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ABSTRACT 

 

Optimal Design of Demand-Responsive Feeder Transit Services. 

(August 2009) 

Xiugang Li, B.E., Southeast University; 

M.E., Southeast University; D.E., Southeast University 

Co-Chairs of Advisory Committee: Dr. Luca Quadrifoglio  
                                                     Dr. Yunlong Zhang 

 

 The general public considers Fixed-Route Transit (FRT) to be inconvenient 

while Demand-Responsive Transit (DRT) provides much of the desired flexibility with a 

door-to-door type of service. However, FRT is typically more cost efficient than DRT to 

deploy. Therefore, there is an increased interest in flexible transit services including all 

types of hybrid services that combine FRT and pure DRT. The demand-responsive 

feeder transit, also known as Demand-Responsive Connector (DRC), is a flexible transit 

service because it operates in a demand-responsive fashion within a service area and 

moves customers to/from a transfer point that connects to a FRT network. In this 

research we develop analytical models, validated by simulation, to design the DRC 

system. 

Feeder transit services are generally operated with a DRC policy which might be 

converted to a traditional FRT policy for higher demand.  By using continuous 

approximations, we provide an analytical modeling framework to help planners and 

operators in their choice of the two policies.  We compare utility functions of the two 
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policies to derive rigorous analytical and approximate closed-form expressions of critical 

demand densities. They represent the switching conditions, that are functions of the 

parameters of each considered scenario, such as the geometry of the service area, the 

vehicle speed and also the weights assigned to each term contributing to the utility 

function: walking time, waiting time and riding time. 

We address the problem faced by planners in determining the optimal number of 

zones for dividing a service area.  We develop analytical models representing the total 

cost functions balancing customer service quality and vehicle operating cost.  We obtain 

close-form expressions for the FRT and approximation formulas for the DRC to 

determine the optimal number of zones.      

Finally we develop a real-case application with collected customer demand data 

and road network data of El Cenizo, Texas. With our analytical formulas, we obtain the 

optimal number of zones, and the times for switching FRT and DRC policies during a 

day. Simulation results considering the road network of El Cenizo demonstrate that our 

analytical formulas provide good estimates for practical use. 
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CHAPTER I 

INTRODUCTION: THE IMPORTANCE 

OF RESEARCH 

 

 Over the last decades, modern urban areas, especially within residential 

communities, are experiencing a steady decrease in their population density as a 

consequence of urban sprawl, one of the most evident phenomena of our time.  In the 

US, from 1960 to 2000, the population density dropped by 15% despite an average 

overall population growth of 86% (www.demographia.com).  In the majority of the rest 

of the world this trend is even more evident.  This increasing “dispersion” of population 

causes conventional fixed route transit systems serving those areas to become 

progressively more inefficient and relegated to a marginal role, since they are designed 

to serve few established routes and they heavily rely on concentrated demand.  

Traditionally, transit services have been divided into two broad categories: fixed 

route (FRT) and demand responsive (DRT).  The typical cost efficiency of FRT systems 

is due to the predetermined schedule, the large loading capacity of the vehicles and the 

consolidation of many passenger trips onto a single vehicle (ridesharing).  However, the 

general public considers them to be inconvenient because of their lack of flexibility, 

since often the locations of pick up and/or drop off points and/or the service’s schedule 

do not match the individual rider’s desires. Therefore, an increasingly larger portion 
 
 
 
____________ 
This dissertation follows the style of Transportation Research Part B: Methodological. 
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of the growing population relies almost exclusively on private automobiles for their 

transportation needs, causing many urban areas to suffer from increasing congestion and 

pollution problems. 

 DRT systems instead provide much of the desired flexibility with a door-to-door 

type of service, but they are generally much more costly to deploy. According to the 

Federal Transit Administration (2005), the national total fare revenue earned is about 

9.7% of the operating expense for DRT systems, which is much less than the percentage 

of 27.9% for FRT systems. Therefore, DRT systems are largely limited to specialized 

operations such as taxicabs, shuttle vans or dial-a-ride services, other than paratransit 

services (mandated under the ADA).  Hence, transit agencies are facing a growing 

demand for improved and extended DRT services. 

The broad and fairly new category of “flexible” transit services includes all types 

of hybrid services that combine pure demand responsive and fixed route features.  These 

services have established stop locations and/or established schedules, combined with 

some degree of demand responsive operation.  Their characteristics have, in several 

cases, efficiently responded to some of the needs and wants of both the customers and 

the transit agency as well.  However, their use has been quite limited in practice so far, 

as opposed to regular FRT systems. 

The Demand Responsive Connector (DRC), also know as “feeder” transit line, is 

one type of flexible transit service.  A survey conducted by Koffman (2004) for a Transit 

Cooperative Research Program (TCRP) project found that the DRC has been operated in 

quite a few cities and is one of the most often used types of flexible transit services, 
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especially within low density residential areas.  Examples can be found in Denver (CO), 

Raleigh (NC), Akron (OH), Tacoma (WA), Sarasota (FL), Portland (OR) and Winnipeg 

(Canada).  The service operates in a demand responsive fashion within a service area and 

move passengers from/to a transfer point that connects to a major fixed route transit 

network, thus closing the gap perceived as the most critical by the majority of the 

potential transit users. 

In most cases, the service operates as a FRT service during daytime and switches 

to a DRC type of service during evenings, nights or early morning, when the demand is 

lower.  The customers know the policy in effect via published schedule, telephone calls 

and/or internet.  When designing and operating such systems, planners need to decide 

what type of operations, between FRT or DRC, would be the most appropriate and/or 

what conditions would justify a “switch” from FRT to DRC (or vice versa).  The 

decision is not straightforward, mainly because the demand for the service is often 

unknown beforehand and it will depend on the established service itself.  In addition, it 

is not clear what would be the best type of service even when assuming a known 

demand.  This is because the service quality provided to customers is not easy to assess 

and might depend on external conditions, such as safety, weather, time of the day; plus, 

the balance between operating costs and service quality is also frequently hard to 

evaluate.  A methodology is in needs to assist decision makers in their choice.  In 

particular, a “critical demand density”, representing the point where the two services 

could reasonably be considered equivalent and where a switch from one type of service 

to the other would be desirable. 
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In designing such systems for large communities, planners may separate the 

whole service area into zones for an easier management of the operation, to reduce 

operating cost, and to provide a better level of service to customers.  In each zone, an 

independent feeder line would provide the service to its customers.  The best number of 

zones is hard to determine because the balance between operating costs and service 

quality is frequently difficult to evaluate, especially within areas with low and sparse 

demands.  However, current trends suggest that these services will progressively 

increase their market share and importance within transit agencies, demanding a more 

rigorous and methodological design approach to the problem. Handy but powerful tools, 

such as analytical formulae, would aid in solving the complicated feeder transit design 

problem. 

Therefore the research in this dissertation would include three main parts: 

• A methodology to determine the critical demand density;  

• Analytical models to determine the optimal number of zones;  

• An application with collected data in El Cenizo, Texas. 

  

 This dissertation is divided into six chapters (including the Introduction). Chapter 

II contains the literature review. The subject areas reviewed include: the demand-

responsive transit service, the flexible transit service and the continuous approximation 

approach. Chapter III contains a description of the methodology to determine the critical 

demand density. Analytical formulas are derived for the one-vehicle case and the two-

vehicle case. Chapter IV includes analytical models to determine the optimal number of 
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zones of a service area. Customer cost and vehicle/bus cost are balanced to derive the 

minimum total cost for the optimal zone design. Chapter V contains a real-case 

application with collected data in El Cenizo, Texas. Theoretical results are compared 

with simulation results based on the real road network. Chapter VI includes conclusions 

and a set of recommendations for future research. 
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CHAPTER II 

LITERATURE REVIEW 

 

 The work specifically on the DRC, which is the focus of this research, is Cayford 

and Yim (2004).  These authors surveyed the customers’ demand for DRC for the city of 

Millbrae, California.  They also designed and implemented an automated system used 

for the DRC services.  The service uses an automated phone in system for reservations, 

computerized dispatching over a wireless communication channel to the bus driver and 

an automated callback system for customer notifications.  Khattak and Yim (2004) 

explored the demand for a consumer oriented personalized DRT (PDRT) service in the 

San Francisco Bay Area.  About 60% of those surveyed were willing to consider PDRT 

as an option, and about 12% reported that they were ‘‘very likely’’ to use PDRT.  Many 

were willing to pay for the service and highly valued the flexibility in scheduling the 

service.  

  

2.1 Flexible transit service 

 Flexible transit services may involve checkpoints.  Daganzo (1984) describes a 

flexible system in which the pick up and drop off points are concentrated at centralized 

locations called checkpoints.  The related Mobility Allowance Shuttle Transit (MAST) 

system allows buses to deviate from the fixed path so that customers within the service 

area may be picked up or dropped off at their desired locations.  According to Koffman 

(2004), this type of service is also often used and is also known as “Route Deviation”.  
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Quadrifoglio et al. (2006) developed bounds on the maximum longitudinal velocity to 

evaluate the performance and help the design of MAST services by employing 

continuous approximations.  Quadrifoglio et al. (2007) developed an insertion heuristic 

for scheduling MAST services by using control parameters, which properly regulate the 

consumption of the slack time.  Finally, Quadrifoglio et al. (2008b) formulated the 

scheduling of the MAST services as a mixed integer programming with added logic 

constraints.  

 Analytical modeling and/or simulation have often been used to analyze flexible 

transit services.  For example, Cortés and Jayakrishnan (2002) proposed and simulated 

one type of flexible transit called High Coverage Point to Point Transit (HCPPT), which 

requires the availability of a large number of transit vehicles.  Pagès et al. (2006) 

identified the problem called real time mass transport vehicle routing problem and 

developed a global solution algorithm for the mass transport network design problem.  

Aldaihani et al. (2004) developed an analytical model that aids decision makers in 

designing a hybrid grid network that integrates a flexible demand responsive service 

with a fixed route service.  Their model is to determine the optimal number of zones in 

an area, where each zone is served by a number of on demand vehicles.  

  

2.2 DRT 

 Although research on DRC and flexible transit services is quite limited, purely 

DRT systems have been extensively investigated.  Savelsbergh and Sol (1995), 

Desaulniers et al. (2000) and Cordeau and Laporte (2003) provide comprehensive 
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reviews on the proposed methodologies and solutions to deal with these very difficult 

problems. 

Some recent examples of research on DRT are as follows.  Dessouky et al. 

(2003) demonstrated through simulation that it is possible to reduce environmental 

impact substantially, while increasing operating costs and service delays only slightly for 

the joint optimization of cost, service, and life cycle environmental consequences in 

vehicle routing and scheduling of a DRT system.  Dessouky et al. (2005) used computer 

simulation methods to investigate the effect of using a zoning vs. a no zoning strategy 

and time window settings on performance measures such as total trip miles, deadhead 

miles and fleet size.  They identified quasi linear relationships between the performance 

measures and the independent variable, either the time-window size or the zoning policy.  

Sandlin and Anderson (2004) presented a procedure for calculating a serviceability index 

(SI) for DRT operators based on regional socioeconomic conditions and internal 

operation data.  The SI can be used to evaluate and compare DRT operation.  Palmer et 

al. (2004) studied the DRT system consisting of dial-a-ride programs that transit 

agencies use for point to point pick up and delivery of the elderly and handicapped.  

Their results of a nationwide survey involving 62 transit agencies show that the use of 

paratransit computer aided dispatching (CAD) system and agency service delivery 

provide a productivity benefit.   

Further, Diana et al. (2006) studied the problem of determining the number of 

vehicles needed to provide a DRT service with a predetermined quality for the user in 

terms of waiting time at the stops and maximum allowed detour.  They proposed a 
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probabilistic model that requires only the knowledge of the distribution of the demand 

over the service area and the quality of the service in terms of time windows associated 

of pickup and delivery nodes.  Quadrifoglio et al. (2008a) used simulation methods to 

investigate the effect of using a zoning vs. a no zoning strategy and time window 

settings on performance measures such as total trip miles, deadhead miles and fleet size. 

They identified quasi linear relationships between the performance measures and the 

independent variable, either the time-window size or the zoning policy.  

