
STOCHASTIC DYNAMIC PROGRAMMING AND STOCHASTIC FLUID FLOW

MODELS IN THE DESIGN AND ANALYSIS OF WEB-SERVER FARMS

A Dissertation

by

PIYUSH GOEL

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2009

Major Subject: Industrial Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4280477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

STOCHASTIC DYNAMIC PROGRAMMING AND STOCHASTIC FLUID FLOW

MODELS IN THE DESIGN AND ANALYSIS OF WEB-SERVER FARMS

A Dissertation

by

PIYUSH GOEL

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Natarajan Gautam
Committee Members, Richard M. Feldman

Gary M. Gaukler
Jean-Francois Chamberland

Head of Department, Brett A. Peters

August 2009

Major Subject: Industrial Engineering

iii

ABSTRACT

Stochastic Dynamic Programming and Stochastic Fluid-Flow Models in the Design

and Analysis of Web-Server Farms. (August 2009)

Piyush Goel, B.Tech., Indian Institute of Technology, Bombay

Chair of Advisory Committee: Dr. Natarajan Gautam

A Web-server farm is a specialized facility designed specifically for housing Web

servers catering to one or more Internet facing Web sites. In this dissertation, sto-

chastic dynamic programming technique is used to obtain the optimal admission-

control policy with different classes of customers, and stochastic fluid-flow models

are used to compute the performance measures in the network. The two types of

network traffic considered in this research are streaming (guaranteed bandwidth per

connection) and elastic (shares available bandwidth equally among connections).

We first obtain the optimal admission control policy using stochastic dynamic

programming, in which, based on the number of requests of each type being served,

a decision is made whether to allow or deny service to an incoming request. In

this subproblem, we consider a fixed bandwidth capacity server, which allocates the

requested bandwidth to the streaming requests and divides all of the remaining band-

width equally among all of the elastic requests. The performance metric of interest in

this case will be the blocking probability of streaming traffic, which will be computed

in order to be able to provide Quality of Service (QoS) guarantees.

Next, we obtain bounds on the expected waiting time in the system for elastic

requests that enter the system. This will be done at the server level in such a way

that the total available bandwidth for the requests is constant. Trace data will be

converted to an ON-OFF source and fluid-flow models will be used for this analysis.

iv

The results are compared with both the mean waiting time obtained by simulating

real data, and the expected waiting time obtained using traditional queueing models.

Finally, we consider the network of servers and routers within the Web farm where

data from servers flows and merges before getting transmitted to the requesting users

via the Internet. We compute the waiting time of the elastic requests at intermediate

and edge nodes by obtaining the distribution of the outflow of the upstream node.

This outflow distribution is obtained by using a methodology based on minimizing the

deviations from the constituent inflows. This analysis also helps us to compute waiting

times at different bandwidth capacities, and hence obtain a suitable bandwidth to

promise or satisfy the QoS guarantees.

This research helps in obtaining performance measures for different traffic classes

at a Web-server farm so as to be able to promise or provide QoS guarantees; while at

the same time helping in utilizing the resources of the server farms efficiently, thereby

reducing the operational costs and increasing energy savings.

v

To My Parents...

vi

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude towards Dr. Natarajan Gautam

for being my advisor during my pursuit of this doctoral degree. I am really grateful

for the constant support and supervision he has provided me throughout the years I

worked under his supervision.

I am so blessed, for the tremendous sacrifices that my parents, Smt. Vijaya Laxmi

Goel and Shri Harish C. Goel, have made to make it possible for me to be where I

am. They are my champions, and I hope that they are as proud of me as I am of

them. I would also like to thank my dear sister, Ms. Shweta Goel, who has constantly

cheered and supported me and my parents through all the good and the tough times.

I am very fortunate to have come across some truly wonderful people during the

course of my studies. These are very special people in my life, and I want them to

know that I truly appreciate each and every moment of their company, all the support

they have given me and all their thoughts for me. I would also like to convey my deep-

est acknowledgements to all my friends and colleagues, both at Pennsylvania State

University and at Texas A&M University, for the continued support and friendship

they have given me.

Finally, I would like to thank Dr. Jean-Francois Chamberland, Dr. Richard M.

Feldman, and Dr. Gary M. Gaukler for serving as members of my advising committee

and providing valuable suggestions and comments to make this a better dissertation.

vii

TABLE OF CONTENTS

CHAPTER Page

ABSTRACT . iii

DEDICATION . v

ACKNOWLEDGEMENTS . vi

TABLE OF CONTENTS . vii

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

I INTRODUCTION . 1

I.1. Background and Motivation 1

I.2. Problem Definition . 3

I.3. Organization of the Dissertation 7

II DYNAMIC RESOURCE ALLOCATION AND ADMISSION-

CONTROL IN WEB-SERVER FARMS 9

II.1. Introduction . 9

II.2. Literature Review . 11

II.3. Problem Description . 14

II.4. Analytical Solution . 15

II.4.1. Formulation . 15

II.4.2. Submodularity . 17

II.4.3. Monotonicity . 20

II.4.4. Concavity . 21

II.4.5. Optimal Policy . 23

II.4.6. Blocking Probability 25

II.5. Value-Iteration and Neighborhood Search 25

II.6. Numerical Analysis . 28

II.7. Conclusions . 33

Piyush Goel
Text Box

viii

CHAPTER Page

III PERFORMANCE ANALYSIS OF ELASTIC TRAFFIC US-

ING STOCHASTIC FLUID-FLOW MODELS 36

III.1. Background and Introduction 36

III.2. Related Literature: Network Traffic and Modeling 39

III.3. Trace Data . 43

III.4. Analysis . 45

III.4.1. Problem Description 47

III.4.2. Software Simulation 51

III.4.3.G/G/1 Approximation 52

III.4.4. Fluid-Flow Model 53

III.5. Computing the Performance Measure 55

III.5.1. Computing the Fluid-Flow Model Bounds 58

III.6. CTMC Analysis . 61

III.6.1. Numerical Example for CTMC Analysis 63

III.7. Results . 65

III.7.1. High Traffic Intensity 67

III.7.2. Medium to Low Traffic Intensity 70

III.8. Findings and Discussion 74

IV MULTIPLEXING NETWORK TRAFFIC 77

IV.1. Introduction . 77

IV.2. Literature Review . 81

IV.3. Problem Definition . 84

IV.4. Modeling and Analysis 86

IV.4.1. Optimization . 87

IV.4.2. Validation . 91

IV.4.3. Comparing Against Effective-Bandwidth 93

IV.5. Numerical Results . 94

IV.5.1. Demonstrative Example 95

IV.5.2. Large Network . 98

IV.5.3. Multiple Layers of Nodes 103

IV.6. Conclusions . 106

V CONCLUSIONS AND FUTURE RESEARCH 109

V.1. Summary and Contributions 109

V.2. Future Directions . 111

REFERENCES . 114

ix

CHAPTER Page

VITA . 126

Piyush Goel
Text Box

x

LIST OF TABLES

TABLE Page

I Web-Server Location of the Trace Data 44

II Summary of Trace Data . 47

III Fluid Approximation Values of the Trace Data at 90% Traffic Intensity 60

IV List of Methodologies and Legend for Graphs and Tables 66

V Different Bounds and Approximations of Waiting Times at 90%

Traffic Intensity for Different Traces 69

VI Comparison of Ca/Cs Values of Different Traces 71

VII Approximations at 80% Traffic Intensity 72

VIII Approximations at 60% Traffic Intensity 73

IX Choosing a Fluid Model When Traffic Exhibts LRD 75

X Obtaining Output Parameters for a Small Experiment 96

XI Obtaining Aggregate-Flow Parameters with Different Output Chan-

nel Capacities . 97

XII Obtaining Output Parameters with 100 Input, and 1 Output Channel 99

XIII Input Flow Parameters for the Multi-Layer Network 106

xi

LIST OF FIGURES

FIGURE Page

1 Typical Web-Server Farm, with a Router Connecting to the Servers

and the Internet . 2

2 Bandwidth Allocation in the Server with Two Classes of Requests . . 5

3 Switching Curve Representing the Form of the Optimal Admission-

Control Policy . 24

4 Picking the Neighbors in the Neighborhood Search Algorithm 27

5 Transition Rate Diagram for the CTMC 28

6 Optimal Admission-Control Policy for the Small Numerical Example 30

7 Comparison of the Static Allocation Policy with the Optimal

Admission-Control Policy . 32

8 Optimal Admission-Control Policy for the Larger Problem 34

9 Piece-Wise Linear Arrival Times of Trace 5 45

10 Time-Independent Inter-Arrival Times Used for Analysis of Trace 5 . 46

11 Workload in the System in the Discrete Case 46

12 Data Arriving, Being Processed and Leaving a Buffer 48

13 Workload in the System in the Fluid Arrivals Case 49

14 A Buffer Representing the Inflow and Outflow of Fluid in the system 50

15 Comparison of Work Remaining in the System in Discrete and

Fluid Case (R/C = 1.5) for Trace 7 56

16 Graph Representing the Function for Which Obtaining the Infe-

mum and Supremum Is Desired . 61

xii

FIGURE Page

17 Different Bounds and Approximations at Different Traffic Inten-

sities for Trace–1 . 66

18 Different Bounds and Approximations at Different Traffic Inten-

sities for Trace–2 . 67

19 Different Bounds and Approximations at Different Traffic Inten-

sities for Trace–3 . 68

20 Different Bounds and Approximations at Different Traffic Inten-

sities for Trace–4 . 69

21 Different Bounds and Approximations at Different Traffic Inten-

sities for Trace–5 . 70

22 Different Bounds and Approximations at Different Traffic Inten-

sities for Trace–6 . 71

23 Different Bounds and Approximations at Different Traffic Inten-

sities for Trace–7 . 72

24 Network Representation Demonstrating the Merging of Flows at

Different Layers of Routers . 78

25 Buffered Queue with a Number of Arrival Channels 88

26 Single-Layer Network with a Switch Connecting a Number of

Servers to the Internet . 95

27 Function for which Obtaining Infemum is Required, in Order to

Compute K∗ . 100

28 Remaining Workload as a Function of Output Channel Capacity . . . 103

29 A Small Multi-Layer Network Where Internal Link Capacities

Need To Be Determined . 105

30 Expected Workload as a Function of Internal Link Capacity 107

1

CHAPTER I

INTRODUCTION

I.1. Background and Motivation

A Web-server farm is a group of computers acting as servers and housed together in

a single location. This could either be a Web site hosted on more than one server, or

an Internet service provider (ISP) that provides Web hosting services using multiple

servers. Server farms are typically co-located with network switches and/or routers

which enable communication between different parts of the cluster and the users of

the cluster. Communication within the farm is often based on networks running the

IP protocol suite.

To deal with the explosive increase in Internet traffic over the past few years, the

only feasible solution is to have a server cluster, rather than one high-performance

server. Besides the advantage of scalability, the cluster also offers redundancy and

reliability, by providing a safety against failure of any individual server. Performace

of Web-servers is critical for the end-to-end performance of sites which service a high

volume of requests [1, 2]. As a result, modelling and analysis of Web-servers and

server-farms has received significant attention [3, 4].

A very simplified version of a typical Web farm can be represented as shown in

Fig. 1. There can be multiple layers of routers/switches within the communication

network of the server farm itself, with a link to connect to the outside world.

Designing and managing a Web farm is a very challenging task. It is a signif-

icant problem when both the revenue and performance aspects are considered. It

entails minimizing the cost of operation while providing the quality of service (QoS)

This dissertation follows the style and format of IEEE/ACM Transactions on Networking

2

Fig. 1. Typical Web-Server Farm, with a Router Connecting to the Servers and the

Internet

expected by the users. This provides a tradeoff between having the maximum pos-

sible bandwidth for the servers and routers to provide the best possible service, and

minimizing the level of service provided in an effort to control costs. However, once

a server farm is in place, efficiently managing the resources can provide a significant

boost in service with little increase in costs.

Many Web-server farms serve multiple service sites from a common hardware

base. With the rising paradigm of energy and cost savings, these type of Web farms

have gained a lot of popularity because they provide a huge potential for financial

savings. It is well known that Internet traffic varies dynamically over multiple time

scales, and so estimation of workload in such cases is itself a topic of research [5].

Moreover, in the case of shared Web farms, traffic may come from all over the world,

which makes the traffic loads dynamic and unpredictable. As a result, static allo-

cation of resources is usually inefficient and risky: while over-provisioning can lead

to under-utilization of resources, under-provisioning can lead to possible violation of

3

QoS guarantees, resulting in loss of customers.

With this in mind, it becomes imperative that different applications be allocated

resources based both on their requirements and on the QoS criteria that need to be

satisfied. Since the total bandwidth available to the server is limited, we need to

make decisions as to which requests are to be accepted and served and how much

bandwidth is to be allocated. If we couple in the revenue aspect of the problem as

well, we are looking at an admission-control problem for the traffic. Because we have

QoS guarantees to be satisfied, we also need to obtain the performance measures of

the traffic entering the system.

In this research work, we will work with the given constraints of bandwidth at

a Web farm. We will obtain the optimal policies to maximize the revenue, and then

compute the performance metrics for different classes of customers in order to be

able to evaluate or provide QoS guarantees. The overall objective is to regulate the

number of customers coming into the system, sometimes rejecting service even when

the capacity exists, in order to maximize the revenue and optimize the level of service

that can be provided. This forms a trade-off between blocking customers, and having

the maximum performance level for the admitted customers. Coming up with an

admission-control policy using the stochastic dynamic programming technique would

maximize the profits from the Web-server farm, and then, using different methodolo-

gies, we will compute the performance measures for the system.

I.2. Problem Definition

In this dissertation, a Web-server farm catering to different types of requests is con-

sidered. Specifically, we consider two main request classes: streaming and elastic.

Consider a Web farm where a given server caters to only one class of request. This

4

assumption is reasonable because the type of files stored on a server can be assumed

to be similar. That is, some servers store only video files, some only data files, etc.

In order to serve a request, the appropriate file is transmitted from the server using

the assigned bandwidth.

The requests in the streaming class require a fixed bandwidth, commonly ob-

served in audio and video requests. Given a fixed maximum capacity available to a

server for transmitting the data, only a finite number of such requests can be served

simultaneously. This leads to blocking of such requests when a request arrives, but

there is no remaining capacity available to transmit the requested data.

Elastic type requests do not necessarily have a bandwidth constraint. Data

files are examples of these kind of requests. The performance measure associated

with these requests is typically time based, such as the waiting time in the system.

Average workload in the system is another measure that is used to ascertain the

resource load and utilization. Given a fixed maximum bandwidth available to the

server for transmitting the data, any amount of bandwidth can be allocated to each

of the elastic requests being served, so that they sum to the capacity. Typically,

scheduling logics such as processor sharing, round robin, or even first-in-first-out are

used to cater to such requests.

As shown in Fig. 1, the Web farm usually has a router/switch as a link to

the Internet. At this point, the files transmitted by all of the servers are received

and bandwidth needs to be allocated to all these requests. The total bandwidth

available for transmitting is fixed. Now, the streaming requests need to be allocated

the bandwidth specified by the request, and hence, take away a fixed chunk from this

capacity. All of the elastic requests are served using the remaining capacity. This

means that the available bandwidth for elastic requests varies with the total number

of requests being served by the system, both streaming and elastic. Because there

5

is potentially no minimum bandwidth requirement for elastic requests, there can be

any number of elastic requests being served simultaneously.

Fig. 2. Bandwidth Allocation in the Server with Two Classes of Requests

In this research, in order to analyze the above-mentioned system, we perform the

analysis at three different levels. First, we make a decision as to which requests to

serve in order to use the resources efficiently. When either a streaming or an elastic

request is served, a file is transmitted from the server to the user. All of the servers in

the system are connected to the Internet through a router. Conventional wisdom is

that performance limitation in Web farms lie at the edge of the network, i.e., last mile

connectivety to users [6]. We will consider total bandwidth available to this router

as a contiguous block, which can be allocated dynamically to either type of requests.

Once the bandwidth has been allocated to the streaming requests in the system, all

of the remaining bandwidth will be used by the elastic requests. This also means

that as and when requests enter and leave the system, the bandwidth available to

6

each of the elastic requests changes (Fig. 2). Thus, if the server capacity is S bytes/s,

bandwidth required by each streaming class is b bytes/s, and there are N1 and N2

requests of the streaming and elastic class, respectively, the available bandwidth for

each elastic class is {(S − bN1)/N2} bytes/s.

If we let as many streaming customers as the capacity allows, into the server, the

bandwidth available to the elastic requests will dwindle drastically, which would have

an adverse effect on the performance measures of the elastic class. On the other hand,

however, if we do not allow some of the streaming customers, we would be blocking

and causing loss of customers even before the system has reached its capacity. Hence,

we will have to optimize our decision by considering both types of customers. That

is, we will have to compute an admission-control policy for both types of requests so

as to maximize the revenue of the system. This policy will consider the customers

already in the system and decide if the incoming customer should be admitted or not,

depending upon its class. We will use the stochastic dynamic programming technique

to achieve the above-mentioned objectives, and the procedure will be demonstrated

in Chapter II.

The elastic requests are typically served by different servers in the Web farm.

The second task will be to compute the performance measures of these kinds of

requests and be able to design the system to satisfy the QoS requirements. For this

undertaking, we will first analyze one of these servers, catering to elastic requests.

This server has a fixed capacity and will operate using a work-conserving policy–

typically processor sharing. Because of this, we don’t need to specify the scheduling

methodology it uses. The analysis of such a system is demonstrated in Chapter III.

Data from all of these servers catering to elastic requests passes through the

router before being transmitted via Internet. This could be a bottleneck node, as

data from all the servers is received here and transmitted using the limited-capacity

7

bandwidth. In order to be able to provide a QoS guarantee to an elastic request,

one also needs to analyze this node. At this point, data from different servers gets

aggregated, and thus, we will need to use some kind of superpositioning principle in

order to obtain the performance measure at the conglomeration. We propose a simple

and fast methodology to achieve this goal, and we present it in Chapter IV.

The above mentioned methods of analysis will help us in obtaining the perfor-

mance measures for different types of requests. In case of streaming requests, we

will use the performance measure of interest as the blocking probability. This will

essentially represent a measure of the fraction of arriving customers not being allowed

to enter the system. In case of elastic requests, we will be interested in obtaining the

blocking probability as well as the time spent in the system. We need to evaluate this

value in order to project the system performance under varying load conditions. Due

to the characteristics of network traffic, we chose to use the fluid-flow model for this

analysis. This requires converting the discrete arrivals into an ON-OFF source and

computing the distributions from the trace data. This fluid-flow model, and obtaining

distribution using the trace data, will also be discussed in forthcoming chapters.

I.3. Organization of the Dissertation

This research work is organized as follows. A brief description of the problem being

dealt with has been presented in Section I.2. The problem is then broken down into

two major parts: obtaining the admission-control policy and obtaining the perfor-

mance measures for the Web server. Each of these problems will be addressed in

forthcoming chapters, with each problem involving its own challenges, related litera-

ture, solution methodology, and conclusions. In order to obtain the admission-control

policy, we will use the stochastic dynamic programming approach,. We define this

8

problem in detail and then present the solution methodology in Chapter II. Chap-

ter III describes the methodology being used to compute the waiting time in the

system for incoming elastic requests. This chapter, however, deals only with the case

of a single inflow. This methodology is expanded upon and the performance metrics

are obtained for the aggregate elastic flow in Chapter IV. Finally, we conclude the

dissertation in Chapter V by summarizing the findings and presenting some future

research ideas.

9

CHAPTER II

DYNAMIC RESOURCE ALLOCATION AND ADMISSION-CONTROL IN

WEB-SERVER FARMS

II.1. Introduction

With a tremendous increase in popularity over the past couple of decades, Internet has

become an important medium for hosting businesses and other e-commerce services.

With the World Wide Web becoming more and more prevalent, the Web-server farms

that host third-party Web applications and services are receiving a lot of attention.

Web farms serve multiple service sites from a common hardware base. In this era

of efficiency, it can be a challenging task to allocate resources to maximize revenue

while satisfying QoS guarantees of various companies that the Web-server farm might

be catering.

The Web sites a server farm may be hosting can comprise different types of traffic.

The two most popular and broad classifications of traffic are streaming and elastic.

As mentioned in Section I.2, streaming class has fixed-bandwidth requirements, and

usually it is associated with a loss-based QoS requirement. In contrast, elastic class

can utilize however much bandwidth is allocated to it, and usually has a delay-based

QoS requirement attached to it.

Most Web pages on the Internet today have both streaming and elastic kinds

of information that need to be delivered to end users. Hence, in order to enhance

the customer experience, it is necessary to give importance to both kinds of traffic

and have good response performance in both types of requests. In order to do this,

shared resources need to be optimized for both types of traffic simultaneously which

improves the overall resource utilization as well.

