y direction as per Figure 2. 
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over prediction, and differs from experimental XXK  by ~ 35%5.   Direct damping 
coefficients ( XXC , YYC ) increase with increasing static load, but decrease with increasing 
shaft speed. Direct damping coefficients are reasonably well predicted for low loads 
(~1.6 kN), but at high loads (~9 kN) these coefficients are over predicted significantly. 
Predicted XXC  at an applied load of ~ 9 kN and shaft speed of 8 krpm shows the largest 
over prediction, and differs from experimental XXC  by ~ 35%6.  Refs. [6-9] note that at 
high loads, bearing direct damping and stiffness force coefficients reduce when pivot 
flexibility is considered. Thus, predicted direct damping and stiffness force coefficients 
would improve if radial pivot stiffness was considered in San Andrés [2] model. 
 
In 2008, Hensley and Childs [13] tested at higher loads the same flexure pivot tilting pad 
bearing in Ref. [12]. Experimental force coefficients are found for applied loads ranging 
from ~ 9 kN to 19.5 kN, and shaft speeds between 6 to 12 krpm.  It is important to note 
that the bearing clearance is slightly larger than that reported in Ref [12]; therefore 
stiffness and damping force coefficients at corresponding static loads in Ref. [13] are 
slightly lower than those in Ref. [12].  Hensley and Childs present experimental direct 
stiffness and damping coefficients versus increasing static load. Predicted direct 
stiffnesses are higher than experimental direct stiffness coefficients, most noticeably at 
the highest load. Predicted XXK  at an applied load of 17 kN and shaft speed of 8 krpm 
shows the largest over prediction, and differs from experimental XXK  by ~ 53%. 
Similarly, predicted direct damping coefficients are higher than experimental direct 
damping coefficients, again most noticeably at the highest applied load. Predicted XXC  at 
an applied load of 17 kN and shaft speed of 8 krpm shows the largest over prediction, 
differing from experimental XXC  by ~ 68%. 
 
Carter and Childs [14] report rotordynamic force coefficients for a 5-pad, rocker-pivot, 
tilting pad bearing in a LBP configuration. Using a similar test setup as in Ref. [12], 
experimental bearing force coefficients are obtained over load ranges from ~ 2 N to 19 
kN, and shaft speed ranges from 4 to 13 krpm.  Using San Andrés [2] bulk flow model, 
predictions are made for the experimental direct stiffness ( XXK , YYK ) and direct damping 
( XXC , YYC ) force coefficients. Both predicted and experimental direct stiffness 
coefficients increase with increasing static load and increasing shaft speed. However, 
unlike in Refs. [1,3], YYK  is under predicted while XXK  is over predicted.  The most 
significant difference between predicted and experimental direct stiffness coefficients is 
seen at an applied load of ~ 19 kN and a shaft speed of 10 krpm, with a ~ 12% difference 
for YYK  and a ~ 30% difference for XXK . Measured direct damping coefficients are 
almost completely insensitive to changes in static load. Direct damping force coefficients 

                                                 
5The percent difference equals 

E

EP

K
KKdiff −

=_% , where PK  and EK are the predicted stiffness 

coefficient and experimental stiffness coefficients, respectively.  
6 The percent difference equals 

E

EP

C
CCdiff −

=_% , where PC  and EC are the predicted damping 

coefficient and experimental damping coefficients, respectively. 
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( XXC , YYC ) are over predicted and become increasingly over predicted with increasing 
static loads. The largest difference seen is between predicted and experimental YYC  at a 
static load of ~ 19 kN and a shaft speed of 10k rpm, with predicted YYC  ~ 50% larger 
than experimental YYC . Again a reoccurring trend is noticed between predicted and 
experimental force coefficients. As the applied static load increases, the difference 
between predicted and experimental force coefficients increases.  
 
In 2008, Harris and Childs [1] report experimental static performance characteristics and 
rotordynamic coefficients for a four pad, ball-in-socket, tilting pad journal bearing. Also 
included are predictions of journal static eccentricity, bearing power loss, oil outlet 
temperature rise, and rotordynamic force coefficients derived from the bulk flow model 
in Ref. [2]. By applying a static load to the bearing housing and measuring the relative 
displacement between the bearing housing and the rotor, a nearly uniform pad pivot 
stiffness m

MN
pK 354=  is found as the slope of the applied load versus recorded 

displacement. The pivot stiffness is expected to increase as the applied load increases, 
however this was not the case experimentally. The measured deflection accounts for the 
stiffness of the pad babbitt, the pad itself, the pivot, the pivot shim, and the bearing 
housing. The recorded stiffness measurements are lower than the pivot stiffnesses 
calculated using Kirk and Reedy [7] spherical pivot stiffness equation.  
 