 

2.3 Continuous approximation 

 In this research, we utilize continuous approximations as part of our 

methodology.  There is a significant body of work in the literature on continuous 

approximation models for transportation systems.  Most of the work has been developed 

to provide decision support tools for strategic planning in the design process.  Clarens 

and Hurdle (1975) utilized continuous approximation to design an operating strategy for 

a commuter bus system.  Langevin et al. (1996) provide a detailed overview of the 

research performed in the field.  They concentrate primarily on freight distribution 

systems, while in this research the focus is on public transport; but most of the issues of 

interest are common to both fields.  Szplett (1984) provides a review of the research 

performed on continuous models specifically for public transport. Ho and Wong (2006) 

provide a detailed overview of the research performed on two-dimensional continuous 

models. 
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 Some recent examples of continuous approximation models for public transport 

are as follows.  Quadrifoglio et al. (2006) utilized continuous approximations to provide 

upper and lower bounds of the maximum velocity of the vehicle between pairs of 

consecutive checkpoints at different demand levels for Mobility Allowance Shuttle 

Transit Services.  Diana et al. (2006) presented a continuous approximation model to 

forecast the number of vehicles needed to operate a demand-responsive transit service. 

Using this approximation model provides the possibility for planners to perform 

sensitivity analysis of different scenarios, and the choice of the best compromise 

between service quality and financial resources is more effective.  
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CHAPTER III 

CRITICAL DEMAND DENSITY 

 

 When designing and operating a DRC system, planners need to decide what type 

of operations, between FRT or DRC, would be the most appropriate and/or what 

conditions would justify a “switch” from FRT to DRC (or vice versa).  With the ultimate 

goal of improving the efficiency and performance of this type of services, a 

methodology is developed to assist decision makers in their choice by providing 

analytical modeling and solution of the problem, with the use of continuous 

approximations.  As noted by Daganzo (1991), the main purpose of this type of approach 

is to obtain reasonable solutions with as little information as possible.  Hall (1986) also 

pointed out that these approximate models are easier to comprehend. They may provide 

handy but powerful tools to help solve many complicated decision problems.  In 

particular, in this research, analytical modeling is developed to assess the service quality 

of the two competing operating policies (FRT and DRC) and derive the “critical demand 

densities”, representing the point where the two services could reasonably be considered 

equivalent and where a switch from one type of service to the other would be desirable.  

 

3.1 System definition 

3.1.1 Service area and demand 

 The service area is a representation of a residential community modeled as a 

rectangle of width W and length L located on the side of a main road where a major fixed 
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route transit service network is in service. The terminal of the feeder transit service, 

connecting to the major fixed route transit network, is located in the middle of the left 

edge of the service area (see Fig. 1).  The temporal distribution of the demand is 

assumed to be a Poisson process with exponentially distributed interarrival times and 

average rate λ passengers/hour.  We assume that a fraction α of the customers need to be 

transferred from the service area to the connection terminal (“pick up” customers) and a 

fraction 1-α of them in the opposite direction (“drop off” customers).  The customers’ 

location, either for a pick up or for a drop off, has a uniform distribution within the 

service area.  While assuming a temporal Poisson distribution for pick up customers is 

very realistic, the drop off customers would instead reasonably show up in groups 

according to the arrival of the vehicles serving the outside FRT network.  However, with 

the additional assumption that the number of transit lines passing by the connection 

terminal is high enough and/or the headways between vehicles are low enough, a 

Poisson distribution for the arrivals is still a reasonable assumption.  

 

3.1.2 Competing transit policies 

 We consider two competing operating policies (FRT and DRC) of the transit 

service.  For each one of them we analyze the one vehicle case and the two vehicle case.  

In all considered scenarios we assume an average speed of the vehicles of vb miles/hr.  

The vehicle dwelling time at each stop is sf hr for the FRT and s hr for the DRC.  

Dwelling times are defined differently, since we recognize that for the FRT case more 
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passengers would generally be served per stop.  We also assume that the same type of 

vehicle(s) is used in all cases.  

 

FRT Policy 

 The FRT operating policy offers continuous service with the vehicle moving 

back and forth along the route between stop 1 (the connection terminal) and stop N (see 

Fig. 1).  There are N-2 stations between 1 and N.  N would be determined by the 

selection of the optimal distance (spacing) between adjacent stations, which we assume 

to be a constant d miles.  In practice, transit agencies use ranges from 600ft to 2500ft in 

suburban areas (Texas Transportation Institute, 1996).  Some other references on optimal 

spacing include Wirasinghe and Ghoneim (1981), Kuah and Perl (1988), Furth and 

Rahbee (2000) and Saka (2001). 

 

Fig. 1.  Service area and FRT service. 

Connection
Terminal ≡ 1

Major
Transit
Network

L

W
N

W/4 L/[4(N-1)]L/(N-1)L/[2(N-1)]
avg walking
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The pick up customers show up at random within the service area and wait there 

until they need to walk to the nearest station to catch their bus, whose schedule is known 

to them.  The drop off customers show up and wait at terminal 1, ride the bus to the stop 

nearer to their destination, and then walk to their final destination, which is located at 

random.  There are no intra zonal trips, that is, every customer starts or ends the trip at 

the connection terminal.  

 In the one vehicle case there is only a vehicle performing the operations.  In the 

two vehicle case we assume that the two buses begin their operations at the same time 

leaving from stop 1 and N respectively.  At any point in time during the operations, the 

vehicle moving left to right performs the drop off operations (transferring customers 

from terminal 1 to the stops closest to their final destination) and the vehicle moving 

right to left performs the pick up operations (transferring customers from their stops 

closest to their origin to terminal 1).  

 

DRC Policy 

 The DRC policy provides a shared ride demand responsive terminal to door (and 

door to terminal) service to customers, by picking them up and dropping them off at 

their desired locations.  The vehicle begins and ends each of its trips from the terminal.  

We assume that pick up customers are able to notify their presence by means of a phone 

or internet booking service.  Immediately before the beginning of each trip, waiting 

customers (both pick up and drop off ones) are scheduled and the route for the trip in the 

service area is constructed.  There is no planned idle time in between trips.  To schedule 
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the requests we assume that the schedule is calculated by an insertion algorithm 

attempting to minimize the total distance traveled by the vehicle.  An insertion heuristic 

approach is adopted because they are widely used in practice to solve transportation 

scheduling problems, as they often provide very good solutions compared to optimality, 

they are computationally fast and they can easily handle complicating constraints 

(Campbell and Savelsbergh, 2004).  Rectilinear movements (as in a Manhattan network) 

are assumed and often chosen instead of Euclidean ones, since they better estimate 

distances traveled in real road networks and generally provide good approximations (see 

Quadrifoglio et al., 2008a).  

 For the two vehicle case, we divide the service area into two zones with width W 

and length L/2.  Zone 1 is adjacent to the terminal and Zone 2 on the right of it.  Each 

vehicle serves a zone and operations are scheduled with an insertion heuristic algorithm 

as for the one vehicle case.  Vehicles operate continuously and alternate their operations 

among zones, so their expected average cycle time is the same.  This means that a 

vehicle would start from terminal 1, serve customers in Zone 1 (while the other vehicle 

is serving Zone 2), come back to terminal 1, move to serve Zone 2 (while the other 

vehicle is serving Zone 1) and come back to terminal 1 (see Fig. 2).  
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Connection
Terminal ≡ 1

Major
Transit
Network

L/2

W

L/2

Zone 1 Zone 2

 

Fig. 2.  DRC policy for the Two-Vehicle Case. 

 

3.1.3 Performance measures 

 The performance of a transit system can roughly be considered as a combination 

of operating costs and service quality.  The relative weight assigned to each of those two 

categories is a disputed matter and can differ between public transportation agencies and 

privately owned ones.  However, in this research, we may assume the operating costs to 

be equivalent for the two competing transit services.  The assumption is reasonable in 

these comparisons, because the vehicle is assumed to be the same and run continuously 

during the operations for both service policies at the same average speed vb and the 

demand served is also the same.  We recognize that the FRT may have a shorter cycle 

and therefore may need a slightly smaller vehicle for its operations.  The bus stop 

infrastructure for the FRT may also bring additional cost, but it would be a small portion 

in the long term service operation.  Thus, other than possible negligible differences, we 
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do not see a major disparity of the operating costs between the two cases which would 

cause our assumption to be unreasonable.  

 Thus, the comparison between the two services can be performed by considering 

only the service quality provided to customers.  If we disregard other possible sources of 

noise that could influence customers’ perceptions and opinions, the service quality can 

be considered as a combination of the following performance measures:  

 •  E(Twk): expected value of walking time of the passengers needed to/from their 

closest bus stop from/to their destination. 

•  E(Twt): expected value of waiting time of the passengers from their ready time 

to their pick up time (subtracting the possible walking time). 

•  E(Trd): expected value of ride time of the passengers from pick up to drop off. 

 

Generally, needed transfers between vehicles to complete a trip are a major 

service quality factor as well, but there are none in this case.  Thus, the service quality 

provided to customers is represented by the utility function U defined as the weighed 

sum of the above terms:  

 

U = wwk×E(Twk) + wwt×E(Twt) + wrd×E(Trd). (3.1) 

 

 Lower values of U indicate a better level of service.  The assessments of the 

weights (wwk, wwt, and wrd) are generally difficult to make, as they are dependent upon 

several factors, they are not unique for all cases and they can change dynamically 
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depending on the circumstances.  For example: the walking time could be considered 

more or less acceptable (thus, with a different relative weight), depending on the safety 

or the weather conditions of a certain area and/or the profile of the customers.  However, 

the weight assignment is not the scope of this paper.  We wish to provide decision 

makers with tools which will help them decide the proper service policy, once they have 

selected the proper weights for their scenario.  A more detailed discussion for the 

weights can be found in two recent studies, Wardman (2004) and Guo and Wilson 

(2004).  

 In the next sections we will focus on the analytical computation of U for both 

competing policies, so we can make a comparison.  

 

3.2 Analytical modeling for the One-Vehicle Case 

3.2.1 FRT 

 In this section we calculate the expected values of the three performance 

measures E(Twk), E(Twt), E(Trd) for the one vehicle scenario when a FRT operating 

policy is adopted.   

Assuming that customers would walk to the nearest bus stop with a rectilinear 

path, the expected value of the walking time E(Twk) is 

 

( ) 1
4 1wk

wk

LE T W
v N

⎛ ⎞= +⎜ ⎟−⎝ ⎠
, (3.2) 
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where vwk is the average walking speed and N is number of FRT bus stations, including 

the connection terminal 1 (see Fig. 1). 

Since the bus dwelling time at each station is sf, the cycle time of the journey 

beginning at terminal 1 and back is 

 

( )2 2 1 f
b

LC N s
v

= + − . (3.3) 

 

The derivation of the expected values for the waiting time and riding time 

depends upon the relationship between the values assumed for the weights wwt and wrd.  

As mentioned, our scope is not to assess the weights, but to provide analytical tools 

given their assumed values.   

A wwt < wrd (case 1) would mean that customers would spend their time waiting 

rather than being on the vehicle.  This is a reasonable assumption if the waiting location 

is a comfortable one, like at home or at a nicely built connection terminal.  Since 

customers would walk to the nearest bus stop of the FRT, for the region (which is 

( )
1

2 1N −
 in proportion to the total service area shown in Fig. 1) closest to the terminal 

1, customers would walk to the terminal 1. Therefore the waiting time and ride time for 

these customers are 0. The expected value of the waiting time is C/2 for other customers.  

 Then the expected value of the waiting time for pick up customers, drop off 

customers and all customers are (superscripts p and d denote pick-up and drop-off 

customers respectively; subscript wt denotes waiting time):   
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( ) ( )1
1 1
2 4 1

p
wtE T C

N−

⎡ ⎤
= −⎢ ⎥−⎣ ⎦

, (3.4) 

( ) ( )1
1 1
2 4 1

d
wtE T C

N−

⎡ ⎤
= −⎢ ⎥−⎣ ⎦

,   (3.5) 

( ) ( ) ( ) ( ) ( ) ( )1 1 1
11 1 1

2 1
p d

wt wt wt f
b

LE T E T E T N s
N v

α α− − −

⎡ ⎤ ⎡ ⎤
= + − = − + −⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

.    (3.6) 

 

The expected value of the ride time for pick up customers, drop off customers 

and all customers are instead: 

 

( )1 4
p

rd
CE T − = , (3.7) 

( )1 4
d

rd
CE T − = , (3.8) 

( ) ( ) ( ) ( ) ( )1 1 1
11 1
2

p d
rd rd rd f

b

LE T E T E T N s
v

α α− − −

⎡ ⎤
= + − = + −⎢ ⎥

⎣ ⎦
. (3.9) 

 

A wwt > wrd (case 2) would instead mean that customers would spend their time 

onboard rather than waiting.  This could be the case when most of the waiting occurs at 

possibly unsafe locations, maybe at night and/or with adverse weather conditions.  

