
 

 

 

 

 

 

STREAMLINE ASSISTED ENSEMBLE KALMAN FILTER – FORMULATION 

AND FIELD APPLICATION 

 

 

A Dissertation 

by 

DEEPAK DEVEGOWDA  

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

 

August 2009 

 

 

Major Subject: Petroleum Engineering



 

 

 

 

 

 

STREAMLINE ASSISTED ENSEMBLE KALMAN FILTER – FORMULATION 

AND FIELD APPLICATION 

 

A Dissertation 

by 

DEEPAK DEVEGOWDA  

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

 

Approved by: 

Chair of Committee,  Akhil Datta-Gupta 
Committee Members, Steve Holditch 
 Ahmed Ghassemi 
 Bani K. Mallick 
Head of Department, Steve Holdtich 
 
 

August 2009 

 

Major Subject: Petroleum Engineering 

 



 

 

iii 

 

 

ABSTRACT 

 

Streamline Assisted Ensemble Kalman Filter – Formulation and Field Application. 

 (August 2009) 

Deepak Devegowda, B.Tech., Indian Institute of Technology, Madras; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Akhil Datta-Gupta 

 

The goal of any data assimilation or history matching algorithm is to enable better 

reservoir management decisions through the construction of reliable reservoir 

performance models and the assessment of the underlying uncertainties. A considerable 

body of research work and enhanced computational capabilities have led to an increased 

application of robust and efficient history matching algorithms to condition reservoir 

models to dynamic data. Moreover, there has been a shift towards generating multiple 

plausible reservoir models in recognition of the significance of the associated 

uncertainties. This provides for uncertainty analysis in reservoir performance forecasts, 

enabling better management decisions for reservoir development. Additionally, the 

increased deployment of permanent well sensors and downhole monitors has led to an 

increasing interest in maintaining ‘live’ models that are current and consistent with 

historical observations.  

One such data assimilation approach that has gained popularity in the recent past 

is the Ensemble Kalman Filter (EnKF) (Evensen 2003). It is a Monte Carlo approach to 

generate a suite of plausible subsurface models conditioned to previously obtained 

measurements. One advantage of the EnKF is its ability to integrate different types of 

data at different scales thereby allowing for a framework where all available dynamic 

data is simultaneously or sequentially utilized to improve estimates of the reservoir model 
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parameters. Of particular interest is the use of partitioning tracer data to infer the location 

and distribution of target un-swept oil. Due to the difficulty in differentiating the relative 

effects of spatial variations in fractional flow and fluid saturations and partitioning 

coefficients on the tracer response, interpretation of partitioning tracer responses is 

particularly challenging in the presence of mobile oil saturations.  

The purpose of this research is to improve the performance of the EnKF in 

parameter estimation for reservoir characterization studies without the use of a large 

ensemble size so as to keep the algorithm efficient and computationally inexpensive for 

large, field-scale models. To achieve this, we propose the use of streamline-derived 

information to mitigate problems associated with the use of the EnKF with small sample 

sizes and non-linear dynamics in non-Gaussian settings. Following this, we present the 

application of the EnKF for interpretation of partitioning tracer tests specifically to obtain 

improved estimates of the spatial distribution of target oil. 
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NOMENCLATURE 

 

A Matrix specifying spatial derivatives 

β Scalar weighting on regularization terms 

Bo,w,g Phase formation volume factor for oil, water, and gas 

c Divergence of flux 

CD Data covariance matrix 

CM Model covariance matrix 

CM, d Cross-covariance matrix between data and model variables 

D, d Data vector 

ek Error in the model state at time k 

ε Noise in the data 

f Fractional flow 

g(m) Simulator response to vector of reservoir parameter m  

K Absolute permeability 

kr Relative permeability 

m Reservoir model parameter vector 

ms Vector of static model variables 

md Vector of dynamic model variables 

Nd Number of observation data 

Ne Number of ensemble members 

Nm Number of model variables 

φ Porosity 

P Pressure 

ρ Density 

ρ Covariance localizing function 

R Precision of the coarse-scale data 

Rs Solution gas-oil ratio 

So,w,g Phase saturation for oil, water, gas 
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Sij Stacked sensitivity of response i to model parameter j 

t Time 

τ Time of flight 

θ Covariance inflation factor 

u  Darcy velocity 

y Model state vector 

μ Viscosity 

λ Mobility 

σ Standard deviation 
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1. INTRODUCTION 

 

The economic impact of inaccurate predictions of future petroleum reservoir 

performance is substantial, therefore making proper characterization of the reservoir and 

uncertainty analyses in production forecasts crucial aspects in any reservoir development 

strategy. This goal is achieved through the use of history matching algorithms which 

reconcile reservoir models to measurements such as production data or time lapse 

seismic information. The workflow depends on constructing an appropriate initial 

reservoir simulation model and adjusting the values of the uncertain model variables so 

that the model performance is in reasonable agreement with actual measurements. These 

approaches can be broadly classified into two distinct categories: gradient based 

algorithms and stochastic approaches. Regardless of the approach, all previously 

recorded data is simultaneously used to update the reservoir model. The first class of 

algorithms generally utilizes parameter sensitivities or gradients of an appropriately 

constructed objective function to arrive at a solution to the inverse problem. To generate 

multiple history matched model realizations, these techniques involve the repeated 

application of the procedure to each realization of the reservoir, a procedure which can 

be computationally demanding. Furthermore, these approaches rely on the development 

of code that may not be capable of handling diverse types of dynamic data. On the other 

hand, stochastic algorithms like the Markov Chain Monte Carlo (MCMC) approach, 

simulated annealing and genetic algorithms rely on statistical approaches to arrive at 

solutions to the inverse problem. However, these approaches are slow to converge and 

require excessive turn-around times for model calibration. The associated difficulties 

with both categories of history matching algorithms are further compounded when it is  
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necessary to assimilate data frequently. Because of the increased deployment of 

permanent sensors or downhole monitors, it is important to maintain ‘live models’ that 

are progressively updated as soon as data is obtained. 

Data assimilation for reservoir characterization studies therefore require 

computationally efficient algorithms that can provide uncertainty assessment by 

generating multiple plausible reservoir models, have the capability to integrate data 

when it becomes available and be flexible enough to assimilate diverse data types. The 

ease of implementation without the use of simulator-specific code is another key 

requirement. A recent and promising approach that combines these capabilities is the 

Ensemble Kalman Filter (EnKF) technique. This section presents an introduction to the 

EnKF and highlights the motivation and objectives of the research in this dissertation. 

 

1.1 The Ensemble Kalman Filter (EnKF) 

There are several variations to the original EnKF first proposed by Evensen (1994) and 

later by Houtekamer and Mitchell (1998). These include the Ensemble Square Root 

Filter (EnSRF) (Whitaker and Hamill 2002), the Ensemble Adjustment Filter (EAF) 

(Anderson 2001) and the Ensemble Transform Kalman Filter (ETKF) (Bishop et al. 

2001). In this study, we use the initial formulation proposed by Evensen (1994). The 

following section provides the algorithmic details of the EnKF as it relates to data 

assimilation for the purpose of reservoir characterization.  

 

1.1.1 Components of the EnKF 

Broadly speaking, the EnKF comprises 3 distinct components: 

The Ensemble of Model Realizations. The EnKF works with an ensemble of reservoir 

models. Geologic information is augmented with static well data to populate the models 

with rock properties inferred from measurements like well logs and core analysis. 

Additional information to improve our initial estimates of the models may include 

structural settings derived from 3-D seismic surveys. These types of data are often 

classified as static data to reflect the unchanging temporal nature of this information. To 
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incorporate all of this information, geostatistical interpolation techniques like Sequential 

Gaussian Simulation (Deutsche and Journel 1992) are often employed to generate 

multiple realizations of the reservoir that are consistent with the prior static data.  

 Such a set of initial model realizations may be defined as random samples from a 

multidimensional prior probability distribution function (pdf) of the unknown variables. 

Typically, the uncertain variables are drawn from a multi-Gaussian prior distribution 

with a specified mean and a covariance that reflects our uncertainty in the estimates of 

the model variables. The process of data assimilation attempts to improve the initial 

estimates of these unknown variables which could include the spatial distribution of 

porosity, permeability and phase saturations and/or the locations of fluid contacts and 

phase fronts. The EnKF progressively updates these model realizations so that at any 

time models are kept current with all previously obtained static information and 

production data. The updated models constitute samples from a posterior pdf that is 

consistent with the prior information and the observed data. 

As will be shown in the following discussion, the EnKF entails running a 

reservoir simulator for each model realization to compute the model responses and also 

to estimate the various quantities associated with the EnKF formulation. This step may 

be computationally demanding and time consuming for field scale applications. 

Consequently, to aid in a reduction of computational burden, the size of the ensemble 

must be kept as small as practically feasible. 

 

The Reservoir State Vector. The state vector, denoted by y includes the vector of the 

model unknowns, m, comprising static variables ms (e.g. permeability, porosity) and the 

dynamic variables md (e.g. pressure, phase saturation). The state vector is augmented by 

the production data d (e.g. bottom-hole pressure, water-cut and gas-oil ratio at the wells). 

The length of the vector m is Nm and the number of measurements is Nd. Consequently, 

the relationship between the data and the model variables at time k is expressed as 
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The noise in the data, ε, is a vector of the unknown measurement errors and is 

assumed Gaussian with a zero mean. Additionally, the component of the vector ε 

associated with different measurements is assumed independent. The measurement 

operator H is a trivial matrix consisting of 0’s and 1’s and we can arrange H as 

 

[ ]I0H =  ...........................................................................................1.2 

 

I is the identity matrix of dimension NdxNd and 0 has dimensions NmxNd so the 

measurement operator H selects the vector d from the augmented state vector y.  

 

The Measurement or Data Vector. As previously outlined, the vector d typically 

consists of measurements at the well locations, for e.g. measurements of water-cut and 

gas-oil ratio and bottom-hole pressure. Additionally, 4-D time-lapse seismic data may 

also be used as a measurement. The EnKF is capable of assimilating diverse data types 

and the amount and type of measurement can vary with time.  

Regardless of the source of the data, there is a noise component associated with 

each measurement. The noise is assumed to be Gaussian with a zero mean and is 

assumed to be uncorrelated. Moreover the measurement errors are assumed to be 

independent. Consequently, the data covariance matrix, CD, given by CD = E[ε εT] is 

principally a diagonal matrix. Or conversely, this can be written as ε ~ N(0, CD). 

Since, the EnKF operates in an ensemble framework, additional quantities like 

the sample state vector covariance matrix may be estimated at any time during the 

assimilation sequence and is given by the following expression: 
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Ne is the number of model realizations or the ensemble size. The augmented state 

vector consists of the model state and the data vectors; therefore the state vector 

covariance matrix is equivalent to, 
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CM is the model state covariance and specifies the spatial correlation amongst the 

model parameters and Cd,d is the data covariance. The non-diagonal sub-matrix CM,d is 

the sample estimate of the cross-covariance between the data and the model variables.  

 

1.2 Minimum Variance Estimator - MVE 

The goal of the EnKF is to find the ‘best’ estimate of the state vector that is capable of 

reproducing the observed production history. The ‘best’ estimate should be optimal in 

some pre-defined sense. The conditions of optimality are specified by the algorithmic 

details of the data assimilation procedure. Bayesian approaches to data integration (Vega 

et al. 2004) often attempt to seek the estimate with the maximum posterior probability or 

the mode of the posterior distribution, often known as the Maximum Aposteriori (MAP) 

estimate. In a Kalman filter framework, however, the optimal estimate is one that 

reduces the error covariance matrix associated with the updated or posterior estimate. 

