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ABSTRACT 

 

Development of a Cryogenic Drift Cell Spectrometer and Methods for Improving the 

Analytical Figures of Merit for Ion Mobility-Mass Spectrometry Analysis.  

(August 2009) 

Jody Christopher May, B.S., University of Central Arkansas 

Chair of Advisory Committee: Dr. David H. Russell 

 

 A cryogenic (325-80 K) ion mobility-mass spectrometer was designed and 

constructed in order to improve the analytical figures-of-merit for the chemical analysis 

of small mass analytes using ion mobility-mass spectrometry.  The instrument 

incorporates an electron ionization source, a quadrupole mass spectrometer, a uniform 

field drift cell spectrometer encased in a cryogenic envelope, and an orthogonal 

geometry time-of-flight mass spectrometer.  The analytical benefits of low temperature 

ion mobility are discussed in terms of enhanced separation ability, ion selectivity and 

sensitivity. The distinction between resolving power and resolution for ion mobility is 

also discussed.  Detailed experimental designs and rationales are provided for each 

instrument component.  Tuning and calibration data and methods are also provided for 

the technique. 

 Proof-of-concept experiments for an array of analytes including rare gases 

(argon, krypton, xenon), hydrocarbons (acetone, ethylene glycol, methanol), and halides 

(carbon tetrachloride) are provided in order to demonstrate the advantages and 
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limitations of the instrument for obtaining analytically useful information.  Trendline 

partitioning of small analyte ions based on chemical composition is demonstrated as a 

novel chemical analysis method.  The utility of mobility-mass analysis for mass selected 

ions is also demonstrated, particularly for probing the ion chemistry which occurs in the 

drift tube for small mass ions.   

As a final demonstration of the separation abilities of the instrument, the 

electronic states of chromium and titanium (ground and excited) are separated with low 

temperature.  The transition metal electronic state separations demonstrated here are at 

the highest resolution ever obtained for ion mobility methods.  The electronic 

conformational mass isomers of methanol (conventional and distonic) are also partially 

separated at low temperature.  Various drift gases (helium, neon, and argon) are explored 

for the methanol system in order to probe stronger ion-neutral interaction potentials and 

effectuate higher resolution separations of the two isomeric ions.  Finally, two versatile 

ion source designs and a method for axially focusing ions at low pressure (1-10 torr) 

using electrostatic fields is presented along with some preliminary work on the ion 

sources. 
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NOMENCLATURE 

 

CAD Computer Aided Design 

cryogenic referring to very low temperature (typically below 100 Kelvin) 

DC Direct Current (i.e., an electrostatic potential) 

desorption the transfer of molecules from a condensed phase to the gas phase 

duty cycle the time interval in which an instrument is doing useful analysis 

dynamic range the linear response range of an instrument or detector. 

ESI Electrospray Ionization 

EI Electron Ionization (synonymous with Electron Impact) 

grid a transparent array of thin wires used in charged particle optics 

IMS Ion Mobility Spectrometry 

LDI Laser Desorption/Ionization 

longitudinal/axial the direction parallel to the transit of the ion beam or swarm 

MALDI Matrix Assisted Laser Desorption/Ionization 

MCP Microchannel Plate 

MS  Mass Spectrometry  

m/z  mass-to-charge ratio, the standard unit of measure in MS 

PEEK  polyetheretherketone, a high temperature thermoplastic 

PMT  Photomultiplier Tube 

ppb parts per billion (1 part in 108) 

ppm parts per million (1 part in 106) 
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RF Radio Frequency (i.e., a temporally dynamic potential) 

swarm a (usually low) density of ions within a neutral gas 

throughput an instrument’s measurement rate, quantified in spectra/sec. 

TOF Time-of-Flight (in reference to the mass analysis technique) 

transverse/radial the direction orthogonal to the transit of the ion beam or swarm 

TWIMS Traveling Wave Ion Mobility Spectrometry 
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1. INTRODUCTION AND OVERVIEW OF METHODS 

 

1-1 An Overview of Ion Mobility Spectrometry 

Ion mobility spectrometry (IMS) is an electrophoretic gas-phase separation 

technique [1,2] that has been applied to a wide range of analytical applications from the 

trace level detection of chemical warfare agents [3] to the size measurement of 

nanoparticles and aerosols [4], the differentiation of molecular species in complex 

matrix environments such as biological medium (e.g. buffers, salts & other non-analyte 

concomitants) [5] and structural determination of hydrocarbon molecules in crude oils 

[6].  Ion mobility has seen the greatest success as a chemical analyzer for military and 

homeland security applications, evident by the over 50,000 standalone IMS instruments 

(as of 2003) used to screen travelers daily in airports throughout the world [7,8].  The 

widespread acceptance of IMS for routine analysis is attributed to several favorable 

figures of merit for the technique, including i) the exceptionally high speed at which 

IMS can acquire experimental measurements (throughput can exceed 10,000 

measurements per second) ii) the high degree of response (sensitivity) of IMS 

instruments to a given sample input (detection limits reported at ~0.1 fmol [9]), iii) the 

flexibility of operating IMS as either a narrow bandpass filter or broadband chemical 

analysis tool, depending on the specific technique used, and iv) the relatively simple 

operational principles of IMS which makes it easy to use (see Section 1-2) v) combined 

____________ 
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with its relatively low cost, portability and robustness1.  Despite these impressive 

attributes, ion mobility has historically been slow to develop as a discovery driven 

analytical technique, falling upon its more pragmatic role as a fast chemical filtering 

device [12]. This is perhaps most evident by the fact that over a century has passed since 

Langevin published the first fundamental papers on ion mobility [13,14] yet only within 

the last decade has significant steps been made towards commercializing a research 

quality ion mobility instrument platform2.  Indeed, a stigma existed around ion mobility 

for many years due to the early attempts to compare it with solution phase 

chromatography and time-of-flight MS methods.  IMS cannot compare analytical with 

either of these techniques in terms of separation power, however there are specific 

analytical areas of merit in which IMS excels, and from which IMS has enjoyed a 

renewed interest (vide infra). 

 

1-1.1 The Analytical Scope of Ion Mobility Coupled to Mass Spectrometry 

Ion mobility has seen a growth of renewed interest in the last decade, particularly 

the coupling of ion mobility to mass spectrometry (MS), which provides a means of 

mass identifying ions separated by IMS.  Hyphenating ion mobility to mass spectrometry 

(IMS-MS) enhances the information content of the technique by providing data across 

                                                 
1 As an example the SABRE 4000 portable IMS (Smiths Detection) has the dimensions 36.3x11x13 cm, 
weighs ~7 lbs, and about 10 seconds of response for chemical detection.  Cost is ~$20,000 USD [10].  It is 
estimated that a working IMS can be built using off the shelf parts purchased from a local hardware store 
and analytical grade IMS spectrometers will in short order cost as little as $1000 USD to end users [11]. 
2 In 2006, Waters Corporation released the first large scale ion mobility research platform, the Synapt 
High Definition Mass Spectrometer (HDMS) which utilizes IMS for characterization and extends the ion 
mobility technique beyond its utility as an ion filtering method.  Other instrument vendors have similar 
projects in the works and their subsequent release of ion mobility instrumentation is anticipated. 
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two dimensions of analysis [15].  When the coupling of two techniques yields different 

molecular information regarding the analyte, the dimensionality is referred to as being 

orthogonal— the extent of orthogonality is governed by the amount of additional 

information that can be learned from the combined analysis [16].  In the IMS-MS 

configuration, the analysis yields information regarding the analyte ion’s size (IMS) and 

mass (MS).  Because mass scales near linearly with analyte size, the orthogonality of 

IMS-MS is low as compared with other separation techniques coupled to MS such as 

liquid chromatography (LC-MS) and capillary electrophoresis (CE-MS)3.  Peak capacity, 

as defined as the number of resolved peaks in the two-dimensional analysis space, will 

be low for IMS-MS as a result of the low degree of orthogonality, since analyte signal is 

not dispersed across the full area of analysis, but rather clustered about a size-mass 

correlation line [18].  This effect can be readily seen in Figure 1 which contains a 2-

dimensional mobility-mass plot of carbon clusters, with the data being isolated to a 

relatively narrow trendline from lower left to upper right representing the scaling of 

molecular size with mass.  While the peak capacity is comparatively low for the IMS-

MS technique, it is the speed of the separation and the potential for information driven 

analysis viz. size-mass correlation that lends IMS-MS its greatest strength as an 

analytical tool.  For comparison, fast LC separations take place on the scale of minutes 

to hours [19] while ultra fast GC based on sample prefocusing methods can separate on 

                                                 
3 The peak capacity of IMS-MS is estimated at 5.5x103 using time-of-flight mass analysis.  For 
comparison, the peak capacity of LC-MS has been reported as high as 6x107 for Fourier transform ion 
cyclotron resonance (FTICR) based MS—over 4 orders of magnitude higher owing to the ultra high 
resolving power of FTICR, which can exceed 500,000 (as measured full width at half the peak’s 
maximum).  The record for FTICR resolving power stands at somewhere over 200,000,000 (two hundred 
million) for 4He+ [17]. 
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the scale of several seconds [20].  Neither compare in separation speed to IMS, which 

can disperse ions across mobility space within 10-6 to 10-2 seconds [21].  Additionally, 

the performance of condensed phase separations is highly dependant on the chemical 

characteristics of the analyte (e.g. sample volatility, column affinity).  Because IMS 

separations occur following sample ionization and are based on a fundamental physical 

parameter of the analyte, the ion cross-section, the performance of IMS is comparable 

across a wide range of analyte classes, that is to say, if it can be ionized, it can be 

analyzed by IMS-MS. 

 
 

 

Figure 1 – A 2-dimensional (2D) ion mobility-mass spectrum of carbon cluster ions (fullerines) formed 
from laser ionization.  Here and elsewhere, the IMS data is projected on the y-axis and the MS data is 
projected along the x-axis.  Because the correlation between ion cross section and ion mass are closely 
related, data in the 2D projection will fall along a trend line relating these two parameters.  The ratio of 
mass and size (trend line slope) are molecular class specific and relates to the gas-phase packing efficiency 
of the analyte, thus different analyte classes will exhibit different trend lines in the 2D analysis. 
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1-1.2 The Various Ion Mobility Techniques and Their Defining Features 

There have recently been introduced several variations of the ion mobility 

technique, all of which have been coupled with mass spectrometers and each offering 

their own analytical advantages and limitations.  An overview of the major ion mobility 

techniques and their defining features is provided in Table 1 and these techniques are 

conceptually illustrated in Figure 2.   

 

Table 1 – A summary of ion mobility techniques and their characteristic features. 
 

Ion Mobility Technique Type Drift Region 
Geometry 

Nature of Electric 
Field Used 

Ion Motion to 
Electric Field Ref. 

Ion Mobility Spectrometry (IMS) 
Plasma Chromatography 

dispersive 
in time Radially Symmetric Axial DC parallel [22] 

Traveling Wave IMS (TWIMS) dispersive 
in time Radially Symmetric Axial DC; Radial RF 

for Ion Focusing parallel [23] 

Overtone Mobility Spectrometry scanning / 
filtering Radially Symmetric Electrodynamic DC parallel [24] 

Cyclic Drift Tube Mobility Spectrometry scanning / 
filtering 

Radially Symmetric; 
Cyclic Ion Path Electrodynamic DC parallel [25] 

Differential Mobility Analysis (DMA) 
Gas-phase Electrophoretic Mobility    
     Molecular Analyzer (GEMMA) 

scanning / 
filtering 

Parallel Electrodes; 
Planar Orthogonal DC Field orthogonal [26] 

High-Field Asymmetric IMS (FAIMS) 
Differential Mobility Spectrometry (DMS) 

scanning / 
filtering 

Parallel Electrodes; 
Planar or Curved 

Orthogonal RF (or 
electrodynamic DC); 
High Field Component 

orthogonal [27] 
[28] 

      
 
 
 
Four of the most commonly encountered IMS techniques are i) traditional drift 

tube ion mobility utilizing a uniform electric field formed by direct current (DC) 

electrostatic potentials, which here and elsewhere is referred to simply as IMS (Figure 

2A), ii) traveling wave ion mobility spectrometry (TWIMS) [29] which uses a radio 

frequency (RF) electrodynamic potential across an otherwise traditional geometry drift 

cell to carry analyte ions through the buffer gas (Figure 2B) iii) filter type ion mobility 
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instruments where ions are introduced orthogonal to a neutral gas flow and separated 

based on their differential mobility across two parallel electrodes, referred to as an 

aspiration ion mobility spectrometer or more commonly called a differential mobility 

analyzer (DMA, Figure 2F) [26,30], and iv) filtering ion mobility techniques utilizing 

electrodynamic potentials across parallel electrodes which induces differential ion 

migration to one electrode as the gas carries the ions between them (Figure 2E).  In the 

latter ion filtering device which incorporates the electrodynamic potentials across two 

parallel electrodes, stable ion motion between the electrodes is mobility dependant and 

so only ions possessing a narrow distribution of gas-phase electrophoretic mobilities will 

be stable through this device.  This type of ion mobility is referred to by several names; 

the two most commonly used are high-field asymmetric ion mobility spectrometry 

(FAIMS) and differential mobility spectrometry (DMS) [27,31].  Techniques i) and ii) 

(IMS and TWIMS) are dispersive, meaning all ions can theoretically be observed in the 

same experimental sequence while iii) and iv) (DMA and FAIMS/DMS) are scanning 

devices, meaning only ions possessing a narrow distribution of mobilities will have 

stable trajectories through these devices and be observed in any single experimental 

sequence, requiring systematic retuning of electrode potentials in order to generate a 

complete mobility spectrum. 
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Figure 2 – Several ion mobility techniques and their principles of operation.  Left and down: A) 
Conventional drift tube ion mobility spectrometer (IMS). B) Traveling wave ion mobility spectrometer 
(TWIMS) utilizing an RF field to drag ions through the gas filled cell. C) Overtone mobility spectrometry 
which takes an otherwise conventional IMS and applies an electrodynamic field to direct ion motion much 
like TWIMS.  D) Cyclic drift tube mobility spectrometer which is a circular geometry IMS allowing ions 
to travel multiple cycles through the device, enhancing the resolving power, at a cost of sensitivity.  E) 
Differential mobility spectrometer (DMS) which uses high and low fields across two parallel plates in the 
presence of a gas flow to selectively pass ions of a particular ion mobility value through the device.  F) 
Differential mobility analyzer (DMA) which introduces ions orthogonal to the gas flow through a narrow 
aperture.  The ion’s mobility will determine whether it will exit another aperture at the far end electrode.  
Ion focusing can be accomplished by varying field and gas flow conditions. 
 
 
 

  The primary advantage of the scanning ion mobility instruments is that these 

devices can analyze a continuous stream of sample ions which is particularly useful for 

applications benefiting from single analyte monitoring and/or high instrument sensitivity 
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and response (due to the attenuation of chemical noise) such as chemical detectors.  In 

contrast, dispersive ion mobility techniques require a narrow pulse of ions be 

periodically introduced into the spectrometer, which limits the analytical throughput and 

overall sensitivity of these types of instruments, however dispersive methods allow the 

entire mobility spectrum to be acquired in a single experimental sequence, greatly 

benefiting the dynamic range of analysis [32].  A new technique called overtone 

mobility spectrometry has been very recently described, which operates a dispersive 

IMS instrument configuration in a scanning mode by substituting the static DC 

potentials with electrodynamic potentials such that only a narrow distribution of ion 

mobilities follow the dynamic electric field and are allowed to traverse the drift region 

(Figure 2C) [24,33].  While very analogous in operational principle to the traveling 

wave IMS, the primary distinguishing feature of the overtone technique is the 

observation of ion signals at higher order (overtones) frequencies of the fundamental 

applied frequency.  Ion signals at these overtone frequencies exhibit narrower peak 

widths than those found at the fundamental frequency, which offers the advantage of 

increasing the resolving power in a traditional IMS geometry, but at a cost of decreased 

sensitivity and dynamic range.  Spectral interpretation of these overtone ion signals can 

also be more difficult than deciphering a conventional dispersed drift time spectrum and 

the dynamic range remains low.  The temporally dynamic DC fields utilized in the 

overtone mobility method has established the foundations for operating a drift cell in a 

cyclic geometry for multi-pass IMS experiments (Figure 2D), which holds promise for 

enhancing the resolving power of IMS instrumentation even further [25].  Other exciting 
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areas of high resolution IMS development focus on drifting the ions against a counter-

flow of buffer gas to increase the dampening forces and thus the retention time [34,35] 

and sampling ions orthogonally from a conventional IMS drift tube to minimize the 

deleterious effects of lateral ion diffusion on the temporal spread of ions in the swarm to 

further increase instrument resolving power [36].  The latter is analogous to orthogonal 

acceleration time-of-flight mass spectrometry methods, which is discussed in Section 1-

6.2. 

The decreased sensitivity of dispersive instruments is considered a reasonable 

compromise for other advantageous analytical figures of merit for dispersive techniques 

such as a broad dynamic range and high separation efficiencies in the mobility 

dimension.  Conventional drift tube IMS instruments still perform with the highest 

obtainable ion mobility resolutions [37-39] and is the only ion mobility technique where 

the experimentally measured data can be directly correlated to the ion’s gas-phase 

collision cross section—structural information which is desirable particularly in the 

analysis of nanomaterials, peptides and proteins [40-42].  In this sense, IMS transcends 

the traditional function of a separation device, lending itself also as an analytical 

identification and characterization tool, which sets it apart from condensed phase 

separation sciences (where the focus is traditionally on the separation rather than 

analytical information) and makes drift tube IMS an ideal platform for fundamental 

studies in research applications.  The lowered sensitivity resulting from the introduction 

of a duty cycle in the pulsed IMS experiment can be compensated for by the additional 

observation time afforded by the high speed of the separation [21].  Hyphenating IMS 
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with a high performance MS technique such as time-of-flight (TOF) MS offers a fast and 

information rich, high peak capacity analysis afforded by the enhanced resolution and 

broad dynamic range across both dimensions (mobility and mass) of data [43].   The 

scope of this dissertation henceforth will concern only conventional DC uniform field 

drift tube IMS, which is the most commonly encountered and theoretically developed 

ion mobility method and upon which the work detailed in the subsequent sections is 

based. 

 

1-2 Basic Operational Principles of Ion Mobility Spectrometry 

 In qualitative terms, ion mobility refers to the velocity of an ion through a neutral 

gas under the influence of an electric field.  The vector direction of the ion with 

reference to the electric field (either parallel or orthogonal), the field’s magnitude (either 

high or low field), and whether or not the field is static (DC) or dynamic (RF) in time 

defines the various analytical techniques which are presented under the name ion 

mobility (refer to Table 1 for a list of the various ion mobility techniques).  The first, 

simplest and most widely encountered ion mobility spectrometry technique is that which 

operates on the basis of ion motion parallel to a low magnitude, electrostatic field 

through a buffer gas experiencing little or no flow (i.e., under static pressure conditions).  

The basic instrumentation features and operational principle of this type of ion mobility 

referred to here and elsewhere simply as IMS, is illustrated in Figure 3.   
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Figure 3 – The basic operational principles of the drift tube ion mobility experiment.  A) The ion gate (shown here as a two element ion deflector) 
blocks ions from entering the drift region most of the time. B) The gate opens for a brief period of time (~10-100 μs), allowing a narrow pulse of ions to 
enter the drift region. C) The ion gate closes and the ion swarm is allowed to traverse the drift cell (pulled through by the electric field gradient) and 
experiences collisions with the buffer gas.  D) As the ion swarm drifts through the neutral gas, ions within the swarm will separate based on their 
different ionic mobilities. 
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The ion mobility experiment begins with the creation of a pulse of ions, which 

can be accomplished either from a pulsed ionization source (e.g., desorption/ionization 

from a pulsed laser) or through gating a continuous ion beam as depicted in Figure 3 

(refer to Section 1-4.2 for an overview of ion gating methods).  This distribution of ions 

is then introduced into a drift cell which contains an (ideally) fixed pressure of a pure, 

nonreactive gas and an electric field gradient that directs ion motion forward through the 

drift region.  During their transit through this drift region, the distribution of ions 

(traditionally referred to as an ion swarm) experiences many dampening collisions with 

the bath gas—different ion species present in the swarm can drift at different velocities 

depending on their ion mobilities.  The ion mobility experiment is a time-of-flight 

measurement between the time the ions are introduced into the drift cell to the time these 

ions take to traverse the drift region and elute out the other end.  During this gas transit 

time, ions partition into their species dependant ionic velocities (mobilities) and so arrive 

at a detector in different time intervals.  Specific experimental details of the IMS 

technique are presented in Section 2.   

 

1-2.1 Electric Field Considerations for IMS Experiments 

The ion motion through the drift region can be described by simple kinetic 

theory, where the electric field (acceleration) and collisional dampening (deceleration) of 

a distribution of ions is balanced at a “steady state” through the proportionality constant, 

K (the mobility constant) by the following relationship: 

dv KE=      (1) 
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Where vd is the drift velocity of the ion swarm and E is the magnitude of the electric 

field (measured as volts per unit distance).  Equation 1 is a first approximation of the 

ionic mobility. K is only constant at low electric field conditions where the ion-neutral 

interaction is characterized by nonreactive, elastic diffusional scatter [44].  At conditions 

where the ion swarm gains a significant amount of energy between collisions (high field 

conditions), the relationship between the drift velocity and the electric field is no longer 

linear, that is, K is no longer a constant, predictable value and the proportionality 

constant of equation 1 must then consider higher (cubic) order terms [45,46].  High field 

conditions have been utilized in IMS to introduce selectivity in the separation by 

inducing nonuniform behavior between specific ions with the bath gas [47,48].  This 

strategy relies on the principle that specific ions in a mixture analysis will separate due 

to increasing differences in their ion mobilities as the electric field is raised, though this 

approach is not useful when analyzing ions of a similar chemical class since differences 

in their ion mobilities are not expected to change significantly relative to one another 

[49].  Aside from these special analytical applications, IMS is normally operated at or 

below low field limits, since under these conditions the relationship between the electric 

field and the arrival time is linear and predictable.  Section 1-3.3 discusses in more detail 

the measure and experimental conditions which influence high and low electric field in 

the IMS experiment. 
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1-2.2 Measurement of Mobility Constants and the Gas Phase Collision Cross Section 

The value of the mobility constant, K, will scale with the drift velocity, vd, which 

for the same ion will change depending on the temperature and number density of the 

drift gas.  In order to compare IMS data across different instrument platforms, it is 

customary to normalize the mobility proportionality constant (K) to standard 

temperature and pressure, through the following conversion [50]: 

0
273.15( )( )

760
PK K

T
=     (2) 

K0 is referred to as the standard or reduced mobility value and T and P are the buffer gas 

temperature (in units of Kelvin) and pressure (in units of torr), respectively.  The units of 

both K and K0 in Equations 1 and 2 are in cm2·V-1·s-1.  Strictly speaking, the reduced 

mobility (or any analogous normalized mobility parameter) should be based on the 

number density rather than the pressure particularly when varying the temperature of the 

experiment, but standards have already been established and remain usable for the vast 

majority of experimental purposes currently encountered in the IMS research community 

(refer to Section 1-3.3 for more insight into this issue) [51]. 

The above relationship underscores a key piece of information that the IMS 

experiment can provide: mobility coefficients that are reproducible at low field and can 

be compared across different IMS instrument platforms [52,53].  An additional piece of 

information which can be derived from low field IMS experiments is the ion swarm’s 

average gas-phase collisional cross-section, Ω, which is related to K by the simplified 

Chapman-Enskog kinetic theory [50,54]: 
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The values q, N, μ, and kb are the ionic charge, buffer gas number density, ion-

neutral reduced mass term, and the Maxwell-Boltzmann constant, respectively.  When 

all other conditions of the ion mobility experiment are known (ion charge and mass; 

buffer gas temperature, mass, and pressure), the ion collision cross-section can be 

directly calculated using Equation 3, and this Ω value can be compared with results 

from theoretical simulations involving the structural dynamics of higher order molecular 

systems in order to arrive at a reasonable value for the ion’s gas-phase structure [41].  

Further refinements of the theory have been made which incorporate higher order ion 

effective temperature terms since the relationship in Equation 3 does not factor in ion 

heating effects due to the electric field, but these refinements account for only a 2% 

change in the cross-sectional values obtained using the generalized theory above, and so 

are not widely used for deriving structural data from the ion mobility measurements 

[46].  While the work detailed in this dissertation makes no explicit use or derivation of 

Ω from experiment, it is instructive to note that such information can be obtained from 

the IMS experiment, and constitutes a significant motivation of the current state of IMS 

research today [5,42]. 

 

1-3 Separation Efficiency of Ion Mobility and High Resolution Considerations 

By large the widest and most successful application of the IMS technique to date 

has been its use as a separation device.  Analyte separation in IMS relies on the principle 
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that different analyte ions in the swarm will interact with the neutral buffer gas 

differently as the swarm traverses the drift region of the instrument.  While the 

predominant mechanism that governs ion retention in the IMS experiment is the ion’s 

physical size and shape via the ion’s hard sphere collisional cross-section [55], ion-

neutral long-range interactions can become significant [56], particularly if more 

polarizable buffer gases (as compared with helium, e.g., argon, carbon dioxide) are used 

in the experiment [57].  Ion-neutral gas affinities have been exploited advantageously to 

introduce selectivity to the IMS experiment and separate ionic species which are very 

similar and cannot be differentiated by conventional MS analysis alone, such as chiral 

molecules [58], structural [59,60] and electronic state isomers [61]. 

 

1-3.1 The Measure of Separation Efficiency in IMS 

In terms analogous to those used in optical spectroscopy [62] and mass 

spectrometry [63,64], separation efficiencies in ion mobility instrumentation are reported 

in two primary means, as either resolution [65] or resolving power [66].  These two 

terms are oftentimes erroneously used interchangeably in the ion mobility and mass 

spectrometry literature—the currently accepted convention in the mass spectrometry 

community is to refer to resolution when dealing with empirically measured separation 

of two peaks and resolving power when measuring the width from a single peak [67].  

While it is the resolution that is most informative metric when dealing with the ability of 

an analytical technique to differentiate two closely spaced signal peaks, it is a difficult 

quantity to compare across instrument platforms since so many different classes of 
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samples are analyzed from one instrument variation to another.  Numerous chemical 

standards have been proposed for use in IMS instrumentation in order to facilitate the 

accurate and comparable measurement of IMS resolution [68-70], however the wide 

variance of operational conditions currently utilized in IMS instrumentation (e.g., buffer 

gas, ionization methods) has made it difficult for the IMS community to come to a 

consensus on any single standard or class of standards.  Thus, resolving power has 

emerged as the accepted “performance parameter” measurement of IMS separation 

efficiency and is based on a single-peak quotient which is calculated from experimental 

data as follows [66]: 

d

w

tR
t

=       (4) 

where td is the analyte signal’s measured drift time and tw is the measured peak’s full 

width at half of its maximum height (FWHM).  The fundamental problem with this 

definition, however, is that the quotient value has no interpretable meaning in ion 

mobility regarding an IMS instrument’s ability to resolve out specific analyte features.  

This becomes clear when one considers that unlike optical spectroscopy and mass 

spectrometry where resolving power refers to the ability of the instrument to resolve out 

specific features of the measurement (i.e., quantized levels of the electromagnetic 

spectrum for the former, units of exact mass for the latter), there are no quantized 

features in mobility space which can be resolved out by IMS4.  A more proper definition 

                                                 
4 Consider also that in mass spectrometry, resolving power values have physical meaning.  For example, at 
a mass spectrometer resolving power of 100, the instrument will be capable of separating signals of two 
ions with m/z values 100 and 101.  The same resolving power of 100 for an ion mobility instrument cannot 
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of separation ability in ion mobility has been provided by Hill and coworkers in terms of 

the number of theoretical plates, the separation efficiency performance parameter 

commonly used in fractionation and chromatography [71], but has yet to gain acceptance 

in the ion mobility community [72].  An additional concern regarding the resolving 

power measurement described by Equation 4 is that since the peak widths are compared 

across half height measurements, band broadening below half height is ignored, that is, a 

peak of non Gaussian shape (e.g., Lorentzian5 or irregular peak shape) may be much 

broader at its base than at its half height, which can result in favorable calculated 

resolving power values but poor observed separation ability [73].  Thus, despite 

questions regarding the analytical meaningfulness of the single-peak based quotient 

value calculated by Equation 4, this resolving power value remains today the most 

widely accepted measure of an IMS instrument’s separation ability, due to the ease at 

which the value can be calculated from virtually any piece of experimental IMS data and 

the possibility for direct comparison of instrument performance across ion mobility 

instrument platforms.  With these appropriate caveats in place, this dissertation will 

make use of the resolving power method to discuss and compare IMS separation power 

in order to facilitate likeminded discussion. 

 

 

 

                                                                                                                                                
be directly interpreted into a meaningful performance criterion, thus it remains useful primary as a metric 
for comparison. 
5 Lorentzian peaks are observed when data deconvolution algorithms are used following IMS data 
acquisition, specifically in Fourier or Hadamard transform IMS. 
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1-3.2 Factors Limiting IMS Resolving Power 

Revercomb and Mason described four factors which contribute to band 

broadening (tw) and ion drift time (td) [46].  These include:  i) lateral (axial) diffusion, ii) 

Coulombic repulsion between mutual ions in the swarm (space charge) iii) the initial 

temporal spread of the ion swarm introduced into the drift region and iv) ion-molecule 

reactions between the ion and the neutral buffer gas and/or impurities in the gas.  

Experimentally, these factors have been observed to reduce the observed resolving 

power in IMS.  For example, significant band broadening in a miniature IMS equipped 

with a laser ionization source was observed and attributed to space charge effects, that is, 

under experimental conditions where high ion densities were admitted and confined to a 

small drift volume [74].  Ion molecule reaction chemistry can have a substantial impact 

on lowering the observed resolving power in IMS even when special care is taken to 

remove impurities in the drift gas [75].  Water impurities are particularly invasive and 

can distort mobility measurements if steps are not taken to reduce or quantify the 

presence of moisture in the IMS drift cell [76]. Hill and coworkers also identified an 

inhomogeneous electrostatic drift field and ion detector response times as factors 

contributing to peak broadening, but conclude these factors have a small contribution to 

the overall resolving power measured in ion mobility [66].  Recent theoretical treatments 

of ion drift in the presence of elastic collisions support the idea that nonuniform electric 

fields will broaden ion distributions and lead to a decrease in resolving power [77]. We 

have also concluded in our own laboratory that field inhomogeneity does contribute to 

peak broadening particularly for the extreme case where relatively strong focusing fields 
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are utilized across the entire length of the drift region [78], which results in about a 20% 

reduction in the maximum obtainable IMS resolving power.   Detector response times 

have been shown to have a significant contribution to peak broadening when using direct 

ion current measurement detectors (Faraday plate) due to current induction effects6 [79].    

Finally it should also be mentioned that structural or conformational isomers will also 

contribute to peak broadening and reduced resolving power values, though the 

occurrence of these isomers is expected to be uncommon.  

If a sufficiently narrow packet of ions is admitted into the IMS such that the 

temporal spread of the ions does not contribute to the observed peak widths after ion 

migration through the drift field (that is, diffusion is the predominant band broadening 

mechanism), then factor iii) initial temporal spread, can be considered negligible as well 

as factor ii) Coulombic effects, since the ion densities under these conditions would be 

low [80].  Factor iv), ion-molecule reactions, can also be ignored if a neutral drift gas 

such as helium or nitrogen is used with very little impurities present and ions do not gain 

an appreciable amount of energy during their transit through the drift gas to initiate 

reaction chemistry (that is, ion energies are maintained close to thermal) [65,81].  The 

probability of reaction chemistry occurring is also much lower at reduced pressures (e.g., 

10 torr) than at ambient pressure due to the decreased number of collisions, though care 

must be taken in reduced pressure IMS to ensure ion energies are kept low since the 

decreased number of collisions will in turn lead to an increase in the ion energy at 

                                                 
6 Standalone IMS instruments, such as those used in airport security checkpoints and military weapons 
screening devices, use ion current detection methods.  This is both to reduce cost and for practical reasons 
that electron multiplication methods do not work effectively under elevated pressure environments. 
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elevated electric fields.  Inhomogeneity in the electric field can be minimized by taking 

special care in the design and fabrication of the IMS cell.  Finally, since hyphenated 

IMS-MS instruments utilize electron multipliers in high (<10-5 torr) vacuum to detect 

ions, detector response times are low as compared to Faraday plate current detection 

meaning that very fast electron multiplication detectors for time-of-flight measurements 

will have virtually no contribution to IMS band broadening in the experiment [82,83].  

When these minor contributions to reduced resolving power are considered and 

taken into account in the experimental setup, the predominant contribution to observed 

signal peak widths in the ion mobility experiment is lateral ion diffusion and the initial 

width of the ion swarm introduced during each experimental measurement. A practical 

relationship has been derived by Hill et al. between resolving power, Rd, and 

experimental conditions which considers only diffusion as the limiting factor for 

observed peak widths [65]: 

1
2
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     (5) 

No straightforward relationship such as the one in Equation 5 has been derived between 

resolving power and the initial ion pulse width, however one can conclude intuitively 

that the width of the measured signal peak cannot exceed the initial time width, tw, of the 

swarm, thus the initial pulse width-limited resolving power, Rw, can be expressed by the 

following inequality: 
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A cursory examination of Equation 5 reveals that resolving power can only be increased 

by increasing the drift voltage, V, increasing the number of charges, q, on the ion, or 

decreasing the temperature, T, of the ion and surrounding neutral gas.  Equation 6 

suggests also that these conditions will affect resolving power only if the initial pulse 

width of ions is sufficiently small as to not affect the measured peak widths, that is, the 

experimentally limited resolving power is governed by the lower of the two values, Rd or 

Rw. These effects have been verified experimentally for practical IMS instrumentation 

[84] and experimental results are in good agreement with theory. 

 

1-3.3 The Influence of Pressure, Length and Voltage on IMS Resolving Power 

While much of the current literature dealing with resolution in ion mobility 

makes the above distinctions regarding the resolving power dependencies on V, q, T, and 

tw, there remains some confusion as to the roles that the drift cell length, L, and the drift 

gas pressure, P, play in measured resolving power values.  Indeed, the highest recorded 

resolving power values have been achieved on IMS instruments incorporating long drift 

regions [39], high pressures (760 torr and above) [38,85], or both [37], yet Equations 5 

and 6 do not make mention of these experimental parameters.  This is due to the fact that 

Equation 5 is derived from the Einstein diffusion relationship, which is valid only for 

ions with near thermal energies [86].  At sufficiently high electric field conditions, 

diffusion no longer describes the motion of ions in the IMS experiment because ions 

gain an appreciable amount of energy between collisions with the neutral gas to where 
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scattering processes dominate ion motion.  Ion energy gained in the presence of the 

electric field and neutral gas can be expressed by the parameter,  

E
N

      (7) 

classically measured in Townsend units (Td, which is equivalent to 10-17 V·cm2) but 

oftentimes expressed as E/P in units of V·cm-1·torr-1 for ease of calculation [87].  Low 

field threshold values of E/N are mass and chemical class dependant and can vary 

anywhere from ~2 V·cm-1·torr-1 for atomic species to more than 40 V·cm-1·torr-1 for 

peptides and protein ions7 [88,89].  The important consequence of the E/N expression is 

that the parameters, L and P play significant roles in maintaining diffusion only ion 

motion in the IMS experiment, specifically, low field conditions are maintained by using 

sufficiently long drift regions and/or high number gas densities (i.e., proportionality of 

the first order approximation of Equation 1 is valid).  Since Equation 5 suggests higher 

voltages are needed in order to achieve higher resolving powers in the ion mobility 

experiment, a careful balance must be achieved in IMS instrument designs in order to 

maximize V while maintaining the low field requirements of E/N, that is, as V is 

increased, either L, P or both must also be increased in order to gain the resolving power 

benefits of high voltage operation [90]. 

 

                                                 
7 These numbers assume room temperature.  It is important to note that the Townsend unit accounts for 
temperature variance in the IMS experiment, since it is based on N rather than P.  The result is that at low 
temperature, E/N values would be much lower than at higher temperature, for all other parameters (P, V & 
L) being equal. 
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Figure 4 – Paschen breakdown curves for several dielectric gases.  Data is for breakdown between iron 
electrodes (the primary component of stainless steel alloys).  The experimentally determined Paschen 
coefficients were obtained from reference [91] and plotted using the method described by A. L. Burm 
[92].  Paschen curves are visually useful for estimating maximum operating voltages for electric fields in 
the presence of a dielectric gas, if values such as the operational gas pressure and the highest potential 
applied across the shortest conductor distance are known.  Note that helium (blue squares) possesses the 
lowest tolerance to electrical breakdown and is relatively insensitive to pressure changes above ~3 torr.  
Air (black triangles) is among the most tolerant gases for resisting electrical breakdown. 
 
 
 

There remains a practical limit to the magnitude of the voltage which can be 

applied across the drift region.  At sufficiently high values of V, gas breakdown will 

occur, the voltage threshold for breakdown is governed in DC fields by many factors, 

including the potential drop across two electrodes, the spacing between these electrodes, 

the material and shape of the electrodes [93], and the type and density (pressure) of the 

dielectric gas present in the electric field [94,95].  Low pressures in the 1-10 torr regime 
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are particularly susceptible to gaseous breakdown due to the favorable gas velocities at 

these gas densities for initiating a secondary electron cascade [96].  Such breakdown 

affinities can be characterized through experimentally derived plots known as Paschen 

curves.  Paschen curves for several common dielectric gases used in the IMS experiment 

(e.g., helium, nitrogen, air) are provided in Figure 4.  These curves provide a useful 

means of estimating the highest practical voltage one can obtain in a given IMS 

experimental setup.  For example, the Paschen curve predicts that two electrodes spaced 

1 cm apart in ~2 torr of helium gas will experience breakdown at ~250 V—reducing the 

electrode spacing by half (1/2 cm) or increasing the pressure by a factor of 2 (4 torr) will 

have the effect of lowering this breakdown voltage to ~150 V.  An interesting point to 

note is that for helium, the highest probability of discharge occurs in the range of 2-8 torr 

cm [97], which is the pressure regime of the majority of drift cells operating in an IMS-

MS configuration [15].  Increasing the gas density or electrode spacing for helium gas 

has little practical effect on this discharge probability—a factor of two increase in 

pressure, from 4 to 8 torr for example, will only raise the maximum operational voltage 

of the IMS experiment by ~10% due to the high discharge affinity of helium gas [92].  

An examination of the curves in Figure 4 suggests that discharge limited operational 

voltages can be dramatically increased by utilizing drift gas other than helium such as 

N2.  In practice, more massive bath gases compromise ion mobility resolving power and 

ion transmission due to increased ion diffusion and scatter losses [98] and particularly 

polar bath gases (e.g., carbon monoxide) severely broaden ion signals due to the 

extended ion-neutral interaction, and so helium remains the bath gas of choice for 
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research IMS instrumentation.  Still, a common practice for overcoming this discharge 

limit in gaseous dielectric applications is to add a small fraction of an electronegative 

gas, such as SF6, which suppresses the initiation of an electron cascade [99].  In our own 

laboratory, we have found that introducing a small impurity of air into the helium gas 

will raise the discharge limit and allow us to operate the IMS experiment at higher 

voltages.  It should be noted that the addition of any gas impurity will perturb the 

mobility measurement due to the added collisions with the ion and impurity, causing a 

broadening and shift in observed mobility times even for low impurity concentrations in 

the sub ppb range [75] which amounts to only 1 impurity molecule for every 1010 atoms 

of helium!  Undesirable ion chemistry in the drift region is particularly problematic in 

the analysis of small molecular ions [100].  Practical considerations can be utilized when 

designing the initial electrode geometry for the drift region in order to maximize 

operational voltages which can be achieved.  A simple and straightforward design 

criterion to minimize the likelihood of electrical discharge for routine experimental 

conditions is to maximize the distances between high potential electrodes, or by the 

same approach minimize the voltage drop across closely spaced conductors of high 

potential difference.  Another simple strategy to overcome discharge voltage limits is to 

break the line of sight between electrodes possessing a high potential between them, 

since discharge is an electron propagation phenomenon.  Another strategy for controlling 

gaseous breakdown has been to coat electrodes with a thin layer of dielectric material, 

such as fluorocarbon polymer [101], though this approach has limited practical utility in 

IMS since dielectric materials dissipate surface charge poorly and can adversely 
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influence ion trajectories when placed in proximity to the ion transit.  As dielectric 

materials are difficult to model, their effect on ion trajectories must be undertaken 

experimentally, which requires considerable time and energy, and so the practical 

approach is to avoid the use of dielectrics altogether unless where absolutely necessary 

such as when isolating electrodes [102].  Many of the problems associated with electrical 

breakdown can be circumvented through the careful design of drift cell electrode 

geometries and selection of materials during initial construction of the IMS 

spectrometer—specific design strategies used in the construction of the drift cell 

spectrometer described in this dissertation are also aimed at limiting electrical discharge 

problems and these details are presented in Section 2-5.6.  Despite how the curves in 

Figure 4 are presented, there is a polarity dependence on breakdown, specifically 

positive polarity voltages are more susceptible to electrical breakdown than are negative 

polarity voltages [103], and so one approach to maximizing the operational voltage 

across an IMS cell is to preferentially bias the drift region at a negative potential8.   

Finally, there is also a distinct temperature dependence on electrical breakdown, 

specifically the electrical breakdown voltage for a dielectric gas is inversely dependant 

on the gas temperature [106], therefore operating the IMS at low temperature should 

                                                 
8 The polarity dependence on electrical breakdown is related to the formation of a corona prior to a full 
propagation of a plasma cascade.  While in both polarity cases, a corona forms and ionizes the gas about 
the electrode, in the positive polarity case the electrons are extracted by the positive electrode surface, 
leaving positive ions about a positively charged surface and creating a greater localized positive potential 
which promotes the cathode directed streamer.  In the negative polarity case, ions formed in the corona 
have their electrons repelled away from the electron surface, leaving positive ions about a negatively 
charged surface, which serves to shield the magnitude of the potential and discourage breakdown.  
Electron mobility is extremely fast as compared with the ions, so this is a near instantaneous process.  The 
ultimate result is that a negatively charged surface will have a higher breakdown voltage than a positively 
charged one [104,105]. 
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afford an increase in the maximum voltage that can be applied prior to the onset of a 

discharge condition, although an exact quantity for voltages gained at low temperature is 

difficult to arrive at9. 

 

1-4 Analytical Sensitivity for Hyphenated Ion Mobility Mass Spectrometers 

From the discussion thus far, one might conclude that in order to maximize the 

resolving power and thus the separation ability of IMS instrumentation, all that would be 

required is to construct a very long drift region incorporating the highest achievable 

voltages and pressures, operate the experiment at the lowest drift gas temperatures 

possible, and analyze highly charged ions, but quickly it would become apparent that 

several technical challenges would limit this design criteria substantially.   

 

1-4.1 Ion Transmission Through the Drift Region and Into the Mass Spectrometer 

Among the most compromising factors to consider when designing high 

resolution IMS instrumentation is analytical sensitivity which is influenced by the 

transmission efficiency of ions from the ion source to the detector.  The problem of 

sensitivity becomes very apparent when one considers that hyphenated IMS-MS 

instrumentation equipped with an ambient ionization source requires shuttling ions 

across 8 to 10 orders of magnitude of gas pressure:  atmospheric pressure for the ion 

                                                 
9 This trend for temperature dependant breakdown is only valid for the same number density of gas.  For 
an ideal gas, as the temperature is lowered, the number density increases for the same pressure and 
volume, and so the breakdown voltage will actually decrease (become worse) for most low temperature 
experiments operated under the same pressure conditions as room temperature.  While there is a point in 
the breakdown curve where higher number densities help deter breakdown, for the pressure regime of 
most IMS experiments, this is not the case. 
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source (760 torr), low pressure for the ion mobility spectrometer (1-10 torr), and high 

vacuum for the mass spectrometer (10-6 to 10-8 torr).  In order to maintain these 

differential pressure regimes, it is necessary to utilize high capacity pumping and pinhole 

conductance limits, which contributes to high ion losses between each region of 

pressure.  The ionization can also be conducted at reduced pressures, as with laser 

desorption ionization (LDI) and electron ionization (EI) [107,108], which lessens the 

pumping requirements and thus ion losses associated with ion transfer from the source to 

the IMS.  Regardless of the ionization methods used, the necessary transfer of ions from 

the IMS to the MS through a conductance limiting aperture still remains a primary area 

of ion loss for hyphenated IMS-MS instrumentation.  This is due to the fact that within 

the drift region, ions are constantly experience diffusion both longitudinal to the drift 

axis, and radially away from the drift axis towards the electrodes of the drift cell.  

Longitudinal diffusion contributes to band broadening and a decrease in resolving power 

and radial diffusion contributes to poor ion transmission since radially divergent ions 

will not pass through a pinhole aperture placed at the back of the IMS drift cell [109].  A 

practical look at this problem within the last decade has resulted in the discovery of 

several ion focusing schemes which substantially improved ion transmission through this 

IMS-MS interface region, specifically based on two strategies i) refocusing radially 

diffuse ions at the end of the drift cell through the use of decreasing inner diameter RF 

ion confinement rings (referred to as an ion funnel) [110] and more recently ii) the 

development of periodically refocusing ion optics integrated within the drift cell 

geometry that continually directs ions back to the center axis of the drift region during 
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ion transit through the drift region [111].  Both strategies improve transmission 

efficiencies in the IMS-MS experiment significantly at a moderate cost to resolving 

power and have opened the way for development of next generation high resolution IMS 

instruments.  While the radial RF fields employed by the Traveling Wave technology 

(refer to section 1-1.2) also accomplishes radial compression of the ion beam and thus 

very high transmission through the drift region, the RF field which is swept across the 

drift cell complicates measured ion mobility values and results in poor mobility 

resolving power for the TWIMS device [112]. 

All of these IMS ion focusing strategies (periodic DC fields, ion funnels and 

traveling waves) discriminate against low m/z ions due to detrimental collisional 

scattering experienced as these ions approach the focusing fields [113,114].  For these 

devices, ions below approximately 200 m/z cannot be efficiently transmitted, and so 

these ion focusing strategies cannot be used when the study of low mass analytes is 

desired.  This is a general limitation of using strong focusing fields in the presence of 

gaseous collisions and even uniform field drift cells exhibit some degree of low mass 

discrimination [115]. 

 

1-4.2 The Ion Gate and Associated Ion Losses 

Dispersive ion mobility (IMS) is a time-of-flight measurement which requires 

ions to be introduced into the drift region in discrete packets—their introduction defines 

the start time of the measurement.  For inherently pulsed ionization sources such as laser 

desorption ionization (LDI), this process is relatively straightforward—each laser pulse 
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is timed to the data acquisition and in theory all ions generated by LDI are admitted into 

the drift region and analyzed by the mobility spectrometer [116].  Because the scope of 

LDI does not ionize the full range of possible analytes and does not generate high charge 

state ions desirable for high resolving power IMS experiments [117], there remains the 

need for using continuous ionization sources with IMS, examples being the electron 

ionization (EI) source used primarily for small organic molecules [118] and the 

electrospray ionization (ESI) source which, like LDI methods, can generate ions from 

nonvolatile analytes but unlike LDI can generate ions in high order charge states [119] 

useful for high resolving power IMS. 

  
 

 

Figure 5 – Various ion gating methods used in ion mobility spectrometry.  From left to right these are: A) 
a single element pulsed ring, B) deflection style ion gate incorporating two electrode elements C) Tyndall 
ion gates which utilize two grids parallel to one another D) Bradbury-Nielsen ion shutter which consists of 
a single plane of interleaved wires and E) a mechanical beam pulsing device.  Refer to the text for more 
discussion and relevant referenced works regarding these methods. 
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In order to understand how the ion gate can affect IMS instrument performance, 

it is helpful to have a general overview of ion gates and their operational principles. 

