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ABSTRACT 

 

Plastic Limit Analysis of Offshore Foundation and Anchor. (August 2010) 

Chao-Ming Chi, B.S., Feng Chia University, Taiwan; 

M.S., National Cheng Kung University, Taiwan 

         Chair of Committee: Dr. Charles Aubeny 

 

This study presents the applications of plastic limit analysis to offshore foundations 

and anchors, including the drag embedment anchors (DEAs) for mobile offshore drilling 

units (MODU’s) and spudcan foundations for jack-up platforms. In deep waters, drag 

embedment anchors are an attractive option for mooring of semisubmersible platforms 

due to low installation cost and high holding capacity; on the other hand, jack-up 

platforms are more stable than semisubmersible platforms but only can be placed in 

shallow waters. 

The analyses of anchor capacities are developed for an idealized anchor comprising a 

rectangular fluke, a cylindrical shank, and a metal chain connected to the shank at the 

padeye. The anchor trajectory prediction during drag embedment is also developed by 

considering anchor behavior in conjunction with the mechanics of the anchor line. The 

results of simulations show that anchors approach at equilibrium condition rapidly 

during the embedment and both the normalized holding capacity and the anchor line 

uplift angle remain constants in this stage. Besides the geometry of the fluke, the 
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properties of the shank and soil are also crucial factors in the anchor-soil interaction 

behavior. 

Partial failure of mooring systems for floating structures will subject drag anchors to 

loads having an appreciable component outside of the intended plane of loading. Partial 

failure of mooring systems during hurricanes in recent years have generated an interest 

in understanding drag anchor performance under these conditions. The analysis presents 

the simulations of three dimensional trajectories of an anchor system subjected to an out-

of-plane load component. For the conditions simulated in the example analyses, the 

anchor experienced a modest amount of continued embedment following partial failure 

of the mooring system; however, the ultimate embedment and capacity of the anchor is 

much less than what would have developed if the anchor had continued in its original 

trajectory within the plane of intended loading. 

The analyses of the spudcan foundation of jack-up units include preloading, bearing 

capacity, and the displacement assessment. When the contribution of the soil moment 

resistance is considered, a three-stage assessment procedure is recommended: 

superposing environmental forces on the plot of yield surface, determining the value of 

yield function corresponding to the external forces, and computing the factor of safety of 

the spudcan. The results of the assessment may be ambiguous while the different yield 

functions are employed to analyze the spudcan in soft clay.  
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CHAPTER I 

INTRODUCTION 

 1.1 General 

During the past decades, the range of exploration in offshore hydrocarbon fields was 

extended to deep or ultra-deep waters, the technologies of mooring systems and 

foundations of mobile offshore drilling units (MODUs) have great progress. “MODUs” 

is a generic term for several categories of floating drilling or self-contained floatable 

machines, from shallow-water steel jackets and jack-up units, to floating 

semisubmersibles and drill-ships able to operate in very deep waters. Nowadays, there 

are a number of such unit operating in the Gulf of Mexico, the North Sea, Newfoundland 

and Nova Scotia, the Campos and Santos Basins off the coasts of Brazil, west of Nigeria 

and Angola, and South East Asia.  

The jack-up unit, as shown in Figure 1.1, is towed to the location with its legs up. 

The barge section then is raised above the water to create an air gap. In very soft clay 

deposit, mat foundation (Figure 1.2) is an appropriate option to avoid the large 

settlement and provide buoyancy, which may serve to increase carrying load capacity.  

 
 
 
 
 
 
______________ 
This dissertation follows the style and format of Journal of Geotechnical and 
Geoenvironmental Engineering. 
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Figure 1.1 Mobile jack-up unit (courtesy of LeTourneau Inc.) 

 

Figure 1.2 Mat supported jack-up platform (courtesy of Stewart, 2007) 
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Nevertheless, a mat is not suitable for uneven seabeds or those with sharp slopes 

because large bending moments may occur on mat or legs. An alternative foundation, 

spudacan footing illustrated in figure 1.3, is typically a conical structure with sloping top 

and bottom which helps to penetrate in stiff clay or dense sand deposit.  

 

Figure 1.3 Jack-up unit (courtesy of LeTourneau Inc.) and spudcan foundation 

The most dominant advantage is that it could be utilized on a very variety of seabed 

condition, such as on hard and soft soil, a sloping seabed, and areas existing pipelines or 

structures which be avoided. In addition, the installation cost is less than the mat 

foundation. Unlike the semisubmersible or drill-ship, it is limited to operate in shallow 

waters, generally less than 400 ft. In order to avoid large additional settlements due to 

environmental or drilling loadings, the “preloading” procedure is required prior to 

operation. Preloading is a process where the weight of the hull and additional ballast 
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water compel penetrate the foundation to further depth, a concept similar to preloading 

of soft clays in geotechnical engineering. After preloading, the additional ballast water is 

released and the jack system is used to raise the entire barge to create an “air gap” above 

the sea surface to prevent lateral loads from waves and currents, from acting on the 

barge.  

Jack-up units are not feasible in deep waters. Semi-submersibles, partially 

submerged floating structures (Figure 1.4) moored by anchor systems, such as drag 

anchors, gravity anchors, or suction caissons.  

 

Figure 1.4 Scehmatic of semisubmersible drilling rig (courtesy of Schlumberger) 

They are typically composed of large pontoons below the sea level with several 

columns supporting the hull at a certain distance above the sea level. The water depth 
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capacity ranges from 200 to thousands of feet, for example, the “Atlantis PQ” is 

operating in the Atlantic Oilfield of the Gulf of Mexico at a water depth of 2150 m (7050 

ft). Safety vessels, offshore drilling rigs, and production platforms are major applications 

of semisubmersibles in offshore engineering. Drill-ships (Figure 1.5) are another type of 

MODU’s used for scientific drilling or natural gas or petroleum exploitation in deep or 

ultra-deep waters, sometimes even deeper than 10,000 feet.  

 
Figure 1.5 Seadrill West Polaris drill-ship (courtesy of Seadrill) 

In contrast to jack-up units and semisubmersibles, drill-ships can independently 

propel themselves from location to location without outside transport vessels. The 

susceptibility to being agitated by currents, waves, or winds is their drawback and it is 

even more troublesome while the vessel is actually drilling. Therefore, a proper mooring 

system is compulsory for drill-ships during the drilling. As with most of floating 
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platforms, the anchor systems are used for mooring to resist external loadings. In 

shallow waters, drill-ships are moored to seabed with six to twelve anchors, while in 

ultra-deep waters, dynamic positioning systems (DPS) are used to maintain station-

keeping.  

 1.2 Concept of Anchor and Mooring Systems  

1.2.1 General Description of Mooring Systems 

For floating platforms in deep waters, environmental loads acting on the structures 

pass through the mooring system and are resisted by the anchors. Generally speaking, 

the mooring systems can be divided into three categories: taut leg moorings, catenary 

moorings and synthetic rope moorings shown in Figure 1.6.  

 

Figure 1.6 Sechmatic of three different type of mooring systems (courtesy of Tention 

Technology International) 

The catenary mooring, consisting of relatively heavy chain and steel cable, is the 

most common mooring system used in shallow to deep waters. In general, there exit a 

notable length of mooring line resting on the seabed, and a concave curve shape in the 
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waters (Aubeny and Chi, 2010a) and inverse catenary curve shape in the soils 

(Neubecker and Randolph, 1995). With increasing water depth, the required length of 

chain increases, as does the weight. Therefore, the weight of chain could constrain the 

design of floating platforms in deep to ultra-deep waters (Ruinen, 2000). The seabed 

area, from Figure 1.6, encompassed by taut leg moorings is obviously less than that by 

the catenary moorings, with a typical taut mooring leg usually inclined at an angle of 30 

to 45 degrees from horizontal. In contrast to catenary mooring line, taut mooring derives 

its compliance from elastic strength of the line and it is better in load sharing between 

adjacent lines, improving the overall efficiency of the line system. In addition, the taut 

mooring also overcomes the limitation of catenary mooring system in ultra-deep water 

by having shorter lines and offering a more compact seabed footprint. It is also less 

likely to interfere with neighboring mooring lines or subsea facilities (Ruinen and 

Degenkamp, 1999). 

Synthetic rope offers another option for mooring system in deep to ultra-deep waters 

by using very low weight material in water. There are a large number of synthetic fiber 

materials used in ropes, such as nylon, polyester, aramid, or High Modulus Polyethylene. 

In practice, the synthetic ropes may be inserted as part of mooring line to connect with 

catenaries or wires. Among these several materials, polyester is the currently favored 

one because of its cost and fatigue endurance. Moreover, polyester rope is also suitable 

for taut mooring of vessel because of its elastic properties. 
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1.2.2 General Description of Drag Anchors 

The mooring systems are the media for transmitting the environmental forces applied 

on the platform to the anchors. The number, type, and arrangement of them are the main 

factors affecting the survival of MODU’s. In the past few decades, gravity anchors, 

suction caissons, anchor piles, drag anchors, and suction plate embedded anchors 

(SEPLA) have been used for anchorage.  Gravity anchors provide anchorage from self-

weight, which tends to be very inefficient relative to other anchors that rely on soil 

shearing resistance. Suction caissons provide substantial pullout capacities in soft clay 

(Andersen et.al, 2005) but they are technically difficult and expensive to install in deep 

water. The drag anchor is an attractive option because of several advantages: cost-

effectiveness, high holding capacity, and its feasibility in deep water. However, they are 

not typically allowable for permanent platforms due to the uncertainties in predicted 

holding capacity and embedment position. To reduce the uncertainty, suction embedded 

plate anchors (SEPLAs) were developed based on a combination of the merits of suction 

caissons and plate anchors (Dove et al., 1998). SEPLA installation, as shown in Figure 

1.7, entails the use of a suction caisson to penetrate the plate anchor to the design depth. 

The caisson is then retrieved, leaving the plate anchor in place. Although suction 

embedded plate anchors permit accurate positioning of the anchor, they are typically less 

cost-effective than drag anchors, especially for temporary mooring systems. Nowadays, 

the appearance and geometries of drag anchors vary greatly and are quite sophisticated 

compared with conventional ship anchors. In enhancing higher holding capacity for a 

mooring system, achieving a greater penetration depth is a key consideration. Anchor 
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types embedded by drag installation include drag embedded anchors (DEA’s) and 

vertically loaded anchors (VLA’s).  

 

Figure 1.7 Sechmatic of installation of SEPLA (Dove et al., 1998) 

1.2.2.1 Drag Embedment Anchors (DEA’s) 

Generally, a drag embedded anchor is composed of a wide fluke and thick shank 

connected with a mooring line at the shackle.  To facilitate penetration, the geometry of 
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the fluke is not usually rectangular plate but a plate with two symmetric sharp triangular 

wedges in the direction of penetration (Fig 1.8).  

 

  

Figure 1.8 Sechmatic of Vryhof drag embedded anchor (Vryhof Anchor Manual, 2010) 

Drag embedded anchors are usually employed as temporary anchorage with catenary 

mooring system in deepwater. Basically, DEA’s are not designed for resisting a large 

vertical load component; therefore, they are not typically suitable for a taut leg mooring 

system. One distinct feature of DEA’s is that the angle between the fluke and shank is 

fixed during the installation. However, there are different fluke-shank angle settings for 

different soil conditions. As shown in Figure 1.8, the larger angle is used for DEA’s 

installation in soft mud or clay, while smaller angle are used in sands. The suggested 
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fluke-shank angle for mud or cohesive soil is about 50 degrees and 30 degrees for sand 

(Bruce FFTS MK4 anchors). Both the notch and pins serve for adjust the angle in the 

apparatus. 

1.2.2.2 Vertically Loaded Anchors (VLA’s) 

In order to subjecting large vertical component loads in taut leg mooring systems, 

vertically loaded anchors are developed to mobilize the maximum bearing capacity of a 

plate anchor. Unlike drag embedded anchors, the fluke-shank angles of VLA’s are 

opened after initial installation such that the anchor line becomes almost perpendicular 

with the fluke. Figure 1.9 demonstrates the two common used VLA’s: Bruce Dennla 

anchors and Vryhof Stevmanta anchors. It is obvious that the shape of the shank is 

another difference between VLA’s and DEA’s. The shank of Bruce Dennla, a single 

rigid bar which rotation is allowable at the conjunction, is much thinner than DEA’s two 

large shanks. On the other hand, the bridle type of shank is employed to transfer the 

loadings from mooring line to the fluke plate and the definition of fluke-shank angle 

becomes ambiguous in this case. Even though the installations of VLA’s and DEA’s are 

similar, the penetration depths of VLA’s are typically greater since increasing of the 

fluke-shank angle increases both penetration depth and load capacity of the anchor. 
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 (a) BruceDennla MK3 (Kim, 2005) (b) Stevmanta VLA (Vryhof anchor) 

Figure 1.9 Sechmatic of vertically loaded anchor 

1.2.2.3 Installation of Drag Anchors 

Typical methods for installation or retrieval of drag anchors are employed by means 

of anchor handling vessel (AHV). According to Vryhof anchor manual (2010), the 

general procedures composed of the following steps: 

(1) Prepare to deploy the anchor and mooring line from the stern of the AHV. 

(2) The anchor is deployed over the stern roller and the AHV pays out the mooring 

chain and lowers the anchor. 

(3) The AHV moves to the location and continuous to pay out the mooring 

components or work wire to achieve the scope for the anchor. 

(4) The anchor is then fluke set using the AHV bollard pull. 

(5) The AHV moves a distance which is less than the water depth from the rig. 
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(6) The anchor penetrates into soil due to the dragging of the AHV. 

(7) Measure the anchor line tension and line uplift angle at mudline during the 

dragging. 

(8) The AHV keeps dragging until the line tension achieves the designed capacity. 

With increasing the drag distance, both the anchor penetrating depth and line holding 

capacity increase. Figure 1.10 shows the profile of anchor system in soil and water 

column. The performance of cable line in air is governed by its self-weight and the 

mechanism was well-established by Meriam (1975); Aubeny and Chi (2010a) modified 

the model suitable for anchor line in water. On the other hand, Vivatrat et al. (1982) 

derived the governing differential equations for a perfectly flexible cable embedded in 

the soil by invoking equilibrium on a differential line segment; while the body weight of 

the chain is relatively small comparing with soil resistance and may be neglected, the 

closed-form solutions were proposed by Neubecker and Randolph (1995). Unlike the 

chain in water, the geometric shape of the anchor line in the soil deforms like a concave 

curve demonstrated in figure 1.10.  
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Figure 1.10 Anchor line system definition sketch 

1.3 Outline and Objective of Research 

1.3.1 Problem Statement 

Among the anchor systems, drag embedment anchors (DEAs) are prominent for their 

economy and convenience of installation in deep waters. Historically they have had been 

used extensively for temporary moorings for offshore hydrocarbon exploration or mobile 

offshore drilling units. However, the difficulties of estimating the holding capacity and 

predicting the installation location are the two main intractable issues in application. For 

in-situ execution, the tension and orientation of the anchor chain at the mudline are 

measured data, but it may not be available to predict the whole anchor behavior based on 

these data and current simulation methods.  

Under the circumstances of the effect of hurricanes, partial failure of a mooring 

system may occur. If one or more anchor lines fail, loads become re-distributed such that 
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the anchor line force no longer acts within the plane of intended loading for the anchor. 

The consequences of out-of-plane loading are not well understood at present.  

Compared to mat foundations, the spudcan footing is an attractive option for jack-up 

platform for low cost and less impediment from the foundation while drilling. In the 

assessment of bearing capacity, the factor of safety may not be easy to estimate because 

the footing is subjected the combined loading (moment, vertical and horizontal forces). 

Although the evaluation of the stability of the foundation is based on load and resistance 

factor design (LRFD), the problem of the occurrence of additional large plastic 

displacement for the footing on which the environmental loadings apply could be 

serious. The difference of settlements among the individual legs is one of the possible 

factors that cause the failure of the whole structure.   

1.3.2 Outline 

To investigate and solve the problems presents above, the main criterion of this 

dissertation is to employ plasticity theory, such as plastic limit analysis, to analyze the 

performance of the anchor, chain, and spudcan foundation under the seabed. The issues 

of the research could be simply divided into three parts: mechanism of drag embedded 

anchors in a soft seabed, performance of drag embedded anchors under out of plane 

loadings, and stability assessment of spudcan foundation of Jack-up platforms. 

The complexity and variety of the geometry of the anchor is the most intractable 

factor in the analysis; hence, a regular shape for the fluke and shank is necessary. In 

general, rectangular plate and cylindrical bar are commonly used for simulating the fluke 

and shank in the modeling (Yang et al., 2008, Aubeny and Chi, 2010a). Fluke length, 
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fluke thickness, shank length, angle between fluke and shank, and shank thickness are 

the considerable parameters in the analysis. The holding capacity and trajectory of the 

anchor are two primary purposes of the first stage study. Besides the fluke and shank 

properties, the direction of penetration and the rotation of the fluke are affected by the 

mooring chain. Although Neubecker and Randolph (1995) derived the closed-form 

solutions for chain geometry in soil, they focus on two special soil conditions: uniform 

soil and soil with bearing resistance proportional to depth but zero resistance at seabed 

surface. The undrained shear strength of typical cohesive soil could be presented as 

following equation: 

 0u uS S kz= +  (1.1) 

where Su0 = undrained shear strength at mudline 

           k = Shear strength gradient 

           z = Depth below the mudline 

 Most of marine soils have nonzero shear strength at mudline and it also increases 

with depth, so does the soil resistance applied on the chain.  Different bearing resistance 

profiles may affect the behavior and length of chain in the soils. In addition, the 

predictions of holding capacity and trajectory are required and important after the 

installation. Naval Civil Engineering Laboratory (NCEL, 1987), Vryhof Anchor (1999), 

and Bruce Anchor suggested the empirical chats and equations for estimating the anchor 

holding capacity; Stewart (1992), Neubecker and Randolph (1996), Dahlberg (1998), 

and Thorne (1998) recommended the prediction methods for both holding capacity and 
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trajectory based on limit equilibrium. In this research, a prediction method based on field 

measured data (tension and chain angle at mudline) is proposed. 

During the hurricanes Ivan, Katrina, and Rita in 2005, there were about seventeen 

offshore mobile drilling units drifting due to the failure of the mooring system.  Partial 

failure of mooring systems for floating structure will subject drag anchor to loads having 

an appreciable component outside of the intended plane of loading. Under this 

circumstance, the anchor may travel out of the installation plane direction. Similar to in-

plane (installation plane) motion, both the holding capacity and trajectory of the anchor 

are main concern issues in out of plane motion. The analysis shows that, if the self-

weight of the anchor chain is neglected, the anchor chain configuration will lie always 

within a plane, although for general conditions of out-of-plane loading, the anchor chain 

will lie in an oblique plane defined by the direction of the anchor chain at the pad-eye 

and the mudline (Aubeny and Chi 2010b). 

Based on Guidelines for Site Specific Assessment of Mobile Jack-Up Units proposed 

by The Society of Naval Architects and Marine Engineering (SNAME), the typical 

analysis of the spudcan foundation of jack-up units include preloading, bearing capacity, 

and the displacement assessment. During the stage of preloading, the settlement of a 

spudcan in soft clay may be five time as deep as that in sand. The magnitude of sliding 

capacity, for a pinned condition footing, is mainly affected by the penetration depth. 

When the contribution of the soil moment resistance is considered, a three-stage 

assessment procedure is recommended: plotting of the configuration of yield surface and 

environmental forces, computing the value of yield function with external forces 
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substituted, and computing the factor of safety of the spudcan. In addition, the results of 

the assessment may be ambiguous while the different yield functions are employed to 

analyze the spudcan in soft clay. It should be noted that the additional settlement (plastic 

displacement) of the footing may occur if the jack-up unit experiences environmental 

forces beyond its site-specific design. 
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CHAPTER II 

OVERVIEW OF CURRENT ANALYSIS METHODS 

2.1 Analysis of Anchors 

The current methods employed in analyzing drag anchors include empirical methods, 

limit equilibrium methods, plastic limit analysis method, and upper bound collapse load 

analysis.  

2.1.1 Empirical Methods 

Design charts of holding capacity or drag and penetration are the typical form for 

empirical methods. Each type of anchor has separate design charts or empirical 

equations based on regression of test data. 

2.1.1.1 Vryhof Anchor Method 

Vryrof Anchor (2010) proposed empirical charts, equations, and tables for predicting 

holding capacity, drag distance, and penetrating depth of drag anchors. Since the method 

is experimental, each type anchor has a separate formula or chart for prediction. For 

example, from Figure 2.1 to 2.4 are the design charts for Stevin MK3 and Stevpris MK5 

anchor. The ultimate holding capacity (UHC) is taken to be proportional to the size 

(weight) of the anchor and the UHC for Stevpris MK5 is relatively greater than that of 

Stevin MK3 in the same soil; on the other hand, the penetration depth increases with 

drag distance and the later is probably seven to ten times of the former. Table 2.1 

presents the relationships among ultimate holding capacity, drag distance, and 

penetration depth for both Stevpris MK5 and Stevin MK3.  The first column of data 
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means while anchor loading is 70% of UHC, the corresponding percentage of drag and 

penetration to their maximum value are 48% and 80%. The anchor load as percentage of 

UHC (1st column) is comparable to penetration depth as percentage of maximum depth. 

