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ABSTRACT 

Three Dimensional Controlled-source Electromagnetic Edge-based Finite Element 

Modeling of Conductive and Permeable Heterogeneities. 

(August 2010) 

Souvik Mukherjee, BSc., University of Calcutta; 

MSc., Jadavpur University;  

M.Tech, Indian Institute of Technology, Kharagpur; 

M.S., University of Utah 

Chair of Advisory Committee: Dr. Mark E. Everett 

 

Presence of cultural refuse has long posed a serious challenge to meaningful 

geological interpretation of near surface controlled–source electromagnetic data 

(CSEM). Cultural refuse, such as buried pipes, underground storage tanks, unexploded 

ordnance, is often highly conductive and magnetically permeable. Interpretation of the 

CSEM response in the presence of cultural noise requires an understanding of 

electromagnetic field diffusion and the effects of anomalous highly conductive and 

permeable structures embedded in geologic media. While many numerical techniques 

have been used to evaluate the response of three dimensional subsurface conductivity 

distributions, there is a lack of approaches for modeling the EM response incorporating 

variations in both subsurface conductivity σ and relative permeability µr.   

In this dissertation, I present a new three dimensional edge–based finite element 

(FE) algorithm capable of modeling the CSEM response of buried conductive and 



iv 

 

permeable targets. A coupled potential formulation for variable µ using the vector 

magnetic potential A and scalar electric potential V gives rise to an ungauged curl–curl 

equation. Using reluctivity (=1/ ), a new term in geophysical applications instead of 

traditional magnetic susceptibility, facilitates a separation of primary and secondary 

potentials. The resulting differential equation is solved using the finite element method 

(FEM) on a tetrahedral mesh with local refinement capabilities. The secondary A and V 

potentials are expressed in terms of the vector edge basis vectors and the scalar nodal 

basis functions respectively. The finite element matrix is solved using a Jacobi 

preconditioned QMR solver. Post processing steps to interpolate the vector potentials on 

the nodes of the mesh are described. The algorithm is validated against a number of 

analytic and multi dimensional numeric solutions. The code has been deployed to 

estimate the influence of magnetic permeability on the mutual coupling between 

multiple geological and cultural targets. Some limitations of the code with regards to 

speed and performance at high frequency, conductivity and permeability values have 

been noted. Directions for further improvement and expanding the range of applicability 

have been proposed. 
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1. INTRODUCTION 

The controlled source electromagnetic (CSEM) method is an important technique 

in geophysical exploration with an increasing range of applications. The CSEM method 

employs an electromagnetic transmitter that is energized by a transient or time–harmonic 

current, while the response generated by the subsurface is measured at specified receiver 

locations. CSEM is an increasingly popular method in the oil and gas industry 

(Constable, 2006), and has long been an essential geophysical technique in the mining 

industry (Grant and West, 1965).  The technique is also used in various near surface 

applications such as mapping permafrost, groundwater exploration, environmental site 

characterization, UXO remediation, geotechnical assessment, and archaeological 

prospecting (eg. Palacky, 1988; Buselli et al. 1990; Edwards et al. 1988; Hoekstra and 

Blohm, 1990; Senos Matias et al. 1994; Everett and Meju, 2005).  

The behavior of electromagnetic fields is governed by three properties of the 

subsurface (Grant and West, 1965) : electrical conductivity σ; magnetic permeability ; 

and dielectric permittivity  . Most geologic materials are non–magnetic, i.e.  = o (the 

free space permeability). At low frequencies (ω << σ/, where ω is the angular 

frequency), Maxwell’s equations are simplified to their magnetoquasistatic limit 

(Larsson, 2007), and displacement currents may be neglected. 

_________ 

This dissertation follows the journal style of Geophysics. 
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This results in diffusive governing equations, and the response is most 

importantly a function of the distribution of the subsurface conductivity. The latter, in 

turn, is diagnostic of spatial variations in geology, such as lithologic and structural 

boundaries, and the distribution of fluids.  A recent surge of interest in environmental 

problems has opened new avenues of application for the controlled–source 

electromagnetic method (CSEM). The presence of man–made debris, such as buried 

pipes, drums, unexploded ordnance (UXO) and other steel objects, introduces significant 

complexity to the CSEM response. This cultural noise, in addition to having high 

conductivity, oftentimes has significant relative magnetic permeability (r =  /o) 

(Eskola et al, 1999). 

Interpretation of the CSEM response in the presence of cultural noise requires an 

understanding of electromagnetic field diffusion and the effects of anomalous highly 

conductive and permeable structures (hereinafter called targets) embedded in geologic 

media. A geologic medium is often modeled as a sequence of layers of different 

conductivity (eg. Ryu et al. 1970); a more realistic model is two and a half dimensional 

(2.5–D) (eg. Everett and Edwards, 1993), in which the subsurface consists of spatially 

varying geology characterized by an invariant two dimensional cross section of infinite 

strike length, excited by a 3–D electromagnetic source. Another widely–used 

approximation of a geologic medium is a thin sheet in free space or buried in a 

homogeneous or layered Earth. The electromagnetic response of a thin conductive sheet 

(Price, 1949) is of considerable interest in exploration geophysics. The method has been 

widely used in the mining industry as an effective approximation for modeling 
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conductive ore bodies of large areal extent but limited thickness (eg. Pavlov and 

Zhdanov, 2001) buried within a resistive host medium. The thin sheet model simplifies 

the physics of electromagnetic induction in three dimensional structures (Annan, 1974; 

Walker and West, 1992) yet provides a good approximation to the geometry of 

elongated tabular bodies.  Realistically, all geologic bodies have finite length extent in 

all three dimensions. Though assumptions of infinite strike length work well in a number 

of scenarios, e.g. mid oceanic ridges (Everett and Edwards, 1993), increasing 

computational capabilities and advances in numerical modeling techniques now permit 

accurate modeling of CSEM field responses of bodies of arbitrary geometry and finite 

spatial extent. Three dimensional modeling of the response of geologic structures to 

controlled–source electromagnetic (CSEM) excitation has been explored in a number of 

recent papers (Lee et al.,1981; Xiong, 1992; Newman and Alumbaugh, 1995; Sugeng, 

1998; Aruliah et al.,1999; Hursan and Zhdanov, 2002; Weiss and Newman, 2002; 

Stalnaker, 2004).  

Many numerical techniques have been used to evaluate the response of three 

dimensional subsurface conductivity distributions, including integral equation (e.g. 

Raiche and Coggon, 1974; Hohmann, 1987; Xiong and Tripp, 1995; Aruliah et al. 1999), 

finite difference (e.g. La Brecque, 1995; Newman and Alumbaugh, 1995), finite element 

(e.g. Everett and Schultz, 1996; Sugeng, 1998; Badea et al. 2001), and hybrids of such 

methods (e.g. Lee et al. 1981). While substantial progress has been achieved in terms of 

accuracy and computational efficiency in modeling the subsurface conductivity, there is 

a lack of approaches for modeling the EM response incorporating variations in both 
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subsurface conductivity and permeability.  The near surface CSEM response is 

significantly influenced by the presence of permeable (r > 1) targets of both 

anthropogenic and geologic origin (eg. Szarka, 1988). It is thus important to understand 

the effects of permeability on the CSEM response of three dimensional targets for more 

accurate interpretation of CSEM data. The response of a conducting and permeable 

sphere in free space due to a time varying magnetic dipole has been calculated by Grant 

and West (1965) in the frequency domain and by Nabighian (1971) in the time domain. 

Since then, there have been a few additional analytic solutions (eg. Rai and Verma, 

1982;  Batayneh, 2001), but numerical modeling of isolated three dimensional targets 

embedded within an inhomogeneous geological host is rarely found in the geophysical 

literature. 

1.1 The relative contribution of current modes to the CSEM response   

The CSEM response of a nonmagnetic (µr = 1) conductive body located in a 

conductive host can be decomposed into two modes of excitation : the inductive mode, 

in which the induced electric current is confined to circulate inside the conductor, and 

the galvanic, or current channeling mode in which electric current gathered from the host 

medium flows through the conductor (e.g. Lamontagne and West, 1971; Annan, 1974; 

Walker and West, 1991 and 1992). The relative strength of the inductive and galvanic 

modes in a thin sheet can be estimated in terms of a “current excitation ratio” (Walker 

and West , 1992) consisting of two factors : 1) a simple product of the conductivity, 

frequency, and the dimension of the plate providing a measure of the relative 

“saturation” of galvanic and inductive modes ; and 2) the local ratio of the electric and 
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magnetic fields described as a “local impedance” (Walker and West, 1992). 

