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ABSTRACT

Coding Techniques for Error Correction

and Rewriting in Flash Memories. (August 2010)

Shoeb Ahmed Mohammed, B.Tech., Indian Institute of Technology Roorkee

Co–Chairs of Advisory Committee: Dr. Anxiao Jiang
Dr. Scott L. Miller

Flash memories have become the main type of non-volatile memories. They

are widely used in mobile, embedded and mass-storage devices. Flash memories store

data in floating-gate cells, where the amount of charge stored in cells – called cell levels

– is used to represent data. To reduce the level of any cell, a whole cell block (about

106 cells) must be erased together and then reprogrammed. This operation, called

block erasure, is very costly and brings significant challenges to cell programming and

rewriting of data. To address these challenges, rank modulation and rewriting codes

have been proposed for reliably storing and modifying data. However, for these new

schemes, many problems still remain open.

In this work, we study error-correcting rank-modulation codes and rewriting

codes for flash memories. For the rank modulation scheme, we study a family of one-

error-correcting codes, and present efficient encoding and decoding algorithms. For

rewriting, we study a family of linear write-once memory (WOM) codes, and present

an effective algorithm for rewriting using the codes. We analyze the performance of

our solutions for both schemes.
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CHAPTER I

INTRODUCTION

Non-volatile memories (NVMs) are developing fast as a major storage technology.

Among current NVMs, flash memories are by far the most widely used. Flash mem-

ories use floating-gates cells as their basic storage units, where the charge (e.g., elec-

trons) stored in the cells represents data [4]. The charge can be injected into the

cells using the hot-electron injection mechanism or the Fowler-Nordheim tunnelling

mechanism, and be removed from the cells using the Fowler-Nordheim tunnelling

mechanism. However, the charge injection and removal processes have different costs.

This is because in a flash memory, the cells are organized as blocks, where every block

consists of about 106 cells. Although it is relatively simple to inject charge into indi-

vidual cells, to remove charge from any cell, the whole block of cells must be erased

first (which means to remove all charge from all the cells in the block) before repro-

grammed [4]. This block erasure property makes it very expensive to remove charge,

and is very costly for the longevity, speed and efficiency of flash memories. (Note

that a cell block can endure only about 104 ∼ 105 erasures.) For this reason, it is

very beneficial to minimize and balance the number of block erasures. A well known

technique, called wear leveling, uses the idea of shifting data among blocks to balance

the erasures performed on different blocks, and is widely used in flash file systems [9].

The block erasure property brings serious challenges to cell programming and

data rewriting in flash memories. The charge injection is a noisy process, where

the injected charge usually deviates from the target value [4]. So to program a cell

(which means to inject charge into the cell to reach a target value), it is common

This thesis follows the style of IEEE Transactions on Information Theory.
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practice to use multiple rounds of charge injection. In each round, a small amount

of charge is injected, and then the charge level in the cell is measure to see how

close it is compared to the target level. This way, the charge level in the cell can

cautiously approach the target level and avoid overshooting (which would cause the

very expensive block erasure operation) [1]. This iterative programming procedure

is time consuming, especially as the flash memories move toward multi-level cells

(MLCs) with more levels and smaller cell sizes, both of which are important for

increasing the storage capacity [4]. So a new data representation scheme, which fits

the asymmetric property of flash memories and allows efficient cell programming, will

be very beneficial. The block erasure property also makes it very challenging for

rewriting (i.e., modifying) data, because even to change one bit, a whole block of cells

may have to be erased, which is very costly. Therefore, it is desirable to find a coding

scheme that can allow data to be rewritten without block erasures.

To meet these challenges, the rank modulation scheme [15, 17] and rewriting

codes [3, 12] have been proposed for flash memories. In rank modulation, the rela-

tive order of the cells’ charge levels – instead of their absolute values – is used to

represent data [15, 17]. When programming cells, the cells of lower charge levels are

programmed before cells of higher charge levels. Since only the order of the charge

levels matters for representing data, when a cell is programmed, the only objective is

to make its charge level be higher than some previous charge level. This eliminates

the risk of charge overshooting, and allows more efficient programming of cells. After

cells are programmed, the charge levels can be disturbed by various mechanisms, in-

cluding charge leakage, read and write disturbs, etc. Many of these noise mechanisms

change the charge levels in one direction [4]. Compared to the absolute values of

charge levels, their relative order is more robust to asymmetric errors [15]. There

has been a number of works studying rank modulation, including rewriting codes
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and Gray codes for rank modulation [15, 16, 23], error-correcting codes based on the

Kendall tau distance [2, 17, 18], error-correcting codes based on the L∞ distance [24],

low-density parity-check (LDPC) codes for rank modulation [29], variations of rank

modulation sequences [25, 26], etc.