With regard to the rotordynamic force coefficients in Ref. [1], direct stiffness coefficients  

XXK  and YYK  are significantly over predicted, and the disagreement worsens as shaft 
speed increases. At a shaft speed of 12 krpm and a high static load of ~ 19.5 kN, a unit 
load7 of ~ 1896 kPa, predicted direct stiffness coefficients are much larger than 
experimental direct stiffness coefficients, with a percent difference of ~ 66%. However, 
Harris and Childs calculate equivalent stiffness and damping coefficients by combining 
fluid film flexibility with pivot flexibility for each pad. The equivalent stiffness and 
damping coefficients from each pad are assembled to obtain the equivalent coefficients 
for the entire tilting pad bearing. The equivalent bearing stiffness coefficients decrease, 
and surprisingly, under predict the experimental values. The coefficient difference is ~ 
25% for a shaft speed of 12 krpm and an applied load of ~ 19.5 kN.  It is also important 
to note that experimental direct stiffness coefficients do not increase as substantially with 
load as reported in Refs. [12,14], most likely due to the low measured stiffness value of 
the pad8 and pivot.  Experimental direct damping coefficients XXC  and YYC  are also 
significantly over predicted, with a percent difference of ~ 86% at a shaft speed of 12 
krpm and an applied load of ~ 19.5 kN. Equivalent direct damping predictions, including 
the effect of pivot flexibility, under predict experimental direct damping coefficients with 
a difference of ~ 50%.  It is clear from Harris and Childs [1] that the measured stiffness 
of a pad and pivot directly affects the overall bearing stiffness and damping force 
coefficient predictions. 

                                                 
7 Unit load = W LD  where W is the static load, L is the length of the bearing, and D is the diameter of the 

bearing 
8 Pad babbitt also contributes to the low measured stiffness magnitude 
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Summary of literature review 
Lund [4] and Someya [5] present predictions of experimental rotordynamic force 
coefficients.  Their theoretical force coefficients over predict experimental force 
coefficients at low Sommerfeld numbers (large loads).  Rouch [6] finds analytically that 
bearing stiffness and damping coefficients increase dramatically with increasing pivot 
stiffness. Kirk and Reedy [7] report pad pivot stiffness as a function of load and material 
properties.  Using pivot flexibility in their model, both Brockwell et al. [8] and Kim et al. 
[10] present a comparison of predicted to experimental stiffness and damping 
coefficients.  Ref. [7] reports that accounting for pivot stiffness improves the dynamic 
force coefficient predictions, especially damping coefficients.  Chen [9] presents bearing 
force coefficient predictions for a rocker and flexure pad tilting pad bearing. The analysis 
takes into account both radial and transverse displacement in the pivot.  A comparison 
between rigid pivots and flexible pivots show that the model using flexible pivots reduces 
the bearing predicted stiffness and damping coefficients compared to the stiffness and 
damping coefficients found using a rigid pivot. 
 
Childs and students, Refs. [1,12-14], present tilting pad bearing experimental stiffness 
and damping coefficients for increasing static loads and shaft speeds. Direct stiffness 
tends to increase with load and shaft speed for a flexure tilting pad bearing, Refs. [12,13], 
and rocker tilting pad bearing, Ref. [14]. The ball-in-socket tilting pad bearing, Ref. [1], 
also gives similar results, except that the direct stiffness coefficients do not increase as 
significantly with static load and shaft speed, as reported in Refs. [12,13,14]. For each 
test bearing, predictions of the direct stiffness coefficients are too large, most noticeably 
at a high static load. In all four test bearings, experimental direct damping coefficients 
remain relatively constant with an increasing static load and increasing shaft speed, a 
occurrence not predicted by the model.  Overall, San Andrés [2] bulk flow model over 
predicts the experimental force coefficients, in particular at large static loads.  An 
improvement in bearing force coefficient predictions is noted in Ref. [1] when pivot 
stiffness is placed in series with the bearing force coefficients derived from a rigid pivot 
model. 
 
Including pivot stiffness as a function of load has shown to improve the predictions of 
bearing force coefficient, in particular damping coefficients, see Refs. [6-9]. 