10

The final router that provides connection to the Internet receives both kinds of

files and has to make the best use of available bandwidth to transmit them. The total

bandwidth available to serve these two kinds of requests is limited by the capacity,

and in order to cater to both classes of requests effectively bandwidth needs to be

allocated to the two classes optimally. Thus, to satisfy the QoS and to provide the

best service, it is necessary that the available resources be optimized to perform at

maximum efficiency.

It is well known that Internet traffic varies dynamically over multiple time scales,

and so the estimation of such workloads is itself a topic of research [5]. As a result,

static allocation of resources, where a block of bandwidth is allocated to the streaming

class, and the remaining is utilized by the elastic class, is both inefficient and risky.

While at some point during the day a given allocation may be over-provisioning and

leading to under-utilization of resources for a class, at other times during the same

day it may be under-provisioning for the same class, leading to possible violation of

QoS guarantees and resulting in customer dissatisfaction and loss of customers. The

only way to approach this issue is to dynamically allocate the resources amongst the

competing applications and run the system efficiently.

In this research, we will develop a strategy to maximize revenue by choosing when

to accept or reject an incoming request. Our secondary goal would be to provide the

best possible QoS for different classes of requests, and evaluate the QoS guarantees

that could be offered. Most of the present literature in this area focuses on static

allocation policies. The main drawback of this kind of policy, as discussed earlier, is

that the elastic traffic is unable to utilize any remaining bandwidth if there is not

enough streaming traffic on the server. The same is true for the streaming traffic,

as an incoming streaming request will be turned down if there are enough streaming

requests in the system even if there is little or no elastic traffic.

11

This calls for dynamic allocation of bandwidth among the two classes, depending

upon the number of requests of each type being served, in order to improve the

efficiency of the system and increase the revenue. In this research work, we will

consider a Web-server farm catering to these two types of requests. The requests

will be satisfied from the same block of bandwidth, with a fixed maximum capacity.

We will formulate the problem as a Markov Decision Process (MDP) and obtain

an admission-control policy for the requests dependent upon the current number of

requests being served of each type, so as to maximize revenue and, at the same time,

satisfy the QoS requirements of the two classes.

The rest of the chapter is organized as follows. In Section II.2, we present a

brief review of related literature. Following this, we define the problem at hand

in Section II.3. We then formulate the problem as an MDP in Section II.4. We

also obtain the optimal admission-control policy analytically after obtaining some

structural properties in this section. Numerical examples of the problem are then

presented, where we compute the optimal policy and compare it with some of the

existing policies in the literature. This numerical analysis is presented in Section II.6.

Finally, we present the conclusions Section II.7.

II.2. Literature Review

The system being considered in this research work is essentially a combination of two

types of problems traditionally seen in the literature: loss network for the streaming

requests, in which the performance measure of interest is generally the loss or blocking

probability; and delay network for elastic class, in which the performance index of

interest would be the delay.

Most of the literature, especially on analytical models for multi-class requests,

12

falls under one of these two categories. Loss networks have been fairly well studied

in the literature, but research focusing on loss networks considers only the objective

of the streaming traffic, while completely ignoring the elastic traffic. Several articles

deal with the stochastic knapsack problem or G/G/C/C queueing models to optimize

for streaming traffic and assume that any unused bandwidth will be consumed by the

elastic traffic. Ross [7] has provided a collection of results on the evaluation of broad-

band telecommunication networks, providing a rigorous treatment of call admission

and congestion control in ATM networks. Many researchers, such as Kaufman [8] have

tried to develop analytical loss models to compute the blocking probability in case

of shared resource environments. Application examples of this modeling paradigm

include the work by Dziong and Mason [9], who have tried to use the framework of

cooperative game theory for the analysis and synthesis of call admission strategies in

broadband networks.

As mentioned earlier, these models do not consider the QoS requirements of

the elastic traffic. On the other hand, however, research focusing on delay networks

assume that a fixed portion of bandwidth is allocated for these requests, ignoring the

bandwidth that may be available to them by virtue of the streaming requests not

using it. Chandra et al. [10] developed an analytical model that considers dynamic

resource allocation in servers that use generalized processor sharing. It considers Web

data traffic in which the QoS requirement is mean response time. Some researchers

(such as Abdelzaher et al. [11]) have focused on designing adaptive systems for

Web servers based on a control theoretical approach, while others (such as Lu et al.

[12]) designed adaptive systems that can react to workload changes in the context

of storage systems. Chase et al. [13] have tried to obtain optimization techniques

for reducing energy consumption in data centers, whereas Massoulié and Roberts [14]

concern themselves with the design of a distributed algorithms for sharing network

13

bandwidth among contending flows, using fairness notions.

Hence, most of the loss models do not incorporate the elastic requests coming

into the system, whereas the analysis based on delay networks typically ignores any

bandwidth unused by the streaming requests. Nonetheless, there have been some

studies that consider both kinds of requests into the server. Fodor et al. [15] have an-

alyzed a system with three classes of requests: rigid, streaming and elastic, and have

used the classical multi-rate methodology for the performance analysis of admission-

control-based service. They have applied it to a single link, demonstrating the trade-

off between blocking probability and throughput. Mahabhashyam and Gautam [16]

have also considered a shared data center and have developed an analytical model us-

ing the Matrix Geometric Method to obtain the performance measures of the system.

However, unlike this research work, they consider a static admission-control policy,

which is independent of the current state of the system. They obtain a threshold on

the streaming class requests being served; any further streaming class arrivals above

this would be rejected. This would make it a special case of the problem we are

analyzing.

Dynamic programming technique has been widely used in developing admission-

control and resource-allocation policies in various applications, including high-speed

networks. Altman [17] has presented a comprehensive survey of related works until

that point in time. Bhatnagar and Reddy [18] have studied a problem of admis-

sion control of packets in communication networks in the continuous-time queueing

framework. However, in recent times, the neuro-dynamic programming technique,

which uses neural networks approximations to solve multi-dimensional problems, has

become more popular. This technique has also been applied to wireless commun-

ication networks [19], ATM networks [20], etc. Senouci et al. [21] have considered

the call admission-control problem in a multimedia cellular network that handles sev-

14

eral classes of traffic with different resource requirements, and they have proposed

algorithms to earn higher revenues.

II.3. Problem Description

The objective in this research work is to obtain the optimal admission-control policy

given that all of the bandwidth will be shared by the two classes of requests. We

will use stochastic dynamic programming approach to obtain the admission-control

policy for the system, while also trying to maximize the revenue.

We consider a system with these two classes of requests: streaming and elastic,

which will henceforth be referred as Class-1 and Class-2, respectively. The requests

are served by the Web server by transmitting the requested data. Let the bandwidth

capacity of the Web server be S.

Let each of the Class-1 traffic requests require a constant bandwidth of b, while

Class-2 traffic shares all of the leftover bandwidth from Class-1 traffic. Hence, for

example, if there are n1 Class-1 and n2 Class-2 requests being served by the system,

all of the Class-1 requests would be allocated bandwidth b each, whereas the Class-2

request would be allocated ((S − n1b)/n2) each for processing (as shown in Fig. 2).

Now, as n1 and n2 changes over time, notice that the processing rate for Class-2 would

also change. We assume no minimum or maximum bandwidth allocation for either

of the classes, except where limited by the capacity of the Web server.

In this system, we will assume that all of the requests that are accepted are

processed simultaneously. This is essentially the widely known processor-sharing dis-

cipline in case of the elastic requests. Each streaming request, of course, uses the

bandwidth allocated to it, and does not interact with other requests. It is assumed

that the rejected requests are lost.

15

We define the state of the system as the number of requests being served of each

type. Given the state of the system (i.e., n1 and n2 values), if the system receives a

request, we need to decide whether to accept it and provide service or not. Through

this decision process, we would try to make sure that we are allowing as many Class-

1 customers into the system, while not impeding the QoS provided to the Class-2

customers. Such a set of decisions would constitute the decision policy, which would

be the admission-control policy. Our objective is to come up with such a policy in

order to maximize the profit of the system, given the parameters for each class such

as the acceptance reward, holding cost, arrival rate, and expected workload.

For elastic traffic, it is generally assumed that admitting a new demand and

reducing the throughput of the system is better than rejecting the new request: the

utility of a request as a function of its throughput is assumed to be positive and strictly

concave everywhere so that overall utility increases as more flows are admitted [22].

With this in mind, we would allow all of the elastic requests into the system and

exercise admission-control only on the Class-1 requests.

II.4. Analytical Solution

In this section, we formulate the problem described in Section II.3 as an MDP prob-

lem, and we obtain the optimal objective function. We then solve the problem by

establishing some structural policies for this function, and we obtain the optimal

admission-control policy analytically.

II.4.1. Formulation

Let the arrival rate of requests for Class-i be according to Poisson processes with rate

λi. Let the customers of Class-1 remain in the system (and block bandwidth b) for

16

an exponentially distributed time with rate µ1. As for the Class-2 customers, due to

the nature of the system, their processing rate might change with every arrival or de-

parture from the system. Hence, rather than defining their holding time distribution,

we assume that each brings in a workload exponentially distributed with mean 1/µ2

bytes.

Now, let each request of Class-i bring a reward of Ri, received only if the request

is allowed to enter the system and be served. Moreover, let Ci be its holding cost,

per unit time.

Our main objective here is to derive a decision policy, such that, given the state

of the system, we can decide whether or not to accept a Class-1 arrival. We define the

state of the system as a two-dimensional vector representing the number of requests

being served of both classes: (n1, n2). The decision space at a Class-1 arrival consists

of two actions: As = {0, 1}, where 0 represents rejecting, and 1 represents accepting

the incoming request. The only action associated with the arrival of a Class-2 request

or any departure is to allow it.

In order to use stochastic dynamic programming to obtain the optimal admission-

control policy, we use the well-known uniformization technique (see [23, 24]). We have

λ1 + λ2 +Mµ1 + Sµ2 + α = 1 , (2.1)

where M = bS/bc is the maximum number of Class-1 customers that can be present

in the system (i.e., n1 ≤ M), and α is the uniformization parameter. Note that if

there are M Class-1 customers in the system, a Class-1 arrival must be rejected. Since

there is no minimum bandwidth requirement for the Class-2 customers, we can have

any number (≥ 0) of these in the system. The uniformization technique introduces

phantom arrivals and departures into the system. In our system, we would stay in

the original state at rate (1− λ1 − λ2 − µ1n1 − (S − bn1)µ2).

17

In order to write the optimality equation, we need to compute the future profit

functions corresponding to different transition events. We will make use of event-

based dynamic programming, as introduced in [25], in order to formulate the MDP.

According to this, we have an event operator corresponding to every possible event

in the system. This operator maps the set F of all real-valued functions to the state

variable x into itself. Thus, for example, for arrivals of Class-1 customers we have the

corresponding arrival operator TA1 defined as

TA1f(x) = max{R1 + f(x+ e1), f(x)} (2.2)

for f ∈ F , where ei is the ith unity vector. TA1 may be interpreted as the optimal

value function for a one-stage problem in which one must decide to accept or reject a

Class-1 arrival, after which a terminal state-dependent revenue is earned according to

the function f . For this problem, we choose event operators by associating one with

every event in the system: arrivals and departures of Class-1 and Class-2 requests.

Note that there is no decision to be made in case of the departures and arrival of a

Class-2 request.

Now, we define the value function Vn of this problem as Vn+1 = TVn and V0(x) =

C(x). The fact that λ1 + λ2 + Mµ1 + Sµ2 < 1 for α > 0 ensures that T , which is

a linear combination of the event operators, is a contraction operator. Following, we

show some structural properties for Vn. Since these properties hold for each Vn, they

will also hold true for the limiting optimal policy.

II.4.2. Submodularity

First, we show that the value function is submodular in nature. This property, along

with others, would be very helpful in obtaining the structure of the optimal decision

policy.

18

In order to establish the structural properties, it is sufficient to show that certain

properties of the function defined on the state space are preserved under the action

of the value-iteration operator, T (see [26]). In particular, a function is said to be

submodular if

Vn(x+ e1) + Vn(x+ e2) ≥ Vn(x) + Vn(x+ e1 + e2) . (2.3)

Below, we will show that this property holds and is preserved under the value-iteration

operator at hand. This proof is very similar to that presented in [27]. We have

Vt+1(n1, n2) = −C1n1 − C2n2 + λ1 max{R1 + Vt(n1 + 1, n2), Vt(n1, n2)}

+ λ2(R2 + Vt(n1, n2 + 1)) + µ1n1Vt((n1 − 1)+, n2) + (S − bn1)µ2Vt(n1, (n2 − 1)+)

+ (1− λ1 − λ2 − µ1n1 − (S − bn1)µ2)Vt(n1, n2) , (2.4)

where (a)+ ≡ max{a, 0}.

It is clear that V0 satisfies the property. We will show that if the above inequality

is satisfied by f , it gets preserved by each of the event operators. This proves the

inequality because it is closed under linear combinations.

We show the proof for the operator TA1 here, since the proof involving others

are much simpler and follow easily due to their not having a decision involved. Let

a1 be the maximizing action in TA1f(y) for y = x and a2 be the maximizing action

for y = x + e1 + e2, where actions 0 and 1 refer to rejecting or accepting a request,

respectively. Consider the case in which a1 = 1 and a2 = 0. Then,

TA1f(x) + TA1f(x+ e1 + e2)

= f(x+ e1) +R1 + f(x+ e1 + e2)

≤ TA1f(x+ e1) + TA1f(x+ e2) .

19

The inequality is true because TA1f(x + e1) ≥ f(x + e1) and TA1f(x + e2) ≥ R1 +

f(x + e1 + e2), as a direct consequence of Equation (2.2). Similarly, for the case in

which a1 = 0 and a2 = 1, we have

TA1f(x) + TA1f(x+ e1 + e2)

= f(x) +R1 + f(x+ 2e1 + e2)

≤ R1 + f(x+ 2e1) + f(x+ e2)

≤ TA1f(x+ e1) + TA1f(x+ e2) .

Here, the first inequality follows from Equation (2.3) and the second from Equa-

tion (2.2). In case a1 = a2, the result can similarly be established as follows.

a1 = a2 = 0:

TA1f(x) + TA1f(x+ e1 + e2)

= f(x) + f(x+ e1 + e2)

≤ f(x+ e1) + f(x+ e2)

≤ TA1f(x+ e1) + TA1f(x+ e2) .

a1 = a2 = 1:

TA1f(x) + TA1f(x+ e1 + e2)

= f(x) +R1 + f(x+ 2e1 + e2) +R1

≤ f(x+ e2) + f(x+ 2e1) + 2R1

= (f(x+ 2e1) +R1) + (f(x+ e2) +R1)

≤ TA1f(x+ e1) + TA1f(x+ e2) .

Hence, we can say that submodularity is preserved under TA1 . Similarly, it can

20

easily be shown that the property holds for other event operators, and hence the value

function is submodular.

II.4.3. Monotonicity

We would call the value function to be monotonic if it satisfies the following condition

for all x and n:

Vn(x) ≥ Vn(x+ e1) (2.5)

Note that we are proving the monotonicity only with respect to Class-1 customers.

It could however be proven with respect to Class-2 customers as well. Again, we use

V0 = C, and the property obviously holds for V0. We use the same procedure as

before to show that the property is preserved under each event operator. Following,

we demonstrate the case for TA1 . The proof for other event operators follows similarly.

Let a1 be the maximizing action in TA1f(y) for y = x and a2 be the maximizing

action at y = x+ e1. Then, we have the following cases.

a1 = a2 = 0:

TA1f(x+ e1) = f(x+ e1)

≤ f(x)

= TA1f(x) .

a1 = 1, a2 = 1:

TA1f(x+ e1) = R1 + f(x+ 2e1)

≤ R1 + f(x+ e1)

= TA1f(x) .

21

a1 = 1, a2 = 0:

TA1f(x+ e1) = f(x+ e1)

≤ R1 + f(x+ e1)

= TA1f(x) .

a1 = 0, a2 = 1:

TA1f(x+ e1) = R1 + f(x+ 2e1)

≤ f(x)

= TA1f(x) .

Thus, the property is preserved under the event operator TA1 . The proof with

other operators can be constructed similarly and easily. Hence, as the property is

preserved under each individual event operator, it would be preserved under their

linear combination T . Therefore, the property holds for the value function at hand.

II.4.4. Concavity

The value function for the given problem would be said to be concave if the following

property holds:

2Vn(x+ e1) ≥ Vn(x) + Vn(x+ 2e1)

2Vn(x+ e2) ≥ Vn(x) + Vn(x+ 2e2) . (2.6)

It is obvious that the property holds for V0 = C. Again, we would follow the

same process as used to prove submodularity to obtain the result. That is, if the

property is satisfied by f and is preserved by each event operator, we would have

proven the inequality. We first show the case for TA1 here.

22

Let a1 be the maximizing action at TA1f(y) for y = x, a2 be the maximizing

action for y = x+ e1 and a3 be the maximizing action at y = x+ 2e1. Then, we have

the following cases.

a1 = a2 = a3 = 0:

TA1f(x) + TA1f(x+ 2e1) = f(x) + f(x+ 2e1)

≤ 2f(x+ e1)

= 2TA1f(x+ e1) .

a1 = a2 = a3 = 1:

TA1f(x) + TA1f(x+ 2e1) = f(x+ e1) + 2R1 + f(x+ 3e1)

≤ 2R1 + 2f(x+ 2e1)

= 2TA1f(x+ e1) .

a1 = 1, a3 = 0:

TA1f(x) + TA1f(x+ 2e1) = f(x+ e1) +R1 + f(x+ 2e1)

≤ 2f(x+ e1) + 2R1

≤ 2TA1f(x+ e1) .

a1 = 0, a3 = 1:

TA1f(x) + TA1f(x+ 2e1) = f(x) +R1 + f(x+ 3e1)

≤ f(x) + f(x+ 2e1) + 2R1

≤ 2f(x+ e1) + 2R1

≤ 2TA1f(x+ e1) .

23

Note that since the value function is monotonic with respect to e1, if a1 = a3,

we do not allow for a2 to take a different value. Hence, from above, we can say

that concavity is preserved under TA1 . Similarly, we can show that the property is

conserved under other event operators and hence, the property holds for the value

function.

II.4.5. Optimal Policy

Intuitively, it is expected that it would be less profitable to accept requests because

the number of requests already in the system increases. This can be seen from Equa-

tion (2.3), by rewriting the equation as follows [28]:

Vn(x+ e1 + e2)− Vn(x+ e1) ≤ Vn(x+ e2)− Vn(x)

Vn(x+ e1 + e2)− Vn(x+ e2) ≤ Vn(x+ e1)− Vn(x)

We now prove that the optimal admission-control policy is of a switching curve

type. Using the concavity property given in Equation 2.6, we have

Vn(x+ e1)− Vn(x) +R1 ≥ Vn(x+ 2e1)− Vn(x+ e1) +R1 .

Thus, if R1 + Vn(x+ 2e1)− Vn(x+ e1) ≥ 0, i.e., admission is optimal in state x+ e1,

then we have R1 + Vn(x + e1) − Vn(x) ≥ 0, i.e., admission is optimal in state x.

Similarly, we can show that if rejection is optimal in state x, then so is rejecting the

request in state x+ e1. Similar results can be obtained for the other dimension with

respect to Class-2 arrivals as well.

We can state this optimal switching curve policy as follows: for every fixed value

of n2 there is a threshold level L(n2), such that it is optimal to admit customers of

Class-1 if and only if n1 ≤ L(n2).

This admission-control policy can be represented as shown in Fig. 3. Here, if the

24

Fig. 3. Switching Curve Representing the Form of the Optimal Admission-Control

Policy

25

state of the system lies in the region marked “Accept”, an incoming Class-1 requested

is admitted to the system and served. Otherwise, the request is rejected and lost.

Hence, we obtain the optimal objective function as

V (x) = V (n1, n2) = −c1n1 − c2n2 + λ1 max{R1 + V (n1 + 1, n2), V (n1, n2)}

+ λ2(R2 + V (n1, n2 + 1)) + µ1n1V ((n1 − 1)+, n2)

+ (S − bn1)µ2V (n1, (n2 − 1)+) + (1− λ1 − λ2 − µ1n1 − (S − bn1)µ2)V (n1, n2) .

(2.7)

II.4.6. Blocking Probability

Whenever we have a system in which it is not possible to provide service to ev-

ery incoming customer, one of the performance metrics of interest is the blocking

probability: the fraction of customers that will be turned down because of unavail-

able capacity. In the process of determining the optimal admission-control policy for

Class-1 customers, we also need to compute the fraction of customers for which we will

not be able to provide service for. This would essentially be the sum of steady-state

probabilities of all states where we would reject an incoming request.

