
  

 

A LYAPUNOV EXPONENT APPROACH FOR IDENTIFYING CHAOTIC 

BEHAVIOR IN A FINITE ELEMENT BASED DRILLSTRING VIBRATION 

MODEL 

 

A Thesis 

by 

KATHIRA MONGKOLCHEEP  

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

 

August 2009 

 

 

Major Subject: Mechanical Engineering 



  

 

A LYAPUNOV EXPONENT APPROACH FOR IDENTIFYING CHAOTIC 

BEHAVIOR IN A FINITE ELEMENT BASED DRILLSTRING VIBRATION 

MODEL 

 

A Thesis 

by 

KATHIRA MONGKOLCHEEP  

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

Approved by: 

Co-Chairs of Committee,  Alan B. Palazzolo 
 Annie Ruimi 
Committee Members, C. Steve Suh 
 Dan Zollinger 
Head of Department, Dennis L. O’Neal 

 

August 2009 

 

Major Subject: Mechanical Engineering 



 iii

ABSTRACT 

 

A Lyapunov Exponent Approach for Identifying Chaotic Behavior in a Finite Element 

Based Drillstring Vibration Model. (August 2009) 

Kathira Mongkolcheep, B.Eng., Chulalongkorn University, Bangkok, Thailand 

Co-Chairs of Advisory Committee: Dr. Alan B. Palazzolo  
 Dr. Annie Ruimi 

 

The purpose of this work is to present a methodology to predict vibrations of 

drilllstrings for oil recovery service. The work extends a previous model of the drill 

collar between two stabilizers in the literature to include drill collar flexibility utilizing a 

modal coordinate condensed, finite element approach. The stiffness due to the 

gravitational forces along the drillstring axis is included. The model also includes the 

nonlinear effects of drillstring-wellbore contact, friction and quadratic damping. 

Bifurcation diagrams are presented to illustrate the effects of speed, friction at wellbore, 

stabilizer clearance and drill collar length on chaotic vibration response. Their effects 

shifts resonance peaks away from the linear natural frequency values and influences the 

onset speed for chaos. A study is conducted on factors for improving the accuracy of 

Lyapunov Exponents to predict the presence of chaos. This study considers the length of 

time to steady state, the number and duration of linearization sub-intervals, the presence 

of rigid body modes and the number of finite elements and modal coordinates. The 

Poincaré map and frequency spectrum are utilized to confirm the prediction of Lyapunov 

exponent analysis. The results may be helpful for computing Lyapunov exponents of 
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other types of nonlinear vibrating systems with many degrees of freedom. Vibration 

response predictions may assist drilling rig operators in changing a variety of controlled 

parameters to improve operation procedures and/or equipment. 
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NOMENCLATURE 

 

A Cross-sectional area 

[A] Jacobian matrix 

Cd Drag coefficient 

[C] Global damping matrix 

Dc Drill collar outside diameter 

E, [E] Modulus of elasticity 

rbF , , tbF ,  Normal and tangential contact forces, respectively 

2,xdF , 
3,xdF  Linear damping forces in x2 and x3 direction, respectively 

2,xeF , 
3,xeF  Imbalance forces in x2 and x3 direction, respectively 

2,xfF , 
3,xfF  Nonlinear damping forces in x2 and x3 direction, respectively 

{F} Force vector 

G Shear modulus 

I Second moment of inertia when taking the symmetry of cross- 
 section 

2xI , 
3xI  Second moment of inertia about x2 and x3 axes, respectively 

[I] Identity matrix 

J Polar area moment of inertia 

Kii Generalized stiffness 

KS2, KS3 Shear correction coefficients in x1-x2 and x1-x3 planes, respectively 

KS Shear correction coefficient when taking the symmetry of cross- 
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 Section 

[K] Global stiffness matrix 

[KA] Axial stiffness matrix 

[KB] Bending stiffness matrix 

[KG] Stress stiffness matrix 

[KS] Shear stiffness matrix 

[KT] Torsional stiffness matrix 

[Ke] Element stiffness matrix 

L Drill collar length 

Mii Generalized mass 

2xM , 
3xM  Bending moment about x2 and x3 axes, respectively 

[M] Global mass matrix 

[MR] Rotary inertia matrix 

[MT] Translational mass matrix 

[Mφ] Torsional mass matrix 

[Me] Element mass matrix 

Nm Number of orthonormal modes 

Nr Number of retained mode 

Ns Number of revolutions before calculating Lyapunov exponents 

Nt Number of time intervals in Lyapunov exponent calculation 

k
iN  Distance between linearized solution and nonlinear solution 

[N] Shape function matrix 
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[NR] Shape function matrix for rotations 

[NT] Shape function matrix for translations 

[Nφ] Shape function matrix for torsion 

[ ]P~  Modal matrix 

T Total kinetic energy 

TR Kinetic energy of rotations 

TT Kinetic energy of translations 

Tφ Kinetic energy of torsion 

U Total strain energy 

UA Axial strain energy 

UB Bending strain energy 

UG Stress stiffening strain energy 

U0 Strain energy per unit volume 

US Shear strain energy 

UT Torsional strain energy 

2xV , 
3xV  Shear forces along x2 and x3 axes, respectively 

cd Linear damping coefficient 

cf Nonlinear fluid damping coefficient 

e0 Mass eccentricity 

if~  Modal forces 

kb Wellbore stiffness 
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me Unbalanced mass 

ne Number of differential equations 

qi Nodal displacement (Physical coordinates) 

{q} Nodal displacement vector (Physical coordinate vector) 

r Radial displacement 

s0 Clearance between the stabilizer and wellbore 

t Time 

ui Displacement along xi axis 

{u} Displacement vector 

u, v, w Displacements of a point on the mid-plane of an undeformed  
 beam  

x1  Longitudinal axis of the beam (drillstring) 

x2, x3 Transverse axis of the beam (drillstring) 

{x} Nonlinear solution 

yi Modal coordinates 

{y} Modal coordinate matrix  

θi rotation of a transverse normal plane about the xi axis 

Ω Rotational frequency 

μb Wellbore friction coefficient 

ρ Material density 

ρf Fluid density 

{σ} Stress 

{ε} Strain 



 x

α, β Proportional damping coefficients 

λi Eigenvalues 

ωi Natural frequencies 

ω Whirl speed 

{φ}i Eigenvectors (normal modes) 

{ }iφ~  Orthonormal modes 

 [Λ] Eigenvector matrix 

ζi Damping ratio 

ηi Linearized solution 

{η} Linearized solution vector 
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CHAPTER I 

INTRODUCTION 

 

High demand for energy has forced the oil and gas industry to seek improved methods to 

increase productivity. Preventing or reducing failures during drilling can significantly 

reduce cost and air pollution by eliminating equipment replacement, repeated drilling of 

wells and unnecessary down time. Failures are quite often associated with severe 

vibrations of the lower part of the drillstring called the bottom-hole-assembly (BHA) due 

to the interaction between the rotating drillstring and rock formation or surrounding 

water and drilling mud.  

Typically, a drillstring is composed of a hoisting and turning mechanisms (draw 

work, kelly or top drive), a drillpipe, drill collars, stabilizers and a drill bit. Drill collars 

are thick-walled, large diameter pipes which provide the weight on bit (WOB) and 

prevent drill pipes from buckling by keeping them in tension at the surface. Stabilizers 

(centralizers) are located along the drill collars and above the drill bit, in the lower part 

of the drillstring known as the bottom hole assembly (BHA). The stabilizers have short 

sections and a diameter near that of the borehole (or wellbore) to help to center the BHA. 

They also improve the drill bit performance by preventing bending of the lower part of 

the drill collar [1, 2, 3]. Figure 1.1 depicts a truncated length of drillpipe (top), a string of 
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drill collars with two end stabilizers, the BHA and the drill bit. Interactions of the 

drillstring and the drilling fluid (mud), contact forces between the wellbore and 

drillstring and interaction between the borehole and the drill bit may cause severe 

vibrations that can damage the drilling equipment, the drillstring and/or the stabilizers. 

 

 

 

Figure 1. Major components of the drillstring model. 

Drillpipe 

Drill collar 

Stabilizer 

Drill bit 

Stabilizer 

BHA 
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Three types of vibrations are predominant in drilling [4, 5]. Axial vibrations 

results from interactions between the bits and the hole bottom. This may result in large 

fluctuations of WOB and suspended particulate phase, erratic rate of penetration (ROP), 

shaking of surface equipment at shallow drilling depths, loss of tool face and poor 

directional control. Torsional vibration results from drill collar resonance, bit chatter, 

stick-slip interaction between the bit and formation and modal coupling. Severe stick-

slip motion may even cause a stopping or reversing of the bit direction. Lateral 

vibrations are called whirling motion and results from interactions between the bits and 

formation, mass imbalance, bit whirl, and from fluid forces around the drillstring. 

Lateral vibrations also result from coupling between the lateral. A drillstring can vibrate 

in any or all of these types and experience failures as indicated by reduction in the rate of 

penetration and drillstring or bit damage. 