This phenomenon also implies that holding capacity of anchor is closely related to 

penetration depth. It should be noted that the UHC lines are applicable in soil with 

undrained shear strength of 4 kPa at the mudline with a strength gradient of 1.5 kPa per 

meter depth. In very soft clay, the optimum fluke-shank angle is 50 degrees and 32 

degrees in sand or hard clay. 

Table 2.1 Percentage of mobilization for anchor capacity, drag, and penetration (Vryhof) 

Anchor load as 
percentage of 

UHC 

Drag as  of percentage 
maximum drag 

distance 

Penetration as percentage 
of maximum penetration 

depth 

70 48 80 

60 37 68 

50 27 55 

40 18 42 

30 9 23 
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Figure 2.1 UHC chart for  Stevin MK3 anchor (Vryhof, 2010) 
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Figure 2.2 Drag and penetration design chart for Stevin MK3 anchor (Vryhof, 2010) 
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Figure 2.3 UHC chart for  Stevin MK5 anchor (Vryhof, 2010) 
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Figure 2.4 Drag and penetration design chart for  Stevpris MK5 anchor (Vryhof, 2010) 
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The design chart of Vryhof Stevmanta, a typical vertically loaded anchor, shows the 

ultimate pull capacity (UPC) increases with diameter of the mooring line (Figure 2.5). 

The UPC also could be estimated by the following equation: 

 c uUPC N S A= ⋅ ⋅  (2.1) 

where  Nc = Dimensionless pull-out bearing capacity factor 

            Su = kD, Undrained shear strength  

 k = Soil strength gradient 

 D = embedded depth 

            A = Fluke area 

The concept of this empirical equation is similar to the assessment of bearing capacity of 

a shallow foundation. The value of dimensionless pull-out bearing factor Nc is suggested 

as 10 in this equation. The undrained shear strength Su is proportional to the embedded 

depth D which could be determined by Equation 2.2: 

 0.6 0.7 0.3 1.71.5 tan ( )D k d A= ⋅ ⋅ ⋅ α  (2.2) 

where  d = Mooring line diameter 

 k = Soil strength gradient 

 α = Fluke-shank angle 

            A = Fluke area 

The default values for fluke-shank angle α and soil strength gradient k in the design 

chart are 50 (degrees) and 2 (kPa/m) respectively. 
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Figure 2.5 Design chart for  Stevmanta VLA (Vryhof, 2010) 
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2.1.1.2 Bruce Anchor Method 

Bruce Anchor proposed the empirical design charts and corresponding equations for 

estimating holding capacity of the anchor. In the same soil (mud), from Figure 2.6 and 

2.7, the holding capacity of wire mooring line is higher than that of chain mooring line 

and the difference between two values increases with the size of the anchor. In general, 

the holding capacities of anchors or the bearing capacities of footings in cohesive soils 

are relatively lower than those in sands; therefore, wires may be an attractive option for 

low strength mud. The corresponding holding capacity regression equations are also 

available for both types of anchors: 

 

0.94
( / )

0.92
( / )

0.92
( / )

60.92

45.94       Bruce PM Anchor

57.11

chain sand

chain mud

wire mud

HC W

HC W

HC W

= ⋅
= ⋅ 


= ⋅ 

 (2.3) 

 

0.94
( / )

0.92
( / )

0.92
( / )

46.86

39.95       Bruce FFTS MK4 Anchor

49.66

chain sand

chain mud

wire mud

HC W

HC W

HC W

= ⋅
= ⋅ 


= ⋅ 

 (2.4) 
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Figure 2.6 Design chart for  Bruce PM Anchor (courtesy of Bruce Anchor) 

 

Figure 2.7 Design chart for Bruce FFTS MK4 Anchor (courtesy of Bruce Anchor) 
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2.1.2 Limit Equilibrium Method 

Based on the methods for analyzing static and kinematic performances of drag 

anchors in cohesive soil proposed by Stewart (1992) and the embedded chain solutions 

for anchor pile (1995), Neubecker and Randolph (1996) published a numerical method 

to assess the anchor trajectory and tension at the padeye. Lelievre and Tabatabaee (1979, 

1981) developed a limit equilibrium method for drag analysis in sand which was further 

developed by Neubecker and Randolph (1996). O’Neill, Randolph, and House (1999) 

employed the method to predict the anchor performance in layered soils (a clay layer 

overlying sand).  

Figure 2.8 presents the forces system for the approach of Neubecker and Randolph 

of the anchor in cohesive soil. The geotechnical resistance force Tp is parallel to the 

penetrating direction of the fluke and could be expressed by the following equation:  

 p p c uT fA N S=  (2.3) 

where  f = Form factor 

 Ap = Frontal projected anchor area in a plane perpendicular to the fluke 

 Nc = Bearing capacity 

            Su = Undrained average shear strength 

However, there also exists a normal soil resistance acting on the anchor and the resultant 

resistance force Tw is calculated by equation 2.4: 

 
cos

p
w

w

T
T =

θ
 (2.4) 

where θw = Geometric characteristic parameter 
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Figure 2.8 Sketch of anchor force system of Neubecker and Randolph approach 

Both f and θw are anchor resistance parameters and can be determined by field tests 

or centrifuge tests. The padeye force Ta is estimated by taking into account the weight of 

anchor W and is supposed to be at angle of θa and ψ corresponding to the horizontal and 

resultant resistance force respectively. The orientation of the fluke has an angle β to the 

horizontal and it follows that:  

 w a= + −β θ ψ θ  (2.5) 

where the chain angle θa obeys the anchor line tension equation: 

 
2

2
a aT DQ=
θ  (2.6) 

where Q  is the average resistance acting on the chain. The trajectory of the anchor can 

be simulated as following steps: 
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1. The fluke has an initial angle β to the horizontal and travel with an incremental 

horizontal distance Δx  

2. With the direction of the penetration parallel to the previous fluke orientation, 

calculate the embedded depth D. 

3. Estimate soil resistance forces Tp and Tw from equations 2.3 and 2.4 and then 

calculate padeye tension Ta by using force triangle composed of resultant 

resistance Tw and anchor weight W. 

4. Calculate chain angle θa by equation 2.6. 

5. Compute the new fluke orientation angle β by equation 2.5. 

6. Advance the anchor a further horizontal distance Δx and loop to step 2. 

2.1.3 Plastic Limit Method 

O’Neill et al. (2003) employed the concept of plastic yield functions (loci) and 

associated flow rule in plasticity theory and combined them with chain solutions 

developed by Neubecker and Randolph (1995) to construct a model for predicting the 

trajectory and shackle tension of rectangular and wedge-shaped anchors. In the model 

(Figure 2.9), the chain load Ta applied on the padeye and can be expressed in terms of 

normal force (V) and parallel force (H) to the top of the fluke and a negative moment 

(M) to the fluke reference point. The offset form of yield loci proposed by Murff (1994) 

was utilized:  
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1

1 1 1

max 1 max 1 max 1

1
q m n pV V M M H Hf

V V M M H H

      − − − = + + −     − − −       
 (2.7) 

where f = Yield function 

 Vmax = Maximum vertical load 

 Hmax = Maximum horizontal load 

            Mmax = Maximum moment load 

 V1, H1, and M1 = Offset loads 

 m, n, p, and q = Exponents 

 

Figure 2.9 Sketch of anchor forces and displacements system in the method of O’Neill et 

al (2003). 
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The maximum vertical, horizontal, and moment loads can be estimated by means of 

upper bound methods (Bransby and O’Neill, 1999) and expressed as followings:  

 max tan 14 4 cos
2 2f u f

V t
L S L

   = − + + +   
   

απ α α  (2.8) 

 max tan 14 4 cos
2 2f u f

H t
L S L

   = − + + +   
   

απ α α  (2.9) 

 
2

max
2 1

2f u f

M t
L S L

  
 = +      

π  (2.10) 

where Lf = Length of the fluke 

 t = Thickness of the fluke 

 α = Angle of rigid wedge (defined in Figure 2.10 and 2.11) 

Figures 2.10, 2.11, and 2.12 present the upper bound mechanisms of anchor subject 

pure vertical, horizontal, and moment loads. The derivations of these three equations will 

be discussed in next chapter—plasticity theory. In addition, Bransby and O’Neill (1999) 

also recommended the best-fit solutions for exponents and offset loads from finite 

element results shown in Table 2.2. Assuming an the associated flow rule, the relative 

displacement and rotation corresponding to the horizontal displacement increment are 

shown in the following equations: 

 v f f
V Hh

=
δ δ δ

δ δδ
 (2.11) 

 
( )ff

f f
M L Hh L

=
δβ δ δ

δ δδ
 (2.12) 
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Once the incremental distance Δh parallel to the fluke top surface is chosen, the 

incremental distance Δv perpendicular to the fluke and rotation of the fluke reference 

point could be computed by the following:  

 f fv h
V H

 ∆ = ∆ 
 

δ δ
δ δ

 (2.11) 

 
( )f f

hf f
M L H L

  ∆
∆ =   

 

δ δβ
δ δ

 (2.12) 

Table 2.2 Yield locus curve-fitting parameters (Bransby and O’Neill, 1999) 

Parameter Rectangular fluke Wedge fluke 

Hmax/ (Lf Su) 4.29 3.34 

Vmax/ (Lf Su) 11.87 11.53 

Mmax/ (Lf
2 Su) 1.49 1.60 

H1/ (Lf Su) 0 0 

V1/ (Lf Su) 0 -1.25 

M1/ (Lf
2 Su) 0 -0.57 

m 1.26 2.37 

n 3.72 2.14 

p 1.09 0.93 

q 3.16 3.41 
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Figure 2.10 Upper bound mechanism of the anchor subjecting pure normal load 

 

Figure 2.11 Upper bound mechanism of the anchor subjecting pure tangential load 

 

Figure 2.12 Upper bound mechanism of the anchor subjecting pure moment 
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2.1.4 Upper Bound Collapse Load Analysis  

Aubeny et al. (2005, 2008) combined the chain solutions for calculating the rotation 

of line angle at the shackle and upper bound collapse load analysis for obtaining bearing 

factor of anchors to predict the trajectory and holding capacity of anchors. Equation 2.6 

is the original form of the chain equation and it can be modified as following for the 

strength of the soil increasing with the depth:  

 
( )2 2

0
0( / 2)

2
a a

n c u

T
zQ zE N b S kz

−
= = +

θ θ
 (2.13) 

where Ta = Anchor line tension at shackle point 

 θa = Anchor line angle from horizontal at shackle point 

 θ0 = Anchor line angle from horizontal at mudline 

 En = Multiplier to be applied to chain bar diameter 

 Nc = Dimensionless bearing factor for wire anchor line 

 b = Chain bar or wire diameter 

 Su0 = undrained shear strength at mudline 

            k = Shear strength gradient 

            z = Depth below the mudline 

Both the line angle θa and the orientation of fluke θf definitely vary during the 

penetration and the changing of the chain angle Δθa is assumed to match the changing of 

the fluke Δθf in the analysis. The changing of the anchor line angle evolves from the 

equation 2.14 and shown as follows:  
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( )
( )

2 2
0

*

1
ˆ ˆ2 1

aa n c

a a

d E N
dz T z

 −
 = −

+  

θ θθ
θ η

 (2.14) 

where ẑ = Normalized depth of shackle = z/b 

 η = Strength gradient parameter = bk/ Su0 

 *
aT = Normalized shackle tension = Ta/ Su0b2 

According to the field test data in Gulf of Mexico (Joint Industry Project), the 

normalized shackle tension approaches to a constant after few embedded depth (Aubeny, 

2008). If the shank effect can be neglected, the shackle tension should be definitely 

equal to the soil resistance force acting on the fluke. By means of upper bound load 

analysis, the soil resistance on fluke can be estimated by the equation:  

 e f uF N A S=  (2.15) 

Where Af = Fluke area 

 Ne = Effective bearing factor of fluke 

In general, the common value of Ne ranges from 3.5 to 7 for most of anchors. By 

introducing equation 2.15, the normalized shackle tension becomes: 

 *
2

e f
a

N A
T

b
=  (2.16) 

Combined with the equations stated above, the algorithm for computing the anchor 

trajectory can proceed as following steps: 

1. Advance the anchor an incremental distance Δs in the direction parallel to the 

fluke with an angle θf to the horizontal. 



38 

 

2. Compute the corresponding incremental vertical penetration Δz = Δs sin θf and 

horizontal drag distance Δx = Δs cos θf. 

3. Calculate the changing rate of the line angle at shackle from equation 2.14 and it 

is equal to that of rotation of the fluke. 

4. Estimate the incremental angle change by a
a

d z
dz

 ∆ = ∆ 
 

θθ . 

5. Update the next step fluke angle θf,i+1 = θf,i + Δθa and the next step anchor line 

angle θa,i+1 = θa,i + Δθa. 

6. Repeat steps 1 through 6 until the fluke approaches horizontal orientation. 

2.2 Analysis of Spudcans 

The guideline for the assessment of spudcan foundations in Technical & Research 

Bulletin 5-5A (2002) proposed by The Society of Naval Architects and Marine 

Engineers (SNAME) offer a good criterion for analyzing and design of spudcan footing. 

In general cases, preloading assessment, bearing capacity calculation, and settlement 

evaluation are three main issues; however, the situation becomes complicated when the 

footing is located in layered soils or in very soft clay.  

In evaluating the bearing capacity of the footing, the vertical-horizontal bearing 

capacity interaction model is widely used but the results may be too conservative. A 

more realistic assessment of bearing capacity is possible by considering the contribution 

of the soil rotational resistances, the interaction yield functions of vertical-horizontal-

rotational are developed (SNAME, 2002; Van Langen et al., 1993; Martin and Houlsby, 

2000 & 2001). The yield functions suggested by Martin and Houlsby, verified by the 
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laboratory tests, illustrate the performance of the spudcan in cohesive soils well for both 

full penetration and partial penetration. Although SNAME recommended some criteria 

and yield function for sand, more field data or lab tests may be necessary for 

verification. 

The problem of clay squeezing occurs when a soft clay layer overlies a significantly 

stronger layer (Figure 2.13). Under the assumption of no soil back-flow condition, the 

ultimate vertical bearing capacity of footing is suggested by Meyerhof (SNAME, 2002):  

 { }0 0
1.2

v u c c c u
bB DF A a C P A N s d C P
T B

   ′ ′= + + + ≥ +  
  

 (2.17) 

where a = Squeezing factor = 5.00 (recommended) 

 b = Squeezing factor = 0.33 (recommended) 

 A = Spudcan effective bearing area based on cross-section 

 B = Effective spudcan diameter 

 Cu = Undrained shear strength at D+B/4 below the mudline 

 0P′  = Effective overburden pressure at depth D 

 T = Thickness of the soft clay layer 

 dc = Bearing capacity depth factor 

 sc = Bearing capacity shape factor 
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Figure 2.13 Problem of clay-squeezing of spudcan foundation 

Another difficult problem (Figure 2.14) is the punching failure of the spudcan 

foundation while a strong soil (hard clay or sand) overlyies a weak, soft clay soil. Under 

the assumption of no soil back-flow condition, the ultimate vertical bearing capacity can 

be computed according to the following (SNAME):  

 { }, , 0 , 03 1 0.2v u t c c u b c c c u t
H D HF A C N s C P A N s d C P
B B

 +   ′ ′= + + + ≤ +  
  

 (2.18) 

where  Cu,b = Undrained shear strength for the lower soil below the spudcan (weak layer) 

 Cu,t = Undrained shear strength for the upper soil below the spudcan (strong 

layer) 
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 H = Distance from spudcan maximum bearing area to the top of the weak layer 

  

 

Figure 2.14 Problem of punching-through of spudcan foundation 
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CHAPTER III 

SOIL PLASTICITY THEORY AND APPLICATIONS 

3.1 Concepts of Soil Plasticity Theory 

Plasticity theory has been widely employed in soil mechanics and its application can 

be traced back to the assessment of the stability of embankments proposed by Coulomb 

in 1770’s. It was initially developed in connection with estimating the failure condition 

and then greatly expanded to the most sophisticated numerical analysis that is carried on 

in the field today (Murff, 2006). There are four main components in soil plasticity 

theory: yield criterion (yield surface), elastic behavior beneath yield, flow rule, and 

hardening law. The elastic stress-strain behavior is employed before the current stress 

state of soil element touches the yield criterion, i.e., it is insides the yield surface. 

3.1.1 Yield Criterion 

The core element in plasticity theory is yield criterion which presents a relationship 

among stress components at which incipient yield occurs (Murff, 2006). At the primary 

stage of investigating a new material, experimental data are required to determine the 

condition of yielding and then generalized them as the parameters we are interested. For 

example, the unconfined compression strength qu is the datum measured from the 

laboratory test and it is generalized as the shear strength Su shown in the following 

equation:  

 
2
u

u
qS =  (3.1) 
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The yield criterion can be expressed in mathematical form as a function of the 

current stress state σij:  

 ( ) 0ijF =σ  (3.2) 

The yield function F also can be presented as a surface in stress space (Figure 3.1). 

Actually, equation 3.2 shows the current stress state σij is exactly on the yield surface.  It 

is impossible for a stress state locates outside the yield surface; on the other hand, the 

soil is elastic when the value of yield function at the current stress substituted is less than 

zero. 

Yield Surface
F(σij) = 0

σ2

σ1

σ3
Outside Yield Surface

F(σij) > 0
(Impossible Stress State)

Inside Yield Surface
F(σij) < 0

(Possible Stress State)

 

Figure 3.1 Yield surface and stress state in stress space 

A common yield criterion for undrained analysis is Tresca assumption (maximum 

shear stress criterion) which is written as: 
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 1 3
max 1 3   or  ( ) 2 0

2 u ij uS F S−
= = = − − =

σ στ σ σ σ  (3.3) 

where τmax = Maximum shear stress 

 σ1 = Maximum principle stress 

 σ3 = Minimum principle stress 

From the above equation, it is obvious that the allowable shear stress should be equal 

or less than the undrained shear strength in Tresca criterion. In application, it is widely 

used for such analysis such as slope stability analysis and bearing capacity assessment. 

Although this criterion describes the undrianed behavior of soil acceptably, the situation 

becomes complicated for analyzing a three dimensional problem. The effect of the 

intermediate principle stress plays no role in the method. The extended Tresca criterion, 

shown as following equation, improves the limitation of original form with considering 

the influence of intermediate principle stress σ2:  

 1 3

1 2 3

−
=

+ +
σ σ β

σ σ σ
 (3.4) 

where β = Constant  

 Another alternative yield criterion is the Von Mises criterion which involves the 

effects of shear in all direction:  

 ( ) ( ) ( )
1/2

2 2 21/2
2 1 2 2 3 3 1

10   or   0
6

J k k  − = − + − + − − =   
σ σ σ σ σ σ  (3.5) 

Where J2 = Second invariant of stress deviation tensor 

 k = Constant 
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Figure 3.2 showing two criteria in π-plane, Von Mises yield surface is the circumscribed 

circle of the hexagonal Tresca surface. 

σ1

σ2 σ3

Von Mises

Tresca

 

Figure 3.2 Tresca and Von Mises yield criteria in π-plane 

3.1.2 Flow Rule and Hardening Law 

While the current stress state is inside the yield surface, the elastic stress-strain 

relationship is employed for the soil. For isotropic material, it can be presented as 

following: 

 2ij ij kk ij= +σ λδ ε µε  (3.6) 

where  λ and μ = Lame constants 

 σij = Elastic stress tensor  

 εij = Elastic strain tensor 

 δij = Kronecker Delta 

 εkk = Volume strain = ε11 + ε22 + ε33 
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 When the state of stress reaches the yield surface, the behavior of soil element 

changes from elastic to plastic. On the yield surface, the direction and magnitude of the 

plastic flow could be described by the plastic potential function (surface) G as the 

following equation:  

 p
ij

ij

G∂
= Λ

∂


ε
σ

 (3.7) 

where  Λ  = Scalar multiplier 

 p
ijε = Plastic strain increment 

Actually, the equation implies that the direction of the plastic strain rate is governed 

by the gradient of the plastic potential function 
ij

G∂
∂σ

and the magnitude is governed by 

the scalar multiplier Λ . If the gradient of the yield function 
ij

F∂
∂σ

equals the gradient of 

plastic potential function (i.e., the soil obeys an associated flow law), the plastic strain 

increment could be determined from yield function:  

 p
ij

ij

F∂
= Λ

∂


ε
σ

 (3.8) 

In this case, the direction of the plastic flow is perpendicular to the yield surface (Figure 

3.3). 

According to Drucker’s stability postulate of non-softening materials, there are two 

type of plastic behavior: perfectly plastic and work hardening plastic. Once the soil 

element yields, for perfectly plastic materials (Figure 3.4 (a)), the plastic strain can 
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increase with no limit; whereas, a work hardening material continues to increase its 

stress level beyond yield. 

Yield Surface
F(σij) = 0

S2

S1

ij
ij

F∂
= Λ

∂


ε
σ

 
Figure 3.3 Direction of plastic flow under associated flow rule 

 

(a) Elastic Perfectly-Plastic Model

σ

ε
(b) Work Hardening Plastic Model

σ

ε

 

Figure 3.4 Plastic models for stable materials 
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3.2 Lower Bound and Upper Bound Theorems  

In plasticity, there are two important bound theorems to estimate the collapse load: 

lower bound and upper bound theorems. In lower bound theorem, a stress field satisfies 

equilibrium which leads to an estimate of the corresponding collapse load. In the upper 

bound analysis, the collapse load is calculated by the assumed velocity or displacement 

field. 