II.5. Value-Iteration and Neighborhood Search

One of the popular techniques of solving MDP problems is using the value-iteration

algorithm (see [29]). We have obtained the value function (given in Equation (2.7))

for the problem at hand. Hence, we can use the value-iteration procedure to obtain

the optimal admission-control policy for any given parameters. However, note that

the value-iteration procedure makes no presumptions about the form of the optimal

policy. In other words, while solving the numerical problem, we would not be using

the information that the optimal policy is of the form of a switching curve.

26

It is also well known that the value-iteration algorithm does not lend itself well

to large-scale MDPs, mainly due to its slow convergence rate. Although there are

various methods described in the literature that try to overcome this shortcoming,

for our given problem, we can use the fact that we know the structure of the optimal

policy to obtain the numerical solution, which cuts down significantly on the time

required to solve the problem.

We will use a simple neighborhood search to obtain the optimal admission-control

policy with the given parameters. Following, we describe the neighborhood search

algorithm we used. We start with an initial solution, which could be intelligently

‘guessed’, or could be just a näıve solution such as rejecting all Class-1 requests.

If we define ‘neighboring’ states as the ones with only one different decision in the

decision policy. For example, the only feasible neighbor to a ‘reject-all’ policy, given

the structure of a switching curve, is to accept the request when there are no Class-2

requests in the system. In general, neighbors of a given feasible decision policy are

shown in Fig. 4, where a neighboring policy is obtained by picking just one set of

dotted line at a time, along with the solid lines that mark the original policy.

For each set of neighbors, we evaluate the policies and obtain the best neigh-

borhood solution. If this is better than the incumbent solution, we make this the

incumbent solution and find neighbors for it. Otherwise, we stop the procedure and

declare the incumbent solution as the optimal solution.

In order to compare different neighborhood solutions, we need to evaluate the

expected reward from each such solution and compare them. We make use of the

fact that arrival times for both classes of requests are modeled using exponential

distribution. Because the arrival and service rates are known, given the decision

policy, we can generate the rate transition diagram, as shown in Fig. 5. Note that in

this diagram, rates are shown when we would accept all incoming arrivals. If we were

27

Fig. 4. Picking the Neighbors in the Neighborhood Search Algorithm

to reject a Class-1 arrival in state (n1, n2), the transition rate to state (n1 + 1, n2)

would be 0. Also note that the number of states is limited to M in the Class-1

dimension, but could go to infinity in the other dimension. Using this rate diagram,

we can obtain the state transition probability matrix (QD).

Using continuous time Markov chain (CTMC) analysis, we can compute the

steady-state probability of each of the states by solving for πD ·QD = 0 and
∑
i∈S π

i
D =

1 simultaneously. Expected reward and holding cost can be computed for each state

using the QD and πD matrices. Thus, we obtain the expected profit for the decision

policy, which can later be compared to that of another policy.

Performance of this neighborhood search can be improved significantly by using

a ‘good’ initial solution. One could use some clever heuristic to come up with a

28

Fig. 5. Transition Rate Diagram for the CTMC

good starting point, and then obtain the optimal solution in just a few iterations.

However, our focus here is to emphasize that one could use the structure of the policy

and a clever technique and come up with a solution much faster than with the value-

iteration algorithm, be it a neighborhood search algorithm, or some other technique.

We found that even our method yields results much quicker than the value-iteration

algorithm, especially for problems reasonably large in size.

II.6. Numerical Analysis

We use some numerical examples to illustrate the problem we are trying to solve, and

we demonstrate the methodology being used. We use both methods (value-iteration

and neighborhood search) to obtain the optimal admission-control policy for a small

example problem. We offer the following hypothetical example.

29

Consider a server with the output bandwidth capacity (S) of 2,560 kbps. Con-

sider exponentially distributed arrivals of both types of requests, streaming and elas-

tic, at the rate of 5 requests per second. We assume that each of the Class-1 (stream-

ing) requests requires 256 kbps of dedicated bandwidth. Then, there can be a maxi-

mum of M = b2, 560/256c = 10 Class-1 requests that can be served simultaneously.

Of course, there can be any number of Class-2 requests in the system, because we

would not reject any such request. However, note that in this particular case, if

we were to accept 10 Class-1 customers, there would be no bandwidth available for

Class-2 customers. Let the processing rate of each Class-1 request be 1 per sec, the

reward associated with accepting each such request be R1 = $60, and the holding

cost be C1 = $1/sec. Class-2 (elastic) requests use all of the bandwidth left over from

serving the Class-1 requests in the system. Let each of these requests bring in an

exponentially distributed workload with a mean of 0.1. That is, if there were a total

of n1 Class-1 and n2 Class-2 requests in the system, the mean processing time for a

Class-2 request would be n2µ2/(S − n1)b, where 1/µ2 = 0.1.

Let the reward obtained for each such request served be R2 = $25 and associated

holding costs be C2 = $0.5/sec. Then, using these parameters and the value function

written in Equation (2.7), we can use the value-iteration procedure to obtain the

optimal admission-control policy. This solution is depicted in Fig. 6.

The optimal solution can be summarized as follows: admit a Class-1 customer if

• n2 < 1 and n1 < 6, or

• 1 ≤ n2 < 2 and n1 < 4, or

• 2 ≤ n2 < 3 and n1 < 3, or

• 3 ≤ n2 < 4 and n1 < 2, or

30

Fig. 6. Optimal Admission-Control Policy for the Small Numerical Example

• 4 ≤ n2 < 6 and n1 < 1;

reject otherwise.

As can be seen from Fig. 6, the optimal admission-control policy is indeed in the

form of a switching curve. We also use the neighborhood search algorithm described

in Section II.5 to obtain the optimal policy, and not surprisingly, we obtain the same

policy as the optimal policy using this method as well. We used the näıve solution,

rejecting all Class-1 arrivals, as our starting solution in this case.

31

The steady-state probability of being in a state for the system are obtained as

P =

0.00492 0.00256 0.00050 0.00001 0.00000

0.02700 0.01289 0.00281 0.00001 0.00000

0.07344 0.03248 0.00799 0.00002 0.00000

0.13211 0.05474 0.00154 0.00004 0.00000

0.17668 0.06907 0.00229 0.00008 0.00000

0.18186 0.06569 0.00260 0.00010 0.00000

0.10603 0.05028 0.00231 0.00011 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000

.

Note that the number of columns would actually go to infinity towards the right, but

all these values would be equal to zero. Using this, we obtain the blocking probability

for this optimal policy as (0.10603 + 0.05028 + 0.00231 + 0.00011) = 0.15873. That

is, about 15.9% of incoming Class-1 customers will be denied service.

We could compare this solution to a static allocation policy to see the difference

in performance. A static allocation policy, in this case, would be to allow an incoming

Class-1 customer if the number of Class-1 requests being served is less than or equal

to a fixed number, say m(≤ M). In this static allocation policy, we would still be

allocating all of the bandwidth not being used by Class-1 customers to the Class-2

customers. Thus, even this policy would clearly outperform a policy in which the

Web server is divided into two blocks, each serving a separate class of requests.

This comparison is shown in Fig. 7. The graph represents the expected profit,

32

Fig. 7. Comparison of the Static Allocation Policy with the Optimal Admission-Con-

trol Policy

as a percentage of the maximum profit, for each value of m (note that the value

corresponding to n1 = 0 represents the ‘reject-all’ policy). Also plotted on the same

axis are the blocking probabilities for the two policies.

The static policies behave as one would expect. The expected profit increases as

more and more Class-1 customers are allowed to enter the system, up to a threshold.

Once we reach n1 = 6, accepting any more Class-1 customers actually decreases the

expected profit. Hence, if we were limited to a static policy, we would pick this as

the best policy, with a corresponding blocking probability equal to 16.92%.

The optimal switching curve solution obviously performs better than any of the

static policies. The expected profit at the optimal solution is over 5% higher, with a

33

blocking probability lower by more than 1 percentage point. Hence, we are performing

much better than the best static policy, both in terms of the revenue, as well as in

terms of the performance metric.

This experiment corroborates our method, and shows that much better results

can be obtained by using the switching curve policy than a static policy. Since the

methodology we proposed is also much faster, it can be used to solve large problems,

wherein the number of states can be prohibitively large to solve using the value-

iteration method. In order to demonstrate that this methodology can be used to

solve a problem with a large number of states, we consider a problem identical to the

one we just solved, except with a bigger server capacity. We would let the number of

possible states be of the order of 10, 000.

Consider a server with maximum bandwidth of 25, 600 kbps. With each Class-1

request still requiring 256 kbps, maximum number of Class-1 requests that can be

server concurrently is 100. Assuming that rest of the parameters are exactly the same

as in the previous example, the optimal admission-control policy is obtained as shown

in Fig. 8.

We see that, again, the optimal policy performs much better than the best static

policy. The improvement in the revenue is about 9.2% with a reduction in blocking

probability of about 2 percentage points.

II.7. Conclusions

With different types of requests arriving in a Web-server farm, resource allocation

for these classes becomes very important in order to operate efficiently. It is known

that simply allocating a fixed amount of bandwidth to different classes can be very

inefficient. Static allocation policies, under which the remaining bandwidth from

34

Fig. 8. Optimal Admission-Control Policy for the Larger Problem

serving one kind of requests is used to serve the other kind would be better, but

would still fare worse than the optimal solution. For the Web server to operate

optimally, one needs to use a dynamic resource allocation, based not only on the

load on the server of different types of requests, but also on the arrival and service

distributions, rewards, and holding costs.

We established some structural properties, such as concavity and submodularity

of the value function for the given problem. Using these properties, we were able to

analytically obtain the optimal admission-control policy. This decision policy takes

the form of a switching curve, as shown in Fig. 3. Because we know the structure of the

optimal admission-control policy, we do not need to use the value-iteration algorithm

to obtain the optimal policy, but can use simple and clever heuristic methods, such as

35

a neighborhood search algorithm, to obtain the optimal solution. This would provide

not only the ability to obtain the optimal solution much faster, one would also be

able to solve problems with a large state-space.

We also computed the performance metric, the blocking probability, of the

streaming class requests under the optimal policy. It was observed that if the op-

timal policy of the form of a switching curve is used, not only would we be improving

the resource utilization of the server, we would also be providing better QoS.

36

CHAPTER III

PERFORMANCE ANALYSIS OF ELASTIC TRAFFIC USING STOCHASTIC

FLUID-FLOW MODELS

III.1. Background and Introduction

As described in Section I.2, we have elastic requests coming into the system which

will be served by transmitting data through the Web-server farm network. In this

chapter, we consider a small piece of this problem: we look at a single server that

is transmitting data. This server would have a fixed link capacity to transmit the

data through. We are interested in characterizing this traffic flow and obtaining the

performance metrics at the server level.

Research area of computing the performance measures in case of high-speed

packet computer-communication networks received a lot of attention during the 80’s

and 90’s [30]. Despite the significant amount of research addressing Internet traffic

models, there is not yet widespread agreement about the characteristics of backbone

Internet traffic [31]. With networks become more complex and QoS becoming more

challenging, it is more important than ever to be able to obtain various performance

metrics. Bounds on these performance measures have been computed using various

techniques by researchers. These approximations and bounds are useful in different

scenarios, such as design or control of a communication system, resource allocation,

or to compute the projected QoS.

However, only a few of the design and control strategies based on these per-

formance analyses have been implemented in practice. One of the reasons is that

the theoretical networking results are largely probabilistic and are based on assumed

models of traffic. Therefore, there is a divide in the literature in terms of theoreti-

37

cal and practical networking. In this chapter, we address this shortcoming by using

measured data and to fit appropriate models for performance analysis.

One of the main stumbling blocks for using measurement data for performance

analysis is the fact that traffic patterns are inherently bursty, resulting in high cor-

relations and large variations. It is well documented and accepted that traffic in

computer-communication networks exhibit long-range dependence (LRD). Whether

one looks at connection-level, request-level, or packet-level traffic, the arrivals are not

independent. They show a high degree of correlation over a very large number of

arrivals, as shown by Sahinoglu and Tekinay [32]. Statistical analyses of high time-

resolution traffic measurements have also provided convincing evidence that actual

traffic data represents self-similarity, or fractal characteristics, as reported by several

researchers, including Leland et al. [33], Paxson and Floyd [34], and Willinger et al.

[35]. For this reason, various types of “self-similar” models to characterize this LRD

traffic have been used.

While these self-similar models do a fantastic job of characterizing traffic, they

are typically difficult to use in performance analysis. For example, when self-similar

traffic is fed into a queue to be processed, it is usually, except for some special cases,

not easy to analytically obtain the required performance metrics of the system as

closed-form algebraic expressions.

However, as we move into the next phase of high-speed network services, in which

users demand excellent QoS for their applications, it is critical to be able to charac-

terize, predict, and obtain system performance metrics in computer communication

networks. Several researchers, such as Frost and Melamad [36] and Jagerman et al.

[37], have tried to obtain these system parameters using queueing theory and Marko-

vian assumptions about traffic arrival patterns and exponential assumptions about

resource-holding requirements. However, as mentioned earlier, modern high-speed

38

networks result in packet traffic that is generally much more complex and bursty.

Moreover, these approximations tend to give performance measures that only under-

estimate the expected waiting time, workload, etc.

Hence, on the one hand self-similar models cannot easily and directly be used to

obtain performance metrics, while on the other hand, queueing approximations based

on G/G/1 models would result in severe underestimation of the performance met-

rics. Several other stochastic models have come up over the years, such as fluid-flow

models [38], the Markov modulated Poisson process [39], the batched Markovian ar-

rival process (BMAP) models [40], etc. These models have maintained the analytical

tractability of queueing and performance problems. However, the resulting models

have hardly been judged by how well they fit actual traffic data in a statistical sense

[41].

Therefore we need a methodology that not only can characterize the network

traffic nicely but at the same time can be useful in acquiring performance metrics.

In this research, we propose to use the stochastic fluid-flow models to obtain the

performance measures, while using the parameters for the fluid flow obtained from

trace data collected from different Web-servers across the United States.

The motivation for considering fluid models, especially ON-OFF sources, is be-

cause frequently traffic arrives in bursts, causing dependence as well as poor estimates

of performance. Since the seminal article by Anick, Mitra and Sondhi [38], there have

been several papers that obtain performance metrics for queues with first- (and/or

second-) order fluid traffic. In this chapter, we propose to leverage upon these results

to address the question of whether fluid-flow models adequately capture high-speed

network traffic characteristics and effectively approximate performance measures seen

in real traces. In the process, we will take real trace data, which happen to be dis-

crete in nature, and fit fluid-flow models for them. This will require obtaining the

39

parameters for the distributions used in the fluid-flow model using the trace data.

The remainder of the chapter is organized as follows. In Section III.2, we present

a brief review of the related work done by researchers in analysis of fluid models

and other methods of obtaining performance measures in network traffic. In order to

employ different methods to perform the analysis, we have used a number of data sets.

Section III.3 describes these data sets by providing details about the data contained

and the source of the data. In Section III.4, we present the methodologies that have

been adapted to model and analyze the system. These methodologies have then been

used on the traces, and the process of computation of numerical results is presented in

Section III.5. The system has also been modeled as a Markov-modulated fluid source.

This analysis is presented in Section III.6. The numerical results of all the different

analysis methods are presented in Section III.7. Finally, we present the findings in

Section III.8.

III.2. Related Literature: Network Traffic and Modeling

The first step in the performance analysis of communication networks is modeling

traffic. Self-similarity concepts have been used to model communication systems ever

since the seminal article by Mandelbrot [42]. Since then, researchers have been debat-

ing the issue of traditional mathematical modeling (based on Markov processes) vs.

unconventional fractal modeling (based on LRD), even in different areas of application

(see Klemeš [43], Liebovitch [44]).

The property of self-similarity, or LRD, in LAN traffic was first reported by

Leland et al. [33]. Since then, researchers have discovered that it is also exhibited

in other kinds of network traffic, such as WWW traffic [45], Wide Area Networks

[46, 34], and TCP and UDP traffic [47].

40

It has been found that computing performance measures of the traffic, in case

self-similarity is exhibited, is very difficult, because it makes the problem analytically

intractable. Moreover, using simpler models, such as the Poisson approximation, has

been shown to be inadequate [48]. These authors have demonstrated, by means of

synthesized traffic from a Poisson model, a fractal model, and the Internet traffic,

at different orders of magnitude, that fractal models are required in order to be able

to characterize the traffic appropriately. Gelenbe et al. [49] have also shown that

loss probabilities obtained by simulating the Internet traffic using first-order renewal

approximation (Poisson), second-order renewal approximation (Pareto), and actual

bursty traffic, yield very different results.

The importance or irrelevance of capturing the self-similarity has been a debated

topic, and Sahinoglu and Tekinay [32] have provided a list of several studies. They

mention that as an effect of self-similarity, the buffer sizes needed at the switches and

multiplexers are larger than those predicted by traditional queueing analysis and sim-

ulations. They also go on to say that self-similarity introduces new complexities into

optimization of network performance and makes the task of providing QoS, together

with high utilization, difficult.

Other researchers, such as Partridge [50] and Ramaswami [51] have also demon-

strated that simple queueing models that do not capture the self-similarity are far

from adequate in representing the network traffic, and hence they are not nearly good

enough to obtain the performance measures.

This has led to researchers coming up with various methods and approximations

in order to evaluate performance measures of systems that exhibit the self-similarity

characteristic. A bibliographical guide to modeling and analysis of self-similar traffic

has been presented by Willenger et al. [30]. It lists most of the network traffic studies

of the time in the areas of data analysis, statistical inference, mathematical modeling,

41

queueing, and performance analysis.

An important step in obtaining the performance measures is to use an appropriate

methodology. The most common methodology to model the network traffic is to use

a heavy-tailed distribution, such as the Pareto distribution, and to deploy the Hurst

parameter, as demonstrated by Addie et al. [52] and Willinger and Paxson [48].

Other methodologies applied to related systems can also be seen in the liter-

ature. Gautam and Seshadri [53] have concentrated on models based on queueing

network analysis to obtain the performance measures of an e-commerce system. They

have demonstrated the impact of self-similarity on performance degradation and have

shown that it is possible to come up with reasonable approximations for waiting time

in the system by decomposing the traffic into bursty and non-bursty components. In

a later work by the same authors [54], the potentially high impact of self-similarity

has been clearly demonstrated, and it has been shown that the traditional techniques

are inadequate for predicting the network performance.

Another concept, that of effective bandwidth, has also been well established

to satisfy the QoS requirements in the case of queueing models [55, 56, 57]. This

methodology to analyze the buffer content process is based upon the exponential

approximation of the tail probabilities. Although this technique is widely used for

large buffer sizes, it may not be appropriate for low buffer sizes. Researchers have

modified this methodology to redress the shortcomings, including Elwalid et al. [58]

and Elwalid and Mitra [59].

Other approaches have been developed in order to avoid the approximations

of the simple queueing models, such as deriving upper and lower bounds for the

tail of buffer content process in steady-state with a Markov additive input in the

stationary regime in the G/G/1 queue [60, 61]. Fluid-flow models have also been

used to characterize and analyze the communications systems.

42

Fluid models with exponential ON and OFF times are intensively studied, start-

ing with the pioneering work by Anick et al. [38]. Elwalid and Mitra [62] have given

models and analytical techniques for a composite system of access regulation that uses

the Asynchronous Transfer Mode (ATM), using a Markov-modulated fluid source, to

allow for the bursty characteristic to be modeled accurately. Yang and Tsang [63]

have proposed an approach for estimating the cell loss probability in an ATM multi-

plexer loaded with ON-OFF sources, using Markov-modulated deterministic process

(MMDP) to approximate the arrival process and use queueing theory.

Other works dealing with the fluid-flow models include that of Liu et al. [64],

who have developed a framework for computing upper and lower bounds on backlog,

queue length, and response time, of an exponential form, for a large class of single-

resource systems with Markov additive inputs. They have presented the bounds in

the context of queueing theory and have also presented the numerical comparison

with other bounds. Aalto [65] has looked at storage models where input rate and

demand are modulated by a Markov jump process, such as a multiplexer loaded by

exponential ON-OFF sources. They have shown that the output process is modulated

by another Markov jump process, which turns out to be a modification of the G/G/1

process.

Palmowski and Rolski [66] have developed exponential bounds for the distribu-

tion of buffer-content process, in the case of simple fluid models, whose input traffic

is modulated by a continuous time Markov chain (CTMC). The same authors then

studied the fluid models with general ON times and OFF times and derived the

exponential upper and lower bounds for the tail of the steady-state distribution of

the buffer content [67]. Later, Gautam et al. [68] generalized the results in Palmowski

and Rolski [67] to obtain exponential bounds for a large class of single-resource sys-

tem fed by multiplexing semi-Markov processes in continuous time and a more general

43

input case. They have considered an infinite sized buffer fluid model with a constant

output capacity buffer.