There are various methods which have been devised for generating a pulse of ions from 

a continuous ion beam.  Conceptual representations of several ion gating methods which 

have been utilized for IMS are presented in Figure 5.  Methods for gating ions in ion 

mobility applications can be as simple as pulsing a single ion lens electrode with a 

stopping potential (Figure 5A) [120,121] or deflecting the beam as it passes through two 

parallel plates (Figure 5B) [122] or a split ion lens [123].  Mechanical choppers (Figure 

5E) have also been utilized for generating ion pulses in ion mobility, but their use has 

been limited to proof-of-concept experiments [124] and exotic ionization sources [125].  

The vast majority of ion gates used for ion pulse generation in IMS rely on two basic 

designs first described by Tyndall [126], and jointly by Cravath [127] and van de Graaff 

[128] which are based on thin wire elements biased at varying potential.  The ion gate 

design utilized by Cravath and van de Graaff was later adopted and extensively used by 

Bradbury and Nielsen [129] whom it is named for today. For the Tyndall gate (Figure 

5C), the ion beam passes through two thin wire grids placed parallel to one another; one 

grid element is pulsed to systematically reject ions from entering the drift region while 

the second grid shields the resulting ion pulse from the high electric field, reproducing a 

square wave pulse of ions.  The Bradbury-Nielsen (BN) gate (Figure 5D) is composed 

of a series of interleaved wires on a single plane with every other wire connected 

together, creating a two circuit assembly.  During a gate closed event, the wires are 

biased relative to one another (one set to high potential and the other set to low) to create 
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a strong, localized electric field that scatters ions and prevents them from entering the 

drift region.  The BN ion gate, sometimes referred to simply as an ion shutter, is the 

most widely used ion gate for IMS applications, for several reasons i) a strong field can 

be applied across the wire array, which effectively prevents ions from leaking into the 

drift region during the gate closed state, ii) the strong field created by the BN gate is 

localized over a short distance from the array, minimizing problems of perturbing ion 

trajectories from penetrating fields, iii) the spatially narrow BN gate produces a 

temporally narrow packet of ions ideal for high resolution IMS, and iv) the rise and fall 

pulse of the wire array is very sharp due to the above effects and the low impedance 

nature of the wire electrodes.  Because BN gates are difficult to construct, many IMS 

instruments still utilize the simpler Tyndall gate, especially when narrow ion pulses are 

not necessary for instrument performance, as in the case of long drift times or low 

resolution applications.  In some applications where high ion survival and transmission 

is desired over resolution, instrument designers will forego wire ion gates for a two 

electrode design (split lens) since ion collisions with the wire elements is a mechanism 

for ion losses.  Ion losses at wire grids commonly used in spectrometry instruments are 

estimated to be ~10% in the best cases for vacuum instrumentation [130,131] and 

substantially worse in the presence of gas collisions [132], and so constructing a gridless 

IMS system is an attractive option for high sensitivity applications.  Gridless ion gates 

based on potential energy well trapping and releasing (accumulation) of ions at the front 

of the drift cell have also been described and some of these designs are discussed in the 

next section (Section 1-4.3). 
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Introducing the ion gate to the experiment inherently creates a duty cycle 

condition whereby signal is only acquired for a fraction of the total analysis time.  In the 

conventional IMS ion gating mode of operation, the continuous ion beam is truncated 

into ion packets which are much smaller in temporal spread as compared to the time 

between gate events, that is to say, the gate is open for only a short time, less than 1% of 

the total experimental cycle [32].  This significantly reduces the total number of ions 

which are transmitted into the IMS cell and adversely affects analytical sensitivity, since 

most of the sample ions are scattered or neutralized at the ion gate.  Data multiplexing 

strategies incorporating mathematical algorithms to apply digitized potentials to the ion 

gate, such as Hadamard [133] or Fourier transforms [73], can increase the instrument 

duty cycle to as high as 50%.  These multiplexing strategies rely on the concept of 

oversampling the ion gate using the algorithm, effectively introducing more than one 

packet of ions per instrument cycle, and then deconvoluting the data using the same 

applied algorithm.  A continuous, sinusoidal wave potential can also be applied to the 

ion gate and the resulting data is deconvoluted based on the phase of the recorded signal 

to achieve the theoretical 50% duty cycle [134].  The limitation of these multiplexing 

and modulation approaches stem from the accurate reproduction of the mathematical 

transform onto the ion gate—time-varying distortion in the ion gate waveform results in 

random baseline noise that can be misinterpreted as signal [135], which complicates the 

interpretation of the data (what is signal and what is noise?).  Applying mathematical 

transforms to the data also introduces peak distortions (e.g., sidelobes) which require 

additional data processing (e.g., apodization) to correct [136].  In practical IMS, a low 
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duty cycle is compensated for by summing more repeat measurements (longer 

experimental observation time), though this reduces sample throughput and consumes 

more sample quantity owning to the inherently lower limits-of-detection resulting from 

low analytical sensitivity. 

 

1-4.3 Ion Losses Between Gating Events and Strategies for Gated Ion Accumulation 

Another concern related to the ion gate has been the fate of the ~99% of ions 

which are not sampled by the IMS spectrometer in the conventional (non multiplexed) 

ion gate mode.  These ions are normally rejected by the ion gate in the “gate off” cycle, 

scattering from the ion beam and neutralizing on the nearby electrodes.  Ion losses 

originating during the “gate off” cycle do not directly contribute to a low analytical 

sensitivity since data is not being sampled during this event, however these ion losses 

will ultimately result in higher sample consumption and thus a reduced limit-of-detection 

for the instrument, which can become important when low sample volumes are provided 

and/or analytes of interest exist in very low concentrations in the sample.  An approach 

which has been successfully utilized to minimize ion losses at the ion gate is to 

accumulate ions during the gate closed event in a trapping potential well and introducing 

a “higher concentration” of ions into the drift region during the next ion gate event.  

Such an approach can be accomplished through the use of RF trapping electric fields in 

an appropriate trapping electrode geometry such as a 2D Paul trap [137,138], a multipole 

(linear) ion trap [139,140], or a stacked ring trap [141].  The latter linear ion trap and 

stacked ring trap can be used to overcome space charge accumulation limits common to 
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2D ion traps [142], and results in higher ion currents being admitted per IMS 

measurement event, which has the effect of increasing both sensitivity and limits-of-

detection.  Despite these favorable attributes, ion trapping/accumulation devices have 

seen very limited applications in ion mobility for very practical reasons—these 

techniques are substantially more complicated to implement than the more simplistic 

thin wire/grid ion gates.  Additionally, because a high density of ions are accumulated 

and pulsed from these ion trapping devices, the temporal width of the ion packet 

generated from ion accumulation will be relatively broad due to space charge effects, 

and so ion mobility resolving power will be limited when using ion storage devices 

except in the case when very long drift regions and/or high pressures are utilized in the 

IMS experiment.  With ion accumulation, it is also difficult to reproduce a narrow 

distribution of ions with a low deviation ion current across the ion swarm (i.e., a square 

wave pulse), which can further degrade resolving power and lead to anomalous peak 

distortions such as peak tailing—a common instrument artifact resulting from ions 

arriving late to the detector.  Thus for most practical implementations of ion gating 

methods in research related IMS instrument platforms, single pulse, electrostatic (lossy) 

ion gates are more than sufficient. 

 

1-5 The Analytical Advantages of Low Temperature Ion Mobility Spectrometry 

So far, we have surveyed the current state of development for ion mobility 

spectrometry and have identified two defining areas, mobility separation efficiency and 

instrument sensitivity, which are of analytical interest for ion mobility instrumentation 
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development, particularly for hyphenated IMS-MS instrumentation.  Recall from earlier 

discussion that resolving power is a useful metric for quantifying instrument separation 

efficiency and is defined by the quotient term in Equation 4, the drift time divided by 

the temporal spread of the ion swarm (td/tw).  From this relationship, one can consider 

several practical means of increasing the resolving power; several experimental 

parameters which influence the temporal properties of the ion swarm are presented in 

Table 2. 

 
 
Table 2 – Experimental parameters which influence the measured resolving power in ion mobility 
spectrometry.  These parameters factor directly into the temporal terms in the resolving power quotient 
value of Equation 4.  Most experimental conditions represent a tradeoff between longer drift times and 
broader peaks, except low temperature which will simultaneously increase ion drift times while 
counteracting lateral ion pulse broadening (peak width) owing to diffusion.  Note that the correspondence 
between parameters is not one-to-one.  For example, increasing the drift voltage will often result in a net 
increase in resolving power, as the peaks narrow more than the drift times decrease. 

 
Experimental conditions which increase the drift 
time (td) of the ion swarm due to greater retention 
time in the drift region. 

Experimental conditions which decrease the 
temporal width (tw) of the ion swarm due to less 
diffusion. 

Increase the drift region length Decrease the drift region length 
Increase the neutral gas density (pressure) Decrease the neutral gas density (pressure) 
Decrease the electric field (voltage) Increase the electric field (voltage) 
Decrease the number of charges on the ion Increase the number of charges on the ion 
Decrease the temperature of the drift gas Decrease the temperature of the drift gas 
Increase ion selectivity towards the drift gas  
 

 
 
From a survey of the factors listed in Table 2, it is clear that in the IMS 

experiment, there is a tradeoff for many of the experimental parameters with respect to 

the two temporal terms, td and tw.  For example, increasing the drift length will likewise 

increase the drift time, but also increase the diffusional broadening of the ion swarm.  

The same is also true for increasing the pressure, voltage and ion charge.  The 
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relationship between these factors is not 1:1, that is, there is a net gain in resolving 

power for many of these factors, such as increasing the voltage (or likewise ion charge) 

will decrease diffusional broadening to a greater extent than decreasing the drift times 

(refer to Equation 5).  The exception to this tradeoff between td and tw in the resolving 

power equation is temperature: at lower temperatures ion drift times will increase due to 

the increased neutral gas density and temporal peak widths will decrease due to a 

decrease in diffusional broadening.  Drift gas selectivity will also result in a favorable 

net increase in resolving power except in the case where ion-neutral interactions broaden 

the distribution of the ion swarm, though recall from earlier discussion that the highest 

resolving power values are experimentally obtained with the low mass helium drift gas 

due to less collisional scatter [143].  Numerous technical challenges exist with regards to 

varying the temperature of the IMS experiment, however if these challenges can be 

overcome (or sufficiently addressed), then an analytical improvement is expected upon 

conducting the IMS experiment at low temperature.  This improvement is essential 

across the board in terms of resolving power, though it must be noted that varying the 

temperature complicates the experiment and thus the resulting interpretation of 

experimental data.  One key example is that at sufficiently low temperature, ion-neutral 

clustering can occur particularly with gas impurities and this can lead to a broadening of 

ion distributions in mobility space, resulting in a loss in resolution [144].  This effect is 

generally not observed for helium drift gas [1]. 
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1-5.1 Temperature Effects on Ion Mobility Resolving Power 

 Now we will take a closer look at the influence that temperature has on 

instrument resolving power for IMS.  From Equation 3, diffusion limited ion mobility 

resolving power increases as the temperature of the ion and surrounding neutrals is 

decreased, which can be accomplished experimentally by lowering the drift gas 

temperature while remaining in the low field limit (i.e., in the absence of ion heating 

conditions).  Conceptually, this can be rationalized by examining the Maxwell-

Boltzmann distribution of velocities at various temperatures, which is plotted in Figure 

6 for helium at various temperatures from 300 (room temperature) to 80 Kelvin (the 

approximate boiling point of liquid nitrogen).  The distribution of average speeds 

narrows as the temperature of the system is decreased, which will result in less 

broadening of the ion swarm at drift equilibrium with the buffer gas.  Additionally, the 

average velocity of the ion swarm will also decrease, which will serve to increase the 

overall drift time of the swarm.  Ultimately, conducting the IMS experiment at lower 

temperatures will serve to increase the measured resolving power. 
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Figure 6 – The Maxwell-Boltzmann distribution of speeds for helium atoms at various temperatures. 
Temperatures plotted are from room (300 K, dotted red line) to liquid nitrogen temperature (80 K, solid 
blue line).  Speed distributions broaden at higher temperatures and most probable speeds shift to higher 
velocities.  Ions at or near equilibrium with the drift gas will be governed by such a distribution. 
 
 
 

The effect of temperature on resolving power in the IMS experiment has been the 

focus of several studies.  In the early ion mobility work, varying the drift gas 

temperature was utilized primarily as a means of studying the energy dependence on ion 

mobilities, since previous drift tube work had investigated ion energy effects by varying 

the electric field or pressure rather than the temperature—these authors concluded that 

drift gas temperature was the only proper way of studying ion temperature effects on ion 

mobilities [51].  In these early instruments, a dry ice bath or liquid nitrogen were used to 

cool the drift gas as these materials were inexpensive, inert and possessed a stable phase 

change temperature.  Temperatures as low as 2 K have been utilized using liquid helium 

for ion mobility experiments designed to probe ion-molecule interactions at low collision 
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energies [145].  Neither of these investigations commented or even hinted at the 

separation efficiency of the IMS technique at low temperature, but rather concerned the 

ability to probe fundamental ion-neutral interactions at low energies.  In more recent 

work, Hill and coworkers explored the temperature effects on the observed resolution of 

peaks in the IMS experiment and concluded that there was analytical utility in using low 

temperature IMS but only if complicating effects such as ion clustering with water could 

be avoided [65].  One of the earliest practical demonstrations of the analytical power of 

low temperature ion mobility was undertaken by Kemper and Bowers in the early 1990’s 

where they used low temperature (~150 K) helium to enhance the separation of 

electronic states (ground and excited) of transition metal ions formed from electron 

ionization [146].  This work presented clear evidence that a drift cell operated at low 

temperatures can effectively enhance the resolving ability of the ion mobility technique.  

Later work by Tabrizchi focused on the temperature dependence on the observed 

resolution of peaks in the IMS experiment and also demonstrated better resolution for 

low temperature ion mobility in most cases, though instrument limitations restricted the 

temperature range which could be evaluated in this study to temperatures higher than 

~280 K [144].  In Tabrizchi’s work it was also concluded that ion clustering with gas 

impurities present in their ambient pressure IMS experiment was the primary cause of 

decreased resolution for specific ions at lower temperatures. While it is clear that low 

temperature IMS can benefit the separation, careful considerations must be given to the 

instrument design in order to minimize complicating condensation effects associated 

with impurities in the drift gas—a point which is developed further in Section 1-5.4. 
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1-5.2 Temperature Effects on Ion Selectivity in the Ion Mobility Experiment 

 Another figure of merit that is closely related to resolving power is separation 

selectivity.  Selectivity in separation science describes how selective the separation 

method is to a particular class of analyte10.  In chromatography, selectivity refers to the 

physiochemical affinity of the analyte to the stationary phase [71].  In ion mobility, 

selectivity refers to analyte ion affinity to the drift gas or constituents within the gas.  

Analogous to changing the stationary phase material in chromatography, different buffer 

gases or small percent gas mixtures (dopants) have been used to introduce analyte ion 

selectivity in the IMS experiment [57,58].  Gas impurities such as water or oxygen can 

also affect ion selectivity, though the effect is unpredictable unless care is taken to 

control and regulate the percentage of impurities introduced into the experiment 

[148,149].  A special example of ion selectivity for small molecules (<200 m/z) involves 

the interaction potential between the ion and the gas.  Weak interactions such as ion-

neutral dipole “sticking” can be exploited to effectively separate ions which differ very 

little from one another, such as isomeric ions which differ only in their electronic 

configuration (Section 3-3).  These interactions are enhanced as the translational energy 

between the ion and neutral is reduced, as is accomplished with low field and low 

temperature.  This particular case will be developed further in section three. 

  

                                                 
10 Selectivity and specificity have been used interchangeably in separation sciences, though there is a 
general consensus among the analytical community that selectivity be used in all cases when referring to 
multi-component separations and the use of specificity should be avoided [147]. 
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Figure 7 – A plot of the inverse ion mobility of several atomic ions in helium gas at 300 and 80 K.  The 
inverse ion mobility is directly proportional to the observed arrival time of ions in the IMS experiment, 
thus the ordering of the atomic ions along the y-axis represents the elution order of these ions from the 
drift region.  At low temperature (80 K, right side of plot) the elution orders of the atomic ions change.  
Data was obtained from references [150-153]. 
 
 
 

Varying the drift gas temperature can introduce selectivity to the IMS 

experiment.  It has been observed that the measured ion mobility values are temperature 

dependant and will change as the temperature of the drift gas changes.  This percent 

change is not the same across different analytes of varying chemical classes, and so there 

exists an optimal temperature range at which any two particular species would separate.  
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Figure 7 contains a plot of the mobilities of several atomic ions in helium whose gas 

phase mobilities are known at two different temperatures, 300 and 80 K [150-153].  The 

y-axis in Figure 7 represents the inverse ion mobility, 1/K, which recall from Equation 

1 is proportional to the measured arrival time of ions in the IMS experiment.  Thus, the 

relative ordering of these ionic species along the y-axis of the plot in Figure 7 is 

indicative of their elution order in the IMS experiment.  The important feature to note in 

Figure 7 is that the observed elution orders of ions in IMS change relative to the 

temperature—this feature can be exploited advantageously in separating ions that would 

normally not be separated at room temperature and underscores an important analytical 

advantage of variable temperature IMS experiments.  One limitation that is evident from 

Figure 7 is that the separation of atomic ions of the same class does not benefit from 

variable temperature, as can be seen with the relative elution orders of the noble gases 

(Kr+, Ar+) and alkali metals (K+, Li+).  This effect is not expected to be significant for 

larger molecular analytes, since the cumulative effects of the heteroatom arrangement of 

higher molecular weight ions would serve to enhance selectivity differences even for 

ions of the same chemical class. 

A general trend that exists in Figure 7 is that ion mobility values decrease as the 

temperature is decreased.  This observed decrease in ion mobility at low temperature 

was first explained by Langevin as a balance between polarization attraction (induced 

dipole) and hard sphere core repulsion between the ion and the neutral.  Langevin 

predicted that as the collision energy is reduced, the polarization attractive potential 

would converge to zero and that the dominating ion-neutral interaction at very low 
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energy would be strictly repulsive [14,154].  This “Langevin polarization limit” has 

since been observed experimentally for small atomic and molecular ions in low 

temperature IMS experiments and occurs below ~150 K depending on the electric field 

[155-157].  The observed decrease in ion mobility as a function of temperature has been 

qualitatively described as a result of “orbiting” collisions between the ion and the neutral 

drift gas [158,159], or sometimes explained as a result of ion clustering with the drift gas 

[160].   It is generally accepted that significant ion-neutral clustering will occur at 

reduced temperatures for molecular gases such as CO2 and SF6 , however there is very 

little evidence that ion-neutral clustering occurs in a low density of helium gas (<10 torr 

pressure) even at very low (4.3 K) temperatures in the IMS experiment [161-163].  This 

conclusion was also made in the early literature where no evidence for ion clustering 

with helium was found in low pressure IMS experiments [164].  In our own low 

temperature experiments, we do occasionally observe helium clustering with the 

transition metal ions, but they occur rarely and only at the lowest temperatures and fields 

studied (i.e., low effective ion temperatures).  This is another reason why helium is a 

preferred drift gas for low temperature IMS studies.  The effective temperature and gas 

dependence on ion clustering should, however, be considered when designing low 

temperature and field IMS instrumentation and even when using pure helium gas. 

 

1-5.3 Low Temperature IMS to Improve Instrument Sensitivity 

Recall from earlier discussions in Section 1-3 that in ion mobility 

instrumentation, as with many other analytical instrumentation, there is a compromise 
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between resolution and sensitivity—some amount of information must be sacrificed in 

order to improve the precision of the measurement.  High resolution IMS 

instrumentation inherently suffers from low ion transmission due to the long drift 

regions and/or high pressures employed [37,38].   While focusing fields can be used 

within the drift region to improve ion transmission, such strategies cannot be used for 

low m/z ions due to the detrimental ion scattering effects of high fields and gas collisions 

on low mass ions. 

It is a well-known phenomenon that reducing the gas temperature will likewise 

reduce the extent of ion diffusion within the gas for the ion mobility experiment 

[50,165].  This result can be visualized by the Maxwell-Boltzmann distribution for 

helium, plotted in Figure 6, which illustrates the narrowing of speed distributions as the 

temperature of the gas is lowered.  For the IMS-MS experiment, diffusion is strictly a 

band broadening mechanism that also results in ion losses at the sampling pinhole 

aperture between the IMS and MS since only those ions at the axis of the drift cell can 

pass through the aperture.  Figure 8 contains trajectory simulations of ion motion under 

a weak electric field in a drift cell at two temperatures: 300 and 80 K.  For the 

simulation, individual ion-neutral collisions are modeled using a hard-sphere 

approximation11 which factors in the drift gas cross-section, gas temperature and number 

density to determine the mean free path for ion-neutral collision frequency calculations 

[166].  As can be seen by the ion trajectory results, there is a noticeable decrease in 

                                                 
11 Fundamental assumptions of the SIMION trajectory simulation used here and elsewhere are i) elastic 
collisions with randomized trajectory outcomes ii) energy transfer only a result of collisions and can be ion 
heating or cooling iii) drift gas velocity Maxwellian, and iv) time steps for the simulation are on the order 
of each collision—ions are simulated one at a time. 
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radial ion diffusion when going from room temperature to 80 K (Figure 8A and B, 

respectively).  This translates into an expected higher ion transmission at lower gas 

temperatures. 

 
 

 

Figure 8 – Ion trajectory simulations of ions traversing a uniform field drift cell in 300 and 80 K helium.  
Ions travel the gradient of the electric field (not shown) from left to right. A) At 300 K, ion motion is 
characterized by a high degree of radial (away from axis) diffusion.  B) At 80 K, ion diffusion is 
substantially decreased, resulting in a higher predicted ion transmission through a pinhole aperture placed 
at the end of the drift cell.  100 ions of 78 m/z (benzene) were modeled in 1 torr of helium gas at a field 
strength (E/N) of 10 Td.  See accompanying text for descriptions of the statistical model used. 
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1-5.4 Cryogenic Ion Mobility to Condense Out Drift Gas Impurities 

It is a well-known problem in ion mobility experiments that gas impurities 

present in the drift gas will adversely affect the IMS separation [1,65,167,168].  While in 

some cases, gas impurities have been purposely introduced in order to enhance ion 

selectivity in the ion mobility experiment [58,148], generally such impurities are more of 

a hindrance to the experiment than a benefit, specifically when the amount and identity 

of the impurity is unknown.  There are two primary sources of drift gas contamination in 

the IMS experiment:  i) impurities which make their way into the drift region from the 

sample ionization region, and ii) impurities carried into the instrument by the drift gas 

which are either arising from the gas source itself (reservoir tank) or introduced through 

leaks/contamination in the manifold line.  For traditional IMS instrument configurations 

where the ionization region and the drift region are enclosed in the same volume, an 

effective strategy for reducing gas contamination into the drift region is to sweep the 

drift gas from the back of the instrument to the front towards the ion source such that 

neutrals are effectively blocked from entering the drift region [168].  Decoupling the 

ionization region from the drift region is the preferred option for minimizing drift gas 

contamination arising from the introduction of sample to the source; however this is 

experimentally a more complicated arrangement since the experimenter must also 

consider how to get ions from the source to the drift region with minimal 

losses/discrimination.  In the properly operated decoupled source/drift cell design, the 

source operates at a lower pressure than the drift cell, so that neutrals cannot overcome 

the force of the outflow of gas and thus will not enter the drift region [110].  Carefully 
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and constructed and tested gas manifold lines can effectively eliminate poisoning of the 

drift gas through atmospheric leakage into the manifold, or through trapping of 

impurities prior to introduction into the drift region (see Section 2-5.7).  

Impurities arising from the gas source itself can still pose a problem even when 

high purity gases are used.  This issue becomes apparent when one considers the large 

number of collisions an ion experiences in the IMS experiment.  From SIMION 

trajectory simulations which incorporate a hard sphere approximation for ion-neutral 

interactions, the number of collisions between a C60 ion (760 m/z) in 10 torr helium gas 

at room temperature is calculated to be about 2x106 collisions across a 30 cm drift 

region.  An impurity present in the drift gas at a 1 ppm concentration will thus collide 

with the ion about 20 times.  If one considers that each ion collision with the impurity 

can result in ion chemistry which changes the ion identity and thus the subsequent 

measured mobility, then 1 ppm is not a trivial amount. 

 
 

 Table 3 – Gas purity specifications for helium at several grades of purity.  Specifications were compiled 
from several sources using the lowest concentrations reported for each gas impurity.  These specifications 
and grade designations will differ slightly from one gas supplier to another as no strict standards exist for 
classifying or quantifying specific gas impurities. 

 
Maximum amount of specific impurities (ppm) 

Gas Purity Grade Assay 
(% v/v) N2 H2O O2 H2 

CO + 
CO2 

Total 
Hydro- 
carbons 

Research Grade 6.0 99.9999% 0.4 0.2 0.1 0.5 0.1 0.1 
Ultra Pure Carrier (UPC) / 
Chromatography Grade 5.5 99.9995% 2 0.2 1 1 0.5 0.3 

Ultra High Purity (UHP) 5.0 99.999% 5 2 1 1 1 0.5 

Zero / Laser Grade 4.7 99.997% 5 5 4 1 1 1 

High Purity (HP) 4.5 99.995% -- 5 5 -- 1 2 
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But how realistic is the previously mentioned 1 ppm impurity scenario?  Table 3 

lists the specifications for impurity levels present in helium gas for several grades of 

purity surveyed from several high purity gas suppliers12.  As can be seen from the 

concentrations in Table 3, impurities exist at 1 ppm levels or greater for all but the 

highest gas grades.  For most IMS experiments described in the literature, UHP (5.0) 

grade purities are used, so impurities can and do pose a real problem to the ion mobility 

practitioner.  Even using the highest grade of purity (6.0), one must pay very careful 

attention to protecting this purity through gas transfer lines and within the instrument 

itself.   

The ion-neutral collision estimates presented above underscore another important 

point regarding ion mobility experiments: the operational pressure (gas number density) 

of the experiment will ultimately determine the likelihood that undesirable reaction 

chemistry will occur.  For example, at ambient pressure (760 torr) where many IMS 

experiments are conducted, SIMION predicts the average number of ion-neutral 

collisions across 30 cm to exceed 200 million, which equates to several hundred 

collisions with a 1 ppm impurity.   Under these conditions, if the reaction channel is 

sufficiently exothermic, then reaction chemistry will almost certainly occur [169,170].  

This is one practical reason for conducting the IMS experiment at reduced (1-10 torr) 

pressures.  The phase change temperatures listed in Table 4 for commonly encountered 

                                                 
12 Gas grade purity numbers are derived from the purity assay percentage:  the first number in the grade 
represents the number of 9’s in the assay percentage while the decimal number is the value of the next 
subsequent integer measurement in the assay.  For example: a 99.995% purity assay contains four 9’s and 
the value of 5 at the highest precision and so would be classified with a purity grade of 4.5.  Because the 
assay percentage value offers no information about the types of impurities present, its use should be 
general when selecting gases appropriate for analytical usage. 
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gas impurities illustrates a primary motivation for conducting the ion mobility 

experiment at cryogenic temperatures.  At the boiling point of liquid nitrogen (78 K), 

one would expect all but nitrogen (and perhaps some carbon monoxide) to condense out 

of the drift gas onto the chamber walls, eliminating the possibility of ion-neutral 

interactions with these impurities and thus reducing the occurrence of undesirable 

reaction chemistry effectively to zero.   

 
 
Table 4 – Condensed phase transition temperatures for several commonly encountered gas impurities 
[171,172].  Cooling the helium gas down to liquid nitrogen temperature (far left column in bold) will 
cause all residual impurities except hydrogen (and trace amounts of CO) to condense out of the gas. 
 
Drift gas impurity: N2 H2O O2 H2 CO CO2 CH4 C2H6 C3H8 

Phase Change 
Temperature (K): 77.3 273.2 90.2 20.35 81.6 216.6 111.6 184.5 231.1 

          
 

 

1-6 An Overview of the Mass Analysis Methods Used in These Studies 

The other critical component of hyphenated IMS instrumentation is the mass 

analyzer.  As with ion mobility spectrometry, there are many variations of mass 

analyzers each offering their own distinct benefits and limitations to a given 

experimental design, thus it is of instructional value to summarize these differences.  

Table 5 lists the various mass spectrometers which are in common use today alongside 

several figures of merit which are often considered when utilizing specific mass 

analyzers in practical instrumentation design. 
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Table 5 – The various mass analyzers and their defining features. 
 

Mass Analyzer Type Fields Utilized Upper m/z 
Range 

Resolving 
Power a 

Analysis 
Speed 

Ion 
losses 

Press- 
ure 

regime 
Ref. 

Quadrupole scanning / 
filtering electrodynamic <4,000 10,000 10-3 to 

10-1 sec 
mod- 
erate 

<10-5 
torr 

[173] 
[174] 

Magnetic Sector spatially 
dispersiveb 

electrostatic & 
magnetic <20,000 30,000 10-3 to 

10-1 sec high <10-5 
torr 

[175] 
[176] 

Io
n 

Tr
an

sm
is

si
on

 

Time-of-Flight spatially 
dispersive 

electrostatic with 
dynamic pulsing <100,000 50,000 10-5 to 

10-4 sec low <10-6 
torr 

[177] 
[178] 

3D Paul Ion Trap scanning / 
trapping electrodynamic <4,000 10,000 10-3 to 

10-1 sec low <10-4 
torr [179] 

2D Linear Ion Trap scanning / 
trapping electrodynamic <4,000 10,000 10-3 to 

10-1 sec low <10-4 
torr [180] 

Kingdon Ion Trap 
Orbitrap 

scanning / 
trapping electrodynamic <50,000 150,000 10-3 to 

10-1 sec 
very 
low 

<10-8 
torr 

[181] 
[182] Io
n 

St
or

ag
e 

Ion Cyclotron Resonance 
Penning Ion Trap 

scanning / 
trapping 

electrodynamic 
& magnetic <30,000 >500,000 10-3 to 

10 sec 
very 
low 

<10-8 
torr [183] 

 
a. Resolving power values reported here are single peak measurements of the ion’s mass divided by the full width of the peak at half 

of its maximum amplitude  [64].  These values represent the upper limits experimentally achievable by the technique. 
b. Magnetic sectors are fundamentally mass dispersive spectrometers, but due to practical considerations are operate in a scanning 

mode.  Dispersive magnetic sector instruments require multiple detectors and are used in special isotope monitoring applications.  
A special case has been reported where a sector instrument was used in both scanning and dispersive modes [184]. 

 
 
 
 
 

The scope of this dissertation work will concern two mass spectrometer designs, 

the quadrupole and time-of-flight mass analyzers.  The basic operational principles of 

each are discussed in the following sections (1-6.1 and 1-6.2, respectively). 

 

1-6.1 The Quadrupole Mass Spectrometer 

The quadrupole mass spectrometer is the most widely used mass spectrometer 

and is commonly encountered in field portable and routine analysis bench top 

instrumentation.  The popularity of the quadrupole mass spectrometer is due to several 

reasons, the most defining features being the analyzer’s relatively low cost, ease of 

operation, portability and the versatility of the mass analyzer to operate either as a wide 
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or narrow bandpass m/z ion filter.  Exact analytical solutions of ion motion and behavior 

in a quadrupole device have been developed [173], but these involve complicated 

differential equations which are not conceptually insightful for the basic principles of the 

device, and so only a qualitative description of the operational principle of the 

quadrupole will be provided in this text. 

The basic geometry of the quadrupole mass spectrometer is four precision 

aligned electrodes, ideally of a hyperbolic geometry [185,186], though a reasonably 

good (quadratic) field can be established using lower cost cylindrical rods, such as those 

shown in Figure 9.  The use of cylindrical rods reduces the usable inscribed radius of the 

device, so is not a preferred option for miniature or large charge capacity applications.  

The ion beam passes through the center of the four rods as an RF field is applied across 

opposite rod pairs—in the common operational mode the phase of the RF field is offset 

by 180 degrees across the rod pairs, creating an oscillating potential well axially between 

the rods.  The frequency and peak amplitude of the RF will govern the stability of low 

m/z ions, specifically, as the frequency and voltage are increased, the m/z cutoff will 

also increase to higher m/z values, thus creating a low m/z filter.  To discriminate the 

high m/z ions, a DC voltage is applied across the rod pairs.  While low mass ions are 

influenced strongly by the RF, and thus are periodically repositioned, large mass ions are 

relatively insensitive to the RF field, and so are influenced more readily by the effect of 

the DC voltage.  The magnitude of this DC offset governs the high m/z cutoff.  The 

combination of RF and DC fields can be tuned in the quadrupole device to create a 

bandpass filter which effectively transmits only a narrow m/z window of ions, as 
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depicted conceptually in Figure 9B.  It is because of this bandpass transmission effect 

that quadrupoles are commonly referred to as mass filters.   

 
 

 

Figure 9 – Operational principle of the quadrupole mass spectrometer.  A) The quadrupole consists of 
four aligned rods with RF voltages applied 180 degrees out of phase across opposite rod pairs, shown here 
with different polarities (+ and -).  A DC offset is applied across the rod pairs, creating a potential 
difference between them.  B) The trajectory of ions through the quadrupole is m/z dependant.  Low m/z 
ions (blue) are heavily influenced by the RF field and will gain energy as they traverse the device.  High 
m/z ions (red) are relatively unaltered by the RF field, however the applied DC offset across rod pairs will 
slowly influence their final trajectory.  Ions which possess a stable m/z value (green) that is not too high 
and not too low will be transmitted through the quadrupole. 
 

 

This mass filtering capability has high analytical utility since an ion beam 

containing a wide distribution of m/z ions will pass through the quadrupole and come 

out on the other side with a defined m/z range or single value.  As the stability window is 

narrowed, the overall ion transmission will decrease, and so quadrupoles inherently 

suffer from low ion transmission when operating in high resolution mode.   

The largest contribution to ion losses in a quadrupole device results from the 

transit of the ions into and out of the electrode assembly.  These ion losses are 

characterized by a necessary crossing of the ion through regions of instable electric 
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fields, since ions experience a constantly changing RF/DC field as they approach and 

exit the quadrupole assembly due to the ion’s proximity to the electrode surfaces.   These 

fringe fields at the front and back of the quadrupole will ultimately results in significant 

ion losses since ions are traversing regions of varying RF/DC ratios which define the 

mass (m/z) stability window [187].  There are two very practical approaches to 

addressing this problem: i) inject and extract ions from the quadrupole assembly using 

strong electric fields to minimize the fringe field effects and the temporal residence 

times of the ions in these undesirable regions [188,189], and ii) spatially separate the RF 

and DC components of the electric field which combined give rise to ion instability.  The 

use of strong electric fields is undesirable as the presence of neutral collisions will result 

in ion heating effects that can alter the structure of the ion, initiate ion chemistry and 

deplete experimentally informative metastable ion configurations (e.g., electronically 

excited states, proton bound dimers) or even worse induce ions to dissociate.  

Additionally, strong fields accelerate ions entering the quadrupole such that their 

velocities through the device are higher, resulting in ions experiencing fewer RF cycles, 

which ultimately degrades the performance of the device [190].  A common strategy to 

decreasing the ion’s time spent in these undesirable end regions is to assemble the end 

electrode elements as close to the quadrupole rods as possible (within the limits of 

promoting electrical breakdown) such that ions quickly enter the rod assembly (Figure 

10B). 
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Figure 10 – Ion prefilter devices used for quadrupoles.  A) No special prefilter used but rather ions are 
accelerated quickly into the quadrupole device using high electric fields.  B) The entrance aperture lens is 
placed in very close proximity to the rods to minimize the fringe field region. C) A Brubaker type 
“delayed DC ramp” prefilter, utilizing a short length of an otherwise geometrically equivalent quadrupole 
lens in front of the main rod assembly.  The rods possess equivalent RF fields (shown here through 
capacitive coupling) but are absent of the DC component.  D) Special tab electrodes aligned with the rods 
possessing opposite magnitude DC potentials that exactly cancel the DC potential of each adjacent rod. E) 
A special “leaky dielectric lens used in place of an entrance aperture plate which is transparent to the RF 
but not the DC component of the main rod assembly. F) A leaky dielectric barrel lens placed at the 
entrance of the quadrupole and partially inserted into the rod set to more carefully shield the ion beam 
from the fringing electric fields while retaining the full conductive properties of the entrance ion optic. 
 
 
 

Shielding specific components of the electric field is the preferred strategy for 

addressing the instability issue, and there are several devices which have been 

successfully implemented as prefilters for quadrupole devices [191].  The first and most 

utilized means of shielding the undesirable components of the RF/DC fringe field is by 

using a “delayed DC ramp” implemented with a very short (stubby) quadrupole at the 

front (and oftentimes back) end of the quadrupole assembly, and possessing a purely RF 

potential component (Figure 10C) [192].  Ions will thus first experience only the RF 

component of the field before seeing the DC component of the main quadrupole rod set, 

enabling a gradual transition to the full RF field prior to the introduction of the DC.  This 
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strategy was first devised and implemented by Brubaker in the 1960’s and is still 

commonly referred to as a Brubaker prefilter.  While the Brubaker prefilter is the 

preferred device for transitioning ions through the fringe field region of a quadrupole, 

the difficulty in aligning and wiring the precision ground rod set against existing 

instrumentation while maintaining proper capacitive coupling of the RF harmonics has 

led to more simple alternatives being devised.  Among these easier to implement devices 

is a small 4-sectioned electrode aligned with (but electrically isolated from) each of the 

four rods of the quadrupole assembly and possessing opposite magnitude DC potentials 

that exactly cancel the DC field of the rods each electrode element is associated with 

(Figure 10D) [193,194].  The same concept of balancing the rod DC field can be applied 

to a single DC barrel lens entrance electrode partially inserted into the quadrupole rod 

set.  A two piece concentric barrel lens assembly utilizing this balanced DC design 

concept has been commercially implemented (i.e., Turner-Kruger entrance lens) and 

operates by scanning the DC of the inner barrel in proportion to the quadrupole DC scan 

[195].  A simplistic design for decoupling the RF and DC fields was devised by Fite in 

the 1970’s and consisted of a single barrel lens comprised of a particular class of 

partially dielectric conductors, referred to as leaky dielectric materials (Figure 10F) 

[196,197].  These materials are characterized by being transparent (leaky) to RF 

potentials but not DC, and so a barrel lens of this material placed at the entrance of the 

quadrupole will be sufficient to shield the DC component of the field.  Early 

implementations of the leaky dielectric concept used a piece of roofing slate to improve 

ion transmission in a quadrupole by over an order of magnitude, however, the variability 
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in conductivity and undesirable outgassing properties of roofing slate led to the 

discovery of other suitable alternatives.  In Fite’s design and the commercial technology 

which resulting from his work (Extranuclear Laboratories Field Separator (ELFS) ion 

lens, Extranuclear Laboratories, Pittsburgh, PA), the dielectric material was a proprietary 

carbon-based coating inside an alumina tube [198].  Later versions of the leaky dielectric 

prefilter were made from ferromagnetic materials (ferrites) and took the form of an 

aperture plate in addition to the original barrel shaped design [199].  Subsequent studies 

confirm that the leaky dielectric prefilter performed as good as other more mechanically 

complicated designs, though for heavy sample throughput applications, contamination 

can become an issue [199,200]. 

For the quadrupole, a mass spectrum is obtained by scanning the bandpass region 

across an m/z range and recording the resulting ion signal.  The speed of analysis will 

thus depend on the resolution and m/z range desired for the analysis.  Quadrupoles can 

also be operated with RF voltages only, creating a device that effectively transmits a 

wide m/z range of ions (an RF “ion pipe”).  Since the RF field governs the low m/z 

transmission, the RF voltage can be tuned to remove low m/z ions from the ion beam, 

which can be useful for eliminating chemical noise resulting from solvent or matrix ions 

which are present in the sample.    RF only operation is particularly useful when mass 

filtering is not a requirement for the experiment, resulting in high ion transmission 

across nearly the entire dynamic mass range of the quadrupole itself.  This fact is 

particularly advantageous for transmitting an ion beam through variable pressure 

regimes.  Additionally, the modest pressure requirements (Table 5) makes quadrupole 
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mass filters ideally suited for coupling to high pressure components such as atmospheric 

ionization inlets and ion mobility spectrometers, as quadrupoles can and oftentimes are 

operated in pressures as high as 10-4 torr [201]. 

 

1-6.2 The Time-of-Flight Mass Spectrometer 

 The principle of m/z dispersion based on time-of-flight (TOF) is one of the 

earliest known mass separation principles, with foundations in classical mechanics and 

Newton’s second law of motion.  TOF principles can be described analytically by the 

simple kinetic energy relationship: 

21
2

E mv=      (8) 

Where E, m and v can describe an ion’s kinetic energy, mass and velocity, respectively.  

The ion’s charge, z, is inclusive in the kinetic energy term while contained within the 

velocity term are the distance, d, the ion traverses and the time of ion flight, t.  If an ion 

is accelerated to a constant kinetic energy across a constant, known distance, then the 

ion’s measured time-of-flight will be indicative of its mass.  The time-of-flight mass 

separation concept is illustrated in Figure 11 for a simplified TOF instrument geometry.   
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Figure 11 – Operational principle of time-of-flight mass spectrometry.  A) Ions start (either formed or 
introduced) between two electrodes: a plate and a grid. B) An electrical pulse pushes ions through the grid 
and accelerates them to a (ideally) constant kinetic energy.  Beyond the grid, the ions enter a region of 
zero field where they neither gain nor lose the kinetic energy imparted to them by the initial electrical 
pulse.  C) It is in this field free region that ions of low mass (small spheres) will travel faster than ions of 
high mass (large spheres) due to their mass dependant differential velocities.  Ions arrival times are 
recorded with an appropriate detector placed at the opposite end of the field free region.  Note the recorded 
signal widths which are indicated above each ion distribution will be indicative of differences in the ions’ 
starting positions and initial kinetic energies.  Thus resolving power in time-of-flight is ultimately 
dependant on the initial pulse width of the ion packet, as it is in drift tube type ion mobility spectrometry. 



 

 

62

While the principle of time dispersion of charged particles possessing different 

masses was known as early as 1897 from J. J. Thompson’s famous cathode rays 

experiments [202], it was William Stephens who proposed what can be regarded as the 

first true modern implementation of TOF mass spectrometry in a 1946 scientific 

meeting13 [203].  The first TOF instrument based on Stephens’ description was built by 

Cameron and Eggers in 1948 and was dubbed the “velocitron” which achieved a 

resolution of ~5 and a spectral acquisition rate of several hundred spectra per day [204].  

Later TOF instruments which were described in the following years operated with mass 

resolutions between 10 and 20 [205,206].  These early TOF instruments demonstrated 

that mass information was acquirable through careful arrival time measurements, 

however technologically these instruments still could not achieve the resolutions of the 

magnetic sector which was the only practical mass spectrometer at the time [203].  This 

was due to the fact that the otherwise simple relationship between the ion’s mass and 

measured flight time was complicated by variations in the ion’s initial starting position 

(d) and kinetic energy (E).  These variations resulted from the ionization event, which 

generated ions with a distribution of kinetic energies and spatial locations.  In these early 

experiments, a pulsed electron beam was used for ionization, resulting in ions being 

                                                 
13 An excerpt from Stephens’ original 1946 communication: “Advances in electronics seem to make 
practical a type of mass spectrometer in which microsecond pulses of ions are selected every millisecond 
from an ordinary low-voltage ion source.  In traveling down the vacuum tube, ions of different M/e have 
different velocities and consequently separate into groups spread out in space…This type of mass 
spectrometer should offer many advantages over present types.  The response time should be limited only 
by the repetition rate (milliseconds)…Magnets and stabilization equipment would be eliminated.  
Resolution would not be limited by smallness of slits or alignment.  Such a mass spectrometer should be 
well suited for composition control, rapid analysis, and portable use.”  This would become a prophetic 
statement with regards to the current state of time-of-flight mass spectrometry.  Many portable TOF 
instruments are in use today and the magnetic sector has all but disappeared from the commercial mass 
spectrometry market. 
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formed across both temporal and spatial dimensions of the electron beam [207].  This 

kinetic energy variation problem was addressed by the work of Wiley and McLaren in 

1955 who introduced a time delay between ion formation and subsequent TOF 

extraction, which they termed “time-lag focusing” [208].  This small delay gave ions 

sufficient time to reorder into spatially favorable locations for TOF measurement, as 

depicted in Figure 12.  This work led to the commercialization of the TOF mass 

spectrometer in the 1950’s by the Bendix Corporation, which could achieve a then 

impressive 500 resolution [209].  Time-lag focusing is implemented in modern laser 

desorption TOF instruments as delayed extraction, and has proven to be a very useful 

means of substantially improving the resolution obtainable on these instruments 

[210,211].  While Wiley and McLaren’s initial implementation of time-lag focusing 

utilized the potential well formed from an electron beam to reposition the ions during the 

time delay, delayed extraction is applied to surface generated ions and relies on the ion’s 

kinetic energy dependant drift away from the surface for energy correction. 
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Figure 12 – Principle of time-lag focusing for time-of-flight mass spectrometry.  Three ions of the same 
mass are formed at the electrode surface with varied kinetic energies, shown with arrows.  A) In 
continuous extraction, the ion’s total kinetic energy will be the energy imparted by the extraction potential 
plus each ion’s initial kinetic energy, resulting in different flight times, and thus different ending positions 
for ions of the same mass (dotted circles).  B) By introducing an appropriate time delay, ions will drift to 
more favorable positions away from the electrode in the absence of the extraction field.  Their ending 
positions during this time delay will be indicative of their initial kinetic energies.  When time lag focusing 
is implemented in surface generated ionization, as depicted here, this technique is more commonly 
referred to as delayed (ion) extraction. 

 
 

Time-lag focusing methods can only partially correct for the initial kinetic energy 

spread of ions, and cannot correct for any kinetic energy deviations introduced after ion 

extraction, such as those resulting from metastable ion decay or post acceleration fields, 

and so another significant contribution to the TOF mass spectrometer was made by 

Mamyrin in the 1970’s with the implementation of the electrostatic ion mirror, or more 

commonly referred to as the reflectron [212-214].  This conceptually simple device 

introduces a deceleration field in the path of the ion beam, creating a potential hill which 

ions of the same m/z but different kinetic energies will penetrate at different depths, 

which has the advantage of spatially correcting the distribution of kinetic energies, as 

illustrated in Figure 13.  
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Figure 13 – Principle of kinetic energy correction using a reflectron TOF.  Ions are formed in the same 
position but with different kinetic energies (depicted with arrows) in the ion acceleration source to the left.  
As a result, ions with more initial kinetic energy will drift further than those with less kinetic energy in the 
same magnitude acceleration potential.  While their spatial locations are disperse entering the reflectron (at 
right), those ions with more kinetic energy penetrate the uphill potential further, which has the effect of 
correcting for the initial energy spread, as shown with coincident arrival times to the detector.  The same 
effect can also be observed for ions formed at different spatial positions in the source.  Ion trajectories and 
temporal positions were calculated using SIMION 8.0.  

 
 
 
With a reflectron, the achievable mass resolving power of a TOF analyzer can be 

increased by an order of magnitude or greater [178].  The limitations of reflectron TOF 

instruments is that ion transmission is substantially lower in this “reflected” mode than 

in the traditional “linear” mode geometry, with ion losses due to reflectron reported as 

high as 50%, mostly resulting from the necessary use of wire mesh grids to establish 

electric field boundaries within the device [215].  While gridless reflectron instruments 

have been developed that achieve higher ion transmission than their grid bearing 

counterparts, these instruments require more ion optical elements to align the ion beam 

precisely, and as such are much more difficult to operate [216,217].  Additionally, 
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reflectron instruments focus only a narrow range of m/z ions, and so the dynamic range 

of energy focusing is limited.  Multi-stage and nonlinear field reflectrons have been 

developed to address this issue, which adds further complexity to the overall design 

[218,219]. 

 Another seminal contribution to the field of TOF mass spectrometry came with 

the development of the orthogonal acceleration TOF geometry, which introduces the ion 

beam at a right angle to the TOF analysis trajectory [220].  The orthogonal TOF 

geometry allows for a continuous or irregularly pulsed ion beam to be sampled by the 

TOF analyzer, greatly facilitating the coupling of TOF with other stages of analysis.  

