
MEASURE-DRIVEN ALGORITHM DESIGN AND ANALYSIS:

A NEW APPROACH FOR SOLVING NP-HARD PROBLEMS

A Dissertation

by

YANG LIU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2009

Major Subject: Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4280445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MEASURE-DRIVEN ALGORITHM DESIGN AND ANALYSIS:

A NEW APPROACH FOR SOLVING NP-HARD PROBLEMS

A Dissertation

by

YANG LIU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Jianer Chen
Committee Members, Donald K. Friesen

Weiping Shi
Jennifer L. Welch

Head of Department, Valerie E. Taylor

August 2009

Major Subject: Computer Science

iii

ABSTRACT

Measure-Driven Algorithm Design and Analysis:

A New Approach for Solving NP-hard Problems. (August 2009)

Yang Liu, B.S., Zhejiang University;

M.S., Rose-Hulman Institute of Technology

Chair of Advisory Committee: Dr. Jianer Chen

NP-hard problems have numerous applications in various fields such as net-

works, computer systems, circuit design, etc. However, no efficient algorithms have

been found for NP-hard problems. It has been commonly believed that no efficient al-

gorithms for NP-hard problems exist, i.e., that P 6=NP. Recently, it has been observed

that there are parameters much smaller than input sizes in many instances of NP-hard

problems in the real world. In the last twenty years, researchers have been interested

in developing efficient algorithms, i.e., fixed-parameter tractable algorithms, for those

instances with small parameters. Fixed-parameter tractable algorithms can practi-

cally find exact solutions to problem instances with small parameters, though those

problems are considered intractable in traditional computational theory.

In this dissertation, we propose a new approach of algorithm design and analysis:

discovering better measures for problems. In particular we use two measures instead of

the traditional single measure—input size to design algorithms and analyze their time

complexity. For several classical NP-hard problems, we present improved algorithms

designed and analyzed with this new approach,

First we show that the new approach is extremely powerful for designing fixed-

parameter tractable algorithms by presenting improved fixed-parameter tractable al-

gorithms for the 3D-matching and 3D-packing problems, the multiway cut

iv

problem, the feedback vertex set problems on both directed and undirected

graph and the max-leaf problems on both directed and undirected graphs. Most of

our algorithms are practical for problem instances with small parameters.

Moreover, we show that this new approach is also good for designing exact algo-

rithms (with no parameters) for NP-hard problems by presenting an improved exact

algorithm for the well-known satisfiability problem.

Our results demonstrate the power of this new approach to algorithm design and

analysis for NP-hard problems. In the end, we discuss possible future directions on

this new approach and other approaches to algorithm design and analysis.

v

To my family

vi

ACKNOWLEDGMENTS

I would like to give my greatest gratitude to my advisor, Dr. Jianer Chen.

He aroused my interests in algorithm design and analysis and encouraged me to go

further and do better in research. His support and confidence helped me to succeed

after failure. He gave numerous examples himself on how to express ideas clearly in

both writing and talking. I hope that I will be an advisor to my students as Dr. Chen

has been to me in my future academic career.

Dr. Donald K. Friesen has always been there to listen and to give advice. He

was my mentor when I was in the Graduate Teaching Academy program. He has

given advice on research and teaching. His opinion on research encouraged me to go

further in research. He carefully corrected my dissertation, and gave suggestions on

the writing. I am grateful to Dr. Friesen for his help.

Dr. Jennifer L. Welch has helped me whenever I asked for help. She suggested

new directions for my research, and showed me the interesting area of distributed

algorithms. She also helped me to correct this dissertation. I am thankful to Dr.

Welch for her help.

Dr. Weiping Shi discussed problems with me even when he was very busy.

He opened the door for me to the fascinating area of CAD algorithms and gave

suggestions on my research to make my research more interesting. I am grateful to

Dr. Shi for his help.

I would like to thank Songjian Lu, Fenghui Zhang, Qilong Feng, Jie Meng, Jiahao

Fan and Yixin Cao for their valuable discussions. In particular, Songjian Lu has

collaborated with me successfully since I started my Ph.D. study. Our collaboration

has been very productive during my Ph.D. study.

I would like to thank the Department of Computer Science at Texas A&M Uni-

vii

versity for financial support during my Ph.D. study. Their support has helped me to

be able to concentrate on my studies.

Finally, I would like to thank my family, especially my wife Ping. They have

eased my worries and encouraged me to continue my education with both emotional

and financial support. Without their love and support, this work would not have

been possible.

viii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Why Study Exact Algorithms 1

B. Why Study Fpt-algorithms 3

C. Branch-and-Search Tree 4

D. Outline of This Dissertation 8

II 3D-MATCHING AND 3-SET PACKING 10

A. Introduction . 11

B. Preliminaries and Reformulations 14

C. Improved Packing Algorithms 16

D. Matching Algorithms Further Improved 22

E. Final Remarks . 27

III MULTIWAY CUT . 29

A. Introduction . 29

B. Minimum V-cuts between Two Terminal Sets 32

C. The Main Algorithm . 36

D. Final Remarks . 47

IV UNDIRECTED FEEDBACK VERTEX SET 48

A. Introduction . 48

B. Feedback Vertex Set in Unweighted Graphs 52

C. Feedback Vertex Set in Weighted Graphs 60

V DIRECTED FEEDBACK VERTEX SET 76

A. Introduction . 76

B. Preliminaries . 80

C. Solving the skew separator Problem 84

D. Solving the dag-bipartition fvs Problem 95

E. Solving the dfvs Problem 99

F. Final Remarks . 103

VI MAX-LEAF . 108

ix

CHAPTER Page

A. Introduction . 108

B. Preliminaries . 110

C. Extending an Out-tree . 113

1. Properties for Extending an Out-tree 114

2. Extending an Out-tree 117

D. The Main Algorithm and Complexity Analysis 124

E. Final Remarks . 130

VII SATISFIABILITY . 131

A. Introduction . 131

B. Preliminaries . 133

C. Reduction Rules . 136

D. Main Algorithm . 141

E. Analysis of the Main Algorithm 142

1. Analysis for Degree-4 Formulas 150

a. d0 = 1 . 151

b. d0 = 2 . 151

2. Analysis for Degree-5 Formulas 156

a. d0 = 1 . 156

b. d0 = 2 . 157

3. Analysis for Formulas of Degree Larger Than 5 163

4. Branching Vector for the Main Algorithm 164

F. Final Remarks . 165

VIII SUMMARY AND FUTURE RESEARCH 168

A. Dissertation Summary . 168

B. Future Work . 171

1. Further Study of the New Approach 171

2. Randomized and Algebraic Algorithms 172

3. Kernelization . 173

REFERENCES . 174

VITA . 187

x

LIST OF TABLES

TABLE Page

I Comparison of algorithms for 3-d matching 14

II History of parameterized algorithms for the unweighted feed-

back vertex set problem . 50

III History of exact algorithms for the satisfiability problem 132

xi

LIST OF FIGURES

FIGURE Page

1 Dynamic programming for 3-set packing 20

2 Dynamic programming for 3-d matching 23

3 Decomposition of separators . 39

4 An algorithm for the parameterized node multiway cut problem 43

5 Algorithm for the unweighted feedback vertex set problem. . 54

6 Algorithm for the weighted feedback vertex set problem . . . 75

7 Sets in the proof of Theorem C.4. 87

8 An algorithm for the skew separator problem. 106

9 An algorithm for the dag-bipartition fvs problem. 107

10 Algorithm for the span k-out-tree problem 121

11 Algorithm for the extending max-leaf problem 125

12 The reduction algorithm . 166

13 Algorithm for the satisfiability problem 167

1

CHAPTER I

INTRODUCTION

There are abundant applications of NP-hard problems. These applications have at-

tracted intensive studies of NP-hard problems. There are many methods to tackle

NP-hard problems: exact algorithms, approximation algorithms, probabilistic algo-

rithms, heuristics, and parameterized algorithms. In this dissertation, we are inter-

ested in design and analysis of exact algorithms and parameterized algorithms for

NP-hard problems. In particular, we are interested in fpt-algorithms which are a

special class of parameterized algorithms. The rest of this chapter is organized as

follows: in section A, we discuss why we study exact algorithms. In section B, we

discuss why we study fixed-parameter tractable algorithms. In section C, we intro-

duce the branch-and-search tree technique which will be widely applied later in this

dissertation. In section D, we give an outline of this dissertation.

A. Why Study Exact Algorithms

First, exact algorithms can find optimal solutions, which minimize the cost or max-

imize the benefits in applications. This is the major reason why we prefer exact

algorithms to approximation algorithms and heuristics. Moreover, only exact algo-

rithms can find meaningful and correct answers for decision problems. Solutions

from approximation algorithms make no sense at all, and heuristics can be wrong

for some inputs. For example, the Satisfiability problem should be answered with

either ”satisfiable” or ”not satisfiable”. Approximation algorithms can not help at

all. Therefore, we need to study exact algorithms for NP-hard problems.

The journal model is IEEE Transactions on Automatic Control.

2

Second, exact algorithms also can be used as a subroutine by other heuristics.

For example, optimal solutions to small instances are found and stored in a table.

Then heuristics break a large instance into small instances, and use the solutions in

the table to find a solution (not necessary optimal) for the large input instance. This

technique helps to find better solutions [26] for the rectilinear steiner minimal

tree problem. So studying exact algorithms can help to develop heuristics with

better solutions.

Moreover, faster exact algorithms for NP-hard problem may increase significantly

the size of instances which can be handled, since those algorithms are expected to be

of exponential running time according to the widely accepted belief that P 6=NP. For

example, if an exact algorithm of time O(2n/2) is developed and the previous best

algorithm is of time O(2n), then the size of instances which can be handled by the new

exact algorithm is twice that of instances which can be handled by the previous best

algorithm. On the other hand, the speedup of processors can not increase linearly

the size of instances which can be handled as exact algorithms. With the amazing

progress of technology, the processors are almost 9, 000 times faster in 2004 than the

processors in 1978 [60]. But the size of instances which can be handled by the 9, 000

times faster processors are only log2 9, 000 larger than that of instances which can be

handled by the old processors, for an O(2n) algorithm. The increase in instance size

is less than 13. Therefore, it is still desirable to study exact algorithms, despite the

incredible speedup of processors.

Current progress in exact algorithms for NP-hard problems appeals to further

studies of exact algorithms. A notable example is the Rectilinear Steiner Trees

problem. There is an exact algorithm which finds an optimal Rectilinear Steiner Tree

in 38 CPU hours for instances of size up to 1000 [100]. Another exciting example is

the traveling salesman problem. This problem now can be solved for inputs of

3

size 13, 509, though 48 workstations had run for around 10 years [4].

B. Why Study Fpt-algorithms

Though studying exact algorithms is necessary for NP-hard problems, it is notoriously

difficult to develop fast algorithms such that we can solve instances with considerable

sizes. However, it has been observed that there are parameters in many instances

of NP-hard problems, which are small compared to their input sizes. Given such an

instance, let n be its input size and k be its parameter. Then k may be much smaller

than n. Moreover, the running time of algorithms for that instance is a function of

both n and k. Parameterized algorithms are those algorithms whose running time is

a function of n and k. In last decade, many researchers have studied parameterized

algorithms extensively.

Not all parameterized algorithms are practical. For example, an algorithm of

running time O(nk) is not practical even for k = 10 when n is moderately large. In

particular, people are interested in efficient parameterized algorithms whose running

time are O(f(k)nc) where (1) c is a constant independent of input size n and the

parameter k, and (2) f(k) is independent of n. Those efficient parameterized algo-

rithms are fixed parameter tractable (fpt-) algorithms. A problem is fixed parameter

tractable if there exists an fpt-algorithm for the problem.

For some instances of NP-hard problems in real world, there are natural param-

eters that are much smaller than the sizes of inputs. We give two examples.

The first example is the problem Type Checking in ML [38]. One of the tasks

of a compiler is to check the compatibility of type declarations. This problem is

exponential-time complete [59]. There is an fpt-algorithm of running time O(2kn)

where n is the size of the program and k is the maximum nesting depth of the type

4

declarations [77]. Normally k is not greater than 6. So this algorithm works well in

practice.

Another example is a recent fpt-algorithm for the Individual Haplotyping prob-

lem [103]. The fpt-algorithm is of time complexity O(nk22
k2 + m log m + mk1) where

m is the number of fragments (the number of 0/1/2 sequences), n is the number of

SNP sites (the length of each 0/1/2 sequence), k1 is the maximum number of SNP

sites that a fragment covers (the maximum number of 0/1’s in a sequences), and

k2 is the maximum number of the fragments covering an SNP site (the number of

sequences which have 0/1 in a particular position in the sequence). The parameter

k1 is bounded by n. But normally k1 is smaller than 10. The parameter k2 is usually

not more than 19 [63]. Thus this algorithm is practical. Moreover, it is more accurate

in haplotype reconstruction than other known algorithms.

From these examples, we can see that fpt-algorithms are practical for instances

with small parameters. So we need to study fpt-algorithms for NP-hard problems.

We will investigate a new approach for designing fpt-algorithms in this dissertation.

C. Branch-and-Search Tree

There are many algorithmic approaches to design exact algorithms (without param-

eters) and fpt-algorithms. Algorithmic approaches for exact algorithms (without pa-

rameters) include dynamic programming, pruning the search tree, preprocessing the

data and local search [101], measure and conquer [49, 50]. Algorithmic approaches for

fpt-algorithms include kernelization [39], greedy localization [19, 42], iterative com-

pression [90, 32], coloring coding [3], divide and conquer [25], divide-and-color [70],

and branch-and-search tree [20, 73]. Among these approaches, branch-and-search tree

is the most widely used approach, and can be applied to design both exact algorithms

5

(without parameters) and fpt-algorithms.

Given an instance I of a problem, the branch-and-search tree approach can be

applied to design a recursive algorithm A to solve I. If the instance I satisfies some

conditions, A solves the problem for the instance I directly. Otherwise, A reduces

the instance I into some smaller instances I1, · · · , Ip, calls A recursively on each of

I1, · · · , Ip to find solutions to I1, · · · , Ip, and then finds solutions to I from solutions

to I1, · · · , Ip.

To study the time complexity of such an algorithm, we consider the algorithm

A as a tree T . Each node represents an instance. Let instance(N) be the in-

stance represented by node N . If N is the root of T , then instance(N) is the

original instance I. If N is a leaf of T , then instance(N) is an instance that

can be solved directly without recursive call of A. A node N and its children

N1, · · · , Nq represent a call of A on instance(N) during which instance(N) is re-

duced to instance(N1), · · · , instance(Nq).

Now we can distribute the running time of A on instance I in the tree T as

follows: the time for a leaf L is the time to solve directly instance(L). The time for

an internal node N with children N1, · · · , Nq is the time to reduce instance(N) to

instance(N1), · · · , instance(Nq) plus the time to find solution to instance(N) from

solutions to instance(N1), · · · , instance(Nq). It is clear that the running time of A
on I is the summation of the time for nodes in the tree T .

Normally it is required that the time for each node be polynomial in the input

size n of I, and the height of T be also polynomial in n. Let Tpath be the summation of

the time for all nodes in a path from the root to a leaf in T . Then Tpath is polynomial

in n. Let Tmax be the maximum among all possible Tpath. The running time of A is

then bounded by the product of Tmax and the number of leaves in T .

In general, it is easier to give an upper bound of the number of leaves in T than

6

to calculate the precise number of leaves in T . To bound the number of leaves in

T , we assign a measure to every node in T . Let m be the measure of the root in

T , and m1, · · · ,mq be the measures corresponding to the children of the root in T .

A characteristic polynomial for m,m1, · · · , cq is
∑

xdi = 1 where di = mi − m for

i = 1, · · · , q. We also say that the root has a characteristic polynomial
∑

xdi = 1.

There is only one positive root for any characteristic polynomial. Let α be the root

of a characteristic polynomial. It can be proved that f(m) ≤ αm when all internal

nodes have the same characteristic polynomial. If there are multiple characteristic

polynomials P1, · · · ,Pq, let αi be the positive root of the characteristic polynomial

Pi, and α = (max{α1, · · · , αq}). Then we have f(m) ≤ αm. More explanations and

proofs of this approach can be found in [73].

From the arguments above, the total running time of algorithm A is bounded by

O(αmpoly(n)). For simplicity, we use notation O∗(αm)1 to ignore the part of poly(n)

in O(αmpoly(n)).

Now we give examples to illustrate the approach of branch-and-search tree. Con-

sider the minimum vertex cover problem, which is NP-hard. Given a graph G,

a vertex cover C of G is a subset of vertices such that every edge has at least one

endpoint in C. A minimum vertex cover is a vertex cover of the minimum number of

vertices among all vertex covers. The minimum vertex cover problem is to find a

minimum vertex cover for the input graph G. We design an exact algorithm for the

minimum vertex cover problem with the branch-and-search tree approach.

Normally, we choose the number of vertices n to be the measure. Let C be a

minimum vertex cover. If there are no edges in the input graph G, then return φ as

a minimum vertex cover. Otherwise, pick an edge xy and consider two cases: either

1Formally, O∗(f) refers to O(fnO(1)) where n is the input size.

7

x or y is in the minimum vertex cover C. If x is in C, let Gx be the remaining graph

after deleting x and all incident edges of x. Then we only need to find a minimum

vertex cover C−x for Gx. Note that |V [Gx]| = |V [G]|−1, i.e., the measure decreases

by 1. If x is not in C, then y must be in C. Let Gy be the graph after deleting y. Then

we only need to find a minimum vertex cover C − y for Gy. The measure of Gy also

decreases by 1. The characteristic polynomial for these measures is x−1 + x−1 = 1.

Solve it and find its positive root α = 2. So f(n) ≤ 2n. That is, the minimum

vertex cover problem can be solved in time O∗(2n).

Next we show how to design fpt-algorithms with branch-and-search tree. The

parameter for the vertex cover problem is the size of a vertex cover to find. Let k

be the size of a vertex cover to find. Formally, the k-vertex cover problem is to:

either find a vertex cover of k vertices if such a vertex cover exists, or report ‘NO’ if

none exists. The same algorithm above can be applied to solve the k-vertex cover

problem. However, we should redefine C to be the vertex cover of k vertices to search,

and calculate the measure changes accordingly: (1) for Gx, the measure decreases by

1 since we only need to find C − x in Gx, and (2) for Gy, the measure decreases by

1 since we only need to find C − y in Gy. The characteristic polynomial for these

measures is still x−1 + x−1 = 1, whose positive root α = 2. Therefore, the k-vertex

cover problem can be solved in time O∗(2k).

It is difficult to design better algorithm of time O∗(cn) or O∗(ck) with small c.

The best algorithm for the minimum vertex cover problem has running time of

O∗(1.1893n) [91]. The best algorithm for the k-vertex cover problem has running

time of O∗(1.2738k) [21]. But these algorithms are much more complicated than the

simple algorithm above.

Before our works [78, 23, 18, 24, 22], researchers had taken only one parameter

when using the approach of branch-and-search tree. This common usage has made

8

it difficult to design fast algorithms. For example, let us consider the k feedback

vertex set problem. This problem either finds a set S of k vertices such that every

cycle contains at least one vertex in S, or reports no such set exists. To apply the

traditional approach of branch search tree, we naturally pick a cycle C and have p

choices to put a vertex in S, where p is the length of C. Then we have a characteristic

polynomial f(k) = pf(k − 1), whose positive root is p. Thus any algorithm by this

way has time complexity of O∗(pk). It is hard to bound the length of cycles by some

constant in graphs. Thus it is difficult to design algorithms of time O∗(ck), where

c is a constant not related to k, by this traditional approach. In this dissertation,

we show that using two measures, instead of single measure, is much more powerful

than the traditional approach of branch-and-search tree because more properties can

be applied to design algorithms. With this new approach, we present an algorithm

of time O∗(5k) for the k feedback vertex set problem on undirected graphs in

Chapter IV.

D. Outline of This Dissertation

In Chapters II to VI, we apply our new approach to design better fpt-algorithms for

several problems: 3D-Matching and 3D-Packing problems, multiway-cut prob-

lem, feedback vertex set problems on undirected graphs and directed graphs,

and max leaf problem. Detailed analyses are given. The results in these chapters

illustrate the power of our new approach for fpt-algorithm design and analysis.

Then in Chapter VII, we illustrate how to design an improved algorithm for the

well-known satisfiability problem using two measures. The result in this chapter

demonstrates that our new approach also works well for exact algorithm design and

analysis.

9

In Chapter VIII, we give a summary of our work and directions for future re-

search.

10

CHAPTER II

3D-MATCHING AND 3-SET PACKING

In this chapter, we give improved randomized and deterministic fpt-algorithms for the

3-d matching and 3-set packing problems. Our randomized algorithm for the 3-d

matching problem has running time of O∗(2.323k), which improves the previous best

randomized algorithm of running time O∗(2.523k). Our deterministic algorithm for

the 3-d matching is of running time O∗(2.773k), which improves the previous best

deterministic algorithms of running time O∗(12.83k). Our deterministic algorithm for

the 3-set packing problems are of running time O∗(4.613k), which improves the

previous best deterministic algorithms of running time O∗(12.83k).

The previous algorithms for the 3-d matching and 3-set packing problems

focus on the parameter k as a measure, which makes it difficult to design faster

algorithms. We still study these problems with the greedy localization approach [19]:

start from a matching (packing) of size p and to find a matching (packing) of size k

where k > p. However, instead of focusing on the parameter k only, we consider two

measures: the number of colors used for coloring and the number of elements used in

dynamic programming. With this new approach, we discover that only p+3 colors are

needed, and the number of elements used in dynamic programming is 4p+3, if we try

to find a matching (packing) of size p+1. This reduces the number of colors from 2k

to p+3, and the number of elements for dynamic programming from 4k +2 to 4p+3,

thus improving the time complexity significantly to O∗(4.613k) for the 3-d matching

and 3-set packing problems. Moreover, we can do better for the 3-d matching

problem with this approach. It is observed that if we keep only two columns of

the known matching, then the number of elements for dynamic programming is only

8p/3 + 2, while the number of colors is only 2p/3 + 2. This results in a randomized

11

algorithm of running time O∗(2.323k) and a deterministic algorithm of running time

O∗(2.773k) for the 3-d matching problem.

A. Introduction

Matching and packing problems have formed an important class of NP-hard problems.

In particular, the 3-d matching problem is one of the six “basic” NP-complete

problems in terms of Garey and Johnson [53], and the 3-set packing problem is a

natural extension of the 3-d matching problem. There has been a remarkable line

of research in the study of parameterized algorithms for 3-d matching and 3-set

packing problems.

Downey and Fellows [37] proved that the 3-d matching problem is fixed-

parameter tractable and gave an algorithm of time O∗((3k)!(3k)9k+1)Chen et al. [19]

improved the time complexity for 3-d matching to O∗((5.7k)k), and Jia, Zhang, and

Chen [19] improved the time complexity for 3-set packing to O∗((5.7k)k).

More progress has been made recently. For the 3-set packing problem, Koutis

[71] developed a randomized algorithm of time O∗(10.883k) and a deterministic al-

gorithm of time O∗(2O(k)). Koutis [71] did not give the exact constant factor in the

exponent of the time complexity O∗(2O(k)) for his deterministic algorithm. He used

the perfect hashing families proposed by Schmidt and Siegel [92], in which the num-

ber of hashing functions to hash n elements into 3k colors is larger than 2log log n+12k.

It can be derived that his deterministic algorithm has time complexity of at least

O∗(320003k). These algorithms can be applied to the 3-d matching problem with-

out any changes. Fellows et al. [44] studied the complexity of matching and packing

problems. They first showed that the 3-d matching problem has a kernel of size

O(k3), and then presented an algorithm of time O∗(2O(k)) for the problem, where

12

the term O(k) was also not specified in detail. It can be deduced that the running

time of the algorithm given in [44] for 3-d matching is at least O∗(12.673kT (k)),

where T (k) is the running time of a dynamic programming algorithm that, on a set of

triples whose symbols are colored with 13k colors, searches for a matching of k triples

in which all symbols are colored with distinct colors (T (k) is at least O∗(10.43k) using

currently known techniques). The chapter also discussed how these techniques are

applied to solve 3-set packing and various graph packing problems.

There are at least two very recent works that give further improved algorithms

for 3-d matching and 3-set packing problems. Chen et al. [25] proposed a new

technique based on divide-and-conquer that leads to randomized algorithms of time

O∗(2.523k) for 3-d matching and 3-set packing problems. Moreover, they pro-

posed a color-coding scheme of O∗(6.1k) k-colorings which, when combined with

standard dynamic programming techniques, gives deterministic algorithms of run-

ning time O∗(12.83k) for 3-d matching and 3-set packing problems. We point

out that using this new color-coding scheme, the time complexity of the algorithms by

Coitus [71] for 3-d matching and 3-set packing can be improved to O∗(25.63k),

and the time complexity of the algorithms by Fellows et al. [44] can be improved

to O∗(13.783k). In a work performed independently of that in [25], Kneis et al. [70]

developed a divide-and-conquer method that leads to randomized algorithms for 3-d

matching and 3-set packing problems with time complexity similar to that in

[25]. Moreover, a different de-randomization method was proposed in [70] based on

the work of [84], which leads to deterministic algorithms of running time O∗(163k) for

3-d matching and 3-set packing problems.

The known parameterized algorithms for 3-d matching and 3-set packing

have used either the technique of greedy localization [19, 32, 64], the technique of color-

coding [3] plus dynamic programming [25, 44, 71], or the divide-and-conquer method

13

[25, 70]. In this chapter, we show how a combination of these techniques and new

techniques will yield further improved algorithms for these problems. We start with

the 3-set packing problem. In difference from the approach used in [19, 64] that

constructs a packing of k 3-sets directly from a maximal packing, we concentrate on

the construction of a packing of k+1 3-sets based on a packing of k 3-sets. This slight

modification enables us to derive a property for packing that is much stronger than the

one given in [19]. Moreover, instead of coloring all elements in an instance of 3-set

packing, we color only part of the elements and use either ordering or pre-selected

elements to reduce the complexity of the coloring stage in the algorithms. Using these

new techniques, we are able to develop a parameterized algorithm of running time

O∗(4.613k) for the 3-set packing problem, significantly improving the previous best

algorithm of running time O∗(12.83k) for the problem [25]. For the 3-d matching

problem, we further show that the complexity of the dynamic programming stage in

the algorithms, which seems to have been largely neglected in the previous research,

can also be improved using a pre-ordering technique. Combining this new technique

and those developed for 3-set packing, we achieve further improved algorithms for

the 3-d matching problem. More specifically, our new randomized algorithm for

3-d matching runs in time O∗(2.323k), and our new deterministic algorithm for 3-d

matching runs in time O∗(2.773k), both significantly improving the previous best

algorithms for the problem.

We would like to point out that all previous parameterized algorithms for 3-

d matching and 3-set packing have the same time complexity for both prob-

lems, although it is obvious that 3-set packing is a nontrivial generalization of

3-d matching. The results in the current chapter seem to give faster algorithms

for 3-d matching than for 3-set packing. We also mention that the difference in

complexity between our deterministic algorithm (i.e., O∗(2.773k)) and our random-

14

Table I. Comparison of algorithms for 3-d matching

References Randomized algorithm Deterministic algorithm

Downey and Fellows [37] O∗((3k)!(3k)9k+1)

Chen et al. [19] O∗((5.7k)k)

Koutis [71] O∗(10.883k) > O∗(320003k)

Fellows et al. [44]∗ > O∗(12.673kT (k))

Kneis et al. [70] O∗(2.523k) O∗(163k)

Chen et al. [25] O∗(2.523k) O∗(12.83k)

Our new result O∗(2.323k) O∗(2.773k)

∗T (k) is the running time of a dynamic programming process that, on a

set of triples whose symbols are colored with 13k colors, searches for a

matching of k triples in which all symbols are colored with distinct colors.

Based on currently known techniques, T (k) is at least O∗(10.43k).

ized algorithm (i.e., O∗(2.323k), which is also currently the best upper bound) for 3-d

matching has been significantly narrowed down, which is remarkable considering the

fact that in the previous research on the problem, the difference between these two

kinds of algorithms is in general very significant. Table I gives a specific comparison

of our new algorithms and the previous algorithms for the 3-d matching problem.

B. Preliminaries and Reformulations

Let X, Y , and Z be three pairwise disjoint symbol sets, and let U = X × Y × Z be

the product set of X, Y , and Z. Each element t = (x, y, z) in U , where x ∈ X, y ∈ Y ,

and z ∈ Z, is called a triple. For a triple t = (x, y, z) in U , denote by Val(t) the set

15

{x, y, z}, and let Val1(t) = {x}, Val2(t) = {y}, Val3(t) = {z}. We say that a triple t1

conflicts with another triple t2 if t1 6= t2 and Val(t1) ∩ Val(t2) 6= ∅. Let S be a set of

triples in U . Denote Val(S) =
⋃

t∈S Val(t), and Vali(S) =
⋃

t∈S Vali(t) for i = 1, 2, 3.

A matching in S is a subset M of triples in S such that no two triples in M conflict

with each other. A matching M in S is a k-matching if M contains exactly k triples.

Packing problems are a generalization of matching problems. We say that a set

ρ1 conflicts with another set ρ2 if ρ1 6= ρ2 and ρ1 ∩ ρ2 6= ∅. Let S be a collection of

sets. Denote Val(S) = ∪ρ∈Sρ. A packing in S is a sub-collection P of S such that no

two sets in P conflict with each other. A packing P in S is a k-packing if P contains

exactly k sets.

The main problems we study in this chapter are formally defined as follows.

(parameterized) 3-d matching:

Given a pair (S, k), where S is a set of n triples, and k is an integer, either

construct a k-matching in S or report that no such matching exists.

(parameterized) 3-set packing:

Given a pair (S, k), where S is a collection of n sets, each containing at

most three elements, and k is an integer, either construct a k-packing in

S or report that no such packing exists.

A set is a 3-set if it contains exactly three elements. For an instance (S, k) of

3-set packing, we can assume, without loss of generality, that all sets in S are 3-sets

(otherwise, we can add new elements, i.e., elements not in S, to convert each set with

fewer than three elements to a 3-set). Instead of working on the above problems, we

will concentrate on the following related problems.

16

3-d matching augmentation:

Given a pair (S,Mk), where S is a set of triples, and Mk is a k-matching

in S, either construct a (k + 1)-matching Mk+1 in S, or report that no

such matching exists.

3-set packing augmentation:

Given a pair (S, Pk), where S is a collection of n 3-sets, and Pk is a k-

packing in S, either construct a (k + 1)-packing Pk+1 in S, or report that

no such packing exists.

Lemma B.1 For any constant c > 1, the 3-d matching augmentation problem

can be solved in time O∗(ck) if and only if the 3-d matching problem can be solved in

time O∗(ck). Similarly, the 3-set packing augmentation problem can be solved in

time O∗(ck) if and only if the 3-set packing problem can be solved in time O∗(ck).

According to Lemma C.1, we only need to concentrate on the 3-d matching

augmentation and 3-set packing augmentation problems.

C. Improved Packing Algorithms

The method of greedy localization has been heavily used in early algorithms for match-

ing and packing problems [19, 64]. The method takes advantage of the fact that in-

formation for a larger matching/packing can be obtained from a given smaller match-

ing/packing, which narrows down the size of the search space during the construction

of the larger matching/packing. We show that this property can be significantly

enhanced and more effectively used to develop algorithms for the 3-set packing

augmentation problem.

17

Lemma C.1 Let (S, Pk) be an instance of 3-set packing augmentation, where

Pk is a k-packing in S. If S also has (k+1)-packings, then there exists a (k+1)-packing

Pk+1 in S such that every set in Pk contains at least two elements in Val(Pk+1).

Proof. We prove the lemma by contradiction. Suppose that the lemma does not

hold. Then there is a k-packing Pk such that for every (k + 1)-packing P in S, there

is a set in Pk that contains at most one element in Val(P). Let Pk+1 be a (k + 1)-

packing in S such that the number of common sets in Pk and Pk+1 is maximized over

all (k + 1)-packings in S. By our assumption, there is a set ρ in Pk that contains at

most one element in Val(Pk+1).

Case 1. Exactly one element a in the set ρ is in Val(Pk+1). Then let ρ′ be the

set in Pk+1 that contains the element a. Since no other element in ρ is in Val(Pk+1),

if we replace ρ′ in Pk+1 by ρ, we get a new (k+1)-packing that has one more common

set (i.e., ρ) with the k-packing Pk (note that ρ′ cannot be in Pk because ρ′ and ρ share

a common element a while ρ contains another two elements not in Val(Pk+1)). This

contradicts our assumption that the (k + 1)-packing Pk+1 maximizes the number of

common sets with Pk.

Case 2. No element in ρ is in Val(Pk+1). Since Pk contains k sets while Pk+1

contains k + 1 sets, there must be a set ρ′′ in Pk+1 that is not in Pk. Since ρ contains

no element in Val(Pk+1), replacing ρ′′ in Pk+1 by ρ gives a new (k + 1)-packing that

has one more common set (i.e., ρ) with Pk, again contradicting the assumption that

the (k + 1)-packing Pk+1 maximizes the number of common sets with Pk.

This contradiction shows that the set ρ in Pk that contains at most one element

in Val(Pk+1) cannot exist.

18

According to Lemma C.1, to construct a (k + 1)-packing from a given instance

(S, Pk) of 3-set packing augmentation, we can aim at the (k + 1)-packing Pk+1

with the property described in the lemma. The advantage of this (k + 1)-packing

Pk+1 is that at least 2k elements in Pk+1 are already present in the k-packing Pk, and

we only need to identify at most k + 3 other elements in Pk+1. We use the technique

of color-coding, first introduced by Alon, Yuster, and Zwick [3], to search for these

elements that are in Pk+1 but not in Pk.

Let B be a set of elements. A coloring of B is a function mapping B to the natural

numbers {1, 2, . . .}, and an h-coloring of B is a function mapping B to {1, 2, . . . , h}.
A subset B′ of B is colored properly by a coloring f if no two elements in B′ are

colored with the same color under f . A collection C of h-colorings of a set B is an

h-color coding scheme if for every subset B′ of h elements in B, there is an h-coloring

in C that colors B′ properly. The following proposition has been proved in [25].

Proposition C.2 [25] For any finite set B and any integer h, there is an h-color

coding scheme C of O∗(6.1h) h-colorings of the set B. Moreover, the h-colorings in C
can be constructed and enumerated in time O∗(6.1h).

Let S be a collection of 3-sets and let f be a coloring of the set Val(S). We say

that a packing P in S is colored properly if the set Val(P) is colored properly under

the coloring f . Let (S, Pk) be an instance of 3-set packing augmentation. Since

the set of elements that are in Val(Pk+1) but not in Val(Pk) contains at most k + 3

elements, by introducing 3k new colors to properly color the 3k elements in Pk, Pk+1

can be colored properly with at most 4k + 3 colors.

Lemma C.3 Let (S, Pk) be an instance of 3-set packing augmentation, and let

Pk+1 be a (k+1)-packing in S such that each 3-set in Pk contains at least two elements

in Val(Pk+1). Then there is a collection C0 of O∗(6.1k) (4k + 3)-colorings of the set

19

Val(S) in which at least one properly colors Pk+1. Moreover, the collection C0 can be

constructed in time O∗(6.1k).

Now we turn to the problem of constructing a properly colored (k + 1)-packing

Pk+1. Alon, Yuster, and Zwick [3] in their seminal work on color-coding suggested a

general principle in which a (3k +3)-coloring that properly colors the 3k +3 elements

is first constructed in Val(Pk+1), then a dynamic programming process is applied to

find the properly colored (k + 1)-packing Pk+1. Koutis [71] proposed an algebraic

formulation to find the properly colored (k + 1)-packing Pk+1. Fellows et al. [44]

considered a more general approach that first uses g colors to properly color the

(k + 1)-packing Pk+1, where g ≥ 3k + 3, then perform a dynamic programming

algorithm. For completeness, we present such a generalized dynamic programming

algorithm in detail, as given in Fig. 1, verify its correctness, and analyze its precise

complexity.

Lemma C.4 The algorithm 3SetPack(S, k, f, g) runs in time O∗(
∑k

j=0

(
g
3j

)
), and

constructs a properly colored k-packing in S if such k-packings exist.

Proof. From steps 4.1-4.2 of the algorithm, it can be seen that every collection

P of 3-sets added to the super-collection Q in step 4.4 is a properly colored packing.

Therefore, if the algorithm returns a packing in step 5, the packing must be a properly

colored k-packing.

For each i, let Si = {ρ1, . . . , ρi}. We prove by induction on i that for all j ≤ k, if

Si has a properly colored j-packing Pj, then after the i-th execution of the for-loop in

step 4 of the algorithm, the super-collection Q contains a properly colored j-packing

P ′
j such that Pj and P ′

j use exactly the same 3j colors.

20

Algorithm 3SetPack(S, k, f, g)
input: A collection S of 3-sets, an integer k, a g-coloring f of Val(S)
output: A properly colored k-packing if such a packing exists

1. remove all 3-sets in S in which any two elements have the same color;
2. Let the remaining 3-sets in S be ρ1, ρ2, . . ., ρn;
3. Q = {∅};
4. for i = 1 to n do
4.1. for each packing P in Q such that no element in P is colored

with the same color as an element in ρi do
4.2. P ′ = P ∪ {ρi};
4.3. if P ′ is a j-packing with j ≤ k and Q contains no packing that

uses exactly the same colors as that used by P ′
4.4. then add P ′ to Q;
5. return a k-packing in Q if such a packing exists.

Fig. 1. Dynamic programming for 3-set packing

The initial case i = 0 is trivial since Q = {∅}. Consider i ≥ 1. Suppose

that the collection Si has a properly colored j-packing Pj = {ρi1 , ρi2 , . . . , ρij}, where

1 ≤ i1 < i2 < · · · < ij ≤ i. Then the collection Sij−1 contains the properly colored

(j − 1)-packing Pj−1 = {ρi1 , ρi2 , . . . , ρij−1
}. By the inductive hypothesis, after the

(ij − 1)-st execution of the for-loop in step 4, the super-collection Q contains a

properly colored (j − 1)-packing P ′
j−1 such that the (j − 1)-packings Pj−1 and P ′

j−1

use exactly the same 3(j − 1) colors. Since Pj = {ρi1 , ρi2 , . . . , ρij} is a properly

colored j-packing, and Pj−1 = {ρi1 , ρi2 , . . . , ρij−1
} and P ′

j−1 use exactly the same

3(j − 1) colors, no element in Val(P ′
j−1) is colored with the same color as an element

in the set ρij . Therefore, in the ij-th execution of the for-loop in step 4, a properly

colored j-packing P ′
j−1 ∪ {ρij} will be added to the super-collection Q if no properly

21

colored j-packing that uses exactly the same 3j colors exists in Q yet. Note that the

j-packing P ′
j−1∪{ρij} and the j-packing Pj use exactly the same 3j colors. Therefore,

after the ij-th execution of the for-loop in step 4, a j-packing that uses exactly the

same 3j colors as Pj will exist in the super-collection Q. Finally, since packings in

Q are never removed from Q and ij ≤ i, we conclude that after the i-th execution

of the for-loop in step 4, a j-packing that uses exactly the same 3j colors as Pj will

exist in the super-collection Q. This completes the inductive proof.

Now if we let i = n, for any j ≤ k, if the original collection S contains a properly

colored j-packing Pj, then the super-collection Q contains a j-packing that uses

exactly the same 3j colors as Pj. In particular, if the collection S contains properly

colored k-packings, then the algorithm 3SetPack(S, k, f, g) must return a properly

colored k-packing.

Finally, we analyze the complexity of the algorithm. For each 0 ≤ j ≤ k and

for each set of 3j colors, the super-collection Q keeps at most one properly colored

j-packing that uses exactly these 3j colors. Since there are
(

g
3j

)
different subsets of 3j

colors over a total of g colors, the total number of packings recorded in Q is bounded

by
∑k

j=0

(
g
3j

)
. For each i, 1 ≤ i ≤ k, we examine each packing P in Q in step 4.1

and check if we can construct a larger packing by adding the set ρi to the packing

P . This can be done for each packing P in time O(k). In consequence, the algorithm

3SetPack(S, k, f, g) runs in time O(nk
∑k

j=0

(
g
3j

)
) = O∗(

∑k
j=0

(
g
3j

)
).

Combining Lemmas C.1, C.3, and C.4, the 3-set packing augmentation

problem can be solved in time O∗(6.1k24k) = O∗(4.613k).

Theorem C.5 The 3-set packing augmentation problem can be solved in time

O∗(4.613k).

Corollary C.6 The 3-set packing problem can be solved in time O∗(4.613k).

22

D. Matching Algorithms Further Improved

All the previous results are applicable to the 3-d matching problem. In fact, if

we regard each triple as a 3-set, then each instance SM of 3-d matching is also an

instance SP of 3-set packing, and a triple set is a matching in SM if and only if it

is a packing in SP .

As shown in the previous section, a dynamic programming algorithm is used as

a second stage in parameterized algorithms for 3-set packing/3-d matching. In

this section, we develop a new technique for the dynamic programming stage for the

3-d matching problem so that fewer colors will be needed. This technique has two

advantages. First, the use of fewer colors will significantly reduce the time complexity

of the coloring stage. Second, since fewer colors are used, the number of different color

sets is reduced, which will reduce the time complexity of the dynamic programming

stage remarkably.

Let the universal triple set be U = X × Y × Z, where X, Y , and Z are three

pairwise disjoint symbol sets. The symbols in the sets X, Y , and Z will be called the

symbols in column-1, column-2, and column-3, respectively.

Definition Let p and q be any two indices in the index set {1, 2, 3}, and let S be a

set of triples in U . A matching M in the set S is (p, q)-properly colored by a coloring

f of Valp(M)∪Valq(M) if no two symbols in Valp(M)∪Valq(M) are colored with the

same color under f .