Equations (4) to (9) are then recalculated by employing conditional probability (the 

mathematical passages can be found in the appendix): 
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( ) ( ) ( )2 2
1 1 1
3 4 1 6 1

p
wtE T C

N N−

⎡ ⎤
= − +⎢ ⎥

− −⎢ ⎥⎣ ⎦
, (3.4a) 

( ) ( ) ( )2 1
1 1
2 4 1

d d
wt wtE T E T C

N− −

⎡ ⎤
= = −⎢ ⎥−⎣ ⎦

, (3.5a) 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2

2

1

1 1             1 1 1 ,
3 2 11

p d
wt wt wt

f
b

E T E T E T

L N s
N vN

α α

α

− − −= + − =

⎡ ⎤⎛ ⎞ ⎡ ⎤
= − − + + −⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟ −−⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦

 (3.6a) 

( )
( )2 2

5 1
12 6 1

p
rdE T C

N−

⎡ ⎤
= −⎢ ⎥

−⎢ ⎥⎣ ⎦
, (3.7a) 

( ) ( )2 1 4
d d

rd rd
CE T E T− −= = , (3.8a) 

( ) ( ) ( ) ( )

( )
( )

2 2 2

2

1

1 1             1 1 .
3 21

p d
rd rd rd

f
b

E T E T E T

L N s
vN

α α

α

− − −= + − =

⎡ ⎤⎛ ⎞ ⎡ ⎤
= − + + −⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟−⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦

 (3.9a) 

 

3.2.2 DRC 

The calculation of the expected values of the performance measures for the 

demand responsive operating policy is not straightforward, due to the fact that at each 

cycle, the vehicle performs a different tour, to serve the demand uniformly but randomly 

distributed across the service area.  However, it is possible to provide good estimates by 

following a methodology similar to the one adopted in Quadrifoglio et al. (2006).  

Quadrifoglio et al. (2006) proved that the distance traveled by a vehicle traveling along a 

corridor to serve uniformly distributed demand scheduled with an insertion heuristic 

algorithm (attempting to minimize the total distance traveled) is upper bounded and 

closely approximated (especially for lower densities) by the distance traveled by the 
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vehicle following a rectilinear “no backtracking policy”, which forbids backwards 

movements with respect to the current forward direction and, therefore, serves the 

customers in order of their horizontal coordinate.  In this research, since the vehicle is 

performing a cycle to/from the terminal stop 1, we assume that the vehicle would move 

to the right through the upper half of the region in a no backtracking policy left-to-right, 

and move left through the bottom half in a no backtracking policy right to left. 

Let n be the number of customers served per cycle by the DRC vehicle.  Since 

their spatial distribution is assumed to be uniform, if xi is the horizontal coordinate 

within the service area (0 ≤ xi ≤ L) of customer i (with i = 1, …, n), the expected value of 

the maximum horizontal distance that the vehicle will need to travel can be derived as 

follows: 

 

( ) ( ){ }

( ){ } ( )

0

10 0

0

max 1,..., max 1,...,

1 max 1,..., 1

1 .
1

L

i i

L L n

i i
i

nL

E x i n P x i n t dt

P x i n t dt P x t dt

t ndt L
L n

=

= = = ≥ =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎧ ⎫
= − = ≤ = − ≤ =⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭

⎛ ⎞⎛ ⎞= − =⎜ ⎟⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

∫

∏∫ ∫

∫

 (3.10) 

 

Customers are uniformly distributed within the whole service area.  Let y be the 

random variable indicating the vertical distance between any pair of customers within 

the upper or lower half of the service area; we have that E(y) = W/6.  Let y’ indicate the 

vertical distance between the terminal 1 (located at W/2) and the first or last customer in 
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the schedule; we have that E(y’) = W/4. Finally, y” indicate the vertical distance between 

the last customer served in the upper half and the first customer served in the lower half; 

we have that E(y”) = W/2. See Fig. 3. 

 

W

L

Ln/(n+1)

y’

y’
y

y

y”
W

L

Ln/(n+1)

y’

y’
y

y

y”

 

Fig. 3.  No-backtracking policy. 

 

If D represents the expected total rectilinear distance per cycle for a no-

backtracking policy, C is the expected cycle time and λ  is the average customer demand 

rate, the following relationships hold: 

 

( ) 22 2 2 2
1 4 2 6 1 3 6

n W W W n W WD L n L n
n n

= + + + − = + +
+ +

, (3.11) 

( )1
b

DC n s
v

= + + , (3.12) 

n = λC. (3.13) 
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Drop off customers will need to wait an average of ( ) 2d
wtE T C= , , since they 

will show up and wait at the connection terminal 1 uniformly from time 0 to C of the 

previous cycle.  They will also ride an average of ( ) 2d
rdE T C= , since they can be 

dropped off uniformly anytime from time 0 to C of their cycle. 

Pick up customers will instead need to wait ( ) 2 2p
wtE T C C C= + = , since they 

will wait an average of C/2 from their show up time to the end of the previous cycle and 

an additional average of C/2, waiting for the vehicle to reach them.  They will also ride 

an average of ( ) 2p
rdE T C= , as for the drop off customers. 

Thus, the expected values of the total waiting time and riding time are 

 

( ) ( ) ( ) ( ) ( )1 1
2

p d
wt wt wt

CE T E T E Tα α α= + − = + , (3.14) 

( ) ( ) ( ) ( )1
2

p d
rd rd rd

CE T E T E Tα α= + − = . (3.15) 

 

In order to derive C, we need to solve the system of equations composed by 

(3.11), (3.12) and (3.13).  In doing so we obtain the following quadratic equation: 

 

aC2 + bC + c = 0, (3.16) 

 

where: 
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6 b b
Wa sv vλ λ⎡ ⎤⎛ ⎞= + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, (3.17) 

5 2 2
6 b b
Wb L sv vλ ⎛ ⎞= + + −⎜ ⎟

⎝ ⎠
, (3.18) 

2
3 b
Wc sv= + . (3.19) 

 

Two obvious conditions should be satisfied: C > 0 and b2 – 4ac ≥ 0. However, a 

closed-form expression for C is not easy to derive. 

Approximation 1: 

In Equation (3.11) we could reasonably assume that 

 

1
1

n
n

≅
+

, (3.20) 

 

thus overestimating D by a factor of 2
1

L
n +

, which becomes increasingly negligible with 

increasing n and becomes zero for n→∞. The approximate cycle time C  so obtained 

would be an upper bound of the actual cycle time C and thus still an upper bound of the 

actual cycle time obtainable by an insertion heuristic.  After rearranging (3.11) with the 

above approximation (3.20) and combining it with (3.12) and (3.13), we are able to 

obtain a closed form expression for the approximate cycle time 

 

( )
2 / 3 2

/ 6
b

b b

sv W LC
v W svλ

+ +
=

− +
. (3.21) 
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Approximation 2: 

Still applying (3.20), we substitute 2
3
W  with 2

3 1
W n

n +
 in Equation (3.11), 

underestimating D by a factor of 
( )
2

3 1
W

n +
, and (n+1)s with ns in Equation (3.12), 

underestimating C by a factor of s.  Then, we obtain another closed form expression for 

the approximate cycle time: 

 

( )
2 / 3 2 1

/ 6b b

W LC
v W svλ λ

+
= −

− +
. (3.21a) 

 

Fig. 4 shows how the closed form values obtained by (21) and (21a) approximate 

the true C obtained by numerical methods.  Increasing n reduces the error.  Since, 

generally, 2 2
3
W L<<  and s is also small, C  given by (21a) is closer to C.   
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Fig. 4.  C vs. C . 

 

The approximate values ( )wtE T  and ( )rdE T  can be obtained by substituting C 

with C  in (3.14) and (3.15). 

E(Twk) and ( )wkE T are zero, since the DRC offer a terminal-to-door (and vice 

versa) service and no walking is necessary.  

 

3.2.3 Critical demand 

 For case 1 (wwt < wrd), we obtain the utility function for the FRT policy by 

substituting (3.2), (3.6) and (3.9) in (1); similarly, by substituting (3.14) and (3.15) in (1) 

we obtain the utility function for the DRC policy.  We can now equate these two 

expressions and solve for λ. The resulting value λc represents the critical demand rate at 
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which the two services would be equivalent in terms of service quality provided to 

customers. 

C does not have a closed form expression and so does not λc, but solutions can be 

obtained with numerical methods.  However, if we use C  in Equation (3.21), a closed 

form expression for the approximation of λc can be derived and is 

 

( )

( )

3 2 61
61 .

6 1 2 24 1 2
2 3

b
wt rd

b
c

wk rd wtb
f

wk b

v s W Lw w
v s W

W s w L L w wv W s N Nv N v
N

α
λ

⎡ ⎤+ ++ +⎡ ⎤ ⎢ ⎥⎣ ⎦ +⎣ ⎦= −
⎛ ⎞+ ⎜ ⎟⎡ ⎤⎛ ⎞+ + + − +⎜ ⎟ ⎜ ⎟⎢ ⎥ −−⎝ ⎠ ⎣ ⎦ ⎜ ⎟

−⎝ ⎠

  (3.22) 

 

An analogous equation is similarly calculated for case 2 (wwt > wrd) and is: 

 

( )

( ) ( )
( )
( )

2

3 2 61
61 .

6
1 2 24 1 23 1

2 32

b
wt rd

b
c

b
wt rdwk rd wt

f
wk b

v s W Lw w
v s W

W s
v w ww L L w wW s N Nv N v N

NN N

α
λ

α

⎡ ⎤+ ++ +⎡ ⎤ ⎢ ⎥⎣ ⎦ +⎣ ⎦= −
⎡ ⎤+ ⎢ ⎥

−⎡ ⎤⎛ ⎞ ⎢ ⎥+ + + − + +⎜ ⎟ ⎢ ⎥ −⎢ ⎥−⎝ ⎠ −⎣ ⎦ ⎢ ⎥−−⎢ ⎥⎣ ⎦
 (3.22a) 

 

Finally, the critical demand density (customers/hr/mile2) is defined as 
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c
c WL

λρ = , (3.23) 

 

and its approximation is c
c WL

λρ = .   

The ρc represents the point where the two services could reasonably be 

considered equivalent and where a switch from one type of service to the other would be 

desirable.  For expected demand densities lower than ρc, the DRC is the preferred 

operating policy; for expected demand densities higher than ρc, the FRT is the preferred 

operating policy.   

 

3.3 Analytical modeling for the Two-Vehicle Case 

3.3.1 FRT  

For the two vehicle FRT case, the expected value of customer walking time 

E(Twk) is the same as the one vehicle case and represented by Equation (3.2).  

 Assuming that the two vehicles have the same average speed vb, the 1st vehicle 

starts from the terminal 1, and the 2nd vehicle starts from the bus station at stop N.  The 

cycle time is still represented by Equation (3.3). 

The expected value of the waiting time is 

 

( ) ( ) ( ) ( )

( )

1

1 1 3           ,
2 4 1 2 2

p d
wt wt wt

f

b

E T E T E T

sL N
N v

α α= + − =

⎡ ⎤ ⎛ ⎞= − + −⎢ ⎥ ⎜ ⎟− ⎝ ⎠⎣ ⎦

 (3.24) 
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where ( ) ( ) ( )
11

2 1 4
p d

wt wt
CE T E T

N
⎡ ⎤

= = −⎢ ⎥
−⎢ ⎥⎣ ⎦

, calculated similarly to the one vehicle case. 

The expected value of the riding time is 

 

( ) ( ) ( ) ( ) ( )1 1
4 2 2

fp d
rd rd rd

b

sC LE T E T E T N
v

α α= + − = = + − , (3.25) 

 

where ( ) ( ) 4p d
wt wtE T E T C= = , calculated similarly to the one vehicle case. 

