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ABSTRACT 

 

Modified (Q, r) Inventory Control Policy for an Assemble-to-Order Environment.  

(August 2009) 

Roberto Luis Seijo, B.S., University of Puerto Rico at Mayagüez; 

M.S. University of Puerto Rico at Mayagüez 

Co-Chairs of Advisory Committee,  Dr. Gary M. Gaukler  

Dr. César O. Malavé 

 

 The traditional (𝑄, 𝑟) inventory control model assumes that the date at which the 

order is entered is the same as the date at which it is requested or expected to be 

delivered.  Hence, the penalty cost is incurred when the customer places the order if 

inventory is unavailable.  This is a reasonable assumption for retail systems and most 

distribution centers (DC), but not for an assemble-to-order (ATO) environment.  In this 

scenario, there is a delivery time which is usually pre-negotiated and in addition to 

considering the manufacturing process time and in some cases the outbound 

transportation time, it also has some safety time built-in.  This safety time is defined by 

the manufacturer and represents information related to when the penalty is incurred.  The 

main objective of this research is to develop a modified (𝑄, 𝑟) policy that incorporates 

the safety time, and to evaluate this policy in terms of expected inventory cost and 

expected penalty cost / late orders.  The problem is addressed following the heuristic 

approach discussed by Hadley and Whitin (1963).   
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Two main models are developed based on the following assumptions: 1) early 

shipments are allowed by the customer, and 2) no early shipments are allowed.  The 

behavior of both models is analyzed mathematically and by means of numerical 

examples.  It is shown that from a manufacturer perspective, the first model is preferred 

over the traditional (𝑄, 𝑟) model.  However, it poses a threat for the long term business 

relationship with the customer because the service level deteriorates, and for the 

implications that early shipments have on the customer inventory.  The behavior of the 

second model is strictly related to the problem being addressed.  Its merits with respect 

to the traditional and the “early shipment” model are discussed.  This discussion is 

centered on the coefficient of variation of the lead-time demand, the ratio (𝐼𝐶/𝜋), and 

the location of the supplier.  A final model which is a hybrid of the previous two 

shipping policies is developed. 

The models developed in the course of this research are generalizations of the 

traditional (𝑄, 𝑟) model. 
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CHAPTER I 

INTRODUCTION 

  

1.1. Introduction/Motivation 

Globalization has increased competition around the world forcing many 

companies to reduce cost, reduce inventory, and increase availability of products.  This 

situation raises the management question of how much inventory is enough to support 

the operations.  Management is concerned with establishing an inventory control policy 

that allows them to minimize the cost of the system without negatively impacting the 

service level offered to the customer.  

This research has been motivated by a manufacturing company that follows an 

assemble-to-order (ATO) strategy.  In this scenario, the manufacturer does not keep 

finished goods inventory and the final assembly of the product is hold until a firm 

customer order is received.  A delivery time that is usually pre-negotiated is promised to 

the customer.  It is common practice to define a delivery time larger than the time of all 

the processes required to deliver the final product (assembly, test/inspection, packing, 

shipping, and in some cases the outbound transportation time).  ATO manufacturers add 

a safety time when defining the delivery time.  This is done to cover for uncertainty, as 

in the case of a make-to-stock product (MTS) the safety stock is used for protection 

against demand variability.  The length of this safety time depends on the industry and 

the particular manufacturing characteristics of the company, such as: 

____________ 

This dissertation follows the style of IIE Transactions. 
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 Level of customization, production volume, and demand 

variability/uncertainty, 

 Components availability from both, inventoried as well as buy-to-order items, 

 Capacity constraints and manufacturing flexibility, 

 Market considerations, competition, and cost of not meeting customer 

expectations. 

Existence of such a safety time is for example implicitly assumed in Wemmerlov (1984) 

when he specifies that components not available at time of order booking must be 

acquired or made available in time for the final assembly.    

Most components used to assemble the final product are inventory items.  As 

result of the safety time, the unavailability of any component at time of the customer 

order entry does not necessarily translate in missing the delivery/promised date and 

incurring penalty cost.  Once the customer order is entered, the safety time becomes 

information that the manufacturer has in advance related to when the penalty is incurred.  

By recognizing this, we propose to modify the (𝑄, 𝑟) inventory control policy that is 

used for the inventory item to account for the safety time.  This is a generalization of a 

well-known policy that allows it to be useful for any application in which the penalty is 

not incurred at time of the customer order entry if inventory is unavailable.  The model 

studied by Hadley and Whitin (1963) is the special case of the models studied in this 

research when there is no safety time.  These modified policies have application not only 

in the ATO arena but also for distribution centers (DC) in which the customer enters the 

order in advance such that the order entry date is not the same as the request date. 
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The intuitive conclusion is that these modified policies should perform better 

than the traditional.  Let us say that the lead-time from the supplier is a constant 𝑙, the 

safety time is a constant 𝑑, and 𝑙 < 𝑑, then there is no chance of incurring penalty since 

the replenishment order of the inventory component is always received ahead of the 

delivery date of the final product.  Moreover, delaying the placement of the 

replenishment order by 𝑑 − 𝑙 units of time reduces the inventory cost without incurring 

penalty.  For the case of a random supply lead-time 𝐿, it is appealing to think that 𝑑 acts 

as cushion or safety against demand variability, resulting not only in lower total cost but 

less inventory and higher service level.  However, we will demonstrate that this 

“common sense” expected result is not necessarily true.    

 

1.2. Problem Description 

The traditional (𝑄, 𝑟) inventory control policy does not model scenarios in which 

the penalty cost is not incurred at time of the customer order entry if inventory is 

unavailable.  It assumes that the date at which the order is entered is the same as the date 

at which it is requested or expected to be delivered.  Hence, if a penalty is incurred, it 

occurs when the customer places the order.  This is a reasonable assumption for retail 

systems and most distribution centers (DC), but not for an assemble-to-order (ATO) 

environment.  In this scenario, there is a delivery time that has a safety time built-in, and 

the unavailability of any item/component delays the delivery of the product causing a 

penalty to be incurred, not at time of the customer order entry date but several units of 

time later as given by the safety time.      
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Glasserman and Wang (1998), under a base-stock policy assumed that the 

customer order is fulfilled as soon as the components required to assembly the final 

product are available.  The time elapsed from when a customer order is received until it 

is delivered is zero if the order is filled from on-hand inventory, and strictly positive 

otherwise.  Any order filled within the delivery lead-time is assumed to be on-time.  

These assumptions could be characterized by a scenario in which early shipments are 

allowed by the customer.  This scenario is not compatible with the traditional (𝑄, 𝑟) 

policy since this implies the occurrence of stock-outs/backorders without incurring 

penalty.  This is the result of the fact that the traditional model does not account for the 

safety time as a parameter.  Scenarios in which early shipment is allowed can be 

modeled by modifying the traditional policy to account for the safety time as a 

parameter.   

It can be argued that shipping early has negative implications with the customer 

inventory if he/she can not convert into sales the products received ahead of time as soon 

as they arrive; and a knowledgeable customer might impose a policy where shipping is 

only allowed at the delivery date.  Allocation of inventory to the customer order is 

required in this scenario and can also be modeled with the  𝑄, 𝑟  policy by accounting 

for the safety time as a parameter.  

The heuristic approach explained by Hadley and Whitin (1963) is followed in 

order to incorporate the safety cushion time under the two shipping extreme scenarios:  

1) early shipment is allowed, and 2) early shipment is not allowed.  It is important to 

understand the behavior of both models with respect to increases in the safety time in 
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order to assure convexity.  This is a consequence of the assumption that the expected 

number of backorders is negligible with respect to the expected number of units being 

inventoried at any time,        

 

1.3. Literature Review 

Most of the literature related to inventory control management and supply chain 

management (SCM) assumes that the product of interest is a make-to-stock (MTS) item.  

An example could be a product that is expected to sell “off the shelf” by a retailer or a 

wholesaler.  The main focus is to solve the strategic problem of safety stock placement 

in order to minimize the holding cost of the supply chain or inventory system.  

Consideration to product availability is given by means of setting a target level for some 

customer service metric or by means of a shortage/penalty cost which is imposed when 

the customer order is received and the product is not available on the shelf.  Another 

stream of literature related to MTS focuses on the benefit of information sharing in the 

supply chain.   

Rosling (1989), Gallego and Zipkin (1999), Cachon and Zipkin (1999), Daniel 

and Rajendran (2006), Gallego and Özer (2005), and Barnes-Schuster et al. (2006) are 

examples of MTS scenarios where consideration to product availability is given by 

means of a penalty cost.  Inderfurth (1991), Lee and Billington (1993), Ettl et al. (2000), 

Graves and Willems (2000), and Magnanti et al. (2006) considered some kind of service 

target level.  Gavirneni et al. (1999) and Moinzadeh (2002) studied the benefits of 

advanced information for making replenishment decisions.  The research presented in 
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this dissertation differentiates from the work mentioned above in the modeling of the 

safety time. 

Another stream of literature relates to assemble-to-order (ATO) products.  In this 

case, final assembly of the product is not executed until a firm customer order with all 

specifications is received.  Please refer to Wemmerlöv (1984) for more information 

related to ATO manufacturing and its implications for materials management.  It is 

usually assumed that any item, component or subassembly used in the assembly of the 

final product is stocked following a base-stock policy.  Glasserman and Wang (1998) 

studied the trade-off between inventory levels and delivery lead-time offered to 

customers in achieving a target level of service.  Song et al. (1999) performed an exact 

analysis on a wide range of performance measures in the ATO system.  Song and Yao 

(2002) addressed the trade-off for the case of multiple components and a single product.  

In addition to the inventory policy being used, the main difference that this study has 

with the papers mentioned in this paragraph is their focus to quantify the trade-off 

between inventory and the delivery time under service level guarantees.  Specifically, 

this research does not focus in the trade-off but in understanding the behavior of the total 

cost (ordering, inventory and penalty) as the delivery time increases (as result of an 

increase in the safety time) constrained by the penalty cost.  In fact, the service level is 

calculated as result of the optimal policy being selected.           

Another venue of research interest in the ATO scenario is related to contract 

manufacturing.  Hsu et al. (2006) developed and analyzed an optimization model to 

determine the optimal stocking quantities for components of an ATO product in an 
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environment where demand is uncertain and the price for the final product and the cost 

of components depend on their delivery lead-times.  Fu et al. (2006) studied the case in 

which the contract manufacturer anticipates an order of a single product with uncertain 

quantity and may need to procure components or even assemble some quantities of the 

final product before receiving the confirmation of the actual order quantity.  The main 

difference between the previous cited work and this study is in the nature of the problem 

being addressed and the subsequent implications, in the sense that for our case, the ATO 

manufacturer is not a contract manufacturer.   

In the ATO scenario, consideration to product availability is commonly given by 

means of customer service metrics.  Nevertheless, there are practical situations in which 

it is of interest to consider a penalty cost as part of the analysis as we will do in this 

research.  For example, consider the following two cases: 1) as in Fu et al. (2006) the 

manufacturer incurs in high penalty cost imposed by the customer, and 2) as an attempt 

to meet delivery dates the manufacturer incurs in expediting cost that include overtime 

and the use of the expensive air transportation (inbound and outbound) as result of the 

supplier’s and customer’s locations.  Because of the high cost nature of these penalties, 

management could be interested in modeling the penalty and then determining the 

appropriate service level as an output rather than setting it as an input parameter.  

However, since the customer order entry and the request dates are not the same and there 

is a safety time built in the delivery date, the penalty is only incurred if the final product 

is not delivered on-time and not if there is a component shortage at time of order entry.      



 8 

In summary, most of the literature related to ATO products addresses the 

problem of inventory management based on service metrics rather than modeling the 

penalty cost.  Recognizing that the safety time is information that the manufacturer has, 

and by considering its inclusion as a parameter of the inventory policy we pretend to 

contribute to the literature in particular by generalizing the well known (𝑄, 𝑟) policy. 

 

1.4. System Description 

 

       Figure 1: Supply chain representation. 

This paper focuses on the simplest ATO scenario which is modeled as one un-

capacitated production step that requires the use of an externally sourced component 

which is kept in stock based on a (𝑄, 𝑟) policy as shown in Figure 1.  The externally 

sourced component has random lead-time 𝐿 with known probability distribution 

function 𝑔(𝑙).  The demand distribution for the final product is assumed known and 

(Q, r)

DeliveryDelivery 

Penalty Cost 

Time 

Manufacturer 

ATO 

Strategy 

 
  (𝑄, 𝑟) 

  Policy 

Supplier 

Inv. Item 
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L 
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stationary; each customer order requests only one unit of the final product.   The 

manufacturer publishes a delivery time (𝐷𝑇) which is defined as the sum between the 

constant manufacturing time (𝑀𝑇) required for the assembly of the final product and 

some constant safety time (𝑑). 

 

     Figure 2: Safety time (𝑑). 

The customer takes into account the delivery time when placing orders, such that 

the delivery time is also the difference between the date by which the customer requests 

the shipment of the final product (Customer Request Date - 𝐶𝑅𝐷) and the date by which 

the customer enters or places the order (Order Entry Date - 𝑂𝐸𝐷).  We can define the 

safety time (𝑑) as follows: 

𝑑 = 𝐷𝑇 − 𝑀𝑇                        

     =  𝐶𝑅𝐷 − 𝑂𝐸𝐷 − 𝑀𝑇.                                                (1.1) 

When a firm customer order is received, the penalty cost is incurred if the component is 

not available within 𝑑 units of time as shown in Figure 2.  Note that under this scenario 
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we are assuming that the manufacturing time can not be shortened and that there are no 

emergency replenishment orders whenever a penalty is foreseeable in the future.   

   

1.5. Objective/Scope 

The main objective of this research is to derive a generalized (𝑄, 𝑟) inventory 

control policy that incorporates the safety time, and to evaluate this policy in terms of 

expected inventory cost and expected penalty cost / late orders.  The goal is to develop 

an inventory policy that performs better than the traditional (𝑄, 𝑟) for applications in 

which the penalty is not incurred at time of the customer order entry but some units of 

time in the future if inventory is unavailable.  Without loss of generalization, the focus is 

to model an ATO scenario with some safety time added to the manufacturing time in 

order to define the delivery time.   

The safety time is modeled for both extremes of the shipping spectrum, when 

early shipment is allowed by the customer and when early shipment is not allowed.  The 

behavior of both models is analyzed with respect to the safety time.  This is done 

mathematically and by means of numerical examples.  Conclusions are drawn from the 

perspective of the manufacturer as well as the customer.   

Special attention is given to the case when there is a minimum lead-time (𝑙𝑚𝑖𝑛 ) 

or a period of time in which there is no chance for receiving a replenishment order.  

Understanding the behavior of each model during this period of time is of practical value 

since this period could be related to the location of the supplier.  In addition, for the 
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modified  𝑄, 𝑟  model with the “no-early” shipment policy importance is given to 

determine under what circumstances it is beneficial to delay the replenishment order.  

Finally, a hybrid model is developed which is a generalization of the (𝑄, 𝑟) model 

with respect to the safety time and the shipping policy being used.  The traditional 

model, as well as the “early shipment” and the “no-early shipment” modified models are 

special cases of the hybrid model. 

 

1.6. Summary 

This chapter includes the motivation, a description of the problem and the system 

being modeled, and the objectives and scope of this research.  It also presents a summary 

of supply chain and inventory management literature related to make-to-stock (MTS) 

and assemble-to-order (ATO) products in order to highlight the contribution of this 

research. 

It is mentioned that the traditional (𝑄, 𝑟) inventory control policy does not model 

scenarios in which the penalty is not incurred at time of the customer order entry if 

inventory is unavailable.  An ATO manufacturer is a good example of a scenario with 

this characteristic since there is a delivery time that usually considers some safety time.  

Modeling this safety time in the context of the (𝑄, 𝑟) policy is the main objective of this 

research.  This research looks to generalize the traditional (𝑄, 𝑟) policy under two 

different shipping perspectives: 1) shipping early to the customer is allowed, and 2) 

shipping early is not allowed.   



 12 

The next chapter discusses the modified (𝑄, 𝑟) model with the “shipping early” 

policy.  The behavior of the model with respect to the safety time is explained 

mathematically and by means of numerical examples.  
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CHAPTER II 

MODIFIED (Q, r) MODEL WITH THE EARLY SHIPMENT POLICY 

 

2.1. Introduction 

This chapter describes the modified (𝑄, 𝑟) inventory control policy under a 

scenario in which early shipments are allowed by the customer.  This follows from the 

assumption that the customer does not penalize the manufacturer for delivering early.  

One could think of a scenario in which the customer does not monitor early shipments as 

part of their inventory control procedures.   

The safety time (𝑑) is modeled under the perspective that the manufacturer 

releases the customer order to the shop floor as soon as the order is received if inventory 

of the component is available, and the final product is shipped 𝑑 units of time ahead of 

the delivery date.  If inventory is not available, the order is released as soon as the 

replenishment material is received and the penalty is incurred only if the component 

becomes available 𝑑 units of time after receiving the customer order.   

It is appealing to think that shipping ahead should not only reduce the inventory 

of the manufacturer but improve the service level provided to the customer.  As we will 

see in this chapter the reduction of the total cost of the system comes with a trade-off in 

service performance.  The customer will also face an increase in inventory which is the 

direct result of the early shipment if he/she cannot convert into sales the product 

received ahead of the delivery date as soon as it arrives. 
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2.2. Methodology 

The modified (𝑄, 𝑟) inventory control policy for the case when early shipments 

are allowed to the customer is modeled following the heuristic approach discussed by 

Hadley and Whitin (1963).  This approach assumes that the expected number of 

backorders/stock-outs is negligible with respect to the number of components being 

inventoried at any time.  This assumption must be true for any particular safety time (𝑑) 

in order for the model to remain valid.  This observation requires the analysis of the 

behavior of the model with respect to 𝑑 in order to assure the convexity of the model 

with respect to 𝑄 and 𝑟 in the region defined by Brooks and Lu (1968). 

The first and second order conditions are used to show that there is a 𝑑 , such that 

for any 𝑑 in the range given by  0 ,  𝑑   the model is convex with respect to 𝑄 and 𝑟.  

Partial derivatives and total derivatives with respect to 𝑑 are calculated in order to 

determine the behavior of the model as 𝑑 increases in the range mentioned before.  

Special attention is given to show the behavior of the model for the case when there is a 

minimum lead-time 𝑙𝑚𝑖𝑛  and to show how the policy can be used for any 𝑑 ≥ 𝑑 . 

Three sets of numerical examples are run assuming that the lead-time follows the 

following distributions: expo (𝛽), normal (𝜇𝐿𝑇 , 𝜎𝐿𝑇
2 ), and uniform (𝑎, 𝑏).  For each case 

study, the lead-time demand is assumed to follow a normal (𝜇, 𝜎2) distribution function. 

 

2.3. Description of the Model 

The major difference between the modified (𝑄, 𝑟) model with the “early 

shipment” policy and the traditional (𝑄, 𝑟) model is related to the penalty cost structure.  
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From Figure 3, it can be observed that the inventory item/component does not need to be 

readily available at time of the customer order entry.  The chance for incurring the 

penalty cost in the modified model is related to 𝑃 𝐿 ≥ 𝑑  which is the probability for the 

replenishment order taking longer than the safety time to arrive, and as such, the delivery 

of the final product is delayed and a penalty incurred. 

 
       Figure 3: Behavior of the “early shipment” model. 

The following notation is used in order to define the cost function (𝐾): 

 𝑋 is the random lead-time demand; 

 𝑓 𝑥; 𝑙 𝑑𝑥 is the probability that the number of units demanded during the 

lead-time lies between 𝑥 and 𝑥 +  𝑑𝑥; 

 𝑔 𝑙 𝑑𝑙 is the probability that the lead-time for the replenishment/procurement 

order lies between 𝑙 and 𝑙 +  𝑑𝑙; 

 𝑑 is the cushion or safety time by which no penalty is incurred if material is 

not available at time of the customer order entry; 
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 𝑕 𝑥  is the marginal distribution for the lead-time demand, 

𝑕 𝑥 =  𝑓 𝑥; 𝑙 𝑔 𝑙 𝑑𝑙
∞

𝑙=𝑑

;                                                 (2.1) 

 𝜇 is the expected lead-time demand, 

𝜇 =  𝑥𝑕 𝑥 𝑑𝑥
∞

𝑥=0

;                                                        (2.2) 

 0 < 𝑄 < ∞ is the procurement/replenishment order size; 

 𝑢 ≤ 𝑟 < ∞ is the reorder level that triggers the procurement order by means 

of the inventory position, where 𝑢 is a non-negative number such that 𝑕 𝑥  is 

non-increasing for any 𝑥 ≥ 𝑢;  

 𝜆 is the average annual demand which is constant over time; 

 𝐴 is the cost of placing an order with the supplier; 

 𝐼𝐶 is the average cost of carrying inventory per unit per unit time; 

 𝜋 is the penalty cost per unit incurred when the requested customer date is 

missed; 

 𝐺 𝑑  is the complementary cumulative distribution of 𝑔 𝑑 , or 𝑃(𝐿 ≥  𝑑), 

𝐺 𝑑 =  𝑔 𝑙 𝑑𝑙
∞

𝑙=𝑑

;                                                       (2.3) 

 𝜂 𝑑 𝑟  is the expected number of units incurring the penalty cost per cycle. 