Although several researchers have alluded to the fact that fluid models can be

used to characterize bursty traffic, to the best of our knowledge no one has explicitly

taken traces, modeled them using fluids, and compared the accuracy of performance

predictions. For that we use trace data, collected from Web-servers, to obtain the

performance measures of a buffered queue, which we describe next.

III.3. Trace Data

In this research, we have used data collected from Web-servers for our experimenta-

tion. For the purpose of the analysis, we have used seven different data sets. The

raw data obtained are in the form of a trace, which includes the arrival times and

the size of the file requested from the server. The traces have been obtained from the

IRCache Web site (http://www.ircache.net), a Web caching project originally funded

by the National Science Foundation (grants NCR-9616602 and NCR-9521745), and

the National Laboratory for Applied Network Research. They provide sanitized cache

access logs for academic and research purposes. These traces are essentially log files

of a large number of requests collected from different servers from across the United

States. For the traces used in the analysis, location of the Web-server for the traces,

along with some parameters defining the trace capture, are given in Table I.

We assign numbers to these traces to facilitate easier reference to a particular

dataset. Note that Trace 4, which was obtained from Paxson and Floyd [34], and not

from the IRCache Web site, is over a decade older than the rest.

These traces contained information about the inter-arrival time and the file sizes

of each of the requests. By looking at the arrival times in the data, it was found that

44

TABLE I Web-Server Location of the Trace Data

Trace Web-server Location Log Time Duration (Hrs)

1 Pittsburgh, PA Oct ’04 09.6

2 New York, NY Oct ’04 12.2

3 Urbana-Champaign, IL Feb ’05 08.6

4 Berkeley, CA Jan ’94 01.0

5 Research Triangle Park, NC May ’06 12.6

6 San Jose, CA May ’06 10.1

7 Palo Alto, California Jun ’06 07.8

all of the traces could be modeled using piece-wise constant arrival rates. That is, the

mean interarrival rate was independent of time in each such piece. As an example,

consider Trace 5 shown in Fig. 9.

The data in this trace can be approximated using three piecewise constant arrival

rates. Zooming in on the near-constant inter-arrival rate between arrivals 400,000 to

1,000,000, we get Fig. 10. This data can suitably be approximated with a mean

interarrival rate that is independent of time.

It was also observed that the number of arrivals during a piecewise constant phase

is large enough to warrant a steady-state analysis (or quasi-steady-state analysis)

rather than a transient analysis. With this in mind, we will, for the rest of the

chapter, consider constant mean inter-arrival rates and only perform steady-state

analysis. Note that the arrival process is still stochastic in nature. The data sets

have been summarized in Table II, which provides the mean and standard deviation

of the inter-arrival times and the packet sizes, along with total number of arrivals in

45

Fig. 9. Piece-Wise Linear Arrival Times of Trace 5

the trace.

Once we have selected the linear piece from the trace data, we perform the

analysis as described in the next section. The numerical results obtained from such

an analysis are presented in Section III.5.

III.4. Analysis

Consider an abstract scenario of a buffer in which information arrives, waits, gets

processed, and then, transmitted. Now, if processing starts only after the entire file

has arrived, the workload profile in the system will look as shown in Fig. 11. However,

if the processing starts as soon as information starts arriving, the workload in the

system could be represented by the figure on page 49.

The objective in such scenarios is to obtain performance measures, such as the

46

Fig. 10. Time-Independent Inter-Arrival Times Used for Analysis of Trace 5

Fig. 11. Workload in the System in the Discrete Case

47

TABLE II Summary of Trace Data

Trace Inter-Arrival Time (sec) Packet Size (MB) Total

No. Mean Std. Dev. Mean Std. Dev. Requests

1 0.139 0.216 16.048 76.125 250,000

2 0.155 0.206 14.287 151.86 290,000

3 0.062 0.090 5.698 160.556 500,000

4 0.004 0.006 3.412 7.463 870,000

5 0.039 0.063 9.490 299.840 600,000

6 0.122 0.144 20.844 410.130 300,000

7 0.440 0.651 11.215 895.534 65,000

mean waiting time in the queue. There are a number of analytical and numerical

approaches that can be used to compute performance measures such as average wait-

ing time, when arrival and file size characteristics are given. We will analyze each

of the traces at three different traffic intensity values: 60%, 80%, and 90%, in order

to observe the effect of changing traffic intensity on performance measures. In this

section, we will define the problem and then describe the methodologies used in order

to compute the performance measure.

III.4.1. Problem Description

In the system considered, when a request comes in for a particular file of a given size,

the server processes or transfers that file. Since the processing speed of the server is

assumed to be constant (this we believe is reasonable for the objective of this study),

48

the processing time for a file is linearly proportional to its size. If these, potentially

large files, are downloaded one after the other and they pass through a buffer with

output capacity C (Fig. 12), then we are interested in obtaining the average time for

Fig. 12. Data Arriving, Being Processed and Leaving a Buffer

a file to pass through the buffer, or in other words, the mean waiting time of this

response process. The maximum rate at which this data is flowing into the buffer can

be assumed to be R, the channel capacity.

If we assume that the processing starts after the entire file has arrived to the

buffer, the workload profile will look as shown in Fig. 11. The jump in the figure

represents the discrete time point at which the file has completed arriving in the

system. Now, consider the system in Fig. 11 with processing speed of C bytes/s. Let

the buffer capacity be infinite, and let Ai be the time of arrival of the ith request,

of size (in bytes) Si. Furthermore, let X(t) be the amount of workload (in bytes) in

the system at time t. This workload in the system is shown in Fig. 11. The timeline

in the top part of the figure shows the time points of the discrete arrivals, with the

length of arrows being proportional to the size of request. The slope of each of the

lines reducing the workload in the system is equal to the processing rate, C. The

49

workload at time t in such a system can be written as the following expression:

X(t) =

 ∑
i:Ai∈(t0,t)

Si

− (t− t0)C ,

where t0 is the last time the system was empty and there was an arrival. In the next

section we will provide analytical expressions for the expected waiting time.

However, instead of the case considered in Fig. 11, it can be argued that the file

starts being transmitted as soon as it arrives. In this case, the workload profile will

look similar to the one shown in Fig. 13. Here, we can assume the inflow to be in

Fig. 13. Workload in the System in the Fluid Arrivals Case

the form of an ON-OFF source feeding a buffer with a constant output rate C, as

shown in Fig. 14. Each ON may represent one or more files flowing into the system.

Let the channel capacity of the input source be R bytes/s. That is, the fluid enters

the system either at the rate of R bytes/s, or not at all. In this case, the workload

(X(t)) in the system will look similar to the plot shown in Fig. 13. Here, the slope of

the lines increasing the workload in the system is (R−C), and the slope of the lines

reducing the workload is the same as before, C. Let t0 be the last time the system

50

Fig. 14. A Buffer Representing the Inflow and Outflow of Fluid in the system

was empty and an ON time started. Then, if Ui and Di are the ON time and the

OFF time of the ith ON and OFF, respectively, and UN and DN are the last time

an ON and OFF period started in the time period (t0, t), workload in the system is

given as:

X(t) =
∑

i:Di∈(t0,t)

R(Di − Ui)− (t− t0)C

if (UN < DN)

=
∑

i:Di∈(t0,t)

R(Di − Ui) +R(t− UN)− (t− t0)C

if (UN > DN) .

That is, for each OFF time in the time period, we sum the amount of fluid accumu-

lated in the last ON (R(Di−Ui)) and subtract the total amount of fluid that left the

system ((t − t0)C). In case the system is in ON state at time t (i.e., UN > DN), we

add the amount of fluid during the last ON time (R(t−UN)). The amount of fluid in

51

the system represents the remaining workload. We use the methodology developed in

the area of fluid-flows to analyze this system and obtain the expected waiting time.

The waiting time so obtained will be independent of the scheduling principle (FCFS,

LIFO etc.).

III.4.2. Software Simulation

Before describing the methodologies and computing the performance measures, we

describe the basis against which these obtained performance measures will be com-

pared. In order to compute the actual waiting time in the queue for the trace data,

we will use a software simulation. Here, we use the actual data in the trace and pass

the files through a buffer to obtain the mean waiting time.

The traces have the arrival times and the file size for each of the requests pro-

cessed. Using this data, a simulation can be performed, in which a request comes to

the system at its specified arrival time, joins the queue for the server, gets processed

in a time proportional to its file size, and leaves the system. We assume a first-come-

first-serve scheduling policy for the server, which is a work-conserving policy, and the

results so obtained should hold for any other work-conserving scheduling discipline

as well. This method of simulating the trace will give us the actual waiting time a

request would have to experience in the system. The average number of bytes in the

system in the long run can be computed as the average workload or the buffer content

in the system. To keep consistency with the other methods of analysis, the processing

rate for the data should be chosen in such a way so as to obtain the appropriate traffic

intensity. This can be done by choosing an appropriate processing rate, C, such that

given the mean inter-arrival time and the mean file size, we have the desired traffic

intensity. From now on, we will refer to these results obtained from the simulation as

the actual waiting times.

52

Now that we have the actual waiting times from the data, the next steps are to

analyze the system using discrete and fluid-flow methodologies to compare the results.

III.4.3. G/G/1 Approximation

One of the techniques to obtain long-run expected waiting time in a queue is to

use G/G/1 approximation from queueing theory. In this scenario, we assume that

processing of the files starts only after the whole file has arrived, or that the file

arrives as a bulk at a discrete time point. The workload in such a system would be as

shown in Fig. 11. Renewal arrival times and independent and identically distributed

(iid) service times are assumed in this approximation. Hence, This assumption is not

congruent with the LRD property of the inter-arrival times.

Using the data from the Web-trace, we can compute the sample mean and sam-

ple variance for the inter-arrival times and the service times, which would be the

estimators of mean and variance. Now, let ρ be the traffic intensity in the system,

which is a measure of the average occupancy of the server and can be computed as

the ratio of mean arrival rate and the mean service rate. Also, let Ca and Cs be the

coefficient of variation (ratio of standard deviation to mean) of the inter-arrival times

and the service times, respectively. Then, the expected waiting time for a file in the

queue, using the G/G/1 approximation, is given by (from [69] and using Little’s law

[70]):

W =
1

λ

[
ρ2(1 + C2

s)

2− ρ+ ρ2C2
s

ρ(2− ρ)C2
a + ρ2C2

s

2(1− ρ)

]
(3.1)

where 1/λ is the mean inter-arrival time.

53

III.4.4. Fluid-Flow Model

The information flow into the system has been considered as discrete in the case of

the G/G/1 approach. In this section, we treat the arrivals as fluid. As described

earlier, we will model this system as an ON-OFF source, with input link speed as R

bytes/s, and with a processing speed of C bytes/s. It should be noted that a single

ON time may represent a confluence of more than one file. Processing of data starts

as soon as the file starts arriving (Fig. 13).

Let the mean ON time be τU and the mean OFF time be τD. Then, the sever

utilization in this kind of an ON-OFF source can be obtained as RτU/{C(τU + τD)}.

Assume that the ON times and the OFF times are independent of each other, and that

each is identically distributed. Let U(·) be the cumulative density function (CDF) of

the ON times, and let D(·) be the CDF of the OFF times. Given a distribution, these

CDFs can be obtained from the data that will be described in Section III.5. Now,

the Laplace-Stieltjes transform (LST) of a non-negative function F (x) is given by:

F̃ (s) =
∫ ∞
x=0

e−sxdF (x). (3.2)

Using the above equation, the LSTs of ON times and OFF times can be computed

as Ũ(·) and D̃(·), respectively.

Using the theory of large deviations, we can obtain the distribution of the buffer

contents in the following manner (details in [68]). Let X(t) be the amount of fluid

(in bytes) in a buffer of infinite capacity, at time t. Now, in order to compute the

expected waiting time in the queue, we first need to evaluate the amount of fluid in

the buffer, which is essentially the remaining workload in the system. Hence, if we

can obtain expressions to evaluate this quantity, we will be able to characterize the

expected waiting time. To obtain the limiting distribution of X(t), define η as the

54

smallest real-positive solution to

Ũ(−η(R− C)) D̃(ηC) = 1. (3.3)

Then, we have bounds for the distribution of X(t) in the limit as t → ∞ (for any

x ∈ [0,∞)) as

K∗e
−ηx ≤ lim

t→∞
Pr{X(t) > x} ≤ K∗e−ηx, (3.4)

where

K∗ =

(
Ũ(−η(R− C))− 1

)
R

(τU + τD)C(R− C)η infx

{∫∞
x

eη(R−C)(y−x)dU(y)

1−U(x)

}
and

K∗ =

(
Ũ(−η(R− C))− 1

)
R

(τU + τD)C(R− C)η supx

{∫∞
x

eη(R−C)(y−x)dU(y)

1−U(x)

} .
In order to evaluate these bounds, the first step is to compute the CDFs of the ON

times and that of the OFF times. Since we have the ON times and OFF times from

the trace data, we will have to fit a distribution here by computing its parameters.

Then, we can use the technique mentioned above to compute the bounds.

If we assume that an arriving file sees a time-averaged amount of fluid in the

system, we can compute the bounds on the expected waiting time for the arriving file

as:

K∗/ηC ≤ W ≤ K∗/ηC. (3.5)

It should be noted that the bounds presented here are valid for traffic that is

fluid and satisfies the underlying distributions. That is, these are bounds on expected

waiting times of the fluid approximation of actual data. In our analysis, iid distribu-

tions have been fitted on trace data and this data is approximated as an ON-OFF

source. Hence, in our analysis, these bounds may be violated and might as well be

treated as upper-level and lower-level approximations for the expected waiting time

55

of the actual data.

One of the open research questions is when an ON-OFF source with ON time

CDF U(·) and OFF time CDF D(·) inputs fluid into an infinite buffer at rate R and

with an output rate C is: whether limt→∞ Pr{X(t) > x} in Equation (3.4) is closer

to the upper bound, lower bound, or somewhere in between. We aim to address that

problem as a byproduct of this work.

III.5. Computing the Performance Measure

In this section, we present the process to take the trace data mentioned in Section III.3

and compute the waiting times, which is our performance metric of choice, using the

methodologies described in Section III.4. It should be noted that the calculations are

valid for any work-conserving system, such as first-come-first-serve, random-order-of-

processing, or processor sharing. In the case of the fluid model, we are essentially

looking only at the work remaining in the system. Hence, the scheduling discipline

becomes irrelevant, as long as it is a work-conserving system. Once we have the

numerical results, we would be able to compare the different methods with the actual

waiting times and against each other.

In order to compute the performance measures using any of the methodologies,

we first need to ascertain the values of the inflow rate, R, and the processing rate,

C, from the trace data so as to have a desired traffic intensity of ρ. This is done by

setting the processing rate as C = λ/(ρ ·µ), where λ is the mean inter-arrival rate and

1/µ is the mean file size. Now, to obtain the value of R, we compare the workload

profile in the system for different ratios R/C to the workload profile in the discrete

case. It is clear that as R/C increases, the system will behave more and more like a

discrete system. For the analysis, we want to choose a low R/C, while not causing

56

significant deviation in the workload profile. It was found that the value R/C = 1.5

serves very well for all the traces, and hence, R = 1.5C is used. The workload profile

comparison for one such case is provided in Fig. 15.

Fig. 15. Comparison of Work Remaining in the System in Discrete and Fluid Case

(R/C = 1.5) for Trace 7

Using the values of R and C obtained for different traces at different traffic

intensities, we can compute the G/G/1 approximation for the expected waiting time

in the queue, using Equation (3.1).

To compute the performance measure of the system using the fluid-flow model,

we first obtain the ON time and OFF times from the data. A single ON could consist

of more than one files and can represent a burst of data. Distributions now need

to be fitted to the ON times and the OFF times. We can choose from an array of

distributions to model these, such as Pareto, exponential, etc. As demonstrated by

Feldmann and Whitt [71], it is possible to use a phase-type distribution, such as the

hyper-exponential distribution, to model such a system and analyze the performance

57

model. They also proved that completely monotone probability density functions

(PDF’s), which represent the case many times for long-tailed distributions, can be

approximated arbitrarily closely by hyper-exponential PDF’s.

In this work, based on the performance shown in fitting the data, we chose two-

phase hyper-exponential (2P-HE) distribution to model the ON times of the traffic.

The other advantage of using the hyper-exponential distribution over other distribu-

tions, such as Pareto, is that we can perform exact analysis. OFF times of the traffic

are approximated using the exponential distribution. There are various ways to fit a

distribution to a given data set, and one of the easiest and most popular methods is by

matching moments. The number of unknown parameters in the specified distribution

defines the number of moments that need to be equated.

Using this methodology, we will be able to obtain the parameters for the 2P-HE

distribution for the ON times and exponential distribution for the OFF times. The

CDF of a 2P-HE distribution (ON times) can be represented as:

U(x) = 1− pe−α1x − (1− p)e−α2x x ≥ 0 ,

with parameters p, α1 and α2. The CDF of the exponential distribution (OFF times)

is given as:

D(x) = 1− e−λx x ≥ 0.

Once we have obtained the CDFs of both the ON times and the OFF times,

we can compute the bounds on the expected waiting time in the system using the

methodology described in Section III.4.4. This would involve computing the value of

η using Equation (3.3), and then using this value of η in Equation (3.4), to obtain the

bounds on the desired performance measure. The details of performing this analysis

and a numerical example for one of the traces is provided in Section III.5.1.

58

Exponential distribution does not approximate the ON times very well, and

hence, if used, it could lead to error in the estimation of the performance measure.

However, one great advantage of using an exponential distribution for the approx-

imation is that we only need to obtain one parameter for the CDF, which can easily

be computed by comparing the mean to the first moment. Moreover, if we use expo-

nential distribution to approximate both the ON times and the OFF times, the bounds

given in Equation (3.4) converge to

K∗ = K∗ =
RτU

C(τU + τD)
. (3.6)

Hence, rather than getting bounds as in the case of the hyper-exponential distribution,

we obtain the approximation for expected waiting time as W = K∗/ηC. Therefore,

we will evaluate this approximation as well and observe how far off we would be in

terms of the performance measures by using this distribution.

We have approximated both the ON times and the OFF times with exponential

family distributions. This gives us an additional option of obtaining the expected

waiting time in the system using exact analysis, by considering the arrival process

modulated by a CTMC. The details of this analysis are provided in Section III.6.

III.5.1. Computing the Fluid-Flow Model Bounds

Here, we will demonstrate how to compute the parameters for the fluid-flow model,

by using Trace 3 as an example. The computations are for traffic intensity of 80%.

In order to obtain these parameters for the ON times, we evaluate the first three

moments of the 2P-HE distribution analytically and compare them with the moments

obtained from the actual data. Using the CDF, we can compute its three moments

59

(m1, m2, m3) as:

mi =
i! p

αi1
+
i!(1− p)

αi2
.

The three moments obtained from the data were found to be: 0.07614, 9.2097 and

5110.5980. Therefore p = 0.999867, α1 = 19.4990, and α2 = 0.0054, and hence, we

have

U(x) = 1− 0.999867e−19.4990x − 0.000133e−0.0054x .

To obtain the parameter of the CDF of the OFF times (Exponential, CDF: 1−e−βx),

we just need to equate the mean OFF time obtained from the data to 1/β. For this

data set, we get 1/β = 15.0089.

Now that we have the CDFs of both the ON times and the OFF times, the

value of η can be computed using Equation (3.3). When we use the 2P-HE and the

exponential distributions for the ON times and the OFF times respectively, this turns

out to be a cubic equation. One of the roots of this equation would be zero. Moreover,

for this system, both of the other roots would be positive. We will pick the smaller

positive root of this equation as the value of η. In this particular case, the roots of the

equation were obtained as 0, 0.007528 and 23.9923. Hence, we choose η = 0.007528.

For other analyzed traces, the numerical values of p, α1, α2, β and ηC for the

90% traffic intensity case are shown in Table III.

Now that we have the η value, we need to obtain the bounds on the waiting times.

Notice from Equation (3.4) that the denominator for both of the bounds requires us

to compute a supremum and infemum of the same expression. However, the integral

is a non-decreasing function of x for the distributions we are using. The graph of this

expression as a function of x, for the example at hand is shown in Fig. 16. Here, we

can obtain the infemum at x = 0 and supremum at x = ∞ as 1.00023 and 3.2965,

respectively. Because we have all the other values in the expression, we compute the

60

TABLE III Fluid Approximation Values of the Trace Data at 90% Traffic Intensity

Trace p α1 α2 β ηC

1 0.998236 4.33054 0.015278 4.3345 0.015212

2 0.999713 5.40856 0.003896 5.8029 0.004200

3 0.999839 16.8072 0.003841 14.955 0.003459

4 0.999975 160.390 0.011283 177.05 0.012586

5 0.999884 28.7201 0.003851 23.079 0.003217

6 0.999674 10.7731 0.003398 7.9515 0.002682

7 0.999607 63.5095 0.000494 1.8510 0.000251

numerical values of K∗ and K∗ as 0.425 and 1.400, respectively.