This work focuses on predicting lateral chaotic vibrations that result from 

imbalance, stabilizer borehole impacts and friction, and nonlinear damping. A lateral 

degree of freedom is assumed at the bit. This is a reasonable assumption because of 

oversize cutting (bit walk, runout, and formation swell compensation) which leaves a 

clearance between the bit-through diameter and the as drilled gage hole. A Timoshenko 

beam based finite element code is employed to model the drillpipe and the drill collars 

between two stabilizers. Modal condensation is utilized to reduce the number of degrees 

of freedom and computational time. The vibration response is categorized by the use of 

nonlinear dynamics techniques which include Lyapunov exponents, bifurcation diagrams 

and Poincare maps. Lyapunov exponents provide a measure of divergence or 
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convergence of nearby trajectories and are calculated from the modal coordinate 

responses as an indication of chaotic vs. non-chaotic behavior. Chaotic motion must 

produce at least one positive Lyapunov exponent, hence it is sufficient to determine only 

the maximum Lyapunov exponent. The proposed model includes mass eccentricity, fluid 

damping, Coulomb friction and stress stiffening due to the axial load from the drill collar 

weight. 

Vibration response predictions may assist drilling rig operators in changing a 

variety of controlled parameters such as rotary speed, drilling mud composition, 

stabilizer gaps, drill collar length, etc. This will ultimately lead to improved procedures 

for oil and gas recovery, a decrease in equipment failure, cost savings and reduced 

emissions.  

 

1.1 Literature review 

Most of the drillstring vibration literature focuses on models of parts or components of 

the entire drilling rig. Boundary conditions are assumed to facilitate these partial system 

models. These models are utilized to help explain direct, or indirect (damage) 

measurements of drillstring vibration. 

Lin et al. [6] proposed a single-degree-of-freedom torsional model including the 

effect of dry friction. The dry friction coefficient decreases with angular velocity from 

its static value and asymptotically approaches a constant kinetic value at infinite angular 

velocity. The self-excited stick-slip oscillations yielded by the model showed good 

qualitative agreement with field measurements. Brett [7] concluded that the drilling 
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characteristics of the polycrystalline diamond compact (PDC) bits itself can cause severe 

torsional vibrations. The torsional vibrations result from a reduction in torque when 

rotary speed increases. He showed that the torsional vibrations are more severe when 

applying higher WOB, dull bits and at lower rotary speed. Cull and Tucker [8] 

investigated two different representations of Coulomb friction in a torsional drillstring 

model: a piecewise friction profile and a continuous and smooth nonlinear friction 

profile. The comparisons showed that both profiles gave acceptable alternatives for their 

model. They also indicated that the effect of the viscous damping could slightly reduce 

the duration of the BHA for both friction profiles. Mihajlović et al. [4] utilized the 

Coulomb friction to the top drive and Humped friction to the BHA and drill bit. An 

experimental drillstring setup was also built to compare the results obtained from the 

simulation. The bifurcation diagrams showed the changes from equilibrium points to 

limit cycling in which some regions are referred to as stick-slip oscillations. A 

comparison of numerical and experimental bifurcation diagrams indicated the predictive 

quality of the model. Navarro-López and Cortés [9] used lumped-parameter torsional 

model to study the stick-slip oscillations. The model included four elements: top drive, 

drill pipes, BHA and the drill bit. It also considered the increase in length of drillstring 

while drilling. The viscous damping torque and the discontinuous dry friction torque 

were applied at the drill bit. They utilized Hopf bifurcations to extract the parameters 

that yield non-desired torsional oscillations. 

Lateral vibrations, also referred as whirling motion, were analyzed as rotor 

dynamics by Jansen [10]. A two-degree-of-freedom rotordynamic “Jeffcott Rotor” 
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model was developed for a drill collar section between two stabilizers, the later modeled 

as bearings. Nonlinearity was accounted for the drilling fluid, stabilizer clearance and 

stabilizer-borehole friction. The study showed the results of these effects to the whirl 

amplitude, the critical speed and the stability. The obtained simulations explained the 

results from field measurements or from the large-scale multi-degree-of-freedom 

computer simulation. Van der Heijden [11] utilized the two degree of freedom model of 

Jansen [9] to analyze the response for chaos with nonlinear dynamics techniques. The 

bifurcation diagram was used to show the change of responses when varying frequency 

ratios. Also the response was confirmed by the Poincaré section, frequency spectrum, 

Lyapunov exponents and the fractal dimension. The study found several instabilities and 

types of motion, including quasi-periodic and chaos, resulting from many conditions. 

Kotsonis and Spanos [12] proposed the model describing lateral vibrations of the BHA. 

The effects of fluid damping, wall contact, mass eccentricity, initial curvature of drill 

collar and also linear and parametric coupling between axial force and lateral vibration 

were considered. When the coupling was not included, the drill collar stabilized at a 

constant radius. When coupling was taken into account, chaotic motion resulted. 

Whether the system was chaotic or random was tested by using the minimum phase-

volume deconvolution technique.   

In the above studies, the drillstring vibrations occur at a single mode but they can 

also be coupled. Such as the case in Yigit and Christoforou [13] utilized a lumped 

parameter model to investigate coupled torsional-lateral vibrations. The model included 

the effects of the rotary drive system, the impacts of collars with the borehole and the bit 
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rotation-dependent weight and torque on bit. The obtained stick-slip results were in close 

qualitative agreement with the field measurements. The active controller was also 

studied and could show good results in removing the stick-slip oscillations. Leine et al. 

[5] modeled oil well drillstring vibration with sub-system models for stick-slip motion 

and for whirl motion. Their work showed that increasing the rotary speed will result in a 

change from stick-slip to whirl motion as evidenced by downhole measurements.  

However there was no clear evidence that decreasing the rotary speed would result in a 

reversal of the motion from whirl to stick-slip motion. This behavior was explained by 

the presence of multiple stable solutions on the bifurcation diagrams. Yigit and 

Christoforou [14] employed an Euler-Bernoulli beam, assumed modes model to study 

the coupling of axial and lateral vibrations. The impact of the drillstring with the 

borehole wall was modeled using Hertzian contact theory. The coupling of the vibrations 

yielded a value of the critical axial load lower than the one obtained from a linear 

analysis and resulted in chaotic response. 

Richard et al. [15] studied the coupling between the torsional and axial vibrations 

modes resulting from the bit-rock interaction. Their model considered only the inertial 

moment of BHA and showed the existence of self-excited vibrations characterized by 

stick-slip oscillation or bit bouncing. It was shown that the fundamental source of the 

self excitation (instability) was the lag of the cutting force and torque behind the 

penetration rate. Their work was extended by Zamanian et al. [16] who took into account 

the rotation of the rotary table, active damping at the top and damping of the drilling 

mud Unlike the Richard et al. conclusions, they indicated that the system could always 
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be stable by an appropriate selection of system parameters, and showed that stick-slip 

vibrations could be observed from the amplitude of the oscillations of the rotary table. 

Yigit and Christoforou [17] investigated the coupled torsional and axial vibrations at the 

drill bit through the relation of weight-on-bit, torque-on-bit and cutting condition. Their 

model included the rotary table driven by an armature controlled dc motor through a 

gearbox. To suppress stick-slip vibrations and bit-bounce effectively, the study showed 

that the model should have both the feedback and active controller. The effect of torsion 

in drillstring on the stability and on the axial and torsional loads was investigated by 

Elsayed et al. [18]. A lump-parameter model was used and a mode summation method 

was applied to reduce the order of the system. The study of frequency spectrum gave the 

better insight of the torsional effect. The study showed the importance of including the 

torsional effect in the drillstring analysis to make more accurate results. 

The full coupling of axial, lateral and torsional vibrations using a lumped 

parameter model was studied by Christoforou and Yigit [19]. The mutual dependence of 

these vibrations arose from bit-formation and drillstring-borehole interactions as well as 

other geometric and dynamic nonlinearities. The contact with the borehole was analyzed 

by using the momentum balance method. The stick-slip and bit-bounce simulations 

agreed well with field observations. In addition, they designed an active controller which 

was effective in reducing these oscillations. 

Melakhessou et al. [20] studied on the contact zone of the BHA and 

characterized it into two sections: one centered on the axis of the well and one related to 

the first by the flexible string. The four-degree-of-freedom model included the effects of 
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bending and torsion, the whirling motion as well as Coulomb friction between a tool-

joint and borehole and the drillstring and borehole. Simulation results agreed well with 

those obtained with as experimental set-up and showed that their model was accurate 

enough to simulate the local contact between the drillstring and the borehole.  

The response of drag bits (or PDC bits) was investigated by Detournay and 

Defourny [21]. Their model accounted for both rock cutting processes and frictional 

contact between the cutter wearflats and the rock. The model also showed the relations 

between weight-on-bit, torque, angular velocity and rate of penetration. 

Jogi et al. [22] determined the natural frequencies of the axial, torsional and 

lateral vibrations of the BHA. The simulations results obtained with in-house models 

agreed well with field data obtained with downhole vibration measurement sensors.  