The same assumptions as in Hadley and Whitin (1963) are being followed in 

order to define the model.  These are enumerated as follows: 

1) The unit cost 𝐶 of the item is a constant independent of 𝑄; 

2) There is never more than a single order outstanding; 
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3) The cost of operating the information processing system is independent of 𝑄 

and 𝑟; 

4) The reorder point 𝑟 is positive.  

The only major change is that 𝜋 has been assumed to be the penalty cost incurred 

when the customer order for the finished product is overdue or late based on its 

request/delivery date since backorders/stock-outs at the inventory items are allowed at 

time of booking the customer order.  Despite the fact that backorders are allowed, 

Hadley’s and Whitin’s assumption that the average number of backorders is negligible 

as compared to the average inventory at any time is being followed.  Hence, the expected 

on-hand inventory is equal to the expected net inventory in order to calculate the cost 

structure related to the inventory cost. 

In order to define the average annual penalty cost, note that the penalty is 

incurred only when 𝑙 ≥  𝑑 and the lead-time demand x is greater than the reorder point 

𝑟.  The number of customer orders incurring penalty in a cycle is:  

𝜂𝑑 𝑥, 𝑟 =  
          0,        𝑥 − 𝑟 < 0, 𝑙 ≥ 𝑑;   
 𝑥 − 𝑟,        𝑥 − 𝑟 ≥ 0, 𝑙 ≥ 𝑑; 
        0,                             𝑙 < 𝑑.

                             (2.4) 

The expected number of orders incurring penalty per cycle is:  

𝜂 𝑑 𝑟 =   𝜂𝑑 𝑥, 𝑟 𝑕 𝑥 𝑑𝑥
∞

𝑥=0

 𝑃 𝐿 ≥ 𝑑  

           =    𝑥 − 𝑟 𝑕 𝑥 𝑑𝑥
∞

𝑥=𝑟

 𝐺 𝑑           

  =   𝑥𝑕 𝑥 𝑑𝑥 − 𝑟𝐻 𝑟 
∞

𝑥=𝑟

 𝐺 𝑑 ,                                    (2.5) 
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where 𝐻 𝑥  is the complementary cumulative distribution of 𝑕 𝑥 .  Note that this is 

similar to Hadley and Whitin (1963) except for 𝐺 𝑑 .  In other words, the expected 

number of orders incurring penalty per cycle is the expected number of backorders per 

cycle times 𝑃 𝐿 ≥ 𝑑 .  The expected annual penalty cost is defined as  

𝜋𝜆

𝑄
  𝑥𝑕 𝑥 𝑑𝑥 − 𝑟𝐻 𝑟 

∞

𝑥=𝑟

 𝐺 𝑑 ,                                         (2.6) 

and the expected annual cost 𝐾 for the shipping early policy can then be defined as 

follows: 

𝐾 =
𝜆

𝑄
𝐴 + 𝐼𝐶  

𝑄

2
+ 𝑟 − 𝜇 +

𝜋𝜆

𝑄
  𝑥𝑕 𝑥 𝑑𝑥 − 𝑟𝐻 𝑟 

∞

𝑥=𝑟

 𝐺 𝑑 .           (2.7) 

The behavior with respect to the safety time 𝑑 of the modified (𝑄, 𝑟) model with 

the “early shipment” policy is analyzed in the following section. 

 

2.4. Analysis/Behavior of the Model 

The safety time (𝑑) is defined by the manufacturer and represents the time when 

the penalty is incurred once the customer order is entered.  In that sense, 𝑑 is information 

that the manufacturer possesses and understanding the behavior of the cost function 𝐾 

with respect to 𝑑 and its implications with the customer can be of strategic importance.   

 

2.4.1. Convexity with Respect to 𝑸 and 𝒓, and Optimality 

In order to understand the behavior of the model let us first define the following 

lemmas related to the convexity of the cost function for any particular 𝑑 , namely 𝐾𝑑 , 

and some important relationships at optimality. 
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Lemma 2.4.1.1:  For any 𝑑, the cost function 𝐾𝑑  is jointly convex in 𝑄 and 𝑟 in the 

range 0 < 𝑄 < ∞ and 𝑢 ≤ 𝑟 < ∞. 

Proof: It can easily be concluded from (2.7) that the cost function given by the expected 

ordering cost and the expected inventory cost is jointly convex with respect to𝑄 and 𝑟 in 

the range 0 < 𝑄 < ∞ and 𝑢 ≤ 𝑟 < ∞.  Brooks and Lu (1968) showed that for a number 

𝜇, the expected backorders per year is convex in the region given by 0 < 𝑄 < ∞ and           

𝜇 ≤ 𝑟 < ∞, if the probability density function for the lead-time demand (𝑋) is non-

increasing for 𝑥 ≥ 𝜇.  In our case, since 𝐺(𝑑) is not a function of 𝑄 nor 𝑟, and 𝑢 has 

been defined as a non-negative number such that 𝑕 𝑥  is non-increasing for any 𝑥 ≥ 𝑢, 

it must be concluded that the expected number of backorders per year as given in (2.7) 

must be jointly convex with respect to𝑄 and 𝑟 in the region 0 < 𝑄 < ∞ and 𝑢 ≤ 𝑟 < ∞.  

Then, 𝐾𝑑  is jointly convex with respect to𝑄 and 𝑟 in the region of interest since the 

addition of convex functions gives a convex function.  Note that 𝑢 = 𝜇 for the special 

case in which 𝑕 𝑥  is the probability density function of a normal lead-time demand.    ■         

Lemma 2.4.1.2:  In the range in which 𝐾𝑑  is jointly convex in 𝑄 and 𝑟, the iterative 

procedure from Hadley and Whitin (1963) can be used to obtain the optimal policy 

(𝑄𝑑
∗ , 𝑟𝑑

∗). 

Proof: Let us assume that for a particular 𝑑, (𝑄𝑑
∗ , 𝑟𝑑

∗) is the optimal policy satisfying 

0 < 𝑄 < ∞ and 𝑢 ≤ 𝑟 < ∞.  Then, (𝑄𝑑
∗ , 𝑟𝑑

∗) must satisfy the set of equations (2.8) and 

(2.9) derived from the 1
st
 order conditions. 

𝜕𝐾

𝜕𝑄
= 0     

𝑦𝑖𝑒𝑙𝑑𝑠
          𝑄 =  

2𝜆

𝐼𝐶
 𝐴 + 𝜋𝑛 𝑑 𝑟                                 (2.8) 
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𝜕𝐾

𝜕𝑟
= 0     

𝑦𝑖𝑒𝑙𝑑𝑠
          𝐻 𝑟 𝐺 𝑑 =

𝑄𝐼𝐶

𝜋𝜆
                                (2.9) 

 (2.10) is obtained by rearranging (2.9) in terms of 𝑄.   

𝑄 =
𝜋𝜆

𝐼𝐶
𝐺 𝑑 𝐻 𝑟                                                     (2.10) 

 

  Figure 4: Behavior of 𝑄∗ and 𝑟∗ with respect to 𝑑. 

Note that both, (2.8) and (2.10) are functions of 𝑟 representing a curve in a plane 

with axis given by 𝑄 and 𝑟 as shown in Figure 4; and the specific optimal policy  𝑄𝑑
∗ , 𝑟𝑑

∗  

must be found at the intersection of both curves.  Hadley and Whitin (1963) showed that 

Note: 𝑢 ≤ 𝑟𝑑 < ∞ and 0 < 𝑄𝑑 < ∞ 

𝜋𝜆𝐺 𝑑 𝐻 𝑢 

𝐼𝐶
 

𝜋𝜆𝐻 𝑢 

𝐼𝐶
 

(2.9) 

(2.8) 
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𝑄 and 𝑟 are inversely related.  This relationship holds for this case since 𝐺 𝑑  is not a 

function of 𝑄 nor 𝑟.  In addition, let us observe from (2.8) and (2.10) that for              

𝑢 ≤ 𝑟 < ∞,  

𝑄𝑊 =  2𝜆𝐴 𝐼𝐶 ≤ 𝑄 ≤
𝜋𝜆𝐺 𝑑 𝐻 𝑟 = 𝑢 

𝐼𝐶
.                           (2.11) 

From these observations it follows that 𝑄𝑊 can be set as the initial 𝑄 and (2.9) can be 

used to find the corresponding initial 𝑟.  Then, (2.8) can be used with this initial 𝑟 in 

order to find a new 𝑄.  This iterative procedure continues until it converges to  𝑄𝑑
∗ , 𝑟𝑑

∗ .  

Note that this is the iterative procedure from Hadley and Whitin (1963) and its 

convergence was proved by them.                     ■ 

Lemma 2.4.1.3:  There is a 𝑑  such that for any 𝑑 ≥ 𝑑 , there is no optimal policy 

(𝑄𝑑
∗ , 𝑟𝑑

∗) in the range given by 0 < 𝑄 < ∞ and 𝑢 ≤ 𝑟 < ∞.   

Proof: Let us assume that for a particular 𝑑, (𝑄𝑑
∗ , 𝑟𝑑

∗) is the optimal policy satisfying 

0 < 𝑄 < ∞ and 𝑢 ≤ 𝑟 < ∞.  Then, from (2.11) and (2.8) it follows that  

𝑄 𝑑 ≤
𝜋𝜆

𝐼𝐶
𝐺 𝑑 𝐻 𝑢 ,                                                 (2.12) 

where, 

 𝑄 𝑑 =  2𝜆 𝐴 + 𝜋  𝑥𝑕 𝑥 𝑑𝑥 − 𝑢𝐻 𝑢 
∞

𝑥=𝑢
 𝐺 𝑑  𝐼𝐶 .                 (2.13)   

Because of 𝐺 𝑑 , both sides of (2.12) are decreasing functions of 𝑑.  It can be observed 

that as 𝑑 increases 𝑄 𝑑  is bounded by 𝑄𝑊 and there must be a 𝑑  such that   

𝑄 𝑑 >
𝜋𝜆𝐺 𝑑  𝐻 𝑢 

𝐼𝐶
,                                                  (2.14) 
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and (2.12) is not satisfied for any 𝑑 ≥ 𝑑 .  Then, there is no optimal policy (𝑄𝑑
∗ , 𝑟𝑑

∗) in the 

region given by 0 < 𝑄 < ∞ and 𝑢 ≤ 𝑟 < ∞.                             ■  

Note that 𝑑  is defined as the smallest 𝑑 not satisfying (2.12) and can be 

computed as 𝑑 ≔ 𝑚𝑖𝑛 𝑑 ≥ 0 𝑄 𝑑 > 𝜋𝜆𝐺 𝑑 𝐻 𝑢 𝐼𝐶  . 

Lemma 2.4.1.4: If the optimal policy (𝑄𝑑
∗ , 𝑟𝑑

∗) exists and satisfies 0 < 𝑄 < ∞ and 

𝑢 ≤ 𝑟 < ∞, then (2.15) is satisfied. 

𝑄𝑑
∗ >

𝐻 𝑟𝑑
∗ 

𝑕 𝑟𝑑
∗ 

                                                          2.15  

Proof: From Lemma 2.4.1.1 it is known that the cost function 𝐾𝑑  is jointly convex in 𝑄 

and 𝑟 in the range 0 < 𝑄 < ∞ and 𝑢 ≤ 𝑟 < ∞.  Then, the ∇2𝐾𝑑  evaluated at the optimal 

policy (𝑄𝑑
∗ , 𝑟𝑑

∗) must be positive definite. 

 

𝐼𝐶
𝑄𝑑

∗ 𝐼𝐶
𝑄𝑑

∗ 

𝐼𝐶
𝑄𝑑

∗ 
𝜋𝜆

𝑄𝑑
∗ 𝑕 𝑟𝑑

∗ 𝐺 𝑑 
                                            (2.16) 

The leading principal minors of the matrix (2.16) must be positive.  This is true for the 

leading principal minor given by the upper left-hand corner of the matrix and must be 

true for the leading principal minor given by the matrix itself.  

𝑑𝑒𝑡  

𝐼𝐶
𝑄𝑑

∗ 𝐼𝐶
𝑄𝑑

∗ 

𝐼𝐶
𝑄𝑑

∗ 
𝜋𝜆

𝑄𝑑
∗ 𝑕 𝑟𝑑

∗ 𝐺 𝑑 
 =

𝐼𝐶𝜋𝜆

𝑄𝑑
∗2 𝑕 𝑟𝑑

∗ 𝐺 𝑑 −
𝐼𝐶2

𝑄𝑑
∗2 > 0           (2.17) 

We get (2.18) from (2.17). 

𝑄𝑑
∗

𝐻 𝑟𝑑
∗ 𝐺 𝑑 

>
1

𝑕 𝑟𝑑
∗ 𝐺 𝑑 

                                           (2.18) 
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From (2.18) we must conclude that (2.15) is a necessary condition for 𝐾𝑑  to be convex.  

Since we have previously assumed that 𝐾𝑑  is convex, then (2.15) is satisfied.         ■  

Lemma 2.4.1.5:  If the optimal policy (𝑄𝑑
∗ , 𝑟𝑑

∗) exists and satisfies 0 < 𝑄 < ∞ and 

𝑢 ≤ 𝑟 < ∞, then (2.19) is satisfied. 

𝑄𝑑
∗ >

  𝑥𝑕 𝑥 𝑑𝑥
∞

𝑥=𝑟𝑑
∗ − 𝑟𝑑

∗𝐻 𝑟𝑑
∗  

𝐻 𝑟𝑑
∗ 

                                     (2.19) 

Proof: From Lemma 2.4.1.2 it is known that the iterative procedure explained in Hadley 

and Whitin (1963) can be used to find the optimal policy which is found at the 

intersection of the curves given by (2.8) and (2.10).      

𝜋𝜆

𝐼𝐶
𝐻 𝑟𝑑

∗ 𝐺 𝑑 =  
2𝜆

𝐼𝐶
 𝐴 + 𝜋𝜂𝑑    𝑟𝑑

∗                                      (2.20) 

We get (2.21) from (2.20). 

𝑄𝑑
∗

2
=

  𝑥𝑕 𝑥 𝑑𝑥
∞

𝑥=𝑟𝑑
∗ − 𝑟𝑑

∗𝐻 𝑟𝑑
∗  

𝐻 𝑟𝑑
∗ 

+
𝜋𝜆

𝑄𝑑
∗𝐼𝐶

                              (2.21) 

From (2.21) we can observe that (2.19) must be true.                                                       ■       

 

2.4.2. Behavior of the Optimal Policy and Cost Function with Respect to 𝒅 

Let us continue with the understanding of the behavior of the model by 

calculating the partial derivative of 𝐾 with respect to 𝑑: 

𝜕𝐾

𝜕𝑑
= −

𝜋𝜆

𝑄
  𝑥𝑕 𝑥 𝑑𝑥 − 𝑟𝐻 𝑟 

∞

𝑥=𝑟

 𝑔 𝑑 ≤ 0        ∀ 𝑑, 𝑄, 𝑟.              (2.22) 
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Note that depending upon the lead-time distribution function 𝑔 𝑙 , 𝑔 𝑑 ≥ 0 and 

𝜕𝐾 𝜕𝑑 ≤ 0.  This observation leads to the following lemma: 

Lemma 2.4.2.1: Let us define 𝐾∗ as a function of 𝑑 that represents the behavior of the 

optimal cost function as 𝑑 increases in the range given by  0 ,  𝑑  , then 𝐾∗ is a non-

increasing function.  

Proof:  Note from (2.22) that 𝜕𝐾  𝜕𝑑 < 0 for any range of 𝑑′𝑠 in which 𝑔 𝑑 > 0.  

Then, defining the safety time 𝑑 such that 𝑑 < 𝑑 , defining  𝑄𝑑−∆𝑑
∗ , 𝑟𝑑−∆𝑑

∗   as the optimal 

policy for the safety time 𝑑 − ∆𝑑 and arbitrarily using this policy to calculate the cost 

function 𝐾𝑑 , we must conclude from (2.22) that 𝐾𝑑 < 𝐾𝑑−∆𝑑
∗ , and that there is an optimal 

policy  𝑄𝑑
∗ , 𝑟𝑑

∗  such that 𝐾𝑑
∗ ≤ 𝐾𝑑 < 𝐾𝑑−∆𝑑

∗ .  Now, defining 𝑑 + ∆𝑑 such that             

𝑑 − ∆𝑑 < 𝑑 < 𝑑 + ∆𝑑 < 𝑑  and arbitrarily using the optimal policy  𝑄𝑑
∗ , 𝑟𝑑

∗  for 𝑑 + ∆𝑑, 

we must conclude from (2.22) as well that 𝐾𝑑+∆𝑑 < 𝐾𝑑
∗, and that there is an optimal 

policy  𝑄𝑑+∆𝑑
∗ , 𝑟𝑑+∆𝑑

∗   such that 𝐾𝑑+∆𝑑
∗ ≤ 𝐾𝑑+∆𝑑 < 𝐾𝑑

∗.  This iterative procedure can be 

continued as 𝑑 increases and 𝐾∗ becomes a strictly decreasing function of 𝑑 

when 𝑔 𝑑 > 0. 

Note from (2.22) that 𝜕𝐾 𝜕𝑑 = 0 for any range of 𝑑′𝑠 in which 𝑔 𝑑 = 0, then 

the same iterative procedure as in the previous paragraph can be followed in order to 

show that 𝐾∗ is constant.  It follows that the optimal policy  𝑄𝑑
∗ , 𝑟𝑑

∗  for any 𝑑 in the 

range in which 𝑔 𝑑 = 0 is constant as well.   

We have shown that 𝐾∗ can be constant or strictly decreasing depending on the 

value of 𝑔 𝑑 , but never an increasing function of 𝑑.  From these observations we must 

conclude that 𝐾∗ behaves as a non-increasing function of 𝑑.                                            ■  
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Let us look into the following generalized practical scenario in order to 

understand the implications of Lemma 2.4.2.1.  Let us define 𝑑1, such that 𝑑1 ≥ 0 and               

𝑃 𝐿 ≥ 𝑑1 = 1 but 𝑃 𝐿 ≥ 𝑑1 + ∆𝑑 < 1.  In addition, 𝑔 𝑑 = 0 in the range  0 ,  𝑑1  and 

𝑔 𝑑 > 0 in the range  𝑑1, 𝑑  .  Assuming that a customer order that triggers a 

replenishment order is received at time 𝑡 = 0, there is no chance for receiving the 

replenishment order before 𝑑1 units of time since the minimum lead-time  𝑙𝑚𝑖𝑛   is 

occurring at time 𝑡 = 𝑑1.  For practical purposes, 𝑑1 = 0 can be related to a supplier 

located next to the manufacturer, who can deliver as soon as the replenishment order is 

placed because he/she keeps available inventory of the component.  On the other hand, 

a 𝑑1 relatively larger than zero could be related to a supplier located far away from the 

manufacturer such that the replenishment order is received the earliest 𝑑1 units of time 

after being placed.                          

 

             Figure 5: “Early shipment” (𝑄, 𝑟) policy vs. traditional (𝑄, 𝑟) policy. 

𝑑   𝑑1 
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Note from the proof of Lemma 2.4.2.1 that 𝐾∗  must be constant for the range 

given by  0, d1  since 𝑔 𝑑 = 0, and the optimal policy for any given 𝑑 in that range is 

the same as in the traditional policy  𝑄𝑑=0
∗ , 𝑟𝑑=0

∗  .  In addition, 𝐾∗ is strictly decreasing 

for the range given by  𝑑1, 𝑑   since 𝑔 𝑑 > 0.  The behavior for this generalized 

practical scenario is shown in Figure 5.                                                           

From the previous lemma and generalized scenario, we can conclude that the 

manufacturer will prefer the modified model over the traditional for any 𝑑 > 𝑙𝑚𝑖𝑛 .    

  We now have all the information needed to understand the behavior of 𝑄∗ and 

𝑟∗ as 𝑑 increases, which is explained in the following theorem: 

Theorem 2.4.2.2:  Let 𝑄∗ and 𝑟∗ be functions of 𝑑 representing the behavior of 𝑄𝑑
∗  and 

𝑟𝑑
∗ as 𝑑 increases in the range  0 ,  𝑑  , then 𝑑𝑟∗ 𝑑𝑑 ≤ 0 and the direction of 𝑑𝑄∗ 𝑑𝑑  

depends on the problem being addressed. 

Proof:  We get (2.23) by rearranging (2.9) in terms of 𝐻 𝑟∗ .  

𝐻 𝑟∗ =
𝐼𝐶

𝜆𝜋
𝑄∗𝐺 𝑑 −1                                                (2.23) 

We know from its definition that  𝐻 𝑟∗ =  𝑕 𝑥 𝑑𝑥
∞

𝑥=𝑟∗ .  Realizing that both sides of 

the resulting equation (2.23) are functions of 𝑑, we proceed to calculate the derivative 

with respect to 𝑑 at both sides in order to get (2.24). 