NOTES 16.  ANALYSIS OF TILTING PAD BEARINGS © Luis San Andrés (2010) 23

 References 
[1] Harris, J., and Childs, D., 2008, “Static Performance Characteristics and Rotordynamic Coefficients for 

a Four-Pad Ball-In-Socket Tilting Pad Journal Bearing,” ASME Paper No. GT2008-5063. 

[2] San Andrés, L., 1996, “Turbulent Flow, Flexure-pivot Hybrid Bearings for Cryogenic Applications,” 
ASME J. Tribol., 118(1), pp. 190-200. 

[3] Kim, J., Palazzolo, A., and Gadangi, R., 1995, “Dynamic Characteristics of TEHD Tilt Pad Journal 
Bearing Simulation Including Multiple Mode Pad Flexibility Model,” ASME J. Vib. Acoustics, 117, 
pp. 123-135. 

[4] Lund, J. W., 1964, “Spring and Damping Coefficients for the Tilting-Pad Journal Bearing,” ASLE 
Trans., 7, 4, pp. 342-352. 

[5] Hagg, A. C., and Sankey, G. O., 1958, “Some Dynamic Properties of Oil-Film Journal Bearings with 
Reference to the Unbalance Vibration of Rotors,” ASME J. Appl. Mech., 25, 141. 

 [6] Rouch, K. E., 1983, “Dynamics of Pivoted-Pad Journal Bearings, Including Pad Translation and 
Rotation Effects,” ASLE Trans., 26, 1, pp. 102-109. 

[7] Kirk, R. G., and Reedy, S. W., 1988, “Evaluation of Pivot Stiffness for Typical Tilting-Pad Journal 
Bearing Designs,” J.  Vib., Acoustics, Stress, and Reliability in Design, 110, pp. 165-171. 

[8] Brockwell, K., Kleinbub, D., and Dmochowski, W., 1990, “Measurement and Calculation of the 
Dynamic Operating Characteristics of the Five Shoe, Tilting Pad Journal Bearing,” STLE Tribol. 
Trans., 4, 33, pp. 481-492. 

[9] Chen, W. J., 1995, “Bearing Dynamic Coefficients of Flexible-Pad Journal Bearings,” ASME J. Tribol., 
2, 38, pp. 253-260. 

[10] Someya, T., 1988, Journal-Bearing Databook, Springer-Verlag, Berlin, pp. 227-229. 

[11] Roark, R. J., and Young, W. C., 1975, Formulas for Stress and Strain, 5th ed., McGraw-Hill, 
Columbus, OH, pp. 650-655. 

[12] Al-Ghasem, A. M. and Childs, D., 2006, “Rotordynamic Coefficients Measurements Versus 
Predictions for a High-Speed Flexure-Pivot Tilting-Pad Bearing (Load-Between-Pad Configuration),” 
ASME J. Eng. Gas Turbines Power, 128, pp. 896-906. 

[13] Hensley, J. E., and Childs, D., 2008, “Measurements Versus Predictions for the Static and 
Rotordynamic Characteristics of a Flexure Pivot-Pad Tilting Pad Bearing in an LBP Condition at 
Higher Unit Loads,” ASME Paper No. GT2008-5066. 

[14] Carter, R. C., and Childs, D., 2008, “Measurements Versus Predictions for the Rotordynamic 
Characteristics of a 5-Pad, Rocker-Pivot, Tilting-Pad Bearing in Load Between Pad Configuration,” 
ASME Paper No. GT2008-5069. 

[15] “Tilting Pad Journal Bearings,” Rotech Engineering, 
http://www.rotechconsulting.com/bearings_sub2.htm, [accessed 10 April 2008] 

[16] Zeidan, F.Y., 1992, “Developments in Fluid Film Bearing Technology,” Turbomachinery 
International, 9, pp. 24-31. 

[17] San Andrés, L., 2006, “Hybrid Flexure Pivot-Tilting Pad Gas Bearings: Analysis and Experimental 
Validation,” ASME J. Tribol., 128(1), pp. 551-558. 

[18] Delgado, A., San Andrés, L., and Justak, J., 2004, “Analysis of Performance and Rotordynamic Force 
Coefficients of Brush Seals with Reverse Rotation Ability,” ASME Paper No. GT 2004-53614. 

[19] “Mobil DTE Oil Named Series” Exxon Mobil Corporation, 2007, http://www.mobil.com, [accessed 21 
May, 2008]  

[20] Wygant, K. D., Flack, R. D., and Barrett, L. E., 1999, “Influence of Pad Pivot Friction on Tilting-Pad 
Journal Bearing Measurements-Part I: Steady Operating position”, Trib. Trans, 42, pp. 210-215. 