Rewriting codes are also a new approach of representing data in flash memories [3,

12]. Instead of the conventional one-to-one mapping between the data and the cells’

charge levels, a rewriting code builds a one-to-many mapping from the data to the

cells’ charge levels. This way, we can rewrite data by only increasing cell levels, not

decreasing them, and therefore avoid the costly block erasure operation (until the

cells’ charge levels reach their highest values). Given the rate of the rewriting code,

the objective is to maximize the number of rewrites that can be performed before the

block erasure becomes necessary. Rewriting codes called write-once memory (WOM)

codes were proposed by Rivest and Shamir in their seminal work [22], and have been

studied in a number of subsequent papers [5, 6, 8, 10, 19, 21, 27]. In recent years,

floating codes and buffer codes (which are generalizations of WOM codes) have been

proposed for flash memories [3, 12]. Various code constructions have been presented,

and the storage capacity of rewriting codes has been studied [7, 11, 13, 14, 20, 28].

In this work, we study error-correcting rank-modulation codes and linear rewrit-

ing codes. Error-correcting codes (ECCs) are important for the reliable storage of

data. And for the rank modulation scheme, a family of one-error-correcting codes

has been proposed in [17, 18], whose size is provably at least half of the optimal size.

The codes are based on the Kendall tau distance. However, no efficient encoding and

decoding algorithms have been shown for the code. We present an efficient encoding

algorithm that uses the concatenation of codewords, and show its error-correction

performance via simulations.

We also study an important family of rewriting codes called linear WOM codes.
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It is a generalization of the linear WOM code proposed by Rivest and Shamir in their

work [22]. Although the code is known to have asymptotically optimal rewriting

performance when the number of cells is large [22], it has not been shown how to

efficiently rewrite data based on the linear code in general. We present a pseudo-

polynomial-time algorithm for rewriting data using the linear WOM codes. The

algorithm locally minimizes the number of cells programmed for each rewrite.
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CHAPTER II

ERROR-CORRECTING RANK-MODULATION CODES

In this chapter, we study error-correcting rank-modulation codes. We first introduce

the basic concepts of rank modulation codes, and focus on an asymptotically optimal

error-correcting code that corrects one error. We then study its properties and present

an efficient encoding algorithm based on codeword concatenation. We evaluate its

error-correction performance through simulations.

A. Rank Modulation Codes

The rank modulation scheme was proposed in [15, 17]. Consider n flash memory cells.

For i = 1, 2, . . . , n, the charge level of the i-th cell – which we shall call cell level – is

denoted by ci ∈ R. The ranks of the n cells are a permutation of {1, 2, . . . , n}. If the

permutation is [a1, a2, · · · , an], then

ca1 > ca2 > · · · > can .

(It is assumed that no two cells have exactly the same level. Since here the cell levels

are real numbers, this is essentially always true in practice.) We say that the a1-th

cell has the highest rank, and the an-th cell has the lowest rank.

A rank modulation scheme uses the ranks induced by the n cell levels to represent

data. Let Sn denote the set of permutations of {1, 2, . . . , n}, and let q denote the size

of an alphabet Q = {0, 1, . . . , q−1}. When the n cells store the data of alphabet size

q, we have a decoding function

D : Sn → Q

that maps every permutation (which are the ranks induced by the n cell levels
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c1, . . . , cn) to some value in the alphabet Q.

Definition 1.. Given a permutation, an adjacent transposition is the local exchange

of two numbers in the permutation. That is, an adjacent transposition changes a

permutation

[a1, · · · , ai−1, ai, ai+1, ai+2, · · · , an] ∈ Sn

to a permutation

[a1, · · · , ai−1, ai+1, ai, ai+2, · · · , an]

for some i ∈ {1, 2, . . . , n− 1}.

Given two permutations A,B ∈ Sn, the Kendall tau distance between A and B,

d(A,B), is the minimum number of adjacent transpositions needed to change A into

B (and vice versa).

Example 2.. Let n = 5, A = [2, 1, 3, 4, 5] and B = [3, 2, 1, 5, 4], then d(A,B) =

d(B,A) = 3, because we can change A into B with the minimum number of adjacent

transpositions as [2, 1, 3, 4, 5]→ [2, 3, 1, 4, 5]→ [3, 2, 1, 4, 5]→ [3, 2, 1, 5, 4].

When we use the Kendall tau distance to measure errors, we consider an error as

an adjacent transposition (caused by the error). An error-correcting rank-modulation

code that can correct t errors is a code C ⊆ Sn such that for any two codewords (i.e.,

permutations) A,B ∈ C, we have d(A,B) ≥ 2t + 1. That is, the minimum Kendall

tau distance of the code is 2t + 1.

Example3.. The following two codes were presented in [17]. C = {[1, 2, 3], [3, 2, 1]} is

a one-error-correcting rank-modulation code of length n = 3 and size |C| = 2. And C =

{[1, 2, 4, 3], [3, 1, 4, 2], [3, 2, 4, 1], [4, 1, 3, 2], [4, 2, 3, 1]} is a one-error-correcting rank-modulation

code of length n = 4 and size |C| = 5.
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In [17, 18], a one-error-correcting rank-modulation code of asymptotically opti-

mal size has been presented. The code construction is based on mapping permutations

to nodes in a (n− 1)-dimensional linear array.