−𝑕 𝑟∗ 
d𝑟∗

d𝑑
=

𝐼𝐶

𝜋𝜆
 

𝑄∗

𝐺 𝑑 2
𝑔 𝑑 +

1

𝐺 𝑑 

d𝑄∗

d𝑑
                                    

d𝑟∗

d𝑑
= −

𝐻 𝑟∗ 𝐺 𝑑 

𝑄𝑕 𝑟∗ 
 

𝑄∗

𝐺 𝑑 2
𝑔 𝑑 +

1

𝐺 𝑑 

d𝑄∗

d𝑑
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d𝑟∗

d𝑑
= −

𝐻 𝑟∗ 

𝑄∗𝑕 𝑟∗ 
 𝑄∗

𝑔 𝑑 

𝐺 𝑑 
+

d𝑄∗

d𝑑
                                     (2.24) 

𝑄∗ is given by (2.8), deriving it with respect to 𝑑 we get (2.25). 

d𝑄∗

d𝑑
=

𝜋𝜆

𝑄∗𝐼𝐶
 −   𝑥𝑕 𝑥 𝑑𝑥

∞

𝑥=𝑟∗

− 𝑟∗𝐻 𝑟∗  𝑔 𝑑 − 𝐻 𝑟∗ 𝐺 𝑑 
d𝑟∗

d𝑑
  

d𝑄∗

d𝑑
= −

1

𝐻 𝑟∗ 𝐺 𝑑 
  𝑥𝑕 𝑥 𝑑𝑥

∞

𝑥=𝑟∗

− 𝑟∗𝐻 𝑟∗  𝑔 𝑑 −
d𝑟∗

d𝑑
             (2.25) 

We get equation (2.26) by replacing from (2.25) the d𝑟∗ d𝑑  with (2.24).   

d𝑄∗

d𝑑
=

𝑔 𝑑 

𝐺 𝑑 
 
𝐻 𝑟∗ 

𝑕 𝑟∗ 
−

  𝑥𝑕 𝑥 𝑑𝑥
∞

𝑥=𝑟∗ − 𝑟∗𝐻 𝑟∗  

𝐻 𝑟∗ 
  1 −

𝐻 𝑟∗ 

𝑄∗𝑕 𝑟∗ 
 

−1

     (2.26) 

We get (2.27) by replacing from (2.24) the d𝑄∗ d𝑑  with (2.26). 

d𝑟∗

d𝑑
= −

𝐻 𝑟∗ 

𝑄∗𝑕 𝑟∗ 

𝑔 𝑑 

𝐺 𝑑 

 
 
 
 
 𝑄∗ +  

𝐻 𝑟∗ 

𝑕 𝑟∗ 
−

  𝑥𝑕 𝑥 𝑑𝑥
∞

𝑥=𝑟∗ − 𝑟∗𝐻 𝑟∗  

𝐻 𝑟∗ 
 

 1 −
𝐻 𝑟∗ 

𝑄∗𝑕 𝑟∗ 
 

−1

 
 
 
 
 

     (2.27) 

Note that it is trivial to conclude that d𝑟∗ d𝑑 = 0 and d𝑄∗ d𝑑 = 0 whenever 

𝑔 𝑑 = 0.  This observation should not take us by surprise because it was already shown 

during the second part of the proof related to Lemma 2.4.2.1.  However, for the rest of 

this proof the non-trivial case when 𝑔 𝑑 > 0 is addressed.   Note from Lemma 2.4.1.4 

that  1 − 𝐻 𝑟∗ 𝑄∗𝑕 𝑟∗   −1 > 0, then the sign of d𝑟∗ d𝑑 , and d𝑄∗ d𝑑  are both 

dependent on (2.28). 

 
𝐻 𝑟∗ 

𝑕 𝑟∗ 
−

  𝑥𝑕 𝑥 𝑑𝑥
∞

𝑥=𝑟∗ − 𝑟∗𝐻 𝑟∗  

𝐻 𝑟∗ 
                                  (2.28) 
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It can easily be observed that d𝑟∗ d𝑑 < 0 and d𝑄∗ d𝑑 ≥ 0 if (2.28) is greater than or 

equal to zero for any particular 𝑑 in the given range  0 ,  𝑑  .  In order to show that this is 

possible, let us rearrange (2.9) to define 𝐻 𝑟𝑑
∗ 𝑕 𝑟𝑑

∗   as in (2.29). 

𝐻 𝑟𝑑
∗ 

𝑕 𝑟𝑑
∗ 

= 𝑄𝑑
∗

𝐼𝐶

𝜋𝜆𝐺 𝑑 𝑕 𝑟𝑑
∗ 

                                            (2.29) 

From (2.29) we can conclude that (2.30) is true if (2.28) is greater than or equal to zero.  

𝑄𝑑
∗

𝐼𝐶

𝜋𝜆𝐺 𝑑 𝑕 𝑟𝑑
∗ 

≥
  𝑥𝑕 𝑥 𝑑𝑥

∞

𝑥=𝑟𝑑
∗ − 𝑟𝑑

∗𝐻 𝑟𝑑
∗  

𝐻 𝑟𝑑
∗ 

                         (2.30) 

Note from the previous expression that it is possible for Lemma 2.4.1.5 to hold since 

𝐼𝐶  𝜋𝜆𝐺 𝑑 𝑕 𝑟𝑑
∗  < 1  as can be deduced from (2.29) and Lemma 2.4.1.4.  Then, 

(2.28) can be greater than or equal to zero, d𝑟∗ d𝑑 < 0 and d𝑄∗ d𝑑 ≥ 0. 

Let us verify now the possibility for (2.28) to be less than zero for any 𝑑 in the 

range  0 ,  𝑑  .  Following the same approach as above, we get (2.31).   

𝑄𝑑
∗

𝐼𝐶

𝜋𝜆𝐺 𝑑 𝑕 𝑟𝑑
∗ 

<
  𝑥𝑕 𝑥 𝑑𝑥

∞

𝑥=𝑟𝑑
∗ − 𝑟𝑑

∗𝐻 𝑟𝑑
∗  

𝐻 𝑟𝑑
∗ 

                        (2.31) 

Note that it is possible for Lemma 2.4.1.5 to hold and we can not completely rule out the 

possibility for (2.28) to be less than zero,d𝑟∗ d𝑑 ≤ 0 and d𝑄∗ d𝑑 < 0.  On the other 

hand, (2.32) must stand true if we assume that (2.28) is less than zero such 

that d𝑟∗ d𝑑 > 0 and d𝑄∗ d𝑑 < 0. 

 𝑄𝑑
∗ +  

𝐻 𝑟𝑑
∗ 

𝑕 𝑟𝑑
∗ 

−
  𝑥𝑕 𝑥 𝑑𝑥

∞

𝑥=𝑟𝑑
∗ − 𝑟𝑑

∗𝐻 𝑟𝑑
∗  

𝐻 𝑟𝑑
∗ 

  1 −
𝐻 𝑟𝑑

∗ 

𝑄𝑑
∗𝑕 𝑟𝑑

∗ 
 

−1

< 0 
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𝑄𝑑
∗ −

𝐻 𝑟𝑑
∗ 

𝑕 𝑟𝑑
∗ 

+
𝐻 𝑟𝑑

∗ 

𝑕 𝑟𝑑
∗ 

−
  𝑥𝑕 𝑥 𝑑𝑥

∞

𝑥=𝑟𝑑
∗ − 𝑟𝑑

∗𝐻 𝑟𝑑
∗  

𝐻 𝑟𝑑
∗ 

< 0 

and,  

𝑄𝑑
∗ <

  𝑥𝑕 𝑥 𝑑𝑥
∞

𝑥=𝑟𝑑
∗ − 𝑟𝑑

∗𝐻 𝑟𝑑
∗  

𝐻 𝑟𝑑
∗ 

                                      (2.32) 

Note that (2.32) is a contradiction of Lemma 2.4.1.5, so we must conclude that it is not 

possible for d𝑟∗ d𝑑 > 0 and d𝑄∗ d𝑑 < 0.  Summarizing, d𝑟∗ d𝑑 < 0 and    

d𝑄∗ d𝑑 ≥ 0 if (2.28) is equal or greater than zero; and d𝑟∗ d𝑑 ≤ 0 and d𝑄∗ d𝑑 < 0 if 

(2.28) is less than zero.  From these remarks we must conclude 𝑟∗ is a non-increasing 

function of 𝑑 and 𝑄∗ is dependent on the problem being addressed.                        ■   

 

2.4.3.   Penalty, Inventory, and Ordering Costs                                                                                                        

    We have previously said that the manufacturer will prefer the modified model 

over the traditional for any 𝑑 > 𝑙𝑚𝑖𝑛 .  However, it is important to understand the 

implications at the customer.  In order to do so, we need to focus our attention on the 

behavior of the penalty and inventory costs.   

Equation (2.33) gives us the behavior of the penalty cost per year as 𝑑 increases. 

d

d𝑑
 
𝜋𝜆

𝑄∗
𝜂 𝑑 𝑟

∗  = −
𝜋𝜆

𝑄∗

 
 
 
 
   𝑥𝑕 𝑥 𝑑𝑥

∞

𝑥=𝑟∗

− 𝑟∗𝐻 𝑟∗  𝑔 𝑑 + 𝐻 𝑟∗ 𝐺 𝑑 
d𝑟∗

d𝑑

+
  𝑥𝑕 𝑥 𝑑𝑥

∞

𝑥=𝑟∗ − 𝑟∗𝐻 𝑟∗  

𝑄∗
𝐺 𝑑 

d𝑄∗

d𝑑  
 
 
 
 

 (2.33) 

We can observe that (2.33) depends on d𝑟∗ d𝑑  and d𝑄∗ d𝑑 .  We know from Theorem 

2.4.2.2 that d𝑟∗ d𝑑 ≤ 0, so our attention will focus on d𝑄∗ d𝑑 .  In particular, the 
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following possible behaviors for the penalty cost per year are shown: 1) it is a non-

decreasing function of 𝑑 if d𝑄∗ d𝑑 ≥ 0, and 2) it is a decreasing function of 𝑑 if 

d𝑄∗ d𝑑 < 0. 

For the first case, let us assume that (2.33) is negative when d𝑄∗ d𝑑 ≥ 0; in 

other words, the penalty cost per year is a decreasing function of 𝑑.  We can get (2.34) 

by replacing from (2.33) the d𝑄∗ d𝑑  with (2.26) and d𝑟∗ d𝑑  with (2.27). 

 
𝐻 𝑟∗ 

𝑕 𝑟∗ 
−

  𝑥𝑕 𝑥 𝑑𝑥
∞

𝑥=𝑟∗ − 𝑟∗𝐻 𝑟∗  

𝐻 𝑟∗ 
  1 −

  𝑥𝑕 𝑥 𝑑𝑥
∞

𝑥=𝑟∗ − 𝑟∗𝐻 𝑟∗  

𝑄∗𝐻 𝑟∗ 
 < 0  (2.34) 

Note that when d𝑟∗ d𝑑 < 0 and d𝑄∗ d𝑑 ≥ 0, (2.28) is greater than or equal to zero and 

(2.34) is not satisfied since the left-hand side is non-negative. This is a contradiction 

from our original assumption and we must conclude that the penalty cost per year is a 

non-decreasing function of 𝑑 if d𝑟∗ d𝑑 < 0 and d𝑄∗ d𝑑 ≥ 0.   

For the second case, we can observe that (2.34) is true if (2.28) is less than zero.  

We also know from the proof of Theorem 2.4.2.2 that d𝑄∗ d𝑑 < 0 when (2.28) is 

negative.  Then, we must conclude that the penalty cost per year is a decreasing function 

of 𝑑 when d𝑟∗ d𝑑 < 0 and d𝑄∗ d𝑑 < 0.    

Explaining this behavior, in order to minimize the increase in penalty cost the 

model increases the value of 𝑄∗ whenever the expected number of orders incurring 

penalty per year increases as 𝑑 increases.  On the other hand, the model lowers the value 

of 𝑄∗if the expected number of orders incurring penalty per year decreases; as result of 

this action the system reduces inventory but the expected penalty cost per year still 

decreases. 
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Equation (2.35) gives us the behavior of the inventory cost per year as 𝑑 

increases: 

d

d𝑑
 𝐼𝐶  

𝑄∗

2
+ 𝑟∗ − 𝜇  = 𝐼𝐶  

1

2

d𝑄∗

𝜕𝑑
+

𝜕𝑟∗

𝜕𝑑
                               (2.35) 

Note that (2.35) is non-positive if d𝑄∗ d𝑑 ≤ 0.  For the case of d𝑄∗ d𝑑 > 0, let us 

assume that (2.35) is greater than or equal to zero.  We can get (2.36) by replacing from 

(2.35) d𝑄∗ d𝑑  with (2.26) and d𝑟∗ d𝑑  with (2.27). 

−
1

2

𝐻 𝑟∗ 

𝑕 𝑟∗ 
+   𝑥𝑕 𝑥 𝑑𝑥

∞

𝑥=𝑟∗

− 𝑟∗𝐻 𝑟∗   
1

𝑄∗𝑕 𝑟∗ 
−

1

𝐻 𝑟∗ 
 ≥ 0        (2.36)   

From Lemma 2.4.1.4, the right term from the left-hand side of the previous inequality is 

negative.  Then, (2.36) is not satisfied and this leads to a contradiction from our original 

assumption and (2.35) is negative if d𝑄∗ d𝑑 > 0.  From these observations we must 

conclude that the inventory cost is a non-increasing function of 𝑑.  This means that for 

inventory purposes, the reduction of 𝑟∗ offsets any increase in 𝑄∗. 

The behavior of the ordering cost (𝜆𝐴 𝑄∗ ) is self-explanatory since it depends 

only on the value of 𝑄∗. 

 

2.4.4. Claim with Respect to  𝐝𝑸∗ 𝐝𝒅  

It is claimed that for most practical purposes (or instances) d𝑄∗ d𝑑 ≥ 0.  This 

claim is justified by focusing our attention on the case when the d𝑄∗ d𝑑 < 0 which 

happens when (2.28) negative.  Let us rearranged (2.9) and (2.8) in terms of 
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𝐻 𝑟∗ 𝑕 𝑟∗   and   𝑥𝑕 𝑥 𝑑𝑥
∞

𝑥=𝑟∗ − 𝑟∗𝐻 𝑟∗  𝐻 𝑟∗  , respectively, in order to get 

(2.37).  

𝑄∗𝐼𝐶

𝜋𝜆𝐺 𝑑 𝑕 𝑟∗ 
−  

𝑄∗2𝐼𝐶

2𝜋𝜆𝐺 𝑑 𝐻 𝑟∗ 
−

𝐴

𝜋𝐺 𝑑 𝐻 𝑟∗ 
 < 0                    (2.37) 

Simplifying (2.37) we get (2.38). 

𝐼𝐶

𝜋𝜆𝐺 𝑑 𝑕 𝑟∗ 
<

1

2
−

𝐴

2 𝐴 + 𝜋  𝑥𝑕 𝑥 𝑑𝑥
∞

𝑥=𝑟∗ − 𝑟∗𝐻 𝑟∗  𝐺 𝑑  
           (2.38) 

Just as a reminder, 0 < 𝐼𝐶  𝜋𝜆𝐺 𝑑 𝑕 𝑟∗  < 1 , then (2.38) must be satisfied when 

d𝑄∗ d𝑑 < 0.  We have previously shown that the derivative of the penalty cost per year 

is negative when d𝑄∗ d𝑑 < 0.  From this observation we can conclude that as 𝑑 

increases the penalty cost per cycle as given by 𝜋  𝑥𝑕 𝑥 𝑑𝑥
∞

𝑥=𝑟∗ − 𝑟∗𝐻 𝑟∗  𝐺 𝑑  

decreases and the window defined by the right-hand side of (2.38) is closing.  This is the 

base for the claim and it is shown with numerical examples.   

  It is important to mention that as a result of this claim, the penalty cost per year 

is expected to be a non-decreasing function of 𝑑 while the ordering cost is non-

increasing.   

 

2.4.5. Behavior When 𝒅 ≥ 𝒅  

It is known from Lemma 2.4.1.3 that for any 𝑑 ≥ 𝑑  the convexity of the cost 

function (𝐾𝑑) with respect to 𝑄 and 𝑟 is not guaranteed.  However, we can always use 

the policy (𝑄𝑑 = 𝑄𝑑 −∆𝑑
∗ , 𝑟𝑑 = 𝑟𝑑 −∆𝑑

∗ ) and set 𝐾𝑑 = 𝐾𝑑 −∆𝑑
∗  for any 𝑑 ≥ 𝑑 .  Note from 

(2.22) that 𝐾𝑑  is non-increasing as 𝑑 increases in the range  𝑑 ,  ∞ .  In fact, it is strictly 
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decreasing if 𝑔(𝑑) > 0 as shown in Figure 6.  In addition, note that the ordering and 

inventory holding costs are constant in that range and the reduction in 𝐾𝑑  is driven by a 

reduction in the penalty cost.   

 

Figure 6: “Early shipment” (𝑄, 𝑟) policy with replenishment delay vs. 

                traditional (𝑄, 𝑟) policy. 

To use the modified (𝑄, 𝑟) policy for any choice of 𝑑, the following algorithm is 

used: 

Start, 

Define 𝑑; 

Compute 𝑑 ≔ 𝑚𝑖𝑛 𝑑 ≥ 0 𝑄 𝑑 > 𝜋𝜆𝐺 𝑑 𝐻 𝑢 𝐼𝐶  ; 

If 𝑑 < 𝑑 , 

Find 𝑄𝑑
∗ , 𝑟𝑑

∗, and calculate 𝐾𝑑
∗; 

𝑑  𝑑1 = 𝑙𝑚𝑖𝑛  

𝐾𝑇  

𝐾𝑑
∗ 𝐾𝑑   
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Else, 

Find 𝑄𝑑 −1
∗ , 𝑟𝑑 −1

∗ ,  

Set 𝑄𝑑
∗ = 𝑄𝑑 −1

∗ , 𝑟𝑑
∗ = 𝑟𝑑 −1

∗ , and calculate 𝐾𝑑
∗, 

End; 

 End. 

2.5. Numerical Study 

This section presents the results of a numerical study performed with the 

following objectives: 

1) Demonstrate the performance of the modified policy, 

2) Demonstrate the claim that for most practical scenarios the d𝑄∗ d𝑑 ≥ 0. 

Three sets of problems are run in which 𝑔 𝑙  is assumed to follow an expo (𝛽), 

normal  𝜇𝐿𝑇 , 𝜎𝐿𝑇
2  , and uniform  𝑎, 𝑏  distribution functions.  For each lead-time 

distribution function, a set of problems are defined by varying one parameter at a time 

from a base case problem, and a final case is run by varying all parameters at the same 

time as shown in tables 1, 2, and 3.  For all cases the marginal distribution of the lead-

time demand, 𝑕 𝑥 , is assumed normal  𝜇, 𝜎2 .   

For practical purposes the analysis was done assuming that ∆𝑑 = 1 week.  The 

following algorithm is followed in order to show the behavior of the model as 𝑑 

increases  

Start, 



 35 

Compute 𝑑 ≔ 𝑚𝑖𝑛 𝑑 ≥ 0 𝑄 𝑑 > 𝜋𝜆𝐺 𝑑 𝐻 𝑢 𝐼𝐶  ; 

Set 𝑑 = 0; 

For any 𝑑 < 𝑑 , 

Find 𝑄𝑑
∗ , 𝑟𝑑

∗, and calculate 𝐾𝑑
∗; 

𝑑 = 𝑑 + 1, 

End; 

End. 

 The total cost, inventory cost, and the “on-time performance” (OTP) are used for 

comparison purposes between the modified (𝑄, 𝑟) model with the “early shipment” 

policy and the traditional (𝑄, 𝑟) model for the cases when 𝑑 = 2, 4, and 6 weeks.  In 

addition, unless otherwise specified, the analysis is done for any 𝑑 such that 𝑑 < 𝑑 .  

 

2.5.1. Expo (𝜷) Lead-Times 

Table1: Parameters for each case problem – Expo (𝛽). 

 

g (l)

μ σ β

1 750 50 12 3250 4000 10 20 3.67097E-51

2 800 50 12 3466.7 4000 10 20 6.38875E-58

3 750 150 12 3250 4000 10 20 2.86652E-07

4 750 50 6 6500 4000 10 20 3.67097E-51

5 750 50 12 3250 1 10 20 3.67097E-51

6 750 50 12 3250 4000 1 20 3.67097E-51

7 750 50 12 3250 4000 10 40 3.67097E-51

8 800 150 6 6933.3 1 1 40 4.8213E-08

P ( X≤ 0)
h(x)Case        

No.
λ A IC π
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Table 1 shows the parameters used for the set of problems in which the lead-time 

distribution 𝑔 𝑙  was assumed to be exponential.  Note that 𝜆 is calculated assuming 52 

production weeks in a year, 𝜆 = 52 ∗ 𝜇 𝛽 .  In addition, the 𝑃 𝑋 ≤ 0  is determined in 

order to confirm that it is negligible since the lead-time demand is assumed normal.  

Figure 7 shows the rate of change as 𝑑 increases for the optimal cost function 𝐾∗, 

the penalty cost, inventory cost, and ordering cost.  For scale purposes the rate of change 

is shown rather than the actual value for each cost metric.  However, it can be concluded 

from the charts that for all case studies 𝐾∗, the inventory cost, and the ordering cost are 

decreasing functions of 𝑑, while the penalty cost is increasing. 