3.2.1 Lower Bound Theorem 

The concept of the lower bound theorem was illustrated by Calladine as: If any stress 

distribution throughout the structure can be found which is everywhere in equilibrium 

internally and balances certain external loads and at the same time does not violate the 

yield condition, those loads will be carried safely by the structure (Murff, 2006). In 

Figure 3.5(a), a structure system subjects a load wi (one of the external forces) and ui is 

the corresponding displacement. Considering a convex yield surface which plastic strain 

increment ε is always normal to (Figure 3.5(b)), the work done by corresponding (actual) 

stress field σ is definitely greater than or equal to that by any other postulated stress field 

σ*:  

 * * *
i i i iv v

E w u dv E dv w u= ∑ = ≥ = = ∑∫ ∫ σε σ ε  (3.9) 

where *
iw  = Corresponding force of the postulated stress field σ* 

It is obvious that, from equation 3.9, the actual load iw is also greater than or equal to the 

load *
iw estimated from the postulated stress field σ*, i.e., the collapse load estimated 
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from lower bound theorem is a conservative solution because it is either lower or equal 

to the actual collapse load. 

Yield Surface

, σ ε

σ

ε

*σ

(a) Structure System (b) Stress Space System

iw iu

 
Figure 3.5 Collapse load estimated by lower bound theorem 

3.2.2 Upper Bound Theorem 

The concept of the upper bound theorem was illustrated by Calladine as: If an 

estimated of the plastic collapse load of a body is made by equating internal rate of 

energy dissipation to the rate at which external forces do work in any postulated 

mechanism of deformation of the body, the estimated collapse load will be either high or 

correct (Murff, 2006). Let *
iw are the loads estimated by equating external work to the 

internal energy dissipation *D  in the postulated velocity mechanism (Figure 3.6), by the 

principle of the virtual work:  

 * * * * * * *
i i i iv v v

w u D dv dv dv w u∑ = = ≥ = ∑∫ ∫ ∫

 σ ε σε  (3.10) 
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Yield Surface

, σ ε

σ

*
ε

*σ

(a) Structure System (b) Stress Space System

iw iu

 
Figure 3.6 Collapse load estimated by upper bound theorem 

Equation 3.10 presents the plastic collapse load estimated from postulated velocity 

field *
iw is either greater than or equal to actual load wi. In application of upper bound 

theorem, the internal energy dissipation *D could be estimated by the following with 

invoking Equation 3.8 to obtain the following equation:  

 * * * p
ij ij ij ij

ij ij

F FD
 ∂ ∂

= = = Λ = Λ 
∂ ∂  

  

 

 

σ ε σ ε σ σ
σ σ

 (3.11) 

It is obvious that the internal energy dissipation *D varies with different yield functions 

for which the associated flow rule is applicable. For example, consider a yield function 

for plane strain problem:  

 
( ) ( )

1/22

2 21 0
4 2

x y
xy yx uf S

 −
 = + + − =
 
 

σ σ
τ τ  (3.12) 
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The above equation illustrates the soil element subjecting normal stress σx and σy and 

shear stress τxy and τyx; while the maximum shear stress equals the undrained shear 

strength Su, the stress state is exactly on the yield surface. The dissipation of internal 

energy can be estimated by differentiating the yield function to each stress component 

and then substituted into Equation 3.11. For undrained analysis (no volume strain 

change), the energy dissipation function per unit volume is (Murff, 2006):  

 ( )* 2 22 u x xyD S= +

 ε ε  (3.13) 

where xε and xyε are the strain increments corresponding to σx and τxy. 

For analyzing three dimensional problems, both Tresca (Equation 3.3) and Von 

Mises yield (Equation 3.5) functions are widely employed. The corresponding energy 

dissipation function for these two yield criterion are:  

 *
max max

2 u shear uD S S= =

 ε γ  ............. Tresca Yield Criteria  (3.14) 

 ( )1/2* 2u ij ijD S=

 ε ε  .............................. Von Mises Yield Criteria (3.15) 

It should be noted that only the maximum shear strain affects the internal energy 

dissipation in Tresca yield criteria. 
max
γ is the maximum shear strain in engineering and 

twice of the strain tensor. 

3.2.2.1 Energy Dissipation along Slip Surfaces 

Consider a deformable region sandwiched between two rigid blocks (Figure 3.7), the 

lower rigid block is stationary but the upper one moves along x-direction with a central 

velocity v0. The velocity fields of the deformable region are: 
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 0                0                0x y z
vv y v v
t

= = =  (3.16) 

 

Figure 3.7 Energy dissipation of a deformable region (Murff, 2006) 

The only non-zero strain components xyε and yxε can be calculated: 

 01
2 2

yx
xy yx

vv v
y x t

∂ ∂
= = + = ∂ ∂ 

 ε ε  (3.17) 

By applying the Tresca yield criteria, the internal energy dissipation D per volume is:  

 0 0
max

 2 2 2
2

u
u shear u xy u

v S vD S S S
t t

= = = =

 ε ε  (3.18) 

Then the total energy dissipation per unit area of the deformable region is:  
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 ( ) ( )0 0  1u u
total avgv

S v S vD Ddv D volume t t
t t

= = × = × × =∫    (3.19) 

While the thickness of the deformable region approaches to zero, this region becomes a 

slip surface between two blocks. The corresponding internal energy dissipation of this 

slip surface can be calculated as:  

 0
 / 00 0

 lim lim u
Slip Surface Length total ut t

S vD D t S v
t→ →

= = =   (3.20) 

It is notable that the above equation shows the energy dissipation of unit area slip 

surface; therefore, the internal energy dissipation of overall slip surface is:  

   / 0 Slip Surface Slip Surface Length uD D Length S v L= × =   (3.21) 

where L = the length of the slip surface. 

3.3 Application of Soil Plasticity Theory 

The above two sections illustrate the basic concepts of the plasticity theory and the 

bound theorems. Comparing with lower bound theorem, upper bound theorem is 

relatively easy to employ although their results are either higher or equal to the exact 

solutions. In addition, Tresca yield criterion is widely used to describe the undrained 

behavior of marine soils. This section will discuss the applications of them on 

determining the ultimate bearing capacities of offshore foundations. 

3.3.1 Ultimate Normal-direction Bearing Capacity of Flukes in Uniform Soils 

Consider a fluke with length Lf and thickness t subjecting the maximum normal force 

Fn in uniform soils with undrained shear strength Su, the corresponding upper bound 

mechanism shown in Figure 3.8. Since this problem is symmetric about two axes, the 
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total internal energy dissipation is the four times of that of right-upper quarter which 

includes two slip surfaces ((1) and (2)) and deformable regions ((3) and (4)). Given the 

velocity V0 corresponding to normal force Fn, the normal and tangential velocities on the 

slip surface (1) are:  

 0 0cos                    sinn pv v v v= =α α  (3.22) 

where α = Angle of rigid wedge 

 

Figure 3.8 Upper bound mechanism of a fluke subjecting pure normal force 

By means of Equation 3.21, the internal energy dissipation on slip surface (1) 1D can 

be computed:  

 1 1 0 0

2 1sin tan
cos 2

f
u p u u f

L
D S v L S v S v L  = = =  

 
 α α

α
 (3.23) 

Similarly, the internal energy dissipation on slip surface (2) 2D can be estimated:  
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( )

2 2 0

0

2
cos

cos

1    
2

f
u n u

u f

L
D S v L S v

S v L

α π α
α

π α

 
= = × − 

 
 = − 
 



 (3.24) 

It should be noted that the length of slip surface (2) is the arcAC . According to Tresca 

yield criterion, the internal energy dissipation of deformable region (3) (fan-shaped zone 

ABC) could be computed by Equation 3.14:  

 0
max

cos1 12 2
2

nr
r

v v v vv
r r r r r

θ θ
θ

αγ ε
θ

∂∂ = = + − = = ∂ ∂ 
   (3.25) 
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π
α

α

αγ θ

α π α π α
α

 (3.26) 

From Figure 3.9, the relative velocity field of the rectangular region BCDE (region (4)) 

is:  

 00                 cosx yv v v= = α  (3.27) 

Since the whole region moves downward with a uniform velocity field, the energy 

dissipation only exists on slip surface CD  and the interface BE . One may assume the 

friction between the fluke and soil as follows:  

 1
s d u u

t

f a S S
s

= =  (3.28) 

where st = soil sensitivity 

 ad = adhesion factor = reciprocal of the soil sensitivity 
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Figure 3.9 Velocity fields of the region BCDE and fluke 

The energy dissipation on these two surfaces is: 

 ( )
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α α
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 (3.29) 

It is notable that the relative velocity rv on the interface BE  is ( )0 1 cosv + α . The external 

work done by normal force Fn equates the total internal energy dissipation: 
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 (3.30) 

The normal force Fn can be estimated from above equation: 
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 ( ) ( )tan4 1 cos
2 2n u f d d

f

tF S L a a
L

   = − + + + +       

απ α α  (3.31) 

The normal dimensionless bearing factor Nnmax is defined as the normal force divided by 

the fluke length Lf and undrained shear strength Su and presented in followings: 

 ( ) ( )max
tan4 1 cos

2 2
n

n d d
u f f

F tN a a
S L L

   = = − + + + +       

απ α α  (3.32) 

While the interface between the fluke and soils is perfectly rough (ad = 1), above 

equation is identical with the formula suggested by Bransby and O’Neill (2003). In 

addition, it matches the close form solution recommended by Andersen et al. (2003) 

while the wedge angle α equals to π/4. It is notable that the bearing factor is the function 

of the wedge angle so the critical value of the bearing factor occurs at the condition:  

 
( )

( ) ( )

2max

3 2

2
4 2sec 1 sin 0

2
sin sin sin 0

1 1

fn
cri d cri

f f
cri cri cri

d d

LdN a
d t

L L
t a t a

= − + − + =

⇒ + − − =
+ +

α α
α

α α α
 (3.33) 

Figure 3.10 shows the normal direction bearing factor changing with the ratio R (for 

most of flukes, 7 20fL
R

t
≤ = ≤ ) for different adhesion soils. The solid curves are the 

solutions which the critical wedge angle is determined from Equation 3.33 and then 

substituted into Equation 3.32; whereas, the dash curves are the results from Andersen’s 

equation. Although the more rigorous solutions ( criα α= ) are more accurate and lower 

than the simplified solutions ( 045α = ), it seems the difference between two solutions is 
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small. Figure 3.11 shows how the wedge angle changes with the aspect ratio and 

adhesion factor.  

 

Figure 3.10 Normal direction bearing factor Nnmax for different adhesion cohesive soils 
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Figure 3.11 Rigid wedge angle change for different adhesion cohesive soils 
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3.3.2 Ultimate Tangential-direction Bearing Capacity of Flukes in Uniform Soils 

The upper bound mechanism for subjecting pure tangential loading, shown in Figure 

3.12, is similar to the normal load mechanism but in different directions. From Equation 

3.31, the tangential force Fh can be estimated as following:  

 ( ) ( )tan4 1 cos
2 2

f
h u d d

L
F S t a a

t
  = − + + + +      

απ α α  (3.34) 

The tangential dimensionless bearing factor Nsmax is defined as the tangential force 

divided by the fluke length Lf and undrained shear strength Su and presented in 

followings: 

 ( ) ( )max
tan 14 1 cos

2 2
h

s d d
u f f

F tN a a
S L L

   = = − + + + +       

απ α α  (3.35) 

Similarly, while the interface between the fluke and soils is perfectly rough (ad = 1), 

above equation is identical with the formula suggested by Bransby and O’Neill (2003). 

Although this upper bound mechanism offers a theoretical way to approach the problem, 

the finite element analysis or laboratory test results show this upper bound mechanism 

may overestimate the ultimate capacity.  

 

Figure 3.12 Upper bound mechanism of a fluke subjecting pure tangential force 
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3.3.3 Ultimate Moment Bearing Capacity of Flukes in Uniform Soils 

The upper bound mechanism of the fluke subjecting pure moment (Figure 3.13) 

shows the internal energy dissipation only exists on the periphery of circular surface 

with the radius r:  

 
2 2

2 2
fL tr

   = +   
  

 (3.36) 

 

Figure 3.13 Upper bound mechanism of a fluke subjecting pure moment 

Assuming the fluke rotates with angular velocity β0, the velocity field along the 

circular slip surface:  

 0 0v r= β  (3.37) 

Therefore, the internal energy dissipation can be computed as following: 

 
2 2

0 0 00 0
2

0   2

u u u

u

D S v ds S v rd S r rd

S r

= = =

=

∫ ∫ ∫

π π
θ β θ

π β
 (3.38) 
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The external work done by the moment M equates the total internal energy dissipation: 
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 β π β
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 (3.39) 

The moment M at the center of the fluke can be estimated from above equation: 

 
2

2 1
2 u f

f

tM S L
L

  
 = +      

π  (3.40) 

The dimensionless moment bearing factor Nmmax is defined as the moment divided by the 

square of fluke length Lf and undrained shear strength Su and presented in followings: 

 
2

max 2 1
2m

u f f

M tN
S L L

  
 = = +      

π  (3.41) 

3.3.4 Ultimate Moment Bearing Capacity of Rectangular Flukes in Uniform Soils 

Above section discusses a moment load acting on the center of the fluke under the 

plane strain condition; now, consider a rectangular plate with length Lf and width wf 

undertakes a moment in uniform cohesive soils. The corresponding upper bound 

mechanism (Figure 3.14) shows the internal energy dissipates on the two top and side 

slip surfaces of a cylinder, which its axis (dash line) pass through the center of the fluke 

plate. Assume the fluke rotates with a central angular velocity β0, the velocity field along 

the side surface of cylinder:  
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Figure 3.14 Upper bound mechanism of a rectangular fluke subjecting pure moment 

 02
f

s

L
v β=  (3.42) 

Therefore, the internal energy dissipation on it can be computed as following: 
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∫

 (3.43) 

where Af = Area of the fluke 

Then, the velocity field on the two identical top surfaces of cylinder is: 

 0tv ρβ=  (3.44) 

Where ρ = Radial distance on the top surface 
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The internal energy dissipation on it can be computed as following: 
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 (3.45) 

The external work done by the moment M equates the total internal energy dissipation: 
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 (3.46) 

The moment M at the center of the fluke can be estimated from above equation: 

 1
2 3

f
u f f

f

L
M S A L

w
π  

= +      
 (3.47) 

The dimensionless moment bearing factor Nmmax is defined as the moment divided by the 

fluke length Lf, fluke area Af, and undrained shear strength Su: 

 max 1
2 3

f
m

u f f f

LMN
S A L w

π  
= = +  

 
 (3.48) 

For a common fluke aspect ratio, say wf = 2 Lf, the bearing factor is:  

 max
11 1 1.83

2 3 2 3 2
f

m
f

L
N

w
π π   = + = + ≈     ×  

 (3.49) 
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According to the result of the finite element study by Yang et.al (2008), it is very close 

to the number (1.83) shown above.  

The moment bearing factor for a finite thickness plate in uniform cohesive soils can 

be derived by the same procedures illustrated in the previous and current sections: 

 
2 2

max 1 1 1
2 3

f
m

f f f

Lt tN
L w L

π
       = + + +                

 (3.50) 

This close form solution matches Equation 3.41 while the width of the plate approaches 

infinity; whereas, it turns out to be Equation 3.48 for a vanishing thickness plate. 

3.3.5 Ultimate Torsional Bearing Capacity of Very Thin Rectangular Flukes in Uniform 

Soils 

When the anchor is subjected to the out-of-plane loads, such as a partially failed 

mooring system, torsion may occur. An upper bound mechanism for torsion (Figure 

3.15) shows that the internal energy dissipates only on the top and bottom interfaces, 

since the thickness of the plate is zero (Yang et. al, 2008). From symmetry about two 

axes, the total internal energy dissipation is four times of the energy of a quarter plate 

dissipating: 

 (1) (2)2 4total top bottomD D D D D = + = × + 
      (3.51) 

The angle ψ in region (1) is: 

 tan f
wL

f

w RLψ = =  (3.52) 
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Figure 3.15 Upper bound mechanism of a thin rectangular fluke subjecting pure torsion 

Assuming the fluke rotates about its center with angular velocity β0, the velocity 

field in the region (1) can be estimated by 0 0v r= β , where r is the distance to the axis. 

Hence, the internal energy dissipation in this zone: 
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 (3.53) 
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By substituting Equation 3.52 into above formula, the internal energy dissipation can be 

presented as following: 

 
3

2 2
(1) 0 ln 1 1

48
f

u wL wL wL wL
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  (3.54) 

The internal energy dissipation in region (2) could be calculated by the same derivation:  
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 (3.55) 

Therefore, the total energy dissipation is: 
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 (3.56) 

The external work done by the torsion T equates the total internal energy dissipation: 
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 (3.57) 

The torsion T at the center of the fluke can be estimated from above equation: 
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The dimensionless torsion bearing factor Ntmax is defined as the torsion divided by the 

fluke length Lf, fluke area Af, and undrained shear strength Su: 

 
{

}

2 2
max

3 2 1 1 2

1 ln 1 1
6

                            ln 1 1

t wL wL wL wL
u f f wL
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 = = + + + + +  

 + + + +  

 (3.59) 

Considering the degree of roughness between the fluke and soils (Equation 3.28), the 

above formula could be modified as follows: 
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 (3.61) 

It is notable that Yang (2008) also suggested the close form solution of 

dimensionless torsion bearing factor for full rough foundation condition (ad = 1) as: 

 
2

max 2 2 2

sin cosln tan ln tan
6 cos 4 2 6 sin 2

f f
t

f f

w L
N

L w
θ π θ θ θ
θ θ

      = + + + −      
      

 (3.62) 

where 1tan f

f

L
wθ −  =  

 
 

Although two solutions look different apparently, the bearing factors calculated from 

these two formulae are identical. For example, Ntmax = 0.765 and Ntmax = 1.186 for 

aspect ratio RwL = 1 and RwL = 2, respectively.  

Figure 3.16 illustrates how the dimensionless torsion and moment bearing factors 

vary over a range of aspect ratio RwL = 1-5. Both the thickness and width effects are 

considered in the analysis (Equation 3.50). It seems that aspect ratio plays a more 



68 

 

important role in Nmmax than thickness effect does and both two curves do not vary too 

much while the aspect ratio is greater than 2. On the other hand, the torsion bearing 

factor curve (ad = 1) increases dramatically and intersects the moment bearing factor 

curves at the aspect ratio RwL = 3.2. The results also imply that the fluke has low 

resistance to twist (yaw, Figure 3.15) relative to rotation (pitch and roll, Figure 3.14) 

when the aspect ratio is less than 3.2. For adhesion factor ad = 0.5 (St = 2), the torsion 

bearing factor is one half of that for full adhesion. Hence, it can be inferred that the 

anchor may adjust its orientation to follow the anchor line relatively easily during the 

out-of-plane load applying, especially in high sensitivity soils. 

 

Figure 3.16 Dimensionless bearing factor for subjecting pure torsion or moment 
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3.3.6 Ultimate Bearing Capacities of Flukes in Non-uniform Soils 

The previous sections discuss the dimensionless bearing factors of a rectangular plate 

subjecting pure vertical load, horizontal load, moment, or torsion in homogeneous and 

isotropic cohesive soils. Nevertheless, as mentioned in section 1.3.2, most of soils are 

not uniform but their strengths increase with the embedded depths (Equation 1.1). At the 

beginning of this section, the dimensionless normal-direction bearing factor will be 

reinvestigated based on the same upper bound mechanism but in non-uniform soils. 

Others could be derived by the similar concept. 

Consider a very thin (thickness t = 0) fluke subjected to a normal force Fn oriented at 

an angle θf from horizontal in soil having a strength profile 0u uS S kz= + . The 

corresponding velocity field of upper bound mechanism is shown in Figure3.17: 

 

Figure 3.17 Upper bound mechanism of a thin fluke subjecting pure normal force 
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The mechanism can be divided into two parts which point A and B are the reference 

points of corresponding regions. In part A, the internal energy dissipation exists on the 

deformable zone (3) and slip surfaces (1), (2), and (4); whereas, it exists on the 

deformable zone (7) and slip surfaces (5), (6), and (8) in part B. Both the normal and 

tangential velocities (vn & vp) can be determined by Equation 3.22. 