The finite element method has also been used for the analysis of the drillstring 

vibrations. The drillstring with the roller cone bit utilizing a finite element method was 

analyzed by Spanos et al. [23]. The model considered the formation surface profile and 

torque-on-bit specified for the roller cone bit. The results indicated that the rotary speeds 

corresponding to axial natural frequencies were critical speeds causing wide fluctuation 

of the weight-on-bit. The very high rotary speed could caused the bit to lift off and the 

WOB to drop. Spanos et al. [24] employed an Euler Bernoulli, based finite element 

model to simulate the BHA vibrations under monochromatic harmonic excitation. The 

effect of axial force on the lateral vibration, damping as a function of mud density and 

vibration frequency and the added mass of the drilling fluid were accounted for in their 

model. In this study the response was found by the use of a transfer function 
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representation by modal superposition and iterative techniques while considering the 

frequency-dependent added mass. This method allowed addressing the nonlinearity of 

the wellbore contact. Khulief et al. [25] modeled the drillstring including the drillpipe 

and drill collars using Euler-Bernoulli beam theory. The governing equations were 

derived using a Lagrangian approach and accounted for the torsional-lateral inertia 

coupling, the axial-lateral geometric nonlinear coupling, the gyroscopic effect, and the 

stick-slip interaction forces. Unlike in other studies, the effect of the gravitational force 

field was also considered in this study. The effect of gravitation, generally ignored in 

other studies was also considered by splitting the drillstring into two sections: one in 

tension above the neutral point and one in compression below the neutral point. The 

order of the system was reduced using a modal transformation method. Transient 

responses resulting from various excitations were used to validate the model. Results 

indicated that lateral excitations affected axial and torsional vibrations and that frictional 

torque caused stick-slip oscillations.  

This work extends the work of Jansen [10] and Van der Heijden [11] who 

analyzed the lateral vibrations of the drill collar and BHA, including stabilizers at both 

ends. Our contributions include modeling of drill collar flexibility utilizing finite 

elements and modal coordinate reduction, characterization of chaos with Lyapunov 

exponents and a strange attractor map, and consideration of the effects of friction, drill 

collar length and stabilizer clearance on chaotic vibration. The upper boundary condition 

employed by Jansen [10] and Van der Heijden [11] is also validated by comparing 

responses with and without the drillpipe. A study of parameter variation for computing 
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the Lyapunov exponents of a larger order model is included and may provide a guide for 

studies of chaos in other types of vibrating systems. 

 

1.2 Statement of thesis 

The thesis of this work is that Lyapunov exponents can be calculated for a finite element 

based model of a drillstring and provide a quantitative indicator of chaotic and non-

chaotic behavior. An in-house software is developed for a Timoshenko beam, finite 

element representation of a drillstring model. The modal method is employed to increase 

the efficiency of the computations. Post processing software for characterizing the 

vibration behavior from the modal coordinates is then developed by the use of nonlinear 

dynamics techniques including Lyapunov exponents. 

 

1.3 Objectives and organization 

In this study, our objectives are as follows: 

1) To develop and validate a finite element software for simulating the drillstring 

vibrations 

2) To investigate the behavior of drillstring vibrations from the finite element model 

3) To understand the effect of the system parameters to the system response 

4) To develop a computationally efficient and reliable approach for identifying 

chaotic behavior on a drillstring model 
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The background theory is provided in Chapter II. The methodology used for this 

work is described in Chapter III. All study results and vibration response are shown and 

analyzed by nonlinear dynamics techniques in Chapter IV. The summary and conclusion 

as well as recommendations for future work are given in Chapter V. 
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CHAPTER II 

BACKGROUND THEORY 

 

In this chapter, we briefly summarized the relevant theories required in modeling and 

analysis of our study. The drillstring is modeled using Timoshenko beam finite elements 

theory to describe lateral vibrations. The system equation of motion is derived by 

Lagrangian method. The beam stiffness also includes stress stiffening due to the 

gravitational force acting along the beam axis. The chaotic vibrations are predicted to 

result from imbalance, stabilizer wellbore impacts and friction, and nonlinear damping. 

A modal condensation approach is utilized to reduce the number of degrees of freedom 

of the finite element system and computational time. Lastly, nonlinear response behavior 

is then categorized by the use of nonlinear dynamics techniques including Lyapunov 

exponents, bifurcation diagram, Poincaré map and frequency spectrum. 

 

2.1 Timoshenko beam theory 

The Euler-Bernoulli beam theory assumes that plane cross sections perpendicular to the 

axis of the beam remain plane and normal to the longitudinal axis after deformation. In 

Timoshenko beam theory (TBT), the first assumption is kept but the normality condition 

is relaxed by assuming that the rotation of a transverse normal plane about the x3–axis 

(θ3) is not equal to 1dxdv−  (see Fig. 2.1). Therefore, the transverse shear deformation 

is not zero [26]. Let the longitudinal axis of the beam lie on a local x1 axis, the 

kinematics of the TBT in the x1-x2 plane is shown in Fig. 2.1. 
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Figure 2.1. Kinematics of the Timoshenko beam theory in the x1-x2 plane [26].  

 

The displacement field of the beam in the TBT in the x1-x2 plane can be expressed as  

 )()( 13211 xxxuu θ−= , )( 12 xvu = , 03 =u  (2.1) 

where (u1, u2, u3) are the displacements of a point along the (x1, x2, x3) coordinates (u, v) 

are the displacements of a point on the mid-plane of an undeformed beam in (x1, x2) 

directions, and θ3 is the angle about the x3–axis of a transverse straight line. The 

equilibrium of the differential length beam subjected to shear forces 
2xV  and bending 

moments 
3xM  is shown in Fig. 2.2. The equilibrium equations of the TBT are  

u

( ) ( )1321 xxxu θ−  

v−

1dx
dv

1dx
dv  
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,  

 
1
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33 dx

d
EIM xx

θ
= , ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=

1
322 dx

dvGAKV Sx θ  (2.2) 

where E is the modulus of elasticity, 
3xI  is the second moment of inertia about the x3-

axis, KS2  is the shear correction coefficient in x1-x2 plane, G is the shear modulus and A 

is the cross-sectional area. 

 

 

Figure 2.2. The equilibrium of differential beam in the x1-x2 plane. 

 

Similarly, the kinematics of the TBT in the x1-x3 plane is shown in Fig. 2.3 and 

the displacement field is 

 )()( 12311 xxxuu θ+= , 02 =u , )( 13 xwu =  (2.3) 

where w is the displacement of a point on the mid-plane of an undeformed beam in x3 

direction, and θ2 is the angle about the x2–axis of a transverse straight line. 
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M x
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∂
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Figure 2.3. Kinematics of the Timoshenko beam theory in the x1-x3 plane [26]. 

 

The equilibrium of the differential length beam subjected to shear forces 
3xV  and 

bending moments 
2xM  as shown in Fig. 2.4 is 

0
1

3 =
dx
dVx , 0

3

2

1

=+− x
x V

dx
dM

,  

 
1

2
22 dx

dEIM xx
θ

= , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

1
233 dx

dwGAKV Sx θ  (2.4) 

where 
3xI  is the second moment of inertia about the x2-axis, KS3 is the shear correction 

coefficient in x1-x3 plane and E, G and A are as described previously. 

 

( ) )( 1231 xxxu θ+

u

w−

1dx
dw

1dx
dw  
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Figure 2.4. The equilibrium of differential beam in the x1-x3 plane. 

 

2.2 Force models 

The imbalance force due to mass eccentricity, e0, can be expressed in rectangular 

coordinates (x2, x3) as 

  ( )temF exe ΩΩ= cos0
2

, 2
, ( )temF exe ΩΩ= sin0

2
, 3

 (2.5) 

where t is time, me is the unbalanced mass and Ω is the rotational frequency as shown in 

Fig. 2.5. A nonlinear damping force due to the vibration of the drill collar in the 

surrounding mudflow is modeled as a velocity squared proportional force in the 

direction opposite to the velocity of the drill collar and applied at the midspan location of 

the drill collar [10, 11]: 

  2
2
3

2
2, 2

xxxcF fxf &+−= , 3
2
3

2
2, 3

xxxcF fxf &+−=  (2.6) 

cf  is the equivalent fluid damping coefficient and given in [29] as 

  2LDCc cdff ρ=  (2.7) 

where ρf is the fluid density, Cd is the drag coefficient, Dc is the collar outside diameter 

and L is the collar length. Linear damping forces are included at each stabilizer  

1

2

2 x
M

M x
x ∂

∂
+  2xM  

1x  

3x  3xV  
1

3

3 x
V

V x
x

∂
+  
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  2, 2
xcF dxd &−= , 3, 3

xcF dxd &−=   (2.8) 

where cd  is the damping coefficient. The linear damper model is employed due to the 

much smaller clearance at the stabilizers (centralizers). Gyroscopic torque is neglected 

due to the very low speed of the drillstring. 

 

Drill collar 
geometric center

Drill collar 
center of mass

Stabilizer center

Contact 
point

x2

x3

Ωt

2s0

e0

Wellbore center

Drill collar 
geometric center

Drill collar 
center of mass

Stabilizer center

Contact 
point

x2

x3

Ωt

2s0

e0

Wellbore center

 

Figure 2.5. End view of deflected drill collar showing mass eccentricity and 

contact point [10]. 

 

Normal and tangential contact forces occur between the stabilizer and wellbore when the 

lateral displacement of the stabilizer becomes larger than the clearance, r > s0 (Fig. 2.6). 

The normal contact force (Fb,r) is modeled as a linear spring with stiffness, kb. 
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b
rb >

<

⎩
⎨
⎧

−
=  (2.9) 

The tangential, coulomb friction contact force is given by 

  ( ) rbbtb FsignF ,, ϖμ=  (2.10) 

where ω is the whirl speed and μb is the coefficient of friction. The stabilizer section is 

assumed to always slip when it contacts the wall. 

 

x2

x3

Fb,r
Fb,t

Stabilizer

Wellbore

r

ω

 

Figure 2.6. Contact forces on the stabilizer [10]. 