 

  Figure 7: ∆𝐾∗ ∆𝑑 , ∆ Penalty Cost ∆𝑑 , ∆ Inventory Cost ∆𝑑 , and 

       ∆ Ordering Cost ∆𝑑  for the exponential lead-times. 
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 Figure 8: ∆𝑟∗ ∆𝑑  and ∆𝑄∗ ∆𝑑  for the exponential lead-times. 

Figure 8 shows the rate of change for 𝑟∗ and 𝑄∗as 𝑑 increases, and it can be 

concluded that 𝑟∗ is a decreasing function of 𝑑 while 𝑄∗ is increasing.  These results are 

compatible with the explanation given in section 2.4, and for the particular case of the 

rate of change of 𝑄∗, it supports the claim that for most practical scenarios d𝑄∗ d𝑑 ≥ 0. 

Figure 9 relates to the base case of the exponential lead-time distribution and is 

intended to help the reader visualize the behavior of the model as 𝑑 increases.  Note 

that 𝑑 = 9, and (𝑄𝑑 = 𝑄8
∗, 𝑟𝑑 = 𝑟8

∗) is arbitrarily chosen for any 𝑑 ≥ 𝑑 .  Observe the 

change of behavior for the ordering, inventory, and penalty costs.  In particular, note that 

the penalty cost is increasing until 𝑑 − ∆𝑑 = 8, and then becomes a decreasing function 

of 𝑑.  From this observation we can conclude that the service is deteriorating for any 

𝑑 < 𝑑  and improving for any 𝑑 ≥ 𝑑 .   Despite these changes in the behavior of the 

ordering, inventory, and penalty costs, the total cost is a non-increasing function of 𝑑.  In 

this case in particular, the cost function is strictly decreasing because 𝑔(𝑙) is assumed 

exponential.   
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 Figure 9: Case 1 for the exponential lead-times. 

2.5.2. Normal (𝝁𝑳𝑻, 𝝈𝑳𝑻
𝟐 ) Lead-Times 

Table 2 shows the parameters for the case studies in which the lead-time was 

assumed to follow a normal distribution.  Note that 𝜆 is calculated as follows:             
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𝜆 = 52 ∗ 𝜇 𝜇𝐿𝑇 .  The 𝑃 𝑋 ≤ 0  and 𝑃 𝐿 ≤ 0  are calculated in order to confirm that the 

chances of having negative demand or negative lead-time 𝑙 are negligible.    

 Table 2: Parameters for each case problem – Normal ( 𝜇𝐿𝑇 , 𝜎𝐿𝑇
2 ). 

 

 

 Figure 10: ∆𝑟∗ ∆𝑑  and ∆𝑄∗ ∆𝑑  for the normal lead-times. 

Figures 10 and 11 show the behavior of the model as 𝑑 increases for each case 

study.  Note that as in the case of the exponential distribution the behavior is as 

expected.  For the rate of change of 𝑄∗, Figure 10 supports the claim that for most 

practical scenarios d𝑄∗ d𝑑 ≥ 0. 

μ σ µ Lt σ2
Lt

1 750 50 12 1 3250 4000 10 20 3.67E-51 1.78E-33

2 800 50 12 1 3466.7 4000 10 20 6.39E-58 1.78E-33

3 750 150 12 1 3250 4000 10 20 2.87E-07 1.78E-33

4 750 50 6 1 6500 4000 10 20 3.67E-51 9.87E-10

5 750 50 12 6.25 3250 4000 10 20 3.67E-51 2.74E-02

6 750 50 12 1 3250 1 10 20 3.67E-51 1.78E-33

7 750 50 12 1 3250 4000 1 20 3.67E-51 1.78E-33

8 750 50 12 1 3250 4000 10 40 3.67E-51 1.78E-33

9 800 150 6 4 6933.3 1 1 40 4.82E-08 6.68E-02

P (L ≤ 0)P ( X≤ 0)
h (x )Case        

No.
λ A IC π

g (l )
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 Figure 11: ∆𝐾∗ ∆𝑑 , ∆ Penalty Cost ∆𝑑 , ∆ Inventory Cost ∆𝑑 , and 

       ∆ Ordering Cost ∆𝑑  for the normal lead-times. 

 

 Figure 12: Cost function (𝐾∗), penalty cost, inventory cost, and ordering cost for  

        Case 1 – Normal. 
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Figures 12 and 13 show the behavior of the model for the base case of the normal 

distribution function.  Since 𝑔 𝑑 > 0 but negligible for any 𝑑 ≤ 9, the behavior is 

almost similar to the traditional model for any 𝑑 within that period of time.  This is the 

result of setting-up a small 𝜎𝐿𝑇
2  in order to guarantee no negative lead-time 𝑙.  From this 

observation we can conclude that the modified (𝑄, 𝑟) model with the “early shipment” 

policy is preferred when 𝑑 > 𝑙𝑚𝑖𝑛  and 𝑔 𝑙  is not negligible.      

 

 Figure 13: 𝑟∗ and 𝑄∗ for Case 1 – Normal.  

 

2.5.3. Uniform (𝒂, 𝒃) Lead-Times 

 Table 3: Parameters for each case problem – Uniform  𝑎, 𝑏  
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8 800 150 0 16 5200.0 1 1 40 4.82E-08
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Table 3 shows the parameters for the case studies in which the lead-time was 

assumed to follow a uniform distribution.  The 𝑃 𝑋 ≤ 0  is calculated in order to 

confirm that the probability of having negative demand is negligible.  Note that 𝜆 is 

calculated as follows: 𝜆 = 52 ∗ 𝜇 ∗ 2  𝑏 + 𝑎  .   

 

 Figure 14: ∆𝑟∗ ∆𝑑  and ∆𝑄∗ ∆𝑑  for the uniform lead-times. 

 

 Figure 15: ∆𝐾∗ ∆𝑑 , ∆ Penalty Cost ∆𝑑 , ∆ Inventory Cost ∆𝑑 , and 

        ∆ Ordering Cost ∆𝑑  for the uniform lead-times. 
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Figures 14 and 15 show the behavior of the model as 𝑑 increases for each case 

study.  Note that as in the case of the exponential and normal distributions the behavior 

is as expected.  For the rate of change of 𝑄∗, Figure 14 supports the claim that for most 

practical scenarios d𝑄∗ d𝑑 ≥ 0. 

 

 Figure 16: Cost function (𝐾∗) for base case problem – Uniform. 
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Figure 16 shows the behavior of the model for the base case of the uniform 

distribution function.  Note that 𝑙𝑚𝑖𝑛 = 𝑑1 = 𝑎 = 8 is the minimum lead-time and the 

“early shipment” model has the same behavior as the traditional model (given by 𝐾𝑑=0
∗ ) 

for any given 𝑑 ≤ 𝑙𝑚𝑖𝑛  since 𝑔 𝑑 = 0.  Observe that 𝑑 = 12 and 𝐾𝑑
∗ is strictly 

decreasing in the range given by  8,12  since 𝑔 𝑑 > 0.  This behavior is compatible 

with the generalized practical scenario discussed in section 2.4.     

 

2.5.4. Modified (𝑸, 𝒓) Model with the “Early Shipment” Policy vs.  

Traditional (𝑸, 𝒓) Model 

 
 Figure 17: “Early shipment” model vs. the traditional model – Expo, Normal, Uniform. 
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Figure 17 shows a comparison between the modified (𝑄, 𝑟) model with the “early 

shipment” policy and the traditional (𝑄, 𝑟) model for the case when 𝑑 = 2, 4, and 6.  In 

average, the modified model reduced the cost as 𝑑 increases by 0.29%, 0.62%, and 

1.10%, respectively; and the inventory cost by 0.45%, 0.96%, and 1.71%, respectively.  

This analysis considers the data from the exponential, uniform and normal lead-time 

distributions.   

 

 Figure 18: “Early shipment” model vs. the traditional model; 𝑑 > 𝑙𝑚𝑖𝑛   

       and 𝑔 𝑑  is not negligible. 
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eliminate from the analysis any data from the uniform and normal lead-time distribution 

functions that does not meet those criteria.  Figure 18 shows this analysis and it can be 

observed that the expected improvement in the total cost was 0.65%, 1.30%, and 2.12%, 

respectively; and 1.02%, 1.99%, and 3.28% for the inventory cost. 

Note from figures 17 and 18 that the deterioration in service performance is 

minimal, which is the result of the assumption that the expected number of backorders is 

negligible with respect to the expected inventory at any time.      

 

2.6. Summary 

This chapter discusses the modified (𝑄, 𝑟) model with the “early shipment” 

policy.  A detailed description of the model is given, and its behavior is discussed 

mathematically and shown by means of numerical examples.   

 The basic assumption for this model is that the customer does not penalize for 

early shipments.  In that sense, the manufacturer can ship the final product up to 𝑑 units 

of time ahead of the delivery date if inventory of the component is available at time of 

the customer order entry.  If inventory is not available, penalty is only incurred if the 

component becomes available more than 𝑑 units of time after receiving the customer 

order.  The main difference with the traditional (𝑄, 𝑟) inventory control model is given 

by the penalty cost structure.  Backorders/stock-outs are allowed and the chance for 

incurring penalty is only present when the lead-time (𝑙) is greater or equal to the safety 

time (𝑑). 



 47 

Defining 𝑙𝑚𝑖𝑛  as the minimum lead-time, the modified (𝑄, 𝑟) model with the 

“early shipment” policy has the same behavior as the traditional model for any 𝑑 ≤ 𝑙𝑚𝑖𝑛 .  

However, for any 𝑑 > 𝑙𝑚𝑖𝑛  the optimal cost function (𝐾∗) tends to decrease as the safety 

time (𝑑) increases, and the modified model is preferred over the traditional (𝑄, 𝑟) model.  

The main reason for this behavior is that 𝑟∗ decreases, driving a reduction in inventory 

which in turn drives the reduction of 𝐾∗.  The behavior of 𝑄∗ and the penalty cost per 

year depend on the problem being addressed, but a claim is established and shown by 

numerical examples that for most practical scenarios 𝑄∗ and the penalty cost per year 

will increase.    

There is a 𝑑 , such that for any 𝑑 ≥ 𝑑  the convexity of the model is not 

guaranteed anymore.  However, the policy (𝑄𝑑 = 𝑄𝑑 −∆𝑑
∗ , 𝑟𝑑 = 𝑟𝑑 −∆𝑑

∗ ) can arbitrarily be 

used for any 𝑑 ≥ 𝑑  and the cost function (𝐾) is still a non-increasing function of 𝑑 

driven by a reduction in the penalty cost.   

The next chapter discusses the modified (𝑄, 𝑟) model with the “no-early 

shipment” policy.  The behavior of the model with respect to the safety time is explained 

mathematically and by means of numerical examples.  
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CHAPTER III 

MODIFIED (Q, r) MODEL WITH THE NO-EARLY SHIPMENT POLICY 

 

3.1. Introduction 

This chapter describes the modified (𝑄, 𝑟) model under a scenario in which early 

shipments are not allowed by the customer.  This follows from the assumption that the 

customer is knowledgeable of the inventory implications for allowing early shipments.  

There is a penalty imposed over the manufacturer for shipping orders ahead of time.  

One could think of a scenario in which the customer is aware of the implications that 

early shipments have on their inventory, and monitors early orders as part of their 

control procedures.    

The safety time (𝑑) is modeled under the perspective that the manufacturer 

allocates inventory of the required component to the customer order, releases the order 

to the shop floor 𝑑 units of time after the order entry date, and ships the product at the 

delivery date.  Penalty is incurred only if the component is not available at the time that 

the order is released to the shop floor.  

As we will see in this chapter, the behavior of the model is dependent on the 

problem being addressed.  The merits of the model with respect to the traditional and the 

modified (𝑄, 𝑟) model with the “early shipment” policy are discussed.  In particular, the 

behavior of the model as 𝑑 increases is discussed with respect to the coefficient of 

variation, the ratio (𝐼𝐶 𝜋 ), and the period of time given by [0, 𝑙𝑚𝑖𝑛 ] which could be 

related to the location of the supplier.   
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3.2. Methodology 

The modified (𝑄, 𝑟) model for the case when early shipments are not allowed by 

the customer is modeled following the heuristic approach discussed by Hadley and 

Whitin (1963).  The 𝜕𝐾 𝜕𝑑  and 𝜕2𝐾 𝜕𝑑2  are used to determine that the behavior of the 

model with respect to the safety time (𝑑) is dependent on the problem being addressed.  

Total derivatives with respect to 𝑑 are calculated in order to determine the relationship 

between 𝑟∗, 𝑄∗, and the penalty cost.  Special attention is given to show the benefits of 

delaying the replenishment order, and to show the merits of the model with respect to the 

traditional model and the modified (𝑄, 𝑟) model with the “early shipment” policy for the 

case when there is a minimum lead-time 𝑙𝑚𝑖𝑛 . 

Numerical examples are run to identify which parameters are critical to the 

behavior of the model as 𝑑 increases.    

 

3.3. Description of the Model 

  This model differs from the traditional  𝑄, 𝑟  model not only in the penalty cost 

structure but in the inventory cost as well.  This is the result of the allocation of 

inventory during the time period (0, 𝑑]  in order to guarantee the future on-time delivery 

of the customer order.  Since the lead-time 𝐿 is random, there are instances in which 

𝑙 ≥ 𝑑 and 𝑙 < 𝑑, the chance of incurring penalty is related to 𝑃 𝐿 ≥ 𝑑 , and the demand 

during the time periods (𝑑, 𝑙] and (𝑙, 𝑑] are both of interest.  In addition, the inventory 

position has been redefined as the net inventory plus in-transit inventory minus the 

allocations as shown in Figure 19. 
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  Figure 19: Behavior of the “no-early shipment” model. 

The following notation is used in order to define the cost function (𝐾): 

 𝑋 𝑡  , 𝑡+∆ is the demand in any time interval  𝑡 ,  𝑡 + ∆ ; 

 𝑓 𝑥; ∆  is the probability that the number of units demanded in a time 

interval of length ∆=  𝑡 + ∆ − 𝑡 lies between 𝑥 and 𝑥 +  𝑑𝑥; 

 𝑔 𝑙 𝑑𝑙 is the probability that the lead-time for the replenishment/procurement 

order lies between 𝑙 and 𝑙 +  𝑑𝑙; 

 𝑑 is the cushion or safety time by which no penalty is incurred if material is 

not available at time of the customer order entry; 

 𝑕1 𝑥  is the marginal distribution for the demand during the time period 

 𝑑 ,  𝑙  and it is assumed unimodal, 

𝑕1 𝑥 =  𝑓 𝑥; 𝑙 − 𝑑 𝑔 𝑙 𝑑𝑙
∞

𝑙=𝑑

;                                          (3.1) 

 𝜇 𝑑  , 𝑙  is the expected demand during the time period (𝑑, 𝑙], 
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𝜇 𝑑  , 𝑙 =  𝑥𝑕1 𝑥 𝑑𝑥
∞

𝑥=0

;                                                 (3.2) 

 𝑕2 𝑥  is the marginal distribution for the demand during the time period 

 𝑙 ,  𝑑  and it is assumed unimodal, 

𝑕2 𝑥 =  𝑓 𝑥; 𝑑 − 𝑙 𝑔 𝑙 𝑑𝑙
𝑑

𝑙=0

;                                         (3.3) 

 𝜇 𝑙  , 𝑑  is the expected demand during the time period (𝑙, 𝑑], 

𝜇 𝑙  , 𝑑 =  𝑥𝑕2 𝑥 𝑑𝑥
∞

𝑥=0

;                                               (3.4) 

 0 < 𝑄 < ∞ is the procurement/replenishment order size; 

 𝑢𝑑 ≤ 𝑟 < ∞ is the reorder level that triggers the procurement order by means 

of the inventory position, where 𝑢𝑑  is a non-negative number such that 𝑕1 𝑥  

is non-increasing for any 𝑥 ≥ 𝑢𝑑 ; 

 𝜆 is the average annual demand which is constant over time; 

 𝐴 is the cost of placing an order with the supplier; 

 𝐼𝐶 is the average cost of carrying inventory per unit per unit time; 

 𝜋 is the penalty cost per unit incurred when the requested customer date is 

missed; 

 𝐺 𝑑  is the complementary cumulative distribution of 𝑔 𝑑 , or 𝑃(𝐿 ≥  𝑑), 

𝐺 𝑑 =  𝑔 𝑙 𝑑𝑙
∞

𝑙=𝑑

;                                                       (3.5) 

 𝜂 𝑑 𝑟  is the expected number of units incurring the penalty cost per cycle. 
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The same assumptions as in Hadley and Whitin (1963) are being followed and 

are enumerated as follows: 

1) The unit cost 𝐶 of the item is a constant independent of 𝑄; 

2) There is never more than a single order outstanding; 

3) The cost of operating the information processing system is independent of 𝑄 

and 𝑟; 

4) The reorder point 𝑟 is positive.  

The only major change is that 𝜋 has been assumed to be the penalty cost incurred 

when the customer order for the finished product is overdue or late based on its 

request/delivery date since backorders/stock-outs of the inventory item are allowed at 

time of order entry.  Despite the fact that backorders are allowed, Hadley’s and Whitin’s 

assumption that the average number of backorders is negligible as compared to the 

average inventory at any time is being followed.  Hence, the expected on-hand inventory 

is equal to the expected net inventory in order to calculate the cost structure related to 

the inventory cost. 

In order to calculate the expected annual inventory cost, let us assume that a 

customer order that triggers the decision of placing a replenishment order for the 

inventory component is entered at time 𝑡 = 0.  The customer order is released to the 

shop floor at time 𝑑 and the replenishment order is received at time 𝑙 if there is no delay 

in placing the replenishment order.  Since the lead-time 𝐿 is random, then there are 

instances in which 𝑙 ≥ 𝑑 and 𝑙 < 𝑑. 
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For the instance in which 𝑙 ≥ 𝑑, the customer orders entered at or before time 

𝑡 = 0 have inventory allocated and are required to be released during the time interval 

(0, 𝑑].  The net inventory at time of booking the customer order is 𝑟 + 𝑋 0  ,𝑑 ; the chance 

of incurring penalty is related to the demand during the time period (𝑑, 𝑙]; and the net 

inventory at time of receiving the replenishment order is 𝑟 − 𝑋 𝑑   ,𝑙 .  For the instance in 

which 𝑙 < 𝑑, there is no chance of incurring penalty and the net inventory at the time of 

arrival of the replenishment order is 𝑟 + 𝑋 𝑙   ,𝑑 .   

The net inventory at time of arrival of the replenishment order can be 

summarized as per (3.6).  

𝜉𝑑 𝑥, 𝑟 =  
𝑟 − 𝑋 𝑑   ,𝑙 ,           𝑙 ≥ 𝑑, 0 ≤ 𝑋 𝑑   ,𝑙 < ∞; 

 𝑟 + 𝑋 𝑙   ,𝑑 ,           𝑙 < 𝑑, 0 ≤ 𝑋 𝑙   ,𝑑 < ∞.  
                       (3.6) 

The expected net inventory at the time of arrival of a replenishment order can be 

calculated as follows: 

𝐸 𝜉𝑑 𝑥, 𝑟  =     𝑟 − 𝑥 𝑓 𝑥; 𝑙 − 𝑑 𝑔 𝑙 𝑑𝑙𝑑𝑥
∞

𝑙=𝑑

∞

𝑥=0

 𝑃 𝐿 ≥ 𝑑        

+     𝑟 + 𝑥 𝑓 𝑥; 𝑑 − 𝑙 𝑔 𝑙 𝑑𝑙𝑑𝑥
𝑑

𝑙=0

∞

𝑥=0

 𝑃 𝐿 < 𝑑                    

𝐸 𝜉𝑑 𝑥, 𝑟  =  𝑟 − 𝜇 𝑑  , 𝑙  𝐺 𝑑 +  𝑟 + 𝜇 𝑙  , 𝑑   1 − 𝐺 𝑑                      (3.7) 

= 𝑠𝑑𝐺 𝑑 + 𝑒𝑑 1 − 𝐺 𝑑  .          

Note that 𝑠𝑑  is the safety stock needed to protect us against the variability of the 

demand when 𝑙 ≥ 𝑑, and 𝑒𝑑  is the excess inventory that occurs naturally when 𝑙 < 𝑑 

since the replenishment order arrives before the material is really needed.  As 𝑑 

increases, the time period  𝑑 ,  𝑙  decreases and less safety stock is needed; however, the 
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time period  𝑙 ,  𝑑  increases and more excess inventory occurs.  Since by definition 𝐺(𝑑) 

is a decreasing function of 𝑑, it must be concluded that as 𝑑 increases the term       

𝑒𝑑 1 − 𝐺 𝑑   will become the major contributor for the expected net inventory.  This 

observation justifies the implementation of a policy based on delaying the placement of 

the replenishment order with the objective of reducing the excess inventory.  Under this 

policy, the decision of reordering is taken when the inventory position reaches the 

reorder level but the execution is delayed by 𝑚 units of time.  This policy is discussed in 

section 3.4.3.  