The estimate thus obtained is referred to as a Minimum Variance Estimator.  

 The estimation error at time k is, 

  

 priorktruek ,yye −=    ...............................................................................1.5 
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The term ytrue is the true (but unknown) state vector. The prior state vector refers 

to the initial estimate of the true state. The observed data, dobs,k is used to improve the 

prior estimate. In the Kalman filter approach, the posterior or updated estimate is chosen 

to be a linear combination of the prior estimate and the data misfit between the observed 

data and the model predictions and can be specified as, 

 

 ( )priorkkobskk ,,
~ HydKyy −+=  .......................................................1.6 

 

The matrix K is referred to as the Kalman Gain. The posterior estimate is the MVE if it 

minimizes the estimation error covariance matrix given by, 

 

 ( )k
T
ky E eeC ~~~

=     .......................................................................................1.7 

 

  ktruek yye ~~ −=   .......................................................................................1.8 

 

Using the definition of the optimal estimate in Eq. 1.5 we can rewrite the estimation 

error covariance matrix as  
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Substituting the updated ky~  by its equivalent expression (Eq. 1.6) into Eq. 1.9, we 

obtain  

 

))](....(....................

.....))([(~

,,,

,,,

priorkobskpriorktrue

T
priorkobskpriorktruey E

HydKyy

HydKyyC

−−−

−−−=
  ..........................1.10 

 

Recalling that the vector (ytrue-yk,prior) is the prior estimation error ek, and assuming that 

this error is uncorrelated with the measurement error εk we can rewrite Eq. 1.10 as 
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The covariance matrices CD and Cy are defined as CD = E[εk
T

 εk] and Cy = E[ek 
T ek] and 

the posterior estimation error covariance can be rewritten as 
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The diagonal terms of the matrix yC~  represent the estimation error variance for the 

elements of the posterior state vector and so to obtain the MVE, we need to find K that 

minimizes the trace of the matrix.  

 

( ) )(22
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D
T

y
T

y
y

d
traced
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K

C
++−=  .........................................1.13 

 

Setting the above derivative to zero and solving for the optimal Kalman gain K, we get,  

 
1)( −+= D

T
y

T
y CHHCHCK  .................................................................1.14 

 

The computed value of K minimizes the mean square estimation error and 

posterior estimated y~  obtained by Eq. 1.15 is also known as the minimum variance 

estimator or MVE.  
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8 

The above expressions provide means to compute the optimal MVE and the 

posterior covariance from a prior estimate whenever data is available. It is worth noting 

that the posterior covariance is always less than the prior covariance and increases our 

confidence in the updated estimate of the uncertain variables.  

 Equivalently, we can arrive at the same expression by the minimization of the 

objective function specified in Eq. 1.17 which can be derived from Bayesian principles 

(Vega et al. 2004).  

  

( ) ( ) ( )
( ) ( )priorobsD

T
priorobs

priory
T

priorF

HydCHyd

yyCyyy

−−

+−−=
−

−

1

1

............................................

...........
 .............. 1.17 

 

Furthermore, it is worth amplifying on the Kalman gain and examining the 

impact of the various matrices on the computed gain. From Eq. 1.15, it is apparent that if 

we have complete confidence in our prior estimate (Cy ~ 0), then the computed Kalman 

gain is approximately zero. This is significant because the EnKF ignores new 

observations when the confidence in the prior is high. Additionally, recalling that the 

augmented state vector has two components, the vector of model variables and the 

measurement vector, the matrix product CyHT can be recognized to be the cross-

covariance between the data and the model variables. In other words, 

 

 dM
T

y ,CHC = .........................................................................................1.18 

 

 The Kalman Gain, K is therefore closely related to the cross-covariance between 

the data and the model variables. In the limit of perfectly uncorrelated model variables 

(Cy ~ σy
2 I), and data (CD ~ σD

2I), the Kalman gain is directly proportional to the cross-

covariance matrix. 
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1.3 EnKF Workflow 

The major steps involved in the EnKF are: 

Ensemble Forecast Step. We compute the dynamic response of each realization in the 

ensemble to the time when we have observation data available. This step is the forecast 

step implying that we predict production response and the model state (pressures, phase 

saturations) at a particular time. It involves the use of a numerical reservoir simulator for 

each realization.  

Estimating the Kalman Gain. The predicted production response from each realization 

and the variables of the state vector form the input to a cross-covariance estimation 

whereby the Kalman gain is computed.  

The Ensemble Update. The data misfit vector is computed as the difference between 

observed production data and the calculated responses. The cross-covariances computed 

in the previous step and the data misfit constitute the key terms in the update expression, 

as shown in Eq. 1.15. 

For the next set of observations, the updated parameters and state variables are 

used in a forecast step and the previous steps are repeated. The forecast step involving 

the simulator run does not however require performing the simulation from the initial 

time onwards, but only entails a restart run from the previous assimilation time.  

 

1.4 Application of the EnKF: Synthetic Example 

In this section, the EnKF is applied to a synthetic example to illustrate the previously 

outlined procedure. The test case generated uses a reference permeability on a 50x50x1 

grid system to generate ‘observed’ water-cut data. The model has three producers and 

one injector. Production data is generated for a period of 4000 days and 50 realizations 

conditioned to permeability data at the well locations are generated to constitute our 

initial ensemble. The generated permeability realizations and the reference permeability 

fields have a non-Gaussian histogram and this was chosen to highlight some of the 

difficulties in the application of the EnKF as will be demonstrated in a later section. The 
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reference log-permeability field and the position of the 4 wells in the field are shown in 

Figure 1.1. 

 

 

 
Figure 1.1 Reference log-permeability field and location of the 4 wells. 

 

 

 
Figure 1.2 (a) is the chart of initial water-cut at 3 wells for the synthetic example 

for 50 members and (b) shows the water-cut from the history matched ensemble. 

The reference water cut is the profile in red. 
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Water-cut data was sequentially assimilated for a period of 3000 days to 

condition the permeability fields to the observed data from the reference field. After 

conditioning the models to observed data, flow simulation using the updated 

permeability fields provided the entire predicted water-cut for 4000 days as seen in 

Figure 1.2. The entire suite of models show that the updated realizations match observed 

history quite well in the first 3000 days and the variability in forecasts from 3000 days to 

4000 days is reduced.  

 

1.5 Difficulties in Data Assimilation Using the EnKF 

In spite of all of its favorable properties, the EnKF implementation comes with 

its own share of challenges. This section highlights some of the difficulties arising from 

the use of the EnKF in data assimilation for the purposes of reservoir characterization. 

The following discussion focuses on the constituent elements of a reliable history 

matching and uncertainty assessment algorithm as an aid in understanding the issues 

associated with EnKF performance.  

 

1.5.1 Key Aspects of Reliable Data Assimilation  

An important aspect of history matching is to generate acceptable models that can 

reproduce historical production data and simultaneously maintain geologic realism. 

Significant time and effort employing extensive geologic studies, seismic interpretation 

studies and geostatistical methods are routinely spent in constructing the highly detailed 

initial reservoir description. Consequently, it is necessary to address the issue of 

geologic consistency between the pre and post assimilation reservoir models. Most 

inversion based schemes are formulated around norm and regularization constraints to 

prevent divergence of the solution from the initial geologic model (Cheng et al. 2004; 

Oyerinde 2008). However, in the EnKF framework, the explicit specification of the prior 

covariance matrix in the formulation of the equations is the only control to ensure 

geologic consistency between the prior and posterior models. In essence, the final 

updated model should retain the key underlying features of the initial model, for e.g. 
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connectivities between extremes and the general orientation of the significant geologic 

features.  

 The issue of geologic consistency is also tied to the non-uniqueness of the history 

matching problem. Non-uniqueness of the solution in data assimilation arises due to the 

fact that the number of parameters to be estimated is oftentimes orders of magnitude 

higher than the number of data available. Consequently, although a suite of updated 

realizations may be able to reproduce production history within acceptable tolerances, 

the data assimilation algorithm may not necessarily construct reliable reservoir 

performance models and may exhibit a loss of geologic realism. This has serious 

ramifications for future reservoir performance predictions and can lead to erroneous 

reservoir management strategies.  

Another significant goal of any data assimilation methodology is to provide a 

reasonable framework for uncertainty assessment. The validity of the uncertainty 

quantification will strongly depend upon the distribution of the model realizations and 

whether they adequately represent the underlying uncertainties. In the context of the 

EnKF, the variability associated with the realizations within the ensemble provides a 

means for uncertainty assessment.  

 

1.5.2 Assessment of the EnKF  

This section focuses on the difficulties in the application of the EnKF to reservoir 

characterization studies. To assess EnKF performance, the model setup used is the same 

as in section 1.2.2. Water-cut data is assimilated to estimate the spatial distribution of 

permeability within the synthetic test reservoir. The reference permeability field used to 

generate the observed water-cut data is shown in Figure 1.1. An initial ensemble 

comprising 25 members is generated using SGSIM (Deutsche and Journel 1992) by 

conditioning the realizations to permeability data at the well locations. The initial and 

updated permeability fields for four representative realizations are shown in Figure 1.3.  

The most apparent and striking feature of the updated fields is the strong resemblance of 

each of the realizations. The loss of variability between ensemble members results in a 
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higher confidence placed on the prior models since the model covariance matrix is 

approximately zero (Cy ~ 0). As previously outlined, this results in a negligible Kalman 

gain as shown in Eq. 1.15 and therefore the EnKF tends to ignore subsequent data.  

 

 

 
Figure 1.3  Comparison of the updated permeability fields on the right with the 

initial fields on the left for four realizations of the ensemble of 25 members. 

 

 

The EnKF implementation also adversely impacts the permeability histograms. 

Figure 1.4 shows the histogram of log-permeability for one realization pre and post 

assimilation. The initial bi-model permeability histogram is clearly transformed to a 

more Gaussian histogram. This transformation implies that the EnKF methodology may 

not preserve the relative proportions of low quality and high permeability reservoir 

quality rock and the associated heterogeneities.  

In addition to above mentioned problems, the updated models also display 

characteristics of unrealistic localized high and low permeabilities. This observation is 

also supported by the extremely wide range of log-permeabilities in Figure 1.4. A 

considerable number of model cells exhibit extremely high or low values of 

permeability. This observation is consistent with previous findings (Gu and Oliver 2006; 
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Arroyo et al. 2006, Devegowda et al. 2007) where the EnKF was observed to create 

localized zones of geologically inconsistent extremes of permeability values.  

 

 

 
Figure 1.4  (a) is the initial permeability histogram on the left with the updated 

histogram on the right in (b) for an ensemble size of 25.  

 

 

 
Figure 1.5  Comparison of the updated permeability fields on the right with the 

initial fields on the left for four realizations of the ensemble of 50 members. 
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Figure 1.6  (a) is the initial permeability histogram on the left with the updated 

histogram on the right in (b) for an ensemble size of 50.  

 

 

Although the severity of these problems is reduced with increasing ensemble size 

as seen in Figures 1.5 and 1.6 (Ne = 50) and in Figures 1.7 and 1.8 (Ne = 100), reliable 

reservoir description becomes difficult with the traditional EnKF implementation.  