NOTES 16.  ANALYSIS OF TILTING PAD BEARINGS © Luis San Andrés (2010) 24

[21] Wygant, K. D., Flack, R. D., and Barrett, L. E., 1999, “Influence of Pad Pivot Friction on Tilting-Pad 
Journal Bearing Measurements-Part II: Dynamic Coefficients”, Trib. Trans., 42, pp. 250-256. 

[22] Pettinato, B., De Choudhury, P., 1999, “Test Results of Key and Spherical Pivot Five-Shoe Tilt Pad 
Journal Bearings-Part I: Performance Measurements,” Trib. Trans., 42, 3, pp. 541-547. 

[23] Pettinato, B., De Choudhury, P., 1999, “Test Results of Key and Spherical Pivot Five-Shoe Tilt Pad 
Journal Bearings-Part II: Dynamic Measurements,” Trib. Trans., 42, 3, pp. 675-680. 

[24] Brechting, B., Flack, R., Cloud, H. and Barrett, L., 2005, “Influence of Journal Speed and Load on the 
Static Operating Characteristics of a Tilting-Pad Journal Bearing with Ball-and-Socket Pivots,” Trib. 
Trans., 48, pp. 283-288. 

 

 
 



NOTES 16.  ANALYSIS OF TILTING PAD BEARINGS © Luis San Andrés (2010) 25

 APPENDIX A 
 
Fluid induced moment on pad   
The fluid film moment differential about the pad pivot is found by taking the cross 
product of vector r  with the differential force vector Fd , i.e. 

FdrMd ×=        (A.1) 

Including the pad thickness (t), the vector r  is, from Figure A.1,  

( ) [ ]( )sin 1 cosr R R tβ η β ξ⎡ ⎤= + − +⎣ ⎦     (A.2) 

 
 

Figure A.1. Tilting pad with pivot point P and pad thickness t 

 

The differential fluid film force vector can be written as 

dF dF dFη ξη ξ⎡ ⎤= +⎣ ⎦    (A.3) 

where cosdF P R d dzξ β β= −  and sindF P R d dzη β β= .  The differential moment is 
thus 

[ ]( )sindM R t P R d dzβ β κ= − +    (A.4) 
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Expanding Eq. (A.4), using a trigonometry identity, and substituting in ηdF  and ηdF , the 
differential fluid moment becomes 

( )( )cos sinY P X PdM R t dF dF R d dzθ⎡ ⎤= − + − Θ + Θ⎣ ⎦   (A.5) 

Integration over the pad surface gives the fluid moment M as 

( )[ ]PXPY FFtRM Θ+Θ−+−= sincos    (A.6) 

A change of coordinates results in the following transverse force equation: 

PXPY FFF Θ+Θ−= sincosη     (A.7) 

Substituting equation (A.7) into (A.5) gives the following simpler version of the pad 
moment equation: 

ηFtRM )( +−=  = ηFRM P−= ,       (A.8) 

with tRRp +=     

 

B. Derivation of Pad Mass Matrix 

The pad mass matrix ][ padM  is derived from the kinetic energy of a pad, 

)(
2
1

2
1 222

ηξδ vvmIT Gpad ++=       (A.9) 

where GI is a pad moment of inertia, and ξv  and ηv  are the pad velocity components in 
the radial and transverse directions, respectively. The pad center of mass translational 
velocities are 

[ ] ξαδδαδδξαδαδξξ −−−=−−−−−== sincoscossinsinsincos)cos1()( rrrra
dt
dd

dt
dv

[ ] ηαδδαδδηαδαδηη ++−=+−+−−== sinsincoscossin)cos1(cossin)( rrrrb
dt
dd

dt
dv

           (A.10) 
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Figure A.2: Tilting pad with an offset pivot 

Let b be the radial distance from the pad center of mass to the pad pivot, and c be the 
transverse distance from the pad center of mass to the pad pivot, see Figure 2. 