 

3.3.2 DRC 

As for the one vehicle case, we approximate the insertion heuristic operations 

with a no-backtracking policy left-to-right on the top half and right-to-left on the bottom 

half of each zone.  The following equations are similar to (3.11), (3.12) and (3.13), with 

n/2 instead of n in (3.26) and (3.27), since half customers are served in each zone, and 

L/2 added in (3.26), since vehicles alternate their operations between zones by driving 

half length of the whole service area, so their expected average cycle time is the same: 

 

22 2 2
2 2 4 2 2 61

2
2   ,

2 6 2 2 3

n
L L W W n WD n

n W n L WL
n

⎛ ⎞= + + + + − =⎜ ⎟
⎝ ⎠+

= + + +
+

 (3.26) 
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1
2b

D nC s
v

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

, (3.27) 

n = λC. (3.28) 

 

Drop off customers will need to wait an average of ( ) 2d
wtE T C= , since they will 

show up and wait at the connection terminal 1 uniformly from time 0 to C of the 

previous cycle.  The expected ride time for drop off customers in Zone 1 is 

( )1 1
2 2

d
rd

b

LE T C
v

− ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
, since we need to subtract from C the vehicle transfer time 

L/(2vb) to Zone 2. The expected ride time for drop off customers in Zone 2 is instead 

( )2 1
2 2 2

d
rd

b b

L LE T C
v v

− ⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
, since these customers need to spend the transfer time 

L/(2vb) onboard to reach Zone 2. Thus, drop off customers will ride an average of 

( ) ( ) ( )( )1 2 2 2d d d
rd rd rdE T E T E T C− −= + = . 

Pick-up customers will wait ( ) 1
2 2 2 4

p
wt

b b

C L LE T C C
v v

⎛ ⎞
= + − = −⎜ ⎟

⎝ ⎠
, since they will 

wait an average of C/2 from their show-up time to the end of the previous cycle and an 

additional average of 1
2 2 b

LC
v

⎛ ⎞
−⎜ ⎟

⎝ ⎠
, waiting for the vehicle to reach them.  They will also 

ride an average of ( ) 2p
rdE T C= , as for the drop-off customers. 

Thus, the expected values of the total waiting time and riding time are 
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( ) ( ) ( ) ( ) ( )1 1
2 4

p d
wt wt wt

b

C LE T E T E T
v

α α α α= + − = + − , (3.29) 

( ) ( ) ( ) ( )1
2

p d
rd rd rd

CE T E T E Tα α= + − = . (3.30) 

 

Solving the system of equations composed by (3.26), (3.27) and (3.28), we obtain 

the quadratic equation (3.16), where: 

 

2 2 6 b b
Wa sv vλ λ⎡ ⎤⎛ ⎞= + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, (3.31) 

5 3 2
2 6 2 b b

Wb L sv vλ ⎛ ⎞= + + −⎜ ⎟
⎝ ⎠

, (3.32) 

2
2 3 b
L Wc sv= + + . (3.33) 

 

A closed-form expression for C is not easy to derive.  But, as for Approximation 

1 in the one-vehicle case, we can say that 

 

1
2

n
n

≅
+

. (3.34) 

 

With this approximation we are able to obtain a closed-form expression for the 

approximate cycle time for the two-vehicle case: 

 

( ) ( )
2 / 3 3 / 2
/ 2 / 6

b

b b

sv W LC
v W svλ

+ +
=

− +
. (3.35) 
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 The approximate values ( )wtE T  and ( )rdE T  can be obtained by substituting C 

with C  in (3.35) and (3.36). 

 

3.3.3 Critical demand  

By substituting (3.2), (3.24) and (3.25) in (3.1) we obtain the utility function for 

the two-vehicle FRT policy; similarly, by substituting (3.29) and (3.30) in (3.1) we 

obtain the utility function for the two vehicle DRC policy.  We can now equate the two 

expressions and solve for λ, to obtain the critical demand rate λc for the two-vehicle 

case.  Using C  in Equation (3.35), a closed-form expression for the approximation of λc 

is 
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⎛ ⎞+ ⎜ ⎟⎡ ⎤⎛ ⎞+ + + − + +⎜ ⎟ ⎜ ⎟⎢ ⎥ −−⎝ ⎠ ⎣ ⎦ ⎜ ⎟

−⎝ ⎠

, 

 (3.36) 

 

and ρc is derived as for (3.23). 
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3.4 Results  

In this section we provide numerical results to validate the analytical modeling 

(rigorous and approximate) vs. simulation.  We performed simulations according to the 

demand distributions assumed in Section 3.1.  χ2 statistical tests show that the simulated 

data have the assumed distributions.  We performed 30 simulation replications.  The 

resulting 95% confidence half-intervals are about 0.7% of the mean for the simulated 

utility function values (U).  The DRC vehicle serves the demand following a schedule 

calculated with an insertion heuristic algorithm attempting to minimize the vehicle’s 

total travel distance in each cycle.  

 

3.4.1 Values of parameters 

To represent a residential area, the values of the parameters assumed for analyses 

are as follows: 

• FRT bus station distance d = 0.25 mile. 

• pedestrian walking speed vwk = 2 mile/hr. 

• bus running speed vb = 20 mile/hr. 

• bus dwell time at each station or customer location sf = s = 30 second. 

• The service area L×W = 1 mile2.  However, we considered three different L/W 

ratios: with the length L equal to 4, 2, 1 mile and the width W to 0.25, 0.5, 1 mile 

respectively. 

• We considered a range of different customer demand densities: from 0 up to 90 

customers/mile2/hr. 
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• We assume α = 0.5, meaning that 50% of the demand are pick-up customers and 

50% are drop-off customers. 

• We assume wwt = 1 and wrd = 2.  As mentioned, the value of wwk is the most 

susceptible to variation, due to weather and changing safety conditions; 

therefore, we consider wwk = 3 as a “base case”, but we also perform sensitivity 

analyses. 

 

3.4.2 One-Vehicle Case for L=2/W=0.5 

We calculated the utility function values for the FRT policy using Equations 

(3.1) for different demand densities and four different values for wwk (2, 3, 4 and 5).  To 

compute the three terms in (3.1), Equations (3.2), (3.6) and (3.9) have been used. 

We calculated the utility function values for the no-backtracking DRC policy 

using Equation (3.1) for different demand densities.  The rigorous analytical values of 

the three terms in (3.1) were computed by solving Equation (3.16) by numerical 

methods.  The approximate analytical values of the three terms in (3.1) were instead 

computed with Equations (3.21) and (3.21a). 

Fig. 5 graphically shows the computed utility function values. 
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Fig. 5.  Utility functions for the One-Vehicle Case with L=2, W=0.5. 

 

FRT utility functions have four different flat values as the weight wwk changes 

from 2 to 5, since they do not depend on the demand.  DRC utility functions (rigorous 

analytical, approximate analytical 1, approximate analytical 2, and simulation) increase 

with the demand and do not depend on wwk since there is no walking.  While we did not 

assume any capacity constraint in developing our methodology, in all our simulated 

cases we observed a maximum loading capacity of 25 passengers within our considered 

range of demand rates.  Thus, all our scenarios could have been performed comfortably 

by a 30-seat bus (for example).  Clearly, for higher demand densities, capacity 
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constraints must be taken in consideration, as well as alternative scheduling policies, 

especially for the DRC. 

From the above chart the following observation can be made with regards to the 

DRC curves: 

• The rigorous analytical values are upper bounds for the corresponding 

simulated values.  This is expected, since the no-backtracking policy 

provides an upper bound of the insertion heuristic algorithm in terms of 

the distance traveled and consequently in terms of the utility function as 

well.  However, the error is reasonably small (in the range of 1%-3% for 

the considered scenarios), confirming the good approximations provided 

by the no-backtracking policy. 

• The values of approximate analytical 1 are an upper bound for the 

corresponding rigorous values, since our approximate models 

overestimate the total distance traveled and the gap gets smaller with 

increasing demand densities, as expected, because of assumption (3.20). 

• The values of approximate analytical 2 are a lower bound for the 

corresponding rigorous values, since our approximate models 

underestimate the total distance traveled. 

• In general, the four curves are fairly close to each other, which would 

allow using the developed approximate but handy analytical formulas to 

estimate the actual utility function values. 
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The intersections between the DRC curves and the FRT curves represent the 

critical demand densities at which the FRT policy and DRC policy have the same utility 

function  values and thus equal performance.  For demand densities lower than the 

critical one, the DRC would be the preferred choice and vice versa.  Equation (3.22) 

provides a closed-form expression for these critical demand densities for the 

approximate 1 case (n ≅ n+1).  The critical demand densities are listed in Table 1, along 

with the corresponding cycle times C and number of customer served n, and shown in 

Fig. 6.  

 

Table 1   
ρc, C and n for L=2, W=0.5; One-Vehicle Case. 

 Case wwk = 2 wwk = 3 wwk = 4 wwk = 5 
Simulation 25.5 32.1 38.1 42.3 
Analytical 24.8 31.6 37.3 42 
Approx. 1 18.3 27.9 34.9 40.1 

ρc 
(cust./hr/ml2) 

Approx. 2 27.1 33.7 39.1 43.6 

Simulation 17.2 20.4 23.8 26.4 
Analytical 17.8 20.9 24.4 27.4 
Approx. 1 19.8 22.5 25.8 28.6 

C  
(min) 

Approx. 2 16.7 19.8 23.3 26.2 

Simulation 7.3 10.9 15.1 18.6 
Analytical 7.6 11.2 15.5 19.3 
Approx. 1 8.4 12.1 16.4 20.2 

N 

Approx. 2 7.1 10.6 14.8 18.4 
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Fig. 6.  Critical demand densities for L=2, W=0.5; One-Vehicle Case. 

 

The above results show that approximate analytical values taken from 

Approximation 1 for the critical demand densities underestimate the rigorous analytical 

and simulated ones.  This would mean that the critical “switching point” from DRC to 

FRT predicted by Equation (3.22) would be slightly anticipated with increasing demand 

(and vice versa).  Values taken from Approximation 2 would instead do the opposite. 

As an illustrative example, consider the scenario where estimated values for the 

weights are wwk = 4, wwt = 1, wrd = 2.  The approximate value of the critical demand 

density given by Equation (3.22) is 34.9 customers/hr/mile2.  As soon as the demand is 

expected to drop below this value a switch from a FRT to DRC operating policy would 

be desirable to maximize the service quality provided to customers.  While this 
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procedure clearly has intrinsic approximations built in it, it certainly provides a good 

justifiable estimate.  As a validation of our results, for example, the transit operator for a 

DRC service operated in the city of Winnipeg, Canada, where the service area is close to 

1 mile2, estimated that the DRC policy would be best to be operated for up to a 

maximum of approximately 20 customers/hr/mile2, which is close to the critical demand 

rate we estimated for wwk=2 (18.3 customers/hr/mile2 by Approximation 1). 

 

3.4.3 Effect of L/W ratio 

In addition to the L=2, W=0.5 scenario, we produced the critical customer 

demand densities, shown in Table 2 and Fig. 7, for L=4, W=0.25 and L=1, W=1 

scenarios to analyze the effects of various L/W ratios. 

 

Table 2   
Critical demand densities for various L/W ratios; One-Vehicle Case (customer/hr/mile2). 

L/W Case wwk =2 wwk =3 wwk =4 wwk =5 
Simulation 31.8 39.7 45.1 49.6 
Analytical 30.9 37.5 41.4 43.9 
Approx. 1 28.4 36.4 40.8 43.5 

1/1 

Approx. 2 33.1 39.2 42.4 44.9 

Simulation 17.5 21.1 24.9 28.7 
Analytical 16.7 20.3 24.1 27.9 
Approx. 1 6.4 13 18.8 23.7 

4/0.25 

Approx. 2 18 21.9 25.6 29.5 
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Fig. 7.  Effects of various L/W ratios; One-Vehicle Case. 

 

The critical demand densities decrease with the increase of L/W ratio as walking 

to stations becomes less relevant.  For most of the scenarios the rigorous analytical value 

is very close to the simulated one except that the difference is about 10% for the scenario 

of L=1, W=1 and wwk=5.  We note that for larger L/W ratio and lower wwk value, such as 

L=4, W=0.25 and wwk=2, the approximation-1 values may have significant differences 

from the simulated one.  However, for such scenario the approximation-2 and analytical 

rigorous critical demands are very close to the simulated ones.  Therefore for this 

situation (large L/W ratio) the approximation-2 or rigorous analytical formulae should be 

adopted instead of the approximation.  
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3.4.4 Two-Vehicle Case 

We briefly present the results obtained for the two-vehicle case.  For the FRT 

policy the utility function values were computed with Equations (3.1), (3.24) and (3.25).  

For the DRC policy the rigorous analytical values of utility function were computed with 

Equations (3.1), (3.29) and (3.30), deriving the cycle times C with Equations (3.16), 

(3.31), (3.32) and (3.33); the approximate values were computed by using Equations 

(3.35) to estimate C.  As for the one-vehicle case, we developed simulations to compute 

the utility function values for two-vehicle DRC policy.  Fig. 8 shows the computed 

utility function values for L=2, W=0.5.  The intersection points between the DRC curves 

and the FRT curves show the critical demand densities which are listed in Table 3. 
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Fig. 8.  Values of utility function for L=2, W=0.5; Two-Vehicle Case. 
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Table 3  
Critical demand densities for L=2, W=0.5; Two-Vehicle Case (customer/hr/mile2). 