 

 

 
Figure 1.7  Comparison of the updated permeability fields on the right with the 

initial fields on the left for four realizations of the ensemble of 100 members. 
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Figure 1.8  (a) is the initial permeability histogram on the left with the updated 

histogram on the right in (b) for an ensemble size of 100.  

 

 

 
Figure 1.9  Comparison of the total variance in the permeability as a function of 

time during the assimilation process for 3 different ensemble sizes. 
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These conclusions are supported by the quantitative assessment of the loss of 

variability as shown in Figure 1.9 which plots the total variance versus time during the 

assimilation sequence. The total variance of the model parameter covariance matrix is 

easily computed as the sum of its eigenvalues. 

The difficulties associated with the implementation of the EnKF are directly 

related to the accuracy of the sample covariance matrices. The constituent elements of 

the EnKF formulation are functions of the sample or ensemble covariance or cross-

covariance matrices. As with any statistical measure computed using a finite number of 

samples, the accuracy of the computed quantity is strongly dependant on ensemble size. 

Consequently, increasing ensemble size implies better covariance estimation and in the 

limit of an infinite number of realizations, the covariance matrix may be assumed to be 

close to the truth. However, this goes against the need for smaller ensemble sizes and the 

associated computational efficiency.  

 

1.6 Conclusions and Research Objectives 

The primary purpose of this research work is to present a robust technique to improve 

EnKF performance that addresses the difficulties associated with the EnKF 

implementation and that is applicable to large field scale problems. The proposed 

technique is dependant on the use of streamline-derived information. Although, the 

technique is illustrated in the streamline domain, it is equally effective using finite-

difference simulation models.  

 In section 2, the discussion in section 1 is extended to techniques that attempt to 

counter the adverse effects of small sample sizes. Section 3 presents the proposed 

solution to improve EnKF performance and illustrates the strength and utility of the 

approach using synthetic and field examples. These techniques exploit streamline-

specific information to address issues related to sampling variability, sampling error and 

spurious correlations attributed primarily to the use of a small number of model 

replicates. 
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 A significant advantage of the EnKF is its ability to assimilate diverse data types. 

This makes the EnKF a particularly appealing option for multi-scale data assimilation. 

The formalism of the multi-scale EnKF is presented in section 4 and is extended to the 

interpretation of partitioning interwell tracer tests (PITT) to identify the spatial 

distribution of bypassed oil targets which is of paramount significance to the successful 

implementation of enhanced recovery processes.  
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2. DATA ASSIMILATION: IMPROVED VARIANTS OF THE EnKF 

 

The previous section provided the mathematical details related to the EnKF and the 

associated complications for application to large-scale problems. The discussion in this 

section forms the background to section 3 where we cover in detail the approach that 

forms the focus of this study. This section is divided into three sections discussing 

different approaches to address the computational and sampling-based difficulties with 

ensemble filtering. Each approach and the associated drawbacks or benefits are 

examined primarily to assess the use of the technique for detailed reservoir description. 

 

2.1 Distance Dependant Covariance Localization 

A key component of the Kalman gain is the cross-covariance calculation between the 

data and model variables as shown in Eq. 1.18 that quantifies the corresponding strength 

of association. This estimate is critically dependant on the number of random model 

samples. The EnKF uses these sample-based statistics to weight and distribute 

information from observations (well data) onto the underlying grid. Since the EnKF 

updates are highly sensitive to the Kalman gain, it stands to reason that a poor estimate 

of the cross-covariance would severely compromise EnKF performance (Anderson and 

Anderson 1999; Furrer and Bengtsson 2004). For small ensemble sizes with noisy and 

possibly erroneous cross-covariances, unrealistic updates and degraded EnKF 

performance is often observed (Naevdal et al. 2005; Gu and Oliver 2006; Arroyo et al. 

2006; Devegowda et al. 2007). The complications associated with sampling variability 

can be severe when the value of the true correlation is small; in such scenarios, the noise 

significantly overwhelms the signal. This is illustrated in Figure 2.1. The cross-

covariance between water-cut data and the permeability is shown for one well for 

ensemble sizes of 50 and 1000. The 2-dimensional model is discretized into 50x50 grid 

cells. The permeability in each cell is independent and identically distributed and 
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sampled from a normal distribution with a pre-specified mean and variance. The impact 

of increased ensemble size on the cross-covariance is clearly seen in terms of reduced 

noise and a more coherent cross-covariance structure.  

 

 

 
Figure 2.1  Cross-covariance between water-cut at one well (black dot) and the 

permeability for two different ensemble sizes. 

 

 

 Other studies (Furrer and Bengtsson 2004; Oke et al. 2007) have presented 

arguments to show that for bounded error in model covariance estimation, the size of the 

ensemble should vary as the square of the number of variables to be estimated (Ne ~ 

NM
2). However, this may not be feasible or practical for most applications. 

Consequently, the need to accurately estimate covariance matrices for large scale 

systems has motivated the search for effective covariance localization methods. The aim 

of most covariance localization schemes is to  

• Eliminate spurious terms in the cross-covariance matrix arising due to sampling 

errors caused by finite and small ensemble sizes and, 

• Increase the effective number of ensemble members (Hamill and Whitaker 

2001).  

Distance based covariance localization schemes (Houtekamer and Mitchell 2001; Hamill 

and Whitaker 2001) are predicated on the assumption that the correlation between model 
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grid cells and well data is associated with certain length scales beyond which the 

correlation can be assumed to be zero. Within this characteristic length-scale centered at 

the location of the well, the cross-covariance is artificially damped with a localizing 

function that decreases monotonically from a value of 1.0 at the well location to zero in 

the region outside of the cut-off radius. This has the effect of spatially restricting and 

smoothing the statistical information from an observation to grid cells close to the 

measurement location. A sample localizing function is shown in Figure 2.2. 

 

 

 
Figure 2.2  Distance based localizing function centered at the well shown in a 

black dot (Gaspari and Cohn 1996). 

 

 

 Mathematically, the localized EnKF can be expressed as  

 

 )()(~ 1
priorobsD

T
y

T
yprior HydCHHCHCρyy −++= −  ...................2.1 

  

where the localizing function ρ operates on the Kalman gain matrix. The operator ‘◦’ is 

an element-by-element multiplication also called a Schur product. Various valid 
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correlation functions are discussed further in Gaspari and Cohn (1996). 

The following discussion demonstrates the application of distance based 

localization to the synthetic example introduced in section 1.2. A preliminary guess for 

the cut-off radius is 200 feet. In comparison, the synthetic model has dimensions 500 ft x 

500 ft. As in the previous section, water-cut at each of the 3 production wells is used to 

condition the permeability field in each of the 50 realizations. The water-cut data is 

assimilated for a period of 3000 days. The initial water-cut predictions and the matched 

water-cut data from the updated realizations are shown in Figure 2.3.  

 

 

 
Figure 2.3  (a) is the initial water-cut at each of the 3 wells and (b) is the matched 

water-cut. The results do not appear to be satisfactory. 

 

 

It is apparent from Figure 2.3 that the resulting water-cut predictions are not 

satisfactory and not within reasonable bounds. The poor match underscores the need for 

a proper choice of cut-off radius. The experiment is repeated with a cut-off radius of 400 

feet and the results are shown in Figure 2.4. This choice seems to be more appropriate. 
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Figure 2.4  (a) is the initial water-cut at each of the 3 wells and (b) is the matched 

water-cut. The matches with a cut-off radius of 400 feet are considerably better. 

  

 

In general, however, the selection of a characteristic length-scale is subjective 

and requires trial-and-error. Furthermore, the localization may not be consistent with the 

underlying heterogeneity that might include high permeability channels with long-range 

contributions (Arroyo et al. 2006). Furthermore, Hamill and Whitaker (2001) observe 

that the length scale chosen to achieve localization is a function of the ensemble size. 

When ensemble replicates are small in number, the cut-off radius is estimated to be 

smaller because short-range correlations are significantly corrupted by noise. As 

ensemble size increases, however, the effect of noise on the distant observations is 

diminished and calls for a larger radius of influence.  

For 3-dimensional problems, an additional concern is the choice of a localizing 

radius in the horizontal and vertical directions, where the correlation lengths are 

considerably different. The optimal length-scale may likely be case-dependant and may 

be difficult to determine apriori. Consequently, for detailed reservoir characterization 

applications, distance based localization may not be robust nor efficient and may have 
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limited applicability. This underscores the requirement for more satisfactory and reliable 

localization schemes that are tied to the underlying geology.  

 

2.2 Covariance Inflation 

Covariance inflation (Anderson 2001) is an ad-hoc tuning method specifically employed 

to target the loss of variability as demonstrated in section 1 which results in 

overconfident priors. This critically impacts the assimilation process because 

observations have progressively lesser weighting in the EnKF. The method relies on 

artificially broadening the prior distribution of the state variables to counter the problem 

of variance-deficiency. The individual state vectors can be generated by linearly 

inflating the ensemble around the mean,  

 

( ) yyyy +−= ii θinf,  ...............................................................................2.2 

 

where θ is referred to as the covariance inflation factor and has values larger than one.  

 

  

 
Figure 2.5  Plot of total variance versus time during assimilation comparing the 

covariance-inflated EnKF versus the standard EnKF for an ensemble size of 50.  
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By reducing the confidence in the prior using Eq. 2.2, covariance inflation also 

preserves the mean and the relative values of the prior model variable correlations. A 

suitable value of the inflation factor is chosen based on trial-and-error and can range 

from 1 to 5% amplification of the variance. To investigate the possible benefits of 

covariance inflation, this section presents results from an experiment using 50 ensemble 

members and a covariance inflation factor of 1.01 and utilizes the same example 

presented in section 1.2. The variability of the ensemble models is improved with 

covariance inflation and is illustrated in Figure 2.5 which plots total variance versus time 

during the assimilation process.  

Since the method only targets the loss in ensemble variability, it does not appear 

to be a promising alternative especially when seen in the light of Figure 2.6 which plots 

the log-permeability histogram for one arbitrarily chosen realization. The transformation 

from a bimodal histogram to a more normal histogram is particularly evident.  

 

 

 
Figure 2.6  The initial log-permeability histogram on the left compared to that 

from an updated realization clearly shows the transformation from bimodal to 

Gaussian.   
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Figure 2.7  Covariance inflation may not be suitable for a small ensemble size (~ 

30 model realizations).  

 

 

The individual realizations also exhibit problems related to overshooting and this 

may be exacerbated by the covariance inflation scheme. The limited applicability of 

covariance inflation is compounded by the heuristics involved in the selection of the 

inflation factor. In our experience, the success of this technique is closely linked to the 

ensemble size. For smaller ensemble sizes (~ 30 members), the loss of variability is as 

rapid as with the standard implementation of the EnKF (Figure 2.7). This is likely a 

result of the inability of the methodology to suppress spurious and noisy correlations. 

However, it is likely that this technique might provide more satisfactory results when 

used in conjunction with other improved variants of the EnKF in conjunction with the 

use of a reasonable number of model replicates. 