The undrained shear strength at point A is: 

Part A 

 0 sin 0.5 sin
2

f
uA u c f uc f f

L
S S k z S kLθ θ

 
= + + = + 

 
 (3.63) 

where zc = the depth of point c (center of the fluke) 

Therefore, the internal energy dissipation along the slip surface (1) is: 

 ( ) ( )2
1 0

1sin sin
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r

uA f p p uA fD S ks v ds v S r krα θ α θ  = + − = + −    ∫  (3.64) 

where r = 
2

cos
fL

α
= AD  

Similarly, the internal energy dissipation along the slip surface (4) is:  

 ( ) ( )2
4 0

1sin sin
2

r
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In addition, the internal energy dissipation along the slip surface (2) is:   
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Finally, the internal energy dissipation in the deformable region (3):  
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( ) ( )os cosf fα θ α θ
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 (3.67) 

The undrained shear strength at point B is: 

Part B 

 0 sin 0.5 sin
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 (3.68) 

Therefore, the internal energy dissipation along the slip surface (5) is: 

 ( ) ( )2
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1sin sin
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uB f p p uB fD S ks v ds v S r krα θ α θ  = + + = + +    ∫  (3.69) 

Similarly, the internal energy dissipation along the slip surface (8) is:  

 ( ) ( )2
8 0

1sin sin
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r
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In addition, the internal energy dissipation along the slip surface (6) is:   
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Finally, the internal energy dissipation in the deformable region (7):  
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 (3.72) 

The external work done by normal force Fn equates the total internal energy dissipation: 
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Note: ( )1
2uc uA uBS S S= +  

The normal force Fn can be estimated from above equation: 

 ( ) tan4
2n uc fF S L απ α  = − +    

 (3.74) 

The normal dimensionless bearing factor Nnmax can be defined as the normal force 

divided by the fluke length Lf and undrained shear strength at the center of the fluke Suc: 

 ( )max
tan4

2
n

n
uc f

FN
S L

απ α = = − +  
 (3.75) 

Comparing with Equation 3.32, two equations will be identical when the adhesion factor 

ad = 1 and thickness t = 0. A very important result is that all closed form solutions for 

dimensionless bearing factors in uniform soils can be employed directly in linear-

increasing strength soils as long as the loads (includes forces, moment, and torsion) are 

normalized by the fluke center shear strength Suc and corresponding geometric properties 

of the fluke. 

Accordingly, the dimensionless bearing factors for pure normal force, horizontal 

force, moment, and torsion could be redefined as: 
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CHAPTER IV 

MECHANICS OF DRAG EMBEDMENT ANCHORS SUBJECTING IN-PLANE 

LOADINGS 

4.1 Research Tasks 

The analysis presented herein focuses on an idealized anchor configuration 

comprising a rectangular fluke attached to a cylindrical shank, the intent being to 

elucidate the basic mechanics of DEA behavior with a widespread degree of generality 

to all anchors. It is, of course, recognized that geometric details unique to a given anchor 

can affect anchor performance which must be evaluated on an ad hoc basis. Analysis of 

DEA behavior comprises two tasks: (1) the anchor capacity at any given embedment 

depth and orientation, and (2) the trajectory of the anchor during drag embedment. Given 

that anchor load capacity typically increases with increasing embedment depth, realistic 

prediction of the latter is particularly important. This chapter addresses both aspects of 

anchor performance. The work presented advances the state of knowledge on this topic 

by considering the effects of different anchor geometries, soil sensitivity, and the chain 

angle at the soil surface. This chapter also presents an improved analysis method for 

allowing the chain angle to vary with embedment depth. The analysis is confined to fine-

grained seabed soils for which undrained conditions are assumed to prevail during the 

drag embedment process.  

Anchor chain tension and geometry in soil are also investigated in this research. 

Actually, the behavior of the anchor is strongly influenced by the chain during the 
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penetration and the resultant force at anchor must be equal to the padeye chain tension 

since they are connected at the shackle point. When the chain subjects the anchor to out-

of-plane (lateral) loads due to the effects of hurricanes, the anchor attempts to travel 

following the direction of the resultant force applied on the chain but the soil resistances 

withstand the tendency of the whole anchor system. Therefore, what the work herein 

investigates an anchor system-soils interaction problem. 

4.2 Anchor Capacity 

Holding capacity is the primary task in the anchor research work. In chapter II, 

several researchers proposed analytical and empirical methods for estimated the holding 

capacity in soils. Empirical methods are based on calibration to each ad hoc case. They 

have the advantage that the implicitly account for the complex geometry of actual 

anchors. However, it is difficult to extrapolate empirical data to other anchor geometries 

and soil conditions. The following research works are based on a regular anchor shape 

(rectangular) model combined with the plasticity theory presented in previous chapter to 

investigate the behavior and capacity of the anchor. The aim of the study is to 

understand the basic mechanics of drag anchors, recognizing that the influence of 

complex anchor geometry must be evaluated in future analytical or experimental studies. 

4.2.1 Analysis Model 

The analysis considers an anchor (Figure 4.1) having a fluke length Lf, a shank 

length Ls, a fluke-shank attachment point distance Lj, and a fluke-shank angle θfs. The 

anchor line exerts a force F oriented at an angle θa from horizontal. The shank is 

oriented at an angle θs from horizontal, and θas = θa-θs is defined as the angle of the 
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anchor line force F relative to the orientation of the shank. Initial consideration is given 

to a thin shank, Ds ≈ 0, such that no soil resistance force is mobilized by the shank.  

 

Figure 4.1 Anchor definition sketch 

Figure 4.2 shows the equivalent forces and moments acting on the center of the 

fluke. The tangential and normal forces as well as the resultant moment are as follows: 

 Fn = F sin (θfs + θas) = F c1 (4.1) 

 Ft = F cos (θfs + θas) = F c2 (4.2) 

 

3

1sin( )[ cos ]
2

                             cos( )sin

j s
f fs as fs

f f

s
fs as fs f

f

L LM FL
L L

L FL c
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θ θ θ

θ θ θ

= + + −


− + =


 (4.3) 



78 

 

The subscripts n and t will denote directions normal and tangential to the surface of the 

fluke. The moment M in Equation 4.3 is in reference to the centroid of the fluke. The 

anchor line angle relative to the shank, θas, will in general vary throughout the various 

stages of loading. Therefore an essential first step is to define how anchor capacity F 

varies with variation in θas, a relationship that will be termed the anchor capacity curve. 

Ls

 fsθ

Lj

tf

Lf

Ta

 asθ

 

Figure 4.2 Equivalent forces and mement acting on fluke 

Normalizing all terms by soil strength and fluke length leads to the following more 

convenient expressions for dimensionless anchor capacity Ne in terms of dimensionless 

resistance for pure normal, tangential and moment loading, Np, Ns, and Nm, respectively:  

 Ne = F / Su Af (4.4) 
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 Nn = Fn / Su Af  = Ne c1 (4.5) 

 Nt = Ft / Su Af  = Ne c2 (4.6) 

 Nm = M / Su Af Lf = Ne c3 (4.7) 

where Af = Lf wf is the fluke area for a fluke of width wf and su is the soil undrained shear 

strength. The maximum values of these bearing factors, Nnmax, Ntmax, and Nmmax, occur 

under conditions of pure normal, tangential, and rotational loading, respectively. The 

upper bound limit analysis solutions Equation 3.76 and 3.78 are employed to calculate 

the ultimate dimensionless normal and moment bearing factors with the assumptions 

rigid wedge angle α equals to π/4 and the width effect is neglected ( fw → ∞ , plane 

strain problem): 

 max
13 2

2
fn d

n d
uc f f

tF aN a
S L L

π + = = + + + 
 

 (4.8) 

 
2

max 1
2

f
m

uc f f f

tMN
S A L L

π   
 = = +      

 (4.9) 

The tangential bearing factor suggested by Andersen et al. (2003) is used in the analysis 

due to the overestimation of the horizontal upper bound solution:  

 max 2 2 15f f
t tip

f f

t t
N N

L L
α α

 
= + ≈ +  

 
 (4.10) 

It should be noted that the above formula is based on friction (Equation 3.28) on the 

upper and lower interface of the fluke, and the bearing capacity of NcSu at both end of 

the plate in deep soil (Nc = 7.5 for plane strain problem). Murff et al. (2005) present 

comparisons of the O’Neill solutions to finite element (FE) solutions for a plate aspect 
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ratio Lf /tf = 7 over a range of adhesion values ad varying from 0 to 1, as well as for Lf/tf = 

20 for a fully rough plate. The overall agreement is good between the FE solutions and 

Equation 4.8 to 4.10. For normal loads, Eq. 8 tends to exceed the FE estimates by 3-4%. 

For moment loading, the greatest discrepancy between FE solutions and Eq. 10 is about 

9% for a fully rough plate. 

4.2.2 Non-interactive Behavior 

The first model considered assumes no interaction between the three load 

components; e.g., ultimate moment capacity is unaffected by the magnitudes of the 

normal and tangential components of loading, etc. Although a simplification of actual 

behavior, analysis of the anchor in terms of three clearly defined collapse mechanisms 

facilitates a conceptual understanding of drag anchor behavior and provides a 

preliminary assessment of anticipated anchor behavior. In the non-interactive case, the 

load capacity for the anchor will be the least of the following three collapse loads:  

 Normal Mechanism: max 1/en nN N c=  (4.11) 

 Tangential Mechanism: max 2/et tN N c=  (4.12) 

 Rotational Mechanism: max 3/em mN N c=  (4.13) 

Figure 4.3 shows a plot of Ne versus θas for a base case analysis (Table 4.1), Ls/Lf  = 

1.5, Lj /Lf  = 0.25 = 0, Lf /tf = 7, and θfs = 50o. Examination of c1 and c2 in Equations 4.11 

and 4.12 show Nen and Net to be simple multiples of the cosecant and secant functions, 

csc(θfs +θas) and sec(θfs +θas), respectively. A singularity occurs in the rotational collapse 

load function when the line of action of the resultant force F passes through the fluke 
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centroid. The right side of the singularity corresponds to a forward (counter-clockwise) 

rotation and vice-versa. The solid curve in Figure 4.3 shows the controlling capacity 

curve for the anchor. In the region where rotational capacity tends to infinity, a 

translational mechanism replaces rotation as the critical collapse mechanism. 

Table 4.1 Base case condition for anchor capacity and trajectory predictions 

Anchor Properties: 

Fluke Length, Lf  = 2 m 

Shank Length, Ls = 3 m 
Junction Point, Lj = 0.5 m 
Fluke-Shank Angle, θfs = 50 degrees 
Fluke Width, wf = 3 m 
Fluke Thickness, tf = 0.28 m 

Anchor Line Properties: 

Line Diameter, b  = 0.073 m 

Bearing Factor, Nc = 12 
Multiplier, En = 1 (wire line) 
Weight per Unit Length, ρ = 0.28 kN/m 
Tangential-Frictional Resistance, µ = 0.4 

Seabed Properties: 

Mudline Strength, su0 = 2 
Strength Gradient, k  = 1.57 kPa/m 
Sensitivity, St = 3 
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Figure 4.3 Anchor capacity curve for noninteractive resistance model 

For drag embedment to occur, the controlling mechanism must be tangential 

translation, such that the anchor fluke will tend to slice downward in a direction parallel 

to the fluke as opposed to plowing upward and normal to the fluke.  Viewed from this 

perspective, an anchor can be considered as a DEA if it exhibits the characteristics 

shown in Figure 4.3; i.e., tangential motion always replaces rotation as the critical 

collapse mechanism in the region where the rotational resistance increases without 

bound.  

In light of the above comments, it is seen that the anchor capacity curve has three 

regions: (1) reverse rotation (clockwise) occurring at low load angles, θas < -3o in this 



83 

 

example, (2) translation parallel to the fluke at intermediate load angles -3o < θas < 15o, 

and (3) forward rotation at steep load angles θas > 15o. The maximum capacity Nemax = 

9.7 occurs when the collapse mechanism transitions from a translational to a forward 

rotational mode. The effect of soil sensitivity St may be considered by taking ad = 1/ St in 

Equation 4.8 and 4.10. Soil sensitivity is seen to have three effects. First, it reduces the 

tendency for reverse rotation. Secondly, it increases the angle at which the controlling 

collapse mechanism transitions from a translational to a forward rotational mode. 

Finally, it reduces the maximum capacity Nemax; for the case considered, as St increases 

from 1 to 3 Nemax reduces by about 30%.  

4.2.3 Interactive Effects 

While the non-interactive model discussed above provides useful insights for 

understanding drag anchor mechanics, obtaining a realistic quantitative description of 

anchor capacity requires a proper accounting of the interaction effects amongst the three 

load components. Bransby and O’Neill (1999) propose an interaction relationship (yield 

function) having the following form:  

 

1

max max max

1 0
q m n p

n n t

n t

F M Ff
F M F

      
 = + + − =     
       

 (4.14) 

Appropriate values of the interaction coefficients m, n, p, q are typically estimated by 

fitting Equation 4.14 to finite element calculations of ultimate capacity of the fluke 

under combined loading conditions. Examples of such curve fits for a wide fluke, with 
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thickness aspect ratio Lf/tf =7, are given by Murff et al. (2005). Table 4.2 shows different 

estimates of interaction coefficients derived from finite element studies.  

Table 4.2 Load capacity interaction coefficients for fluke with Lf /tf =7 

Exponent Murff et al. (2005) Yang et al. (2008) 

m 
n 
p 
q 

1.56 
4.19 
1.57 
4.43 

1.40 
3.49 
1.31 
4.14 

 

By virtue of Equations 4.5-4.7, Equation 4.14 can be re-written as follows:  

 

1

1 3 2

max max max

1 0
q m n p

e e e

n m t

c N c N c N
f

N N N

      
 = + + − =     
       

 (4.15) 

The effective bearing factor for the anchor is then taken as the root of the equation 

( ) 0ef N = . As the coefficients c1, c2, c3 are functions of uplift angle θas, the anchor 

capacity curve, Ne vs θas, may be computed by sweeping through the range of interest for 

θas.   

Figure 4.4 shows example curves for sensitivities St = 1-3, for the base case analysis 

(Table 4.1) defined earlier. In the central portion of the curve dominated by translational 

motion parallel to the fluke, soil sensitivity strongly influences anchor capacity. In 

contrast, at the extremes of negative and large positive θas angles, anchor behavior is 

dominated by rotational motions and sensitivity has only a very minor effect. 
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Figure 4.4 Anchor capacity curve for interactive resistance model 

During drag embedment, the relative magnitudes of translational and rotational 

motions are of particular importance. Assuming an associated flow law, the angular and 

tangential velocity of the fluke, β and vt, can be computed by taking appropriate partial 

derivatives of f:  

 f
M

β λ ∂
=

∂
  (4.16) 

 t
t

fv
F

λ ∂
=

∂
 (4.17) 

 n
n

fv
F

λ ∂
=

∂
 (4.18) 

where λ = scalar multiplier.  



86 

 

The ratio of rotation to tangential translation, Rrt is therefore:  

 
( )
( )

1
max3 max

1
3 max max

/
/

/

m
m mt

rt f t n
m t t

N Nc NmR L v
c n N N N

β
−

−= =  (4.19) 

Since this ratio will vary from zero to infinity, it is convenient to plot the relative 

rotation in terms of a rotation parameter ψ defined by:  

 ( )12 tan /f tL vψ β
π

−=   (4.20) 

where ψ is positive for positive Nm and vice-versa. For pure tangential translation ψ = 0, 

while for pure forward (counter-clockwise) rotation about the centroid of the plate ψ =1. 

Figure 4.5 plots ψ as a function of θas for the base case analysis in Figure 4.4. In this 

example, ψ = 0 occurs at θas of about 8 degrees. The relative rotation continually 

increases with increasing θas, with essentially pure rotation occurring at about θas = 25-

30 degrees. A plot of ψ for the non-interactive model, also in Figure 4.5, shows abrupt 

steps occurring at the transitions between reverse rotational, translational, and forward 

rotational modes of motion. Comparison to the non-interactive model predictions in 

Figures 4.4 and 4.5 indicates that interaction effects reduce both the maximum anchor 

capacity (by about 20%) and the anchor line angle θas at which the maximum capacity 

occurs (by about one-third in this example). The closest match between the interactive 

and non-interactive models occurs at θas = 80, which corresponds to the point of pure 

translation (ψ = 0) in the interactive model. 
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Figure 4.5 Anchor rotation in base case analysis 

The ratio of normal to tangential translation Rnt is computed in a manner analogous 

to that of Equation 4.19: 

 
( )( )

( ) ( )
( )
( )

1
maxmax max

(1/ ) 1 1
maxmax max

// /
/

// /

q
n nt n

nt n t p nm n
t tm m t t

N NN N pq n
R v v

N NN N N N

−

− −= =
 +
 

 (4.21) 

Again, plotting a range of Rnt spanning from zero to infinity is facilitated by introducing 

a normal motion parameter ν defined as follows: 

 ( )12 tan /n tv vν
π

−=  (4.22) 
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Figures 4.6 through 4.10 illustrate the effects of the anchor geometry on the capacity 

curve from Equation 4.15 for an anchor in a soil with sensitivity St = 3 starting with a 

base configuration, θfs = 500, Ls/Lf = 1.5, and Lj/Lf = 0.25. Figure 4.6 shows the effects of 

varying the fluke-shank angle. The peak capacity more than doubles over the range 

considered, θfs = 30-600, while variations in θfs have only minor influence the angle θas at 

which maximum capacity is mobilized.  
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Figure 4.6 Effect of fluke-shank angle on anchor capacityNe 

The trend shown in Figure 4.6 would suggest that fluke-shank θfs should be 

maximized to achieve maximum anchor capacity. This is true to an extent; however, 

analysis using the non-interacting model (Equation 4.11-4.13, dashed lines) shows that 
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as θfs increases from 600 to 700, tangential motion no longer becomes a controlling 

collapse mechanism; i.e., the anchor will tend to move normal, rather than parallel, to the 

fluke. Figure 4.7, depicting the normal translation parameter ν as a function of θas 

presents a quantitative measure of this tendency. For small fluke-shank angles, say θfs = 

300, the tendency for normal translation is virtually nil at any uplift angle θas. By 

contrast, at large θfs the normal component of fluke motion is substantial even for small 

θas values.  
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Figure 4.7 Effect of fluke-shank angle on anchor normal motions ν 

As might be expected based on Figures 4.6 and 4.7, the fluke-shank angles θfs on drag 

anchors in practice seldom exceed 500 to avoid any tendency for excessive motions 
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normal to the fluke. Figure 4.8, showing the influence of the shank length Ls/Lf on 

anchor capacity, indicates that a shorter shank length tends to produce a higher general 

level of anchor resistance for Ls/Lf values down to about 0.5.  
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Figure 4.8 Effect of shank length on anchor capacityNe 

However, Figure 4.9 shows that reducing the shank length below Ls/Lf =1 alters the 

kinematic behavior of the anchor, with the gradual transition from reverse to forward 

rotation characteristic of longer shank lengths, Ls/Lf =1-2, being absent in the anchors 

have shank lengths Ls/Lf <1. Figures 8 and 9 show that having no shank at all, Ls/Lf =0, is 

clearly ineffective. DEA’s and VLA’s in practice typically have shank lengths in the 
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range 1.2-2; therefore, the curves in Figures 4.9 and 4.10 representing shank lengths 

Ls/Lf =1-2 can be considered characteristic of actual anchors. Figure 4.10 shows the 

effect of moving the fluke-shank attachment inward a distance Lj from the trailing edge 

of the fluke. The analyses show overall anchor capacity to decline with increasing Lj/Lf. 

Accordingly, from the standpoint of maximizing the capacity of a DEA, maintaining a 

relatively low value of Lj/Lf will prove most beneficial. However, subsequent phases of 

deployment of an anchor must still kept in mind. For example, after opening of the shank 

in a VLA, the more favorable location for the fluke-shank attachment point is near the 

centroid of the fluke. 
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Figure 4.9 Effect of shank length on anchor rotation ψ 
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Figure 4.10 Anchor capacity curve, effect of fluke-shank attachment location 

4.3 Anchor Chain Tension and Geometry 

As mentioned in previous section, the behavior of the anchor is guided by the chain 

during the penetration. The early work of embedded anchor chains has developed by the 

Reese (1973) and Gault and Cox (1974); in 1982, Vivatrat et al. suggested the 

generalized governing equations with the soil frictional resistance and self-weight of the 

chain. Neubecker and Randolph (1995) evaluated previous studies and then proposed the 

close form solutions for anchor line tension and geometry for the special cases of soil 

profiles having (1) uniform strength and (2) strength proportional to depth. Their models 

were validated by laboratory tests. 
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4.3.1 Anchor Chain Tension in Soils 

Figure 4.11 shows an anchor chain segment with the length ds with an angle θ to 

horizontal in soil. The tension T acts on the centroid of the cross-section of the chain 

which unit-length normal soil resistance Q, tangential soil resistance F, and body weight 

w act on its side surface. 

ds
T + dT

T 

θ + dθ

θ

F∙ds

Q∙ds
W∙ds

x

z

 

Figure 4.11 Force equilibrium for chain element 

There exists a relation between Q and F:  

 F Qµ=  (4.23) 

where μ = fictional coefficient (0.4-0.6) 

By the normal and tangential direction force equilibriums:  

 Normal direction: cosdT Q w
ds
θ θ= − +  (4.24) 

 Tangential direction: sindT F w
ds

θ= +  (4.25) 
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Substituting Equations 4.24 and 4.25 into 4.23 leads to:  

 ( ) ( )sin cosd Te we
ds

µθ µθ θ µ θ= +  (4.26) 

If the self-weight of the chain w is negligible comparing with soil resistance, the above 

equation can be simplified as:  

 ( ) 0            d Te Te C
ds

µθ µθ= ⇒ = (Constant) (4.27) 

Now, consider the two boundary conditions. At mudline (Figure 4.1), the tension and 

angle are T0 and θ0 respectively; whereas, the tension and angle are Ta and θa at the 

padeye. Then, substitute these two boundary conditions into above equation: 

 0
0

a
aTe C T e T eµθ µθµθ = = =  (4.28) 

 ( )a
aT T eµ θ θ−=  (4.29) 

 ( )0
0

a
aT T eµ θ θ−=  (4.30) 

Equation 4.30 establishes the tension relationship between the shackle point and 

mudline. It is obvious that tension is only affected by the orientation of the chain at two 

boundaries if the self-weight is neglected. In general, the padeye angle θa is much greater 

than the mudline angle θ0 (00-50), so the mudline tension is also greater than the padeye 

tension.  