Case wwk=2 wwk=3 wwk=4 wwk=5 
Simulation 52 66.2 77.9 87.6 
Analytical 57.5 73.5 84.9 94.5 
Approx. 50.2 69.1 82.1 92.7 

 

As for the one-vehicle case, the approximate values provide an upper bound to 

the analytical values.  As opposed to the one-vehicle case, the simulated values are 

slightly larger than the analytical values; this is caused by the existing correlations 

between the vehicles’ operational cycles, which are not captured by our two-vehicle 

analytical modeling, in which we assumed independency.  While the differences are 

more noticeable than the one-vehicle case, they are still acceptably within a 10% 

maximum deviation.  In addition, since the handy approximated values obtain by 

Equation (3.36) are too an upper bound, they are closer to the simulation values than the 

rigorous ones, which is a good result in practice. 

 

3.5 Summary 

Proper design and operations of feeder transit services within the modern 

sprawled residential areas are becoming increasingly more important to enhance the 

performance of the public transportation system network.  Feeders are generally 

operated with a demand responsive policy which might be converted to a traditional 

fixed-route policy for higher demand.   
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Utility functions for the fixed-route and demand responsive operating policy are 

derived to determine the critical demand density, representing the condition for the 

switch.  For the one-vehicle and two-vehicle cases we derived closed-form expressions, 

function of the parameters of each scenario, such as the geometry of the service area, the 

vehicle speed and especially the weights assigned to each term contributing to the utility 

function: walking time, waiting time and riding time.  The weight’s assessments are left 

to the decision makers, which might select them depending on the circumstances and the 

changing conditions of each scenario. 

Analytical results compared to simulation outcomes show a good match and a 

validation of our methodological approach.  Estimated critical demand densities for the 

one-vehicle case and a service area with L=2 and W=0.5 range from 18 to 40 

customers/hr/mile2 slightly underestimating the simulated values, as predicted, however, 

by our approximation procedure.  Similar results are obtained for the two-vehicle case.  

We also performed sensitivity analysis over different L/W ratios.  As a validation of our 

results, the transit operator for a DRC service operated in the city of Winnipeg, Canada, 

where the service area is close to 1 mile2, estimated that the DRC service would be best 

to be operated for up to a maximum of approximately 20 customers/hr/mile2, which is 

close to the critical demand rate we estimated for wwk=2 (see Table 1). 
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CHAPTER IV 

OPTIMAL NUMBER OF ZONES 

 

 In this part of research, analytical models are developed to aid planners in 

determining the optimal number of zones while balancing customer service quality and 

operating cost. Simulations are developed to validate the results of the analytical model. 

The main purpose is to develop simple analytical equations to guide planners in their 

decisions with as little information as possible. These are handy but powerful tools 

which would aid in solving the complicated feeder transit design problem.  

 

4.1 System description 

4.1.1 Service area and demand 

The service area is a representation of residential communities and is modeled as 

a rectangle of width W and length L (see Fig. 9).  The service area is divided into n zones 

with width W/n and length L.  Within each zone the terminal connecting with the outside 

fixed-route major transit network is located at the half width on the far left of the zone.  

The temporal distribution of the demand is assumed to be a Poisson process with 

constant average arrival rate λ for the whole service area.  We assume that a fraction α 

of the customers need to be transferred from the service area to a major attraction 

destination (such as a city’s downtown) through the terminals (pick-up customers) and a 

fraction 1-α of them in the opposite direction (drop-off customers).  The customers’ 
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location, either for a pick-up or for a drop-off, has a uniform distribution within the 

service area.  

 

Fig. 9.  Feeder line service area with three zones. 

 

4.1.2 Transit operation policies 

As shown in Fig. 9, the major fixed-route transit service connects terminals and 

transfers customers from the service area to the city or vice versa.  While the average 

headway of the major transit can be slightly dependent on the number of zones, we 

reasonably assume it to be a constant. 

Within each service zone, a FRT policy or a DRC policy would be adopted to 

operate the feeder service.  For each operating policy we consider only one vehicle 

moving at an average speed vb miles/hr and stopping at each station for a period of s 

hours. The operating of each policy is the same as described in Section 3.1.2. 
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4.2 Analytical model 

We next describe the development of the analytical model needed to determine 

the optimal number of zones, n.  For the FRT policy a customer can be in the following 

states: walking between the destination and the nearest bus station, waiting for the FRT, 

riding the FRT, waiting for the major transit, and riding the major transit.  For the DRC 

policy a customer can be in states of waiting for an on-demand vehicle, riding an 

on-demand vehicle, waiting for the major transit, and riding the major transit.  We 

assume that the different states of a customer may have a different cost to a customer.  

 

4.2.1 Parameters and notation 

The following are the parameters of the model: 

λ average demand in the whole residential area (customer/hour) 

α fraction of customers traveling from the residential area to the city; 1-α is the 

fraction of customers traveling from the city to the residential area 

L length of the residential service area (mile) 

W width of the residential service area (mile) 

d distance between FRT bus stations within a zone (mile) 

ak cost of customer walking between a FRT bus station and a house within a zone 

($/customer/hour) 

aw cost of customer waiting at terminals ($/customer/hour) 

h
wa  cost of customer waiting at houses ($/customer/hour) 

av cost of customer traveling in an on-demand vehicle ($/customer/hour) 
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ab cost of customer traveling in a fixed route bus in the zones ($/customer/hour) 

aB cost of customer traveling in a major transit vehicle between the city and 

terminals ($/customer/hour) 

Fv total cost of an on-demand vehicle ($/vehicle/hour) 

Fb total cost of a fixed route bus ($/bus/hour) 

vwk average speed of customer walking (mile/hour) 

vb average speed of an on-demand vehicle or a fixed route bus (mile/hour) 

vB average speed of a major transit vehicle (mile/hour) 

s dwelling time of a fixed route bus or an on-demand vehicle (hour) 

S dwelling time of a major transit vehicle at a terminal (hour) 

 

The computed variables in the model, that are a function of n, are 

( )wkE T  expected walking time for pick-up or drop-off customers in a zone 

( )p
wtE T  expected waiting time for pick-up customers in a zone 

( )p
rdE T  expected ride time for pick-up customers in a zone 

( )p
rd BE T −  expected ride time for pick-up customers in a major transit vehicle 

( )d
wtE T  expected waiting time for drop-off customers at a terminal 

( )d
rdE T  expected ride time for drop-off customers in a zone 

( )d
rd BE T −  expected ride time for drop-off customers in a major transit vehicle 
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4.2.2 Total cost function definition 

The total cost of the designed system includes customer and vehicle cost.  The 

vehicle cost of the major transit is dependent on the number of vehicles determined by 

the headway and customer demand.  They are not a function of n, and are independent of 

the FRT or DRC policy in a zone.  Therefore this vehicle cost of the major transit is not 

counted to determine the optimal number of zones.  

Since the major transit has a constant headway, the customer waiting time for the 

major transit is independent of the number of zones.  For drop-off customers, this 

waiting time is also independent of the FRT or DRC policy in a zone.  We assume no 

coordination between the major transit headway and the FRT headway in a zone. Hence, 

the expected waiting time of pick-up customers at a terminal for the FRT policy is 

approximately the same as that for the DRC policy.  Therefore, the customer waiting 

time for the major transit is not included in the total cost definition. 

Then the total cost of the system for FRT policy and DRC policy are as follows. 

 

FRT Total Cost = Customer Cost + FRT Bus Cost 

( ) ( ) ( ) ( ){ }p p p
k wk w wt b rd B rd Bn a E T a E T a E T a E T

n
λ α −= + + +  

( ) ( ) ( ) ( ) ( ){ }1 d d d
B rd B w wt b rd k wk bn a E T a E T a E T a E T nF

n
λ α −+ − + + + +  (4.1) 

 

DRC Total Cost = Customer Cost + DRC Vehicle Cost 
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( ) ( ) ( ){ }h p p p
w wt v rd B rd Bn a E T a E T a E T

n
λ α −= + +  

   ( ) ( ) ( ) ( ){ }1 d d d
B rd B w wt v rd vn a E T a E T a E T nF

n
λ α −+ − + + +  (4.2) 

 

4.2.3 Derivation of the computed variables in the total cost function 

 For the FRT and DRC policies the customers have the same ride time on the 

major transit.  Shown in Fig. 9, in the service area, Z is the point nearest to the city.  We 

define the ride time as the vehicle dwelling time plus vehicle running time between a 

terminal and Point Z.  For customers transferring at terminal { }1,2,...,k n∈ , the ride time 

is 1
2 B

Wk kS
nV

⎛ ⎞− +⎜ ⎟
⎝ ⎠

.  Then we have the following results for customer ride time on the 

major transit:  

 

( ) ( )
1

1 1 1
2 2 2

n
p d

rd B rd B
k B B

W W nE T E T k kS S
n nV v− −

=

⎡ ⎤ +⎛ ⎞= = − + = +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ . (4.3) 

 

FRT Policy 

The width of each zone is W/n.  According to Quadrifoglio and Li (3), we have 

the following results for the FRT policy.  In one zone, the expected walking time to the 

nearest bus stop ( )wkE T  is 
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( ) 1
4 1wk

wk

L WE T
v N n

⎛ ⎞= +⎜ ⎟−⎝ ⎠
; (4.4) 

 

the expected ride time of all customers is  

 

( ) ( ) ( )1p d
rd rdE T E Tα α+ − =  

( )

( )
( )2

1 1 ,                                     for  
2

=
1 11 1 ,    for 

3 21

w b
b

w b
b

L N s a a
v

L N s a a
vN

α

⎧ ⎡ ⎤
+ − ≤⎪ ⎢ ⎥

⎣ ⎦⎪
⎨ ⎡ ⎤⎛ ⎞ ⎡ ⎤⎪ ⎢ ⎥− + + − >⎜ ⎟ ⎢ ⎥⎪ ⎜ ⎟−⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦⎩

 (4.5) 

 

and the expected waiting time of all customers is  

 

( ) ( ) ( )1p d
wt wtE T E Tα α+ − =  

( ) ( )

( ) ( ) ( )2

11 1   ,                                  for 
2 1

1 11 1 1 ,      for 
3 2 11

w b
b

w b
b

L N s a a
N v

L N s a a
N vN

α

⎧⎡ ⎤ ⎡ ⎤
− + − ≤⎪⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎪⎣ ⎦⎪= ⎨⎡ ⎤⎛ ⎞ ⎡ ⎤⎪⎢ ⎥− − + + − >⎜ ⎟ ⎢ ⎥⎪ ⎜ ⎟ −−⎢ ⎥ ⎣ ⎦⎝ ⎠⎪⎣ ⎦⎩

 (4.6) 

 

DRC Policy 

Let C represent the average cycle time of a DRC vehicle leaving and returning to 

a terminal.  For the DRC policy, pick-up customers will ride an average of 

( ) 2d
rdE T C= , since they can be dropped off uniformly anytime from time 0 to C of their 
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cycle.  They will need to wait ( ) 2 2p
wtE T C C C= + = , since they will wait an average 

of C/2 from their show up time to the end of the previous cycle and an additional 

average of C/2, waiting for the vehicle to reach them.  Drop-off customers will need to 

wait an average of ( ) 2d
wtE T C= , since they will show up and wait at the terminal 

uniformly from time 0 to C of the previous cycle.  They will also ride an average of 

( ) 2d
rdE T C= , like the pick-up customers. 