Continuing with the inventory cost structure without any delay of the 

replenishment order, the expected annual inventory carrying cost is defined as follows:  

𝐼𝐶  
𝑄

2
+ 𝑠𝑑 + 𝑒𝑑  

= 𝐼𝐶  
𝑄

2
+ 𝑟 − 𝜇 𝑑  , 𝑙 𝐺 𝑑 + 𝜇 𝑙  , 𝑑  1 − 𝐺 𝑑   .                            (3.8) 

In order to define the expected annual penalty cost, note that the penalty is only 

incurred when 𝑙 ≥  𝑑  and the demand 𝑋 𝑑   ,𝑙  is greater than the reorder point 𝑟.  The 

number of customer orders incurring penalty in a cycle is given by 

𝜂𝑑 𝑥, 𝑟 =  
0,          𝑙 < 𝑑;                   
0,          𝑙 ≥ 𝑑, 𝑥 − 𝑟 < 0; 

𝑥 − 𝑟,          𝑙 ≥ 𝑑, 𝑥 − 𝑟 ≥ 0.        
                          (3.9) 

The expected number of customer orders incurring penalty per cycle can be calculated as 

follows:  

𝜂 𝑑 𝑟 =     𝑥 − 𝑟 𝑓 𝑥; 𝑙 − 𝑑 𝑔 𝑙 𝑑𝑙𝑑𝑥
∞

𝑙=𝑑

∞

𝑥=𝑟

 𝑃 𝐿 ≥ 𝑑  
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𝜂 𝑑 𝑟 =   𝑥𝑕1 𝑥 𝑑𝑥 − 𝑟
∞

𝑥=𝑟

𝐻1 𝑟  𝐺 𝑑 ,                             (3.10) 

where 𝐻1 𝑥  is the complementary cumulative of 𝑕1 𝑥 .  The expected annual penalty 

cost is defined as 

𝜋𝜆

𝑄
  𝑥𝑕1 𝑥 𝑑𝑥 − 𝑟

∞

𝑥=𝑟

𝐻1 𝑟  𝐺 𝑑                                      (3.11) 

The expected annual cost 𝐾 for the modified (𝑄, 𝑟) model with the “no-early 

shipment” policy and no delay of the replenishment/procurement order is  

𝐾 =
𝜆

𝑄
𝐴 + 𝐼𝐶  

𝑄

2
+ 𝑟 − 𝜇 𝑑  , 𝑙 𝐺 𝑑 + 𝜇 𝑙  , 𝑑  1 − 𝐺 𝑑    

+
𝜋𝜆

𝑄
  𝑥𝑕1 𝑥 𝑑𝑥 − 𝑟

∞

𝑥=𝑟

𝐻1 𝑟  𝐺 𝑑 .                                ( 3.12) 

In the following sections we analyze the behavior of the model with respect to 

the safety time (𝑑) and discuss the benefits of implementing a policy based on delaying 

the replenishment order.    

 

3.4. Analysis/Behavior of the Model 

It has been said that the safety time (𝑑) represents information that the 

manufacturer possesses that can be used for his/her benefit when setting the optimal 

(𝑄, 𝑟) policy.  In that sense, understanding the behavior of the cost function 𝐾 with 

respect to 𝑑, and its implications with the customer can be of strategic importance for the 

manufacturer’s management.  
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3.4.1. Convexity with Respect to 𝑸 and 𝒓, and Optimality 

The following lemmas are related to the convexity of the cost function and are 

necessary in order to understand the behavior of the model: 

Lemma 3.4.1.1:  For any 𝑑, the cost function 𝐾𝑑  is jointly convex in 𝑄 and 𝑟 in the 

range 0 < 𝑄 < ∞ and 𝑢𝑑 ≤ 𝑟 < ∞. 

Proof: It can easily be concluded from (3.12) that the cost function given by the 

expected ordering cost and the expected inventory cost is jointly convex with respect 

to𝑄 and 𝑟 in the range 0 < 𝑄 < ∞ and 𝑢𝑑 ≤ 𝑟 < ∞.  Brooks and Lu (1968) showed that 

for a number 𝜇, the expected backorders per year is convex in the region given by 

0 < 𝑄 < ∞ and 𝜇 ≤ 𝑟 < ∞, if the probability density function for the lead-time demand 

(𝑋) is non-increasing for 𝑥 ≥ 𝜇.  In our case, since 𝐺(𝑑) is not a function of 𝑄 nor 𝑟, and 

𝑢𝑑  has been defined as a non-negative number such that 𝑕1 𝑥  is non-increasing for any  

𝑥 ≥ 𝑢𝑑 , it must be concluded that the expected number of backorders per year as given 

in (3.12) must be jointly convex with respect to𝑄 and 𝑟 in the region 0 < 𝑄 < ∞ and 

𝑢𝑑 ≤ 𝑟 < ∞.  Then, 𝐾𝑑  is jointly convex with respect to𝑄 and 𝑟 in the region of interest 

since the addition of convex functions gives a convex function.  Note that 𝑢𝑑 = 𝜇 𝑑  , 𝑙  for 

the special case in which 𝑕1 𝑥  is the probability density function of a normal demand 

during the time period  𝑑 ,  𝑙 .                        ■   

Lemma 3.4.1.2:  In the range in which 𝐾𝑑  is jointly convex in 𝑄 and 𝑟, the iterative 

procedure from Hadley and Whitin (1963) can be used to obtain the optimal policy 

(𝑄𝑑
∗ , 𝑟𝑑

∗). 
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Proof: Let us assume that for a particular 𝑑, (𝑄𝑑
∗ , 𝑟𝑑

∗) is the optimal policy satisfying 

0 < 𝑄 < ∞ and 𝑢𝑑 ≤ 𝑟 < ∞.  Then, (𝑄𝑑
∗ , 𝑟𝑑

∗) must satisfy the set of equations (3.13) and 

(3.14) derived from the 1
st
 order conditions. 

𝜕𝐾

𝜕𝑄
= 0     

𝑦𝑖𝑒𝑙𝑑𝑠
          𝑄 =  

2𝜆

𝐼𝐶
 𝐴 + 𝜋𝑛 𝑑 𝑟                                3.13  

 
𝜕𝐾

𝜕𝑟
= 0     

𝑦𝑖𝑒𝑙𝑑𝑠
          𝐻1 𝑟 𝐺 𝑑 =

𝑄𝐼𝐶

𝜋𝜆
                                   3.14  

(3.15) is obtained by rearranging (3.14) in terms of 𝑄.      

𝑄 =
𝜋𝜆

𝐼𝐶
𝐺 𝑑 𝐻1 𝑟                                                     (3.15) 

It can be observed that both, (3.15) and (3.13) are functions of 𝑟 representing a 

curve in a plane with axis given by 𝑄 and 𝑟 as shown in Figure 20; and the specific 

optimal policy  𝑄𝑑
∗ , 𝑟𝑑

∗  must be found at the intersection of both curves.  Hadley and 

Whitin (1963) showed that 𝑄 and 𝑟 are inversely related.  This relationship holds in our 

case since 𝐺 𝑑  is not a function of 𝑄 nor 𝑟.  In addition, let us observe from (3.13) and 

(3.15) that for 𝑢𝑑 ≤ 𝑟 < ∞,  

𝑄𝑊 =  2𝜆𝐴 𝐼𝐶 ≤ 𝑄 ≤
𝜋𝜆𝐺 𝑑 𝐻1 𝑟 = 𝑢𝑑 

𝐼𝐶
.                          (3.16) 

From these observations it follows that 𝑄𝑊 can be set as the initial 𝑄 and (3.15) can be 

used to find the corresponding initial 𝑟.  Then, (3.14) can be used with this initial 𝑟 in 

order to find a new 𝑄.  This iterative procedure continues until it converges to  𝑄𝑑
∗ , 𝑟𝑑

∗ .  

Note that this is the iterative procedure from Hadley and Whitin (1963) and its 

convergence was proved by them.                     ■ 
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       Figure 20: Behavior of 𝑄∗ and 𝑟∗ with respect to 𝑑.    

Lemma 3.4.1.3:  If  𝑕1 𝑥  is the probability density function of a normal  𝜇 𝑑  , 𝑙 , 𝜎 𝑑  , 𝑙 
2  , 

then there is a 𝑑  such that for any 𝑑 ≥ 𝑑 , there is no optimal policy (𝑄𝑑
∗ , 𝑟𝑑

∗) in the range 

given by 0 < 𝑄 < ∞ and 𝜇 𝑑  , 𝑙 ≤ 𝑟 < ∞.   

Proof: Let us assume that for a particular 𝑑, (𝑄𝑑
∗ , 𝑟𝑑

∗) is the optimal policy satisfying 

0 < 𝑄 < ∞ and 𝜇 𝑑  , 𝑙 ≤ 𝑟 < ∞ when 𝑕1 𝑥  is the probability density function of a 

normal  𝜇 𝑑  , 𝑙 , 𝜎 𝑑  , 𝑙 
2  .  Then, from (3.16) and (3.13) it follows that  

𝑄 𝑑 ≤
𝜋𝜆

𝐼𝐶
𝐺 𝑑 𝐻1 𝜇 𝑑  , 𝑙  ,                                              (3.17) 

(3.14)

(3.15)

Note: 𝑢𝑑 ≤ 𝑟𝑑 < ∞ and 0 < 𝑄𝑑 < ∞. 

𝜋𝜆𝐺 𝑑 𝐻1 𝑢𝑑 

𝐼𝐶
 

𝜋𝜆𝐻1 𝑢𝑑 

𝐼𝐶
 



 59 

where, 

 𝑄 𝑑 =  2𝜆  𝐴 + 𝜋   𝑥𝑕1 𝑥 𝑑𝑥 − 𝜇 𝑑  , 𝑙 𝐻1 𝜇 𝑑  , 𝑙  
∞

𝑥=𝜇 𝑑  , 𝑙 
 𝐺 𝑑  𝐼𝐶 .       (3.18)   

Both sides of (3.17) are decreasing functions of 𝑑.  It can be observed that as 𝑑 increases 

𝑄 𝑑  is bounded by 𝑄𝑊 and there must be a 𝑑  such that   

𝑄 𝑑 >
𝜋𝜆𝐺 𝑑  𝐻1  𝜇 𝑑  , 𝑙  

𝐼𝐶
,                                            (3.19) 

and (3.17) is not satisfied for any 𝑑 ≥ 𝑑 .  Then, there is no optimal policy (𝑄𝑑
∗ , 𝑟𝑑

∗) in the 

region given by 0 < 𝑄 < ∞ and 𝜇 𝑑  , 𝑙 ≤ 𝑟 < ∞.                    ■ 

Note that 𝑑  is defined as the smallest 𝑑 not satisfying (3.17) and can be 

computed as 𝑑 ≔ 𝑚𝑖𝑛 𝑑 ≥ 0 𝑄 𝑑 > 𝜋𝜆𝐺 𝑑 𝐻1 𝜇 𝑑  , 𝑙  𝐼𝐶  . 

Lemma 3.4.1.4: If the optimal policy (𝑄𝑑
∗ , 𝑟𝑑

∗) exists and satisfies 0 < 𝑄 < ∞ and 

𝑢𝑑 ≤ 𝑟 < ∞, then (3.20) is satisfied. 

𝑄𝑑
∗ >

𝐻1 𝑟𝑑
∗ 

𝑕1 𝑟𝑑
∗ 

                                                          3.20  

Proof: From Lemma 3.4.1.1 it is known that the cost function 𝐾𝑑  is jointly convex in 𝑄 

and 𝑟 in the range 0 < 𝑄 < ∞ and 𝑢𝑑 ≤ 𝑟 < ∞.  Then, the ∇2𝐾𝑑  evaluated at the 

optimal policy (𝑄𝑑
∗ , 𝑟𝑑

∗) must be positive definite. 

 

𝐼𝐶
𝑄𝑑

∗ 𝐼𝐶
𝑄𝑑

∗ 

𝐼𝐶
𝑄𝑑

∗ 
𝜋𝜆

𝑄𝑑
∗ 𝑕1 𝑟𝑑 𝐺 𝑑 

                                            (3.21) 
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The leading principal minors of the matrix (3.21) must be positive.  This is true for the 

leading principal minor given by the upper left-hand corner of the matrix and must be 

true for the leading principal minor given by the matrix itself.  

𝑑𝑒𝑡  

𝐼𝐶
𝑄𝑑

∗ 𝐼𝐶
𝑄𝑑

∗ 

𝐼𝐶
𝑄𝑑

∗ 
𝜋𝜆

𝑄𝑑
∗ 𝑕1 𝑟𝑑

∗ 𝐺 𝑑 
 =

𝐼𝐶𝜋𝜆

𝑄𝑑
∗2 𝑕1 𝑟𝑑

∗ 𝐺 𝑑 −
𝐼𝐶2

𝑄𝑑
∗2 > 0          (3.22) 

We can get (3.23) from the inequality given by (3.22). 

𝑄𝑑
∗

𝐻1 𝑟𝑑
∗ 𝐺 𝑑 

>
1

𝑕1 𝑟𝑑
∗ 𝐺 𝑑 

                                          (3.23) 

From (3.23) we must conclude that (3.20) is a necessary condition for 𝐾𝑑  to be convex.  

Since we have previously assumed that 𝐾𝑑  is convex, then (3.20) is satisfied.         ■  

Lemma 3.4.1.5:  If the optimal policy (𝑄𝑑
∗ , 𝑟𝑑

∗) exists and satisfies 0 < 𝑄 < ∞ and 

𝑢𝑑 ≤ 𝑟 < ∞, then (3.24) is satisfied. 

𝑄𝑑
∗ >

  𝑥𝑕1 𝑥 𝑑𝑥
∞

𝑥=𝑟𝑑
∗ − 𝑟𝑑

∗𝐻1 𝑟𝑑
∗  

𝐻1 𝑟𝑑
∗ 

                                    (3.24) 

Proof: From Lemma 3.4.1.2 it is known that the iterative procedure explained in Hadley 

and Whitin (1963) can be used to find the optimal policy which is found at the 

intersection of (3.13) and (3.15).  Then,   

𝜋𝜆

𝐼𝐶
𝐻1 𝑟𝑑

∗ 𝐺 𝑑 =  
2𝜆

𝐼𝐶
 𝐴 + 𝜋𝑛 𝑑 𝑟𝑑

∗  ;                                 (3.25) 

and (3.26) is developed from (3.25). 

𝑄𝑑
∗

2
=

  𝑥𝑕1 𝑥 𝑑𝑥
∞

𝑥=𝑟𝑑
∗ − 𝑟𝑑

∗𝐻1 𝑟𝑑
∗  

𝐻1 𝑟𝑑
∗ 

+
𝜋𝜆

𝑄𝑑
∗𝐼𝐶

                             (3.26) 
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Observe from (3.26) that (3.24) must be true.                               ■ 

 

3.4.2. Behavior of the Optimal Cost Function (𝑲∗) with Respect to 𝒅 without 

 Delaying the Replenishment Order 

It can be deduced from Lemma 3.4.1.3 that if  𝑕1 𝑥  is the probability density 

function of a normal  𝜇 𝑑  , 𝑙 , 𝜎 𝑑  , 𝑙 
2  , then there is a 𝑑  such that for any 𝑑 < 𝑑  the optimal 

policy (𝑄𝑑
∗ , 𝑟𝑑

∗) exists in the region given by 0 < 𝑄 < ∞ and 𝜇 𝑑  , 𝑙 ≤ 𝑟 < ∞.  It can be 

observed that for every 𝑑 < 𝑑  there is a minimum cost 𝐾𝑑
∗, and 𝐾∗ can be defined as a 

function of 𝑑 representing 𝐾𝑑
∗ ∀ 𝑑 < 𝑑 .  It is important to understand the behavior of 𝐾∗ 

since the excess inventory (𝑒𝑑) is increasing as 𝑑 increases as mentioned in section 3.3.  

In particular, defining 𝑑∗ such that 𝐾𝑑∗
∗  is the minimum value of 𝐾∗, it is appealing to 

delay the placement of the replenishment order for any 𝑑 > 𝑑∗ in order to minimize 𝑒𝑑 .    

Let us first focus our attention on the behavior of the cost function 𝐾 with respect 

to 𝑑 assuming no delay of the replenishment order.  Let us calculate the 𝜕𝐾 𝜕𝑑 = 0  and 

𝜕2𝐾 𝜕𝑑2  as given by (3.27) and (3.28), respectively.   

𝜕𝐾

𝜕𝑑
= 0 

𝑦𝑖𝑒𝑙𝑑𝑠
      

𝜋𝜆

𝑄

𝜕

𝜕𝑑
𝑛 𝑑 𝑟 = 𝐼𝐶  

𝜕

𝜕𝑑
 𝜇 𝑑  , 𝑙 𝐺 𝑑  −

𝜕

𝜕𝑑
 𝜇 𝑙  , 𝑑  1 − 𝐺 𝑑       (3.27) 

𝜕2𝐾

𝜕𝑑2
= 𝐼𝐶

 
 
 
 
  𝜇 𝑑  , 𝑙 + 𝜇 𝑙  , 𝑑  

𝜕

𝜕𝑑
𝑔 𝑑 −  

𝜕2

𝜕𝑑2
𝜇 𝑑  , 𝑙 +

𝜕2

𝜕𝑑2
𝜇 𝑙  , 𝑑  𝐺 𝑑 

+
𝜕2

𝜕𝑑2
𝜇 𝑙  , 𝑑 + 2  

𝜕

𝜕𝑑
𝜇 𝑑  , 𝑙 +

𝜕

𝜕𝑑
𝜇 𝑙  , 𝑑  𝑔 𝑑  
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+
𝜋𝜆

𝑄

 
 
 
 
 
 
 −   𝑥𝑕1 𝑥 𝑑𝑥 − 𝑟

∞

𝑥=𝑟

𝐻1 𝑟  
𝜕

𝜕𝑑
𝑔 𝑑 

+
𝜕2

𝜕𝑑2
  𝑥𝑕1 𝑥 𝑑𝑥 − 𝑟

∞

𝑥=𝑟

𝐻1 𝑟  𝐺 𝑑 

−2
𝜕

𝜕𝑑
  𝑥𝑕1 𝑥 𝑑𝑥 − 𝑟

∞

𝑥=𝑟

𝐻1 𝑟  𝐺 𝑑 
 
 
 
 
 
 
 

                    (3.28) 

Where, 

𝜕

𝜕𝑑
 𝜇 𝑑  , 𝑙 𝐺 𝑑  = −𝜇 𝑑  , 𝑙 𝑔 𝑑 + 𝐺 𝑑 

𝜕

𝜕𝑑
𝜇 𝑑  , 𝑙 < 0     ∀ 𝑑;               (3.29) 

𝜕

𝜕𝑑
 𝜇 𝑙  , 𝑑  1 − 𝐺 𝑑   = 𝜇 𝑙  , 𝑑 𝑔 𝑑 +  1 − 𝐺 𝑑  

𝜕

𝜕𝑑
𝜇 𝑙  , 𝑑 > 0     ∀ 𝑑;     (3.30) 

and 

𝜕

𝜕𝑑
𝑛 𝑑 𝑟 = −   𝑥𝑕1 𝑥 𝑑𝑥 − 𝑟

∞

𝑥=𝑟

𝐻1 𝑟  𝑔 𝑑                                 

     +
𝜕

𝜕𝑑
  𝑥𝑕1 𝑥 𝑑𝑥 − 𝑟

∞

𝑥=𝑟

𝐻1 𝑟  𝐺 𝑑 < 0     ∀ 𝑟, 𝑑.        (3.31) 

It is known from the 1
st
 order conditions that (3.27) is satisfied if 𝐾 is convex 

with respect to𝑑.  Note that under the assumption that 𝑋 𝑑   ,𝑙  and 𝑋 𝑙   ,𝑑  follow normal 

distributions, 𝑁 𝜇 𝑑  , 𝑙 , 𝜎 𝑑  , 𝑙 
2   and 𝑁 𝜇 𝑙,  𝑑 , 𝜎 𝑙  , 𝑑 

2  , respectively, any change in the 

coefficient of variation (CV) of the lead-time demand as result of a change in the 

standard deviation will have an impact in the left-hand side of (3.27) but not in the right-

hand side.  This suggests that satisfying (3.27) is dependent on CV.  A similar case could 

be established for parameter 𝜋.  In addition, it is impossible to make inferences from the 

hessian matrix ∇2𝐾 since (3.28) is a function of 𝜕𝑔 𝑑 𝜕𝑑 .  It must be concluded from 

these observations that the behavior of 𝐾 as a function of 𝑑 is strictly dependent on the 
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problem being addressed.  Hence, the behavior of the optimal cost function 𝐾∗ is also 

dependent on the problem being addressed as shown in figures 21 and 22. 

 

Figure 21: Best case behavior of the “no-early shipment/inventory allocation” model  

                  without delaying policy vs. traditional model.     

 

 Figure 22: Worst case behavior of the “no-early shipment/inventory allocation” model  

                   without delaying policy vs. traditional model. 

$
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$
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o
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ˆ
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No-Early Shipment Model 
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At first glance, we might be tempted to conclude that a generalized comparison 

between the modified and the traditional model is impossible.  However, this statement 

is only true if the placement of the replenishment order is not delayed.  It is shown in the 

following section that delaying the replenishment order is always desired whenever the 

optimal cost function 𝐾∗ increases as 𝑑 increases. 