The other inherent advantage of extracting ions orthogonally from an ion beam is that 

the analyzer dimensions are inverted such that ion spread axially in the beam direction 

will not contribute to resolution losses in the TOF dimension.  This idea can be 

illustrated metaphorically by considering a drop of oil placed upon a flat surface.  As the 

oil spreads in all directions parallel to the surface, the orthogonal depth of the oil droplet 

continues to diminish.  Thus, high TOF resolutions can be realized from an axially 

diffuse ion beam, as long as the width of the beam in the TOF dimension is narrow14.  

High resolution orthogonal TOF is achieved with appropriately designed ion optics that 

can effectively shape and compress the ion beam in the TOF dimension [221,222].  

Today TOF instruments can achieve impressive levels of mass accuracy (sub ppm) and 

                                                 
14 Narrowing of the ion beam in the TOF dimension is facilitated by relaxing the electrostatic confinement 
of the ions in the orthogonal (or transverse) dimension.  In practical TOF instrument design, this is 
achieved by using two flat, parallel plates with surface areas greatly in excess of the in beam dimension.  
The closer spacing of these plates facilitates higher spatial confinement in the TOF dimension and thus 
higher mass resolutions with the usual expense of ion transmission (sensitivity). 
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resolving power (~50,000)15, afforded by novel electrode geometries and advancements 

in precision electronics delivering low voltage ripple power supplies and fast rise time 

pulse and timing circuits. 

 

1-7 An Overview of the Ionization Methods Used in this Work 

 A key component required in both mass and mobility spectrometers is the ability 

to create gas phase ions from samples of various chemical compositions and volatilities.  

The first mass spectrographs utilized a beam of electrons to ionize gas phase samples.  

While electron ionization is still the most commonly used ionization method today, 

many other ionization methods have emerged, each with their own advantages and 

limitations.  Table 6 lists several of the ionization methods which have been used in 

mass spectrometry [223].  There are numerous other ionization methods in use today 

which are derivatives or combinations of the ones listed in Table 6.  In recent years 

ionization method development research has focused on ways to generate ions from 

samples at ambient pressure and desorption methods which can ionize samples directly 

with little to no sample pretreatment. 

 The work in this dissertation will concern primarily electron ionization, though 

two additional sources have been constructed for the cryogenic instrument—one based 

on laser ionization and another based on a novel electrospray ionization interface design 

the latter of which holds promise for enhancing the instrument sensitivity and IMS 

                                                 
15 Performance specification for the “maXis” ultra-high resolution time-of-flight instrument manufactured 
by Bruker Daltonics, which represents the highest performance TOF instrument on the market in terms of 
mass resolution.  Bruker began installing the first of these latest generation orthogonal TOFs in 
laboratories starting late 2008. 
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resolving power through high charge state ion formation.  The following sections will 

introduce the reader to the fundamentals of these three ionization techniques. 

 

Table 6 – Ionization methods used in mass spectrometry and their defining features. 
 

Ionization Method suitable analytes mass limit 
(amu) Features Ref. 

Glow Discharge GD nonvolatile <200 Produces singly charged atomic ions. 
Useful for bulk metal analysis. [224] 

Inductively Coupled Plasma ICP nonvolatile <200 Neutral to ion conversion efficiency 
~100%. Isotope and elemental analysis. [225] 

Spark Ionization 
Spark Source Mass Spectrometry SSMS volatile or 

nonvolatile <500 Useful for elemental/isotopic analysis of 
solids. Pulsed ionization source. [226] 

Resonant Ionization 
Resonant Multiphoton Ionization 

RIMS 
REMPI volatile <500 Highly selective to the chemical properties 

of the analyte. [227] 

Photoionization PI volatile <1,000 Selective to the ionization potential of the 
analyte. Low fragmentation. [228] 

Electron (Impact) Ionization EI volatile <1,000 Extensive fragmentation. These patterns 
can be used for chemical identification. [229] 

Surface Ionization 
Thermal Ionization 

SI 
TI 

volatile or 
nonvolatile <1,000 Low cost, stable ion emission useful for 

isotopic analysis.  High fragmentation. [230] 

Chemical Ionization 
Atmospheric Pressure CI 

CI 
APCI volatile <2.000 Less fragmentation than EI. Can be 

operated at ambient pressure. [231] 

Field Ionization 
Field Desorption 

FI 
FD 

low volatile and 
nonvolatile <2,000 Ionization via a high electric field. Useful 

for heavy hydrocarbon samples. [232] 

Fast Atom Bombardment FAB nonvolatile 
soluble in matrix <6,000 Sensitive to preformed ions. Low 

fragmentation and sample consumption. [233] 

Secondary Ion Mass Spectrometry 
Liquid SIMS SIMS nonvolatile 

soluble in matrix <10,000 High spatial resolution on the order of 
single atoms. Depth profiling possible. [234] 

Plasma Desorption Mass 
Spectrometry PDMS nonvolatile <15,000 Requires a radioactive fission source. 

Fission generates a pulsed burst of ions. [235] 

Thermospray TSP nonvolatile 
soluble in solvent <1,000 Enabled first practical coupling of liquid 

chromatography to mass spectrometry. [236] 

Sonic Spray Ionization SSI nonvolatile 
soluble in solvent <2,000 Resulting multiply charged ions are 

desolvated, improving the mass analysis [237] 

Electrospray Ionization ESI nonvolatile 
soluble in solvent <200,000 High abundance of intact, multiply 

charged ions.  Enables liquid sampling. [238] 

Laser Ionization Mass Spectrometry LIMS 
LDI nonvolatile <1,000 Forms a pulse of ions via a high energy 

laser.  Fragmentation at high mass. [239] 

Matrix Assisted Laser Desorption 
Ionization MALDI nonvolatile 

soluble in matrix <500,000 Capable of ionizing nonvolatile, high mass 
analytes.  Pulsed ion source. [240] 

Desorption Atmospheric Pressure 
Photoionization DAPPI nonvolatile <500 Nonvolatile sampling, ambient 

desorption/ionization variant of PI [241] 

Direct Analysis in Real TimeTM DART volatile and 
nonvolatile <1,000 Ambient ionization of samples placed in 

an energetic, metastable neutral gas jet. [242] 

Desorption Atmospheric Pressure 
Chemical Ionization DAPCI nonvolatile <1,000 Nonvolatile sampling, ambient 

desorption/ionization variant of CI [243] 

Desorption Electrospray Ionization DESI nonvolatile <10,000 Ambient desorption/ionization method. 
Can ionize high mass analytes. [244] 
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1-7.1 Electron Ionization 

 Electron ionization (EI) has had over a century to mature [202], and today EI 

sources can be found in a variety of MS instruments in common use, including gas 

chromatographs and residual gas analyzers.  The basic principle of EI first involves the 

formation of a stable beam of electrons which are accelerated to a sufficient kinetic 

energy through electrostatic or magnetic fields, or a combination thereof [245,246].  An 

acceleration energy of 70 eV is commonly used, as this value has been experimentally 

shown to produce the highest flux of ions for organic molecules.  As most ionization 

energies fall 50-60 eV lower than this observed 70 eV maximum, it has been suggested 

that energy transfer in EI is very inefficient [118].  Estimates are that at most only 0.1% 

of molecules are ionized in this process.  It has also been noted that at 70 eV, the de 

Broglie wavelength of the electron matches favorably with the average bond lengths 

encountered in organic molecules (~0.14 nm), which leads to an optimal energy transfer 

between the electron and molecule at 70 eV [229].  The electron beam is traditionally 

formed via thermionic emission from a hot filament possessing a low work function, 

such as tungsten or rhenium.  Inorganic crystals such as lanthanum hexaboride have also 

been used as the hot cathode material, though these refractory ceramic materials are 

more prone to chemical poisoning by the organic compounds which are commonly 

analyzed in mass spectrometry [247].  Permanent magnets are often used to collimate 

and increase the path length of electrons to increase ionization yields and keep the 

electron beam stable in the presence of the electric fields which are added to extract ions 
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formed in the EI process [248].  After the electron beam is established, the gas phase 

neutral analyte is introduced and ionization occurs through the mechanism, 

2M e M e− •+ −+ → +      (9) 

Where M represents the analyte molecule or atom and M •+  is the resulting molecular 

ion.  In addition to the molecular ion, extensive fragmentation is commonly observed in 

EI due to the high energy of the impending electron.  Such fragmentation behavior has 

been used quite successfully to “fingerprint” the identity of unknown samples as 

fragmentation patterns are highly reproducible at controlled EI energies [249].   

 
 

 

Figure 14 – Two common electron ionization source geometries used in mass spectrometry.  A) The Nier-
type geometry which ionizes samples from a well-defined electron beam orthogonal to the beam axis of 
the instrument, and B) the Brink-type geometry which is a cylindrically symmetric ionization source 
utilizing a wire cage which can accelerate electrons from all directions towards the instrument beam axis 
to maximize ion yields from the source. 
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Once ionization occurs, a means must be established to remove the ions from the 

electron beam.  An effective and widely used method is to extract the ions orthogonally 

from the electron beam using electrostatic fields formed through ion optical elements.  

Because the mobility of electrons is much higher than that of ions, the sufficiently 

accelerated electron beam can pass through a weak ion extraction field relatively 

unperturbed.  This type of EI source geometry is referred to as a Nier EI source, named 

after Alfred Nier who pioneered its use in mass spectrometry [176].  Figure 14A 

illustrates the Nier-type EI source, reproduced from Nier’s original illustrations 

[250,251].  The Nier electron ionization source uses a hot filament and an electron trap 

(commonly referred to as an electron collector) to generate an energetically and spatially 

well-defined electron beam which is very useful for obtaining ion energetics data such as 

ionization potentials and fragmentation thresholds.  Ions formed in the electron beam are 

extracted with an orthogonally directed electric field created between two electrode 

elements, commonly referred to as the ion repeller and ion extractor, as shown in Figure 

14A.  In more modern implementations of the Nier-type source, the electron current 

generated on the electron trap is monitored and readjusts the filament current 

accordingly to produce a highly stable electron beam which results in the generation of a 

stable beam of ions.  This current regulation is important since electron emission from a 

hot filament will vary with temperature fluctuations changes in the filament’s resistance, 

which over time will increase as the filament material is sputtered away during normal 

operation.  Nier-type EI sources are still in common use today, as it has been proven to 

be a high versatile and efficient means of ion production for a variety of applications.  
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Nier EI sources designed to operate at very high electron energy resolutions are still 

utilized for the measurement of ionization potentials.  Another commonly encountered 

EI source geometry is the cylindrically symmetric Brink-type EI source (Figure 14B), 

which was first described and used by Gilbert Brink for analyzing molecular beams 

[252].  In Brink’s original design, the ionization region was encased around a cylindrical 

wire cage outside of which was placed a hot filament electron source.  The potential 

difference between the filament and the cage accelerates electrons through the cage to 

the center of the source and back to the cage again, causing electrons to pass in and out 

of the ionization volume several times and enhancing ionization yields.  As with the 

Nier-type source, the electron current can be regulated with appropriate circuitry that 

monitors the current induced on the cage assembly and feeds this response back to the 

filament current.  Today, the Brink-type EI source has found widespread use in residual 

gas analyzers as the high ion yields and cylindrical symmetry are convenient for 

coupling to the quadrupole mass analyzers used in these instruments [253].  Brink-type 

EI sources come in both open and closed volume designs.  Open volume designs allow 

for the contents of the entire ionization chamber to be sampled by the ion source which 

is useful for residual gas monitoring.  Closed ion source designs are more sensitive to 

direct sample introduction methods and are preferred where high sensitivity and low 

sample consumption is desired.  Modern variations of these two designs can also 

incorporate multiple filaments to further enhance ion yields and extend the lifetime of 

the source operation. 
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1-7.2 Laser Desorption Ionization 

 The use of lasers for rapid deposition of high energies in a small, well-defined 

volume was recognized early on as a useful mechanism for producing gas phase ions for 

mass spectrometry analysis [254].  One of the most important features of laser ionization 

was that the rapid energy deposition resulting in the intact ionization of organic 

molecules with high ion yields, leading to the development of laser ionization mass 

spectrometry (LIMS) instruments [255,256].  While the formation of organic ions was a 

significant step for mass spectrometry, the mass range was limited to less than 1,000 

mass units in LIMS instruments, and for 20 or so years after its introduction, LIMS 

technique development focused on the benefits of the laser itself, such as fast and highly 

sensitive sampling of analytes and the ability to obtain location specific information of 

samples with high spatial resolution, which collimated into a commercial technique 

called laser microprobe mass analysis (LAMMA) [257-259].  As features of the laser, 

such as shorter duration pulse widths and smaller beam diameters, improved, so did the 

LIMS experiment [260].  Still, reproducibility remained one of the biggest obstacles for 

laser ionization methods, as the mechanism of laser ionization was poorly understood 

and many factors were unaccounted for in the experimental setups used, such as laser 

beam homogeneity and the physiochemical nature of the samples analyzed.  The 

recognition of the two processes of desorption of material from the bulk sample and 

generating ions of individual analytes led to the more accurate and familiar 

nomenclature of laser desorption ionization (LDI) [261].  The scope of laser ionization 

processes broadened to include wavelength resonant and multiphoton energy deposition 
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methods [262-264], but LDI remained for many years a niche application in mass 

spectrometry [265,266].  The observation that the presence of laser wavelength resonant 

chromophores in the sample yielded less fragmentation contributed to the early 

developments of matrix LDI, and numerous matrices were mixed with various samples 

and tested, but the low laser fluences necessary to reduced ion fragmentation yielded too 

few ions to be analytically useful [267,268]. 

 A breakthrough in laser ionization methods occurred in the late 1980’s when it 

was discovered that nanoparticles [269] and organic acids [270] could be added to the 

sample to greatly increase the ionizable mass range (>100,000 Da) with virtually no 

fragmentation—a discovery which was recognized with a Nobel Prize in 2002 [271].  

Organic acid matrix assisted LDI (MALDI) was an immediate success and remains 

today the most widely used desorption ionization method for large biomolecules analysis 

with virtually no upper mass limit restricting what could be ionized [272].  Nanomaterial 

based LDI methods has regained popularity in recent years as the mass range of these 

methods is continuing to increase due to technological and methodological 

improvements in their fabrication.  Current nanomaterial LDI methods based on 

nanoporous silicon substrates and bare transition metals can generate intact ions of 

masses as high as 6,000 Da without the matrix ion signals and adducts that are present in 

MALDI [273]. 
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Figure 15 – Operational principle of laser desorption ionization.  A) Sample is deposited onto a suitable 
substrate, typically stainless steel.  Sample can be deposited as a dried droplet either neat or mixed with an 
appropriate matrix material.  B) A laser pulse of appropriate wavelength and power is focused onto a 
region of the sample, depositing a dense and localized area of energy.  C) Material desorbs from the 
surface, which is comprised of mostly neutrals with some ions.  Matrix ions and adducts are also shown 
for the case of matrix assisted LDI.  Further ionization can also occur within the ejected plume, increasing 
ion yields.  Ions within the desorbed plume are extracted and directed to the spectrometer for analysis. 
 
 
 
 
 The basic principle of LDI is depicted in Figure 15 and first begins with the 

deposition of sample (either mixed with or without matrix) onto a suitable substrate 

which for mass spectrometry is a metal surface upon which an electrical potential can be 

applied to direct ions from the surface.  Several sample spotting methods have been 

developed for particular analyte analysis and a list of these methods is provided in Table 

7.   
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Table 7 – MALDI sample preparation strategies.  Variant methods incorporating some of the features of 
the above techniques have also been described. 
 
Sample Preparation 

Strategy for LDI Description Features Ref. 

Quick & dirty 
A drop of analyte is applied to the plate and 
an equivalent volume of matrix is mixed 
with the wet droplet and allowed to dry. 

Quick and easy.  Can be used with on plate digestion. 
Inhomogeneous matrix-analyte crystallization.  

Dried-droplet 
A drop of aqueous matrix compound 
solution is mixed with analyte solution and 
the mixture is applied directly onto the plate. 

Quick and easy.  Works well for many analytes. 
Inhomogeneous matrix-analyte crystallization, which 
results in low reproducibility. 

[270] 

Vacuum-drying 
The sample plate and solvated droplets are 
placed in vacuum, resulting in fast and more 
homogeneous crystallization.   

Creates a thinner sample, improving mass accuracy and 
resolution; fast sample preparation times. 
Variable homogeneity in matrix-sample crystallization. 

[274] 

Crushed-crystal 
The dried droplet is crushed (via, glass slide, 
razor), and more sample solution is applied, 
promoting homogeneous nucleation. 

Promotes crystallization in the presence of nonvolatile 
solvents (e.g., glycerol and dimethyl sulfoxide). 
Inhomogeneous matrix-analyte crystallization. 

[275] 

Fast-evaporation 
A drop of matrix solution is applied to the 
plate and allowed to dry. Analyte solution is 
applied on top of the dry matrix spot. 

Matrix and analyte are handled separately.  Matrix 
spotted plate can be prepared ahead of time. 
Inhomogeneous matrix-analyte crystallization. 

[276] 

Overlayer  
(Two-layer) 

Same as fast-evaporation (dried drop of 
matrix only solution) except in the second 
application, a matrix-analyte solution is 
applied. 

Slightly improved sample homogeneity than fast-
evaporation. [277] 

Sandwich 
Same as fast-evaporation but with an added 
layer of matrix only applied to the dried 
matrix and analyte layers. 

Can further improve sample homogeneity over either 
the fast-evaporation or overlayer methods. [278] 

Spin-coating 
The analyte/matrix solution is applied to a 
spinning sample disk and allowed to spread 
and crystallize, creating a homogeneous 
coating. 

Homogeneous matrix-analyte crystallization. 
Can only coat one sample per plate in conventional 
method. Requires a special sample plate 

[279] 

Slow-
crystallization 

Sample preparation is the same as in dried-
droplet, except the solution is supersaturated 
with matrix and evaporated slowly in an 
incubator. 

Promotes crystallization in the presence of nonvolatile 
solvents (e.g., glycerol and dimethyl sulfoxide) with 
some improvement over vacuum-drying alone. 
Crystal quality varies as with vacuum-drying. 

[280] 

Pneumatic 
coating 

The analyte/matrix solution is sprayed onto 
the sample plate, forming a homogenous 
crystal bed. 

Homogenous matrix-analyte crystallization. 
Slower method requiring special equipment.  Prone to 
sprayer clogging. 

[281] 

Electrospray 
The analyte/matrix solution is 
electrosprayed onto the sample plate, 
forming a highly homogeneous crystal bed. 

Very homogeneous matrix-analyte crystallization. 
Slower method requiring high voltage equipment;. 
Increased salt adduction and suppression effects can be 
observed. 

[282] 

Matrix-
precoated targets 

Analyte solution is applied directly to a 
matrix precoated sample plate. 

Fast sample preparation technique; Has many potential 
applications, including chemically modified surfaces 
tailored to UV MALDI. 
Commercial precoated targets can be expensive. 

[283] 
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Following sample deposition and introduction into the spectrometer, a laser is 

focused onto the sample spot to facilitate desorption and ionization.  Most LDI mass 

spectrometry methods utilize gas discharge (e.g., nitrogen) or solid state (e.g., 

neodymium doped yttrium-aluminum-garnet crystal) pulsed lasers which emit in the 

ultraviolet wavelength region (250-400 nm), as this wavelength regime was found to be 

optimal for generating ions from a variety of analytical samples as they absorb favorably 

in the UV wavelength regime [272].  The pulsed nature of the LDI method is convenient 

for coupling to pulsed analysis techniques, such as TOF mass analysis and ion mobility.  

The important parameter for energy deposition in LDI is fluence (energy per unit area) 

which can be controlled experimentally by varying the laser spot size (irradiated area) 

and/or the laser power output (beam attenuation, pulse width) [284].  Whereas higher 

laser fluences will result in higher ion yields, these ions are often undesirable clusters 

and/or adducts with matrix molecules, and so it is preferred to operate at slightly above 

the threshold fluence where ions are formed in abundance, defined by a sharp transition 

from the absence to the presence of ion signal.  LDI inherently forms ions on a timescale 

much greater than the pulse width of the laser due to two primary ionization 

mechanisms: one which occurs promptly at the surface, and another which occurs within 

the plume and extends for several microseconds following the initial laser pulse [285].  

Because of this extended timescale for ion formation, consideration must be given in the 

instrument designs incorporating LDI and for which performance parameters such as the 

temporal resolution of ion packets are critical, as is the case with linear geometry TOF 

mass analyzers.  Delayed extraction strategies are an effective means of addressing this 
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long term ion formation mechanism (Section 1-6.2).  Another strategy is to decouple the 

temporal dimensions of ion formation and subsequent analysis, as is accomplished 

through orthogonal extraction methods for TOF analysis (Section 1-6.2).  For LDI based 

ion mobility methods, this ion formation time translates into the “ion gate” width of the 

experiment.  As such the same strategies for minimizing ion gate effect in IMS can be 

employed with LDI IMS, specifically by using extended ion mobility analysis times that 

render the initial pulse width insignificant as what can be accomplished with long drift 

regions and/or high neutral gas densities (Section 1-3.3). 

 

1-7.3 Electrospray Ionization 

 Electrospray ionization (ESI) is perhaps the most influential ionization source in 

modern mass spectrometry, capable of forming ions from very large (>100,000 amu) 

molecules and readily amendable to accepting a direct liquid sample infusion, which has 

broad implications for online chemical analysis strategies (e.g., biomedical diagnostics, 

drug discovery and environmental analysis).  It is appropriate that electrospray derives 

its beginnings from ion mobility experiments, with the first reported description of a 

charged spray needle device made by John Zeleny in 1914 [286], who coincidentally had 

previously reported the first known account of the ion mobility phenomenon [287].  

Twenty or so years after Zeleny published his observations, Seville Chapman 

electrosprayed salt solutions and used ion mobility to analyze the resulting ions, 

demonstrating the analytical value of the technique [288].  In the 1970’s, Malcolm Dole 

pioneered our modern analytical usage of electrospray and realized one of the “holy 
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grails” of mass spectrometry (there are, of course, many) with the first successful 

ionization of large biological molecules (lysozyme, mass ~14,300 Da; zein, mass 

~50,000 Da), but because the technologies needed to efficiently transfer ions from high 

pressure to vacuum were not in place at the time, Dole characterized these ions with ion 

mobility methods rather than mass spectrometry and as a result perhaps sidestepped 

much of the notoriety he deserved for his discoveries [289,290].  Because Nobel prizes 

are not awarded posthumously, it was John Fenn’s work on electrospray in the 1980’s 

that was recognized with the 2001 Nobel Prize in Chemistry and indeed Fenn advanced 

our understanding of the ESI technique to a usable method for mass spectrometric 

analysis [238,271,291].   

Today, ESI is the ionization method of choice for a wide range of analytical 

problems [292].  In additional to experimental convenience of accepting a direct sample 

effluent from condensed phase separations (e.g., liquid chromatography and capillary 

electrophoresis), ESI is readily amendable to high resolution (mobility and mass) 

methods, as the unusual multiply charged nature of the resulting ions serves to enhance 

the measurement precision and thus resolution (refer to Equation 5) [38].  Additionally, 

the state-the-art technology for mass spectrometers fall in a relatively low m/z range 

(<4,000) meaning a high mass ion can be formed with a sufficient number of charges to 

be matched with the optimal performance of the current instrumentation.  For 

spectrometers based on image current detection (e.g., ion cyclotron resonance and the 

orbitrap), more charges increases the detector response (analytical sensitivity) with no 

detriment to other figures of merit other than effects at high space charge confinement 
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[293].  Single ions possessing a large number of charges (~2,000) have been isolated and 

detected in the ion cyclotron technique due to this enhanced sensitivity [294].  Finally, 

ion fragmentation techniques (e.g., collisionally activated dissociation) benefit from 

having an ion with more than a single charge as the highly charged ion is less 

Coulombically stable and easier to fragment, and the resulting fragments are often 

charge carriers themselves, enhancing the number of fragments which can be detected 

for each dissociation event and thus enhancing instrument sensitivity [295,296].  Suffice 

to say there is much motivation driving the development of ESI based spectrometer 

methods today. 

 
 

 
Figure 16 – Operational principle of electrospray ionization.  A) The basic experimental setup showing 
the sample introduction line, spray needle and aperture entrance plate leading into the spectrometer.  B) 
Two basic models of ion formation in ESI.  In the Coulombic fission model, solvent droplets carry several 
analyte molecules and undergo droplet fission as their surface charge overcomes the surface tension 
keeping the droplets together.  In the ion evaporation model, highly charged solvent droplets containing 
single analyte molecules evaporate and spontaneously release a charged analyte. 
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 The experimental setup of a typical ESI source is shown in Figure 16A.  All 

practical implementations of ESI are conducted at atmospheric pressure conditions.  In 

its most basic form, the electrospray experiment consists of a conductive tube biased to a 

large potential (2-4 kV) with respect to a metal plate placed a short distance from the 

tube.  The conductive tube is often referred to as a spray needle, since historically these 

were fabricated from hypodermic needles and can be either completely conductive, or 

partially conductive, such as the case with coated glass tips and fused silica capillary 

tubing.  The needle potential can be applied either directly, as with the majority of 

designs, or established through the spray solution itself by inserting a metal wire into the 

sample stream [297], which is useful when utilizing nonconductive needles.  Sample 

solvent is fed into the electrospray needle from a regenerating source (i.e., a pressurized 

column or syringe pump) and the large potential difference creates a controlled 

discharge between the cathode and anode via nebulized droplets of the sample.  The tip 

of the spray needle is oftentimes tapered to create the high localized field necessary to 

initiate the electrospray.  The metal plate counter-electrode is almost always the entrance 

to the spectrometer consisting of a gas conductance limiting aperture or channel. 

 Ion formation in the ESI process results from a buildup of charge on the surface 

of the liquid which accumulates on the tip of the spray needle.  Due to the pulling force 

of the counter-electrode, the charged liquid at the needle tip develops a characteristic 

conical shape as predicted by Geoffrey Taylor and subsequently called the Taylor cone 

[298].  As the Coulombic forces exceed the surface tension of the liquid, droplets break 

free from the tip into a stream which migrates towards the counter-electrode.  The exact 
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mechanisms giving rise to charged analyte ions during this charge migration stage is still 

a matter of some debate.  Two mechanisms, the charge residue model and the ion 

desorption model (Figure 16B) have been proposed to account for the transition of 

charged droplets into charged analytes.  Common to both models are three steps of the 

ESI process: i) formation of the charged droplet, ii) subsequent shrinkage of the droplet 

due to evaporation of neutral solvent molecules, and finally iii) Coulombic fission of the 

droplet once the surface charge exceeds the surface tension holding the droplet together 

(the Rayleigh instability limit) [299].  In the charge residue model proposed by Dole, 

droplet fission continues to create smaller and smaller charged droplets until all that 

remains are charged analytes [300].  While this explanation is elegantly simple and easy 

to comprehend, it fails a test of logic imposed by Fenn which paraphrases that if a 

massively charged droplet continues this fission process, it will eventually encounter 

more analyte ions than charges, resulting in low charge states and analyte adducts—

clearly the opposite is observed for electrospray ions [291].  An alternate explanation 

referred to as the ion desorption model was suggested by Iribarne and Thomson to 

explain the inconsistencies with Dole’s model and in its basic form states that the 

droplet’s increasing surface charge during Coulombic fission can become high enough to 

spontaneously desorb a charged analyte ion from the droplet prior to reaching further 

Raleigh instability [301].  This spontaneous field desorption model explains why there is 

a balance between analyte size (mass) and charge, rather than extremities on either end 

of the spectrum (e.g., a large analyte with one or two charges or a small analyte with a 

hundred-fold charges).  Spontaneous emission of ions from droplets during ESI has been 
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observed experimentally [302].  Currently it is believed that both the charge residue and 

ion desorption mechanisms play a role in the ESI process and the extent of either 

depends on the analyte—for large, hydrophobic molecules, the charge residue model 

applies while for small, hydrophilic molecules, ion formation is governed by the ion 

desorption model [303,304]. 

 Ion formation in the electrospray process can be assisted with the use of a 

nebulizing gas—a neutral gas which introduces turbulence to the electrosprayed jet that 

assists in breaking apart charged droplets.  The nebulizing gas can be introduced either 

as a direct stream (inline or counter to the flow) or an inline sheath flow placed around 

the electrospray tip [305].  Solvent conditions are also important for stabilizing the 

electrospray and subsequent ion formation, specifically the nature and concentration of 

organic solvent used which will govern the surface tension of the droplets.  Equally 

important to the outcome of electrospray is the nature of the analyte, and the extent of 

charging can be controlled through the addition of derivitizing agents which promote the 

ionization of analytes which are particularly difficult to ionize (e.g., nonpolar and/or 

hydrophobic molecules) [306]. 

Following ion formation, ions are introduced into the spectrometer, which in 

most modern applications is at a reduced pressure to facilitate ion entrainment with the 

incoming gas.  The entry plate is defined by a very small (<1 mm) orifice to maintain the 

reduced pressure of the spectrometer.  The use of a very small electrospray needle with 

low sample flow volumes enhances the ionization yields and quality of the ions formed 

(i.e., sufficiently desolvated) as the smaller spray profile better amends itself to the 
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dimensions of the entrance orifice [307].  A desolvation step is often utilized to remove 

any excess solvent that remains adducted to the analyte ions following the electrospray 

process.  A listing of some of the more commonly employed desolvation methods in 

electrospray is provided in Table 8. 

 
 

Table 8 – Desolvation methods utilized in electrospray ionization.  Most commercial implementations of 
ESI desolvation incorporate two or more of the above principles in their design, such as a combination of 
off-axis needle orientation using a spray stabilizing/desolvating sheath gas into an aperture-skimmer 
spectrometer inlet, as with the ZsprayTM Waters/Micromass ESI source [308,309]. 
 
 Desolvation Method Description Attributes Where 

Implemented Ref. 

Direct Aperture-
Skimmer Inlet 

Ions are introduced directly into the 
spectrometer.  Some desolvation 
occurs at the conductance limit-gas 
skimmer pumping interface.  

Quick and dirty method 
implemented on the first ESI 
instruments.  Results in high ion 
transmission, but incomplete ion 
desolvation if used alone. 

Waters/Micromass 
instruments (with 
off-axis ESI) 

[300] 

Counterflow Gas with 
Glass Capillary Inlet 

Ions migrate under the influence of 
a potential against a counterflow of 
dry (N2) gas towards a glass 
capillary, where some are entrained 
into vacuum. 

Countercurrent sweeps away 
solvent, minimizing resolvation 
during free jet cooling into vacuum.  
The nonconductive glass interface 
enables high voltage coupling 
between source and instrument. 

Analytica of 
Branford ESI 
sources 
 

[238] 
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Cross-flow (Curtain) 
Gas 

Ions travel orthogonal to a cross-
flow of gas under the influence of 
an electric field.  The relatively 
high gas velocity curtain gas 
facilitates desolvation. 

Does not utilize any heating 
mechanism, so ions are relatively 
“cool” when formed.  Ion losses 
from the gas flow can be significant. 

Applied 
Biosystems, 
MDS Sciex 
instruments 

[310] 

Heated Metal Capillary 

Ions travel through a hot (~) metal 
capillary where collisions with the 
hot gas and capillary walls 
facilitates desolvation 

Efficient desolvation.  The hot gas 
minimizes resolvation during free jet 
cooling into vacuum.  Does not 
sweep away solvent, so source 
contamination is an issue.   

Thermo Electron, 
Agilent,  Bruker & 
Millipore 
Instruments 

[311] 

Heated Desolvation 
Chamber 

Ions travel through several stages 
of differential pumping.  The 
differential stages are heated and 
the combined heat and skimmer 
fields facilitate desolvation.  

Simple, rugged and can result in 
very high ion transmission as no 
capillary interface is utilized.  
Contamination of spectrometer 
components can be an issue. 

Vestec Instruments [312] 

Heated Desolvation 
Plates/Baffles 

Ions travel a nonlinear beam path 
across a “hot plate” which 
facilitates desolvation. 

Can be gentler than heated 
capillaries and/or desolvation gas 
flows, enabling the analysis of 
fragile ions (e.g., adducts).  Ion 
losses can be higher than line-of-
sight methods. 

JEOL 
MicroMass 
Hitachi 
instruments 
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Cryogenically 
Stabilized Electrospray 
(Cold-ESI) 

ESI is conducted using 
cryogenically cooled nebulizing 
gases. 

A special method for studying ions 
which easily dissociate in the ESI 
process, such as noncovalent 
complexes. 

JEOL, 
Bruker Instruments [313] 
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The electrospray process itself is a desolvation method, though not necessarily a 

complete one.  The combined effects of field and gas entrainment all serve some manner 

of desolvation.  In Dole’s original ESI design, ions were formed and entrained directly 

into the vacuum interface of his mobility spectrometer.  Desolvation was likely a result 

of strong electric fields and gas collisions during ion entrainment, and there is some 

indication that the complications which resulted in his charge state misinterpretations 

were due to incomplete ion desolvation [300].  Desolvation methods can be broken 

down into two general categories: pneumatic methods which use gas collisions to break 

apart solvent adducts often assisted by high electric fields, and thermal methods which 

use heat to facilitate solvent evaporation.  For pneumatic methods, both counter and 

cross flow (curtain gas) methods have been used successfully.  These pneumatic 

methods have the added advantage of sweeping away neutral molecules (mostly solvent) 

before they enter the spectrometer.  Since nearly all ESI-spectrometer interfaces are 

characterized by ions transitioning between high and low pressure regions, there is a 

significant amount of adiabatic cooling which results from this transition and the 

presence of neutral solvent molecules in the ion stream can result in ion resolvation as a 

result of this cooling.  The majority of desolvation methods rely on thermally heating a 

component of the interface, most often a long, metal capillary.  The ion path must also 

be characterized by frequent collisions with hot gas molecules and/or the hot metal 

component itself, as is the case with the capillary inlets and nonlinear (labyrinthine) ion 

transfer inlets.  Combinations of these methods are common, for example, most ESI 

sources utilize a sheath and/or counter-flow of gas in addition to a heated inlet to further 
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aid desolvation.  Recently, RF ion focusing devices based on decreasing diameter rings 

(i.e., ion funnels) have been implemented in the ESI interface of many instruments to 

help focus ions through the pressure differential region and into the vacuum of the 

spectrometer.  The RF fields in this and other similar RF devices (e.g., multipole lenses) 

combined with the presence of neutral gas further assists ion desolvation and ultimately 

the quality of the data acquired [314]. 

 

1-8 An Introduction to Charged Particle Detection Methods 

The basic components of any spectrometry method are the ability to create, 

analyze and detect the charged form of the analyte of interest.  So far, we have discussed 

somewhat exhaustively the first two requirements: forming the ion (Section 1-7) and 

analyzing it either through mass or mobility methods (Sections 1-1 and 1-6).  The final 

and essential component for a spectrometer is ion detection which is reviewed and 

summarized in this section.  There are two basic categories of ion detection: current 

based detectors and electron multipliers.  Within each category are numerous detector 

configurations, most of these configurations are covered in Table 9.  The purpose of this 

section is to touch on many of these detector types and frame the motivations behind 

choosing one particular detector type over another. 
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Table 9 – Charged particle detection methods used in mass spectrometry and their defining characteristics. 
 

Detector Description Gain Dynamic 
Rangea Responseb Ref. 

D
C

 

Faraday Cup/Plate A single element electrode (typically a cup or barrel) 
from which a direct current is measured. none >105 >100 ns c [315] 

Discrete Dynode 
Array 

An initial ion to electron (conversion) dynode 
followed by an array of dynodes which propagates an 
electron cascade. 

106 ~105 <30 ns d [316] 
[317] 

Continuous Dynode / 
Channeltron® 

A glass or ceramic tube often tapered and coated with 
an electron emissive material.  An ion strike 
propagates an electron cascade down its length. 

107 ~105 <10 ns [318] 

El
ec

tro
n 

M
ul

tip
lic

at
io

n 

Microchannel Plate 
(MCP) 

An array of capillary channels etched on a glass 
wafer.  Each channel acts as a continuous dynode 
across the wafer’s width.  MCPs are usually 
combined to sufficiently increase the gain. 

104 e 

107 

108 
~104 <100 ps 

per plate
[319] 

Post-Acceleration 
Detector (PAD) f 

Any of the electron multipliers combined with a 
separate conversion dynode element.  Especially 
suited for high m/z ion detection. 

varies adds 
~102 <50 ns [320] 

Daly Detector 
A conversion dynode first stage and a scintillator and 
photomultiplier second stage separated by a window.  
Decoupled design amendable to high voltage 
separation and increased detector lifetime.   

104 ~107 <40 ns [321] 

H
yb

rid
 D

es
ig

ns
 

MCP-Photomultiplier / 
On-Axis Bipolar 
Detector (MCP-PMT) 

Nearly identical to the Daly detector except the first 
stage also incorporates an electron multiplier, which 
greatly increases the detector gain.  Can operate in 
both ion polarity modes simultaneously. 

106 ~105 <100 ps [322] 

Discrete Multi-Anode 
Array Detectors 

A conventional MCP detector utilizing a segmented 
anode to obtain spatial resolution of ion impacts.  
This also improves sensitivity for ion counting, as 
coincidental impacts are counted on separate anodes. 

-- -- -- [323] 
[324] 

Delay Line Detector 
A conventional MCP detector utilizing two parallel 
wire arrays as anodes (X and Y direction) which can 
pinpoint ion impact locations based on circuit 
response. 

-- -- -- [325] 

Po
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n 

Se
ns
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 A
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Resistive Anode / 
Capacitive Charge 
Division Detectors 

Similar to the delay line technique but utilizing either 
a resistive anode surface or capacitor anode which 
senses a differential response in the electron cascade 
based on spatial location of the ion impact event. 

-- -- -- [326] 
[327] 

a. Dynamic range in this case represents the detector’s linear response range for pulse counting (digital) mode experiments. 
b. Response times in this column represent detector recovery following electron saturation, which is a more useful metric for high speed applications. 
c. Faraday cup response times have been reported as low as ~50 ns, but with significant sacrifices to sensitivity. 
d. ETP manufactures a discrete dynode detector with a claimed ~3 ns response for time-of-flight applications.  Saturation responses are not reported. 
e. Gain values for a single, double (chevron) and tripled (Z-stack) stacked MCP configuration, respectively. 
f. Strictly speaking, PAD detectors are not limited to conversion dynode arrangements as an on-axis MCP detector can be operated in a PAD 

configuration by applying an acceleration field in front of the detector via a grid. 
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Figure 17 – Charged particle detection methods used in mass spectrometry.  A) Faraday cup detector 
utilizing permanent magnets as a secondary electron trap. B) Discrete dynode electron multiplier with 
several individual secondary electron-emissive dynodes. C) Continuous dynode electron multiplier 
detector comprised of a monolithic dynode. D) Microchannel plate detector and various plate 
configurations used to increase detector gain. E) Post-acceleration detector configuration utilizing a 
conversion dynode for more efficient high mass ion detection. F) Daly detector utilizing a conversion 
dynode and a scintillator/photomultiplier arrangement. G) Hybrid on-axis microchannel plate-
photomultiplier detector with post-acceleration capabilities.  Details are provided in the text. 
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1-8.1 Direct Ion Current Detection: Faraday Detectors 

 The Faraday cup (Figure 17A) represents the simple and most straightforward 

means of measuring a beam of charged particles.  This type of detector consists of a 

piece of metal of most any shape placed in the path of an ion (or electron) beam.  Cup 

shapes are often preferred for their ability to capture a large spread of charged particles 

confine resulting secondary electrons, though simple metal plates have found widespread 

use in research instrument primarily for troubleshooting purposes.   

In the Faraday detector, the metal element is electrically isolated within the 

instrument and, in the simplest form, an electrometer (picoammeter) is used to measure 

the change in current caused by impending charged particles neutralizing on the surface.  

Because Faraday detectors directly measure the current induced by a charged particle, 

they are considered the only absolute means of quantifying the number of charged 

particles in the beam, as the current reading can be directly related to particle numbers.  

For ion detection, Faraday detectors do not suffer from a high mass attenuation which 

occurs in other electron multiplier based detection methods, though since quantitation 

depends on charge counting, the number of charges on the ion must be known if accurate 

ion numbers are to be determined from the measurement (i.e., a +6 ion will induce 6x 

more current than a +1 ion).  Additionally, the response of the detector does not depend 

on the energy of the beam, as with electron multiplier detectors, but only on the charge 

flux hitting the metal element.  Since most applications of Faraday detectors are used to 

measure relatively high energy ion beams (greater than a few hundred eV), each striking 

event will release secondary electrons, which if they escape the detector surface, will 
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register as an additional ion hit.  The cup design is an effective geometry for recapturing 

secondary electrons, and other means such as electrostatic confinement optics and 

magnets are also routinely used to address the issue of secondary electrons.  Specially 

shaped designs, such as half cylinders, have also been suggested for the purpose of 

minimizing the escape of free electrons which would otherwise distort the charge 

measurement [328].  Coating or fabricating the metal detector surface with a high work 

function material, such as graphite, also minimizes secondary electron emission and 

graphite in particular is less prone to chemical contamination which increases the usable 

lifetime of the detector. 

Properly matching the impedance of the circuit is important for using Faraday 

detectors in fast response applications, such as what would be needed for time-of-flight 

measurements.  This is also an important consideration for all charged particle detectors 

which use a signal anode to measure electron current resulting from an electron 

multiplier.  Impedance is a fundamental (and difficult to quantify) property of electronic 

circuits related to how readily current will flow (or be impeded by) various components 

of the circuit.  Improper matching of the impedance in the detection signal line will 

result in slow rise and fall times (i.e., peak fronting and tailing) and in worse cases 

measurement distortions and noise (e.g., ringing) caused by signal reflections within the 

circuit.  Most coaxial lines are rated for 50 Ω resistance termination, which is one 

established “standard” for matching impedance of signal lines and components.  

Ensuring that all components are 50 Ω impedance rated and have the proper resistance 

termination in place will address the most common problems associated with impedance 
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mismatch.  Fundamentally, there exists an impedance mismatch between the large 

surface area of the detector (or anode for electron multipliers) and the small area of the 

signal line—because current is a surface propagation phenomenon, a gross mismatch in 

surface area results in an impedance mismatch at the junction.  Strategies to minimize 

this mismatch include the use of conical coupling devices which taper to the signal line 

[329,330] and more simply, restricting the length between the detector and the coaxial 

line to a few millimeters to force impedance mismatched ringing noise into the GHz 

range.  Since most signal processing electronics have an upper sampling limit of a few 

hundred MHz, the ringing noise will not be observed [331].  Particularly for fast 

response applications, it is also desirable to shield the Faraday cup from incoming ions 

which would induce a charge on the cup prior to the striking event and result in some 

distortion of the baseline signal [332].  Apertures or grids can be used effectively for this 

purpose. 

While Faraday detectors offer the ability to quantify ion (or electron) numbers, 

they inherently suffer from low sensitivity.  In order to obtain a measurable response, 

state-of-the art Faraday cups require an ion current of ~10-15 A, which represents an ion 

flux of about 6,000 ions/sec.  Most Faraday detectors require a minimum of ~600,000 

ions/sec before generating a measurable response which prohibits their use in 

applications where very few ions are transmitted, such as the injected ion drift tube 

experiments described in this work [333].  Nevertheless, Faraday current detectors 

remain one of the few ion detectors capable of operating efficiently at elevated 

pressures, and enjoys almost exclusive use in standalone IMS devices [334]. 
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1-8.2 Electron Multipliers: Conversion Dynodes and the Discrete Dynode Detector 

 Secondary electron emission resulting from an ion striking a metal surface was 

discussed in the previous section as a source of noise and quantitation error for the 

Faraday detector.  This same electron emission principle is fundamental to the operation 

of the second class of charged particle detectors, the electron multipliers.  In its most 

basic form, the electron multiplier detector is a Faraday detector that detects electron 

current resulting from an ion striking a metal surface.  Early detectors employing this 

design referred to this first electron emissive element as a conversion dynode, due to the 

way in which it converted a positive ion into many negative electrons.  Dynode is a 

somewhat antiquated term meaning a dynamic electrode and refers to the elements 

which emit secondary electrons.  Inherent to this electron conversion process is charge 

multiplication with a single dynode element being capable of emitting tens to hundreds 

of electrons for every ion strike.  This charge “gain” will ultimately depend on the 

velocity of the ion, the applied voltage and the material of the conversion dynode.  

Potentials applied to the conversion dynode will typically range between 3 and 10 kV, 

with higher potential being able to accelerate ions to a higher velocity and increasing 

gain.  The voltage limit will depend in the field emissive properties of the dynode 

surface, so conversion dynodes are polished to remove any “whiskers” or surface pitting 

that would create electron emission points and introduce detector noise.  Since any ion 

with the same charge number gains the same kinetic energy in the same electric field, the 

velocity in which they strike the detector will depend on their mass, specifically lower 

mass ions will be accelerated to a higher velocity than a high mass ion of the same 
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charge number.  Ultimately this means that all electron multiplier based detection 

schemes have a decreased gain towards higher mass ions since their lower velocity 

impacts generate less electron emission off the first (conversion) dynode surface.  This is 

fundamentally why mass spectrometry (and IMS) cannot do exact quantitation of sample 

(though many applications exists which make this very claim).  The applied voltage on 

the detector governs how much stored electrons are available to emit, while the work 

function of the dynode material will influence the energy and number of electrons 

emitted.  Beryllium-copper (BeCu) alloys are the most commonly used material for 

dynodes, though silver-manganese (AgMg) and aluminum metals are also used—the 

latter being a cost effective and more air stable alternative possessing somewhat lower 

electron emissive properties than the other alloys. 

 While a single conversion dynode element can be used with a Faraday cup to 

increase the gain (sensitivity) of the detector, several discrete dynodes placed in a 

“Venetian-blind” configuration (i.e., staggered and tilted to face on another, Figure 17B) 

can output over 1 billion electrons for every ion strike event.  This effect can be readily 

conceptualized by considering a simple arrangement of 4 discrete dynodes.  If each 

dynode has a modest gain of 4 electrons emitted for every electron (or ion for the first 

dynode) striking event, then if one ion goes in, 44 or 256 electrons come out on the other 

side!  Discrete dynode detectors having as many as 20 dynodes have been reported, with 

gains up to 108 [333].  The discrete dynode detector draws its roots from photomultiplier 

tube development, where they are still used extensively today. 
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1-8.3 Electron Multipliers: Continuous Dynode Detectors 

As the instrumentation became more technologically advanced, there was a need 

to compliment their faster scan rates and smaller sizes with an appropriate ion detector.  

Fundamentally, the discrete dynode detector responds only as fast as it takes electrons to 

cascade down the length of the dynode array, and while making them smaller and more 

compact would improve their response times, this strategy imposed several technical 

challenges.  The primary challenge was that in order to maintain the potential drop 

necessary to accelerate electrons from one dynode to another, the field strength would 

have to be increased if the distance between dynodes were decreased, otherwise gain 

would be sacrificed for size.  Increasing the field between dynode elements imposed 

greater restrictions on the vacuum needed to prevent gaseous breakdown, limiting the 

applications of such miniature detectors.  The solution was to develop a different 

detector geometry based on the same underlying principle of electron multiplication. 