 

2.3 Finite element method 

We used a three-dimensional finite element to discretize the beam. The system equation 

of motion is derived using a Lagrangian approach. The finite element mass matrices are 

derived using the kinetic energy. The finite element stiffness matrices are derived using 
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the elastic strain energy. The proportional damping is employed to represent the viscous 

damping in a beam. The finite element method was discussed in detail elsewhere [26, 

27].  

 

2.3.1 A three-dimensional finite element 

An element consists of two nodes at its ends. Each node has six degrees of freedom 

consisting of three translations (u1, u2, u3) and three rotations (θ1, θ2, θ3). The 

displacement vector of an element can be expressed as 

 { } ⎣ ⎦Tuuuu 321321 θθθ=  (2.11)  

where ⎣ ⎦  is denoted as a row vector. Figure 2.7 shows an element with the nodal 

displacements. The axis of the beam lies on a local x1-axis. The vector of nodal 

displacements for this element can be expressed as 

 { } ⎣ ⎦Tqqqqqqqqqqqqq 121110987654321=  (2.12) 

 

 

Figure 2.7. Nodal displacements for a three-dimensional beam element. 
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Let the interpolated forms of the displacements be  

 { } [ ]{ }u N q=  (2.13) 

where [ ]N  is the shape function matrix of the three-dimensional finite element. The 

translational deformations, rotations and torsional deformations of an element can be 

represented in terms of shape functions as follows: 

Translations 

{ }
1 1 1 2

2 1 1 2 3 4

3 1 1 2 3 4
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( ) 0 0 0 0 0 0 0 0
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  (2.14)    

where NT is the shape function matrix for translation, and a and b are denoted as axial 

and bending, respectively. 

Rotations 
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               { } [ ]{ }2

3

R
R

R

N
q N q

N
θ

θ

⎡ ⎤
= =⎢ ⎥
⎢ ⎥⎣ ⎦

  (2.15) 

where NR is the shape function matrix for rotation. 

Torsion 

 { } { }1 1 1 2( ) 0 0 0 0 0 0 0 0 0 0x N N qφ φθ ⎡ ⎤= ⎣ ⎦  

                                    { }N qφ⎡ ⎤= ⎣ ⎦   (2.16) 
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where Nφ is the shape function matrix for torsion. 

 

2.3.2 Mass matrix 

The element mass matrices are obtained from the kinetic energy. For the small 

vibrations, the kinetic energy of translations and rotations can be written as 

Translations 
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∂
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=
ρ  (2.17) 

where ρ is material density and A is the sectional area. 

Rotations 

 
2 3

22
32

1
02

L

R x xT I I dx
t t

θθρ ⎧ ⎫∂∂⎪ ⎪⎛ ⎞⎛ ⎞= +⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
∫  (2.18) 

Taking the symmetry of cross-section into consideration yields III xx ==
32

. The Eq. 

(2.18) becomes  
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32
1

02

L

RT I dx
t t

θθρ ⎡ ⎤∂∂ ⎛ ⎞⎛ ⎞= +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∫  (2.19) 

Torsion 

 
2

1
1

02

L

T J dx
tφ
θρ ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠∫  (2.20) 

where J is the polar area moment of inertia. 

Utilizing the time derivative of Eq. (2.13), the total kinetic energy expression in 

term of the nodal displacement vector can be written as  
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 { } [ ]{ }qMqTTTT e
T

TR &&
2
1

=++= φ  (2.21) 

where [ ] [ ] [ ]e T RM M M Mφ⎡ ⎤= + + ⎣ ⎦  is the augmented element mass matrix given by 

[ ]TM as the translational mass matrix, [ ]RM  as the rotary inertia mass matrix and Mφ⎡ ⎤⎣ ⎦  

as the torsional mass matrix, defined by 

   [ ] [ ] [ ] 1
0

dxNANM
L

T
T

TT ∫= ρ  (2.22) 

 [ ] [ ] [ ] 1
0

L
T

R R RM N I N dx= ∫  (2.23) 

 1
0

L
T

M N J N dxφ φ φ⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫  (2.24) 

 

2.3.3 Stiffness matrix 

The elastic strain energy can be used to formulate element stiffness matrices. The strain 

energy per unit volume, U0, of the elastic body refers to the energy stored in the material 

and recovered as work when loading is removed; it is defined as   

 { } { }εσ TU
2
1

0 =  (2.25) 

For the linearly elastic material where the stress, σ, is related to the strain, ε, by 

{ } [ ]{ }εσ E=  where E is the modulus of elasticity, Eq. (2.25) becomes 

 { } [ ]{ }εε EU T

2
1

0 =  (2.26) 

The total strain energy is written as 
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 { } { } { } [ ]{ }∫ ∫∫ === dVEdVUU TT εεεσ
2
1

2
1

0  (2.27) 

The elastic strain energy of axial, torsional, shear and bending deformations can be 

written in terms of the displacements as follows: 

Axial deformation 
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Torsional deformation 
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Shear deformation 
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Bending deformation 
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In addition, the beam stiffness also includes a stress stiffening term due to 

gravity, FG, acting along the axis of the beam. The axial tensile load increases the lateral 

stiffness of the beam and provides a pendulum restoring torque. The stress stiffening 

strain energy is given by [27] as 
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Thus, the total elastic strain energy becomes 
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 A T S B GU U U U U U= + + + +  (2.33) 

Considering the symmetry of cross-section yields KS2 = KS3 = KS as well as III xx ==
32

. 

Equation (2.33) can be expressed as 
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∫ ∫  (2.34) 

Equation (2.34) can be written in matrix form as 

 { }[ ]{ }1
2 eU q K q=  (2.35) 

where [ ] [ ] [ ] [ ] [ ] [ ]e A T S B GK K K K K K= + + + +  is the augmented element stiffness matrix 

given by [ ]AK  as the axial stiffness matrix, [ ]TK  as the torsional stiffness matrix, [ ]SK  

as the shear stiffness matrix, [ ]BK  as the bending stiffness matrix and [ ]GK  as the stress 

stiffening matrix, defined by 
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 (2.38) 
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∫  (2.40) 

 

2.3.4 Damping matrix 

In this study, we used proportional damping, also known as Rayleigh damping, to 

represent viscous damping which is the energy dissipated in friction at drill collar 

connections and friction between the drill collar and other equipment. The global 

damping matrix [ ]C  is defined as a linear combination of the global mass matrix [ ]M  

and global stiffness matrix [ ]K  [27]. 

 [ ] [ ] [ ]KMC βα +=  (2.41) 

where α and β are proportional damping coefficients which have units of s-1 and s, 

respectively. The effect from [ ]Mα  damps lowest modes most heavily while the effect 

from [ ]Kβ  damps highest modes most heavily.  
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2.3.5 Equation of motion 

Utilizing the standard finite element assembly procedure, we obtain the equation of 

motion in the assembled general form as 

 [ ]{ } [ ]{ } [ ]{ } { }FqKqCqM =++ &&&  (2.42) 

where { }F  is the force vector including the forces described in Section 2.2. 

 

2.4 Modal approach 

The modal approach uses fewer sets of degrees of freedom (DOF) to represent the full 

set of DOF in the finite element model. The described detail can be found in [27, 28]. 

We firstly solve the undamped free vibration equation of motion, Eq. (2.42) 

 [ ]{ } [ ]{ } { }0=+ qKqM &&  (2.43) 

to determine the eigenvalues iλ  which are equal to the square of the natural frequencies, 

iϖ , and their corresponding eigenvectors (or normal modes), { }iφ . By the orthogonality 

of the normal modes, we have 

 { } [ ]{ } iii
T
i MM =φφ  ,  { } [ ]{ } iii

T
i KK =φφ  (2.44) 

where iiM  and iiK are the generalized mass and the generalized stiffness, respectively. If 

each  { }iφ  is divided by the square root of iiM , we obtain the orthonormal modes { }iφ~ . 

If Nm orthonormal modes are assembled as columns into a square matrix, that matrix is 

called the modal matrix [ ]P~ . The modal matrix can be used to decouple the equations of 
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motion. If we use the coordinate transformation { } [ ]{ }yPq ~=  where { }y  is the modal 

coordinates and pre-multiply Eq. (2.42) by [ ]TP~ , we obtain 

 [ ] [ ][ ]( ){ } [ ] [ ][ ]( ){ } [ ] [ ][ ]( ){ } [ ] { }FPyPKPyPCPyPMP
TTTT ~~~~~~~ =++ &&&  (2.45) 

The [ ] [ ][ ]PMP
T ~~  and [ ] [ ][ ]PKP

T ~~  terms produce diagonal matrices 

 [ ] [ ][ ] [ ]IPMP
T

=~~  ,  [ ] [ ][ ] [ ]Λ=PKP
T ~~  (2.46) 

where [ ]I  is a unit matrix and [ ]Λ  is the diagonal matrix of the eigenvalues. 
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Since we use proportional damping, [ ] [ ][ ]PCP
T ~~  is diagonal as well and can be derived 

from Eq. (2.41).  

 [ ] [ ][ ] [ ] [ ][ ] [ ] [ ][ ]PKPPMPPCP
TTT ~~~~~~ βα +=  

                                                         [ ] [ ]Λ+= βα I  (2.48) 

Thus Eq. (2.42) can be written as an uncoupled equation and its i th equation is in the 

form 

 22 ( )i i i i i i iy y y f tζ ϖ ϖ+ + = %&& &  (2.49) 

where if
~ are the modal forces. The modal damping is defined as 

 22 iii βϖαϖζ +=  (2.50) 
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where ζi  are damping ratios and their typical value for structure is 2%. Since damping of 

higher modes is desired, therefore the value of α is set to be zero and β can be 

determined from Eq. (2.50).  