Theorem D.1 Let p and q be any two indices in the index set {1, 2, 3}. There is

an algorithm of time O∗(
∑k

i=0

(
g
2i

)
) that, on an integer k and a set S of triples in

which the symbols in Val p(S) ∪ Val q(S) are colored by a g-coloring f , constructs a

23

Algorithm 3DMatch(S, k, f, g; p, q)
input: A set S of triples, an integer k, a g-coloring f of the symbols in

Valp(S) ∪ Valq(S)
output: A (p, q)-properly colored k-matching in S if such a matching exists

1. remove any triples in S in which any two symbols have the same color
under f ;

2. let the set of remaining triples be S ′;
3. r = {1, 2, 3} − {p, q};
4. let the symbols in Valr(S ′) be x1, x2, . . ., xm;
5. Qold = {∅}; Qnew = {∅};
6. for i = 1 to m do
6.1. for each set C of symbol pairs in Qold do
6.2. for each t ∈ S ′ with Valr(t) = xi do
6.3. if no symbol in C is of the same color as a symbol in

Valp(t) ∪ Valq(t)
6.4. then C ′ = C ∪ {(Valp(t), Valq(t))};
6.5. if C ′ contains no more than k symbol pairs and Qnew

contains no set of symbol pairs that uses exactly the same
colors as that used by C ′

6.6. then add C ′ to Qnew;
6.7. Qold = Qnew;
7. return a set C of k symbol pairs in Qold if such a set exists.

Fig. 2. Dynamic programming for 3-d matching

(p, q)-properly colored k-matching in S when such matchings exist in S.

Proof. Consider the algorithm in Fig. 11. By steps 6.3-6.6, for every set C in

the collection Qold, all symbols in C are from Valp(S)∪Valq(S), and no two symbols

in C are of the same color. The algorithm 3DMatch(S, k, f, g; p, q) either outputs a

set of k symbol pairs in the collection Qold or reports that no (p, q)-properly colored

k-matchings exist in S. We say that a set C = {w1, . . . , wi} of i symbol pairs is

24

extendable to an i-matching in S if there is an i-matching M = {t1, . . . , ti} in S such

that for all j, the pair (Valp(tj), Valq(tj)) is identical to the symbol pair wj. For each i,

let S ′i be the set of triples in S ′ whose symbols in column-r are among {x1, x2, . . . , xi}.
For a matching M , we will denote by cl(M) = {f(y) | y ∈ Valp(M) ∪ Valq(M)} the

set of colors used by the symbols in Valp(M) ∪ Valq(M).

We prove the following claim by induction on i:

Claim. For each i, 0 ≤ i ≤ m, and for all h ≤ k, there is a (p, q)-properly

colored h-matching Mh in S ′i if and only if after the i-th execution of

the loop 6.1-6.7 of algorithm 3DMatch(S, k, f, g; p, q), the collection Qold

contains a set Ch of h symbol pairs such that the set of colors used for

the symbols in Ch is exactly cl(Mh). Moreover, each set Ch of h symbol

pairs in the collection Qold after the i-th execution of the loop 6.1-6.7 is

extendable to an h-matching in S ′i.

The case i = 0 is obvious because we initially set Qold to {∅}. Consider i ≥ 1.

First note that the claim is always true for h = 0 because the collection Qold always

contains the empty set ∅ while the set S ′i always contains a 0-matching (which by the

definition is (p, q)-properly colored).

Suppose that after the i-th execution of the loop 6.1-6.7, the collection Qold

contains a set Ch of h symbol pairs, where h ≥ 1. Suppose that the set Ch was

created during the j-th execution of the loop 6.1-6.7, where j ≤ i, by adding a

symbol pair (Valp(t), Valq(t)) to a set Ch−1 of h− 1 symbol pairs, where t is a triple

with Valr(t) = xj and the set Ch−1 is contained in Qold after the (j−1)-st execution of

the loop 6.1-6.7. By the inductive hypothesis, the set Ch−1 is extendable to an (h−1)-

matching Mh−1 in S ′j−1, which is obviously (p, q)-properly colored. Since no symbol

in Ch−1 uses the same color as a symbol in Valp(t)∪Valq(t), and the matching Mh−1

25

does not contain the symbol xj, the set Mh = Mh−1 ∪ {t} makes a (p, q)-properly

colored h-matching in S ′j. Since j ≤ i and S ′j ⊆ S ′i, we conclude that the set S ′i

contains a (p, q)-properly colored h-matching Mh such that the symbols in the set Ch

use exactly the color set cl(Mh). Moreover, it is obvious that the symbol set Ch is

extendable to the h-matching Mh.

To prove the other direction, suppose that the set S ′i contains a (p, q)-properly

colored h-matching Mh.

Case 1. There is a (p, q)-properly colored h-matching M ′
h in S ′j for some j < i

such that cl(M ′
h) = cl(Mh). By the inductive hypothesis, after the j-th execution of

the loop 6.1-6.7, the collection Qold contains a set Ch of h symbol pairs such that (1)

the set of colors used for the symbols of Ch is exactly cl(M ′
h); and (2) Ch is extendable

to an h-matching in S ′j. Since j < i, S ′j ⊆ S ′i, and we never remove symbol pairs from

Qold, we conclude that in this case, after the i-th execution of the loop 6.1-6.7, the set

Ch is still contained in the collection Qold such that (1) the set of colors used for the

symbols of Ch is exactly cl(M ′
h) = cl(Mh); and (2) Ch is extendable to an h-matching

in S ′j ⊆ S ′i.

Case 2. There is no (p, q)-properly colored h-matching M ′
h in S ′j for any j < i

such that cl(M ′
h) = cl(Mh). Then by the inductive hypothesis, after the j-th execution

of the loop 6.1-6.7 for any j < i, the collection Qold contains no set C of symbol pairs

such that the symbols in C use exactly the color set cl(Mh). Let the (p, q)-properly

colored h-matching Mh be Mh = {t1, · · · , th}, where for each j, Valr(tj) = xdj
, with

d1 < · · · < dh−1 < dh. In this case, we must have dh = i and Valr(th) = xi. Let

y = Valp(th) and z = Valq(th). Since dh−1 < dh = i, the triple set Mh−1 = Mh − {th}
is a (p, q)-properly colored (h − 1)-matching in S ′i−1. By the inductive hypothesis,

after the (i− 1)-st execution of the loop 6.1-6.7 in the algorithm, the collection Qold

contains a set Ch−1 of h − 1 symbol pairs such that the set of colors used for the

26

symbols in Ch−1 is exactly cl(Mh−1). Now in the i-th execution of the loop 6.1-6.7

when the set Ch−1 and the triple th are examined in step 6.3, a set C of symbol pairs

using the color set cl(Mh−1)∪{f(y), f(z)} = cl(Mh) will be created. Therefore, after

the i-th execution of the loop 6.1-6.7, a set Ch of h symbol pairs using the color set

cl(Mh) must be contained in the collection Qold. Suppose that the set Ch was created

during the i-th execution by adding a symbol pair (Valp(t′h), Valq(t′h)) to a set C ′
h−1

of h − 1 symbol pairs, where t′h satisfies Valr(t′h) = xi and C ′
h−1 is contained in the

collection Qold after the (i − 1)-st execution of the loop 6.1-6.7 (note that t′h and

C ′
h−1 are not necessarily th and Ch−1, respectively). By the inductive hypothesis, the

set C ′
h−1 is extendable to a (p, q)-properly colored (h − 1)-matching M ′

h−1 in S ′i−1.

In consequence, the set Ch is extendable to the (p, q)-properly colored h-matching

M ′
h−1 ∪ {t′h} in S ′i. This completes the proof of the claim.

By the claim and let i = m, the algorithm 3DMatch(S, k, f, g; p, q) returns a

set Ck of k symbol pairs if and only if the triple set S contains a (p, q)-properly

colored k-matching, and the set Ck is extendable to a k-matching in S. To construct

such a k-matching from Ck, we can use the graph matching technique suggested

in [19]. Formally, from the set Ck of symbol pairs, we construct a bipartite graph

Bk = (VL∪VR, E), where VL contains k vertices, corresponding to the k symbol pairs

in Ck, and VR is the set of all symbols in Valr(S). There is an edge in Bk from a

vertex (y, z) in VL to a vertex x in VR if and only if the symbols y, z, and x form a

triple in S. It is easy to see that a (p, q)-properly colored k-matching Mk in S can

be obtained by constructing a graph matching of k edges in the bipartite graph Bk,

which takes polynomial time [28].

In terms of the time complexity of the above algorithm, note that since for

each set of 2i colors, we record at most one set of symbol pairs that uses exactly

these 2i colors, the collection Qold contains at most
∑k

i=0

(
g
2i

)
sets of symbol pairs.

27

For each set C of symbol pairs in Qold, steps 6.2-6.6 of the algorithm take time

polynomial in n and k. Therefore, each execution of the loop 6.1-6.7 of the algo-

rithm runs in time O∗(
∑k

i=0

(
g
2i

)
). In consequence, the running time of the algorithm

3DMatch(S, k, f, g; p, q) is bounded by O∗(
∑k

i=0

(
g
2i

)
).

To solve the 3-d matching augmentation problem (S, Mk), we only color

two columns of a (k + 1)-matching properly if it exists. In this case, by Lemma C.1,

there is a (k + 1)-matching Mk+1 such that Mk+1 has two columns that contain at

least 4k/3 symbols in Mk. Thus at most 2k/3 + 2 symbols in these two columns in

Mk+1 are missing in Mk. By introducing 2k new colors for each symbol in these two

columns in Mk and by Proposition C.2, in time O∗(6.12k/3), the two columns of Mk+1

can be colored properly into 8k/3 + 2 colors. By Theorem D.1, the 3-d matching

augmentation problem (S,Mk) can be solved in time O∗(6.12k/328k/3) = O∗(2.773k).

Theorem D.2 The 3-d matching problem can be solved in time O∗(2.773k).

If we use a randomized color-coding scheme that properly colors a subset of size

k into k colors with high probability in time O∗(ek) [3], then the time complexity to

solve 3-d matching problem can be improved to O∗(e2k/328k/3) = O∗(2.323k).

Theorem D.3 The 3-d matching problem can be solved by a randomized algorithm

of time O∗(2.323k).

E. Final Remarks

Recently there has been much interest in parameterized algorithms for graph pack-

ing problems, i.e., algorithms for constructing k disjoint isomorphic subgraphs in a

given graph [45, 70, 83, 86]. In particular, Fellows et al. [45] presented a param-

eterized algorithm of time O∗(22k log k+1.869k) for packing k vertex-disjoint triangles

28

in a given graph, and Mathieson, Prieto, and Shaw [83] proposed a parameterized

algorithm of time O∗(24.5k log k+4.5k) for packing k edge-disjoint triangles in a given

graph. Since these problems can be trivially reduced to the 3-set packing problem,

by Corollary C.6, they can be solved in time O∗(4.613k). This again gives significant

improvements over the previous algorithms.

There are more new results by the time this dissertation is completed: the best

randomized algorithm of O∗(2k) [72] for the 3-d matching and 3-set packing prob-

lems, the best deterministic algorithm of O∗(4(r−1)k) for the weighted r-d matching

problem [46], and the best deterministic algorithm of O(2(2r−1)k) for the weighted

r-set packing problem.

29

CHAPTER III

MULTIWAY CUT∗

In this chapter, we present an fpt-algorithm of running time O∗(4k) for the multiway

cut problem, which significantly improves the previous best algorithm of running

time O∗(4k3
).

The previous algorithm uses only the parameter k, the size of a multiway cut

to search, as the measure. Our algorithm considers both the parameter k and the

minimum cut m between a vertex and the other vertices as measures. We find an op-

eration which either decreases k by 1 or increases m by 1. Moreover, we uncover that

either such operation is executed or the vertices for further consideration decreases.

With these discoveries, we design an algorithm of running time O∗(4k).

A. Introduction

The multiterminal cut problem is a well-known problem, and has been extensively

studied ([16, 66, 85]). Applications of this problem are found in distributed computing

[96], VLSI [27], computer vision [15], and many other fields. The problem is defined

as follows: given an undirected graph G = (V, E) and a set of l vertices {t1, . . . , tl} in

G (the vertices ti are called terminals), find an edge set E ′ of minimum size in G such

that after the deletion of E ′, no two terminals are in the same connected component.

This problem is NP-hard for general graphs for any fixed integer l ≥ 3, and is also

NP-hard for planar graphs when l is not fixed [30].

A generalization of the multiterminal cut problem is the minimum node

∗Reprinted with permission from “An Improved Parameterized Algorithm for
the Minimum Node Multiway Cut Problem”, by J. Chen, Y. Liu, and S. Liu, 2009,
Algorithmica, Volume 55, pages 1-13, Copyright [2009] by Springer.

30

multiway cut problem, which, for a given graph and a given set of terminals, is to

find a vertex set S of minimum size such that after the deletion of S, no two terminals

are in the same connected component. The minimum node multiway cut problem

is at least as hard as the multiterminal cut problem, as the latter can be reduced

to the former in time O(|V |+ |E|), if we require that no terminal be in the separator

S [29]. Therefore, the minimum node multiway cut problem is also NP-hard if

the number l of terminals is at least 3.

When there are only two terminals s and t, the multiterminal cut problem

and the minimum node multiway cut problem become the edge version and the

vertex version of the minimum s-t cut problem, respectively. According to the max-

flow min-cut theorem [74], the minimum s-t cut problem, for both the edge version

and the vertex version, can be solved via algorithms for the maximum s-t flow

problem. For an undirected graph G of n vertices and m edges, the maximum s-t

flow problem can be solved in time O(n7/6m2/3) [67]. In consequence, the multi-

terminal cut problem and the minimum node multiway cut problem can also

be solved in time O(n7/6m2/3).

A natural extension of the minimum node multiway cut problem is to have

a collection of terminal sets, instead of a collection of individual terminals. Formally,

let G = (V,E) be an undirected graph, and let {T1, . . . , Tl} be a collection of terminal

sets where each Ti is a subset of vertices in G. A separator S for {T1, T2, . . . , Tl} is

a subset of vertices in G such that no vertex in S is in any terminal set, and after

deleting S from the graph G, no connected component in the resulting graph contains

vertices from more than one terminal set.

In certain real world applications, one may expect that the size of the separator

be small. For example, suppose that we are given a network (i.e., a graph) G = (V, E)

and a collection of network node groups {T1, . . . , Tl} in G, and we want to monitor the

31

message communication among the node groups. A separator for {T1, . . . , Tl} in the

network G will well serve for this purpose: any communication path between any two

node groups must pass through at least one node in the separator. Therefore, if we

set up a monitor process in each of the nodes in the separator, then we can monitor

all communications among the node groups. Naturally, we may want to limit the cost

of this monitoring system by using only a small number of “monitor nodes” in the

network G.

This motivates a parameterized version of the minimum node multiway cut

problem, which will be called the parameterized node multiway cut problem

and is defined as follows: given an undirected graph G = (V,E), a collection of

pairwise disjoint terminal sets {T1, . . . , Tl} (where each Ti is a subset of vertices in

G), and a parameter k, either construct a separator of at most k vertices in G, or

report that no such a separator exists. Our goal is, for the parameterized node

multiway cut problem, to develop a fixed-parameter tractable algorithm [37], i.e.,

an algorithm whose running time is of the form f(k)nc with a function f independent

of the input size n and a constant c. In particular, when the parameter value k

is small, such a fixed-parameter tractable algorithm will be practically effective. In

fact, the study of fixed-parameter tractable algorithms for a variety of parameterized

problems has drawn considerable attention recently and has direct impact on real

word applications where the selected parameter varies in a small range [37].

It can be derived from the graph minor theory of Robertson and Seymour [37]

that there is a fixed-parameter tractable algorithm for the parameterized node

multiway cut problem. However, the proof is not constructive. An explicit con-

structive algorithm for the problem was given by Marx [82], who developed an al-

gorithm of running time O(n54k3
) for the parameterized node multiway cut

problem for its original version (i.e., in which each terminal set is restricted to con-

32

tain a single terminal). To our knowledge, this is the only known constructive fixed-

parameter tractable algorithm for the problem.

In this chapter, we present an algorithm of running time O(n3k4k) for the param-

eterized node multiway cut problem, which significantly improves the algorithm

given in [82]. In the real world of computing, this improvement makes it become pos-

sible to practically solve the problem for some reasonable values of the parameter k.

For example, for the case of k = 10, our algorithm has running time O(n3410), which

is practically feasible using the currently available computation power. On the other

hand, the algorithm in [82] in this case has running time O(n541000), which is totally

infeasible from the practical point of view. Theoretically, our result gives the first

polynomial time algorithm for the minimum node multiway cut problem when

the size of the optimal separator is of order O(log n).

Finally, we remark that the techniques we developed in this chapter seem to be

very powerful for solving various kinds of multiway cut problems. In particular, very

recently the techniques have been extended to directed graphs, and led to a fixed

parameter tractable algorithm for the feedback vertex set problem on directed

graphs [24], thus resolving an outstanding open problem in the area of parameterized

computation and complexity [37, 34].

B. Minimum V-cuts between Two Terminal Sets

We start with some terminologies. All graphs in our discussion are supposed to be

directed.

Let G = (V, E) be a graph and let u and v be two vertices in G. A path between

u and v is a simple path in G whose two ends are u and v, respectively. We say that

there is a path between a vertex u and a vertex subset V ′ if there is a path between

33

the vertex u and a vertex v in the subset V ′. For two vertex subsets V1 and V2, we

say that there is a path between V1 and V2 if there exist a vertex u in V1 and a vertex

v in V2 such that there is a path between u and v. Two paths are internally disjoint

if there is no vertex that is an internal vertex for both the paths.

Let G be a graph, and let {T1, . . . , Tl} be a collection of pairwise disjoint terminal

sets (each terminal set is a subset of vertices in G). A subset S of vertices in G is

a separator for {T1, . . . , Tl} if S contains no vertex in any of the sets T1, . . ., Tl, and

if after deleting all vertices in S from G, there is no path between any two different

subsets Ti and Tj in the resulting graph. In particular, a separator S for two terminal

sets T1 and T2 is also called a V-cut between the two sets T1 and T2.

Let T be a subset of vertices in the graph G = (V, E). By merging T (into a

single vertex), we mean the operation that first deletes all vertices in T then creates

a new vertex w adjacent to each v of the vertices in V − T where v is a neighbor of

a vertex in T in the original graph G.

Finally, for a subset V ′ of vertices in the graph G, we will denote by G(V ′) the

subgraph of G that is induced by the vertex subset V ′.

Proposition B.1 [17] (Menger’s Theorem–Vertex Version) Let u and v be two dis-

tinct and nonadjacent vertices in a graph G. Then the maximum number of internally

disjoint paths between u and v in G is equal to the size of a minimum V-cut between

u and v in G.

Proposition B.1 can be generalized from the case for two vertices to the case of

two vertex subsets, as given in the following lemma.

Lemma B.2 Let T1 and T2 be two disjoint vertex subsets in a graph G such that no

vertex in T1 is adjacent to a vertex in T2. Then the maximum number h of internally

disjoint paths between T1 and T2 in G is equal to the size of a minimum V-cut between

34

T1 and T2 in G. Moreover, for any set π of h internally disjoint paths between T1 and

T2 in G, every minimum V-cut between T1 and T2 in G contains exact one vertex in

each of the paths in π.

Proof. Let G′ be the graph obtained from the graph G by merging the two vertex

subsets T1 and T2 into two vertices t1 and t2, respectively. Note that t1 and t2 are

not adjacent in G′.

By the definition of the merge operation, it is easy to verify that a vertex subset

S is a V-cut between the vertex subsets T1 and T2 in the graph G if and only if S

is a V-cut between the vertices t1 and t2 in the graph G′. In particular, the size of

a minimum V-cut between T1 and T2 in G is equal to the size of a minimum V-cut

between t1 and t2 in G′. Moreover, it is also easy to verify that for any integer h′,

from a set of h′ internally disjoint paths between T1 and T2 in G, we can construct a

set of h′ internally disjoint paths between t1 and t2 in G′, and vice versa. Therefore,

the maximum number of internally disjoint paths between T1 and T2 in G is equal to

the maximum number of internally disjoint paths between t1 and t2 in G′. Now the

first part of the lemma follows by applying Proposition B.1 to the graph G′.

To prove the second part of the lemma, let S be a minimum V-cut, of size h,

between T1 and T2 in G, and let π be a set of h internally disjoint paths between T1

and T2. The vertex set S must contain at least one vertex from each of the paths in

π: otherwise there would be a path between T1 and T2 in G − S, contradicting the

assumption that S is a V-cut between T1 and T2. Moreover, the set S cannot contain

more than one vertex in any path in π: otherwise S would not be able to contain at

least one vertex for each of the paths in π (note that the paths in π are internally

disjoint).

35

Lemma B.2 provides an efficient algorithm that constructs the maximum num-

ber of internally disjoint paths and a minimum-size V-cut between two given vertex

subsets in a graph.

Lemma B.3 Let T1 and T2 be two disjoint vertex subsets in a graph G = (V,E) such

that no vertex in T1 is adjacent to a vertex in T2. Then in time O((|V |+ |E|)k), we

can decide if the size h of a minimum V-cut between T1 and T2 is bounded by k, and

in case h ≤ k, construct h internally disjoint paths between T1 and T2.

Proof. Let G′ be the graph obtained from the graph G by merging the two vertex

subsets T1 and T2 into two vertices t1 and t2, respectively. As discussed in the proof

of Lemma B.2, it suffices to show how to decide if the size h of a minimum V-cut

between t1 and t2 in G′ is bounded by k, and in case h ≤ k, how to construct h

internally disjoint paths between t1 and t2.

This can be done based on the standard approach to the maximum t1-t2 flow

problem [17]. For this, we first transform the undirected graph G′ into a directed

graph by replacing each edge by two reverse arcs. Then we modify the new directed

graph by replacing each vertex u (except the vertices t1 and t2) by two vertices u1

and u2 with an arc from u1 to u2, connecting all u’s incoming arcs to the vertex u1

and connecting all u’s outgoing arcs to the vertex u2. Finally we set all edges to have

capacity 1. Let the resulting flow graph be G′′.

Applying Ford-Fulkerson’s standard approach using augmenting paths, in time

O((|V |+ |E|)k), we can either construct a t1-t2 flow of value larger than k in G′′, or

end up with a maximum t1-t2 flow of value h bounded by k. In the former case, we

conclude that the size of a minimum V-cut between t1 and t2 in G′ is larger than k,

which implies that the size of a minimum V-cut between T1 and T2 in G is larger than

36

k. In the latter case, h internally disjoint paths between t1 and t2 in G′ can be easily

constructed from the maximum t1-t2 flow of value h in G′′, from which h internally

disjoint paths between T1 and T2 in G can be constructed.

C. The Main Algorithm

Now we return back to the parameterized node multiway cut problem. For-

mally, an instance (G, {T1, . . . , Tl}, k) of the parameterized node multiway cut

problem consists of an undirected graph G, a collection {T1, . . . , Tl} of pairwise dis-

joint terminal sets (each terminal set is a vertex subset in G), and a parameter k.

The objective is to either construct a separator of at most k vertices for {T1, . . . , Tl},
or conclude that no such a separator exists.

Before we formally present our algorithm, we give a less formal but intuitive

explanation on the basic idea of the algorithm. Let the size of a minimum V-cut

between T1 and
⋃

j 6=1 Tj be m.

Pick a vertex u that is not in any terminal set and has a neighbor in T1. If u

also has a neighbor in another terminal set Ti, i 6= 1, then we can directly include u

in the separator (this is necessary because the separator must separate T1 and Ti),

and recursively find a separator of size k − 1 in the remaining graph. On the other

hand, if u has no neighbor in other terminal sets, then we compute the size m′ of a

minimum V-cut between the sets T ′
1 = T1∪{u} and

⋃
i6=1 Ti. It can be proved that we

must have m ≤ m′. Note that by Lemma B.3, the values m and m′ can be computed

in polynomial time.

In the case m = m′, we will show that the instance (G, {T1, T2, . . . , Tl}, k) has

a separator of size bounded by k if and only if the instance (G, {T ′
1, T2, . . . , Tl}, k)

has a separator of size bounded by k. Then we recursively work on the new instance

37

(G, {T ′
1, T2, . . . , Tl}, k). Thus, in the case of m = m′, we can reduce the number of

vertices that are not in the separator by 1.

On the other hand, suppose m < m′. Then we branch on the vertex u in two

cases, one includes u in the separator and the other excludes u from the separator.

In the case of including the vertex u in the separator, we recursively work on the

instance (G− {u}, {T1, T2, . . . , Tl}, k − 1), in which the parameter value is decreased

by 1; and in the case of excluding the vertex u from the separator, we recursively

work on the instance (G, {T ′
1, T2, . . . , Tl}, k), in which the size of the minimum V-cut

between T ′
1 and

⋃
i 6=1 Ti is increased by at least 1.

Therefore, for the given instance (G, {T1, T2, . . . , Tl}, k), we can either (1) apply

a polynomial time process that either decreases the parameter value by 1 or reduces

the number of vertices not in the separator by 1, or (2) branch into two cases, of

which one decreases the parameter value by 1 and the other increases the value m

by at least 1 (see the definition of m given in the second paragraph in this section).

Note that all these generated new instances will be “simpler” than the original given

instance: (i) reducing the number of vertices not in the separator will narrow down

our search space for the separator; (ii) an instance of parameter value bounded by 1

can be solved in polynomial time; and (iii) an instance in which the value m is larger

than the parameter value k obviously has no separator of size bounded by k.

To present our formal discussions, we fix an instance (G, {T1, . . . , Tl}, k) of the

parameterized node multiway cut problem, where G = (V, E) is a graph, and

{T1, . . . , Tl} is a collection of terminal sets in G. Let the size of a minimum V-cut

between T1 and
⋃

j 6=1 Tj be m. Moreover, fix a vertex u that is not in any of the

terminal sets but has a neighbor in the terminal set T1. Let T ′
1 = T1 ∪ {u}.

Lemma C.1 Let m be the size of a minimum V-cut between the two sets T1 and

38

⋃
j 6=1 Tj, and let m′ be the size of a minimum V-cut between the two sets T ′

1 and
⋃

j 6=1 Tj. Then m′ ≥ m.

Proof. The lemma follows from the observation that every V-cut between the sets

T ′
1 and

⋃
j 6=1 Tj is also a V-cut between the sets T1 and

⋃
j 6=1 Tj.

The following theorem is the most crucial observation for our algorithm.

Theorem C.2 If the minimum V-cuts between the sets T1 and
⋃

j 6=1 Tj and the min-

imum V-cuts between the sets T ′
1 and

⋃
j 6=1 Tj have the same size, then the instance

(G, {T1, T2, . . . , Tl}, k) has a separator of size bounded by k if and only if the instance

(G, {T ′
1, T2, . . . , Tl}, k) has a separator of size bounded by k.

Proof. If the instance (G, {T ′
1, T2, . . . , Tl}, k) has a separator S of size bounded by

k, then it is obvious that S is also a separator for the instance (G, {T1, T2, . . . , Tl}, k).

In consequence, the instance (G, {T1, T2, . . . , Tl}, k) also has a separator of size bounded

by k.

Now we consider the other direction. Suppose that the instance

(G, {T1, T2, . . . , Tl}, k) has a separator Sk of size bounded by k.

To simplify the discussion, denote by Tother the set
⋃

j 6=1 Tj. Let Sm be a minimum

V-cut between T ′
1 and Tother (note that Sm does not contain u). Then Sm is also a

V-cut between T1 and Tother. In fact, by the assumption of the theorem, Sm is also

a minimum V-cut between T1 and Tother. Let C(T1) be the set of vertices x such

that either x ∈ T1 or there is a path between x and T1 in the subgraph G − Sm. In

particular, since u is not in Sm and u is adjacent to T1, we have u ∈ C(T1). Moreover,

let C(Tother) = V − C(T1)− Sm.

By Lemma B.2, there exist |Sm| internally disjoint paths between T1 and Tother,

39

Fig. 3. Decomposition of separators

each contains exactly one vertex in the set Sm. Therefore, each of these |Sm| paths

is cut into two subpaths by a vertex in Sm, such that one subpath is in the induced

subgraph G(C(T1)) and the another subpath is in the induced subgraph G(C(Tother)).

From this, we derive that there are |Sm| internally disjoint paths between T1 and Sm

in the induced subgraph G(C(T1)∪Sm), each contains a distinct vertex in the set Sm.

Define A = Sk ∩ C(T1), B = Sk ∩ Sm, and C = Sk ∩ C(Tother). Finally, let S ′m

be the set of vertices x in Sm such that there is a path between x and Tother in the

induced subgraph G(C(Tother)∪Sm−Sk) (see Figure 3 for an intuitive illustration of

these sets).

We first prove that |A| ≥ |S ′m|.
From the fact that there are |Sm| internally disjoint paths between T1 and Sm in

the induced subgraph G(C(T1) ∪ Sm) in which each path contains a distinct vertex

in the set Sm, we derive that there are |S ′m| internally disjoint paths between T1 and

S ′m in the induced subgraph G(C(T1) ∪ S ′m). If |A| < |S ′m|, then there must be a

path P1 between T1 and a vertex v′ in S ′m in the subgraph G(C(T1) ∪ S ′m − A) =

G(C(T1) ∪ S ′m − Sk). Moreover, by the definition of the set S ′m, there is also a

path P2 between v′ and Tother in the induced subgraph G(C(Tother) ∪ Sm − Sk). The

concatenation of the paths P1 and P2 would give a path between T1 and Tother in the

40

induced subgraph G(V −Sk), which contradicts the assumption that Sk is a separator

of the instance (G, {T1, T2, . . . , Tl}, k). Therefore, we must have |A| ≥ |S ′m|.
Define a set S ′k = S ′m ∪ B ∪ C. We now prove that the set S ′k is a separator of

the instance (G, {T ′
1, T2, . . . , Tl}, k). Suppose that the set S ′k is not a separator of the

instance (G, {T ′
1, T2, . . . , Tl}, k), then there are two vertices v1 and v2 that are in two

different terminal sets in {T ′
1, T2, . . . , Tl} and there exists a path P between v1 and v2

in the induced subgraph G(V − S ′k). We discuss this in two possible cases.

Case 1: There is a vertex w in the path P such that w ∈ C(T1). Because (1) at

least one of the vertices v1 and v2 is in the set Tother, (2) there is a path between T1 and

w in the induced subgraph G(C(T1)), and (3) Sm is a V-cut between T1 and Tother,

we conclude that there must be a vertex s ∈ Sm that is also on the path P . Without

loss of generality, we can suppose that the vertex v1 is in the set Tother, and that the

subpath P ′ of P that begins from v1 and ends at s has no vertices from C(T1) – for

this we only have to pick the first vertex s in Sm when we traverse on the path P from

v1 to v2. Then the path P ′ is in the induced subgraph G(C(Tother)∪Sm−S ′k), which

is a subgraph of the induced subgraph G(C(Tother)∪Sm−Sk). Now by the definition

of the set S ′m, the vertex s is in the set S ′m, thus in the set S ′k. But this is impossible

because we assumed that the path P is in the induced subgraph G(V − S ′k).

Case 2: All vertices of the path P are in V − S ′k − C(T1). Then neither of

the vertices v1 and v2 can be from the set T1. Moreover, since the induced subgraph

G(V − S ′k − C(T1)) is a subgraph of the induced subgraph G(V − Sk), the path P ,

which is between two different terminal sets in {T2, . . . , Tl}, would contain no vertex

in Sk. But this again contradicts the assumption that Sk is a separator of the instance

(G, {T1, T2, . . . , Tl}, k).

Combining the discussions in Case 1 and Case 2, we conclude that the set S ′k is

a separator for the instance (G, {T ′
1, T2, . . . , Tl}, k).

41

Since |A| ≥ |S ′m|, Sk = A ∪ B ∪ C, and S ′k = S ′m ∪ B ∪ C, and A does

not intersect B ∪ C, we conclude that |Sk| ≥ |S ′k|. In particular, if the instance

(G, {T1, T2, . . . , Tl}, k) has the separator Sk of size bounded by k, then the instance

(G, {T ′
1, T2, . . . , Tl}, k) has the separator S ′k of size also bounded by k.

This completes the proof of the theorem.

The proof of Theorem C.4 becomes complicated partially because the vertex u

may be included in a separator for the instance (G, {T1, T2, . . . , Tl}, k). If we restrict

that the vertex u is not in the separators for the instance (G, {T1, T2, . . . , Tl}, k),

then a result similar to Theorem C.4 can be obtained much more easily, even without

the need of the condition that the minimum V-cuts between T1 and
⋃

j 6=1 Tj and the

minimum V-cuts between T ′
1 and

⋃
j 6=1 Tj have the same size. This is given in the

following lemma. This result will also be needed in our algorithm.

Lemma C.3 Let S be a vertex subset in the graph G such that S does not include

the vertex u. Then S is a separator for the instance (G, {T1, T2, . . . , Tl}, k) if and only

if S is a separator for the instance (G, {T ′
1, T2, . . . , Tl}, k).

Proof. If S is a separator for the instance (G, {T ′
1, T2, . . . , Tl}, k), then as explained

in Theorem C.4, S is also a separator for the instance (G, {T1, T2, . . . , Tl}, k).

We are done once we show the other direction. Suppose that S is a separator

for the instance (G, {T1, T2, . . . , Tl}, k). We show that S is also a separator for the

instance (G, {T ′
1, T2, . . . , Tl}, k). Suppose that S is not a separator for the instance

(G, {T ′
1, T2, . . . , Tl}, k). Then there is a path P in G − S between two different ter-

minal sets in {T ′
1, T2, . . . , Tl}. Let one of these two terminal sets in {T ′

1, T2, . . . , Tl}
be Ti, where i 6= 1. The path P must contain the vertex u (recall that S does not

contain u) – otherwise the path P in G − S would be between two different termi-

42

nal sets in {T1, T2, . . . , Tl}, contradicting the assumption that S is a separator for

(G, {T1, T2, . . . , Tl}, k). However, this would imply that the path from T1 to u (recall

that u has a neighbor in T1) then following the path P to the terminal set Ti would

give a path in G−S between T1 and Ti, again contradicting the assumption that S is

a separator for (G, {T1, T2, . . . , Tl}, k). This contradiction shows that the set S must

be also a separator for the instance (G, {T ′
1, T2, . . . , Tl}, k).

Now, we are ready to present our algorithm. For an instance (G, {T1, . . . , Tl}, k)

of the parameterized node multiway cut problem, a vertex in the graph G that

does not belong to any terminal sets will be called a “non-terminal”.

The algorithm is given in Figure 10.

Theorem C.4 The algorithm NMC(G, {T1, T2, . . . , Tl}, k) in Figure 10 solves the

parameterized node multiway cut problem in time O(n3k4k).

Proof. We first prove the correctness of the algorithm. Let (G, {T1, T2, . . . , Tl}, k)

be an input to the algorithm, which is an instance of the parameterized node

multiway cut problem, where G = (V,E) is a graph, {T1, T2, . . . , Tl} is a collection

of terminal sets, and k is the upper bound of the size of the separator we are looking

for.

If there is an edge whose two ends are in two different terminal sets, then we

have no way to separate these two terminal sets since all vertices in a separator are

supposed to be non-terminals. Step 1 handles this case correctly.

If a non-terminal w has two neighbors that are in two different terminal sets,

then w must be in the separator because otherwise the two terminal sets will not be

separated. Thus, we can simply include the vertex w in the separator, and recursively

find a separator of size bounded by k − 1 for the same collection of terminal sets

43

Algorithm NMC(G, {T1, T2, . . . , Tl}, k)
input: an instance (G, {T1, T2, . . . , Tl}, k) of the parameterized node

multiway cut problem (l ≥ 2)
output: a separator of size bounded by k for (G, {T1, T2, . . . , Tl}, k),

or report “No” (i.e., no such a separator)

1. if an edge has its two ends in two different terminal sets
then return “No”;

2. if a non-terminal w has two neighbors in two different terminal sets
then return w + NMC(G− w, {T1, . . . , Tl}, k − 1);

3. find the size m1 of a minimum V-cut between T1 and
⋃l

j=2 Tj;
4. if m1 > k then return “No”;
5. if (m1 = 0 and l = 2) then return ∅;
5.1 if (m1 = 0 and l > 2) then return NMC(G, {T2, . . . , Tl}, k);
6. else pick a non-terminal u that has a neighbor in T1; let T ′

1 = T1 + u;

6.1 if the size of a minimum V-cut between T ′
1 and

⋃l
j=2 Tj is equal

to m1

then return NMC(G, {T ′
1, T2, . . . , Tl}, k);

6.2 else S = u + NMC(G− u, {T1, T2, . . . , Tl}, k − 1);
if S is not “No” then return S;

6.3 else return NMC(G, {T ′
1, T2, . . . , Tl}, k).

Fig. 4. An algorithm for the parameterized node multiway cut problem

{T1, T2, . . . , Tl} in the remaining graph G−w. This case is correctly handled by step

2.2

Step 3 computes the size m1 of a minimum V-cut between the sets T1 and
⋃l

j=2 Tj.

By Lemma B.3, the value m1 can be computed in time O((|V |+ |E|)k).

If m1 > k, then the size of a minimum V-cut between T1 and
⋃l

j=2 Tj is larger

than k, which means that even separating the set T1 from the other sets
⋃l

j=2 Tj

2To simplify the expression, we suppose that “No” plus any vertex set gives a “No”.
Therefore, step 2 will return a “No” if NMC(G − w, {T1, . . . , Tl}, k − 1) returns a
“No”.

44

requires more than k vertices. Thus, no separator of size bounded by k can exist for

the terminal sets T1, T2, . . ., Tl. This is handled by step 4.

In step 5 we handle the case m1 = 0 and l = 2, which we do not need to remove

any vertex to separate T1 and T2, i.e. the problem is solved. So we return an empty

set ∅ as a separator of size 0 (note that because of step 4, here we must have k ≥ 0). In

step 5.1, m1 = 0 and l > 2, which means that T1 is already separated from T2, . . . , Tl.

Hence we only need to find a separator to separate T2, . . . , Tl. Therefore, step 5.1

handles this case correctly.

When the algorithm reaches step 6, the following conditions hold true: (1) no

edge has its two ends in two different terminal sets (because of step 1); (2) no non-

terminal has two neighbors in two different terminal sets (because of step 2); (3)

0 < m1 ≤ k (because of steps 4-5). In particular, by condition (3), there must be a

non-terminal u that has a neighbor in T1.

Let m′ be the size of a minimum V-cut between the sets T ′
1 and

⋃l
j=2 Tj. If

m′ = m1, then by Theorem C.4, the instance (G, {T1, T2, . . . , Tl}, k) has a separator of

size bounded by k if and only if the instance (G, {T ′
1, T2, . . . , Tl}, k) has a separator of

size bounded by k. In particular, as shown in the proof of Theorem C.4, a separator of

size bounded by k for the instance (G, {T ′
1, T2, . . . , Tl}, k) is actually also a separator

for the instance (G, {T1, T2, . . . , Tl}, k). Therefore, in this case, we can recursively

work on the instance (G, {T ′
1, T2, . . . , Tl}, k), as given in step 6.1. On the other hand,

if m′ 6= m1, which means m′ > m1, then we simply branch on the vertex u in two

cases: (1) including u in the separator and recursively working on the remaining

graph for a separator of size bounded by k−1, as given by step 6.2; and (2) excluding

u from the separator thus looking for a separator that does not include u and is

of size bounded by k for the instance (G, {T1, T2, . . . , Tl}, k). By Lemma C.1, the

second case is equivalent to finding a separator of size bounded by k for the instance

45

(G, {T ′
1, T2, . . . , Tl}, k). This case is thus handled by step 6.3.

This completes the proof of the correctness of the algorithm. Now we analyze

the complexity of the algorithm.

The recursive execution of the algorithm can be described as a search tree T . We

first count the number of leaves in the search tree T . Note that only steps 6.2-6.3 of

the algorithm correspond to branches in the search tree T . Let D(k, m1) be the total

number of leaves in the search tree T for the algorithm NMC(G, {T1, T2, . . . , Tl}, k),

where m1 is the size of a minimum V-cut between the sets T1 and
⋃l

j=2 Tj. Then

steps 6.2-6.3 induce the following recurrence relation:

D(k, m1) ≤ D(k − 1, m′′) + D(k, m′′′) (3.1)

where m′′ is the size of a minimum V-cut between T1 and
⋃l

j=2 Tj in the graph G− u

as given in step 6.2, and m′′′ is the size of a minimum V-cut between T ′
1 and

⋃l
j=2 Tj

in the graph G as given in step 6.3. Note that m1 − 1 ≤ m′′ ≤ m1 because removing

the vertex u from G cannot increase the size of a minimum V-cut between two sets,

and can decrease the size of a minimum V-cut between the two sets by at most 1.

Moreover, by Lemma C.1 and because of step 6.1, the size m′′′ of a minimum V-cut

between T ′
1 and

⋃l
j=2 Tj in step 6.3 is at least m1 + 1. Summarizing these, we have

m1 − 1 ≤ m′′ ≤ m1 and m′′′ ≥ m1 + 1 (3.2)

Introduce a new function D′ such that D′(2k − m1) = D(k,m1), and let t =

2k − m1. Then by Inequalities (5.1) and (5.2), the branch in step 6.2-6.3 in the

algorithm becomes

D′(t) ≤ D′(t1) + D′(t2)

where when t = 2k−m1 then t1 = 2(k− 1)−m′′ ≤ t− 1, and t2 = 2k−m′′′ ≤ t− 1.

46

We also point out that certain non-branching steps (i.e., steps 2, 5.1, and 6.1)

may also change the values of k and m1, thus changing the value t = 2k − m1.

However, none of these steps increases the value t = 2k−m1: (1) step 2 decreases the

value k by 1 and the value m1 by at most 1, which as a total will decrease the value

t = 2k − m1 by at least 1; (2) step 5.1 keeps the value k unchanged and, since we

have m1 = 0 before the execution of this step, the new value m1 is at least as large

as the old value m1. As a consequence, the value t = 2k −m1 is not increased; (3)

finally, step 6.1 does not change the values k and m1, thus neither changes the value

t = 2k −m1. In summary, the value t = 2k −m1 after a branching step to the next

branching step can never be increased.