A continuous dynode detector (Figure 17C), or sometimes referred to by the 

Channeltron® trade name, is a continuous length of lead silicate glass tubing which 

possesses electron emission properties due to the metal inclusions in the silicate 

structure.  A resistive coating is added to maintain a linear potential drop across the 

length of the tube and many of these proprietary coatings also serve to enhance the 

electron emissive properties of the glass.  The basic principle of a continuous dynode’s 

operation relies on an ion striking the inside surface of the tube, preferably close to the 

front, and generating a subsequent cascade of electrons down the length of the tube.  An 

anode placed at the other end measures the resulting electron propagation current.  Gain 
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is directly related to how far in the front of the tube the ion strikes, so the majority of 

continuous dynodes are bent into a horn shape to prevent an ion from striking deep 

within the tube, which also otherwise increases detector noise.  These horn-shaped tubes 

are also tapered to ensure the electron cascade propagates down to the anode surface 

efficiently.  Because there is variability between the detector response and the location 

of ion impact, additional ion optics are often used with continuous dynode detectors to 

steer and focus the ions to a specific location on the dynode surface.  Continuous dynode 

detectors utilizing such ion optics are oftentimes placed off-axis to the incoming ion 

beam in order to minimize noise due to neutral impacts and reduce contamination of the 

detector.  This also protects the detector from plasma streaming events which can occur 

particularly in IMS applications.  In addition to the common horn-shape, straight and 

spiral shaped (SpiraltronTM) continuous dynodes have also been developed for specialty 

applications.  The average geometry continuous dynode has less overall gain than a 

discrete dynode, but possesses faster response characteristics.  Unlike discrete dynodes 

which are prone to atmospheric poisoning of the dynode surface, particularly with BeCu 

and AgMg alloys, continuous dynodes are incredibly rugged, withstanding repeated 

vacuum to air cycles with no changes in their performance characteristics.  As a result, 

continuous dynode detectors are still the workhorse ion detection method for many small 

form factor and routine analysis mass spectrometers on the market today. 
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1-8.4 Electron Multipliers: Post-Acceleration Detection 

Because the momentum of the initial ion strike affects the response of the 

detector, there is inherent high mass ion discrimination in electron multiplier detectors, 

as mentioned previously.  To help address this issue, an electron multiplier detector can 

be fitted with an initial conversion dynode at the entrance which can post-accelerate the 

ion to more efficiently generate electrons at the conversion dynode and thus improve the 

detector’s response to high mass ions.  This forms the basis of the so-called post 

acceleration detector (Figure 17E), which is tailored towards analyzing high mass ions.  

Post acceleration detectors are also more amendable to ion measurement in negative 

mode, since only the conversion dynode polarity needs to be switched to effectuate 

electron emission from the dynode surface [335].  It should be noted that the high mass 

discrimination can also be somewhat addressed by analyzing multiply charged ions since 

the charge number affects the ion’s velocity in a fixed electric field.  Electrospray 

ionization is thus ideally suited for the study of higher mass (but consequently lower 

m/z) samples.  Conversion dynode technology is commonly marketed in existing 

electron multiplier detectors as a high energy dynode (HED) accessory. 

 

1-8.5 Electron Multipliers: Microchannel Plate Detectors 

 As instrument technologies continue to improve, the size and response time of 

the continuous dynode eventually becomes a limiting factor in spectrometer 

performance.  An increasing need to make detectors smaller and faster but without 

compromising the gain led to the concept of fabricating an array of small, continuous 
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dynodes on a single substrate [318].  Such a detector is called a microchannel plate 

(MCP) detector and consists of several hundred micron sized channels etched across a 

thin (~2 mm) glass wafer (Figure 17D).  Because the electron propagation occurs across 

the width of the MCP, response times are extremely fast, with state-of-the art MCP 

detectors responding at picosecond speeds per ion striking event, as compared with 1-10 

ns for the best continuous and discrete dynodes on the market.  The microchannels are 

angled ~8° within the wafers for most electron multiplier applications to ensure that the 

charged particles do not penetrate into the channels before striking the surface.  The gain 

for a single MCP is low compared with other electron multipliers, but multiple MCP 

plates can be stacked together to increase the gain as high as 108.  Two MCP’s stacked 

together are often stacked in a “chevron” configuration, representing the angled channels 

rotated 180° relative to one another (/\).  A three MCP configuration is often placed in a 

Z-stack, whereby the angle of channels is staggered with respect to one another (/\/).  

This maximizes gain and retains memory of the ion strike location to the anode, which is 

important for positive sensitive detection schemes.  Staggering the angled holes also 

breaks the line of sight for the detector assembly, which helps suppress gas ionization 

propagation effects within the channels—the primary cause of MCP detector 

“saturation”.  When assembling MCP detectors by hand, one must pay attention to this 

configuration in order to optimize the detector gain.  It is also important to combine 

MCP sets in matched resistances so that an equal amount of current flows across each 

plate during operation.  An insufficiently matched set of MCPs will hasten the 

degradation of the lowest resistance plate, which endures the highest current flow during 
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operation.  MCPs are sold from the vendor in matched sets with resistive coating tabs 

along the rims marking the angled direction of the channels to facilitate ease of 

assembly.  A potential drop of ~1000 volts is required for each plate to activate the 

surface for electron emission, with two plates requiring doubled this potential.  The 

polarity of this detector potential is critical to ensure ions are directed towards the first 

MCP and that subsequent secondary electrons propagate towards the anode.  Because 

such a high potential is applied across a relatively short distance (~5 mm), there is a 

greater chance of electrical discharge occurring with MCP detectors than with discrete or 

continuous dynode detectors.  While the latter detectors can survive a direct electrical 

discharge, an MCP assembly will likely be destroyed during a discharge event, and so 

special precautions are often taken to ensure a path to ground is not favorable.  Usually 

the nearest path to ground is between the MCP and the anode, which is placed ~2-5 mm 

from the back of the MCP assembly and so isolating the anode with a capacitor is an 

effective strategy for preventing discharge issues.  This also protects detector electronics 

which will certainly be damaged without a capacitor in the signal line.  A resistance of 

high value leading to ground (or a suitable current sink) can also be added on the 

detector side of the circuit to ensure excess charge caused by the electron cascade is 

dissipated from the circuit which will otherwise degrade the response of the detector due 

to lengthy capacitor discharge times.  Finally, special requirements must be ensured 

when storing MCPs as the highly porous surface is highly hydroscopic.  As water 

adsorbs onto the MCP, the wafer expands and oftentimes cracks under the excess force.  

This is particularly problematic for the standard “rimmed” design which utilizes a solid 
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rim about the porous surface to ensure adequate electrical contact with the detector 

assembly. Rimless MCPs are offered using small resistive tabs on the edges to ensure 

electrical contact is made.  While rimless MCPs have less stringent storage 

requirements, the microchannels which are present along the edges can contribute to 

excess electron noise leaking from the detector to the anode, so special shielding is often 

required for their use.  Otherwise, MCPs must always be stored either under inert gas 

atmospheres, or more preferably within a vacuum chamber to minimize the adsorption of 

water.  Thus, while MCPs offer attractive incentives in terms of detection response and 

compact form factor, they are delicate to handle and require more care to maintain, and 

as a result their benefits in many cases are not worth the added grief.  Still, a well cared 

for MCP detector will last for many years with good sensitivity. 

 Recall from Table 9 that MCP’s have one or two orders of magnitude lower gain 

than most other electron multiplier detectors.  This situation is often referred to as MCP 

detector saturation, and results from gas molecules ionizing in the microchannels and 

creating an ion feedback current that opposes the avalanche of electrons.  This is a 

consequence of the direct line of sight of the microchannels which creates an efficient 

path length for the ions to propagate.  This is also the reason why the electron path 

length in most other electron multipliers is nonlinear, such as in the case of the horn-

shaped continuous dynode.  One solution to this problem of MCP charge saturation is to 

make the microchannels curved rather than straight.  The curved channels will greatly 

increase the chances that ions formed in the channels will hit the walls and neutralize 

rather than propagate down the channel length, improving the gain of a single MCP by 
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one to two orders of magnitude [336].  Curved channel MCPs are available from the 

major ion detector vendors, though they are decisively more costly due to the greater 

difficulty involved in their fabrication.  Operating an MCP within a magnetic field also 

helps suppress ion feedback due to the Lorentzian forces acting on the ions which 

increases the likelihood that they will collide with the channel walls rather than 

propagate [337].  Another approach which has gained some recent attention is the use of 

microspheres rather than microchannels to reduce ion feedback effects.  Microsphere 

plates operate in the same manner as an MCP though electron cascades occur within the 

volume between closely spaced spheres, which creates a nonlinear path for the 

avalanche.  In addition to being easier to fabricate, and thus less costly, microsphere 

plates possess the advantageous characteristic of being able to operate at low vacuum 

(~10-3 torr), which makes them particularly attractive in specialized applications.  This 

ability results directly from the volume formed from packed spheres creating a path 

length for the electrons which will not exceed the mean free path of the gas at these high 

pressures, discouraging any breakdown that might occur [338].   

 

1-8.6 Hybrid Electron-Photon Multiplier Detectors: Daly and MCP-PMT Detectors 

An alternative to the purely electron multiplying detector is a hybrid design 

which offers some amount of ion to electron conversion and supplants the remainder 

with a combined scintillator (phosphor screen) and photomultiplier tube (PMT) stage.  

Such a detector relies on an electron-induced luminescence of a phosphor substrate 
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which is detected by a PMT.  A prerequisite of such a detector is an initial ion to electron 

conversion step, either through a conversion dynode or an electron multiplier. 

The first detector described in this manner was developed by Norman Daly for 

molecular beam applications [321].  The Daly detector (Figure 17F) consists of a 

conversion dynode (often referred to as the Daly “doorknob”) followed by the 

scintillator/photomultiplier stage.  In this configuration, the Daly detector is a post-

acceleration detector, and is thus sensitive to high mass ions.  The conversion dynode is 

necessary to generate secondary electrons for the scintillator.  Electrons are directed 

towards the scintillator surface and a stream of photons is ejected on the back end which 

is amplified by a photomultiplier and detected with the conventional detector electronics.  

The primary advantage of the Daly detector is that the conversion dynode/scintillator can 

be completely isolated from the photomultiplier through a quartz vacuum window, such 

that the photomultiplier is operated outside of the vacuum system.  This simplifies 

restraints on the detector being at vacuum during high voltage operation and allows for 

the photomultiplier to be serviced without breaking vacuum.  Thus, a catastrophic 

venting of the vacuum system during high voltage operation of the detector is much less 

likely to result in damage to the detector.  In Daly’s original design, the conversion 

dynode and scintillator assembly are orthogonal to the ion beam, which also reduces the 

detector noise resulting from neutrals and photons originating coaxial to the beam.  The 

other advantage of the Daly detector is bipolar operation, meaning that both negative and 

positive ions can be readily detected from the molecular beam simply by switching the 
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polarity of the conversion dynode.  All hybrid detectors incorporating a photon 

multiplication stage is technically a bipolar detector. 

Photomultiplier ion detectors based on a microchannel plate first stage (Figure 

17G) have been commercially developed for fast response applications.  These 

microchannel plate-photomultiplier tube (MCP-PMT) detectors are marketed as on-axis, 

bipolar detectors, due to the placement of the MCP in the line-of-sight of the ion beam 

and the ability of these detectors to detect positive and negative charged particles by 

changing the voltage polarity of the MCP first stage.  The on-axis design facilitates a 

faster response by the detector as compared with orthogonal ion beam conversion 

methods (i.e., an off-axis conversion dynode).  Post-acceleration can be achieved in an 

on-axis design by decoupling the field drop to the MCP surface via a grid.  The 

advantages of such a detector include fast response times approaching those of MCP 

detectors with a somewhat extended lifetime of operation as compared with MCP 

detectors alone.  The added benefits of high mass ion sensitivity (via post-acceleration) 

and bipolar operation makes this one of the most versatile detector configurations 

available, at a cost of more complicated operational requirements as each component of 

the detector requires a separate voltage offset (i.e., post-acceleration, MCP activation, 

scintillator acceleration and PMT operation). 

 

1-8.7 Nondestructive Ion Detection Based on Image Current Sensing 

 Though not a mature technique for beam spectrometer applications, image 

current detection is widely used in Fourier transform mass spectrometers and the newly 
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developed orbitrap spectrometer.  Such methods rely on the residual charge built up on 

an electrode as an ion passes across its surface, and as such are not inherently sensitive.  

Their success in ion trap spectrometers rely on several thousand transits across an image 

current sensing electrode, and thus are practical for such applications.  In order to 

differentiate different m/z ions, the ion trap must be able to selectively promote specific 

m/z ions to transit in proximity to the detection electrode(s).  This is accomplished in 

FTMS through the application of a coherent RF potential which pumps energy into ions 

that cyclotron at the same frequency.  A similar coherent RF potential is applied for 

image current detection in 3D ion traps, though very few 3D traps implement this kind 

of ion detection.  For orbitraps, ions oscillate parallel to the axial electrode with a 

frequency that is m/z dependant and can be detected directly through the use of two 

hemispherical electrodes which surround the axial electrode [182].  The obvious 

advantage of image current detection is that ions are not destroyed during the detection 

process, and so can be analyzed continuously, within the vacuum limit of neutral 

collisions.  This is one of the primary reasons why FTMS instruments perform with the 

highest mass resolutions, mass accuracies, and overall sensitivities over any other mass 

analysis method [339]. 
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2. INSTRUMENTATION DEVELOPMENT AND DESIGN CONSIDERATIONS 

 

2-1 The Design Rationale for the Cryogenic IMS-MS Instrument 

 In this section, the cryogenic IMS-MS instrument is presented alongside the 

rationale for the choice of each instrument component.  Performance test data will also 

be provided with relevant discussion.  A conceptual experimental scheme of the 

instrument configuration is provided in Figure 18.  The configuration of the instrument 

is comprised of i) the ionization source where sample is introduced to the instrument and 

converted into gas phase ions ii) the forward mass spectrometer which serves as both an 

ion transfer device through differential pressure regions and an ion m/z selector for ion 

mass specific studies iii) the cryogenic drift cell spectrometer where ions are separated in 

mobility space at varying temperatures from ambient (298 K) to cryogenic (78 K) iv) 

and the back end mass spectrometer which mass analyzes the ions which elute from the 

IMS cell.  Various ion optical components occupy the regions in between components 

and will be discussed within the next few sections dealing with each component of the 

instrument in more detail. 
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Figure 18 – Experimental scheme of the cryogenic MS-IMS-MS instrument.  From left to right: A) the 
sample is introduced as neutral molecules into the ionization source where a small percentage is converted 
into ions.  B) Excess sample neutrals are pumped away as ion optics direct a beam of ions into a mass 
filter where undesired ions can be removed from the ion beam.  C) Ions are gated into the drift region of a 
mobility analyzer, where they are dispersed based on their interaction with the drift gas.  D) Mobility 
separated ions are transferred to a mass analyzer where they are dispersed based on their mass-to-charge 
values.  Mass data can be generated from each peak which elutes from the mobility analyzer.  E) A 2D 
plot of the mobility dispersion and mass dispersion data can be generated and analyzed for information. 
 
 
 
2-2 The Instrument Vacuum System and Infrastructure 

  The instrument was designed from the ground up using ion trajectory simulation 

and computer aided design (CAD) software.  A representative schematic of the 

instrument is contained in Figure 19A, which provides an overview of the component 

details.  A cutaway CAD schematic of the instrumentation is provided in Figure 19B 

which shows accurately scaled details of the vacuum housing and ion optical 

components. 
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Figure 19 – Schematics of the cryogenic MS-IMS-MS instrument. A) Conceptual schematic with relevant 
component detail. From left to right, the instrument is comprised of the ionization source, mass selector, 
mobility and mass analyzers. B) A CAD generated schematic with scaled details regarding the vacuum 
housing.  Arrows depict the locations and pumping speeds of the various turbo molecular pumps used to 
achieve high vacuum. Components labeled “IG” are ionization gauges used to measure the pressure of 
each of the chamber sections.  Schematics are color coded by components: gold for the ion source, cyan 
for the forward quadrupole, magenta for the ion mobility spectrometer, green for the time-of-flight mass 
spectrometer and blue for ion optical components. 
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2-2.1 Vacuum Hardware and Design Considerations 

Because all mass spectrometry and the majority of ionization methods necessitate 

the use of high vacuum (free molecular flow regime), an appropriate vacuum system was 

designed around the individual instrument components.  Time-of-flight methods in 

particular are sensitive to ion-neutral collisions with background atmosphere, and so 

ultrahigh vacuum materials and assembly strategies were chosen for the vacuum system 

and all components housed within.  The housing of the instrument is fabricated from 

stainless steel (austenitic alloys 304 and 316) and assembled using compressed metal 

(copper) gasket junctions (Conflat® vacuum standard, Varian, Inc., Palo Alto, CA) [340].  

Silver plated, 12-point head bolts are used at each flange junction to achieve the required 

compression (16-20 N·m of torque per bolt) on the metal gasket. The silver plating acts 

as a zero outgassing lubricant and reduces thread galling commonly associated with 

heterometal junctions (e.g., stainless steel bolts threaded into tapped stainless steel 

flanges).  12-point head bolts are fully compatible with closed (box) ended wrenches and 

offers higher torque per tool contact area compared with more commonly used socket 

head and hex head bolt styles which greatly reduces the chance of tool slippage that can 

damage the vacuum system during fabrication and disassembly.  The silver plating also 

reduces friction on the fastener, replacing the typical use of lubricants, such as 

molybdenum disulfide (“moly lube”) and graphite powder which can otherwise 

contaminate the vacuum system [341]. 
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2-2.2 Vacuum Pumps and Pressure Measurement 

High vacuum is obtained through the use of turbo molecular pumps.  Turbo 

molecular pumps, or turbo pumps for short, operate on the principle of statistical 

pumping of gas molecules which have chance encounters with a series of appropriately 

shaped turbines that direct their motion away from the vacuum chamber.  As gas 

molecules gather and concentrate on the back end of these turbines, the gas density 

increases such that the gas transitions to the viscous flow regime where a suitable 

“rough” backing pump can be used to pull these gas molecules out of the system [342].  

Pumping in the instrument is achieved by six turbo pumps of varying pumping capacities 

placed in locations where the pumping speed is necessitated (arrows in Figure 19B).  

Two 70 L/s turbo pumps (Turbo-V70D, Varian, Inc., Palo Alto, CA) are placed at the 

source and mass filter chambers, generating a base vacuum of <10-9 torr when no gas is 

present in the ion mobility spectrometer.  A high gas capacity, 520 L/s turbo pump 

(TMU 521YP, Pfeiffer Vacuum GmbH) evacuates the ion mobility spectrometer 

chamber, which reaches a base pressure of <10-8 with no drift gas present.  Two 

additional 240 L/s turbo pumps (TPH 240, Pfeiffer Vacuum GmbH) evacuates the IMS-

MS interface region and the MS spectrometer chamber, both of which reaches a base 

pressure of <10-8 torr with no drift gas present in the system.  With 1-4 torr of helium 

present in the IMS drift cell, the base pressures of the instrument are as follows: ~10-6 

torr in the source and mass filter (quadrupole) region, 10-5 to 10-4 torr in the outer IMS 

chamber, 10-4 in the IMS-MS interface region, and 10-7 torr in the TOF chamber.  These 
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pressures are sufficient for efficient ion transfer and mass analysis16.  The turbo pumps 

are backed by a series of oil-seated, rotary vane pumps capable of pumping viscous 

gases, each with pumping speeds of approximately 3.3 L/sec (Pascal 2010 SD, Alcatel 

Vacuum Technology, Hingham, MA; Edwards RV8, BOC Edwards Vacuum, 

Tewksbury, MA).  A narrow-cut-fraction distillate hydrocarbon oil (TKO-19 Ultra, Kurt 

J. Lesker, Co., Clairton, PA) is used for all mechanical pumps.  Molecular sieve traps 

(0.45 kg capacity containing zeolite 13X, 3.2 mm diameter sieves) are placed between 

the turbo and backing pumps and prevents excessive backstreaming of hydrocarbon oils 

into the vacuum system.  Sieve traps also protect the vacuum system by taking on the 

majority of the oil load that backstreams into the instrument as a result of power failure.  

This oil backflow situation arises when power is shutoff from the backing pumps, 

creating a higher vacuum in the instrument chamber than the pump can generate (an 

automated up-to-air valve is another means of addressing this issue).  All rough vacuum 

lines are assembled using the ISO standard quick release fittings, referred to as the klein 

flansche17 (KF) system [340].  The vacuum chamber pressures are measured using 

Bayard-Alpert style (hot filament) ionization gauges (IG) placed at each vacuum 

chamber section (IG1-IG5 in Figure 19B).  Dual filament designs are utilized for the 

ionization gauges to minimize instrument downtime due to filament burnout.  Low 

                                                 
16 The mean free path between collisions at 5x10-6 torr is ~3 meters which exceeds the total ion traversal 
distance from source to detector across the entire instrument.  In the interface region into and out of the ion 
mobility cell, pressures can reach as high as 1x10-4 torr, which corresponds to a mean free path of ~14 
cm—a distance which is still much longer than the ion traversal distance in these regions (the longest 
traversal distance is from the quadrupole into the IMS chamber, corresponding to a distance of ~7 cm). 
17 Klein flansche is german for “small flange” and describes the compact size of these particular class of 
fittings, the largest of which is under 76 mm (3 inches) in diameter. 
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vacuum is measured using thermocouple gauges placed on the rough vacuum manifold.  

Thermocouple pressure gauges operate on the principle of measuring the gas density-

specific resistance changes in a bimetallic junction. Thermocouple pressure sensors are 

robust and inexpensive, but the subsequent pressure reading is gas species dependant and 

not as accurate as other gauge types which measure in the same pressure regime (e.g., 

capacitance manometers, piezoelectric gauges) [343].  Accurate pressure measurements 

are not necessary for the operation of the vacuum manifold, and so thermocouple gauges 

are sufficient for use in this application.  An appropriate vacuum gauge controller 

(Granville-Phillips® 307 Controller, Brooks Automation, Austin, TX) is used to convert 

the temperature reading from the thermocouple gauge and the ion current from the ion 

gauge into usable pressure values.  Because different gases have different ionization 

efficiencies, the response of the ionization gauge is gas species dependant.  Ion gauge 

controllers are factory calibrated from nitrogen gas readings and so an appropriate 

correction factor must be used to derive an accurate measure of the pressure when gases 

other than nitrogen are present in the vacuum chamber in significant amounts.  

Ionization gauge correction factors for common gases can be found in the literature 

[344,345].  For helium gas, a correction factor of 0.18 is used—this correction is divided 

directly into the IG reading to obtain the corrected pressure. 
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Figure 20 – The instrument support table and alignment hardware.  The box frame is spaced to 
accommodate standard rack mountable modules.  A set of custom brackets (not shown) is used to secure 
rack-mount hardware to the instrument table. 
 
 
 
2-2.3 The Instrument Support Table and Alignment Brackets 

 A custom built support table and alignment system was developed for this 

project.  The details of this system are contained in Figure 20.  The instrument is 

mounted on a stainless steel welded box frame and measures approximately 216 cm 

long, 56 cm wide and 88 cm tall.  Adjustable padded feet are used to dampen room 

vibrations to the instrument and add ~7 cm to the height of the table, bringing the 

instrument to a total height of ~118 cm from ground to instrument center axis.  

Supporting bars are spaced to accept the width of a standard full-sized rack mountable 

module.  A set of rack mounting bars are fastened to the inside frame.  L-brackets are 
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fastened in other locations and fitted with a 1 cm thick aluminum plate to provide 

shelving for non-rack mountable instrument hardware (e.g., turbo pump controllers, 

temperature sensors, etc.).  The box frame is topped with a 1.6 cm thick aluminum plate.  

A 25 cm wide opening is milled down the center length of the plates, allowing for the 

turbo pumps and other accessory vacuum hardware to drop into the frame.  This opening 

is bracketed with a precision grounded rail system (case hardened 1556 steel shaft with 

support rail, McMaster-Carr, Aurora, OH).  A series of cross width aluminum bars are 

fastened with split sleeve bearings (fixed alignment, 440C stainless steel, McMaster-

Carr) and free glide along this rail system, providing longitudinal positioning of the 

instrument and components.  Each cross support is dovetailed along the top to accept a 

pair of triangular support blocks which support and distribute the instrument load across 

the rail system (Figure 20B).  A length of all-thread stainless steel is passed through the 

brackets and can be adjusted to lift or lower the vacuum system.  Full XY and Z motion 

of the instrument can be achieved using a combination of the blocks supports and rails.  

The instrument components are designed in a modular fashion to facilitate maintenance 

on individual components—each component is made to slide out from the vacuum 

chamber along the rail system for user access.  Individual components attach to a single 

flange for ease of removal.  These specific components and their design are described in 

the following sections. 
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2-3 Sample Introduction, Ionization Source and Associated Ion Optics 

Electron ionization (EI) was chosen as the ionization method for these studies.  

This ionization method is well-suited for generating ions from small mass analytes.  EI is 

considered a “hard” ionization source, meaning that significant energy is used in the 

ionization process which leads to molecular dissociation (fragmentation).  Oftentimes 

complete fragmentation of the primary analyte ion (the molecular ion) occurs.  As EI is 

one of the oldest and still most widely used ionization methods for mass spectrometry, 

considerable work is represented in the literature for characterizing and understanding 

the ions which originate from electron processes.  As such, there are over 15,000 

reference mass spectra generated from EI which are freely available from the National 

Institute of Standards and Technology (NIST) online database and can be used to 

“benchmark” the data obtained on the instrument [346].  Additionally, EI is inherently a 

very “bright” ion source, generating a large and stable flux of ions which allows for a 

more straightforward characterization of the instrumentation.  A measurement of the ion 

current on an electrode ~30 cm downstream from the EI source indicates an ion flux of 

over 600 billion ions per second!  Refer to Section 2-3.2 for more details of this 

measurement. 
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Figure 21 – Schematic of the sample introduction manifold and ionization source.  Sample is introduced 
either as a liquid or gas through stainless steel tubing, shown in red to the left.  For liquid samples, a 
reservoir vial is used (shown at left) which can be passively heated to assist volatilizing the sample.  A 
sapphire seated precision leak valve facilitates a controlled leak of sample into the system.  Gas phase 
sample is directly infused into the ionization region via stainless steel tubing.  Ions formed in the source 
(highlighted in gold) are extracted through appropriately shaped ion optics, shown here in blue.  
Background source pressure is monitored with an ionization gauge. 
 
 
 
2-3.1 The Sample Introduction Manifold 
 

Figure 21 contains a CAD generated schematic of the sample introduction 

manifold, electron ionization source, and ion optical elements.  Sample is introduced to 

the vacuum instrument through a stainless steel tube coupling.  Gaseous samples are 

connected directly to the manifold after the manifold volume is evacuated to millitorr 

pressures in order to remove undesirable background gases.  A 5 L/sec oil seated direct 

drive pump (Alcatel 2012A, Alcatel Vacuum Products, Hingham, MA) is used for 
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evacuating the sample manifold line and is fitted with a foreline oil trap to minimize oil 

backstream contamination of the manifold.  Liquid samples are introduced into a vial 

reservoir either through direct pipetting or injecting through an injection port inlet.  The 

injection port is fabricated by replacing the o-ring of an Ultra-Torr® fitting with a septum 

and is useful for atmospheric sensitive samples.  The resulting liquid or sublimation of 

sample in the vial evaporates into the headspace of the manifold and establishes a vapor 

pressure which can be directly sampled into the spectrometer.   The quartz reservoir vial 

(Scientific Instrument Services, Ringoes, NJ) is attached to the manifold using a 

fluoroelastomer (Viton®, DuPont Performance Elastomers L.L.C., Wilmington, DE) 

compression o-ring coupling (1/4” Ultra-Torr® fitting, Swagelok Co., Solon, OH).  All 

other manifold junctions are made using compressed metal-to metal-junctions 

(Swagelok® tube fitting system, Swagelok Co.) which ensure a leak-tight joining of 

components.  For low volatile liquids and some solids, the reservoir and tubing which 

comprise the headspace volume can be heated to a controlled temperature up to ~425 K 

to maintain a continuous and stable pressure of sample in the manifold.  Volatile 

impurities which are dissolved in the liquid sample are removed through several freeze-

pump-thaw cycles whereby the sample vial contents are frozen (either through liquid 

nitrogen or dry ice/acetone slurry immersion, depending on the freezing temperature of 

the analyte) and the headspace volume is evacuated to remove unfrozen gaseous 

impurities.  During the sample thawing process, impurities will evaporate first and 

bubble out of the liquid sample once it thaws and can be removed from the headspace 

through additional freeze-pump-thaw cycles.  This process effectively removes those 
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gases which possess a lower freezing point than the sample—for organic samples this is 

inclusive of nearly all atmospheric gases (refer to Table 4 for phase change temperatures 

of some common atmospheric gases alongside several hydrocarbon species).  After 

impurities are removed and a sufficient pressure of the gas phase sample is built up in 

the manifold, controlled amounts of the sample are leaked directly into the ionization 

region through a precision variable leak valve (MDC Vacuum Products, Hayward, CA).  

The variable leak valve utilizes an optically flat sapphire pressed against a copper seat to 

form an adjustable seal that can deliver stable leaks into the vacuum chamber as low as 

1x10-10 torr-liter/sec.  As a result, the amount of sample introduced into the ionization 

region can be precisely controlled and monitored through an ionization gauge placed 

within the source chamber, as shown in Figure 21, to the right.  Additional valves 

(chemical/temperature resistant polychlorotrifluoroethylene seated, Nupro® bellows 

valves, Swagelok, Co.) are used to isolate the headspace manifold from the sample and 

vacuum pump line and can be toggled to initiate analyte sampling or evacuation.  All 

materials of the source manifold assembly are bakeable and compatible with ultrahigh 

vacuum.  The manifold line is wrapped with resistively heated tape (468 watt heavy 

fiberglass braided, HTS/Amptek®, Co., Stafford, TX) with voltage controlled through a 

variable AC (Variac) transformer unit (3PN1010, Staco Energy Products, Dayton, OH). 

Temperatures are monitored at several locations with thermocouple sensors (K-type, 

Omega Engineering, Inc.).  The ultimate bakeout temperature of the sample manifold is 

~425 K which is limited by the temperature tolerances of the fluoroelastomer seal used 

in liquid sampling. Higher temperatures can be achieved by using silicone or 
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perfluoroelastomer (Kalrez® ~525 K max) o-rings, by cooling the seal fitting (e.g., water 

circulation or air circulation over an appropriate heat sink), or replacing the elastomer 

seals with metal junction components (e.g., copper stems and ferrules), however an 

overnight bakeout of the source and sample manifold at ~375 K under vacuum is 

sufficient to remove any residual sample that may be left in the source assembly 

following routine operation, therefore these higher temperatures are not necessary. 

 

2-3.2 The Electron Ionization Source 

The ionization source used in this work was modified from a closed volume 

Nier-type electron ionization source (AEI MS9/50, Kratos Analytical, Manchester, 

England) shown conceptually in Figure 22A.  The original configuration of the source 

was designed for generating a thin sheet of ions compatible with high resolution 

magnetic sector mass spectrometry.  This performance was accomplished by shaping the 

electron beam into a thin sheet and limiting the ionization region to a very thin (~3 mm) 

space, which improves the spatial resolution at a cost of reduced ion yields.  Ion 

formation across a spatially thin volume also improves the accuracy of ion energy 

measurements as ions are created in a well defined potential region.  In this source 

configuration, the resulting ions were extracted through a narrow (~1 mm) slit which 

further defined the ion beam for high resolution sector analysis, but resulting in 

significant ion losses at the source (the slit area transparent to ions constituted less than 

1/3 of the estimated ionization area in the source).  Because high spatial resolution of ion 

formation is not necessary for the beam experiments conducted with the MS-IMS-MS 
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instrument configuration, the EI source underwent several modifications in order to 

increase ion formation yields and the efficiency of ion extraction from the source. 

 
 

 
Figure 22 – Details of the electron ionization source assembly.  A) The original configuration of the MS9 
source used a planar repeller electrode (cyan) and slits for defining the electron beam as a thin sheet.  The 
ion extractor electrode (shown transparent) also defined the ion beam as a thin sheet orthogonal to the 
electron beam to facilitate high resolution sector instrumentation.  Neutral sample is delivered directly to 
the ionization volume from a metal tube, at top.  B) The modifications made to the EI source to improve 
ionization yields for the studies outlined in this dissertation.  Permanent magnets (orange) were added to 
help define the electron beam and increase the electron-neutral interaction cross-section.  The flat repeller 
was replaced with a cylindrical geometry (cyan) to draw ions from the source volume.  The ion extractor 
electrode slit was bored out to a large diameter (~6 mm) (dark cyan) to further increase ion extraction 
efficiencies.  Electron slits were bored out to larger diameter (3.2 mm) holes and a filament with a wider 
emission area (ribbon) was added (behind red shield, not visible).  Conical ion optical elements (dark 
magenta) create a stronger extraction field than the conventionally used plate electrodes and facilitate 
more efficient ion recovery from the source. 
 
 
 
 Details of the source modifications used in this work are depicted in the CAD 

schematic in Figure 22B.  The EI source modifications can be classified into two major 

categories: i) modifications made to improve ion formation yields and ii) modifications 

made to increase ion extraction yields.  For improving the ion formation yields, the 

electron beam volume was increased by boring out the electron beam shaping slits into 

larger holes of 3.2 mm diameter.  The ionization volume was also increased accordingly 

by spacing the repeller and extractor electrodes further apart from ~3 mm to ~6.4 mm.  
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The repeller and extractor elements are spaced such that their electrode surfaces are 

equidistant from the center line of the electron beam, optimizing the volume occupied by 

both the electron beam and subsequent ions formed.  The thin wire tungsten filament 

(0.5 mm diameter) used in the original EI source design was replaced with a thoriated18 

tungsten ribbon (1 mm wide x 0.025 mm thick, 1% thorium, Scientific Instrument 

Services, Ringoes, NJ) to increase the electron yields.  Materials such as thorium and 

yttrium are often added to filament material (e.g., tungsten, iridium or rhenium) to lower 

the material’s work function and enhance their electron emission properties [347-349].  

In operation, the thin wire filament requires between 3 and 4 amperes of current to glow 

white and thermionically emit electrons.  In contrast, the ribbon filament requires an 

excess of 7 amperes for comparable electron emission due to the decreased filament 

resistance, which requires more current in order to generate sufficient heating of the 

filament to initiate thermionic emission of electrons.  An additional step to increase 

electron emission is to create a “kink” at the center of the filament material such that the 

localized heating in that region increases and subsequently boils off more electrons.  

This can be accomplished by depressing a shallow channel into a soft metal such as 

copper and indenting the bend into the filament by sandwiching it between this metal 

channel and a thin, blunt tool such as a jeweler’s screwdriver with the sharp corners 

buffed down.  This procedure was used in a few of the studies conducted, however the 

                                                 
18 Recent concerns regarding the radioactivity and toxicity of thorium has limited the availability of 
purchasing off the shelf thoriated filament materials.  Zirconiated and yttria filament materials are 
becoming more readily available and are suitable alternatives to thorium.  In addition to improving the 
electron emission properties of hot cathode materials, these additives improve the robustness and 
subsequently the lifetime of the filament under constant heating and cooling stress from routine operation.  
 



 

 

120

shorter lifetime of the “kinked” filaments does not make them suitable for the long term, 

and eventually a straight filament was settled upon in routine experiments.  Finally, two 

permanent alnico magnets salvaged from a separate EI source (VG-70S, VG Analytical 

Instruments, Manchester, UK) were mounted, poles aligned, on the outside of the 

electron filament and electron collector, creating a magnetic field parallel to the electron 

beam.  The magnets help to collimate the electron beam as well as direct their motion 

into a cyclotron path which increases the electron-neutral interaction cross-section [350].  

The remaining modifications to the EI source were aimed at improving ion extraction 

yields from the ionization volume.  First, the planar geometry ion repeller electrode was 

replaced with a cylindrically shaped repeller designed to direct ions to the center opening 

of the extraction electrode.  This strategy was utilized by Park and Ahn in a similar EI 

source design in order to enhance the number of ions pulled from the source and is 

reproduced in nearly the same manner in this work [351].  Ion trajectory simulations 

were conducted to compare the performance of the EI source between a planar repeller 

geometry with no penetrating extraction fields (gridded extraction electrode, Figure 

23A) and a geometry utilizing a cylindrical repeller and extraction fields which penetrate 

from a conical ion lens assembly into the source (Figure 23B).  Simulation results 

predict a net gain in ion transmission for using the modified source geometry, at a cost of 

decreased energy and spatial resolution for ion formation, which are parameters that do 

not influence the performance of this particular instrument configuration.  In previous 

experiments using the original unmodified EI source configuration, the ion current 

measured by an electrometer (610C Analog Solid State Electrometer, Keithley 
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Instruments, Cleveland, OH) on an electrode element several inches downstream the 

source was in the sub-nanoampere range.  Following the modifications described here, 

the measured ion current on the electrode is routinely in excess of 100 nanoamperes19 

under similar conditions, which constitutes a net gain of over two orders of magnitude 

for ion generation and recovery with this new source.  The potential difference between 

the filament and the average potential at the center of the ionization source (determined 

as the average potential between the source housing, repeller and extractor elements) 

defines the ionization energy of the EI source, which for most experiments was 

maintained between 35 and 70 eV.  The repeller electrode voltage defines the upper 

potential of the ion beam, which was around 110 V.  A thin wire platinum resistive 

temperature device (RTD, PT-100 ceramic encased, Omega Engineering, Inc., Stamford, 

CT) was inserted into the main EI block assembly to monitor the temperature of the 

block, which gives a very good indication of both the sample volatility and thermionic 

emission characteristics of the filament source.  Inherent to all electron ionization 

sources is the need to “warm up” the filament and block assembly before optimum and 

stable emissions are observed.  Finally, two ceramic heater rods were inserted into the EI 

block to help regulate block heating and facilitate volatility of low vapor pressure 

sample.  The heater rods were fabricated by passing nichrome wire back and forth 

longitudinally within the channels of a 4-channel alumina rod.  This back and forth 

                                                 
19 100 nA corresponds to approximately 600 billion ions striking the electrode per second (ion current 
divided by elementary charge).  At these ion fluxes, the sources supplying the DC to the ion optical 
electrodes must be able to regulate (source) this many ions striking the electrode surface.  These high ion  
yields are necessary in the experiments described here, as very few ions enter and make it through the drift 
cell (less than 5 ions per second are recorded exiting the drift cell under ideal experimental conditions). 
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design also helps cancel out magnetic fields created by the high current flow in the wire, 

which might otherwise distort ion and electron trajectories. 

 

 

Figure 23 – Ion trajectory simulations of the electron ionization source and associated ion optics.  A) 
Source geometry using the planar repeller and gridded extraction electrode.  Ions are formed in a narrow 
distribution of energies (5 eV, shown with red equipotential lines) and temporal positions, shown with red 
dots representing each ion’s position at the same time interval.  While space and energy resolutions are 
quite high for this source configuration, ion transmission remains low, with an estimated 12% of the ions 
formed across a range of electron beam positions being transmitted into an ion beam.  B) Source geometry 
with the modified cylindrical repeller and gridless extraction element, allowing the extraction field of the 
conical ion lens assembly to protrude into the ionization region (shown with green equipotential lines).  
Ion transmission is substantially increased (75%), but ions are less energetically and spatially defined, as 
indicated with the widespread position of ions (red dots) in the same time interval.  Since high spatial and 
energy resolutions from the EI source does not affect instrument performance in the MS-IMS-MS 
configuration, these figures of merit can be sacrificed to improve the overall ion yields of the source. 

 
 
 

2-3.3 Post Ionization Source Ion Optics 

Post EI source ion optics consists of three stacked conical geometry electrodes 

and three plate electrodes all of 3.2 mm inner diameter which serves to collimate the ion 

beam into a tightly focused diameter for efficient transfer into the quadrupole assembly.  

Operational voltages vary from one experiment to the other, but approximately work in 

the same manner as two einzel lens arrays in which every three elements form a radially 
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focusing lens whereby ions do not gain energy as it traverses the array20 [352,353].  This 

net zero gain in ion beam energy works by operating the first and last electrode of the 

three element array at the same potential while varying the middle element, such that 

ions enter and exit the array at the same potential, i.e., the energy at object and image 

space is the same.  Ion trajectory simulations illustrating the operational principle of a 3-

element ion optical lens are contained in Figure 24A, while simulations of the two-stage 

lens system used in the post EI source assembly is contained in Figure 24B. 

 
 

 

Figure 24 – Ion trajectory simulations of the source ion optics. A) The basic focusing concept of a 3-
element einzel lens.  A diverging ensemble of ions is forced to a convergence (focal) point as they pass 
through the lens array.  At bottom, a potential energy diagram shows that ions enter and exit the array at 
the same energy.  B) Simulations of the ion lens used with the EI source.  Two sets of 3-element lenses 
gradually correct the position of a diverging ion ensemble into a collimated beam.  The ion extraction 
potential well formed by the conical shape of the lens is contained in the inset to the right.  The center 
electrode of the second set of 3-element lenses is hyperbolic to minimize the defocusing field effects 
(abberated beam trajectory) as ions traverse in close proximity to this electrode. 
 

                                                 
20 The true einzel lens consists of three electrodes with the outer two at ground potential, such that the lens 
operates with a single potential adjustment.  Einzel lenses were used extensively in electron optics, such as 
in cathode ray tubes.  Einzel is German meaning “single” or “individual” and describes the single voltage 
operation of these lenses. 
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The potentials on all source ion optical elements are controlled with two 6-

channel power supplies (Model 10096, Analytica of Branford, Branford, CT).  Each 

channel was modified with a two-way switch to bypass the onboard, 10-turn 

potentiometer and relay the variable resistance value to a computer controlled card (16-

bit PCI-6704, National Instruments, Austin, TX) to allow for remote operation of all 

voltages via the LabVIEW instrument control software package (“Laboratory Virtual 

Instrumentation Engineering Workbench”, National Instruments, Austin, TX).  A high 

current power supply (HY3005, Precision Mastech Enterprises, Co., Kowloon, China) 

provided the necessary current to heat the filament.  Floatable inputs on the power 

supply allowed for an external negative voltage (relative to the EI source) to be 

superimposed on top of the filament circuit to provide a sufficient negative potential on 

top of the filament necessary to push electrons away from the filament surface and into 

the ionization region.  Computer control of the EI source and ion optics voltages were 

accomplished using a custom written LabVIEW soft front panel interface, which 

integrates complete computer control of all voltages on the instrument.  Control voltages 

from the LabVIEW interface are supplied through shielded, twisted-pair cables to 

maintain stability.  All electrical connections were made to the instrument through 

hermetically sealed ceramic-metal junction electrical feedthroughs (4 and 7-pin power 

feedthroughs, Insulator Seal, Inc., Sarasota, FL) rated above the maximum voltages and 

currents used. 
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2-4 The Quadrupole Mass Filter and Associated Ion Optics 

 A transmission type, filtering quadrupole mass spectrometer was chosen for the 

forward stage of the instrument, as it was deemed important to be able to unambiguously 

characterize the mass-to-charge (m/z) value of ions which originate directly from the EI 

source.  In particular, a quadrupole mass spectrometer offers the unparalleled ability to 

operate both as a broadband ion transmission device or a tunable bandpass m/z filter.  

Additionally, quadrupoles remain operational even at vacuum pressures as high as 10-4 

torr [173], which is anticipated for ion mobility instrumentation, and actually increase in 

performance in the presence of some background of cooling ion-neutral collisions [354].  

Quadrupoles commonly come in lengths between 10 to 20 cm, depending on rod 

geometry and application, which also makes them suitable as efficient ion transfer 

devices for transporting ions across variable pressure regimes where conventional 

electrostatic ion lenses operating at comparable electric fields would perform with 

significant ion losses due to collisional scatter losses [355,356].  Additionally, 

electrostatic ion optics have optimal focusing properties that are pressure dependant, 

while RF ion guide devices are relatively insensitive to pressure changes between 10-6 to 

10-4 torr. 
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Figure 25 – Schematic of the quadrupole and ion optics.  Ions extracted from the EI source are collimated 
into a narrow beam by the forward ion optics (dark magenta).  The ion beam passes through a short (6.4 
mm) prefilter barrel lens (magenta) which helps transition the ion beam into the RF field.  Ions pass down 
the center of the quadrupole rod assembly (cyan), where most are transmitted (RF potentials only) or 
select m/z ions are chosen through a combination of fields (RF and DC potentials).  As the ions exit the 
quadrupole, a series of ion optical elements (dark blue) recapture and collimate the ions back into an ion 
beam.  A narrow conductance limiting aperture (6.4 mm, shown in light grey) helps maintain the pressure 
difference between the two spectrometer regions, as well as minimize source contamination of the drift 
cell.  Pressure in the chamber is monitored by an ionization gauge placed directly above the rod assembly 
(not shown). 

 
 
 
A CAD generated schematic of the quadrupole assembly, associated ion optics 

and vacuum chamber is contained in Figure 25.  Ions extracted from the EI source are 

collimated into a narrow (<3.2 mm) ion beam through two sets of 3-element lenses, as 

described in Section 2-3.3.  This narrow diameter focusing is important for matching the 

ion beam with the acceptance angle of the quadrupole, as a wide angle distribution of 
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injection will degrade the performance of the quadrupole mass filter [357].  After beam 

collimation, the ions are directed down the center of the four rods which comprise the 

quadrupole assembly. 

 

2-4.1 The Quadrupole Assembly 

A leaky dielectric lens is used as a prefilter for the quadrupole used in this work 

(refer to Section 1-6.1).  The lens is a graphite coated ceramic barrel mounted onto the 

entrance lens aperture and inserted partially into the rod set.  Trajectory simulations 

approximating the prefilter as a perfect conducting lens suggest that a barrel lens 

mounted in this manner helps shield the undesirable fringe fields and translate into 

higher ion transfer efficiencies (Figure 26A and B).  Experimental observations with 

and without this dielectric lens show a slight (less than 10%) decrease in ion 

transmission when using the dielectric lens in broadband ion transmission mode (RF 

only) but significant improvements in ion transmission for mass selective (RF-DC) 

modes, sometimes orders of magnitude in ion counting, depending on ion m/z.  The 

slight loss in ion transmission in broadband mode is possibly due to some amount of 

surface charging (pooling) of the graphite coating on the dielectric, but could also be 

attributed to a narrowing of the acceptance angle for the entrance to the quadrupole 

when using a barrel lens geometry as opposed to a thin aperture entrance plate.  The 

dielectric lens and quadrupole rod assembly were recovered from a commercial 

instrument (ELQ-400 triple stage quadrupole, Extrel, Co., Pittsburgh, PA) and mounted 

onto a custom flange and electrical feedthrough network.   The quadrupole consists of 
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four precision ground stainless steel rods (9.5 mm diameter) aligned with ceramic yokes 

press fitted within a vented stainless steel tube housing, which gives a total length of the 

assembly at 200 mm with an inscribed diameter on the rod set (distance between 

opposite rods) of 8.3 mm.  An RF/DC power supply (150-QC, Extrel) capable of ±800 V 

DC and ~7,200 Vp-p RF is used to drive the quadrupole.  This supply utilizes a harmonic 

crystal to achieve the precise RF frequency required for high stability.  Oscillator 

modules which resonate at 880 kHz (<4,000 amu), 1.2 MHz (<2,000 amu) and 2.1 MHz 

(<500 amu) are interchangeable and can be used to adjust the optimal mass range for 

experiments.  The higher frequency oscillator achieves more RF cycles for ions of the 

same transit time and thus can achieve higher resolution and sensitivity than their lower 

frequency counterparts, but the greater number of RF cycles cannot handle high mass 

ions as efficiently.  Unless otherwise noted, the 2.1 MHz oscillator is used for all 

experiments conducted with the quadrupole.  The RF/DC power supply is controlled 

through a series of digital inputs (±5 V and TTL).  Parameters such as the RF, DC, and 

pole bias voltages and scan line offsets (slope and intercept) are driven through a custom 

LabVIEW soft front panel.  The quadrupole is operated in a static settings mode and 

parameters are manually adjusted to transmit fixed m/z ranges.  Most experiments utilize 

the quadrupole in a broadband ion transmission (RF only) mode, since RF/DC mass 

resolving experiments can reduce total ion signals at least to about 80%, while for high 

mass ions (>1,000 amu) observed ion signal in RF/DC mode can be degraded to less 

than 1% of what is observed in a purely RF only operational mode [358].  To improve 

the mass filtering performance of the quadrupole, it is desirable to perform the 
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quadrupole analysis on ions possessing a low (10-20 eV) kinetic energy such that they 

experience a suitable number of RF cycles.  Low ion energies can be achieved 

experimentally by biasing the rod assembly such that the potential defining the ion 

injection energy (as defined by the EI repeller potential minus the entrance lens 

potential) and quadrupole remains low [359].  In the experiments described here, the ion 

energy is tuned to ~20 eV when conducting the mass selective experiments using the 

quadrupole. 