Since the scheduling of customers is a vehicle routing problem, it is difficult to 

derive C analytically.  Approximating the commonly used insertion heuristic scheduling 

procedure with a non-backtracking policy, Quadrifoglio and Li (3) derived an analytical 

solution of C for the case of one zone.  For each zone with demand λ/n and width W/n, C 

is the solution of the following equation: 

 

aC2 + bC + c = 0, (4.7) 

 

where: 

6 b b
Wa sv v

n n n
λ λ⎡ ⎤⎛ ⎞= + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, (4.8) 

5 2 2
6 b b
Wb L sv v

n n
λ ⎛ ⎞= + + −⎜ ⎟
⎝ ⎠

, (4.9) 

2
3 b
Wc sv
n

= + . (4.10) 

 



 53

Two conditions should be satisfied: C > 0 and b2 – 4ac ≥ 0.  Obviously 0c > ; if 

0a > , then 0b > , and both solutions of C < 0.  When 0a < , only one solution of C > 0, 

and the cycle time C is 

 

( )1/ 22 4
2

b b ac
C

a
− − −

= . (4.11) 

 

Since 0a <  the following condition should be satisfied: 

 

( )
1/ 22 2 / 31

2
b b

b

sv Wv
n s

v

λ λ
λ
⎧ ⎫⎡ ⎤+⎪ ⎪⎣ ⎦> +⎨ ⎬
⎪ ⎪
⎩ ⎭

. (4.12) 

 

However, a closed-form expression for C is not easy to derive.  Let k represent 

the average number of customers for a cycle time.  Assume k/(k+1)=1 which is true 

when k→∞.  According to Quadrifoglio and Li (2008) we obtain a closed-form 

expression for the approximate cycle time,C , for each zone with demand λ/n and width 

W/n: 

 

2 2
3

6

b

b b

Wsv L
nC

Wv sv
n n
λ

+ +
=

⎛ ⎞− +⎜ ⎟
⎝ ⎠

, (4.13) 
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where n should satisfy Expression (12) to guarantee 0C > . 

 

4.2.4 Optimal number of zones 

FRT Policy 

We substitute the computed variables in Equation (1) and obtain the FRT Total 

Cost ( )f n  as  

 

( )f n =
4 1

k

wk

a L W
v N n
λ ⎛ ⎞+⎜ ⎟−⎝ ⎠

 

 ( ) ( ) ( )1 11 1
2 2 1b w w b

b

L N s a a I a a
v N

λ
⎡ ⎤⎛ ⎞⎡ ⎤

+ + − + − + −⎢ ⎥⎜ ⎟⎢ ⎥ −⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
 

 1
2 2B

B

W na S
v

λ
⎛ ⎞+

+ +⎜ ⎟
⎝ ⎠

bnF+ , (4.14) 

 

where 
( )2

1 1
3 1

I
N

α ⎛ ⎞
= −⎜ ⎟⎜ ⎟−⎝ ⎠

 if w ba a> , or 0I =  if w ba a≤ . 

 

Although n is a discrete variable, we assume it is a continuous variable to derive 

the optimal n.  The derivative and the second derivative of function ( )f n  with respect 

to n are 

 

( )df n
dn

= 2

1
4 2

k
B b

wk

a W a S F
v n
λ λ− + + , (4.15) 
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( )2

2 3 0
2

k

wk

d f n a W
dn v n

λ
= > . (4.16) 

 

Since ( )2

2

d f n
dn

> 0, the FRT total cost ( )f n  is a convex function for 0n > .  

Thus, ( )f n  has a global minimum when ( )df n
dn

= 0.  The optimal n value is 

 

( )

1/ 2

2 2
k

wk B b

a Wn
v a S F

λ
λ

⎡ ⎤
= ⎢ ⎥+⎣ ⎦

. (4.17) 

 

If optimal n is not an integer, the optimal integer number of zones is, because of 

convexity, either n⎡ ⎤⎢ ⎥  or n⎢ ⎥⎣ ⎦ , whichever has the minimum total cost. 

 

DRC Policy 

We substitute the computed variables in Equation (2) and obtain the analytical 

rigorous DRC total cost ( )r n  and its derivative as  

 

( )r n ( )1
2 2

h w v
w

a aa Cλ α α⎡ ⎤= + − +⎢ ⎥⎣ ⎦
1

2 2B
B

W na S
v

λ
⎛ ⎞+

+ +⎜ ⎟
⎝ ⎠

vnF+ , (4.18) 

( )dr n
dn

= ( )1 1
2 2 2

h w v
B v w

a aa S F aλ λ α α⎡ ⎤+ + + − + ×⎢ ⎥⎣ ⎦
  

( )

( )

2

2

5 22 2
2 3 3

2

b b b
W W Wsv v C L sv C

n n n
aC b n

λλ λ⎡ ⎤⎛ ⎞ ⎡ ⎤+ − + + + +⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦×
+

, (4.19) 
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where C, a, b are obtained from Equations (8) to (11). 

In Equation (18) we substitute C with the approximation C  from Equation (13) 

and we obtain the approximate analytical DRC total cost ( )p n  and its derivative as 

 

( )p n ( )
2 2
31

2 2
6

b
h w v
w

b b

Wsv La a na
Wv sv

n n

λ α α
λ

⎡ ⎤
+ +⎢ ⎥⎡ ⎤= + − + ⎢ ⎥⎢ ⎥ ⎛ ⎞⎣ ⎦ ⎢ ⎥− +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

1
2 2B

B

W na S
v

λ
⎛ ⎞+

+ +⎜ ⎟
⎝ ⎠

vnF+ ,  (4.20) 

( )dp n
dn

= ( )1 1
2 2 2

h w v
B v w

a aa S F aλ λ α α⎡ ⎤+ − + − + ×⎢ ⎥⎣ ⎦
  

( ) ( )
( )

2 2 2

22

2 / 3 2 2 / 3 / 9

/ 6
b b b

b b

n v s v W Ls n W sv L W

n v W nsv

λ λ λ λ

λ

+ + + + +
×

⎡ ⎤− +⎣ ⎦
. (4.21) 

 

Because of their convexity, when ( )dr n
dn

= 0 or ( )dp n
dn

=0 the rigorous DRC total 

cost or the approximated DRC total cost have global minimum values.  The 

corresponding optimal n has no closed-form expression, but it is possible to obtain a 

numerical solution and derive the optimal integer n as for the FRT policy. 

 

4.3 Simulation development 

We developed a simulation model to validate the DRC analytical modeling 

results.  The simulation replicates the operations of the insertion heuristic algorithm 
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described below, which is a widely used scheduling algorithm for demand responsive 

services. 

Let P1, P2, P3,…, Pm, denote m customers.  The insertion algorithm creates the 

customer sequence choosing the minimum additional distance at each insertion step in 

an O(m2) fashion, as follows: 

(1) Insert P1: AP1A is the only possible route. 

(2) Insert P2: Possible routes include AP2P1A, and AP1P2A; Find the route R2 with 

the minimum DRC running distance among the two possible routes.  Suppose 

R2 is Route AP1P2A. 

(3) Insert P3: Possible routes include AP3P1P2A, AP1P3P2A, and AP1P2P3A; Find 

the route R3 with the minimum DRC running distance among the three 

possible routes. 

(4) … 

(m) Insert Pm: Suppose the route Rm-1 is generated by inserting Pm-1; Insert Pm to 

the route Rm-1; Find the route Rm with the minimum DRC running distance 

among the m possible routes. 

 

If we were to consider the insertion heuristic, the analytical derivation of the 

terms of the DRC total cost function described in the previous section would be very 

difficult to perform because of the embedded vehicle routing problem.  Therefore, the 

analytical modeling of DRC assumes that vehicles follow a non-backtracking policy 

(vehicles are not allowed to backtrack with respect to their primary forward direction to 
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serve customers), which is a good approximation of the above insertion heuristic, 

especially for long and narrow service areas (Quadrifoglio et al., 2006). 

 

4.4 Computational experiment 

In this section, we perform computational experiment to test our analytical 

modeling.  Three cases are analyzed.  We assume the parameter values are as follows 

and as those listed in Table 4: 

1. a relatively large service area (L=2miles, W=6miles), with demand λ of 80  

customers/hr (density 6.67customers/hr/mile2), a relatively high walking cost 

of $40/hr, a relatively high FRT bus cost of $100/hr; 

2. a relatively large service area (L=2miles, W=6miles), with relatively high 

demand λ of  200 customers/hr (density 16.67customers/hr/mile2), a 

relatively low walking cost of $20/hr, a relatively high FRT bus cost of 

$50/hr; 

3. a relatively small service area (L=2miles, W=2miles), with relatively low 

demand λ of 10 customers/hr (density 2.5customers/hr/mile2), a relatively 

high walking cost of $40/hr, a relatively high FRT bus cost of $100/hr. 
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Table 4   
Parameter values for One-Vehicle Zone Case. 

Case Parameter Value Unit 
W 6 Miles 
λ 80 Customers/hr 
ak 40 $/customer/hr 

Case 1 

Fb 100 $/veh/hr 

W 6 Miles 
λ 200 Customers/hr 
ak 20 $/customer/hr 

Case 2 

Fb 50 $/veh/hr 

W 2 Miles 
λ 10 Customers/hr 
ak 40 $/customer/hr 

Case 3 

Fb 100 $/veh/hr 

L 2 Miles 
α 0.6  
aw

h 10 $/customer/hr 
aw 20 $/customer/hr 
av 10 $/customer/hr 
ab 10 $/customer/hr 
aB 10 $/customer/hr 
Fv 100 $/veh/hr 
vwk 2 Miles/hr 
vb 20 Miles/hr 
vB 30 Miles/hr 
s 0.008333 Hrs 
S 0.025 Hrs 

Cases 1, 2, and 3 

d 0.25 Miles 
 

4.4.1 Case 1 

For the FRT policy we obtained n = 4.7 from Equation (4.17).  By using 

Equation (4.14), the total cost ($1766/hr) for n = 5 is less than the total cost ($1782.7/hr) 

for n = 4. So the integer optimal number of zones for the FRT policy is 5. 



 60

For the DRC policy, n > 2.4 with Expression (4.12).  By using the rigorous 

formulas, with Equation (4.19) we obtained n = 4.6 when ( )dr n
dn

= 0; with Equation 

(4.18), the total cost is $1016.2/hr for n = 4 and is $1003.6/hr for n = 5.  So the optimal 

integer number of zones is 5. 

By using the approximation formulas, with Equation (4.21), we obtained n = 4.4 

when ( )dp n
dn

=0; with Equation (4.20), the total cost is $1061.7/hr for n = 4 and is 

$1061.4/hr for n = 5. So the optimal integer number of zones is 5, the same as that with 

rigorous formulas. 

The simulations show that the minimum total cost for the DRC policy with the 

insertion heuristic algorithm is $1074.1/hr.  The optimal number of zones is 5, which is 

the same as those from analytical rigorous and approximation formulas. 

The total costs for various numbers of zones are shown in Fig. 10. We have the 

following observations: 

• The minimum DRC total cost is less than that of the FRT policy, 

suggesting that the optimal configuration for this case would be a 5-zone 

DRC feeder policy. 

• For the DRC policy, the total costs obtained from the approximation 

formulas, the rigorous formulas and the simulation are very close, 

validating the assumptions in our modeling approach. 

• For the DRC policy, the total cost obtained from simulations is less than 

that from rigorous formulas when n<4.  This shows, as expected 
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(Quadrifoglio et. al, 2006), that the non-backtracking policy progressively 

worsens its effectiveness in approximating the insertion heuristic 

algorithm when the shape of the zone widens as a consequence of the 

reduction of the number of zones. 
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Fig. 10.  Total cost functions for Case 1. 

 

4.4.2 Case 2 

This is a case with relatively high demand, low walking cost and low FRT bus 

cost.  Table 4 shows the input parameter values to the model.  Fig. 11 shows the values 

of total cost functions. 
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For the FRT policy, the minimum total cost is $2026/hr for 6 zones.  For the 

DRC policy, with the rigorous formulas, the minimum total cost is $2225.5/hr for 8 

zones.  With the approximation formulas, the minimum total cost is $2327/hr for 8 

zones.  From simulations the minimum total cost is $2363/hr for 9 zones.  As for case 1, 

the optimal number of zones obtained from the approximation formula is very close to 

those from rigorous formulas and simulations.  In this case, the minimum cost of the  
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Fig. 11.  Total cost functions for Case 2. 
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FRT is less than that of the DRC, suggesting that this configuration would require a 

6-zone FRT feeder service. 

 

4.4.3 Case 3 

This is a case with a relatively small area.  Table 4 shows the input parameter 

values.  Fig. 12 shows the values of total cost functions.  For the FRT policy, the 

minimum cost is $255/hr for 1 zone.  For the DRC policy, the minimum costs are 

$161/hr and $151/hr, respectively, for 1 zone, with the approximation and rigorous 

formulas.  Simulations also show that one zone is optimal with the minimum cost of 

$154/hr. 

As for the previous two cases, the approximate optimal number of zones and the 

minimum total cost are very close to those from the rigorous formulas and the 

simulations for the DRC policy.  Both service policies suggest a single zone optimal 

design, but with lower cost for the DRC policy. 
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Fig. 12.  Total cost functions for Case 3. 