Our initial instance starts with t = 2k −m1 ≤ 2k. In the case t = 2k −m1 = 0,

because we also have the conditions k ≥ m1 ≥ 0, we must have m1 = 0 and k = 0, in

this case the algorithm can solve the instance without further branching. Therefore,

we have D′(0) = 1. Combining all these, we derive

D(k, m1) = D′(2k −m1) ≤ 22k,

and the search tree T has at most 22k leaves.

Finally, it is easy to verify that along each root-leaf path in the search tree

T , the running time of the algorithm is bounded by O(n3k), where n is the num-

ber of vertices in the graph. In conclusion, the running time of the algorithm

NMC(G, {T1, T2, . . . , Tl}, k) is bounded by O(n3k4k).

This completes the proof of the theorem.

47

D. Final Remarks

We developed new and powerful techniques that lead to an algorithm of running

time O(n3k4k) for a generalized version of the parameterized node multiway

cut problem. The algorithm significantly improves previous algorithms for the prob-

lem. More recently, our techniques have been extended to directed graphs that lead

to a fixed parameter tractable algorithm for the feedback vertex set problem

[24], thus resolving an outstanding open problem in parameterized computation and

complexity.

Our algorithm finds a separator that has no vertices in any terminal set. We call

such a separator a restricted separator. If a separator is allowed to include vertices

from terminal sets, the separator is called an unrestricted separator. It can be verified

easily that the instance (G, {T1, . . . , Tl}, k) has an unrestricted separator of size k if

and only if the instance (G′, {{x1}, . . . , {xl}}, k) has a restricted separator of size k,

where the graph G′ is obtained from the graph G by adding l new vertices x1, . . . , xl

and connecting xi to each vertex in Ti for all 1 ≤ i ≤ l. Therefore, our algorithm can

also be used to construct unrestricted separators for undirected graphs.

One related problem is the parameterized node multicut problem [82],

where we look for a separator of size k to separate each of the l given pairs of terminals.

When both k and l are used as parameters, based on the techniques developed in the

current chapter, the fixed parameter tractable algorithm presented in [82] for the

parameterized node multicut problem can be improved. On the other hand,

if only k is used as the parameter, or if the graph G is a directed graph (or even

just a directed acyclic graph), it is currently unknown whether the parameterized

node multicut problem has fixed parameter tractable algorithms, which seem very

interesting topics for further research.

48

CHAPTER IV

UNDIRECTED FEEDBACK VERTEX SET∗

In this chapter, we give an fpt-algorithm of running time O∗(5k) for the feedback

vertex set problem in weighted graphs. We first present an fpt-algorithm for the

feedback vertex set problem in unweighted graphs, then extend that algorithm

for the feedback vertex set problem in weighted graphs.

The previous algorithms have been focused on the parameter k, the size of a

feedback vertex set to search, as the only measure. The previous algorithm takes

the approach based on the iterative compression method [90]. Our algorithm still

takes the same approach. But we consider both the parameter k and the number of

connected components when we apply the iterative compression method. We discover

an operation which either decreases k by 1 or decreases the number of connected

components by 1. When either k become 0 or the number of connected component

is 1, the feedback vertex set problem can be solved in polynomial time. With

these interesting properties, we design an algorithm of running time O∗(5k) for the

feedback vertex set problem in weighted graphs.

A. Introduction

Let G be an undirected graph. A feedback vertex set (FVS) F in G is a set of vertices

in G whose removal results in an acyclic graph (or equivalently, every cycle in G

contains at least one vertex in F). The problem of finding a minimum feedback

vertex set in a graph is one of the classical NP-complete problems [68] and has many

∗Reprinted with permission from “Improved algorithms for feedback vertex set
problems”, by J. Chen, F. V. Fomin, Y. Liu, S. Liu, and Y. Villanger, 2008, Journal
of Computer and System Sciences, volume 74, pages 1188-1198, Copyright [2008] by
Elsevier Inc.

49

applications. The history of the problem can be traced back to early ’60s. For

several decades, many different algorithmic approaches were tried on this problem,

including approximation algorithms, linear programming, local search, polyhedral

combinatorics, and probabilistic algorithms (see the survey of Festa et al. [47]).

There are also exact algorithms finding a minimum FVS in a graph of n vertices in

time O(1.9053n) [89] and in time O(1.7548n) [48].

An important application of the FVS problem is deadlock recovery in operating

systems [94], in which a deadlock is presented by a cycle in a system resource-allocation

graph G. Therefore, in order to recover from deadlocks, we need to abort a set of

processes in the system, i.e., to remove a set of vertices in the graph G, so that all

cycles in G are broken. Equivalently, we need to find an FVS in G. The problem also

has a version on weighted graphs, where the weight of a vertex can be interpreted as

the cost of aborting the corresponding process. In this case, we are looking for an

FVS in G whose weight is minimized.

In a practical system resource-allocation graph G, it can be expected that the

size k of the minimum FVS in G, i.e., the number of vertices in the FVS, is fairly

small. This motivated the study of parameterized algorithms for the FVS problem

that find an FVS of k vertices in a graph of n vertices (where the weight of the

FVS is minimized, in the case of weighted graphs), and run in time f(k)nO(1) for a

fixed function f (thus, the algorithms become practically efficient when the value k

is small).

This line of research has received considerable attention, mostly on the un-

weighted version of the problem. The first group of parameterized algorithms of

running time f(k)nO(1) for the FVS problem on unweighted graphs was given by

Bodlaender [10] and by Downey and Fellows [35]. Since then a chain of dramatic

improvements was obtained by different researchers (see table II for references).

50

Table II. History of parameterized algorithms for the unweighted feedback ver-

tex set problem

Bodlaender, Fellows [10, 35] O(17(k4)!nO(1))

Downey and Fellows [37] O((2k + 1)kn2)

Raman et al.[87] O(max{12k, (4 log k)k}n2.376)

Kanj et al.[65] O((2 log k + 2 log log k + 18)kn2)

Raman et al.[88] O((12 log k/ log log k + 6)kn2.376)

Guo et al.[57] O((37.7)kn2)

Dehne et al.[33] O((10.6)kn3)

Randomized parameterized algorithms have also been studied in the literature

for the FVS problem, for both unweighted and weighted graphs. The best known ran-

domized parameterized algorithms for the FVS problems are due to Becker et al. [6],

who developed a randomized algorithm of running time O(4kkn2) for the FVS prob-

lem on unweighted graphs, and a randomized algorithm of running time O(6kkn2) for

the FVS problem on weighted graphs. To our knowledge, no deterministic algorithm

of running time f(k)nO(1) for any function f was known prior to our results for the

weighted FVS problem.

The main result of this chapter is an algorithm that for a given integer k and a

weighted graph G, either finds a minimum weight FVS in G of at most k vertices,

or correctly reports that G contains no FVS of at most k vertices. The running

time of our algorithm is O(5kkn2). This improves and generalizes a long chain of

results in parameterized algorithms. Let us remark that the running time of our

(deterministic) algorithm comes close to that of the best randomized algorithm for

the FVS problem on unweighted graphs and is better than the running time of the

51

previous best randomized algorithm for the FVS problem on weighted graphs.

The general approach of our algorithm is based on the iterative compression

method [90], which has been successfully used recently for improved algorithms for

the FVS and other problems [33, 57, 90]. The method starts with an FVS of k ver-

tices for a small subgraph of the given graph, and iteratively grows the small subgraph

while keeping an FVS of k vertices in the grown subgraph until the subgraph becomes

the original input graph. This method makes it possible to reduce the original FVS

problem on general graphs to the FVS problem on graphs with a special decomposi-

tion structure. The main contribution of the current chapter is the development of a

general algorithmic technique that identifies a dual parameter in problem instances

that limits the number of times where the original parameter k cannot be effectively

reduced during a branch and search process. In particular, for the FVS problem

on graphs of the above special decomposition structure, a measure is introduced that

nicely combines the original parameter and the dual parameter and bounds effectively

the running time of a branch and search algorithm for the FVS problem. This tech-

nique leads to a simpler but significantly more efficient parameterized algorithm for

the FVS problem on unweighted graphs. Moreover, the introduction of the measure

greatly simplifies the process of degree-2 vertices in a weighted graph, and enables

us to solve the FVS problem on weighted graphs in the same complexity as that for

the problem on unweighted graphs. Note that this is significant because no previous

algorithms for the FVS problem on unweighted graphs can be extended to weighted

graphs mainly because of the lack of effective method for handling degree-2 vertices.

Finally, the technique of dual parameters seems to be of general usefulness for the

development of parameterized algorithms, and has been used more recently in solving

other parameterized problems [23, 24].

52

The remaining part of this chapter is organized as follows. In Section B, we

provide in full details a simpler algorithm and its analysis for unweighted graphs.

This is done for clearer demonstration of our approach. We also indicate why this

simpler algorithm does not work for weighted graphs. In Section C, we obtain the

main result of the chapter , the algorithm for the weighted FVS problem. This

generalization of the results from Section B is not straightforward and requires a

number of new structures and techniques.

B. Feedback Vertex Set in Unweighted Graphs

In this section, we consider the FVS problem on unweighted graphs. We start with

some terminologies. A forest is a graph that contains no cycles. A tree is a forest

that is connected (therefore, a forest can be equivalently defined as a collection of

disjoint trees). Let W be a subset of vertices in a graph G = (V, E). We will denote

by G[W] the subgraph of G that is induced by the vertex set W . For simplicity we

will use the notation G − w and G −W for respectively G[V \ {w}] and G[V \W]

where w ∈ V and W ⊆ V . A pair (V1, V2) of vertex subsets in a graph G = (V, E)

is a forest bipartition of G if V1 ∪ V2 = V , V1 ∩ V2 = ∅, and both induced subgraphs

G[V1] and G[V2] are forests. For a vertex u ∈ V the degree of u will be the number

of edges incident to u.

Let G be a graph and let F be a subset of vertices in G. The set F is a feedback

vertex set (shortly, FVS) of G if G−F is a forest. The size of an FVS F is the number

of vertices in F .

Our main problem is formally defined as follows.

feedback vertex set: given a graph G and an integer k, either find

an FVS of size at most k in G, or report that no such an FVS exists.

53

Before we present our algorithm for the feedback vertex set problem, we

first consider a special version of the problem, defined as follows:

f-bipartition fvs: given a graph G, a forest bipartition (V1, V2) of G,

and an integer k, either find an FVS of size at most k for the graph G in

the subset V1, or report that no such an FVS exists.

Note that the main difference between the f-bipartition fvs problem and the

original feedback vertex set problem is that we require that the FVS in the

f-bipartition fvs is contained in the given subset V1.

Observe that certain structures in the input graph G can be easily processed and

then removed from G. For example, if a vertex v has a self-loop (i.e., an edge whose

both ends are incident to v), then the vertex v is necessarily contained in every FVS

in G. Thus, we can directly include v in the objective FVS. If two vertices v and w

are connected by multiple edges (i.e., there are more than one edge whose one end is v

and the other end is w), then one of v and w must be contained in the objective FVS.

Thus, we can branch into two recursive calls, one includes v, and the other includes

w, in the objective FVS. All these operations are more efficient than the algorithm of

running time O(5kkn2) developed in the current chapter. Therefore, for a given input

graph G, we always first apply a preprocessing that applies the above operations and

remove all self-loops and multiple edges in the graph G. In consequence, we can

assume, without loss of generality, that the input graph G contains neither self-loops

nor multiple edges.

The algorithm, Feedback(G, V1, V2, k), for the f-bipartition fvs problem is

given in Figure 5. We first discuss the correctness of the algorithm. The correctness

of step 1 and step 2 of the algorithm is obvious. Now consider step 3. Let w be a

vertex in V1 that has at least two neighbors in V2.

54

Algorithm-1 Feedback(G, V1, V2, k)
Input: G = (V, E) is a graph with a forest bipartition (V1, V2), k is an

integer.
Output: An FVS F of G such that |F | ≤ k and F ⊆ V1; or report “No”

(i.e., no such an FVS exists).

1. if (k < 0) or (k = 0 and G is not a forest) then return “No”;
2. if (k ≥ 0) and G is a forest then return ∅;
3. if a vertex w in V1 has at least two neighbors in V2 then
3.1. if two neighbors of w in V2 is in the same tree in G[V2] then

F1 = Feedback(G− w, V1 \ {w}, V2, k − 1);
if F1 = “No” then return “No”
else return F1 ∪ {w};

3.2. else
F1 = Feedback(G− w, V1 \ {w}, V2, k − 1);
F2 = Feedback(G, V1 \ {w}, V2 ∪ {w}, k);
if F1 6= “No” then return F1 ∪ {w}
else return F2;

4. else pick any vertex w that has degree ≤ 1 in G[V1];
4.1. if w has degree ≤ 1 in the original graph G then

return Feedback(G− w, V1 \ {w}, V2, k);
4.2. else return Feedback(G, V1 \ {w}, V2 ∪ {w}, k).

Fig. 5. Algorithm for the unweighted feedback vertex set problem.

If the vertex w has two neighbors in V2 that belong to the same tree T in the

induced subgraph G[V2], then the tree T plus the vertex w contains at least one cycle.

Since our search for an FVS is restricted to V1, the only way to break the cycles in

T ∪{w} is to include the vertex w in the objective FVS. Moreover, the objective FVS

of size at most k exists in G if and only if the remaining graph G − w has an FVS

of size at most k − 1 in the subset V1 \ {w} (note that (V1 \ {w}, V2) is a valid forest

bipartition of the graph G− w). Therefore, step 3.1 correctly handles this case.

If no two neighbors of the vertex w belong to the same tree in the induced

55

subgraph G[V2], then the vertex w is either in the objective FVS or not in the objective

FVS. If w is in the objective FVS, then we should be able to find an FVS F1 in the

graph G−w such that |F1| ≤ k− 1 and F1 ⊆ V1 \ {w} (again note that (V1 \ {w}, V2)

is a valid forest bipartition of the graph G − w). On the other hand, if w is not in

the objective FVS, then the objective FVS for G must be contained in the subset

V1 \{w}. Also note that in this case, the subgraph G[V2∪{w}] induced by the subset

V2 ∪ {w} is still a forest since no two neighbors of w in V2 belong to the same tree in

G[V2]. In consequence, (V1 \ {w}, V2 ∪ {w}) still makes a valid forest bipartition for

the graph G. Therefore, step 3.2 handles this case correctly.

Now we consider step 4. At this point, every vertex in V1 has at most one

neighbor in V2. Moreover, since the induced subgraph G[V1] is a forest, there must

be a vertex w in V1 that has degree at most 1 in G[V1] (note that V1 cannot be empty

at this point since otherwise the algorithm would have stopped at step 2). If the

vertex w also has degree at most 1 in the original graph G, then removing w does

not help breaking any cycles in G. Therefore, the vertex w can be discarded. This

case is correctly handled by step 4.1. Otherwise, the vertex w has degree at most 1

in the induced subgraph G[V1] but has degree larger than 1 in the original graph G.

Observing that w has at most one neighbor in V2, we can derive that the degree of w

in the original graph G must be exactly 2. Moreover, w has exactly two neighbors u

and v such that v is in V1 and u is in V2.

Since the vertex w has degree 2 in the original graph G, and the vertex v is

adjacent to w, we have that every cycle in G that contains w has to contain v. In

consequence, if w is contained in the objective FVS, then we can simply replace it

by v. Therefore, in this case, we can safely assume that the vertex w is not in the

objective FVS. This can be easily implemented by moving the vertex w from the set

V1 to the set V2, and recursively working on the modified instance, as given in step

56

4.2 of the algorithm (note that (V1 \ {w}, V2 ∪{w}) is a valid forest bipartition of the

graph G, because by our assumption, the vertex w will be a degree-1 vertex in the

induced subgraph G[V2 ∪ {w}]).
Now we are ready to present the following lemma.

Lemma B.1 The algorithm Feedback(G, V1, V2, k) correctly solves the

f-bipartition fvs problem. The running time of the algorithm is O(2k+ln2), where

n is the number of vertices in G, and l is the number of connected components in the

induced subgraph G[V2].

Proof. The correctness of the algorithm has been verified by the above discussion.

Now we consider the complexity of the algorithm.

The recursive execution of the algorithm can be described as a search tree T .

We first count the number of leaves in the search tree T . Note that only step 3.2

of the algorithm corresponds to branches in the search tree T . Let T (k, l) be the

total number of leaves in the search tree T for the algorithm Feedback(G, V1, V2, k),

where l is the number of connected components (i.e., trees) in the forest G[V2]. Induc-

tively, the number of leaves in the search tree T1 corresponding to the recursive call

Feedback(G − w, V1 \ {w}, V2, k − 1) is at most T (k − 1, l). Moreover, we assumed

at step 3.2 that w has at least two neighbors in V2 and that no two neighbors of w

in V2 belong to the same tree in G[V2]. Therefore, the vertex w “merges” at least

two trees in G[V2] into a single tree in G[V2 ∪ {w}]. Hence, the number of trees in

G[V2 ∪ {w}] is at most l− 1. In consequence, the number of leaves in the search tree

T2 corresponding to the recursive call Feedback(G, V1 \ {w}, V2 ∪ {w}, k) is at most

T (k, l − 1). This gives the following recurrence relation:

T (k, l) ≤ T (k − 1, l) + T (k, l − 1).

57

Also note that none of the (non-branching) recursive calls in the algorithm (steps 3.1,

4.1, and 4.2) would increase the values k and l, and that T (0, l) = 1 for all l and

T (k, 0) = 1 for all k (by steps 1-2). From all these facts, we can easily derive that

T (k, l) = O(2k+l).

Finally, observe that along each root-leaf path in the search tree T , the total

number of executions of steps 1, 2, 3, 3.1, 4.1, and 4.2 of the algorithm is O(n)

because each of these steps either stops immediately, or reduces the size of the set

V1 by at least 1 (and the size of V1 is never increased during the execution of the

algorithm). It remains to explain how each of the steps can be executed in O(n)

time.

Before the first call to the Feedback algorithm, we use O(n2) time, because this

will happen only once. The three graphs, G1 = G[V1], G2 = G[V2], and

G12 = (V, E \ (E(G1) ∪ E(G2))) can be trivially constructed in O(n2) time. G1 and

G2 are forests, and G12 is a bipartite graph with the two vertex sets V1 and V2 as

independent sets.

Steps 1, 2, 4.1, and 4.2 can be easily performed in O(n) time. For step 3, we

simply search for a vertex of V1 that has degree at least 2 in G12, and for step 4 we

search in G1 for a leaf (vertex of degree at most 1). The condition for step 3.1 is that

no two neighbors of w belong to the same tree in G[V2], which can be checked by

simply marking each neighbor of w, and doing a search in the forest G[V2].

Each of the steps 3.1, 3.2, 4.1, and 4.2 changes one or more of the graphs

G1, G2, G12, and we have to argue that these manipulations can also be done in

O(n) time. Looking closely at these steps, we can observe that only two operations

are required. The first is to delete a vertex in V1, which corresponds to deleting the

vertex and all incident edges in G1 and G12. The second operation is to move a vertex

w from V1 to V2, which corresponds to deleting w from G1 and updating G2 and G12

58

as follows: add w to V (G2) and to V2 of G12, and read the set of edges incident to

w in G, and add edges between w and vertices in V2 to G2 and between w and V1 to

G12. Using double linked lists and pointers it is possible to delete a vertex and all

incident edges in O(n) time, and to insert edges in O(1) time.

Therefore, the computation time along each root-leaf path in the search tree T
is O(n2). In conclusion, the running time of the algorithm Feedback(G, V1, V2, k) is

O(2k+ln2). This completes the proof of the lemma.

Following the idea of iterative compression proposed by Reed et al. [90], we

formulate the following problem:

fvs reduction: given a graph G and an FVS F of size k + 1 for G,

either construct an FVS of size at most k for G, or report that no such

an FVS exists.

Lemma B.2 The fvs reduction problem on an n-vertex graph G can be solved in

time O(5kn2).

Proof. We use the algorithm Feedback to solve the fvs reduction problem.

Let F be the FVS of size k+1 in the graph G = (V,E). Every FVS F ′ of size at most

k for G is a union of a subset F1 of at most k − j vertices in V \ F and a subset F2

of j vertices in F , for some integer j, 0 ≤ j ≤ k. Note that since we assume that no

vertex in F \ F2 is in the FVS F ′, the induced subgraph G[F \ F2] must be a forest.

For each j, 0 ≤ j ≤ k, we enumerate all subsets of j vertices in F . For each such

subset F2 in F such that G[F \ F2] is a forest, we seek a subset F1 of at most k − j

vertices in V \ F such that F1 ∪ F2 is an FVS in G.

Fix a subset F2 in F , where |F2| = j. Note that the graph G has an FVS F1∪F2

of size at most k, where F1 ⊆ V \ F , if and only if the subset F1 of V \ F is an FVS

59

for the graph G − F2 and |F1| ≤ k − j. Therefore, to solve the original problem, we

construct an FVS F1 for the graph G− F2 such that |F1| ≤ k − j and F1 ⊆ V \ F .

Since F is an FVS for G, we have that the induced subgraph G[V \ F] = G− F

is a forest. Moreover, by our assumption, the induced subgraph G[F \ F2] is also a

forest. Note that (V \ F) ∪ (F \ F2) = V \ F2, which is the vertex set for the graph

G′ = G−F2. Therefore, (V \F, F \F2) is a forest bipartition of the graph G′. Thus,

an FVS F1 for the graph G′ such that |F1| ≤ k−j and F1 ⊆ V \F can be constructed

by the algorithm Feedback(G′, V \ F, F \ F2, k − j).

Since |F | = k + 1 and |F2| = j, we have that |F \ F2| = k + 1 − j. There-

fore, the forest G[F \ F2] contains at most k + 1 − j connected components. By

Lemma B.1, the running time of the algorithm Feedback(G′, V \ F, F \ F2, k − j) is

O(2(k−j)+(k+1−j)n2) = O(4k−jn2). Now for all integers j, 0 ≤ j ≤ k, we enumerate all

subsets F2 of j vertices in F and apply the algorithm Feedback(G′, V \F, F \F2, k−j)

for those F2 such that G[F \ F2] is a forest. As we discussed above, the graph

G has an FVS of size at most k if and only if for some F2 ⊆ F , the algorithm

Feedback(G′, V \ F, F \ F2, k − j) produces an FVS F1 for the graph G′. The run-

ning time of this procedure is

k∑
j=0

(
k + 1

j

)
· O(4k−jn2) =

k∑
j=0

(
k + 1

k − j + 1

)
O(4k−j+1n2) = O(5kn2).

This completes the proof of the lemma.

Finally, by combining Lemma E.1 with iterative compression, we obtain the main

result of this section.

Theorem B.3 The feedback vertex set problem on an n-vertex graph is solvable

in time O(5kkn2).

60

Proof. To solve the feedback vertex set problem, for a given graph G =

(V, E), we start by applying Bafna et al.’s 2-approximation algorithm for the minimum

feedback vertex set problem [5]. This algorithm runs in O(n2) time, and either

returns an FVS F ′ of size at most 2k, or verifies that no FVS of size at most k

exists. If no FVS is returned, the algorithm is terminated with the conclusion that

no FVS of size at most k exists. In the case of the opposite result, we use any

subset V ′ of k vertices in F ′, and put V0 = V ′ ∪ (V \ F ′). Of course, the induced

subgraph G[V0] has an FVS of size k, namely the set V ′ (G[V0 \ V ′] is a forest). Let

F ′ \V ′ = {v1, v2, . . . , v|F ′|−k}, and let Vi = V0∪{v1, . . . , vi} for i ∈ {0, 1, . . . , |F ′|−k}.
Inductively, suppose that we have constructed an FVS Fi for the graph G[Vi], where

|Fi| = k. Then the set F ′
i+1 = Fi ∪ {vi+1} is obviously an FVS for the graph G[Vi+1]

and |F ′
i+1| = k + 1.

Now the pair (G[Vi+1], F
′
i+1) is an instance for the fvs reduction problem.

Therefore, in time O(5kn2), we can either construct an FVS Fi+1 of size k for the

graph G[Vi+1], or report that no such an FVS exists. Note that if the graph G[Vi+1]

does not have an FVS of size k, then the original graph G cannot have an FVS of size

k. In this case, we simply stop and claim the non-existence of an FVS of size k for

the original graph G. On the other hand, with an FVS Fi+1 of size k for the graph

G[Vi+1], our induction proceeds to the next graph G[Vi+1], until we reach the graph

G = G[V|F ′|−k]. This process runs in time O(5kkn2) since |F ′|−k ≤ k, and solves the

feedback vertex set problem.

C. Feedback Vertex Set in Weighted Graphs

In this section, we discuss the feedback vertex set problem on weighted graphs.

A weighted graph G = (V, E) is an undirected graph, where each vertex u ∈ V is

61

assigned a weight that is a positive real number. The weight of a vertex set A ⊆ V is

the sum of the vertex weights of all vertices in A. We denote by |A| the cardinality

of A. The (parameterized) feedback vertex set problem on weighted graphs is

formally defined as follows:

weighted-fvs: given a weighted graph G and an integer k, either find

an FVS F of minimum weight for G such that |F | ≤ k, or report that no

FVS of size at most k exists in G.

The algorithm for the weighted case has several similarities with the unweighted

case, but has also a significant difference. The difference is that step 4.2 of

Algorithm-1 becomes invalid for weighted graphs. A degree-2 vertex w in the set

V1 cannot simply be excluded from the objective FVS. If the weight of w is smaller

than that of its parent v in G[V1], it may become necessary to include w instead of v

in the objective FVS.

To overcome this difficulty, we introduce a new partition structure of the vertices

in a weighted graph.

Definition A triple (V0, V1, V2) is an independent-forest partition (IF-partition) of a

graph G = (V,E) if (V0, V1, V2) is a partitioning of V (i.e., V0 ∪ V1 ∪ V2 = V , and V0,

V1, and V2 are pairwise disjoint), such that

(1) G[V1] and G[V2] are forests;

(2) G[V0] is an independent set;

(3) Every vertex u in V0 is of degree 2 in G, with both neighbors in V2.

62

The following problem is the analogue of the f-bipartition fvs problem on

weighted graphs.

weighted if-partition fvs: given a weighted graph G, an IF-partition

(V0, V1, V2) of G, and an integer k, either find an FVS F of minimum weight

for G that satisfies the conditions |F | ≤ k and F ⊆ V0∪V1, or report that

no such an FVS exists.

To develop and analyze our algorithm for the weighted if-partition fvs

problem, we need the following concept of measure for the problem instances. For a

vertex subset V ′ in the graph G, we will denote by #c(V ′) the number of connected

components in the induced subgraph G[V ′].

Definition Let (G, V0, V1, V2, k) be an instance of the weighted if-partition fvs

problem with an IF-partition (V0, V1, V2). The deficiency of the instance

(G, V0, V1, V2, k) is defined as

τ(k, V0, V1, V2) = k − (|V0| −#c(V2) + 1),

Intuitively, τ(k, V0, V1, V2) of the instance (G, V0, V1, V2, k) is an upper bound on

the number of vertices in the objective FVS that are in the set V1 (this will become

clearer during our discussion below). Our algorithm for the weighted if-partition

fvs problem is based on the following observation: once we have correctly determined

all vertices in the objective FVS that are in the set V1, the problem will become

solvable in polynomial time, as shown in the following lemma.

63

Lemma C.1 Let (G, V0, V1, V2, k) be an instance of the weighted if-partition

fvs problem with an IF-partition (V0, V1, V2) of an n-vertex graph G. If V1 = ∅, or

V2 = ∅, or τ(k, V0, V1, V2) ≤ 0, then a solution to the instance (G, V0, V1, V2, k) can be

constructed in time O(n2).

Proof. First of all, note that if k < 0, then the solution to the instance is “No”:

we cannot remove a negative number of vertices from G. Thus, in the following

discussion, we assume that k ≥ 0.

If V2 = ∅, then by the definition, V0 should also be an empty set. Thus, the

graph G = G[V1] is a forest, and the solution to the instance (G, V0, V1, V2, k) is the

empty set ∅.
Now consider the case V1 = ∅. Then we need to find a minimum-weight subset of

at most k vertices in the set V0 whose removal from the graph G = G[V0 ∪ V2] results

in a forest.

Construct a new graph H = (V , E), where each vertex µ in V corresponds to

a connected component in the induced subgraph G[V2], and each edge [µ, ν] in E
corresponds to a vertex v in the set V0 such that the two neighbors of v are in

the connected components in G[V2] that correspond to the two vertices µ and ν,

respectively, in H. Intuitively, the graph H can be obtained from the graph

G = G[V0∪V2] by “shrinking” each connected component in G[V2] into a single vertex

and “smoothing” each degree-2 vertex in V0 (note that the graph H may contain

multiple edges and self-loops). Moreover, we give each edge in H a weight that is

equal to the weight of the corresponding vertex in V0. Thus, the graph H is a graph

with edge weights. Observe that there is a one-to-one correspondence between the

connected components in the graph H and the connected components in the graph

64

G. Moreover, since each connected component in the induced subgraph G[V2] is a

tree, a connected component in the graph H is a tree if and only if the corresponding

connected component in the graph G is a tree. Most importantly, removing a vertex

in V0 in the graph G corresponds to removing the corresponding edge in the graph

H. Therefore, the problem of constructing a minimum-weight vertex set in V0 whose

removal from G results in a forest is equivalent to the problem of constructing a

minimum-weight edge set in the graph H whose removal from H results in a forest.

Let H1, . . ., Hs be the connected components of the graph H, where for each i,

the component Hi has ni vertices and mi edges. An edge set Ei in Hi whose removal

from Hi results in a forest is of the minimum weight if and only if the complement

graph Hi − Ei is a spanning tree of the maximum weight in Hi. Thus, the union

E ′ = ⋃s
i=1(Hi − Ti) is a minimum-weight edge set whose removal from H results in a

forest, where for each i, Ti is a maximum-weight spanning tree in the graph Hi. Since

the maximum-weight spanning tree Ti in Hi can be constructed in time

O(n2
i) by modifying the well-known minimum spanning tree algorithms (the algo-

rithms work even for graphs with self-loops and multiple edges) [28], we conclude

that the minimum-weight edge set E ′ in H can be constructed in time
∑s

i=1O(n2
i) = O(n2). Also note that the number of edges in the set E ′ is equal to

∑s
i=1(mi − ni + 1) = |E| − |V|+ s.

Correspondingly, in case V1 = ∅, each minimum-weight FVS in V0 for the graph

G contains exactly |E| − |V| + s vertices, and such an FVS can be constructed in

time O(n2). Note that |E| = |V0|, |V| is equal to the number #c(V2) of connected

components in the induced subgraph G[V2], and s (which is the number of connected

components in H) is equal to the number #c(G) of connected components in the

graph G = G[V0 ∪ V2]. Thus, each minimum-weight FVS in V0 for the graph G

contains exactly |V0| − #c(V2) + #c(G) vertices, and such a minimum-weight FVS

65

can be constructed in time O(n2). Therefore, for the given instance (G, V0, V1, V2, k)

of the weighted if-partition fvs problem with V1 = ∅, the solution is “No” if

k < |V0| −#c(V2) + #c(G); and the solution is an O(n2) time constructible FVS of

|V0| −#c(V2) + #c(G) vertices in V0 if k ≥ |V0| −#c(V2) + #c(G).

This completes the proof that when V1 = ∅, a solution to the instance

(G, V0, V1, V2, k) can be constructed in time O(n2).

Now consider the case τ(k, V0, V1, V2) ≤ 0. If V2 = ∅, then by the first part of

the proof, the lemma holds. Thus, we assume that V2 6= ∅. As analyzed above, to

break every cycle in the induced subgraph G[V0 ∪ V2] we have to remove at least

|V0| −#c(V2) + #c(V0 ∪ V2) vertices in the set V0. Therefore, if τ(k, V0, V1, V2) ≤ 0,

then k ≤ |V0| − #c(V2) + 1 ≤ |V0| − #c(V2) + #c(V0 ∪ V2) (note that V2 6= ∅ so

#c(V0 ∪ V2) ≥ 1). Thus, in this case, all k vertices in the objective FVS must be in

the set V0 in order to break all cycles in the induced subgraph G[V0 ∪ V2], and no

vertex in the objective FVS can be in the set V1. Hence, if the induced subgraph

G[V1 ∪ V2] contains a cycle, then the solution to the instance is “No”. On the other

hand, suppose that G[V1 ∪ V2] is a forest, then the graph G has another IF-partition

(V ′
0 , V

′
1 , V

′
2), where V ′

0 = V0, V ′
1 = ∅, and V ′

2 = V1 ∪ V2. It is easy to verify that in

this case the instance (G, V ′
0 , V

′
1 , V

′
2 , k) with the IF-partition (V ′

0 , V
′
1 , V

′
2) has the same

solution set as the instance (G, V0, V1, V2, k) with the IF-partition (V0, V1, V2). Since

V ′
1 = ∅, by the second part of the proof, a solution to the instance (G, V ′

0 , V
′
1 , V

′
2 , k)

with the IF-partition (V ′
0 , V

′
1 , V

′
2) can be constructed in time O(n2). This completes

the proof of the lemma.

We are now in a position to introduce our main algorithm, which is given in

Figure 6 and solves the weighted if-partition fvs problem. The subroutine

min-w(S1, S2) on two vertex subsets S1 and S2 in the algorithm returns among S1

and S2 the one with a smaller weight (or any one of them if the weights are tied). To

66

simplify our descriptions, we take the conventions that “No” is a special vertex set

of an infinitely large weight and that any set plus “No” gives a “No”. Therefore, the

value of min-w(S1, S2) will be (1) “No” if both S1 and S2 are “No”; (2) S1 if S2 is

“No”; (3) S2 if S1 is “No”; and (4) the one of smaller weight among S1 and S2 if both

S1 and S2 are not “No”.

For each tree in the forest G[V1], we fix a root so that we can talk about the

“lowest leaf” in a tree in G[V1].

Lemma C.2 The algorithm W-Feedback(G, V0, V1, V2, k) correctly solves the

weighted if-bipartition fvs problem, and its running time is O(2τ(k,V0,V1,V2)n2),

where n is the number of vertices in the graph G.

Proof. We first verify the correctness of the algorithm. Step 1 of the algorithm is

justified by Lemma C.1. Justifications for steps 2, 3, 4, 4.1, and 4.2 are exactly the

same as that for steps 1, 4.1, 3, 3.1, and 3.2 in Algorithm-1 for unweighted graphs.

Now consider step 5. When the algorithm reaches step 5, the following conditions

hold:

(1) the sets V1 and V2 are not empty;

(2) every vertex in the set V1 has degree at least 2 in the graph G; and

(3) every vertex in the set V1 has at most one neighbor in the set V2.

Condition (1) holds because of step 1; condition (2) holds because of step 3; and

condition (3) holds because of step 4.

By condition (1) and because the induced subgraph G[V1] is a forest, step 5 can

always pick the vertex w1. By conditions (2) and (3), the vertex w1 has a unique

67

neighbor in V2. Also by conditions (2) and (3), the vertex w1 must have a parent

w in the tree T in G[V1]. In consequence, the vertex w1 has degree exactly 2 in G.

Finally, since w1 is the lowest leaf in the tree T , all children w1, . . ., wt of w in the

tree T are also leaves in T . By conditions (2) and (3) again, each child wi of w has

a unique neighbor in the set V2, and every child wi of w has degree exactly 2 in the

graph G.

Step 5.1 simply branches on the vertex w. To include the vertex w in the objective

FVS, we simply remove w from the graph G (and from the set V1), and recursively

look for an FVS in V0 ∪ (V1 \ {w}) of size at most k − 1. Note that in this case,

the sets V0 and V2 are unchanged, and the triple (V0, V1 \ {w}, V2) obviously makes

a valid IF-partition for the graph G − w. On the other hand, to exclude the vertex

w from the objective FVS, we move w from V1 to V2. First note that since the

vertex w has at most one neighbor in V2, the induced subgraph G[V2 ∪ {w}] is still a

forest. Moreover, since all children w1, . . ., wt of w have degree 2 in the graph G and

each wi has a unique neighbor in the set V2, after moving w from V1 to V2, all these

degree-2 vertices w1, . . ., wt have their both neighbors in the set V2∪{w}. Therefore,

these vertices w1, . . ., wt now can be moved to the set V0. In particular, the triple

(V0 ∪ {w1, . . . , wt}, V1 \ {w, w1, . . . , wt}, V2 ∪ {w}) is a valid IF-partition of the vertex

set of the graph G. This recursive branching is implemented by the two recursive

calls in step 5.1.

If we reach step 5.2, then the two conditions in step 5.1 do not hold. Therefore,

in addition to conditions (1)-(3), the following two conditions also hold:

(4) the vertex w has no neighbor in V2; and

(5) the vertex w has a unique child w1 in the tree T .

68

By conditions (2), (4), and (5), the vertex w has degree exactly 2 in the graph G

(and w is not the root of the tree T). Therefore, the vertices w1 and w are two

adjacent degree-2 vertices in the graph G. Observe that in this case, a cycle in

the graph G contains the vertex w1 if and only if it also contains the vertex w.

Therefore, we can safely assume that the one of larger weight among w1 and w is

not in the objective FVS. If the larger weight vertex is w1, then the first recursive

call in step 5.2 is executed, which moves w1 from set V1 to set V2 (note that the

triple (V0, V1 \ {w1}, V2 ∪ {w1}) is a valid IF-partition of G because w1 has a unique

neighbor in V2). If the larger weight vertex is w, then the second recursive call in step

5.2 is executed, which moves w from V1 to V2. Note that since both neighbors of the

degree-2 vertex w1 are in the set V2 ∪ {w}, after adding w to the set V2, we can also

move the vertex w1 from V1 to V0. Thus, the triple (V0∪{w1}, V1 \{w, w1}, V2∪{w})
is a valid IF-partition of the graph G.

We also remark that by our assumption, the input graph G contains neither

multiple edges nor self-loops. Moreover, the graph in each of the recursive calls in the

algorithm is either the original G, or G with a vertex deleted. Therefore, the graph

in each of the recursive calls in the algorithm also contains neither multiple edges nor

self-loops.

Since all possible cases are covered in the algorithm, we conclude that when the

algorithm W-Feedback stops, it must output a correct solution to the given instance

(G, V0, V1, V2, k).

To analyze the running time, as in the unweighted case, we first count the num-

ber of leaves in the search tree corresponding to the execution of the algorithm.

Let T (k, V0, V1, V2) be the number of leaves in the search tree for algorithm W-

Feedback(G, V0, V1, V2, k). We prove by induction on the value τ(k, V0, V1, V2) that

T (k, V0, V1, V2) ≤ max(1, 2τ(k,V0,V1,V2)). First of all, if τ(k, V0, V1, V2) ≤ 0, then by step

69

1 of the algorithm, we have T (k, V0, V1, V2) = 1.

First consider the branching steps, i.e., step 4.2 and step 5.1. In case step 4.2 of

the algorithm is executed, we have recursively

T (k, V0, V1, V2)

≤ T (k − 1, V0, V1 \ {w}, V2) + T (k, V0, V1 \ {w}, V2 ∪ {w}). (4.1)

Since

τ1 = τ(k − 1, V0, V1 \ {w}, V2)

= (k − 1)− (|V0| −#c(V2) + 1)

= τ(k, V0, V1, V2)− 1

< τ(k, V0, V1, V2),

and

τ2 = τ(k, V0, V1 \ {w}, V2 ∪ {w})

= k − (|V0| −#c(V2 ∪ {w}) + 1)

≤ k − (|V0| − (#c(V2)− 1) + 1)

= τ(k, V0, V1, V2)− 1

< τ(k, V0, V1, V2),

where we have used the fact #c(V2 ∪ {w}) ≤ #c(V2) − 1 because in this case, we

assume that the vertex w has two neighbors in two different trees in G[V2], therefore,

adding w to V2 merges at least two connected components in G[V2] and reduces the

number of connected components by at least 1.

70

Therefore, by the inductive hypothesis, T (k − 1, V0, V1 \ {w}, V2) ≤ 2τ1 , and

T (k, V0, V1 \ {w}, V2 ∪ {w}) ≤ 2τ2 . Combining these with Inequality (4.1), we get

T (k, V0, V1, V2) ≤ T (k − 1, V0, V1 \ {w}, V2) + T (k, V0, V1 \ {w}, V2 ∪ {w})

≤ 2τ1 + 2τ2

≤ 2τ(k,V0,V1,V2)−1 + 2τ(k,V0,V1,V2)−1

= 2τ(k,V0,V1,V2)

In conclusion, the induction goes through for step 4.2 of the algorithm.

Now we consider step 5.1, which is the least trivial case, and makes the ma-

jor difference from the unweighted cases. Let V ′
0 = V0 ∪ {w1, . . . , wt}, V ′

1 = V1 \
{w, w1, . . . , wt}, and V ′

2 = V2 ∪ {w}. The execution of step 5.1 gives the following

inequality:

T (k, V0, V1, V2) ≤ T (k − 1, V0, V1 \ {w}, V2) + T (k, V ′
0 , V

′
1 , V

′
2).

As we have shown above, by the inductive hypothesis, we have

T (k − 1, V0, V1 \ {w}, V2) ≤ 2τ(k,V0,V1,V2)−1. (4.2)

To estimate the value T (k, V ′
0 , V

′
1 , V

′
2), first note that |V ′

0 | = |V0| + t. Moreover, at

this point, we must have either that the vertex w has a neighbor in V2 or that the

vertex w has more than one child in the tree T in G[V1].

If w has a neighbor in V2, then adding w to V2 will “attach” the vertex w to a

connected component in G[V2]. In consequence, the number of connected components

in G[V2] will be equal to that in G[V2 ∪ {w}] (recall that w has only one neighbor in

71

V2). In this case (note that t ≥ 1), we have

τ(k, V ′
0 , V

′
1 , V

′
2) = k − (|V ′

0 | −#c(V ′
2) + 1)

= k − ((|V0|+ t)−#c(V2) + 1)

≤ τ(k, V0, V1, V2)− 1

Now let us assume that the vertex w has no neighbor in V2 but has more than

one child in the tree T in G[V1] (i.e., t ≥ 2). Then |V ′
0 | = |V0| + t ≥ |V0| + 2.