Since these K∗ and K∗ values can give us the probability of the workload in the

system being greater than any given value, we can obtain the bounds on the expected

waiting time in the system as K∗/ηC and K∗/ηC. Computing these values, in this

case, we obtain 56.42 ≤ W ≤ 185.88.

We notice that the p values in Table III are all very close to 1. This implies that

the contribution of the first term is very large as compared with the second term when

evaluating the workload in the system. However, the α1 values are greater than the

α2 values by orders of magnitude; thus, giving some significance to the contribution

of the second term.

If we use the exponential distribution to approximate both the ON times and

the OFF times, the bounds given in Equation (3.4) converge to the same value, given

in Equation (3.6). For the case of Trace 3 at 80% traffic intensity, this value was

computed to be 0.800, giving the expectation of the waiting time in the system to be

61

Fig. 16. Graph Representing the Function for Which Obtaining the Infemum and

Supremum Is Desired

106.27.

III.6. CTMC Analysis

We have approximated the ON times as 2P-HE distribution. A hyper-exponential

(Hk) distribution is a mixture of k exponential distributions for some k. That is, the

CDF has the form

H(x) = 1−
k∑
i=1

pie
−λix , (3.7)

where pi ≥ 0 for all i and p1 + p2 + . . . + pk = 1. The OFF times have been

approximated as an exponential distribution. Because the ON and OFF times are

based on exponential family, we could do exact buffer content analysis using CTMC

for the source (Markov modulated fluid source). In this section, we will obtain the

expected waiting time in the system by performing this analysis, which is described

next for a generic CTMC with finite state space.

In a Markovian fluid-flow model, the drift matrix is defined as D = R̄ − CI,

62

where R̄ = diag[rii] defines the rate matrix and I the identity matrix. Here, rii = r(i)

is the rate of inflow when CTMC is in state i and C is the constant buffer output. For

the case of exponential family of ON-OFF sources, r(i) is R or 0 if state i corresponds

to ON or OFF, respectively. A generator matrix Q = [qij] defines the transition rates

between different states of the system. Using the drift matrix D and the infinitesimal

generator matrix Q, we can evaluate the distribution of the limiting probability of

the remaining workload in the buffer. This can be used to get the expected waiting

time in the system, which can be compared with the waiting times evaluated using

other methods.

In order to perform this analysis, we use the methodology initially proposed by

Anick et al. [38] and then further developed by Elwalid and Mitra [62, 72]. The

methodology has also been explained in [73]. Let X(t) be the amount of fluid in

the buffer at time t. We will consider an infinite capacity buffer and so, stability is

guaranteed if the mean traffic arrival rate is less than the buffer output rate, C. Let

the traffic be generated by an irreducible CTMC on state space S = {1, 2, . . . ,M}.

Also, let M+ be the cardinality of the set of states with positive drift (i.e. i : r(i)−C ≥

0), andM− be the number of states with negative drift. In Equation (3.4), we obtained

bounds for Pr{X(t) ≤ x} as t→∞. Here, for the special case of exponential family

ON-OFF source, we obtain the exact expression for this limiting probability as:

lim
t→∞

Pr{X(t) ≤ x} =
M++M−∑
i=1

ai exp{eix}φi, (3.8)

where, ei and φi denote the eigenvalues and eigenvectors of the matrix [QD−1] re-

spectively. Moreover,

Re(e1) ≤ Re(e2) ≤ . . . ≤ Re(eM+) < Re(eM++1)

= 0 < Re(eM++2) ≤ . . . ≤ Re(eM++M−).

63

The only unknowns in Equation (3.8) are the ai values. These values can be

computed using the boundary conditions. For a stable system with infinite buffer,

boundary conditions are:

aj = 0 if Re(ej) > 0,

aM++1 = 1,

M++1∑
i=1

aiφij = 0 if j ∈ S+. (3.9)

Thus, we can evaluate limt→∞ Pr{X(t) ≤ x} for a given x. Again, assuming that an

arriving file sees a time-averaged amount of fluid in the system, we can compute the

expected waiting time in the system for the file as

W =
1

C

∫ ∞
0

(
1− lim

t→∞
Pr{X(t) ≤ x}

)
dx. (3.10)

III.6.1. Numerical Example for CTMC Analysis

The distribution of the ON times and the OFF times chosen are from the exponential

family, which has allowed us to perform CTMC analysis and obtain the mean waiting

time in the system. Following, we present a numerical example, using Trace 2, at

90% traffic intensity. Other traces were analyzed in a similar way.

Let the channel output rate C be 1 unit. We have chosen the inflow rate to be

1.5 times the output channel capacity. Hence, the rate matrix can be given as:

R̄ =

0 0 0

0 1.5 0

0 0 1.5

 ,

where the first state corresponds to the OFF state and the second and third states

correspond to the two phases of the ON state. The drift matrix and the infinitesimal

64

generator matrix for this trace can be given as:

D =

−1 0 0

0 0.5 0

0 0 0.5

, and

Q =

−5.8029 5.8013 0.0017

5.4086 −5.4086 0

0.0039 0 −0.0039

 .

Next, we obtain the eigenvalues (e) and the left-eigenvectors (φi) of QD−1. The

following is what we obtain:

e = −5.0178,−0.0042, 0,

φ1 =
[
−0.4471 −0.8945 0.0003

]
,

φ2 =
[

0.5763 0.6184 0.5342

]
,

φ3 =
[
−0.6547 −0.7022 0.2799

]
.

Now, we need to compute the ai values. In this particular trace, using the boundary

conditions given in Equation (3.9), we have:

−0.8945a1 + 0.6184a2 − 0.7022a3 = 0,

0.0003a1 + 0.5342a2 − 0.2799a3 = 0,

−(0.6547 + 0.7022 + 0.2799)a3 = 1.

Solving the above equations, the values of ai can be obtained as a1 = 0.2583, a2 =

−0.3202, and a3 = −0.6110. Thus, we have obtained all of the required parameters

65

for the CDF, and using Equation (3.8) we obtain:

lim
t→∞

Pr{X(t) ≤ x} = 1− 0.3464e−5.0178x − 0.5536e−0.0042x

⇒ W = 0.3464/5.0178 + 0.5536/0.0042 = 131.88.

Hence, we can compute the expected workload in the system from the above

CDF as 131.88, which would be equal to the expected waiting time if the processing

rate is 1 unit.

III.7. Results

We have obtained several approximations for the expected waiting time in the system

in the three previous sections. In this section we compare the approximation schemes

using the different traces at traffic intensities of 60%, 80%, and 90%. We first summa-

rize the various schemes and, for quick reference, present them in Table IV, including

notation used in figures as well as future tables.

Essentially, there are three types of techniques: actual waiting times observed by

running traces through a simulator, discrete queueing model using G/G/1 results, and

fluid models. The fluid models provide four different approximations. Our objective

is to determine whether fluid models are suitable, and also to provide guidelines for

choosing the most appropriate fluid model.

For that, we begin by summarizing the mean waiting time using the various

methods in Table IV for all the traces. Obervations were recorded for all of the

traces, and are presented in Fig. 17–Fig. 23.

Note that the plots corresponding to L-Bound and CTMC are running virtually

on top of each other for all of the traces, making it difficult to tell them apart in some

cases. The critical observation to make here is that U-Bound produces a significantly

66

TABLE IV List of Methodologies and Legend for Graphs and Tables

Name in
Type Model Input

Fig./Table

Actual Simulation Traces fed directly

G/G/1 Discrete Moments of arrival and service times in Equation (3.1)

L-Bound Fluid CDF of ON and OFF times for LHS of Equation (3.5)

U-Bound Fluid CDF of ON and OFF times for RHS of Equation (3.5)

CTMC Fluid CTMC Q and R matrices to derive Equation (3.10)

Exp Fluid Mean ON and OFF times for Equation (3.6)

Fig. 17. Different Bounds and Approximations at Different Traffic Intensities for

Trace–1

67

Fig. 18. Different Bounds and Approximations at Different Traffic Intensities for

Trace–2

higher mean waiting time compared with the remaining four that are all close to

each other, especially at low and medium traffic intensities. The margin of separation

is very low at higher traffic intensities, which prompts us to study the high traffic

intensity separate from the low and medium ones.

III.7.1. High Traffic Intensity

Based on the results from Fig. 17, Fig. 18, Fig. 19, and Fig. 22, at 90% traffic intensity,

the actual waiting times (“Actual”) are much closer to the fluid upper bound (“U-

Bound”) as compared with the other methods used. This can also be observed in

Table V, which shows the results at 90% traffic intensity. For the rest of the traces,

as shown in Fig. 20, Fig. 21, and Fig. 23, lower bound comes out to be a much better

approximation. Also note that in six out of these seven cases, traditional G/G/1

68

Fig. 19. Different Bounds and Approximations at Different Traffic Intensities for

Trace–3

approximation severely under-estimates waiting time.

With the advent of “green computing”, in order to save energy, it is envisioned

that computer systems will run at high traffic intensities. Thus it is imperative that

we have excellent performance models under those conditions, and U-bound seems to

be the better choice for that.

It appears from some of these results that at a traffic intensity higher than

90%, “Actual” waiting time might be higher than the “U-Bound”. As mentioned in

Section III.4.4, these fluid-bounds may be violated in our analysis since we have fitted

distributions to trace data in order to obtain these bounds, and have assumed the

ON and OFF times to be iid. Hence, this is not a contradiction.

It can be observed from Table V that the actual waiting time in the system

(“Actual”) was found to be lower than the lower bound obtained using the fluid-flow

69

Fig. 20. Different Bounds and Approximations at Different Traffic Intensities for

Trace–4

TABLE V Different Bounds and Approximations of Waiting Times at 90% Traffic

Intensity for Different Traces

Trace G/G/1 L-Bound CTMC Exp Actual U-Bound

1 14.10 39.48 39.572 59.16 80.7 81.61

2 72.02 131.66 131.92 214.27 296.30 285.50

3 199.19 190.70 190.73 260.17 328.2 346.09

4 0.113 42.22 42.51 79.46 43.11 95.38

5 158.08 217.22 218.20 279.76 177.81 373.02

6 191.19 268.81 269.05 335.57 420.16 445.75

7 11367 3567.2 3568.03 3585.7 1927.4 4780.6

70

Fig. 21. Different Bounds and Approximations at Different Traffic Intensities for

Trace–5

model (“L-Bound”) in two cases. Upon investigation, we found that these two traces

have the highest Cs/Ca ratio (Table VI). Notice that the Ca values are close to each

other for all the traces, but the Cs values for these two traces are extremely high.

This implies that there is a significantly large coefficient of variation in the service

times, or the file sizes resulting in very heavy tails. Extremely large variances coupled

with high traffic intensity make model parameter estimation extremely unreliable. A

more robust parameter estimation technique (perhaps with more data points) would

be required in those cases.

III.7.2. Medium to Low Traffic Intensity

We can observe from the results for various traces that as the traffic intensity eases

up, the actual waiting time (“Actual”) draws towards “G/G/1”, “L-Bound” and

71

Fig. 22. Different Bounds and Approximations at Different Traffic Intensities for

Trace–6

TABLE VI Comparison of Ca/Cs Values of Different Traces

Trace Ca Cs Cs/Ca

1 1.555 4.743 3.051

2 1.331 10.629 7.988

3 1.458 28.174 19.326

4 1.398 2.180 1.560

5 1.618 31.596 19.525

6 1.187 19.676 16.581

7 1.479 79.845 53.984

72

Fig. 23. Different Bounds and Approximations at Different Traffic Intensities for

Trace–7

TABLE VII Approximations at 80% Traffic Intensity

Trace G/G/1 L-Bound CTMC Exp Actual U-Bound

1 5.7 9.894 10.01 21.488 29.62 37.291

2 28.563 47.25 47.37 110.32 55.03 192.83

3 78.75 56.42 56.73 106.27 70.1 185.88

4 0.048 6.960 6.964 21.95 15.08 30.76

5 62.5 81.94 82.00 131.9 91.46 230.83

6 75.6 86.43 86.56 130.04 114.51 227.41

7 4492.1 1489.7 1489.8 1533.7 1445 2683.2

73

TABLE VIII Approximations at 60% Traffic Intensity

Trace G/G/1 L-Bound CTMC Exp Actual U-Bound

1 1.648 1.62 1.658 5.7 3.639 16.74

2 8.053 7.152 7.983 60.6 9.42 59.54

3 22.20 13.31 13.377 41.2 12.44 123.4

4 0.014 0.864 0.872 3.92 2.41 7.04

5 17.60 16.77 16.8248 30.37 30.43 91.07

6 21.26 20.04 20.309 42.35 27.36 126.87

7 1263.5 553.78 553.809 502.1 765.9 1504.6

“CTMC”. Although the marginal distributions of the fluid ON and OFF times fit the

data well, the successive ON and OFF times appeared to still be dependent in high

traffic intensities (hence “Actual” waiting time was much higher than “CTMC”). In

contrast, in the case of lower traffic intensities, the dependence in arrivals is captured

by the fluid model that essentially clubs bursts of arrivals into a single ON time, and

successive ON and OFF times are independent.

One of the important things to observe from these results that the expected

waiting times computed using “CTMC” are extremely close to “L-Bound”. This was

found to be the case for all of the traces and at all traffic intensities. In order to explain

this, recall that for the traces we used, “CTMC”, “U-Bound” and “L-Bound” use

hyperexponential ON and exponential OFF times. Therefore, performance measures

for “CTMC” must lie between “L-Bound” and “U-bound”. The most dominant term

of “CTMC” is indeed exactly equal to “L-Bound” and the other terms contribute

insignificantly to make “CTMC” just a little larger. One of the take-aways is that

74

the “L-Bound” is a very good approximation of a fluid system that has a truly iid

ON and OFF time traffic source.

In tables VII and VIII approximations for all traces are listed at traffic intensity of

80% and 60% respectively. Notice that for the 80% case, CTMC and L-Bound perform

better than G/G/1 for a majority of the cases; but that for the 60% case, G/G/1 is

better. However, notice that the G/G/1 results have a tremendous variability with

respect to actual, unlike CTMC and L-Bound (which appear to be much more robust).

In low traffic intensities, if mean estimate needs to be accurate, then G/G/1 should

be used, and if confidence interval of estimate needs to be minimized, then choose

CTMC (or L-Bound). Whereas, if it is critical to be conservative (under medium and

low traffic intensities), then the ideal choice is “Exp”. In addition, for “Exp”, all we

need is the mean ON times and mean OFF times of the fluid source.

III.8. Findings and Discussion

Addressing the main objective of this research, it is evident that fluid models capture

the effect of burstiness nicely and also provide expressions for various performance

measures including average waiting time. Hence fluid models are suitable for traffic

characterization. In addition, one can obtain workload distributions (not just aver-

ages) using Pr{X(t) > x}. In fact, it was only for the sake of simulations and G/G/1

analysis we picked average waiting time as the measure of performance.

The following are the summary of findings based on our numerical experiments:

1. Fluid ON-OFF times generated from the trace data can be approximated well

using the exponential family distributions. This implies that Markov modulated

fluid sources can be effectively used for traffic models.

2. The results from CTMC analysis and lower bound are close. This illustrates

75

TABLE IX Choosing a Fluid Model When Traffic Exhibts LRD

Name Ideally suited when

U-Bound Traffic intensity is high

L-Bound Traffic intensify is medium and non-exponential ON/OFF

CTMC Exponential family ON-OFF; medium traffic intensity

Exp Only mean ON-OFF can be obtained; or conservative

estimate needed in medium/low traffic intensity

that Pr{X(t) > x} is indeed closer to the lower bound K∗e
−ηx in Equation (3.4)

than the upper bound.

3. The fluid upper bound is found to be a conservative estimate for all the traces

at lower traffic intensities. At high traffic intensities, it continues to be a con-

servative estimate for some traces, and a reasonably good approximation for

others. In fact, for majority of cases, the actual expected waiting time in the

system is closer to the fluid upper bound than any other estimate at higher

traffic intensities.

4. Among the approximations considered, exponential ON-OFF is the best choice

for combining conservativeness and accuracy in medium to low traffic intensities.

Moreover, it only requires the mean ON and OFF times for the computations.

5. At medium and low traffic intensities, the CTMC fluid model and fluid lower

bound produce more robust estimates than G/G/1 approximations, although

the estimates in low traffic intensities are not as good.

As mentioned earlier in Section III.2, the fluid-flow models have been analyzed

76

by many researchers, and these bounds have been well established. However, not

many practitioners evaluate the performance measures of communication networks

using these models. Leveraging on the well-established theoretical results, we have

shown that these methods do indeed model the system in question very well. In this

chapter, we have shown that fluid models certainly do an excellent job in handling

LRD traffic and lend themselves well to obtaining closed-form performance metrics,

including probability distributions. In closing, refer to Table IX for recommendations

on the most appropriate fluid model for various scenarios.

77

CHAPTER IV

MULTIPLEXING NETWORK TRAFFIC

IV.1. Introduction

A characteristic feature of modern switches and routers is that typically a large num-

ber of flows are multiplexed. The number of such flows can run to the thousands in

the case of an Internet Protocol (IP) router. The same characteristic is exhibited by

servers construing a Web-server farm, where thousands of requests are served and the

data flows through a limited number of routers. Developing accurate models for this

kind of traffic aggregation will provide a basis for efficient multiplexing schemes that

optimally utilize the network resources, such as bandwidth, buffer, etc., and provide

the best possible QoS.

Researchers have been trying to characterize the aggregated traffic and develop

models for this multiplexed traffic considering various applications, such as in case of

ATM multiplexers [58] and wireless packet data networks [74]. These kinds of models

can also be very useful when designing or characterizing the flow in case of Web-server

farms, where there are a large number of servers and the traffic from these connects to

the outside world through a very small number of routers/switches. A representation

of such a Web farm is shown in Fig. 24. In designing and operating such centers,

it becomes critical to be able to obtain the performance measures to provide the

required QoS, and this analysis is only possible in case of a multi-layered network

when one is able to characterize the aggregate flow from the first and subsequent

layers of nodes.

A major challenge for designing and controlling high-speed communication net-

works is to develop methods for analyzing more realistic source-traffic models that

78

Fig. 24. Network Representation Demonstrating the Merging of Flows at Different

Layers of Routers

79

are consistent with recent traffic measurements. It has been observed that the aggre-

gated Internet traffic flow have similar patterns in different time scales, referred to

as self-similarity [45]. Network traffic has been shown to be quite complex, exhibit-

ing phenomena such as heavy-tailed probability distributions and long-range depen-

dence [34]. Heavy-tailed distributions are known to cause self-similarity in models

of (asymptotically largely) aggregated traffic [75]. These properties make modeling

such traffic very challenging and the computation of analytical expressions for differ-

ent performance measures extremely difficult. For example, in an M/G/1 queueing

system, the average delay is proportional to the variance of the service time. In case

of heavy-tailed ON-OFF sources, the service time variance could be immeasurably

large, which equates to a huge value for the average delay. Furthermore, for ON-OFF

sources with heavy-tailed ON times, the moment generation function of the service

time is very large, meaning that the Chernoff bound can not be used to analyze the

queue delay performance.

Researchers have developed different kinds of analytical, numerical, and simula-

tion models in order to represent network flow, and a brief review of such models will

be presented in Section IV.2. In this research work, we take a lead from stochastic

fluid-flow models and represent data as fluid flowing into and out of the system.

Stochastic fluid-flow models have been used for a long time to describe networks of

nodes that provide service to traffic of some sort that flows among them, and it is

widely accepted that network flow can be approximated reasonably well using such

models [62]. Such models are commonly used to approximate discrete state systems

of traffic flows, in which the number of states rapidly becomes prohibitively large as

the complexity of the system increases.

In this research work, we take data from a real trace and model it as a source

alternating between bursts (the ON state) and silences (the OFF state). This source

80

then feeds into a feed-forward network (Fig. 24), where other ON-OFF sources are

also contributing to the buffer content of a FIFO server that is being emptied at a

constant rate. Willenger et al. [75] have proven that that superposition of a number

of ON-OFF traffic sources, with heavy tailed ON and OFF periods, results in a self-

similar aggregate traffic. These results are confirmed by Park et al. [76], who show

that an individual data-traffic source can be modeled as an ON-OFF source with

heavy-tailed ON and OFF periods. Hence, the output flow from these servers can

also be modeled as ON-OFF flows. Our objective is to characterize the aggregate

flow of these sources superpositioned on top of one another. We present a simple and

fast methodology to characterize this aggregate flow that can be used to solve various

design and analysis problems concerning such network flows. These problems include

computing the performance metrics of the network given the structure and channel

capacities of the network, as well as computing the desired channel capacities given

the QoS requirements.