Equation 4.29 can be substituted into the force equilibrium of the chain in normal 

direction (Equation 4.24) under the assumption of weightless chain:  

 ( ) ( )sina a
a a

d dT e T e Q
ds dz

µ θ θ µ θ θθ θθ− −= − = −  (4.31) 
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Then, 
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Q D z Qdz

θ θ−
⇒ − = = ∫  (4.32) 

where D = Depth of the shackle point 

 Q = Average normal soil resistance 

Substituting the mudline boundary condition into Equation 4.32 leads to: 

 
( ) ( )

2 2
0

02 2
a a

n c u

T kDQD E b N S D
θ θ−   = = +    

 (4.33) 

where En = multiplier to be applied to chain bar diameter 

 Nc= bearing factor for wire anchor line 

 b = chain bar or wire diameter 

 Su0 = soil undrained shear strength at mudline 

 k = soil strength gradient with respect to depth 

Actually, Equation 4.33 describes the anchor chain tension and its orientation variation 

with different soil strength properties and chain dimension. Once the chain diameter and 
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soil properties are known, the anchor line tension is inverse proportional to the 

difference of square of two angles.  

Now, define two dimensionless factors:  

 
( )2 2
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= =
+

 (4.34) 
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 ˆ Dz
b
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Equation 4.33 could be modified as following by above two equations substituted: 
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 (4.37) 

Since En, Nc, and η are constants and only ẑ is the independent variable, the 

differentiation of the Equation 4.37 is: 
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 (4.38) 

Using chain rule: 

 
ˆ ˆ

ˆ ˆ
a a a

a

dT dT d
dz d dz

θ
θ

=  (4.39) 

 0 0

ˆ ˆ
a

a

d d d
dz d dz
θ θ θ

θ
=  (4.40) 

Then, 
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 (4.41) 

The anchor line angle rotation rate at padeye is: 
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 (4.42) 

Similarly, using chain rule: 
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 (4.43) 

Finally, Equation 3.42 can be modified as: 

 

2 2
0

2 2
0 0

0

ˆ ˆ2(1/ )
ˆˆ 1 1ˆ 2

n c a

aa

a s a
a

a as aa

E N
zTd

dz d dT d
d d dT

θ θ
ηθ

θ θ θ θθ θ
θ θ θ

 −
− + =

    −
− + −   

   

 (4.44) 

The reason for transforming Equation 4.42 to 4.44 is that the rate of change of 

normalized shackle tension is closely linked to the rate of change of the angle θas 

changing rate based on numerical studies (Section 4.4). Although the equation illustrates 

the anchor line angle changing at shackle point, it is also regarded as the angle changing 

of the shank or the fluke to investigate the trajectory of the anchor (Aubeny and Chi, 

2010).  

 



98 

 

4.3.2 Anchor Chain Geometry in Soils 

The geometry of the chain can be significant, particularly in shallow water where the 

length of embedded chain in the soil affects the chain geometry in the water column. The 

anchor chain inclined angle to the horizontal θ can be determined from the Equation 

4.32: 

 2 2 2 D

a z
a

Qdz
T

θ θ= − ∫  (4.45) 

Consider the normal soil resistance which its strength is proportional to the depth:  

 ( )0n c u n cQ q EN b S kz E N b= = +  (4.46) 

Then, substitute above relation into Equation 4.45: 

 
( )2 2

0

2 2 2
0 0

2

2 21 1   
2 2

Dn c
a uz

a

n c n c
a u u

a a

E N b S kz dz
T

E N b E N bS D kD S z kz
T T

θ θ

θ

= − +

   = − + + +   
   

∫
 (4.47) 

At mudline (z = 0), the angle θ = θ0 so the above equation could be modified as: 

 2 2 2
0 0

2 1
2

n c
u

a

E N b S z kz
T

θ θ  = + + 
 

 (4.48) 

Let * zz
D

= , above equation can be written as: 

 ( )
2 22 2 * *

0 0
2

2
n c

u
a

E N b kDS Dz z
T

θ θ
 

= + + 
 

 (4.49) 

Let 2 *
1 0 2

2                      n c n c
u

a a

E N b E N b xC S D C kD x
T T D

= = =  

The anchor chain inclination angle is then: 
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 ( )
* 22 * *

0 1 2*

dz dz C z C z
dx dx

θ θ= − = − = + +  (4.50) 

Then, the normalized geometry of the chain can be determined by the following: 

   

 
( )
( )( )

2
2 1 2 2 1 0*

2* * * 22
2 1 2 2 1 0

2 21 ln
2 2

C C C C C
x

C C z C C C z C z

θ

θ

 
+ + + + 

=  
 + + + +
  

 (4.51) 

Since both the chain depth and distance are normalized by the anchor shackle 

penetration D, the dimensionless x*-z* relation is obtained from Equation 4.51 and then 

the real geometry can be computed simply by multiplying the shackle depth. The ratio of 

two dimensionless parameters C2 and C1 implies the condition of soil profiles: 

 *2

1 0

1 1
2 2u

C kD
C S

η= =  (4.52) 

For uniform soil, the factor *η = 0; whereas, it approaches infinity for a soil with zero 

mudline strength. Figure 4.12 presents the normalized anchor chain geometry curves for 

different soil conditions. The dash curves present the limiting cases for all possible chain 
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geometries in all soil conditions ( *η = 0 & *η → ∞ ). With increasing the *η value, the 

anchor chain intercepts with mudline (z = 0) at larger distance to the shackle point.  

 

Figure 4.12 Normalized anchor chain geometry 

One special case is the mudline strength Su0 = 0 (C1 = 0 or *η → ∞ ). The equation of 

chain geometry can be determined from Equation 4.51: 

 
( )

( )( ) ( )

2
0

2
2 2 2 0 2*

22 2* * 22 2 * * 02 2 2 0

2

1 12 21 1ln ln
2 2

C C C C
x

C CC z C C z z z
C

θ
θ

θθ

   + + + +   = =    + +  + +     

 (4.53) 

Actually above equation matches the solution of case of soil with bearing resistance 

proportional to depth developed by Neubecker and Randolph (1995). Another special 
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case is the chain in uniform soil (C2 = 0 or *η = 0). The solution also can be derived from 

Equation 4.51 by L’Hospital’s rule: 

 

( )
( )( )

( )
( )

( )

2

2

2
2 1 2 2 1 0*

0 2* * * 22
2 1 2 2 1 0

2
2 2 1 0

2 2
2 2 1 0

0 2
2 1 2 2 1 0

2 21lim ln
2 2

2 2
4

    lim
2 2

                                              

C

C

C C C C C
x

C C z C C C z C z

C C C
C

C C C

C C C C C

θ

θ

θ

θ

θ

→

→

  
 + + + +   =   

  + + + +
    

 + +
 +
 + += 

+ + + +



( )( )
( )( )

( )( )

( ) ( )

2* * 2
2 2 1 0

*
2 2* * 2

2 2 1 0

2* * * 2
2 1 2 2 1 0

2 * 2
1 0 1 0

2 * 2
1 11 0 1 0

2 2
4

 
2 2

2 21 1   

C C z C z
C z

C C z C z

C z C C C z C z

C C z
C CC C z

θ

θ

θ

θ θ

θ θ

+ + + 
+ + − 

+ + + +




+ +
= −

+ +

 

 
2 2

* *0 01

1 1

1
4
Cx z

C C
θ θ 

= + − + 
  

 (4.54) 

Similarly, Neubecker and Randolph also present closed form solution for this case 

equivalent to Equation 4.54. It is obvious that their two equations present the chain 

geometry of these two special cases (two dash curves in Figure 4.12) and it may not be 

representative of many soil profiles. It should be noted that the normalized distance *x in 



102 

 

the case of mudline strength Su0 = 0 ( *η → ∞ ) approaches infinity at the mudline for the 

case of a horizontal mudline angle (θ0 = 0).  

4.4 Anchor Trajectory 

The section 4.2 presented an analysis of the load capacity and kinematic behavior of 

a drag embedment anchor at a given instant in its trajectory. The second aspect of the 

problem involves the prediction of the trajectory of the anchor as drag embedment 

progresses. In doing so, it is necessary to consider the mechanics of the anchor line in 

addition to those of the anchor itself. Therefore, the anchor chain tension and geometry 

and chain rotation rate at shackle point are investigated in previous sections.  

Although these solutions are strictly valid only for small chain angles, Neubecker 

and Randolph (1995) report reasonable agreement to more rigorous solutions. For a 

fixed shackle point depth z, Equation 4.33 describes an inverse square relationship 

between tension Ta and anchor line angle θa at the shackle point. By invoking Equation 

4.4, any anchor capacity curve may be expressed in terms of total anchor capacity F as a 

function of θa, so long as the current anchor orientation θs (Figure 4.1) is known. The 

intersection of the two loci, Ta-θa and F-θa produces a unique solution (Ta, θa) for anchor 

line tension and angle at  given depth in the trajectory. The procedure for anchor 

trajectory prediction described in the following paragraphs initializes at a shallow pre-

embedment depth, say 1 m, for which an initial anchor line tension and uplift angle are 

computed using the above approach. Figure 4.13 shows an example of this initialization 

procedure for typical marine clay conditions (su0 = 2 kPa, k = 1.57 kPa/m) with an 
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anchor line diameter b=0.073 m and the shank initially in a horizontal position, θs = 0. 

The anchor capacity curves for sensitivity St = 1-3 are based on the Ne - θas curves 

presented earlier for the base case anchor. The anchor line tension curve is computed 

from Equation 4.33. The recursive algorithm presented below produces subsequent 

computations of (Ta, θa) as the anchor traverses through its trajectory (Figure 4.14). 

 

Figure 4.13 Relationship between anchor capacity curve and anchor line tension 
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Figure 4.14 Anchor trajectory prediction during drag embedmen 

4.4.1 Algorithm for Trajectory Prediction 

As discussed earlier, a DEA is designed to translate primarily in a direction parallel 

to the fluke. Forward (counter-clockwise) rotation of the anchor will move the fluke 

toward a horizontal orientation which will limit the maximum depth of embedment. An 

analytical description of this process requires evaluation of: (1) the rate of increase in the 

anchor line angle θa with increasing embedment z, (2) the instantaneous difference 

between the anchor line angle and the shank angle θas = θa -θs, and (3) the rate of 

rotation of the shank sθ β=   as a function of θas. The last item is governed by Equation 

4.19.  With regard to the first item, implicit differentiation of Equation 4.33 with respect 
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to z and rearrangement of terms leads to the following equation for the change in the 

anchor line angle θa at the shackle point with increasing embedment depth z.  

Equation 4.44 is a refinement of an analysis presented by Aubeny et al. (2008), the 

most significant change being the ability to simulate conditions of variable normalized 

tension âT . This equation provides the basis for a recursive algorithm for predicting 

anchor trajectory comprising the following steps: 

1. The anchor is advanced a distance ∆t parallel to the fluke. From Equation 4.21, the 

corresponding translation normal to the fluke ∆n is computed (typically small for a 

DEA). These motions are then resolved into vertical and horizontal components ∆z = 

∆t sinθf - ∆n cosθf and ∆x = ∆t cosθf + ∆n sinθf. 

2. The change in the anchor line uplift angle ∆θa over the depth increment ∆z is 

computed using Equation 4.44. This requires evaluation of / /s a s ad dθ θ θ θ≈ ∆ ∆ . The 

shank rotation ∆θs (=∆β) occurring over the increment ∆t is computed from Equation 

4.16, and the anchor line angle change ∆θa is computed through successive iterations 

using Equation 4.44. 

3. From the computed incremental changes in the anchor line angle and the anchor 

orientation, ∆θa and ∆θs, the angle θas is updated, followed by updates of 

âT and ˆ /a asdT dθ . The fluke angle θf is similarly updated. 

4. Steps 1 through 3 are repeated until the fluke achieves a horizontal orientation θf = 0. 
 
At shallow embedment depths it is well known that the anchor capacity is lessened 

due to the proximity of the free surface (Rowe and Davis, 1982), with normal collapse 
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load at the surface being about one-half of that at embedment depths greater than three 

fluke lengths. Preliminary calculations using a reduced bearing factor at shallow depth 

indicated that the free surface effect did not significantly affect the overall trajectory 

prediction provided that the anchor did not experience a premature pull-out. However, 

the analyses did highlight the potential for the normal collapse load to reduce to a greater 

degree than the tangential collapse load due to the free surface effect. As noted earlier, if 

collapse occurs in a direction predominantly normal to the fluke, the drag embedment 

process cannot develop and premature pull-out can occur. 

4.4.2 Typical Trajectory Calculation 

Figure 4.14 presents the predicted trajectory for the base case anchor for the initial 

conditions corresponding to Figure 4.13.  Figures 4.15 and 4.16 present the 

corresponding prediction of normalized shackle point tension âT and force angle θas. 

During the initial stage of penetration the patterns of force angle θas (Figure 4.16) differ 

according to soil sensitivity St. However, as embedment progresses the force angle for 

all St tend toward a constant value of  slightly more than 80, which for the base case 

anchor corresponds to pure translation parallel to the fluke (ψ = 0, Figure 4.5). As θas 

approaches its equilibrium value âT becomes constant (Figure 4.15).  
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Figure 4.15 Normalized anchor tension at shackle point during drag embedment 

 

Figure 4.16 Force uplift angle θas during drag embedment 
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The trajectory predictions in Figure 4.14 indicate that greater embedment depths occur in 

less sensitive soils. At first glance this result is somewhat unexpected. However, under 

conditions of ˆ /a asdT dθ = 0, Equation 4.44 indicates that the higher âT associated with 

low St will in fact reduce the rate of anchor rotation, thereby increasing the drag 

embedment depth.   

From the base case analysis as well as parametric studies of other anchor geometries, 

the trajectory simulations bring to light several significant aspects of drag embedment 

penetration: 

• Reverse rotation (negative ψ) of the anchor is inherently a self-limiting process. The 

tendency for reverse rotation often arises during the early stages of embedment when 

θa - and therefore θas - is small (Figure 4.5). However, by decreasing θs reverse 

rotation leads to an increase in θas. Figure 4.5 indicates that any sustained increase in 

θas will eventually push the anchor into the positive portion of the ψ -θas curve, 

which effectively halts the reverse rotational motion. 

• The tendency for the anchor to experience significant forward rotation is limited for 

a reason similar to that discussed above regarding reverse rotation. Namely, 

if as θθ  > , the angle θas declines, thereby retarding the rate of forward rotation. 

Consequently, the anchor moves toward an equilibrium state in which as θθ  = ; i.e., 

the rate of anchor rotation equals the rate of increase in the anchor line angle at the 

shackle. The model simulations indicate that this equilibrium state develops very 
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early in the trajectory; therefore, the equilibrium condition dominates anchor 

behavior during drag embedment.  

• As a consequence of the development of an equilibrium force angle, a single value of 

normalized tension eqaT )ˆ( maintains itself during drag embedment once the 

equilibrium state is achieved. Noting that âT = Ne Af / b2, it follows that a single value 

of Ne on the anchor capacity curve largely governs the course of the anchor 

trajectory. For a condition of as θθ  = to exist, clearly some forward rotation is 

required. However, the model simulations indicate that the rate of anchor rotation 

required to keep pace with the rate of increase in the anchor line angle is quite small; 

i.e., ψ is positive but small. Thus, as a practical matter, the equilibrium bearing factor 

for the anchor closely corresponds to the translational condition for the anchor, (Ne)eq 

= Ne (ψ = 0). 

A significant implication of the above discussion is that a single unchanging 

characteristic of the anchor, eqaT )ˆ( , influences its trajectory during drag embedment once 

the equilibrium state is achieved. This considerably simplifies the anchor trajectory 

calculations, and permits the focus to be directed toward the behavior of the anchor line 

rather than the anchor. This is evident from Equation 4.44; when dθs/dθa =1, the only 

variable quantities affecting aθ are the anchor line angles at the shackle and the 

mudline, aθ and 0θ , respectively. It should finally be noted that the notion of an 

equilibrium value eqaT )ˆ( of an anchor is consistent with field measurements showing a 
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constant value of normalized shackle point tension throughout most of the trajectory 

(Aubeny et al, 2008). 

Figure 4.17 presents the results of an example parametric study in which fluke-shank 

angle is varied from θfs = 30-500 and ratio of shank to fluke length is varied from Ls /Lf = 

1-2. The wider fluke angle results in a 40-50% increase in anchor penetration depth. The 

predictions in Figure 4.17 also show that shortening the anchor shank from Ls /Lf = 2 to 1 

increases penetration depth by some 25-30%. As is implied from Equation 4.44, a higher 

eqaT )ˆ( leads to a reduced rate of anchor rotation and, hence, greater penetration depth.  

 

Figure 4.17 Effect of anchor geometry on predicted trajectory 
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Therefore, anchor geometries having the greater bearing factors under a state of pure 

translational motion, (Ne)eq, can be expected to penetrate the greatest depth. Referring 

back to Figures 4.6 and 4.8, the anchor capacity analyses showed that widening the 

fluke-shank angle and shortening the shank both tend to increase the bearing factor of an 

anchor; consequently, the trend of the predictions presented in Figure 4.17 is not 

unexpected. Figure 4.18 shows the consequent increase in anchor load capacity as the 

fluke-shank angle is widened and the shank length is shortened. Optimizing the anchor 

geometry produces two benefits in that it increases both the effective bearing factor of 

the anchor, Ne, and the embedment depth (typically associated with higher soil strength 

su). For the parametric study considered, the combined effect from both sources is seen 

to enhance the ultimate load capacity of the anchor by a factor of 4 to 5. 

 
Figure 4.18 Effect of anchor geometry on predicted load capacity 
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4.4.3 Anchor Trajectory and Chain Geometry Prediction from Field Measured Data 

Although the anchor trajectory and chain geometry can be predicted well from the 

methods discussed in previous sections, they may be more accurate if some field 

measured data, including in-situ soil strength properties, are involved in the prediction. 

During the procedure of the installations of drag anchors, both the anchor line tension 

and the chain inclined angle at mudline (T0 and θ0) are measured. Therefore, from the 

aspect of anchor chain in soils, only the chain tension and uplift angle at shackle point 

are unknown. Recall the chain solutions in section 4.3.1, Equation 4.30 elucidates the 

relationship of chain tensions and angle between mudline and padeye. Since the 

increment of chain angle at shackle is determined by Equation 4.44, the shackle tension 

can be computed by Equation 4.30 with the shackle chain angle θa substituted. 

Combined with the equations stated above, the algorithm for computing the anchor 

trajectory with field measured mudline tension and uplift angle are developed as 

following steps: 

1. Compute initial shackle tension by Equation 4.30 with initial θa assumed. 

2. Calculate the soil strength at shackle Sua from Equation 4.34. 

3. Compute the depth of padeye from Equation 1.1. 

4. Calculate the depth increment by 1i iz z z −∆ = −  

5. Estimate the new traveling distance by 1
, 1tani i

f i

zx x
θ−

−

∆
= + . 

6. Calculate the changing rate of the line angle at shackle from Equation 4.44 and it 

is equal to that of rotation of the fluke. 
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7. Estimate the incremental angle change by a
a

d z
dz

 ∆ = ∆ 
 

θθ . 

8. Update the next step fluke angle θf,i+1 = θf,i + Δθa and the next step anchor line 

angle θa,i+1 = θa,i + Δθa. 

9. Repeat steps 1 through 8 until the fluke approaches to a horizontal direction. 

Figure 4.19 shows the field measured mudline tension T0 and calculated shackle tension 

Ta; as mentioned in section 4.3.1, the mudline tension always exceeds the shackle 

tension and both curves approach constant values due to the orientation of the trajectory 

tending to be horizontal. In the figure, the symbols (*) in mudline tension curve present 

the measured data and based on the analytical experiences, the results of predictions will 

be limited if the number of data is not enough or the data sampling spacing is too large. 
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Figure 4.19 Anchor line tension prediction from field measured data 
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The trajectory of the anchor and the geometry of the chain are shown in Figure 4.20. The 

symbols (*) in the trajectory curve are the calculation results from the corresponding 

field measured mudline tension. The dash curves are the chain geometries of 

corresponding anchor locations. Although the chain geometry can be obtained from 

Equation 4.51, its location is calculated based on the shackle point position, i.e., the 

relative position to the padeye. The absolute location should be determined after the 

anchor padeye position is computed. In addition, due to the scales of the abscissa and 

ordinate in the figure, the real chain geometry is not as steep as shown in the figure due 

to the scale distortion. 
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Figure 4.20 Anchor trajectory and chain geometry prediction from field measured data 

 



115 

 

CHAPTER V 

MECHANICS OF DRAG EMBEDMENT ANCHORS SUBJECTING OUT-OF-

PLANE LOADINGS 

5.1 Research Motivation 

Mooring systems for offshore floating structures, such as the semi-submersible 

mobile offshore drilling units (MODUs) commonly used for hydrocarbon exploration, 

typically comprise eight to twelve mooring lines positioned about the structure. Caissons 

or plate anchors may be used to secure the mooring lines; this chapter focuses on 

situations where drag embedment anchors (DEAs) are used, but some of the general 

concepts presented will apply to any anchor. When a DEA is loaded as intended, the 

following conditions are assumed to hold: (1) the anchor line load acts in the plane 

containing the shank of the anchor, a condition referred to as “in-plane” loading, and (2) 

the anchor chain (or anchor line if a wire line is used) lies in a vertical plane. During 

extreme storm events, MODUs will sometimes experience a partial failure of the 

mooring system. Partial failure of mooring systems for floating structures will subject 

drag anchors to loads having an appreciable component outside of the intended plane of 

loading. Partial failures of mooring systems during hurricanes in recent years have 

generated an interest in understanding drag anchor performance under these conditions. 