Accordingly, for a thin square sheet of side a, conductivity σa, excited at angular 

frequency ω, the induction number K is given by (Walker and West, 1992) 

.
8

0

a
K a


         (1)

 

On the other hand, the channeling number C is a measure of galvanic mode saturation 

(Walker and West, 1992) 

;
2 a

C
b

a






          (2)

 

where, σb is the background conductivity. If K < 1, the conductor is inductively 

unsaturated while if C < 1 then the conductor is galvanically unsaturated. When both K ~ 

1and C ~ 1, the conductor is excited by a mixture of the modes. The relative contribution 

from the source to each mode of current excitation in a given conductor depends on the 

ratio of the incident electric E- and magnetic H- field intensities, as characterized by a 

“local impedance”(Walker and West, 1992) : 

;100 r

bH

E
Z






        (3)

 

where r is a spatially dependent geometric factor associated with the source. A 

knowledge of the relative strengths of the two modes of current excitation in different 

elements of a conductive earth model provides improved understanding of the 

interaction between geophysical targets and host geology. This understanding in turn, 

can help in isolating or accounting for the effects of “known” contributors to the 
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electromagnetic signal at a geophysical site. Examples of such contributors include 

buried powerlines, scattered cultural debris, underground storage tanks, etc (e.g. Qian 

and Boerner, 1994; Stalnaker et al. 2006; Fernandes, 2008).  

In magnetic (µr > 1) bodies, a third mode is present: the magnetization mode. 

This is the field due to magnetic moment m of a magnetic dipole and is given as 

(Jackson, 1975) 

 
 

.
3

3

r

mrm.r
rB




         (4a)

 

 It is also well known (eg. Ulaby, 2004) that equation (4a) is simplified for the 

field component Hz due to a z- directed magnetic dipole of magnetic moment mz  

.
2 3r

m
H z

z



          (4b)

 

The measured CSEM response, which is proportional to the magnetic fields Bz or Hz, is a 

function of the contribution from the above modes. The variation in σa, and µr of a 

geophysical target can lead to different levels of excitation of the three different modes. 

The chief contributor to the magnetization mode is the strength of the magnetic moment 

m which in turn is dependent on the relative permeability µr. Thus, a key role of µr in 

electromagnetic induction is to increase the contribution from magnetization mode to the 

secondary field of the target.  

While the present analysis is primarily concerned with the CSEM response in the 

frequency domain, it is instructive to look at the fundamental time constant of a spherical 

body excited by a transient magnetic dipole (Pasion, 2007).  The fundamental time 
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constant, τ0 determines the onset of late time exponential decay behavior of the 

secondary magnetic field of the sphere. For a non permeable (µr = 1) sphere of 

conductivity σ, and radius a, this is given by  

  .1
2

2

0
0






a
r 

         (5a)
 

For a permeable (µr > 1) sphere the fundamental time constant is expressed as   

;
2

1

2

0
0

q

ar
 

         (5b) 
where q1 is a root of the transcendental equation

 
 

 
;

1

1
tan

2

1

1
1
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        (6)

 

Pasion (2007) shows that the value of q1 lies between π (µr = 1) and 4.4934 (µr = ∞). It is 

evident from equations (5a) and (5b) that the decay constant for the non magnetic eddy – 

current mode is different from that of the magnetization mode and the contribution to the 

secondary magnetic field response of the latter is not a matter of simply scaling equation 

(5a) by µr. 

Figure 1 illustrates this point. The analytic solution of the secondary Hz field of a 

conducting, permeable sphere excited by an oscillating dipole in free space is computed 

using the solution in Rai and Verma (1982). The product σaµr = 12000 S/m in each case. 

The response for various oscillation frequencies of the dipole are plotted at the dipole 

location. The differences in response for the two spheres confirm that the effect of 

conductivity generating the inductive mode is different from the effect of permeability 
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generating the magnetization mode in determining the electromagnetic response of the 

sphere.  

Also of particular interest is the peak of the quadrature response at specific 

frequencies for different values of µr as shown in Figure 2. As µr increases from 1 to 5, 

the peak quadrature response shifts to lower frequency. This is an important result for 

understanding the relative contributions of the inductive mode of current excitation, and 

the magnetization mode to the secondary magnetic field of the sphere. Since this is a 

single isolated sphere in free space, it has no current channeling mode. 

   

 

Figure 1. Secondary Hz response of a sphere of 0.9m radius, placed 2.0 m under an 

oscillating magnetic dipole in free space. Conductivity of the sphere is σa =10
4
S/m and 

µr = 1.2 for the black curve and σa =12000 S/m and µr =1.0 for the blue curve. Thus, the 

product σaµr is the same for both models. The response is calculated at the dipole 

location for a range of frequencies. (a) The real part of secondary Hz (A/m). (b) The 

imaginary part of secondary Hz (A/m). 
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Figure 2. Quadrature of secondary Hz response of a sphere of 0.9m radius, placed 2.0 m 

under an oscillating magnetic dipole in free space. Conductivity of the sphere is σa 

=10
4
S/m and µr = 1.0 for the black curve, µr = 3.0 for the blue curve, and µr =5.0 for the 

red curve. The response is calculated at the dipole location for a range of frequencies. 

  

1.2 Literature review 

Forward modeling of the EM induction problem ideally satisfies three main 

criteria: 

(a) capability to model arbitrary target geometries; (b) capability to model high 

conductivity contrasts between host geology and target, and; (c)  high computational 

efficiency. Criterion (c) makes the volume integral method (Xiong, 1992) and its 

approximations (e.g. Habashy et al, 1993, Zhdanov and Tartaras, 2002) very attractive 

for rapidly solving geophysical exploration problems. These methods require only the 

local heterogeneous domain of interest to be discretized. However, numerical 
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experiments (Raiche et al. 2003) suggest that volume integral methods are limited to a 

maximum conductivity contrast of 300:1. For various IE approximations (Zhdanov and 

Fang, 1997; Zhdanov and Tartaras, 2002) this contrast is lowered to less than 30:1. 

Finite difference methods (FDM), can model high contrasts of around 10
5
:1 (Newman 

and Alumbaugh, 1995), but lack sufficient geometric flexibility to model complex 

shapes: for example, FD meshes are rectilinear and produce “staircase” type 

approximations of dipping structures. Finite element methods (FEM) provide both 

geometric flexibility and the capability to model high contrasts of greater than 10
5
 : 1 

(Sugeng and Raiche, 2004; Stalnaker et al. 2006). Coggon (1971) was the first to 

demonstrate the applicability of FEM to geophysical electromagnetic (EM) problems. 

Since then, there have been many advances in accuracy, flexibility, and computational 

efficiency. These advances have focused on five broad areas: (a) choice of variable in 

the differential equation, i.e. fields or potentials; (b) choice of basis functions, i.e. nodal 

scalar  or edge vector; (c) choice of linear system solver, i.e. direct or iterative; (d) the 

post processing steps, which include converting potentials to fields, computing magnetic 

from electric fields, or converting edge values of fields and potentials to nodal values, 

and; (e) mesh generation capabilities including local refinement and conformance to 

curved structures such as spheroids.    