 
 

 
 
Figure 26 – Ion trajectory simulations of the quadrupole and ion optics.  A) With a barrel lens prefilter 
and properly selected potentials, ions effectively transit into, through and out of the quadrupole device. 
The barrel lens brings ions into the stable region of the RF field.  B) Without a barrel lens placed at the 
entrance of the quadrupole there is significant perturbation of ion trajectories resulting from the RF 
fringing field.  C) Ions exiting the quadrupole are ejected at a wide distribution of angles relative to the 
beam axis, which is dependant on the RF phase in which the ions leave the device.  Without focusing and 
collimating fields, these ions are lost from the ion beam.  Trajectory simulations were conducted with 
SIMION 8.0 using a modified dynamic fields user program (quad.prg). 
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2-4.2 Post Quadrupole Ion Optics 

No special filtering strategy is utilized the back end of the quadrupole.  Instead, a 

wide (8.3 mm) exit aperture is utilized in combination with a large inner diameter (9.5 

mm) einzel lens array to recapture ions exiting the quadrupole device.  Trajectory 

simulations suggest this approach is efficient enough to recapture nearly all of the ions 

which exit the quadrupole (Figure 26C).  Since the fringe field at the end regions of any 

quadrupole can be characterized as an ion rejection field, ions depart the quadrupole 

much more readily than they approach it, which can be used advantageously to recollect 

ions which exit the field of an RF device.  The einzel lens effectively captures and point 

focuses ions through a conductance limiting aperture (6.4 mm) which helps define the 

pressure differential between the quadrupole and ion mobility chambers.  Voltages are 

supplied by a 6-channel power supply (Analytica of Branford, Branford, CT) interfaced 

to LabVIEW control. 

 
 
2-5 The Cryogenic Drift Cell, Drift Gas Manifold, Ion Gate and Associated Ion 

Optics 

 The primary component of this instrument is the cryogenic ion mobility 

spectrometer, which consists of the drift gas manifold, drift cell, cryogenic dewar, ion 

gate, ion optics and vacuum housing.  A cutaway CAD schematic of the cryogenic ion 

mobility spectrometer and all associated hardware is contained in Figure 27. 
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Figure 27 – Schematic of the cryogenic drift tube spectrometer.  Ions collected from the quadrupole are 
collimated by two stages of focusing, separated by a conductance limiting aperture.  The second lens stage 
simultaneously focuses, steers and truncates the ion beam into discrete packets which are directed through 
a 600 μm aperture at the entrance of the drift cell. The drift cell consists of a stacked ring network encased 
in a stainless steel dewar jacket.  Liquid nitrogen is introduced into the jacket to facilitate cooling of the 
drift gas.  Temperature is measured by two RTD probes.  Ions pass through the drift region where they are 
separated by their ion mobilities and some exit the other end through a 800 μm aperture.  A skimmer cone 
refocuses ions while directing away stray buffer gas.  Ions then continue through additional ion optics (not 
shown) to a mass spectrometer for mass analysis.  Pressure in the drift cell and interface regions are 
monitored by ionization gauges. 
 
 
 
2-5.1 Ion Mobility Entrance Ion Optics and Beam Steering Element 

The ion optics between the quadrupole and the ion mobility spectrometer are 

custom fabricated from stainless steel and mounted onto a commercially available 

charged optics assembly system (eV Parts® component system, Kimball Physics, Inc., 

Wilton, NH).  Ions which are collected from the exit of the quadrupole and passed 

through a conductance limiting aperture are further collimated by a second 3-element 
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lens stage, shown with more detail in Figure 28A and B.  This second 3-element lens 

system differs from the post quadrupole lens array in several ways.  The second 3-

element lens system is in a region of higher (~10-5 torr) pressure, and so electrodes are 

fabricated with a high gas conductance design to help facilitate efficient evacuation of 

gases which may otherwise interfere with the ion beam.  This “multipole” design 

(labeled “high conductance ion optics” in Figure 28A), helps create an effective ion 

focusing potential at their center axis while remaining relatively transparent to gas 

molecules to allow efficient pumping in this region.  Both sets of 3-element lenses (post 

quadrupole and pre ion mobility) effectively collimate, focus and decelerate the ions to 

condition them for injection into the gas filled drift region, as can be seen by the ion 

trajectory simulations in Figure 29A.  This lens system is similar in scope to a multi-

element lens described by Schlunegger et al. for decelerating a high energy ion beam 

(from 3 keV to 30 eV) for introduction into a quadrupole mass analyzer [360].  Both 

Schlunegger’s lens and the one described here are analogous in operation to a Heddle 

configuration lens in which the exit focal point of the first lens array coincides with the 

entry focal point of the second [361].  In this particular case, the focal point of the first 

lens also coincides with the conductance limiting aperture, as shown in Figure 29A.  
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Figure 28 – Details of the ion optics at the entrance to the IMS.  A) A cutaway schematic of the lens 
system from the quadrupole exit to the drift cell.  The ion gate, aperture, and front ion mobility electrodes 
are offset for clarity.  B) Side view of the front ion optics, showing the correct placement of the steering 
element, ion gate, and front “cup” lens of the ion mobility entrance electrode.  C) Details of the steering 
optic, which is a barrel lens divided into quadrants.  Opposite elements form one set of steering electrodes 
(1-2 and 3-4). D) Details of the ion gate, showing the PEEK support assembly and wire network.  The 
wires break out into two circuits, labeled + and – in the schematic. 

 
 
 

Because the ion optics are mounted on a separate mounting system as the drift 

cell, alignment between the ion optics and this pinhole aperture is not exact, requiring 

that the ion beam be repositioned with appropriate ion optical elements in order to 

ensure ion transmission into the drift cell.  The last element in the second 3-element ion 

lens array is an ion beam steering lens, which consists of a barrel lens truncated into four 

sections (Figure 28C).  Each of the four segments of this lens element can be 

independently biased to a voltage to fine tune the position of the ion beam.  Fine voltage 

adjustment is achieved with a floatable 2 channel DC power supply (6234A, Hewlett-

Packard, Co., Palo Alto, CA) whereby each channel is split into two additional channels 

controlled with a variable resistor to shim the potential on each output.  What results are 
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four total outputs, variable by ±20 V from the main floating bias, which gives all 

“potential” possibilities for positioning of the ion beam.   

 
 

 

Figure 29 – Ion trajectory simulations of the ion optics between the quadrupole and ion mobility 
spectrometer.  A) Ion optics collimate and focus ions from the quadrupole through a conductance limit 
into a second stage of optics, where the ion beam is point focused onto the entrance aperture of the drift 
region.  The optics are purposely misaligned in these simulations by ~2 mm with respect to the entrance 
aperture, which results in significant ion losses at the drift cell entrance. B) The potentials on the truncated 
steering lens can be adjusted to properly correct the position of the ion beam, resulting in all ions passing 
into the drift region. C) The ion gate can be pulsed to selectively reject ions from entering the drift region.  
The cup shaped electrode comprising the front of the drift cell effectively decelerates the ion beam by 
about 90% of its initial kinetic energy, such that ion injection occurs at ~15 eV or less. 
 
 
 
2-5.2 The Interleaved Wire Ion Gate 

The ion beam is truncated into narrow ion pulses through the use of an 

interleaved wire ion gate (Bradbury-Nielsen type, Figure 28D). The ion gate is built up 

with two discs of polyetheretherketone (PEEK, Boedeker Plastics, Inc., Shiner, TX), 

which is an excellent temperature stable thermoplastic possessing high dielectric and 

tensile strengths and very low outgassing properties [362,363].  A larger disc is drilled 

with an array of tapped holes (0-80 UNF) to anchor the tension on each wire, while 

spreading the array for ease of assembly the ion gate circuit.  The larger disc also serves 
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as the support substrate for the truncated steering lens (Figure 28C).  A smaller PEEK 

disc is drilled with two rows of closely spaced holes (0.34 mm diameter, 0.5 mm 

spacing) straddling a larger inner diameter for the center beam axis.  High density wire 

spacing is achieved by staggering the hole pattern on each of the two rows.  The wires 

are spaced ~0.5 mm apart in the array, with every other wire connected to a common 

circuit, creating a two circuit design.  Thin tungsten wire (0.01 mm diameter, Lamp 

Metals, Ltd, Wembley, Middlesex, UK) is used for the ion gate as tungsten possesses 

excellent conductor properties and a high modulus of elasticity (400 GPa) which is 

advantageous for use in high tension applications where voltages are applied.  The 

dielectric support disc substrates are mounted such that they are shielded from the ion 

beam by the steering ion optic.  This is particularly important when dielectrics are used 

in low energy ion beam applications where surface charging effects would perturb the 

ion beam’s intended trajectory [364].  The ion gate circuit is controlled with a bipolar, 

high voltage pulser (Dual HV Pulser, Ionwerks, Inc., Houston, TX) with independent 

magnitude control of each channel.  Pulse widths are scaled with the input trigger width 

supplied by a computer controlled card which is driven with a custom LabVIEW soft 

front panel as described previously.  Trajectory simulations suggest efficient blocking of 

the ion beam with this ion gate operated at a wire-to-wire potential difference of ~10 V 

(Figure 29C).  In practice, a voltage of ~50 V is necessary to prevent ion leakage into 

the drift region.  This required higher bias is presumably due to the elevated pressures 

present under experimental conditions which collisionally cool ions and dampen the 
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effect of the ion gate.  A similar decrease in efficiency for electrostatic grids operated at 

elevated pressures has also been suggested by recent computational studies [132]. 

 

2-5.3 The Drift Cell Entrance Electrode and Considerations for Ion Injection 

 The entrance to the ion mobility cell can be considered an extension of the ion 

optical system described above.  Its purpose in the setup described here is to define the 

final potential of the ion beam before the beam’s translational energy is quenched 

through ion-neutral collisions in the drift region.  The total injection energy of the beam 

into the ion mobility is defined as the difference between the EI source repeller potential 

(the top of the potential hill) and that of the entrance electrode into the mobility drift cell.  

In order to prevent ion activation resulting from high energy ion-neutral collisions, the 

ion injection energy must be kept low.  Jarrold investigated the rate of association 

between silicon cluster ions and a small percentage of ethylene admitted into a drift cell 

and found no contribution to the ion injection energy under ~20 eV [365].  Kemper and 

Bowers also investigated the injection energies in a hybrid MS-IMS-MS configuration, 

particular with regards to drift cell penetration of ions before thermalization.  In their 

work, the drift times of a pulse of ions were measured as a function of injection energy 

for a small length (4 cm) drift cell.  It was concluded that injection energies of <5 eV 

were needed to ensure insignificant ion penetration into their particular drift region 

[366].  For the longer drift region used in this work (30 cm), a higher injection energy 

could be tolerated with regards to perturbing drift time measurements.  In our own 

laboratory, we have investigated the extent of reaction for charge transfer chemistry 
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between various ions with water present in the drift cell and concluded there was no net 

increase in the abundance of water ion products (H2O+ and H3O+) for injection energies 

below ~20 eV.  At injection energies above 20 eV, the product ion abundance of H2O+ 

began to increase, suggesting activating collisions were taking place at the source.  For 

all experiments described in this work, injection energies of <20 eV were utilized to 

observe adequate ion signal while minimize collisional activation effects.  The potential 

on the entrance of the drift cell is operated at ~100 V, creating a deceleration field which 

drops the ion beam kinetic energy to less than 15 eV.  In this deceleration region, the 

presence of dielectric materials is minimized to help alleviate issues related to surface 

charge potentials perturbing the low energy ion beam.  The “cup” shape of the entrance 

lens is important for shielding the ion beam from fringing fields and for creating an 

effective deceleration potential that directs the ion beam axially into the drift region.  

Shielding is particularly important for protecting the ion beam when its translational 

energy is low.  
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Figure 30 – A) Assembly details of the stacked ring drift cell design.  The isolation spacer, aperture disk, 
front, back and center drift electrodes are shown.  B) Method for determining the spacing between 
electrodes using the sphere spacer design.  C) Equipotential lines (10 V) at the entrance and exit of the 
drift cell, showing the shielding effect of the cup design as well as the nature of the potentials at the center 
of the drift region and in proximity to the endcap electrodes. 
 
 
 
2-5.4 The Drift Cell Electrode Assembly 

The ion optical components of the cryogenic drift cell is built up using a stacked 

ring system of electrodes aligned and spaced with bearing grade ceramic balls (~8 mm 

diameter, grade 25 high alumina nonporous ceramic, McMaster-Carr, Aurora, OH).  A 

kinematically stable design is ensured by using 3 uniformly spaced balls between every 

two lens element compressed with uniform force across each element.  The ceramic balls 

are captured between every ring electrode (28.6 mm inner diameter, 6.4 mm thick) 

through two precision bored holes (~4.8 mm diameter, vented), ensuring an exact 

spacing from one electrode to another (Figure 30A & B) [102].  Two electrodes placed 

at either end of the stacked ring assembly support the conductance limiting apertures and 
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are designed with appropriate geometries to shield fringing fields present at the entrance 

and exit of the drift cell (Figure 30C).  The pinhole apertures placed at either end of the 

drift cell are commercially available laser drilled discs (stainless steel, Small Parts, Inc., 

Miramar, FL) which can be interchanged to achieve the appropriate balance between 

pressure and ion transmission.  An aperture diameter of 600 μm is used at the entrance to 

the drift region, while a slightly larger, 800 μm aperture is used at the exit where 

diffusion radially broadens the ion packets.  The apertures are epoxied (H2OE Epo-Tek® 

Conductive Silver Epoxy, Ted Pella, Inc., Redding, CA) into an equivalent thickness 

(0.5 mm) machined groove on the end electrodes to minimize distortions in the field 

lines which contribute to ion losses.  Aperture discs are thin to ensure minimal ion losses 

during transfer.  The electrode surfaces behind the apertured diverge away from the 

beam axis to help create a radially focusing field and allow ions room for radial 

expansion as they traverse the tight focus of the apertures (Figure 30C).  In this 

configuration, ions are focused through the first aperture into the drift region, traverse 

the drift region through the force of a weak electric field established by the guard rings, 

partition into populations governed by their ionic mobilities, and a fraction of these ions 

exit the second aperture on the other end of the drift region where they go on for further 

mass analysis and detection. 

 

2-5.5 The Drift Cell Cryogenic Jacket 

The drift region is enclosed in a cryogenic jacket.  The jacket is formed in the 

annular region of two concentric tubes, welded together at either end with appropriate 



 

 

140

ring flanges.  Two endcap pieces enclose the drift region and apply the compression 

necessary for keeping the guard ring assembly assembled.  A thin ring of temperature 

stable polyimide (Vespel® SP-1, DuPont, Wilmington, DE) is compressed between the 

dewar assembly and the end electrodes to shim the length and ensure electrical isolation 

between the drift ring electrodes and the dewar.  Vacuum seals are achieved through 

compression of silver wire alloy (Safety-Silv® 35 brazing alloy, J. W. Harries, Mason, 

OH) between rigid right angle joints.  All materials which comprise the cryogenic dewar 

are stainless steel welded together using same alloy, tungsten inert gas (heliarc) joining 

which uses an inert shielding gas to prevent atmospheric gas contamination of the weld.  

While stainless steel is a poor heat conductor, its rigidity and shape retention at 

cryogenic temperatures is superior to that of other, more conductive alloys (e.g., copper 

and brass), making stainless steel a preferred choice for uses where compressive forces 

are present and temperature variation can otherwise weaken the assembly.  Additionally, 

the poor heat conductive properties of stainless steel are used advantageously in these 

experiments to maintain a stable temperature during data acquisition.  Because ion 

mobility is inherently a statistical counting experiment, a greater number of counts will 

facilitate more accurate statistics and increased signal-to-noise, however the time allotted 

for experimental counting is ultimately governed by the stability of experimental 

conditions which will affect the results, such as temperature in this case.  Two stainless 

steel fittings (right angle Micro-Fit® weld fittings, Swagelok Co.) are welded directly 

onto both end rings of the dewar at the top to allow cryogens (liquid nitrogen) into the 

jacket region and relieve boiloff pressure.  The level of liquid nitrogen admitted into the 
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dewar determines the temperature of the drift gas inside with the liquid level being 

controllable by the flow from the main reservoir dewar (160 liters, LS-160, Union 

Carbide, Co., Houston, TX).  When completely filled with liquid nitrogen, the 

temperature of the drift gas is ~80K.  Temperature is monitored by two redundant 

platinum resistive temperature detectors (RTD, PT-100 ceramic encased, Omega 

Engineering, Inc., Stamford, CT) which are suspended directly in the drift gas at 

approximately 1/3 the total length of the drift region from front and from back.  

Resistive temperature measurements have the widest range of any other temperature 

measurement method and are more accurate than more commonly used thermocouple 

devices [367].  The two redundant RTD’s track within 1 degree of one another during 

rapid cooldown cycles (ΔT of >5 degrees/minute) when using helium, nitrogen or argon 

bath gases, indicating that thermal equilibrium in the drift region is quickly established 

from drift gas collisions with the chamber walls.  The entire dewar assembly is mounted 

onto the vacuum flange using ceramic standoffs (glazed steatite) and all gas/liquid 

feedthroughs (drift gas and cryogens) are isolated via ceramic breaks, facilitating 

electrical and thermal isolation of the dewar jacket.  Mounting the dewar jacking within 

a vacuum chamber eliminates problems associated with ice buildup and in this vacuum-

enclosed design the dewar also functions as a cryopumping surface for the vacuum 

system.  Additionally, vacuum is an ideal insulator which promotes temperature 

stability.  Since the liquid nitrogen can remain in the dewar for days following a fill, a 

flow of room temperature nitrogen can be used to facilitate boiloff of the residual liquid 

nitrogen and return the drift cell to ambient temperature within ~30 minutes.  If 
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otherwise desired, cold ion mobility experiments can be conducted for days following an 

initial cryogen fill.  Following a series of cold temperature experiments, an excess 

concentration of impurities will be present in the drift chamber, as indicated by 

comparing room temperature drift spectra before and after a cooldown.  A bakeout of the 

drift cell can hasten the evacuation of these impurities—typically one full day of bakeout 

at ~50°C will be sufficient to remove these impurities (higher temperatures will improve 

pumping even further).  A small amount of water is always observed in the IMS spectra 

(m/z 18 and 19, the latter being protonated water) at temperatures >0°C and quadrupole 

selection experiments verify that this water originates through charge exchange reactions 

with ions in the drift chamber rather than from the ionization source. 

 

2-5.6 Voltage Limitations in the Drift Cell Design 

Gaseous electrical discharge within the dewar chamber is an phenomenon that 

can limit the maximum obtainable voltage for the drift cell spectrometer.  Recall from 

earlier discussion that Paschen curves predict optimal discharge conditions in helium gas 

at ~1-2 torr pressure (Section 1-3.3), which describes the experimental conditions in this 

work.  Because ion mobility methods necessitate the use of a continuously decreasing 

potential hill for ions to traverse the gas region, the potentials at the front and back of the 

drift cell represents the greatest potential difference in the enclosed metal chamber IMS 

described here.  To minimize the occurrence of gaseous discharge, the dewar jacket 

chamber is electrically biased to a potential that lies in between the first and last 

electrode of the drift cell—this has the effect of minimizing the voltage difference 
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between any two conductors which in this particular drift cell represents the end 

electrodes and the chamber housing.  Utilizing this chamber bias method, the maximum 

obtainable potential drop between the front and back of the drift cell is ~500 V at 1 torr 

of helium, which is ~17 V·cm-1·torr-1, or ~52 Td at room temperature.  Mixtures or other 

pure bath gases allow for higher drift cell voltage operation, however voltages of this 

magnitude are not necessary except in the case of conducting high field ion selectivity 

experiments.  All experiments described in this work involve small mass ions (<100 

amu), and so the field strength is maintained well below ~10 V·cm-1·torr-1 (<30 Td at 

room temperature).  For some of the electronic state studies described in section three, 

the field strength is <2 Td. 

 

2-5.7 The Drift Gas Manifold 

The manifold which transfers and monitors the gas supplied to the drift region is 

assembled from stainless steel tubes and metal-to-metal fittings (6.4 mm diameter tubing 

joined with Swagelok® fittings).  A reservoir tank of gas is regulated down to a pressure 

of ~200 kPa and controlled amounts of gas are admitted into the drift cell through a fine 

leak needle valve (203 valve, Granville-Phillips®, Longmont, CO).  Impurities present in 

the gas are filtered through combined stages of moisture trapping (750 cc molecular 

sieve 5A trap, Supelco, Bellefonte, PA) and a cryogenic trap consisting of a coil of 6.4 

mm diameter tubing (20 turns) immersed in a liquid nitrogen bath.  The cryogenic trap is 

utilized when noticeable impurities appear in the mobility spectrum.  A 10 torr ranged 

capacitance manometer (SKY® CDG045, Inficon, Syracuse, NY) monitors the absolute 
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pressure of gas within the manifold.  The manometer is placed just prior to the gas 

feedthrough into the instrument vacuum system.  Ultra high purity (UHP) grade gases 

(helium & argon, Matheson Tri-Gas, Houston, TX; neon, Praxair Distribution, Bryan, 

TX) are used for all mobility experiments.  Upon entering the vacuum system, the drift 

gas line is passed through the bottom region of the drift cell dewar jacket, where liquid 

nitrogen pools during a cooling experiment.  The tubing line makes several passes before 

the drift gas is admitted into the drift cell.  This ensures a final stage of cryotrapping 

occurs prior to admitting the gas into the drift cell, which eliminates virtually all 

impurities for the low temperature experiments (refer to Section 3-2.2).  All drift gas 

lines within vacuum are 3.2 mm I.D. stainless steel tubing and utilize vacuum welds and 

swaged metal fittings to ensure a leak tight fit.  The drift gas line is thermally and 

electrically isolated from the main chamber through a ceramic break (temperature stable 

alumina ceramic and stainless steel, 3.2 mm tube diameter, Insulator Seal, Inc.).  
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Figure 31 – Details of the ion optics at the exit of the drift cell.  A) Schematic of the ion optics and 
support hardware, showing scaled placement of all components. B) SIMION generated potential energy 
contour lines showing the focusing effect of the drift cell exit electrode and skimmer.  A distribution of 
ions is also modeled, showing radial focusing and transfer of the ions through the drift cell exit region. Ion 
energies were assumed to be near thermal and gas collisions were not simulated in the model.  Gas 
collisions empirically exist in this region and will dampen the effect of any electrostatic focusing optics 
such that the trajectory predictions in B) represent an optimistic case. 
 
 
 
2-5.8 Ion Mobility Exit Ion Optics 

At the exit of the drift cell is placed a custom machined stainless steel nozzle 

skimmer cone (30o total included angle).  This skimmer is mounted on a larger conical 

support (45o total included angle), creating a large conical assembly that is 3.2 mm at the 

orifice entrance and 146 mm at its base (Figure 31A).  The entire assembly is mounted 

on a teflon ring machined with appropriate o-ring retaining grooves, allowing the conical 

assembly to be floated to a desired potential while maintaining the necessary high 

vacuum of the back end mass spectrometer.  High ion transmission is accomplished by 

establishing a focusing field at the tip of the conical electrode which draws in a large 
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number of the near thermal ions that elute from the drift region exit (Figure 31B).  At 

the same time, many of the escaping neutrals expand into vacuum and are pushed away 

by the geometry of the skimmer assembly, where a turbo pump removes them from 

vacuum.  The tip of the skimmer cone electrode is placed 9.3 mm from the exit aperture 

of the ion mobility cell to allow sufficient room for neutral gas expansion and pumping.  

A potential drop of ~30 V is applied between the drift cell exit aperture and the skimmer 

electrode. 

 

2-6 The Time-of-Flight Mass Spectrometer, Ion Detectors, and Associated Ion 

Optics 

 Mass analysis based on time-of-flight (TOF) measurements offers a very fast and 

sensitive means of obtain m/z specific information of ions.  With orthogonal geometry 

ion extraction (see Section 1-6.2), TOF mass analysis is readily coupled to ion beam 

instruments, adding the ability to analyze ions from the beam across a wide dynamic 

range of masses.  Because TOF is a dispersive (in time) type of mass analysis method, 

each ion extraction event generates a complete mass spectrum, so successive ion 

extractions provide a continual overlaying of mass spectra, improving signal-to-noise.  

With appropriate hardware, the speed of a TOF analyzer is limited only by the dispersion 

time of ions.  For the small ions investigated in this work (<500 amu), the TOF is 

capable of running in excess of 100 kHz (100,000 spectra/sec), representing ion 

dispersal times of ~5 μsec.  While each ion extraction may only yield 1-2 ion counts due 

to low ion transmission through the drift region, the power of the technique lies in its 
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speed: at 100 kHz and 1 ion per extraction, over 100,000 ions can be counted and 

summed together each second into a final mass spectrum. 

 

 

Figure 32 – Schematic of the orthogonal time-of-flight mass spectrometer.  The ion detectors and 
associated ion optical components are also shown.  A beam skimmer and series of ion optics steer and 
focus ions towards the extraction region of the TOF, where discrete slices of the ion beam are sampled for 
mass analysis.  A continuous dynode detector is placed inline with the ion beam (bottom right) for 
monitoring the ions exiting the drift cell region.  The TOF is fitted with a fast response microchannel plate 
assembly with ion counting capabilities. 
 
 
 
2-6.1 Ion Beam Optics for Ions Entering the Time-of-Flight Extraction Region 

Details of the TOF system designed and constructed for the cryogenic IMS is 

contained in Figure 32.  Ions exiting the drift region are extracted and focused into an 

ion beam using a series of axially symmetric ion optical elements.  The ion optics 

effectively focus the ion beam into the ion extraction region of the TOF, as illustrated in 
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Figure 33B.  The extraction region consists of two parallel plates (3.5 cm wide “Series 

C” square plates, eV Parts®, Kimball Physics, Inc., Wilton, NH), with the plate defining 

the entrance to the TOF consisting of a gridded opening (2.5 cm diameter) to allow ions 

to traverse.  Grid materials used here and elsewhere in the TOF ion optics are 70 lines 

per inch (lpi) electroformed nickel mesh (Precision Eforming LLC, Cortland, NY) 

possessing ~90% optical transmission.  Ions not extracted in this region (either between 

extraction events or when the TOF is not operating) pass through the parallel plate 

region and into a single element barrel lens which is connected to an electron multiplier 

detector (Channeltron® model 4770, Burle Technologies, Inc., Lancaster, PA).  This 

barrel lens is used primarily to shield the ion beam from the high voltage of the TOF 

(equipotential lines in Figure 33A and B), which must be floated negative to ground due 

to the necessary potential drop of the IMS21.  The beam axis detector consists of a 

deflector plate and a horn-shaped continuous dynode (refer to Section 1-8.3).  The 

deflector plate steers ions off the beam axis into the monolithic dynode and can be tuned 

to optimize detector gain by directing ions to the front most part of the dynode structure, 

where a greater degree of electron amplification will occur.  This off-axis configuration 

is also useful for reducing detector noise resulting from neutrals colliding with the 

dynode surface, as would be continuously leaking from an on-axis IMS drift cell. 

                                                 
21 Alternately, the front end before the IMS can be floated to a positive potential and the TOF operated 
relative to ground (zero) potential, however recall from discussion in Section 1-3.3 that gaseous electrical 
discharge is more probable for a positive potential than a negative.  Floating the back end mass analyzer to 
a negative bias and isolating it within a vacuum chamber represents the most acceptable means of 
addressing the biasing issues associated with hyphenated IMS-MS instrumentation.  This also alleviates 
issues associated with floating the sample introduction region, where the user interfaces the instrument, to 
a high voltage. 
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Figure 33 – A) The procedure for modeling ion trajectories and evaluating optimal instrument geometries 
for the TOF.  A scale model is drawn using computer assisted design (CAD, left), then translated into 
SIMION readable coordinates to generate the boundary conditions for the trajectory calculations (center).  
Electrode potentials are assigned to the surfaces and ions are “flown” to determine their likely trajectories 
in the electric fields (right).  B) Trajectories of ions traversing the beam ion optics to the TOF.  Optics 
effectively collimate the beam through the extraction region (boxed in blue).  C) Mechanical details of the 
TOF ion extraction region, showing the three plate design, TOF liner, and shielding necessary to block the 
high liner field from the ion beam. 
 

 The ion optics are supplied with the appropriate potentials via a 4-channel, 0-1 

kV power supply (Ortec® model 710 Quad Bias Supply, Advanced Measurement 

Technology, Inc., Oak Ridge, TN).  This supply module is built for the Nuclear 

Instrumentation Module (NIM) standard platform [368] and is appropriately stable for 

TOF applications, with <2 mV peak-to-peak ripple at full load.  The first and last 

element is maintained at the same potential such that negligible kinetic energy is 



 

 

150

imparted to the ions during focusing.  Ions exiting the pressurized drift region are 

assumed to be near thermal (<1 eV of kinetic energy) and so the ion beam kinetic energy 

is defined as the difference between the exit of the drift cell and the back ion optical 

element.  Section 2-6.4 describes optimal beam kinetic energies for the experiment. 

 

2-6.2 The Time-of-Flight Ion Extraction Optics 

In the simplest case, a TOF mass spectrometer consists of an ion acceleration 

region (source) and a field free region (flight tube) where ions spatially partition into 

their respective m/z values (as depicted previously in Figure 11).  The acceleration 

region is defined typically by two electrodes: a solid plate where the acceleration field is 

applied and a transparent (via a grid or aperture) plate which defines the entrance to the 

field free region and is kept at the same potential as the flight tube.  Recall from earlier 

discussion that ions extracted from the TOF source region can be at any location 

between these two plates (Section 1-6.2).  This results in ions which are closer to the 

acceleration plate receiving more kinetic energy than those further away.  The 

consequence is that an extracted ensemble of ions at the same m/z will represent a 

distribution of velocities22.  Ultimately, this limits mass resolution since the width of 

arriving peaks of the same m/z is governed by this velocity spread, however the 

resolution limit can be minimized by taking into account the spatial refocusing of ions 

which occurs as a consequence of their differential velocities [369].  In other words, 

                                                 
22 The same result is also caused by ions having a distribution of kinetic energies, as with ions formed in 
the source by laser ionization methods.  The means of addressing both space and energy distributions of 
ions in the source is the same. 
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since ions in the source start at different positions and are given different kinetic 

energies in the field, there is some distance from the source at which all ions will be at 

the same position, called the space focus plane—this is the most desirable location to 

place an ion detector.  The space-focus plane for this simple, two plate source geometry 

will be the distance when ions spend an equal amount of time in the source and field free 

region [178].  As a consequence, this space focusing distance from the acceleration 

region will be very short, since ions spend a short amount of time in the actual 

acceleration region.  Placing a detector very close to the extraction source is not 

desirable, since ions will not have spent sufficient time in the field free region to 

disperse via their m/z values.  This problem limited the technological implementation of 

time-of-flight mass analysis, until Wiley and McLaren demonstrated that by introducing 

a two field extraction source, the location of the space focus plane can be made 

independent of the first field source geometry (to first order), governed rather by the 

magnitude of a second electric field region placed immediately after the first [208].  

Two-stage ion extraction sources form the basis of all commercial TOF spectrometers, 

linear and orthogonal geometries, and is utilized in the TOF ion optics described here. 

The two-stage extraction source of the orthogonal TOF is built up with a three 

plate design, as illustrated in Figure 33C.  The stainless steel plates used are 

commercially available components designed for building up ion optical assemblies (eV 

Parts®, Kimball Physics, Inc., Wilton, NH).  A flat plate is used as the acceleration plate, 

called here and elsewhere the PUSH plate.  A second plate possessing a gridded opening 

(2.5 cm diameter opening, 70 lpi nickel grid) defines the end of the extraction field and 
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the start of the second stage acceleration field and is referred to here and elsewhere as 

the PULL plate.  An additional plate with the same dimensions is used to define the field 

boundaries for the entrance of the TOF field free region, referred to here and elsewhere 

as LINER [370].   

 

 

Figure 34 – Principle of operation of the orthogonal TOF ion source.  At left, the electrical potentials on 
the PUSH and COMMON elements are kept the same to allow ions to enter this region.  At right, an 
acceleration pulse is applied to extract ions from the source and into the second stage between the PULL 
and LINER elements.  Ions accelerated in this manner will partition by m/z in the field free region while 
spatially refocusing to some far distance from the source to allow for adequate mass separation. Note that 
the fields depicted here are the same immediately before and after the COMMON element, creating the 
ideal two-field source which satisfies second order focusing requirements.  In practice, this is not always 
the case as the potential slope before and after COMMON are in many experimental cases, not the same. 
 
 
 

In orthogonal TOF methods, ion analysis proceeds via two distinct steps: an “ion 

fill” step whereby the source region is populated with ions from the beam, and an ion 
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extraction step, whereby an accelerating field is applied to push ions from the source and 

accelerate them for TOF mass analysis [220].  Illustrative details of this two stage 

process are presented in Figure 34.  During the “ion fill” step, it is necessary to maintain 

the source region at zero field with respect to the TOF axis so ions will enter this region.  

The most straightforward means of accomplishing this is to introduce a third element 

which partitions the first source stage into two.  This COMMON electrostatic element is 

maintained at the potential reference of the ion beam while the PUSH element pulses 

from this common potential to the acceleration potential, such that between ion pulses 

the field in this region is zero.  Introducing this COMMON electrode also facilitates a 

narrowing of the ion fill region, which further enhances mass resolution capabilities.  In 

most cases, it is also preferable to use a series of two pulses rather than one to 

simultaneously lift the PUSH and lower the COMMON (in which case it is no longer 

common).  This will minimize the magnitude of the field which protrudes away from the 

ion source which perturbs the trajectories of those ions present in the beam but not 

extracted in the pulse.  This two pulse strategy is not used in this particular source 

design, as the modest gain in sensitivity was not justified by the experimental 

complexity of the setup.  Finally it should be noted that a second pulse opposite in 

polarity direction to the PUSH pulse can also be applied to the PULL element to create a 

blocking potential during the ion fill event so ions will not “leak” into the TOF region.  

No ion leakage was observed with the PULL bias on, so this two pulse strategy was not 

utilized in these experiments. 
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The dimensions comprising the space between ion optical elements are as 

follows:  6.4 mm from PUSH to COMMON, 4.1 mm from COMMON to PULL, and 3.2 

mm from PULL to the entrance of the TOF liner.  The relevant source dimensions are 

thus: 10.4 mm for the first stage and 3.2 mm for the second stage of the extraction.  

These dimensions incorporate the finite thickness of plate elements and are measured 

from grid surfaces.  All electrode plates are all 0.6 mm thick.  The unconventionally 

large dimension for the first extraction source region allows for a greater “ion fill” 

volume which serves to increase the experimental sensitivity, but at a cost of mass 

resolution.  The longer first stage also lengthens the ion residence time in the source 

region, which has the beneficial consequence of allowing a longer drift path length 

and/or higher TOF acceleration voltages to be used in the second stage for the same 

space focusing which both serve to improve mass resolution, though it is unclear if these 

gains outweigh the detriments associated with the wide spatial distribution of ions in the 

source. 

Voltages on the static ion extraction electrodes (COMMON and PULL) are 

supplied by two channels of a 4-channel, 0-1 kV power supply (Ortec® model 710 Quad 

Bias Supply, Advanced Measurement Technology, Inc., Oak Ridge, TN).  The PUSH 

pulse is supplied with a fast pulser specifically designed for TOF applications (Dual HV 

Pulser, Ionwerks, Inc., Houston, TX).  Because this pulser supply cannot be biased to a 

high potential (<15 V limited), an AC coupled circuit was assembled to superimpose the 

high voltage pulse to the biased PULL electrode.  The simple circuit is a capacitor (1.9 

nF 6 kV Cera-Mite, Vishay Intertechnology, Inc., Malvern, PA) which connects the 
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pulser to the DC circuit of the PULL electrode.  An additional resistor (20 MΩ, 3W 

Geka® wire-wound, Vishay Intertechnology, Inc.) is placed in series between the DC 

supply and the PULL electrode to buffer the DC supply from the pulse as well as serving 

as a current limiting component in the event of a discharge [371].   One limitation to this 

approach is that when the capacitive pulsed circuit is applied, a percentage of the DC 

bias is dropped from the main circuit, such that the actual potential on the electrode is 

lower than the potential being supplied by the DC power supply.  This is a well known 

phenomenon in AC coupled circuits and must be accounted for in this TOF ion 

extraction design to ensure that the PUSH and COMMON electrodes are maintained at 

the same (or close to the same) potential so that ions will preferentially populate the 

region in between.  To correct for this DC offset, a separate power supply is used for the 

PUSH plate (rather than conveniently stringing the COMMON power supply to this 

input) and the DC offset correction is applied to this separate supply.   The required DC 

offset correction will depend on the pulse frequency and amplitude, but constitutes about 

1-10 V for the range of possible pulser settings.  The effect of the DC offset can be 

directly observed and experimentally corrected for by monitoring the resulting mass 

resolution.  For most all experiments described here, the offset is optimal between 2-5 V 

negative, supplied to the PUSH element.  Finally, the short flight times of the low mass 

ions studied in this work allow for the TOF to extract at a much higher frequency than 

conventional for hybrid IMS-MS instruments of this design.  The TOF sampling 

frequency is routinely operated between 70-80 kHz, which represents the upper limit of 

frequency that will still allow ion dispersal and recovery of electronics and the detector.  
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More details regarding the timing and operation of the data acquisition system is 

providing in Section 2-7.  

 

2-6.3 The Time-of-Flight Field Free Region and Ion Detector 

As a result of the necessary potential hill required to convey ions through the 

pressurized drift region, either the front or the back of an IMS instrument must be 

referenced to a potential other than ground potential.  As mentioned in Section 1-3.3, it 

is more desirable to float the back end MS of a hybrid mobility-mass spectrometer 

negative in order to maintain the ion source at a safe, ground potential and minimize 

discharge probabilities in the back end region where sensitive ion detectors are placed.  

As a result, the entire back end of the instrument, including ion optics and the TOF, is 

referenced to the back of the drift cell, which for all experiments described here is 

between 100-400 volts negative.  Since ions are further accelerated in a high field for 

mass analysis, the field free region of the TOF must be further biased in excess of ~4000 

volts negative (for positive ion analysis).  Therefore, an appropriate field free liner must 

be used in order to maintain ions at this low potential. 

The TOF liner consists of a stainless steel tube, perforated with 0.6 cm holes to 

allow for pumping and closed on both ends with stainless steel caps appropriately 

machined to support the ion extraction optics at the source end and the ion detector at the 

detection end.  The liner was originally designed to incorporate a reflectron ion mirror 

device, and thus has a larger endcap opening at the detector end and an additional 

mounting opening for a second detector on the ion source endcap.  For the linear TOF 
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design, these openings were closed using stainless steel shim stock material.  The TOF 

liner measures 27.25 cm from end to end.  The total ion path length from surface center 

of the PUSH element to the surface center of the detector is 29.3 cm.  The location of the 

detector center is offset by 3.3 cm with respect to the center of the PULL electrode to 

facilitate efficient ion coincidence due to beam axis kinetic energy [372].  The ion 

detector consists of two, 25 mm diameter MCPs assembled into a chevron configuration 

(refer to Section 1-8.5).  A 25 mm stainless steel disk is mounted ~5 mm behind the 

MCP assembly and serves as the signal anode.  A capacitor (10 pF 6 kV Cera-Mite, 

Vishay Intertechnology, Inc., Malvern, PA) is placed in series with the signal anode wire 

to break the conducting path, which discourages electrical discharge through the MCP 

assembly.  This capacitor also protects the detection electronics in the event of a 

discharge and prevents anything connected to the signal end downstream from the 

detector to damage the detector in the event of a electrical malfunction.  To sink electron 

current which is generated on the anode, a 10 MΩ resistor (MG series, Caddock 

Electronics, Inc., Roseburg, OR) connects the anode end to instrument ground.  This 

resistance is sufficiently high to prevent sinking the current prior to charging the 

capacitor in which the signal is read through. 

The TOF liner voltage is supplied with a 0-10 kV supply which also biases a 0-

3.5 kV detector supply (HP and HF series, Applied Kilovolts Ltd., West Sussex, UK).  

This floatable module is convenient for operating the MCP detector on a floated system, 

and greatly reduces the chances of applying too much voltage to the MCP assembly.  

Additionally, these supplies possess low ripple (50-75 mV peak-to-peak at full load) 
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which translates into higher TOF resolutions.  These latter two modules are integrated 

into a home built chassis fitted for manual voltage control and monitoring and 

incorporates shutdown interlocks which trip in the event of a power outage.  Such an 

interlock system is necessary for protecting the MCP detector from catastrophic 

electrical discharge in the event of losing high vacuum (<10-4).  Refer to Section 1-8.5 

for a more in depth description of this discharge problem as it relates to MCP detectors. 

 

2-6.4 Optimal Time-of-Flight Settings for Mass Resolution and Sensitivity 

Observed mass resolution for the IMS orthogonal TOF arrangement will be 

governed by several parameters, including the mechanical alignment and tolerances of 

electrodes and stability of the power supplies used.  These latter issues should be 

addressed in the design and construction process—once the instrument is assembled 

there are basically two key factors which govern the performance of the linear TOF mass 

spectrometer:  the spatial spread of ions which populate the ion extraction region and the 

location of the space focus plane with respect to the detector.  Both parameters can be 

controlled with the proper potentials, and an adequate estimate of what potentials to 

apply can be drawn from ion trajectory modeling using accurately scaled geometries in 

SIMION (this procedure is outlined in Figure 33A).  The ion beam can be collimated 

into a relatively narrow dimension with respect to the TOF axis, as illustrated by the 

trajectory modeling in Figure 33B.  The importance of the ion spatial distribution for 

mass resolution is illustrated in the trajectory simulations in Figure 35A which model an 

accurate statistical weight of Xe+ isotopes and sums resulting arrival time values.  As the 
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TOF axis distribution of ions in the extraction source is narrowed, the mass resolution 

increases.  Some beam aberrations and the relatively large spacing of the “ion fill” 

region will limit the practical mass resolution at the benefit of ion transmission, however 

a resolution ~100 can be achieved for this linear TOF which is more than adequate for 

the small molecules studied herein.   

The location of the space focus plane for a given set of TOF dimensions and 

potentials can be calculated from equations derived for second order TOF focusing 

(found in reference [178]).   However, this calculation tends to underestimate the focal 

distance found empirically in this instrument due to the fact that the addition of the 

COMMON electrode complicates the simple two-field source unless special care is 

taken to ensure the electric field between PUSH and COMMON is the same as the field 

between COMMON and PULL.  In other words, the actual source configuration used in 

this work incorporates three separate fields, such that the theory currently established for 

second-order focusing does not fully apply here.   
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Figure 35 – Ion trajectory simulations evaluating the TOF mass resolution.  The results illustrate the 
factors which influence the observed mass resolution of the orthogonal TOF configuration used in this 
work.  A) Histogram plots of simulated arrival time data for xenon ions which are made to populate 
various spatial distributions in the TOF ion extraction source.  Ion numbers are statistically weighed with 
respect to the natural isotopic abundances of xenon.  6 mm (left histogram) represents the full width of the 
extraction region, and thus a “worst case” resolution. B) Simulated ion trajectories at various TOF 
potentials.  Time markers (insets, in red) indicate the location of ions at a specific time interval.  The space 
focus plane is the location when ions arrive at the same plane parallel to the source/detector—the center 
ion trajectory inset represents settings which give a close to ideal arrival time for ions, i.e., at the surface 
of the detector. 

 
 

A satisfactory solution has been to rely on ion trajectory models to estimate the 

conditions for space focal plane detector coincidence.  Trajectory simulation results of 

this procedure are contained in Figure 35B.  In practice, these calculated values are 
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close to what is found through experimental tuning, however they can deviate by as 

much as 10%.  Nevertheless, such calculations are invaluable as a starting point for 

empirical tuning of the instrument, particularly when no prior knowledge exists as to 

where to begin, as is the case with instrumentation components built from the ground up.  

Experimentally, the PUSH potentials is optimal between 200-400 V positive, the PULL 

between 300-600 V negative and the TOF LINER between 4000-5000 V negative.  All 

potentials are with respect to ground rather than what is outputted by the power supplies 

on top of additional DC biases. 

Finally there are additional considerations which must be taken into account for 

ensuring ions which are extracted from the TOF source will coincide with the detector.  

The orthogonal TOF configuration represents a two vector system whereby the beam 

axis momentum of ions is retained during TOF extraction due to the kinetic energy of 

the ion beam.  This kinetic energy must be properly tuned to the extraction potentials of 

the TOF (or vice versa) to maximize the number of ions that reach the detector. SIMION 

modeling of ion trajectories suggest that a range between 20-50 eV of kinetic energy for 

the ion beam is optimal for ions to coincide with the detector during TOF extraction 

when using ion extraction potentials that optimize mass resolution.  Experimentally, it is 

observed that higher kinetic energies (>30 eV) result in greater ion counts at the detector, 

while lower kinetic energies (<30 eV) result in higher observed mass resolutions, 

presumably due to a narrower ion distribution in the ion extraction source region.  For all 

experiments, the ion beam kinetic energy is maintained between 30-40 eV to balance 
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high resolution with adequate sensitivity.  This value is consistent with results obtained 

on other IMS instruments in our laboratory. 

 

2-7 Data Acquisition and Visualization Methods 

 Critical to the success of this instrument is the ability to quickly and efficiently 

acquire and correlate multidimensional data sets.  Speed is particularly important for the 

cryogenic IMS instrument since low ion recovery through the drift cell is a consequence 

of high resolution, low field experiments.   The data acquisition methods described here 

represent a refinement of several generations of previous ion mobility work made 

possible through a longstanding collaborative relationship between our laboratory at 

Texas A&M and scientists at Ionwerks of Houston.  The resulting hardware and 

software make it possible to simultaneous acquire, correlate and visualize the two 

dimensions of data in such a straightforward way that it is somewhat difficult to see the 

underlying principles which govern how the methods work. 

 

2-7.1 Interleaving of Mobility Arrival Time Data with Mass Data 

 While it may seem rather simple to consider how one might correlate the signal 

from two detectors together into a single, two dimensional data plot, it is somewhat less 

intuitive to rationalize if there is only one detector in the experiment.  Acquiring two sets 

of data simultaneously on a single detector in the IMS-MS experiment is made possible 

through a clever time correlation method known as data interleaving. 
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 Recall that there are two duty cycles in the IMS-MS experiment: one for the 

mobility (the ion gate event) and one for the TOF mass analyzer (the ion extraction 

event).  Consider that after ion mobility separation, the ions which exit the drift region 

are partitioned into mobility-specific ion populations dispersed in time.  As these ion 

packets pass through the extraction region of the orthogonal TOF, the extraction 

potential can be timed such that it only extracts and mass analyzes ions corresponding to 

only one of these ion populations.  This is made possible by setting a specific delay time 

between the start of the IMS analysis and the start of the TOF analysis and repeating this 

same delay time over and over to obtain sufficient ion counts.  Now by scanning the 

delay time across the full time in which the mobility separated ions are dispersed, a 

complete mass spectrum can be obtained for every ion population.  This is essentially 

how data interleaving works, except for reasons of maximizing the acquisition 

efficiency, the time is offset for each new ion mobility pulse such that scanning is done 

in an interleaved fashion.  In this way, there is a minimum number of offsets 

(interleaves) which must be acquired before a complete mobility spectrum is 

represented.  
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Figure 36 – Data acquisition setup and principle of mobility data interleaving.  A) Experimental details of 
the data acquisition setup.  Software driven timing initiates a series of control card outputs that triggers the 
ion gate and time-of-flight pulses, respectively.  This timing sequence is fed into the TDC and used to 
correlate ion extraction events with mobility arrival times.  B) The data interleaving strategy used to 
deconvolute mobility arrival times from the TOF data.  TOF acquisition proceeds through several 
interleave events, each differing by a specified offset time (2nd panel).  Each mass spectral signal is 
correlated to a specified extraction pulse and through a series of interleave events (shown here with four), 
the mobility arrival time profile is generated for each mass spectral bin (4th panel). 
 
 
 

In Figure 36B, the principle data interleaving is illustrated for four hypothetical 

interleave events.  A time delay is introduced between the IMS and MS modes, since it 

takes a finite amount of time before ions begin to reach the TOF.  Because the TOF 

operates at a much higher frequency than the IMS, several TOF acquisitions can be 
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initiated for each IMS pulse, increasing the efficiency of the data acquisition.  As can be 

seen in the far right panel, after the fourth interleave, a complete mobility peak is 

represented.  Repeating this process multiple times serves to enhance the ion counting 

statistics and thus the accuracy of reproducing the actual ion population distribution.  