 

2.3 Smoothness-Constrained 2-Stage EnKF 

The set of plausible and geologically consistent models is a subset of all possible 

solutions that will be able to reproduce historical production. The non-uniqueness of the 

solution therefore might warrant the use of additional constraints to restrict the possible 



 

 

27 

class of solutions. Johns and Mandel (2005) proposed the use of a 2-stage EnKF that 

imposes a measure of smoothness upon the EnKF update for wildfire modeling. The 

method is motivated by the fact that point observations (for e.g. well data) can resolve 

only large-scale features and resolution of the fine scale variability is limited. Spatial 

averaging is inherent in reservoir description from production data. Furthermore, the 

updates are tied to the prior model by the smoothness constraint providing an additional 

control to preserve geologic realism. This approach is analogous to the use of the 

regularization term in deterministic inverse modeling (Oyerinde 2008). 

 As shown in Eq. 1.17 the EnKF update can be derived from the minimization of 

an objective function comprising a prior term and a term related to the data misfit. The 

objective function is provided here for completeness and can be expressed as, 
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To specify a smoothness constraint, the objective function is augmented by 

another misfit term related to the model smoothness by the use of a spatial difference 

operator and the 2-stage EnKF is derived by a minimization of 
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where the matrix A is a suitably chosen spatial first derivative and S is a pre-specified 

diagonal positive definite covariance matrix.  

Deviations from the prior smoothness are penalized by the diagonal covariance 

matrix S. In this study, S = |Aymean|. When specifically applied to the permeability 

distribution, smaller terms refer to spatial patterns where the permeability variations are 
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small and larger terms imply a larger absolute permeability difference between adjacent 

grid cells.  This particular choice of penalization ensures that smoother regions in the 

prior are preserved in the updated model and there is lesser control in areas where the 

initial model has large local spatial variations (for e.g. next to faults, channel boundaries 

etc.) 

To implement this particular form of the EnKF, the problem is split in to two 

stages. The first stage incorporates the data misfit to condition the model states and the 

second stage imposes the smoothness constraint. Consequently, the procedure can also 

be viewed as the assimilation of two independent observations sequentially, the data 

specified by dobs followed by the additional constraint.  This approach has the advantage 

of being able to utilize the same EnKF analysis code for both the stages without any 

modifications.  

While there are various options to specify a measure of spatial smoothness, for 

this study, we use a 5 point difference operator in the x- and y- directions (for a 2-D 

example) and a 7 point difference operator in 3 dimensions. Specifically, the matrix A is 

defined by applying the following difference operator at each grid cell which is 

represented for 2 dimensional cases as a difference kernel shown in Eq. 2.5.  

 

















−
−+−

−
≡

1
141

1
Kernel  ...................................................................2.5 

 

In other words, for any location (i,j), the difference kernel computes the 

smoothness as  

 

( ) jijijijijijimean yyyyy ,1,11,1,,, 4 +−+− −−−−=Ay ...............................2.6 

 

To examine the effectiveness of this technique, it is applied to the same synthetic 

example introduced in previous sections. In Figure 2.8, we show the matches to the 
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water-cut data from the updated realizations in comparison with the initial ensemble. 

The method is able to reduce the considerable variability in the initial predictions; 

however, the profiles of the final match may not constitute a reasonable prediction 

envelope. An optimal choice of the smoothness matrix, A, with a directional preference 

in constructing a spatial difference kernel based on prior geological considerations might 

considerably improve the quality of the results. 

 

 

 
Figure 2.8  (a) is the water-cut prediction from the ensemble of 50 realizations 

and (b) shows the matches to the data from the updated models. The final model 

predictions are not within reasonable bounds. 

 

 

 Figure 2.9 displays a log-permeability histogram from one arbitrarily selected 

member from the set of updated realizations. A smoothness constraint imposed on the 

EnKF solution appears to be a significant enhancement over the standard EnKF.  
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Figure 2.9  Updated log-permeability histogram in (b) in comparison with the 

initial histogram in (a). 

 

 

For the hypothetical test study introduced in this section, this method appears 

most promising in comparison with distance-based localization and covariance inflation. 

This might be case dependent, however, principally; the approach of constraining the 

models to honor prior spatial smoothness is consistent with our goal of preserving 

geologic realism and the low resolution of the production data. 

 

2.4 Section Summary 

In this section, we briefly reviewed established techniques to improve EnKF 

performance. Assessment of each methodology was based on a synthetic example using 

an ensemble size of 50. The motivation for this part of the study was to investigate the 

possible benefits of each approach.  

Distance-based isotropic localization assumes that long-range correlations 

beyond a pre-specified characteristic distance are very small.  Selection of the length-

scale is subjective, case-dependant and might be difficult to determine in advance. 

Therefore, its applicability is limited especially in highly heterogeneous 3-dimensional 

models primarily due to the subjective nature of the approach and because it is not tied 
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to the underlying heterogeneity.  

Covariance inflation reduces the severity of variance-deficiency especially with 

modest ensemble sizes. The efficacy of the approach is possibly limited as a stand-alone 

fix to counter the adverse effects of sampling error in the EnKF. Variance-inflation may 

exaggerate the effect of spurious correlations especially for a very small ensemble sizes. 

The ad-hoc selection of the covariance inflation factor is another primary drawback of 

the approach. However, it might be a promising approach when used in conjunction with 

other methodologies. 

The 2-stage EnKF reviewed in this section appears to be an attractive alternative 

without additional computational effort and has the added advantage of being able to 

utilize existing code with small modifications. The successful application to wildfire 

modeling where sharp fire fronts are a consistent feature of the ensemble (Johns and 

Mandel 2005) makes an extension to detailed reservoir description rather appealing and 

this is demonstrated with a synthetic example.  
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3. STREAMLINE BASED COVARIANCE LOCALIZATION 

 

In an operational context, the standard implementation of the EnKF suffers from many 

drawbacks primarily because sample statistics (cross-covariance estimates) are critically 

dependant on the number of model realizations. Random noise can overwhelm the cross-

covariance estimates especially when the ensemble size is modest and/or if the true 

correlation is small. The previous section focused on some currently suggested 

modifications to the EnKF algorithm to address these issues. However, these methods 

may not be compatible with coherent 3-D reservoir characterization and uncertainty 

assessment particularly for highly heterogeneous reservoirs. 

 In order to adequately address many of the currently reported difficulties in the 

use of the EnKF for detailed reservoir modeling, there is a strong need for a 

methodology that is tied to the physics of the problem. Streamlines and the information 

derived thereof offer particularly appealing alternatives with a sound physical basis to 

significantly improve the quality of the results. The use of streamline-based methods is 

physically intuitive and natural. The primary emphasis is to keep changes targeted to 

areas that have the largest influence on the solution. In the subsequent sections, the 

proposed approaches are discussed in detail. There are several advantages to the 

proposed approaches. The difficulties in the standard EnKF implementation (for e.g. 

overshooting, geological inconsistency, and loss of variability) are largely eliminated or 

mitigated in terms of their severity. All of this is achieved at significant cost savings 

using a limited set of realizations.  

 

3.1 Streamline Trajectory Based Covariance Localization 

In the previous section, we reviewed distance-based covariance localization as a means 

to improve EnKF performance specifically by modifying the cross-covariance 

calculations. However, as demonstrated, distance-dependant localization may not be 
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consistent with the underlying heterogeneity and in effect, the cut-off radius is a tuning 

parameter dependant on the size of the problem and number of model realizations. 

Potential filter divergence and poor state/parameter estimates are further drawbacks of 

the methodology particularly for reservoir modeling.  

 This section provides an introduction to streamline trajectory based covariance 

localization. Further details about the technique are available in Arroyo et al. (2006). 

The fundamental goal is to eliminate erroneous and noisy terms in the cross-covariance 

matrix thereby allowing for parameter updates that are consistent with the underlying 

geology and the production history. This can be achieved by demarcating areas within 

the reservoir that influence the observations strongly and then making the corresponding 

changes to the cross-covariance matrix. A robust and physically intuitive technique to 

identify zones that have significant impact on the observations is the use of streamline-

derived information. Emanuel and Milliken (1998) make use of streamlines effectively 

for assisted history matching and the resulting methodology is shown to be superior to 

manual history matching and results in geologically relevant solutions.  

 To effectively localize regions corresponding to each observation, the only 

requirement is to establish whether a grid cell within the region is intersected by a 

streamline originating from the location of the observation. The column in the cross-

covariance matrix corresponding to this particular observation will consequently only 

retain those terms referring to grid cells that are intersected by streamlines. The rest of 

the terms are set to zero. Within this framework, noisy terms arising due to sampling 

errors are eliminated if they are not compatible with the underlying flow field.  

 To implement this form of covariance localization using streamline trajectories, a 

zone common to the ensemble is selected by stacking the zones from each realization. 

An additional constraint may also be applied to ensure that the grid cell is common to at 

least a certain minimum number of realizations. The sequential nature of the EnKF 

implies that this area of influence is redrawn at every assimilation step to account for 

changing field conditions, additional infill drilling or simply to reflect changing well 

configurations. The basic definition developed here will be equally applicable to finite 
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difference models and are not restricted to streamline models alone. When using finite 

difference models, the streamlines are traced using Pollock’s algorithm (Pollock 1998) 

or modified extensions to the tracing algorithm (Jimenez et al. 2007). 

 A visual representation of the spatial localization for all the wells in the synthetic 

example introduced in section 1 and 2 is shown in Figure 3.1 at a certain assimilation 

step. Clearly, the information provided by the streamline trajectories cannot be replicated 

by a naïve notion of distance.  Some segments of the reservoir adjacent to the wells are 

not covered by streamlines and on the other hand, distant locations are included in the 

area of influence as dictated by the flow pattern. 

 

 

 
Figure 3.1  The area of influence for each observation on the right selected by 

the streamline pattern on the left. 

 

 

Mathematically the localized covariance matrix is similar to Eq. 2.1, however, 

with the idea of utilizing streamline trajectories to retain relevant correlations and to 

eliminate noisy artifacts. 
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The localizing function ρ is simply a matrix of 0’s and 1’s designed to select the 

appropriate grid cells relevant to the EnKF update.  

To examine the benefits of this approach, streamline trajectory based localization 

is implemented using the above mentioned test case and compared to the traditional form 

of the EnKF. Figure 3.2 shows 4 randomly selected realizations updated using this 

technique. A simple visual inspection of the results shows no overshooting of the 

permeabilities, a strong coherent link between the pre and post assimilation models in 

terms of the underlying heterogeneity and reasonable inherent model variability. The 

bimodality of the updated histogram is also evident in Figure 3.3.  

 

 

 
Figure 3.2  Four arbitrarily selected realizations on the left are updated using 

the streamline trajectory based covariance localization and the results are 

displayed on the right. 

 

 



 

 

36 

 
Figure 3.3  The initial log-permeability histogram on the left compared with the 

updated log-permeability histogram on the right for one realization. 

   

 

 
Figure 3.4  Comparison of the total variance as a function of time during the 

assimilation process.  

 

 

 To further appreciate the benefits of flow relevant covariance localization, the 

problem associated with the loss of variability is mitigated to a large extent as seen in 
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Figure 3.4 and in comparison with the standard EnKF, an equivalent accuracy is 

obtained with only half the ensemble members. This particular form of covariance 

localization is applied to field cases in Arroyo et al. (2006) and in all applications, a 

significant reduction in the severity of the problems associated with the EnKF is 

observed.  

From a practical point of view, the construction of the modified cross-covariance 

matrix does not entail additional computational effort and consequently, forms the basis 

of an efficient means to enhance state and parameter estimation using the EnKF. 