   An interesting approach is to model a three dimensional source exciting two 

dimensional structure – traditionally known as the 2.5 –D approach. Many geologic 

structures such as angular unconformities, dikes, dipping beds, and fault zones, can be 

adequately represented as idealized 2–D structures with respect to conductivity 



11 

 

variations, while a 3–D source provides a realistic description of the excitation. The 2.5–

D approach serves as an effective compromise in FEM modeling of electromagnetic 

problems in geophysics (Everett and Edwards, 1993; Unsworth et al. 1993) since limited 

computational power is required. The early 2.5–D approaches were formulated in terms 

of electric and magnetic fields directly. The relatively small size of the coefficient 

(stiffness) matrix renders the method amenable to stable solutions without raising any 

serious issues regarding the condition number of the matrix. However, when 

transitioning to the full 3–D problem, the increase of the matrix size (~ O (n
2
) to an O 

(n
3
) ) can lead to a poorly conditioned matrix at high contrasts unless a suitable penalty 

functional is used (Zunoubi et al. 1999). Everett and Schultz (1996) introduced a 

Coulomb – Gauged coupled A-  vector magnetic and scalar electric potential 

formulation for the 3–D geomagnetic induction problem. Aruliah et al. (1999) applied it 

to the 3–D CSEM problem using integral equations and reported a significantly better 

conditioned matrix. Badea et al. (2001) applied the coupled potential formulation in the 

Coulomb–Gauge using an FE formulation following an approach suggested by Biro and 

Preiss (1989). Using an efficient sparse matrix storage scheme and a powerful iterative 

QMR solver, storage and computational time requirements are reduced to a manageable 

level. Conductivity contrasts upto 10
6
:1 are possible using local mesh refinement (Liu 

and Joe, 1996) for the borehole logging problems considered. Stalnaker et al. (2006) 

modified the approach of Badea et al. (2001) to calculate the subsurface response due to 

a current loop source placed on the surface. 
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1.3 Objectives of this study 

The primary objective of this study is to develop a three dimensional numerical 

modeling method to compute the CSEM response of conductive and permeable 

heterogeneities in geologic media. A finite element method using vector edge basis 

functions has been developed and tested. 

A finite element (FE) method using vector edge basis functions is employed to 

solve the governing diffusive differential equations. A coupled potential formulation for 

variable  gives rise to an ungauged “curl – curl” equation. Applying traditional FE 

techniques using nodal basis functions, leads in this case to a poorly conditioned 

coefficient (stiffness) matrix (Biro, 1999). The edge basis vectors (Sugeng, 1998) 

provide improved matrix conditioning and a better representation of tangential boundary 

conditions across material discontinuities (Silvester and Ferrari, 1996).  The code has 

been compared and validated against analytic and multi–dimensional numerical 

solutions. To demonstrate the applicability of the code to practical geophysical problems 

I have used it to quantify the effects of mutual interaction between geophysical targets 

when excited by a CSEM source. Special emphasis has been put on the effects of 

increased magnetic permeability of targets. This approach can be used to analyze and 

isolate the effects of “known” cultural noise in the interpretation of CSEM data. 

Section 2 of this work presents the EM induction problem as a coupled system of 

differential equations in terms of secondary potentials. The known primary potentials are 

those generated in a simple, homogeneous half space due to a current loop oscillating at 

a specific frequency. I introduce a new term in geophysical applications : reluctivity 
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(=1/ ) which simplifies the analysis of permeable, conductive heterogeneities in the 

subsurface.    

Section 3 introduces the edge – based finite element technique for solving the 

coupled system of differential equations. I use the weak formulation and discretize the 

solution domain using a tetrahedral mesh allowing local refinement according to the 

scheme of Liu and Joe (1996) as implemented in Stalnaker (2004). Homogeneous 

Dirichlet boundary conditions are applied at the outer mesh boundaries.  

In Section 4, I validate the results from the code against a series of analytic and 

numeric solutions and analyze code performance. 

In Section 5, I apply the code for estimating the mutual coupling between 

geophysical targets and their surroundings. Special emphasis is put on the effects of 

magnetic permeability on the mutual coupling. 

Section 6 consists of the conclusions. This includes a summarization of the 

results and their implications in near surface geophysical exploration. I also explore and 

explain the limitations of the code. Also, I include recommendations for future 

applications and development of the code. 
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2. CSEM INDUCTION IN CONDUCTIVE PERMEABLE EARTH 

2.1 Introduction 

A typical CSEM loop–loop survey involves placing the transmitter current loop 

on or above the ground surface and receiver loop or loops on the surface in various 

orientations and locations around the transmitter. The problem, in the absence of 

significant topography, can be modeled with a double half space consisting of an upper 

half space being the uniform, weakly conducting air region and the lower half space, the 

heterogeneous conducting earth region. As discussed in the review of existing literature, 

the diffusive differential equations for the magnetoquasistatic formulation yield a better 

conditioned matrix for numerical solution when formulated in terms of vector magnetic 

and scalar electric potentials. The ungauged “curl curl” formulation allows for easy 

separation of primary and secondary potentials when both conductive and permeable 

heterogeneities are considered.  

2.2 The ungauged potential problem for conductive, permeable heterogeneities 

Consider an upper half space n with boundaries n, and a lower conducting 

region, c with boundaries c. The interface is defined as nc (Figure 3). A transmitter 

loop of radius a, current strength I, and angular frequency ω, is placed at height h above 

the ground (z = 0). Representing the magnetic field B and the electric field E– in terms 

of a vector magnetic potential A and a scalar electric potential V, we have 

;AB 

          (7a) 

 .Vi  AE 
         (7b)
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Following Badea et al.(2001), explicit modeling of the source is avoided by defining a 

set of primary potentials (Ap, Vp) to be the response of a prescribed background model, 

usually a homogeneous or layered earth. The primary potentials are typically chosen to 

have an analytic or semi–analytic solution. We can thus define, 

;
sp

AAA 
         (8a)

 

.
s

V
p

VV 

          (8b)

           

 

Here, the subscript p denotes a primary potential and s denotes a secondary potential. 

Similarly, the conductivity (σ), permeability (), and reluctivity () may be decomposed 

into primary and secondary parts, 

;sp  

          (9a) 

;sp  

          (9b)

 

;1
sp 




         (9c)

 

and 

.1
p

p 
 

          (9d)
 

It must be noted here that  

s ≠ 1/s , but rather 
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      (9e) 

 

 

Figure 3. A schematic representation of the earth model excited by an electromagnetic 

loop source.  

 

As shall be seen subsequently, reluctivity is preferred to permeability  in the 

governing equations since it facilitates the separation of primary and secondary 

potentials (Biro, 1999). 

Now, from Maxwell’s equations, the total potentials (A,V) satisfy 

  ;0 Vi  AA        (10a) 

 If σ = σp and p  , the solution to equation (10a) is denoted as  Ap and Vp, satisfying  

  .0 pppppp Vi  AA
      (10b)
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The secondary potentials (As , Vs ) are readily shown to satisfy  

    ;pspspssss iVVi AAAA  
  (11)

 

The choice of formulating the CSEM forward problem in terms of reluctivity , 

is thus an important one: it allows us to organize the governing equations with the 

unknown secondary potentials (As,Vs) on the left side and the known primary potentials 

(Ap,Vp ) acting as the source terms on the right side. This organization is not possible in 

terms of permeability,  = p + s.  The potentials (A, V ) represent four unknown scalar 

functions, while equation (11) is just a 3 – component vector equation. An additional 

scalar equation is needed to close the system. 

In the magnetoquasistatic formulation (Larsson, 2007), the current density, J=σE, 

is divergence – free, leading to 

  .0

;0





E

J

          (12)

 

Using equation (7b) in (12), we have 

  .0 Vi A         (13a) 

As before, the primary potentials 

  .0 pppp Vi  A
       (13b)

 

Equation (13a) can then be organized as 

   ;pspsss ViVi   AA
     (14) 

which is the scalar equation that closes the system. 
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Equations (11) and (14) constitute a coupled system of PDEs in terms of the 

unknown secondary potentials (As,Vs) with excitation provided by the known primary 

potentials (Ap,Vp ). In the next section, we shall solve this system of equations using an 

edge based FEM technique.  
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3. APPLYING FEM TO THE CSEM UNGAUGED COUPLED POTENTIAL 

PROBLEM 

3.1 The weak formulation using mixed node and edge elements  

In Section 2, I have defined the CSEM induction problem as an ungauged 

coupled potential system of PDEs (equations 11 and 14). In order to solve this system of 

equations, I discretize the domain Ω=Ωn U Ωc (Figure 3 in Section 2) using a rectilinear 

mesh (Stalnaker, 2004) with tetrahedral elements and capability for local mesh 

refinement as described by Liu and Joe (1996) and implemented in Badea et al (2001). 

The material properties, µ and σ, are assumed to be constant within each tetrahedron. 