The lowest modes in the modal matrix can represent the entire modes. Let Nr be 

the number of retained modes in modal matrix. The modal matrix [ ]P~  becomes a  

Nm × Nr matrix and reduces the number of equations to be solved to Nr equations. We 

then solve for modal coordinates { }y  which is a 1×rN  matrix. The recovering of the 

physical coordinates { }q  can be made by the transformation equation 

 { } [ ]{ }yPq ~=  (2.51) 

 

2.5 Nonlinear dynamics techniques 

The nonlinear dynamics techniques used in this work are 

1) Lyapunov exponents 

2) Bifurcation diagram 

3) Poincaré map 

4) Frequency spectrum 

They are used to categorize the vibration behavior into harmonic, sub-harmonic, quasi-

periodic or chaos. A harmonic response varies sinusoidally with time. If the driving 

frequency is ω, then a harmonic response has 2Π/ω-period and a sub-harmonic response 

has 2Πn/ω-period where n is an integer. If the response is the sum of two periodic 

functions and the ratio of the frequencies is not a rational number, the response is quasi-
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periodic. The chaos is the non-periodic behavior and is apparently random or noisy [29, 

30]. 

 

2.5.1 Lyapunov exponents  

Detail regarding the calculation of Lyapunov exponents can be found in [29, 31, 32]. 

Lyapunov exponents are a measure of divergence or convergence of nearby trajectories. 

To calculate a Lyapunov exponent, we need to locate the initial points of two nearby 

trajectories in state space and follow the differences between these two trajectories. For a 

given nonlinear system, the set of ne differential equations is represented by 

 { } { }( )xfx =&  (2.52) 

The solution of the linearized form of Eq. (2.52) is denoted by {η} and obtained from 

 { } [ ]{ }ηη A=&  (2.53) 

where [ ] [ ]fA ∇=  is ne×ne matrix of partial derivatives of f [29]. Equations (2.52) and 

(2.53) are simultaneously numerically integrated after the nonlinear system has reached 

steady state. Determining ηi(t) for large t may lead to excess error on a computer due to 

exponential divergence along the chosen initial direction. Even though we expect to see 

the convergence from the initial direction, the numerical error occurring during 

integrating Eq. (2.52) directs the ηi(t) along the exponentially diverged direction. To 

overcome these difficulties, we must carry out the integration over many time intervals 

with appropriate interval length (Δt) and form the new initial vectors before starting 

every new interval [29] as shown in Fig. 2.8.  
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Figure 2.8. Sketch of the change in distance between two nearby  

trajectories [29]. 

 

A set of mutually orthonormal, initial condition vectors is calculated, using 

Gram-Schmidt orthogonalization, at the start of each time interval. Numerical 

integration of the linearized solution is started on each of these initial condition vectors 

and convergence or divergence of the resulting trajectories is evaluated. The first set of 

initial vectors at t0 is:  

 ]0...,,0,0,1[)( 0
)0(

1 =tη , ]0...,,0,1,0[)( 0
)0(

2 =tη , …, ]1...,,0,0,0[)( 0
)0( =tnη  (2.54) 

The Gram-Schmidt procedure is then employed to construct a new set of orthonormal 

initial values after integrating over the interval 10 ttt ≤≤ . The Gram–Schmidt procedure 

is: 
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where ( )yx ⋅  denotes the inner product of the vectors x and y. The set of vectors 
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The orthonormality can be verified by the following property: 
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The norm in the denominator in Eq. (2.56) is denoted by k
iN , where the superscript 

refers to the kth time interval and the subscript refers to the jth vector. The Lyapunov 

exponents are obtained after Nt time interval from 
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tt 10

)( ln1λ  (2.58) 

The norm k
iN  is the distance between the vectors )1()( −+ k

iktx η and )( ktx . The distance 

exponentially grows in time for a chaotic system so that at least one of Lyapunov 

exponents will then be greater than zero (λ > 0). Therefore in this work the presence of 

chaos is indicated by a positive value of the maximum Lyapunov exponent. A computer 

flowchart for Lyapunov exponent calculation is shown in Fig. 2.9.  
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t = 0
{x(t=0)} = {0}

i = 0
{η(0)(t0)}, Eq. (2.53), and {x(t0)} = {x(tNs)} 

Time interval  loop
ti+1 = ti+ Δt

Numerically integrate Eqs. (2.51) and (2.52)  
from ti to ti+1 , simultaneously

{x(ti+1)}, {η(i)(ti+1)}

Perform Gram‐Schmidt procedure with {η(i)(ti+1)}, 
Eqs. (2.54) and (2.55)

{η(i+1)(ti+1)}

Calculate Lyapunov exponents, Eq. (2.57)

i > Nt ‐1

i = i+1

No

Yes

Lyapunov exponents

Numerically integrate Eq. (2.51) 
for Ns revolutions

{x(tNs)} 

 

Figure 2.9. Computer flowchart for Lyapunov exponent calculation. 
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The accuracy of Lyapunov exponent prediction may be improved by the 

convergence study of the Lyapunov exponent factors including length of time to steady 

state (Ns), and the number (Nt) and duration (Δt) of time intervals. 

 

2.5.2 Poincaré map 

The Poincaré map refers to a sequence of points taken from the phase path at discrete 

times after steady state conditions have been attained [32, 33]. For example, if there is a 

driving force of period T, the Poincaré points are then taken along the phase path at time 

T, 2T, 3T, and so on. Therefore the phase plane, instead of showing a continuous line, 

will show the discrete points at intervals of the period T. When the motion is periodic, 

the Poincaré map on the phase plane appears as a finite set of points. For example, the 

Poincaré map corresponding to a period-1 harmonic appears a fixed point. If the motion 

is a period-2 sub-harmonic, the Poincaré map consists of a set of two points. For the 

quasi-periodic motion, the Poincaré points fill up a continuous closed curve. If the 

Poincaré map shows the area covered with points (strange attractor), the motion is 

defined as chaotic. 

 

2.5.3 Bifurcation diagram 

A bifurcation diagram [30, 33] is commonly used to examine the change in dynamical 

system behavior as the system parameter is varied. The characteristic value is plotted as 

the function of a system parameter after all the transients have died out. An abrupt 

change in the number of dots as the parameter varies indicates the occurrence of a 
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bifurcation such as period doubling, jump to another stable solution, etc. The bifurcation 

diagram shows a dot when the system parameter results in harmonic response. The finite 

set of dots appears on the part at which the system parameter results in sub-harmonic 

response. However when a line of dots at any system parameter exists, the response may 

be either quasi-periodic or chaotic.  

 

2.5.4 Frequency spectrum 

The distribution of frequency spectra is one of the principal approaches to distinguish the 

vibration response. By fast Fourier transform, the periodic or quasi-periodic motion will 

show a set of narrow spikes. If the motion is chaotic, a continuous distribution of 

frequencies will appear [32, 33]. 

Nonlinear response behavior is identified by employing one or more of these 

nonlinear dynamics techniques described above. Bifurcation diagrams are used to 

indicate the occurrence of a bifurcation as the parameter varies. Lyapunov exponents are 

a quantitative tool to indicate whether the response is chaotic or not. Poincaré map and 

frequency spectrum are used to confirm the characteristic of the response. 
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CHAPTER III 

METHODOLOGY 

 

According to the objectives of this work given in Chapter I, here we developed the 

methodology to achieve all objectives. The flowchart of proposed methodology is shown 

in Fig. 3.1 to provide better understanding of this work. The detail of each process will 

be discussed in this chapter. 

 

3.1 Model 

The model consists of a drill collar assembly and two stabilizers at its end points. The 

BHA is attached to the bottom of the drill collar in an actual drillstring. The BHA is 

much shorter and much lighter than the drill collar therefore we treat the BHA as an 

integral part of the drill collar in the model.  The model parameters are partially adopted 

in [3, 10] and listed in Table 3.1. The model includes nonlinear damping, an imbalance 

force applied at the midspan location of the drill collar and linear damping at the 

stabilizers. The contact forces between the stabilizer and wellbore occur when the lateral 

displacement of the stabilizer becomes larger than the clearance (s0). The drill collar 

mass is distributed uniformly along its entire length, which is an improvement over 

lumping the entire mass at the drill collar midspan as is done in reference [10, 11]. The 

drillstring is assumed to be uniform and made of linearly elastic, isotropic and 

homogeneous steel. The 2% damping ratio gives β = 0.02 and α = 0 as described in 
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Drillstring  model: 
drill collar section between 2 stabilizers

Consider and model forces acting on the drillstring

Consider boundary conditions

Develop software tool based on 
finite element method conjunction with 

modal approach 

Determine number of elements 
in the finite element model

Natural frequencies

Natural frequencies 
convergence

Increase 
the number of elements

Vibrations

Yes

No

Determine number of modes 
in the reduced system

Plot the bifurcation diagram

Vibration response 
converges

Yes

Increase 
the number of modes

No

Vibrations

To next page
 

Figure 3.1. Flowchart of methodology in this work. 
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Determine  values of 
Lyapunov exponent factorsCalculate 

the maximum  Lyapunov exponent

Maximum Lyapunov 
exponent converges

Increase 
Lyapunov exponent 

factors

Yes

No

Maximum Lyapunov exponents

Confirm results with other 
nonlinear dynamics techniques

Characteristic of vibration response  

 

Figure 3.1. Flowchart of methodology in this work (continued). 