The consequent movement of the MODU following a partial failure will generally 

invalidate both assumptions stated above. Firstly, the anchor line force will no longer lie 

in the plane of the shank, and the anchor will be subjected to “out-of-plane” loading. 
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Yang et al. (2010) analyze the effect of such out-of-plane loading on anchor load 

capacity. Secondly, the anchor chain will no longer lie in a vertical plane; the effect of 

this condition on the ultimate pullout capacity of a DEA is the primary focus of this 

study. 

5.2 Anchor Chain in an Oblique Plane 

5.2.1Modeling of In-situ Situation 

Figure 5.1(a) shows a plan view of the problem under consideration. A global 

coordinate system, xg- yg -zg, may be established such that zg is the vertical coordinate, xg 

is in the plane of intended loading, and yg is normal to the plane of intended loading. 

Prior to the storm event, an in-plane condition of loading exists, φag = φ0g = 0, where the 

angle φ denotes the departure of the anchor chain from an in-plane condition. The angles 

θag and θ0g denote the direction of the anchor chain measured from a horizontal plane at 

the pad-eye and mudline, respectively. The mudline angles φ0g and θ0g are arbitrarily 

prescribed boundary conditions for the problem. The pad-eye angles φag and θag will be 

computed by a procedure to be described subsequently, but for the present we will 

assume they have been defined. Unit vectors describing the direction of the anchor chain 

at the shackle and mudline can then be computed using Equations 5.1 and 5.2, 

respectively, as shown below: 
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Figure 5.1 Definition sketch for out-of-plane loading 
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 dag



= - [cosθag cosφag, cosθag sinφag, sinθag] (5.1) 

 0d g



= [cosθ0g cosφ0g, cosθ0g sinφ0g, sinθ0g] (5.2) 

Further, a plane containing the direction vectors dag



and 0d g



, which shall be termed the 

‘c-plane’ (Figure 5.1(b)), can be defined in terms of the following cross product: 

 0 0d d / d d [   ]g ag g ag xg yg zgn n n n= × × =
   

  (5.3) 

where n  is a unit vector normal to the c-plane. 

Figure 5.2 shows the system of forces acting on a chain element in the c-plane, 

considering the equilibrium of a chain element ds, where T is line tension, Q is soil 

resistance acting normal to chain, F is friction, and W is chain weight per unit length. 

Except at very shallow depths, W is small relative to the shearing resistance of the soil 

and may be reasonably neglected.  

ds
T + dT

T 

θc + dθc

θc

F∙ds

Q∙ds
W∙ds

 

Figure 5.2 Force equilibrium for chain element on the oblique plane C 
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The body weight W (dash vector in Figure 5.2), comparing with Figure 4.11, is 

always downward vertically and not on the oblique plane. Hence, under the condition of 

weightless chain, the anchor line will be completely on the plane as well as the normal 

and tangential soil resistance. 

By virtue of Equation 5.3, the tensions at the pad-eye and mudline, Ta and T0, act 

within the c-plane. If the self-weight W of the chain is neglected, the integrated 

resultants of F and Q must also act within the c-plane. Therefore, the chain can be 

considered to lie in the c-plane, an oblique plane normal to the unit vector n , so long as 

the anchor self-weight is small relative to the shearing resistance of the soil. 

Accordingly, the anchor line equations developed for anchor chains in a vertical plane 

(Neubecker & Randolph, 1995) can be adapted to the out-of-plane problem, provided 

appropriate coordinate transformations are made. DEA trajectory calculations derived 

from the Neubecker-Randolph equations (Aubeny & Chi, 2010) can similarly be adapted 

to calculations outside the vertical plane. 

5.2.2 Coordinate Transformation 

A coordinate system (xc, yc, zc) can now be defined for which the chain lies in the xc-

zc plane, subsequently termed the c-frame. It should be noted that the unit normal n  to 

the plane of the chain acts in the yc direction in c-frame system. The transformation is 

accomplished by first rotating the xg -yg axes an angle δh about the zg axis, and then 

rotating an angle δv about the xc axis to create an xc-yc-zc frame.  The appropriate matrix 

relating the global g-frame to the plane of the chain c-frame is then as follows:  
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       cos   sin   0

cos sin   cos cos sin
  sin sin sin cos cos

h h

gc v h v h v

v h v h v

R
δ δ

δ δ δ δ δ
δ δ δ δ δ

 
   = −   
 − 

 (5.4) 

The angles δh and δv are defined in term of the unit normal vector n  (components nxg, 

nyg, nzg in the global frame) as follows: 

 tan xg
h

yg

n
n

δ = −  (5.5) 

 tan v zgnδ =  (5.6) 

Subsequent subscripts “g” and “c” in this chapter refer to the global frame and the frame 

oriented about the plane of the chain, respectively. It should be noted that the direction 

of the angles follow the right-hand rule. 
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Figure 5.3 Relationship between global and local-chain coordinates 
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Figure 5.3 illustrates the relationship between global and local coordinates as well as 

the definition of two angles. The blue curve presents a trajectory of the anchor subjecting 

in-plane loading on the xg -zg plane (vertical plane); actually, this curve is the trajectory 

of anchor installation. The normal vector of the vertical plane is the same direction of yg 

axis and yc matches the normal (Equation 5.3) of the oblique plane (xc –zc). The 

relationship of these two coordinates can be described by the corresponding normal 

directions: (1) the global normal yg rotates a horizontal angle hδ to ycp axis which is the 

projection of the normal of the oblique plane, and (2) from ycp axis rotates a vertical 

angle vδ to yc. The coordinate transformation relation for the first rotation is:  

 [ ]
cos sin 0
sin cos 0
0 0 1

c h h g g

cp h h g h g

g g g

x x x
y y T y
z z z

δ

δ δ
δ δ

      
      = − =      
            

 (5.7) 

Then, the coordinate transformation relation for second rotation is: 

 [ ]
1 0 0
0 cos sin
0 sin cos

c c c

c h h cp v cp

c h h g g

x x x
y y T y
z z z

δδ δ
δ δ

      
      = =      

      −       

 (5.8) 

Therefore, the transformation relation between g-frame and c-frame shown in Equation 

5.4 can be derived as following:  

 [ ][ ]gc v hR T Tδ δ  =   (5.9) 

Having defined the frame rotation angles [Rgc], transformations of key variables from 

the g-frame to the c-frame can proceed. The anchor line angle at the pad-eye θac 

measured in the c-plane can be evaluated by using Equations 5.4-5.6 to determine the 
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vector components of da


in the c-frame, dac


= - [daxc dayc dazc], from which θac in Figure 

5.4 can be calculated:  

 1tan ( )azc
ac

axc

d
d

θ −=  (5.10) 

A similar transformation is possible for the anchor line angle at the mudline θ0c.  

θfs

θac

θfc

xc

zc

∆s in plane of chain

Anchor Chain
Direction

daxc

dazc

 

Figure 5.4 Anchor in plane of chain 

5.3 Out-of-Plane Anchor Tension and Trajectory 

5.3.1 Modification of Anchor Chain Tension and Rotation Theory 

As mentioned in previous sections, the anchor chain lies on an oblique plane since 

the self body weight is small relative to the soil resistance. The chain tension and angle 

rotation theory discussed in subsection 4.3 may not applicable directly because they are 

derived based on in-plane motion, i.e., the anchor travels on a vertical plane. Therefore, 

a revised form of the Neubecker and Randolph (1995) relationship between line tension 
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and line angles can now be derived along the same procedures as Equation 4.33 for the 

case of an anchor line lying in an oblique plane:  

 ( ) ( )2 2
0/ 2 co s / 2a ac 0c n c c u c vT E N bZ s kZθ θ δ− = +  (5.11) 

where  Ta is anchor line tension at shackle point, En is multiplier applied to chain bar 

diameter, Nc= bearing factor for wire anchor line, b = chain bar or wire diameter, su0 is 

the soil undrained shear strength at mudline, k is soil strength gradient with depth, and Zc 

is the distance from the anchor shackle to mudline in the zc direction.  From Figure 5.5 it 

is apparent that Zc = zc / cos2 δv. The angle δv is defined in Equation 5.6 and shown in 

Figure 5.3; actually, it is also the angle between zc and zg axis (Figure 5.5). 

xg

zg

Mudline

Z c

zc

xc

zc

δv

δv

zg

δv

 

Figure 5.5 Depth parameters in the plane of chain 
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The xg – zg frame and the xc – zc frame shown in Figure 5.5 are not in the same plane 

(vertical plane). The angle between xg and zg axis is δh. In addition, the chain tension 

relation between mudline and shackle (Equation 4.30) should be modified as: 

 ( )0
0

ac c
aT T eµ θ θ−=  (5.12) 

Although above equation is described in xc – zc frame, the magnitudes of chain tension 

T0 and Ta do not change with different coordinates. 

Finally, for trajectory calculations the rate of change of θac with respect to the change 

in depth can calculated in the manner described by Aubeny & Chi (2010). When 

expressed in terms of zc rather than Zc, the rate equation takes the following form:  

 

2 2

2

2

ˆ ˆ2(1/ / cos )
ˆ

cos

n c ac 0c

c c vaac

c 0c
v ac 0c

ac

E N
zTd

dz d
d

θ θ
η δθ

θδ θ θ
θ

 −
− + =

 
− 

 

 (5.13) 

where ˆcz  is normalized depth of shackle (= zc/b), âT  is normalized tension at shackle (= 

Ta / sua b2), sua is soil shear strength at the shackle, dθ0c/dθac is the rate of change of 

mudline angle, ηc is a strength gradient parameter (= b k cos δv /su0).  Therefore, the rate 

equation for computing the change in θac with increasing embedment in the three-

dimensional case assumes a nearly identical form to that of an anchor contained within a 

vertical plane. It should be always kept in mind that only the tension or normalized 

tension terms, including dimensionless bearing factors, are invariant with different 

coordinates in Equation 5.11-5.13. 
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5.3.2 Numerical Computation Sequence for Anchor Trajectory 

Having formulated the necessary transformations to describe the anchor chain in an 

oblique plane, trajectory prediction can proceed according to the sequence outlined 

below. 

1. Initial installation to an arbitrarily selected depth zi and the tension Tai corresponding 

to this depth are computed using the procedure of Aubeny and Chi (2010) developed 

for vertical in-plane motion. Anchor line angles at the end of this installation stage are 

θagi and θ0gi.  

2. At this point, a partial mooring failure is simulated in which the anchor line angle at 

the mudline deviates from the intended plane of loading (the xg direction in Figure 

5.1) by an angle φ0g. The anchor line angle at the pad-eye is assumed to be initially 

unaffected by this change, such that φag = 0 and θag =θagi. From Equations 5.1-5.7, the 

anchor line angles, θaci and θ0ci measured in the c-plane, can be computed. Inserting 

these values into Equation 5.11 permits the current line tension Τa to be calculated. 

The calculations will show that the current pad-eye tension is less than the original 

installation tension, Τa < Τai. Therefore, as continued loading occurs, the anchor will 

remain stationary and the angle θac decreases until Τa =Τai.  During this “line 

tautening” process, the orientation of the c-plane changes continuously as θac changes. 

3. When the line tension reaches the point at which Τa =Τai, further loading will be 

accompanied by a resumption of the drag embedment process, now in the c-plane. 

Experience with simulations of two-dimensional trajectories (Aubeny & Chi, 2010) 
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implied that a drag anchor rapidly aligns itself with the anchor line such that the line 

of action of Τa acts through the center of the anchor. A similar process is assumed to 

occur under three-dimensional loading conditions. That is, upon resumption of the 

drag embedment process, the anchor is assumed to rapidly re-align itself such that the 

shank lies in the c-plane. 

4. Considering the orientation of the anchor in the c-plane (Figure 5.4), the orientation 

of the fluke will therefore be θfc = θfs - θac. If the fluke advances an increment of 

distance ∆s in the direction of the fluke, then the components of displacement in the 

c-plane become: 

 cosc fcx s θ∆ = ∆ ⋅  (5.14) 

 0cy∆ =  (5.15) 

 sinc fcz s θ∆ = ∆ ⋅  (5.16) 

5. The coordinates of the shackle in the global frame are accomplished through the use 

of the inverse of matrix [Rgc]-1: 

 1
0

g c

g gc

g c

x x
y R
z z

−
 ∆ ∆ 
    ∆ =    
   ∆ ∆  

         (5.17) 

6. The anchor chain angle changing rate on the oblique plane can be computed by 

Equation 5.13 and then the angle changing during this incremental embedment is: 

 
ˆ
ac

ac c
c

d z
dz
θθ∆ = ⋅ ∆          (5.18) 
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7. After updating the chain angle by above equation, the new shackle tension in c-frame 

coordinate is determined by the following: 

 d cos 0 sinac ac c c ac ci j kθ θ= + −
 

 

 (5.19) 

where ci


, cj


, and ck


are unit vector in c-frame coordinates. Then, the shackle tension 

can be converted to g-frame coordinate by: 

 
1

d dag gc acR
−

 = ⋅ 
 

 (5.20) 

As occurs with drag embedment in a vertical plane (e.g. O’Neill et al. 1999), the 

anchor reaches an ultimate embedment depth when the centerline of the fluke is parallel 

to the ground surface and shackle tension converges to a maximum value. Actually, the 

procedure stated above involves some assumptions:  

• The fluke is stationary as the chain changes its orientation until the anchor line 

tension at the padeye reaches its initial installation value Tai. 

• Anchor chain lies on an oblique plane. 

• Not until the fluke resumes penetration does the tension at the shackle point 

corresponding increase. 

• The fluke corrects its orientation automatically such that there always exists an angle 

θfs (fluke-shank angle) between the fluke and shackle tension in the inclined plane 

(Figure 5.4). 

• The anchor stops traveling until its penetrating direction d f



 parallels direction of 

local in-plane coordinate xc. 
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For the process described above, two variables with respect to out-of-plane loading 

will affect the trajectory and capacity of the anchor following partial failure of the 

mooring system, the first being the magnitude of the out-of-plane orientation angle of 

the chain at the mudline. The second is the initial installation depth zi. For parametric 

studies, an installation penetration ratio Rp may be defined as follows: 

 
max

i
p

zR
z

=  (5.21) 

where zmax is the ultimate embedment depth under conditions of purely in-plane loading. 

As an illustrative parametric study of drag anchor trajectory predictions for out-of-

plane loading, we consider the case of drag embedment of an anchor with 12-m2 anchor 

in a soft clay having zero strength at the mudline and a strength gradient k = 1.57 kPa/m. 

The anchor line in this example is a wire line with diameter b = 0.089 m. Pad-eye 

tension was related to soil strength at the pad-eye sua and fluke area Af  by the 

relationship Ta = Ne sua Af, where is Ne is the anchor bearing factor. A bearing factor Ne = 

5 was selected for this example. Trajectory predictions were performed for φ0g = 30 

degrees, and Rp was set to 0.25, 0.5, and 0.75. The anchor line angle at the mudline was 

maintained in a horizontal orientation at all stages of the simulation, φ0g = 0. 

Figure 5.6 shows the projections of the predicted trajectories onto the plane of 

intended loading (xg–zg plane) for the various cases. In all cases in which Rp is less than 

unity, continued embedment occurs following the occurrence of out-of-plane loading. 

However, the ultimate embedment depth, and therefore anchor load capacity, is 
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considerably less than what would develop had the anchor continued its trajectory in a 

vertical plane.  

 

Figure 5.6 Predicted effect of out-of-plane loading on anchor trajectory 

Figure 5.7 shows the anchor load capacities corresponding to the trajectory 

predictions in Figure 5.6. Consistent with the trajectory predictions, after partial failure 

of the mooring system, there is a modest gain in anchor load capacity under sustained 

dragging. However, the ultimate capacity is much less than that which would develop 

under continued dragging within the original vertical plane of intended loading. 

Figure 5.8 shows the predicted trajectory in a plan view; i.e. a projection of the 

anchor trajectory onto the xg–yg plane. The out-of-plane path exhibits a slight curvature, 

with greater curvature corresponding to lower Rp values. The scale is exaggerated in the 
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yg-direction, but a close inspection of the plot shows that the average angle of the 

deflected anchor path is roughly comparable to the out-of-plane anchor line angle φ0g 

imposed at the mudline.    

 

Figure 5.7 Predicted effect of out-of-plane loading on anchor load capacity 

 

Figure 5.8 Predicted trajectory out of plane of intended loading 
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It is noted that Step 2 of the analysis procedure makes a fairly significant assumption 

in maintaining φag = 0 during the process which defines the re-configuration of the chain 

following a partial mooring failure. If, for example, φag were actually greater than zero, 

the reduction in ultimate embedment depth and load capacity would be somewhat less. 

In the extreme (unlikely) case of φag equaling φ0g, the anchor would simply resume its 

trajectory in a vertical plane oriented an angle φag from the xg-axis, with no loss of 

ultimate embedment or capacity. Thus, from this perspective, the assumed behavior in 

Step 2 provides a conservative prediction of the effects of out-of-plane loading due to a 

partial mooring failure. A planned program of laboratory model tests are expected to 

shed light on the validity of the assumptions made in formulating the analysis procedure, 

particularly those in Step 2. 

Figure 5.9 shows the trajectories of anchors in three-dimensional space. The dotted 

curve shows the in-plane motion trajectory for installation anchor (Rp = 1) and the other 

locates the trajectory subjecting lateral loadings for the ratio of penetration Rp = 0.5 on 

the oblique plane. On the other hand, the complete installation curve is totally on the 

vertical plane (xg-zg plane) and has no component in yg direction. The projections of 

trajectories of two curves on the xg-zg and xg-yg planes are shown in Figure 5.6 and 5.8, 

respectively. One of the most important hypotheses is that the chain lies in an oblique 

plane; however, because the anchor is connected with the chain at the shackle point, it 

follows that the trajectory of anchor should be also on this plane (the color plane in 

Figure 5.9). 

 



132 

 

0

100

200

300

400

500

600

-250

-200

-150

-100

-50

0

-40

-35

-30

-25

-20

-15

-10

-5

0

 

In-Plane Coordinate, X(m)

Trajectory of the Anchor

Out-of-Plane Coordinate, Y(m)
 

D
ep

th
, 

Z
(m

)

Oblique Plane
In-Plane Motion Curve
Out-of-Plane Motion Curve

 

Figure 5.9 3-D trajectory of the anchor for Rp = 0.5 

5.4 Out-of-Plane Anchor Chain Geometry 

5.4.1 Modification of Chain Geometry Theory 

Section 4.3.2 elucidates the chain geometry for the anchor subjecting in-plane 

loading in soil which its strength is proportional to the depth. The formula of geometry 

could be employed on an oblique plane, like the chain tension and rotation equations, but 

the transformation of coordinates is necessary. Form Equation 4.51, the geometry of 

chain on an oblique plane is: 
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 (5.22) 

where * *          c c
c c

c c

z xz x
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= =  
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Figure 5.10 Transformation of coordinates for chain analysis 

The chain geometry formula is described in the c c cx y z′ ′ ′− − coordinate system (Figure 

5.10), the origin of which is cO′ , where the direction of the cx′ axis is perpendicular to the 

page. The origin of the translated global coordinate system G G Gx y z− −  (OG) is the point 

where the anchor starts to penetrate and it is also the reference point to describe the in-

plane and out-of-plane anchor trajectory. It is emphasized that the shackle point is the 

reference point used to describe the location of the anchor. The point Oc represents the 
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location where the out-of-plane loading begins to apply on the anchor and it is also the 

origin of the g g gx y z− − system which is parallel to the global one. Therefore, there 

exists a translation relationship between G G Gx y z− − and g g gx y z− −  coordinates:  

 
( )
( )
( )

g G a G

g G a G

g G a G

x x x
y y y
z z z

   −
   = −   

   −   

 (5.23) 

where ( )a G
x , ( )a G

y , and ( )a G
z are the coordinates of the point Oc in translated global 

system. 

 As illustrated in Figure 3.16, the fluke is relatively easy to be spun (Figure 3.15) 

than rotated (Figure 3.14) while the aspect ratio Rwf is less than 3.2. Accordingly, it can 

be inferred that the fluke adjusts its orientation automatically to ready for travel on an 

oblique plane at the moment the out-of-plane loading applied. The c c cx y z− − system is 

the coordinate that has a rotational relationship with g g gx y z− − :  

 
c g

c gc g

c g

x x
y R y
z z

  
    =    

   
   

 (5.24) 

where gcR   is the rotational matrix and defined in Equation 5.4.  