We will concentrate on elastic traffic here, which is usually associated with a

delay-based QoS requirement. In case of Web farms catering to such requests, the

bottleneck is usually the router where multiple servers send the data to be transmitted

via the Internet [6]. This makes modeling these routers very important and obtaining

the remaining workload or the waiting time approximations for these files critical.

We allow the ON and OFF times associated with the flows to have heavy-tailed

distributions and compute the buffer content (workload in the system) when such

data gets multiplexed. We need to obtain not only the workload at different nodes,

but also the distribution of the output flow, since this flow would serve as inflow to

the subsequent node. This would help in solving design or control problems relating

to the aggregate traffic flow, such as acquiring the optimal bandwidth for a link.

Aggregate flow will also be characterized as ON-OFF flow, and we will obtain the

81

distribution of this, given the inflow parameters.

The remainder of the chapter is organized as follows. We present a brief review

of related literature, presenting the work done by researchers on similar problems, in

Section IV.2. This is followed by the problem description, presented in Section IV.3,

and proposed methodology in Section IV.4, along with method used to validate the

solutions. Numerical results of the analysis are presented in Section IV.5, where we

demonstrate using several examples the applicability of the proposed methodology.

Finally, we present the conclusions in Section IV.6.

IV.2. Literature Review

Acquiring performance measures for a high-speed network for its design and operation

has been an active area of research for some time. One of the biggest challenges in

dealing with such systems is the associated long-range dependence in traffic [34].

This long-range dependence in traffic leads to self-similarity [75], which generally

leads to underestimation of the performance metrics of the system [32]. In the case

of networks, where a large number of individual flows get merged to form aggregate

flows, the problem gets exaggerated.

Researchers have analyzed network flow in many different ways. Some have

modeled the flows as renewal sources, which lead to tractable problems and good

approximations using analytical techniques. Researchers have been able to compute

the overflow probability in case of a stationary buffer [38] or transient buffer [77].

However, Sriram and Whitt [78] have established that the aggregate arrival process

resulting from the superposition of many independent renewal processes in not nearly

renewal. This is essentially because the instantaneous arrival rate in the aggregate

process at any time is a function of the number of active incoming streams, which

82

fluctuates substantially.

Several other researchers, such as Cáceres [79], Crovella and Bestavros [45], Le-

land et al. [33], Paxson and Floyd [34], and Feldmann [80] have also shown that

network traffic exhibits heavy-tailed probability distributions and is quite complex

to model. Thus, results obtained using approximations that model the arrivals as

renewal source cannot be used for the aggregate flows. This has led to researchers

considering different kinds of models and approximations to obtain the performance

parameters of aggregate traffic. Aggregating traffic into a shared link also yields to

unexpected end-to-end delay. This additional delay may add up to the already critical

end-to end delay in case of delay-sensitive flows, and may degrade the QoS provided.

Hassan and Garcia [81] have pointed out the inadequacy of the Hurst exponent

in describing burstiness when the underlying protocol is TCP. They have suggested

a model that performs well when idle periods are very long compared with activity

periods–that is, when the traffic intensity is relatively low. However, they have con-

ceded that in case a large number of connections are needed, the proposed algorithm

does not perform very well because a considerable number of equivalent processes

need to be executed.

For a slightly different application, Hassan et al. [82] have shown that VoIP

traffic can be approximated very well by exponential law under light traffic intensi-

ties. They have shown that under these conditions, the MMPP-2 process regenerates

the correlation structure of aggregate VoIP traffic quite well. However, they have

conceded that this approximation is not suitable under heavy traffic intensities, since

heavy loads amplify the effect of time-dependence. Moreover, this model limits the

possibility to achieve analytical QoS parameters evaluation when queue networks are

considered.

Some authors have considered aggregation of flows in order to deal with resource

83

allocation control protocols, such as Ravindran and Gong [83]. Aggregation is a

common approach to address the scalability issue in resource allocation, since it leads

to less demand on the resources at the aggregation point. Their contribution is in the

idea of casting the routing subsystems of multicast networks with RSVP-style resource

allocation functions. They have developed a mechanism to generate a composite flow

from a set of flows and vice versa.

The end-to-end reservation approach has been considered in some cases to model

the network traffic. This approach works well in case of inelastic traffic, where there

is a fixed bandwidth requirement, such as in a telephone network, video streaming

etc. Researchers have also tried to obtain the optimal amount of bandwidth required

given the QoS criteria in case of inelastic flows [84]. However, these approaches do

not perform very well with elastic traffic flows because the overheads are too high

for short-lived connections. Hence, aggregation of flows is essential in order to make

the resource allocation scalable. According to Wang and Basu [85], for these kinds of

short-lived flows, network resources should be allocated to the aggregate flows rather

than the individual flows.

Aalto [65] has shown that the aggregated departure process in case where input

rate is modulated by a Markov jump process can be modeled using another Markov

jump process. Shah-Heydari and Le-Ngoc [86] have also suggested that the super-

position of a number of homogeneous ON-OFF sources can be approximated by a

Markov modulated Poisson process (MMPP). Now, if we approximate the ON times

and the OFF times as a 2P-HE distribution, we will need three parameters to define

each. Hence, we will be able to capture the properties of MMPP-2 process.

Aalto [87] has considered a fluid model for a multiplexer with the goal of chara-

terizing the output process. They have considered independent and heterogeneous

ON-OFF sources and shown that similar to the input sources, the aggregate flow

84

behaves as an ON-OFF channel as well. They further characterize the ON times of

the output using a normalized load, and have characterized the distribution of the

ON-times of the output source using Laplace transforms.

Once we have obtained the parameters for the distribution defining the aggregate

flow, we can obtain the performance measures or solve a control/design problem by

using analytical techniques such as in stochastic fluid-flow models. However, we want

to validate that the performance metrics obtained using this aggregate flow accurately

represent the sum of the individual flows. For this purpose, we will build a simulation.

The simulation of a traffic source consists of building a generating model able

to create requests with arrival times and file size fitting the dynamical statistical

behavior of real traffic. Boots and Mandjes [88] have pointed out that aggregate

network traffic flow is not only difficult to model, but also that researchers have had

trouble simulating such a system and have come up with clever techniques in order

to accomplish this. They have performed a characterization study in order to obtain

aggregate traffic model under different traffic intensities. These models become very

difficult to execute however, when thousands of connections are considered.

Hence, in this research work, we would build aggregate traffic models, which

would include finding a good approximation of the arrival process of multiple connec-

tions, and will represent a good trade-off between accuracy and simulation efficiency.

IV.3. Problem Definition

In this research work, the objective is to characterize the network traffic flow resulting

from superpositioning of a number of such flows and obtaining the marginal distribu-

tion of the buffer content at the same time. The flows are modeled as fluids, where

each incoming flow is modeled as an ON-OFF source.

85

Consider a K-stage feed-forward queueing system as shown in Fig. 24. In the kth

stage, fluid from Njk sources is input into the kth stage buffer jk. That is, for each

first-stage buffer j1, there are Nj1 external sources of flow, whereas for every other

stage in the system, there are no external sources. Hence, the flow coming into a

subsequent buffer {jk : k > 1} comprises only of the flows coming from the previous

stage buffers.

Let the ON and OFF times representing all external input sources be given.

Being network flows, we assume these to be self-similar. In this research work, we use

ON and OFF times derived from trace data. With these, the distribution parameters

of these flows can be obtained and used in the analysis.

Now consider buffer jk of stage k. Source ijk (for ijk = 1, . . . , Njk) is an ON-

OFF source. When source ijk is ON, fluid is generated at rate Rijk kbps and no

fluid is generated when the source is OFF. Buffer jk is of infinite size and has an

output channel capacity of Cjk kbps. Since this output channel is the input flow

for a subsequent stage buffer, we would have a one-to-one mapping (defined by the

network structure) of all Rlm{k+1} and Cjk (k < K), where Rlm{k+1} represents some

input flow l of buffer m of stage k + 1.

The output from all the k-stage buffers is multiplexed into k+ 1th stage infinite-

sized buffers. Hence, the output from all the buffers is poured eventually into the

final-stage buffer, with output channel capacity C1K . A discriminating feature of this

model is the assumption that if there is a link of capacity C kbps, fluid flows in it

either at rate C or 0, which is typical in practice for any channel. Therefore all the

flows in the system are essentially ON-OFF in nature.

For jk = 1, . . . , Jk let Xjk(t) be the amount of fluid in buffer jk at time t.

The objective of the performance analysis is to obtain the limiting buffer content

86

distribution

lim
t→∞

Pr{Xjk(t) > x} (4.1)

for any finite x. The performance measures can be used in several optimization in-

stances, such as designing which sources should be clubbed into which buffer, capacity

planning, designing the number of first-stage buffers, computing optimal buffer size,

etc. We will illustrate a few examples in Section IV.5.

In order to obtain the performance measure at a particular buffer, the input flows

will have to be characterized at that buffer. As described in Section IV.2, in general,

it is very difficult to obtain the characteristics or parameters of aggregate flow analy-

tically. Moreover, as shown by Alagoz [89], as the number of input sources increases,

the existing approximation models also start to underestimate the variability, and as

a result, the loss probabilities, of the aggregate flow.

We will try to overcome this shortcoming by using an optimization technique

to obtain the parameters of the aggregate flow. Here, irrespective of the number of

input flows, we would have only one constraint–flow balance–and unknown parame-

ters characterizing the output flow, which are dependent only upon the distribution

chosen, and not the number of input flows. Hence, with the increase in the number

of input flows, although we would have to perform more calculations to obtain the

input flow and to compute deviations in the objective, the amount of time taken to

solve the optimization would largely remain unchanged. Details of the optimization,

including the objective function, are provided in Section IV.4.

IV.4. Modeling and Analysis

In this section, we will solve the optimization problem described earlier. We will

model the problem presented in the previous section, and demonstrate the solution

87

methodology in Section IV.4.1. This would be followed by validation methodology us-

ing simulation in Section IV.4.2 and a comparison against effective bandwidth method

in Section IV.4.3.

IV.4.1. Optimization

We will model input sources and the aggregate output flow as ON-OFF sources and

characterize them using 2P-HE distributions. The CDF of a 2P-HE distribution is

given as:

F (x) = 1− pe−α1x − (1− p)e−α2x x ≥ 0 , (4.2)

with parameters p, α1 and α2. Hence, to characterize a flow, we would need to obtain

six parameters, three each for ON and OFF times.

Given the input flows, parameters defining its distribution can be obtained using

the moment-matching technique. The ith moment of the 2P-HE distribution can be

written as:

mi = i!

[
p

αi1
+

1− p
αi2

]
. (4.3)

The first three moments of ON and OFF times can be compared in order to compute

the parameters defining the distribution.

Now, consider the jthk buffered queue of stage k, as described in Section IV.3.

We have Njk ON-OFF fluid sources feeding this queue. Parameters defining the ijkth

source are represented as pijk, αijk1, αijk2, q, βijk1 and βijk2. For simplicity, we drop

the subscripts j and k for the remainder of the chapter. Thus, the ith source feeding

this queue has the channel capacity of Ri, ON times parameters pi, αi1 and αi2, and

OFF time parameters qi, βi1 and βi2. The output channel capacity of this queue is C

kbps (Fig. 25). We denote the ON and OFF times parameters of the output flow as

88

Fig. 25. Buffered Queue with a Number of Arrival Channels

po, αo1 and αo2 and qo, βo1 and βo2, respectively.

We use optimization to obtain the parameters for the output flow. In order

to compute the expected inflow for the flow-balance equation, we need to obtain

the steady-state probabilities of different states of the inflow channel. These can be

obtained by using continuous time Markov chain (CTMC) analysis, as we are using

exponential family distributions. The generator matrix for an incoming flow i can be

written as shown in Equation (4.4). Here, the first two states correspond to the two

89

phases of the OFF times and the last two correspond to the ON time states.

Q =

−βi1 0 piβi1 (1− pi)βi1

0 −βi2 piβi2 (1− pi)βi2

qiαi1 (1− qi)αi1 −αi1 0

qiαi2 (1− qi)αi2 0 −αi2

(4.4)

Solving for the steady-state probabilities, we obtain:

πi1 =
qiαi1αi2βi2

βi1βi2(piαi2 + αi1(1− pi)) + αi1αi2(βi1(1− qi) + qiβi2)

πi2 =
(1− qi)αi1αi2βi1

βi1βi2(piαi2 + αi1(1− pi)) + αi1αi2(βi1(1− qi) + qiβi2)

πi3 =
piαi2βi1βi2

βi1βi2(piαi2 + αi1(1− pi)) + αi1αi2(βi1(1− qi) + qiβi2)

πi4 =
(1− pi)αi1βi1βi2

βi1βi2(piαi2 + αi1(1− pi)) + αi1αi2(βi1(1− qi) + qiβi2)
(4.5)

Because the fluid comes into the queue only in the last two states, net expected

inflow can be obtained as
∑N
i=1Ri(πi3 + πi4). Thus, we can write the total inflow as:

I =
N∑
i=1

[
Ri(piαi2 + (1− pi)αi1)βi1βi2

βi1βi2(piαi2 + αi1(1− pi)) + αi1αi2(βi1(1− qi) + qiβi2)

]
. (4.6)

Net outflow from the buffered queue is essentially the fraction of time system

is in ON state, multiplied by the rate of flow. This is of course true for a stable

system, where all the fluid coming in must leave the system as some point. Now,

the mean of the 2P-HE distribution defined in Equation (4.2) is given as E(x) =

[pα2 + (1− p)α1]/α1α2. Using this, outflow from the system can be obtained as

O = C
poαo2 + (1− po)αo1βo1βo2

βo1βo2(poαo2 + (1− po)αo1) + αo1αo2((1− qo)βo1 + qoβo2)
. (4.7)

If the output channel capacity is small as compared with the amount of inflow,

buffer content may become very large and cause the queue to be unstable. In such a

90

case, even if the output is flowing at a constant rate C, it will be less than the inflow.

That is,
N∑
i=1

Ri(πi3 + πi4) > C .

Hence, for a stable system, we need to have

C ≥
N∑
i=1

[
Ri(piαi2 + (1− pi)αi1)βi1βi2

βi1βi2(piαi2 + αi1(1− pi)) + αi1αi2(βi1(1− qi) + qiβi2)

]
. (4.8)

Equation (4.8) is what we would reference as the stability equation. Using this

equation and given inflow parameters, the minimum value of output channel capacity

C can be computed below which, the system would become unstable because long-run

buffer content would tend to infinity.

The objective function used for optimization is to minimize the sum of squared

percent deviations of the aggregate flow parameters with respect to the input flow

parameters. The idea behind this is that the aggregate flow must look statistically

similar to the input flows. Since we are using hyper-exponential distributions to

characterize the flows, the individual flows are in different phases with defined prob-

abilities. If there was only one input flow, the aggregate flow parameters would be

exactly same as the inflow parameters. Thus, we would expect the parameters defin-

ing the aggregate flows to be close the parameters of the individual flows. We would

compute this value D, which we will represent as:

D = min
{po,αo1,αo2,qo,βo1,βo2}

{∑N
i=1 pi −Npo∑N

i=1 pi

}2

+

{∑N
i=1 qi −Nqo∑N

i=1 qi

}2

+

{∑N
i=1 αi1 −Nαo1∑N

i=1 αi1

}2

+

{∑N
i=1 αi2 −Nαo2∑N

i=1 αi2

}2

+

{∑N
i=1 βi1 −Nβo1∑N

i=1 βi1

}2

+

{∑N
i=1 βi2 −Nβo2∑N

i=1 βi2

}2
 (4.9)

In order to solve the optimization problem, we will also need to impose probability

constraints (0 ≤ po, qo ≤ 1) and the non-negativity constraints (αo1, αo2, βo1, βo2 ≥ 0).

Solving this optimization problem gives us the parameters of distribution defining

91

aggregate flow from the queued buffer. One such problem would have to be solved

at every node in the system for which output flow parameters need to be computed.

Nonetheless, since we are modeling the output parameters using the same family of

distribution as the input parameters (2P-HE), solving the next layer of the problem

does not involve any additional difficulty. This way, we can obtain the distribution

defining all of the flows in the system and, hence, the outflow.

Once we have obtained the outflow parameters at a particular node, we can

obtain the performance measure using the fluid-flow model. Details of this analysis

are given in [68]. We will use the upper bound on the workload in the system as the

performance metric of interest, which has been shown in Chapter III to be a good

and conservative estimate.

We obtain η as the smallest real positive solution to the equation:

Ũ(−η(R− C)) D̃(ηC) = 1 , (4.10)

where Ũ and D̃ represent the Laplace-Steiltjes transforms of distributions defining

ON times and OFF times of the aggregate flow, respectively, R is the sum of input

channel capacities, and C is output channel capacity. For 2P-HE ON and OFF times,

this equation turns out to be a fourth-degree equation, with one root being equal to

zero. Then, we obtain the upper bound on the workload in the system as

K∗

η
=

(
Ũ(−η(R− C))− 1

)
R

(τU + τD)C(R− C)η2 infx

{∫∞
x

eη(R−C)(y−x)dU(y)

1−U(x)

} . (4.11)

IV.4.2. Validation

Once we have obtained the parameters representing the aggregate output flow, we

need to validate that the flow represented by these parameters indeed captures the

characteristics of the aggregate flow. In order to do this, we will perform a simulation

92

and compare the expected workload with the case in which all of the individual flows

are passed through a single buffered queue. In the simulation, we will need to model

the outflow from the buffer. As mentioned in Section IV.1, [75] and [76] have shown

that aggregate flow from a number of heavy-tailed ON-OFF traffic sources results

in a self-similar aggregate traffic, which can be modeled as an ON-OFF source with

heavy-tailed ON and OFF periods. Hence, we will model the output flow from these

servers also as ON-OFF flow.

As the first scenario, we will generate traffic using the CDF of the inflows. Sep-

arate ON-OFF times will be generated for each of the inflows, based on their distri-

bution, and then combined. This combined flow will have the flow rate equal to the

sum of capacities of channels that are in the ON state at any given time. Hence, this

could vary between zero and the sum of inflow capacities, in discrete intervals, chang-

ing at discrete time instances. This combined flow will be passed through a buffered

queue with a constant output capacity, and the average workload in the system will

be computed. It is possible that the number of input flows in the ON state are small

so that the total input flow rate is less than the outflow rate. We will make sure that

the outflow is still ON-OFF by setting a small minimum ON time associated with

the outflow. Thus, the outflow might be OFF while there is still some fluid (albeit

infinitesimal) in the buffer. This simulation will be repeated multiple times, to obtain

a reasonably large number of estimates of the average workload. The mean of these

values will be obtained as the expected workload in the system.

As the second scenario, traffic will be generated using parameters representing

the aggregate outflow. This will be treated as an ON-OFF flow, with channel capacity

equal to the sum of underlying input flow capacities. This flow will then be fed into

the same queue with the constant output capacity. In this case, the output channel

capacity will be less than the input capacity, and hence, the output flow would be

93

ON-OFF if the input flow is such. Using this simulation, we compute the average

workload in the system. Again, multiple estimates will be obtained to deal with

the variability while generating the flow. The mean of average workload values so

obtained will be taken as the expected workload in the system.

A comparison of these two values of the workload obtained will give us a measure

of the accuracy of our model. If these two values are comparable, we can conclude

that the aggregate flow does represent the flow obtained by superpositioning of the

input flows for workload assessment.

IV.4.3. Comparing Against Effective-Bandwidth

One of the popular methods for computing the expected workload in the system is

to use effective bandwidths. We would like to compare the performance of our model

against this technique, by using the simulation results as the baseline.

Since we are defining the ON-OFF sources using hyperexponential distributions,

it is possible for us to model the system as a CTMC. We will use the technique

presented in [55] in order to compute the effective bandwidth of a source. Let

{Z(t), t ≥ 0} be an irreducible, finite state CTMC with generator matrix Q. When

the CTMC is in state i, the source generates fluid at rate r(i). Let R = diag[rii],

where rii = r(i), and let e(M) denote the largest real-eigenvalue of a square matrix

M . Then, the effective bandwidth of the source can be given as

eb(υ) =
1

υ
e(Q+ υR). (4.12)

When we have multiple independent sources feeding into a buffer, we can compute

the sum of the effective bandwidths of these sources as

K∑
k=1

ebk(υ) =
K∑
i=1

1

υ
e(Qi + υRi), (4.13)

94

where there are K sources, 1, . . . , K. If the output channel capacity is C, we obtain

υ by solving
K∑
k=1

ebk(υ) = C. (4.14)

Then, we have

Pr(X > x) ≈ e−xυ (4.15)

using which, we can obtain the expected workload in the system as W = 1/υ. Hence,

this value obtained would be the expected workload in the system when K flows merge

into the system with an output channel capacity of C. As the effective bandwidth does

not change when a flow is passed through a buffer, we obtain the effective bandwidth

of the output flow as the sum of the input flow effective bandwidths.