Definition 4.. Given a permutation A = [a1, a2, . . . , an] ∈ Sn, the coordinates of A,

XA = (x1, x2, . . . , xn−1),

are defined as follows: for i = 1, . . . , n − 1, let z ∈ {1, 2, . . . , n} denote the integer

such that az = i+ 1, then

xi = |{j | z < j ≤ n, aj ≤ i}| .

Clearly, for i = 1, . . . , n− 1, we have xi ∈ {0, 1, . . . , i}.

Clearly, this is a one-one correspondence between the set of permutations and

their coordinates. To determine ith coordinate, we count symbols less than (i + 1)

that are to its right in the given permutation.

Example 5.. Let n = 6, and let A = [1, 2, 3, 4, 5, 6], B = [6, 5, 4, 3, 2, 1], C =

[2, 4, 6, 1, 5, 3]. Then the coordinates of A,B,C areXA = (0, 0, 0, 0, 0),XB = (1, 2, 3, 4, 5),

XC = (1, 0, 2, 1, 3), respectively.

The one-error-correcting rank-modulation code presented in [17, 18] is as follows.

It is also proved in [17, 18] that this is a one-error-correcting code. However, we do

not yet have specific constructions for codes that can correct more than one error.

Construction 6. (One-error-correcting code)

Let C1, C2 denote two rank-modulation codes constructed as follows. Let A be a

general permutation whose coordinates are (x1, x2, . . . , xn−1). Then A is a codeword



8

in C1 if and only if the following equation is satisfied:

n−1
∑

i=1

ixi ≡ 0 mod (2n− 1).

And A is a codeword in C2 if and only if the following equation is satisfied:

n−2
∑

i=1

ixi + (n− 1) · (−xn−1) ≡ 0 mod (2n− 1).

Between C1 and C2, choose the code with more codewords as the error-correcting

code C.

Since a permutation of length n has n− 1 neighboring permutations at Kendall

tau distance one, by the sphere packing bound, the size of a one-error-correcting

rank-modulation code is at most

n!

n
= (n− 1)!.

So the following theorem shows that for the code of Construction 6, its size is at least

half of the optimal size. It has been proved in [17].

Theorem7.. The rank-modulation code built in Construction 6 has a minimum size

of

(n− 1)!

2
.

B. Size of the One-error-correcting Code

It is interesting to understand how to use the one-error-correcting code of Construc-

tion 6 for encoding and decoding of information. Although the code is known to

be nearly optimal, it has not been shown how to encode and decode data using the

code. Note that it is not efficient to simply build a table mapping the codewords to

data because when n is large, this approach is both space- and time-consuming. Our
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objective is to find an efficient algorithm to encode data using the code. For this

purpose, we first need to understand the size of the code.

Let C1 and C2 denote the two codes described in Construction 6. That is, C1

consists of all the permutations of length n whose coordinates (x1, x2, . . . , xn−1) satisfy

the construction
n−1
∑

i=1

ixi ≡ 0 mod (2n− 1),

and C2 consists of all the permutations of length n whose coordinates (x1, x2, . . . , xn−1)

satisfy the construction

n−2
∑

i=1

ixi + (n− 1) · (−xn−1) ≡ 0 mod (2n− 1).

Then the code of Construction 6, C, has size

|C| = max{C1, C2}.

Since gcd(n− 1, 2n− 1) = 1, there exists a unique solution y ∈ {0, 1, . . . , 2n− 2}

to the equation

(n− 1)y ≡ r (mod 2n− 1)

for any r ∈ Z. In particular, when r = 1, we get y = 2n−3 because (n−1)(2n−3) =

(n− 2)(2n− 1) + 1.

Given xi ∈ {0, 1, . . . , i} for i = 1, 2, . . . , n− 2, let us define r as

r =

(

n−2
∑

i=1

ixi (mod 2n− 1)

)

.

Then the solution y ∈ {0, 1, . . . , 2n− 2} to the equation

n−2
∑

i=1

ixi + (n− 1)y ≡ 0 (mod 2n− 1)
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is

y ≡ −(2n− 3)r

≡ 2r (mod 2n− 1)

Therefore, a permutation with the coordinates (x1, x2, . . . , xn−1) is in C1 if and

only if

0 ≤ (2r (mod 2n− 1)) < n

and

xn−1 = (2r (mod 2n− 1)).

Note that the condition 0 ≤ (2r (mod 2n− 1)) < n is equivalent to the condition

0 ≤ r <
⌈n

2

⌉

or n ≤ r < n+
⌊n

2

⌋

.