Substitute
r
b

=)sin(α  and 
r
c

=)cos(α  into Eq. (A.10), and find 2
ξv  and 2

ηv  as 

222222222 )cos(2)(cos)sin(2*)cos()sin(2)(sin ξδξδδδδξδδδδδδξ +++++= bbcbccv  

222222222 )sin(2)(sin)cos(2*)cos()sin(2)(cos ηδηδδδδηδδδδδδη +++−−= bbcbccv  
           (A.11) 

Substitute Eq. (A.11) into Eq. (A.9) and simplifying gives the following kinetic energy 
equation of the pad: 

2 2 2 2 2 21 1 1( ) ( )
2 2 2
sin( )[ ( ) ( )]
cos( )[ ( ) ( )]

pad GT I m c b m

m c m b

m c m b

δ δ ξ η

δ ξδ δη

δ ηδ δξ

= + + + +

+ +

+ − +

  (A.12) 

The elements of the mass matrix ][ padM  are  derived from Eq. (A.12) using Lagrange’s 

method for first order terms. Higher order terms are assumed to be ~zero, i.e., 0≈δξ , 
0≈δη , and 02 ≈δ . 

( ) bmbmcmcmbcmIT
dt
d

G )sin()cos()cos()sin(( 22 δηδξδηδξδ
δ

++−+++=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  

bmcmmT
dt
d )cos()sin( δδδδξ

ξ
++=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂       (A.13) 
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bmcmmT
dt
d )sin()cos( δδδδη

η
+−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂  

Since the pad angle of rotation (δ ) is very small, the assumption can be made that 
0)sin( ≈δ  and 1)cos( ≈δ . The pad mass matrix is thus: 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

mcm
mbm

cmbmI
M

P

pad

0)(
0)(

)()(
   (A.14)  

with )( 22 bcmII GP ++= as the pad moment of inertia about the pivot. 

. 
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NOMENCLATURE 
A  Flexure pivot web cross sectional area [ 2m ] 
a  Radial distance from pad mass center of gravity to pad surface [m] 
b  Radial distance from pad mass center of gravity to pivot [m] 
c  Transverse distance from pad mass center of gravity to pivot [m] 

pC   Journal bearing radial clearance 

mC   Assembled bearing radial clearance [m] 
][ kC   Tilting pad bearing pivot damping matrix [Ns/m] 

αβRC   Bearing Reduced damping coefficients at frequencyω ; YX ,, =βα  
[Ns/m] 
D  Bearing diameter [m] 

HD   Pivot housing diameter [m] 

PD   Pivot diameter [m] 
E  Young’s Modulus of pivot and pivot housing [Pa] 

YX ee ,   Journal eccentricity in the (X,Y) direction respectively 
k

XF , k
YF  Fluid film forces on pad along the {X,Y} axes [N] 

k
PF ξ , k

PF η  Fluid film forces on pad along the { }ηξ ,  axes [N] 
kk FF ηξ ,  Radial and transverse fluid film forces [N] 

h   Fluid film thickness [m] 
hho Δ,   Equilibrium film thickness, perturbed film thickness [m] 

I   Flexure pivot web area moment of inertia [ 4m ] 
k
pI   Pad moment of inertia at pivot [ 2kgm ] 

αβRK   Bearing reduced stiffness coefficients; YX ,, =βα  [N/m] 

][ kK   Tilting pad bearing pivot stiffness matrix [N/m] 

LR LLL ,,  Bearing axial length; LR LLL +=  

webL   Flexure pivot web length [m] 
k
PM   Moment from pivot rotational stiffness [N-m] 
kM   Fluid film moment on pad; })cos(){sin( k

Y
k
p

k
X

k
p FFR Θ−Θ  [Nm] 

][ k
massM  Pad mass matrix, includes pad inertia, angular momentum, and mass 

km   Pad mass [kg] 
N  Shaft rotational speed [rev/s] 
P   Fluid film pressure [ 2/ mN ] 

PPo Δ,   Fluid film equilibrium pressure, Fluid film perturbed pressure [ 2/ mN ] 
R   Pad radius [m] 

pR   Pad radius plus pad thickness [m] 

pr   Pad preload [m] 
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S  Sommerfeld number, 
2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

pC
R

W
NLDS μ  

W  Applied static load [N] 
{X,Y,Z} Inertial coordinate system 

kZαβ   thk  pad impedance, kk CiK αβαβ ω+ , ηξδβα ,,,,, YX=  
kδ   Pad rotational angle [rad] 
kη   Pad transverse displacement [m] 

μ   Fluid viscosity [ 2/ mNs ] 
υ   Poisson ratio of pivot and pivot housing 
θ   Circumferential or angular coordinate, x/R 

k
l

k ΘΘ ,   thk  pad angular length, thk  pad leading edge angular position [rad] 

pΘ   thk  pad pivot angular position [rad] 
ω,Ω   Rotational speed of journal, excitation or whirl frequency [1/s] 

kξ   Pad radial displacement [m] 
 
 