I use scalar nodal basis functions to describe the secondary scalar electric 

potential Vs and vector edge basis functions to describe the secondary magnetic vector 

potential As.  Accordingly, Vs is expressed as  

   ;
1

rr k

N

k

ks bV 




         (15a)

 

where kb are unknown scalar coefficients, k are scalar nodal basis functions (Silvester 

and Ferrari, 1996) and N is the number of nodes in the mesh. Similarly, As is expressed 

as 

   ;
1

rαrA i

M

i

is a




         (15b)

  

where ia are unknown scalar coefficients iα are vector edge basis functions (Silvester 

and Ferrari, 1996) and M is the number of edges in the mesh. The edge basis functions 

are linear combinations of nodal basis functions and their gradients; 
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  .baabi  rα
        (15c)

 

In equation (15c), the indices (a,b) refer to the two end nodes of the edge i. As 

implied in equation (15c), the value of the edge basis function αi(r) for an edge (a,b) is 

governed by the values of the nodal basis functions ψa(r)  and ψb(r) and their gradients. 

For a given tetrahedron with nodes (a, b, c, d), the nodal basis function ψa(r) is defined 

on and inside the tetrahedron as (Silvester and Ferrari, 1996), 

   ;1 aa rrr 

         (16a) 

       dcba rrrrrrr  ,,0

        (16b) 

       dcba rrrrrrr  ,,10 

        (16c)

 

The choice of expressing the vector magnetic potential A in terms of the edge basis 

vectors is an important one : it naturally enforces the continuity conditions of the normal 

B– and the tangential E – fields across the material interface between two tetrahedron 

which may have different material properties (σ, µ). As shown in Figure 4, let the 

common face (triangle) τ between two connected tetrahedra (1 & 2) be shared by nodes 

a, b, and c. Following Silvester and Ferrari (1996), the gradient of a nodal basis function 

defined by vertex d of tetrahedron 1 is perpendicular (normal) to the opposing face. 

Thus, the tangential component Atan of vector potential A on τ is essentially a function of 

edges p, q, and r belonging to the triangle τ as evident from equation (15c). Since the 

edges p, q, and r are common to both tetrahedra 1 and 2, it follows Atan is continuous on 
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the interface τ between tetrahedra 1 and 2. The curl of Atan is normal to itself and from 

equation (7a), can be expressed as the normal component of B –, Bnormal. Thus, if Atan is 

continuous, Bnormal is also continuous. Also, from equations (7b), (15a), and (15b) it can 

be shown that the tangential E – field, Etan is coplanar with and a function of Atan. Thus, 

if Atan is continuous then Etan must also be continuous on τ. Thus, the continuity 

conditions of the fields are naturally enforced by representing A in terms of the edge 

basis vectors. It is also instructive to look at the behavior of the component of the E – 

field normal to the common interface, τ. Once again, from equations (7b), (15a), and 

(15b), it can be shown that the Enormal component in tetrahedra 1 is parallel to the 

gradient of the nodal basis function associated with node d and parallel to the gradient of 

node e in tetrahedra 2. As defined in Silvester and Ferrari (1996), these gradient vectors 

are constant and defined only within a given tetrahedron. Two different nodes in two 

different tetrahedra will have different gradients. This implies that the Enormal component 

is discontinuous across the interface τ, which is a natural discontinuity relation across 

material discontinuities. A similar argument may be made about the discontinuity of the 

tangential B – field, noting that it is derived from the curl of the normal component of 

the vector magnetic potential A, which is discontinuous. Thus both continuity and 

discontinuity relations of the field components are naturally enforced by defining the 

vector magnetic potential in terms of the edge basis vectors. 
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Figure 4. A pair of connected tetrahedra (modified from Silvester and Ferrari, 1996). 

The common face is the triangle, τ defined by common nodes a, b, and c, and the 

common edges p, q, and r. By choosing the edge basis functions to define the vector 

magnetic potential, the continuity conditions of the tangential E– and normal B– fields 

are naturally enforced. 

 

Using αj as the test functions to establish the weak formulation for (11), we have,      
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 (17)

 

Here (u,v) denotes integration of product uv over the volume Ω. To reduce the order of 

differentiation, the following Green’s identity is used (Biro, 1999; Velimsky, 2003): 

    ;,,, jijiij αnααααα  
    (18)

 

where < u,v > denotes a surface integral over  , the boundary of Ω. The unit vector 

normal to  is n. Equation (18) reduces the second order derivatives of the basis 

functions to first order derivatives. The surface integral in equation (18) vanishes if 
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homogeneous Dirichlet boundary conditions are set on Γ. Recognizing 

 ppp Vi  AE   and 
pp AB  , equation (17) reduces to 

         .,,),(,
11

psjpsj

c

k

N

k

jk

M

i

ijiji bia EαBααα,ααα   
 (19)

  

Using the primary fields (Ep, Bp) instead of the primary potentials (Ap, Vp) in the right 

hand side of equation (19) eliminates the need to calculate ungauged primary potentials 

(G. Wilson, pers. comm.). Equation (14) is expressed using j as nodal test functions in 

the weak formulation,  

 .,,
11

pj

N

k
kki

M

i
ij bai Eα s 















     (20)

 

Using the identities, 

     
    kjkjkj   n,,,  

and 

     
    ijijij iii αnαα  ,,,   

and setting the surface integrals to zero in the above pairs of equations due to the 

homogeneous Dirichlet boundary conditions, equation (20) can be expressed as, 

     .,,,
2

11

pjskj

N

k

kij

M

i

i bia Eα   
     (21)

 

Equations (19) and (21) constitute the coupled weak formulation. They reduce to 

algebraic equations, after the integrations are performed, and can be assembled into a 

linear system Lu=f. 
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3.2 Assembling the RHS vector and solving the FE system  

The resulting finite element stiffness matrix, L, is sparse, and complex 

symmetric. The integrations on the left hand side of equations (19) and (21) are 

computed analytically using the reference tetrahedron method outlined in Velimsky 

(2003). The right hand side is calculated using a 14–point Gaussian quadrature using the 

coefficients of Jin (2002). I use the QMR solver described by Freund et al. (1992) as 

implemented by Badea et al. (2001) to solve the system Lu=f. As mentioned before and 

shown in Figure 3, the primary fields, Ep and Bp, are selected as those due to a 

homogeneous, conductive, permeable half space excited by an overlying horizontal 

current loop (Figure 3). Their numerical computation involves the calculation of J1 – and 

J0 – Hankel transforms. The expressions for Ep and Bp (Ward and Hohmann, 1988) are 

given below: 

       ;0
2

0

11
0 zdrJaJee
Iai hzhz
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Here, (r, θ, z) constitutes the unit vectors of a cylindrical coordinate system whose 

origin is at the center of the loop; a is the radius of the loop; 22   k ; ik 2
; 

and β is the reflection coefficient given by 

.
0

0






i

i






         (24)

 

Guptasarma and Singh (1997) developed and described the digital filters which have 

been used to compute the J1 – and the J0– Hankel transforms.  

3.3 Post processing– calculating fields from potentials 

It must be noted that solving the FE system described in the preceding sub 

sections (3.1 and 3.2) yields the scalar coefficients ai and bk of, respectively, the edge 

basis vectors defined in equation (9b) and the nodal basis functions defined in equation 

(15a). In geophysical surveys using a horizontal loop receiver, the measured response is 

proportional to Bz. The post – processing steps include the calculation of Ax, Ay, followed 

by their spatial differentiation which, according to equation (7a), yields the sought – 

after quantity, Bz.  The post – processing procedure requires a careful analysis of the 

edge basis functions. The tangential component Atan of a vector potential A directed 

along an edge of a tetrahedral element is constant along the edge. A discontinuity in Atan 

is encountered however at the nodes of the mesh (Dibben and Metaxas, 1997). 

Nevertheless, it is required to compute the vector potential A at the nodes to enable a 

comparison with node – based numerical techniques (Stalnaker, 2004). Thus, unlike the 

situation in node–based FE, the post processing of edge–based FE is non – trivial and 

requires additional computational steps. Several schemes have been proposed (Dibben 
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and Metaxas, 1997; Davidson, 2000; Vollaire et al. 2005). The method outlined below 

follows Dibben and Metaxas (1997) but while they advocate weighting by the number of 

edges connected to a given node, in this study better results are obtained weighting by 

the number of connected tetrahedra.  

Thus, using equations (15c), (16a), and (16b), for a single tetrahedral element, 

the edge basis vector αi directed from node a to node b, and evaluated at node a, is 

expressed as  

 
 

.bai 
rr

rα
         (25a)

 

The gradient of a nodal basis function is constant inside a given tetrahedron (Slivester 

and Ferrari, 1996). If the i – th edge with nodes (a,b) belongs to a total of P- tetrahedra 

and node a is shared by a total of M- edges, then 
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Similarly, for node b, 
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Thus, the computation of the vector potential A – at a node can be accomplished by 

identifying the number of tetrahedra and edges shared by the node. It is also important to 

determine whether the edge vector αi is pointing toward node a or toward node b and 

accordingly use either equation (25b) or (25d). This approach differs from Dibben and 
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Metaxas (1997) who advocate normalization by the number of connected edges M 

instead of the number of connected tetrahedra P.  