In this case, adding the vertex w to the set V2 increases the number of connected

components in G[V2] by 1 (since w has no neighbor in V2, the vertex w will become

a single-vertex connected component in the induced subgraph G[V2 ∪ {w}]). That is,

#c(V2 ∪ {w}) = #c(V2) + 1. Therefore,

τ(k, V ′
0 , V

′
1 , V

′
2) = k − (|V ′

0 | −#c(V ′
2) + 1)

= k − ((|V0|+ t)−#c(V2 ∪ {w}) + 1)

≤ k − ((|V0|+ 2)− (#c(V2) + 1) + 1)

≤ τ(k, V0, V1, V2)− 1

In conclusion, in all cases in step 5.1, we will have τ(k, V ′
0 , V

′
1 , V

′
2) ≤ τ(k, V0, V1, V2)−

1. Therefore, now we can apply the induction and get

T (k, V ′
0 , V

′
1 , V

′
2) ≤ 2τ(k,V ′0 ,V ′1 ,V ′2) ≤ 2τ(k,V0,V1,V2)−1

Combining this with the inequalities (4.1) and (4.2), we conclude that

T (k, V0, V1, V2) ≤ 2τ(k,V0,V1,V2)

holds for the case of step 5.1.

72

We should also remark that it can be verified that for all non-branching recursive

calls in the algorithm, i.e., steps 3, 4.1, and 5.2, the instance deficiency is never

increased. In particular, if the first recursive call in step 5.2 is executed, then since

the vertex w1 has a unique neighbor in V2, #c(V2) = #c(V2 ∪ {w1}). Thus,

τ(k, V0, V1 \ {w1}, V2 ∪ {w1}) = k − (|V0| −#c(V2 ∪ {w1}) + 1)

= k − (|V0| −#c(V2) + 1)

= τ(k, V0, V1, V2).

If the second recursive call in step 5.2 is executed, then

#c(V2 ∪ {w}) = #c(V2) + 1

because w has no neighbor in V2 and w will become a single-vertex connected com-

ponent in the induced subgraph G[V2 ∪ {w}]. Therefore,

τ(k, V0 ∪ {w1}, V1 \ {w, w1}, V2 ∪ {w})

= k − (|V0 ∪ {w1}| −#c(V2 ∪ {w}) + 1)

= k − ((|V0|+ 1)− (#c(V2) + 1) + 1)

= τ(k, V0, V1, V2).

Summarizing all the above discussions, we complete the inductive proof that the

number of leaves in the search tree for the algorithm W-Feedback(G, V0, V1, V2, k)

is at most 2τ(k,V0,V1,V2).

In the same way as in the proof for the unweighted case, we observe that along

each root-leaf path in the search tree, the total number of executions of steps 1, 2,

3, 4, 4.1, 4.2, 5, 5.1, and 5.2 of the algorithm is O(n) because each of these steps

either stops immediately, or reduces the size of the set V1 by at least 1. Step 1

73

is only preformed in leaf nodes of the tree, and thus only adds O(n2) time to the

total. By similar arguments as the one used for the unweighted case, all steps except

step 1 can be preformed in O(n) time. Therefore, the running time of the algorithm

W-Feedback(G, V0, V1, V2, k) is O(2τ(k,V0,V1,V2)n2).

With Lemma C.2, we can now proceed in the same way as for the unweighted

case to solve the original weighted-fvs problem. Consider the following weighted

version of the fvs reduction problem.

weighted fvs reduction: given a weighted graph G and an FVS F

of size k + 1 for G, either construct an FVS F ′ of minimum weight that

satisfies |F ′| ≤ k, or report that no such an FVS exists.

Note that in the definition of weighted fvs reduction, we do not require

that the given FVS F of size k + 1 have the minimum weight.

Lemma C.3 The weighted fvs reduction problem on an n-vertex graph is solv-

able in time O(5kn2).

Proof. The proof proceeds similarly to the proof of Lemma E.1. For the given

FVS F of size k + 1 in the graph G = (V,E), every FVS F ′ of size at most k for G

(including the one with the minimum weight) is a union of a subset F1 of at most

k−j vertices in V \F and a subset F2 of j vertices in F , for some integer j, 0 ≤ j ≤ k,

where (V \ F, F \ F2) is a forest bipartition of the graph G0 = G − F2. Therefore,

we can enumerate all subsets F2 of j vertices in F , for each j, 0 ≤ j ≤ k, such that

(V \ F, F \ F2) is a forest bipartition of the graph G0 = G − F2, and construct the

minimum-weight FVS F0 of G0 satisfying |F0| ≤ k−j. Note that the forest bipartition

(V \ F, F \ F2) of G0 is in fact a special IF-partition (V0, V1, V2) of G0, where V0 = ∅,

74

V1 = V \ F , and V2 = F \ F2. Therefore, by Lemma C.2, a minimum-weight FVS F0

of G0 satisfying |F0| ≤ k − j can be constructed in time

O(2τ(k−j,V0,V1,V2)n2) = O(2(k−j)−(0−#c(F\F2)+1)n2) = O(4k−jn2),

where we have used the fact #c(F \F2) ≤ |F \F2| = k+1−j. Now the proof proceeds

exactly the same way as that in Lemma E.1, and concludes that the weighted fvs

reduction problem can be solved in time O(5kn2).

Using Theorem B.3 and Lemma C.3, we obtain the main result of this chapter.

Theorem C.4 The weighted-fvs problem on an n-vertex graph is solvable in time

O(5kkn2).

Proof. Let (G, k) be a given instance of the weighted-fvs problem. As we

explained in the proof of Theorem B.3, we can first construct, in time O(5kkn2), an

FVS F of size k+1 for the graph G (the weight of F is not necessarily the minimum).

Then we simply apply Lemma C.3.

75

Algorithm-2 W-Feedback(G, V0, V1, V2, k)
Input: G = (V, E) is a graph with an IF-partition (V0, V1, V2), k is an

integer.
Output: a minimum-weight FVS F of G such that |F | ≤ k and

F ⊆ V0 ∪ V1; or report “No” (i.e., no such an FVS exists).

1 if (V1 = ∅) or (V2 = ∅) or (τ(k, V0, V1, V2) ≤ 0) then
solve the problem in time O(n2);

2 if (k < 0) or (k = 0 and G is not a forest) then return “No”;
3 if a vertex w in V1 has degree less than 2 in G then

return W-Feedback(G− w, V0, V1 \ {w}, V2, k);
4 else

if a vertex w in V1 has at least two neighbors in V2 then
4.1 if two neighbors of w are in the same tree of G[V2] then

return ({w} ∪W-Feedback(G− w, V0, V1 \ {w}, V2, k − 1));
4.2 else

F1 = W-Feedback(G− w, V0, V1 \ {w}, V2, k − 1);
F2 = W-Feedback(G, V0, V1 \ {w}, V2 ∪ {w}, k);
return min-w(F1 ∪ {w}, F2);

5 else pick a lowest leaf w1 in any tree T in G[V1]; let w be the parent of
w1 in T , and let w1, . . ., wt be the children of w in T ;

5.1 if (w has a neighbor in V2) or (w has more than one child in T) then
F1 = W-Feedback(G− w, V0, V1 \ {w}, V2, k − 1);
F2 = W-Feedback(G, V0 ∪ {w1, . . . , wt}, V1 \ {w, w1, . . . , wt},

V2 ∪ {w}, k);
return min-w(F1 ∪ {w}, F2);

5.2 else
if the weight of w1 is larger than the weight of w then

return W-Feedback(G, V0, V1 \ {w1}, V2 ∪ {w1}, k);
else return W-Feedback(G, V0 ∪ {w1}, V1 \ {w, w1}, V2 ∪ {w}, k).

Fig. 6. Algorithm for the weighted feedback vertex set problem

76

CHAPTER V

DIRECTED FEEDBACK VERTEX SET∗

In this chapter, we present the first fpt-algorithm of running time O∗(4kk!) for the

feedback vertex set problem on directed graphs. It had been an well-known

open problem whether the feedback vertex set problem on directed graphs is

fixed-parameter tractable or not for 16 years.

Our algorithm transforms the feedback vertex set problem into O(k!) skew

separator problems, then solves each skew separator problem in time of O∗(4k).

Our algorithm for the skew separator problem takes both the size of the skew

separator to search and the minimum cut from the last source to all sinks as measures.

The last measure is critical, because it avoids the need of bounding the length of cycles

in graphs. In the rest of this chapter, we give detailed analysis of the algorithm for

the feedback vertex set problem on directed graphs.

A. Introduction

Let G be a directed graph. A feedback vertex set F (briefly, FVS) for G is a set of

vertices in G such that every directed cycle in G contains at least one vertex in F , or

equivalently, that the removal of F from the graph G leaves a directed acyclic graph

(i.e., a DAG). The (parameterized) feedback vertex set problem on directed

graphs (briefly, the dfvs problem) is defined as follows: given a directed graph G

and a parameter k, either construct an FVS of at most k vertices for G or report that

no such set exists.

∗Reprinted with permission from “A Fixed-Parameter Algorithm for the Directed
Feedback Vertex Set Problem”, by J. Chen, Y. Liu, S. Liu, B. O’Sullivan and I.
Razgon, 2008, Journal of the ACM, Volume 55, No. 5, Article 21, Copyright [2008]
by ACM.

77

The dfvs problem is a classic NP-complete problem that appeared in the first

list of NP-complete problems in Karp’s seminal paper [68], and has a variety of

applications in areas such as operating systems [94], database systems [52], and circuit

testing [76]. In particular, the dfvs problem has played an essential role in the

study of deadlock recovery in database systems and in operating systems [94, 52].

In such a system, the status of system resource allocations can be represented as a

directed graph G (i.e., the system resource-allocation graph), and a directed cycle in

G represents a deadlock in the system. Therefore, in order to recover from deadlocks,

we need to abort a set of processes in the system, i.e., to remove a set of vertices in

the graph G, so that all directed cycles in G are broken. Equivalently, we need to find

an FVS in the graph G. In practice, one may expect and desire that the number of

vertices removed from the graph G, which is the number of processes to be aborted

in the system, be small. This motivates the study of parameterized algorithms for the

dfvs problem that find an FVS of k vertices in a directed graph of n vertices and

run in time f(k)nO(1) for a fixed function f ; thus, the algorithms become practically

efficient when the value k is small.

This work has been part of a systematic study of the theory of fixed-parameter

tractability [37], which has received considerable attention in recent years. A problem

Q is a parameterized problem if each instance of Q contains a specific integral parame-

ter k. A parameterized problem is fixed-parameter tractable if it can be solved in time

f(k)nc for a function f(k) and a constant c, where the function f(k) is independent of

the instance size n. A large number of NP-hard parameterized problems, such as the

vertex cover problem [20] and the ml type-checking problem [77], have been

shown to be fixed-parameter tractable. On the other hand, strong evidence has been

given that another group of well-known parameterized problems, including the inde-

pendent set problem and the dominating set problem, are not fixed-parameter

78

tractable [37]. The study of fixed-parameter tractability of parameterized problems

has become increasingly interesting, for both theoretical research and practical com-

putation.

The fixed-parameter tractability of the dfvs problem was posted as an open

problem in the very first papers on the study of fixed-parameter tractability [35, 34].

After numerous significant efforts, however, the problem still remained open. In the

past fifteen years, the problem has been constantly and explicitly posted as an open

problem in a large number of publications in the literature (see [58] for a recent survey

on this study). The problem has become a well-known and outstanding open problem

in parameterized computation and complexity.

In this chapter, we develop new algorithmic techniques that lead to the conclu-

sion that the dfvs problem is fixed-parameter tractable, and thus resolve the above

open problem in parameterized computation and complexity. We first show that the

dfvs problem can be reduced in time f(k)nO(1) for some function f to a special

version of the multi-cut problem, which will be called the skew separator prob-

lem. We then develop an algorithm that shows the fixed-parameter tractability of the

skew separator problem. The combination of these two results gives an algorithm

with running time 4kk!nO(1) for the dfvs problem, which proves its fixed-parameter

tractability.

The relationship between the dfvs problem and multi-cut problems has been

studied in the research of approximation algorithms for the feedback vertex set

problem [41, 75]. However, our problem formulations and the corresponding tech-

niques are significantly different from those studied in the approximation algorithms.

In particular, our formulations and techniques seem especially suitable for developing

faster and more effective exact algorithms (of exponential-time) for NP-hard multi-

cut problems. First of all, instead of seeking a multi-cut that separates a given set

79

of terminal vertices, as formulated in most multi-cut problems, our problem is more

general: we wish to construct a multi-cut that separates a collection of terminal

vertex-subsets. This more general version of the multi-cut problem enables us to ef-

fectively reduce the search space size when we are searching for an optimal solution

of a given problem instance. Secondly, unlike most multi-cut problems whose solu-

tions are multi-cuts that are in general symmetric to the given terminal vertices, the

multi-cuts for the skew separator problem are asymmetric to the terminal vertex-

subsets. Thirdly, we develop an (exponential-time) reduction that effectively reduces

the problem of multi-cuts for multiple terminal vertex-subsets to the problem of min-

imum cuts from a single source vertex to a single sink vertex. Note that the latter is

solvable in polynomial time via algorithms for the maximum flow problem. Such

an exponential-time reduction is obviously very different from the polynomial-time

processes used in the development of polynomial-time approximation algorithms. Fi-

nally, unlike most parameterized algorithms that are focused on effectively decreasing

the sole parameter value k, our algorithm for the skew separator problem adds

another dimension of bounds in terms of the size of a minimum cut between two

properly chosen terminal vertex-subsets. This dimension of bounds has become cru-

cial in our development of the algorithm for the skew separator problem because

it effectively bounds the number of branches in which the parameter value k is not

decreased.

Before we move to the technical discussion of our algorithms, we remark that the

feedback vertex set problem on undirected graphs (briefly, the ufvs problem)

has also been an interesting and active research topic in parameterized computation

and complexity. Since the first fixed-parameter tractable algorithm for the ufvs

problem was published fifteen years ago [9], there has been an impressive list of

improved algorithms for the problem. Currently the best algorithm for the ufvs

80

problem runs in time O(5kkn2) [23]. The feedback vertex set problem on directed

graphs (i.e., the dfvs problem) seems very different from the problem on undirected

graphs (i.e., the ufvs problem). This fact has also been reflected in the study of

approximation algorithms for the problems. The feedback vertex set problem

on undirected graphs is polynomial-time approximable with a ratio 2. This holds true

even for weighted graphs [5]. On the other hand, it still remains open whether the

feedback vertex set problem on directed graphs has a constant-ratio polynomial-

time approximation for the problem on directed graphs has a ratio O(log τ log log τ),

where τ is the size of a minimum FVS for the input graph [41].

B. Preliminaries

Let G = (V, E) be a directed graph and let e = [u, v] be a (directed) edge in G. We

say that the edge e goes out from the vertex u and comes into the vertex v. The edge

e is called an outgoing edge of the vertex u, and an incoming edge of the vertex v.

These concepts can be extended from single vertices to general vertex sets. Thus, for

two vertex sets S1 and S2, we can say that an edge goes out from S1 and comes into

S2 if the edge goes out from a vertex in S1 and comes into a vertex in S2. Moreover,

we say that an edge goes out from S1 if the edge goes out from a vertex in S1 and

comes into a vertex not in S1, and that an edge comes into S2 if the edge goes out

from a vertex not in S2 and comes into a vertex in S2.

A path P from a vertex v1 to a vertex vh in the graph G is a sequence {v1, v2, . . . , vh}
of vertices in G such that [vi, vi+1] is an edge in G for all 1 ≤ i ≤ h− 1. The path P

is simple if no vertex is repeated in P . The path P is a cycle if v1 = vh, and the cycle

is simple if no other vertices are repeated. We say that a path is from a vertex set S1

to a vertex set S2 if the path is from a vertex in S1 to a vertex in S2. The graph G

81

is a DAG (i.e., directed acyclic graph) if it contains no cycles.

For a vertex subset V ′ ⊆ V in the directed graph G = (V, E), we denote by G[V ′]

the subgraph of G that is induced by the vertex subset V ′. Without any ambiguity,

we will denote by G − V ′ the induced subgraph G[V − V ′], and by G − w, where w

is a vertex in G, the induced subgraph G[V − {w}].
A vertex subset F in the directed graph G is a feedback vertex set (FVS) if the

graph G − F is a DAG. Since a vertex v with a self-loop (i.e., an edge that both

goes out from and comes into v) must be included in every FVS for the graph G,

we will assume, without loss of generality, that the graphs in our discussion have no

self-loops.

Definition Let [S1, . . . , Sl] and [T1, . . . , Tl] be two collections of l vertex subsets in

a directed graph G = (V,E). A skew separator X for ([S1, . . . , Sl], [T1, . . . , Tl]) is a

vertex subset in V −⋃l
i=1(Si ∪ Ti) such that for any pair of indices i and j satisfying

l ≥ i ≥ j ≥ 1, there is no path from Si to Tj in the graph G−X.

The subsets S1, . . ., Sl will be called the source sets and the subsets T1, . . ., Tl will

be called the sink sets. A vertex is a non-terminal vertex if it is not in
⋃l

i=1(Si ∪ Ti).

Note that by definition, all vertices in a skew separator must be non-terminal vertices.

Moreover, a skew separator X is asymmetric to the source sets and the sink sets: a

path from Si to Tj with i < j may exist in the graph G−X.

When there is only one source set S1 and one sink set T1, a skew separator for the

pair ([S1], [T1]) becomes a regular cut for S1 and T1, i.e., a vertex set whose removal

leaves a graph in which there is no path from the set S1 to the set T1. Therefore, a

skew separator for the pair ([S1], [T1]) is also called a cut from S1 to T1. A cut from

S1 to T1 is a min-cut (i.e., a minimum cut) if it has the smallest cardinality over all

82

cuts from S1 to T1.

The following lemma can be easily derived based on standard maximum flow

techniques [93]. Thus, we omit its proof.

Lemma B.1 There is an O(kn2) time algorithm that for two given vertex subsets

S and T in a directed graph G of n vertices, and a parameter k, either constructs a

min-cut from S to T whose size is bounded by k, or reports that the min-cut from S

to T has a size larger than k.

The algorithm for the dfvs problem is obtained through careful development of

algorithms for a series of problems. In the following, we give the formal definitions of

these problems.

skew separator: given (G, [S1, . . . , Sl], [T1, . . . , Tl], k), where G is a di-

rected graph, [S1, . . . , Sl] is a collection of l source sets and [T1, . . . , Tl] is

a collection of l sink sets in G, and a parameter k, such that

1. all sets S1, . . ., Sl, T1, . . ., Tl are pairwise disjoint;

2. for each i, 1 ≤ i ≤ l− 1, there is no edge coming into the set Si; and

3. for each j, 1 ≤ j ≤ l, there is no edge going out from the set Tj,

either construct a skew separator of at most k vertices for the pair ([S1, . . . , Sl],

[T1, . . . , Tl]), or report that no such separator exists.

Note that in an instance of the skew separator problem, condition (2) on

source sets and condition (3) on sink sets are not completely symmetric. Although

the first l − 1 source sets are not allowed to have incoming edges, the last source set

Sl is allowed to have incoming edges. On the other hand, all sink sets are not allowed

to have outgoing edges.

83

We remark that conditions (1)-(3) in the definition of the skew separator

problem (plus the restriction that the skew separator can consist of only non-terminal

vertices) may be relaxed, and our techniques for the problem may still be applicable.

However, the above formulation of the problem will make our discussion simpler, and

will also be sufficient for our solution to the dfvs problem, which is the focus of the

current chapter. We leave the investigation of the separator problems of more general

forms to later research.

Let G = (V,E) be a directed graph, and let (D1, D2) be a bi-partition of the

vertex set V of G, i.e., D1 ∪D2 = V and D1 ∩D2 = ∅. The bi-partition (D1, D2) is

a DAG-bipartition for the graph G if both induced subgraphs G[D1] and G[D2] are

DAGs. A vertex subset F in the graph G is a D1-FVS if F is an FVS for G and

F ⊆ D1.

dag-bipartition fvs: given (G, D1, D2, k), where G is a directed graph,

(D1, D2) is a DAG-bipartition for G, and k is the parameter, either con-

struct a D1-FVS of size bounded by k for the graph G, or report that no

such D1-FVS exists.

We will be also interested in a special version of the feedback vertex set

problem.

dfvs reduction: given a triple (G,F, k), where G is a directed graph

and F is an FVS of size k + 1 for G, either construct an FVS of size

bounded by k for G, or report that no such FVS exists.

Finally, our central problem in this chapter is as follows.

dfvs: given a pair (G, k), where G is a directed graph and k is the

parameter, either construct an FVS of size bounded by k for G, or report

that no such FVS exists.

84

C. Solving the skew separator Problem

In this section, we study the complexity of the skew separator problem.

Let (G, [S1, . . . , Sl], [T1, . . . , Tl], k) be an instance of the skew separator prob-

lem. Define Tall =
⋃

1≤i≤l Ti. There are a few cases in which we can directly reduce

the instance size:

Rule R1 There is no path from Sl to Tall, i.e., the size of a min-cut from Sl to Tall is

0: then we only need to find a skew separator of size k that separates Si from Tj

for all indices i and j satisfying l−1 ≥ i ≥ j ≥ 1, i.e., we can work instead on the

instance (G, [S1, . . . , Sl−1], [T1, . . . , Tl−1], k). Note that in this case, by definition,

if l = 1, then the solution to the instance (G, [S1, . . . , Sl−1], [T1, . . . , Tl−1], k) is

simply the empty set ∅;

Rule R2 There is an edge from Sl to Tall: then there is no way to even separate

Sl from Tall – we can simply stop and claim that the given instance is a “No”

instance;

Rule R3 There exists a non-terminal vertex w, an edge from Sl to w, and an edge

from w to Tall: then the vertex w must be included in the skew separator

in order to separate Sl and Tall – we can simply work on the instance (G −
w, [S1, . . . , Sl], [T1, . . . , Tl], k − 1) and recursively find a skew separator of size

k − 1.

Note in Rules R1 and R3, the reduced instances (G, [S1, . . . , Sl−1], [T1, . . . , Tl−1], k)

and (G− w, [S1, . . . , Sl], [T1, . . . , Tl], k − 1) are still valid instances of the skew sep-

arator problem.

In the following, we assume that for the instance (G, [S1, . . . , Sl], [T1, . . . , Tl], k),

none of the rules above is applicable. In particular, since Rule R1 is not applicable, a

85

min-cut from Sl to Tall has size larger than 0. Because Rules R1-R3 are not applicable,

there must be a non-terminal vertex u0 such that (1) there is an edge from Sl to u0;

and (2) there is no edge from u0 to Tall. Such a vertex u0 will be called an Sl-extended

vertex. Fix an Sl-extended vertex u0, let S ′l = Sl ∪ {u0}.
We start with the following simple but important lemma. The proof of this

lemma is straightforward. Thus, we leave it to the reader.

Lemma C.1 Let X be a subset of vertices in the graph G that does not contain the

Sl-extended vertex u0. Then X is a skew separator for ([S1, . . . , Sl], [T1, . . . , Tl]) if and

only if X is a skew separator for ([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]).

Lemma C.1 also directly implies the following two useful corollaries.

Corollary C.2 A skew separator for ([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]) is also a

skew separator for ([S1, . . . , Sl], [T1, . . . , Tl]).

Corollary C.3 The size of a min-cut from S ′l to Tall in the graph G is at least as

large as the size of a min-cut from Sl to Tall in G.

Now we are ready for our main theorem in this section.

Theorem C.4 If the size of a min-cut from Sl to Tall is equal to the size of a min-cut

from S ′l to Tall, then the pair ([S1, . . . , Sl], [T1, . . . , Tl]) has a skew separator of size

bounded by k if and only if the pair ([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]) has a skew

separator of size bounded by k.

Proof. ⇐: Suppose that the pair ([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]) has a skew

separator X ′ of size bounded by k. By Corollary C.2, X ′ is also a skew separator

86

for ([S1, . . . , Sl], [T1, . . . , Tl]). In consequence, ([S1, . . . , Sl], [T1, . . . , Tl]) has a skew

separator of size bounded by k.

⇒: Suppose that the pair ([S1, . . . , Sl], [T1, . . . , Tl]) has a skew separator X of

size bounded by k. If the skew separator X does not contain the Sl-extended vertex

u0, then by Lemma C.1, X is also a skew separator of size bounded by k for the pair

([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]), and the theorem is proved. Therefore, we can

assume that the set X contains the Sl-extended vertex u0. We will define another

set X ′ that does not contain u0. We will show that |X ′| ≤ |X| and that X ′ is a skew

separator for ([S1, . . . , Sl], [T1, . . . , Tl]). Then the theorem will immediately follow.

Let Y be a min-cut from S ′l to Tall. Then Y does not contain the Sl-extended

vertex u0. Moreover, since there is no edge coming into Si from outside of Si for all

i ≤ l − 1, the set Y does not contain any vertex in
⋃l−1

i=1 Si. In consequence, the set

Y consists of only non-terminal vertices. By Corollary C.2, Y is also a cut from Sl to

Tall. Moreover, by the assumption of the theorem that the size of a min-cut from Sl

to Tall is equal to the size of a min-cut from S ′l to Tall, Y is actually also a min-cut

from Sl to Tall. Let RY (Sl) be the set of vertices v such that either v ∈ Sl or there

is a path from Sl to v in the subgraph G− Y . In particular, u0 ∈ RY (Sl) because Y

does not contain u0 and there is an edge from Sl to u0.

We introduce a number of sets as follows.

Z = X ∩ Y ;

Xin = X ∩RY (Sl);

Xout = X − (Xin ∪ Z).

That is, the skew separator X for ([S1, . . . , Sl], [T1, . . . , Tl]) is decomposed into three

disjoint subsets Z, Xin, and Xout (note that by definitions, RY (Sl) and Y do not

87

ÁÀ

Â¿
Sl

ÁÀ

Â¿
Sl−1

ÁÀ

Â¿
S1

ÁÀ

Â¿
Tl

ÁÀ

Â¿
Tl−1

ÁÀ

Â¿
T1

X

Xout

Xin

ZYS
YT

Y

RY (Sl)

RY (Sl)
t
u0

-

.

.

.

.

.

.

.

.

.

.

Y : a min-cut from S ′l to Tall

X: a skew separator for
([S1, . . . , Sl], [T1, . . . , Tl])

RY (Sl): vertices reachable
from Sl in G− Y

Z = X ∩ Y

Xin = X ∩RY (Sl)

Xout = X − (Xin ∪ Z)

YT : vertices in Y from which
Tall is reachable in G−X

YS = Y − (YT ∪ Z)

Fig. 7. Sets in the proof of Theorem C.4.

intersect).

Let YT be the set of vertices v in the min-cut Y such that there is a path from

v to Tall in the subgraph G−X. By definition, we have YT ∩ Z = ∅. Let

YS = Y − (YT ∪ Z).

Thus, the min-cut Y from Sl to Tall is decomposed into three disjoint subsets Z, YT ,

and YS. Figure 7 gives an intuitive illustration of the sets Z, Xin, Xout, YT , YS, and

RY (Sl).

We first show that the set Y ′ = YS ∪ Z ∪ Xin is also a cut from Sl to Tall. If

by contradiction Y ′ is not a cut from Sl to Tall, then there is a path P1 from Sl to

Tall in the subgraph G − Y ′. The path P1 must contain vertices in the set Y since

Y is a cut from Sl to Tall. Let w be the first vertex on the path P1 that is in Y

88

when we traverse from Sl to Tall along the path P1. Then w must be in YT since Y ′

contains both YS and Z. Now the partial path P ′
1 of P1 from Sl to w (not including

w) must be entirely contained in RY (Sl) (note that the path P1 does not intersect

YS ∪Z). Moreover, the path P ′
1 contains neither vertices in Xin∪Z (by the definition

of the set Y ′) nor vertices in Xout (since the sets Xout and RY (Sl) are disjoint). In

summary, the subpath P ′
1 from Sl to w contains no vertex in the set X. Moreover,

by the definition of the set YT , and w ∈ YT , there is a path P ′′
1 from w to Tall in

the subgraph G−X. Now the concatenation of the paths P ′
1 and P ′′

1 would result in

a path from Sl to Tall in the graph G − X, contradicting the fact that X is a skew

separator for the pair ([S1, . . . , Sl], [T1, . . . , Tl]). This contradiction shows that the set

Y ′ must be a cut from Sl to Tall.

Since Y is a min-cut from Sl to Tall, we have |Y | ≤ |Y ′|. By definition, Y =

YS ∪ Z ∪ YT and Y ′ = YS ∪ Z ∪ Xin. Also note that YS, Z, and YT are pairwise

disjoint, and that YS, Z, and Xin are also pairwise disjoint. Therefore, we must have

|YT | ≤ |Xin|.
Consider the set X ′ = Xout ∪ Z ∪ YT . The set X ′ has the following properties:

(1) X ′ consists of only non-terminal vertices (because both X and Y consist of only

non-terminal vertices); (2) |X ′| ≤ |X| (because |YT | ≤ |Xin|), so the size of X ′ is

bounded by k; and (3) the set X ′ does not contain the Sl-extended vertex u0 (this is

because u0 is in Xin and Y does not contain u0). Therefore, if we can prove that X ′ is

a skew separator for the pair ([S1, . . . , Sl], [T1, . . . , Tl]), then by Lemma C.1, X ′ is also

a skew separator of size bounded by k for the pair ([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]).

This will complete the proof of the theorem.

Therefore, what remains is to prove that the set X ′ = Xout ∪ Z ∪ YT is a skew

separator for the pair ([S1, . . . , Sl], [T1, . . . , Tl]). Let RY (Tall) be the set of vertices v

such that either v ∈ Tall, or there is a path from v to Tall in the subgraph G− Y .

89

Suppose by contradiction that the set X ′ is not a skew separator for the pair

([S1, . . . , Sl], [T1, . . . , Tl]). Then there is a path P2 in the subgraph G−X ′ from Si to

Tj for some i ≥ j. The path P2 has the following properties:

1. The path P2 must contain a vertex in RY (Sl): since X is a skew separator for

the pair ([S1, . . . , Sl], [T1, . . . , Tl]), the path P2 from Si to Tj with i ≥ j must

contain at least one vertex w1 in X = Xin ∪Z ∪Xout. Now since the path P2 is

in the subgraph G −X ′, where X ′ = Xout ∪ Z ∪ YT , the vertex w1 must be in

Xin, which is a subset of RY (Sl);

2. The path P2 must contain a vertex in YS: by Property (1), P2 contains a vertex

w1 in RY (Sl). From the vertex w1 to Tall along the path P2, there must be

a vertex w2 in Y = YS ∪ Z ∪ YT since Y is a cut from Sl to Tall while w1 is

reachable from Sl in the subgraph G− Y . Now since X ′ = Xout ∪ Z ∪ YT , and

the path P2 is in the subgraph G −X ′, the vertex w2 on the path P2 must be

in the set YS;

3. The path P2 must end at a vertex in RY (Tall); this is simply because P2 is ended

in Tall. Note that by definition, no vertex in YS can be in RY (Tall).

By Properties (2)-(3), the path P2 contains a vertex not in RY (Tall) and ends at a

vertex in RY (Tall). Thus, there must be an internal vertex w in the path such that

w is not in RY (Tall) but all vertices after w along the path P2 (from Si to Tj) are

in RY (Tall). Note that no vertex w′ after the vertex w along the path P2 can be

in the set X: w′ in X would imply w′ in Xin (since P2 is a path in the subgraph

G − X ′), which would imply that there is another vertex after w′ that is in Y thus

is not in RY (Tall). Moreover, the vertex w must be in the set Y (otherwise, w would

be in RY (Tall)). Since P2 is a path in G − X ′ and X ′ = Xout ∪ Z ∪ YT , the vertex

90

w must be in the set YS. However, this derives a contradiction: the subpath of P2

from w to Tall shows that the vertex w should belong to the set YT (note that all

vertices after w on the path are not in X), and the sets YS and YT are disjoint.

This contradiction proves that the set X ′ must be a skew separator for the pair

([S1, . . . , Sl], [T1, . . . , Tl]). Since the size of the set X ′ is bounded by k and X ′ does not

contain the Sl-extended vertex u0, by Lemma C.1, the set X ′ is also a skew separator

for the pair ([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]), and the size of X ′ is bounded by k.

This completes the proof of the theorem.

Theorem C.4 enables us to develop a parameterized algorithm for the skew

separator problem. The algorithm is presented in Figure 8.

Theorem C.5 The algorithm SMC(G, [S1, . . . , Sl], [T1, . . . , Tl), k] solves the problem

skew separator in time O(4kkn3), where n is the number of vertices in the input

graph G.

Proof. For the correctness of the algorithm, let (G, [S1, . . . , Sl], [T1, . . . , Tl], k) be

an input to the algorithm, which is an instance of the skew separator problem,

where G = (V, E) is a directed graph, [S1, . . . , Sl] and [T1, . . . , Tl] are the source sets

and the sink sets, respectively, and k is the upper bound of the size of the skew

separator we are looking for.

If l = 1, then the problem becomes the construction of a min-cut of size bounded

by k from S1 to T1, which can be solved in O(kn2) time by Lemma B.1. Steps 2-4

were justified in the discussions of Rules 2, 1, 3, respectively, at the beginning of

this section (note that we have also consistently defined that an instance is a “No”

instance if the parameter k has a negative value). Therefore, if the algorithm reaches

step 5, then none of the Rules 1-3 are applicable. In particular, since Rule 1 is not

91

applicable and the sets Sl and Tall are disjoint, there must be an edge [v, w], where

v ∈ Sl and w 6∈ Sl. Since Rule 2 is not applicable, the vertex w is not in the set Tall.

The vertex w also cannot be in any source set Si for i < l because there is no edge

coming into Si from outside of Si. Therefore, the vertex w is a non-terminal vertex.

Finally, since Rule 3 is not applicable, there is no edge from w to Tall. Thus, w must

be an Sl-extended vertex. This proves that at step 5, the algorithm can always find

an Sl-extended vertex u0.

In the case m > k in step 7, i.e., the size m of a min-cut from Sl to Tall is larger

than the parameter k, then even separating a single source set Sl from the sink sets

Tall =
⋃l

j=1 Tj requires more than k vertices. Thus, no skew separator of size bounded

by k can exist to separate Si from Tj for all l ≥ i ≥ j ≥ 1. Step 7 correctly handles

this case by returning “No”.

In the case m = m′ in step 9, i.e., the size m of a min-cut from Sl to Tall

is equal to the size m′ of a min-cut from S ′l to Tall, by Theorem C.4, the pair

([S1, . . . , Sl], [T1, . . . , Tl]) has a skew separator of size bounded by k if and only if

the pair ([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]) has a skew separator of size bounded by

k. Moreover, by Corollary C.2, a skew separator of size bounded by k for the pair

([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]) is also a skew separator for ([S1, . . . , Sl], [T1, . . . , Tl]).

Therefore, in this case we can recursively call the algorithm SMC(G, [S1, . . . , Sl−1, S
′
l],

[T1, . . . , Tl−1, Tl], k), and look instead for a skew separator of size bounded by k for

the pair ([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]), as handled by step 9.1.

In the case m 6= m′, then the algorithm branches into two subcases: step 9.2

includes the Sl-extended vertex u0 in the skew separator and recursively looks for a

skew separator of size bounded by k − 1 in the remaining graph G − u0 for the pair

([S1, . . . , Sl], [T1, . . . , Tl]); and step 9.3 excludes the Sl-extended vertex u0 from the

skew separator and recursively looks for a skew separator that does not contain u0 and

92

is of size bounded by k in the graph G for the pair ([S1, . . . , Sl], [T1, . . . , Tl]), which is

a skew separator of size bounded by k for the pair ([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl])

by Lemma C.1. This completes the verification of the correctness of the algorithm.

Now we analyze its complexity.

The recursive execution of the algorithm can be described as a search tree T . We

first count the number of leaves in the search tree T . Note that only steps 9.2-9.3 of the

algorithm correspond to branches in the search tree T . Let D(k, m) be the total num-

ber of leaves in the search tree T for the algorithm SMC(G, [S1, . . . , Sl], [T1, . . . , Tl], k),

where m is the size of a min-cut from Sl to Tall. Then steps 9.2-9.3 induce the following

recurrence relation:

D(k, m) ≤ D(k − 1,m1) + D(k,m2) (5.1)

where m1 is the size of a min-cut from Sl to Tall in the graph G− u0 as given in step

9.2, and m2 is the size of a min-cut from S ′l to Tall in the graph G as given in step

9.3. Note that m − 1 ≤ m1 ≤ m because removing the vertex u0 from the graph G

cannot increase the size of a min-cut from Sl to Tall, and can decrease the size of a

min-cut for the two sets by at most 1. Moreover, by Corollary C.3, in step 9.3 we

must have m2 ≥ m + 1. Summarizing these, we have

m− 1 ≤ m1 ≤ m and m2 ≥ m + 1. (5.2)

We prove, by induction on t = 2k −m, that D(k, m) ≤ 22k−m. First note that

we always have t = 2k − m ≥ 0 because by the definitions of k and m we always

have k ≥ m ≥ 0. In particular, in the initial case when t = 2k − m = 0, we must

have k = m = 0; in this case the algorithm can solve the instance without further

branching. Therefore, we have D(k, m) = 1 when t = 2k −m = 0. For the inductive

93

step, note that by Inequalities (5.2), we have

t1 = 2(k − 1)−m1 ≤ 2(k − 1)− (m− 1) = 2k −m− 1,

and

t2 = 2k −m2 ≤ 2k − (m + 1) = 2k −m− 1.

Therefore, we can apply the inductive hypothesis on Inequality (5.1), which gives

D(k, m) ≤ D(k − 1,m1) + D(k,m2)

≤ 22(k−1)−m1 + 22k−m2

≤ 22k−m−1 + 22k−m−1

= 22k−m. (5.3)

This completes the inductive proof. Moreover, we also note that certain non-branching

steps (i.e., steps 3, 4, and 9.1) may also change the values of k and m, thus changing

the value t = 2k −m. However, none of these steps increases the value t = 2k −m:

(i) step 3 keeps the value k unchanged and does not decrease the value m (because in

this case the size of a min-cut from Sl to Tall is 0 that cannot be larger than the size

of a min-cut from Sl−1 to
⋃l−1

j=1 Tj); (ii) step 4 decreases the value k by 1 and the value

m by at most 1 (because removing a vertex from G can reduce the size of a min-cut

from Sl to Tall by at most 1), which as a total will decrease the value t = 2k − m

by at least 1; (iii) by the condition assumed, step 9.1 keeps both the values k and m

unchanged, thus unchanging the value t = 2k−m. As a result, the value t = 2k−m

after a branching step to the next branching step can never be increased.

Summarizing the above discussion, we conclude that the total number of leaves,

D(k,m), in the search tree T for the algorithm SMC(G, [S1, . . . , Sl], [T1, . . . , Tl], k),

94

where m is the size of a min-cut from Sl to Tall, satisfies the following inequality

D(k,m) ≤ 22k−m ≤ 4k.

The running time of each execution of the algorithm SMC, not counting the

time for the recursive calls in the execution, is bounded by O(kn2), where n is the

number of vertices in the input graph. In particular, by Lemma B.1, step 1 that looks

for a min-cut of size bounded by k from S1 to T1, steps 6-7 that determine if the size

m of a min-cut from Sl to Tall is bounded by k, and steps 8-9 that determine if the

size of a min-cut from S ′l to Tall is equal to m (m ≤ k at this point), all have their

running time bounded by O(kn2).

Observe that for each recursive call in an execution of the algorithm SMC,

either the number of source-sink pairs in the instance is decreased by 1 (step 3), or

the number of non-terminal vertices in the instance is decreased by 1 (steps 4, 9.1, 9.2,

and 9.3). When the number of source-sink pairs is equal to 1, the problem is solved

in time O(kn2) by step 1, and when the number of non-terminal vertices is equal to

0, either step 2 or step 3 can be applied directly. In conclusion, along each root-leaf

path in the search tree T , there are at most O(n) recursive calls to the algorithm

SMC. Therefore, the running time along each root-leaf path in the search tree T is

bounded by O(kn3).

Summarizing the above discussions, we conclude that the running time of the

algorithm SMC is bounded by O(4kkn3). This completes the proof of the theorem.

95

D. Solving the dag-bipartition fvs Problem

In this section, we describe how to use the results in the previous section to solve the

dag-bipartition fvs problem.

Recall that an instance of dag-bipartition fvs is given as a tuple (G,D1, D2, k),

where G is a directed graph, (D1, D2) is a DAG-bipartition of G, and k is the pa-

rameter, with the objective of finding an FVS X for the graph G such that X ⊆ D1

(recall that such an FVS is called a D1-FVS) and that the size of X is bounded by k.

Let π = {v1, v2, . . . , vh} be a topologically sorted order of the vertices in the

induced DAG G[D2]. We construct an instance of the skew separator problem as

follows:

1. Let G′ be the graph obtained from G by removing all edges in G[D2].

2. In the graph G′, replace each vertex vi in D2 by a pair (ti, si) of vertices such

that all incoming edges into vi are now coming into the vertex ti, and that all

outgoing edges from vi are now going out from the vertex si. Let the resulting

graph be Gπ.

Note that in the resulting graph Gπ, the vertices si, 1 ≤ i ≤ h, have no incoming

edges, and the vertices tj, 1 ≤ j ≤ h, have no outgoing edges. Moreover, since we have

removed all edges between the vertices in G[D2], every edge going out from a vertex si

must come into a vertex in the set D1, and every edge coming into a vertex tj must go

out from a vertex in the set D1. In particular, (Gπ, [{s1}, . . . , {sh}], [{t1}, . . . , {th}], k)

is a valid instance for the skew separator problem, which will be called an instance

of the skew separator induced by the instance (G,D1, D2, k) of dag-bipartition

fvs and the topologically sorted order π of the vertices in G[D2].