Furthermore, for modest ensemble sizes, the method is able to better preserve geological 

continuities and the computational cost of localizing the cross-covariance is significantly 

less compared to the cost of implementing the EnKF with a large enough ensemble to 

achieve the same level of accuracy. 

 

3.2 Streamline-Sensitivity Based Covariance Localization 

When measurements become available, the EnKF updates a set of realizations to reflect 

the new information. The updates are derived from sample-based estimates of the cross-

covariance matrix as seen in Eq. 1.15. Since the EnKF updates are sensitive to estimates 

of the cross-covariance, various modifications to the EnKF were introduced in section 2. 

Distance-dependant localization attempts to taper the cross-covariance on the basis of 

distance by assuming that the correlation is a function of distance. A more appealing 

alternative however retains physically relevant correlations while eliminating others by 

spatial localization through the use of streamline trajectories. In using streamline-

sensitivity based covariance localization, we attempt to achieve the goal of tapering the 

cross-covariance calculations within the area of influence defined by streamline 

trajectories by the use of a non-isotropic localizing function.  

 Parameter sensitivities are often used in data integration using inverse modeling 

algorithms (Yoon et al. 1999; He at al. 2002; Cheng et al. 2004, Oyerinde 2008) to 

estimate influence of the spatial distribution of the unknown parameters, for e.g. porosity 

and permeability on the model response. Sensitivities relate changes in the production 
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response to variations in the parameters, thereby quantifying a linearized relationship 

between the model and the data. In this section, we review the basic methodology behind 

applying streamline-derived sensitivities for covariance localization in the EnKF. Using 

a test example, we demonstrate the use of this technique to obtain improved estimates of 

the cross-covariance. The second part of this discussion provides the mathematical 

details behind sensitivity computation and the subsequent section describes the 

application to the EnKF for the purposes of covariance localization. This is followed by 

application to synthetic test cases and field-scale examples. 

 

3.2.1 Motivating Example 

To illustrate the effects of finite sample size on the cross-covariance estimation and the 

benefits of streamline-sensitivity based covariance localization, we consider the 

hypothetical example introduced in section 2.1. The individual grid cell permeabilities 

were generated by sampling from a normal distribution of specified mean and variance 

and are independent and identically distributed. Essentially, they represent samples from 

a multi-Gaussian distribution with zero spatial correlation. The 2-D reservoir is 

completed in an inverted 5-spot pattern and is discretized into 50x50 grid cells. An 

illustration of two realizations and the corresponding streamline patterns for two wells at 

a certain time is shown in Figure 3.5. The color contours in the streamline plots indicate 

oil saturation values. Barring minor deviations due to the random nature of the 

underlying permeability values, the streamline patterns are analogous to a homogeneous 

permeability field.  This is, of course, a consequence of the uncorrelated nature of the 

permeability distribution. 
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Figure 3.5  This plot shows two realizations of a completely random permeability 

field and the corresponding streamline patterns for two wells. 

 

 

For this arrangement, a comparison of the cross-covariance between water-cut 

data at one well and the permeabilities at a particular time is shown in Figure 3.6. It is 

well known that increasing sample sizes provides better estimates of various sample-

based statistical measures, for e.g. the mean and the covariance. The rationale behind 

increasing the ensemble size is seen in Figure 3.6. The 1000-member ensemble has a 

sample size roughly on the order of the model dimensions (= 2500) and consequently, 

will be closer to the true value of the cross-covariance and appears to be better suited to 

eliminate noisy artifacts compared to the smaller 50-member ensemble. Additionally, the 

relation between the well data and the permeabilities is seen to have a coherent structure 

with the highs located along the diagonal and the lows further away from the diagonal. 

This is physically intuitive but not evident with the 50-member ensemble. However, 

using the proposed approach for covariance localization based on streamline-derived 
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sensitivities, which is described in the next section, for a 50-member ensemble, the 

cross-covariance structure shows strong resemblance to the estimate from the larger 

ensemble. In contrast with the un-localized cross-covariance, the localized estimate is 

clearly free of noisy artifacts and spurious long-range correlations.  

 

 

 
Figure 3.6  A comparison of the cross-covariance estimation between water-cut 

at one well (black dot) and the permeability for various ensemble sizes. 

 

 

 This test study serves as a motivating example to further describe the 

methodology of the proposed approach and to provide further examples to demonstrate 

its efficacy.  

 

3.2.2 Sensitivity Computation 

Our approach relies on inexpensive sensitivity calculations that can be used to modify 

the ensemble-derived cross-covariance estimates. Sensitivities quantify changes in 

production response at a well due to small perturbations in reservoir parameters. The use 

of sensitivities to identify regions in the reservoir where changes in the parameters will 

have a significant influence on model prediction enables physically consistent updates to 
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these key parameters to achieve a history match. While there are several approaches to 

compute sensitivity coefficients (Yoon et al. 1999; He at al. 2002; Cheng et al. 2004, 

Oyerinde 2008) streamline models are particularly well suited for sensitivity 

computation. By taking advantage of the analytic relationship between streamline 

characteristics like the time-of-flight and reservoir parameters like permeability and 

porosity, sensitivity estimation requires minimal computational effort and can be 

obtained simultaneously with the forward run of the simulator. Specifically, in our 

studies, we analytically derive the relationship between perturbations in model 

parameters and changes in production response at the wells, for example, water-cut and 

GOR. Previous history matching literature provides a greater insight into sensitivity 

computation using streamline models (Vasco et al. 1999; He et al. 2002; Cheng et al. 

2004). Following these approaches, the time-of-flight sensitivities can be described 

analytically as simple integrals along streamlines. The time-of-flight is defined as the 

time is takes for a neutral tracer particle to move from one position to another location. 

Given the interstitial velocity, v(x), it can be defined as integrals along the streamlines 

and is given by 
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The time-of-flight sensitivity with respect to permeability can be expressed as 
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where the integrals are evaluated along streamlines and the ‘slowness’ which is the 

reciprocal of interstitial velocity  is defined as  
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Streamline simulators estimate these quantities simultaneously during the forward run. 

For finite-difference simulators, the total inter-block fluid fluxes are used to trace 

streamlines and compute the time-of-flight and slowness (Jimenez et al. 2007). 

 

Water-Cut Sensitivity. The sensitivity of the arrival time t of water cut to model 

parameter m, for e.g. permeability, can be analytically defined using the compressible 

formulation for streamlines (Cheng et al. 2007) as 
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where ctu =⋅∇ representing the divergence of the flux can be considered as a source 

term due to compressibility effects and is computed along the streamline at each grid 

block. Using the chain-rule of differentiation, we can then relate the travel-time 

sensitivity to the sensitivity of water-cut at a particular time for each update step.  

 

Gas-Oil Ratio Sensitivity. The analytic approach using the compressible formulation for 

streamlines (Cheng et al. 2007) leads to the expression for the sensitivity of the arrival 

time t of a particular value of gas-oil ratio to model parameter m as defined below. 
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where c, the divergence of total flux, retains the same physical significance as previously 

described for water-cut sensitivities. The chain-rule for differentiation is again used to 

define the sensitivity of gas-oil ratio to model parameter m.  

 

3.2.3 Construction of the Localizing Function 

The localizing function, ρ, in the context of trajectory based localization was defined to 

include grid cells selected by streamlines. The area of influence for the entire ensemble 

was defined by stacking the selected areas of each realization. Further modifications to 

this selected area can be achieved by selecting only those cells common to a certain 

minimum number of model realizations. 

 Streamline-sensitivity based localization attempts to capture the strength of the 

correlation between model variables and the data by conditioning the cross-covariance 

with an appropriate tapering function or localizing function within this area of influence. 

For the purpose of quantifying the relative strengths of the correlation, sensitivities are 

particularly appealing since they directly provide a relation between the model variables 

and production data.  For the purpose of covariance localization using sensitivities in the 

EnKF, the procedure is identical to describing the area of influence using streamline 

paths, with the additional step of weighting with a localizing function using streamline-

derived sensitivities. As previously outlined, these sensitivities to model parameters are 

computed along streamlines quite efficiently in a single forward run of the simulator. 

The procedure of estimating ρ starts with stacking the sensitivities from all realizations 

and then normalizing these derived quantities individually for each observation on a 

scale of 0 to 1. An appropriate cut-off may be chosen to ensure proper scaling of these 
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normalized sensitivities. In all cases studied here, the sensitivity to permeability 

variation is used to update the parameter field (the permeability). 

 

   

 
Figure 3.7  The streamline pattern and time-of-flight contours for a inverted 5-

spot pattern in a synthetic permeability field. 

 

 

Since ρ is a matrix of size NmxNd where Nm is the number of model variables and 

Nd is the number of observation, we can write each element of ρ as 
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where S refers to the matrix formed by summing the sensitivities above a threshold over 

all the realizations. In this manner, the localizing function ρ acting on the sample cross-

covariance achieves the dual objective of retaining physically relevant correlations and 
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weighting them in relation to their relative significance. The demarcation of an area of 

influence is inherent in the definition of the sensitivities which are defined along 

streamlines. Figure 3.7 shows the streamline pattern at a particular time while Figure 3.8 

highlights the grid blocks corresponding to each measurement and the normalized 

sensitivities.   

 

 

a

b

 
Figure 3.8  The streamline trajectory and the normalized streamline-derived 

sensitivities for 2 selected wells for the field shown in Figure 3.7. 

 

 

The Schur product of these two matrices (term-by-term multiplication) reduces 

spurious noise in the covariances and the resulting tendency toward introducing 
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unrealistically large increments in distant grid locations. We will show that this 

technique will amplify the signal-to-noise ratio where the signal is the cross-covariance 

to be estimated. As specified in section 3.1, the EnKF equation becomes 
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In this framework, the computation of the matrix ρ is performed at each update step to 

reflect changing field conditions or updated well configurations. The computation is not 

limited to streamline models and is easily extended to the finite-difference simulation 

scheme by using the underlying velocity field to trace streamlines (Jimenez et al. 2007) 

and computing the sensitivities along these trajectories. 

 

3.3 Application: Synthetic Example 

 

 
Figure 3.9  The normalized sensitivities computed for each well from an 

ensemble of 50 realizations at t = 1000 days. The significant areas impacting each 

well’s water-cut data are highlighted. 

 

 

To illustrate the methodology and the benefits of using streamline-derived sensitivities, 

we test our proposed approach with the synthetic example used to demonstrate distance-

dependant and streamline-trajectory based covariance localization. The cross-covariance 
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localizing function for each of the wells is plotted in Figure 3.9 at t = 1000 days for an 

ensemble size of 50 members.  

The matches to the production data at each well are shown in Figure 3.10. 

Satisfactory matches to the observed production data are observed without any apparent 

difficulty.  

 

 

 
Figure 3.10  (a) is the initial spread in the predicted water-cut from the ensemble. 

(b) is the match to water-cut data achieved using EnKF with streamline-derived 

sensitivities for covariance localization.  
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Figure 3.11  The updated permeability fields for 4 realizations on the right 

compared to the initial members on the left. Notice that changes to the initial 

models are minimal. 