 

Section 2.4. The model is assumed to have a constant rotational speed (rpm), Ω, which is 

valid under the assumption of uncoupled lateral and torsional motions. An imbalance 

force is positioned at the drill collar midspan in the model. The imbalance magnitude 

given in Table 3.1 is held constant for all results provided in this work. When the 

stabilizer contacts the wellbore, it is assumed to always slip along the wellbore. 
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Table 3.1. Parameters used in the simulations. 

Drillpipe   
Drillpipe outside diameter 0.1016 m 
Drillpipe inside diameter 0.0848 m 
Drillpipe length a 100 m 
Modulus of elasticity 2.1x1011 N/m2 
Material density, ρ 7850 kg/m3 
BHA (Drill collar)   
Drill collar outside diameter, Dc 0.2286 m 
Drill collar inside diameter 0.0762 m 
Drill collar length, L a 23 m 
Modulus of elasticity 2.1x1011 N/m2 
Material density 7850 kg/m3 
Stabilizer clearance, s0 0.0254 m 
Drilling mud  
Drilling mud density, ρf  1500 kg/m3 
Drag coefficient, Cd  1 
Imbalance force  
Drill collar mass, me 6587 kg 
Mass eccentricity, e0  0.0127 m 
Contact force  
Wellbore stiffness, kb a 1x108 N/m 
Friction coefficient, μb a 0.2 
Damping at stabilizers  
Damping coefficient, cd a 300 N.s/m 

   
a Parameter values are assumed. 

 

The boundary conditions of the drill collar–stabilizer model are free-free when 

the stabilizers are not in contact with the wellbore. This type of boundary condition was 

justified in reference [10] by the assumption that the spin (imbalance force) frequency is 
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near the lowest mode frequency of the isolated drill collar model as totally detached 

from the drillpipe above it. The assumption was validated in our work by simulating the 

model of the drill collar with and without the drillpipe attached. The drillpipe was 

assumed to be cantilevered at 100 meters above the top of the drill collar for this study 

shown in Fig. 3.2. 

 

Drill collar

Drill bit

Drillpipe

Stabilizer

Wellbore

 

Figure 3.2. A general drillstring including the drillpipe, drill collar, stabilizers,  

and drill bit. 

Vibration direction Vibration direction 
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The ratio of the drill collar to drill pipe area moments of inertias was approximately 50 

so that the drill collar is much stiffer than the drillpipe which also supports ignoring the 

drillpipe, by analogy to the “dog (drill collar) wagging the tail (drillpipe)”. 

 

3.2 Finite element method conjunction with a modal method 

The model described in Section 3.1 is divided into the Timoshenko beam finite elements 

consisting of two nodes at its ends as shown in Fig. 3.3. The model stiffness includes a 

stress stiffening effect due to drill collar weight acting along the axis of the drillstring. 

This axial tensile load increases the lateral stiffness of the drill string and provides a 

pendulum restoring torque. The stress stiffening strain energy is given by [27] as in Eq. 

(2.31). Inertia effects are modeled with a consistent mass matrix, including translational 

and rotary inertia terms. The system equation of motion is derived by using a Lagrangian 

approach. The kinetic energy is used to formulate element mass matrices and the elastic 

strain energy is used to formulate element stiffness matrices. The proportional damping 

is used to represent the viscous damping of the drillstring. The forces described in 

Chapter II which include imbalance, nonlinear and linear damping, and contact forces 

are treated as nodal forces. The model’s governing differential equations are numerically 

integrated with a Runge-Kutta algorithm including a variable time step to determine the 

lateral displacements and velocity. 

The software tool is developed in Matlab to simulate vibrations and validated by 

comparing the lowest natural frequencies of each mode with the analytical solution 

given by Blevin [34]. The natural frequencies are obtained from the undamped system in 



 42

Eq. (2.42). Although the accuracy of the solution from the finite element model 

increases as the number of elements increases, the computational time also increases. 

The number of elements (Ne) is determined by the convergence study of the lowest 

natural frequencies. 

 

Figure 3.3. The finite element model. 

 

The direct integration of the system equation of motion is computation time 

prohibitive because of the large number of degrees of freedom and the presence of 

nonlinear forces that require very small integration time steps. Therefore a modal 

condensation method is then utilized to reduce the number of degrees of freedom in the 

1

2

3

4

Ne

Stabilizer 

Stabilizer 

Wellbore Drill collar 

Vibration direction Vibration direction 



 43

finite element system and computation time. This requires selection of the number and 

types of modes used in the reduced system. The convergence study of the response 

behavior on the bifurcation diagram is then conducted. 

 

3.3 Nonlinear dynamics analysis 

Nonlinear response behavior is identified by employing one or more of the following 

nonlinear dynamics techniques: Lyapunov exponents, Poincaré maps, bifurcation 

diagrams and frequency spectrum. The bifurcation diagram is used to indicate a 

bifurcation as the parameter varies. For a chaotic system, at least one of Lyapunov 

exponents becomes positive. Therefore the presence of the chaos is indicated by a 

positive value of the maximum Lyapunov exponent. The Poincaré map and frequency 

spectrum are then used to confirm the results. 

The Gram-Schmidt procedure used in the Lyapunov exponent calculation is 

validated by an orthonormality test given in Eq. (2.56). Moreover, Lyapunov exponents 

depend on the length of time to steady state, the number of time intervals that are utilized 

and the length of these time intervals. The values of these three factors have to be 

determined by convergence studies before being brought into the calculation. 

 

3.4 Study cases 

In this work we study the effects of nonlinear forces on the chaotic vibrations. Three 

sources of nonlinear sources in the model are 

a) a quadratic damper due to surrounding mudflow, 
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b) the  intermittent contact forces between the stabilizers and wellbore, and 

c) the friction force between the stabilizer and wellbore. 

Also the effects of physical parameters including the friction coefficient (μb), drill collar 

length (L), and clearance between the stabilizer and wellbore (s0) are studied as follow: 

a) Friction coefficient is varied from 0.1, 0.2 and 0.3. 

b) Drill collar length is varied from 15 to 25 meters.  

c) Stabilizer clearance is varied from 0.0127, 0.0254 and 0.0508 meters. 
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CHAPTER IV 

  RESULTS 

 

In this chapter, all results of this work are shown. The convergence studies to determine 

the number of elements in the finite element system, the number of modes in the reduced 

system and the values of the Lyapunov exponent factors are shown in Section 4.1. The 

assumption of the boundary condition and the developed program are validated in 

Section 4.2. Lastly, Section 4.3 shows vibration behavior which is obtained from varying 

system parameters and characterized by the use of nonlinear dynamics techniques. 

 

4.1 Convergence studies 

Convergence studies in this work are as follow: 

a) the number of elements used in the finite element system,   

b) the number of modes in the reduced system, 

c) the values of the Lyapunov exponent factors: the length of time to steady state, 

the number of time intervals, and the length of time interval used in the 

Lyapunov exponent calculation 

We determine the number of elements used in the finite element system by the study of 

the natural frequency convergence. The first ten natural frequencies obtained from 

varying numbers of elements in the finite element system from 4, 6, 8, 10, 12 and 14 are 
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shown in Table 4.1. The natural frequencies start converging after using 10 elements. 

Therefore, we utilize 10 finite elements for all results provided in this work.  

The simulation times are considered excessive to employ physical coordinates 

for this work. Thus modal method is utilized to reduce the number of degrees of freedom 

in the system and the computational time. The number of modes used in the reduced 

system is determined by the convergence study of vibration behavior shown on 

bifurcation diagrams.  

 

Table 4.1. The first ten natural frequencies of the model. 

Natural 
frequencies 

Number of elements 
4 6 8 10 12 14 

1 0 0 0 0 0 0 
2 0.2822 0.2723 0.2674 0.2643 0.2622 0.2608 
3 2.1770 2.1700 2.1670 2.1654 2.1643 2.1635 
4 5.8763 5.8453 5.8365 5.8332 5.8315 5.8306 
5 11.4601 11.4328 11.3887 11.3734 11.367 11.3638 
6 20.9578 18.9733 18.8323 18.7737 18.749 18.7373 
7 32.7622 28.2461 28.2262 28.0619 27.9876 27.9515 
8 35.0903 34.9655 34.9219 34.9017 34.8908 34.8841 
9 50.7697 43.3185 39.6099 39.2875 39.1063 39.0149 
10 56.5814 56.3502 52.4243 52.5086 52.1465 51.9479 

 

 

Figure 4.1 shows the convergence of vibration behavior on bifurcation diagrams when 

using 8, 9, 10 and 11 modes. Both rigid body and flexible modes are included in order to 
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produce both types of behavior in the system response. The bifurcation diagram plots the 

instantaneous transverse velocity (vx2) at the drill collar midspan location at the starting 

time for each revolution versus rpm (spin rate). Table 4.2 shows the chaos onset speed at 

which the plot bifurcates from a harmonic response (single dot) to a chaotic response 

when the number of modes is varied from 8 to 12. The bifurcation diagrams are found to 

converge with 10 modes and the chaos onset speed is 51.6 rpm. 