The number of interleave events determines how many data points are taken across each 

peak profile and should be optimized for each system investigated. 

 

2-7.2 Experimental Setup of the Data Acquisition System 

 An experimental overview of the data acquisition setup is contained in Figure 

36A.  Depicted to the left is a computer workstation, which manages both the timing of 

the experiment and the storage of the resulting data.  The experiment is driven by 

acquisition software developed specifically for IMS coupled to orthogonal TOF 

spectrometers.  The software contains several user adjustable parameters, including i) 

timing controls for the ion mobility pulse width and frequency, ii) TOF extraction 

number, pulse width, frequency and duration, iii) desired number of interleaved events, 

and iv) delay times between experimental sequences.  The software takes the user 

defined number of TOF extractions and calculates the ion mobility acquisition window.  

The interleave event number is used to calculate the ion mobility bin (digital channel) 

size.   Using these set of parameters, the entire acquisition of 2D data can be adjusted to 

suit the system under study.  For example, small molecular ions have very fast drift 

times and marginally low mobility separation efficiencies and so it would be desirable to 

tune TOF acquisition for many short, quick bursts shortly after the start of the IMS.  For 
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larger ions, the TOF acquisition can be delayed for a much greater duration and can 

utilize fewer TOF extractions across a larger time window in order to analyze a larger 

dynamic mobility and mass range.  Lower frequencies and wider pulse widths would 

also be desirable for the latter case to account for the slower flight time of these larger 

ions. 

 The software communicates with the instrument via two computer cards: a 

control card (32-bit, x8 TTL lines at 80 MHz, model PCI-6602, National Instruments 

Co., Austin, TX) for outputting the control voltages to various modules and a digitizer 

card (Fastlink for TDCx8, Ionwerks) for reading the time-dependant digitized data sets 

directly from an 8-channel time-to-digital converter module (TDCx8, Ionwerks).  The 8 

TDC channels are not utilized in this experiment.  An additional module (TTL to NIM, 

Ionwerks) is used to convert the TTL control voltages to the NIM standard for 

communication with the TDCx8.  Instrument control voltages (TTL hi) initiate the two 

pulsers (Dual HV Pulser, Ionwerks) which drive the IMS ion gate and TOF extraction 

pulse.  The latter is AC-coupled to the DC biased circuit of the PULL electrode, which is 

necessary to float the back end of the instrument at a negative potential.  As mentioned 

previously, the resulting potential drop in the DC circuit must be corrected for so that the 

PUSH to COMMON field remains near or at zero for efficient ion filling. 
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Figure 37 – Front panel interface of the data acquisition software.  The top panel is the integrated mass 
spectrum; the bottom panel is the integrated mobility spectrum.  The middle panel displays the real time 
acquisition of data.  Windows of mass can be selected and the resulting mobility traces integrated across 
the window in the bottom panel.  The “Experimental Setup” popup interface is shown which has the 
following controls: 1) TOF time window, 2) TOF time resolution, 3) ion gate frequency, 4) ion gate width, 
5) time delay before TOF begins acquisition, 6) optional acquisition timer, 7) refresh rate of the middle 
data panel, 8) TOF frequency, 9) TOF pulse width, 10) number of TOF ion extractions, 11) number of 
interleave offset events, 12) time delay before TDC acquires TOF data (useful for circumventing noise 
resulting from the initial pulse).  The data displayed is the 70 eV electron ionization of methanol with 
argon as the drift gas. 
 
 
 

The detector output signal is decoupled through a capacitor to regulate current 

flow and protect both the detector and the electronics from path-to-ground initiated 

discharging.  In this configuration, the detector anode is maintained at ground potential, 

so a resistor to ground can be used to sink excess electron current from the line (Figure 
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36A).  The ion signal from the TOF is fed first through a preamplifier (200x 

amplification, <1 ns rise time, Ortec® model FTA820A fast timing amplifier, Advanced 

Measurement Technology, Inc., Oak Ridge, TN) and then digitized and time correlated 

through the TDCx8.  The resulting digitized signal is sent to the digitizer card of the 

computer workstation.  The acquisition software deconvolutes the ion mobility traces 

with the method described in Figure 36B and generates two sets of spectra 

corresponding to mobility and mass space data.  The acquisition software interface is 

shown in Figure 37. 

 

2-7.3 Data Format, Visualization and Post Acquisition Workup 

 The 2D data is saved in a single data file format.  The data files are stored in a 

matrix format retaining the spatial locations of each data bin as it pertains to the 2D 

mobility-mass space.  The numerical data in each XY location corresponds to the ion 

counts at that particular bin.  Thus a full integration across either X or Y results in the 

total mass and mobility spectra of the experiment, respectively.  This matrix data can be 

viewed in a 2D contour map format using custom mobility visualization software 

(Ionwerks) produced with the IDL development language (ITT Visual Information 

Solutions, Boulder, CO).  This software projects mass data on the x-axis and mobility 

data on the y-axis, which is a logical arrangement given that the dependant variable in 

these experiments is the mobility data rather than the mass data.  A convention stemming 

from LC-MS stipulates that the mass data be projected on the y-axis and thus this type of 

projection (mobility on the x-axis) is also seen in some IMS-MS data, specifically in the 
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commercial SynaptTM traveling wave IMS instrument (Waters Co., Milford, MA).  

Projection of the data in this manner draws parallels to IMS as a chromatographic 

separation.  The variability in projecting 2D mobility-mass data should be considered 

when comparing 2D ion mobility-mass data from various sources.  The 2D trace is a 

simple contour map with user definable color mapping.  The threshold for the contour 

map can be adjusted, representing a line scan across the mobility and mass data.  

Because the contour map represents a linear scan across the data, the resulting 2D 

projected data is not scaled by half heights and as such cannot be compared for relative 

broadening.  Inherently this line scan method discriminates across low and high 

abundance signals—a fact which should be considered when visualizing the data with 

this software.  Some degree of data interpolation occurs during post data processing as 

digital data inherently lacks information between points.  The software allows for user 

selectable smoothing which attempts to curve fit between data points.  With no 

smoothing, the software processes the data via linear interpolation (i.e., “connect the 

dots”).  Fewer data points are often taken in order to address low levels of ion 

abundances present in some of the more challenging experiments, such as the low field, 

low temperature experiments in Section 3-2.  In these cases, the data appears “choppy” 

with simple linear interpolation and so a low level of smoothing is applied to the 

mobility data to assist in visualization.  This fact should be considered when interpreting 

some of the more subtle spectral features in mobility trace data, such as peak “shoulders” 

or non-Gaussian broadening.  
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3. EXPERIMENTAL RESULTS AND INTERPRETATIONS 

 

3-1 Instrument Performance Benchmarks and Calibration Data 

 Performance data on the various instrument components was obtained during 

each of the several iterations of the instrument’s development.  Documentation of the 

more pertinent experimental results is given in the next few sections. 

 

3-1.1 Mass Selective Capabilities of the Quadrupole and Observed Ion Chemistry in the 

Drift Cell 

 The addition of the quadrupole prefilter is an important experimental capability 

for the cryogenic IMS.  The ability to unambiguously determine the m/z value of ions 

which are admitted into the drift region can lend significant credibility to data 

interpretation, particularly with regards to the origin of specific ions which appear 

following the IMS experiment.  In most all cases, the IMS experiment is marked with a 

certain amount of ion chemistry, resulting from the ion’s interaction with trace level 

impurities in the drift gas.  In fact, this favorable ion chemistry forms the basis of 

chemical detection technologies which employ IMS, such as explosives detectors at 

airports which monitor the appearance of a product ion rather than the chemical 

precursor.  To illustrate the importance of mass selection capabilities, consider three ions 

which are formed in the source and introduced into the drift region. Each of these three 

hypothetical ions are capable of efficient ion chemistry in the drift cell and give rise to 

several product ions in addition to their precursor ion signature.  The resulting mobility-
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mass spectrum will thus be a composite spectrum of precursors and product ions and our 

three ion situation quickly becomes one marked with six or more ions.  With ion 

selection capabilities, each of our three ions can be selected one at a time, and the 

resulting mobility-mass data can be compared to determine the origins of the superfluous 

ion signals. 

 
 

 
 
Figure 38 – Spectra of Xe+ identifying water impurities in the drift gas.  Left, resulting spectrum with the 
quadrupole set to total ion transmission (broadband).  Several peaks are observed.  Right, resulting 
spectrum with the quadrupole set to transmit m/z 131.  Xe+ and the two signatures for water (18 and 19 
m/z) are present, indicating that neutral water impurities are present in the drift gas and initiate ion 
chemistry with Xe+.  The 2D plot also reveals signal “smearing” which is characteristic of an ion that has 
undergone conversion during its transit through the drift region, most notable here in the right spectrum as 
fronting on the Xe+ peak and tailing on the water ion signatures.  Note that the mass axes are displayed as 
the uncalibrated flight times.  Experimental conditions for both spectra are: 70 eV electron ionization, 0.9 
torr helium drift gas, 10 μs ion gate and ~8.5 V·cm-1 drift field. 
 
 

 Figure 38 illustrates the utility of mass selection using a simple example of 

xenon.  The electron ionization of pure xenon will give only two ion signals: Xe+ and 

Xe2+, with more of the latter for higher EI energies (reference spectrum from NIST, not 
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shown).  The mobility-mass data contains ion signals for both singly and doubly charged 

xenon atoms, as well as ion signatures representing H2O+ and H3O+ (water and 

hydronium ion, respectively) and N2
+.  The water ions could result from the source 

manifold, being introduced along with the xenon gas.  Atmospheric contamination of the 

sample is suggestive of the presence of the N2
+ ion and water is also a common 

contaminant, especially in the high humidity environment where these experiments are 

conducted (College Station, Texas).  By selecting only the Xe+ ion (131 m/z) to be 

transmitted through the quadrupole, any other ions formed at the ion source will be 

rejected from entering the drift region.  The selection of xenon (m/z 131) using a wide 

mass window results in both the Xe+ ion and the two water signature ions appearing in 

the 2D spectrum (Figure 38, right).  This indicates that water is present in the drift gas.  

The formation of the hydronium and water ions in ion mobility methods is a well known, 

fast reaction process and the hydronium ions is often used as a precursor ion for the 

detection of specific chemical species [1,148].  For this particular case, the reaction is a 

charge exchange (electron transfer) between Xe+ and neutral water, which has been 

documented in previous reports to be a favorable reaction for noble gas cations [373]. 
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Figure 39 – Spectra of TiCl4 demonstrating mass selective experiment utility.  A) The total ion 
transmission spectrum containing various TiCl4 fragment and hydrated clusters. B) The low mass region 
which contains numerous ion signatures, many of which cannot be identified using the m/z information 
alone.  C) Mass selective transmission of the Ti+ ion only into the drift region reveals the origin of the 
“smearing” at m/z 64 (TiO formation) and confirms the bimodal distribution of Ti+ results from the 
ionization event rather than through ion chemistry in the IMS.  D) Selection of the Cl+ ions (33-35 m/z) 
reveals that the charge exchange products water and hydronium ions (18 and 19 m/z) originate primarily 
from this ion.  E) Selection of one of the prominent ions for the hydrated doubly charged titanium 
indicates that other hydrated ions originate through this reaction channel.  F) The same result is found for 
selection of one of the hydrated TiClx clusters.  Experimental conditions are as follows: ionization with 70 
eV electrons and 3.1 V·cm-1·torr-1 drift region conditions in 298K helium gas.  Titanium results are 
discussed in more detail in Section 3-3.2. 
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 A more powerful demonstration of the utility of mass selection is contained in 

Figure 39 for the study of electron ionized TiCl4 (Section 3-3.2).  Figure 39A contains 

the full 2D mobility-mass spectrum of TiCl4 at 70 eV of EI energy with the quadrupole 

set to transmit all ions.  The spectrum contains numerous ion signals, many of which can 

be identified using m/z data.  Several low m/z ions indicated with the dotted box cannot 

be definitively assigned by their m/z values alone.  This region is expanded in Figure 

39B.  Many of these ions do not fall on an expected mobility-mass correlation trendline, 

but rather their horizontal alignment across isobaric mobility values imply that these ions 

originate from slow ion chemistry within the drift region.  Consider that an ion which 

undergoes a conversion sometime during its transit within the drift cell will have a 

composite drift time comprised of reactant and product ionic mobility.  Ions which 

rapidly convert to products at the entrance of the drift region will be measured primarily 

as the product ion and have it’s indicative mobility arrival time.  The third situation 

contained in Figure 39B is for ions which convert or dissociate at the end of their 

mobility transit time, either in or outside the drift region.  These ions will have been 

measured as their precursor mobilities and so will line up across a horizontal line which 

leads to the precursor ion mass.  The line deviates slightly, indicative of a situation 

where one or more of these scenarios have occurred. Another indication that ion 

chemistry is occurring can be seen in several of the peaks which tail across the mobility 

dimension—the characteristic “smearing” which was also observed in the xenon data, 

though to a lesser extent than what is seen here.  In order to determine some of the 

origins of these ion signals, a series of mass selective experiments can be conducted.  
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This is contained in Figure 39 C-F which corresponds to the selection of several 

prominent ions in the spectra.  As these spectra illustrate, several product ions can 

originate from a single precursor, creating a complicated ensemble of chemical reactions 

which cannot easily be teased out of the data.  Using the mass selective information, the 

correct ion assignments can be made, as is done in Figure 39B.  As it were, the 

complicated series of ion reactions which characterize the spectra in Figure 39A and B 

result primarily from the presence of water in the drift gas.  Water was present in the 

system in high concentrations immediately following a venting to atmosphere of the 

main chamber for routine maintenance.  Most of the hydrated ions were absent from the 

spectra following a flushing of the drift gas and overnight bakeout of the instrument and 

gas manifolds.  Water is a ubiquitous and highly invasive reactant species which can be 

addressed particularly effectively through low temperature condensation, as can be done 

using the cryogenic IMS instrument described here (refer to Section 3-2.2). 

  

3-1.2 Performance of the IMS Ion Gate: A Simple 2-Wire vs. an Interleaved 9-Wire 

Arrangement 

 Two ion gate designs were tested during the development of the instrument.  The 

first was a simple, 2-wire “deflection” based ion gate, which was technically easier to 

construct and operate.  The basic premise of a 2-element ion gate is to deflect the ion 

beam from entering the drift cell between IMS measurement events, thus the ion beam is 

passed between the two wires.  Since the entrance to the mobility cell is defined by a 

small aperture, only a minor deflection of a focused ion beam is necessary to prevent 
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transmission into the IMS, and so it follows that the 2-wire ion gate should be more than 

sufficient.   

 
 

Figure 40 – Schematic and simulations of the two ion gates developed.  A) The 2-wire ion gate design 
effectively deflected the ion beam from entering the drift region aperture in the simulations.  The potential 
difference across the wires is simulated here with 20 V. B) The 9-wire design required somewhat higher 
potentials to effectively block ions from entering the drift region, here simulated with 40 V wire to wire 
difference.  The interleaved gate also displayed some amount of ion leakage due to the multiple deflected 
ion trajectories at each wire pair.  Simulation results suggest that the 2-wire design will gate ions more 
efficiently. 
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 Figure 40 contains CAD generated illustrations and ion trajectory simulation 

results for the two ion gates developed for the cryogenic IMS instrument.  Ion trajectory 

simulations were conducted with SIMION 8.0 utilizing a properly scaled potential 

surface geometry imported directly from the CAD coordinate file.  Simulation results 

favor the 2-wire over the 9-wire design with respect to how efficiently ions are blocked 

from entering the drift region defined by a small aperture (600 μm actual, 1 mm 

simulated).  In the 2-wire simulations, a potential difference of 20 V across the wires 

effectively diverted a 20 eV beam of ions.  The simulation (Figure 40A, right) 

maintained one (bottom) wire at ground (ion beam reference) potential while biasing the 

bottom (top) wire to +20 V.  For the 9-wire simulations, a potential difference of 40 V 

was necessary to minimize the number of ions which entered the drift region via the 

aperture.  In this simulation (Figure 40B, right), one set of wires was maintained at 

ground while the other was biased to +40 V.  Some ion leakage into the drift region was 

still observed for the 9-wire design, even at this higher blocking potential.  This results 

from having a series of deflector electrodes which results in a distribution of ion 

trajectories that “fan” across the entrance aperture, increasing the simulation probability 

that one or more ions will be transmitted through. 

 Both ion gate designs were constructed and tested with experiments.  While both 

ion gates effectively blocked ions at relatively low (<60 V) potential differences across 

the wire elements, the interleaved ion gate (9-wire) performed substantially better in 

terms of ion transmission characteristics and ion pulse generation.  Results from 

measuring ion arrival times pulses in vacuum using these two ion gates are contained in 
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Figure 41.  The 2-wire gate was characterized as generating ion pulses which had a 

longer rise and fall time and significant tailing of ion signal (Figure 41A) which is 

suggestive of ion leakage during the gate off event, presumably due to space charge 

initiated penetration of ions as they bunch at the front of the gate [374]. In contrast, the 

9-wire ion gate generated much sharper ion pulses that were closer to the ideal (square 

pulse) shape (Figure 41B and C).  Ultimately this improved ion pulse shape will allow 

for a higher repetition rate on the ion gate and translate into better resulting ion peak 

shapes in the IMS experiment.  The reasons why the interleaved ion gate performed 

better experimentally than predicted by simulations may be a result of the experimental 

ion gate operating in the presence of gas collisions (at the IMS entrance), which would 

serve to dampen deflected ion trajectories.  The observed performance differences could 

also be a result of the 2-wire gate performing worse than designed, owing to the use of 

ceramic wire supports which are in proximity to the ion beam.  Ceramic is known to be 

prone to surface charging effects when subjected to charged particles, and at least some 

characteristic “charge buildup” effects were observed during the operation of the 2-wire 

gate, most notable an unstable ion signal subject to rising and falling responses on the 

detector.  In either case, the interleaved ion gate was utilized for all experiments 

described in this dissertation. 
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Figure 41 – Performance data for the 2- and 9-wire ion gates.  A) The 2-wire ion gate configuration and 
resulting arrival time pulse of a packet of ions.  The pulse is characterized with relatively slow (>500 ns) 
rise and fall times and tailing due to ion leakage.  B) The interleaved 9-wire ion gate configuration and 
resulting ion pulse shape.  Here, rise and fall times are much more succinct and a definitive bimodal 
distribution is observed in the ion distributions.  C) A scaled time axis for a typical arrival time 
distribution generated with the interleaved wire ion gate, showing clearly the bimodal ion distributions and 
sharp rising and falling edges.  Ion distributions remain constant at the center of the pulse.  Both pulses 
were obtained in current monitoring mode over a series of ion gate pulses (~100 or more).  Refer to text 
for an explanation of the pulse shape. 
 
 
 
 An interesting feature of the ion gate generated peak shapes in Figure 41 is the 

high signal amplitudes at the front and back of the peak.  This is a reproducible 

phenomenon and it is suggested that this is an experimental artifact resulting from ion 

bunching during the rise and fall pulse of the ion gate.  The reason why a greater 

distribution of ion signal appears at the start of the pulse may be a result of the greater 

penetration of the stop potential towards the front (ion source) end of the gate rather than 

the back (ion mobility) end.  Field penetration is expected to be dampened at the exit of 

the ion gate due to the entrance aperture of the IMS, while at the front of the ion gate, 

ions see the retarding field at a further distance and thus have a “temporal head start” in 

terms of bunching.  This is to say, ion bunching is more prevalent for ions approaching 
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the ion gate than leaving it when the stop potentials are applied.  Such observations 

provide insight into ion optical designs which rely on ion bunching or chopping, such as 

accumulation ion optics.   

 

3-1.3 Ion Injection Energy into the IMS: Considerations for Ion Activation and Drift 

Region Penetration 

 The MS-IMS-MS instrument configuration utilizes two small apertures at the 

entrance and exit of the IMS to define the elevated pressure of the drift region while 

maintaining the vacuum in the bracketing MS components.  As a consequence, the two 

apertures serve as gas leaks for the IMS drift chamber, characterized by a jet of gas 

leaking from both the entrance and exit of the drift cell.  In order to transfer ions into the 

entrance aperture, the electric field must exert a force on the ions that is in excess of the 

force experienced by the ion-neutral collisions.  This type of injection ion drift cell 

configuration has been utilized in previous work and it was recognized early on that a 

balance must be struck between high injection energies for ion transmission and low 

injection energies for minimizing ion activation processes (e.g., ion dissociation and 

exothermic reaction chemistry) [375].  For example, flow tube experiments have 

recognized that ion injection energies below ~30 eV are necessary to prevent activating 

ion reaction channels which would otherwise deplete the ion of interest [376].  Kemper 

and Bowers noted that deactivation of electronically excited metal ions occurred if the 

injection energies were above ~5 eV.  In their injected ion MS-IMS-MS experiment, the 

first stage MS was a double focusing sector instrument, requiring several thousand eV of 
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kinetic energy for the beam which had to be decelerated to 2-3 eV while maintaining 

spatial focus, which by all accounts is impressive [146].  Clemmer and coworkers have 

purposely utilized high injection energies (80-200 eV) in an injected ion drift tube IMS 

configuration for ion dissociation and structural reordering experiments [377]. 

 
 

 

Figure 42 – Spectra of a benzene/krypton sample mixture demonstrating energy limitations for ion 
injection.  The quadrupole is set to inject only ions of these two masses into the IMS A) 2D mobility-mass 
plot with an ion injection energy of 50 eV.  The spectrum is characterized by a series of fragment ions 
resulting from the collisional activation of the benzene cation.  A line illustrating the hydrocarbon 
trendline is drawn to help guide the eye.  B) Mobility arrival time traces of the same krypton/benzene 
sample taken at various ion injection energies from 5 to 50 eV.  Fragment ions appear above 20 eV.  C) 
Overlaid mobility traces at 10, 30 and 50 eV injection energies.  A small but measurable shift in arrival 
time is observed as the injection energy is increased resulting from ion penetration into the drift region. 
Higher injection energy represents a shift of ~5 μs at 50 eV as compared to 10 eV.  Experimental 
conditions for above spectra are as follows: 34 eV electron ionization, 10 μs ion gate, 7.5 V·cm-1 drift field 
in ~1.5 torr helium gas at 298 K. 
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Figure 42 contains experimental data for a mixture of benzene and krypton, 

which are two chemically different ions with similar masses (nominal masses of 78 and 

81 m/z, respectively).  In these experiments, only the two parent ion masses are injected 

into the IMS, achieved by tuning the quadrupole to a wide mass window about m/z 80.  

Of immediate note is the markedly different ionic mobilities of these two ions in the 2D 

contour plot (Figure 42A).  The red dotted line represents a hydrocarbon trendline and 

can be used to aid in differentiating chemically dissimilar ions in the 2D analysis.  

Several fragment ions also appear in this spectrum resulting from collisional activation 

of benzene which occurs at this high injection energy of 50 eV.  The effect of increasing 

ion injection energy on collisional activation is apparent when comparing the one 

dimensional mobility traces of data taken at various injection energies (Figure 42B).  At 

20 eV the fragment ions begin to appear in the spectra and increase in abundance as the 

injection energy is increased.  Figure 42C contains three overlaid mobility traces taken 

at 10, 30 and 50 eV of ion injection energy.  The center of the arrival time distributions 

in the 50 eV spectrum is offset by ~5 μs sooner as compared to the 10 eV spectrum.  

This situation occurs when high translational energy ions penetrate into the drift region 

before thermalization.  The result is that ions start at some distance into the drift region, 

effectively shortening the drift distance and leading to faster arrival times than what 

would be measured at the ideally low injection energy situation.  Bowers noted that ion 

penetration reduced their drift cell length by ~3% for the worst experimental cases with 

their short length (4 cm) drift cell [366].  While ion penetration considerations are not 

important for qualitative comparisons of mobility data, this effect must be accounted for 
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if quantitative information (e.g., reduced mobilities and collision cross sections) are 

desired from the measurement. 

 

3-1.4 Calibration of the Manometer Pressure Reading for the IMS Drift Cell 

 Inherent to nearly all ion mobility instruments is a discrepancy between the 

measured drift region pressure and the actual pressure of this region.  This comes about 

because most often the pressure gauge is measuring a volume restricted by a 

conductance limiting tube that connects to the main drift chamber, creating a two vessel 

system.  Only if the temperature and pressure in both volumes (the gauge volume and 

the drift region) are at equilibrium will the pressure measured by the gauge be accurate.  

Temperature variations between the drift cell and the pressure gauge introduce thermal 

transpiration effects whereby a pressure differential is established between two 

unchanging volumes of different temperature (i.e., Gay-Lussac’s Law).  This results in 

an increasing discrepancy between the gauge reading and the actual pressure as the 

temperature of the drift cell is decreased, necessitating a pressure calibration 

methodology that spans across a wide range of temperatures. 

 The design of a correctly configured pressure monitoring system can greatly 

facilitate accuracy in the measurement results.  A pressure gauge which is capable of 

measuring an accurate pressure independent of the type of gas is also a requirement.  

Mechanical pressure gauges such as the bourdon and capacitance manometer are 

appropriate gas-independent devices.  The preferred drift cell design suspends the 
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pressure gauge directly into the drift cell volume or at least prevents choking the gas 

conductance between the pressure measurement volume and the drift cell volume. 

Neither preferred design was possible in the cryogenic drift cell constructed for 

this dissertation work due to the necessary enclosure of the drift cell within a dewar 

jacket.  To facilitate pressure measurement, a capacitance manometer gauge was fitted to 

the drift gas inlet line outside of the vacuum system, representing a two volume system 

whereby the conductance is choked by the 6 mm diameter transfer line.  Despite this 

unfavorable configuration, an accurate pressure can still be gained from the experiment 

if an appropriate calibration curve is plotted for pressure.  The method is outlined below. 

 Calibrating the pressure in an ion mobility experiment requires that all other 

variables be known in the mobility relationships given in Equations 1 and 2, which are 

the mobility proportionality constant and the reduced mobility equation, respectively.  

By substituting Equation 1 into Equation 2, expanding out terms and solving for 

pressure, we get the following expression: 

0760
273.15d

K E TP
v

⋅
= ⋅ ⋅     (7) 

Temperature (T) and electric field (E) can be measured directly.  Drift velocity, 

vd, can be calculated from the measured arrival time, corrected against the flight time 

outside of the drift region (see Section 3-1.5).  The calibration ion’s reduced mobility, 

K0, is obtained from the literature for the (approximate) conditions of the experiment.  

Because exact experimental conditions are not known, specifically the pressure, it is 

desirable to choose a calibration ion with a reduced mobility that changes very little over 
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a wide range of E/N.  The noble gases are an excellent choice; the reduced mobilities are 

relatively constant over a range of both E/N and temperature and these gases are 

appropriately volatile to facilitate sample introduction and pumping away of unionized 

neutrals.  Table 10 lists some reduced mobilities of select noble gas ions in helium at 

various fields and temperatures. 

 
 
Table 10 – Reduced mobility values (K0) for several noble gases at 300 and 80 K. Data is in helium drift 
gas for various field strengths.  Data for two temperatures are shown.  The highest field strength in the 
table (30 Td) represents an inflection point for most all atomic ions regarding their mobility values and is 
generally considered the limiting value for low field conditions.  Data is taken from the ion mobility data 
published in the Atomic Data and Nuclear Data Tables [150-153]. 
 

Ne+ Ar+ Kr+ Xe+ E/N 
[Td] 300 K 82 K 300 K 82 K 300 K 80 K 295 K 82 K 

3 20.3 -- -- -- -- -- 16.5 17.5 

4 20.3 -- -- -- -- 17.7 16.5 17.6 

5 20.3 19.0 20.8 18.8 18.6 17.8 16.5 17.7 

6 20.3 -- -- -- 18.6 17.9 16.5 17.8 

8 20.4 -- -- -- 18.6 18.0 16.6 18.0 

10 20.5 19.0 21.3 19.1 18.6 18.2 16.7 18.2 

12 20.7 -- -- -- 18.6 18.4 16.7 18.4 

15 20.9 19.1 21.5 20.0 18.6 18.8 16.8 18.6 

20 20.9 19.5 21.6 21.2 18.6 19.6 16.8 18.8 

25 20.9 20.1 21.4 -- 18.6 20.4 16.6 18.9 

30 20.8 20.6 21.2 23.5 18.6 20.7 16.2 18.8 
         

 
 
 
 As can be seen from Table 10, all noble gas ion reduced mobilities below about 

30 Td are relatively constant values, which is the defining characteristic of low field ion 

mobility conditions.  Low field conditions in the experiment can be verified by 

measuring the arrival time at various electric fields (drift voltages) and determining 

which field gives rise to nonlinear behavior in the arrival times.  This is the threshold for 



 

 

186

high field for that particular ion.  Prior to knowing the experimental pressure, a relative 

electric field axis of E/N (where N is arbitrary) can be used and the resulting plot 

compared directly against a plot of the reduced mobilities vs. field.  Lining up the 

inflection points in each graph will reveal the actual field of the experiment, then a 

simple matter of back calculating the pressure from the number density using the ideal 

gas relationship.  This is the first procedure which should be used to obtain a reasonable 

estimate for the actual pressure.  Using this result, one can obtain a fairly accurate value 

for the reduced mobility and then use Equation 7 to determine the pressure.  Both 

pressure results should be near consistent, with the method utilizing Equation 7 to be 

considered the more proper value.  

The resulting plot from the pressure calibration method using Equation 7 is 

contained in Figure 43 for ambient and liquid nitrogen temperature data.  While this 

particular correction is specific to the instrument used in these studies, the method is 

general.  The trends depicted in Figure 43 are also general—for a two volume system 

separated by a conductance limit the downstream pressure will not follow linearly with 

the upstream pressure, as gas equilibrium is weighted in favor of the larger downstream 

volume. 
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Figure 43 – Pressure calibration plot for 300 and 80 K manometer readings.  Data trends for two 
temperatures (ambient and liquid nitrogen) are shown.  Pressures at temperatures in between these two 
values can be directly extrapolated from the plot as pressure and temperature follow an ideal gas 
relationship.  The plot was generated using the method described in the text. 
 
 

3-1.5 Drift Time Correction for Ion Flight Time Outside of the Drift Region 

 In the ion mobility experiment described in this dissertation, a continuous ion 

beam is truncated into discrete packets of ions immediately prior to entering the drift 

region.  This defines the start time of the experiment.  Through the data interleaving 

process, the mobility arrival times are deconvoluted from the mass arrival times (refer to 

Section 2-7.1).  This gives the arrival time distributions of ions from the start of the drift 

region to the ion extraction region of the TOF mass analyzer, which includes residence 
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time in the drift cell and flight time through the ion optics between the exit of the cell 

and the TOF.  What is desired is the actual time that ions spend in the drift region23.  

While this time correction is not necessary for qualitative comparisons of drift spectra, 

accurate ion mobility constants (K) cannot be obtained without knowing the true drift 

time of ions.  The preferred approach to obtaining the actual drift time is to use a two 

gate experiment, where one gate is at the front of the drift region and the other is at the 

back.  By pulsing these gates in sequence and controlling the offset of this pulse, only 

ions which possess the same drift time as the offset time will be transmitted, and so the 

true drift time can be empirically measured.  Alternately, the second gate at the drift 

region exit can be pulsed by itself to determine the flight time of ions once they leave the 

drift cell.  Another common approach that has been used extensively in recent ion 

mobility research is to measure the arrival time of an ion at various voltages and plot the 

inverse voltage (1/V) as a function of the drift time.  At low field, this will yield a 

straight line (refer to Section 1-3.3).  The y-intercept of the fit will represent the time 

when the voltage is approaching a very large value, i.e., when the ion’s flight time 

through the drift region is dominated by the field and thus approaching zero.  

Consequently, extrapolation to the y-intercept will give the time ions do not spend in the 

drift region.  Because the ion’s flight time will have a mass dependence associated with 

it, this correction must be plotted for a series of ions and this non-IMS flight time 

correlated to ion mass to generate a correction plot.  Fitting this plot to an exponential 

                                                 
23 This is also an issue with IMS instruments incorporating an ion gate a distance away from the drift 
region entrance, such as LDI based IMS instruments which use the laser pulse for gating.  In such 
instruments, the non-drift flight times must be accounted for at the front and back of the IMS region.  This 
is commonly referred to as “end effects” [378].  
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will generate the proper flight time correction equation.  Note that this mass-dependant 

flight time is inherent to any time correction and must be accounted for by measuring 

ions of various masses. 

The voltage plotting method works reasonably well for larger ions in which a 

wide range of voltages can be sampled without introducing nonideal ion drift behavior 

(high field conditions), and is appropriate for IMS instruments where the non-IMS flight 

times are a significant fraction of the drift time, such as with higher voltage and/or 

shorter length drift cells.  

 Ideally, it would be desirable to construct and operate an IMS instrument where 

the non-IMS flight times are only a small fraction of the total measured time, such that 

the error in the experimentally measured mobility drift time is very small.  The 

instrument in this work incorporates a long drift cell and examines ions using a very 

small electric field (<10 V·cm-1), resulting in measured drift times on the order of several 

hundred microseconds, and so the drift time errors are expected to be minor in the 

instrument used in this work.  In some of the low temperature, low field experiments, ion 

drift times greater than 3 ms have been observed.  However, to validate this 

presumption, a time correction method was developed. 

A second gate was not built at the exit of the IMS described here, so the preferred 

two-gate method of determining drift times cannot be easily implemented.  The approach 

taken here is to estimate the flight times of ions outside of the drift region using ion 

trajectory models.  This was a preferred approach since an accurate geometric model of 

the instrument existed due to CAD development, and the previous modeling of ion drift 
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times had yielded reasonably accurate values as compared with experiment.  An 

additional consideration was that such calculations could be conducted across a large 

data set of ion masses, yielding a time correction equation that could be utilized for all 

experiments conducted. 

 
 

 
Figure 44 – Method used for determining the flight time of ions outside of the drift region.  Ion 
trajectories were simulated using ideal potentials which are close to those used experimentally (at top).  
100 ions of various m/z values were modeled and their flight times recorded and averaged between the 
distance from the drift cell exit to the center of the TOF ion extraction region.  The tabulated flight times 
(bottom left) were plotted and fit with an exponential (bottom right) which gives a correction equation that 
can be applied to any ion mass of interest. 
 
 
 
 Details of the time correction trajectory modeling methods are contained in 

Figure 44.  An ensemble (100) of ions were started at a point representing the exit of the 



 

 

191

mobility cell and given an initial kinetic energy of >1 eV.  A potential drop of 35 V 

accelerated ions through the first ion optic and focused the ions to a point representing 

the center of the ion extraction region of the TOF.  The front and back ion lens element 

was kept at the same potential, so the beam kinetic energy was defined as 35 eV 

laboratory frame.  Optimal focusing potentials were used in the model.  The ion flight 

times of each ion was recorded between the start and the center point of the extraction 

region.  Each set of 100 ions were averaged into a mean flight time.  This procedure was 

repeated for a series of ion masses, tabulated in Figure 44, bottom right.  This tabulated 

data was then plotted and the modeling results fitted to an exponential which represents 

the correction.  The perfect fit of the trendline (R2=1) is indicative of the relationship 

between mass and time-of-flight.  This correction equation is convenient as it can be 

used for any ion mass being studied. 

 Limitations in this approach are primarily in the potentials modeled and any 

collisional dampening that ions may experiments in the region immediately following 

the drift cell.  A negligible propagating error is also present in this method.  Changes in 

the lens potentials will alter flight times, however under the ideal focusing conditions as 

depicted in Figure 44, the ratio of these potentials should be nearly the same across a 

range of absolute voltage values, that is, the focusing of an ion lens will scale with the 

energy of the ion beam, which is kept the same in all experiments.  The second source of 

error, ion-gas collisions, is not expected to be significant.  The experimentally measured 

pressure in the region immediately following the drift cell is in the mid 10-4 torr range at 
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~2 torr in the drift region, which represents a mean free path of ~30 mm24, less than the 

distance ions transit as they leave the drift cell and enter the focusing ion optical region 

of the TOF (beyond the skimmer cone assembly).  Although the ion gauge pressure 

measurement is taken several centimeters from the IMS exit, it is reasonable to assume 

that ions experience very few collisions as they are traversing this interfacing region. 

 

 
Figure 45 – Empirical method for estimating the flight time of ions outside of the drift region.  Left, five 
arrival time distributions of argon ions from the ion gate to the on-axis detector.  The bimodal 
characteristics of the peaks are a reproducible ion bunching artifact of the ion gate on either side of the 
distribution.  Right, the equation used to weigh the measured arrival times against the time spent only in 
the post-IMS region, using a distance ratio, which assumes a constant ion velocity in both regions. The 
tabulated results are at bottom, yielding an average non-IMS flight time for argon of ~15 μsec.  Distances 
used in the correction factor are: dpost-IMS = 36.78 cm, and dtotal = 67.61 cm. 
 
 
 
 A relatively simple test to validate these results is to evacuate the drift region and 

measure the flight times of ions in vacuum from the ion gate to a detector (or TOF 

                                                 
24 Mean free path calculation utilizes an argon-helium collision diameter at room temperature.  The mean 
free path decreases ~1 cm for every 100 degree drop in temperature due to the increased gas density at 
constant pressure conditions. 
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extraction region).  Such a test will give the total vacuum flight time of an ion, which 

will approximate the flight time outside of the drift region if the average kinetic energy 

of the ion beam is maintained to that of the gas filled drift cell experiment.  This flight 

time can be further refined by weighing it against the ratio of the distance representing 

the post IMS length over the total flight length.  Assuming constant velocity, which is 

valid under these experimental conditions, the resulting product will be indicative of the 

post IMS flight time only.  Results from this kind of vacuum flight time treatment of the 

drift time correction is contained in Figure 45.  Argon ions were injected through the 

drift region at vacuum and resulting arrival time distributions recorded on the on-axis 

detector.  An average of five consecutive experiments weighed against the residence 

time of ions in the post-IMS region yields a post-IMS flight time of ~15 μsec.  This 

value is lower than what was predicted by ion trajectory simulations for argon (m/z 

39.95) by ~5 μsec, however this estimate is close enough that we can assume our 

trajectory modeling method is reasonable.  Additional data points at different m/z values 

can be taken to lend more statistical weight to this correction, but since quantitative 

information is not sought out in the experiments conducted herein, such an experiment 

was not undertaken. 

 

3-1.6 Time-of-Flight Mass Resolution and Sensitivity Tuning Strategies 

 While it is desirable to operate the mass spectrometer in terms of the highest 

mass resolution performance and the greatest ion sensitivity, most always optima for 

each performance metric do not overlap, and so a compromise must be made in one or 
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the other, or both to achieve an acceptable level of performance for the spectrometer.  

Mass resolution is our primary concern, since if ions cannot be mass resolved, then they 

cannot be mass identified.  Numerous experimental parameters will influence the 

observed mass resolution, however it is preferable to narrow down which parameters 

will affect the performance the most, and begin with tuning these.  The mass resolution 

depends primarily on achieving optimal space-focus plane coincidence of ion 

distributions to the detector during the TOF measurement event.  Recall from Section 2-

6.4 that the space focus plane can be adjusted by varying the field in either of the two 

regions of a two-stage TOF.  For this and most TOF instruments, adjusting of the field in 

each stage can be achieved by adjusting the applied voltage to the PUSH and PULL 

electrodes.  Since we are utilizing a biased TOF, we can also adjust the LINER voltage 

to tune the second stage region.  It is also important to account for the DC offset when 

using an AC-coupled circuit for pulsing a biased electrode.  With this in mind, one way 

to tune the TOF mass resolution is to select a set of reasonable values and create a tuning 

grid of the data.  This approach is contained in Figure 46.  An appropriate analyte is 

chosen for the tuning experiment, conveniently the analyte being studied, but also a 

suitable calibrant can be used which possesses an appropriate mass to be resolved.  In 

Figure 46, krypton is chosen as it has a mass which is close to the mass resolving limit 

of the TOF (~100).  Krypton and the other noble gases are also useful for such 

experiments, as they can be readily introduced into the ion source at a stable pressure 

and do not contaminate components of the vacuum system.   
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Figure 46 – Method for optimizing mass resolution using a tuning matrix.  At top, the mass spectrum of 
krypton using a “best guess” as to the tuning parameters.  Bottom, a matrix representing the results of 
varying the two most influential tuning parameters for mass resolution, the first and second stage fields of 
the ion extraction region.  The PUSH plate potential is along the x-coordinate and the PULL electrode 
potential is on the y-coordinate.  The red shaded boxes represent the voltages which represent an equal 
electric field slope for the first region, which recall is truncated by the COMMON electrode.  These 
potentials are also where the highest mass resolutions are observed.  Data to the left of the blue dotted line 
represents the unfavorable situation where the stage 1 field is less than the stage 2 field which results in 
ions traversing an uphill potential and equates to poor mass resolution.  Data representing the optimal 
mass resolution settings found in this particular example are outlined in red.  Other matrices can then be 
constructed by starting with these optimal settings and choosing two more parameters, until the desired 
mass resolution is obtained. 
 
 
 As can be seen, this approach generates a large amount of data sets, but can be 

used as a comparative tool for determining in which direction to tune electrode 

potentials.  Once a series of these grids are constructed, it is relatively straightforward to 

predict a set of parameters which will give a decent first approximation as to the optimal 
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mass resolution.  There is, however, another method of approximating a reasonable first 

guess for tuning potentials settings. 

 In Section 2-6.4, we discussed how to use ion trajectory modeling to estimate the 

optimal focusing conditions and such methods give a good approximation to the 

potentials needed for high resolution, but in most cases tuning the instrument to these 

modeling result values will not yield the acceptable instrument performance.  A practical 

tuning approach is to start with the ion modeling results and then tune in an iterative 

fashion, optimizing the value for one parameter at a time.  While this method greatly 

limits the amount of time spent tuning the instrument, only a small number of the 

possible voltage settings are surveyed.  Other more preferable voltage setting 

combinations are likely to be missed in this iterative strategy, however for the 

pragmatist, this is not a concern. 

 So far we only discussed the procedure for optimizing mass resolution.  

Optimizing for instrument sensitivity is much more straightforward.  Once the range of 

settings that give acceptable mass resolutions are found, a semi-quantitative experiment 

can be conducted whereby spectra are obtained in a set amount of time for each 

experiment.  After several experiments involving the adjustment of a single variable at a 

time, the ion counting statistics can be compared with one another to determine which 

settings result in the highest transmission of ions to the detector.  Limitations in this 

approach stem from the stability of the static experiment parameters, and considerations 

for optimizing ion counts to a certain ion signal should be properly considered as relative 

abundances will shift somewhat on the extremities of settings for TOF analysis (i.e., the 
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TOF experiment will discriminate m/z values to some degree).  If a set acquisition time 

is established during the mass resolution tuning experiments, then one can use ion 

counting statistics along with the spectral features to simultaneous compare instrument 

resolution and sensitivity.  This is a revealing experiment in that nearly always the 

highest resolutions are characterized by the lowest ion counting values, requiring a 

compromise to be made in one or the other area.  This is why it is preferable to choose 

which figure-of-merit (resolution or sensitivity) to prioritize first. 

 It is instructive here to reiterate the hierarchy of settings which influence mass 

resolution as well as provide a list of optimal settings for this particular instrument.  

From experimental investigations the order is as follows from most influential to least:  

PUSH, PULL, LINER, DC offset correction, ion beam kinetic energy, TOF pulse width, 

TOF pulse frequency, ion beam optics leading to the TOF, and MCP detector gain.  

Optimal settings change with respect to the system under investigation, but current 

values are as follows: +520 V on pulser coupled to PULL, -800 V on PULL, -4500 V on 

LINER, +4 V offset on PUSH, 35 V beam kinetic energy, 0.45 μsec width, 70 kHz 

frequency, and 2000 V across the MCP assembly, respectively.  The pulse is AC-

coupled to the PUSH bias which is at ~100 V negative (same as the einzel lens float), 

giving a total PUSH potential of around 400 V.  It is found that these settings work for a 

wide array of ion systems investigated.  Biasing the DC offset on the PUSH slightly 

positive with respect to COMMON will increase ion transmission to the TOF and by the 

same respect decrease the mass resolution (too much however and ion leakage into the 

TOF will occur, evident by noncorrelated ion signal).  Offsetting the DC in this manner 
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is a useful strategy if the mass resolution is more than sufficient and can be sacrificed for 

some gains in sensitivity. 

 

3-1.7 Procedure for Initiating Ion Entrainment into the IMS Entrance Aperture 

 In the course of testing the parameters and limitations of instrument tuning, the 

author has developed a method of effectuating ion injection into the pressure filled drift 

region at low (<10 eV) ion injection energies.  Low injection energies are crucial to 

minimizing ion heating effects which leads to accessing reaction chemistry and 

quenching of sensitive ion configurations such as metastable excited electronic states.  

This method is documented here with no phenomenological explanation other than 

speculative. 

 In the course of tuning the ion beam to efficiently inject into the narrow entrance 

aperture of the drift chamber, ion signal will drop substantially as the injection energy is 

lowered to the limit of 10 eV.  This is a natural consequence of scatter losses due to ion-

neutral collisions with the gas jet as ions approach upon the entrance aperture.  

Oftentimes, complete loss of ion signal is observed as the injection energy is lowered to 

10 eV.  The procedure which has been tried and tested for recovering ion signal involves 

initiating current-controlled gaseous breakdown within the drift chamber, localized at the 

entrance electrode.  This can be accomplished by biasing the dewar chamber potential 

negative with respect to the positive entrance lens potential and monitoring the current 

on either supply until it begins to rise (in most experiments, between 10-15 μA of 

current during plasma formation).  This will often accompany an increase in the number 
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of ion counts to the coaxial detector created as a result of charged species in the plasma.  

Incidentally, this same procedure can be used with the ion source off to determine the 

identity of impurities in the drift gas—mass analyzing (via the TOF) these ions formed 

from the discharge plasma in the drift region will reveal what species are inherently 

present in the chamber (see, for example, Section 3-2.2).  The favorable result of this 

plasma formation at the drift cell entrance is a systematic increase in the ion counts to 

the coaxial detector, starting slow and gradually increasing as the plasma is maintained 

at constant voltage.  This represents ions which now find their way into the drift region 

and can be successfully used to regain ion signal initially lost at the IMS entrance. 

 Two plausible explanations as to why ions find their way into the drift region 

during this plasma formation are presented as follows.  It is possible that the plasma 

ionizes gas molecules at the entrance, which is immediately quenched by the 

neighboring electrodes, lowering the localized pressure at the front of the drift region.  

This would create a weak Venturi effect at the entrance aperture whereby the exiting gas 

jet is disrupted, and the force of electrostatics redirects ions into this “void” region.  

Once ions entrain into this void, the beam current stabilizes.  The second possibility is 

that the localized ionized gas creates a negative potential with respect to the retarding 

potential of the lenses and entrance cup.  This negative potential directs ions into the 

drift region and stabilizes the beam current.  No experimental investigations were 

undertaken to validate either of these two hypotheses.  They are documented here in 

hopes that future investigators might find such information practically useful. 

 



 

 

200

3-2 Demonstrations of the Analytical Utility of the Cryogenic Mobility-Mass 

Spectrometer 

 Presented in this section are the proof-of-concept experimental data that 

demonstrates some of the analytical advantages of the cryogenic MS-IMS-MS 

instrument configuration. 

 

3-2.1 Trendline Partitioning of Small Molecular Ions in the 2D IMS-MS Analysis 

Low temperature aside, there is high utility in developing an ion mobility-mass 

spectrometer capable of direct (online) 2-dimensional analysis of small molecular ions.  