Thus, each vertex vi in the set D2 in the graph G is now “split” into the two

96

vertices si and ti in the graph Gπ. Moreover, there is a one-to-one mapping between

the vertices in the set D1 in the graph G and the non-terminal vertices in the graph

Gπ. Thus, in case of no ambiguity, we will use the same vertex name to refer to

both a non-terminal vertex in the graph Gπ and a vertex in the set D1 in the graph

G. In particular, a skew separator for the pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) in

the graph Gπ corresponds to a subset of D1 in the graph G. We have the following

important theorem.

Theorem D.1 Let (G,D1, D2, k) be an instance of the dag-bipartition fvs prob-

lem, and let X be a D1-FVS for the graph G. Then there is a topologically sorted order

π = {v1, . . . , vh} of the vertices in G[D2] such that in the instance (Gπ, [{s1}, . . . , {sh}],
[{t1}, . . . , {th}], k) induced by (G,D1, D2, k) and π: (1) X is a skew separator for the

pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) in the graph Gπ; and (2) every skew separator

for the pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) in Gπ is a D1-FVS for the graph G.

Proof. As assumed in the theorem, let (G,D1, D2, k) be an instance of the dag-

bipartition fvs problem, and let X be a D1-FVS for the graph G. Consider the

subgraph G −X. Since X is an FVS for G, the graph G −X is a DAG. Therefore,

the vertices in G − X can be topologically sorted into an ordered list π′ such that

there is no edge in G−X that goes out from a later vertex in π′ and comes into an

earlier vertex in π′. Let π = {v1, . . . , vh} be the order of the vertices in D2 that is

induced from the order π′ (i.e., π is obtained from π′ by removing the vertices not in

D2. Note that all vertices in X are in D1). The order π is obviously a topologically

sorted order for the DAG G[D2]. We show that this order π of the vertices in D2

and the corresponding instance (Gπ, [{s1}, . . . , {sh}], [{t1}, . . . , {th}], k) induced by

(G,D1, D2, k) and π satisfy the conclusions of the theorem.

97

We first show that the set X is a skew separator for ([{s1}, . . . , {sh}], [{t1}, . . . , {th}])
in the graph Gπ. If this were not the case, then there would be a path P in the graph

Gπ−X that starts from a vertex si and ends at a vertex tj with i ≥ j. Since no vertex

in {s1, . . . , sh} has incoming edges and no vertex in {t1, . . . , th} has outgoing edges,

all internal vertices on the path P are non-terminal vertices in Gπ. In consequence,

all internal vertices on P are vertices in the set D1 in the graph G. Therefore, the

path P in Gπ − X corresponds to a path P ′ in the graph G − X that starts from

the vertex vi and ends at the vertex vj, where i ≥ j, with all internal vertices of P ′

in the set D1. But it is impossible: (1) if i = j then the path P ′ would be a cycle

in the graph G − X, contradicting the assumption that X is an FVS for the graph

G; and (2) if i > j, then P ′ would become a path from vi to vj with i > j in the

graph G −X, contradicting the assumption that π = {v1, . . . , vh} is an order of the

vertices in D2 that is induced from the topologically sorted order π′ of the vertices in

the DAG G −X. In conclusion, the path P does not exist, and the set X is a skew

separator for the pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) in the graph Gπ.

Now we prove that every skew separator X ′ for ([{s1}, . . . , {sh}], [{t1}, . . . , {th}])
in the graph Gπ is a D1-FVS for the graph G. First of all, by definition, a skew

separator consists of only non-terminals, thus, all vertices in X ′ are in the set D1.

Suppose for a contradiction that X ′ is not a D1-FVS for the graph G. Then there

is a cycle C in the graph G − X ′. Without loss of generality, we can assume that

C is a simple cycle. Since both the induced subgraphs G[D1] and G[D2] are DAGs,

the cycle C must contain both vertices in D1 and vertices in D2. We consider two

different cases.

Case 1. The cycle C contains a single vertex vi in the set D2. Then all other

vertices in the cycle C are in the set D1. But then the cycle C would correspond to

a path P1 in the graph Gπ −X ′ that starts with the vertex si and ends at the vertex

98

ti (with all internal vertices being non-terminal vertices). But this contradicts the

assumption that X ′ is a skew separator for the pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}])
that should have cut all paths from si to ti.

Case 2. The cycle C contains more than one vertex in D2. Let {vi1 , vi2 , . . . , vid , vi1}
be the order of the vertices in D2 that we encounter when traversing along the cycle

C (starting from an arbitrary vertex vi1 in D2), where d > 1. Then there must be

an index j such that ij > ij+1 (where we take ij+1 = i1 if j = d). Now consider

the subpath P2 of C that starts from the vertex vij and ends at the vertex vij+1
.

The path P2 cannot be a single edge from vij to vij+1
since π = {v1, v2, . . . , vh} is a

topologically sorted order for the vertices in the DAG G[D2] and ij > ij+1. Thus,

the path P2 contains at least one internal vertex. Since all internal vertices on the

path P2 are not in D2 thus correspond to non-terminal vertices in the graph Gπ−X ′,

the path P2 would correspond to a path P ′
2 in the graph Gπ − X ′ that starts from

the vertex sij and ends at the vertex tij+1
, with ij > ij+1. Again this contradicts the

assumption that X ′ is a skew separator for the pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]),
which should have cut all paths from sij to tij+1

when ij > ij+1.

This proves that the skew separator X ′ for ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) in

the graph Gπ must be a D1-FVS for the graph G. This completes the proof of the

theorem.

Theorem D.1 enables us to reduce the dag-bipartition fvs problem to the

skew separator problem. An algorithm for the dag-bipartition fvs problem is

given in Figure 9.

Theorem D.2 The algorithm DBF(G,D1, D2, k) solves the dag-bipartition fvs

problem in time O(4kkn3h!), where h is the number of vertices in the set D2, and n

is the number of vertices in the input graph G.

99

Proof. The running time of the algorithm is obvious: the for-loop in step 1

is executed at most h! times, and the time for each execution is dominated by the

subroutine call to the algorithm SMC in step 1.2. By Theorem C.5, the running

time of each execution of step 1.2 is bounded by O(4kkn3).

For the correctness of the algorithm, first note that the algorithm always returns

“No” unless it actually constructs a D1-FVS of size bounded by k for G in step 1.3.

In particular, if the input instance (G,D1, D2, k) contains no D1-FVS of size bounded

by k for the graph G, then the algorithm always correctly reports “No”.

On the other hand, suppose that there is a D1-FVS X0 of size bounded by k

for the graph G. Then by Theorem D.1, there is a topologically sorted order π =

{v1, . . . , vh} of the vertices in G[D2] such that in the instance (Gπ, [{s1}, . . . , {sh}],
[{t1}, . . . , {th}], k) of the skew separator problem induced by (G,D1, D2, k) and

π, X0 is a skew separator for ([{s1}, . . . , {sh}][{t1}, . . . , {th}]) in the graph Gπ, and

every skew separator for ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) in Gπ is a D1-FVS for

the graph G. In particular, ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) has at least one skew

separator of size bounded by k (e.g., X0) in the graph Gπ. Therefore, step 1.2 of the

algorithm DBF must return a skew separator X of size bounded by k for the pair

([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) in the graph Gπ (the set X may be different from

the set X0), and this set X is a D1-FVS for the graph G. In conclusion, if there is a

D1-FVS of size bounded by k for the graph G, then the algorithm DBF(G,D1, D2, k)

will correctly return a D1-FVS of size bounded by k in step 1.3.

E. Solving the dfvs Problem

We present our algorithm for the dfvs problem. We start with a more restricted

version of the problem, the dfvs reduction problem, defined as follows.

100

dfvs reduction: given a triple (G,F, k), where G is a directed graph

and F is an FVS of size k + 1 for G, either construct an FVS of size

bounded by k for G, or report that no such FVS exists.

Lemma E.1 The dfvs reduction problem on a triple (G,F, k) is solvable in time

O(n34kk3k!), where n is the number of vertices in the input graph G.

Proof. Let G = (V,E) be the input directed graph with n = |V | vertices, and let

F be the input FVS of size k+1 for the graph G. Every FVS F ′ of size bounded by k

for G can be split into two disjoint subsets F1 and F2, where F2 consists of j vertices

in F for some integer j, 0 ≤ j ≤ k, and F1 consists of at most k− j vertices in V −F .

Note that since we assume that no vertex in F − F2 is in the FVS F ′, the induced

subgraph G[F − F2] must be a DAG. Therefore, for each j, 0 ≤ j ≤ k, we enumerate

all subsets of j vertices in F . For each such subset F2 of F such that G[F − F2] is a

DAG, we seek a subset F1 of at most k− j vertices in V −F such that F1 ∪F2 makes

an FVS for the graph G.

Fix a subset F2 of F , such that |F2| = j and that the induced subgraph G[F−F2]

is a DAG. Note that the graph G has an FVS F1 ∪ F2 of size bounded by k, where

F1 ⊆ V − F , if and only if the subset F1 of V − F is an FVS for the graph G − F2

and the size of F1 is bounded by k − j. Therefore, to solve the original problem, we

can instead consider how to construct an FVS F1 for the graph G − F2 such that

|F1| ≤ k − j and F1 ⊆ V − F .

Since F is an FVS for G, we have that the induced subgraph G[V −F] = G−F

is a DAG. Moreover, by our assumption, the induced subgraph G[F − F2] is also

a DAG. Note that (V − F) ∪ (F − F2) = V − F2, which is the vertex set for the

graph G′ = G − F2. Therefore, (V − F, F − F2) is a DAG-bipartition of the graph

101

G′. Thus, an FVS F1 for the graph G′ such that |F1| ≤ k − j and F1 ⊆ V − F , is

actually a (V − F)-FVS of size bounded by k − j for the graph G′ with the DAG-

bipartition (V −F, F−F2). Therefore, the set F1 can be constructed by the algorithm

DBF(G′, V − F, F − F2, k − j).

Since |F | = k+1 and |F2| = j, we have |F −F2| = k+1−j. Therefore, the DAG

G[F−F2] contains exactly k+1−j vertices. By Theorem D.2, the running time of the

algorithm DBF(G′, V −F, F −F2, k− j) is bounded by O(4k−j(k− j)n3(k +1− j)!).

Now for all integers j, 0 ≤ j ≤ k, we enumerate all subsets F2 of j vertices in

F and apply the algorithm DBF(G′, V − F, F − F2, k − j) for those F2 such that

G[F −F2] is a DAG. As we discussed above, the graph G has an FVS of size bounded

by k if and only if for some F2 of j vertices in F , where 0 ≤ j ≤ k, the algorithm

DBF(G′, V − F, F − F2, k− j) produces an FVS F1 of size bounded by k− j for the

graph G′. The running time of this process is bounded by the order of

k∑
j=0

(
k + 1

j

) (
4k−j(k − j)n3(k + 1− j)!

)
= O(n34kk3k!).

This completes the proof of the lemma.

The rest of our process for solving the original dfvs problem is to apply the

iterative compression method. The method was proposed by [90] and has been used

for solving the feedback vertex set problem on undirected graphs [33, 57]. Here

we extend the method and apply it to solve the dfvs problem.

Theorem E.2 The dfvs problem is solvable in time O(n44kk3k!).

Proof. Let (G, k) be an instance of the dfvs problem, where G = (V, E) is a

directed graph with n = |V | vertices, and k is the parameter. Pick any subset V0 of

k + 1 vertices in G, and let F0 be any subset of k vertices in V0. Note that the set F0

102

is an FVS of k vertices for the induced subgraph G0 = G[V0] since the graph G0−F0

consists of a single vertex (note that by our assumption, the graph G contains no

self-loops).

Let V − V0 = {v1, v2, . . . , vn−k−1}. Let Vi = V0 ∪ {v1, . . . , vi}, and let Gi = G[Vi]

be the subgraph induced by Vi, for i = 0, 1, . . . , n− k − 1. Inductively, suppose that

for an integer i, 0 ≤ i < n − k − 1, we have constructed an FVS Fi of size bounded

by k for the induced subgraph Gi (this has been the case for i = 0). Without loss

of generality, we can assume that the set Fi consists of exactly k vertices – otherwise

we simply pick k − |Fi| vertices (arbitrarily) from Gi − Fi and add them to the set

Fi. Now consider the set F ′
i+1 = Fi + vi+1. Since Gi+1 − F ′

i+1 = Gi − Fi and Fi is

an FVS for Gi, the set F ′
i+1 is an FVS of size k + 1 for the induced subgraph Gi+1.

In particular, the triple (Gi+1, F
′
i+1, k) is a valid instance for the dfvs reduction

problem.

Apply Theorem E.1 to the instance (Gi+1, F
′
i+1, k), which either returns an FVS

Fi+1 of size bounded by k for the graph Gi+1, or claims that no such FVS exists. It is

easy to see that if the induced subgraph Gi+1 = G[Vi+1] does not have an FVS of size

bounded by k, then the original graph G cannot have an FVS of size bounded by k.

Therefore, in this case, we can simply stop and conclude that there is no FVS of size

bounded by k for the original input graph G. On the other hand, suppose that an

FVS Fi+1 of size bounded by k is constructed for the graph Gi+1 in the above process,

then the induction successfully proceeds from i to i + 1 with a new pair (Gi+1, Fi+1).

In conclusion, the above process either stops at some point and correctly reports

that the input graph G has no FVS of size bounded by k, or eventually ends with an

FVS Fn−k−1 of size bounded by k for the graph Gn−k−1 = G[Vn−k−1] = G.

This process is involved in solving at most n− k − 1 instances (Gi, Fi, k) of the

dfvs reduction problem, for 0 ≤ i ≤ n−k−2. By Theorem E.1, the running time

103

of the process is bounded by O(n34kk3k!(n− k− 1)) = O(n44kk3k!), and the process

correctly solves the dfvs problem.

F. Final Remarks

The running time of the algorithm in Theorem E.2 can be further improved by taking

advantage of existing approximation algorithms for the feedback vertex set prob-

lem on directed graphs. [41] have developed a polynomial time approximation algo-

rithm for the feedback vertex set problem that for a given directed graph G, pro-

duces an FVS F of size bounded by c·τ log τ log log τ in time O(n2M(n) log2 n), where

c is a constant, τ is the size of a minimum FVS for the graph G, and M(n) = O(n2.376)

is the complexity of the multiplication of two n× n matrices. Therefore, for a given

instance (G, k) of the dfvs problem, we can first apply the approximation algo-

rithm in [41] to construct an FVS F for the graph G. If |F | > c · k log k log log k,

then we know that the graph G has no FVS of size bounded by k. On the other

hand, suppose that |F | ≤ c · k log k log log k. Then we pick a subset F0 of arbi-

trary k vertices in F , and let G0 = G − (F − F0). The set F0 is an FVS of size

k for the graph G0. Now we can proceed exactly the same way as we did in The-

orem E.2: let F − F0 = {v1, v2, . . . , vh}, where h ≤ c · k log k log log k − k, and let

Vi = V0 ∪ {v1, . . . , vi}, and Gi = G[Vi], for i = 0, 1, . . . , h. By repeatedly applying

the algorithm in Lemma E.1, we can either stop with a certain index i where the

induced subgraph Gi+1 has no FVS of size bounded by k (thus the original input

graph G has no FVS of size bounded by k), or eventually construct an FVS Fh of size

bounded by k for the graph Gh = G[Vh] = G. This process calls for the execution of

the algorithm in Lemma E.1 at most h = O(k log k log log k) times, and each execu-

tion takes time O(n34kk3k!). In conclusion, the dfvs problem can be solved in time

104

O(n34kk4k! log k log log k + n4.376 log2 n), where the second term in the complexity is

due to the approximation algorithm given in [41].

We presented a parameterized algorithm of running time O(n44kk3k!) for the

dfvs problem, which shows that the problem is fixed-parameter tractable, and re-

solves an outstanding open problem in parameterized computation and complexity.

Before we close the chapter, we give a few remarks on our results and on directions

for future research.

There is an edge version of the feedback set problem, which is called the

feedback arc set problem (briefly, the dfas problem): given a directed graph G

and a parameter k, either construct a set of at most k edges in G whose removal

leaves a DAG, or report that no such edge set exists. The dfas problem is also a

well-known NP-complete problem [53]. As shown by [41], the dfas problem and the

dfvs problem can be reduced in linear time from one to the other with the same

parameter. Therefore, our results also imply an O(n44kk3k!) time algorithm for the

dfas problem.

The techniques developed in this chapter for solving the skew separator prob-

lem seem to be powerful and generally useful in the study of a variety of separator

problems. For example, it has been used recently in developing improved algorithms

for a multi-cut problem on undirected graphs in which a separator is sought to (uni-

formly) separate a set of given terminals [23]. It will be interesting to identify the

conditions for the multi-cut problems under which these techniques (and their vari-

ations and generalizations) are applicable. In particular, it will be interesting to

see if the techniques are applicable to derive the fixed-parameter tractability of the

feedback vertex set problem on weighted and directed graphs. Note that the

fixed-parameter tractability of the problem on weighted and undirected graphs has

been derived recently [18].

105

It will be interesting to develop new techniques that lead to faster parameterized

algorithms for the dfvs problem and other related problems. For example, is it

possible that the dfvs problem can be solved in time O(cknO(1)) for a constant c?

Another direction is to look at the kernelization of the dfvs problem, by which we

refer to a polynomial-time algorithm that on an instance (G, k) of the dfvs problem,

produces a (smaller) instance (G′, k′) of the problem, such that the size of the graph

G′ (the kernel) is bounded by a function g(k) of k (but independent of the size of the

original graph G), that k′ ≤ k, and that the graph G has an FVS of size bounded

by k if and only if the graph G′ has an FVS of size bounded by k′. Since now it is

known that the dfvs problem is fixed-parameter tractable, by a general theorem in

parameterized complexity theory [37], such a kernelization algorithm exists for the

dfvs problem. However, how small can the size of the kernel G′ be? In particular,

can the kernel G′ have its size bounded by a polynomial of the parameter k? We note

that recently there has been progress in the study of kernelization for the feedback

vertex set problem on undirected graphs. [7] was able to give a kernel of size O(k3)

for the feedback vertex set problem on undirected graphs, and [8] have shown

that the feedback vertex set problem on undirected planar graphs has a kernel

of size O(k).

106

Algorithm SMC(G, [S1, . . . , Sl], [T1, . . . , Tl], k)
input: an instance (G, [S1, . . . , Sl], [T1, . . . , Tl], k) of the skew separator

problem.
output: a skew separator of size bounded by k for the pair

([S1, . . . , Sl], [T1, . . . , Tl]), or report “No” (i.e., no such separator
exists).

1. if l = 1 then solve the problem in time O(kn2);
2. if Rule R2 applies or k < 0 then return “No”;
3. if Rule R1 applies then

return SMC(G, [S1, . . . , Sl−1], [T1, . . . , Tl−1], k);
4. if Rule R3 applies on a vertex w

then return {w} ∪ SMC(G− w, [S1, . . . , Sl], [T1, . . . , Tl], k − 1); §
5. pick an Sl-extended vertex u0; let S ′l = Sl ∪ {u0};
6. let m be the size of a min-cut from Sl to Tall =

⋃l
i=1 Ti;

7. if m > k then return “No”;
8. let m′ be the size of a min-cut from S ′l to Tall;
9. if (m = m′)
9.1. then return SMC(G, [S1, . . . , Sl−1, S

′
l], [T1, . . . , Tl−1, Tl], k);

9.2. else X = {u0} ∪ SMC(G− u0, [S1, . . . , Sl], [T1, . . . , Tl], k − 1);
if X 6= “No” then return X;

9.3. else return SMC(G, [S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl], k).

§ For simplicity, we assume that a “No” plus anything gives a “No”.

Fig. 8. An algorithm for the skew separator problem.

107

Algorithm DBF(G,D1, D2, k)
input: an instance (G,D1, D2, k) of the dag-bipartition fvs problem.
output: a D1-FVS of size bounded by k for G, or report “No”

(i.e., no such D1-FVS exists).

1. for each topologically sorted order π = {v1, . . . , vh} of the vertices in
G[D2] do

1.1. construct the instance (Gπ, [{s1}, . . . , {sh}], [{t1}, . . . , {th}], k) of
the skew separator problem induced by (G,D1, D2, k) and π;

1.2. let X = SMC(Gπ, [{s1}, . . . , {sh}], [{t1}, . . . , {th}], k);
1.3. if X is a D1-FVS of size bounded by k for G

then return(X); stop;
2. return(“No”).

Fig. 9. An algorithm for the dag-bipartition fvs problem.

108

CHAPTER VI

MAX-LEAF

In this chapter, we give an fpt-algorithm of running time O∗(4k) for the max-leaf

out-branching problem on directed graphs, thus improving the previous best algo-

rithm of running time O∗(2O(k3 log k)) [12]. The algorithm also works for the max-leaf

out-branching problem on undirected graphs, thus improving the previous best al-

gorithm of running time O∗(6.75k) for the max-leaf spanning-tree problem on

undirected graphs [14].

As we do in previous chapters, we consider two measures for the max-leaf

out-branching problem on directed graphs. Our algorithm extends an out-tree

gradually into an out-branching Ts. During the process of extending an out-tree, we

divide the leaves of the out-tree into two subsets L1 and L2 such that leaves in L1

will reach exactly one leaf in Ts and the leaves may reach more than one leaves in

Ts. The sizes of L1 and L2 are the measures for our algorithm. These two measures

are indirect measures, since both are not the parameter–the number of leaves in an

out-branching–for the max-leaf out-branching problem.

A. Introduction

The max-leaf spanning-tree problem is to find a spanning tree with the maximum

number of leaves in an undirected graph. This problem has a version for directed

graphs (i.e., digraphs), which is the max-leaf out-branching problem. These

problems are of importance in many theoretical and practical applications [56, 97,

102]. The problems are NP-hard [53]. In terms of polynomial time approximability,

the max-leaf spanning-tree problem is APX-hard, and can be approximated

with a ratio 2 in polynomial time [95], while very recent research shows that the

109

max-leaf out-branching problem can be approximated with a ratio O(
√

n) in

polynomial time [40].

These problems have been intensively studied [1, 2, 9, 11, 12, 14, 43, 79, 95].

For the parameterized max leaf problem on undirected graphs, there is a chain of

improved algorithms: O((17k4)!) [9], then O((2k)4k) [36], then O(14.23k) [43], then

O(9.49k) [11] and finally O(6.75k) [14]. For the parametrized max leaf problem on

digraph, algorithm of time O(2O(k2logk)) was given for strongly connected digraph and

acyclic digraph [2], which was improved to O(2klog2k) for strongly connected digraph

and O(2klogk) for acyclic digraph. The parameterized max leaf problem on general

digraph was proposed as an open problem in [1], [2], and [58], and was shown to be

fixed-parameter tractable with an algorithm of time O(2O(k3logk)) [12].

The more general max-leaf out-branching problem seems more difficult.

The problem has become significantly interesting very recently because of its rich

combinatorial structures and challenging algorithmic techniques. In this chapter, we

present a simple branch-and-search algorithm of running time O∗(4k) that solves the

max-leaf out-branching problem. This result significantly improves the previous

best algorithm for the problem that runs in time O∗(2O(k log k)) [13]. The max-leaf

spanning-tree problem can be trivially reduced to the max-leaf out-branching

problem if we convert the input undirected graph G into a digraph by replacing each

undirected edge [uv] by two directed edges uv and vu. Therefore, our algorithm of

time O∗(4k) can be used to solve the max-leaf spanning-tree problem, improving

the previous best algorithm of running time O∗(6.75k) [14].

110

B. Preliminaries

All graphs in our discussion are simple graphs, i.e., there are no multiple edges from

a vertex to another vertex, and no self-loops on any vertex. For an edge xy in a

digraph G, the vertex x is called an in-neighbor of the vertex y, and the vertex y is

called an out-neighbor of the vertex x. The in-degree of a vertex x in G is the number

of in-neighbors of x, and the out-degree of a vertex x is the number of out-neighbors

of x.

A path P in a digraph G from a vertex x1 to another vertex xq is a sequence of

vertices P = x1 · · ·xq such that xixi+1 is an edge in G for all 1 ≤ i ≤ q− 1. The path

P is simple if no vertex is repeated in P . A vertex x can reach another vertex y (or

equivalently, the vertex y is reachable from the vertex x) in a digraph G if there is a

path from x to y in G.

An acyclic digraph T is an out-tree (rooted at a vertex r) if the vertex r has

in-degree 0 and for every vertex x in T there is a unique path from r to x. The vertex

r is the root of the out-tree T , and each vertex of out-degree 0 is a leaf of T . A vertex

x in T is an internal vertex if it is not a leaf. A k-out-tree is an out-tree that has at

least k leaves. An out-tree in a digraph G is a subgraph of G that is an out-tree. An

out-branching of a digraph G is an out-tree of G that contains all vertices of G. A

k-out-branching is an out-branching that has at least k leaves.

Let T be an out-tree in a digraph G, and let x0 be a leaf of T . An out-chain

π(l) of T is a simple path x0x1 . . . xq in G such that for all 0 ≤ i ≤ q − 1, xi+1 is the

only out-neighbor of xi not in T ∪ {x1, . . . , xi}. A y-truncated out-chain πy(l) of an

out-chain π(l), where y 6= l, is defined as follows: (1) if y ∈ π(l), then πy(l) is the

path from l to z in π(l), where z is the in-neighbor of y in π(l); and (2) if y /∈ π(l),

then πy(l) = π(l). Inductively, πy1,...,yq(l) is the yq-truncated out-chain of πy1,...,yq−1(l).

111

For a given set Q of out-chains of the out-tree T , a leaf l of T is determined if an

out-chain π(l) is included in Q. An ordered set Q of out-chains π(l1), . . . , π(lq) is

consistent if π(li) and π(lj) contain a common vertex z, then the path from z to the

last vertex of w π(li) is also in π(lj) for all 1 ≤ i < j ≤ q.

Let T be an out-tree in a digraph G with a given consistent set {π(l1), . . . , π(lp)}
of out-chains, and let k be a positive integer. A k-out-branching Ts is an extended

out-branching for (T ; π(l1), . . . , π(lp); k) such that (1) Ts and T have the same root,

(2) T is a subgraph of Ts, and (3) all vertices reachable in Ts from li are in π(li).

We formulate the following problem.

extending max-leaf: given a digraph T , an out-tree T in G with a

consistent set {π(l1), . . . , π(lq)} of out-chains, and a parameter k, either

construct an extended out-branching for (T ; π(l1), . . . , π(lp); k), or report

‘No’ if no such an out-branching exists.

In the rest of this chapter, (T ; π(l1), . . . , π(lp); k) also refers to the instance of

the extending max-leaf problem with inputs of an out-tree T , a consistent set of

out-chains {π(l1), . . . , π(lp)} for T , and an integer k.

The following reduction will play an important role in our discussion.

Definition An instance (T ; π(l1), . . . , π(lp); k) is reducible to another instance

(T ′; π′(l1), . . . , π′(lq); k′) if

(1) any extended out-branching for (T ′; π′(l1), . . . , π′(lq); k′) is an extended out-

branching for (T ; π(l1), . . . , π(lp); k);

(2)if there is an extended out-branching for (T ; π(l1), . . . , π(lp); k), there is an

extended out-branching for (T ′; π′(l1), . . . , π′(lq); k′).

112

It is easy to verify that the above reduction is a transitive relation.

The following notations will be used to simplify our discussion.

• T + xy1 + . . . + xyq is the the resulting graph after adding edge xy1, . . . , xyq to

T and including vertex yi in T + xy if yi is not in T for all 1 ≤ i ≤ q.

• T − zy is the resulting graph after removing edge zy from T and keeping all

vertices of T in T − zy.

• G−T is the resulting graph after removing all edges between vertices of T from

G.

In the rest of this section, we give two lemmas on out-trees and out-branchings,

which will be used in our later discussion.

Lemma B.1 Let T and T ′ be two out-trees in a digraph with the same root such that

T ′ is a subgraph of T , and let l be a leaf of T ′ and y 6= l be a vertex in T ′. Then l

cannot reach y in T .

Proof. Since y is a vertex of T ′ and T ′ is an out-tree, there is a unique path P1

in T ′ from the root r of T ′ to y, which obviously does not pass through the leaf l

because l has out-degree 0 in T ′. Since T ′ is a subgraph of T , P1 is also a path from

r to y in T . Now if l can reach y in T , then the unique path in T from r to l followed

by the path from l to y in T forms a second path P2 from r to y in T that passes

through the vertex l. This contradicts the assumption that T is an out-tree since r

is also the root of T .

Lemma B.2 Let Ts be an out-branching and T be a k-out-tree in a digraph such

that Ts and T have the same root r and T is a subgraph of Ts. Then Ts is a k-out-

branching.

113

Proof. Let {l1, . . . , lp} be the set of all leaves of T . For each 1 ≤ i ≤ p, let Li

be the set of leaves of Ts that can be reached from li in Ts. Note that each set Li

contains at least one vertex in Ts.

We prove that no two sets Li and Lj share a common vertex. Suppose that

w ∈ Li∩Lj. Then the unique path P ′
i in T (which is also the unique path in Ts) from

the root r to li followed by a path P ′′
i from li to w in Ts forms a path Pi in Ts from

the root r to w. Similarly, there is a path Pj in Ts from the root r to w that passes

through the vertex lj. Since Ts is an out-tree, we must have Pi = Pj. In consequence,

the path Pi in Ts contains the vertex lj. Since both li and lj are leaves in T , the

unique path P ′
i in T from r to li does not contain the vertex lj. Therefore, the vertex

lj must be contained in the path P ′′
i from li to w, so li can reach lj in Ts. However,

this is impossible according to Lemma B.1.

Therefore, Ts has at least |L1| + · · · + |Lp| ≥ p leaves. Since T is a k-out-tree,

p ≥ k. Thus, Ts is a k-out-branching.

C. Extending an Out-tree

Throughout the discussion of this section, we let T be an out-tree with the root r in

a digraph G, a given consistent set {π(l1), . . . , π(lp)} of out-chains for T . Let x be

a vertex in T that is not a determined leaf of T and let y be an out-neighbor of x

in G − T . In subsection 1, we discuss some properties that are useful for reducing

the instance (T ; π(l1), . . . , π(lp); k) to the instance (T + xy; πy(l1), . . . , πy(lp); k). In

subsection 2, we show that the results in subsection 1 can be generalized to the case

where many out-neighbors of x in G−T are considered. Furthermore, if T is already

a k-out-tree, then we can solve the instance (T ; π(l1), . . . , π(lp); k) in polynomial time,

which gives a boundary condition for our algorithm.

114

1. Properties for Extending an Out-tree

We first verify that T + xy is an out-tree in G and that the y-truncated out-chains

πy(l1), . . ., πy(lp) are a consistent set of out-chains for T +xy. This is necessary before

we can discuss the extendability of (T + xy; πy(l1), . . . , πy(lp); k).

Lemma C.1 T + xy is an out-tree with root r in the digraph G.

Proof. Since the vertex y has out-degree 0 in T + xy, it cannot help creating any

new path in T + xy from the root r to any vertex w 6= y in T + xy. Thus, there is a

unique path from the root r to w in T +xy. Moreover, since x is the only in-neighbor

of y in T + xy, the only path from the root r to y in T + xy must be the unique path

from r to x followed by the edge xy. Finally, y is of in-degree one, r is of in-degree

zero, and any other vertex w 6= r of T is of in-degree one in T +xy. Therefore, T +xy

is an out-tree.

Lemma C.2 The truncated out-chains πy(l1), . . ., πy(lp) is a consistent set of out-

chains for T + xy.

Proof. Pick any out-chain of T : π(li) = {u0, u1, . . . , uq}, where u0 = li. Then uj

has a unique out-neighbor uj+1 in G− (T ∪ {u0, . . . , uj}) for all 0 ≤ j ≤ q− 1. Thus,

and by that T is a subgraph of T + xy and the definition of out-chain, uj+1 is the

unique out-neighbor in G − (T + xy + u0 · · ·uj) for any uj ∈ πy(li) except the last

vertex in πy(li). So πy(li) is an out-chain of T + xy for all 1 ≤ i ≤ p.

It is given that π(l1), . . . , π(lp) is a consistent set of out-chains for T , i.e., if z is

in both π(li) and π(lj) where i < j, then the path from z to the last vertex w of π(li)

is in π(lj). Let z be a common vertex of πy(li) and πy(lj) where 1 ≤ i < j ≤ q. If

y 6= w is in the path from w to the last vertex of π(lj), then πy(li) = π(li) and πy(lj)

is the path from lj to the in-neighbour of y in πy(lj), which also includes the path

from z to w in π(li). That is, the path from z to w in πy(li) is also in πy(lj). If y is

115

in the path from z to w in π(li), let p be the in-neighbour of y in π(li). Then πy(li)

is the path from li to p in π(li), and πy(lj) is the path from lj to p in π(li). Since the

path from z to w is in both π(li) and π(lj), and y is in the path from z to w, the

path from z to p is in both πy(li) and πy(lj). If y 6= z is either in the path from li

to z in π(li) or in the path from lj to z in π(lj), πy(li) and πy(lj) have no common

vertex. Finally, if y is not in π(li) nor π(lj), πy(li) = π(li) and πy(lj) = π(lj). Thus,

the path from z to the last vertex of πy(li) in πy(li) is in πy(lj). In summary, if πy(li)

and πy(lj) have a common vertex z, the path from z to the last vertex of πy(li) is in

πy(lj) for all 1 ≤ i ≤ j. Therefore, the set {πy(l1), . . . , πy(lp)} of truncated out-chains

is consistent.

Lemma C.3 Any extended out-branching for (T + xy; πy(l1), . . . , πy(lp); k) is an ex-

tended out-branching for (T ; π(l1), . . . , π(lp); k).

Proof. Let Ts be an extended out-branching for (T + xy; πy(l1), . . . , πy(lp); k). By

the definition we have: (1) Ts is a k-out-branching; (2) T + xy and Ts has the same

root r; (3) T + xy is a subgraph of Ts; and (4) all vertices reachable in Ts from li are

in πy(li). We show Ts is also an extended out-branching for (T ; π(l1), . . . , π(lp); k).

By Lemma C.1, T and T + xy have the same root. Thus, by (2), T and Ts have

the same root. Since T is a subgraph of T + xy, by (3) T is also a subgraph of Ts.

Finally, since πy(li) ⊆ π(li), by (4), all vertices reachable in Ts from li are in π(li). In

conclusion, Ts is an extended out-branching for (T ; π(l1), . . . , π(lp); k).

In the rest of this section, we assume that Ts is an extended out-branching for

(T ; π(l1), . . . , π(lp); k). Let z be the (unique) in-neighbor of y in Ts. We will prove

that Ts− zy + xy is an extended out-branching for (T + xy; πy(l1), . . . , πy(lp); k). We

first prove the following properties.

116

Lemma C.4 T + xy is a subgraph of Ts − zy + xy.

Proof. Since T is a subgraph of Ts, and y 6∈ T so the edge zy is not in T , all

edges in T are in Ts − zy + xy. Moreover, the edge xy is contained in Ts − zy + xy.

Therefore, all edges in T +xy are in Ts−zy+xy i.e., the out-tree T +xy is a subgraph

of Ts − zy + xy.

Lemma C.5 Ts − zy + xy is an out-branching of G with root r. Moreover, if x is

not a leaf of T , then Ts − zy + xy is an k-out-branching of G with root r.

Proof. Since Ts is an out-branching of the digraph G, by the definition, Ts−zy+xy

is also rooted at r and contains all vertices in G. For any vertex w in G, if the unique

path Pw in Ts from the root r to w does not pass through the vertex y, then Pw is

also a path in Ts − zy + xy. On the other hand, if the path Pw from r to w is a

concatenation of a path P ′
w from r to y and a path P ′′

w from y to w, then the path

in T from r to x (note that zy 6∈ T) followed by the edge xy then by the path P ′′
w (

zy /∈ Pw“ since y is of in-degree one) makes a path in Ts − zy + xy from r to w. The

uniqueness of the path in Ts− zy +xy from r to w can be easily verified because each

vertex in Ts − zy + xy has in-degree bounded by 1.

If x is not a leaf of Ts, then deleting the edge zy then adding the edge xy can not

decrease the number of vertices of degree 0 in the out-branching. Thus, Ts− zy + xy

has at least as many leaves as that of Ts. Since Ts is an extended out-branching for

(T ; π(l1), . . . , π(lp); k), Ts has at least k leaves. In consequence, Ts − zy + xy is a

k-out-branching.

Lemma C.6 The vertices reachable in Ts− zy + xy from a determined leaf li are all

in πy(li).

Proof. We first prove that the vertices reachable in Ts − zy + xy from the

determined leaf li are all in π(li). Suppose that li can reach a vertex w /∈ π(li) in

117

Ts− zy +xy via a path P . Then the edge xy must be in P . Otherwise, the path P is

also in Ts and li can reach w /∈ π(li) in Ts, contradicting the assumption that Ts is an

extended out-branching for (T ; π(l1), . . . , π(lp); k). Thus, li can reach x in Ts, which

is impossible by Lemma B.1 because both li and x are in T , and li is a determined

leaf of T but x is not a determined leaf. This contradiction proves that all vertices

reachable in Ts − zy + xy from ll must be in π(li).

Now we prove that the vertices reachable in Ts− zy +xy from li are all in πy(li).

If y /∈ π(li), then πy(li) = π(li), and the lemma is proved by the above analysis.

Suppose y ∈ π(li) and li can reach a vertex w ∈ π(li)−πy(li) via a path P ′. Since li is

a leaf of T , by Lemma B.1 any vertex u 6= li of T cannot be in P ′. Thus, πy(li)∪ {y}
must be in P ′. However, since (1) both li and y are in T +xy, (2) li is a leaf of T +xy,

(3) Ts−zy +xy have the same root as T by Lemmas C.1 and C.5, and (4) T +xy is a

subgraph of Ts− zy + xy by Lemma C.4, therefore, li can not reach y in Ts− zy + xy

by Lemma B.1. Thus, all vertices reachable from li in Ts− zy +xy are in πy(li) when

y ∈ π(li).

2. Extending an Out-tree

Now, we are ready to show that we can extend T +xy instead of T . Note that T +xy

can be found in polynomial time, and this can occur at most n times because T + xy

has one more vertex than T . Thus, this is an efficient operation without branching.

Lemma C.7 If x is an internal vertex of T , the instance (T ; π(l1), . . . , π(lp); k) is

reducible to the instance (T + xy; πy(l1), . . . , πy(lp); k)1.

Proof. Let Ts be an extended out-branching for (T ; π(l1), . . . , π(lp); k). By

1by lemma C.2, {πy(l1), . . . , πy(lp)} is a consistent set of out-chains. The require-
ment on a consistent set of out-chains can be verified to be true for instances discussed
in this chapter. We ignore this in later discussions.

118

Lemma C.5, Ts − zy + xy is a k-out-branching with root r where z is the unique

in-neighbour of y in Ts. Thus Ts − zy + xy and T + xy have the same root ac-

cording to Lemma C.1, and T + xy is a subgraph of Ts − zy + xy by Lemma C.4.

Finally, all vertices reachable in Ts − zy + xy from a determined leaf li are in πy(li)

by Lemma C.6. In consequence, Ts − zy + xy is an extended out-branching for

(T + xy; πy(l1), . . . , πy(lp); k).

By Lemma C.3, any extended out-branching for (T + xy; πy(l1), . . . , πy(lp); k) is

an extended out-branching for (T ; π(l1), . . . , π(lp); k). This completes the proof of the

lemma.

Lemma C.7 can be generalized to the case where we add many out-neighbors of

the vertex x in G − T to the out-tree T . For this, let y1, . . ., yq be out-neighbors of

x in G− T .

Lemma C.8 If x is an internal vertex of T , the instance (T ; π(l1), . . . , π(lp); k) is

reducible to the instance (T + xy1 + . . . + xyq; πy1,...,yq(l1), . . . , πy1,...,yq(lp); k).

Proof. We prove the lemma by induction on q. The initial case q = 1 is proved

by Lemma C.7.

Now suppose that when q = i, the instance (T ; π(l1), . . . , π(lp); k) is reducible to

the instance (T + xy1 + . . . + xyi; πy1,...,yi
(l1), . . . , πy1,...,yi

(lp); k). For q = i + 1, note

that T +xy1 + . . .+xyi+1 is the out-tree T +xy1 + . . .+xyi plus the edge xyi+1 where

yi+1 /∈ T+xy1+. . .+xyi, and the truncated out-chain πy1,...,yi,yi+1
(lj) is a yi+1-truncated

out-chain of the out-chain πy1,...,yi
(lj) for the tree T +xy1+. . .+xyi for all j. Moreover,

the vertex x is obviously an internal vertex of the tree T +xy1 + . . .+xyi. Therefore,

by Lemma C.7 again, the instance (T + xy1 + . . . + xyi; πy1,...,yi
(l1), . . . , πy1,...,yi

(lp); k)

is reducible to the instance (T + xy1 + . . . + xyi+1; πy1,...,yi+1
(l1), . . . , πy1,...,yi+1

(lp); k).

Now the transitivity of the reduction proves that the instance (T ; π(l1), . . . , π(lp); k)

119

is reducible to the instance (T + xy1 + . . . + xyi+1; πy1,...,yi+1
(l1), . . . , πy1,...,yi+1

(lp); k),

and the induction goes through.

The conditions in the previous lemmas can be further relaxed without requiring

that the vertex x be an internal vertex of T , if the out-tree T is a k-out-tree, as shown

in the following lemmas.

Lemma C.9 Suppose that x is not a determined leaf of T and T is a k-out-tree.

Then T +xy is a k-out-tree and the instance (T ; π(l1), . . . , π(lp); k) is reducible to the

instance (T + xy; πy(l1), . . . , πy(lp); k).