Finally, the c c cx y z′ ′ ′− − coordinate can be shifted from c c cx y z− − with the following 

relationship:  

 
c c

c c

c c c

x x
y y
z z D

′   
   ′ =   
   ′ −   

 (5.25) 
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where Dc is the distance between Oc and cO′ . It also can be determined by:  

 
( )
cos

a G
c

v

z
D

δ
=  (5.26) 

Accordingly, the relation between G G Gx y z− − and c c cx y z′ ′ ′− − coordinate can be 

described by g g gx y z− − :  

 
( )
( )
( )

c c g G a G

c c gc g gc G a G

c c c g G a G

x x x x x
y y R y R y y

z D z z z z

′    −   
     ′    = = = −          

       ′ + −       

 (5.27) 

The advantage of describing the chain geometry equation in c c cx y z′ ′ ′− − coordinate is 

that no component in cy′ direction is necessary. It could be regarded as an in-plane chain 

geometry in c c cx y z′ ′ ′− − space. 

5.4.2 Numerical Computation Sequence for Anchor Chain Geometry 

With the chain geometry equation in an oblique plane (Equation 5.22) and 

coordinates defined above, both the anchor trajectory and chain geometry can be 

presented together in a three-dimensional space by the following steps:  

1. Sweep *
cz from 0 to 1, obtain the normalized array{ }*

cz . 

2. Substitute { }*
cz  array into Equation 5.22 to obtain the normalized{ }*

cx  array. 

3. The chain geometry coordinates in c c cx y z′ ′ ′− − space are: 

{ } { } { } { } { } { }* *       0       c c c c c c cx D x y z D z′ ′ ′= = =  

4. By Equation 5.25, present geometry in c c cx y z− − space. 
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5. By Equation 5.24, present geometry in g g gx y z− − space. 

6. By Equation 5.23, present geometry in G G Gx y z− − space. 

Figure 5.11 shows the anchor trajectory and chain geometry curves in a three-

dimensional space based on the process described above. Similar to Figure 5.9, the 

dotted curve presents the result of installation to ultimate embedment (Rp = 1) and the 

solid black line is the trajectory for the case Rp = 0.5. Three green curves on the XG—ZG 

plane are the in-plane chain geometries which are determined by the procedures 

discussed in section 4.3.2; whereas, there are nine out-of-plane chain geometries plotted 

in red. 
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Figure 5.11 3-D anchor trajectory and chain geometry for Rp = 0.5 
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Based on the simulation methods stated in previous sections, both the out-of-plane 

anchor trajectory and chain geometry curves lie in the oblique plane. In addition, at the 

point at which out-of-plane loading applies on the anchor, the chain geometry changes 

its orientation first (from third green curve to first red one) and then the anchor starts to 

travel in out-of-plane direction. The following two figures elucidate the projections of 

anchor trajectories and chain geometries on XG—ZG plane and YG—ZG plane. The plot 

in Figure 5.13 helps to clarify the change in chain geometry from the in-plane to the out-

of-plane condition. 
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Figure 5.12 Projection of anchor trajectory and chain geometry on XG—ZG plane 
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Figure 5.13 Projection of anchor trajectory and chain geometry on YG—ZG plane 



139 

 

CHAPTER VI 

STABILITY ASSESSMENT OF SPUDCAN FOUNDATION  

6.1 General 

Spudcan foundation behavior has significant influence on both the safety and the 

operation of a jack-up unit. Based on the procedure recommended by Technical & 

Research Bulletin 5-5A Guidelines for Site Specific Assessment of Mobile Jack-Up 

Units (SNAME, 2002), there are three steps in the assessment of safety and stability of a 

jack-up unit. A pinned foundation condition, where no rotational stiffness is considered, 

is assumed in the step 1 (preloading check) and step 2a (bearing capacity check). Step 2b 

(bearing capacity check) allows the use of linear translational and of non-linear 

rotational stiffness and may lead to less conservative results than step 1 and step 2a. The 

initial stress state corresponding to applied environmental forces should be inside of the 

plastic yielding surface both for the pinned foundation condition and the moment-

resisting foundation condition. An initial stress state located outside of the plastic 

yielding surface is inadmissible and will not occur in a load and resistance factor design 

(LRFD). However, it may occur if a short return period is considered in the analysis and 

the jack-up unit may tilt dramatically and ultimately lead to failure. The step 3 in 

analysis is the displacement check for the spudcan foundation. It should be noted that the 

consideration of the suction problem of windward leg spudcan foundation is necessary 

and the settlement difference between the windward leg and the leeward leg may be a 

critical issue when the jack-up unit is subjected to a severe storm. 
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6.2 Preloading Assessment 

The analysis considers that a jack-up unit will be preloaded to Storm Elevated 

Weight before drilling operations; therefore, the prediction of footing penetration during 

preloading is the first step of spudcan foundation assessment. For conventional 

foundation analysis, the spudcan (Figure 6.1) could be modeled as a flat circular 

foundation and the equivalent diameter is determined from the cross section area of the 

actual spudcan in contact with the seabed surface, i.e., the uppermost part of bearing area 

in contact with soil.  

 

Figure 6.1 Typical spudcan geometries 

However, the bearing capacity is mainly affected by the actual contact area and soil 

strength. The bearing capacity increases proportionally with the square of the equivalent 

of diameter when the spudacan foundation is partially penetrated. The formulas of 

determining bearing capacity for foundation in clay or sand soil are shown as follows:  
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 Clay: 0( )v u c c cF C N S d p A′= ⋅ ⋅ ⋅ +  (6.1) 

 Sand: 0(0.5 )v q q qF B N S d p N S d Aγ γ γγ ′ ′= ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅  (6.2) 

It is recommended that the undrained shear strength Cu is taken as the strength at the 

penetration depth plus a one-fourth of equivalent diameter ( 4
BD + ). The depth of 

spudcan penetration is considered as the depth to the maximum spudcan bearing area; 

therefore, the value of D will be less than or equal to zero for the case of partial 

penetration. Figures 6.2 and 6.3 are the plots of bearing capacity versus spudcan tip 

depth for the base case analysis considered in this study (Table 6.1) in clay and sand 

soils.  

 

Figure 6.2 Prediction of penetration during preloading in sand 
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Figure 6.3 Prediction of penetration during preloading in clay 

The shape of bearing capacity curve is similar to a concave cubic curve when the 

depth is less than the high H (10.3 ft) from tip and maximum bearing area of spudcan, 

because the actual contact area increases proportionally with the square of spudcan tip 

depth. On the other hand, it is linear when the tip penetration depth is greater than H 

because soil strength increases linearly with the depth. Compared with Figure 6.3, the 

preloading penetration depth in sand soil for 015φ = (10.2 ft) is much shallower than the 

case in clay regardless of whether in upper-bound (19.2 ft) or lower-bound (29.4 ft) 

undrained shear strength is considered. Sandy soil therefore offers much more bearing 

capacity than that from clay soil, even when a “Very Loose” is considered ( 015φ = , 

Table 6.2). It is suggested that the value of friction angle from laboratory triaxial test be 
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used in the analysis but a reduction is necessary. Equation 6.3 presents the relation 

between the friction angle from the triaxial test and the value used in analysis: 

 05analysis triaxialφ φ= −  (6.3) 

When determining the bearing capacity in clay soil, the problem of soil back flow 

over the footing should be considered. The bearing capacity must be reduced by the 

weight of the collapsed soil mass as shown by Equation 6.4:  

 0 0L VV F F A Vγ′ ′= − ⋅ + ⋅  (6.4) 

0F ′ is the effective overburden pressure  caused by the back flow soil mass at the depth 

uppermost part of bearing area and the V  is the volume of soil replaced by the spudcan. 

It should be noted that the term 0F A Vγ′ ′− ⋅ + ⋅  must always be considered together. 

Various methods are used to evaluate the stability of the foundation hole. The common 

approach is to calculate the stability number. Equation 6.5 is the formula suggested by 

Britto and Kusakabe (1992) to calculate the stability number sN : 

 s
u

DN
S

γ ′ ⋅
=  (6.5) 

where uS  is the undrained shear strength at the depth D/2 below the mudline. The 

equation shown above also can be used to determine the critical penetration depth of soil 

back flow: 

 u s
cri

S ND
γ
⋅

=
′

 (6.6) 
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Hossain et al. (1975) suggested a stability number less than 6 for the stability of the 

foundation hole.  

Table 6.1 Base case condition for spudcan capacity and penetration predictions 

Spudcan Geometry: 
Maximum diameter of spudcan, max 46 ftB =  
High from tip and max bearing area of spudcan, 10.3 ftH =  
Total high of Spudcan, 20.6 fttH =  

Ratio of cone diameter to spudcan maximum diameter, 
max

1
7

c
D

BR
B

= =  

Ratio of cone high to H, 1
3

c
H

HR
H

= =  

Soil Properties: 

Lower Bound Mudline Strength, 
Clay 

0 50 psfuS =  
Lower Bound Soil Strength Gradient, 7 psf/ftk =  
Upper Bound Mudline Strength, 0 120 psfuS =  
Upper Bound Soil Strength Gradient, 12 psf/ftk =  
Plastic Index, 20PI =  
Unit Weight of Soil, 120 pcfγ =  

Friction angle, 
Sand 

15 ,20 ,25o o oφ =  
Poisson Ratio, 0.3υ =  
Unit Weight of Soil, 120 pcfγ =  
Physical Specification: 
Storm Elevated Weight, 16250 kipsJW =  
Dead Load of Jack-Up Unit, 6000 kipsDW =  
Environmental Force: 
Vertical Direction, 1250 kipsvQ =  
Horizontal Direction, 325 kipshQ =  
Moment, 15000 kips-ftmQ =  
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Table 6.2 Friction angle for cohesionless siliceous soil (SNAME, 2002) 

Density Soil Description oφ  
Very Loose 
Loose 
Medium 

Sand 
Sand-Silt 
Silt 

15 

Loose 
Medium 
Dense 

Sand 
Sand-Silt 
Silt 

20 

Medium 
Dense 

Sand 
Sand-Silt 25 

Dense 
Very Dense 

Sand 
Sand-Silt 30 

Dense 
Very Dense 

Gravel 
Sand 35 

 

6.3 Bearing Capacity Assessment—Pinned Condition Footing 

The vertical bearing capacity of foundation VF  is reduced when a horizontal force or 

moment is applied. The moment loading is neglected in the analysis when the footing is 

considered to be pinned. In general, the formulae suggested by Vesic and Brinch Hansen 

(Bowles, 1996) are used to evaluate the bearing capacity of a spudcan foundation 

subjected horizontal loading but they are only applicable to shallow foundations.  The 

contribution of lateral soil resistance is a difficult issue for several reasons: 

1. Some seams may exist in weak soils located below the spudcan foundation. 

2. The contact area between the spudcan and soil may not be certain because of the 

shape of spudcan. 

3. The shear strength of soil surrounding the foundation may be significantly 

reduced due to the disturbance during the installation. 
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Based on the reasons stated above, the influence of lateral soil resistance on vertical 

projected embedded area can either be ignored or assessed conservatively.  

6.3.1 Vertical-horizontal Bearing Capacity Interaction Envelope for Footings in Sand 

The equation of ultimate bearing capacity of shallow foundation with inclined 

loading in sand is shown as follows: 

 0(0.5 )vh q q q qF B N S d i p N S d i Aγ γ γ γγ ′ ′= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅  (6.7) 

where vhF is the vertical bearing capacity in combination with horizontal loading and 

iγ and qi are the inclination factors which presented in Equation 6.8 and 6.9:  

 * 1[1 ( ) ]mh

vh

Fi
Fγ

+= −  (6.8) 

 *[1 ( ) ]mh
q

vh

Fi
F

= −  (6.9) 

For a circular footing, m can be taken as 1.5. These two equations can be explained by 

introducing the inclination factors recommended by Meyerhof (Bowles, 1996).  It is 

clear that, from Figure 6.4, and Equations 6.10 and 6.11, the conception of *( )h

vh

F
F

 is the 

orientation of resultant force corresponding to the vertical loading.  

 

2(1 )           >0

0                     0

o

oiγ
θ φ
φ

φ


−= 

 =

 (6.10) 

 2(1 )
90

o

q oi θ
= −  (6.11) 
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Figure 6.4 Spudcan footing with environmental vertical and horizontal force   

The dashed arrow R in above figure is the resultant force and θ is the inclination. It is 

noted that the inclination factors should be greater than zero, i.e., the inclination angle 

θ should be less than friction angleφ . By substituting various values of *( )h

vh

F
F

from zero 

to one, *
hF can be determined with different *

vF . The corrected horizontal bearing 

capacity hF can be determined by the following:  

 * 0.5 ( ) [ ( )]h h p a sF F k k D D H Aγ ′= + ⋅ ⋅ − ⋅ + + ⋅  (6.12) 

where pk  and ak are the passive and active earth pressure coefficients, and sA is the 

spudcan laterally projected embedded area. From Figure 6.5, vertical-horizontal bearing 

capacity interaction envelope, the environmental force (triangle point) is inside the 

interaction surface. Based on plasticity theory, the foundation against is secure this 

environmental loading. A load condition located outside of the interaction envelope is 
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not allowable. It may be suspected that the envelope of soil with lower friction angle is 

larger than that with higher friction angle. Indeed, it is difficult to believe that stronger 

soil offer less bearing capacity. However, the penetration depth D and the lateral 

projected area As are smaller for higher friction angle soil and the horizontal bearing 

capacity is mainly affected by these two terms from Equation 6.12. The spudcan tip 

depths for the cases shown in Figure 6.2, are 10.2 ft, 8ft, and 6.3ft for the cases 

15 ,20 ,  and 25o o oφ = respectively. This result indicates that a shallower spudcan 

penetration depth significantly reduces the size of the smaller the normalized bearing 

capacity envelope (Figure 6.6) will be (API RP2A 1989), irrespective of friction angle.  

 
Figure 6.5 Vertical-horizontal loading interaction envelope of spudcan in sand 
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Figure 6.6 Normalized vertical-horizontal loading interaction envelope of spudcan in 

sand  

6.3.2 Vertical-Horizontal Bearing Capacity Interaction Envelope for Footings in Clay 

The equation of ultimate bearing capacity of a shallow foundation subjected to 

inclined loading in clay is follows:  

 0( )vh u c c c c q q q qF C N S d i p N S d i A′= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅  (6.13) 

where ,  ,  and q q qN S d equal to one while the friction angle 0φ = . The inclination factors 

ci and qi are defined by Equations 6.14 and 6.15: 

 
*1.51 h

c
c u

Fi
N A C

= −
⋅ ⋅

 (6.14) 
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*

1.5[1 ]h
q

vh

Fi
F

= −  (6.15) 

By substituting various vhF values from zero to maximum vertical bearing capacity 

(one third of preloading target), the *
hF can be determined by solving a cubic equation 

presented as Equation 6.16: 

 * 3 * 2 *
1 2 3 4( ) ( ) ( ) 0h h ha F a F a F a+ + + =  (6.16) 

where 2
1 0( )a P A′= ⋅  

 2 2 3 2
2 02.25 3 ( )c c vh vha S d F F P A′= ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅  

 2 2 2
3 03 3 ( )c c vh vha S d F F P Aα ′= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅  

 2 2 3
4 0[ ( ) ] vha P A Fα ′= − ⋅ ⋅  

 vh c u c cF A N C S dα = − ⋅ ⋅ ⋅ ⋅  

Due to the restriction that inclination factors must be positive, the values of 

*
hF calculated from the cubic equation may not be the solutions of the interaction 

envelope. In other words, the constraints *
h vhF F≤ and * 2

3h c uF N A C≤ ⋅ ⋅ must be satisfied. 

The corrected horizontal bearing capacity hF can be determined by the Equation 6.17: 

 *
0 1( )h h u u sF F C C A= + + ⋅  (6.17) 

where 0uC and 1uC are the undrained shear strength at maximum bearing area and 

spudcan tip. It may be estimated conservatively from Equation 6.18 that if the 
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environmental vertical force vQ is less than half of vertical foundation bearing 

capacity vF , the following equation applies: 

 0 0 1( )h u u u sF C A C C A= ⋅ + + ⋅  (6.18) 

Figure 6.7 is the result of bearing capacity interaction envelope for the lower-bound 

strength clay (Table 6.1). It is obvious that all solutions of cubic equation are satisfied 

with the limitation of inclination factor ci  ( * 2
3h c uF N A C≤ ⋅ ⋅ ); however, only upper 

portion of them conform to the restriction of qi  ( *
h vhF F≤ ).  

 

Figure 6.7 Three vertical-horizontal loading interaction criterion of spudcan in clay 
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The conservative solution (Equation 6.18) is also shown in the Figure 6.7 and the 

values from it are significantly smaller than those from the cubic equation. The bold 

solid line in the figure presents the vertical-horizontal bearing capacity interaction 

envelope when the conservative solution and the limitation of inclination factors are 

considered.  

Figures 6.8 and 6.9 show the original and normalized vertical-horizontal bearing 

capacity interaction envelope in clay. The spudcan tip depths of two different shear 

strengths, upper-bound and lower-bound, are 19.2 ft and 29.4 ft. In contrast with the 

normalized interaction envelope in sand (Figure 6.6), the envelope of deeper penetrating 

depth in clay is smaller than that of shallower penetrating depth in Figure 6.9. 

 

Figure 6.8 Vertical-horizontal loading interaction envelope of spudcan in clay 
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Figure 6.9 Normalized vertical-horizontal loading interaction envelope of spudcan in 

clay 

6.4 Bearing Capacity Assessment—with Vertical, Horizontal, and Rotational Soil 

Spring 

As discussed earlier, the effect of soil rotational fixity is not included in the checking 

procedure, but it contributes to the stability of spudcan foundation. The interactions of 

vertical, horizontal, and rotational loadings are modeled based on the plasticity theory 

(Van Langen 1993, Martin et al. 2001). Similar to the assumption of pinned condition 

footing, the situation of when the external force is located outside of the yielding surface 

is not acceptable. The issue of how to present the safety of the foundation may be 
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important while the external force is inside of yielding surface; hence, the concept of the 

factor of safety will be introduced in this assessment.  

6.4.1 Ultimate Vertical-Horizontal-Rotational Bearing Capacity Assessment in Sand 

Using SNAME Yield Function 

The yield function for shallowly embedded spudcan footings recommended by SNAME 

is shown as follows:  

 2 2 2

0 0 0 0 0

( ) ( ) 16( ) (1 ) 1m h v v vQ Q Q Q Qf
M H V V V

= + − − −  (6.19) 

where 0V is the vertical bearing capacity due to preloading and 0H  and 0M  are defined 

as follows: 

 0 00.12H V=  (6.20) 

 0 00.075M B V= ⋅  (6.21) 

Figures 6.10 and Figure 6.11 show the yielding surface and the contour of the sand 

with friction angle 15oφ = and the intersection of three black lines is the position of the 

environmental forces.  It can be observed that the location of the external forces is inside 

but very close to the yielding surface.  Figure 6.12 through Figure 6.15 illustrate the 

yield surfaces and contours for the cases 20oφ = and 25oφ = . Unlike the case 15oφ = , the 

environmental forces are located outside of the yield surface. It can be observed from 

three contour figures that the ranges of them are identical but the altitude of the surface 

of the friction angle 15oφ = is higher than others, i.e., the vertical and horizontal 

maximum bearing capacities of three cases are the same but the lower friction angle sand 
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offers higher moment bearing capacity. This phenomenon can be explained by checking 

Equations 6.20 and 6.21. Since the preloading target is unique, 0V  and 0H  will not 

change with different friction angle; nevertheless, the maximum moment bearing 

capacity 0M is affected by the effective spudcan contact diameter B and it will increase 

with the spudcan tip penetration depth while the spudcan is partially penetrated. 