To date, there are few examples of a dispersive (TOF) IMS-MS instrument being 

developed for small ions.  Two known exceptions include an ambient pressure IMS-TOF 

developed for drug and pesticide analysis [379] and an earlier cryogenic IMS-TOF 

constructed in our own laboratory for studying electronic isomers of small organic ions 

[61].  Nearly all IMS-MS systems which have been used to analyze small ions 

incorporated a quadrupole as the mass analyzer, as they readily couple to the back end of 

an IMS and can operate at elevated (104 torr) pressures.  All modern dispersive IMS-

TOF instruments are designed to investigate large, biologically relevant molecules and 

as such many do not possess the capabilities for small mass studies.  For example, most 

all modern IMS instruments employ the use of focusing fields (i.e., periodic focusing or 

RF ion funnels) to redirect ions which would otherwise be lost due to diffusion in the 

drift region.  Such focusing fields are sufficiently strong to redirect ions possessing high 

moments of inertia, but inherently have a low mass discrimination effect, often as high 
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as 500 m/z and certainly discriminate ions <100 m/z [380].  Additionally, these modern 

IMS-MS instruments are not equipped with the proper ion source for such studies (e.g., 

electron or chemical ionization).  The trend away from fundamental ion studies is 

understandable:  Small ions have been the focus of ion mobility research for well over 

80 years, though only recently has technological advances made the use of fast time-of-

flight analyses possible. 

In the early literature, several reports focused on the ability (or lack thereof) to 

obtain mass information from ion mobility measurements [381,382].  Many manuscripts 

attempted to draw correlations between gas phase ion mobility and ion mass, but were 

only marginally successful, resulting in published mobility-mass (linear) trendlines that 

had a standard error as high as 20% [383].  This and the erroneous comparisons of IMS 

with chromatography and time-of-flight spectrometry eventually led to an unfavorable 

opinion of the IMS technique in regards to its analytical utility.  This explains why for a 

period of almost 20 years (late 1970’s to early 1990’s), very little groundbreaking ion 

mobility research can be found in the literature.  The failings of obtaining accurate 

mobility-mass trend correlations were a result of a poor understanding of the IMS 

technique and the nature of the data obtained, which was chemical specific.  We now 

know several key pieces of information regarding the mobility-mass correlation i) 

mobility does not scale linearly with mass but rather is semi-logarithmic to account for 

enhanced gas-phase packing efficiency at higher mass, and ii) the mobility-mass 

correlation is similar for ions of similar chemical composition (e.g., hydrocarbons, 

halides, proteins, lipids, etc.).  On a narrow mass scale, the mobility-mass correlation can 
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be linearly approximated [98] and such trendlines have been used to differentiate large 

ion classes, such as lipids, proteins and glycans [21,42].  The author is unaware of a 

similar type of trendline correlation analysis being conducted for small ions, as few 

instruments exist to acquire data in the necessary 2-dimensional mode. 

 
 

 
 
Figure 47 – Spectra of ethylene glycol demonstrating chemical specific trendline partitioning for small 
mass ions.  A) 2D plot with ion assignments made based solely on the mass data.  Several ion assignments 
(in bold) are ambiguous, with more than one chemical composition representing the ion masses. B) Ion 
assignments made using a trendline analysis of the data.  Ions partition into trends based on their chemical 
composition, thus correct assignments can be made based on a combination of mass and trend information.  
Experimental conditions are: 70 eV electron ionization using a 10 μs ion gate, 10.5 V·cm-1·torr-1 in helium 
gas at 318 K for the mobility analysis. 
 
 
 

Figure 47 contains a 2D mobility-mass spectrum of ethylene glycol taken at 

elevated (318 K) temperature.  Higher temperature was used to generate a high vapor 

pressure of the sample and also demonstrates the high temperature capabilities of the 

drift cell design, which is not explored extensively in this dissertation.  In Figure 47A, 

the ion assignments are made based solely on the mass data and using logical 
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combinations of the atoms C, H, O and N, the latter of which is not present in the sample 

but is considered for ions originating via atmospheric contamination.  Using this method, 

most ion identities can be assigned, however there are at least three ion signals in the 

spectrum which can have more than one possible ion assignment (highlighted in bold in 

Figure 47A).  An identification of linear mobility-mass correlations between ions of the 

same chemical classes greatly facilitates ion identification, as demonstrated in Figure 

47B with the now unambiguous determination of all ions in the spectrum.  It is 

interesting to point out that this trendline information is present in the data even for a 

relatively simple series of ions consisting of combinations of only three atoms (C, H, and 

O).   

 

3-2.2 Condensation of Drift Gas Impurities Using Low Temperature IMS 

 Inherent in all small molecule ion mobility experiments is an ion-neutral 

interaction between ions and impurities present in the drift gas.  Such interactions can be 

either long-term (sticky) or reacting.  As discussed in Section 1-3.2, nonselective ion-

neutral interactions give rise to broadening of IMS arrival time profiles and ambiguous 

product ions which can complicate experimental interpretation.  Reducing or eliminating 

the effect of gas impurities is the primary motivation for mass selective ion injection 

experiments (Section 3-1.1) and low pressure IMS.  While such strategies can be 

effective for understanding or minimizing experimental results which are characterized 

by ion chemistry, the most desirable strategy is to eliminate the gas impurities from the 

drift cell altogether.  This can be accomplished by conducting the IMS experiment at a 
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drift gas temperature that is below the condensation temperature of the most invasive 

impurities, which in most all cases is moisture.  Figure 48 contains a 2D mobility-mass 

spectrum of ambient air, which is provided here to illustrate some of the common gas 

impurities encountered as a result of atmospheric contamination. 

 

 

Figure 48 – Spectra of ambient air in helium drift gas.  N2, CO, H2O and O2 all are common gas 
impurities which can be introduced to the drift gas by atmospheric contamination.  The rather poor 
mobility resolutions observed for this particular sample is likely a result of ion chemistry between these 
ions and other impurities in the drift gas.  
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 A more direct means of determining the identity of impurities present in the drift 

gas is to initiate a sustained electrical breakdown in the drift tube and sample the 

afterglow of ions extracted from the plasma with the time-of-flight mass analyzer.  

Results from such an experiment are contained in Figure 49 for ambient and low 

temperature drift gas.  The ion source is turned off in these experiments and the ion gate 

is set to transmit all ions, resulting in no correlation information in the mobility 

dimension.  Notable in the low temperature spectrum is the absence of water. 

 

 

Figure 49 – Mass analysis of the ions formed from initiating gaseous helium breakdown in the drift cell at 
298 and 185 K. The ion gate was left open resulting in no mobility correlation data.   A) At room 
temperature, several atmospheric derived impurities are observed, including water, nitrogen, oxygen and 
carbon dioxide.  B) At 185 K, water is virtually absent from the spectrum, causing other ions to appear 
more prominently, such as carbon dioxide.  Variations exist between the spectra as they were taken on 
different days.  Argon appears prominently as it was used immediately prior to acquiring these spectra.  15 
m/z is likely CH3

+ ionized from residual hydrocarbon sample in the gas. 
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Figure 50 – Spectra of TiCl4 and methanol demonstrating the utility of low temperature for removing drift 
gas impurities.  A) The room temperature spectrum of electron ionized (60 eV) titanium chloride exhibits 
a series of ions derived from reaction chemistry with water impurities (highlighted in red) which are 
present in the helium drift gas.  B) Reducing the drift gas temperature to ~270 K condenses water out of 
the drift cell and results in a less congested spectrum.  In this case, removing water results in fewer ion 
channels and allows the bimodal distribution of Ti+ to be clearly seen. C) The room temperature spectrum 
of methanol in argon drift gas shows a distinct smearing of the two peaks representing the water and 
hydronium cation, highlighted in red.  D) At 270 K, water is condensed from the drift cell and these 
product ions are not present in the spectrum, resulting in several peaks appearing more prominently in the 
2D plot. 
 
 
 

Figure 50 illustrates two examples where ion chemistry with water can lead to 

complicated experimental results.  For the case of titanium tetrachloride (Figure 50A), 

the room temperature spectrum is characterized by an abundance of water adducts with 
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the chloride clusters.   This is a fast reaction process, evident by the fact that all water 

derived product ions appear on a mobility correlation with the chloride clusters.  The 

water and hydronium ion both appear in the room temperature spectrum, which are 

common marker ions for the presence of moisture in the drift gas.  By reducing the drift 

gas temperature to below the freezing point of water, in this case to 270 K (Figure 50B), 

water is condensed from the drift gas and virtually all product ions which were derived 

from water impurities is absent.  The result is a less congested spectrum and reduced ion 

signal suppression, which in this example allows the bimodal distribution of the titanium 

cation to be clearly discerned.  A similar case where water impurities cause spectral 

congestion is contained in Figure 50C for electron ionized methanol.  Argon was used 

as the drift gas in this example.  Here, the hydronium and water ions appear as a broad 

peak across the active window of mobility, indicating that the ion chemistry occurs 

across the entire drift cell.  At 270 K (Figure 50D), water is no longer present and as a 

result, these product ion signals are absent, resulting in an easier to interpret spectrum 

whereby several ion signals are enhanced, notably signals for N2
+, CO+ and ArH+.  This 

is a general observation that ion signals are oftentimes enhanced at lower temperatures, 

presumably due to progressive condensing of various impurities as the temperature is 

decreased. 

 

3-2.3 Ion Selectivity at Variable Temperatures 

 Recall from our introductory discussions that measured ionic mobilities are both 

field and temperature dependant (Section 1-2.2) and can vary quite substantially from 
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one chemical species to another.  Thus, by varying the temperature, it is possible to 

optimize the peak separation of a given sample mixture.   

 
 

 
 
Figure 51 – Spectra of acetone demonstrating temperature dependant ion mobility selectivity.  A) At 
ambient temperature, mass assignments can be made based solely on the predicted fragment masses, 
however some ion signals can represent more than one possible ion (highlighted in bold).  B) At cryogenic 
temperature (80 K), ion signals become resolved due to differential ion selectivity at this temperature and 
ion assignments are easily made based on a trendline analysis.  Additional ions also appear due to an 
enhancement of ion signal at low temperature as noted previously.  C) Evolution of the resolution of the 
ion signals between 27 and 30 m/z as the temperature is lowered from 243 to 136 K. 
 
 

 
An example of temperature selectivity is contained in the spectra in Figure 51 

for electron ionized acetone.  At room temperature (Figure 51A), various ion signals are 
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observed which represent the fragment ions formed during ionization.  Ion assignments 

can be made based solely on predicted fragment masses, however there is more than one 

possible fragment mass which exists for the ions at m/z 28 to m/z 30 (highlighted in 

bold in Figure 51A).  As the temperature is lowered, the ambiguously assigned ion 

signals between m/z 28 and m/z 30 begin to resolve into distinct ion signatures, which 

can be seen in the spectra in Figure 51C.  At the lowest temperature utilized in these 

studies (80 K, Figure 51B), two distinct ion trendlines appear in the low mass region 

and ion assignments can now be made with the aid of the trendline analysis method 

(Section 3-2.1).  Additional ion signatures also appear at higher m/z and are labeled in 

Figure 51B.  The appearance of additional ion signals at low temperature is a general 

result of condensing the drift gas impurities and eliminating possible reaction channels 

whereby these ions are either depleted or suppressed (Section 3-2.2).  While in the 

acetone example the lowest temperature resulted in the highest resolution, this will not 

always be the case since ionic mobilities of two chemically different ions do not always 

diverge as the temperature is decreased.   

  

3-2.4 Low Temperature Enhancement of IMS Resolving Power 

 Perhaps the most significant motivation of conducting low temperature IMS 

experiments is the gain in resolving power.  Resolving power is a direct result of peak 

widths, which are governed in ion mobility by diffusional broadening.  As developed in 

Section 1-5.1, at low field, the ion swarm equilibrates and diffuses along with the drift 

gas.  Lowering the drift gas temperature has the direct consequence of narrowing the 
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Maxwell-Boltzmann distribution of gas velocities (Figure 6), resulting in less 

diffusional broadening of the ions over the same experimental time scale.  Narrower 

arrival time profiles translate directly into a higher peak capacity in the mobility 

dimension. 

 
 

 
Figure 52 – Ion mobility spectra of benzene demonstrating enhancement of ion mobility resolving power 
at low temperature.  A) A field experiment at room temperature whereby the field is increased (from top to 
bottom).  Theory predicts that resolving power will improve as the drift cell voltage is increased, to the 
limit of low field conditions.  Resolution of the fragment peaks is optimal at around 17 V·cm-1.  B) The 
same field experiment conducted at cryogenic (80 K) temperature.  Resolving power for even the low field 
case (top) is higher than the best case resolving power at room temperature, with two clearly resolving 
fragment ion peaks.  As the field increases (top to bottom) the resolving power and resolution continue to 
increase and remains high even for the highest field utilized (23 V·cm-1).  Mobility traces were acquired 
directly with the on-axis detector and as such does not have complimentary mass data.  The drift gas is 
helium and the pressure is approximately 1 torr.  This data represents the first low temperature data 
obtained on the cryogenic instrument. 
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 An example of the resolving power improvement of low temperature IMS is 

provided in Figure 52 for electron ionized (~120 eV) benzene and its fragments.  In the 

left column of data (Figure 52A), the mobility traces from top to bottom represent an 

experiment whereby the electric field is increased.  Theory predicts that the resolving 

power will continue to increase as the voltage across the drift cell increases as a result of 

less diffusional broadening, that is, less resident time of ions in the drift region.  In the 

data, this trend is experimentally observed, as the single peak at the lower field (7 V·cm-

1) is resolved into two distinct ion populations at a field strength of 17 V·cm-1.  However, 

above 17 V·cm-1, the resolution becomes worse, signifying a change in ion elution 

profiles characteristic of higher field conditions.  This is the opposite result of the ion 

selectivity example demonstrated in the previous section (Section 3-2.3).  Conducting 

the same electric field scanning experiment at cryogenic (80 K) temperature (Figure 

52B) results in a clear separation of two ion populations at the lowest field examined (7 

V·cm-1) and increasing this field continues to improve the resolution up to the highest 

field examined (23 V·cm-1) which in this case also represents the highest resolution of 

these particular ions.  The third peak which is resolved at around 13 V·cm-1 in the 80 K 

spectra is partially discernible in the room temperature data, however as pointed out 

previously (Section 3-2.2), the lower temperature operation of the drift cell often 

enhances low abundance ion signals as is seen in Figure 52B. 
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Figure 53 – Spectra of carbon tetrachloride demonstrating enhancement of ion mobility resolving power 
at low temperature.  A) Data obtained with elevated temperature (314 K) helium drift gas and 1D mobility 
traces for three sample derived ions (right).  Resolving power values are indicated next to each peak 
profile. B) Data obtained at low temperature (103 K).  1D mobility traces represent the same 3 ion masses 
selected previously.  A marked improvement in resolving power is observed at lower temperature.  Air 
derived ions (N2

+, O2
+ and CO2

+) are present in the sample, which was not purified (freeze-pump-thaw) 
prior to introduction to the instrument.  The drift cell was operated at 10 V·cm-1 with ~1.2 torr helium, and 
utilized a 20 μsec ion gate for both experiments. 
 
 
 
 A typical example of improved resolving power at low temperature is provided 

in Figure 53 with electron ionized (60 eV) carbon tetrachloride.  At elevated 
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temperatures (314 K, Figure 53A) the resulting 2D spectrum is defined by the expected 

appearance of the chlorine ion series (CClx) and various contaminant ions which are 

present in the sample.  These atmospheric contaminants were purposely introduced for 

diagnostic purposes by foregoing the routine freeze-pump-thaw sample cleanup protocol 

(refer to Section 2-3.1).  The 1D mobility arrival time traces were generated for three 

prominent ions in the spectrum (Figure 53A, right).  Resolving power values are 

provided next to each ion distribution and indicate that the average resolving power at 

this temperature is ~16, which is typical.   In contrast, 1D mobility traces for the same 

three ions taken at low temperature (103 K) show significant improvement in resolving 

power, with the average value being ~23.  This improvement in resolving powers is 

always observed for low temperature experiments, barring effects due to ion chemistry 

and contributions by multiple ion populations (e.g., mass isomers, vide infra). 

  

3-3 Scaling IMS Plateaus: Separation of Mass Isomers 

 We conclude this chapter by surveying the frontier of ion mobility-mass 

spectrometry research with applications in the separation of isomeric electronic states.  

For ion mobility to be regarded as a chemical analysis technique that is complimentary 

to mass spectrometry, it must offer something that mass spectrometry cannot, namely 

additional information regarding ions which are isomeric in mass.  Mass isomer is a 

broadly encompassing category, as there are numerous ways in which two ions of the 

same mass can differ.  It is instructive here to define the term mass isomer and discuss 

the role that ion mobility has played and will play in this realm of analysis. 



 

 

214

3-3.1 Separation of Nominal Mass Isomers by Ion Mobility 

From a broad standpoint, two chemically different ions with the same nominal 

mass can be regarded as isomeric in mass, particularly if the mass analysis technique 

employed cannot differentiate the ions by mass measurement alone.  A classic example 

of nominal mass isomers is N2
+ and CO+, which differ in mass by only 0.011 amu, 

requiring a minimum mass resolution of ca. 2500 to be partially resolved.  Ion mobility 

methods can readily resolve chemically different ions of the same nominal mass 

[384,385], and the separation of N2
+ and CO+ is demonstrated in the ion mobility 

spectrum in Figure 50C.  Other examples of ion mobility separation of nominal mass 

isomers can be found throughout this dissertation and are summarized in Table 11. 

 
 
Table 11 – Examples of nominal mass isomers which are separated using the cryogenic ion mobility-mass 
spectrometer.  Figure numbers of specific spectral examples are provided for reference. 
 

Ion Exact Mass* 
(amu) Mass Difference Required MS 

Resolution 
IMS Separation 

Example 
N2

+ 
CO+ 

28.006148 
27.994915 0.011233 2492.203 Figure 50C 

C2H4
+ 

CO+ 
28.0313 
27.994915 0.036385 769.408 Figure 51B 

C2H5
+ 

CHO+ 
29.039125 
29.00274 0.036385 797.107 Figure 51B 

C2H6
+ 

CH2O+ 
30.04695 
30.010565 0.036385 879.204 Figure 51B 

CH4O+ 
O2

+ 
32.026215 
31.98983 0.036385 824.806 Figure 47 

* masses were calculated using the Exact Mass Calculator provided by Scientific Instrument Services, Inc. [386].  
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 A more stringent definition of a mass isomer is an ion which contains the same 

type and numbers of atoms but differ by the placement of these ions to some degree or 

another.  These are regarded as true isomeric ions: structural and positional isomers 

which ion mobility has been able to differentiate, though these applications have not 

been explored in this dissertation work.  Some examples from the literature include the 

separation of positional [387], conformational [41], and even enantiomeric ions [58]. 

 Further still are ions which are exactly the same in terms of chemical 

composition and mass but differ in some way by their electronic configurations.  There 

are two broadly defined categories of electronic isomers which are investigated in this 

dissertation: electronic excited states in which an electron is promoted to a higher energy 

orbital, and electronic positional isomers where the electron is stable in two different 

locations in the same ion.  A well-known example of the latter is keto-enol tautomerism 

whereby a proton and bonding electron shift in position relative to one another.  The 

separation of electronic conformations by ion mobility methods has been documented in 

a few but impressive cases for C+ [388], O+ [389,390], first row transition metal ions 

[146], and more recently, the methanol radical cation [61].  Ions drifting through their 

parent gas also partition based on electronic configuration (spin-orbit splitting) and has 

been observed for most of the noble gases (Ne+, Ar+ [391], Kr+ [61]and Xe+ [392]). 

 In the following sections, we revisit a few electronic isomers previously observed 

by ion mobility and present the highest resolutions obtained so far on these electronic 

states using the cryogenic IMS-MS instrument. 
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3-3.2 Separation of Chromium Ground and Excited Electronic States by Ion Mobility 

Early investigations of the reactivity of chromium cations with small organics 

resulted in the observation that the chromium ion population was only partially depleted 

in the presence of a reactive species [393].  The extent of chromium ion depletion was 

both ionization energy and transition metal identity dependant and rate constant 

measurements showed clear indications of a two-part reactant system, leading to the 

conclusion that the electron ionized chromium cations populated long-lived excited 

states that had drastically different reactivities than their ground state counterparts 

[394,395].  While it was further discovered that essentially all of the transition metal 

ions exhibited some fraction of excited state reactivity, chromium remained among the 

most reactive, presumably due to an increased production of a long-lived excited state 

population.  At around the same time, ion mobility measurements of atomic ions in the 

helium flow tube reactor experiment demonstrated differences in ion mobilities for 

ground and excited state populations by as much as 20%, specifically for O+ [389] and 

C+ [388], demonstrating that helium was sensitive to the electronic state of atomic ions 

(this is despite the fact that helium is very weakly polarizable).  Shortly thereafter, 

Kemper and Bowers published their pioneering work on the separation of electronically 

excited first row transition metals resolved from their ground states by low field ion 

mobility methods [146].  Integral to their ability to resolve out these electronic states was 

the lowering of the helium gas temperature, which lowered the effective ion temperature 

in the experiment and resulted in an increased interaction between the metal cation and 

neutral helium gas.  Their work also confirmed a previous observation that as much as 
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60% of the chromium ion population exists as a long-lived excited state, among the 

highest of all the transition metals cations formed from electron ionization methods 

[395].  Also inferred in this work was the existence of an additional third excited state 

population which appeared as a low abundance shoulder on the peak identified as the 

second excited state of Cr+ (4D).  While chromium was investigated at least two 

additional times using ion mobility-mass spectrometry methods, resulting arrival time 

distributions were bimodal and did not hint at this additional excited state population, 

though it should be noted that the ion mobility resolutions observed in these latter 

studies were significantly lower than what was observed in Kemper and Bower’s 

original work [396,397]. 

 
 

 
Figure 54 – Ion mobility spectra of Cr+ at various electric fields.  As the field is lowered, the peak profile 
splits into two distributions.  Resolution of these two ion populations continue to increase to the lowest 
field investigated (3.3 V·cm-1·torr-1). Cr+ was formed from chromyl chloride (CrO2Cl2). 
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Initial ion mobility experiments failed to measure more than a single arrival time 

for the chromium cation.  After some experimental investigation, it was apparent that the 

electronic state separation was highly dependant on drift field conditions and further 

experiments confirmed that at sufficiently high electric fields, the resolution degraded to 

the extent that only one ion population is measurable (Figure 54).  This is somewhat 

contrary to the conventional thinking set forth by Equation 5, whereby ion mobility 

resolving power is improved at higher voltages.  It turns out that the distinction between 

resolution and resolving power is very specific in the case of electronic isomer studies, 

specifically, while resolving power may improve at higher field, the resolution of two 

electronic isomers will not.  Indeed, the peak width at the highest field in Figure 54 (8.7 

V·cm-1·torr-1) is narrower than the peak width at the lowest field (3.3 V·cm-1·torr-1), but 

nothing is resolved at the highest resolving power.  Resolution is actually highest at the 

lowest resolving power settings (3.3 V·cm-1·torr-1).  Suffice to say that the field limits of 

such studies were established, and electronic state investigations could resume. 
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Figure 55 – Spectra of chromyl chloride (CrO2Cl2) and chromium hexacarbonyl (Cr(CO)6) at 60.2 eV 
electron ionization. A) 2-dimensional ion mobility-mass spectrometry plot of the ions formed from 60.2 
eV electron ionization of CrO2Cl2.  Ion mobility conditions were 2.1 torr helium, 3.3 V·cm-1·torr-1 (10.2 
Td) and 298 K.  B) 2-D plot of the ions formed from 60.2 eV electron ionization of Cr(CO)6.  Ion mobility 
conditions were 2.1 torr helium, 3.4 V·cm-1·torr-1 (10.3 Td) and 300 K.  In both cases, the Cr+ ion exhibits 
a clearly resolved bimodal distribution in the mobility dimension. 
 
 
 

Figure 55A contains the 2-dimensional plot of the ions formed from 60.2 eV 

electron ionization of chromyl chloride (CrO2Cl2).  The spectrum was obtained in 2.1 

torr of helium at room temperature (298 K).  The ions observed in this spectrum are as 

expected, with ions corresponding to the systematic losses of individual atomic ligands 

distributed across the mass spectrum.  An interesting observation is that the Cl+ ion 

exhibits some degree of bimodality in mobility space which is reproducible with 

sufficient ion counts.  This could be indicative of a long lived chemical species measured 

in the ion mobility experiment as another ion but dissociating prior to final mass 

analysis, however this determination is difficult to make with the current data as no ion 

signature remains in the 2D plot which is isobaric in mobility to this signal that could be 

identified as a precursor ion.  A more intriguing possibility is that the two mobility peaks 
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of Cl+ originate from an excited electronic state of Cl+, however this is presented merely 

as speculation.   

Of immediate interest in the CrO2Cl2 2D spectrum is the chromium cation, which 

exhibits a bimodal distribution in mobility space.  Figure 55B contains the 2D plot for 

the 60.2 eV electron ionization of chromium hexacarbonyl (Cr(CO)6) taken in 2.1 torr 

helium at near room temperature (300 K).  Both spectra in Figure 55 are scaled to the 

same mobility and mass and there are obvious differences in the way each chemical 

compound behaves under the same electron ionization conditions.  For example, far less 

high mass ions are observed for chromium hexacarbonyl and there is a greater extent of 

doubly charged ions (indicated by dotted arrows in Figure 55B).  No doubly charged 

ions are present in the chromyl chloride spectrum.  The formation of Cr2+ from electron 

ionization of the hexacarbonyl is confirmed in a 70 eV standard reference spectrum (not 

shown) [398].  The remaining doubly charged ions are characterized by neutral losses 

from a parent Cr2+ ion which likely occurs at the exit of the drift cell.  The slight shift in 

mobility times for these doubly charged ions also suggests that some mass-dependant 

time of flight has occurred after the mobility analysis, linking the dissociation event to 

the exit of the drift cell rather than at the ion extraction event of the time-of-flight 

analyzer. 
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Figure 56 – Mobility spectra of Cr+ at various electron ionization energies. Cr+ is formed from A) chromyl 
chloride (2.1 torr helium, 301K) and B) chromium hexacarbonyl (2.0 torr helium, 322 K).  Mobility traces 
are generated by integrating ion signal across a narrow mass window (in these cases 51-53 m/z).  In both 
compounds, the earlier arriving ion population corresponds to a higher ionization energy and provides 
evidence that it contains the electronically excited state or states.  The formation of this excited state 
population reaches a steady state between 50-60 eV for both compounds.  The small signal marked with an 
asterisk at ~650 μsec in the hexacarbonyl spectra lies isobaric in mass with the chromium cation and is 
reproducible at low electron energies. 

 
 
In order to determine the identity of the excited state in the mobility arrival time 

data, an appearance energy experiment is conducted whereby the electron energy is 

raised and the resulting ion mobility populations of the Cr+ ion are observed. Figure 56 

illustrates this experiment for ion formed from both chromyl chloride (Figure 56A) and 

chromium hexacarbonyl (Figure 56B).  As the electron energy is increased for both 

compounds, the faster arriving ion population grows in and reaches a steady state with 
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the slower arriving ion signal between 50-60 eV.  This suggests that the high mobility 

ion population contains the electronically excited state or states of the chromium cation.  

It is also evident that the carbonyl forms considerably more of the excited state of 

chromium than does the chloride, by about 50% more based on peak height 

comparisons.  This conclusion was also made by Elkind and Armentrout based on their 

measurements of the chromium cation’s reactivity with H2 and its deuterated analogues, 

though we observe more excited state resulting from the chloride, about ~50% as 

compared to the previously reported ~20% [395].  The appearance of the doubly charged 

chromium species in the hexacarbonyl spectrum (Figure 55A) suggests than the 

ionization process for this compound is a much higher energy process than forming the 

same cation from the chloride (Figure 55B). 

For some of the mobility spectra of chromyl chloride, there also appears to be a 

third peak partially resolved between the existing two peaks.  The possible existence of a 

third peak in the ion mobility arrival time spectrum was reported previously for the 

chromium cation formed from Cr2O2Cl2.  In this previous report, the third ion signal 

manifests itself as a low abundance tailing on the mobility distribution representing the 

excited state population [146].  Because of the limited mobility resolution and poor 

reproducibility, the possibility of this third peak cannot be made strictly from the data in 

Figure 55A.  Since the electronic state separations observed in the ion mobility 

experiment are a result of an extended ion-helium interaction potential (extended for the 

ground state in the case of Cr+), then it follows that one can increase the ion mobility 

resolution by enhancing this ion-helium interaction, either by lowing the energy of 
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interaction or by increasing the total number of interaction events.  Higher neutral gas 

densities and longer drift regions accomplish the latter, but at a cost of increased 

diffusional broadening of ion populations resulting in diminishing returns with regards to 

the observed resolution.  Lowering the temperature of the drift gas, on the other hand, 

serves to both lower the collision energy of the ion with the neutral and decrease 

diffusional broadening such that a net gain in resolution is expected. 

 

 
 
Figure 57 – Mobility spectra of Cr+ at various temperatures. The chromium cation is formed from A) 
chromyl chloride (CrO2Cl2) and B) chromium hexacarbonyl (Cr(CO)6). Both sets of spectra were obtained 
in ~2.1 torr helium and ~3.3 V cm torr, with field strengths varying from 10.2 Td down to 2.8 Td at the 
lowest temperatures investigated.  Both sets of spectra are very similar and exhibit bridging between the 
ion populations, particularly at lower temperatures. 
 
 

 
  Such a low temperature experiment is contained in Figure 57 for the chromium 

cation formed from both chemical compounds.  Both sets of data in Figure 57 resulting 
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from the two different compounds are remarkably similar.  Arrival times shift to longer 

times due to the increase in helium number density as the pressure and volume are kept 

constant in the experiment. Of interest is the nature of the supposed third peak which 

appears as a small but distinctive tailing on the first arrival time population in nearly all 

of the mobility spectra.  Even at low temperatures, a better resolution of this peak is not 

obtained and in some cases it is not observed at all, particularly below about 150 K.  

This suggests one of two possibilities:  i) the excited state population comprising this 

third distribution is not formed in significant abundance to be differentiated in cases of 

low signal-to-noise ii) the tailing is not a result of a third excited state distribution but 

rather a result of constant radiative/collisional decay of the primary excited state 

population to the ground state, manifesting as a the observed tailing.  Evidence for the 

latter can be seen as bridging between the two ion populations, most prominently at the 

lowest temperatures investigated.  Bridging in the ion mobility experiment is indicative 

of an ion which changes mobility during its transit through the drift cell such that its 

measured mobility lies between that of the two bridged ion populations.  Intriguing is the 

fact that the amount of bridging seems to increase as the temperature of the drift gas is 

decreased. 

An additional experiment was conducted at ~80 K whereby the drift field is 

lowered in order to enhance the resolution further.  The results of this experiment are 

contained in Figure 58.  Two observations are immediately obvious.  First, the amount 

of bridging continues to increase as the drift field is lowered.  Second, at the lowest drift 

fields investigated (1.4 V·cm-1·torr-1, 1.2 Td), the ion population representing the excited 



 

 

225

state is near completely depleted.  The depletion of the excited state at low temperature 

and low field likely results from reactive/collisional quenching through interaction with 

a trace impurity within the drift gas.  The number of collisions with a small amount of 

impurity will increase as the drift gas temperature is lowered, since experiments are 

conducted under same pressure conditions, that is, at the same pressure and volume, 

lowering the temperature will raise the gas number density.  There are very few 

candidate impurities which would remain in the drift gas at temperatures approaching 80 

K.  Carbon monoxide and oxygen (condensation temperatures of 81 and 90 K, 

respectively) are two possible candidates which are known to exist as impurities in the 

drift gas used, and both CO and O2 are known to be reactive to the excited states of 

transition metal ions [395,399].  While the temperature can be reduced below the 

condensation point of both gases, it is possible these impurities remain within the drift 

gas much like moisture remains in ambient air below its boiling point.  Such trace 

impurities are also expected to increase in concentration in this particular drift cell 

design where pumping is through two narrow apertures.  Under such diffusion limiting 

gas transport, enrichment of the higher mass gases is a likely possibility, particularly 

over extended experimental timeframes at reduced temperatures. 
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Figure 58 – Cryogenic (80 K) mobility spectra of Cr+ at various electric fields.  Cr+ is formed from 
chromium hexacarbonyl.  Helium pressure was maintained at ~2.1 torr.  The first ion population 
representing the excited state(s) is depleted at the lowest field utilized.  Bridging between the two ion 
population is also observed.  The bottom two spectra are taken with low ion counting statistics and the 
periodic appearance of the signal between the two peaks is a result of insufficient ion counts to interpolate 
data points. 
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3-3.3 Separation of Titanium Ground and Excited Electronic States by Ion Mobility 

 The electronically excited states of titanium represent an interesting isomeric 

system to study for two reasons.  One is that previously electronic state chromatography 

experiments identified as many as three stable electronic structures measurable by ion 

mobility.  The second motivation to revisit this system is that titanium possesses excited 

state populations which have lower ionic mobilities than the ground state, opposite of 

what is observed for chromium [146]. 

 
 

 
 
Figure 59 – Room temperature spectra of TiCl4 at 70 eV electron ionization. A) The full 2D mobility-
mass spectrum of titanium chloride at 299K.  The spectrum contains the entire series of metal chloride 
ions as well as corresponding hydration product ions (highlighted in red). B) An expanded view of the low 
mass range (10-75 m/z) contains several ions of note, including a series of doubly charged hydrated ions 
which likely originate from Ti2+.  These ions are formed in the drift cell and can be differentiated by the 
mobility correlation along a horizontal line (red dotted line) representing the mobility of their precursor 
ion.  A small amount of TiO+ is also present with a long mobility profile characteristic of mid-drift ion 
conversion chemistry.  Ti+ appears as a bimodal distribution, with a greater abundance of the higher 
mobility species.  The spectrum was taken with a 20 msec ion gate using helium drift gas at a field 
strength of 3.3 V·cm-1·torr-1. 
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 The 2D mobility-mass spectrum for 70 eV ionized titanium chloride is contained 

in Figure 59A.  An expanded view of the low mass region is also provided (Figure 59B) 

which contains additional hydrated ions.  These ions do not originate from the ion source 

since they do not fall along an expected mobility-mass trendline, but rather line up 

isometric in mobility along a horizontal trend.  This behavior is indicative of measuring 

the mobility of one ion that subsequently dissociates into another prior to mass analysis 

[372].  The precursor ion in this situation is likely a highly hydrated cluster ion, possibly 

[Ti-(H2O)5]2+ which has a small but measurable ion signal in the expanded spectrum (not 

labeled).  A broad mobility profile at 64 m/z is also observed (Figure 59B) and 

corresponds to the mass of TiO+. 

 
 

 
Figure 60 – Mobility spectra of Ti+ at various electron ionization energies.  The lower mobility arrival 
time distribution appears at higher ionization energies, revealing it as the excited state.  The abundances of 
the ground and excited states plateau at around 55 eV EI energy. 
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 The previous Ti+ ion mobility experiments reported by Kemper and Bowers had 

failed to baseline resolve the ground and electronically excited states of Ti+ at room 

temperature [146].   Examination of the Ti+ mobility profile in Figure 59 reveals a 

bimodal distribution that is baseline resolved at 299 K.  The identity of the electronically 

excited state ion population can be probed with the same appearance energy experiment 

utilized in the chromium study.  The results of this appearance energy experiment are 

contained in the mobility spectra in Figure 60.  As the electron ionization energy is 

raised, the lower mobility arrival time distribution (second to elute) appears, identifying 

it as the excited state.  This confirms previous reports of the higher mobility of the 

ground state of Ti+ and is the opposite elution order observed for chromium, where the 

ground state of Cr+ had a lower mobility than the corresponding excited state (Section 3-

2.1).  The plateau effect of the formation of the excited state past ~55 eV was also 

reported previously and confirmed here. 
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Figure 61 – A) Spectra of TiCl4 at 121 K and 70 eV electron ionization.  Compared with the room 
temperature spectrum, the low temperature data is absent of hydrated ions, resulting in an enhancement of 
the remaining ion signals.  B) In the expanded spectrum of the low mass region, the origin of the TiO+ ion 
is revealed to be bracketed in mobility between the ion signals for Ti+ and TiO2

+ (indicated by red arrows), 
suggested these as precursor ions for the formation of TiO+.  Mass selection of C) 48 m/z and D) 83 m/z 
also reveal some amount of TiO+ in the spectra.  Ion mobility conditions were the same here as the room 
temperature data shown previously. 
 
 
 
 Low temperature experiments were also conducted on the TiCl4 system.  Figure 

61A contains a 2D spectrum at 121 K.  In comparison to the 299 K spectrum (Figure 

59A), the low temperature data is absent of the various hydrated ion species due to the 
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removal of water from the drift gas.  An expanded spectrum of the low mass region 

(Figure 61B) also shows a prominent “smearing” the TiO+ ion noted previously.  This 

broad mobility profile indicates that TiO+ was formed across the length of the drift 

region and is measured as a composite of ionic mobilities of one or more precursor ions.  

A proposed formation scheme for TiO+ is provided in Figure 61B based on the 

bracketing of TiO+’s mobility profile between Ti+ and TiO2
+.  This scheme is supported 

by two mass selective experiments where C) Ti+ (48 m/z) and D) a closely neighboring 

ion to TiO2
+ (TiCl+, 83 m/z) are selectively injected into the IMS.  Both spectra reveal 

small amounts of TiO+, suggesting it is formed from precursor ions present in these mass 

selected windows.  Oxygen has a condensation temperature of ~90 K and is expected to 

be present as a drift gas impurity for nearly the entire tunable range of temperatures in 

these experiments.  The formation of TiO+ from Ti+ is a very facile reaction [400] that is 

readily catalyzed with drift fields in excess of a few volts [401]. 
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Figure 62 – Mobility spectra for Ti+ at various temperatures from 319 to 81 K.  The temperature data is 
marked by various degrees of resolution, with 3 resolved peaks at 256 K and again at 174 K, and a fourth 
peak appearing at 149 K down to 123 K.  At temperatures at and below 103 K, the system returns to a 
bimodal distribution.   This behavior suggests that excited states possess differential ionic mobilities that 
deviate in a nonlinear fashion as a function of temperature.  In all experiments, EI energies are 70 eV, ion 
gates are 20 μsec and drift fields are 3.3 V·cm-1·torr-1 in helium drift gas. 
 
 
 
 The primary motivation of the low temperature experiments here is to obtain 

higher resolution on the electronic states of Ti+.  Figure 62 contains mobility traces for 

Ti+ at various drift gas temperatures from above ambient (319 K) down to cryogenic (81 

K).  Immediately evident from surveying the data is that the Ti+ system is comprised of 

several electronic states which shift in and out of resolution as the temperature is 

changed.   At room temperature (296 K) two mobility profiles are measured with a third, 

partially resolved profile appearing beneath the high mobility ion distribution previously 

identified as the ground state.  Decreasing the temperature, these three ion distributions 
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become fully resolved at 256 K.  Further still, the two lower mobility excited electronic 

state distributions coalesce into a single peak at 196 K.  This behavior is also evident by 

the increase in signal amplitude.  At 149 K, these two low mobility profiles are once 

again resolved, and a fourth profile appears in the valley region.  Below 149 K, the low 

mobility excited state ion distributions again coalesce into a single distribution and the 

system becomes bimodal once again.  At 81 K, depletion of the excited state profile is 

observed as was the case with Cr+.  A similar mechanism is occurring here as was seen 

with chromium with regards to the low temperature ion depletion of the excited state.  

This may not necessarily be a temperature phenomenon but a residence time 

phenomenon whereby the excited state ions are collisionally or radiatively relaxing back 

down to the ground state.  A third body (collision mediated) catalytic mechanism may 

also be attributing to this observed behavior, which is enhanced at low temperature 

and/or longer interaction times within the buffer gas. 

 Kemper and Bowers previously reported this complex ionic mobility behavior 

for Ti+, observing in their experiment two excited state profiles that became less resolved 

at 137 K than they were at 300 K.  Their results also confirm that the excited states 

continued to separate further from the ground state distribution as the temperature was 

lowered [146].  No other ion mobility study has been conducted on this system. 
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Figure 63 – Cryogenic (80 K) ion mobility data for Ti+ at various fields.  The lower mobility ion 
population representing the ensemble of excited states is depleted at the lowest field utilized (1.4 V·cm-

1·torr-1).  Bridging between the two ion populations observed here is also observed for the Cr+ system 
taken at low temperature and low field. 
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 As a final attempt to improve the resolution of the Ti+ electronic states, the drift 

field was lowered at cryogenic temperatures to increase the number of ion-neutral 

interactions, as was done in the Cr+ study.  The results from this low temperature, low 

field experiment is contained in Figure 63.  As was seen with the Cr+ system, bridging 

between the ion populations is observed at low temperature and becomes more 

prominent as the field is lowered.  The excited state population is also depleted here as it 

was for Cr+, though in this case, it is the lower mobility ion distribution that represents 

the excited ion state rather than the higher mobility distribution for Cr+.  This 

observation supports the claim that the excited states are undergoing relaxation back to 

the ground state, either through collisional or radiative means. 

  

3-3.4 Ion Mobility Investigations of the Conventional and Distonic Electronic Isomers of 

the Methanol Radical Cation 

 In the 1980’s, a series of papers were published detailing the discovery of two 

stable electronic isomers of ionized methanol: the conventional ion (CH3OH•+) and the 

distonic ion form (•CH2OH2
+) whereby the charge and radical sites are formally 

separated within the molecule.   Theory had predicted that the methanol distonic ion was 

a stable ion-dipole complex, lying in a potential energy well that was 45 kJ·mol-1 lower 

than that of the conventional ion form [402].  The intermolecular conversion of the 

conventional and distonic ion forms of methanol was predicted to be separated by a large 

energy barrier which suggested that either isomeric form would be stable if an 

appropriate method was found to form them.  Radom and coworkers proposed using 
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ethylene glycol as a progenitor ion which could initiate an internal hydrogen shift via a 

McLafferty rearrangement mechanism [403] to form the distonic ion of methanol.  This 

scheme is depicted in Equation 8 for ethylene glycol. 

 

  

(8) 

 

 

Because these ion-dipole complexes are characterized by an ion-neutral 

association, collisional dissociation of the ion should preferentially result in charge 

retention on the ion species within the complex and loss of the neutral counterpart.  

Subsequent mass selected collisional activation of the EI generated m/z 32 ion from 

ethylene glycol confirmed the absence of the CH3
+ fragment ion which suggested that 

the precursor ion was the distonic •CH2OH2
+ rather than conventional CH3OH•+.  This 

results from the expected favorable loss of the neutral dipole counterpart upon 

collisional activation.  Further collisional activation experiments on deuterated methanol 

(CD3OH) and ethylene glycol (HOCD2CD2OH) confirmed that no deuterium scrambling 

product ions were formed in either case (e.g., CH+, CHD+, and CHD2
+), suggesting that 

facile loss of the CHx group was the fragmentation pathway governed in both collisional 

activation experiments [404].  Closely following this publication was another by Holmes 

and coworkers reporting the formation of the methanol distonic ion from glycoaldehyde 

(HOCH2CHO) and hydroxyacetic acid (HOCH2COOH) electron ionization 
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fragmentation.  Mass selected collisional spectra confirmed the formation of the distonic 

ion through both the absence of CH3
+ fragment ion and the formation of a doubly 

charged mass 32 ion (16 m/z), which indicates that mass 32 is a strongly bound species 

not prone to fragmenting during the ionization process [405].  The latter result is 

supported by the consideration that the distonic ion (•CH2-OH2
+) is a particularly stable 

class of ions characterized by a strong association between a radical species (CH2
•+) and 

a neutral molecule (H2O), i.e., a transient methanol ion-water complex [404].  Both the 

Radom and Holmes reports represent the first experimental observation of the methanol 

distonic ion.  Other gas phase distonic ions have since been discovered, most of which 

originate through secondary formation pathways, such as hydrogen rearrangement and 

ring opening processes [406]. 

Previous work with transition metal and noble gas ions has firmly established the 

selectivity of the ion mobility technique towards the electronic structures of atomic ions 

[146,392,396,407].  In our laboratory, first evidence of the separation of the 

conventional and distonic methanol ions was observed in the ion mobility experiment for 

electron ionized methanol in argon drift gas [61].  Parnis and coworkers theoretically 

investigated rare gas (xenon, krypton and argon) catalyzed interconversion between the 

distonic and conventional forms of methanol using density functional theory and their 

results suggest that the more massive drift gases corresponding to higher gas phase 

basicities are expected to lower the barrier of isomerization between the conventional 

and distonic forms and promote interconversion (and thus degraded ion mobility 

resolution) [408].  By this rationale, neon and helium drift gases should result in even 
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higher observed resolution of the two isomeric forms as opposed to using argon.  Argon 

was the sole drift gas used in our original investigation of the methanol isomer system.  

Finally, questions remains as to the nature of formation of the distonic form from direct 

ionization of methanol.  Based on the work of Radom and coworkers [404], it is not 

expected that the distonic methanol ion would be formed directly from methanol, but 

rather through a rearrangement from a suitable precursor ion such as what was suggested 

in Equation 8.  Our previous experimental results suggest that distonic methanol can be 

formed directly from methanol neutral [61].  These unanswered questions have 

motivated us to revisit the methanol electron isomer system with the recently developed 

cryogenic IMS system.  The new cryogenic instrument which is the focus of this 

dissertation incorporates a drift cell that is over twice the length of the former drift cell 

used in our previous cryogenic IMS experiments, which is expected to improve mobility 

resolution, specifically by a factor of ~1.4 [88].  In addition, mass selected ion injection 

afford new experimental possibilities for identifying ion species, specifically through 

mass selective collisional dissociation experiments, which will be described in further 

detail, vide infra. 
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Figure 64 – Spectra of methanol in argon drift gas at 302 K.  Electron ionization energy is 70 eV.  A) 2D 
spectrum which contains the methanol molecular ion (32 m/z) as well as several fragment ions resulting 
from the EI event.  Most ion signals are characterized by significant tailing in the mobility arrival times, 
which is most likely resulting from ion chemistry with argon.  Several of the higher mass ion signals can 
be assigned as species resulting from clustering with argon (highlighted in red).  B) The integrated 
mobility spectrum for 32 m/z exhibits significant tailing.  The existence of additional ion distributions at 
32 m/z is inconclusive from this data.  Data was obtained at a field strength of 6.5 V·cm-1 in 0.75 torr 
argon drift gas. 

 
 
 

 The mobility spectrum of electron ionized anhydrous methanol using argon as 

the drift gas was reinvestigated.  Figure 64A contains the 2D spectrum of methanol with 

room temperature (302 K) argon in the drift chamber.  The spectrum is characterized by 

the expected EI generated ions (15, 28-32 m/z) as well as several ions which likely 

originate through reaction chemistry, as evident by the long mobility profiles (fronting 

and tailing) which suggests ion formation occurring throughout the drift region.  The 
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appearance of the ArH+ ion likely results from a hydrogen transfer reaction to Ar+ 

formed in the ion source [409].  Table 12 contains proton affinities for several chemical 

species encountered in this work.  The proton affinity of argon is much lower than that 

of any other neutral encountered in this experiment and so direct argon protonation in 

the drift cell is not likely. 

 

Table 12 – Proton affinities (PA) for several atomic and molecular species.  Proton transfer is not 
favorable for any constituents which have proton affinities lower than that of the corresponding proton 
donor neutral.  For example, the only constituent which can protonate argon in this table would be 
protonated helium.  Data was obtained from reference [410]. 
 