 

3.4.3. Behavior of the Optimal Cost Function (𝑲∗) with Respect to 𝒅 When the 

 Replenishment Order Is Delayed 

In order to show the benefit of delaying the replenishment order, let us 

define 𝑚 =  𝑑 − 𝑑∗  as the units of time by which the replenishment order is delayed; 

and 𝑑′ = 𝑑 − 𝑚 as the amount of time left before the penalty is incurred, measured from 

the date when the replenishment order is placed.  The only change in the model is the 

use of 𝑑′  instead of 𝑑.   

Let us define 𝑑∗, 0 ≤ 𝑑∗ < 𝑑 , as the optima that minimizes 𝐾∗ such that      

𝐾𝑑∗
∗ < 𝐾𝑑

∗ for any 𝑑.  Observe that if 𝑑 > 𝑑∗, 𝑑′ = 𝑑∗ and 𝐾𝑑 ′
∗ = 𝐾𝑑∗

∗  if the replenishment 

order is delayed by 𝑚 units of time.  It can easily be concluded that delaying when 

𝑑 < 𝑑∗ is of no benefit since 𝑑′ < 𝑑 < 𝑑∗ and 𝐾𝑑 ′
∗ ≥ 𝐾𝑑∗

∗ .  From these observations it is 

concluded that delaying the replenishment order is only desired for any 𝑑 > 𝑑∗.  Note 

that since 𝑑′ = 𝑑∗ < 𝑑 , the convexity of 𝐾𝑑 ′  is guaranteed for any 𝑑 ≥ 𝑑 .     

For the best case behavior presented in Figure 21, delaying the replenishment 

order by the appropriate amount of time gives the optimal policy  𝑄𝑑 ′
∗ = 𝑄𝑑∗

∗ , 𝑟𝑑 ′
∗ = 𝑟𝑑∗

∗   

for any 𝑑 > 𝑑∗and the modified model performs better than the traditional one as shown 
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in Figure 23.  However, for the worst case as shown in Figure 22, 𝑑∗ = 0 and delaying 

for any 𝑑 > 0 gives the same optimal policy as in the traditional  𝑄, 𝑟  model.   

It is concluded from the previous remarks that even though the behavior of the 

modified (𝑄, 𝑟) model with the “no-early shipment” policy is dependent on the problem 

being addressed, delaying the replenishment order when necessary guarantees the same 

or a better performance than the traditional model.    

 

  Figure 23: Best case behavior of the “no-early shipment/inventory allocation” model 

                 delaying the replenishment order. 

The modified (𝑄, 𝑟) model with the “no-early” shipment policy can be 

implemented for any choice of 𝑑 using the following algorithm: 

Start, 

Define 𝑑; 

Calculate 𝑑 ≔ 𝑚𝑖𝑛 𝑑 ≥ 0 𝑄 𝑑 > 𝜋𝜆𝐺 𝑑 𝐻1 𝜇 𝑑  , 𝑙  𝐼𝐶  ; 

Set 𝐷𝑚𝑎𝑥 equal to 𝑑 or 𝑑 − 1, whichever is lower; 

0 ≤ d < d units of time

KLB

Traditional model

$
 C

o
st

KT

ˆ

No Delaying

Delaying

No Delaying     No Delay        Delay 𝑑∗ 
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Set 𝑑∗ = 0 and find 𝑄𝑑∗
∗ , 𝑟𝑑∗

∗ , and 𝐾𝑑∗
∗ ; 

Set 𝐷 = 1; 

For 𝐷 ≤ 𝐷𝑚𝑎𝑥, 

Find 𝑄𝐷
∗ , 𝑟𝐷

∗, and 𝐾𝐷
∗ , 

If 𝐾𝐷
∗ ≤ 𝐾𝑑∗

∗ , 

Set  𝑚𝐷 = 0, 𝑑∗ = 𝐷, 𝑄𝑑∗
∗ = 𝑄𝐷

∗ ,  𝑟𝑑∗
∗ = 𝑟𝐷

∗,  𝐾𝑑∗
∗ = 𝐾𝐷

∗ ; 

Else, 

Set  𝑚𝐷 = 𝐷 − 𝑑∗, 𝑄𝐷
∗ = 𝑄𝑑∗

∗ ,  𝑟𝐷
∗ = 𝑟𝑑∗

∗ ,  𝐾𝐷
∗ = 𝐾𝑑∗

∗ , 

End; 

𝐷 = 𝐷 + 1, 

End; 

For 𝑑 ≥ 𝑑 , 

 Set  𝑚𝑑 = 𝑑 − 𝑑∗, 𝑄𝑑
∗ = 𝑄𝑑∗

∗ ,  𝑟𝑑
∗ = 𝑟𝑑∗

∗ ,  𝐾𝑑
∗ = 𝐾𝑑∗

∗ , 

End; 

End. 

Defining 𝑑∗ = 0 as the initial minimizer, this algorithm increases 𝑑 by ∆𝑑 units 

of time until a new local minimizer is found.  It delays the replenishment order by 

𝑚𝑑 = 𝑑 − 𝑑∗ units of time for any 𝐾𝑑
∗ > 𝐾𝑑∗

∗ .  Once a new local minimizer is found at a 

new 𝑑, it identifies 𝑑∗ = 𝑑 and starts the cycle again until the particular 𝑑 of interest or 

𝑑  –  1 is reached first.  If  𝑑 ≥ 𝑑 , the algorithm delays the replenishment order for 𝑑 by        

𝑚𝑑 = 𝑑 − 𝑑∗, where  𝑑∗ is the local minimizer found last.  
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3.4.4. Behavior of the Optimal Cost Function (𝑲∗) During the Time Period  𝟎 ,  𝒅𝟏   

– Minimum Lead-Time  𝒍𝒎𝒊𝒏  

Let us define the following generalized scenario: there exists 𝑑1 = 𝑙𝑚𝑖𝑛 , such that  

𝑑1 ≥ 0 and 𝑃 𝐿 ≥ 𝑑1 = 1 but 𝑃 𝐿 ≥ 𝑑1 + ∆𝑑 < 1.  Observe that 𝑔 𝑑 = 0 in the 

range  0 ,  𝑑1 .  Assuming that a customer order that triggers a replenishment order is 

received at time 𝑡 = 0, there is no chance for receiving the replenishment order before 

𝑑1 units of time since the minimum lead-time  𝑙𝑚𝑖𝑛   is occurring at time 𝑡 = 𝑑1.   

As mentioned in the previous chapter, understanding the behavior of the optimal 

cost function (𝐾∗) for this generalized scenario has important practical implications 

since the period of time  0 ,  𝑑1  could be related to the location of the supplier.  For 

example, 𝑑1 = 0 can be related to a supplier located next to the manufacturer, who 

delivers as soon as the replenishment order is placed because he/she keeps available 

inventory of the component.  On the other hand, a 𝑑1 relatively larger than zero could be 

related to a supplier located far away from the manufacturer such that the replenishment 

order is received the earliest 𝑑1 units of time after being placed.      

Observe that for this scenario 𝐺 𝑑 = 1 for any 𝑑 ≤ 𝑑1 and (3.12) becomes 

(3.32). 

𝐾 =
𝜆

𝑄
𝐴 + 𝐼𝐶  

𝑄

2
+ 𝑟 − 𝜇 𝑑  , 𝑙  +

𝜋𝜆

𝑄
  𝑥𝑕1 𝑥 𝑑𝑥 − 𝑟

∞

𝑥=𝑟

𝐻1 𝑟           ( 3.32) 

(3.32) has the same structure of the traditional model as defined by Hadley and 

Whitin (1963) except that the demand of interest is the demand during the time period 

 𝑑 ,  𝑙  instead of the lead-time demand.  As 𝑑 increases, the time period  𝑑 ,  𝑙  is closing 
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such that the observed demand and its variability are both decreasing, and the behavior 

of (3.32) is given by the traditional model for cases in which the lead-time period  0 ,  𝑙  is 

decreasing.  In such a case, it can be concluded that 𝐾∗ is a decreasing function of 𝑑 for 

any 𝑑 ≤ 𝑑1 = 𝑙𝑚𝑖𝑛 .  This observation is important because the existence of 𝑑1 is 

guaranteeing the better performance of the modified (𝑄, 𝑟) model with the “no-early 

shipment” policy, suggesting that the manufacturer will tend to prefer the modified 

model over the traditional model.   

 

3.4.5. Behavior of 𝒓∗, 𝑸∗, and Their Relationship with the Penalty Cost  

It is of interest to understand mathematically the behavior of 𝑟∗ and 𝑄∗ as 𝑑 

increases, and their relationship to the penalty cost since this can facilitate the analysis of 

any numerical example.  Let us define 𝑄∗ and 𝑟∗ as functions of 𝑑 representing 𝑄𝑑
∗  and 

𝑟𝑑
∗ ∀ 𝑑.   

The behavior of  𝑟∗ as 𝑑 increases is given by the following lemma:   

Lemma 3.4.5.1: 𝑟∗ is a strictly decreasing function of 𝑑. 

Proof:  This proof follows directly from the definition of the safety stock,                   

𝑠𝑑 = 𝑟𝑑 − 𝜇 𝑑  , 𝑙 , as given in (3.7).  We get (3.33) by rearranging the safety stock in 

terms of 𝑟∗. 

𝑟∗ = 𝜇 𝑑  , 𝑙 + 𝑠∗                                                       (3.33) 

As defined by (3.33), 𝑠∗ is a function of 𝑑 representing the safety stock related to 𝑟𝑑
∗ ∀ 𝑑.  

𝑋 𝑑   ,𝑙  is the demand of interest as given by the time interval  𝑑  , 𝑙 .  This interval is 

closing as 𝑑 increases and the observed demand with its variability must be decreasing.  
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Then, the expected demand and 𝑠∗ are decreasing functions of 𝑑, and 𝑟∗ must be strictly 

decreasing as 𝑑 increases.                                                                                   ■                                                                                   

For the case of 𝑄∗, let us calculate the derivative of (3.11) with respect to 𝑑.  

d

d𝑑
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   (3.34) 

Observe that mathematical expressions are required for d𝑟∗ d𝑑  and d𝑄∗ d𝑑   in 

order to understand (3.34).  Let us rearrange (3.14) in terms of 𝐻1 𝑟
∗  and realize that 

both sides of the resulting equation (3.35) are functions of 𝑑. 

𝐻1 𝑟
∗ =

𝐼𝐶

𝜆𝜋
𝑄∗𝐺 𝑑 −1                                                (3.35) 

From its definition, 𝐻1 𝑟
∗ =  𝑕1 𝑥 𝑑𝑥

∞

𝑥=𝑟∗  and (3.36) is developed by calculating the 

derivative with respect to 𝑑 at both sides of (3.35). 
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𝑄∗ is given by (3.14), and deriving it with respect to 𝑑 we get (3.37). 
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We get equation (3.38) by replacing from (3.37) the d𝑟∗ d𝑑  with (3.36).   
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And (3.38) can be expressed as (3.39). 
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𝐻1 𝑟
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𝑄∗𝑕1 𝑟∗ 
  

The relationship between the penalty and 𝑄∗ as 𝑟∗ decreases is defined with the 

following lemma: 
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Lemma 3.4.5.2:  As 𝑟∗ decreases, d𝑄∗ d𝑑 ≥ 0 if the penalty cost does not decrease, 

or  d𝑄∗ d𝑑 < 0 if the penalty cost decreases. 

Proof:  We know form Lemma 3.4.5.1 that d𝑟∗ d𝑑 < 0.  Let us first assume that the 

penalty cost does not decrease such that d𝑄∗ d𝑑 < 0.  Then, (3.40) is developed by 

setting (3.34) equal as or greater than zero. 
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 (3.41) is obtained by substituting from (3.40) the d𝑟∗ d𝑑  by (3.36). 
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The left-hand side of (3.41) can be substituted by (3.39) in order to get (3.42). 
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For any particular 𝑑, (3.43) is developed from (3.42).   
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(3.43) is a contradiction of Lemma 3.4.1.5 and d𝑄∗ d𝑑 ≥ 0 if the penalty cost does not 

decrease.   

For the second part of this proof, let us assume that the penalty cost is decreasing 

such that d𝑄∗ d𝑑 ≥ 0.  Note that (3.44) is obtained by setting (3.34) as less than zero 

and by following the same approach as in the first part.   

𝑄𝑑
∗ −

𝐻1 𝑟𝑑
∗ 

𝑕1 𝑟𝑑
∗ 

<
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∗∞

𝑥=𝑟𝑑
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𝐻1 𝑟𝑑
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−
𝐻1 𝑟𝑑

∗ 

𝑕1 𝑟𝑑
∗ 

                (3.44) 

Then, it must be concluded by contradiction of Lemma 3.4.1.5 that  d𝑄∗ d𝑑 < 0 if the 

penalty cost decreases.                  ■ 

Summarizing the relationship between 𝑟∗, 𝑄∗, and the penalty cost as 𝑑 

increases: 𝑟∗ strictly decreases, and 𝑄∗ and the penalty cost are both dependent on the 

problem being addressed.  In particular, the model takes advantage and benefits the 

inventory by reducing 𝑄∗ if the penalty cost decreases as 𝑟∗ decreases, or increases 𝑄∗ in 

order to minimize any increase in penalty cost.   

The following has been shown so far: 

1) There is a 𝑑  such that for any 𝑑 < 𝑑 , 𝐾𝑑  is jointly convex with respect to𝑄 

and 𝑟 in the region 0 < 𝑄 < ∞ and 𝜇 𝑑  , 𝑙 ≤ 𝑟 < ∞ when 𝑕1 𝑥  is the 

probability density function of a normal  𝜇 𝑑  , 𝑙 , 𝜎 𝑑  , 𝑙 
2  ; 

2) The behavior of the optimal cost function (𝐾∗) is dependent on the problem 

being addressed; 

3) Delaying the replenishment order is always desired whenever 𝐾𝑑
∗ increases as 

𝑑 increases; 
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4) 𝐾∗ is a decreasing function of 𝑑 for any 𝑑 ≤ 𝑑1 = 𝑙𝑚𝑖𝑛 ; 

5) 𝑟∗ is a strictly decreasing function of 𝑑 while 𝑄∗ and the penalty cost are 

dependent on the problem being addressed. 

The result of numerical examples used to help visualize the behavior of the 

model is presented in the following section.   

 

3.5. Numerical Study 

This section presents the result of a numerical study performed with the 

following objectives: 

1) Identify the critical parameters for the behavior of the optimal cost function 

(𝐾∗) with respect to the safety time (𝑑); 

2) Show the behavior of the model as discussed in the previous chapter, in 

particular: 

a. 𝐾∗ when the replenishment order is delayed,  

b. 𝐾∗ for any 𝑑 ≤ 𝑑1 = 𝑙𝑚𝑖𝑛 , 

c. Relationship between 𝑟∗, 𝑄∗, and the penalty cost; 

3) Demonstrate the performance of the modified (𝑄, 𝑟) model with the “no-

early shipment” policy as compared to the traditional (𝑄, 𝑟) model.  

The study was done under the assumption that the lead-time follows an expo (𝛽), 

the lead-time demand follows a 𝑁 𝜇, 𝜎2 , the demand during the interval of time  𝑑 ,  𝑙  

follows a 𝑁 𝜇𝑒−𝑑 𝛽 , 𝜎2𝑒−2𝑑 𝛽  , and the demand during the period of time  𝑙 ,  𝑑  follows 

a 𝑁 𝜇 𝑒−𝑑 𝛽 + 𝑑 𝛽 − 1  , 𝜎2 𝑒−2𝑑 𝛽 + 2 𝑑 𝛽 − 1  .  The following parameters were 
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varied as shown in Table 4 with the objective of understanding the behavior of the cost 

function (𝐾∗): 𝜎2, 𝛽, 𝐼𝐶, and 𝜋.  𝜇 was fixed to 950, and 𝐴 to 4000.  𝜆 is calculated 

assuming 52 production weeks in a year, 𝜆 = 52 ∗ 𝜇 𝛽 .  The 𝑃 𝑋 ≤ 0  is calculated in 

order to confirm that it is negligible due to the assumption that each demand of interest 

follows a normal distribution.   

Table 4: Parameters for each case problem. 

 

 

Calculated Calculated

h(x) g(l) h(x) g(l)

σ β σ β

1 24700.0 50 2 20 1 8.53E-81 31 12350.0 150 4 2000 1 1.2E-10

2 24700.0 50 2 20 10 8.53E-81 32 12350.0 150 4 2000 10 1.2E-10

3 24700.0 50 2 2000 1 8.53E-81 33 8233.3 150 6 20 1 1.2E-10

4 24700.0 50 2 2000 10 8.53E-81 34 8233.3 150 6 20 10 1.2E-10

5 12350.0 50 4 20 1 8.53E-81 35 8233.3 150 6 2000 1 1.2E-10

6 12350.0 50 4 20 10 8.53E-81 36 8233.3 150 6 2000 10 1.2E-10

7 12350.0 50 4 2000 1 8.53E-81 37 24700.0 200 2 20 1 1.02E-06

8 12350.0 50 4 2000 10 8.53E-81 38 24700.0 200 2 20 10 1.02E-06

9 8233.3 50 6 20 1 8.53E-81 39 24700.0 200 2 2000 1 1.02E-06

10 8233.3 50 6 20 10 8.53E-81 40 24700.0 200 2 2000 10 1.02E-06
11 8233.3 50 6 2000 1 8.53E-81 41 12350.0 200 4 20 1 1.02E-06

12 8233.3 50 6 2000 10 8.53E-81 42 12350.0 200 4 20 10 1.02E-06

13 24700.0 100 2 20 1 1.05E-21 43 12350.0 200 4 2000 1 1.02E-06

14 24700.0 100 2 20 10 1.05E-21 44 12350.0 200 4 2000 10 1.02E-06

15 24700.0 100 2 2000 1 1.05E-21 45 8233.3 200 6 20 1 1.02E-06

16 24700.0 100 2 2000 10 1.05E-21 46 8233.3 200 6 20 10 1.02E-06

17 12350.0 100 4 20 1 1.05E-21 47 8233.3 200 6 2000 1 1.02E-06

18 12350.0 100 4 20 10 1.05E-21 48 8233.3 200 6 2000 10 1.02E-06

19 12350.0 100 4 2000 1 1.05E-21 49 24700.0 250 2 20 1 7.23E-05

20 12350.0 100 4 2000 10 1.05E-21 50 24700.0 250 2 20 10 7.23E-05

21 8233.3 100 6 20 1 1.05E-21 51 24700.0 250 2 2000 1 7.23E-05

22 8233.3 100 6 20 10 1.05E-21 52 24700.0 250 2 2000 10 7.23E-05

23 8233.3 100 6 2000 1 1.05E-21 53 12350.0 250 4 20 1 7.23E-05

24 8233.3 100 6 2000 10 1.05E-21 54 12350.0 250 4 20 10 7.23E-05

25 24700.0 150 2 20 1 1.2E-10 55 12350.0 250 4 2000 1 7.23E-05

26 24700.0 150 2 20 10 1.2E-10 56 12350.0 250 4 2000 10 7.23E-05

27 24700.0 150 2 2000 1 1.2E-10 57 8233.3 250 6 20 1 7.23E-05

28 24700.0 150 2 2000 10 1.2E-10 58 8233.3 250 6 20 10 7.23E-05

29 12350.0 150 4 20 1 1.2E-10 59 8233.3 250 6 2000 1 7.23E-05

30 12350.0 150 4 20 10 1.2E-10 60 8233.3 250 6 2000 10 7.23E-05

Case

Experimental

λ π IC

Parameters

P ( X≤ 0)

Parameters

P ( X≤ 0)
Case

Experimental

λ π IC
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3.5.1. Critical Parameters 

The main objective of this section is to determine which parameters influence the 

behavior of the optimal cost function (𝐾∗) as 𝑑 increases.  In particular, the analysis is 

done with respect to the coefficient of variation (CV) and the ratio (𝐼𝐶 𝜋 ).  For practical 

purposes, the analysis is done assuming that ∆𝑑 = 1 week and the same algorithm 

presented at the beginning of Section 2.5 is followed. 

 

 Figure 24: Categories for the behavior of  𝐾∗: a) Type 1, b) Type 2, and c) Type 3. 
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The behavior of 𝐾∗ is categorized as follows: 1) as a strictly increasing function 

of 𝑑 as shown by Figure 24.a, 2) as initially increasing, then decreasing and finally 

increasing again as shown in Figure 24.b, and 3) as initially decreasing and then 

increasing as shown in Figure 24.c.  The characteristics of the behavior that are analyzed 

are the following: the type of curve (category), and the location of 𝑑∗ and 𝑑 . 

Curve type #1 represents the worst case scenario presented in Figure 22 of 

section 3.4.2.  For this scenario, it was said that delaying for any 𝑑 > 0 guarantees the 

same cost as the traditional model since 𝑑∗ = 0.  On the other hand, curve type #3 

represents the best case scenario presented in Figure 21.  In such a case, 𝑑∗ > 0 and 

delaying for any 𝑑 > 𝑑∗ guarantees the better performance of the modified (𝑄, 𝑟) model 

with the “no-early shipment” policy for any 𝑑 > 0.  Understanding which parameters 

influence the behavior of 𝐾∗ is critical for this research because the chances for the 

modified model to be preferred by the manufacturer are higher under curve type #3.   

