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ABSTRACT

Space-time Forecasting and Evaluation of Wind Speed with Statistical Tests for

Comparing Accuracy of Spatial Predictions.

(August 2009)

Amanda S. Hering, B.S., Baylor University;

M.S., Montana State University

Chair of Advisory Committee: Dr. Marc G. Genton

High-quality short-term forecasts of wind speed are vital to making wind power a

more reliable energy source. Gneiting et al. (2006) have introduced a model for the av-

erage wind speed two hours ahead based on both spatial and temporal information. The

forecasts produced by this model are accurate, and subject to accuracy, the predictive dis-

tribution is sharp, i.e., highly concentrated around its center. However, this model is split

into nonunique regimes based on the wind direction at an off-site location. This work both

generalizes and improves upon this model by treating wind direction as a circular variable

and including it in the model. It is robust in many experiments, such as predicting at new

locations. This is compared with the more common approach ofmodeling wind speeds and

directions in the Cartesian space and use a skew-t distribution for the errors. The quality

of the predictions from all of these models can be more realistically assessed with a loss

measure that depends upon the power curve relating wind speed to power output. This

proposed loss measure yields more insight into the true value of each model’s predictions.

One method of evaluating time series forecasts, such as windspeed forecasts, is to

test the null hypothesis of no difference in the accuracy of two competing sets of forecasts.
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Diebold and Mariano (1995) proposed a test in this setting that has been extended and

widely applied. It allows the researcher to specify a wide variety of loss functions, and the

forecast errors can be non-Gaussian, nonzero mean, serially correlated, and contemporane-

ously correlated. In this work, a similar unconditional test of forecast accuracy for spatial

data is proposed. The forecast errors are no longer potentially serially correlated but spa-

tially correlated. Simulations will illustrate the properties of this test, and an example with

daily average wind speeds measured at over 100 locations in Oklahoma will demonstrate

its use. This test is compared with a wavelet-based method introduced by Shen et al. (2002)

in which the presence of a spatial signal at each location in the dataset is tested.
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CHAPTER I

INTRODUCTION

Wind energy is a rapidly growing industry that is gaining worldwide public interest. Once

a wind farm has been installed, this “green” energy producesno greenhouse gases and is

renewable and inexpensive. However, the United States currently supplies less than one

percent of its electricity needs with wind power. One of the obstacles to increasing this

percentage is that wind power must be distributed to consumers as it is produced. No

cost-effective storage system for wind power exists, and utility providers must constantly

balance the supply and demand of electricity. While demand is relatively predictable, wind

power is by its very nature a variable source. To plan for transmission and scheduling of

electricity, for maintenance, and for trading, forecasts of wind power are necessary.

In Chapter II, the current state of wind power is described aswell as the issues facing

forecasters who seek to minimize the disruptions that utilities experience when they incor-

porate wind energy into their generation mix. With a forecast of wind speed, a forecast

of wind power can be derived for various numbers and types of wind turbines, so most

modelers focus on forecasting speed. Wind speed has some unique characteristics, some

of which vary from one geographic location to another. But ingeneral, utilizing wind data

collected over time and spatially distributed around the location where forecasts are desired

will improve forecasts.

Statistical models are just one type of model used to forecast wind speeds, but they

are generally the best for one to four hour horizons since they can be made quickly. They

The format and style follow that ofBiometrics.
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also come with a built-in estimate of the variability of the forecast, giving utilities informa-

tion beyond a simple point forecast. Making improvements instatistical models over the

persistence forecast, in which the last observed value is the future forecast, gives utilities

more incentive and more confidence in buying wind energy.

In Chapter III, two new models for wind speed forecasting arepresented and are

tested with wind data from the Pacific Northwest. A model developed by Gneiting, Larson,

Westrick, Genton, and Aldrich (2006) that makes two-hour ahead forecasts of the hourly

average wind speed at one of the three locations serves as thebenchmark. Their model de-

fines two sets of regimes based on the wind direction at one of the sites. Given the regime,

the variables in the model change. These regimes are based onunique geographical fea-

tures of this area, making it difficult to apply in other regions. The first model we propose

eliminates the regimes and incorporates wind direction as avariable in the model, and the

second model transforms speed and direction to Cartesian coordinates to forecast the wind

vector with a bivariate regression with skew-t errors. Both models are regime-free, but

the second also forecasts wind direction, which is also needed to obtain an accurate wind

power forecast.