 He Ar O2 N2 CO2 CO H2O CH3OH 

PA [kJ/mol] 178 369 421 493 541 594 691 754 
 
 
 
Figure 64B contains the integrated mobility arrival time distribution for 32 m/z which 

corresponds to the molecular ion of methanol.  The mobility spectrum is characterized 

by a narrow distribution at high ionic mobility and a broad tailing component which 

extends to lower mobility.  This is suggestive of an ion conversion process occurring for 

32 m/z.  Indeed there is some evidence for ion clustering with argon, specifically for 28 

and 33 m/z.  This is a plausible cause of the observed peak tailing for ions at 28-32 m/z. 
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Figure 65 – Mobility spectra of anhydrous methanol in argon drift gas from 297 to 103 K.  The 
distribution is characterized by a broad tailing of the peak.  At 120 K and below, mobility resolution 
quickly degrades.  IMS field strengths were ~6.5 V·cm-1 and argon gas pressure was ~0.75 torr for all 
experiments. 
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 A series of low temperature spectra were acquired for methanol in argon drift gas 

in an attempt to improve the mobility resolution.  The resulting mobility spectra are 

contained in Figure 65.  At temperatures below 150 K, mobility resolution abruptly 

degrades, presumably due to condensation processes with argon.  Immediately obvious 

in the spectra is that the peak tailing of 32 m/z continues throughout the entire range of 

sampled temperatures.  The mobility peak profile never resolves into more than a single 

distinct distribution, despite the improvements in resolving power, which is evident by 

the narrowing of the primary ion distribution at lower temperatures.  As suggested 

earlier, the reason for the peak tailing is likely a result of ion conversion processes 

occurring as the ion drifts through the gas filled cell.  The 2D mobility-mass plot of 

methanol at 150 K (Figure 66) shows evidence of increased ion clustering with argon, 

which results in distortion of the mobility distributions due to this process.  Post IMS 

declustering is observed and is characteristically identified by isobaric mobility 

correlations with other ions in the spectrum, as indicated with the red dotted lines in 

Figure 66.  Numerous other product ions appear in the low temperature spectra, many of 

which have not been confidently identified (e.g., 54-57 m/z). 
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Figure 66 – Spectra of methanol in argon drift gas at 150 K.  Electron ionization energy is 70 eV.  A) 2D 
spectrum containing the ions derived from the EI process as well as several originating from ion chemistry 
within the drift cell.  Isobaric mobility correlations (red dotted lines) are indicative of ions which are 
measured as one ion species in the IMS but dissociate prior to mass analysis.  The two ions indicated are 
derived from argon clustering which is a relatively weak interaction.  B) The integrated mobility spectrum 
for 32 m/z exhibits significant tailing as was seen at 302 K.  This tailing is a mobility measurement 
distortion likely resulting from ion chemistry processes in the drift cell.  Data was obtained at a field 
strength of 6.5 V·cm-1 in 0.75 torr argon drift gas. 
 
 

 While low temperature experiments of methanol in argon drift gas fail to provide 

improved resolution of the peak distribution of the molecular ion, the results offer 

insight as to the complex chemistry which occurs when using argon gas.  A general 

hypothesis inferred from the mobility distributions for 32 m/z is that the distribution is 

comprised of multiple ion populations which are poorly resolved due to ion conversion 

processes.  Parnis and coworkers had predicted that argon can be sufficiently basic as to 
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lower the barrier of isomerization for the conventional and distonic forms of methanol 

[408].  This may be the cause of the observed peak distortions for 32 m/z.  Another 

possibility which cannot be ruled out is that some amount of O2
+ is present at 32 m/z and 

contributing to the measured ion mobility distributions seen here.  The linear time-of-

flight mass analyzer utilized in this instrument cannot differentiate O2
+ and CH4O+ by 

mass, which requires a mass resolution of >800.   

 Published reduced mobility data can predict, a priori, the placement of O2
+ if the 

reduced mobility of another peak in the spectrum (a suitable point of reference) is 

known.  The basis for this method is the relationship in Equation 1, whereby the gas 

phase ionic mobility, K, is inversely proportional to the measured drift time, td.  With the 

assumption that the same experimental conditions of field strength and temperature are 

utilized, identical ion species measured with the same method using two different 

instruments will have the same fixed ratio of td.  Methanol molecular ion reduced 

mobility is not published, however CH3
+ has been reported and can be used to predict 

the relative arrival time of O2
+ in argon drift gases.  Thus KO2:KCH3 will be equivalent to 

the measured drift times tCH3:tO2, that is, an inverse relationship with regards to K.  The 

ratio KO2:KCH3 is ~0.76 for the reported argon reduced mobility values (KCH3=3.4 and 

KO2=2.57) [150].  The measured drift time of CH3
+ in the argon spectrum (Figure 66) is 

tCH3=1.42 msec, and using the reduced mobility ratio 0.76, this predicts an arrival time of 

1.88 msec for O2
+.  For the argon spectrum, 1.88 msec corresponds to the observed peak 

tailing of the 32 m/z ion distribution (t32=1.73 msec), which suggests that if O2
+ is 

present in the argon spectrum, then it is likely contributing to the observed low 
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resolution of the mobility profile.  The accuracy of this time prediction method is limited 

by the choice of the reference ion and the experimental deviation of the two 

measurements with respect to one another. While this method can be further refined to 

incorporate temperature and pressure corrections, the approximation used here is more 

than sufficient for gauging the relative placement of an ion of interest independent of the 

experiment measurement. 

 Briefly, the methanol system was also investigated using neon drift gas as it 

possesses a lower gas phase basicity than argon and thus is expected to promote less 

interconversion of the conventional and distonic ion forms.  The resulting mobility 

spectra are contained in Figure 67.  While there appears to be a second ion distribution 

at 32 m/z, the quality of the spectra is not sufficient to make a confident determination.  

This low quality mobility spectra seems to be an experimental characteristic of using 

neon drift gas as opposed to argon or helium.  We have also observed similar reductions 

in separation ability for other analyte systems when using neon as the drift gas. 

 Based on the theoretical work of Parnis et al., helium is not expected to possess a 

gas-phase basicity sufficient enough to catalyze the interconversion of the conventional 

and distonic forms of methanol.  The ion mobility spectrum of methanol was 

investigated in helium drift gas.  Figure 68 contains the 2D mobility-mass spectrum of 

methanol in helium drift gas at room temperature (298 K).  The lack of ion-drift gas 

clustering results in a less congested spectrum as opposed to what was observed for 

argon (Figures 64 and 66) and neon (data not shown).  Also characteristic of helium 

drift gas is the improved mobility resolution. 
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Figure 67 – Mobility spectra of methanol in neon from 317 to 192 K.  Spectral reproducibility and ion 
counting statistics are not sufficient to make a determination as to the presence of multiple ion 
distributions at 32 m/z.  Data was obtained at a field strength of 7.0 V·cm-1 in ~2.1 torr of neon drift gas. 
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Figure 68 – Spectrum of methanol in helium at room temperature.  A) The 2D mobility-mass plot contains 
the expected ions from EI and the previously observed water derived ions at 17-19 m/z.  B) The mobility 
spectrum of 32 m/z is bimodal in helium.  The higher mobility distribution is assigned as O2

+ (see text).  A 
small, reproducible shoulder feature on the primary ion distribution is indicated with an asterisk.  Data was 
obtained at a field strength of 7.0 V·cm-1 in ~2.1 torr helium at 298 K. 
 

 Immediately obvious in the mobility spectrum of 32 m/z are two distributions.  

Comparisons with the mobility spectrum in ambient air (Figure 48) under the same 

conditions confirm that the higher mobility distribution is O2
+.  This assignment is also 

supported by the predicted arrival time of O2
+ based on the published reduced mobility 

values for O2
+ and CH3

+ in helium (K0=21.9 and 26.0, respectively at 10 Td, 300 K).  In 

this case KO2:KCH3 is ~0.84 and the measured arrival time of CH3
+ is 502 μsec, 

predicting an arrival time of 595 μsec for O2
+, which is relatively close to the peak 
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assignment for the ion distribution at 571.  Interesting to note here is that this time 

prediction places O2
+ with a lower ionic mobility in argon but a higher ion mobility in 

helium as compared with the methanol molecular ion. In both cases, the experimental 

data supports this prediction.  The observed presence of O2
+ in the helium drift gas 

spectrum is significant in that it is likely also present in the argon drift gas experiments 

which used the same anhydrous methanol sample. 

 
 

 
 
Figure 69 – Mobility spectra of methanol in helium from 320 to 81 K.  Two mobility distributions at 32 
m/z are resolved at room temperature with the higher mobility distribution assigned as O2

+ (see text).  As 
the temperature decreases, the arrival time of O2

+ migrates towards the primary ion distribution.  The 
primary ion distribution begins to resolve into two peaks, indicated with a red asterisk.  At 81 K, two 
distribution are observed, with the higher mobility peak comprised of O2

+ and another ion distribution, as 
suggested by the higher ion abundance compared with the O2

+ distributions at higher temperatures.   
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 Low temperature mobility experiments were also conducted for the methanol in 

helium drift gas study in order to facilitate higher resolution mobility separations.  The 

resulting mobility spectra of 32 m/z are contained in Figure 69 for the temperature range 

of 320 to 81 K.  Lower temperatures will not affect the abundance of O2
+ since it is 

formed in the ion source and so the O2
+ ion distribution remains throughout the 

temperature ranges investigated.  At lower temperatures, the O2
+ peak migrates towards 

the lower mobility distribution until both distributions are nearly completely isobaric at 

81 K.  This complicates the experimental separation.  However, in the 96 K spectrum, 

there is a distinct peak emerging from the primary ion distribution, labeled in Figure 69 

with the red asterisk.  In most of the higher temperature spectra, this distribution is 

partially observed as a shoulder on the main mobility peak.  It appears that at 81 K, this 

ion distribution and the distribution for O2
+ merge, as suggested by the increase in ion 

abundance which cannot be accounted for by O2
+ alone.  This partial separation offers a 

tantalizing glimpse as to the existence of two ion distributions comprising the molecular 

ion mobility of methanol, but does not provide conclusive evidence. 

 The near isobaric mobility of the nominal mass isomer O2
+ with the molecular 

ion of methanol complicates the interpretation of the mobility spectra.  In order to 

address this issue, deuterated methanol (methanol-D4, CD3OD, Cambridge Isotope 

Laboratories, Andover, MA) was investigated using the same experimental procedure 

outlined above.  The resulting mobility spectrum of 36 m/z (CD3OD+) from methanol-

D4 is contained in Figure 70 for temperatures between 298 and 81 K.  There is no 

evidence of a second distribution present in this spectrum.  This lends evidence against 
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the presence of two electronic configurations resulting from the direct ionization of 

methanol. 

 

 
Figure 70 – Mobility spectrum of 36 m/z from electron ionized methanol-D4 at temperatures from 298 to 
81 K.  This m/z represents the deuterated analogue of the methanol molecular ion.  The absence of a 
second distribution at this m/z suggests either that a second electronic configuration is not formed from 
direct EI of methanol-D4, or that the ion mobility methods employed cannot differentiate the two 
configurations.  Spectra were acquired with a field strength of 6.6 V·cm-1 in 2.1 torr helium. 
 
  

 In order to investigate the assertion by Holmes et al. regarding the inability to 

form the distonic ion from direct electron ionization of methanol, methyl formate was 

evaluated as a suitable precursor ion that may go on to form the distonic ion through 

electron fragment rearrangement [405].  The same methodology employed for methanol 

was also used in the experimental evaluation of methyl formate, namely the use of varied 

drift gases, fields and temperatures. 
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Figure 71 – Spectra of methyl formate in argon and helium at room temperature. A) Methyl formate in 
argon drift gas exhibits lower resolution and the characteristic “smearing” of ion signals resulting from 
argon ion chemistry.  A peak at 30 m/z correlates to the molecular ion of formate (dotted red arrow), and 
can be assigned as the fragment ion shown, or could perhaps be a doubly charged molecular ion.  The 32 
m/z mobility profile exhibits tailing as was seen for methanol.  B) Methyl formate in helium is at a 
noticeably higher resolution.  The 32 m/z mobility spectrum contains the O2

+ and a broadened primary ion 
distribution which also has a reproducible shoulder feature.  Data was obtained at a field strength of ~6.7 
V·cm-1 for both experiments with an argon pressure of 0.75 torr and a helium pressure of 2.1 torr. 
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 Figure 71 contains the 2D mobility-mass spectra of methyl formate in argon and 

helium gas a room temperature.  Characteristic of the argon spectrum is the presence of 

peak tailing on most ions.  The mobility trace corresponding to 32 m/z exhibits a 

significant amount of tailing.  This arrival time is near identical to what was observed for 

the 32 m/z mobility spectrum for methanol (Figure 69) and was previously attributed to 

the isobaric mobility of O2
+ with CH4O+ in argon.  The methyl formate spectrum in 

helium (Figure 71B) is also remarkably similar to the methanol spectrum in helium.  A 

reproducible shoulder feature on the main 32 m/z mobility peak is also observed for this 

system.  Low temperature experiments for methyl formate (Figure 72) also bear a 

remarkable resemblance to those obtained on methanol in both drift gases. In argon 

(Figure 72A), tailing of the 32 m/z mobility peak distribution continues throughout the 

temperature range and only hints at being resolved into multiple peaks in some 

instances.  In helium (Figure 72B), two mobility peaks are observed at 32 m/z and as 

seen with methanol, the O2
+ peak migrates towards the main ion distribution as the 

temperature is lowered.  Also observed here somewhat more prominently is partial 

resolution of a shoulder feature on the main 32 m/z mobility distribution, most 

prominent at 199 and 174 K (marked with red asterisks in Figure 72B).  The higher 

resolution at these two temperatures is indicative of less temperature deviation during 

the signal summing acquisition.  Considerably more temperatures can be sampled using 

helium drift gas, owing to both the increased ion transmission in helium (resulting from 

less collisional scatter) and the lower ultimate temperature, which for helium is down to 

the boiling point of liquid nitrogen.   
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Figure 72 – Mobility spectra of 32 m/z from electron ionized methyl formate for argon and helium drift 
gas from 302 to 81 K.  A) Argon drift gas data from 302 to 166 K.  Peak tailing is observed across all 
temperatures sampled.  While it appears that multiple ion distributions exist beneath the tailing feature, the 
resolution is poor.  B) Helium drift gas data from 295 to 81 K.  Two ion distributions are observed at room 
temperature, one corresponding to O2

+ and the other CH4O+.  An additional shoulder feature is observed 
for some of the spectra, marked with a red asterisk.  Both sets of data bear a remarkable resemblance to the 
corresponding methanol spectra for argon and helium.  Field strengths were ~6.7 V·cm-1 in 0.75 torr argon 
and 2.1 torr helium. 
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4. NOVEL IMPROVEMENTS FOR THE CRYOGENIC ION MOBILITY 

INSTRUMENT 

 

4-1 Ionization Source Designs for High Mass Ion Studies on the Cryogenic IMS 

 The analysis of biologically relevant ions is the focus of most modern ion 

mobility-mass spectrometry research.  Indeed, it was only within the last 20 years that 

two ionization methods changed the direction of mass spectrometry research, namely the 

discovery of matrix-assisted laser desorption ionization (MALDI) and electrospray 

ionization (ESI), which still enjoy nearly exclusive access to modern biological ion 

mobility and mass spectrometry research.  These two very different ionization methods 

compliment one another in terms of what each can offer analytical ion mobility-mass 

spectrometry (refer to Sections 1-7.2 and 1-7.3). 

 It is clear that biological ion mobility-mass spectrometry research would benefit 

from low temperature ion mobility capabilities.  The work of Martin Jarrold 

demonstrates the utility of variable temperature for elucidating higher order peptide and 

protein gas-phase structure [123,411] and the thermodynamics of these structural 

transition processes [412,413].   No clear study has been undertaken to explore the 

resolution gains that low temperature may afford for these high mass ion studies.  

Indications are clear that biological ions undergo structural transitions at high effective 

ion temperatures which is often the case at room temperature.  If the ion is changing 

structurally during the ion mobility measurement, then it is certainly being measured at a 

low resolution defined as a composite of the conformational space the ion samples.  Low 
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temperature can thus be used as a means of stabilizing ion conformations, resulting in 

higher resolution measurement.  There is also motivation for conducting injected ion 

experiments with large ions.  The higher momentum resulting from the increase in ion 

mass will likewise decrease ion losses due to scatter during ion injection.  Though not 

developed previously, there is also a mass and temperature dependence on injected ion 

losses.  Ion trajectory simulations are contained in Figure 73 for three ion masses (15, 

50 and 200 m/z) injected into a gradient of helium drift gas (increasing pressure from left 

to right) at two temperatures (300 and 80 K).  High mass ions (<500 m/z) would not be 

subject to the collisional losses observed in Figure 73 due to the increased momentum. 

 
 

 
 
Figure 73 – Ion trajectory simulations for three ion masses at 300 and 80 K.  Ion masses of 15, 50, and 
200 m/z are simulated for ion injection into a density gradient of helium drift gas (increasing from left to 
right) which simulations ion injection conditions in the experiments described in this dissertation.  Scatter 
losses are most severe for the case of small mass ions at liquid nitrogen temperature (lower left) and 
transmission is the highest for heavy ions at room temperature (upper right).  High mass ions >500 m/z 
are not expected to be subject to significant scatter losses within the range of 1-10 torr in helium at 80 K. 
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 In additional to increased ion transmission into the drift cell, high mass ions 

possess greater degrees of freedom and as such have a higher energy threshold for 

activation, which means greater ion injection energies can be utilized, further increasing 

ion transmission.  Higher mass ions are also less subject to losses due to field effects, as 

with focusing fields in the presence of gaseous collisions.  The uniform field drift cell 

design presented here is certainly capable of transmitting higher masses and the ion 

optics utilized are standard for all spectrometer platforms, so it follows that if high mass 

ions can be formed, then the instrument will be capable of analyzing them.  Thus there is 

much motivation for developing high mass ionization methods for the cryogenic MS-

IMS-MS instrument. 

 

4-1.1 Design of a MALDI Ionization Source 

 A laser ionization source was developed by the author during the preliminary 

stages of instrument design as a means of diagnosing certain instrument components 

such as the quadrupole and charged particle detectors.  A pulsed ionization source is also 

convenient for diagnosing the IMS, as the ion gate need not be operated to obtain ion 

mobility spectra.  This laser ionization source is readily amendable to MALDI studies 

and can be directly fitted to existing ion optics in the source with no additional 

instrument modifications (this was the motivation for tapering the first three ion optical 

elements following the ion source). 
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Figure 74 – The MALDI ionization source developed for the cryogenic ion mobility instrument. 
 
 
 
 A CAD generated schematic of the MALDI source is contained in Figure 74.  

The source is based on a rotating sample puck design whereby several samples can be 

spotted on the outer rim of the puck and rotated into alignment with the ionization laser 

and beam extraction axis.  This facilitates the analysis of numerous samples without the 

need to withdraw and vent the probe assembly, then reinsert, pump and realign.  The 

sample puck inserts flush with a large planar electrode, creating a uniform field surface 

for directing ion extraction forward.  The existing conical ion optics create a moderate 

ion focusing field for efficient ion extraction and can be placed within 1-2 mm of the 

sample surface for high ion transmission.  The sample loading system is based on an 

annular chamber isolation design whereby the sample puck is withdrawn to the chamber 
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and isolated from the vacuum system via a gate valve (2¾” Conflat®, MDC Vacuum 

Products, Hayward, CA) prior to accessing through a quick access door (Viton® sealed, 

MDC).  This greatly minimizes the risk of atmospheric contamination of the main 

vacuum system.  Furthermore, the insertion probe is a magnetically coupled design (5 lb. 

axial force insertion arm, Huntington Mechanical Laboratories, Inc., Mountain View, 

CA) whereby the linear motion is facilitated by a magnetic coupling through a vacuum 

isolated tube.  The ionization laser (337 nm N2 discharge, Spectra-Physics, Mountain 

View, CA) is secured onto a triple axis alignment stage and a neutral density filter 

(variable reflective, OptoSigma Corporation, Santa Ana, CA) combined with an optical 

lens (BK7 plano convex, 6” focal length, OptoSigma) is used to attenuate and focus the 

ionization laser.  A rotatable linear motion stage (LFM-1, Newport Corporation, Irvine, 

CA) can fine adjust the optical focal length ±2.5 mm with 1 μm resolution.  

  

4-1.2 Design of an ESI-Ion Funnel Interface Ionization Source 

 An electrospray ionization source was also developed by the author specifically 

for ion mobility instrumentation.  Drift tube ion mobility instruments require special 

consideration for high voltage since either the front or the back side of the IMS will be at 

a biased potential.  While the instrument described in this work utilizes back end (TOF) 

biasing, the electrospray source was developed with the option for floating up to 8,000 V 

in order to allow it to be coupled to commercial instrumentation which operates at 

ground potential at the source.  Also incorporated into the ESI design is the use of an 

electrodynamic ion funnel, which has been shown in recent literature to provide 
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significant improvements in ion transmission as compared to more traditional skimmer 

inlet designs [314].  Current capabilities of the Laboratory for Biological Mass 

Spectrometry at Texas A&M University do not include ESI ion mobility, which offers a 

distinct advantage in terms of ion mobility accessible mass range and ultimate resolving 

power [38].  This combined with the ability for direct sample infusion are strong 

motivators for developing an ESI for our current generation of ion mobility instruments, 

including the cryogenic IMS. 

 A schematic of the ESI source developed for ion mobility is contained in Figure 

75.  The electrospray needle is of the conventional design and utilizes a multi-axis (XYZ 

and rotation, OptoSigma Corporation, Santa Ana, CA) positioning system to fine tune 

the location of the spray.  A stainless steel disk defines the spray cathode.  A 500 μm 

heated metal capillary (cartridge type, Thermo Electron Corporation, Waltham, MA) 

facilitates desolvation of the ions before admission into the ion funnel.  This capillary 

also serves as the conductance limit, defining a base pressure in the source block 

between 1-10 torr.  The capillary is mounted on a flange which is coupled to the main 

chamber body through a flexible stainless steel bellows.  This allows the capillary to be 

canted up to ~30o left and right to bring ions into the funnel off-axis.  Off-axis operation 

in this manner greatly reduces the potential for main chamber contamination by direction 

most of the neutral solvent away from the inlet.  Off-axis motion is controlled through a 

custom pivot support system with the pivot axis set to a point just inside the funnel such 

that the heated capillary can rotate with a static position at the funnel entrance. 
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Figure 75 – Schematic of the ESI-ion funnel source developed for ion mobility.  Source incorporates a 
spray needle (conventional or nanospray), a heated metal capillary, a 9-element electrodynamic ion funnel, 
and back ring ion optics for recollecting and focusing ions which exit the funnel device.  Pale yellow 
components are made of insulating thermoplastic material.  Source can be biased to several thousand volts. 
 
 
 
 The 9-element electrodynamic ion funnel is built up from an off-the-shelf ion 

optical component system (modified eV Parts®, Kimball Physics, Wilton, NH) which 

greatly reduces the cost and time for fabrication.  The operation of the funnel requires 

two RF inputs on every other electrode plate, 180O out of phase for collisional-assisted 

radial focusing.  The ion funnel is driven with a custom designed RF power supply 

(Ardara Technologies LP, North Huntingdon, PA) capacitively decoupled to the funnel 

electrodes through high temperature stability capacitors (1,000 pF C0G ceramic 
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capacitors, KEMET Electronics Corporation, Greenville, SC).  A DC drop across the 

length of the funnel maintains forward ion motion.  The DC drop is created with a 

resistive network (1 MΩ) defined by two voltages at the front and back of the assembly.  

The last plate is fitted with a 300 μm aperture disk (Small Parts Inc., Miramar, FL) and 

is decoupled from the ion funnel circuit and driven with an independent DC voltage.  

This independent DC drop is necessary to draw ions through the last few RF electrodes, 

which otherwise create a “pinching” stop potential during the high end RF.  Behind the 

aperture are two ring electrodes which are spaced in the periodic focusing design (1:1 

inner diameter to spacing [111]) for recapturing and focusing the ions which exit the 

funnel.  The main body of the heated capillary and ion funnel chamber is fabricated from 

polyacetal (natural Delrin®, McMaster-Carr, Aurora, OH) to allow the capillary, funnel 

and electrodes to be floated to a high potential.  All other vacuum chamber components 

are stainless steel.  The capillary pivoting support system is fabricated from aluminum.  

O-ring seals (high temperature silicone) are utilized in the design to maintain vacuum. 
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Figure 76 – Ion trajectory simulations of the ion funnel developed for ESI ion mobility.  A) CAD 
generated rendering of the ion funnel. B) Ion trajectories showing ion trapping for a DC extraction voltage 
(funnel to aperture) of 5 V.  C) Raising the DC extraction voltage to 10 V pulls all ions from the trapping 
well.  This principle forms the basis of operating the ion funnel as a gated ion accumulation device for 
IMS experiments.  Space charge effects were not considered in the model.  Ions traverse the model left to 
right. 

 
 
 
Ion trajectory simulations were conducted both to guide initial design of the ESI-

ion funnel source and to determine optimal conditions for its operation.  The simulations 

utilized SIMION 8.0 and the hard sphere collisional model described elsewhere [166].  

Figure 76 contains simulation results for determining the required DC drop between the 

funnel and the aperture plate necessary for pulling ions from the device.  A relatively 

small (5 V) potential difference constitutes the difference between ion trapping and ion 

transmission.  Incidentally, this forms the basis for operating the ion funnel as an ion 

gating and accumulation device which is necessary for ESI IMS experiments.  The 

model does not incorporate a space charge theory and so it is expected that the duration 
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for IMS ion trapping is critical for minimizing Coulombic leakage of ions into the drift 

cell.  Space charge limits will be reached very quickly in a device such as this. 

 
 

 
Figure 77 – Performance plots of the ion funnel generated from ion trajectory simulation results.  A) 
Increasing the RF frequency as the pressure of the funnel is increased is necessary to maintain ion 
transmission performance.  Simulation is for a 100 m/z ion.  B) The m/z transmission window at 1 and 5 
torr is markedly different, with a higher mass more efficiently transmitted at higher pressure.  This is a 
result of more dampening collisions being necessary for higher mass ions.  The m/z cutoff remains the 
same. 

 
 
 
Figure 77 contains some results of the ion trajectory data, plotted relative to 

percent ion transmission through the ion funnel.  As the pressure is increased (Figure 

77A, left to right), the frequency must also be increased to afford the same approximate 
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ion transmission.  The mass transmission window will increase at higher pressures 

(Figure 77B), due to improved collisional focusing of higher momentum ions, however 

the focusing of low m/z ions will ultimately be limited by the RF frequency as with 

quadrupole devices (Section 1-6.1).  This inherent low m/z cutoff limits the application 

of ion funnels to large m/z ion studies, which is the reason this technology was not 

implemented in the cryogenic work described in this dissertation. 

Experimental conditions are also technically limited, for example, by the ability 

of the RF source to drive the ion funnel to full power and the pumping system’s ability 

to achieve low base pressures.  The small electrode ion funnel described here is novel in 

that the low surface area of the electrodes creates a minimal amount of capacitance 

between the two RF channels (measured < 150 pF before capacitor placement).  This 

low capacitance ultimately allows for higher frequency operation of the funnel, which in 

turn allows it to focus ions at higher base pressures, reportedly up to ~30 torr [414].  The 

small, 9-electrode ion funnel described here has the lowest capacitance ever reported for 

ion funnel devices, as compared for example with the 100 plate, 1.6 nF described in the 

high-pressure, high frequency report.  This should allow high frequency operation of the 

ion funnel and improve the ion transmission performance substantially.  Experiments are 

currently underway with the ESI source, and as such empirical performance results 

cannot be provided at this time. 
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4-2 Drift Cell Improvements for High Sensitivity IMS 

 The drift cell design presented and utilized here is effective but by no means 

optimal with regards to ion transmission.  This is purposeful in that nearly all strategies 

utilized to focus ions in the presence of gas collisions introduces ion heating and low 

mass ion losses, both of which are undesirable in these experiments which seek to 

optimize the IMS analysis of small molecules.  For high mass ion studies, however, 

focusing fields can be utilized.   

 

4-1.3 An Electrostatic Analogue of the RF Ion Funnel for High Sensitivity Ion Mobility 

Applications 

 The RF ion funnel is a relatively new technology originally developed for ion 

sources [314], but is now being utilized as a back-end refocusing device for uniform 

field ion mobility drift tubes in order to improve the ion transmission properties of the 

mobility spectrometer [110].  The device works by altering the trajectory of an ion as it 

approaches a radially symmetric (ring) electrode with an electrodynamic potential 

applied to it.  A strong RF potential redirects the ion’s trajectory axially and the presence 

of gas collisions corrects the translational energy of the ion to a vector direction that is 

opposite of the RF field.  The gas number density is critically tied to the focusing 

properties of the RF ion funnel, since the RF energy must be imparted to the ion between 

gas collisions, otherwise focusing becomes dampened by thermalizing collisions.  Thus 

for a given range of pressure, there is an optimal frequency and amplitude of the RF 

necessary for optimal focusing to the axis.  Because the ion funnel geometry only 
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corrects trajectories axially, a declining potential must also be provided longitudinally to 

maintain forward ion motion.  This requires a series of ring electrodes with decreasing 

inner diameters and an overall drop in the DC potential from front to back, which 

effectively describes the entire RF ion funnel device.  One consequence of using strong 

focusing fields is that ions with too little momentum will be overcorrected and lost in the 

device.  This creates an inherent low mass cutoff for the RF ion funnel and as such it is 

unsuitable for small molecule studies.  For large molecules, however, the RF ion funnel 

can recapture ions at near 100% efficiency.   

 A temporally dynamic RF potential is analogous to a spatially dynamic DC 

potential with the frequency in the latter supplanted by the velocity of the ion in the 

longitudinal dimension [221,415].  Thus it is possible to axially refocus ions using 

purely DC only potentials if the ion’s position is temporally dynamic.  This forms the 

basis for the DC only periodic field focusing ion mobility spectrometer, which was 

developed in our own laboratory for high transmission IMS [78].  Conceptually, a series 

of small inner diameter rings replace the conventional large diameter guard ring 

assembly of a drift tube, which has the effect of confining ions in a narrow axial 

corridor.  Refocusing towards the spectrometer axis occurs within every ring and this 

focusing is relaxed in the space between the rings, effectively creating an oscillating 

field condition.  The optimal geometry of such a periodic stacked ring configuration is 

1:1:1 of inner diameter, ring spacing and spacing between the ring, respectively [111].  

This effectively creates the ideal sinusoidal field necessary for efficient ion refocusing. 
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 While the transmission through a periodic field ion mobility spectrometer 

approaches 100%, transmitting these focused ions through the exit conductance limit 

(necessary for differential pressure operation) results in ion losses.  This is an 

unavoidable outcome of the necessarily small requirement of the exit aperture for 

maintaining the high vacuum requirements of a back end mass spectrometer.  While it is 

possible to match the dimensions of the periodic focusing electrodes to that of the exit 

aperture, the required inner diameters (~1 mm) of the ring electrodes would impose 

space charge limits on the spectrometer such that scattering losses would increase and 

space charge initiated band broadening would degrade mobility resolution.  An inner 

diameter of ~5 mm or so offers an ideal balance between focusing and space charge 

confinement.  One possible solution to this mismatch between the periodic and exit 

aperture geometries is to decline the electrode inner diameter at the last few rings to 

transition ions through the exit aperture.  If the optimal periodic ratio of 1:1:1 is 

maintained, ion refocusing should remain high as the ions traverse the decreasing inner 

diameter electrodes until the exit the aperture.  This forms the basis for the electrostatic 

ion funnel. 
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Figure 78 – Ion trajectory simulations of three DC field ion mobility drift cell geometries: uniform, 
periodic and periodic with a DC-only ion funnel.  A) A conventional uniform field design incorporating 
conductance limits results in very high ion losses, here about 2% of the ions are transmitted.  B) In a 
periodic field design (6.3 mm), nearly all ions traverse the device, but the necessarily small exit aperture 
(here ~1 mm) results in significant ion losses.  About 60% of the ions are transmitted through the exit 
aperture in this simulation.  C) If an electrostatic ion funnel geometry is incorporated into the periodic 
design, transmission increases to about 80%.  The simulation is for 78 m/z ions utilizing a fixed number 
density collision program (1 torr helium) at room temperature. 
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 Ion trajectory simulations for three ion mobility electrostatic geometries (uniform 

field, periodic field, periodic field incorporating an electrostatic ion funnel) are 

contained in Figure 78.  These simulations clearly indicate the gain in ion transmission 

with the periodic field design (Figure 78A, ~60%) as compared with the uniform field 

(Figure 78B, ~2%).  Ion transmission to the back plate in both geometries is 100%, 

indicating that this is the location where ion losses occur.  When a series of declining 

inner diameter electrodes are added as the last few ring elements (Figure 78C), ion 

transmission through the exit aperture improves, here to ~80%. 

 
 

 
 
Figure 79 – Details of the electrostatic ion funnel.  Ion trajectory modeling indicates that the greatest ion 
losses occur at the first few decreasing inner diameter electrodes.  In this particular simulation, ions are 
started across a distribution in the y-dimension and do not reflect the actual distribution of ions exiting a 
periodic drift ring geometry.  Most ion losses thus occur for ions too far off axis for the lens to refocus.  
The field strength in this design is constant, which couples favorably to a DC field IMS.  Ions are 78 m/z 
in 1 torr helium at room temperature.  No space charge model is utilized. 
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 Figure 79 contains details of the ion simulation for the electrostatic ion funnel, 

which indicates that most ion losses are occurring at the first decreasing inner diameter 

ring electrode.  Important to note here also is that the average electric field between any 

two electrodes in the electrostatic funnel is kept the same, here at 60 V·cm-1.  Certainly 

higher fields can be utilized to improve ion focusing, but at a cost of significant ion 

heating which can have deleterious effects on the ion structure.  This particular geometry 

is by no means optimal, but it effectively illustrates the concept of an electrostatic ion 

funnel for ion mobility applications. 
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5. SUMMARY AND CONCLUSIONS OF WORK 

 

5-1 Summary of the Motivations for Low Temperature Ion Mobility 

 A general overview of the ion mobility spectrometry-mass spectrometry 

analytical technique was provided in the first section.  It was noted that while ion 

mobility fails to achieve the high resolutions and information content observed in 

chromatographic methods (e.g., gas and liquid chromatography) the technique excels in 

its separation speeds and the specific nature of the information obtained, i.e., the 

chemical class-specific mobility-mass correlation trendlines and gas-phase cross section. 

Thus, there remains much motivation to improve the ion mobility-mass spectrometry 

technique, specifically in regards to separation and resolving abilities of ion mobility.  

Several alternatives to the traditional “drift tube” ion mobility technique have been 

developed and were surveyed in Section 1-1.2.  In terms of the information content and 

overall analytical throughput, the drift tube ion mobility is still preferred, since for every 

analysis cycle, a complete ion mobility spectrum can be obtained (a characteristic of all 

dispersive types of analysis). 

 Further technical details underlying the drift tube ion mobility technique was 

discussed, specifically the influence of various instrument parameters on the separation 

efficiency.  Resolving power remains the most popular and convenient means of 

characterizing the separation abilities of various ion mobility spectrometers and 

resolving power is defined by the drift time of a single peak divided by its temporal 

width at half of its maximum.  From this definition, high separation abilities are 
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achieved when ions spend a long time in the drift tube, but remain temporally narrow, 

which is somewhat contradictory considering that the band broadening mechanism in ion 

mobility is ion diffusion, which scales with the residence time of ions in the drift gas.  

Thus, there is a balance which must be struck between adjusting the various instrument 

parameters that influence the ion residence time, such as the gas pressure, drift region 

length and the magnitude of the voltage driving ions across the drift region.  However, 

for the drift gas temperature, lower temperatures will serve to both increase the ion 

residence times in the drift region and decrease the temporal width of ion distributions, 

the latter made possible by decreased Brownian motion at reduced gas temperature.  

Thus it follows at least on a qualitatively theoretical basis that lower temperatures should 

always improve the resolving power for drift tube ion mobility separations.  This forms 

the primary motivation for pursuing the cryogenic ion mobility work. 

 Because the ionic mobility of different chemical species in the gas phase changes 

with respect to temperature, varying the temperature in the IMS experiment also 

introduces a degree of selectivity to the ion mobility analysis.  Specifically, the 

separation of ionic mixtures can be improved by changing the drift gas temperature.  

Optimal temperatures cannot be predicted a priori since ionic mobility is a complicated 

phenomenon related to the interaction potential of the ion-neutral collision events. 

 Instrument sensitivity should improve at lower temperatures since ion losses are 

directly related to the amount of ion diffusional broadening.  These ion losses are 

specific to hyphenated ion mobility-mass spectrometry instrumentation utilizing 

conductance limiting apertures to define various pressure regimes in the experiment. 
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 Finally it was noted that low temperature, and specifically cryogenic, ion 

mobility offers the added advantage of condensing out trace impurities from the drift 

gas, which otherwise serves to broaden ion mobility peak profiles due to reaction 

chemistry.  An attempt was made to define the concentrations of various drift gas 

impurities which would be considered significant for distorting ion mobility peak 

profiles.  The general prediction was made that part-per-million concentrations would be 

a significant impurity given that each ion-gas collision resulting in a long-term 

interaction.  

 

5-2 Summary of the Instrumentation Design Rationales 

 In section two, the instrumentation developed to explore the temperature effects 

on the ion mobility separation efficiency was described.  Specific instrument component 

designs were rationalized.    Electron ionization was chosen as the ionization method for 

this work primarily as a means of convenience for comparing experimental results to the 

large body of published data generated from these ion sources.  An appropriate ion gate 

was developed to generation ion pulses from this continuous ion source.  A quadrupole 

mass prefilter was utilized as an additional experimental stage prior to the ion mobility-

mass analysis.  Mass filtering abilities provides added experimental flexibility that helps 

to alleviate ambiguity in the interpretation of data.  The quadrupole was chosen for its 

m/z dependant ion filtering abilities and convenience operational principle of turning this 

ability off or on (i.e., a broadband or narrow bandpass ion filter).  A drift tube ion 

mobility spectrometer was developed for the reasons described in the first section.  A 
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time-of-flight mass analyzer was utilized as the mass spectrometer as this is a dispersive 

method which affords all the advantages previously outlined for the drift tube IMS 

technique.  Finally, special considerations for coupling the various instrument 

components were discussed and an overview of the data acquisition and visualization 

methods was provided. 

 

5-3 Summary and Conclusions of Benchmarking Experiments 

 Several experiments were described in the first part of section three which serve 

to benchmark the analytical performance of the instrument.  Various instrument 

components were individually tested.  The quadrupole test results show that it effectively 

mass selects ions in a relatively narrow window (2-3 amu), however in mass selective 

mode, ion signal is reduced by over 50 %.  This is a general consequence of all 

quadrupole mass filters.  Mass selective experiments on Xe+ identified reaction 

chemistry with water that served to broaden ion mobility peak profiles (Section 3-1.1).   

 The performance of two ion gate designs was evaluated (Section 3-1.2).  The 

more complicated, 9-wire interleaved ion gate created a more favorably defined ion 

pulse than did a simpler, 2-wire ion gate design and was used for all subsequent 

experiments.  The poor performance of the 2-wire ion gate design was contributed to a 

combined result of ineffective ion stopping/deflecting during gate off events as well as 

surface charging of dielectric elements (alumina ceramic spacers) used in the design.  No 

dielectrics were used in significant proximity to the ion beam in the 9-wire design, which 

likely contributed to the improved performance. 



 

 

275

 The effect of the ion injection energy into the drift tube was evaluated (Section 

3-1.3) and it was concluded that less than ~10 eV of kinetic energy must be used for the 

small mass ions studied if complicating ion activation and reaction chemistry is to be 

avoided.  High energy ion injection was shown to cause depletion of ion signal of ions 

derived from benzene either as a result of fragmentation and/or reaction chemistry.  A 

krypton dopant was added to the benzene sample in these experiments to serve as a 

marker for the relative abundance.  This is effective since atomic species cannot 

fragment. 

 The capacitance manometer pressure gauge was identified as providing a false 

reading when not sampling the direct pressure of the drift region.  This problem is 

compounded when temperature variable experiments are conducted due to thermal 

transpiration effects.  A method for calibrating the manometer using the known ionic 

mobility of the argon cation at 300 and 80 K was developed (Section 3-1.4).  Argon ion 

mobilities at various temperatures and electric fields have been published by several 

previous research groups and are considered accurate enough to use for this particular 

application. 

 It was noted that ion drift time outside of the drift region contributes to an 

erroneous measured mobility drift time and must be accounted for (Section 3-1.5).  For 

the instrument configuration utilized in this dissertation work, the ion gate is directly 

prior to the drift region entrance and so only the drift time between the drift tube exit and 

the detector (in these experiments, the entrance to the mass analyzer) need be taken into 

account.  A method for determining the non-drift region ion flight time was developed 
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using ion trajectory modeling.  This method was compared with empirical experiments 

measuring ion flight times in vacuum and was determined to be accurate enough for 

qualitative comparison.  It was concluded for this drift time correction that the method 

developed was appropriate enough for obtaining qualitatively useful information, 

however a more accurate method need be employed if quantitative information such as 

reduced mobility values is to be sought. 

 Various tuning strategies for both the ion mobility and time-of-flight 

spectrometers were surveyed in Sections 3-1.6 and 3-1.7, respectively.  Nominal voltage 

settings for the TOF was provided as a starting point for tuning, with the caveat that 

optimal performance is only achieved by custom tuning to the system under 

investigation.  A practical method of promoting ion transmission into the drift tube was 

described involving initiating gaseous breakdown at the front of the drift tube.  This 

method is most effective at low (<10 eV) ion injection energies, where ion losses are 

very high. 

 

5-4 Summary and Conclusions of Proof-of-Concept Experiments 

 A series of proof-of-concept experiments was described in the latter part of 

section two.  The analytical utility of the 2-dimensional mobility-mass analysis method 

was demonstrated for small mass ions.  Specifically, it was shown that ions partition into 

chemical class specific trendlines which can be used to guide the data analysis and 

provides additional information regarding the sample.  This was demonstrated with the 

ethylene glycol system (Section 3-2.1), which exhibits no less than 5 distinct ion 
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trendlies in the mobility-mass spectrum owing to the chemical diversity of ion fragments 

generated from the electron ionization of this sample. 

 The analytical utility of condensing drift gas impurities using low temperature 

drift gas was demonstrated with several systems.  First, it was established that chemical 

impurities existed in the drift gas by mass analyzing the afterglow formed from gaseous 

discharge in the mobility spectrometer.  In these experiments the ion source was not 

operating, thus all ions detected in the mass analysis could only have come from the 

discharge itself.  Atmospheric contaminants such as water, nitrogen, and oxygen were 

identified as being in the drift gas.  At low temperature (185 K), water was virtually 

eliminated from the spectrum.  Two samples, TiCl4 and methanol, were evaluated at 

room and reduced drift gas temperatures.  It was observed that water derived ions was 

eliminated at low temperature, and peak broadening due to reaction chemistry was 

significantly reduced. 

 The concept of varying the drift gas temperature to effect the elution of ions was 

evaluated with acetone (Section 3-2.3).  It was observed that several nominal mass 

isomers were resolved only at low temperature, presumably due to enhanced ion 

selectivity of one ion species over the other.  It was also observed that additional ion 

signals are observed at lower temperatures, resulting from the attenuation of chemical 

noise caused by water and related reaction chemistries. 

 Enhanced resolving power was observed at lower temperatures for ions resulting 

from the electron ionization of benzene and carbon tetrachloride (Section 3-2.4).  Across 

the board, the resolving power values increased as the temperature was lowered and was 
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always greatest at the lowest temperatures investigated.  This is attributed to the 

decrased diffusion at low temperature and is one of the primary benefits of conducting 

the ion mobility experiment at cryogenic temperatures. 

 

5-5 Summary and Conclusions of Discovery Driven Experimental Investigations 

 A series of experiments were conducted strictly for the sake of curiosity.  These 

experiments provide insight as to the power of this technology for conducting discovery 

driven experimental research, i.e., experiments which are conducted “just for the hell of 

it”.  It was first established that one of the more dramatic applications of ion mobility 

lies in its ability to differentiate mass isomers, that is, ions which cannot be separated 

with the mass spectrometry alone.  Several examples of the separation of mass isomers 

was provided throughout the text and summarized in Table 11. 

 Two special systems were revisited which involve the ion mobility separation of 

true mass isomers, i.e., ground and electronically excited states of metal cations.  

Chromium cation exhibited a bimodal peak profile in the mobility spectrum at room 

temperature and sufficiently low field conditions (< 6 V·cm-1·torr-1). Appearance energy 

experiments were conducted to determine which profile represented higher energy 

ionization conditions, i.e., the electronically excited state.  It was determined that the 

electronically excited state or states fell beneath the first arriving ion population, that is, 

the higher mobility distribution.  A third distribution can be observed in some of the 

spectra, falling between these two primary distributions, however its existence was not 

concluded as definite due to poor reproducibility.  Low temperature ion mobility down 
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to 80 K improved the resolution of the two electronic state populations.  Depletion of the 

electronically excited state distribution was observed at low temperature and low field 

conditions (<2 V·cm-1·torr-1 at 80 K).  This was attributed to a depletion mechanism 

involving a trace impurity in the drift gas.  Previous experiments had identified the 

presence of impurities and collisional/reactive depletion of these excited states by 

reactive neutrals is well documented, so this is a plausible conclusion.  These results are 

consistent with three previous ion mobility investigations of the Cr+ system, with the 

mobility spectra shown in this work representing the highest ion mobility resolutions 

observed to date for chromium cation electronic states. 

 The electronic states of the titanium cation were also investigated.  A bimodal 

mobility distribution was observed at room temperature and appearance energy 

experiments identified the lower mobility distribution as representing the electronically 

excited state or states.  Significant reaction chemistry of Ti+ with water was also 

observed in the 2-dimensional mobility-mass spectra.  At lower drift gas temperatures, 

additional ion mobility distributions were observed, as many as five, though no single 

temperature allowed all five to be separated at once.  Optimal temperatures for 

resolution varied with the different electronic states observed.  In the only previous ion 

mobility study conducted on the titanium system, three electronic states were observed 

for Ti+, so this work represents the most electronic states observed by ion mobility to 

date. 

 If low temperature ion mobility is sensitive enough to differentiate electronic 

states of ions, then it is possible that cryogenic ion mobility could differentiate electronic 
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configurations of ions, that is, mass isomers which differ only in the location of an 

electron.  One well documented electronic isomer is methanol, specifically the 

conventional and distonic ion forms.  Several experiments were conducted in order to 

explore whether or not ion mobility could separate these isomers.  The methanol 

molecular ion (32 m/z) was measured using argon, neon and helium drift gases.  It was 

rationalized that the stronger polarizability of argon and neon might result in an 

enhanced selectivity towards one of the isomeric forms.  The resulting mobility spectrum 

in argon of 32 m/z displayed a broad peak with significant tailing to higher mobility.  

Resolution did not improve at lower temperatures. In neon, a partial bimodal mobility 

profile was observed which did not improve in resolution at low temperature.  It was 

inconclusive whether the two peaks observed were a result of isomeric ions or methanol 

ion and residual oxygen ion, which also has a m/z of 32.  In helium, the presence of O2
+ 

was distinctive in the mobility spectrum as a high mobility ion distribution.  The 

methanol molecular ion was represented by a high abundance peak at lower mobility. At 

lower temperatures, the spectrum was complicated by the fact that O2
+ moved towards 

the methanol ion distribution.  A partial, third distribution was observed at 96 K.  

Completely deuterated methanol (methanol-D4) was also investigated to eliminate the 

interference of the O2
+ ion, but failed to demonstrate more than a single ion distribution 

in the ion mobility spectrum of the methanol-D4 molecular ion.  Results were 

inconclusive, but can be interpreted as i) the isomeric forms do not exist in the sample or 

ii) ion mobility cannot differentiate the two forms. 
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 It was hypothesized that the distonic ion is not favorably formed from direct 

ionization of methanol and so methyl formate was investigated which when electron 

ionized will generate a strong ion signal at m/z 32.  Very similar mobility spectra were 

observe in both argon and helium for the 32 m/z ion of methyl formate as compared with 

the 32 m/z ion formed from methanol.  Low temperature partially resolved a third peak 

at 199 and 174 K, though no direct conclusions could be made as to the nature of this 

third distribution. 
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APPENDIX A 
 

DIGITAL IMAGES OF THE CRYOGENIC MS-IMS-MS INSTRUMENT: 
 

A PICTURE IS WORTH 103 WORDS 
 

 
Instrument Development Overview 
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Electron Ionization Source 
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Quadrupole Mass Filter 
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IMS Entrance Ion Optics 
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IMS Drift Cell 
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IMS Exit Ion Optics 
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TOF Mass Spectrometer 
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Instrument Operating in Cryogenic IMS Mode 
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MALDI Ion Source 
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ESI Ion Source with Ion Funnel Interface 
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APPENDIX B 
 

MECHANICAL DRAWINGS OF THE CRYOGENIC  
 

ION MOBILITY SPECTROMETER 
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