 

 

An indicator of the benefits achieved through flow relevant conditioning of the 

cross-covariance matrix is given in Figure 3.11 where we compare the updated 

realizations to the initial permeability fields. By using streamline-derived information, 

the changes are kept minimal and specifically targeted at areas that can be resolved by 

the production data. The tendency of the EnKF to create variance-deficient members is 

also mitigated leading to more meaningful results from uncertainty analyses using 

simulation forecasts. This benefit can also be seen in Figure 3.12 also, which compares 

total variance versus assimilation time for the proposed approach in comparison with 

EnKF using different ensemble sizes. Clearly, the proposed approach outperforms the 

EnKF with a much larger ensemble in terms of preserving variability. 
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Figure 3.12  The total variance amongst the members as a function of time during 

the assimilation process. Flow relevant conditioning of the cross-covariance clearly 

provides substantial benefits by not artificially reducing the variability. 

 

    

 

 
Figure 3.13  (b) is the histogram of log-permeability for one updated realization 

compared to (a) which is the initial histogram. We maintain the multi-modal nature 

of the histograms without overshooting. 
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Without covariance localization, the histograms of the posterior models acquire 

strong Gaussian characteristics. A comparison of one pre and post assimilation 

histogram of the log-permeability is shown in Figure 3.13 and the method tends to 

preserve prior model statistics. A further examination of the results indicates that 

parameter overshooting is largely eliminated. There are no inconsistent localized zones 

of high and low permeability in Figure 3.10 and this is also reflected in the respective 

histograms.   

 

   

 
Figure 3.14  Eigen-spectrum of the covariance matrix using sensitivity based 

localization (in red) and without any form of localization (in blue). 

 

 

Variance deficiency in the EnKF can also be addressed by examining the eigen-

spectrum of the covariance matrix of the updated members. Recall that in Eq. 1.3, a 

sample-based estimate of the covariance estimate can be obtained whenever necessary. 

Figure 3.14 shows the eigen-spectrum for the permeability covariance matrix based on 
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this calculation. A comparison is made between the proposed approach of localization 

and the standard EnKF. The eigen-spectrum for the un-localized version of the EnKF 

shows a steep drop and consequently, there is insufficient projection of the variance in 

the trailing eigen-directions. The degraded covariance structure associated with these 

lower energy trailing eigen-values implies a smaller effective ensemble size. This is 

reinforced by the observation in section 1 in Figure 1.3, where the effective ensemble 

size is successively reduced till the model realizations appear similar. 

 

3.4 Field Application: The Goldsmith Field Case  

 

 
 

Figure 3.15  The location of the Goldsmith pilot area in the San Andreas Unit in 

West Texas. The location of the producers (in yellow) and the injectors (in blue) is 

on the right. 

 

 

In this section, we validate the efficacy of streamline-derived-sensitivity based 

conditioning of the EnKF to a 2 phase field example, the Goldsmith CO2 pilot project 

study (He at al. 2002; Cheng et al. 2005). We used an ensemble size of 50 realizations of 
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porosity and permeability fields conditioned to well data and secondary seismic 

attributes. The pilot area comprises 9 inverted 5-spot patterns covering around 320 acres 

and the average thickness of the formation is 100 ft.   

Significant water-cut data for 20 years of production prior to the start of the CO2 

flood is available at 9 production wells and these were used to condition the permeability 

fields. By virtue of the location of these wells in the center of the field, it is expected that 

most of the changes to the permeability distribution should be concentrated in this 

region. Figure 3.15 is an areal plot of the location of the Goldsmith CO2 pilot study 

within the extended study area showing the location of the producers (in yellow) and the 

injectors (in blue).  

 

  

 

a    b   c 

Figure 3.16  (a) is the initial permeability field showing the multi-modal 

permeability histogram. (b) illustrates the transformation to a normal histogram 

with the standard EnKF, while (c) shows the results from the streamline-sensitivity 

based covariance localization. 
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Figure 3.16a depicts the permeability distribution for one of the initial 

realizations. The significant peak at lower permeability values reflects a fairly large 

proportion of poor reservoir quality rock.  

Using the standard EnKF, ensemble realizations are conditioned to water-cut 

history and Figure 3.16 shows one of the ensemble realizations after a sequence of 

updates. As demonstrated in the previous application of the standard EnKF to a 

hypothetical 2-d example with non-Gaussian permeability fields, the reconstructed log-

permeability histogram tends to acquire strongly Gaussian features. Although the 

producers are completed in the center of the field, the largely indiscriminate updates 

contribute to the loss of structure in the permeability field.  

However, a qualitative inspection of the updated permeability field in Figure 

3.16c using localization derived from streamline-derived sensitivities shows 

permeability variations that are consistent with the initial model. This is the preferred 

mode of comparison to check the validity of the updates in the absence of a reference or 

‘truth’ model. The preferential and targeted changes are reflected in the geologic 

consistency between the pre and post assimilation models. Additionally, the log-

permeability histogram of the updated model clearly indicates that the relative 

proportion of various reservoir rock types is preserved. This is of considerable 

significance to obtain meaningful results from production forecast analysis.  

 The ability of the proposed approach to satisfactorily match production history 

for 3 selected wells is illustrated in Figure 3.17. The prediction envelope from the 

updated ensemble is within the specified noise tolerance.  
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Figure 3.17  Matches to production history at 3 selected wells in the bottom row. 

The initial predictions are plotted in the top row. 

 

 

 

 
Figure 3.18  On the left is the cross-covariance between water-cut data at the well 

(vertical line) and permeabilities in the field. Using streamline-derived sensitivities, 

we condition the cross-covariance matrix and on the right is the plot of the localized 

cross-covariance. 
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Figure 3.18 plots the cross-covariance at a particular time between water-cut at 

one of the wells and the permeabilities in the field. The standard EnKF shows large 

values even for distant locations where it is reasonable to expect that there is no 

correlation between the permeability and well performance because of the well 

configuration. However, with streamline-derived sensitivity based localization, distant 

data points are not included in the analysis and the support is more localized in the 

region around the well.  

 

3.5 Section Summary 

The sampling-based errors arising due to the use of a modest set of model replicates has 

motivated the development of modifications to the EnKF to address the issue for large-

scale problems. Among these approaches is covariance localization that relies on 

specifying better estimates of correlations between variables at different locations. 

Streamline-derived information forms the basis of a physically intuitive, natural and 

computationally tractable scheme for covariance localization. In this section, we present 

two approaches for covariance localization formulated using streamlines.  

 Streamline-trajectory based localization achieves spatial localization in the cross-

covariance matrix by defining regions within the reservoir that directly influence well 

responses. Sensitivity based localization, on the other hand, defines a taper function 

within the previously described area of influence to eliminate spurious sampling errors 

in the cross-covariance estimates and to dampen the relevant correlations based on the 

linearized relation between the data and the model variables. In all test studies, 

significant time savings and reduction in computational effort is achieved. 

 However, streamline-trajectory based localization is better suited for bottom-hole 

pressure (BHP) integration because of the difficulty in estimating the corresponding 

sensitivities in a computationally efficient manner. Other studies have implemented 

successful localization schemes for assimilation of BHP data based on the concept of 

pressure time-of-flight. 
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4. A HIERARCHICAL MULTI-SCALE EnKF 

 

Reservoir characterization problems tend to be large with the number of unknowns to be 

estimated often orders of magnitude larger than the number of observations (Tarantola 

2004). The inherent ill-posed nature of these problems is the source of difficulties 

associated with non-uniqueness and stability of the solutions. This is further 

compounded by the non-linear nature of multiphase flow problems which leads to the 

existence of multiple local minima in the objective function. It is widely recognized that 

multi-scale data integration can reduce the severity of these problems and can assist in 

the search for a global solution (Yoon et al. 1999). 

 In this section, we examine the performance of a hierarchical multi-scale EnKF. 

One of the motivating factors is the ease with which the EnKF can assimilate diverse 

data types. Secondly, measurements, either static or dynamic, are often associated with 

different length-scales. Derived static measurements like permeability estimates from 

cores have a resolution of a few inches while seismic data has a significantly larger areal 

coverage with reduced precision. The proposed approach is applied to the problem of 

interpreting Partitioning Inter-well Tracer Tests (PITT) specifically to identify the 

distribution and location of residual un-swept oil.  

 

4.1 Introduction 

In fine-scale inverse modeling approaches, difficulties related to stability, existence and 

non-uniqueness of the solution are addressed through the use of regularization functions 

(Yoon et al. 1999; He et al. 2002; Tarantola 2004; Cheng et al. 2004; Oyerinde 2008). 

The forms and the relative strengths of the terms that constitute the regularization 

function are additional sources that contribute to the non-uniqueness of the solution. The 

search for a global minimum of a suitably formulated objective function may be 

confounded by the existence of multiple local minima especially for highly non-linear 
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multiphase flow phenomena. Yoon et al. (1999) address the issues of non-uniqueness 

and stability and enhance the ability of the inversion process to reach a global minimum 

through the use of a multi-scale inverse modeling approach. Their formulation proceeds 

by integrating data at the coarsest level and sequentially assimilating observations at 

successively finer scales.  

 The multi-scale estimation approach described in this section exploits the ability 

of the EnKF to efficiently and recursively integrate data associated with different scales. 

By constraining the high resolution variations in model properties to coarse-scale 

information, the estimates of the unknowns are better approximated by reducing the non-

linearity of the underlying problem. Akella et al. (2008) derive the basic methodology 

describing the approach. They use a secondary constraint derived from coarse-scale 

estimates of the model variables like permeability or saturation. In our approach, a 

deterministic inverse modeling algorithm provides coarse-scale spatial distribution of the 

reservoir unknowns.  

 

4.2  Methodology 

The basic equations describing the EnKF are provided in section 1. An extension to the 

EnKF to include smoothness constraints was introduced in section 2. Our algorithm 

proceeds along the same lines; however, instead of imposing smoothness on the solution 

by explicitly specifying an ad-hoc regularization term, we use observations on a coarse 

grid to enhance estimates of the model variables. The procedure is implemented as 

follows: 

• Update the high-resolution ensemble of models using data at the fine-scale. 

• An inverse modeling approach is separately implemented to resolve coarse-scale 

features of the ensemble mean using previously obtained measurements.  

• The low resolution information from the ensemble mean modifies the micro-

scale variations in reservoir properties to preserve the large-scale structure and 

continuity.  

• Subsequent updates are performed in the same manner as outlined in the 
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preceding steps. 

In data assimilation literature, the procedure of updating the ensemble mean using 

inversion is not new. Zhang et al. (2007) use a feedback loop that provides ensemble-

based estimates of the model covariance to a 4DVAR algorithm (inverse algorithm) 

operating on the ensemble mean. The coupled approach is shown to aid in preventing 

filter divergence and is seen to be superior to the standard form of the EnKF. However, 

the basis of our approach is to superimpose coarse-scale structure of the ensemble mean 

on the fine-scale variations of the individual ensemble realizations. The coupling does 

not entail explicit covariance information exchange between the EnKF and the inverse 

approach. However, by utilizing low resolution variations in reservoir properties, the 

formulation implicitly provides tuning of the sample-based model covariance. 

 Eq 1.15 is the basis of the first step in the multi-scale EnKF approach proposed 

here. 

 

 )()(~ 1
priorobsD

T
y

T
yprior HydCHHCHCyy −++= −  ...................4.1 

 

The ensemble mean is specified by  
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However for the purposes of parameter estimation, we select the vector of model 

parameters, mmean from the state vector. A deterministic formulation is used to 

efficiently integrate production data via the minimization of an augmented misfit 

function to find the elements of the change vector, δm. Further details of the procedure 

can be found elsewhere (Yoon et al. 1999; He et al. 2002; Cheng et al. 2004; Tarantola 

2004; Cheng et al. 2005; Oyerinde 2008) 
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 To obtain macro-scale estimates of the underlying structure, the inversion may be 

carried out on an upscaled version of mmean or the results from a fine-scale inversion may 

be reparametrized to lower resolution to provide a mmean, posterior. It is commonly 

recognized that the former approach is computationally more efficient because the model 

simulation is carried out on a coarse grid with fewer parameters and may converge faster 

(Yoon et al. 1999). 