 

4.5 Further study for the Two-Vehicle Zone 

In this section, we expand our previous research to address the optimal zone 

design problem faced by planners for feeder transit services with high demands and long 

length of service area, where a two-vehicle operation is adopted in each zone. 

The system service area and demand are the same as described in section 4.1.1.  

Within each service zone shown in Fig. 9, a 2-vehicle FRT policy or a 2-vehicle DRC 

policy would be adopted to operate the feeder service.  For each operating policy we 

consider only two vehicles moving at an average speed vb miles/hr and stopping at each 
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station for a period of s. Within each zone, the 2-vehicle operation policies are the same 

as described in section 3.1.2.  

 

4.5.1 Analytical model 

We next describe the development of the analytical model needed to determine 

the optimal number of bus stations N for the FRT policy and the optimal number of 

zones n for both FRT and DRC polices. 

 

4.5.1.1 Total cost function 

Analogous to Equations (4.1) and (4.2), the total costs of the system for FRT 

policy and DRC policy are as follows. 

 

FRT Total Cost = Customer Cost + FRT Bus Cost 

( ) ( ) ( ) ( ){ }p p p
k wk w wt b rd B rd Bn a E T a E T a E T a E T

n
λ α −= + + +  

( ) ( ) ( ) ( ) ( ){ }1 2d d d
B rd B w wt b rd k wk bn a E T a E T a E T a E T nF

n
λ α −+ − + + + +  (4.22) 

 

DRC Total Cost = Customer Cost + DRC Vehicle Cost 

( ) ( ) ( ){ }h p p p
w wt v rd B rd Bn a E T a E T a E T

n
λ α −= + +  

( ) ( ) ( ) ( ){ }1 2d d d
B rd B w wt v rd vn a E T a E T a E T nF

n
λ α −+ − + + +  (4.23) 
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For the FRT policy, the expressions of computed variables ( )p
rd BE T − , ( )d

rd BE T − , 

( )wkE T , ( )p
wtE T  and ( )d

wtE T  are the same as those for the 1-vehicle zone case, while  

average ride times ( )p
rdE T  and ( )d

rdE T  are computed with Equation (3.25). 

For the DRC policy, C is the expected cycle time for each vehicle to serve both 

subzones of the whole service area. From section 3.2.2 we have that 

( ) ( )2 4 ,p
wt bE T C L v= −

 ( ) 4,d
wtE T C=

 ( ) ( )and 4 ,p d
rd rdE T E T C= =

 
where  isC

 

obtained from Equation (4.11) with 

 

2
4 6 b b

Wa sv v
n n n
λ λ⎡ ⎤⎛ ⎞= + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, (4.24) 

5 3 2 2
6 2 b b
W Lb sv v

n n
λ ⎛ ⎞= + + −⎜ ⎟
⎝ ⎠

, (4.25) 

82 4
3 b
Wc L sv
n

= + + . (4.26) 

 

Analogous to Equation (4.13), the closed-form expression for the approximate 

cycle timeC is 

 

42 3
3

2 6

b

b b

Wsv L
nC

Wv sv
n n
λ

+ +
=

⎛ ⎞− +⎜ ⎟
⎝ ⎠

. (4.27) 
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4.5.1.2 Optimal number of zones 

FRT Policy 

Substitute the computed variables in Equation (4.22) and obtain the FRT Total 

Cost ( ),f n N  as  

 

( ),f n N =
4 1

k

wk

a L W
v N n
λ ⎛ ⎞+⎜ ⎟−⎝ ⎠

 

 
( )

1 31
2 2 1 2

w
f

b

a L N s
N v

λ ⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞+ − + −⎨ ⎬⎢ ⎥ ⎜ ⎟− ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
( )1

2
b

f
b

a L N s
v

λ ⎡ ⎤
+ + −⎢ ⎥

⎣ ⎦
 

1
2 2B

B

W na S
v

λ
⎛ ⎞+

+ +⎜ ⎟
⎝ ⎠

2 bnF+ . (4.28) 

 

Assume n and N are continuous variables, and then the partial derivative and the 

second order partial derivative of function ( ),f n N  are 

 

( ),f n N
n

∂
=

∂ 2

1 2
4 2

k
B b

wk

a W a S F
v n
λ λ− + + , (4.29) 

( )2

2 3

,
0

2
k

wk

f n N a W
n v n

λ∂
= >

∂
. (4.30) 

( ),f n N
N

∂
=

∂ ( ) ( )2 22 24 1 2 1
b fk w

f
wk b

a sa L a L s
v N v N

λλ λ ⎡ ⎤
− + + +⎢ ⎥

− −⎢ ⎥⎣ ⎦
, (4.31) 

( )
( )

2

32

,
0

2 1
k w

wk b

f n N L a a
N v vN

λ∂ ⎡ ⎤
= − >⎢ ⎥∂ − ⎣ ⎦

. (4.32) 
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Since ( )2

2

,f n N
n

∂
∂

>0 and ( )2

2

,f n N
N

∂
∂

>0, the FRT total cost ( ),f n N  is a convex 

function, and has a global minimum.  When ( ),f n N
n

∂
=

∂
0, the optimal n value is 

 

( )

1/ 2

2 4
k

wk B b

a Wn
v a S F

λ
λ

⎡ ⎤
= ⎢ ⎥+⎣ ⎦

. (4.33) 

 

When ( ),f n N
N

∂
=

∂
0, the optimal N value is 

 

( )

1/ 2

1
2

k w

f b w wk b

L a aN
s a a v v

⎡ ⎤⎛ ⎞
= + −⎢ ⎥⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

. (4.34) 

 

The optimal integer number of zones and the optimal integer number of bus 

stations are n⎡ ⎤⎢ ⎥  or n⎢ ⎥⎣ ⎦ , and N⎡ ⎤⎢ ⎥  or N⎢ ⎥⎣ ⎦ , whichever has the minimum total cost.  

 

DRC Policy 

Substitute the computed variables in Equation (4.23) and obtain the analytical 

rigorous DRC total cost ( )r n  and its derivative as  
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( )r n ( )1
2 2 2

h w v
w

a aa Cλ α α⎡ ⎤= + − +⎢ ⎥⎣ ⎦
1

2 2 4

h
w

B
B b

W n a La S
v v

αλ
⎡ ⎤⎛ ⎞+

+ + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

2 vnF+ ,

 (4.35) 

( )dr n
dn

= ( )1 2 1
2 2 2 2

h w v
B v w

a aa S F aλλ α α⎡ ⎤+ + + − + ×⎢ ⎥⎣ ⎦
  

( )

2

2

5 3 82
2 4 3 2 3

2

b b b
W W L Wsv v C sv C

n n n
aC b n

λ λ λ⎡ ⎤⎛ ⎞ ⎡ ⎤+ − + + + +⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦×
+

, (4.36) 

 

where C, a, b are obtained from Equations (4.24) to (4.26). 

In Equation (4.35) we substitute C with the approximation C  from Equation 

(4.27) and we obtain the approximate analytical DRC total cost ( )p n  and its derivative 

as 

 

( )p n ( )
42 3
31

2 2 2
2 6

b
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b b

Wsv La a na
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( )dp n
dn

= ( )1 2 1
2 2 2 2

h w v
B v w

a aa S F aλλ α α⎡ ⎤+ − + − + ×⎢ ⎥⎣ ⎦
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Because of their convexity, when ( )dr n
dn

= 0 or ( )dp n
dn

=0 the rigorous DRC total 

cost or the approximated DRC total cost have global minimum values. 

 

4.5.2 Computational experiment 

As the 1-vehicle zone operation, we developed a simulation model of the 2-

vehicle zone operation to validate the DRC analytical modeling results.  The simulation 

replicates the operations of the insertion heuristic algorithm attempting to minimize the 

vehicle’s total travel distance in each cycle. We assume the parameter values are as those 

listed in Table 5. 

 
Table 5 
Parameter values for the Two-Vehicle Zone Case. 

Parameter Value Unit 
W 6 Miles 
λ 200 Customers/hr 
ak 30 $/customer/hr 
Fb 100 $/veh/hr 
L 4 Miles 
α 0.5  
aw

h 10 $/customer/hr 
aw 20 $/customer/hr 
av 10 $/customer/hr 
ab 10 $/customer/hr 
aB 10 $/customer/hr 
Fv 100 $/veh/hr 
vwk 2 Miles/hr 
vb 20 Miles/hr 
vB 30 Miles/hr 
s 0.008333 Hrs 
S 0.025 Hrs 
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For the FRT policy we obtain n = 4.5 from Equation (4.33), and N=11.6 from 

Equation (4.34).  By using Equation (4.28), the total cost ($3371.2/hr) for n = 4 and 

N=12 is the smallest among total costs for n = 4 or 5 and N=11 or 12. So the integer 

optimal number of zones is 5 and the integer optimal number of bus stations is 12. The 

corresponding distance of adjacent stations is 4/(12-1) = 0.364 miles = 1,920 ft, which is 

within the range [600÷2,500 ft] adopted by transit agencies in suburban areas (Texas 

Transportation Institute, 1996). Fig. 13 shows total FRT costs for various n and N 

values. The total cost is sensitive to the number of zones. 
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 Fig. 13.  FRT total costs for various n and N values. 
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For the DRC policy, we use the rigorous formulas, Equation (4.36), to obtain 

n = 5.6 when ( )dr n
dn

= 0; with Equation (4.35), the total cost is $2867.2/hr for n = 5 and 

is $2844.5/hr for n = 6.  So the integer optimal number of zones is 6. 

By using the approximation formulas, with Equation (4.38), we obtain n = 5.5 

when ( )dp n
dn

=0; with Equation (4.37), the total cost is $2950/hr for n = 5 and is 

$2944.2/hr for n = 6. So the integer optimal number of zones is 6, the same as that with 

rigorous formulas. 

The simulations show that the minimum total cost for the DRC policy with the 

insertion heuristic algorithm is $3060.7/hr.  The optimal number of zones is 6, which is 

the same as those from analytical rigorous and approximation formulas. 

The total costs for various numbers of zones are shown in Fig. 14. We have the 

following observations: 

• The minimum DRC total cost is less than that of the FRT policy, suggesting 

that the optimal configuration for this case would be a 6-zone DRC feeder 

policy. 

• For the DRC policy, the total costs obtained from the approximation 

formulas, the rigorous formulas and the simulation are very close, validating 

the assumptions in our modeling approach. 

• For the DRC policy, the total cost obtained from simulations is slightly larger 

than that from rigorous formulas when n<9. As expected (Quadrifoglio and 

Li, 2009), this is caused by the existing correlations between the vehicles’ 
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operational cycles, which are not captured by our two-vehicle modeling, in 

which we assume independently. 
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Fig. 14.  Total cost functions for FRT and DRC policies. 

 

4.6 Summary 

In this research, we address the problem of the optimal number of zones to divide 

a service area, faced by planners in designing feeder transit services.  We have 

developed an analytical model representing the total cost functions balancing customer 

service quality and vehicle operating cost.  By analytical derivation, we obtain 

closed-form expressions for the FRT and approximation formulas for the DRC to 
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determine the optimal number of zones.  For the DRC, simulations are used to validate 

the results of the analytical formulas.  All our case studies show that the optimal number 

of zones and the total cost obtained from our approximation formulas are very close to 

those obtained from simulations. 

Our analytical formulation leads to a strictly convex optimization problem to 

minimize the cost by controlling the number of zones.  This formulation provides 

evidence of the existence and uniqueness of the problem solution. 

Limitations of results come from our simplified system configuration model.  

Our formulation might only be useful for service areas close to a rectangle and service 

area with a uniform land-use pattern, which are, however, the majority of residential 

housing areas.  A practical implementation of the partition of the whole service area in 

an optimal number of zones might be affected by possible street network constraints.  

However, in a planning/design phase of a new residential area, this can be taken into 

consideration before constructing the road network as well.  In addition, our modeling 

assumes rectilinear movements of the vehicles among demand points which might not be 

realistic within some of the residential service areas with complex road network and land 

use patterns. 
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CHAPTER V 

APPLICATIONS 

 

 In this chapter we apply the models developed in the previous chapters to El 

Cenizo, Texas. El Cenizo is one of the colonias, which are unincorporated settlements 

along the U.S. – Mexico border. Because the residents’ income is relatively low and 

there is no adequate public transportation, the residents’ needs for transportation services 

are not properly met.  With the travel demand data collected in El Cenizo, we design a 

feeder transit service as a real case application of our approaches.  