Similarly, a permutation with the coordinates (x1, x2, . . . , xn−1) is in C2 if and

only if

0 ≤ (−2r (mod 2n− 1)) < n

and

xn−1 = (−2r (mod 2n− 1)).

Note that the condition 0 ≤ (−2r (mod 2n− 1)) < n is equivalent to the condition

r = 0 or
⌈n

2

⌉

≤ r < n or n+
⌊n

2

⌋

≤ r < 2n− 1.

We present an algorithm that computes the size of the code C. Note that for

every combination of the first n − 2 coordinates (x1, . . . , xn−2), there is a unique

permutation with coordinates (x1, . . . , xn−2, xn−1) that either belongs to C1 or C2 (or

both if r = 0). The algorithm checks such combinations and obtains the values of

|C1| and |C2|, by which we get |C|. Algorithm 8 has time complexity O((n− 1)!).

.
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Algorithm 8 Compute code size

1: n← number of cells, |C1| ← 0, |C2| ← 0

2: for (x1, x2, . . . , xn−2) ∈ {0, 1} × {0, 1, 2} × · · · × {0, 1, . . . , n− 2} do

3: r ←
(
∑n−2

i=1 ixi (mod 2n− 1)
)

4: if 0 ≤ r <
⌈

n
2

⌉

or n ≤ r < n+
⌊

n
2

⌋

then

5: |C1| ← |C1|+ 1

6: end if

7: if r = 0 or
⌈

n
2

⌉

≤ r < n or n +
⌊

n
2

⌋

≤ r < 2n− 1 then

8: |C2| ← |C2|+ 1

9: end if

10: end for

11: |C| ← max{|C1| , |C2|}

12: Output |C1| , |C2| and |C|

The results for 3 ≤ n ≤ 11 are shown in Table I. (It is noticeable that the values

of |C1| and |C2| are very close.) The table also shows the comparison between the

code size |C| and its lower bound (n−1)!
2

.

C. Efficient Encoding Algorithm

We present an efficient encoding algorithm based on codeword concatenation. It

stores

log2

(

(n− 1)!

2

)

information bits per codeword (of length n) on average. Note that this performance

matches the lower bound, (n−1)!
2

, of the code size shown in Theorem 7.
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Table I. Size of One-error-correcting Code

n |C1| |C2| |C| (n− 1)!/2

3 2 1 2 1

4 4 3 4 3

5 14 13 14 12

6 66 66 66 60

7 388 388 388 360

8 2688 2688 2688 2520

9 21346 21345 21346 20160

10 190990 190989 190990 181440

11 1900800 1900800 1900800 1814400

Let n ≥ 3 and m ≥ 1 be positive integers. Let

Q = {0, 1, . . . ,
(n− 1)!

2
− 1}

be an alphabet of size q = (n−1)!
2

. For every v ∈ Q, let

f(v) = (x2(v), x3(v), . . . , xn−2(v))

be the factoradic representation of v in the set

{0, 1, 2} × {0, 1, 2, 3} × · · · × {0, 1, . . . , n− 2}.

Specifically, we have

x2(v) = (v mod 3) ;
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and for i = 3, . . . , n− 2, we have

xi(v) =

(⌊

v

3× 4× · · · × i

⌋

mod (i+ 1)

)

.

We store a sequence of m variables from the alphabet Q:

v1, v2, . . . , vm

in mn + 3 cells as follows. Let

A1, A2, . . . , Am

denotem codewords from the one-error-correcting code C of Construction 6. Here the

code C has length n, and the values of A1, . . . , Am will be determined by v1, . . . , vm.

For i = 1, . . . , m, let

Xi = (xi,1, xi,2, . . . , xi,n−1)

denote the coordinates of the codeword Ai. (Note that no two permutations have the

same coordinates, so the coordinates uniquely determine the corresponding permuta-

tion.) And we let

A0 ∈ {[1, 2, 3], [3, 2, 1]}

denote a permutation of length 3. (Note that {[1,2,3],[3,2,1]} is a one-error-correcting

code of length 3, because d([1, 2, 3], [3, 2, 1]) = 3.) Among the mn+3 cells, the ranks

of the first 3 cells become the permutation A0. We partition the remaining mn cells

into m cell groups, where every cell group has n cells. The cell levels of these m

separate cell groups induce the permutations A1, A2, . . . , Am.

We now show how to encode the data

(v1, v2, . . . , vm) ∈ Qm
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into the permutations

(A0, A1, A2, . . . , Am).

(That is, given the data (v1, v2, . . . , vm), we show how to compute (A0, A1, A2, . . . , Am).)

For i = 1, . . . , m, we will decide if Ai is a codeword of C1 or C2 adaptively. Let

si ∈ {0, 1}

be a variable such that if we choose the code C1 for Ai, then si = 0; if we choose the

code C2 for Ai, then si = 1. And for convenience of presentation, let sm+1 = 0.