 A secondary assimilation sequence then updates the finer resolution model by 

minimizing a misfit function described on coarse-scales. 
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where the subscript ‘c’ refers to the coarse grid model. The precision of the coarse-scale 

observations is contained in the covariance matrix R. The upscaling operator U is the 

link between the low and high resolution models.  

 

yUy ~~ =c    …...........................................................................................4.5 

 

The upscaling operator is general and the same procedure can be implemented to 

assimilate data at different length scales by the appropriate choice of U. This hierarchical 

approach to multi-scale data assimilation is formulated based on the independence of the 

data at different levels of resolution. Although the condition of strict independence may 

not be exactly honored, it is recognized that this is only an approximation.   
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Figure 4.1  The multi-scale EnKF procedure at any given assimilation step. 

 

 

 Figure 4.1 gives the details of the procedure. The application of the proposed 

methodology will be provided in a later section in this section. First, we discuss 

composite tracer tests and their role in reservoir characterization.  

 

4.3  Composite Tracers and Partitioning Interwell Tracer Tests (PITT) 

Enhanced Oil Recovery (EOR) methods are often implemented to recover bypassed oil 

following primary and secondary depletion. Critical inputs to a successful EOR 

technique include accurate spatial distribution of target oil and a reliable description of 

preferential flow paths in the reservoir. Over the years, advances in the design and 

implementation of tracer tests have increased our confidence in their potential to provide 

detailed reservoir description. 

 During tracer tests, a suite of tracers are injected into the subsurface and are 

recovered at the observation wells. These tracers can be broadly categorized based on 

application into conservative and partitioning tracers. Conservative or aqueous tracers 

move with the water phase and do not interact with other phases in the reservoir. On the 

other hand, partitioning tracers are soluble in the water phase as well as the oil or gas 

phases. Consequently, the conservative tracer response is primarily sensitive to the 

underlying reservoir heterogeneities while the partitioning tracer profile is affected by 

both the reservoir fluid flow paths and the distribution of the phases it comes in contact 
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with. 

 The partitioning is driven by the slow diffusion of tracer molecules from the 

tracer slug in the injected phase (typically, water) into the oil or gas phases. After the 

passage of the tracer slug, the concentration gradient reversal causes tracer molecules to 

slowly diffuse back into the injected phase. It is this phenomenon that contributes to a 

chromatographic delay in the observed partitioning tracer response (Oyerinde 2004). 

Figure 4.2 shows a typical composite tracer response with the associated 

chromatographic delay. When the tracer is sampled at multiple areally and vertically 

distributed locations, the resulting tracer profiles can be used to infer target oil 

saturations and provides a reliable means for detailed 3-D reservoir characterization. 

 Previous efforts towards estimating average in-situ volumes and oil saturations in 

the reservoir relied on analytic tools like the method of moments approach. The 

formulation of the approach is rigorous and these analytic tools are simple and easy to 

implement only bulk average volumes can be estimated.  The reformulation of the 

problem in a streamline-based inverse modeling framework has led to an increased 

interest and enhanced capabilities to measure reservoir heterogeneity and dominant flow 

paths in the reservoir in addition to being able to resolve the spatial distribution of the 

un-swept oil (Yoon et al. 1999; Oyerinde 2004). The two-step procedure determines the 

spatial distribution of subsurface permeability and then utilizes the chromatographic 

delay between the tracer responses to indirectly infer fluid saturations. However, in the 

presence of mobile non-aqueous phase saturations, interpretation of the results becomes 

considerably more complicated because of the dependence of the retardation on the 

individual phase saturations, the partitioning coefficients and the local fractional flow 

profile.  
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Figure 4.2  Typical composite tracer responses showing the delay of the 

partitioning tracer (Oyerinde 2004). 

 

 

 In the context of data assimilation using ensemble-based filtering, Valestrand et 

al. (2008) utilize tracer responses to provide improved estimates of reservoir model 

parameters. Using a synthetic test example, they demonstrate better convergence 

characteristics of the EnKF when simultaneously assimilating water-cut and tracer 

information. When water-cut measurements alone are assimilated, the estimates of the 

reservoir parameters are less representative of the truth.  

In the proposed approach using the multi-scale EnKF, the goal is to use the 

additional information from tracer responses to provide better resolution of subsurface 

rock properties and spatial distribution of phase saturations. The coupling of the inverse 

modeling approach to provide valuable low resolution information to the EnKF 

estimates is the basis of the approach. The algorithm is general and can account for the 

effects of mobile non-aqueous phase saturations. 

 

4.4  Application: Synthetic 2-D Example 

A 2-D test reservoir is used to demonstrate the efficacy and feasibility of the proposed 

approach. The reservoir is completed in an inverted 5-spot pattern and the domain is 

discretized into 24x24 grid cells. The reservoir is produced for a period of 1500 days 
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with the tracer slugs injected 500 days into the waterflood. A suite of 100 members 

conditioned to well and geostatistical information (Deutsche and Journel 1992) 

constitutes the initial ensemble. The partitioning coefficient, which is a measure of the 

equilibrium concentration in the oil to that in the water phase, is 0.6. Figure 4.3 shows 

the individual tracer elution profiles with the reference permeability field.  

 

 

 
Figure 4.3  The tracer profiles at each of the 4 producing wells showing the 

chromatographic delay of the partitioning tracer. The reference field is on the 

right. 

 

 

 The measurements at each of the 4 producing wells include water-cut data and 

tracer responses and the reservoir state vector comprising permeability, phase saturations 

and fluid pressures is conditioned to the available data using the EnKF. The updated 

permeability fields are used in a production forecast from initial time to assess the 

quality of the matches. The match to water-cut data at each of the 4 wells is shown in 

Figure 4.4 and the tracer data matches at two selected wells are illustrated in Figure 4.5. 
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Figure 4.4  The top row shows the initial water-cut predictions and the bottom 

row shows the matches to the data from the updated realizations. 

 

 

 
Figure 4.5  Plot of composite tracer responses from the initial ensemble for two 

selected wells in the top row and the corresponding matches in the bottom row. 

 

  

From the above figures, it is evident that the EnKF can match production history 
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satisfactorily. However, the EnKF cannot capture key preferential fluid migration 

pathways as seen in Figure 4.6.  

 

 

 
Figure 4.6  Comparison of the saturation contours of the reference field on the 

left with the mean of the ensemble on the right at two different times. 

 

 

 The ensemble estimates are seen to be smooth and lack the features of the 

reference model. The distribution of the bypassed oil saturation is not satisfactorily 

captured by simply assimilating well data using the EnKF.  
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 We then apply the proposed methodology to the above described 2-D example. 

The objective is to capture key large-scale features of the spatial distribution of target 

oil. The approach proceeds as follows: First, we assimilate the available well production 

data using the EnKF. At a time of 800 days, the permeability distribution of the 

ensemble mean is updated using a streamline-based inversion approach (Yoon et al 

1999; He at al. 2002; Cheng et al. 2004; Cheng et al. 2005; Cheng et al. 2007). Coarse-

scale fluid saturation distributions are then obtained from a simple forward run of a 

numerical reservoir simulator and then coarsened to a 6x6 grid using volumetric 

averaging. The resulting phase saturation serves as a constraint in the second stage of the 

multi-scale EnKF as shown in Eq. 4.4. The ensemble of derived coarse-scale saturations 

is conditioned to this observation with a pre-specified precision. Following this step, the 

assimilation process proceeds with the standard form of the EnKF and at 1300 days, a 

second coarse-scale measurement is provided as an additional measurement.  

 The coarse-scale measurement at 800 days is shown in Figure 4.7.  

 

 

 
Figure 4.7  The coarse-scale constraint on the right serves as an observation to 

improve the estimates of the fluid saturation distribution in the ensemble prior on 

the left. 
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Figure 4.8  The top row shows the initial water-cut predictions and the bottom 

row shows the matches to the data from the updated realizations. 

 

 

 
Figure 4.9  The top row shows the conservative and partitioning tracer responses 

from the initial ensemble for two selected wells and the bottom row shows the 

corresponding matches. 
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 The matches to the data are shown in Figures 4.8 and 4.9. The resulting profiles 

are satisfactory and within reasonable bounds.  

The objective of the proposed approach is to obtain better estimates of the 

subsurface measurements of oil saturations. In Figure 4.10, a comparison is made 

between the reference saturation, the saturation obtained from the single-stage standard 

EnKF and the reconstructed saturation profile sourced from the updates using the 2 stage 

multi-scale EnKF indicating significantly better estimates of bypassed oil saturations. 

These saturation profiles are obtained during the assimilation process.  

 

 

 
Figure 4.10  Comparison of the target oil saturations from the standard EnKF 

(center) with those obtained from the 2 stage EnKF (right) at two different times. 

The profile from the ‘true’ model is provided as a reference (left). 
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 At a later time, the contrast between the standard EnKF and the 2-stage multi-

scale EnKF is shown in Figure 4.11. The EnKF estimates are smooth due to the 

averaging properties when computing the ensemble mean. The secondary constraint 

comprising coarse-scale saturations obtained from a streamline-based inversion of 

production data is clearly able to better resolve the regions of high and the low 

saturations, while the estimates from the standard EnKF implementation are relatively 

smooth and do not adequately reflect the underlying heterogeneity. This can severely 

limit the efficacy of an EOR process designed using the results from the single-stage 

EnKF.  

 

 

 
Figure 4.11  The 2-stage EnKF (right) outperforms the standard EnKF 

implementation (center) when compared to the reference saturation. 

 

 

 In the next section, we focus on an application to the 3-D hypothetical reservoir 

to demonstrate the utility of the approach for more complex problems. 

 

4.5 Application: 3-D Example 

In this section, the use of the multi-scale EnKF is demonstrated on a 3-dimensional 
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example with considerable underlying heterogeneity. The location of the wells in the 

reference model that is used to generate ‘observed’ data is shown in Figure 4.12. The 

reservoir is completed with 8 producing wells and 2 injectors. The computational 

domain is a 80x40x5 system. The initial set of 100 model realizations are conditioned to 

well data and conditional spatial statistics (SGSIM) (Deutsche and Journel 1992) is used 

to fully characterize the permeability in the remaining areas of the model. The total 

production time is 4000 days and the injected water is tagged with a conservative and 

partitioning tracer at 600 days into the waterflood.  

 

 

 
Figure 4.12  The reference log-permeability field showing the location of the 

producers and injection wells. 

 

 

 The standard form of the EnKF is first implemented to assimilate water-cut data 

and tracer measurements at each of the 8 producers. The sequence comprises 14 

assimilation steps starting at 600 days when there is an observable water breakthrough 

and is spread over the next 2200 days in steps of 200 days. For the sake of brevity in this 
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dissertation, the matches to the observed history are plotted for only 3 selected wells in 

Figures 4.13a, 4.13b and 4.13c. The results from the other 5 producers are similar in the 

quality of the match. The considerable variability in the initial predictions is reduced to 

obtain a reasonable match.  