 

 

 

Figure 4.1. Bifurcation diagrams when using different numbers of modes  

(a) 8 modes (b) 9 modes (c) 10 modes and (d) 11 modes. 

 

Figure 4.2 shows the displacement response (x2) at the center of drill collar and at one of 

the stabilizers obtained from full system and reduced system at 40 rpm. The response is 

(a) (b) 

(c) (d) 
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sinusoidal at this rpm. Figure 4.3 shows chaotic responses at 55 rpm. The response 

locations in Fig. 4.3 are the same as in Fig. 4.2. These figures show almost no difference 

between the vibration responses obtained from full and reduced systems for both a 

chaotic rpm and a non-chaotic rpm. Therefore, the reduced system can represent the full 

system and reduce the computational time. In this work we then utilize 10 modes for all 

simulations. 

 

Table 4.2. The chaos onset speed when varying number of modes. 

Number of modes Chaos onset speed (rpm) 
8 52.8 
9 52 
10 51.6 
11 51.6 
12 51.6 

 

 

The values of Lyapunov exponent factors have to be determined before being 

used in the calculation. Tables 4.3, 4.4 and 4.5 show the dependence and convergence 

properties of the maximum Lyapunov exponents on the three factors described in 

Chapter II for a chaotic response (55 rpm). The model parameters in this case are: 

L = 23m, μb = 0.1, s0 = 2.54 cm. 
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Figure 4.2. Vibrations at drill collar center (top) and stabilizer (bottom) obtained 

from (a) full system and (b) reduced system for a non-chaotic response. 

 

Table 4.3 utilized 200 time intervals with 0.1 revolutions per interval. Table 4.4 utilized 

2000 revolutions as a time to steady state and 0.1 revolutions per time interval. Table 4.5 

utilized 2000 revolutions to steady state and 500 time intervals. It can be concluded from 

these tables that the accurate Lyapunov exponents require approximately 2000 

revolutions to reach steady state and 500 time intervals with 0.1 revolutions per interval. 

(a) 

(b) 
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Figure 4.3. Vibrations at drill collar center (top) and stabilizer (bottom) obtained 

from (a) full system and (b) reduced system for a chaotic response. 

 

Figures 4.4(a) and (b) show how the maximum Lyapunov exponent converges with time 

for both a non-chaotic (45 rpm) and a chaotic (55 rpm) response, respectively. The 

Lyapunov exponents are determined for the same conditions as for Table 4.3, 4.4 and 

4.5. The maximum Lyapunov exponent converges to a negative value for a non-chaotic 

response and converges to a positive value for a chaotic response. 

(a) 

(b) 
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Table 4.3. Maximum Lyapunov exponents for different times to steady state. 

 

 

 

 

 

 

 

 

 

 

 

Table 4.4. Maximum Lyapunov exponents obtained from  

different numbers of time intervals. 

Number of time intervals Maximum  
Lyapunov exponent 

50 0.5178 
100 0.2225 
200 0.1892 
500 0.1157 
700 0.0962 
1000 0.1008 
1500 0.0933 
2000 0.0844 

 

Time to steady state (rev) Maximum  
Lyapunov exponent 

50 0.3897 
100 0.4714 
500 0.3314 
1000 0.5108 
1500 0.1710 
2000 0.1892 
2500 0.1403 
3000 0.2515 
3500 0.2601 
4000 0.2204 
4500 0.2083 
5000 0.1690 
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Table 4.5. Maximum Lyapunov exponents obtained from  

varying the time interval duration. 

Length of time interval Maximum  
Lyapunov exponent 

0.01*rev 0.5178 
0.05 *rev 0.1746 
0.10 *rev 0.1157 
0.20 *rev 0.1005 

 

 

 

 

Figure 4.4. Maximum Lyapunov exponent convergence with time for (a) a non-

chaotic and (b) a chaotic response. 

 

The rigid body modes have the effect on the accuracy of the Lyapunov exponent 

prediction of chaos. If the top of the drill collar is not fixed for axial and torsional 

vibrations, the obtained rigid body modes with zero natural frequency are for coupled 

axial, torsional and lateral modes. With this boundary condition, maximum Lyapunov 

(a) (b) 
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exponents for a non-chaotic rpm are greater than zero which is an incorrect prediction. 

Constraining axial and torsional motions at the top of drill collar can solved this problem 

and gives the rigid body modes for pure translation. This assumption is valid for the 

lateral model.  

 

4.2 Model validation 

4.2.1 Boundary condition 

The assumption that the spin frequency is near the lowest mode frequency of the isolated 

drill collar model as totally detached from the drillpipe above it is validated here. The 

five lowest free-free natural frequencies and mode shapes are shown in Table 4.6 and 

Fig. 4.5 respectively. The results are obtained from the model without drillpipe.  

 

Table 4.6. Free–free natural frequencies of drill collar-stabilizer model. 

Mode Natural frequencies 
(Hz) Damping ratio 

1 0 - 
2 0.2643 0.0166 
3 2.1654 0.1361 
4 5.8332 0.3665 
5 11.3734 0.7146 

  

 

From Fig. 4.5, the 1st rigid body mode is for pure translation. The second rigid 

body mode has a slightly positive, non-zero value due to the gravity (pendulum) 
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restoring torque (Eq. 2.32) on the rotational mode. These are some of the modes utilized 

in the modal response simulations.  
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Figure 4.5. Five lowest mode shapes of the drill collar–stabilizer model  

(a) mode 1 (b) mode 2 (c) mode 3 (d) mode 4 (e) mode 5. 

(a) (b) 

(c) (d) 

(e) 
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 Figure 4.6 shows the displacement response at the center of the drill collar and at 

one of the stabilizers for the “with” and “without” drillpipe cases, at 40 rpm. The 

response is seen to be sinusoidal at this rpm. Figure 4.7 shows the same responses at 55 

rpm, at which the response is chaotic. The response locations are the same as for Fig. 

4.6. 

 

 

Figure 4.6. Vibrations at the drill collar center (top) and stabilizer (bottom), with 

(a) and without (b) the drillpipe, for a non-chaotic rpm. 

(a) 

(b) 
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Figure 4.7. Vibrations at the drill collar center (top) and stabilizer (bottom), with 

(a) and without (b) the drillpipe, for a chaotic rpm. 

 

Figures 4.6 and 4.7 clearly show almost no difference with and without the drillpipe, 

which supports its removal from the model from all of the remaining simulations. The 

bottom free boundary condition on the drill collar is most appropriate with light weight 

on bit (WOB) operation. A lateral degree of freedom is assumed at the bit. This is a 

reasonable assumption because of oversize cutting (bit walk, runout, and formation swell 

(a) 

(b) 
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compensation) which leaves a clearance between the bit-through diameter and the as 

drilled gage hole. 

 

4.2.2 Software tool 

Table 4.7 shows the lowest natural frequencies of axial, torsional and lateral vibrations 

obtained from the analytical solution given by [34] and the developed software. The 

table shows slight difference between natural frequencies from these two methods. The 

difference is less than 5%. 

 

Table 4.7. The lowest natural frequencies obtained from the analytical solution 

and the developed software. 

Vibration modes Analytical solution Software 

Axial 56.219 56.568 

Torsional 34.869 34.902 

Lateral  2.097 2.097 
 

 

 The Gram-Schmidt procedure is validated by an orthogonality test. The 

maximum off-diagonal terms in the identity matrix obtained from Eq. (2.57) at each time 

interval are shown in Fig. 4.8. The conditions in this case are the same as in Fig. 4.4 for 

both chaotic and non-chaotic rpm. The maximum off-diagonal terms are very small 

hence they are considered as zeros. 
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Figure 4.8. Maximum off-diagonal term in the identity matrix versus time interval 

for (a) a non-chaotic rpm and (b) a chaotic rpm. 

 

4.3 The effects of the system parameters on the vibration behavior 

4.3.1 Nonlinear forces 

There are three sources of nonlinear forces in the model, including  

a) a quadratic damper applied at the center of the drillstring to model the interaction 

force between the vibrating drill collar and the surrounding mud flow, 

b) the intermittent contact forces between the stabilizers and the wellbore, and 

c) the friction force between the stabilizers and the wellbore 

Each of the nonlinear forces discussed above have an influence on the predicted chaotic 

vibrations. To illustrate this consider the next four figures which correspond to a model 

that has intermittent contact between the drill collar stabilizers and wellbore. Figure 

4.9(a) shows a bifurcation diagram for the model with no quadratic damping and no 

friction. The plot bifurcates from a harmonic response (single dot) to a chaotic response 

at 55.2 rpm. Figure 4.9(b) shows a bifurcation diagram for the model with quadratic 

damping and no friction. The plot bifurcates from a harmonic response to a chaotic 

(a) (b) 
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response at 52.8 rpm. Figure 4.9(c) shows a bifurcation diagram for the model without 

quadratic damping and with friction. The plot bifurcates from a harmonic response to a 

chaotic response at 52.4 rpm. Figure 4.9(d) shows a bifurcation diagram for the model 

with quadratic damping and with friction. The plot bifurcates from a harmonic response 

to a chaotic response at 49.6 rpm. These diagrams plot the transverse velocity at the drill 

collar midapan location versus rpm. Clearly these figures confirm that each type of 

nonlinear force has an influence on the nonlinear dynamic behavior of the systems based 

on the changes in chaos onset speed. Figure 4.8(a) shows that the clearance between the 

stabilizer and wellbore in this case (s0 = 2.54 cm) is sufficient to cause bifurcation and 

chaos. 