 Once the vector potential A is computed at a given node, the field component Bz 

is readily obtained from equation (7a) using a 3 – point central difference scheme (eg. 

Faires and Burden, 1998). 
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4. VALIDATION OF CODE FORMULATION AND IMPLEMENTATION 

The formulation and implementation of a new forward modeling algorithm must 

be verified against known equivalent solutions. In this dissertation code validation 

exercises have been divided into two steps : i) a check against non magnetic (r  = 1) 

analytic and numerical solutions and ii) a comparison for the magnetic case (r > 1) 

against the analytic solution of a magnetic dipole exciting a permeable conducting 

sphere in free space (eg. Rai and Verma,1982). All edge–based FEM solutions presented 

here have been tested for convergence on progressively finer meshes and the solutions 

shown are the ones on the finest mesh that could be supported on our computational 

platform, a 2.8 GHz 4-core processor with 16 GB RAM.  

For the non–magnetic case, I compare results against: a known analytic solution 

for the 1–D layered earth problem (Ryu et al., 1970; Wait, 1982); a 1–D analytic 

solution for an equatorial loop current excitation of a homogeneous sphere (Everett and 

Martinec, 2003); published 2.5–D finite element solutions (Song and Kim, 2009); and 

finally, fully 3–D node – based finite element solutions (Stalnaker, 2004). 

4.1 Validation against 1–D layered earth solution 

For the layered earth validation, a 4m thick conductive layer (0.1 S/m) located 

between upper and lower resistive layers (0.02 S/m) is considered. The model strata are 

excited by a circular loop of 3m radius carrying 1A current at 7 kHz (Figure 5a) 

frequency. The thickness of the upper layer is also 4 m. I use the edge–based FE code to 

compute the CSEM response for a similar model, namely a 4m thick slab buried at 4m 

depth and positioned directly beneath the loop (Figure 5b). As the slab width increases, 
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its response should converge to that of the 1–D layered earth. The FE algorithm 

implements homogeneous Dirichlet boundary conditions, which preclude placing 

conductive, permeable bodies on the outer computational boundary. To ensure a rigorous 

test, I subtract from the analytic layered earth solution the background field due to a half 

space of conductivity 0.02 S/m. This secondary analytic field is then compared against 

the FE–computed secondary field of the conductive slab. The results are summarized in 

Figure 6. As the width of the slab increases from 8 m, to 12 m, to 16 m, the FE–

computed slab response approaches the analytic layered earth response. The “dip” in the 

response amplitude (Figure 6a) is expected and its location corresponds to the edge of 

the slab. The trend of the phase response tracks that of the analytic 3- layer solution 

(Figure 6b), keeping in mind the 180
0
 phase change at the edge of the slab. The observed 

differences between the FE–computed and analytic response curves are due to the finite 

extent of the slab, which acts much like a secondary vertical magnetic dipole source. The 

behavior of the FE–computed response in Figure 6 illustrates the limits to which 1D 

solutions can be used to approximate the response of a three dimensional earth. 
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Figure 5.  (a) Schematic representation of the 1-D layered earth problem. (b) A slab 

used to approximate a three layered earth problem. 
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Figure 6. Comparison between edge based finite elements and analytic 1–D layered 

earth solutions at 7 kHz frequency. The transmitter is placed at Rx position 0m. (a) The 

amplitude for different slab widths and the analytic solution for three layer earth.  (b) 

The phase for the same problem. The FE–computed and the analytic diverge at Rx 

positions beyond the slab’s lateral termination. At those locations the 1–D 

approximation is less valid.  

 

4.2 Equatorial loop current excitation of a homogeneous sphere 

Everett and Martinec (2003) present an analytic solution for induction in a non–

magnetic, conducting sphere excited by an equatorial loop current (Figure 7a). As 

mentioned earlier, a rectilinear mesh consisting of tetrahedral elements with an option 

for local mesh refinement is ideally suited for discretization of conductive, permeable 
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rectilinear blocks (Stalnaker, 2004). For accurate modeling however, an FE mesh should 

conform to material discontinuity (Canann et al. 2000; Zorin, 2006), which in this case is 

a sphere. Conforming the rectilinear mesh to the geometry of the sphere is not performed 

here. Instead, an equivalent cube is considered. The top of a 0.2m x 0.2m x 0.2m cube is 

positioned at a depth of 0.1 m directly under a loop of radius 10 m (Figure 7b) excited at 

a frequency of 5 kHz. The equivalent sphere in this case has a volume equal to that of 

the cube and is excited by an equatorial ring current of the same 10 m radius. The sphere 

response is computed at a distance z = 0.1 + beq above the center of the sphere. Here beq 

is the radius of the sphere whose volume is equal to that of the cube. Figure 8 shows the 

quadrature response of Hz inside the loop along a radial profile compared against the 

equivalent analytic response. The two solutions are in reasonable agreement. 
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Figure 7. (a) Schematic representation of the geomagnetic induction problem 

represented by an equatorial ring current (adapted from Everett and Martinec, 2003); (b) 

schematic representation  of electromagnetic induction in a small cube excited by a large 

axisymmetric loop. 
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Figure 8. Comparison of edge–based FEM against the analytic solution of Everett and 

Martinec (2003). The conductivity of the cube is 0.1 S/m and is 0.2 m on a side. The 

loop is placed at Rx position 0 m and height 0.1 m above the top of the cube. The 

frequency is 5kHz. The quadrature Hz response is presented. 

 

4.3 Comparing 2.5–D FEM solutions for a dipole source 

Song and Kim (2009) developed a 2.5–D FEM code. They have computed the 

CSEM response of an infinitely long rectangular pipe with 10 m x 10 m cross section 

buried 15 m under the surface as shown in Figure 9. The conductivity of the pipe is 0.1 

S/m and located within a 0.01 S/m background medium. The sensor is a moving 

transmitter receiver (Tx–Rx) system with fixed separation L = 40m. Both source and 

receiver are vertical magnetic dipoles. The system response is plotted at the center of the 

Tx–Rx configuration. The edge–based 3–D FE code developed in this work models the 

response of a slab of finite strike length with a 10 m x 10 m cross section due to a finite 

loop source. Thus the response of a 3–D finite slab excited by a  3–D finite loop shall 
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approximate the 2.5–D solutions for a vertical magnetic dipole source when the two 

following conditions are met : (i) the strike length of the finite slab is “long” enough to 

approximate an  infinitely long pipe and (ii) the loop radius and the current flowing 

through it approximates the dipole strength. To test the effect of (i) different slabs of 

varying strike lengths have been tested by a 3m radius loop carrying a current of 0.8 A. 

For (ii), a slab of 80 m strike length is excited by loops of varying radius and current 

strengths. Song and Kim (2009) computed the normalized impedance defined as  

.
0 freespaceB

totalB

Z
Z

z

z

         (26)

  

Figure 10 shows the comparison between the quadrature components of the 

normalized impedance response for the 3–D finite slab of varying strike lengths, 40 m, 

80 m, and 160 m  and 2.5– D solution of Song and Kim (2009). The squared norm 

difference shown in panel (b) of Figure 10 drops to less than 1 % as the strike length is 

increased beyond 80 m. The comparison of the quadrature components for the 2.5–D and 

3–D solutions at 3kHz for the two different excitations, one of 1 m radius and current 

strength 1 A and the other of 3 m radius and current strength 0.8 A is shown in Figure 

11. The squared norm differences shown in Figures 11 (c) and 11(d) are less than 1% in 

each case suggesting that the strike length of the slab has a stronger influence on the 

normalized impedance response.  
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Figure 9. A schematic representation of the 2–D block embedded in half space excited 

by a dipole–dipole system of 40 m separation (Modified from Song and Kim, 2009). 