The encoding is as follows. We compute Xm, Xm−1, . . . , X1 sequentially. To

compute Xi = (xi,1, xi,2, . . . , xi,n−1) (where 1 ≤ i ≤ m), let

xi,1 = si+1,

(xi,2, xi,3, . . . , xi,n−2) = f(vi),

r =

(

n−2
∑

j=1

ixi,j (mod 2n− 1)

)

.

If 0 ≤ r < ⌈n
2
⌉ or n ≤ r < n+ ⌊n

2
⌋, then

xi,n−1 = (2r mod (2n− 1)) and si = 0;

otherwise,

xi,n−1 = (−2r mod (2n− 1)) and si = 1.

Given X1, . . . , Xm, it is simple to get the permutations A1, . . . , Am. As the final step,

if s1 = 0, let A0 = [1, 2, 3]; if s1 = 1, let A0 = [3, 2, 1].

Given the uncorrupted codewords A1, A2, . . . , Am (or their coordinatesX1, X2, . . . , Xm),
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it is simple to recover the data (v1, v2, . . . , vm) ∈ Qm: For i = 1, 2, . . . , m, we have

vi = f−1 ((xi,2, xi,3, . . . , xi,n−2))

= xi,2 + 3 · xi,3 + 3 · 4 · xi,4 + · · ·+ (
∏n−2

j=3 j) · xi,n−2

We now discuss how to decode information when the codewords are corrupted

by errors. The following theorem proves that if each codeword contains at most one

error, we can correctly recover all the data.

Theorem8.. Let A0, A1, . . . , Am be the codewords corresponding to the data (v1, . . . , vm) ∈

Qm. Let A′
0, A

′
1, . . . , A

′
m be the received noisy codewords. If

d(Ai, A
′
i) ≤ 1

for i = 0, 1, . . . , m, then given the noisy codewords A′
0, A

′
1, . . . , A

′
m, we can correctly

recover all the data (v1, . . . , vm).

Proof. We show how to recover v1, . . . , vm sequentially. First, since d([1, 2, 3], [3, 2, 1]) =

3, we can correctly recover s1. If s1 = 0 (respectively, s1 = 1), we know A1 should be

a codeword of the code C1 (respectively, code C2), and then from A′
1 we can recover

A1 (because A′
1 contains at most one error). From A1 we can get its coordinates

X1 = (x1,1, x1,2, . . . , x1,n−1). Then we get

v1 = f−1 ((x1,2, x1,3, . . . , x1,n−2))

= x1,2 + 3 · x1,3 + 3 · 4 · x1,4 + · · ·+
(

∏n−2
j=3 j

)

· x1,n−2

and

s2 = x1,1.

In the same way, we can sequentially recover v2, s3, v3, s4, . . . , sm, vm. More specif-
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ically, for i = 2, . . . , m, with si and A′
i we can get Ai and Xi. Then we get

vi = f−1 ((xi,2, xi,3, . . . , xi,n−2))

= xi,2 + 3 · xi,3 + 3 · 4 · xi,4 + · · ·+
(

∏n−2
j=3 j

)

· xi,n−2

and si+1 = xi,1. So the theorem holds.

When m→∞, the rate of this coding scheme is

lim
m→∞

m log2 ((n− 1)!/2)

mn + 3
=

1

n
· log2

(n− 1)!

2

bits per cell.

D. Decoding Algorithm

We consider the decoding of codewords when there are errors. Let A′
0, A

′
1, . . . , A

′
m

denote the received noisy codewords. The decoding objective is to recover the stored

data v1, . . . , vm.

We will do decoding for v1, v2, . . . , vm sequentially. Let s′1, . . . , s
′
m, s

′
m+1 denote

the decoded values of s1, . . . , sm, sm+1. Let v′1, . . . , v
′
m denote the decoded values of

v1, . . . , vm. As the initial step, we compute s′1 as follows: If

d(A′
0, [1, 2, 3]) ≤ 1

(which means A′
0 = [1, 2, 3], [2, 1, 3] or [1, 3, 2]), let s′1 = 0; otherwise (which means

d(A′
0, [3, 2, 1]) ≤ 1), let s′1 = 1.

Now for i = 1, 2, . . . , m, assuming that the value of s′i has been computed, we

show how to compute v′i and s′i+1. To compute v′i, if s
′
i = 0, we let Bi be the codeword

in code C1 whose Kendall tau distance to A′
i is the smallest. (Bi can be found through

exhaustive search, where we gradually increase the Kendall tau distance. Since C1 is

a one-ECC with high codeword density, this search complexity is usually small.) Let
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Yi = (yi,1, yi,2, . . . , yi,n−1) be the coordinates of Bi. Let

v′i = f−1 ((yi,2, yi,3, . . . , yi,n−2))

= yi,2 + 3 · yi,3 + 3 · 4 · yi,4 + · · ·+ (
∏n−2

j=3 j) · yi,n−2

be the decoded value for v1.