The following set of charts are intended to show how critical 𝜎 of the lead-time 

demand is for the cost function  𝐾∗ .  This is done by means of analyzing the behavior 

of 𝐾∗ with respect to the CV since 𝜇 is left constant.  Figure 25.a shows the range of the 

values observed for the curve type at each CV in addition to the average.  Note that at 

low levels of CV the only curve observed is the type #1, but as the CV increases, curve 

type #2 and #3 are also observed as given by the “high” value of the range.  It can also 

be deduced from the average that the number of times that curve type #3 is observed is 

increasing as the CV increases.  This observation is validated with Figure 25.b.  
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 Figure 25: Coefficient of variation (CV) vs. type of curve. 

 

 

 Figure 26: Relationship between 𝑟∗ and the behavior of  𝐾∗ with respect to the CV.   

From the previous observations we must deduct that at low levels of CV, the 

behavior of 𝐾∗ is more probable to follow a form similar to curve #1 but at high levels, it 

is more probable to follow the pattern or curve type #3 as shown in Figure 26.a.  The 

explanation for this finding is mostly explained by the change in inventory given by the 

relationship between the inventory being allocated and 𝑟∗.  Note that for any particular 𝑑 

and everything else being equal, 𝑟𝑑
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result of an increase in the 𝜎 of the lead-time demand.  In addition, the safety stock is 

needed for the demand during the period of time  𝑑 ,  𝑙 , and the demand variability 

removed as 𝑑 increases by ∆𝑑 units of time is higher for higher CV’s.  Then, the rate of 

change of  𝑟∗ with respect to 𝑑 is more negative at any 𝑑 for higher CV’s as shown in 

Figure 26.b; meaning that 𝑟∗ decreases faster at higher CV’s.  However the expected 

amount of inventory being allocated is the expected demand observed during the period 

of time  0 ,  𝑑 , which is increasing as 𝑑 increases but constant with respect to the CV.  

Then, for any particular 𝑑, there must be a CV  such that for any CV > CV  the absolute 

value for the rate of change of  𝑟∗ with respect to 𝑑 is higher than the rate of change of 

the expected demand during the period of time  𝑑 ,  𝑙 .  Since  𝑟∗ is decreasing as 𝑑 

increases,  it follows that if the reduction in 𝑟∗ is large enough to counteract the increase 

in inventory as result of the allocation and of any possible increase in 𝑄∗, the total 

inventory will decrease driving a decrease in 𝐾∗.  Otherwise, the inventory will increase 

driving an increase in 𝐾∗.    

It can be deduced from the previous paragraph that the behavior of the optimal 

cost function 𝐾∗ as 𝑑 increases is closely related to the behavior of the inventory holding 

cost.  In fact, Figure 27 shows that there is a positive linear relationship between these 

two costs, confirming the previous explanation that 𝐾∗ increases if 𝑄∗ increases, and 

vice versa. 
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              Figure 27: Linear relationship between the inventory holding cost and 𝐾∗.  

 

 Figure 28: CV vs. 𝑑∗ and 𝑑 .   
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the other hand, it can be concluded from Figure 28.b that 𝑑  is not sensitive to the CV.  

Note that the minimum and maximum values as well as the average do not change as the 

CV increases. 

 

 

 Figure 29: Ratio (𝐼𝐶/𝜋) vs. type of curve. 

From figures 25 - 28, it is concluded that the behavior of 𝐾∗ as 𝑑 increases is 

sensitive to the CV of the lead-time demand.  The following set of charts is intended to 
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 Figure 30: Relationship between 𝑟∗ and the behavior of  𝐾∗ with respect to the  

                   ratio  𝐼𝐶/𝜋 . 

From the previous observations, we can conclude that at low levels of 𝐼𝐶/𝜋, 𝐾∗ 

is more probable to behave as curve #3 but at high levels it is more probable to behave 

as curve #1.  This is shown in Figure 30.a in terms of the rate of change of 𝐾∗ as 𝑑 
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decreases as result of an increase in 𝜋.  This follows from the relationship given by the 

right-hand side of (3.17).  As 𝑑 increases by ∆𝑑 units of time, 𝜋𝜆𝐺 𝑑 𝐼𝐶  is decreasing 

and the change given by 𝛿 =  𝐺 𝑑 − 𝐺 𝑑 + ∆𝑑  𝜋𝜆 𝐼𝐶  is greater for bigger 𝜋’s.  

Then, the rate of change of 𝑟∗ with respect to 𝑑 must be more negative at any 𝑑 as the 

ratio 𝐼𝐶 𝜋  decreases.  Since  𝑟∗ is decreasing as 𝑑 increases,  it follows that if the 

reduction in 𝑟∗ is large enough to counteract the increase in inventory as result of the 

allocation and of any possible increase in 𝑄∗, the total inventory will decrease driving a 

decrease in 𝐾∗.  Otherwise, the inventory will increase driving an increase in 𝐾∗.     

From Figure 31, it can be concluded that 𝑑∗ and 𝑑  are both influenced by 𝐼𝐶 𝜋 .  

In the case of 𝑑∗, this result is expected since the type of curve is sensitive to the ratio, 

and 𝑑∗ is related to the type of curve.  While for 𝑑 , this result follows from (3.17).  It is 

concluded from Figures 29 - 31 that the behavior of the cost function (𝐾∗) is sensitive to 

the ratio given by 𝐼𝐶 𝜋 . 

 

 Figure 31: Ratio (𝐼𝐶/𝜋) vs. 𝑑∗ and 𝑑 .   
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              Figure 32: Joint effect of the coefficient of variation (CV) and the  

                               ratio (𝐼𝐶/𝜋) on the behavior of 𝐾∗. 
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 Figure 33: Influence of 𝛽. 
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cost function (𝐾∗) is sensitive to the CV and the ratio given by 𝐼𝐶/𝜋.  As result, the 

location of 𝑑∗ is also dependent on the particular problem being addressed.  It was also 

shown that the highest the CV and the lowest the ratio, 𝑑∗ > 0 and better the chances for 

preferring the modified model over the traditional.    

 

3.5.2. Behavior of the Optimal Cost Function (𝑲∗) with Respect to d When the  

Replenishment Order Is Delayed 

It has been said that delaying the replenishment order is only desired for any 

𝑑 > 𝑑∗ if 𝐾𝑑
∗ > 𝐾𝑑∗

∗ .  It is important to search for 𝑑∗ since its location is dependent on 

the problem being addressed.  The algorithm presented in Section 3.4.3 is used to 

implement the modified model under the delaying policy.   

The behavior of the optimal cost function (𝐾∗) is shown in Figure 34 for both 

scenarios, when no delay is done and when the replenishment order is delayed.  Note 

from the “no delay” curve that 𝑑 = 0 is a local minimizer for the range of 𝑑’𝑠 given 

by  0,1 , and 𝑑∗ = 5 is the global minimizer.  The algorithm is initialized with 𝑑∗ = 0 as 

a local minimizer and delays the replenishment order for 𝑑 = 1 by 𝑚1 = 1 units of time 

and 𝐾𝑑=1
∗ = 𝐾𝑑∗=0

∗ .  It does not delay for 𝑑 = 2 since 𝐾𝑑=2
∗ < 𝐾𝑑∗=𝑜

∗ .  A search for a new 

minimizer is done as 𝑑 increases.  𝑑∗ = 5 is identified as a new minimizer and the 

algorithm delays the replenishment for any 𝑑 > 5 by 𝑚𝑑 = 𝑑 − 5 units of time, and 

𝐾𝑑
∗ = 𝐾𝑑∗=5

∗ .  The algorithm continues this iterative process of finding a local minimizer 

and delaying until a particular 𝑑 of interest or 𝑑  –  1 is reached first.  If  𝑑 ≥ 𝑑 , the 
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algorithm delays the replenishment order for 𝑑 by 𝑚𝑑 = 𝑑 − 𝑑∗, where  𝑑∗ is the local 

minimizer found last.      

 

               Figure 34: Delaying policy of the replenishment order. 

The behavior of the traditional (𝑄, 𝑟) model as 𝑑 increases is represented by a 
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guaranteed the better performance for any 𝑑 ≥ 2 since the behavior of 𝐾∗ for the “no 

delay” scenario followed the curve type #2.  It can be deduced from this observation that 
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3.5.3. Behavior of the Optimal Cost Function (𝑲∗) During the Time Period  𝟎 ,  𝒅𝟏   

- Minimum Lead-Time  𝒍𝒎𝒊𝒏   

The main objective of this section is to show with a numerical example the 

behavior of the optimal cost function (𝐾∗) for the scenario in which there is a minimum 

lead-time 𝑙𝑚𝑖𝑛 = 𝑑1.  The explanation for the behavior of 𝐾∗ for any 𝑑 ≤ 𝑑1 was given 

in Section 3.4.4 and as previously mentioned, this scenario has practical implications 

because it could be related to the location of the supplier.     

 

Figure 35: Case when there is a minimum lead-time  𝑙𝑚𝑖𝑛  . 

Figure 35 shows the behavior of 𝐾∗ as 𝑑 increases under the assumption that 
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𝑔 𝑙 =  
                        0,           0 ≤  𝑙 < 𝑑1;

𝐸𝑥𝑝𝑜  𝛽 ,           𝑑1 ≤ 𝑙.
                                 (3.45) 

Note that 𝐾∗ is a decreasing function of 𝑑 for any 𝑑 ≤ 𝑑1.  Observe that the 

behavior is constant for any 𝑑 > 3.  For this case in particular, 𝑑∗ = 3 and the 

replenishment order is delayed for any subsequent 𝑑.  Since the behavior of the 

traditional (𝑄, 𝑟) model is represented by a horizontal line from the value of 𝐾𝑑=0
∗ , it 

must be concluded that the modified (𝑄, 𝑟) model with the “no-early shipment” policy 

performs better than the traditional model for any 𝑑 > 0 whenever 𝑙𝑚𝑖𝑛 = 𝑑1 > 0.  

The behavior of the optimal cost function for the modified (𝑄, 𝑟) model with the 

“early shipment” policy is constant with respect to 𝑑 for any 𝑑 ≤ 𝑑1 as explained in 

section 2.4.2.  Then, the modified model with the “no-early shipment” policy must 

perform better than the “early shipment” policy for some range of 𝑑’𝑠 as shown in Figure 

35.  

A final observation about this scenario is that for any 𝑑 ≤ 𝑑1there is no excess 

inventory (𝑒𝑑) since 𝑔 𝑑 = 0.  Then, there is no need for delaying the replenishment 

order for any 𝑑 in that range. 

From the previous observations we must conclude that the manufacturer will 

prefer the modified (𝑄, 𝑟) model with the “no-early shipment” policy over the traditional 

and the modified model with the “early shipment” policy for any 𝑑 ≤ 𝑑1.  In terms of 

practical applications, for example, this scenario could be related to an overseas supplier 

and a manufacturer that promises a delivery time with a safety time that is less than the 

minimum lead-time from the supplier.   
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3.5.4. Merits of the “No-Early Shipment” Model vs. the “Early Shipment” Model 

The main objective of this section is to show how the joint relationship between 

the CV and the ratio (𝐼𝐶/𝜋) can benefit the “no-early shipment” policy over the “early 

shipment” policy.  It was shown in the previous section that the modified (𝑄, 𝑟) model 

with the “no-early shipment” policy is the preferred model for any 𝑑 ≤ 𝑙𝑚𝑖𝑛 = 𝑑1.  For 

the scenario in which 𝑑1 = 0 (e.g.: a local supplier that holds inventory of the 

component being supplied) one might tend to expect a better performance from the less 

restrictive model (“early shipment” policy).  However, this is not the case for the 

particular example discussed in this section.     

 

            Figure 36: Comparison between the “no-early shipment” and the 

                              “early shipment” models for the case when the CV is high  

                              and the ratio (𝐼𝐶/𝜋) is low. 
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Figure 36 shows the comparison between the “no-early shipment” model and the 

“early shipment”, both for the scenario in which the CV is set at the high level and the 

ratio (𝐼𝐶/𝜋) at the low level.  Note that the “no-early shipment” model performed better 

for any 𝑑 in the range  0 ,  12 .  This result was driven by the levels at which the CV and 

the ratio(𝐼𝐶/𝜋) were set, and the fact that as 𝑑 increases 𝑟∗ decreases faster in the “no-

early shipment” model.  As result, the initial dropped in inventory was faster for the “no-

early shipment” model guaranteeing the better performance for the time period 

mentioned before.            

The relationship between the behavior of 𝐾∗ and the CV and the ratio (𝐼𝐶/𝜋)  

was already explained in section 3.5.1.  Let us focus then on the claim that 𝑟∗ decreases 

faster in the “no-early shipment” model.  Note that for the “early shipment” model the 

reduction of 𝑟∗ as 𝑑 increases is driven only by 𝐺 𝑑 ; the demand of interest is the lead-

time demand, 𝑋 0 , 𝑙 , which is not related to 𝑑 and as such, the demand variability is 

constant with respect to 𝑑.  Meanwhile, for the “no-early” shipment model the reduction 

of 𝑟∗ as 𝑑 increases is driven by 𝐺 𝑑  and the demand of interest, 𝑋 𝑑  , 𝑙 , which is the 

demand during the time period  𝑑 ,  𝑙 ; note that the variability of the observed demand 

decreases as 𝑑 increases.  Then, 𝑟∗ must decrease faster in the “no-early shipment” 

model.   

This finding is important because it shows the merit of the ”no-early shipment” 

model not only for the case of a supplier located far away, but also for the case of a local 

supplier.   
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3.5.5. Behavior of 𝒓∗, 𝑸∗, and their Relationship with the Penalty Cost 

Let us focus our attention on the relationship between 𝑟∗, 𝑄∗, and the penalty 

cost.  Note from Table 5 that as in Lemma 3.4.5.1, 𝑟∗ is strictly decreasing as 𝑑 

increases.  Note that as 𝑟∗ decreases the expected number of backorders per cycle 

increases until 𝑑 = 6, point at which (3.23) is not satisfied.  Note that the penalty cost as 

well as 𝑄∗ are decreasing as 𝑑 increases which is in accordance to Lemma 3.4.5.2.          

  Table 5: Case 18 – Relationship between 𝑟∗, 𝑄∗, and the penalty cost. 

 

The results presented in Table 5 are only related to Case Study #18.  However, 

the same relationships were observed for all case studies.  It was never observed an 

increase in the penalty cost and 𝑄∗.  This finding could be related to the lead-time 

distribution function 𝑔 𝑙  used in our numerical examples.  In that respect, the behavior 

of the service level offered to the customer as result of the implementation of this model 

is related to the problem being addressed.  However, any increase or decrease in service 

performance is expected to be minimal as result of the assumption that the average 

number of backorders is negligible with respect to the average inventory at any time. 

   

d Q* r*

Penalty       

$

Back 

Orders/Cy

Penalty 

Orders/Cy

Penalty 

Orders/Yr

Service        

% πλG d H/IC

0 3193.67 1063.0 500.27 6.47 6.47 25.01 99.7975 12350.00000

1 3184.85 815.5 413.38 6.84 5.33 20.67 99.8326 9618.18967

2 3177.86 624.7 344.27 7.30 4.43 17.21 99.8606 7490.65365

3 3172.35 477.4 289.67 7.88 3.72 14.48 99.8827 5833.72693

4 3168.06 363.8 247.19 8.62 3.17 12.36 99.8999 4543.31110

5 3164.85 276.0 215.32 9.63 2.76 10.77 99.9128 3538.33424
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3.6. Summary 

This chapter discusses the “no-early shipment” model.  A detailed description of 

the model is given, and its behavior is discussed mathematically and shown by means of 

numerical examples.   

 The basic assumption for this model is that the customer penalizes the 

manufacturer for early shipments.  In turn, the manufacturer ships only at the delivery 

date and allocates inventory as soon as the customer order is received.  If inventory is 

not available, the penalty is incurred if the component becomes available more than 𝑑 

units of time after receiving the customer order.  The main difference with the traditional 

(𝑄, 𝑟) inventory control policy and the “early shipment” model is given not only by the 

penalty cost structure but the inventory cost as well.  With respect to the penalty cost, the 

demand of interest is the demand given during the time period  𝑑 ,  𝑙  rather than the lead-

time demand.  For the inventory, the demand during the time period  𝑑 ,  𝑙  and  𝑙 ,  𝑑  are 

both of interest.  In addition to the safety stock needed when 𝑙 ≥ 𝑑, there is a natural 

excess inventory that occurs each time that 𝑙 < 𝑑.     

The behavior of the cost function (𝐾∗) is dependent on the problem being 

addressed.  The coefficient of variation (CV) and the ratio (𝐼𝐶 𝜋 ) play a major role in 

the behavior of the model.  As the safety time (𝑑) increases, the relationship between the 

decrease in 𝑟∗ and the increase in excess inventory drives the change of the inventory 

holding cost which in turn defines the behavior of 𝐾∗.   

There is a 𝑑∗ ≥ 0 at which the cost 𝐾𝑑∗
∗ is the minimum cost with respect to 𝑑.  

There is also a 𝑑 , such that for any 𝑑 ≥ 𝑑 > 𝑑∗ the convexity of the model is not 
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guaranteed if the replenishment order is not delayed.  The same optimal cost 𝐾𝑑∗
∗  can be 

obtained for any 𝑑 ≥ 𝑑∗ if the replenishment order is delayed by 𝑚 = 𝑑 − 𝑑∗ units of 

time.   

The model performs as the traditional (𝑄, 𝑟) model or better for any 𝑑 ≥ 0.  For 

the special case when there is a minimum lead-time 𝑙𝑚𝑖𝑛 > 0, the optimal cost function 

(𝐾∗) is a decreasing function of 𝑑 for any 𝑑 ≤ 𝑙𝑚𝑖𝑛 , and the model performs better than 

the traditional (𝑄, 𝑟) inventory control policy for any 𝑑 > 0 and better than the “early 

shipment” model for any 𝑑 ≤ 𝑙𝑚𝑖𝑛 .   

The next chapter discusses the “hybrid” model which is a generalization of the 

previous two models and the traditional policy.   
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CHAPTER IV 

HYBRID MODEL 

 

4.1. Introduction 

The models discussed in the previous two chapters address two scenarios that 

could be considered as the extreme points of the shipping spectrum.  In the first model, 

early shipments are allowed following from the assumption that the customer does not 

penalize for receiving early orders.  In the second case, the manufacturer can only ship 

right at the delivery date following from the assumption that the customer penalizes for 

early shipments. 

One could think of situations in which the customer does not monitor early 

shipments as part of their inventory control procedures or they can always convert the 

final product into sales as soon as received; another situation will be the case in which 

the customer is aware of the negative impact that early shipments have on their 

inventory and as result, an aggressive procedure for preventing early shipments is in 

placed and followed.  Nevertheless, there could be situations in which the customer has 

some means of control in order to prevent early shipments from their suppliers but not 

necessarily to the extent that the final product must only ship at the delivery date.  In that 

sense, there is a window in which early shipment is not penalized in some sort of direct 

or indirect way.    

The explanation given above is the main reason for developing the model 

presented in this chapter, which is a hybrid and a generalization of all cases previously 
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discussed.  The traditional  𝑄, 𝑟  model, the modified (𝑄, 𝑟) model for the “early 

shipment” policy and the “no early shipment” policy are special cases of this hybrid 

model.  Since the previous two sections already covered the understanding of the 

behavior of each policy with respect to 𝑑, our focus in this section is towards developing 

the policy rather than mathematically explaining the behavior and running numerical 

examples.   

 

4.2. Description of the Model 

The same assumptions as in Hadley and Whitin (1963) are being followed and 

are enumerated as follows: 

1) The unit cost 𝐶 of the item is a constant independent of 𝑄; 

2) There is never more than a single order outstanding; 

3) The cost of operating the information processing system is independent of 𝑄 

and 𝑟; 

4) The reorder point 𝑟 is positive.  

The only major change is that 𝜋 has been assumed to be the penalty cost incurred 

when the customer order for the finished product is overdue or late based on its 

request/delivery date since backorders/stock-outs at the inventory items are allowed at 

time of booking the customer order.  Despite the fact that backorders are allowed, 

Hadley’s and Whitin’s assumption that the average number of backorders is negligible 

as compared to the average inventory at any time is being followed.  Hence, the on-hand 
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inventory is equal to the net inventory in order to calculate the cost structure related to 

the inventory cost.   