IV.5. Numerical Results

For the purpose of numerical analysis, we obtain Web traces from the IRCache Web

site, as mentioned in Section III.3. These traces have the arrival times of the requests

and the sizes of files transmitted from the server. Multiple traces were obtained to

facilitate the analysis.

We treat the data being transmitted as fluid. It is assumed that the arrival

time of the request is the time the requested file starts transmitting from the server.

Given channel capacity, ON times and OFF times for a trace can be computed.

2P-HE distribution can then be fit on this data to obtain the parameters using the

moment-matching technique. This can be done by computing the first three moments

numerically from the data and equating them with those listed in Equation (4.3).

The rate at which a file gets transmitted from the server defines the traffic in-

tensity. Given a trace and channel capacity, the traffic intensity can be computed

and parameters can be obtained for the defining distribution. This distribution is set

95

for the traffic intensity, and traffic can be generated from this distribution for any

channel capacity.

We will demonstrate the process of computing the parameters for the inflow and

outflow using a simple example, presented in Section IV.5.1. This will be followed

by analysis of more general and complex networks, with different objectives, in later

sections.

IV.5.1. Demonstrative Example

Consider a simplified version of the Web farm presented in Fig. 24, where we have

only one layer of nodes (Fig. 26). In this case, there are a number of servers generating

traffic that are connected to the Internet by the means of a single router. Consider

the following test cases in which the primary goal is to obtain the aggregate flow

parameters.

Fig. 26. Single-Layer Network with a Switch Connecting a Number of Servers to the

Internet

96

TABLE X Obtaining Output Parameters for a Small Experiment

p α1 α2 q β1 β2

In-1 0.9999100 53.682 0.002826 0.61833 290.29 92.811

In-2 0.9996143 43.129 0.000991 0.84467 31.136 8.3139

In-3 0.9998523 74.532 0.000149 0.60878 13.618 5.0062

Out 0.9945041 57.638 0.001321 0.99979 110.81 0.0004

IV.5.1.1. Case 1

Consider for this example three flows coming in with same traffic intensity of 90%.

We use three different traces and obtain the parameters for the 2P-HE distribution,

defining these flows using the technique described earlier in Section IV.5. The pa-

rameters of the distribution defining these flows are given in Table X, referenced by

a serial number. For simplicity, let the channel capacities of these flows be the same:

100 units. Hence, we have three independent sources with the same traffic intensity

and channel capacity pouring data into a common infinite-sized buffer. Let the output

channel capacity be equal to 300 units, the sum of the input channel capacities.

In order to compute the parameters of the outflow, we use the optimization

technique, with the objective function and the constraints as defined in Section IV.4.

A computer program was written in MATLAB to perform this optimization and

obtain the output parameters. These were obtained as presented in Table X, as ‘Out’.

The steady-state probabilities for the different states in the outflow were computed

as the following:

πo =
[

0.0019 0.1044 0.0037 0.8900

]
.

Traffic intensity of the output flow is about 90%, the same as the input traffic

97

intensities, since the sum of the input capacities is the same as the output channel

capacity. Also, note that none of the non-negativity constraints (associated with pa-

rameters defining the aggregate flow distribution) are binding at the optimal solution.

IV.5.1.2. Case 2

If we reduce the output channel capacity, we expect to see an increase in the output

traffic intensity. However, note that if the output channel capacity is too low, the

problem may become infeasible. This is because the system will become unstable,

as the rate of inflows will exceed the output channel capacity, as demonstrated by

Equation (4.8).

In this case, we use the same example as that in Case 1, but we reduce the

output capacity to 280. The results of this analysis are presented in Table XI as

‘O-280’. Because the input flows are exactly the same as in the previous case, only

the parameters of the output flow are presented here.

TABLE XI Obtaining Aggregate-Flow Parameters with Different Output Channel

Capacities

p α1 α2 q β1 β2

O-280 0.9994173 78.921 0.001318 0.78970 134.00 14.724

O-320 0.9999204 56.206 0.001329 0.68732 111.45 35.266

The steady-state probabilities obtained for this experiment are:

πo =
[

0.0124 0.0301 0.0267 0.9309

]
.

This gives a resultant traffic intensity of 95.76%. As expected, this is an increase

over the traffic intensity of 90% obtained in Case 1. A further reduction in outflow

98

channel capacity to 260 units renders the problem infeasible. This is validated by

Equation (4.8), solving which, we obtain the minimum output channel capacity for

the system to be stable as 268.1.

This method can also be used when the output capacity is greater than the sum

of the input capacities. As an example, we use output capacity as 320 units, and

the output parameters are listed in Table XI as ‘O-320’. In this case, we obtain the

resultant traffic intensity of 83.78% and the steady-state probabilities as

πo =
[

0.0665 0.0956 0.1919 0.6459

]
.

IV.5.2. Large Network

In the previous section, we demonstrated by means of a small example the calculation

of the aggregate flow parameters. In this section, we use the methodology for the case

in which a large number of flows merge to form aggregate flow. We will compute not

only the aggregate flow parameters but also the expected workload in the system and

validate the results using simulation and effective bandwidth approximations.

We still keep the simple structure of the network from the previous example

(Fig. 26). Consider the network with 100 input sources, each with the mean traffic

intensity of 95%. Let the 2P-HE distribution defining each of these input flows be

as given in Table XII. These parameters were obtained from a real trace using the

technique described towards the beginning of Section IV.5.

IV.5.2.1. Computing Expected Workload

We first compute the aggregate flow parameters and the expected workload in the

system. For this example, let the input channel capacity be 100 units each, and let the

output channel capacity be slightly less than the sum of input capacities: 9, 500 units.

99

TABLE XII Obtaining Output Parameters with 100 Input, and 1 Output Channel

p α1 α2 q β1 β2

In 0.9998763 73.865 0.00176 0.59709 295.49 91.562

Out 0.9996125 90.278 0.00177 0.74164 270.62 103.80

Then, the parameters obtained using optimization for the resultant aggregate flows

can be computed by solving the optimization problem described in Section IV.4.1.

The values so obtained are presented in Table XII. The traffic intensity of the ag-

gregate flow can be computed from this as 97.77%, and the steady-state probabilities

are given by:

πo =
[

0.0116 0.0106 0.0470 0.9307

]
.

Now, we will demonstrate the computation of the upper bound on the expected

remaining workload in the system using the fluid-flow model. We first solve Equa-

tion (4.10) and obtain η as the smallest real, positive solution. If we use the output

channel capacity of C = 9, 500, Equation (4.10) can be rewritten as:(
1 +

0.00012368× 500η

0.00176− 500η
+

0.99987632× 500η

73.865− 500η

)
×(

1− 0.40291× 9500η

91.562 + 9500η
− 0.59709× 9500η

295.49 + 9500η

)
= 1 .

We obtain the roots of this equation as −0.0191, 0, 1.239 × 10−6, and 0.1260. The

smallest positive root, 1.23936× 10−6, is picked as the value of η.

To obtain the upper bound on the waiting time, we solve Equation (4.11), and

for this we need to obtain infemum of the integral in the denominator, which is a

non-decreasing function of x. The graph of this expression as a function of x, for the

example at hand, is shown in Fig. 27. From this graph, the the value of the infemum

100

can be obtained as 1.00 at x = 0. This gives us K∗ = 1.432.

Fig. 27. Function for which Obtaining Infemum is Required, in Order to Compute K∗

Since the K∗ value can give us the probability of the workload in the system being

greater than any given value, we can obtain the upper bound on the expected workload

in the system as K∗/η. Computing this, in this case, we obtain W ≤ 1.156× 106, or

the upper bound on the workload in the system is 1.156× 106.

IV.5.2.2. Validation

As the first step in validation, we want to check whether the output parameters

obtained sufficiently characterize the aggregate flow. We use a simple simulation for

this purpose, as described in Section IV.4.2. The remaining workload when the input

flows are fed individually was obtained as 4.824× 105, whereas that for the aggregate

flow was determined to be 4.652×105, a difference of about 4%. Hence, the simulation

shows that the aggregate flow reflects the performance metrics of the superposition

101

of the individual flows.

Using effective bandwidth approximation is a well-known methodology to obtain

the expected workload in a system. We will demonstrate the use of this methodology

in our analysis here, and compare it to the workload obtained using simulation. The

solution methodology has been described in Section IV.4.3.

Using the inflow parameters given in Table XII, we use Equation (4.4) to write

the generator matrix Q as

Q =

−295.49 0 295.453 0.037

0 −91.562 91.551 0.011

44.104 29.761 −73.865 0

0.00105 0.00071 0 −0.00176

.

Since each of the input channel capacities is 100 units, the rate matrix R of each flow

can be written as

R = diag
{

0 0 100 100

}
.

We would have the same effective bandwidth for each of the 100 inflows. Then,

solving Equation (4.12) and Equation (4.14), we obtain υ = 1.24 × 10−6 for each

flow. Thus, we obtain the expected workload in the system as W = 1/1.24× 10−6 =

8.071× 105.

We have computed the expected workload in the system using the proposed

methodology as 1.156 × 106, whereas the effective bandwidth approximation yields

the value as 8.071×105. That is, the workload predicted by our method is about 40%

higher than that predicted by effective bandwidth approximation. Simulation results

validate that the workload computed using the input flows is about the same as that

computed using the aggregate flow, suggesting that the aggregate flow sufficiently

represents the super-position of the input flows.

102

IV.5.2.3. Obtaining Output Bandwidth

In this example, we have assumed that input and output channel capacities are given.

Now, we consider the related design problem, in which the output channel capacity

is to be computed in order to satisfy some QoS requirement. It is possible that some

or all of the bandwidth capacity can be purchased/sold/reallocated by the network

administrators.

In this case, the output channel capacity C from the router is not known. How-

ever, the maximum expected workload for the flow is set. There could also be an

upper bound set on the expected traffic intensity of the aggregate flow as well, if it

is to flow to some other internal node(s). In this case, we can solve the optimization

problem for different values of C and obtain the required parameter using interpola-

tion or extrapolation.

This time, we consider having 1,000 input streams with parameters given in

Table XII, with input channel capacity of 100 units each. Assume that the maximum

expected workload is set at 1 × 107. Moreover, let the maximum expected output

traffic intensity be set at 98%. In order to solve this problem, we will have to use an

iterative approach, in which we will obtain the expected workload for a given C, and

pick the one that satisfied the constraints.

In order to obtain the workload, given the aggregate flow parameters, we would

use the fluid-model upper bounds, as mentioned in Section IV.4.1. We would use the

methodology similar to the calculation presented in Section IV.5.2.1. We compute

the aggregate flow parameters and remaining workload for different output channel

capacities, and the plot is presented in Fig. 28. The system quickly becomes unstable

for lower values of C, and the waiting time goes down to zero as the channel capacity

C is increased. Using this figure, we obtain the value of C for which the workload is

103

Fig. 28. Remaining Workload as a Function of Output Channel Capacity

less than the QoS requirement as 9.533× 104. The traffic intensity for the aggregate

flow is computed as 97.44%, which is less than 98%. Hence, this also satisfies the

QoS requirement, and the output channel capacity of 9.533× 104 can be picked as a

solution to this example problem.

IV.5.3. Multiple Layers of Nodes

Now, we consider the case with multiple layers of routers in the network, as opposed

to the single layer that we have analyzed so far. Most real networks are represented

more closely by Fig. 24, which represents an in-tree sort of network. Here, a relatively

small number of flows merge at each node. Output flows from these nodes get merged

at another node, within the system domain itself. This merging of network traffic can

occur at two or more levels before the traffic gets transmitted outside.

104

IV.5.3.1. Computing Expected Workload

If the objective is to obtain the expected workload at the bottleneck node and to

characterize the output flow, we can use the proposed methodology by solving for

one node at a time. Based on the example presented in Section IV.5.2, the output

flow parameters of a node can be computed if the input flow parameters and the

channel capacities are known. Hence, starting with the upstream nodes, we can work

our way to the final node that connects to the outside world, which usually is the

bottleneck node. Once we have the input flow parameters for this node, the expected

workload and the aggregate flow parameters can be computed.

IV.5.3.2. Design with Multiple Layers of Nodes

We now consider a design problem related to the problem in Section IV.5.3. Although

generally, edge nodes in a network are the bottleneck, non-access nodes can also be

the hot-spots in many cases. Moreover, there is no easy way to obtain the critical

path amongst these non-access nodes [6].

Consider a case in which the capacities of some of the internal links need to be

determined. This could be the case when setting up a new system or when reallocating

bandwidth when new QoS requirements are presented. The idea is to use only as little

bandwidth as necessary, leaving the rest for other potential applications.

Consider the scenario shown in Fig. 29. This system has four nodes at the

input level, where traffic from three input streams merge at each node. The output

from these four nodes merge at another node, from which, the traffic is transmitted

outside. Hence, there are a total of 12 input streams, and the aggregate data from

these is transmitted outside via a two-layer, in-tree network. The small numbers in

the example are considered for demonstration; a real network might consist of a large

105

Fig. 29. A Small Multi-Layer Network Where Internal Link Capacities Need To Be

Determined

number of input streams and layers. However, the methodology used to solve the

problem would essentially remain unchanged.

For the given network, the bandwidth of incoming flows and that of the final

outgoing link are known, whereas the capacities of the internal links need to be

determined. We will let all these links have the same capacity, and they are marked

with a bandwidth of C in Fig. 29.

The parameters of the distributions defining the input flows are given in Ta-

ble XIII. We assume for now that all of the input flows follow the same distribution.

These parameters were obtained from a real trace with a traffic intensity of 80%. Let

all of these input flows have the same channel capacity of 100 units each. If we know

the output capacity of each node, we can perform the optimization (as presented in

Section IV.4.1) to obtain the output flow distribution and the expected workload. In

this case however, we can obtain the aggregate flow parameters for a given value of

C and compute the expected workload. Then, given the QoS upper limit on the ex-

106

pected workload, we can obtain the value of channel capacity C by plotting expected

workload against the unknown capacities.

TABLE XIII Input Flow Parameters for the Multi-Layer Network

p α1 α2 q β1 β2

0.99994953 73.70559 0.0046258 0.605761 301.3551 95.926

In this example, we assume that the output channel capacity R = 1, 000 units,

and that the upper bound on the expected waiting time at the output node equal to

100 units. We have chosen this node because usually, this is the bottleneck node for

the system. Note that as the channel capacities for internal links increase, expected

waiting time for this node will increase. Hence, in this example, we will come up with

the maximum channel capacity: anything less would be acceptable for the given QoS

criterion. Now, using different values of C, we obtain the expected waiting time at

this node. These values are plotted in Fig. 30. From this plot, we obtain the required

value of the bandwidth of internal links as approximately C = 255.8. Note that for

C values of less than 250, the waiting time would be zero because the output channel

capacity would be greater than the sum of all the input channel capacities.

IV.6. Conclusions

Aggregate traffic models are essential in performance evaluation studies on large-scale

networks. In this research work, we have proposed a methodology to characterize the

aggregate flow when a number of input sources, each with a potentially different

channel capacity, merges into a buffer/router.

In this research work, we modeled the discrete trace data as fluid ON-OFF source.

Multiple such flows were passed through a buffered queue and the aggregate flow

107

0

100

200

300

400

500

250 252 254 256 258 260 262

Link Bandwidth (C)

Ex
pe

ct
ed

 W
ai

tin
g

Ti
m

e
(s

ec
)

Fig. 30. Expected Workload as a Function of Internal Link Capacity

was also characterized as an ON-OFF flow. This not only helps in obtaining the

performance metrics at the node where the flows merge, but also in evaluating a

multi-layered network where such a multiplexing may be happening at different levels.

The methodology we propose can be used in the analysis of a given network to assess

the QoS guarantees, and can easily be extended and used while designing a network,

to compute the link capacities.

The results obtained using the proposed methodology were validated by the

means of a simulation. The waiting times were also computed using effective band-

width approximations.

We have demonstrated the ease of use of the proposed methodology by means of

several numerical examples. The performance measure at different levels of the net-

work was computed, helping to evaluate the bandwidth requirements for the internal

108

links as well. That is, we could use this methodology to obtain the required internal

and external channel capacities in a multi-layer network, in order to use the available

resources effectively, and promise and evaluate the QoS requirements.

109

CHAPTER V

CONCLUSIONS AND FUTURE RESEARCH

In this research work, we have considered a typical Web-server farm and analyzed it

for resource allocation and performance measures. We consider streaming and elastic

requests coming into the system, decide which ones to server, and then evaluate the

QoS the system would be providing. In order to evaluate the performance measures,

we have taken trace data and converted it into a fluid ON-OFF source, before ana-

lyzing it. The problem is broken into three parts. All of these sub-problems present

separate challenges, and have been dealt with in different chapters. We present in

this chapter the conclusions and contributions from these parts, followed by some

possible future directions.

V.1. Summary and Contributions

In the first part (Chapter II), we solve the admission-control problem for the Web-

server to decide which of the requests to be allowed into the system. Given the

capacity (bandwidth) constraints of a Web farm, it is generally not possible to serve all

of the incoming requests without sacrificing the quality of service. The contributions

from this part of the dissertation are:

1. We were able to prove some structural properties, such as submodularily and

concavity, of the value function defining the problem. This led us to analy-

tically prove that the optimal admission-control policy would be of the form of

a switching curve.

2. Using this structure of the optimal policy, we have proposed a simple method to

obtain the optimal policy without using value-iteration algorithm. This helps

110

in obtaining the solution faster and provides the ability to solve large problems.

3. Given the optimal admission-control policy, we obtained the QoS metric (block-

ing probability) for the streaming requests arriving at the system and showed

that the optimal policy not only provided increased revenue, but also improved

customer service.

Elastic network traffic entering the system is very difficult to characterize and

obtain the performance measures of, as it is known to be bursty and self-similar in

nature. In Chapter III, we used real trace data and demonstrated how stochastic

fluid-flow models can be used to compute the bounds on the performance measures.

The contributions from this part are following:

1. We used trace data and converted it into a fluid ON-OFF source. It was shown

that the bursty nature of self-similar network traffic is captured well by the

stochastic fluid-flow models, especially using exponential family distributions.

2. We showed that theG/G/1 approximation severely underestimates the expected

waiting time in the system, especially at high traffic intensities. In contrast, the

upper bound obtained using the fluid-flow model was more conservative and

much better approximations of the performance metric.

3. At medium to low traffic intensities, we have shown that exponential ON-OFF

is a very good choice for combining conservativeness and accuracy. This is

significant because of the ease of computing the exponential approximation.

As this traffic flows through the communication network within the Web-server

farm, it passes through various routers/switches, where traffic from other servers

merges to it. This may happen at multiple levels before data is relayed to the user.

We have considered the problem of obtaining performance measures in this network,

111

where traffic from several sources merge. Following are the contributions from this

part:

1. We have proposed a methodology to characterize the aggregate flow coming out

of a buffered queue of network traffic. The aggregate flow was modeled using

the same distributions as the input traffic, which helps in extending the method

for cases with several layers of nodes. The methodology was validated using

trace data and we have shown that this model yields good characterizations.

2. Using the proposed methodology, we were able to compute the performance

measure at nodes where traffic from a multitude of traffic sources merge. This

helps in evaluating QoS guarantees.

3. We were also able to obtain bandwidth requirements for various links within

the network in order to be able to satisfy QoS requirements. This would help

in designing a system, where it is easy to reallocate bandwidth to critical links

and utilize the available resources efficiently.

V.2. Future Directions

The models and solution methodologies presented in this dissertation can be extended

to consider generalizations and complexities as mentioned below.

1. Admission control for elastic class : We have obtained the admission control

policy in Chapter II only for the streaming class requests. Obtaining this kind

of control for elastic requests might lead to better service for the customers

being allowed to enter the system. It will be an interesting problem to obtain

the optimal admission control policy, when control is exercised on both classes

of customers.

112

2. Consider other classes of network traffic: Throughout this research, we have

considered streaming and elastic classes, with loss and delay QoS parameters,

respectively. This work can be extended to incorporate different classes of traffic

which involves different QoS metrics. For example, traffic involving playback-

type applications could be considered that have jitter based QoS requirements,

in which, the packet needs to arrive before playback point, but the application

can tolerate some loss.