Proof. By Lemma C.1, T +xy is an out-tree with root r. The number of leaves of

T + xy cannot be less than that of T because adding the edge xy to T adds a vertex

y of out-degree 0 and may change the out-degree of at most one vertex in T (i.e., x).

Since T is a k-out-tree, T + xy is also a k-out-tree. Next we show that the instance

(T ; π(l1), . . . , π(lp); k) is reducible to the instance (T + xy; πy(l1), . . . , πy(lp); k).

By Lemma C.3, any extended out-branching for (T + xy; πy(l1), . . . , πy(lp); k)

is an extended out-branching for (T ; π(l1), . . . , π(lp); k). Now suppose that there is

an extended out-branching Ts for (T ; π(l1), . . . , π(lp); k). By Lemma C.5, the graph

Ts−zy+xy is an out-branching. Since T is a subgraph of Ts−zy+xy by Lemma C.4

and T is a k-out-tree, Ts−zy+xy is a k-out-branching by Lemma B.2. Also Ts−zy+xy

and T +xy have the same root r according to Lemma C.1 and Lemma C.5. Moreover,

T + xy is a subgraph of Ts − zy + xy by Lemma C.4. Finally, all vertices reachable

in Ts − zy + xy by a determined leaf li are in πy(li) by Lemma C.6. So Ts − zy + xy

is a (T + xy; πy(l1), . . . , πy(lp); k)-extended out-branching.

Therefore, T+xy is a k-out-tree with root r and the instance (T ; π(l1), . . . , π(lp); k)

is reducible to the instance (T + xy; πy(l1), . . . , πy(lp); k).

120

Similarly, we can generalize Lemma C.9 to many out-neighbors of the vertex x.

For this, again let y1, . . ., yq be out-neighbors of x in G− T .

Lemma C.10 When T is a k-out-tree, the instance (T ; π(l1), . . . , π(lp); k) is reducible

to the instance (T + xy1 + . . . + xyq); πy1,...,yq(l1), . . . , πy1,...,yq(lp); k), if x is not a

determined leaf of T .

Proof. The lemma is proved by induction on q. The initial case q = 1 is proved

by Lemma C.9, and the inductive step is proved by Lemma C.9 and the transitivity

of the reduction.

Lemma C.10 is very useful since it implies that by continuously adding out-

neighbors of a undetermined leaf, if T is already a k-out-tree, we can find an extended

out-branching for (T, ; π(l1), . . . , π(lp); k). This will be discussed in the following

algorithm and its proof.

Theorem C.11 For a given k-out-tree T in a digraph G of n vertices, with a set

{π(l1), . . . , π(lp)} of out-chains for T , the algorithm SpanTree(G, T ; π(l1), . . . , π(lp); k)

runs in polynomial time and (1) either constructs an extended out-branching for

(T ; π(l1), . . . , π(lp); k) if such one exists, or (2) reports ‘No’ otherwise.

Proof. We first prove the correctness of the algorithm by showing that (1) the in-

stance (T1; π1(l1), . . . , π1(lq); k) before step 2 is reducible to (T2; π2(l1), . . . , π2(lq); k),

the instance before step 3, (2) step 3 returns ‘No’ correctly, (3) step 4 construct an ex-

tended out-branching for the instance (T4; π4(l1), . . . , π4(lq); k) before step 4, and (4)

step 5 returns an extended out-branching for the instance (T4; π4(l1), . . . , π4(lq); k).

Claim S does not contain any determined leaf of T . Moreover, any vertex of T

which have out-neighbours in G− T is either in S or a determined leaf of T .

We prove this Claim by induction on the number of iterations of the while loop

in step 2.

121

SpanTree(G, T ; π(l1), . . . , π(lp); k)
input: a k-out-tree T in a digraph G with a {π(l1), . . . , π(lp)} of

out-chains for T , and a parameter k
output: an extended out-branching for (T ; π(l1), . . . , π(lp); k) if

there is such one, or “No” otherwise

1. S = T − {l1, . . . , lq};
2. while S 6= ∅ do

pick any vertex x ∈ S;
2.1 if x has out-neighbors y1, . . ., yq in G− T then

for i = 1 to p do π(li) = πy1,...,yq(li);
T = T + xy1 + . . . + xyq;
S = (S ∪ {y1, . . . , yq})− {x};

2.2 else S = S − {x};
3. if there is a vertex x 6∈ T ∪ {π(l1), . . . , π(lp)} then return ‘No’;
4. for i = p to 1 do

x = li;
4.1 while x has an out-neighbor in π(li) do

T = T + xy; x = y;
5. return T .

Fig. 10. Algorithm for the span k-out-tree problem

Before the first iteration of the while loop in step 2, S contains all vertices of

T which are not determined leaves of T , according to step 1. Thus S contains all

possible vertices of T which are not determined leaves of T and have out-neighbours

in G− T .

Now assume that S does not contain any determined leaf of T , and any vertex of

T which has out-neighbours in G− T is either in S or a determined leaf of T before

a iteration of the while loop at step 2. We need to show that this is true before the

next iteration of the while loop in step 2.

In step 2.1, only y1, . . . , yq, which are not in T , are added to T , and no out-chains

of y1, . . . , yq for T +xy1 + . . .+xyq are created. So S does not contain any determined

122

leaf of T +xy1 + . . .+xyq. Moreover, the vertices of T +xy1 + . . .+xyq are the vertices

of T plus y1, . . . , yq. By our inductive hypothesis, any vertex in T + xy1 + . . . + xyq

which has out-neighbours not in T + xy + . . . + xyq is either in S ∪ {y1, . . . , yq} or

a determined leaf of T which is also a determined leaf of T + xy + . . . + xyq. Since

T +xy + . . .+xyq is the T and S ∪{y1, . . . , yq} is the S before the next iteration, the

Claim is true before the next iteration of the while loop in step 2.

In step 2.2, x has no out-neighbours in G− T , according to the condition of the

if statement in step 2.1. By out inductive hypothesis, S − x does not contain any

determined leaf of T , and any vertex of T which have out-neighbours in G − T is

either in S − x or a determined leaf of T . Since the T before the next iteration is the

same T before this iteration, and the S before the next iteration is S − x, the Claim

is true before the next iteration of the while loop in step 2. This completes the proof

of the Claim.

By the Claim, S in step 2.1 does not contain any determined leaf of T . Then

x ∈ S in step 2.1 is not a determined leaf of T . By Lemma C.10 and that k is a k-out-

tree, the instance (T ; π(l1), · · · , π(lq); k) before in step 2.1 is reducible to the instance

(T + xy1 + · · · + xyq; πy1,··· ,yq(l1), · · · , πy1,··· ,yq(lq); k). Therefore, by the transitivity

of the reduction, the instance (T1; π1(l1), . . . , π1(lq); k) before step 2 is reducible to

(T2; π2(l1), . . . , π2(lq); k), the instance before step 3.

By the Claim, only determined leaves of T3 can have out-neighbours in G− T3.

Since any determined leaf li of Ti can only reach vertices in π(li), step 3 returns ‘NO’

correctly, if there is a vertex x not in T nor in any out-chain.

After step 3, every vertex not in T is in some out-chain. We prove that step 4

finds an extended out-branching Ts for the instance (T4; π4(l1), . . . , π4(lq); k) where

Ts is the T after step 4 by the following loop invariant: before the tth execution of

step 4.1, T is an out-tree with the same root as T4, the vertices of any out-chain in

123

the ordered set {π4(lp−t+2), . . . , π4(lp−1), π4(lp)} are in T , and if a vertex w of π4(lj)

where j < p− t + 2 is in T , then the vertices in the path from w to the last vertex of

π4(lt) are in T . Note that i = p− t + 1 for the tth execution of step 4.1.

The initialization case is when i = 1, since T4 is an out-tree and the ordered set

{π4(lp−t+2), . . . , π4(lp)} is empty (p− t + 2 = p + 1 > p). That is, the loop invariant

is true for t = 1. Suppose the loop invariant is true before the tth execution of step

4.1, i.e., before the tth execution of step 4.1, T is an out-tree with the same root as

T4, the vertices of any out-chain in π4(lp−t+2), . . . , π4(lp−1), π4(lp) are in T , and if a

vertex w of π4(lj) where j < p − t + 2 is in T , then the vertices in the path from w

to the last vertex of π4(lt) are in T .

We show it is still true before the (t+1)th iteration. When the step 4.1 is skipped

because all vertices of π(lp−t+1) are already in T , then the loop invariant still holds,

since nothing changes.

During the tth execution of step 4.1, all remaining vertices of π4(lp−t+1) which

are not in T yet are included in T during step 4.1. So all vertices of π4(lp−t+1) are in

T after the tth execution of step 4.1. If a vertex w /∈ T of π4(lj) where j < p− t+1 is

visited during the tth execution of step 4.1, then all vertices from w to the last vertex

of π4(lj) are in T after the tth execution of step 4.1, since the set {π(l1), . . . , π(lq)} is

consistent.

Moreover, the T before the (t + 1)th execution of step 4.1, is still an out-tree

with the same root as the T before the tth execution, since the ith execution of step

4.1 just adding a path to a leaf of T . By our inductive hypothesis, the T before the

tth execution of step 4.1 has the same root as T4. Thus, the T before the (t + 1)th

execution of step 4.1, has the same root as T4. In consequence, the loop invariant is

true before the (t + 1)th execution of step 4.1.

When the for loop terminates, Ts = T is an out-tree with the same root as T4

124

(by the transitivity of the reduction), and all vertices in π4(l1), . . . , π4(lq) are in T .

Thus, Ts is an out-branching with the same root as T4. Since T4 is a subgraph of Ts

(no edges of T are removed during step 4), Ts is a k-out-branching by Lemma B.2.

By step 4.1, li can only reach vertices in π4(li) in Ts for all 1 ≤ i ≤ q. So Ts is an

extended out-branching for (T4; π4(l1), . . . , π4(lq); k).

Step 5 returns Ts constructed in step 4, which is an extended out-branching for

(T4; π4(l1), . . . , π4(lq); k).

Summarizing the above discussion, we conclude that the algorithm SpanTree

either constructs an extended out-branching for (T ; π(l1), . . . , π(lp); k) if such one

exists, or correctly reports ‘No’ otherwise.

Now we analyze the complexity of the algorithm.

In both step 2.1 and 2.2, a vertex is removed from S. Only in step 2.1, vertices

are added into S. However, only vertices not in T may be added into S in step 2.1,

and these vertices are in T once they are added into S. So any vertex can be added

into S at most one time. In consequence, step 2 can not be executed with more than

n iterations. It is obvious that steps 2.1 and 2.2 take polynomial time. Thus, step 2

can be done in polynomial time. Moreover, we can see that steps 3, 4 and 5 can be

done in polynomial time. Therefor, the algorithm SpanTree runs in polynomial time.

D. The Main Algorithm and Complexity Analysis

Before we solve the max-leaf out-branching problem, we give an algorithm to

solve the problem extending max-leaf with inputs (T ; π(l1), . . . , π(lp); k) on a

digraph G, which is used as a subroutine for the algorithm solving the max-leaf

out-branching problem. Consider the algorithm ExtendTree given in Figure 11.

125

ExtendTree(G, T ; π(l1), . . . , π(lp); k)
input: an out-tree T in a digraph G, a consistent set {π(l1), . . . , π(lp)}

of out-chains for T , and a parameter k
output: an extended out-branching for (T ; π(l1), . . . , π(lp); k) if such

one exists, or “No” otherwise.

1. if T is an out-branching with fewer than k leaves then return ‘No’;
2. if T has at least k leaves then

return SpanTree(G, T ; π(l1), . . . , π(lp); k);
3. if an internal vertex x ∈ T has out-neighbors y1, . . ., yq in G− T

then return
ExtendTree(G, T + xy1 + . . . + xyq; πy1,...,yq(l1), . . . , πy1,...,yq(lp); k);

4. if all leaves of T are determined leaves then return ‘No’;
5. x = any undetermined leaf l of T ;

π(l) = x; xs = x;
while xs has a unique out-neighbor y in G− (T ∪ π(l)) do

add y to π(l); xs = y;
if xs has no out-neighbors in G− (T ∪ π(l)) then

6. return ExtendTree(G, T ; π(l1), . . . , π(lp), π(l); k);
7.1 else T ′ =ExtendTree(G, T ; π(l1), . . . , π(lp), π(l); k);

if T ′ is not ‘No’ then return T ′;
7.2 let y1, . . .,yq be the out-neighbors of xs in G− (T ∪ π(l)), return

ExtendTree(G, T+π(l)+xsy1+. . .+xsyq; πy1,...,yq(l1), . . . , πy1,...,yq(lp); k)

Fig. 11. Algorithm for the extending max-leaf problem

Theorem D.1 For a given out-tree T in a digraph G of n vertices, with a consis-

tent set {π(l1), . . . , π(lp)} of out-chains for T , the algorithm ExtendTree runs in time

O∗(4k) and either constructs an extended out-branching for (T ; π(l1), . . . , π(lp); k) if

such one exists, or reports ‘No’ otherwise.

Proof. We first verify the correctness of the algorithm.

If the input T is already an out-branching with less than k leaves, then there is

no extended out-branching for (T ; π(l1), . . . , π(lp); k). So step 1 reports ‘No’ correctly.

If T is a k-out-tree, then by Theorem C.11, the algorithm SpanTree either constructs

126

an extended out-branching for (T ; π(l1), . . . , π(lp); k) if such one exists, or reports

‘No’ otherwise. Therefore, step 2 is correct. In step 3, x is an internal vertex of

T . By Lemma C.8, the instance (T ; π(l1), . . . , π(lp); k) is reducible to the instance

(T + xy1 + . . . + xyq); πy1,...,yq(l1), . . . , πy1,...,yq(lp); k). Thus, step 3 is correct.

After step 3, only leaves of T may have out-neighbors in G− T and T has fewer

than k leaves. Suppose that Ts is an extended out-branching for (T ; π(l1), . . . , π(lp); k).

Then any determined leaf li of T can only reach vertices of π(li) in Ts. By the def-

inition of out-chains, li can only reach vertices in π(li) one by one in Ts. So li can

only reach one leaf in Ts. If all leaves of T are determined leaves, then Ts has fewer

than k leaves since T has fewer than k leaves. This contradicts that Ts is an extended

out-branching for (T ; π(l1), . . . , π(lp); k). Therefore, step 4 returns ‘No’ correctly.

After step 4, T has fewer than k leaves and some leaves of T are not determined

leaves. Step 5 constructs an out-chain π(l) for an undetermined leaf l such that the

end vertex xs of π(l) either has at least two out-neighbors or has no out-neighbors in

G− (T ∪ π(l)). Note that π(l) can be {l}. Moreover, for any 1 ≤ i ≤ p, if π(li) and

π(l) have a common vertex z, then the path from z to the last vertex w of π(li) must

be in π(l).

Otherwise, let t be the first vertex in the path from z to w in π(li) which is not

in π(l), and let p be the in-neighbour of t in π(l). Since z is in π(l), t 6= z and since

t 6= l, p is in π(l). Since pt is in π(li), p has only an out-neighbour t not in T , the

out-tree for which we construct π(li). Algorithm ExtendTree does remove edges from

T , so T is a subgraph of the out-tree T ′, for which π(l) is constructed. Thus, p still

has at most one out-neighbour t not in T ′. If p has t as the only out-neighbour not

in T ′, then t should be added into π(l) in step 5, contradicting the assumption that t

is not in π(l). If p has no out-neighbours not in T ′, then t is in T ′. Only steps 3 and

7.2 add to T ′ vertices not in T . Both steps would change π(li) to πt(li), which should

127

not contain t. This contradicts that π(li) contains t. In consequence, the path from z

to the last vertex w of π(li) must be in π(l). Therefore, the set {π(l1), . . . , π(lp), π(l)}
of out-chains is consistent.

If the last vertex xs of π(l) has no out-neighbor in G − (T ∪ π(l)), then all

vertices reachable from l are in π(l) for all possible extended out-branching for

(T ; π(l1), . . . , π(lp); k). This means that (T ; π(l1), . . . , π(lp), π(l); k) is the only in-

stance to solve. So step 6 is correct.

Now suppose xs has more than one out-neighbors in G − (T ∪ π(l)). If there

is an extended out-branching Ts for (T ; π(l1), . . . , π(lp), π(l); k), then Ts is also a

(T ; π(l1), . . . , π(lp); k)-extended out-branching. So step 7.1 is correct. If step 7.1

can not find an out-branching for (T ; π(l1), . . . , π(lp), π(l); k), then for any possible

extended out-branching Ts for (T ; π(l1), . . . , π(lp); k), the vertices reachable in Ts from

l must contain some vertex xs not in π(l). This can only happen when xs is reachable

from l and xs is not a leaf in Ts, i.e, xs is an internal vertex of Ts. Then all vertices

in π(l) should be reachable from l in Ts. By Lemma C.8, (T ; π(l1), . . . , π(lp); k) is

reducible to (T + π(l) + xxy1 + . . . + xsyq); πy1,...,yq(l1), . . . , πy1,...,yq(lp); k). Thus step

7.2 is correct.

Summarizing the above discussion, we conclude that the algorithm ExtendTree

correctly solves the instance (T ; π(l1), . . . , π(lp); k) of the extending max-leaf

problem.

Now we consider the complexity of the algorithm.

Let u the number of leaves of T , p be the number of determined leaves of T ,

then a = k − u and b = k − p. Let f(a, b) = a + b = 2k − u − p be the complexity

of the algorithm ExtendTree. We use the search-tree method to analyze the time

complexity. Step 1 takes time O(n). Step 2 takes time O(n2) by Theorem C.11.

Steps 3, 4, and 5 can be done in time polynomial of n.

128

At step 6, the leaf l becomes a determined leaf from a undetermined leaf. So

u′ = u and p′ = p + 1. Then the complexity changes from f(a, b) = 2k − u − p

to f ′(a′, b′) = 2k − u − p − 1 = f(a, b) − 1. At step 7.1, the complexity is the

same as step 6: f(a1, b1) = 2k − u − p − 1 = f(a, b) − 1. Since xs has at least two

out-neighbors in step 7.2, u′ = u + 1 and p′ = p. So the complexity of step 7.2 is

f(a2, b2) = 2k− u− p− 1 = f(a, b)− 1. Since steps 7.1 and 7.2 are two branches, we

have the recurrence equation: f(a, b) = 2f(a, b)− 1.

Initially, a+ b = 2k−u−p ≤ 2k. When either a = k−u = 0 or b = k−p = 0, T

is a k-out-tree. By Theorem C.11, extending(T ; π(l1), . . . , π(lp); k) can be solved in

time of O(n2), i.e., no branches are needed when a = 0 or b = 0. Then when a+b = 0,

no branches are needed for ExtendTree, i.e., f(0, 0) = 1. By f(a, b) = 2f(a, b) − 1,

we have f(a, b) ≤ 2a+b = O(4k), which is an upper bound of the total number of

leaves in the search-tree for the algorithm ExtendTree. Since steps 1, 2, and 4 are

executed only once, steps 3 and 5 are executed at most O(n) times from the root to

a leaf in the search-tree, the depth of the search-tree is O(n), and the running time

is polynomial of n for each step, the total running time of SpanTree is O∗(4k).

Now we are ready to present our algorithm for the max-leaf out-branching

problem.

Theorem D.2 There is an algorithm to solve the max-leaf out-branching prob-

lem in time O(n44k).

Proof. The algorithm for solving the max-leaf out-branching problem is

very simple: for each vertex x ∈ G, we call the algorithm ExtendTree(G, T + xy1 +

. . . + xyq); ∅; k) where (1) T is the single vertex x; (2) y1, . . ., yq are all out-neighbors

of x in G; and (3) ∅ means that all leaves of T + xy1 + . . . + xyq are not determined.

If an extended out-branching Ts for (T + xy1 + . . . + xyq; ∅; k) is found for some x,

129

then Ts is an k-out-branching of G; otherwise reports ‘No’.

To prove that the algorithm is correct, we prove the following claim.

Claim. If there is an k-out-branching Ts of G whose root is r with out-neighbour

y1, . . . , yq, then ExtendTree(G, T +xy1+. . .+xyq; ∅; k) find an extended out-branching

for (T + xy1 + . . . + xy; ∅; k).

First r must have some out-neighbor z in Ts, and z must be in {y1, . . . , yq}.
Suppose that z = y1. Then Ts is an extended out-branching for (T + ry1; ∅; k) since

(1) Ts is a k-out-branching; (2) Ts and T + ry1 have the same root r; (3) T + ry1

is a subgraph of Ts; and (4) all vertices reachable in Ts from a determined leaf li of

T + ry1 are in π(li) since there is no determined leaf in T + ry1. Therefore, Ts is

an extended out-branching for (T + ry1; ∅; k), i.e., we only need to solve the instance

(T + ry1; ∅; k).

Now r is an internal vertex of T + ry1, so the instance (T + ry1; ∅; k) is reducible

to the instance (T + ry1 + . . . + ryq, ∅; k) by Lemma C.8. Since there is an extended

out-branching for (T + ry1; ∅; k), there is an extended out-branching for (T + ry1 +

. . . + ryq; ∅; k). Thus ExtendTree(G, T + ry1 + . . . + ryq; ∅; k) will find an extended

out-branching for (T + ry1 + . . . + ry; ∅; k). This proves the Claim.

If there is a k-out-branching Ts rooted at r for G, the algorithm above for

the max-leaf out-branching problem must call ExtendTree(G, T + ry1 + . . . +

ryq); ∅; k), where y1, . . ., yq are the out-neighbors of the vertex r, since ExtendTree is

executed on every vertex in G. By our claim, ExtendTree(G, T + ry1 + . . .+ ryq; ∅; k)

will find an extended out-branching for (T + ry1 + . . . + ry; ∅; k), which is a k-out-

branching by definition.

If no extended out-branching for (T +xy1+. . .+xyq); ∅; k) is found for any x ∈ G,

then there is no k-out-branching of G by our Claim. In summary, the algorithm for

the max-leaf out-branching problem is correct: it either constructs a k-out-

130

branching if such one exists, or reports ‘No’ otherwise.

The running time of this algorithm is O(n) times the time of ExtendTree, thus

is O∗(4k).

E. Final Remarks

In this chapter, we presented an O∗(4k) time algorithm for the max-leaf out-

branching problem on digraphs, which significantly improves the previous best

algorithm of running time O∗(2O(k log k)) for the problem. The algorithm can be ap-

plied directly to solve the simpler max-leaf spanning-tree problem on undirected

graphs, which also gives an improvement over the previous best algorithm of run-

ning time O∗(6.75k) for the problem. The improvements are based on a deeper study

of the combinatorial structures of digraphs that reveals further relationship between

out-trees and out-branchings in digraphs, and on applications of a new algorithmic

technique for the design and analysis of parameterized algorithms. In particular, the

new algorithmic technique identifies indirected branching measures that bound the

number of computational branches in a branch-and-search process that do not reduce

the parameter value effectively.

Recently, Kneis et al. independently developed an algorithm of the same running

time O∗(4k) [69]. Their algorithm and our algorithm use the same idea of extending

an out-tree to an out-branching.

131

CHAPTER VII

SATISFIABILITY

In this chapter, we study the complexity of the well-known satisfiability problem

with respect to the total length L of formulas. We present an exact algorithm of run-

ning time O∗(1.0652L) for the satisfiability problem, which improves the previous

best algorithm of running time O∗(1.0663L) [80]. Our algorithm considers both the

number of variables and their associated weights as the measures for the satisfia-

bility problem. By considering such measures, we design reduction rules to design

a simple algorithm for the satisfiability problem. Our result demonstrates that

our measure-driven approach is also powerful for designing exact algorithms (without

parameters) for NP-hard problems.

A. Introduction

The satisfiability problem (briefly, SAT: given a CNF Boolean formula, decide

if the formula has a satisfying assignment) is perhaps the most famous and most

extensively studied NP-complete problem. The problem requires a precise answer

Yes/No, and approximation algorithms do not seem to help much. Given the NP-

completeness of the problem [53], it has become natural to develop exponential time

algorithms that solve the problem as fast as possible.

There are three popular parameters that have been used in measuring exponen-

tial time algorithms for the SAT problem: the number n of variables in the input

formula, the number m of clauses in the input formula, and the total length L of the

input formula, which is the sum of the clause lengths in the input formula. Note that

the parameter L is probably the most precise parameter in terms of standard com-

plexity theory, and both parameters n and m could be sublinear in instance length.

132

Algorithms for SAT in terms of each of these parameters have been extensively stud-

ied. See [55] for a comprehensive review and see [99] for more recent progress on the

research in these directions.

In the current chapter, we are focused on algorithms for SAT in terms of the

parameter L. The research started 20 years ago since the first published algorithm of

time O(1.0927L) [54]. The upper bound was subsequently improved by an impressive

list of publications. We summarize the major progress in the following table.

Table III. History of exact algorithms for the satisfiability problem

Reference Bound Year Published
Van Gelder [54] 1.0927L 1988

Kullmann et al. [73] 1.0801L 1997
Hirsh [62] 1.0758L 1998
Hirsh [61] 1.074L 2000

Wahlstom [80] 1.0663L 2005

The branch-and-search method has been widely used in the development of SAT

algorithms. Given a Boolean formula F , let F [x] and F [x] be the resulting formula

after assigning true and false, respectively, to the variable x in the formula F .

The branch-and-search method is based on the fact that F is satisfiable if and only

if at least one of F [x] and F [x] is satisfiable. Most SAT algorithms are based on this

method.

Unfortunately, analysis directly based on the parameter L usually does not give

a good upper bound in terms of L for a branch-and-search SAT algorithm. Combina-

tions of the parameter L and other parameters, such as the number n of variables in

the input formula, have been used as “measures” in the analysis of SAT algorithms.

For example, the measure L − 2n [81] and a more general measure that is a func-

tion f(L, n) of the parameters L and n [80] have been used in the analysis of SAT

133

algorithms whose complexity is measured in terms of the parameter L.

In the current chapter, we introduce a new measure, the l-value of a Boolean

formula F . Roughly speaking, the measure l-value l(F) is defined based on weighted

variable frequencies in the input formula F . We develop a branch-and-search algo-

rithm that tries to maximize the decreasing rates in terms of the l-value during its

branch-and-search process. In particular, by properly choosing the variable frequency

weights so that the formula l-value is upper bounded by L/2, adopting new reduction

rules, and applying the analysis technique of Measure and Conquer recently devel-

oped by Fomin et al. [50], we develop a new branch-and-search algorithm for the SAT

problem whose running time is bounded by O(1.1346l(F)) on an input formula F .

Finally, by combining this algorithm with the algorithm in [81] to deal with formulas

of lower variable frequencies and converting the measure l(F) into the parameter L,

we achieve a SAT algorithm of running time O(1.0652L), improving the previously

best SAT algorithm of running time O(1.0663L) [80].

We remark that although the analysis of our algorithm is lengthy, our algorithm

itself is very simple and can be easily implemented. Note that the lengthy analysis

needs to be done only once to ensure the correctness of the algorithm, while the

simplicity of the algorithm gives its great advantage when it is applied (many times)

to determine the satisfiability of CNF Boolean formulas.

B. Preliminaries

We introduce the notations and terminology that will be used in our discussion.

A (Boolean) variable x can be assigned value either 1 (true) or 0 (false). The

variable x has two corresponding literals x and x. The literal x is satisfied if x = 1

and the literal x is satisfied if x = 0. Note that exactly one of the literals x and x

134

is satisfied for any value assignment to the variable x. A clause C is a disjunction

of a set of literals, which can be regarded as a set of literals. Therefore, we may

write C1 = zC2 to indicate that the clause C1 consists of the literal z plus all literals

in the clause C2, and use C1C2 to denote the clause that consists of all literals that

are in either C1 or C2, or both. The length of a clause C, denoted by |C|, is the

number of literals in C. A clause C is satisfied if any literal in C is satisfied. A (CNF

Boolean) formula F is a conjunction of clauses C1 , . . ., Cm, which can be regarded as

a collection of the clauses. The formula F is satisfied if all clauses in F are satisfied.

The length L of the formula F is defined as L = |C1|+ · · ·+ |Cm|.
A literal z is an i-literal if z is contained in exactly i clauses, and is an i+-literal

if z is contained in at least i clauses. An (i, j)-literal z is a literal such that exactly i

clauses contain z and exactly j clauses contain z. Note that an (i, j)-literal z implies

that the literal z is a (j, i)-literal. We say that a clause C contains a variable x if C

contains either the literal x or the literal x. A variable x is an i-variable if exact i of

the clauses contain the variable x (in this case, we also say that the degree of x is i).

A clause C is an i-clause if |C| = i, and is an i+-clause if |C| ≥ i.

Let xC1, . . ., xCs be all the clauses in the input formula F that contain the literal

x, and let xD1, . . ., xDt be all the clauses in F that contain the literal x. A resolvent

on a variable x in F is a clause of the form CiDj for some i and j, 1 ≤ i ≤ s and

1 ≤ j ≤ t. The resolution on the variable x in the formula F , written as DPx(F),

is a formula that is obtained by first removing all clauses containing the variable x

from F and then adding all possible resolvents on the variable x into F .

A branching vector is a tuple of positive real numbers. A branching vector t =

(t1, . . . , tr) corresponds to a polynomial 1 − ∑r
i=1 x−ti , which has a unique positive

root τ(t) [20]. We say that a branching vector t′ is inferior to a branching vector t′′ if

τ(t′) ≥ τ(t′′). In particular, if either t′1 ≤ t′′1 and t′2 ≤ t′′2, or t′1 ≤ t′′2 and t′2 ≤ t′′1, then

135

it can be proved [20] that the branching vector t′ = (t′1, t
′
2) is inferior to the branching

vector t′′ = (t′′1, t
′′
2).

The execution of a SAT algorithm based on the branch-and-search method can

be represented as a search tree T whose root is labeled by the input formula F .

Recursively, if at a node w0 labeled by a formula F0 in the search tree T , the algorithm

breaks F0, in polynomial time, into r smaller formulas F1, . . ., Fr, and recursively

works on these smaller formulas, then the node w0 in T has r children, labeled by F1,

. . ., Fr, respectively. Suppose that we use a measure µ(F) for a formula F , then the

branching vector for this branching, with respect to the measure µ, is t = (t1, . . . , tr),

where ti = µ(F0)− µ(Fi) for all i. Finally, suppose that t′ is a branching vector that

is inferior to all branching vectors for any branching in the search tree T , then the

complexity of the SAT algorithm is bounded by O(τ(t′)µ(F)) times a polynomial of L

[20].

Formally, for a given input formula F , we define the l-value for F to be l(F) =
∑

i≥1 wini, where for all i ≥ 1, ni is the number of i-variables in F , and the frequency

weight wi for i-variables are set by the following values:

w0 = 0; w1 = 0.32; w2 = 0.45 (7.1)

w3 = 0.997, w4 = 1.897, wi = i/2, for i ≥ 5.

Define δi = wi − wi−1, for i ≥ 1. Then we can easily verify that

δi ≥ 0.5, for all i ≥ 3,

δmin = min{δi | i ≥ 1} = δ2 = 0.13, (7.2)

δmax = max{δi | i ≥ 1} = δ4 = 0.9.

Note that the length L of the formula F is equal to
∑

i≥1 i·ni, and that i/5 ≤ wi ≤ i/2

136

for all i. Therefore, we have L/5 ≤ l(F) ≤ L/2.

Given two formulas F1 and F2, by definition we have l(F1) =
∑

x∈F1
w(x) and

l(F2) =
∑

x∈F2
w′(x), where w(x) is the frequency weight of x in F1 and w′(x) is

the frequency weight of x in F2. The l-value reduction from F1 to F2 is l(F1) −
l(F2). The contribution of x to the l-value reduction from F1 to F2 is w(x)− w′(x).

The contribution of a variable set S to the l-value reduction from F1 to F2 is the

summation of contributions of all variables in S.

C. Reduction Rules

We say that two formulas F1 and F2 are equivalent if F1 is satisfiable if and only if F2

is satisfiable. A literal z in a formula F is monotone if the literal z does not appear

in F .

We present in this section a set of reduction rules that reduce a given formula F
to an equivalent formula F ′ without increasing the l-value. Consider the algorithm

given in Figure 12.

Lemma C.1 The algorithm Reduction(F1) produces a formula equivalent to the

formula F1.

Proof. It suffices to prove that in each of the listed cases, the algorithm Reduction

on the formula F1 produces an equivalent formula F2. This can be easily verified for

Cases 1, 2, 3, and 5.

The claim holds true for Cases 4 and 9 from the resolution principle [31].

In Case 6, the clause z1z2C in F1 is replaced with the clause z1C in F2. If an

assignment A2 satisfies F2, then obviously A2 also satisfies F1. On the other hand, if

an assignment A1 satisfies F1 but does not satisfy the clause z1C in F2, then because

137

of the clause z1z2 in F1, we must have z1 = 0 and z2 = 1. Since A1 satisfies the clause

z1z2C in F1, this would derive a contradiction that A1 must satisfy z1C. Therefore,

A1 must also satisfy the formula F2.

In Case 7, the clause z1z2C1 in F1 is replaced with the clause z2C1 in F2. Again,

the satisfiability of F2 trivially implies the satisfiability of F1. For the other direction,

let z2C3 be the third clause that contains z2 (note that z2 is a (2, 1)-literal). If an

assignment A1 satisfies F1 (in particular satisfies the clause z1z2C1) but not F2 (i.e.,

not the clause z2C1), then we must have z1 = 1, z2 = 0, and C3 = 1 under A1. By

replacing the assignment z2 = 0 with z2 = 1 in A1, we will obtain an assignment A′
2

that satisfies all z2C1, z1z2C2, and z2C3, thus satisfies the formula F2.

In Case 8, the formula F2 is obtained from the formula F1 by removing the clause

z1z2. Thus, the satisfiability of F1 trivially implies the satisfiability of F2. On the

other hand, suppose that an assignment A2 satisfying F2 does not satisfy F1 (i.e.,

does not satisfy the clause z1z2). Then A2 must assign z1 = 0 and z2 = 0. We

can simply replace z1 = 0 with z1 = 1 in A2 and keep the assignment satisfying F2:

this is because z1z2C is the only clause in F2 that contains z1. Moreover, the new

assignment now also satisfies z1z2, thus satisfies the formula F1.

For Case 10, it is suffice to show that we can always set z1 = z2 in a satisfying

assignment for the formula F1. For the subcase where z1 is a 1-literal and z1z2 is a

2-clause, if a satisfying assignment A1 for F1 assigns z2 = 1 then we can simply let

z1 = z2 = 0 since z1 is only contained in the clause z1z2. If A1 assigns z2 = 0 then

because of the 2-clause z1z2, A1 must assign z1 = z2 = 1. For the other subcase, note

that the existence of the 2-clauses z1z2 and z1z2 in the formula F1 trivially requires

that every assignment satisfying F1 have z1 = z2.

Finally, in Case 11, the clauses CD1 and CD2 in F1 are replaced with the clauses

xC, xD1, and xD2 in F2. If an assignment A1 satisfies F1 (thus satisfies CD1 and

138

CD2), then in case C = 0 under A1 we assign the new variable x = 0, and in case

C = 1 under A1 we assign the new variable x = 1. It is not hard to verify that this

assignment to the new variable x plus A1 will satisfy F2. For the other direction,

suppose that an assignment A2 satisfies F2. If A2 assigns x = 1 then we have C = 1

under A2 thus the assignment A2 also satisfies CD1 and CD2 thus F1; and if A2

assigns x = 0 then we have D1 = 1 and D2 = 1 under A2 and again A2 satisfies F1.

Next, we show that the algorithm Reduction always decreases the l-value.

Lemma C.2 Let F1 and F2 be two formulas such that F2 = Reduction(F1), and

F1 6= F2. Then l(F1) ≥ l(F2) + 0.003.

Proof. Since F1 6= F2, at least one of the cases in the algorithm Reduction is

applicable to the formula F1. Therefore, it suffices to verify that each case in the

algorithm Reduction decreases the l-value by at least 0.003.

Cases 1-8 simply remove certain literals, which decrease the degree of certain

variables in the formula. Therefore, if any of these cases is applied on the formula

F1, then the l-value of the formula is decreased by at least δmin = δ2 = 0.13.

Consider Cases 9-11. Note that if we reach these cases then Cases 4-5 are not

applicable, which implies that the formula F1 contains only 3+-variables.

Case 9. If both z1 and z2 are in the same clause, say C1, then the resolution

DPx(F) after the next application of Case 2 in the algorithm will replace the four

clauses xz1, xz2, xC1, and xC2 with two 3-clauses z1C2 and z2C2, which decreases the

l-value by w4 (because of removing the 4-variable x) and on the other hand increases

the l-value by at most 2δmax (because of increasing the degree of the two variables

in C2). Therefore, in this case, the l-value is decreased by at least w4 − 2δmax =

139

w4−2δ4 = 0.097. If z1 and z2 are not in the same clause of C1 and C2, say z1 is in C1

and z2 is in C2, then the resolution DPx(F) after the next application of Case 2 in

the algorithm will replace the four clauses xz1, xz2, xC1, and xC2 with two 3-clauses

z1C2 and z2C1. In this case, the l-value is decreased by exactly w4 = 1.897 because

of removing the 4-variable x.

Case 10. Suppose that z1 is an i-variable and z2 is a j-variable. Replacing z1

by z2 removes the i-variable z1 and makes the j-variable z2 into an (i + j)-variable.

However, after an application of Case 2 in the algorithm, the clause z1z2 in the original

formula disappears, thus z2 becomes an (i+j−2)-variable. Therefore, the total value

decreased in the l-value is (wi + wj) − wi+j−2. Because of the symmetry, we can

assume without loss of generality that i ≤ j. Note that we always have i ≥ 3. If

i = 3, then w3 + wj = δmax + 0.097 + wj ≥ wj+1 + 0.097 = w3+j−2 + 0.097. If i = 4,

then w4 + wj = 2δmax + wj + 0.097 ≥ wj+2 + 0.097 = w4+j−2 + 0.097. If i ≥ 5, then

wi + wj = i/2 + j/2 = (i + j − 2)/2 + 1 = wi+j−2 + 1. Therefore, in this case, the

l-value of the formula is decreased by (wi + wj)− wi+j−2, which is at least 0.097.

Case 11. Since the clauses CD1 and CD2 in F1 are replaced with xC, xD1 and

xD2, each variable in C has its degree decreased by 1. Since all variables in F1 are

3+-variables and |C| ≥ 2, the degree decrease for the variables in C makes the l-value

to decrease by at least 2 ·min{δi | i ≥ 3} = 1. On the other hand, the introduction

of the new 3-variable x and the new clauses xC, xD1 and xD2 increases the l-value

by exactly w3 = 0.997. In consequence, the total l-value in this case is decreased by

at least 1− 0.997 = 0.003.

By definition, the l-value l(F1) of the formula F1 is bounded by L/2, where L

is the length L of the formula F1. By the proof of Lemma C.2, each application of

a case in the algorithm Reduction takes time polynomial in L and decreases the

l-value by at least a constant. Therefore, the algorithm Reduction must stop in

140

polynomial time and produce an equivalent formula F2 for which no cases in the

algorithm Reduction are applicable. Such a formula F2 will be called a reduced

formula. Reduced formulas have a number of interesting properties, which are given

in the following lemmas.

Lemma C.3 There are no 1-variables or 2-variables in a reduced formula.

Proof. Each 1-variable makes a monotone literal. Each 2-variable either makes

a monotone literal or has at most one non-trivial resolvent. Therefore, the Cases 4-5

in the algorithm Reduction ensure that a reduced formula contains no 1-variables

and 2-variables.

Lemma C.4 Let F be a reduced formula and xy be a clause in F . Then

(1) No other clauses contain xy;

(2) No clause contains xy or xy;

(3) At most one 3+-clause contains xy. Moreover, if y is a 3-variable or x is a

1-literal, then no clause contains xy.

Proof. (1) Since Case 1 is not applicable, there is no other clauses containing xy.

(2) Since Case 6 is not applicable, no clause in F can contain either xy or xy.

(3) Given a clause xyC, the clause C cannot be empty since Case 10 is not

applicable. If there are two 3+-clauses containing xy, Case 11 would be applicable.

Therefore, there is at most one 3+-clause that contains xy.

If y is a 3-variable, then xy can not be in any clause. Otherwise, the resolution

on y would have at most one non-trivial resolvent, and Case 4 would be applicable to

F . If x is a 1-literal, then xy can not be in any clause, since Case 8 is no applicable

to F .

141

Lemma C.5 Let F be a reduced formula. Both x and y are variables in F . If only

3+-clauses contain both variables x and y, then for any of xy, y, yx, and xy, there is

at most one clause containing it. Moreover, if y is a 3-variable, then only xy can be

contained in a 3+-clause.

Proof. Since F is a reduced formula, Case 11 is not applicable to F . Then for

any of xy, y, yx, and xy, there is at most one clause containing it.

If y is a 3-variable, then xy can not occur in any clause. Otherwise, the resolution

on y would have at most one non-trivial resolvent, and Case 4 would be applicable to

F . If xy exists, Case 7 would be applicable to F .

D. Main Algorithm

Our main algorithm for the SAT problem is given in Figure 13. The degree d(F) of

a formula F is defined to be the largest degree of a variable in the formula F . Let

F [x] be the resulting formula after removing literal x and all clauses containing literal

x from F . Similarly, F [x] is the resulting formula after removing literal x and all

clauses containing literal x.

Theorem D.1 The algorithm SATSolver(F) solves the SAT problem in time

O(1.0652L), where L is total length of the input formula F .

Proof. It is clear that the algorithm SATSolver(F) solves the SAT prob-

lem. When the degree of F is 3, we just apply the algorithm by Wahlström [81]

at step 4 in the algorithm SATSolver(F). The running time of Wahlström’s al-

gorithm is O(1.1279n), where n is the number of variables in F [81], which is also

O(1.1346l(F)) since l(F) = w3n. The proof that the algorithm SATSolver(F) runs

142

in time O(1.1346l(F)) when the degree of F is greater than 3 is given in the next

section. The equality O(1.1346l(F)) = O(1.0652L) is because l(F) ≤ L/2.