Recalling Figure 6.2 and the analysis of the preloading assessment, the spudcan tip 

penetration depths are 10.2 ft, 8 ft, and 6.3 ft for the cases of 15oφ = , 20oφ = , and 

25oφ = respectively and all of them are less than the height from tip and max bearing 

area of spudcan 10.3 ftH =  (partial penetration). A deeper tip penetration depth leads to 

a wider effective contact diameter B (45.4 ft, 32.9ft, and 23.3 ft). Therefore, the moment 

bearing capacity for a lower friction angle is larger than that for a higher friction angle 

when spudcan footing is partially penetrated in sand. It also can be inferred that the size 

of yielding surface at a certain preloading will not change with soil properties for fully a 

penetrated spudcan. 
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Figure 6.10 Vertical-horizontal-rotational loading interaction yield surface of spudcan in 

sand ( 15oφ = ) 
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Figure 6.11 Contour of vertical-horizontal-rotational loading of spudcan in sand 

( 15oφ = ) 
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Figure 6.12 Vertical-horizontal-rotational loading interaction yield surface of spudcan in 

sand ( 20oφ = ) 
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Figure 6.13 Contour of vertical-horizontal-rotational loading of spudcan in sand 

( 20oφ = ) 
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Figure 6.14 Vertical-horizontal-rotational loading interaction yield surface of spudcan in 

sand ( 25oφ = ) 
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Figure 6.15 Contour of vertical-horizontal-rotational loading of spudcan in sand 

( 25oφ = ) 
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6.4.2 Ultimate Vertical-Horizontal-Rotational Bearing Capacity Assessment in Clay 

Using SNAME Yield Function 

The yield interaction function for a shallow embedded spudcan footing in clay is the 

same as that in sand (Equation 6.19), but 0H  and 0M  should be modified as follows:  

 0 0 0 1( )u u u sH C A C C A= ⋅ + + ⋅  (6.22) 

 0 00.1M B V= ⋅  (6.23) 

The formula of determining the maximum horizontal bearing capacity is identical with 

Equation 6.18, which conservatively estimates the horizontal capacity for a pinned 

condition. Figure 6.16 through 6.19 illustrate the yield surfaces and the contours 

corresponding to the lower-bound and upper-bound strength clay. Compared to Figure 

6.19, the horizontal capacity of lower-bound strength clay in Figure 6.17 is relative 

smaller. This phenomenon coincides with the results of analysis in pinned condition 

footing (Figures 6.8 and 6.9). The advantage of analysis that considers soil moment 

resistance is that even though the environmental forces are located inside the vertical-

horizontal interaction envelope in pinned condition footing model, it is not guaranteed 

those will be below the 3-D yield surface. In other words, the external moment loading 

may exceed the moment bearing capacity. The result of analysis of lower-bound strength 

clay is the example of this case. It should be noted that the moment bearing capacity will 

not change with different soil strengths while the spudcan is fully penetrated in clay. In 

addition, it seems clay soil can offer larger moment bearing capacity than sandy soil 

does for the same preloading target by comparing Equations 6.21 and 6.23. 
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Figure 6.16 Vertical-horizontal-rotational loading interaction yield surface of spudcan in 

lower-bound clay (SNAME yield function) 
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Figure 6.17 Contour of vertical-horizontal-rotational loading of spudcan in lower-bound 

clay (SNAME yield function) 
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Figure 6.18 Vertical-horizontal-rotational loading interaction yield surface of spudcan in 

upper-bound clay (SNAME yield function) 
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Figure 6.19 Contour of vertical-horizontal-rotational loading of spudcan in upper-bound 

clay (SNAME yield function) 
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6.4.3 Ultimate Vertical-Horizontal-Rotational Bearing Capacity Assessment in Clay 

Using Martin & Houlsby’s Yield Function 

The yield interaction function of shallowly embedded spudcan footing in clay is 

shown as Equation 6.24 (Martin & Houlsby, 2001):  

 1 22 22 2 2

0 0 0 0 0 0

( ) ( ) 2 ( )( ) ( ) (1 )m h m h v vQ Q Q Q Q Qf e
M H M H V V

β ββ= + − − −  (6.24) 

where 0V is the vertical bearing capacity due to preloading and 0H , 0M , e , and β are 

defined as follows: 

 0 0 0H h V= ⋅  (6.25) 

 0 0 0M m B V= ⋅ ⋅  (6.26) 

 1 2
0 0

( )( 1)v vQ Qe e e
V V

= + ⋅ −  (6.27) 

 
1 2

1 2

1 2

1 2

( )β β

β β

β ββ
β β

++
=  (6.28) 

The six parameter values are 0 0.083m = , 0 0.127h = , 1 0.518e = , 2 1.180e = , 

1 0.764β = , and 2 0.882β = . As discussed earlier, the horizontal and moment bearing 

capacity will not vary with different soil strengths for a fully penetrated spudcan since 

they are only affected by the magnitude of preloading. Figure 6.20 and Figure 6.21 show 

the yield surface and the contour of both upper-bound and lower-bound strength clays.  

The environmental forces (Figure 6.20) are located within the plastic yield surface. The 

axis of the yield surface is tilted in this case. From Figure 6.19, it can be observed that 

the maximum moment bearing capacity of SNAME yielding surface occurs at 00.5vQ V=  
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and 0hQ = ; however, it takes place at 00.5vQ V=  and 0hQ >  (about 150 kips in this case) 

for the yielding surface suggested by Martin and Houlsby (Figure 6.21). This result may 

be beneficial, because most of spudcans may subject non-zero horizontal environmental 

loading.  Comparing Figures 6.17, 6.19, and 6.21, the maximum horizontal bearing 

capacity from Martin & Houlsby’s model (688 kips) is larger than those (487 kips for 

upper-bound and 390 kips for lower-bound) from SNAME model. Nevertheless, 

SNAME model can offer larger maximum moment bearing capacity (2492 kips-ft) than 

that estimated from Martin & Houlsby’s model (2068 kips-ft). 

 

Figure 6.20 Vertical-horizontal-rotational loading interaction yield surface of spudcan in 

clay (Martin & Houlsby yield function) 



164 

 

Ho
riz

on
ta

l B
ea

rin
g 

Ca
pa

ci
ty

 F
h 

(k
ip

s)

Vertical Bearing Capacity Fvh (kips)

Contour of Bearing Capacity Envelope in Clay

 

 

0 1000 2000 3000 4000 5000

-800

-600

-400

-200

0

200

400

600

800 -5000

0

5000

10000

15000

20000

 

Figure 6.21 Contour of vertical-horizontal-rotational loading of spudcan in clay (Martin 

& Houlsby yield function) 

6.4.4 Stability Assessment of Spudcans 

The basic concept of stability is that the foundation is stable and safe while the 

environmental forces are inside the plastic yielding surface. However, how to illustrate 

the degree of safety of a stable spudcan footing will be the next issue of concern to 

engineers. In this paper, there are three steps used to evaluate the stability of a spudcan 

footing: 

1. Illustration—checking the relation of configuration or position between the 

plastic yielding surface and the environmental force point. 
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2. Value of yield function—checking the value of yield function that environmental 

forces are already substituted. The smaller the value is (negative value for a 

stable footing), the more stable the footing will be. 

3. Factor of safety—checking the factor of safety Fs of the footing. The larger the 

value of Fs is, the more stable the footing will be. 

The first two steps may easy to understand and execute; however, the factor of safety 

under combined vertical-horizontal-rotational may not be simply determined by means 

of maximum bearing capacities divided by external forces. An overall factor of safety 

for the spudcan is required rather than estimating individual ones for vertical, horizontal, 

and moment forces. Figure 6.22 illustrates the transformation of environmental forces. 

The symbols α  and ce are the inclined angle and eccentricity of the resultant force F, and 

they could be estimated by the following equations:  

 1cosV F F Cα= ⋅ = ⋅  (6.29) 

 2sinH F F Cα= ⋅ = ⋅  (6.30) 

 3cos cosc
c

eM F e F B F B C
B

α α= ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅  (6.31) 

F

α

OO

Qv

Qh

Qm

ec

 

Figure 6.22 Transformation of environmental forces 
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The resultant force F will reach ultimate value Fult when the force is exactly on the 

yielding surface, i.e., the value of the function is zero. Normalizing all terms by soil 

strength Cu and actual contact area A leads to the following expressions for 

dimensionless bearing capacity Ne and pure normal, tangential, and moment 

dimensionless capacities Nv, Nh, and Nm respectively: 

 /e uN F C A=  (6.32) 

 1/v u eN V C A N C= = ⋅  (6.33) 

 2/h u eN H C A N C= = ⋅  (6.34) 

 3m e
u

MN N C
C A B

= = ⋅
⋅ ⋅

 (6.35) 

Now, considering the SNAME yield function (Equation 6.19) for clay, the maximum 

dimensionless capacities for pure normal, tangential, and moment are presented as 

follows:  

 0 0 /v uN V C A=  (6.36) 

 0 0 /h uN H C A=  (6.37) 

 
0

0m
u

MN
C A B

=
⋅ ⋅

 (6.38) 

By virtue of Eq. 33-38, the yield function can be re-written as the following equation: 

 2 2 23 2 1 1 1

0 0 0 0 0

( ) ( ) 16( ) (1 ) 1e e e e e

m h v v v

C N C N C N C N C Nf
N N N N N

⋅ ⋅ ⋅ ⋅ ⋅
= + − − −  (6.39) 
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As mentioned earlier, the value of the function 0f = when ultF F= . Therefore, the 

dimensionless bearing factor Ne can be determined and the maximum resultant force Fult 

could be estimated from Equation 6.32. The factor of safety may be defined as Equation 

6.40: 

 . ultFF S
F

=  (6.40) 

Table 6.3 shows the results of bearing capacity analysis for two environmental 

loading cases. The factor of safety is proportional to the absolute value of f and it 

approaches one while the value of the function is close to zero (Sand 15oφ = ). In 

addition, it does not increase significantly from larger environmental loading to a smaller 

one when the point of external force is located inside of the yield surface (Sand: 15oφ =  

and Clay: Upper-Bound). On the other hand, it almost becomes twice for the sand with 

friction angle 25oφ = which the point is outside of the surface both in larger and smaller 

environmental loadings. This phenomenon means that it is difficult to obtain a high 

factor of safety even when the spudcan is subjected to low external forces. Comparing 

the results of two yield functions in clay, the SNAME model offers a more conservative 

solution than the other one does. As discussed earlier, the maximum moment bearing 

capacity of Martin & Houlsby model occurs at nonzero horizontal loading condition and 

this may lead to a situation that the evaluation is indicated to be not safe when using 

SNAME model but is stable in Martin & Houlsby model (F.S = 0.95 and 1.13 for 
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15000 kips-ftmQ = ). It is recommended to compare the results of different yield 

functions when analyzing the footing in the soft clay. 

Table 6.3 Results of bearing capacity analysis 

1250 kipsvQ = , 325 kipshQ = 15000 kips-ftmQ =  Position of 
pt. f F.S 

Sand (SNAME) 
15oφ =  Inside -0.0083 1.0003 
20oφ =  Outside 0.5912 0.81 
25oφ =  Outside 1.8536 0.51 

Clay (SNAME) Upper-Bound Inside -0.1137 1.04 
Lower-Bound Outside 0.1358 0.95 

Clay 
(Martin & Houlsby)  Inside -0.2955 1.13 

1250 kipsvQ = , 325 kipshQ = 8000 kips-ftmQ =  Position of 
pt. f F.S 

Sand (SNAME) 
15oφ =  Inside -0.4824 1.2 
20oφ =  Inside -0.3121 1.12 
25oφ =  Outside 0.0495 0.98 

Clay (SNAME) Upper-Bound Inside -0.3731 1.15 
Lower-Bound Inside -0.1236 1.04 

Clay 
(Martin & Houlsby)  Inside -0.5968 1.31 

 

6.5 Displacement Assessment 

The elastic displacement of unloading or reloading due to applied environmental forces 

can be calculated by dividing the increment of loading by the elastic stiffness. According 

to Kausel & Ushijima (1979), the vertical, horizontal, and rocking static stiffness of 
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embedded circular foundations on elastic stratum of finite depth are presented as 

follows:  

 4 (1 1.28 ) (1 0.5 ) [1 (0.85 0.28 ) ]
1 1v

EGR R E E HK EH R R Hν
= + ⋅ + ⋅ + − ⋅

− −
 (6.41) 

 
8 2 5(1 0.5 ) (1 ) (1 )
2 3 4h
GR R E EK

H R Hν
= + ⋅ + ⋅ +

−
 (6.42) 

 
38 1(1 ) (1 2 ) (1 0.7 )

3(1 ) 6r
GR R E EK

H R Hν
= + ⋅ + ⋅ +

−
 (6.43) 

Where ν is Poisson’s ratio, R is foundation radius, H is layer thickness, and E is 

embedment depth. If the spudcan is in an elastic half-space, with bedrock at a great 

depth, a layer thickness H → ∞ can be assumed. The assessment of shear modulus G is 

an issue because it is the primary parameter which affects the stiffness. According to 

Wroth et al. (1979) and Andersen (1992), the shear modulus for clay may be taken 

as r
u

GI
C

= . Typical Ir values for small strain may range from 200 to 400 for over-

consolidation ratio less than 4 and 800 to 100 for N.C clay. In sandy soil, the empirical 

formulae suggested by Dean et al. (1992) are shown as follows: 

 036,600 24.9 ( )v
VG
A

= + ⋅  (6.44) 

 
01,100 5.6 ( )h

VG
A

= + ⋅  (6.45) 

 
04,100 11.5 ( )r

VG
A

= + ⋅  (6.46) 
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The units of the equations are in kPa ( 2kN m ). Table 6.4 presents the results of 

displacement assessment. In the analysis of footing in clay, the effect of shear modulus 

degradation is considered (Figure 6.23, 0.5% strain assumed). The vertical displacement 

of unloading can be simply calculated by the following equation: 

 v
v

v

Q
K

δ ∆
=  (6.47) 

Table 6.4 Results of displacement assessment 

1250 kipsvQ = , 325 kipshQ =
15000 kips-ftmQ =  

F.S 
Unloading 

Displacement 
(ft) 

Reloading 
Displacement (ft) 
Elastic Plastic 

Sand (SNAME) 
15oφ =  1.0003 -0.03 0.01 0 
20oφ =  0.81 -0.04 0.04 0.32 
25oφ =  0.51 -0.05 0.05 0.63 

Clay (SNAME) Upper-Bound 1.04 -0.33 0.12 0 
Lower-Bound 0.95 -0.39 0.39 1.29 

 

 

Figure 6.23 Shear modulus degradation in clay 
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In the analysis, the Poisson ratio ν is 0.3 for sand and plastic index PI = 20 and Ir = 600 

for clay. 

The vertical displacement will exceed the elastic range for reloading when the 

spudcan is subjected to larger environmental forces (F.S < 1). Based on the plasticity 

theory, it is not acceptable that the external force is outside of the yielding surface since 

the spudcan is unstable in this situation. Not until the point of external force locates 

exactly on it does the yielding surface stop growing; therefore, additional settlement of 

spudcan can be expected. Figure 6.24 through 6.27 show the new positions and yielding 

surfaces of spudcan in 25oφ = sand and lower-bound strength clay. It can be observed 

that the new yielding surface of sand (Figure 6.25) is much larger than that of under 

preloading (Figure 6.14). The additional settlement (plastic displacement) is 0.63 ft for 

sand and 1.29 ft for clay respectively. However, this situation is not allowable and it may 

lead to the failure of the jack-up. 
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Figure 6.24 Additional settlements due to large environmental force in sand ( 25oφ = ) 

 

Figure 6.25 New yield surface due to large environmental force in sand ( 25oφ = ) 
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Figure 6.26 Additional settlements due to large environmental force in clay  

 

Figure 6.27 New yield surface due to large environmental force in clay 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

7.1 Summary 

This research utilized plasticity theory to investigate commonly used anchors and 

foundations for offshore structures, including drag embedment anchors and spudcan 

foundations. The main purpose of investigations of DEAs is to obtain an understanding 

of trajectory and holding capacity, and develop reliable simulation models to predict 

their behavior in the seabed, under in-plane and out-of-plane motions. Due to their cost-

effectiveness and high holding capacity comparing with self weight, DEAs are widely 

used for the temporary anchorage of offshore platforms, but not usually permitted for 

permanent anchorage in deep waters because of the uncertainty in predicting load 

capacity, uncertainly that is largely due to the uncertainty in the trajectory. The DEA 

simulation analysis can provide realistic predictions of DEA trajectory and capacity for a 

variety of soil profile, anchor line and anchor characteristics. 

For the analysis of spudcan foundation, the assessments of stability and settlement 

are the targets of the research. In the stability assessment, a three-stages assessing 

procedure is recommended: illustration of the configuration of yielding surface and 

environmental forces, the value of yielding function with external forces substituted, and 

the factor of safety of the spudcan. In addition, the results of the assessment may be 

ambiguous while the different yield functions are employed to analyze the spudcan in 

soft clay. It should be paid attention that the additional settlement (plastic displacement) 
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of the footing may occur if the jack-up unit is applied on titanic environmental forces 

and a punctilious design should avoid this situation. 

7.2 Conclusions 

(A) Drag Embeddment Anchors under In-Plane Loadings: 

1. During drag embedment the anchor rapidly reaches an equilibrium state in which the 

rate of anchor rotation equals the rate of change of the anchor line angle at the 

shackle, as θθ  = (Figure 4.16). As the equilibrium state is approached, the normalized 

load capacity of the anchor at the shackle âT = Ne Af /b2 approaches a constant value 

(Figure 4.15). 

2. The equilibrium condition approaches a condition of pure translation parallel to the 

anchor fluke (ψ = 0). The actual rate of rotation of the anchor in the equilibrium state 

is positive, but numerically small. Consequently, the governing anchor bearing factor 

at equilibrium – and therefore throughout most of the anchor trajectory - corresponds 

to a condition of pure translation parallel to the fluke, (Ne)eq = Ne (ψ = 0). 

3. A higher bearing factor Ne (and consequently âT ) leads to a reduced rate of anchor 

rotation (Equation 4.44) and, hence, greater penetration during drag embedment. 

From the standpoint of anchor geometry, optimizing the anchor design is a matter of 

maximizing capacity while maintaining a collapse mechanism consistent with drag 

embedment. Greater fluke-shank angles θfs and smaller shank length Ls/Lf tend to 

increase capacity Ne as well as embedment depth (Figure 4.17). However, the range 

over which these geometric variables can be varied is constrained by the requirement 



176 

 

to maintain a drag embedment mode of penetration; i.e., translation primarily parallel 

to the fluke (e.g., Figures 4.6-4.10). 

4. Interaction effects for combined loading on a plate are extremely important from the 

standpoint of both load capacity (Figure 4.4) and kinematics (Figure 4.5). Therefore, 

careful evaluation of interaction parameters is required for reliable prediction of 

(Ne)eq.  

(B) Drag Embedment Anchors under Out-of-Plane Loadings: 

1. This study presents an analysis of an anchor which, after an initial installation stage 

occurring in the vertical plane of intended loading, is subjected to an out-of-plane 

load. Except at very shallow depths, the soil shearing resistance is large relative to 

the weight of the anchor chain, in which case the chain will lie in a plane, even under 

conditions of out-of-plane loading. The orientation of the chain at the pad-eye and 

mudline determine the orientation of the oblique plane. With appropriate rotation of 

the coordinate system, it is possible to formulate tension-angle and trajectory 

prediction equations that are very similar to those previously developed for anchor 

chains contained within a vertical plane. 

2. Using the modified equations, a calculation sequence has been developed for 

predicting drag anchor performance for the following scenario: (1) initial anchor 

installation within the intended vertical plane of loading to an arbitrary installation 

depth, (2) the occurrence of out-of-plane loading applied at the mudline due to 

partial failure of the mooring system accompanied by the re-configuration of the 
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anchor chain, and (3) continued loading with resumption of the embedment process 

within an oblique plane. 

3. For the example analysis considered, continued embedment occurred after 

imposition of out-of-plane loading; however, the additional embedment beyond the 

initial installation depth was relatively modest. While the analyses did not indicate a 

loss of the original installation load capacity due to a mooring system failure - at 

least for the scenario considered by the parametric study - they did predict a 

substantial reduction in the ultimate, or reserve, load capacity of the anchor. 

(C) Stability Assessment of Spudcan Foundation: 

1. The settlement due to preloading in clay is much more significant than that in sand; a 

spudcan in a high undrained shear strength clay may penetrate twice amount of it on 

low friction angle sand (Figure 6.2 and 6.3). In soft clay, the penetration depths may 

be too large to be tolerated and they have been recorded as much as 55 meters in 

Mississippi delta (Mirza et al., 1989). 

2. In a pinned condition footing analysis, the lower friction angle sand offers larger 

horizontal bearing capacity than higher friction angle sand does under the same 

preloading condition (Figure 6.5 and 6.6) due to the reduced penetration depth in the 

dense sand. Both *
hF  and penetration depth D, from Equation 6.12, are inverse 

proportional to the friction angle φ . On the other hand, the horizontal bearing 

capacity in clay at lower vertical force level is controlled by the Equation 6.18, 

which estimates sliding capacity conservatively. Since the lateral projected area As 

does not change under conditions of full penetration, the values of undrained shear 
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strength Cu0 and Cu1 are higher for stronger clay (Figure 6.8 and 6.9). The average 

maximum normalized sliding capacity of spudcan in sand is 0.14 and around 0.08 in 

clay and both of them are more conservative than the results done by Vesic (0.15) 

and DNV (0.13). 

3. The size of the yield surface in sand recommended by SNAME does not vary with 

the soil strength unless the spudcan is partially penetrated which the maximum 

sliding capacity keeps a constant value but the maximum moment bearing capacity 

reduces with friction angle increasing (Figure 6.10-6.15).  In clay, it changes with 

undrained shear strength both in partially and fully penetrated cases. The horizontal 

bearing capacity increases with soil strength but the moment capacity does not 

change for fully a penetrated spudcan (Figure 6.16-6.19). 

4. In contrast to the yield function suggested by SNAME in clay, the sliding and 

moment capacity estimated from Martin and Houlsby’s model do not change with 

soil strength for a full penetrated spudcan. In addition, it seems the SNAME model 

offers a more conservative assessment than the Martin & Houlsby analysis (Table 

6.3). Different results from the stability evaluations may occur when the clay 

undrained shear strength is low. More laboratory or centrifuge tests may be helpful 

to resolve this issue. 

5. The elastic displacement of spudcan can be determined using Equation 6.47; 

however, an estimate of the shear modulus is critical to a realistic displacement 

assessment. Due to the design criteria, the situation of additional settlements (plastic 

displacement) of spudcan occurs is not allowable because it means the point of 
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environmental force is located outside of yielding surface. A larger preloading target 

or wider footing diameter may help to avoid this problem.  
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