To compute s′i+1, we notice that si+1 = xi,1, whose value depends only on the

relative order of the first cell and second cell in the i-th cell group: If the first cell has

a higher rank (i.e., higher cell level) than the second cell, then xi,1 = 0; otherwise,

xi,1 = 1. Typically, the greater the gap between the ranks of these two cells, the

less likely that errors will change their relative order. To reduce the potential error

propagation when we decode the chain of codewords sequentially, we compute s′i+1

as follows: If d(A′
i, Bi) ≤ 1, let s′i+1 = yi,1; otherwise, let X ′

i = (x′
i,1, x

′
i,2, . . . , x

′
i,n−1)

denote the coordinates of A′
i, and let s′i+1 = x′

i,1.

It can be seen that as long as si is decoded correctly, the decoding error of the

codeword Ai will not be propagated to the decoding of the codeword Ai+1.

E. Performance Evaluation

We use simulations to evaluate the performance of the coding scheme. We approx-

imate the noise in cell levels by the Gaussian distribution. Specifically, if a cell has

the i-th lowest rank in its group, then its level is (i−1)+ ǫ, where ǫ is i.i.d. Gaussian

noise with zero mean and variance σ2. Here the noise ǫ models both the imprecise

programming of the cell level and the disturbances to the cell level after programming.

We uniformly randomly generate the data (v1, v2, . . . , vm) ∈ Qm. Let (v′1, v
′
2, . . . , v

′
m)

denote the decoded data. We define the Symbol Error Rate as

|{i | 1 ≤ i ≤ m, vi 6= v′i}|

m
.
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Table II tabulates symbol error rate (SER) for different values of ‘n’ (num-

ber of cells) and σ2 (noise power, normalized). Information symbols (to be en-

coded/decoded) were chosen uniformly randomly from the set {0, 1, · · · , (n−1)!
2
}. The

length of information sequence, the value ‘m’, is 104 for n = 4 and 105 for n = 6, 8.

This data is also plotted in Fig 1, where x-axis is noise power and y-axis is observed

SER.

Table II. Rank Modulation Codes: Symbol Error Rate

n\σ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7

4 0 0.0024 0.0121 0.0261 0.0367 0.0603 0.0772

6 0.0006 0.0159 0.0559 0.1078 0.1674 0.2199 0.2769

8 0.0011 0.0373 0.1213 0.2197 0.3057 0.3847 0.4790
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Fig. 1. Rank Modulation Codes: Symbol Error Rate

For comparison purposes, we also simulated the performance of BCH codes. The

flash memory was assumed to be a multi level cell memory, with n = 4 and n = 8

levels. For n = 4, data is encoded with a narrow sense (511,484) 3-error-correcting

binary BCH code and for n = 8, we used (255,231) 3-error-correcting binary BCH

code. Data symbols were generated uniformly randomly from an alphabet of size four

and eight for n = 4 and n = 8 respectively. These symbols are converted to binary

format, encoded with appropriate BCH code and stored in multi-level flash memory.

The noise we generate to simulate disturbances in flash memory is such that it always

increases cell charge levels (specifically, we take absolute value of a gaussian random

variable with zero mean and specified variance). This will approximate asymmetric

nature of noise in flash memory.
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As can be observed from Table III, the performance of BCH codes under the

conditions we discussed is poorer compared to rank modulation codes in Table II.

Table III. BCH Codes: Symbol Error Rate

n\σ2 0.1 0.2 0.3 0.4 0.5 0.6

4 0.8671 0.8732 0.8952 0.8651 0.9022 0.9066

8 0.8531 0.8677 0.8908 0.9036 0.9086 0.9148
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CHAPTER III

LINEAR REWRITING CODES

In this chapter, we study linear rewriting codes for flash memories. We first introduce

rewriting codes and a linear write-once memory (WOM) code presented by Rivest and

Shamir [22], and generalize its definition. We then present a pseudo-polynomial-time

rewriting algorithm that locally minimizes the number of programmed cells for each

rewrite.

A. Introduction to Rewriting Codes

A single-level cell (SLC) in a flash memory has two possible levels: 0 and 1. Without

the block erasure, an SLC can change from level 0 to level 1, but not from level 1 to

level 0. We consider rewriting codes that store data in n single-level cells and enable

the data to be rewritten (i.e., modified) multiple times without the block erasure.

More specifically, we assume that with each rewrite, the data can change from its

current value to any other value in its alphabet (i.e., unconstrained rewriting). This

is the write-once memory (WOM) model proposed by Rivest and Shamir in their

seminal paper [22]. (Examples of codes for constrained rewriting include floating

codes, buffer codes, etc. [3, 12, 14].)

Consider n single-level cells, whose levels are denoted by

c1, c2, . . . , cn.