3. Incorporating failures : In the server farm we considered, it was assumed that

full capacity of any link is always available. However, this may not always be

the case. Different facets of incorporating failure of links can be considered,

such as rerouting traffic through active links, or obtaining a robust admission

control policy that would have minimum impact on QoS.

4. Splitting traffic in various links : We considered the problem where traffic from

various nodes merges in a buffered queue and characterized the aggregate traffic.

It is possible that at some nodes, traffic is routed to more than one links.

Characterizing traffic under such conditions would help in otaining performance

metrics in such complex networks that do not have the in-tree structure.

5. Using different traffic data: In our analysis of the elastic traffic, we have used

Web server trace data and modelled it as fluid. It will be interesting to see how

the fluid-flow models perform when different traffic data, such as that in mobile

networks, is used.

6. Performing hardware experiments : We obtained the aggregate flow parameters

in Chapter IV for ON-OFF sources. This aggregate flow characterization exer-

cise could be carried out in sync with hardware experiments, where the actual

113

flow data within such a network was measured and compared against the values

obtained using the methodology we have proposed.

114

REFERENCES

[1] A. Iyengar, E. MacNair, and T. Nguyen, “An analysis of web server perfor-

mance,” in Proc. IEEE GLOBECOM ’97, Phoenix, AZ, 1997, pp. 1943–1947.

[2] W. van der Weij, S. Bhulai, and R. van der Mei, “Dynamic thread assignment in

web server performance optimization,” Performance Evaluation, vol. 66, no. 6,

pp. 301 – 310, 2009.

[3] J. Yang, D. Jin, Y. Li, K. Hielscher, and R. German, “Modeling and simulation

of performance analysis for a cluster-based web server,” Simulation Modeling

Practice and Theory, vol. 14, no. 2, pp. 188 – 200, 2006.

[4] V. Gupta, M. H. Balter, K. Sigman, and W. Whitt, “Analysis of join-the-

shortest-queue routing for web server farms,” Performance Evaluation, vol. 64,

no. 9-12, pp. 1062 – 1081, 2007.

[5] R. Shumway and S. Stoffer, Time Series Analysis and Its Applications. New

York: Springer, 2000.

[6] A. Akella, S. Seshan, and A. Shaikh, “An empirical evaluation of wide-area

internet bottlenecks,” in IMC ’03: Proc. 3rd ACM SIGCOMM Conference on

Internet Measurement, New York, 2003, pp. 101–114.

[7] K. W. Ross, Multiservice Loss Models for Broadband Telecommunication Net-

works. New York: Springer-Verlag, 1995.

[8] J. S. Kaufman, “Blocking in shared resource environment,” IEEE Transactions

on Communications, vol. 29, no. 10, pp. 1481–1494, 1981.

115

[9] Z. Dziong and L. G. Mason, “Call admission and routing in multi-service loss

networks,” IEEE Transactions on Communications, vol. 42, no. 3, pp. 2011–2022,

1994.

[10] A. Chandra, W. Gong, and P. Shenoy, “Dynamic resource allocation for shared

data centers using online measurements,” in Proc. Eleventh IEEE/ACM Interna-

tional Workshop on Quality and Service, Monterey, CA, June 2003, pp. 381–400.

[11] T. Abdelzaher, K. G. Shin, and N. Bhatti, “Performance guarantees for web-

server end-systems: A control-theoretical approach,” IEEE Transactions on Par-

allel and Distributed Systems, vol. 13, pp. 80–96, January 2002.

[12] C. Lu, G. Alvarez, and J. Wilkes, “Aqueduct: Online data migration with per-

formance guarantees,” in Proc. Conference on File and Storage Technologies,

Berkeley, CA, January 2002, pp. 219–230.

[13] J. Chase, D. Anderson, P. Thakkar, A. Vahdat, and R. Doyle, “Managing energy

and server resources in hosting centers,” in Proc. Eighteenth ACM Symposium

on Operating Systems Principles, Banff, Canada, October 2001, pp. 103–116.

[14] L. Massoulié and J. Roberts, “Bandwidth sharing: Objectives and algorithms,”

IEEE Transactions on Networking, vol. 10, no. 3, pp. 320–328, 2002.

[15] G. Fodor, S. Rácz, and M. Telek, “On providing blocking probability- and

throughput guarantees in a multi-service environment,” International Journal

of Communication Systems, vol. 15, pp. 257–285, 2002.

[16] S. R. Mahabhashyam and N. Gautam, “Dynamic resource allocation of shared

data centers supporting multiclass requests,” in Proc. International Conference

on Autonomic Computing, New York, 2004, pp. 222–229.

116

[17] E. Altman, “Applications of Markov decision processes in communication net-

works : A survey,” in Handbook of Markov Decision Processes: Methods and

Applications (E. A. Feinberg and A. Shwartz, eds.), pp. 489–535, Dordrecht,

Netherlands: Kluwer, 2001.

[18] S. Bhatnagar and I. B. Reddy, “Optimal threshold policies for admission con-

trol in communication networks via discrete parameter stochastic optimization,”

Telecommunication Systems, vol. 29, no. 1, pp. 9–31, 2005.

[19] S. Singh and D. Bertsekas, “Reinforcement learning for dynamic channel alloca-

tion in cellular telephone systems,” in Advances in Neural Information Processing

Systems (M. C. Mozer, M. I. Jordan, and T. Petsche, eds.), vol. 9, pp. 974–980,

Cambridge, MA: The MIT Press, 1997.

[20] P. Marbach and J. Tsitsiklis, “A neuro-dynamic programming approach to call

admission control in integrated service networks: The single link case,” Tech.

Rep. LIDS-P-2402, Laboratory for Information and Decision Systems, MIT,

November 1997.

[21] S.-M. Senouci, A.-L. Beylot, and G. Pujolle, “Call admission control in cellular

networks: A reinforcement learning solution,” International Journal of Network

Management, vol. 14, no. 2, pp. 89–103, 2004.

[22] S. Shenker, “Fundamental design issues for the future internet,” IEEE Journal

on Selected Areas in Communication, vol. 13, no. 7, pp. 1176–1188, 1995.

[23] S. A. Lippman, “Applying a new device in the optimization of exponential queue-

ing systems,” Operations Research, vol. 23, pp. 687–710, 1975.

117

[24] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. New York: John Wiley and Sons, 1994.

[25] G. M. Koole, “Structural results for the control of queueing systems using event-

based dynamic programming,” Queueing Systems, vol. 30, pp. 323–339, 1998.

[26] E. Porteus, “Conditions for characterizing the structure of optimal strategies in

infinite-horizon dynamic programs,” Journal of Optimization Theory and Appli-

cations, vol. 36, pp. 419–432, 1982.

[27] E. Altman, T. Jimenez, and G. Koole, “On optimal call admission control,” in

Proc. 37th IEEE Conference on Decision and Control, Tampa, FL, December

1998, pp. 569–574.

[28] E. L. Ormeci, A. Burnetas, and J. van der Wal, “Admission policies for a two

class loss system,” Stochastic Models, vol. 17, no. 4, pp. 513–539, 2001.

[29] R. Bellman, “A Markov decision process,” Journal of Mathematics and Mechan-

ics, vol. 6, pp. 679–684, 1957.

[30] W. Willinger, M. S. Takku, and A. Erramilli, “A bibliographical guide to self-

similar traffic and performance modeling for modern high-speed networks,” in

Stochastic Networks: Theory and Applications (F. P. Kelly, S. Zachary, and

I. Ziedins, eds.), pp. 339–366, Oxford: Oxford University Press, 1996.

[31] M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, J. Yates, and

Y. Zhang, “Experience in measuring backbone traffic variability: Models, met-

rics, measurements and meaning,” in IMW ’02: Proc. 2nd ACM SIGCOMM

Workshop on Internet Measurement, New York, 2002, pp. 91–92.

118

[32] Z. Sahinoglu and S. Tekinay, “On multimedia networks: Self-similar traffic and

network performance,” IEEE Communications Magazine, vol. 37, no. 1, pp. 48–

52, 1999.

[33] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the self-similar

nature of ethernet traffic,” in ACM SIGCOMM (D. P. Sidhu, ed.), San Francisco,

CA, 1993, pp. 183–193.

[34] V. Paxson and S. Floyd, “Wide area traffic: The failure of Poisson modeling,”

IEEE/ACM Transactions on Networking, vol. 3, no. 3, pp. 226–244, 1995.

[35] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-similarity

through high-variability: Statistical analysis of ethernet LAN traffic at the source

level,” ACM SIGCOMM Computer Communications Review, vol. 25, pp. 100–

113, October 1995.

[36] V. Frost and B. Melamad, “Traffic modeling for telecommunications networks,”

IEEE Communications Magazine, vol. 32, pp. 70–80, 1994.

[37] D. L. Jagerman, B. Melamad, and W. Willinger, “Stochastic modeling of traffic

processes,” in Frontiers in Queueing: Models and Applications in Science and

Engineering, pp. 271–320, Boca Raton, FL: CRC Press Inc., 1997.

[38] D. Anick, D. Mitra, and M. M. Sondhi, “Stochastic theory of a data handling

system with multiple sources,” Bell Systems Technical Journal, vol. 61, pp. 1871–

1894, 1982.

[39] H. Heffes and D. M. Lucantoni, “A Markov modulated characterization of pack-

etized voice and data traffic and related statistical multiplexer performance,”

IEEE Journal on Selected Areas in Communications, vol. 4, pp. 856–868, 1986.

119

[40] D. M. Lucantoni, “The BMAP/G/1 queue,” in Models and Techniques for Per-

formance Evaluation of Computer and Communication Systems (L. Donatiello

and R. Nelson, eds.), pp. 330–358, New York: Springer-Verlag, 1993.

[41] Å. Arvidsson and R. Harris, “Performance comparison of models of individual

and merged bursty traffics,” in Proc. Tenth Nordic Teletraffic Seminar, Århus,

Denmark, 1992, pp. 185–192.

[42] B. B. Mandelbrot, “Self-similar error clusters in communication systems and

the concept of conditional systems and the concept of conditional stationarity,”

IEEE Transactions on Communications Technology, vol. 13, pp. 71–90, 1965.

[43] V. Klemeš, “The hurst phenomenon: A puzzle?” Water Resources Research,

vol. 10, pp. 675–688, 1974.

[44] L. S. Liebovitch, “Testing fractal and Markov models of ion channels kinetics,”

Biophysics Journal, vol. 55, pp. 373–377, 1989.

[45] M. E. Crovella and A. Bestavros, “Self-similarity in world wide web traffic: Evi-

dence an possible causes,” IEEE/ACM Transaction on Networking, vol. 5, no. 6,

pp. 835–846, 1997.

[46] M. T. Lucas, D. E. Wrege, B. J. Dempsey, and A. C. Weaver, “Statistical char-

acterization of wide-area IP traffic,” in Proc. Sixth International Conference on

Computer Communications and Networks, Las Vegas, NV, 1997, pp. 442–447.

[47] T. Kushida, “The traffic measurement and the empirical studies for the inter-

net,” in Global Telecommunications Conference, vol. 2, Sydney, Australia, 1998,

pp. 1142–1147.

120

[48] W. Willinger and V. Paxson, “Where mathematics meets the internet,” Notices

of the American Mathematical Society, vol. 45, no. 8, pp. 961–970, 1998.

[49] E. Gelenbe, V. Srinivasan, S. Seshadri, and N. Gautam, “Optimal policies for

ATM cell scheduling and rejection,” Telecommunication Systems, vol. 18, no. 4,

pp. 331–358, 2001.

[50] C. Partridge, “The end of simple traffic models,” IEEE Network, Editor’s Note,

vol. 7, p. 3, September 1993.

[51] V. Ramaswami, “Traffic performance modeling for packet communications:

Whence where and whither,” keynote address in Proc. 3rd Australian Teletraffic

Seminar, Adelaide, Australia, 1988.

[52] R. G. Addie, M. Zukerman, and T. D. Neame, “Broadband traffic modeling:

Simple solutions to hard problems,” IEEE Communications Magazine, vol. 36,

pp. 88–95, August 1998.

[53] N. Gautam and S. Seshadri, “Approximations for system performance under

self-similar traffic,” in 3rd International Conference on Telecommunications and

Electronic Commerce, Dallas, TX, November 2000, pp. 239–250.

[54] N. Gautam and S. Seshadri, “Performance analysis for e-business: Impact of long

range dependence,” Electronic Commerce Research, vol. 2, no. 3, pp. 233–253,

2002.

[55] A. I. Elwalid and D. Mitra, “Effective bandwidth of general Markovian traffic

sources and admission control of high-speed networks,” IEEE/ACM Transactions

on Networking, vol. 1, no. 3, pp. 329–343, 1993.

121

[56] G. L. Choudhury, D. M. Lucantoni, and W. Whitt, “On the effectiveness of

effective bandwidths for admission control in ATM networks,” in Proc. ITC-14,

Elsevier Science, North Holland, 1994, pp. 411–420.

[57] W. Whitt, “Tail probabilities with statistical multiplexing and effective band-

width for multiclass queues,” Telecommunication Systems, vol. 2, pp. 71–107,

1993.

[58] A. I. Elwalid, D. Heyman, T. V. Lakshman, D. Mitra, and A. Weiss, “Funda-

mental bounds and approximations for ATM multiplexers with applications to

video teleconferencing,” IEEE Journal on Selected Areas in Communications,

vol. 13, no. 6, pp. 1004–1016, 1995.

[59] A. I. Elwalid and D. Mitra, “Analysis, approximations and admission control of

a multi-service multiplexing system with priorities,” INFOCOM, vol. 2, pp. 463–

472, 1995.

[60] S. M. Ross, “Bounds on the delay distribution in G/G/1 queues,” Journal of

Applied Probability, vol. 11, pp. 417–421, 1974.

[61] D. Artiges and P. Nain, “Upper and lower bounds for the multiplexing of mul-

ticlass Markovian on/off sources,” Performance Evaluation, vol. 27 and 28,

pp. 673–698, 1996.

[62] A. I. Elwalid and D. Mitra, “Analysis and design of rate-based congestion con-

trol of high speed networks, part I: Stochastic fluid models, access regulation,”

Queueing Systems - Theory and Applications, vol. 9, pp. 29–64, 1991.

[63] T. Yang and D. H. K. Tsang, “A novel approach to estimating cell loss prob-

122

ability in an ATM multiplexer loaded with homogeneous on-off sources,” IEEE

Transactions on Communications, vol. 43, no. 1, pp. 117–126, 1995.

[64] Z. Liu, P. Nain, and D. Towsley, “Exponential bounds with application to call ad-

mission,” Journal of the Association for Computing Machinery, vol. 44, pp. 366–

394, 1997.

[65] S. Aalto, “Characterization of the output rate process for a Markovian storage

model,” Journal of Applied Probability, vol. 35, no. 1, pp. 184–199, 1998.

[66] Z. Palmowski and T. Rolski, “A note on martingale inequalities for fluid models,”

Statistics and Probability Letters, vol. 31, no. 1, pp. 13–21, 1996.

[67] Z. Palmowski and T. Rolski, “The superposition of alternating on-off flows and a

fluid model,” The Annals of Applied Probability, vol. 8, no. 2, pp. 524–540, 1998.

[68] N. Gautam, V. Kulkarni, Z. Palmowski, and T. Rolski, “Bounds for fluid models

driven by semi-Markov inputs,” Probability in the Engineering and Information

Sciences, vol. 18, no. 4, pp. 429–475, 1999.

[69] J. A. Buzacott and J. G. Shanthikumar, Stochastic Models of Manufacturing

Systems. Englewood Cliffs, NJ: Prentice Hall, 1993.

[70] J. D. C. Little, “A proof of the queueing formula: L = λW ,” Operations Re-

search, vol. 9, pp. 383–387, 1961.

[71] A. Feldmann and W. Whitt, “Fitting mixtures of exponentials to long-tail dis-

tributions to analyze network performance models,” Performance Evaluation,

vol. 31, no. 3-4, pp. 245–279, 1998.

123

[72] A. I. Elwalid and D. Mitra, “Fluid models for the analysis and design of statisti-

cal multiplexing with loss priorities on multiple classes of bursty traffic,” IEEE

Transactions on Communications, vol. 42, no. 11, pp. 2989–3002, 1992.

[73] V. G. Kulkarni, “Fluid models for single buffer systems,” in Frontiers in Queue-

ing: Models and Applications in Science and Engineering, , pp. 321–338, Boca

Raton, FL: CRC Press Inc., 1997.

[74] S. Teymori and W. Zhuang, “Queue analysis and multiplexing of heavy-tailed

traffic in wireless packet data networks,” Mobile Networks and Applications,

vol. 12, pp. 31–41, February 2007.

[75] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-similarity

through high-variability: Statistical analysis of ethernet LAN traffic at the source

level,” IEEE/ACM Transactions on Networking, vol. 5, no. 1, pp. 71–86, 1997.

[76] K. Park, G. Kimy, and M. Crovellaz, “On the relationship between file sizes,

transport protocols, and self-similar network traffic,” in Proc. 4th International

Conference on Network Protocols, Columbus, OH, 1996, pp. 171–180.

[77] M. Mandjes and A. Riddler, “A large deviations analysis of the transient of

a queue with many Markov fluid inputs: Approximations and fast simulation,”

ACM Transactions on Modeling and Computer Simulations, vol. 12, no. 1, pp. 1–

26, 2002.

[78] K. Sriram and W. Whitt, “Characterizing superposition arrival processes in

packet multiplexers for voice and data,” IEEE Journal on Selected Areas in

Communication, vol. 4, pp. 833–846, September 1986.

[79] R. Cáceres, P. G. Danzig, S. Jamin, and D. J. Mitzel, “Characteristics of

124

wide-area TCP/IP conversations,” Computer Communications Review, vol. 21,

pp. 101–112, 1991.

[80] A. Feldmann, “Modeling characteristics of TCP connections,” Tech. Rep., AT&T

Laboratories, Florham Park, NJ, 1996.

[81] H. Hassan and J.-M. Garcia, “Aggregate modeling for TCP sessions,” in Proc.

2nd ACM International Workshop on Wireless Multimedia Networking and Per-

formance Modeling, New York, October 2006, pp. 73–78.

[82] H. Hassan, J.-M. Garcia, and C. Bochstal, “Aggregate traffic models for VoIP ap-

plications,” in International Conference on Digital Telecommunications, Wash-

ington, DC, 2006, p. 70.

[83] K. Ravindran and T. J. Gong, “Resource allocation control protocols for multi-

cast data transport,” in Sixth International Conference on Computer Communi-

cations and Networks, Las Vegas, NV, 1997, pp. 182–188.

[84] B. Budiardjo, B. A. A. Nazief, and D. Hartanto, “Delay based bandwidth allo-

cation in aggregate traffic,” in Communications and Computer Networks (M. H.

Hamza, ed.), Cambridge, MA, 2002, pp. 200–205.

[85] Z. Wang and A. Basu, “Resource allocation for elastic traffic: Architecture and

mechanisms,” in Network Operations and Management Symposium, Honolulu,

HI, IEEE/IFIP, 2000, pp. 157–170.

[86] S. Shah-Heydari and T. Le-Ngoc, “MMPP modeling of aggregated ATM traffic,”

in IEEE Canadian Conference on Electrical and Computer Engineering, vol. 1,

Waterloo, ON, Canada, 1998, pp. 129–132.

125

[87] S. Aalto, “Output of a multiplexer loaded by heterogeneous ON-OFF sources,”

Stochastic Models, vol. 14, no. 4, pp. 993–1005, 1998.

[88] N. K. Boots and M. Mandjes, “Fast simulation of a queue fed by a superposition

of many (heavy-tailed) sources,” Probability in the Engineering and Informa-

tional Sciences, vol. 16, no. 2, pp. 205–232, 2002.

[89] F. Alagoz, “Approximations on the aggregate MPEG video traffic and their

impact on admission control,” Turkish Journal of Electrical Engineering and

Computer Sciences, vol. 10, no. 1, pp. 73–84, 2002.

126

VITA

Piyush Goel received his Bachelor of Technology degree in civil engineering from

Indian Institure of Technology, Bombay, Mumbai, India, in June 2000. After working

with Infosys Technologies Ltd. for a short period of time, he initially joined the De-

partment of Engineering Science and Mechanics, and later changed to the Industrial

and Manufacturing Engineering Department, at the Pennsylvania State University.

He transferred to Texas A&M University the fall of 2005 to pursue a Doctor Of Phi-

losophy degree in industrial engineering. He received the degree in August of 2009.

His research interests include Markovian Processes, Applied Probability, Probabilistic

Optimization and Queueing Theory.

Piyush Goel may be reached at Department of Industrial and Systems Engi-

neering, c/o Dr. Natarajan Gautam, Texas A&M University, College Station, TX

77843-3131. His email address is pg@tamu.edu.