The following notation is used in order to define the cost function (𝐾): 

 𝑋 𝑡  , 𝑡+∆ is the demand in any time interval  𝑡 ,  𝑡 + ∆ ; 

 𝑓 𝑥; ∆  is the probability that the number of units demanded in a time 

interval of length ∆=  𝑡 + ∆ − 𝑡 lies between 𝑥 and 𝑥 +  𝑑𝑥; 

 𝑔 𝑙 𝑑𝑙 is the probability that the lead-time for the replenishment/procurement 

order lies between 𝑙 and 𝑙 +  𝑑𝑙; 

 𝑑𝑚𝑖𝑛  is the earliest time by which the customer order can be shipped without 

incurring any penalty for early shipment; 

 𝑑𝑚𝑎𝑥  is the latest time at which the customer order can be shipped without 

incurring any penalty for late shipment; 

 𝑕1 𝑥  is the marginal distribution for the demand during the time period 

 𝑑𝑚𝑖𝑛
 ,  𝑙 , 

𝑕1 𝑥 =  𝑓 𝑥; 𝑙 − 𝑑 𝑔 𝑙 𝑑𝑙
∞

𝑙=𝑑𝑚𝑖𝑛

;                                          (4.1) 

 𝜇 𝑑𝑚𝑖𝑛
 , 𝑙  is the expected demand during the time period (𝑑𝑚𝑖𝑛 , 𝑙], 

𝜇 𝑑𝑚𝑖𝑛
 , 𝑙 =  𝑥𝑕1 𝑥 𝑑𝑥

∞

𝑥=0

;                                                 (4.2) 

 𝑕2 𝑥  is the marginal distribution for the demand during the time period 

 𝑙 ,  𝑑𝑚𝑖𝑛  , 

𝑕2 𝑥 =  𝑓 𝑥; 𝑑 − 𝑙 𝑔 𝑙 𝑑𝑙
𝑑𝑚𝑖𝑛

𝑙=0

;                                         (4.3) 
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 𝜇 𝑙  , 𝑑𝑚𝑖𝑛   is the expected demand during the time period (𝑙, 𝑑𝑚𝑖𝑛 ], 

𝜇 𝑙  , 𝑑𝑚𝑖𝑛  =  𝑥𝑕2 𝑥 𝑑𝑥
∞

𝑥=0

;                                               (4.4) 

 0 < 𝑄 < ∞ is the procurement/replenishment order size; 

 𝑚𝑑𝑚𝑖𝑛
≤ 𝑟 < ∞ is the reorder level that triggers the procurement order by 

means of the inventory position, where 𝑚𝑑𝑚𝑖𝑛
 is a non-negative number such 

that 𝑕1 𝑥  is non-increasing for any 𝑥 ≥ 𝑚𝑑𝑚𝑖𝑛
; 

 𝜆 is the average annual demand which is constant over time; 

 𝐴 is the cost of placing an order with the supplier; 

 𝐼𝐶 is the average cost of carrying inventory per unit per unit time; 

 𝜋 is the penalty cost per unit incurred when the requested customer date is 

missed; 

 𝐺 𝑑𝑚𝑖𝑛   is the complementary cumulative distribution of 𝑔 𝑑𝑚𝑖𝑛  , or 

𝑃(𝐿 ≥  𝑑𝑚𝑖𝑛 ), 

𝐺 𝑑𝑚𝑖𝑛  =  𝑔 𝑙 𝑑𝑙
∞

𝑙=𝑑𝑚𝑖𝑛

;                                                       (4.5) 

 𝐺 𝑑𝑚𝑎𝑥   is the complementary cumulative distribution of 𝑔 𝑑𝑚𝑎𝑥  , or 

𝑃(𝐿 ≥  𝑑𝑚𝑎𝑥 ), 

𝐺 𝑑𝑚𝑎𝑥  =  𝑔 𝑙 𝑑𝑙
∞

𝑙=𝑑𝑚𝑎𝑥

;                                                       (4.6) 

 𝜂 𝑑𝑚𝑎𝑥
 𝑟  is the expected number of units incurring the penalty cost per cycle. 
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In order to calculate the expected annual inventory cost, let us assume that a 

customer order that triggers the decision of placing a replenishment order for the 

outsourced component is entered at time 𝑡 = 0.  This means that inventory of the 

component needed is allocated to the customer order and released to the shop floor at 

time 𝑑𝑚𝑖𝑛 ; and the replenishment order is received at time 𝑙 if there is no delay in 

reordering.  Since the lead-time 𝐿 is random, then there are instances in which 𝑙 ≥ 𝑑𝑚𝑖𝑛  

and 𝑙 < 𝑑𝑚𝑖𝑛 . 

For the instance in which 𝑙 ≥ 𝑑𝑚𝑖𝑛 , note that customer orders entered before time 

𝑡 = 0 are required to be released during the time interval (0, 𝑑𝑚𝑖𝑛 ] and have inventory 

already allocated to them.  In that sense, the net inventory at time of receiving the 

replenishment order is 𝑟 − 𝑋 𝑑𝑚𝑖𝑛
  ,𝑙  since the inventory at time 𝑡 =  0 is the reorder 

level 𝑟 plus the inventory already allocated to customer orders  𝑋 0  ,𝑑𝑚𝑖𝑛   . 

For the instance in which 𝑙 < 𝑑𝑚𝑖𝑛 , note that as in the previous case there is 

inventory allocated for all customer orders that will be released to the shop floor during 

the time interval (0, 𝑑𝑚𝑖𝑛 ].  Because the lead-time 𝑙 is less than the time period 𝑑𝑚𝑖𝑛 , the 

net inventory at the time of arrival of the replenishment order is 𝑟 + 𝑋 𝑙   ,𝑑𝑚𝑖𝑛  .   

The net inventory at time of arrival of the replenishment order can be 

summarized as per (4.7). 

𝜉𝑑𝑚𝑖𝑛
 𝑥, 𝑟 =  

𝑟 − 𝑋 𝑑𝑚𝑖𝑛
  ,𝑙 ,           𝑙 ≥ 𝑑𝑚𝑖𝑛 ;  0 ≤ 𝑋 𝑑𝑚𝑖𝑛

  ,𝑙 < ∞ 

 𝑟 + 𝑋 𝑙   ,𝑑𝑚𝑖𝑛  ,           𝑙 < 𝑑𝑚𝑖𝑛 ;  0 ≤ 𝑋 𝑙   ,𝑑𝑚𝑖𝑛  < ∞  
           (4.7) 

The expected net inventory at the time of arrival of a replenishment order can be 

calculated using (4.8). 
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𝐸 𝜉𝑑𝑚𝑖𝑛
 𝑥, 𝑟  =     𝑟 − 𝑥 𝑓 𝑥; 𝑙 − 𝑑𝑚𝑖𝑛  𝑔 𝑙 𝑑𝑙𝑑𝑥

∞

𝑙=𝑑𝑚𝑖𝑛

∞

𝑥=0

 𝑃 𝐿 ≥ 𝑑𝑚𝑖𝑛      

+     𝑟 + 𝑥 𝑓 𝑥; 𝑑𝑚𝑖𝑛 − 𝑙 𝑔 𝑙 𝑑𝑙𝑑𝑥
𝑑𝑚𝑖𝑛

𝑙=0

∞

𝑥=0

 𝑃 𝐿 < 𝑑𝑚𝑖𝑛                     

𝐸 𝜉𝑑𝑚𝑖𝑛
 𝑥, 𝑟  =  𝑟 − 𝜇 𝑑𝑚𝑖𝑛

 , 𝑙  𝐺 𝑑𝑚𝑖𝑛  +  𝑟 + 𝜇 𝑙  , 𝑑𝑚𝑖𝑛    1 − 𝐺 𝑑𝑚𝑖𝑛        (4.8) 

= 𝑠𝑑𝑚𝑖𝑛
𝐺 𝑑𝑚𝑖𝑛  + 𝑒𝑑𝑚𝑖𝑛

 1 − 𝐺 𝑑𝑚𝑖𝑛         

Note that 𝑠𝑑𝑚𝑖𝑛
 is the safety stock needed to protect us against the variability of the 

demand when 𝑙 ≥ 𝑑𝑚𝑖𝑛 , and 𝑒𝑑𝑚𝑖𝑛
 is the excess inventory that occurs naturally when 

𝑙 < 𝑑𝑚𝑖𝑛  since the replenishment order arrives before the material is really needed on 

the shop floor.  The expected annual inventory carrying cost is defined by (4.9).  

𝐼𝐶  
𝑄

2
+ 𝑠𝑑𝑚𝑖𝑛

+ 𝑒𝑑𝑚𝑖𝑛
  

= 𝐼𝐶  
𝑄

2
+ 𝑟 − 𝜇 𝑑𝑚𝑖𝑛

 , 𝑙 𝐺 𝑑 + 𝜇 𝑙  , 𝑑𝑚𝑖𝑛   1 − 𝐺 𝑑𝑚𝑖𝑛                        (4.9) 

In order to define the expected annual penalty cost, note that the penalty is 

incurred only when 𝑙 ≥  𝑑𝑚𝑎𝑥   and the demand 𝑋 𝑑𝑚𝑖𝑛
  ,𝑙  is greater than the reorder 

point 𝑟.  The number of customer orders incurring penalty in a cycle can be summarized 

as per (4.10). 

𝜂𝑑𝑚𝑎𝑥
 𝑥, 𝑟 =  

0,          𝑙 < 𝑑𝑚𝑎𝑥                    
0,          𝑙 ≥ 𝑑𝑚𝑎𝑥 ; 𝑥 − 𝑟 < 0 

𝑥 − 𝑟,          𝑙 ≥ 𝑑𝑚𝑎𝑥 ; 𝑥 − 𝑟 ≥ 0        
                (4.10) 

The expected number of customer orders incurring penalty per cycle can be calculated as 

follows: 
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𝜂 𝑑𝑚𝑎𝑥
 𝑟 =     𝑥 − 𝑟 𝑓 𝑥; 𝑙 − 𝑑𝑚𝑖𝑛  𝑔 𝑙 𝑑𝑙𝑑𝑥

∞

𝑙=𝑑𝑚𝑖𝑛

∞

𝑥=𝑟

 𝑃 𝐿 ≥ 𝑑𝑚𝑎𝑥   

𝜂 𝑑𝑚𝑎𝑥
 𝑟 =   𝑥𝑕1 𝑥 𝑑𝑥 − 𝑟

∞

𝑥=𝑟

𝐻1 𝑥  𝐺 𝑑𝑚𝑎𝑥  ,                             (4.11) 

where 𝐻1 𝑥  is the complementary cumulative of 𝑕1 𝑥 .  The expected annual penalty 

cost is defined as per (4.12). 

𝜋𝜆

𝑄
  𝑥𝑕1 𝑥 𝑑𝑥 − 𝑟

∞

𝑥=𝑟

𝐻1 𝑥  𝐺 𝑑                                      (4.12) 

The expected annual cost 𝐾 for the hybrid model is calculated by (4.12). 

𝐾 =
𝜆

𝑄
𝐴 + 𝐼𝐶  

𝑄

2
+ 𝑟 − 𝜇 𝑑𝑚𝑖𝑛

 , 𝑙 𝐺 𝑑𝑚𝑖𝑛  + 𝜇 𝑙  , 𝑑𝑚𝑖𝑛   1 − 𝐺 𝑑𝑚𝑖𝑛     

+
𝜋𝜆

𝑄
  𝑥𝑕1 𝑥 𝑑𝑥 − 𝑟

∞

𝑥=𝑟

𝐻1 𝑥  𝐺 𝑑𝑚𝑎𝑥                                  ( 4.13) 

As with the previous models, the assumption is that 𝑑𝑚𝑖𝑛  and 𝑑𝑚𝑎𝑥  are known 

parameters.  Note that the models previously discussed are special cases of this model: 

 𝑑𝑚𝑖𝑛 = 𝑑𝑚𝑎𝑥 = 0, the model converts into the traditional (𝑄, 𝑟) model. 

 𝑑𝑚𝑖𝑛 = 0 and 𝑑𝑚𝑎𝑥 > 0, the model converts into the modified (𝑄, 𝑟) model 

with the “early shipment” policy.  (Chapter II). 

 𝑑𝑚𝑖𝑛 = 𝑑𝑚𝑎𝑥 > 0, the model converts into the modified (𝑄, 𝑟) model with 

the  “early shipment” policy.  (Chapter III). 

 

4.3. Summary 

This chapter presents a hybrid policy which is a generalization of the models 

discussed in the previous two Chapters.  The traditional  𝑄, 𝑟  model, and the modified 
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(𝑄, 𝑟) model for the “early shipment” policy and the “no-early shipment” policy are 

special cases of this model.  The next chapter provides a summary and discusses the 

conclusions and future research. 
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CHAPTER V 

SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH 

 

5.1. Summary 

The models discussed in this research are generalizations of the  𝑄, 𝑟  inventory 

control policy for the case in which the penalty cost is not incurred at time when the 

customer order is placed if inventory is unavailable.  The traditional policy is the special 

case of this models when 𝑑 = 0.   

Without loss of generalization, the focus has been on the ATO scenario under 

two different shipping assumptions: 1) early shipments are allowed by the customer, and 

2) early shipments are not allowed.  Different from the prevailing literature related to 

inventory and supply chain management under ATO scenarios, we do not focus on the 

trade-off between inventory and delivery time under service level constraints.  Rather, 

we focus on understanding the behavior of the total cost (ordering, inventory and 

penalty) as the delivery time increases (as result of an increase in the safety time) 

constrained by the penalty cost.  This approach provides additional information in 

situations in which management is interested in modeling the penalty and then 

determining the appropriate service level as an output rather than setting it as an input 

parameter.  

 To do this, we derived the optimal modified (𝑄, 𝑟) policy following Hadley and 

Whitin’s heuristic approach and modeling the safety time as the period of time by which 
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backorders/stock-outs are allowed without incurring penalty.  Numerical examples are 

run to show the behavior of the models. 

 

5.2. Conclusions 

This section presents the conclusions related to the modified (𝑄, 𝑟) models 

analyzed in this research.  The merits of both models have been analytically and 

numerically shown.  The conditions under which the models perform better than the 

traditional (𝑄, 𝑟) model have been identified.  Conclusions are drawn from the 

perspective of the manufacturer and the customer, and the implications to their business 

relationship.       

With respect to the modified (𝑄, 𝑟) model with the “early shipment” policy, it 

has been shown that the manufacturer will tend to prefer this model over the traditional 

(𝑄, 𝑟) model for cases in which 𝑑 > 𝑙𝑚𝑖𝑛  and 𝑔 𝑑  is not negligible (e.g.: a local 

supplier that holds inventory of the component being supplied).  He/she will be tempted 

to increase the delivery time by increasing the safety time (𝑑) as this action will decrease 

the total cost of the system.  However, we have seen that for all case studies considered 

in this research the expected number of orders incurring penalty increased as 𝑑 was 

increased, meaning that the reduction of the total cost of the system comes with a trade-

off in service performance.  Nevertheless, this reduction was minimal and could be 

attributed to the fact that the model is valid for scenarios in which the expected 

backorders/stock-outs at any time are negligible with respect to the expected inventory.        
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Early shipments represent an increase of the customer inventory if he/she cannot 

convert into sales the products received ahead of time as soon as arrived.  Under this 

scenario only, we can expect the customer to push for a reduction in the delivery time 

which will force the manufacturer to reduce the safety time (𝑑).  This action is a 

contradiction of the action that the manufacturer will try to pursue, and in a competitive 

market scenario the short-term benefit for the manufacturer could be detrimental to the 

long-term relationship with the customer.  This conclusion opens the door for the 

modified (𝑄, 𝑟) model with the “no-early shipment” policy.   

With respect to the modified (𝑄, 𝑟) model with the “no-early shipment” policy, it 

has been shown that the manufacturer will tend to prefer this model over the 

traditional (𝑄, 𝑟) model for any case in which 𝑙𝑚𝑖𝑛 > 0 (e.g.: supplier located away from 

the manufacturer such that there is a time period for when receiving a replenishment 

order is impossible).  This scenario guarantees a 𝑑∗ > 0 and the delaying policy for the 

replenishment order will be implemented for any 𝑑 > 𝑑∗.  The manufacturer will be 

tempted to increase the delivery time by 𝑑∗ − 𝑑 units of time whenever 𝑑∗ > 𝑑.   

Even though the service performance is related to the problem being addressed, 

any change in service should be minimal.  Moreover, for all case studies considered in 

this research the expected number of orders incurring penalty was a non-increasing 

function of 𝑑.  The customer should not expect an increase in inventory since the orders 

are not delivered ahead of time.  These observations imply that the modified model with 

the “no-early shipment” policy has no major negative implications and should not 

jeopardize the long-term business relationship with the customer.      
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5.3. Future Research 

It has been shown that for the modified (𝑄, 𝑟) model with the “early shipment” 

policy the optimal cost function (𝐾∗) is a non-increasing function of 𝑑, and the 

manufacturer will pursue the increase of the safety time (𝑑).  The customer can look into 

contract negotiation if he/she is concerned with early shipments and is knowledgeable 

about the implied benefits at the manufacturer for increasing the delivery date.  This is 

an area of future research, and the assumption would be that early shipments and an 

increase in the delivery date are allowed by the customer if the monetary benefit for the 

manufacturer is shared to cover for any negative monetary implication at the customer.  

There is immediate research opportunity that could lead towards modeling a 

more realistic and complex scenario under both shipping perspectives: shipping early is 

allowed and shipping early is not allowed.    

1) An intrinsic assumption of this research is that the component is unique to the 

product being manufactured and it is only used in one production stage.  The 

scenario in which the component is common to several product lines and/or 

used in more than one production stage is an interesting generalization of the 

models described in this proposal since there will be multiple constant safety 

times; 

2) Modeling a random safety time in order to understand the real benefit of the 

models since a customer order with a later order entry date can be requested 

earlier than another with an earlier order entry date.   
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It has been said that under an ATO scenario the safety time is added to the 

delivery time as a protection against uncertainty.  The safety time has been assumed 

known and the problem was defined as finding the optimal (𝑄, 𝑟) policy that minimizes 

the cost of the system (ordering, inventory and penalty).  Throughout the course of this 

research we have gotten to realize that there is an optimal safety time (𝑑∗) that 

minimizes the optimal cost function (𝐾∗).  It can be said that the optimal safety time is a 

function of the inventory control model being assumed.  In that respect, it would be 

interested to expand this research to other inventory control models with the intention of 

identifying the optimal safety time (𝑑∗) that minimizes the cost of the system.   

Finally, we can conclude that it is not trivial to always prefer the “early 

shipment” policy over the “non-early shipment” policy based on the results from section 

3.5.4.  This conclusion opens the door for performing an extensive numerical study with 

the hybrid model in order to determine the optimal early shipping date when there is no 

requirement or concern related to early shipment.      
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APPENDIX A 

“NO-EARLY SHIPMENT” MODEL – RESULTS OF CASE STUDIES 

 

This appendix shows in form of a table the following results for each case study: 

type of curve, value of 𝑑∗, and value of 𝒅 .  

Case 𝜷 𝑪𝑽 = 𝝈/𝝁 𝑰𝑪/𝝅 
Curve 
Type 

𝒅∗ 𝒅  

1 2 0.05 0.05 1 0 6 

2 2 0.05 0.5 1 0 4 

3 2 0.05 0.0005 1 0 15 

4 2 0.05 0.005 1 0 13 

5 4 0.05 0.05 1 0 11 

6 4 0.05 0.5 1 0 6 

7 4 0.05 0.0005 1 0 29 

8 4 0.05 0.005 1 0 24 

9 6 0.05 0.05 1 0 14 

10 6 0.05 0.5 1 0 7 

11 6 0.05 0.0005 1 0 41 

12 6 0.05 0.005 1 0 36 

13 2 0.11 0.05 1 0 6 

14 2 0.11 0.5 1 0 4 

15 2 0.11 0.0005 1 0 15 

16 2 0.11 0.005 1 0 13 

17 4 0.11 0.05 1 0 11 

18 4 0.11 0.5 1 0 6 

19 4 0.11 0.0005 1 0 29 

20 4 0.11 0.005 1 0 24 

21 6 0.11 0.05 1 0 14 

22 6 0.11 0.5 1 0 7 

23 6 0.11 0.0005 1 0 41 

24 6 0.11 0.005 1 0 36 

25 2 0.16 0.05 1 0 6 
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Case 𝜷 𝑪𝑽 = 𝝈/𝝁 𝑰𝑪/𝝅 
Curve 
Type 

𝒅∗ 𝒅  

26 2 0.16 0.5 1 0 4 

27 2 0.16 0.0005 1 0 15 

28 2 0.16 0.005 1 0 13 

29 4 0.16 0.05 1 0 11 

30 4 0.16 0.5 1 0 6 

31 4 0.16 0.0005 2 0 29 

32 4 0.16 0.005 1 0 24 

33 6 0.16 0.05 1 0 14 

34 6 0.16 0.5 1 0 7 

35 6 0.16 0.0005 2 0 41 

36 6 0.16 0.005 1 0 36 

37 2 0.21 0.05 1 0 6 

38 2 0.21 0.5 1 0 4 

39 2 0.21 0.0005 3 2 15 

40 2 0.21 0.005 3 1 13 

41 4 0.21 0.05 1 0 11 

42 4 0.21 0.5 1 0 6 

43 4 0.21 0.0005 3 3 29 

44 4 0.21 0.005 2 3 24 

45 6 0.21 0.05 1 0 14 

46 6 0.21 0.5 1 0 7 

47 6 0.21 0.0005 2 5 41 

48 6 0.21 0.005 2 4 36 

49 2 0.26 0.05 1 0 6 

50 2 0.26 0.5 1 0 4 

51 2 0.26 0.0005 3 2 15 

52 2 0.26 0.005 3 2 13 

53 4 0.26 0.05 2 0 11 

54 4 0.26 0.5 1 0 6 

55 4 0.26 0.0005 3 4 29 

56 4 0.26 0.005 3 3 24 

57 6 0.26 0.05 2 0 14 

58 6 0.26 0.5 1 0 7 

59 6 0.26 0.0005 3 5 41 

60 6 0.26 0.005 3 5 36 
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