 

 
Figure 4.13a Matches to the water-cut profile in the bottom row. The initial 

ensemble predictions are in the top row. The only wells shown are P1, P2 and P3. 
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Figure 4.13b  Matches to the conservative tracer data in the bottom row. The initial 

predictions are in the top row. The only wells shown are P1, P2 and P3. 

 

 

 
Figure 4.13c  Matches to the partitioning tracer profile in the bottom row. The 

initial predictions are in the top row. The only wells shown are P1, P2 and P3. 
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 However, a qualitative inspection, in Figures 4.14a through 4.14f, of the un-

swept non-aqueous phase obtained from the updated realizations reveal that the standard 

EnKF may not be capable of providing a realistic representation of the reference model.   

 

 

 
Figure 4.14a  Saturation profile in Layer 1 at 1350 days. 

 

 

 
Figure 4.14b  Saturation profile in Layer 5 at 1350 days. 
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Figure 4.14c  Saturation profile in Layer 1 at 2250 days. 

 

 

 

 
Figure 4.14d  Saturation profile in Layer 5 at 2250 days. 
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Figure 4.14e  Saturation profile in Layer 1 at 4000 days. 

 

 

 

 
Figure 4.14f  Saturation profile in Layer 5 at 4000 days. 

 

 

 At earlier times (1350 days and 2250 days) the differences between the predicted 

and observed bypassed oil saturation is considerable and at later times (4000 days) the 
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differences are less pronounced. However, the reconstructed saturations from the EnKF 

predictions remain relatively smooth and are not consistent with the reference model. 

Designing an EOR process based on these results may reduce the effectiveness of the 

recovery mechanism due to lack of resolution in the assessment of bypassed oil targets.  

 To further validate the utility of the 2-stage multi-scale implementation of the 

EnKF, we use coarse-scale observations obtained from a streamline-specific data 

integration framework during the assimilation process at 1800 days and 2400 days. The 

low-resolution saturation is utilized to tune the permeability and saturation of the 

individual model replicates. The procedure to obtain these low resolution measurements 

has been discussed in a previous section. The coarse-scale measurements are computed 

on a 20x10x5 domain to preserve layering information.  

 At the assimilation time of 1800 days, the individual realizations are perturbed to 

honor the constraint shown in Figure 4.15 which also shows the smoother prior 

variations in the mean saturation.  

 

 

 
Figure 4.15  A comparison of the prior mean saturation on the left with the 

imposed coarse-scale constraint on the right. 
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Figure 4.16a  Matches to water-cut data in the bottom row for wells P1, P2 and P3 

using the 2-stage EnKF. The initial predictions are in the top row. 

 

 

 
Figure 4.16b  Matches to conservative tracer data in the bottom row for wells P1, 

P2 and P3 using the 2-stage EnKF. The initial predictions are in the top row. 
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Figure 4.16c  Matches to partitioning tracer data in the bottom row for wells P1, 

P2 and P3 using the 2-stage EnKF. The initial predictions are in the top row. 

 

 

 Figures 4.16a, b and c illustrate the satisfactory quality of the results in terms of 

matching available data. The primary benefit of the 2-stage approach can be seen in 

Figures 4.17a through 4.17f which plots saturation profiles at various times for different 

layers which show reasonably good portrayal of the underlying bypassed oil targets. The 

saturation variations are estimated by using the parameter set (permeability vector) at the 

end of 2400 days of assimilation. This involves a re-run of the simulator from initial 

time and is used only for comparison purposes.  

 The following plots reinforce the validity of the approach. The layers that 

demonstrate the most benefit by using a coarse-scale constraint are layers 1 and 5. The 

contrast in target oil saturation distributions in other layers was less dramatic. However, 

the comparison plots indicate that re-utilization of the data in an inversion framework to 

generate low resolution macro-scale observations is a particularly effective scheme for 

effective and reliable reservoir characterization.  
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Figure 4.17a  Contour plot of the bypassed oil saturation at 1350 days in Layer 1. 

 

 

 
Figure 4.17b  Contour plot of the bypassed oil saturation at 1350 days in Layer 5. 
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Figure 4.17c  Contour plot of the bypassed oil saturation at 2250 days in Layer 1. 

 

 

 

 
Figure 4.17d  Contour plot of the bypassed oil saturation at 2250 days in Layer 5. 
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Figure 4.17e  Contour plot of the bypassed oil saturation at 4000 days in Layer 1. 

 

 

  
Figure 4.17f  Contour plot of the bypassed oil saturation at 4000 days in Layer 5. 
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4.6 Section Summary 

Identification of the distribution and location of target oil is a vital step in reservoir 

management strategy, specifically to design tertiary recovery processes or to plan infill 

drilling locations. The capability of tracers to contact large inter-well fluid volumes 

make them particularly well suited for reservoir modeling studies.  

 In this section, we investigate the use of the EnKF for PITT interpretation. In 

spite of the reasonable matches to well data, the resulting subsurface distribution of non-

aqueous phase saturations is not consistent with the observations. This motivates the use 

of the 2-stage multi-scale EnKF to refine the resulting saturations to be reliable estimates 

of the truth. The operating principle is the coupling of a streamline-specific inverse 

modeling approach with the basic EnKF through coarse-scale constraints. In all 

examples studied, the proposed method indicates better resolution of the in-situ bypassed 

oil.   
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5. CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions  

Operational data assimilation problems for the purposes of reservoir characterization and 

uncertainty quantification tend to be very large and computationally challenging. The 

increased deployment of downhole monitors, permanent sensors and intelligent well 

systems intensifies the need for efficient algorithms for continual model updating via 

sequential data assimilation. The Ensemble Kalman Filter (EnKF) is a promising 

approach combining computational tractability and the capability of maintaining ‘live’ 

models conditioned to previously observed history. As opposed to traditional history 

matching approaches where the calibration of the reservoir model is achieved using all 

previously recorded historical data, the EnKF updated a suite of models whenever data 

becomes available. By working with an ensemble or suite of model replicates, the EnKF 

provides quantifying the underlying uncertainties, both in the model space and in future 

performance predictions  

The EnKF utilizes sample-based statistical measures to tune the model 

realizations towards honoring production history. These statistical computations are 

necessary to specify cross-covariances between data and the model variables and are 

critically dependant on ensemble size for accuracy. Noisy and spurious terms in these 

estimates can severely degrade the EnKF analysis. The adverse affects of sampling 

errors has led to the development of many schemes specifically to target the deficiencies 

in the EnKF approach. Of these many approaches, the technique of covariance 

localization is particularly appealing for a wide variety of applications. For the purposes 

of reservoir model calibration, the use of streamlines is especially effective because the 

spatial localization achieved is tied to the underlying flow field and is consistent with the 

prior geologic information.  

In this work, we examine two techniques for covariance localization using 
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streamline-specific information. The first approach utilizes streamline trajectories to 

delineate regions that will have the largest influence on the solution. Sample-based 

cross-covariance estimates are limited to these areas where there is significant streamline 

coverage. The second approach using streamline-derived sensitivities for covariance 

localization dampens the cross-covariance estimates within this area of influence 

through the use of normalized sensitivities. The primary advantages of the presented 

techniques is the ability to adaptively localize the cross-covariance to account for 

existing field conditions and well configurations thereby eliminating erroneous long and 

short range correlations. The proposed methods of covariance localization are shown to 

exhibit superior performance vis-à-vis the traditional form of the EnKF and this is 

successfully demonstrated with synthetic examples and real field cases.  

A favorable aspect of the EnKF is its capability to integrate data originating from 

various sources and corresponding to different length-scales. This may be achieved 

either through recursive or simultaneous assimilation. In either case, the problem can be 

addressed using one single EnKF analysis subroutine contributing to the elegance of the 

algorithm. We exploit this feature of the EnKF to propose a 2-stage multi-scale EnKF 

and extend the application to interpretation of Partitioning Inter-well Tracer Tests 

(PITT). We show that the multi-stage EnKF using coarse-scale constraints outperforms 

the traditional implementation of the EnKF in identifying the spatial variation of the 

non-aqueous phase saturations.  

Based on the findings from the results obtained in the different sections of this 

dissertation, the major conclusions from this work are summarized as follows: 

• Sampling error is a significant source of noise in ensemble-based estimation of 

model covariance matrices. Variance-deficient ensembles, geologically 

inconsistent realizations, parameter overshooting and loss of spatial continuity 

are some problems attributed to a degraded EnKF analysis. These can be largely 

mitigated by the use of larger sized ensembles which can impose a large 

computation burden for field-scale problems.  

• Streamlines provide unique advantages for covariance localization for ensemble-
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based data assimilation. The particular forms of the proposed streamline-derived 

approaches outlined in section 2 enhance the EnKF analysis by manipulation of 

the cross-covariance matrices to retain physically relevant terms.  

• The presented approaches to spatial localization tend to preserve geologic 

realism, avoid the problems associated with the loss of variability and maintain 

the connectivities of the extreme values of permeability; all of this is achieved at 

a reduced cost when compared to a larger ensemble providing equivalent 

performance.  

• A coupled 2-stage multi-scale EnKF forms the basis for an efficient scheme to 

utilize information from PITT for estimation of the underlying fluid saturation 

distribution and the reservoir heterogeneities. The coupling superimposes 

information from a streamline-based data integration methodology operating 

with the ensemble mean onto the individual realizations of the ensemble. This is 

of significant benefit prior to the initiation of EOR processes.  

 

5.2 Recommendations 

Several recommendations that could improve the performance of the EnKF algorithm or 

extend the applications of presented concepts are listed below: 

• Streamline-specific covariance localization is strictly valid for those types of 

production data directly related to fluid transport (for e.g. oil and water rates, 

water-cut or gas-oil ratio information). The extension of the methodology to 

incorporate bottom-hole pressure information is only an approximation. For the 

integration of these types of data, a more consistent reformulation of the 

localization scheme may be recommended, based on the trajectories of the 

evolution of the pressure front.  

• The theory of covariance localization is extended using hierarchical EnKF’s 

(Khare and Anderson 2006; Anderson 2007) where an ensemble of ensembles is 

used to provide a fairly general, application-independent means to detect sample 

error and apply corrections to the small-sample cross-covariance estimates. This 
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method was not investigated in the course of this dissertation, but the central idea 

of a hierarchical EnKF is appealing and could be the focus of a subsequent study.   

• The 2-stage smoothness constrained EnKF appears to be a promising alternative, 

but a deeper investigation into the methodology might give greater insight into its 

relative merits and demerits. The basic formulation is predicated on the 

assimilation of the regularizing smoothness ‘observation’. Potentially, this could 

lead to significant benefits in terms of preserving geologic consistency and allow 

for smooth updates consistent with the low resolution and averaging properties of 

production data. 

• In proposing the multi-scale EnKF, we essentially constrained the ensemble to 

coarse-scale information obtained from integration of production data to calibrate 

the ensemble mean. Another promising approach is to exploit the speed-up 

achievable with running a large set of coarsened realizations. This would have a 

few advantages: First, running with a large set of ensemble members implies that 

the associated problems with spurious correlations might be eliminated. Second, 

there is a significant computational advantage to using a coarse-scale model over 

a fine-scale model realization. Third, due to the use of low resolution models 

with fewer parameters, we can eliminate problems related to the existence of 

multiple minima with fine-scale model estimation; therefore it is more likely that 

the EnKF would converge to a global minimum.  
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