E. Analysis of the Main Algorithm

Given a formula F , let reduced(F) be the output formula of Reduction(F), and

reducedp(F) be the first formula during the execution of Reduction(F) such that

Cases 1-8 are not applicable to the formula. Next we discuss the relationship among

the l-value of F , reducedp(F), and reduced(F).

Lemma E.1 l(F) ≥ l(reducedp(F)) ≥ l(reduced(F)).

Proof. Note that reduced(F)=Reduction(reducedp(F)). Thus, by lemma C.2,

we have l(reduced(F)) ≤ l(reducedp(F)). As shown in the proof of lemma C.2, every

case in the algorithm SATSolver(F) decrease the l-value of its input formula. So

l(F) ≥ l(reducedp(F)).

The reason we consider reducedp(F) is that it is easy to give a bound on the

l-value reduction from F to reducedp(F).

Lemma E.2 The contributions of any subset of variables is not more than the l-value

reduction from F to reducedp(F).

Proof. Let V be the set of all variables in F . Note that l(F) =
∑

x∈V w(x)

and l(reducedp(F)) =
∑

x∈V w′(x), where w(x) is the frequency weight of x in F and

w′(x) is the frequency weight of x in reducedp(F). By the definition of reducedp(F),

only Cases 1-8 have been applied before we get reducedp(F). Since Cases 1-8 do not

143

introduce new variables, we have

l(F)− l(reducedp(F)) =
∑
x∈V

(w(x)− w′(x)).

Therefore, the contribution of V equals to the l-value reduction from F to reducedp(F).

Since Cases 1-8 do not increase the degree of any variable, the contribution of any

variable is not negative. Thus the contribution of any subset of variables is not more

than the contribution of V , i.e., the l-value reduction from F to reducedp(F).

From now on in this section, let F be the formula after step 1 in the algorithm

SATSolver(F). Then F is a reduced formula. In the algorithm SATSolver(F),

we break F into two formulas F1 and F2 of smaller l-values at step 3 or 4. To give

better bound, we are interested in the branching vector from F to reduced(F1) and

reduced(F2), instead of the branching vector from F to F1 and F2. To give feasible

analysis, we focus on the branching vector from F to reducedp(F1) and reducedp(F2).

This is correct by the following lemma.

Lemma E.3 The branching vector from F to reducedp(F1) and reducedp(F2) is infe-

rior to the branching vector from F to reduced(F1) and reduced(F2).

Proof. By lemma E.1, l(reducedp(F1)) ≤ l(reducedp(F1)) and l(reducedp(F2)) ≤
l(reducedp(F2)). Thus,

l(F)− l(reduced(F1)) ≥ l(F)− l(reducedp(F1)), and

l(F)− l(reduced(F2)) ≥ l(F)− l(reducedp(F2)).

Note that (l(F)− l(reduced(F1)), l(F)− l(reduced(F2))) is the branching vector from

F to reduced(F1) and reduced(F2), and (l(F)−l(reducedp(F1)), l(F)−l(reducedp(F2)))

is the branching vector from F to reducedp(F1) and reducedp(F2). By definition, the

144

branching vector from F to reducedp(F1) and reducedp(F2) is inferior to the branch-

ing vector from F to reduced(F1) and reduced(F2).

Most of the time in the algorithm SATSolver(F), we break F into F [x] and F [x]

where F is of degree i and x is an i-variable in F . Let y be a variable contained with

variable x in a clause. We can bound the contribution of y to the l-value reduction

from F to reducedp(F [x]).

Lemma E.4 Let y be an i-variable. The contribution of y to the l-value reduction

from F to reducedp(F [x]) is at least

(1) w3, if i = 3 and y is in a clause with literal x;

(2) wi, if y is contained with literal y in a 2-clause;

(3) δi, if i > 3 and y is only in one clause with literal x, or 2δi if i > 3 and y is

in more than one clause with literal x.

Proof. (1) The clause containing literal x and y is not in F [x]. Thus y is of degree

at most 2 in F [x], and is not in reducedp(F [x]) (same proof as in lemma C.3). So the

contribution of y is w3.

(2) y is a 1-clause in F [x]. y is not in reducedp(F [x]) (same proof as in lemma

C.3). Thus the contribution of y is wi.

(3) If i > 3 and y is only in one clause with literal x, then y is at most a

(i− 1)-variable in reducedp(F [x]). Thus the contribution of y is at least δi.

If i > 3 and y is in more than one clause with literal x, then y and literal x are

in exactly two clauses in F : xyC0 and xyC1. Otherwise, Case 9 would be applicable

to F , which contradicts that F is a reduced formula. So the contribution of y is at

least δi + δi−1 ≥ 2δi when i > 3.

145

Let S be the set of variables which are contained with variable x in some clause.

We do not include x in S. Let x be an i-variable in F . Then we can bound the l-value

reduction from F to reducedp(F [x]) with the following calculations:

Step 1: set cx = wi and cy = 0 for y ∈ S.

Step 2: for each 2-clause xy or xy,

(1) when i = 3, add w3 to cy,

(2) when i > 3, add wi − δi to cy if there is a clause xC containing variable

y, or add wi to cy otherwise.

Step 3: for each clause xyC where y ∈ S,

(1) when i = 3, add w3 to cy,

(2) when i > 3, add δi to cy.

Step 4: c = cx +
∑

y∈S cy.

The value c calculated above is the c-value from F to reducedp(F [x]). The c-

value from F to reducedp(F [x]) can be calculated similarly. Next we show that the

c-value is not larger than the l-value reduction from F to reducedp(F).

Lemma E.5 The c-value is not larger than the contribution of x to the l-value re-

duction from F to reducedp(F [x]).

Proof. By lemma E.2, the contribution of S + x is not larger than the l-value

reduction from F to reducedp(F [x]). We complete our proof by showing that c is not

larger than the contribution of S + x. Since x is an i-variable in F and x is not in

reducedp(F [x]), the contribution of x from F to F [x] is wi. Note that c = cx+
∑

y∈S cy

at step 4 and cx = wy at step 1. So we only need to show that cy is not larger than

its contribution from F to reducedp(F [x]) for all y ∈ S.

At step 1, cy is initialized to be 0.

146

At step 2, we only change the cy of variable y which is in 2-clause xy or xy. For

such a variable y, there is exactly one clause containing both variable y and literal x.

Then cy is either wi or wi − δi after step 2. Moreover, by the rule (2) of lemma E.4,

the contribution of y from F to reduced(F [x]) is wi. So after step2, cy is not larger

than the contribution of y from F to reducedp(F [x]).

At step 3, we only change the cy of variable y which is in a clause xC where

literal y or y is in C. We consider two cases at step 3.

Case 1: When y is a 3-variable, there is no clause xy or xy. So cy is 0 after step

2, and is w3 after step 3. The contribution of y is at least w3 by lemma E.4. Thus cy

is not larger than its contribution from F to reducedp(F [x]).

Case 2: When y is an i-variable where i > 3.

If there is a 2-clause xy or xy, then cy is wi − δi after step 2 as shown for step

2, and there is exactly one clause xC containing variable y and literal x by lemma

C.4. Thus cy is wi after step 3. By lemma E.4, the contribution of y from F to

reducedp(F [x]) is at least wi. So cy is not larger than the contribution of y after step

3.

If there is no 2-clause xy or xy, then cy is 0 after step 2. For such a variable y,

there are at most two clauses xC0 and xC1 containing variable y, since F is a reduced

formula, and since Cases 1 and 9 are not applicable to F . Thus cy is not larger than

2δi after step 3, which is not larger than the contribution of y by lemma E.4.

For both cases, we can conclude that cy is not larger than its contribution from

F to reducedp(F [x]) for all y ∈ S. Then we complete our proof of this lemma.

To give better analysis, some notations are needed.

n1: the number of 3+-clauses containing literal x.

n3: the number of 2-clauses containing 3-variables and literal x.

147

n4: the number of 2-clauses containing 4-variables and literal x.

n5: the number of 2-clauses containing 5+-variables and literal x.

n1: the number of 3+-clauses containing literal x.

n3: the number of 2-clauses containing 3-variables and literal x.

n4: the number of 2-clauses containing 4-variables and literal x.

n5: the number of 2-clauses containing 5+-variables and literal x.

m1 = wi + 2n1δi + (n3 + n3 + n4)w3 + n4δ4 + n5δ5 + n5w4.

m2 = wi + 2n1δi + (n3 + n3 + n4)w3 + n4δ4 + n5δ5 + n5w4.

Recall that F is a reduced formula, d(F) = i and x is an i-variable in F . We have

the following lemma:

Lemma E.6 The value m1 is not larger than the l-value reduction from F to the

formula reducedp(F [x]), and the value m2 is not larger than the l-value reduction

from F to the formula reducedp(F [x]).

Proof. First we prove that m1 is not larger than c. By the calculation of the

c-value, each 2-clause containing a 3-variable and literal x adds w3 to c, each 2-clause

containing a 4-variable and literal x adds w3 to c, and each 2-clause containing a

i+-variable and literal adds at least wi− δi ≥ w4 to c. where i ≥ 5. So those 2-clauses

containing literal x add at least (n3 + n4)w3 + n5w4. Also each 3+-clause containing

literal x adds at least 2δi to c, each 2-clause containing a 3-variable and literal x adds

w3 to c, each 2-clause containing a 4-variable and literal x adds δ4 to c, and each

2-clause containing a 5+-variable and literal x adds δi ≥ δ5 to c since i ≥ 5. So the

clauses containing literal x add at least 2n1δi + n3w3 + n4δ4 + n5δ5 to c. Thus c is at

least 2n1δi + n3w3 + n4δ4 + n5δ5 + (n3 + n4)w3 + n5w4 = m1.

By lemma E.5, c is not larger than the l-value reduction from F to reducedp(F [x]).

148

So m2 is not larger than the l-value reduction from F to reducedp(F [x]). By sym-

metry, we can prove that m2 is not larger than the l-value reduction from F to

reducedp(F [x]).

Lemma E.6 is sufficient for most cases in the following analysis. Sometimes, we

may need values better than m1. Let

n1,1: the number of 3-clauses containing literal x.

n1,2: the number of 4+-clauses containing literal x.

n4,1: the number of 2-clauses containing literal x and variable y such that

some clause containing both literal x and variable y.

n4,2: the number of 2-clauses containing literal x and variable y such that

no clauses containing both literal x and variable y.

m′
1 = wi+(2n1,1+3n1,2)δi+(n3+n3+n4,1)w3+n4δ4+n5δ5+n4,2w4+n5w4.

By a proof similar to that for Lemma E.6, we can prove following lemma.

Lemma E.7 The value m′
1 is not larger than the l-value reduction from F to the

formula reducedp(F [x]), and the value m2 is not larger than the l-value reduction

from F to the formula reducedp(F [x]).

Now we are ready to analyze the branching vector from F to reducedp(F [x]) and

reducedp(F(x).

Lemma E.8 Let F be a reduced formula with d(F) = i, and x be an i-variable in

reduced(F). Then both (m1,m2) and (m′
1,m2) are inferior to the branching vector

from F to reducedp(F [x]) and reducedp(F [x]).

Proof. By Lemma E.6, (m1, m2) is inferior to the branching vector from F

149

to reducedp(F [x]) and reducedp(F [x]). By Lemma E.7, (m′
1,m2) is inferior to the

branching vector from F to reducedp(F [x]) and reducedp(F [x]).

If x is a (i−1, 1)-literal and no 2-clause contains x, we can have a better branching

vector.

Lemma E.9 Given a reduced formula F of degree i, and an (i− 1, 1)-literal x in F
such that no 2-clause contains x, let

m′
1 = wi + 2n1δi + n3w3 + n4δ4 + n5δ5, and m′

2 = wi + 3w3.

Then (m′
1,m

′
2) is inferior to the branching vector from F to reducedp(F [x]) and

reducedp(F [x). Moreover, n1 = 1 and n3 = n4 = n5 = 0.

Proof. First we show that n1 = 1 and n3 = n4 = n5 = 0. Let xC be the clause

containing literal x. Then we must have |C| ≥ 2: if |C| = 0, then Case 5 in the

algorithm Reduction would be applicable to x in F , and if |C| = 1, then Case 10 in

the algorithm would be applicable to xC in F . So we must have |C| ≥ 2. Since x is

an (i− 1, 1)-literal, we have n1 = 1, and n3 = n4 = n5 = 0.

By the definition of inferior vectors, (m′
1,m

′
2) is inferior to the branching vector

from F to reducedp(F [x]) and reducedp(F [x), once we show that m′
1 is not larger

than the l-value reduction from F to reducedp(F [x]) and m′
2 is not larger than the

l-value reduction from F to reducedp(F [x]).

We first show that m′
1 is not larger than the l-value reduction from F to the

formula reducedp(F [x]). Since n3 = n4 = n5 = 0, m1 = wi + 2n1δi + n3w3 + n4δ4 +

n5δ5 = m′
1. By lemma E.6, m′

1 = m1 is not larger than the l-value reduction from F
to reducedp(F [x]).

Now we show that m′
2 is at not larger than the l-value reduction from F to

150

reducedp(F [x]).

When x = 0, then all literals in C must be false in F [x], since reducedp(F [x])

is not satisfiable. i.e., all variables in x + C are not in reducedp(F [x]). Since F is a

reduced formula, all variables in x + C are 3+-variables. By lemma E.2, the l-value

reduction from F to reducedp(F [x]) is at least wi + |C|w3. If |C| ≥ 3, then the l-value

reduction is at least wi + 3w3. Otherwise |C| = 2. Let C = z1z2. If both z1 and z2

are 4+-variables, then the l-value reduction is at least 2w4 ≥ 3w3. Now we only need

consider that at least one of z1 and z2, say z1, is a 3-variable. Then literals x and

z2 can not co-occur with literal z1 in any clause. Otherwise, Case 4 (on z1) in the

algorithm reduction would be applicable to F . According to lemma C.5, only literal

z2 can co-occur with literal z1 in a 3+-clause. Now we consider two cases.

Case 1: If z1z2 is in a clause z1z2yC, then z2 must be a 4+-variable. Otherwise,

the clause z1z2yC can not exist by lemma C.5. Since y can not be the (i−1, 1)-literal

x, the l-value reduction is at least wi + w3 + w4 + δi > wi + 3w3 when x = 0 (z1 = 0,

z2 = 0 and y = 1).

Case 2: If literal z2 does not co-occur with literal z1 in any clause, then there

is a clause z1y1C1 such that y1 is not in {x, x, z2, z2}. Also there is a clause z2y2C2

such that y2 is not in {x, x, z2, z2}. Otherwise, there is only a clause z2z1. The Case 6

is applicable, thus contradicting that F is a reduced formula. Therefore, the l-value

reduction is at least wi + w3 + w3 + 2δj > wi + 2w3 + 1 > wi + 3w3.

1. Analysis for Degree-4 Formulas

Suppose that d(F) = 4 and x is a 4-variable, let d1 be the degree of literal x and d0 be

the degree of x. We then consider all combinations of d1 and d0 such that d1 +d0 = 4.

Without loss of generality, we assume that d1 ≥ d0. Since d(F) = 4, we have n5 = 0

and n5 = 0.

151

a. d0 = 1

Note that n1 = 3− n3 − n4. By lemma E.9, n3 = n4 = 0.

Case 1: n3 + n4 = 0. Then n1 = 3. By lemma E.9, the branching vector is not

inferior to

(w3 + 7δ4, 4w3 + δ4).

Case 2: 1 ≤ n3 + n4 ≤ 3. By lemma E.8, the branching vector is not inferior to

(m1,m2), which is:

(w3 + 6δ4, 4w3 + 2δ4) when n3 = 0 and n4 = 1,

(w3 + 5δ4, 5w3 + 3δ4) when n3 = 0 and n4 = 2,

(w3 + 4δ4, 6w3 + 4δ4) when n3 = 0 and n4 = 3,

(2w3 + 5δ4, 4w3 + δ4) when n3 = 1 and n4 = 0,

(2w3 + 4δ4, 5w3 + 2δ4) when n3 = 1 and n4 = 1,

(2w3 + 3δ4, 6w3 + 3δ4) when n3 = 1 and n4 = 2,

(3w3 + 3δ4, 5w3 + δ4) when n3 = 2 and n4 = 0,

(3w3 + 2δ4, 6w3 + 2δ4) when n3 = 2 and n4 = 1,

(4w3 + δ4, 6w3 + δ4) when n3 = 3 and n4 = 0.

b. d0 = 2

Case 1: Two 2-clauses xy1 and xy2 contains literal x.

Case 1.1: Two 3+-clauses contain literal x, i.e., n3 = 2 and n4 = 0.

If one clause is a 4+-clauses, i.e., n1,1 = n1,2 = 1, then by lemma E.8, the

branching vector is not inferior to (m′
1,m2), which is

(3w3 + 6δ4, w3 + 3δ4).

If both are 3-clause, i.e., n1 = 2, then we consider following cases:

Subcase 1.1.1: both y1 and y2 are 4-variable, i.e., n4 = 2 and n3 = 0. Then

152

at most one of y1 and y2 co-occur with literal x. Otherwise, Case 9 in the algorithm

Reduction would be applicable. If one of y1 and y2 co-occurs with literal x, i.e.,

n4,1 = n4,2 = 1, then by lemma E.8, the branching vector is not inferior to

(3w3 + 6δ4, w3 + 3δ4).

If none of y1 and y2 co-occurs with literal x, i.e., n4 = 2 and n3 = 0, then by

lemma E.8, the branching vector is not inferior to

(w3 + 7δ4, w3 + 3δ4).

Subcase 1.1.2 y1 is a 4-variable and y2 is a 3-variable, i.e., n3 = n4 = 1.

If y1 does not co-occur with literal x, then by lemma E.8, the branching vector

is not inferior to (m′
1,m2), which is

(3w3 + 6δ4, 2w3 + 2δ4).

Otherwise, literal y1 and x are in a clause xy1z1 since both clauses containing

literal x are 3-clause in Subcase 1.1.1-1.1.3. Let xz2z3 be the other 3-clause containing

literal x. Note that y2 must be a 2-literal. Otherwise, Case 10 in the algorithm

Reduction would be applied. Let the other two clauses containing variable y be

y2C1 and y2C0. By lemma E.9, |C0| ≥ 2. Note that variable x and y2 are not in C0.

With these given formulas, step 4.1 in algorithm SATSolver(F) would be executed.

First we consider the case that C1 is a 2+-clause.

If C0 is true, then we can set y2 = 1, then x = y1. Clauses xy1z1, xy1, xy2,

and y2C1 are eliminated and are not in F [C0 = true], clause xz1z2 in F becomes

y1z1z2 in F [C0 = true], and clause xC0 in F becomes C0 in F [C0 = true]. Note

that y1 is a 3-variable in F [C0 = true]. And it is obvious that only the degrees

of x, y2, y1 and variables in C1 in F [C0 = true] are different to those in F . Thus

the l-value reduction from F to F [C0 = true] is the contribution of {x, y2, y1} ∪ C1

from F to F [C0 = true]. The l-value reduction from F to reducedp(F [C0 = true])

is the summation of the l-value reduction from F to F [C0 = true] and the l-value

153

reduction from F [C0 = true] to reducedp(F [C0 = true]). By lemma E.2, the l-value

reduction from F [C0 = true] to reducedp(F [C0 = true]) is at least the contribution of

{x, y2, y1}∪C1 from F [C0 = true] to reducedp(F [C0 = true]). So the l-value reduction

from F to reducedp(F [C0 = true]) is at least the contribution of {x, y2, y1} ∪ C1

from F to reducedp(F [C0 = true]). If variable y1 is not in C1, the contribution of

{x, y2, y1} ∪ C1 from F to reducedp(F [C0 = true]) is at least 2w3 + 4δ4, no matter

whether there are 3-variables or not in C1. If variable y1 is in C1, the contribution of

{x, y2, y1} ∪ C1 is still at least 2w3 + 4δ4 since y1 is a 4-variable. For both cases, the

l-value reduction from F to reducedp(F [C0 = true]) is at least w2 (or 2w3).

If C0 is false, we require that all literals in C0 are false, since we work on

F [C0 = false] only after F [C0 = true] is not satisfiable. To satisfy F , y2 must

be 0, which results in x = 0 from clause xy2. Hence clauses xy1, xy2 and y2C0 are

not in F [C0 = false]. Similarly as above, we can show that the l-value reduction

from F to reducedp(F [C0 = false]) is at least the contribution of {x, y2, y1} ∪ C0

from F to reducedp(F [C0 = false]). If variable y1 is not in C0, the contribution of

{x, y2, y1}∪C0 from F to reducedp(F [C0 = false]) is at least 4w3 +2δ4, since (1) the

contribution of x is w4, (2) the contribution of y2 is w3, (3) the contribution of C0 is

at least 2w3 (recall that |C0| ≥ 2 and all variables in F are 3+-variables), and (4) the

contribution of y1 is δ4. If variable y1 is in C0, the contribution of {x, y2, y1}∪C0 from

F to reducedp(F [C0 = false]) is still at least 4w3 + 2δ4, since (1) the contribution

of x and y2 is w3 + w4, and (2) the contribution of C0 is at least w4 + w3 (y1 is a

4-variable). For both cases, the l-value reduction is at least 4w3 + 2δ4.

We conclude that when C1 is a 2+-clause, the l-value reduction from F to

reducedp(F [C0 = true]) is not inferior to

(2w4 + 4δ4, 4w3 + 2δ4)

Next we consider the case that C1 is a 1-clause u.

154

If C0 is true, then we can prove that the l-value reduction from F to the formula

reducedp(F [C0 = true]) is at least 2w3 + 3δ4, using similar proof for the first part of

the case when C1 is a 2+-clause.

If C0 is false, we require that C0 be false. To satisfy F , clause y2u requires

y2 = 0, which results in x = 0 because of clause xy2 and u = 1 because of clause

y2C1. Then clauses xy1, y2C0 and y2C1 are removed from F . Note that only variables

in {x, y2, y1, u} ∪ C0 change their degrees from F to F [C0 = false]. Similarly as

above, we can show that the l-value reduction from F to reducedp(F [C0 = false])

is at least the contribution of {x, y2, y1, u} ∪ C0 from F to reducedp(F [C0 = false]).

The contribution of x and y2 is w4 + w3 = 2w3 + δ4. Note that u is not in C0 by

lemma C.4, since y2 is a 3-variable. Also u can not be x or y2. If variable y1 is not in

{u} ∪C0, then the contribution of {y1, u} ∪C0 is at least 3w3 + δ4 since |C0| ≥ 2 and

y1 is a 4-variable. If variable y1 is in {u} ∪ C0, the contribution of {y1, u} ∪ C0 is at

least w4+2w3 = 3w3+δ4 since y1 is a 4-variable. For both cases, the l-value reduction

from F to reducedp(F [C0 = false]) is at least 2w3 + δ4 + 3w3 + δ4 = 5w3 + 4δ4.

We conclude that when C1 is a 1-clause, the l-value reduction from F to the

formula reducedp(F [C0 = false]) is not inferior to

(2w3 + 4δ4, 5w3 + 4δ4).

Subcase 1.1.3: both y1 and y2 are 3-variables, i.e., n3 = 2 and n4 = 0. By

lemma E.8, the branching vector is not inferior to

(3w3 + 5δ4, 3w3 + δ4).

Case 1.2: One 3+-clause contains literal x, i.e., n1 = 1 and n3 + n4 = 1. Let xz

be the 2-clause.

If z is a 3-variable, n3 = 1 and n4 = 0. By lemma E.8, the branching vector is

not inferior to (m1,m2) = (w4 + 2n1δ4 + (n3 + n3 + n4)w3 + n4δ4, w4 + 2n1δ4 + (n3 +

n3 +n4)w3 +n4δ4) = (w4 +2δ4 +3w3, w4 +(1+n3)w3 +n4δ4), which is not inferior to

155

(4w3 + 3δ4, 2w3 + 3δ4) when n3 = 0 and n4 = 2.

If z is a 4-variable, n3 = 0 and n4 = 1. By lemma C.4, variable z can not be

neither variable y1 nor y2. Then n4,1 = 0, n4,2 = 1 and n3 + n4,1 = 1. By lemma E.8,

the branching vector is not inferior to (m1,m
′
2) =

(w4 + 2n1δ4 + (n3 + n3 + n4)w3 + n4δ4, w4 + (2n1,1 + 3n1,2)δ4 + (n3 + n3 + n4,1)w3 +

n4δ4 + n4,2w4) = (w4 + 3δ4 + 2w3, 2w4 + n3w3 + n4w4), which is not inferior to

(3w3 + 4δ4, 2w3 + 4δ4) when n3 = 0 and n4 = 2.

Case 1.3: Two 2-clauses contain literal x, i.e., n3 = 2 and n4 = 0.

By lemma E.8, the branching vector is not inferior to

(w4 + (n3 + n3 + n4)w3 + n4δ4, w4 + (n3 + n3 + n4)w3 + n4δ4) = (w4 + (n3 + 2)w3 +

n4δ4, w4 + (2 + n3)w3 + n4δ4), which is not inferior to

(3w3 + 3δ4, 3w3 + 3δ4) when n3 = n3 = 0.

Case 2: One 2-clauses xy1 and a 3+-clause xy2y3C1 with |C1| ≥ 0 contain literal x,

i.e., n1 = 1 and n3 + n4 = 1.

Case 2.1: Two 3+-clauses contain literal x, i.e., n3 + n4 = 2.

By lemma E.8, the branching vector is not inferior to

(2w3 + 5δ4, w3 + 4δ4) when n3 = 0,

(2w3 + 5δ4, 2w3 + 3δ4) when n3 = 1.

Case 2.2: One 3+-clause contains literal x.

We have n3 +n4 = 1 and n3 +n4 = 1. By lemma E.8, the branching vector is not

inferior to t = (w4 + 2δ4 + (n3 + n3)w3 + n4δ4 + n4(w4− δ4), w4 + 2δ4 + (n3 + n3)w3 +

n4(w4 − δ4) + n4δ4) = (w4 + 2δ4 + w3 + n3w3 + n4δ4, w4 + 2δ4 + w3 + n3w3 + n4δ4). It

is clear that t is not inferior to

(2w3 + 4δ4, 2w3 + 4δ4) (by setting n3 = n3 = 1).

Case 2.3: Two 2-clauses contain literal x.

This case is symmetric to Case 1.2.

156

Case 3: Two 3+-clauses xC1 and xC2 contain literal x, i.e., n3 = n4 = 0 and n1 = 2.

Case 3.1: Two 3+-clauses contain literal x.

We have n1 = 2, n3 = n4 = 0. By lemma E.8, the branching vector is not inferior

to

(w3 + 5δ4, w3 + 5δ4).

Case 3.2: One 3+-clause contains literal x.

This case is symmetric to Case 2.1.

Case 3.3: Two 2-clauses contain literal x.

This case is symmetric to Case 1.1.

2. Analysis for Degree-5 Formulas

Suppose variable x is of degree 5, let d1 be the degree of literal x and d0 be the degree

of x. We then consider all combinations of d1 and d0 such that d1 + d0 = 5. W.l.o.g,

it can be assumed that d1 ≥ d0.

a. d0 = 1

3+-clause xy1y2C contains literal x where |C| ≥ 0. We have 4 ≥ n3 + n4 + n5 ≥ 0,

n1 = 5− n3 − n4 − n5.

Case 1 n3 + n4 + n5 = 0. x is a (4, 1)-literal. By lemma E.9, the branching

vector is not inferior to

(w5 + 8δ5, w5 + 3w3).

Case 2 4 ≥ n3 + n4 + n5 = i ≥ 1. By lemma E.8, the branching vector is not

inferior to t = (w5 + 2δ5(4− n3 − n4 − n5) + n3w3 + n4δ4 + n5δ5, w5 + 2w3 + n3w3 +

n4(w4− δ4)+n5(w5− δ5). Note that t is not inferior to t′ = (w5 + δ5(8− 2(n3 +n4)−
n5) + (n3 + n4)δ4, w5 + 2w3 + (n3 + n4 + n5)w3 + n5δ4).

When n5 = 0, t′ is

157

(w5 + 6δ5 + δ4, w5 + 3w3) when n3 + n4 + n5 = 1,

(w5 + 4δ5 + 2δ4, w5 + 4w3) when n3 + n4 + n5 = 2,

(w5 + 2δ5 + 3δ4, w5 + 5w3) when n3 + n4 + n5 = 3,

(w5 + 4δ4, w5 + 6w3) when n3 + n4 + n5 = 4.

When n5 = 1, t′ is

(w5 + 7δ5, w5 + 3w3 + δ4) when n3 + n4 + n5 = 1,

(w5 + 5δ5 + δ4, w5 + 4w3 + δ4) when n3 + n4 + n5 = 2,

(w5 + 3δ5 + 2δ4, w5 + 5w3 + δ4) when n3 + n4 + n5 = 3,

(w5 + 3δ4, w5 + 6w3) + δ4 when n3 + n4 + n5 = 4.

When n5 = 2, t′ is

(w5 + 6δ5, w5 + 3w3 + 2δ4) when n3 + n4 + n5 = 2,

(w5 + 4δ5 + δ4, w5 + 4w3 + 2δ4) when n3 + n4 + n5 = 3,

(w5 + 2δ5 + 2δ4, w5 + 5w3 + 2δ4) when n3 + n4 + n5 = 4.

When n5 = 3, t′ is

(w5 + 5δ5, w5 + 3w3 + 3δ4) when n3 + n4 + n5 = 3,

(w5 + 3δ5 + δ4, w5 + 4w3 + 3δ4) when n3 + n4 + n5 = 4.

When n5 = 4, n3 = n4 = 0. t′ is

(w5 + 4δ5, w5 + 6w3 + 4δ4).

b. d0 = 2

Case 1: Two 2-clauses xy1 and xy2 contain literal x, i.e., n1 = 0 and n3+n4+n5 = 2.

Case 1.1: Three 3+-clauses contains literal x, i.e., n1 = 3, n3 = n4 = n5 = 0.

By lemma E.8, the branching vector is not inferior to

t = (w5 + 6δ5 + n3w3 + n4(w4 − δ4) + n5(w5 − δ5), w5 + n3w3 + n4δ4 + n5δ5). Since

n3 + n4 + n5 = 2, t = (w5 + 6δ5 + 2w3 + n5δ4, w5 + n3w3 + n4δ4 + n5δ5) and is not

inferior to

158

t′ = (w5 + 6δ5 + 2w3 + n5δ4, w5 + (n3 + n4)δ4 + n5δ5), which is:

(w5 + 6δ5 + 2w3, w5 + 2δ4) when n5 = 0,

(w5 + 6δ5 + 2w3 + δ4, w5 + δ4 + δ5) when n5 = 1,

(w5 + 6δ5 + 2w3 + 2δ4, w5 + 2δ5) when n5 = 2.

Case 1.2: two 3+-clauses and one 2-clause xz1 contain literal x, i.e., n1 = 2 and

n3 + n4 + n5 = 1.

By lemma E.8, the branching vector is not inferior to

t = (w5 + 4δ5 + (n3 + n3)w3 + n4δ4 + n4w3 + n5δ5 + n5w4, w5 + (n3 + n3)w3 + n4w3 +

n4δ4 + n5w4 + n5δ5). Since n3 + n4 + n5 = 2 and n3 + n4 + n5 = 1, we have

t = (w5 +4δ5 +2w3 +n3w3 +n4δ4 +n5δ5 +n5δ4, w5 +w3 +n5δ4 +n3w3 +n4δ4 +n5δ5).

Note that t is not inferior to

t′ = (w5 + 4δ5 + 2w3 + (1− n5)δ4 + n5δ5 + n5δ4, w5 + w3 + n5δ4 + (2− n5)δ4 + n5δ5) ,

which is

(w5 + 4δ5 + 2w3 + δ4, w5 + w3 + 2δ4) when n5 = 0 and n5 = 0,

(w5 + 4δ5 + 2w3 + 2δ4, w5 + w3 + δ4 + δ5) when n5 = 0 and n5 = 1,

(w5 + 4δ5 + 2w3 + 3δ4, w5 + w3 + 2δ5) when n5 = 0 and n5 = 2,

(w5 + 5δ5 + 2w3, w5 + w3 + 3δ4) when n5 = 1 and n5 = 0,

(w5 + 5δ5 + 2w3 + δ4, w5 + w3 + 2δ4 + δ5) when n5 = 2 and n5 = 1,

(w5 + 5δ5 + 2w3 + 2δ4, w5 + w3 + δ4 + 3δ5) when n5 = 3 and n5 = 2.

Case 1.3: one 3+-clauses and two 2-clauses xz1, xz2 contain literal x, i.e., n1 = 1

and n3 + n4 + n5 = 2.

By lemma E.8, the branching vector is not inferior to

t = (w5 + 2δ5 + (n3 + n3)w3 + n4δ4 + n4w3 + n5δ5 + n5w4, w5 + (n3 + n3)w3 + n4w3 +

n4δ4 + n5w4 + n5δ5). Since n3 + n4 + n5 = 2 and n3 + n4 + n5 = 2, we have

t = (w5 +2δ5 +2w3 +n3w3 +n4δ4 +n5δ5 +n5δ4, w5 +2w3 +n5δ4 +n3w3 +n4δ4 +n5δ5).

Note that t is not inferior to

159

t′ = (w5 + 2δ5 + 2w3 + (2− n5)δ4 + n5δ5 + n5δ4, w5 + 2w3 + n5δ4 + (2− n5)δ4 + n5δ5),

which is

(w5 + 2δ5 + 2w3 + 2δ4, w5 + 2w3 + 2δ4) when n5 = 0 and n5 = 0,

(w5 + 2δ5 + 2w3 + 3δ4, w5 + 2w3 + δ4 + δ5) when n5 = 0 and n5 = 1,

(w5 + 2δ5 + 2w3 + 4δ4, w5 + 2w3 + 2δ5) when n5 = 0 and n5 = 2,

(w5 + 3δ5 + 2w3 + δ4, w5 + 2w3 + 3δ4) when n5 = 1 and n5 = 0,

(w5 + 3δ5 + 2w3 + 2δ4, w5 + 2w3 + 2δ4 + δ5) when n5 = 1 and n5 = 1,

(w5 + 3δ5 + 2w3 + 3δ4, w5 + 2w3 + δ4 + 2δ5) when n5 = 1 and n5 = 2,

(w5 + 4δ5 + 2w3, w5 + 2w3 + 4δ4) when n5 = 2 and n5 = 0,

(w5 + 4δ5 + 2w3 + δ4, w5 + 2w3 + 3δ4 + δ5) when n5 = 2 and n5 = 1,

(w5 + 4δ5 + 2w3 + 2δ4, w5 + 2w3 + 2δ4 + 2δ5) when n5 = 2 and n5 = 2.

Case 1.4: Three 2-clauses xz1, xz2 and xz3 contain literal x, i.e., n1 = 0 and

n3 + n4 + n5 = 3.

By lemma E.8, the branching vector is not inferior to

t = (w5 + (n3 + n3)w3 + n4δ4 + n4w3 + n5δ5 + n5w4, w5 + (n3 + n3)w3 + n4w3 + n4δ4 +

n5w4 + n5δ5). Since n3 + n4 + n5 = 2 and n3 + n4 + n5 = 3, we have

t = (w5 + 2w3 + n3w3 + n4δ4 + n5δ5 + n5δ4, w5 + 3w3 + n5δ4 + n3w3 + n4δ4 + n5δ5).

Note that t is not inferior to

t = (w5 +2w3 +(3−n5)δ4 +n5δ5 +n5δ4, w5 +3w3 +n5δ4 +(2−n5)δ4 +n5δ5), which is

(w5 + 2w3 + 3δ4, w5 + 3w3 + 2δ4) when n5 = 0 and n5 = 0,

(w5 + 2w3 + 4δ4, w5 + 3w3 + δ4 + δ5) when n5 = 0 and n5 = 1,

(w5 + 2w3 + 5δ4 + 2δ5, w5 + 3w3 + 2δ5) when n5 = 0 and n5 = 2,

(w5 + 2w3 + 2δ4 + δ5, w5 + 3w3 + 3δ4) when n5 = 1 and n5 = 0,

(w5 + 2w3 + 3δ4 + δ5, w5 + 3w3 + 2δ4 + δ5) when n5 = 1 and n5 = 1,

(w5 + 2w3 + 3δ4 + δ5, w5 + 3w3 + δ4 + 2δ5) when n5 = 1 and n5 = 2,

(w5 + 2w3 + δ4 + 2δ5, w5 + 3w3 + 4δ4) when n5 = 2 and n5 = 0,

160

(w5 + 2w3 + 2δ4 + 2δ5, w5 + 3w3 + 3δ4 + δ5) when n5 = 2 and n5 = 1,

(w5 + 2w3 + 3δ4 + 2δ5, w5 + 3w3 + 2δ4 + 2δ5) when n5 = 2 and n5 = 2,

(w5 + 2w3 + 3δ5, w5 + 3w3 + 5δ4) when n5 = 3 and n5 = 0,

(w5 + 2w3 + 3δ5 + δ4, w5 + 3w3 + 4δ4 + δ5) when n5 = 3 and n5 = 1,

(w5 + 2w3 + 3δ5 + 2δ4, w5 + 3w3 + 3δ4 + 2δ5) when n5 = 3 and n5 = 2.

Case 2: One 2-clause xy1 and a 3+-clause xy2y3C1 with |C1| ≥ 0 contain literal x,

i.e., n1 = 1 and n3 + n4 + n5 = 1.

Case 2.1: Three 3+-clauses contains literal x, i.e., n1 = 3, n3 = n4 = n5 = 0.

By lemma E.8, the branching vector is not inferior to

t = (w5+6δ5+n3w3+n4w3+n5w4, w5+2δ5+n3w3+n4δ4+n5δ5). Since n3+n4+n5 = 1,

t = (w5 + 6δ5 + w3 + n5δ4, w5 + 2δ5 + n3w3 + n4δ4 + n5δ5), not inferior to

t′ = (w5 + 6δ5 + 2w3 + n5δ4, w5 + 2δ5 + (1− n5)δ4 + n5δ5). t′ is:

(w5 + 6δ5 + w3, w5 + 2δ5 + δ4) when n5 = 0

(w5 + 6δ5 + w3 + δ4, w5 + 3δ5) when n5 = 1.

Case 2.2: two 3+-clauses and one 2-clause xz1 contain literal x, i.e., n1 = 2 and

n3 + n4 + n5 = 1.

By lemma E.8, the branching vector is not inferior to

t = (w5 + 4δ5 + (n3 + n3)w3 + n4δ4 + n4w3 + n5δ5 + n5w4, w5 + 2δ5 + (n3 + n3)w3 +

n4w3 + n4δ4 + n5w4 + n5δ5). Since n3 + n4 + n5 = 1 and n3 + n4 + n5 = 1, we have

t = (w5+4δ5+w3+n3w3+n4δ4+n5δ5+n5δ4, w5+2δ5+w3+n5δ4+n3w3+n4δ4+n5δ5).

Note that t is not inferior to

t′ = (w5 +4δ5 +w3 +(1−n5)δ4 +n5δ5 +n5δ4, w5 +2δ5 +w3 +n5δ4 +(1−n5)δ4 +n5δ5),

which is

(w5 + 4δ5 + w3 + δ4, w5 + δ5 + w3 + 2δ4) when n5 = 0 and n5 = 0,

(w5 + 4δ5 + w3 + 2δ4, w5 + 2δ5 + w3 + δ4 + δ5) when n5 = 0 and n5 = 1,

(w5 + 5δ5 + w3, w5 + δ5 + w3 + 3δ4) when n5 = 1 and n5 = 0,

161

(w5 + 5δ5 + w3 + δ4, w5 + 2δ5 + w3 + 2δ4) when n5 = 1 and n5 = 1.

Case 2.3: one 3+-clauses and two 2-clauses xz1, xz2 contain literal x, i.e., n1 = 1

and n3 + n4 + n5 = 2.

By lemma E.8, the branching vector is not inferior to

t = (w5 + 2δ5 + (n3 + n3)w3 + n4δ4 + n4w3 + n5δ5 + n5w4, w5 + 2δ5 + (n3 + n3)w3 +

n4w3 + n4δ4 + n5w4 + n5δ5). Since n3 + n4 + n5 = 1 and n3 + n4 + n5 = 2, we have

t = (w5+2δ5+w3+n3w3+n4δ4+n5δ5+n5δ4, w5+2δ5+w3+n5δ4+n3w3+n4δ4+n5δ5).

Note that t is not inferior to

t′ = (w5 +2δ5 +w3 +(2−n5)δ4 +n5δ5 +n5δ4, w5 +2δ5 +2w3 +n5δ4 +(1−n5)δ4 +n5δ5),

which is

(w5 + 2δ5 + w3 + 2δ4, w5 + 2δ5 + 2w3 + δ4) when n5 = 0 and n5 = 0,

(w5 + 2δ5 + w3 + 3δ4, w5 + 2δ5 + 2w3 + δ5) when n5 = 0 and n5 = 1,

(w5 + 3δ5 + w3 + δ4, w5 + 2δ5 + +2w3 + 2δ4) when n5 = 1 and n5 = 0,

(w5 + 3δ5 + w3 + 2δ4, w5 + 3δ5 + 2w3 + δ4) when n5 = 1 and n5 = 1,

(w5 + 4δ5 + w3, w5 + 2δ5 + 2w3 + 3δ4) when n5 = 2 and n5 = 0,

(w5 + 4δ5 + w3 + δ4, w5 + 3δ5 + 2w3 + 2δ4) when n5 = 2 and n5 = 1.

Case 2.4: Three 2-clauses xz1, xz2 and xz3 contain literal x, i.e., n1 = 0 and

n3 + n4 + n5 = 3.