 

Figure 10. (a) Comparison between the 2.5–D (dipole source) and 3–D (finite loop 

source) responses at 3kHz for varying strike lengths of 40, 80, and 160 m. The 3–D 

finite slab quadrature response approximates that of the 2–D ( infinite strike length) pipe 

with increasing strike length. (b) The corresponding squared norm differences fall to less 

than 1 % for strike lengths of 80 m and more. 
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Figure 11. Comparison between 2.5–D (dipole source) and 3–D (finite loop source) 

computed responses at 3kHz for varying loop radius. (a) The quadrature components for 

1 m loop at current strength 1 A. (b) The quadrature components for 3 m loop at current 

strength 0.8 A. The corresponding misfits are shown in (c) and (d). 

 

4.4 Coulomb gauged node–based FE vs. edge–based FE  

Next, I compare two different 3–D FEM implementation formulated with 

different basis functions and gauge conditions. Stalnaker (2004) developed a 3–D CSEM 

code using the Coulomb gauge and nodal basis functions. The 3–D CSEM code 

introduced herein employs ungauged potentials along with mixed edge / node elements. 

Figure 12 shows the simple model employed for testing. A rectangular slab of 

dimensions 4 m x 8 m x 4 m buried at 4 m depth with conductivity 0.1 S/m is placed 

within a homogeneous background of 0.02 S/m. A circular loop of 3m radius and current 
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1 A is placed on the ground surface (z=0). The loop is excited at 0.5, 1.0, and 5.0 kHz. 

The amplitude and phase of the secondary field component Bz along the x– profile (y=0, 

z=0) for these frequencies are displayed in Figure 13. It is well known (eg. Ward and 

Hohmann, 1988) that the far–field decay of Bz scales as 1/r
3
. Accordingly, the computed 

amplitudes are compared against a scaled 1/r
3
 function. The two solutions are in good 

agreement. 

 

 

Figure 12. A schematic representation of the model used for comparing the ungauged 

edge–based and the Coulomb–gauged node–based FE implementations. 
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Figure 13. Comparison between edge–based, and node–based FE implementations at 

various frequencies. Panels (i)–(iii) show the amplitude response for frequencies 0.5, 1, 

and 5 kHz respectively. The red curve is a scaled 1/r
3
 response. Panels (iv)–(vi) show the 

phase response for the same three frequencies. 

 

4.5 Analytic solution for a magnetic, permeable sphere in free space 

Finally the code is tested for the variable µ case, which is one of its important 

new features. The scarcity of published solutions confines the tests to free – space 

solutions for a conducting, permeable sphere excited by an oscillating dipole (Grant and 

West, 1965; Lodha and West, 1976; Best and Shamas, 1979; Rai and Verma, 1982). I 
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choose the solution of Rai and Verma (1982) for its clarity in defining the secondary Hz 

field. The excitation is a radially directed oscillating dipole (Figure 14a). A cube is 

located directly under a loop source of radius ~3-5 times smaller than the cube length 

(Figure 14b). Figure 15 compares the response of a cube of 8 m side whose top is 4 m 

under a loop of 1 m radius, oscillating at 50 Hz, against the analytic responses of several 

concentric spheres whose common center is located 8 m under the loop. Figure 16 

presents results with the cube at the same depth against a 4 m radius sphere whose center 

moves from 5 m to 7 m under the loop. After a few trials I find that a sphere of radius 

3.6 m buried at a depth of 6 m produces an equivalent response to that of an 8m cube 

whose top is at 4m depth from the loop.  I have checked this result at various frequencies 

(0.05 – 5 kHz) and conductivities (0.1 – 10 S/m) and in all cases find reasonable 

agreement between the FEM and the analytic solutions using the same equivalent sphere. 

Having established the robustness of the equivalent sphere over a range of 

frequency and conductivity, I now compare the sphere and cube responses for the 

magnetic (µr >1) case. A comparison is made for relative permeabilities µr = 1, 3, 5, 10, 

and 50 at a frequency of 50 Hz. The results are summarized in Figure 17. There is 

reasonable agreement between the analytic and the FEM solutions in both amplitude and 

phase especially at lower permeability. 
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Figure 14. (a)  A conducting, permeable sphere excited by a radial dipole in free space 

(Rai and Verma, 1982). The z- component of the radial and tangential components of the 

magnetic field is measured at the receiver. (b) Schematic diagram of a cube being 

excited by a small loop source so that the dipole approximation can be used. 
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Figure 15. A comparison of the responses of concentric spheres whose centers coincide 

with an 8m cube. The top panel is amplitude,  the lower panel is phase. 
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Figure 16. Comparison of the response of a 4m radius sphere at varying depths against 

that of an 8m cube whose top is located 4 m under the loop. The top panel is amplitude, 

the lower panel is phase. 
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Figure 17. Comparison of the response of sphere of 3.6 m radius located at a depth of 

6m with that of an equivalent 8 m cube whose top is located 4 m under the loop. Curves 

are shown for various relative permeability (µr) values. (a) Panels (i) – (v) represent the 

Hz amplitude at frequency 50 Hz, for µr =1, 3, 5, 10, and 50 respectively. (b) Panels (i) – 

(v) represent the 50 Hz Hz phase response for same set of µr. 
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4.6 Discussion of results and code performance 

The edge–based FEM technique based on an ungauged potential formulation 

developed herein has been validated against 1–D analytic and multidimensional 

numerical solutions. While the new algorithm gives satisfactory solutions over a 

reasonable range of frequencies, conductivities, and permeabilities, the fits degrade at 

higher values of these three parameters. A contributing factor is the convergence 

performance of the QMR solver, which is neither monotonous nor guaranteed for the 

solution for a cube excited by a small loop, converges slowly at higher values of 

permeability. Figure 18 shows the QMR convergence as a function of iteration. After 

5000 iterations, the convergence for the µr = 50 case  is several orders of magnitude 

slower than at µr  ≤ 10. Similar behavior is noted for conductivity and frequency 

variations. Other situations where the QMR solver is slow or fails to converge to an 

acceptable level include: (a) Electrically large computation domain (greater than two 

skin – depths in any one dimension)  and (b) highly permeable small targets placed very 

close to a large loop. The poor convergence is caused by an ill conditioned FE matrix, an 

unstable right hand side vector, or both. For the former, the use of enhanced 

preconditioning such as ILU decomposition (Heldring, 2001), or truncated SVD (Berry, 

1992) algorithms is recommended. Better approximations to the Hankel transform can 

improve the stability of the right hand side for large offset and future research may be 

directed towards either developing improved Hankel transform digital filters or 

alternative approaches like collocation (Levin, 1996). 



46 

 

 

Figure 18. Comparing convergence rates for the qmr solver for relative permeability 

from 1–50 for a 8m side cube of 0.1 S/m conductivity under a small loop (1 m radius) 

oscillating at 50 Hz in freespace.  

 

4.7 Computation speed 

 As earlier mentioned, the computation platform used in this work is a 2.8 GHz 4-

core processor with 16 GB RAM. The finite element algorithm outlined above has 

several key computational modules. These include: mesh generation, matrix assembly, 

RHS assembly, matrix solver (QMR), and post processing. Most examples used here for 

code validation have been discretized using 33 x 33 x 33 nodes in the x-, y-, and z- 

directions of a uniform mesh with no local mesh refinement. The mesh has 196608 

tetrahedra, 35937 nodes, and 238688 edges. The total number of degrees of freedom in 

the FE system is 250047. Total run time is approximately 8 hours. Table 1 shows the 
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percentage time approximately used up by the CPU for executing the different modules 

of the code. 

 

 

 

Table 1. Relative computational efficiency of the different modules of FE computation. 

Computational task Percentage time (%) 

Mesh generation 1 

Matrix assembly 7 

RHS assembly 80 

Matrix solver (QMR) 10 

Post processing 2 

 

 

At present a 14 – point Gaussian quadrature is invoked for every tetrahedral 

element in the mesh for assembly of the RHS vector. The process is far from optimized 

and as apparent from the above table, improvements in RHS assembly will improve the 

efficiency of the code dramatically. 
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5. EFFECTS OF MAGNETIC PERMEABILITY ON MUTUAL COUPLING 

5.1 Introduction 

It has been mentioned in Section 1 that the CSEM response of a conducting, 

permeable geophysical target can be regarded as the summation of inductive and 

galvanic modes of current excitation, plus a magnetization mode. When two or more 

such targets are present, then their mutual interactions produce tertiary and higher order 

current excitation and magnetization modes. Quantifying the induced tertiary currents is 

useful for understanding the mutual coupling effects between a subsurface target of 

interest and a “known” cultural element such as a powerline or a metallic fence or two 

cultural elements.  The distortion of the response from a geophysical target due to the 

presence of cultural elements has long been considered a major obstacle to correct 

interpretation of CSEM response (e.g. Szarka, 1988; Junge, 1996). Oftentimes 

geophysicists simply disregard CSEM data that have been distorted by cultural noise.  