 

4.3.2 Physical parameter effects 

The effects of the following physical parameters on the chaos are studied. 

a) The coefficient of friction at the wellbore (μb) 

b) Drill collar length (L) 

c) Clearance between the stabilizer and wellbore (s0) 

 Figure 4.10 shows that the chaos onset rpm and response amplitudes decrease as the 

coefficient of friction increases from 0.1 to 0.3. This diagram contains the transverse 

motion velocity at the drill collar midspan location.  The maximum Lyapunov exponent 

was determined for the same conditions as in Fig. 4.10 and is shown plotted against rpm 

in Fig. 4.11. The zero crossings in these plots clearly confirm the transition between 
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harmonic and chaotic response as implied in Fig. 4.10. For sake of reference the 

Lyapunov exponents are determined after 2000 revolutions to insure steady state 

conditions. The number and duration of the time intervals for evaluating the Lyapunov 

exponents are 500 and 0.1 revolution per period, respectively. 

 

 

 

Figure 4.9. Bifurcation diagrams showing the influence of nonlinear forces on 

chaotic vibrations (a) without friction and quadratic damping (b) without friction 

and with quadratic damping (c) with friction and without quadratic damping and 

(d) with friction and with quadratic damping. 

 

(b) (a) 

(c) (d) 
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Figure 4.10. Bifurcation diagrams for model with different coefficients of friction 

(a) μb = 0.1 (b) μb = 0.2 and (c) μb = 0.3. 

(b) 

(a) 

(c) 



62 

 

 

 

Figure 4.11. Maximum Lyapunov exponent versus drillstring rpm with different 

coefficients of friction (a) μb = 0.1 (b) μb = 0.2 and (c) μb = 0.3. 

 

(b) 

(c) 

(a) 
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 Table 4.8 and Fig. 4.12 show the effect of changing the drill collar length on the 

bifurcation diagram parameters and the chaos onset speed, respectively. The peak 

vibration amplitude and chaos onset speed are seen to decrease as the drill collar length 

increases from 15, 20, 21, 22, 23 and 25 meters. 

 

Table 4.8. The chaos onset speed when varying the length of the drill collar. 

Length of drill collar (m) Chaos onset speed (rpm) 
15 108.4 
20 64 
21 58.4 
22 53.6 
23 49.6 
25 42.4 

 

 

 Figure 4.13 shows the bifurcation diagram for the drill collar midspan, transverse 

velocity with the stabilizer clearance varied from 0.0127, 0.0254 and 0.0508 meters. 

These results indicate that clearance has a significant effect on the presence of chaos. 

The absence of chaos for the smallest clearance indicates that a decrease in clearance 

may mitigate chaos. Figure 4.14 shows the maximum Lyapunov exponent determined 

for the same conditions as in Fig. 4.13 and plotted against rpm. 
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Figure 4.12. Bifurcation diagrams for model with different lengths of drill collar 

section (a) 15m (b) 20m (c) 21m (d) 22m (e) 23m and (d) 25m. 

 

 

 

(b) (a) 

(c) (d) 

(e) (f) 
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Figure 4.13. Bifurcation diagrams when varying stabilizer clearance  

(a) 0.0127, (b) 0.0254 and (c) 0.0508 meters. 

(b) 

(a) 

(c) 
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Figure 4.14. Maximum Lyapunov exponent versus drillstring rpm when varying 

stabilizer clearance (a) 0.0127, (b) 0.0254 and (c) 0.0508 meters. 

 

(b) 

(a) 

(c) 
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Figures 4.15 and 4.16 show the responses for a non-chaotic and chaotic rpm after 

2000 revolutions to insure steady state. The model parameters for these figures are: 

L = 23 m, μb = 0.2, s0 = 2.54 cm 

rpm = 45 (non-chaotic), rpm = 55 (chaotic) 

Figure 4.15(a) shows the transverse displacement response at the center of drill collar. 

The response is seen to be sinusoidal and stable at 45 rpm. Figure 4.15(b) shows the 

Poincaré map with a fix point. Figure 4.15(c) shows the frequency spectrum. It appears a 

single peak at 0.75 Hz which is the same frequency as the rotational frequency. Figure 

4.15(d) shows that the maximum Lyapunov exponent converges to a negative value 

indicating a non-chaotic response. 

Figure 4.16(a) shows the transverse displacement response at the drill collar 

midspan. The response is seen to be chaotic at 55 rpm. Figure 4.16(b) shows a Poincaré 

plot for transverse velocity vibration at the drill collar midspan. Sixty thousand points 

are plotted forming a strange attractor. This is a clear indication of chaos since the two 

dimensional, area type structure of the strange attractor is indicative of chaos whereas a 

closed line type structure indicates a quasi-periodic type of response. Figure 4.16(c) 

shows the frequency spectrum and appears a broad spectrum of frequencies. Figure 

4.16(d) shows the maximum Lyapunov exponent convergence with time. The maximum 

Lyapunov exponent is positive indicating chaos.  

 From Figures 4.15 and 4.16, the Lyapunov exponent analysis has correctly 

identified both non-chaotic and chaotic responses. 
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Figure 4.15. Vibration response and nonlinear dynamics analysis for a non-

chaotic rpm (a) Time response (b) Poincaré map (c) frequency spectrum and  

(d) maximum Lyapunov exponent. 

(a) 

(b) 

(c) 

(d) 
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Figure 4.16. Vibration response and nonlinear dynamics analysis for a chaotic 

rpm (a) Time response (b) Poincaré map (c) frequency spectrum and  

(d) maximum Lyapunov exponent. 

(a) 

(c) 

(d) 

(b) 
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CHAPTER V 

CONCLUSIONS 

 

The work presented a systematic approach for predicting and analyzing the lateral 

vibration response of the drill collar / BHA. A lateral degree of freedom is assumed at 

the bit. This is a reasonable assumption because of oversize cutting (bit walk, runout, 

and formation swell compensation) which leaves a clearance between the bit-through 

diameter and the as drilled gage hole. This condition is consistent with a free bottom-end 

boundary condition and de-coupling of the lateral vibration from the torsional and axial 

vibrations. Conclusions drawn from the study include: 

1) Neglect of the drillpipe at the upper boundary of the drill collar is a reasonable 

approximation for lateral vibration modeling of the drill collar – BHA component 

under rotating, light bit contact conditions.  

2) Stress stiffening effects should be included in the model to account for the 

vertical gravity load. This is manifested in the non-zero rigid body pendulum 

mode. 

3) The accuracy of the solution from the finite element model improves as the 

number of elements increases but the computational time also increases. The 

convergence of the natural frequencies is studied to evaluate the number of 

elements. The natural frequencies are found to converge with 10 elements for this 

model. 

4) The simulation times are considered excessive to employ physical coordinate for 

this study. Thus modal coordinates are employed. This required selection of the 

number and types of modes to utilize for convergence. Both rigid body and 

flexible modes are included in order to produce both types of behavior in the 

system response. The bifurcation diagrams are found to converge with 10 modes. 

5) The Lyapunov exponents are obtained via an averaging approach which depends 

on the length of time to steady state, the number of time intervals that are utilized 
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and the length of these time intervals. Convergence studies are conducted to 

determine the appropriate values for these three factors. Accurate Lyapunov 

exponents required approximately 2000 revolutions to reach steady state and 

approximately 500 time intervals to evaluate divergence/convergence of 

linearized solutions, with each interval approximately 0.1 revolutions in duration. 

6) Physical parameters and other nonlinear effects shift natural frequencies from 

their free or constrained values so that resonance peaks occur away from the 

linear natural frequency values. 

7) The nonlinear forces: a quadratic damping, and friction forces between the 

stabilizer and wellbore have the effect on the chaos onset speed and response 

amplitudes. The clearance between the stabilizer and wellbore is sufficient to 

cause bifurcation and chaos. 

8) The onset speed (rpm) for chaos is shown to be significantly affected by friction, 

drill collar length and stabilizer-wellbore clearance. This chaos onset speed is 

indicated by a zero crossing of the maximum Lyapunov exponent.  

The chaos onset speed decreases as the coefficient of friction and drill 

collar length increase. The small clearance between the stabilizer and wellbore 

may mitigate the occurrence of chaos. 

9) Converged maximum Lyapunov exponents can be determined even for a system 

model containing many degrees of freedom such as the multi degree of freedom, 

modal model utilized here. The Lyapunov exponents provide a reliable indicator 

of chaos as confirmed by comparison with bifurcation diagrams, Poincaré plots, 

frequency spectrum and time solutions.  

 

Some recommendations for future work are as follow: 

1) The model will include lateral-torsional–axial coupling and be capable of 

showing the stick-slip oscillations and bit-bounce. Lyapunov exponents will then 

be applied to indicate the stick-slip chaos. 
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The coupling between lateral and torsional vibrations may reduce chaos. 

The torsional degree of freedom directly affects the imbalance force. If the 

stabilizer sticks to the wellbore, the rotational speed and also the imbalance 

become zero. The stabilizer then may not remain at the wellbore and the chaos 

will not exist. 

2) The model will include the effects of PDC or roller cone bit and drive dynamics. 

The friction and the formation profile at the bit as well as effects from different 

types of drill bit will be included. 

3) The experimental set-up will be built to compare the results with the simulations. 
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