By lemma E.8, the branching vector is not inferior to

t = (w5 + (n3 + n3)w3 + n4δ4 + n4w3 + n5δ5 + n5w4, w5 + 2δ5 + (n3 + n3)w3 + n4w3 +

n4δ4 + n5w4 + n5δ5). Since n3 + n4 + n5 = 1 and n3 + n4 + n5 = 3, we have

t = (w5 +w3 +n3w3 +n4δ4 +n5δ5 +n5δ4, w5 +2δ5 +3w3 +n5δ4 +n3w3 +n4δ4 +n5δ5).

Note that t is not inferior to

t = (w5 + w3 + (3− n5)δ4 + n5δ5 + n5δ4, w5 + 2δ5 + 3w3 + n5δ4 + (1− n5)δ4 + n5δ5),

which is

(w5 + w3 + 3δ4, w5 + 2δ5 + 3w3 + δ4) when n5 = 0 and n5 = 0,

162

(w5 + w3 + 4δ4, w5 + 3δ5 + 3w3) when n5 = 0 and n5 = 1,

(w5 + w3 + 2δ4 + δ5, w5 + 2δ5 + 3w3 + 2δ4) when n5 = 1 and n5 = 0,

(w5 + w3 + 3δ4 + δ5, w5 + 3δ5 + 3w3 + δ4) when n5 = 1 and n5 = 1,

(w5 + w3 + δ4 + 2δ5, w5 + 2δ5 + 3w3 + 3δ4) when n5 = 2 and n5 = 0,

(w5 + w3 + 2δ4 + 2δ5, w5 + 3δ5 + 3w3 + 2δ4+) when n5 = 2 and n5 = 1,

(w5 + w3 + 3δ5, w5 + 2δ5 + 3w3 + 4δ4) when n5 = 3 and n5 = 0,

(w5 + w3 + 3δ5 + δ4, w5 + 3δ5 + 3w3 + 3δ4) when n5 = 3 and n5 = 1.

Case 3: Two 3+-clauses xC1 and xC2 contain literal x, i.e., n1 = 2 and n3 = n4 =

n5 = 0.

Case 3.1: Three 3+-clauses contains literal x, i.e., n1 = 3, n3 = n4 = n5 = 0.

By lemma E.8, the branching vector is not inferior to

(w5 + 6δ5, w5 + 4δ5).

Case 3.2: two 3+-clauses and one 2-clause xz1 contain literal x, i.e., n1 = 2 and

n3 + n4 + n5 = 1.

By lemma E.8, the branching vector is not inferior to

t = (w5+4δ5+n3w3+n4δ4+n5δ5, w5+4δ5+n3w3+n4w3+n5w4). Since n3+n4+n5 = 1,

t = (w5 + 4δ5 + n3w3 + n4δ4 + n5δ5, w5 + 4δ5 + w3 + n5δ4). Note that t is not inferior

to

t′ = (w5 + 4δ5 + (1− n5)δ4 + n5δ5, w5 + 4δ5 + w3 + n5δ4), which is

(w5 + 5δ5 + δ4, w5 + 4δ5 + w3) when n5 = 0,

(w5 + 5δ5, w5 + δ5 + w3 + δ4) when n5 = 1.

Case 3.3: one 3+-clauses and two 2-clauses xz1, xz2 contain literal x, i.e., n1 = 1

and n3 + n4 + n5 = 2.

By lemma E.8, the branching vector is not inferior to

t = (w5+2δ5+n3w3+n4δ4+n5δ5, w5+2δ5+n3w3+n4w3+n5w4). Since n3+n4+n5 = 2,

163

t = (w5 + 2δ5 + 2w3 + n3w3 + n4δ4 + n5δ5, w5 + 4δ5 + 2w3 + n5δ4). Note that t is not

inferior to

t′ = (w5 + 2δ5 + w3 + (2− n5)δ4 + n5δ5, w5 + 4δ5 + 2w3 + n5δ4), which is

(w5 + 2δ5 + w3 + 2δ4, w5 + 4δ5 + 2w3) when n5 = 0,

(w5 + 3δ5 + w3 + δ4, w5 + 4δ5 + 2w3 + δ4) when n5 = 1,

(w5 + 4δ5 + w3, w5 + 4δ5 + 2w3 + 2δ4) when n5 = 2.

Case 3.4: Three 2-clauses xz1, xz2 and xz3 contain literal x, i.e., n1 = 0 and

n3 + n4 + n5 = 3.

By lemma E.8, the branching vector is not inferior to

t = (w5 +n3w3 +n4δ4 +n5δ5, w5 +4δ5 +n3w3 +n4w3 +n5w4). Since n3 +n4 +n5 = 3,

t = (w5 +2w3 +n3w3 +n4δ4 +n5δ5, w5 +4δ5 +2w3 +n5δ4). Note that t is not inferior

to

t′ = (w5 + w3 + (3− n5)δ4 + n5δ5, w5 + 4δ5 + 2w3 + n5δ4), which is

(w5 + w3 + 3δ4, w5 + 4δ5 + 2w3) when n5 = 0,

(w5 + w3 + 2δ4 + δ5, w5 + 4δ5 + 2w3 + δ4) when n5 = 1,

(w5 + w3 + δ4 + 2δ5, w5 + 4δ5 + 2w3 + 2δ4) when n5 = 2,

(w5 + w3 + 3δ5, w5 + 4δ5 + 2w3 + 3δ4) when n5 = 3.

3. Analysis for Formulas of Degree Larger Than 5

Let x be a (d1, d0)-literal. Then d = d1 + d0 ≥ 6. Suppose there are s1 2-clauses con-

taining literal x, and s0 2-clauses containing literal x. Let l1 be the l-value reduction

and c1 be the value of c from F to F [x]). Let l0 be the l-value reduction and c0 be

the c-value from F to F [x]. By lemma E.5, c1 (c0) is not larger than l1 (l0). Thus

l1+ l2 ≥ c1+c2. It can be verified that each 2-clause (containing either x or x) adds at

least 0.5 to both c1 and c0 by the calculation of c-value. Thus the s1+s2 2-clauses add

at least s1 + s0 to c1 + c2. Moreover, the d1− s1 3+-clauses containing literal x add at

164

least 2(d1−s1)δi ≥ d1−s1 to c1 since i ≥ 3 (all variables in F are 3-variables), and the

d0 − s0 3+-clauses containing literal x add at least d0 − s0 to c0. Thus the 3+-clauses

add at least (d1 − s1) + (d0 − s0) to c1 + c2. Finally, x adds wd = 0.5d ≥ 3 to both c1

and c0 since x is a d-variable where d ≥ 6. Thus x add at least 2wd ≥ 6 to c1 + c0.

Therefore, we have that l1 + l0 ≥ c1 + c0 ≥ (s1 + s0) + (d1 − s1) + (d0 − s0) + 6 ≥ 12.

Next we prove that both of l1 and l0 is greater than 0.5 + d/2 = 3.5. As shown

above, the s1 + s0 2-clauses add at least 0.5(s1 + s0) to both c1 and c0, the (d1 − s1)

3+-clauses add at least d1 − s1 to c1, the (d0 − s0) 3+-clauses add at least d0 − s0 to

c0, and x add at least 3 to both c1 and c0. Thus c1 ≥ 0.5(s1 + s0) + (d1− s1) + 3 and

c0 ≥ 0.5(s1 + s0)+ (d0− s0)+3. Note that d0− s1 ≥ 0 and d0− s0 ≥ 0. If s1 + s0 = 1,

then both c1 and c0 are not less than 3.5. If s1 + s0 = 0, then s1 = s0 = 0. Since

both d1 and d0 are not less than 1, we have that both c1 and c0 are not less than 4.

By lemma E.5, both l1 and l0 are not less than 3.5.

So the branching vector in this case is at least (l1, l2), not inferior to (3.5, 12 −
3.5) = (3.5, 8.5), which leads to O(1.1313l(F)).

4. Branching Vector for the Main Algorithm

Summarizing all the above discussion, we can verify that the worst case occurs in

the Subcase 1.1.3 in subsection E.1. The branching vector for this worst case is

t0 = (3w3 + 5δ4, 3w3 + δ4) = (7.491, 3.891), which is inferior to the branching vectors

for all other cases. The root of the polynomial corresponding to this worst branching

vector is τ(t0) ≤ 1.1346. In conclusion, we derive that the time complexity of the

algorithm SATSolver is bounded by O(1.1346l(F)) on an input formula F . Let L be

the total length of the formula F , and observe that l(F) ≤ L/2, we finally conclude the

running time of the algorithm SATSolver bounded by O(1.0652L), which completes

the proof of Theorem D.1.

165

F. Final Remarks

Our main algorithm is very simple. Though our algorithm has detailed analysis

of numerous cases, its analysis is quite straightforward and simple. The previous

algorithm by Wahlstöm is also simple. But its analysis is quite complicated. It

is interesting that both our algorithm and the algorithm by Wahlstöm deal with

formulas with low degree and formulas with large degree differently.

166

Algorithm Reduction(F)
input: a non-empty formula F
output: an equivalent formula on which no further reduction is

applicable

change = true;
while change do

Case 1. a clause C is a subset of a clause D: remove D;
Case 2. a clause C contains both x and x: remove C;
Case 3. a clause C contains multiple copies of a literal z:

remove all but one z in C;
Case 4. there is a variable x with at most one non-trivial resolvent:

F ← DPx(F);
Case 5. there is a 1-clause (z) or a monotone literal z: F ← F [z];
Case 6. there exist a 2-clause z1z2 and a clause z1z2C:

remove z2 from the clause z1z2C;
Case 7. there are clauses z1z2C1 and z1z2C2 and z2 is a (2, 1)-literal:

remove z1 from the clause z1z2C1;
Case 8. there are clauses z1z2 and z1z2C such that literal z1 is a

1-literal: remove the clause z1z2;
Case 9. there is a (2, 2)-variable x with clauses xz1, xz2 and two

3-clauses xC1 and xC2 such that both z1 and z2 are 4-variables
in either C1 or C2: F ← DPx(F). Apply Case 2, if possible.

Case 10. there is a 2-clause z1z2 where z1 is a 1-literal, or there are
two

2-clauses z1z2 and z1z2:
replace z1 with z2. Apply Case 2, if possible;

Case 11. there are two clauses CD1 and CD2 with |C| > 1:
replace CD1 and CD2 with xC, xD1, and xD2, where x is
a new variable. Apply Case 2 on variables in C, if possible.

default: change = false;

Fig. 12. The reduction algorithm

167

Algorithm SATSolver(F)
input: a CNF formula F
output: a report whether F is satisfiable

1. Reduction(F);
2. pick a d(F)-variable x;
3. if d(F) > 5 then

return SATSolver(F [x]) ∨ SATSolver(F [x]);
4. else if d(F) > 3 then
4.1 if x is a (2, 2)-variable with clauses xy1z1, xz2z3, xy1, and xy2 such

that y1 is a 4-variable and y2 is a 3-variable then
let y2C0 be the clause containing y2;
return SATSolver(F [C0 = true]) ∨ SATSolver(F [C0 = false]);

4.2 if both x and x are 2+-literals then
return SATSolver(F [x]) ∨ SATSolver(F [x]);

4.3 else (* assume that x occurs in a single clause (x∨ z1 ∨ · · · ∨ zh) *)
return SATSolver(F [x]) ∨ SATSolver(F [x, z1, . . . , zh]);

5. else if d(F) = 3 then
Apply the algorithm by Wahlström [81];

6. else return true;

Fig. 13. Algorithm for the satisfiability problem

168

CHAPTER VIII

SUMMARY AND FUTURE RESEARCH

A. Dissertation Summary

In this dissertation, we study a new approach—measure driven algorithm design and

analysis. In Chapters II to VI, we present improved fpt-algorithms for several NP-

hard problems. In Chapter VII, we present an improved exact algorithm for the

well-known satisfiability problem. For those problems, we pick multiple measures

and then find properties which help to design better algorithms. The traditional

choice of single measure for a problem often restricts the application of structural

properties of that problem. The discussions in previous chapters reveal that proper

choice of measures do allow more structural properties to be applied to design better

algorithms.

In Chapter II, we consider two measures for the 3-d matching and 3-set pack-

ing problems: the number of colors needed in the coloring step and the number of

elements in the dynamic programming step. With the choice of these measures, we

find it is better to search for a matching (packing) M ′ of size i + 1 when a matching

(packing) M of size i is given, according to the following property—every tuple in

M contains at least two symbols in M ′. This property reduces both the number

of colors needed in the coloring step and the number of elements in the dynamic

programming step, thus resulting in an improved deterministic algorithm of running

time O∗(4.613k) for both the 3-d matching and 3-set packing problems. More-

over, the 3-d matching problem can be solved with elements in two columns of M ′

in the dynamic programming step. By taking this advantage of the 3-d matching

problem, we can further reduce the number of colors needed in the coloring step and

169

the number of elements in the dynamic programming step. The further reduction

results in an improved deterministic algorithm of running time O∗(2.323k) for the 3-d

matching problem.

In Chapter III, we study the multiway cut problem. Besides considering the

size of the multiway cut to search for as a measure, we also take as a measure the

minimum cut from a terminal to the other terminals. These two measures are effective

because of three properties: (1) there is a vertex which either decreases the size of

the multiway cut to search for or increase the minimum cut from a terminal to the

other terminals, (2) the multiway cut problem can be answered negatively when

the minimum cut from a terminal to the other terminals is larger than the size of

the multiway cut to search for, and (3) the multiway cut problem can be solved

in polynomial time when the size of the multiway cut to search for is zero. These

properties and measures lead to an faster algorithm for the multiway cut problem.

In Chapter IV, the feedback vertex set problem on undirected graphs is

studied. We apply the iterative compression approach to this problem. It is more

effective to consider as measures both the size of the feedback vertex set (fvs) to

search for and the number of connected components (ncc) in another feedback vertex

set which does not intersect with fvs. It turns out there is a vertex which either

decrease fvs or ncc. Moreover, the feedback vertex set problem can be solved

when ncc = 1 or |fvs| = 0. With these properties and measures, we design an

fpt-algorithm of running time O∗(5k) for the feedback vertex set problem on

undirected graphs. Further investigations result in an fpt-algorithms of running time

O∗(5k) for the weighted feedback vertex set problem on undirected graphs.

In Chapter V, we study the feedback vertex set problem on directed graphs,

which had been an important open problem for 16 years before our algorithm. Simi-

larly as to the feedback vertex set problem on undirected graphs, we still apply

170

the iterative compression approach to the feedback vertex set problem on di-

rected graphs. However, the concept of connected components makes no sense in

directed graphs. Thus the measures for the feedback vertex set problem on

undirected graphs can not be used for the feedback vertex set problem on di-

rected graphs. However, the feedback vertex set problem on directed graphs

can be transformed into O(k!) skew separator problems. For the skew separa-

tor problem, we consider two measures: the size of the skew separator cut to search

for and the minimum cut from the last source to all the sinks. Properties similar

to those for the multiway cut problem can be proved for the skew separator

problem. An fpt-algorithm of running time O∗(4k) follows from these properties and

measures for the skew separator. Then an fpt-algorithm of running time O∗(k!4k)

for the feedback vertex set problem on digraphs follows from the algorithm for

the skew separator problem and the transformation from the feedback vertex

set problem to the O(k!) skew separator problems.

In Chapter VI, the max leaf problem on directed graphs is studied. We focus

on a special case of this problem—the root r of an out-branching T with at least k

vertices is already given. For this special case, we try to extend an out-tree T ′ rooted

at r to T . During the processing of extending T ′ to T , there are two important

measures: (1) a subset L1 of leaves in T ′ such that every leaf in L1 can reach exactly

one leaf in T , and (2) the subset L2 of the remaining leaf in T ′. A leaf in T ′ either

belong to L1 or L2. Moreover, a leaf of T ′ with only one out-neighbour in G − T ′

must be in L1. Then a leaf either is in L1 or extends T ′ to a new out-tree which

has one more leaf than T ′. The max leaf problem can be solved when |L1| = k

or |L1| + |L2| ≥ k. With these measures and properties, we design an improved fpt-

algorithm of running time O∗(4k) for the max leaf problem on directed graphs. This

algorithm can also be easily applied to solve the max leaf problem on undirected

171

graphs.

In Chapter VII, we study the well know satisfiability problem by considering

its time complexity related to the total length L of input formulas. Most previous

algorithms study this problem by analyzing how the length L changes for various

cases. The previous best algorithm considers a complicated function of L and other

factors. The algorithm is fast. But its analysis is daunting because of the complicated

function. Our algorithm takes a simple function of the number ni of variables of

degree i and the weights wi associated with variables of degree i. Our function does

not depend on L directly. Instead, it is bounded by L/2 by careful choices of wi’s.

With this function, we design reduction rules which make our main algorithm for the

satisfiability problem quite simple.

B. Future Work

There are several interesting questions related to the new approach and the problems

studied in this dissertation: further study of this new approach, randomized and

algebraic algorithms, and kernelization.

1. Further Study of the New Approach

Normally, it is difficult to design fpt-algorithms of upper bound better than O∗(4k)

with our new approach. For example, we present O∗(4k) algorithms for the multiway

cut problem, the feedback vertex set problem, the skew separator problem,

and the max leaf problem in this dissertation. These problems are studied with

the consideration of two measures m1 and m2. The changes of m1 and m2 for these

problems are not identical. For example, either m1 or m2 increases by 1 for the

multiway cut problem, while either m1 increases by 1 and m2 decreases by 1 or

172

m2 increases by 1 for the max leaf problem. However, analyses show that the

algorithms for both problems are of running time O∗(4k).

To have better algorithms, we can study our new approach in two directions:

(1) find new structural properties which ensure larger measure changes, or (2) design

better measures for known properties. For example, if some property requires that

m1 increase by at least 2, we can have much faster algorithms for the multiway cut

problem and the max leaf problem. On the other hand, new measures may also

improve analyses and result in better algorithms. Overall, we should consider both

measures and properties together. This consideration allows more opportunities for

better algorithms.

2. Randomized and Algebraic Algorithms

There are faster randomized algorithms than our algorithms for the feedback ver-

tex set problem on undirected graphs [6], the 3-d matching and 3-set packing

problems [72]. However, there are no randomized algorithms faster than our algo-

rithms for the multiway cut problem, the feedback vertex set problem on

directed graphs, and the max leaf problem. Simple randomization of our deter-

ministic algorithms do not lead to faster randomized algorithms for the multiway

cut problem, the feedback vertex set problem on directed graphs, and the max

leaf problem. Can we speed up our deterministic algorithms by randomizing our

algorithms for those problems? A natural and interesting question is what properties

of a problem result in randomized algorithms faster than deterministic algorithms.

The best algorithms for the 3-d matching and 3-set packing problems are

randomized algebraic algorithms [72]. Can these randomized algebraic algorithms be

derandomized? Can we have algebraic algorithms faster than our deterministic algo-

rithms for the multiway cut problem, or for the feedback vertex set problems?

173

3. Kernelization

Fpt-algorithms are of running time O(f(k)nO(1)), which can be very practical when

both n and k are small. There are applications whose parameter k is small. But

their input size n can be very large. It is of practical interests to reduce their input

size n significantly. Formally, given any instance I of a problem, we in polynomial

time reduced the the instance to another instance I ′ such that (1) I has a solution

if and only if I ′ has a solution, (2) we can construct a solution to I from a solution

to I ′ in polynomial time, and (3) If the size of I ′ is larger than some function g(k),

then we can find a solution for I ′. Such reduction is called kernelization and we say

the problem has a g(k) kernel. Theoretically, a parameterized problem has a kernel

if and only if it is fixed-parameter tractable [39].

Currently, the 3-d matching and the 3-set packing problems have O(k3) kernels

[44], and the feedback vertex set problem on undirected graphs has an O(k2)

kernel [98]. It is challenging to have better kernels for these problems. Moreover, can

we find a polynomial kernel for the multiway cut problem or for the feedback

vertex set problem on directed graphs?

While the max leaf problem has no polynomial kernel, it has polynomial num-

ber of polynomial kernels [51]. That is, any instance of this problem can be reduced

to O(nO(1)) number of smaller instances whose size is bounded by O(kO(1)). Can we

find many polynomial kernels for the multiway cut problem or for the feedback

vertex set problem on directed graphs?

174

REFERENCES

[1] N. Alon, F. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh, “Better algo-

rithms and bounds for directed maximum leaf problems,” in Proc. of the 27th

International Conference on Foundations of Software Technology and Theoret-

ical Computer Science, New Delhi, India, Dec. 2007, pp. 316–327.

[2] ——, “Parameterized algorithms for directed maximum leaf problems,” in Proc.

of the 34th International Colloquium on Automata, Languages and Program-

ming, Wroclaw, Poland, July 2007, pp. 352–362.

[3] N. Alon, R. Yuster, and U. Zwick, “Color-coding,” Journal of ACM, vol. 42,

no. 2, pp. 844–856, 1995.

[4] D. Applegate, R. Bixby, V. Chvatal, and W. Cook, “On the solution of traveling

salesman problems,” Documenta Mathematica, pp. 645–656, 1998.

[5] V. Bafna, P. Berman, and T. Fujito, “A 2-approximation algorithm for the undi-

rected feedback vertex set problem,” SIAM Journal on Discrete Mathematics,

vol. 12, no. 3, pp. 289–297, 1999.

[6] A. Becker, R. Bar-Yehuda, and D. Geiger, “Randomized algorithms for the

loop cutset problem,” Journal of Artificial Intelligence Research, vol. 12, pp.

219–234, 2000.

[7] H. Bodlaender, “A cubic kernel for feedback vertex set,” in Proc. of the 24th

Annual Symposium on Theoretical Aspects of Computer Science, Aachen, Ger-

many, Feb. 2007, pp. 320–331.

175

[8] H. Bodlaender and E. Penninkx, “A linear kernel for planar feedback vertex

set,” in Proc. of the 3rd International Workshop on Parameterized and Exact

Computation, Victoria, Canada, May 2008, pp. 160–171.

[9] H. L. Bodlaender, “On linear time minor test and depth-first search,” in Lecture

Notes in Computer Science. New York, USA: Heidelberg Springer, 1989, vol.

382, pp. 577–590.

[10] ——, “On disjoint cycles,” International Journal of Foundation of Computer

Science, vol. 5, no. 1, pp. 59–68, 1994.

[11] P. Bonsma, T. Brueggemann, and G. Woeginger, “A faster FPT algorithm

for finding spanning trees with many leaves,” in Proc. of the 28th Interna-

tional Symposium on Mathematical Foundations of Computer Science, Český

Krumlov, Czech Republic, Aug. 2003, pp. 259–268.

[12] P. Bonsma and F. Dorn, “An FPT algorithm for directed spanning k-leaf,” Corr

abs/0711.4052, 2007.

[13] ——, “Tight bounds and faster algorithms for directed max-leaf problems,”

in Proc. of the 16th Annual European Symposium on Algorithms, Universität

Karlsruhe, Germany, Sept. 2008, pp. 222–233.

[14] P. Bonsma and F. Zickfeld, “Spanning trees with many leaves in graphs with-

out diamonds and blossoms,” in Proc. of the 8th Latin American Theoretical

Informatics, Búzios, rio de Janeiro, Brazil, Apr. 2008, pp. 531–543.

[15] Y. Boykov, O. Veksler, and R. Zabih, “Markov random fields with efficient

approximations,” in Proc. of IEEE 1998 Conference on Computer Vision and

Pattern Recognition, Santa Barbara, CA, USA, Jun. 1998, pp. 648–655.

176

[16] G. Calinescu, H. Karloff, and Y. Rabani, “An improved approximation algo-

rithm for multiway cut,” Journal of Computer and System Sciences, vol. 60,

pp. 564–574, 2000.

[17] G. Chartrand and L. Lesniak, Graphs & Digraphs, 4th ed. Boca Raton: Chap-

man & Hall/CRC, 2004.

[18] J. Chen, F. V. Fomin, Y. Liu, S. Lu, and Y. Villanger, “Improved algorithms for

the feedback vertex set problems,” in Proc. of the 10th Workshop on Algorithms

and Data Structures, Halifax,Canada, Aug. 2007, pp. 422–433.

[19] J. Chen, D. K. Friesen, W. Jia, and I. A. Kanj, “Using nondeterminism to design

efficient deterministic algorithms,” Algorithmica, vol. 40, pp. 83–97, 2004.

[20] J. Chen, I. Kanj, and W. Jia, “Vertex cover: further observations and further

improvements,” Journal of Algorithms, vol. 41, pp. 280–301, 2001.

[21] J. Chen, I. A. Kanj, and G. Xia, “Improved parameterized upper bounds for

vertex cover,” in Proc. of the 31st International Symposium on Mathematical

Foundations of Computer Science, Bratislava, Slovak Republic, Aug. 2006, pp.

238–249.

[22] J. Chen and Y. Liu, “On the parameterized max-leaf problems: digraphs and

undirected graphs,” Texas A&M University, Tech. Rep. 2008-12-1, 2008.

[23] J. Chen, Y. Liu, and S. Lu, “An improved parameterized algorithm for the

minimum node multiway cut problem,” in Proc. of the 10th Workshop on Al-

gorithms and Data Structures, Halifax,Canada, Aug. 2007, pp. 495–506.

[24] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon, “A fixed-parameter algo-

rithm for the directed feedback vertex set problem,” in Proc. of the 40th Annual

177

ACM symposium on Theory of Computing, Victoria, Canada, May 2008, pp.

177–186.

[25] J. Chen, S. Lu, S. Sze, and F. Zhang, “Improved algorithms for path, match-

ing and packing problems,” in Proc. of the 18th Annual ACM Symposium on

Discrete Algorithms, New Orleans, Louisiana, USA, Jan. 2007, pp. 298–307.

[26] C. Chu and Y. Wong, “FLUTE: fast lookup table based rectilinear steiner

minimal tree algorithm for VLSI design,” IEEE Transaction on Computer-aided

Design of Integrated Circuits and Systems, vol. 27, no. 1, pp. 70–83, 2007.

[27] J. Cong, W. Labio, and N. Shivakumar, “Multi-way VLSI circuit partitioning

based on dual net representation,” in Proc. of IEEE 1994 International Con-

ference on Computer-aided Design, San Jose, California, USA, Nov. 1994, pp.

56–62.

[28] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms,

2nd ed. MIT Press, Cambridge, MA, 2001.

[29] W. Cunningham, “The optimal multiterminal cut problem,” DIMACS Series in

Discrete Mathematics and Theoretical Computer Science, vol. 5, pp. 105–120,

1991.

[30] E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yannakakis,

“The complexity of multiterminal cuts,” SIAM Journal on Computing, vol. 23,

pp. 864–894, 1994.

[31] M. Davis and H. Putnam, “A computing procedure for quantification theory,”

Journal of the ACM, vol. 7, pp. 201–215, 1960.

178

[32] F. Dehne, M. Fellows, F. Rosamond, and P. Shaw, “Greedy localization, iter-

ative compression, and modeled crown reductions: new FPT techniques, and

improved algorithm for set splitting, and a novel 2k kernelization for vertex

cover,” in Lecture Notes in Computer Science. New York, USA: Heidelberg

Springer, 2004, vol. 3162, pp. 271–280.

[33] F. K. H. A. Dehne, M. R. Fellows, M. A. Langston, F. A. Rosamond, and

K. Stevens, “An O(2O(k)n3) FPT algorithm for the undirected feedback ver-

tex set problem,” in Lecture Notes in Computer Science. New York, USA:

Heidelberg Springer, 2005, vol. 3595, pp. 859–869.

[34] R. Downey and M. Fellows, “Fixed-parameter tractability and completeness i:

basic results,” SIAM Journal on Computing, vol. 24, pp. 873–921, 1995.

[35] R. G. Downey and M. R. Fellows, “Fixed parameter tractability and complete-

ness,” in Complexity Theory: Current Research. New York, USA: Cambridge

University Press, 1992, pp. 191–225.

[36] ——, “Parameterized computational feasibility,” in Feasible Mathematics II.

Boston, USA: Birkhäuser, 1995, pp. 219–244.

[37] ——, Parameterized Complexity. New York, USA: Heidelberg Springer, 1999.

[38] R. G. Downey, M. R. Fellows, and M. A. Langston, “Forward by the guest

editors,” The Computer Journal, vol. 51, no. 1, pp. 1–6, 2008.

[39] R. G. Downey, M. R. Fellows, and U. Stege, “Parameterized complexity:

a framework for systematically confronting computational intractability,” in

DIMACS Series in Discrete Mathematics and Theoretical Computer Science.

Providence, RI, USA: American Mathematical Society, 1999, pp. 49–99.

179

[40] M. Drescher and A. Vetta, “An approximation algorithm for

the maximum leaf spanning arborescence problem,” Manuscript,

http://digitool.Library.McGill.CA:8881/R/-?func=dbin-jump-

full&object id=18462&current base=GEN01.

[41] G. Even, J. Naor, B. Schieber, and M. Sudan, “Approximating minimum feed-

back sets and multicuts in directed graphs,” Algorithmica, vol. 20, pp. 151–174,

1998.

[42] M. R. Fellows, “Blow-ups, win/win’s, and crown rules: some new directions in

FPT,” in Graph-Theoretic Concepts in Computer Science. New York, USA:

Heidelberg Springer, 2003, pp. 1–12.

[43] M. R. Fellows, F. R. C. McCartin, and U. Stege, “Coordinated kernels and

catalytic reductions: an improved FPT algorithm for max leaf spanning tree and

other problems,” in Proc. of the 20th International Conference on Foundation

of Software Technology and Theoretical Computer Science, New Delhi, India,

Dec. 2000, pp. 240–251.

[44] M. R. Fellows, C. Knauer, N. Nishimura, F. R. P. Ragde, U. Stege, D. M.

Thilikos, and S. Whitesides, “Faster fixed-parameter tractable algorithms for

matching and packing problems,” Algorithmica, vol. 52, no. 2, pp. 167–176,

2008.

[45] M. Fellows, P. Heggernes, F. Rosamond, C. Sloper, and J. Telle, “Finding k

disjoint triangles in an arbitrary graph,” in Lecture Notes in Computer Science.

New York, USA: Heidelberg Springer, 2004, vol. 3353, pp. 235–244.

[46] Q. Feng, Y. Liu, S. Lu, and J. Wang, “Improved deterministic algorithms for

weighted matching and packing problems,” in Proc. of the 6th Annual Confer-

180

ence on Theory and Applications of Models of Computation, Changsha, China,

May 2009, pp. 211–220.

[47] P. Festa, P. M. Pardalos, and M. G. Resende, “Feedback set problems,” in Hand-

book of Combinatorial Optimization, Supplement Vol. A. Dordrecht Kluwer

Acad. Publ., 1999, pp. 209–258.

[48] F. V. Fomin, S. Gaspers, and A. V. Pyatkin, “Finding a minimum feedback

vertex set in time O(1.7548n),” in Lecture Notes in Computer Science. New

York, USA: Heidelberg Springer, 2006, vol. 4169, pp. 184–191.

[49] F. V. Fomin, F. Grandoni, and D. Kratsch, “Measure and conquer: domination

- a case study,” in Lecture Notes in Computer Science, 2005, vol. 3580, pp.

191–203.

[50] ——, “Measure and conquer: a simple O(20.288n) independent set algorithm,”

in Proc. of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms,

Miami, Florida, USA, Jan. 2006, pp. 18–25.

[51] F. Fomin, d. Lokshtanov, D. Raible, S. Saurabh, and Y. Villanger, “Kernel(s)

for problems with no kernel: on out-trees with many leaves,” in Proc. of the 26th

International Symposium on Theoretical Aspects of Computer Science, Freiburg,

Germany, Feb. 2009, pp. 421–432.

[52] G. Gardarin and S. Spaccapietra, “Integrity of databases: a general lockout

algorithm with deadlock avoidance,” in Modeling in Data Base Management

System. Amsterdam: North-Holland, 1976, pp. 395–411.

[53] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness. San Francisco, Freeman, 1979.

181

[54] A. V. Gelder, “A satisfiability tester for non-clausal propositional calculus,”

information and Computation, vol. 79, pp. 1–21, 1988.

[55] J. Gu, P. Purdom, and W. Wah, “Algorithms for the satisfiability (SAT) prob-

lem: a survey,” in Satisfiability Problem: Theory and Applications. Providence,

RI, USA: American Mathematical Society, 1997, pp. 19–152.

[56] S. Guha and S. Khuller, “Approximation algorithms for connected dominat-

ing sets,” in Proc. of the 4th Annual European Symposium on Algorithms,

Barcelona, Spain, Sept. 1996, pp. 179–193.

[57] J. Guo, F. H. J. Gramm, R. Niedermeier, and S. Wernicke, “Compression-

based fixed-parameter algorithms for feedback vertex set and edge bipartiza-

tion,” Journal of Computer and System Sciences, vol. 72, no. 8, pp. 1386–1396,

2006.

[58] G. Gutin and A. Yeo, “Some parameterized problems on digraphs,” The Com-

puter Journal, vol. 51, no. 3, pp. 363–371, 2008.

[59] F. Henglein and H. Mairso, “The complexity of type inference for higher-order

typed lambda calculi,” in Proc. of the 18th ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, Orlando, Florida, USA, Jan.

1991, pp. 119–130.

[60] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative

Approach. San Francisco, CA: Morgan Kaufmann, 2007.

[61] E. Hirsh, “New worst-case upper bounds for sat,” Journal of Automated Rea-

soning, vol. 24, pp. 397–420, 2000.

182

[62] ——, “Two new upper bounds for sat,” in Proc. of the 9th Annual ACM-SIAM

Symposium on Discrete Algorithms, San Francisco, California, USA, Jan. 1998,

pp. 521–530.

[63] D. Huston, A. L. Halpern, Z. Lai, E. W. Myers, K. Reinert, and G. G. Sutton,

“Comparing assemblies using fragment and mate-pairs,” in Proc. of the 1st

International Workshop on Algorithms in Bioinformatics, University of Aarhus,

Denmark, Aug. 2001, pp. 294–306.

[64] W. Jia, C. Zhang, and J. Chen, “An efficient parameterized algorithm for m-set

packing,” Journal of Algorithms, pp. 106–117, 2004.

[65] I. A. Kanj, M. J. Pelsmajer, and M. Schaefer, “Parameterized algorithms for

feedback vertex set,” in Lecture Notes in Computer Science. New York, USA:

Heidelberg Springer, 2004, vol. 3162, pp. 235–247.

[66] D. Karger, P. Klein, C. Stein, M. Thorup, and N. Young, “Rounding algorithms

for a geometric embedding of minimum multiway cut,” in Proc. of the 31th

Annual ACM Symposium on Theory of Computing, Atlanta, Georgia, USA,

May 1999, pp. 668–678.

[67] D. Karger and M. Levine, “Finding maximum flows in undirected graphs seems

easier than bipartite matching,” in Proc. of the 30th Annual ACM Symposium

on Theory of Computing, Dallas, Texas, USA, 1998, pp. 69–78.

[68] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of

Computer Computations. Plenum, 1972, pp. 85–103.

[69] J. Kneis, A. Langer, and P. Rossmanith, “A new algorithm for finding trees

with many leaves,” in Lecture Notes in Computer Science. New York, USA:

183

Heidelberg Springer, 2008, vol. 5369, pp. 270–281.

[70] J. Kneis, D. Molle, S. Richter, and P. Rossmanith, “Divide-and-color,” in

Graph-Theoretic Concepts in Computer Science. New York, USA: Heidelberg

Springer, 2006, pp. 58–67.

[71] I. Koutis, “A faster parameterized algorithm for set packing,” Information Pro-

cessing Letters, vol. 94, pp. 7–9, 2005.

[72] ——, “Faster algebraic algorithms for path and packing problems,” in Proc. of

the 35th International Colloquium on Automata, Languages and Programming,

Reykjavik, Iceland, July 2008, pp. 575–586.

[73] O. Kullmann and H. Luckhardt, “Deciding propositional tau-

tologies: algorithms and their complexity,” Manuscript, 1997,

https://eprints.kfupm.edu.sa/33648/1/33648.pdf.

[74] J. L. Ford and D. Fulkerson, Flows in Networks. Princeton University Press,

Princeton, NJ, 1962.

[75] T. Leighton and S. Rao, “An approximation max-flow min-cut theorem for

uniform multi-commodity flow problems with applications to approximation

algorithms,” Journal of the ACM, vol. 46, pp. 787–832, 1999.

[76] C. Leiserson and J. Saxe, “Retiming synchronous circuitry,” Algorithmica,

vol. 6, pp. 5–35, 1991.

[77] O. Lichtenstein and A. Pneuli, “Checking the finite-state concurrent programs

satisfy their linear specification,” in Proc. of the 12th ACM Symposium on

Principles of programming Languages, New Orleans, Louisiana, USA, Jan. 1985,

pp. 97–107.

184

[78] Y. Liu, S. Lu, J. Chen, and S. Sze, “Greedy localization and color-coding:

improved matching and packing algorithms,” in Proc. of 2nd International

Workshop on Parameterized and Exact Computation, Zürich, Switzerland, Sept.

2006, pp. 85–95.

[79] H.-I. Lu and R. Ravi, “Approximation maximum leaf spanning trees in almost

linear time,” Journal of Algorithms, vol. 29, pp. 132–141, 1998.

[80] M. Wahlstöm, “An algorithm for the sat problem for formulae of linear length,”

in Lecture Notes in Computer Science. New York, USA: Heidelberg Springer,

2005, vol. 3669, pp. 107–118.

[81] ——, “Faster exact solving of sat formulae with a low number of occurrences per

variable,” in Lecture Notes in Computer Science. New York, USA: Heidelberg

Springer, 2005, vol. 3569, pp. 309–323.

[82] D. Mark, “Parameterized graph separation problems,” Theoretical Computer

Science, vol. 351, pp. 394–406, 2006.

[83] L. Mathieson, E. Prieto, and P. Shaw, “Packing edge disjoint triangles: a pa-

rameterized view,” in Lecture Notes in Computer Science. New York, USA:

Heidelberg Springer, 2004, vol. 3162, pp. 127–137.

[84] N. Alon and O. Goldreich and J. Hästad and R. Peralta, “Simple construc-

tions of almost k-wise independent random variables,” Random Structures and

Algorithms, vol. 3, pp. 289–304, 1992.

[85] J. Naor and L. Zosin, “A 2-approximation algorithm for the directed multiway

cut problem,” SIAM Journal on Computing, vol. 31, pp. 477–482, 2001.

185

[86] E. Prieto and C. Sloper, “Looking at the stars,” Theoretical Computer Science,

vol. 351, pp. 437–445, 2006.

[87] V. Raman, S. Saurabh, and C. R. Subramanian, “Faster fixed parameter

tractable algorithms for undirected feedback vertex set,” in Lecture Notes in

Computer Science. New York, USA: Heidelberg Springer, 2002, vol. 2518, pp.

241–248.

[88] ——, “Faster fixed parameter tractable algorithms for finding feedback vertex

set,” ACM Transaction on Algorithms, vol. 2, no. 3, pp. 403–415, 2006.

[89] I. Razgon, “Exact computation of maximum induced forest,” in Lecture Notes

in Computer Science. New York, USA: Heidelberg Springer, 2006, vol. 4059,

pp. 160–171.

[90] B. Reed, K. Smith, and A. Vetta, “Finding odd cycle transversals,” Operations

Research Letters, vol. 32, no. 4, pp. 299–301, 2004.

[91] J. M. Robson, “Finding a maximum independent set in time O(2n/4),”

Manuscript, 2001, http://www.labri.fr/perso/robson/mis/techrep.html.

[92] J. Schmidt and A. Siegel, “The spatial complexity of oblivious k-probe hash

functions,” SIAM Journal on Computing, vol. 19, pp. 775–786, 1990.

[93] A. Schrijver, Combinatorial Optimization. Berlin: Springer-Verlag, 2003.

[94] A. Silberschatz and P. Galvin, Operating System Concepts, 4th ed. Boston,

Massachusetts, USA: Addison-Wesley Longman Publishing Co., Inc., 1994.

[95] R. Solis-Ob, “2-approximation algorithm for finding a spanning tree with maxi-

mum number of leaves,” in Lecture Notes of Computer Science, 1998, vol. 1461,

pp. 441–452.

186

[96] H. Stone, “Multiprocessor scheduling with the aid of network flow algorithms,”

IEEE Transaction on Software Engineering, vol. 3, pp. 85–93, 1977.

[97] M. Thai, F. Wang, D. Liu, S. Zhu, and D. Du, “Connected dominating sets

in wireless networks with different transmission range,” IEEE Transaction on

Mobile Computing, vol. 6, pp. 721–730, 2007.

[98] S. Thomassé, “A quadratic kernel for feedback vertex set,” in Proc. of the 19th

Annual ACM-SIAM Symposium on Discrete Algorithms, New York, USA, Jan.

2009, pp. 115–119.

[99] U. Schöning, “Algorithms in exponential time,” in Lecture Notes in Computer

Science. New York, USA: Heidelberg Springer, 2005, vol. 3404, pp. 36–43.

[100] D. M. Warme, “A new exact algorithm for rectilinear steiner trees,” System

Simulation Solutions, Inc., Alexandria, VA, Tech. Rep. 22153, 1997.

[101] G. J. Woeginger, “Exact algorithms for NP-hard problems: a survey,” in Com-

binatorial Optimization - Eureka, You Shrink! New York, USA: Heidelberg

Springer, 2003, pp. 185–207.

[102] B. Wu and K. Chao, Spanning Trees and Optimization Problems. Boca Raton:

Chapman & Hall/CRC, 2003.

[103] M. Xie, J. Wang, and J. Chen, “A model of higher accuracy for the individ-

ual haplotyping problem based on weighted snp fragments and genotype with

errors,” Bioinformatics, vol. 24, no. 13, pp. 105–113, 2008.

187

VITA

Name: Yang Liu

Address: Department of Computer Science, University of Texas-Pan American,

Edinburg, TX 78539

Email: yliu@cs.panam.edu

Education: Ph.D. in Computer Science, Texas A&M University, 2009

M.S. in Electrical and Computer Engineering, Rose-Hulman Institute

of Technology, 2005

B.S. in Electrical Engineering, Zhejiang University, China, 1997