For i = 1, . . . , n, we have ci ∈ {0, 1}. Let

L = {0, 1, . . . , ℓ− 1}

be an alphabet of size ℓ. A WOM code stores data from the alphabet L in the cells.
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It has a decoding function

Fd : {0, 1}n → L

and an update function

Fu : {0, 1}n × L→ {0, 1}n

explained as follows. When the cell levels are ~c = (c1, c2, . . . , cn) ∈ {0, 1}
n, the stored

data is Fd(~c) ∈ L. When the cell levels are currently ~c = (c1, c2, . . . , cn) and we need

to rewrite the data as s ∈ L, the code will increase the cell levels to Fu(~c, s) ∈ {0, 1}
n.

(Naturally, we require Fd(Fu(~c, s)) = s. Also, if Fu(~c, s) = (c′1, c
′
2, . . . , c

′
n), then c′i ≥ ci

for i = 1, . . . , n.)

We assume that initially (i.e., before rewriting), all the cell levels are 0. Let t

denote the number of rewrites that are guaranteed to succeed, regardless of what the

sequence of rewrites are (namely, the worst-case performance). A WOM code that

maximizes t is called optimal.

There has been a number of papers on the capacity of WOM codes and some

code constructions [5, 6, 8, 10, 19, 21, 27]. We introduce a linear code proposed

by Rivest and Shamir, which is proved to have asymptotically optimal rewriting

performance [22].

Construction 9. Linear WOM Code

Let ℓ = n + 1. For the linear WOM code, the cell levels ~c = (c1, c2, . . . , cn) ∈

{0, 1}n represent the data

Fd(~c) =

(

n
∑

i=1

ici mod ℓ

)

.

Example10.. Let ℓ = 9 and n = 8. The linear WOM code has Fd(~c) =
(
∑8

i=1 ici mod 9
)

.

When the sequence of rewrites change the data as 0 → 6 → 2 → 7 → 8, the cell

levels ~c = (c1, . . . , c8) can change as (0, 0, 0, 0, 0, 0, 0, 0) → (0, 0, 0, 0, 0, 1, 0, 0) →
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(0, 0, 0, 0, 1, 1, 0, 0)→ (1, 0, 0, 1, 1, 1, 0, 0)→ (1, 1, 0, 1, 1, 1, 0, 1).

For the linear WOM code in Construction 9, it can be shown that as long as

there are more than ℓ/2 cells at level 0, the next rewrite can be realized by changing

at most two cells from level 0 to level 1; therefore the code supports at least ℓ/4

rewrites [22]. Since n = ℓ − 1 and every rewrite has to change the level of at least

one cell, the rewriting performance of the code is asymptotically optimal in n.

B. Generalized Linear WOM Codes and Rewriting Algorithm

Our interest in linear WOM codes comes from the fact that linear codes have regular

structures and often enable more tractable analysis. However, for the linear WOM

code in Construction 9, no algorithm has been presented on how to use it for rewriting

(other than increasing as few cell levels as possible for every rewrite based on brute-

force search). Note that if a rewrite requires i cell levels to be increased, the time

complexity of the brute-force search (for finding those i cell levels) will be O(ni),

which is exponential in i. For the linear WOM code, once more than ℓ/2 cell have

been changed to level 1, the number of cell levels to change for a rewrite can be large,

for which the brute-force method of rewriting becomes very time consuming. This

motivates us to study efficient rewriting algorithms for the linear WOM code.

The following code construction generalizes the linear WOM code.

Construction 11. Generalized Linear WOM Code

Let b1, b2, . . . , bn be n integer parameters in the set {1, 2, . . . , ℓ − 1}. For the

generalized linear WOM code, the cell levels ~c = (c1, c2, . . . , cn) ∈ {0, 1}
n represent

the data

Fd(~c) =

(

n
∑

i=1

bici mod ℓ

)

.
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For every rewrite, we would like to increase as few cell levels from 0 to 1 as

possible. This local optimization problem can be formulated as the minimum cost

rewriting problem below. It is not difficult to see that in this problem, x1, . . . , xm

represent the coefficients of those cells whose levels are 0 before the rewrite, and ∆

represents the difference between the new data after the rewrite and the old data

before the rewrite (modulo ℓ).

Definition 12.. Minimum cost rewriting problem

Let x1, x2, . . . , xm and ∆ be m+1 integer parameters in the set {1, 2, . . . , ℓ− 1}.

Find a set S ⊆ {1, 2, . . . , m} of minimum cardinality such that

∑

i∈S

xi ≡ ∆ mod ℓ.

The above problem is NP hard because the NP-complete subset-sum problem

can be reduced to it. In the following, we present a pseudo-polynomial time dynamic

programming algorithm to solve it. Its time complexity is O(mℓ).

For every set S ⊆ {1, 2, . . . , m}, we associate it with a cost c(S):

c(S) =















|S| , if
∑

i∈S xi ≡ ∆ mod ℓ

∞, otherwise

It is simple to see that for the minimum cost rewriting problem, the objective is to

find the set S of the minimum cost.