The mutual impedance (MI) formulation of the CSEM response can provide 

useful insights into the physics of interaction between two subsurface targets or between 

a single target and host geology (Wait, 1982). It is well known (eg. Wait, 1955) that the 

mutual coupling between two loops over a heterogeneous earth is dependent on the 

conductivity distribution of the subsurface. The mutual coupling is expressed as Z/Zo 

where Z is the MI measured between the coils and Zo is the same measured in free space. 

Equation (26) in Section 4 shows that MI is the total magnetic field measured in the 

presence of the Earth normalized by that which would have been measured in free space 

(Song and Kim, 2009). 
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Also, in Section 4 it was shown that a conductive target excited by a primary 

loop source behaves as a secondary source of current. If two or more conductive targets 

are present, one of the targets acting as a secondary source induces tertiary electric 

currents in the other. The concept of mutual coupling between loops has been 

generalized to study the interaction between two buried conductive targets by Fernandes, 

(2008) . Stalnaker et al. (2006) earlier demonstrated that the CSEM response of multiple 

buried targets, or a single target of complex geometry composed of different materials 

can be significantly influenced by their mutual coupling and interaction with the host 

geology. In this work, I use the newly developed edge – based CSEM code described in 

the previous sections to study the influence of magnetic permeability on the mutual 

coupling of conductive targets of simple shape. This is done to enable a better 

understanding of CSEM responses acquired at environmental, UXO, or archaeological 

sites in which multiple buried permeable targets are often found. 

5.2 Overview of mutual coupling between two buried targets 

Qian and Boerner (1994) treat cultural elementsuch as metallic fences, and 

powerlines as discretely grounded conductors (DGC) and use the theory of grounded 

circuits to describe the mutual interaction between such structures and the host geology. 

They quantify the total electric field E- inside a conductor as 

        ;rrj|r|rGrErE 000 d
v

n



       (28)
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 where En
 is the field that would exist in the absence of the DGC while G(r|r0) is the 3x3 

dyadic Green’s function for computing  the electric field at r due to an electric dipole at 

r0 and j(r) is the current density distribution in the DGC. This integral equation 

formulation allows the decomposition of an observed CSEM signal into a “geologic” 

component and a “known” cultural component modeled as a DGC, thereby isolating its 

influence on the signal.  

There are other conceptual approaches to describing mutual coupling between 

conductive targets such as complex natural resonance (CNR) by Geng et al.(1999) . A 

standard approach is to consider the magnetic flux linkage between two conductive 

bodies (eg. Ulaby, 2004). For simplicity, the two bodies can be assumed to behave as 

two closed loops 1 and 2 as shown in Figure 19. Then, the flux through L2 due to current 

in L1 is given by 

 

2

;21

S

dsB

          (29)

 

where B is the magnetic field generated by the current in loop L1. The mutual inductance 

M21 of loop L2 due to current flowing in L1 is given by (Ulaby, 2004) 

.21
21

I
M




          (30)
 

The total energy stored in the two loop system is the same irrespective of whether 

current in L1 induces a field in L2 or vice versa (eg. Alexander and Sadiku, 2004). It can 

be shown from a consideration of conservation of total energy that   

MIMM  1221          (31) 
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Figure 19. Magnetic field B fluxing through loop L2 due to current I in loop L1 

(Modified from Fernandes, 2008). 

 

In a geophysical field investigation, the magnetic field is measured by a receiver 

loop of constant area. The magnetic flux threading the loop according to equation (29) is 

essentially a function of the measured field Bz – while the current according to Ampere’s 

circuital law is proportional to Hz. Thus, in equation (30), the effect of mutual coupling 

(MC) between two buried geological targets excited by a unit current can be isolated 

using the expression (Fernandes, 2008): 

  ;Im 2121  zzz HHHMC        (32a) 

where MC = mutual coupling;  21

zH = secondary Hz response of a model consisting of 

two targets embedded in a conductive, permeable geologic medium; 1

zH  = secondary Hz 

of the same model  containing target 1 without target 2; 2

zH = secondary Hz of  the same 

model  containing target 2 without target 1. I also define the term normalized mutual 

coupling MCn in equation (32b) as 

  212121 max/Im  zzzz HHHHMCn
      (32b)
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 Fernandes (2008) has numerically modeled the effects of mutual coupling for a range of 

target conductivities, relative orientations and frequencies. Here, I extend the analysis to 

include the effects of mutual coupling of permeable targets for models of simple shape, 

namely two cubes buried in a conductive half space. 

5.3  Numerical estimation of mutual coupling between two buried cubes 

 The following geometry was used to explore the mutual coupling of conductive, 

permeable targets excited by a controlled electromagnetic source as modeled by the 

edge–based finite element algorithm. Two 2 m x 2 m x 2 m cubes are buried 2 m deep in 

a 0.02 S/m conductive halfspace, as shown in Figure 20.  The cubes each have 0.1 S/m 

conductivity. Their centers are placed 10 m apart and they are excited by a 3 m radius 

loop of current strength 1A and frequency 50 Hz. The center of the loop is placed on the 

ground surface (z = 0 m) at the mid–point between the cubes.  

 

Figure 20. Schematic representation of two buried cubes of conductivity 0.1 S/m excited 

by a 3m loop at 50 Hz. The effect of permeability on their mutual coupling is evaluated 

by varying the permeability of either one or both cubes. 
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Table 2 summarizes the electrical and magnetic properties of two different suites 

of models. In the first suite, the relative permeability of cube A (on the left) is kept 

constant at µr = 1, while that of B is varied from µr = 1 through µr = 20. In the second 

suite of models, the permeabilities of both cubes are changed simultaneously so that 

each cube has the same permeability for every forward modeling run. To estimate the 

MC and MCn parameters described in equations (32a) and (32b), three forward 

modeling runs are necessary to evaluate each row of Table 2; one run for the full two–

cube model, one run with only the left cube is present, and one more run for a model 

containing the right cube only.  As described in Section 1, the CSEM response of a 

nonmagnetic (µr = 1) conductive body located in a conductive host can be decomposed 

into two modes of current excitation which contribute to the secondary magnetic field: 

the inductive mode, in which the current is confined to circulate inside the conductor, 

and the galvanic, or current channeling mode in which current gathered from the host 

medium flows through the conductor.  In magnetic (µr > 1) bodies, a magnetization 

mode also contributes to the secondary field. At 50 Hz the right cube is galvanically 

saturated (C=1.25) but inductively undersaturated (K=9.87x10
-6

).  As the permeability of 

the right cube is increased, the relative effects of the three modes on the overall field can 

be assessed using the MC and MCn formulations described in equations (32a) and (32 

b).   
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Table 2. Model suites for mutual coupling experiments at 50 Hz frequency. 

Model Suite A 

Left Cube µr Right Cube µr 

1 1 

1 5 

1 7 

1 10 

1 12 

1 15 

1 20 

Model Suite B 

1 1 

5 5 

7 7 

10 10 

12 12 

15 15 

20 20 

 

The forward modeling results, expressed in terms of MC and MCn for suite A are 

summarized in Figures 21 through 23. The responses shown in Figure 21 are checked for 

possible modeling artifacts by interchanging the permeabilities of the left and right cube. 

The MC reciprocal responses should be equal if there are no gross modeling errors. As 
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shown in Figure 21, the squared norm difference in the MC reciprocal responses is less 

than 1 % for a range of relative permeabilities up to µr = 20. 

 

 

Figure 21. Comparing reciprocal MC responses for model suite A: (a) the blue curve 

shows the response for the configuration mentioned in Table 2, while the red curve 

shows the response when the cube permeabilities µr  are interchanged. Operating 

frequency is 50 Hz; (b) the relative misfit between the reciprocal cases. 