 

5.1 Travel demand 

Quadrifoglio et. al (2009) conducted a survey on the travel demand 

characteristics in El Cenizo. They found that approximately one-fourth of the households 

do not own any vehicle, and nearly half (47%) of them have only one vehicle. In contrast 

to the national average 2.5, the household size is 4.25 in El Cenizo. However, each 

household has only 1.13 vehicles on an average.   

From the survey, Quadrifoglio et. al (2009) found that the number of trips is 

approximately 1250 per day in El Cenizo,  whose area is about 0.5 mile2. The 

distribution of trips during a day is shown in Fig. 15. The morning peak hours are from 

6am to 8am during which 99% of trips leave home. The afternoon peak hours are from 

2pm to 6pm during which 98% of trips return home.  
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Fig. 15.  Distributions of trips during a day. 

 

Quadrifoglio et. al (2009) also found that approximately 65% of the respondents 

are definitely willing to use the proposed demand-responsive transit service. Further, 

safety is the most essential factor in using the new service. So in the following design, 

we assume the transit service takes 65% of the travel demand except for school trips. 

Since school buses take about 46% of school trips, we assume transit service takes [(1-

46%)×65%]=35% of school trips.   

 

5.2 Modeling approaches 

We design feeder transit services in El Cenizo by utilizing the analytical and 

simulation approaches described in Chapters III and IV to determine the optimal number 

of service zones and the critical demands to switch between FRT and DRC services. For 
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these approaches we do not consider the road network and assume rectilinear travel 

distances.  

In this section we further describe a simulation approach considering the road 

network in El Cenizo. Fig. 16 shows the straight line representations of roads in El 

Cenizo. The terminal is located in the middle of the right edge of the service area (see 

Fig. 16). 

 

 

Fig. 16.  Straight line representations of roads in El Cenizo. 
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This simulation model for the DRC operation is the same as the one described in 

Chapters III and IV, except for the following assumptions: 

• We assume the DRC vehicle travels only on the road network and 

customers walk to the nearest roads to ride the DRC vehicle.  

• The insertion algorithm is the same as the one described in Section 4.3 

except for the calculation of travel distances. In Section 4.3, we do not 

consider the road network; when inserting a customer, we use rectilinear 

distances from this customer to adjacent customers. But in this simulation 

model, we use the Dijkstra’s shortest-path algorithm to compute these 

travel distances on the road network. The detail of the Dijkstra’s 

algorithm is in Cormen et al. (2001). 

    

We developed two simulation models (one assumes rectilinear movements 

without a road network, and one assumes the vehicle moves on the road network). The 

comparison of simulation results with these two types of models is described in the 

following section. 

 

5.3 Results 

5.3.1 Optimal zone design 

We approximate the service area as a rectangle.  The parameter values are listed 

in Table 6. Then we obtain the optimal number of zones with the approach described in 

Chapter IV. 
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Table 6   
Parameter values for El Cenizo. 

Parameter Value Unit 
L 0.85 Miles 
W 0.5 Miles 
λ changeable  
α 0.99 (morning peak 

hours); 0.02 (afternoon 
peak hours) 

 

aw
h 10 $/customer/hr 

aw 10 $/customer/hr 
av 20 $/customer/hr 
ab 20 $/customer/hr 
aB 20 $/customer/hr 
ak 30 $/customer/hr 
Fv 100 $/veh/hr 
Fb 100 $/veh/hr 
vwk 2 Miles/hr 
vb 20 Miles/hr 
vB 30 Miles/hr 
s 0.008333 Hrs 
S 0.025 Hrs 
d 0.25 Miles 

 

For morning hours, we take α as 0.99, obtained from the survey. Since the 

maximum demand to ride this system is about 165 customers/hour, we change the 

demand rate λ from 20 to 170. For FRT policy, the optimal number of zones is 1 when 

λ<150. When 150 170α≤ ≤ , the total costs for two-zone design are less than, but close 

to, the costs for one-zone design. Considering the additional cost of bus-station 

construction, the one-zone design is the best for FRT policy.  For DRC policy, when 

λ>50, the optimal numbers of zones are greater than 1, but the minimum total costs are 

greater than the cost of one-zone FRT policy.   
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For afternoon hours, we take α as 0.02. The maximum demand to ride this 

system is about 70 customers/hour, so we change the demand rate λ from 20 to 70. The 

optimal number of zones is 1 for the FRT policy. For the DRC policy, the optimal 

number of zones is 1 when λ<50. When 50 70α≤ ≤ , the optimal number of zones is 2, 

but the minimum total cost is close to the cost of one-zone FRT policy. From the 

analysis above, we suggest the one-zone design.   

 

5.3.2 Critical demands 

With the approach described in Chapter III, we can obtain the critical demand for 

the switch between the FRT and DRC policies. Following the parameter values in Table 

6, we have wwk=3, wwt=1, and wrd=2. For morning hours we have α=0.99, and then the 

approximate critical demand is 38.2 customers/hour, while the analytical and simulated 

values are 41.5 and 41.9 customers/hour respectively. These values are shown in Fig. 17 

as the cross points of utility functions of the FRT and DRC polices. 

For afternoon hours we have α=0.02, and then the approximate critical demand is 

48.4 customers/hour, while the analytical and simulated values are 50.1 and 51.6 

customers/hour respectively. These values are shown in Fig. 18 as the cross points of 

utility functions. 
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 Fig. 17. Critical demands for morning hours. 
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 Fig. 18. Critical demands for afternoon hours. 
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Further, considering the road network, we use the simulation model to produce 

DRC utility functions. Fig. 19 and Fig. 20 show utility functions produced from 

simulation models with and without the road network. From these two figures we have 

the following observations: 

• The values of utility functions with the road network are larger than those 

without the road network. This is reasonable because vehicular travel 

distance on the network is usually longer than the distance without the 

constraint of road network. 

• When customer demand increases, the difference of utility function values 

with and without the road network increases too. This trend exists for 

different ratios of pick-up and drop-off customers; for instance, there are 

many more pick-up customers in morning hours and many more drop-off 

customers in afternoon hours.  

• When considering the road network, the critical demands are 32 

customers/hr in morning hours and 40 customers/hr in afternoon hours. 

These values are 20% to 24% less than those obtained without considering 

the road network.  

• When customer demand is low, utility function values with and without the 

road network are close. Since the DRC is suitable for low demand, the 

rectilinear movement is a good approximation of vehicular movement on 

the road network for the case of El Cenizo. Dessouky et al. (2005) also 
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showed that a rectilinear movement of the vehicle is a good approximation 

of the reality. 
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Fig. 19.  Simulated utility functions of DRC for morning hours. 
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Fig. 20.  Simulated utility functions of DRC for afternoon hours. 
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In Fig. 21, we compare the collected demands and the critical demands. The 

collected demands are greater than the critical values from 6:00am to 8:30am and from 

2:00pm to 4:30pm, showing the FRT policy has better performance. In the other time 

periods during a day, the DRC policy provides better service.  Without considering the 

road network, the estimated time periods are close to those estimated with the network.  

Note that from 2:00pm to 4:30pm the collected demands are slightly greater than 

the critical demand without the road network. From 30 simulation replications, the 

resulting 95% confidence half-intervals are about 0.7% of the mean for utility function 

values. In this time period the FRT has better performance than the DRC, as shown in 

Fig. 21 that the collected demands are much greater than the critical demand with the 

road network. 
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Fig. 21.  Comparison of collected demands and critical demands. 
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5.4. Summary 

In this chapter we develop a case study of feeder transit design for El Cenizo, 

Texas. With the approaches described in Chapters III and IV, we use the collected 

demand data to determine the optimal number of zones and the critical demand to switch 

between the FRT and DRC polices. Our study shows that one-zone service is the best for 

the current demands; from 6:00am to 8:30am and from 2:00pm to 4:30pm, the FRT 

policy would provide a better service while the DRC policy would be superior in the 

other time periods. We also expect that the DRC would provide better service on 

weekends since the demands would be smaller.   

 Since the road network is not considered in the approaches in Chapters III and 

IV, we further develop a simulation model that the vehicle only travels on the road 

network. Comparisons of simulation results show that critical demands are 

overestimated by about 25% to 30% without considering the road network for the case 

of El Cenizo, but the estimated times of the day to switch FRT and DRC polices are 

close whether we consider the road network or not.  Further, when customer demand is 

low, utility function values with and without the road network are close. This shows that 

the rectilinear movement is an acceptable approximation of vehicular movement on the 

road network for the DRC operation. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE RESEARCH 

 

 Proper design and operations of feeder transit services within the modern 

sprawled residential areas are becoming increasingly more important to enhance the 

performance of the public transportation system network.  In this research we analyzed 

the demand responsive feeder transit, also known as Demand Responsive Connector 

(DRC), which is one of the most used types of flexible transit services combining pure 

demand responsive and fixed-route features. 

Feeder transit services are generally operated with a demand responsive policy 

which might be converted to a traditional fixed route policy for higher demand.  We 

investigated the conditions that would justify the switch between the two policies.  By 

employing continuous approximations, we provided an analytical modeling framework 

of the decision problem to help planners and operators in their choice.  We compared the 

utility functions of the competing operating policies to identify the critical demand 

densities. They represent the switching conditions, that are functions of the parameters 

of each considered scenario, such as the geometry of the service area, the vehicle speed 

and also the weights assigned to each term contributing to the utility function: walking 

time, waiting time and riding time.  The derived rigorous analytical values and 

approximate closed-form expressions of the critical demand density are validated by 

simulation for a range of plausible scenarios.   
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In designing feeder transit systems for large communities, planners may divide 

the whole service area into zones. A non-optimal structure is often adopted, and 

sometimes there is a lack of zone design. We developed analytical models representing 

the total cost functions balancing customer service quality and vehicle operating cost. By 

analytical derivation, we obtained closed-form expressions for the FRT and 

approximation formulas for the DRC to determine the optimal number of zones. Our 

analytical formulation leads to a strictly convex optimization problem to minimize the 

cost by controlling the number of zones. 

Finally we developed a real-case application with collected customer demand 

data and road network data of El Cenizo, TX. With our analytical formulas, we obtained 

the optimal number of zones, and the times for switching FRT and DRC policies during 

a day. We also found that analytical formulas without road networks overestimate the 

critical demands by about 25% to 30% compared with the simulation results with the 

road network of El Cenizo. But the estimated times of a day to switch FRT and DRC 

polices are close whether we consider the road network or not. This demonstrates that 

our analytical formulas provide acceptable estimates for practical use.  

This research suggests and encourages transit planners and operators to make use 

of this methodological approach in selecting the optimal number of zones and correct 

operating policy for feeders within modern sprawled urban and suburban areas.  The use 

of our handy but powerful closed-form analytical expressions to estimate the optimal 

number of zones and the critical demand density may not be limited to urban residential 
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areas. It can also be applied to rural regions, with much larger service areas, and 

traditionally lower demand rates. 

Future research includes applying our approaches to various case studies with 

different patterns of customer demands and road networks. Further, new formulas could 

be derived for customer demand which is not uniformly distributed and is not a Poisson 

process. The coordination of the demand responsive feeder transit with the major transit 

network is another direction for further development. 
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APPENDIX  

DERIVATION OF EQUATION (3.7a) 

 

For pick-up passengers, let X  denotes the nearest bus station to passengers, 

{ }1,2,...,x N∈ .  Let Y  denotes the ride direction of pick-up passengers at the bus 

station, { }1, 1y∈ − .  1Y =  for direction leaving the terminal, and 1Y =−  for direction 

approaching the terminal.  The Probability Mass Function (pmf) of X  is 

 

1                for 1
2( 1)

1( )      for 2,..., 1
1

1         for 1
2( 1)

X

x
N

f x x N
N

x N
N

⎧ =⎪ −
⎪
⎪= = −⎨ −⎪
⎪ = −⎪ −⎩

 

 

The conditional pmf ( ) ( )f y x P Y y X x= = =  is 

 
1(1 )
1

xf x
N
−

=
−

, ( 1 )
1

N xf x
N
−

− =
−

, for 1,2,..., 1x N= −  

 (1 ) 0f N = , ( 1 ) 1f N− =  
  

The ride time of pick-up passengers 2 ( , )p
rdT g X Y− = .  Assuming rd wtw w< then 

we have  
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0                                         for 1
( 1)( , )       for 1;  2,...,
2( 1)

( 1)           for 1;  2,...,
2( 1)

x
x Cg x y C y x N
N

x C y x N
N
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Therefore  
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