For i ∈ {1, 2, . . . , m} and s ∈ {0, 1, . . . , ℓ− 1}, we define Q(i, s) as follows:

• If there does not exist a subset S ⊆ {1, 2, . . . , i} such that

∑

j∈S

xj ≡ s mod ℓ,

then let Q(i, s) =∞;
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• Otherwise, let Smin denote the subset of {1, 2, . . . , i} with the minimum cardi-

nality such that
∑

j∈Smin

xj ≡ s mod ℓ,

and let Q(i, s) = |Smin|.

By default, for the empty set ∅, we have
∑

j∈∅ xj = 0.

Initially, we set

Q(i, 0) = 0

for all i ∈ {1, 2, . . . , m}, set

Q(1, x1) = 1,

and set

Q(1, s) =∞

for s ∈ {1, 2, . . . , ℓ− 1} \ {x1}. Then, for i = 2, 3, . . . , m and s ∈ {1, 2, . . . , ℓ− 1}, we

have the following recursion:

Q(i, s)

= min{ Q(i− 1, s), 1 + Q(i− 1, s− xi mod ℓ)}

Clearly, for the minimum cost rewriting problem, the optimal solution – which

we denote by Sopt – has cost c(Sopt) = Q(m,∆).

When Q(m,∆) 6=∞, we can compute Sopt using algorithm 13.

C. Performance Evaluation

We have conducted extensive simulations to evaluate the rewriting performance of the

codes. Table IV tabulates average rewriting performance of generalized linear WOM

codes. These data were obtained from simulations for different values of (l, n) (refer

Construction 11). For every pair (l, n), the bi’s (refer construction:8) were chosen
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Algorithm 13 Compute Sopt

1: Sopt ← ∅

2: for i = m,m− 1, . . . , 2 do

3: if Q(i− 1, T ) > Q(i, T ) then

4: Sopt ← Sopt ∪ {xi} and T ← (T − xi mod ℓ)

5: end if

6: end for

7: if T = x1 then

8: Sopt ← Sopt ∪ {x1}

9: end if

10: Output Sopt

uniformly randomly from the set {1, · · · , l − 1}. Average rewriting performance of

these codes for different information sequences, chosen randomly, was then recorded.

The information sequences were generated so that every next data symbol required

at least one rewrite. The variance among the number of rewrites supported by each

pair (l, n), for the same information sequences, is also tabulated in Table V.

Table VI also tabulates average rewriting performance of generalized linear WOM

codes for different values of (l, n)(refer Construction 11). Unlike the simulations for

Table IV, the bi’s are prime numbers from the set {0, · · · , l − 1}. Specifically, each

prime in the set {0, · · · , l − 1} was distributed among bi’s equally on average. The

information sequences were generated randomly and each next data symbol in the

information sequence required at least one rewrite. The variance among the number

of rewrites supported by each pair (l, n), for the same information sequences, is also

tabulated in Table VII. As can be observed from Table VI, the average rewriting

performance for this choice of coefficients (bi’s) is comparatively poorer.
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Table IV. Linear Rewriting Codes: Average Number of Rewrites

l�n 50 100 150 200

64 26.14 62.80 103.83 146

128 22.63 54.01 89.81 127.75

256 20.25 48.56 79.41 111.92

512 17.85 44.19 72.67 101.85

1024 15.53 40.28 66.67 93.97

Table V. Linear Rewriting Codes: Variance

l�n 50 100 150 200

64 3.0913 8.3838 14.5264 23.4747

128 2.0940 5.4847 11.0847 14.2096

256 1.4621 3.2590 6.7494 7.3067

512 1.3409 2.5191 3.6375 6.9571

1024 1.2415 2.1430 1.9809 3.9688
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Table VI. Linear Rewriting Codes with Prime Coefficients: Average Number of

Rewrites

l�n 50 100 150 200

64 22.04 45.83 68.65 92.08

128 20.62 43.31 66.39 88.38

256 18.86 41.00 64.34 86.34

512 16.23 39.59 62.08 82.68

1024 14.56 36.08 58.38 81.06

Table VII. Linear Rewriting Codes with Prime Coefficients: Variance

l�n 50 100 150 200

64 3.1384 9.6011 9.6675 17.094

128 1.9756 5.6539 8.5379 16.076

256 2.1604 4.1600 6.0444 10.084

512 1.3771 3.5419 6.0336 8.5376

1024 1.2664 2.8536 5.8356 5.3564
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CHAPTER IV

CONCLUSIONS

Flash memories have become by far the most widely used non-volatile memories. Due

to their unique properties – notably the block erasure property – cell programming

and data rewriting have been two important research areas. In this work, we have

studied the error-correcting rank-modulation codes and linear rewriting codes. We

have presented efficient algorithms for encoding and decoding of such codes. There are

still many open problems in these two areas. In particular, they include the design

of high-rate rank-modulation codes that can correct multiple errors, and rewriting

codes with encoding-decoding algorithms of polynomial time complexity.
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