 

  Figure 22 shows the behavior of the mutual coupling coefficient (MC) as 

described by equation (32a). The curves are closely spaced above the right cube while 
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they separate out over the left cube as the right cube becomes more permeable. This 

result appears to be counter – intuitive but it is actually expected. The contribution to the 

total field for the permeable right cube comes from a combination of  galvanic, 

inductive, and magnetization modes, whereas the contributions from the non permeable 

left cube are confined to only the galvanic and inductive modes. Since the host 

conductivity and the cube conductivity is the same for both cubes, the magnetization 

mode from the right cube has a dominant residual effect on the subtracted field over the 

left cube in the MC response (equation 32a).  

 

Figure 22. MC between a non–magnetic and a magnetic cube with increasing magnetic 

permeability. Operating frequency is 50 Hz. 
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In practical field experiments it is not feasible to estimate absolute mutual 

coupling between geologic and man – made structures (Qian and Boerner, 1994) as this 

would involve measuring the exact response of the geology in absence of the structure. 

For bulky storage tanks, buried powerline infrastructure, etc., excavation of the cultural 

target is an impractical exercise. It is thus more useful to calculate the extent of coupling 

as a percentage of the secondary field according to equation (32b). Accordingly, the 

MCn components for model suite A are shown in Figure 23. Interestingly, the magnitude 

of coupling decreases in proportion to the total measured secondary field with increasing 

µr for the right cube. Similar effects are observed for model suite B where both left and 

right cubes have the same µr (Figures 24 and 25). This suggests that higher µr increases 

the contribution from the magnetization mode discussed in section 1 to the overall field. 

As discussed in Section 1, the decay time for fields in the magnetization mode is longer 

and the decaying rate is different from that of the induced eddy current mode (Pasion, 

2007). Thus, not only is mutual coupling lower as a proportion of the total field, but also 

the shape of the curves in Figures 23 and 25 are different from that of the non magnetic 

case. 
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Figure 23. MCn between a non–magnetic and a magnetic cube with increasing magnetic 

permeability. Operating frequency is 50 Hz.  
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Figure 24. MC between two magnetic cubes having equal magnetic permeability (model 

suite B in Table 2). Operating frequency is 50 Hz.  
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Figure 25. MCn between two magnetic cubes having equal magnetic permeability 

(model suite B in Table 2). Operating frequency is 50 Hz. 

 

Next, I investigate the dependence of the mutual coupling of  magnetic cubes on 

the operating frequency. Most cultural refuse present environmental field investigations 

such as buried metal pipes, steel drums, etc. have an effective µr in the range of 1.0 – 1.5 

(Barrows and Rocchio, 1990). The effective µr (Grant and West, 1965) is a measure of 

the net reduced field of a magnetic body due to the effects of demagnetization dependent 

on the shape of the magnetic body and it’s orientation relative to the inducing field. The 

effective permeability is also reduced for hollow magnetic bodies relative to solid 

magnetic bodies of the same overall size and shape. The investigation frequencies range 
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from 100Hz –1MHz (Everett and Meju, 2005). As has been noted in the previous 

section, the convergence of the QMR solver is slower at higher frequencies and 

magnetic permeabilities. The code calibration results presented in the previous section 

generally point towards a minimum acceptable QMR residual of 10
-8

. Table 3 

summarizes Model Suite C results. This suite of models is run for a number of 

frequencies to determine the range of model parameters that can be accurately modeled 

by the edge – based CSEM code. The convergence plots are shown in Figure 26. As 

evident, models with µr ≤ 1.5 can be modeled at frequencies of upto 5 kHz for the model 

geometry specified in Figure 20. 

 

Table 3. Model suite C for mutual coupling dependence at higher frequencies. 

Model Suite C 

Left Cube µr Right Cube µr 

1 1.0 

1 1.3 

1 1.5 

1 1.7 

1 2.0 

Frequency (kHz) 

1 3 5 7 
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Figure 26. QMR convergence for model suite C at various frequencies upto 7 kHz. 

Acceptable levels of convergence may be achieved upto µr = 1.5 at 5 kHz frequency. 

 

The first three models from suite C of Table 3 have been used for testing the 

frequency dependence of mutual coupling effects for magnetic bodies. The results are 

summarized in Figure 27. As evident from Figures 22 – 25, the mutual coupling values 

are maximum at the center of the loop. Thus, the MCn values for model suite C have 

been plotted at the center of the loop for µr = 1.0, 1.3, and 1.5 for the right cube. There is 

a peak around 3kHz (~ 9%) for  µr = 1.0 while µr = 1.3 has a peak at 2kHz(~ 4%) and a 

smaller one at 4 kHz (~ 1%). The peaks for µr = 1.5 appear at 2 kHz (~ 1.2%) and 

another at 5 kHz (~ 0.7%) . The contributions from the magnetization mode for µr > 1 
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diminishes the effect of  inductive mutual coupling on the observed field in the 

frequency range studied here for this model geometry. 

   

 

Figure 27. MCn plots for µr = 1.0, 1.3, and 1.5 plotted at center of the loop (x=0m, 

y=0m). 

 

5.4 Discussion of results 

The new edge – based CSEM code can be used to estimate the effects of mutual 

coupling between cultural targets and host geology. For the simple two–cube models 

studied here, magnetic permeability diminishes the relative contribution of inductive 

coupling to the measured field. The main reason for this appears to be an increased 

contribution from the magnetization mode as discussed in Section 1. The secondary 
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magnetic field generated by the coupled host – target interaction acts as a source of 

tertiary eddy currents induced in the target (Fernandes, 2008). The behavior of such 

fields can be demonstrated in terms of the secondary magnetic field of a conducting 

permeable sphere excited by an oscillating radial magnetic dipole (a very small loop 

carrying a harmonic current)  in free space (Rai and Verma, 1982) . As seen in Figure 2, 

the peak of the quadrature response shifts towards lower frequencies with increasing  µr.  

The mutual coupling response as formulated by equations 32a and 32b, is 

expressed in terms of  the quadrature component of the field response. Thus, for the 

tertiary currents introduced in the system, there is a corresponding peak in coupling 

response in Figure 27. For µr = 1, the peak occurs around 3 kHz, while for µr = 1.3 and 

1.5, the dominant peaks appear in the vicinity of 2 kHz. The sparsity of data points , due 

to lengthy computational runs, may have aliased the exact location of the peaks. The 

smaller peaks associated with µr  > 1  could be modeling artifacts. Expanding the 

investigation over a wider range of frequencies with a more robust solver or enhancing 

QMR performance with an improved pre conditioner may help resolve the issue of the 

smaller peaks.  
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6. CONCLUSIONS 

In this dissertation, I have developed a three–dimensional edge–based CSEM 

finite element algorithm based on an ungauged, secondary–potential formulation. The 

algorithm is capable of modeling the CSEM response conductive and permeable 

structures embedded in piecewise constant idealizations of geologic media. The code has 

been verified against several analytic and multi–dimensional numerical solutions and 

generates reliable CSEM responses over a reasonably wide range of frequencies, 

conductivities, and magnetic permeabilities. The traditional approach of modeling the 

electromagnetic response of magnetic targets employs a formulation of the governing 

equations in terms of magnetic susceptibility (eg. Farquharson et al. 2003). Here, a new 

parameter in geophysics, reluctivity (Biro, 1999), facilitates a separation of primary and 

secondary potentials.  

The code is designed to model near – surface CSEM responses over buried 

magnetic (µr > 1) targets representative of cultural elements such as buried storage tanks, 

drums, or pipelines. The CSEM response consists of a superposition of inductive, 

galvanic, and magnetization modes.  As “proof of concept”, mutual coupling effects 

between two magnetic bodies and a magnetic and non magnetic body have been studied. 

The presence of magnetic bodies diminishes the contribution of the inductive coupling 

between targets to the overall response relative to the contribution from the 

magnetization mode. This is important for applications in which significant cultural 

debris may be present. The presence of such buried cultural elements has often been 

considered a major impediment to accurate geological interpretation of CSEM data. 
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Some limitations of the code, such as convergence of QMR solutions, meshing of 

spheroidal and other structures with curvilinear material discontinuities, and 

computation speed have been noted. Addressing these issues would increase the 

applicability of the code to higher frequencies, conductivities and permeabilities, which 

are relevant for certain environmental geophysics problems such as UXO discrimination, 

brownfields remediation and historical archaeology.  Further development and 

improvements are necessary to expand the applicability of the code. These include the 

development of a better solver, preconditioner or both. Stable Hankel transform 

solutions for far field (greater than two skin depths) would improve code performance 

for calculation of fields at electrically large offsets and for electrically large 

computational domains.  
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