The forecasts produced by all three models are compared witha new loss function that

reflects the nonlinear relationship between wind speed and wind power. This loss function

does not impose any penalties on the forecasts when errors are made in the constant region

of the power curve. It also allows underestimation and overestimation of wind speeds to

be penalized based on the costs associated with such errors.In evaluating the forecasts

with this loss function and various others, the regime-freemodels demonstrate that they

are more flexible and lose no predictive ability. Various experiments, such as predicting at

other locations, modeling ten-minute data instead of hourly data, and tuning the penalty for

over and under estimation in the loss, demonstrate the robustness of our proposed models.

The modeling approaches in Chapter III suggest the need for amore general model-
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ing strategy in which forecasts can also be made spatially. Astatistical test developed by

Diebold and Mariano (1995) for comparing the forecast accuracy of competing sets of time

series forecasts is applied to each pair of wind speed forecasts in Chapter III, but no com-

parable type of test is available for spatial data. In Chapter IV, we develop a similar type

of test for the null hypothesis that the difference between two sets of spatial forecasts is,

on average, zero. This test accounts for contemporaneous correlation, spatial correlation,

and non-Gaussianity in two sets of forecasts and allows a general loss function for com-

parison. Diebold and Mariano (1995) use a truncated sum of the empirical covariances to

estimate the variance of their test statistic, but we show that summing the empirical covari-

ances across all spatial lags yields zero. Thus, estimationof the variance of the test statistic

is done parametrically with estimation of the semivariogram with weighted least squares

producing the best results.

Diebold and Mariano (1995) also did not encounter a time-varying mean since their

test is designed exclusively fork-step ahead forecasts. With spatial predictions made at

varying lag distances from the nearest neighbor, a spatially varying mean can influence

estimation of the test statistic. Simulations show the performance of the test under the

null and alternative hypotheses when both a constant spatial mean and a spatially varying

trend are present. With a spatially varying mean, the trend must be removed first, and

a nonparametric trend estimation routine is proposed. Misspecification of the trend can

result in an incorrectly sized test.

An existing test that can be compared with the one we propose is only applicable in

a narrow range of circumstances. Shen, Huang, and Cressie (2002) developed a test for

detecting a significant spatial signal at each location in the domain, not on average across

all locations as our test does. They apply a discrete wavelettransform to complete data on

a dyadic grid and then seek to reduce the number of hypothesesto test by exploiting the

structure of the wavelet coefficients. When the spatial meanis constant, the two tests are
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equivalent, and simulations show that the test by Shen et al.(2002) is oversized when the

data is not Gaussian.

For illustration, the spatial forecast accuracy test is applied to a set of daily average

wind speeds observed at over one hundred locations in Oklahoma. Finally, a summary of

all findings is provided in Chapter V.
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CHAPTER II

STATISTICS IN WIND POWER∗

Part of the answer to rising energy needs and costs may literally be blowing in the wind. In

industrialized countries, flipping on a light switch or booting up a computer is practically

an unconscious act, but our dependence on electricity permeates nearly every aspect of life.

Among sustainable sources of electricity, only wind energyhas the capacity and technology

needed to compete in the open marketplace. In fact, the largest onshore wind farm in

Europe has begun construction in Scotland, and the largest in the US is planned for southern

California. The biggest offshore wind farm production in the world is slated for the Thames

Estuary. But, the wind is intermittent. In this work, we explain how advanced statistical

techniques will enable wind energy to be more efficiently incorporated into the electrical

grid.

2.1 Wind Power Basics

Harnessing the power of wind to benefit humans is not a new concept. Historically, wind-

mills have been used to pump water from wells or to grind grainfor centuries. But fast-

forwarding into the21st century, “windmills” are being used to generate electricity. Wind

turbines, as they are now commonly called, are enormous structures, generally up to 80

meters tall, which is roughly the equivalent of a 26 story building. With blades up to 40

meters in length and costing up to $2.5 million to manufacture and install a single one

(www.eia.doe.gov), the science behind effective wind turbine design has evolved rapidly

over the last two decades. Within the wind turbine housing isa gearbox to increase the

* Reprinted with permission from “Blowing in the wind” by Genton, M. G. and Hering, A.
S., 2007.Significance, 4, 11-14, Copyright 2007 by Wiley-Blackwell Publishing.
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rotational speed and a generator to convert the motion into electricity. A computer in the

tower senses the wind direction, points the blades in the optimal direction, and shuts the

turbine off in dangerously high winds.

So, can these supercharged wind turbines actually produce enough energy to make a

significant contribution to meeting demand? Most modern turbines installed onshore are

rated to produce between 1.5 and 1.8 megawatts (MW) of electricity each, which is enough

to power 1,000 homes for an entire year (www.bwea.com). Depending on the size and

number of turbines, clusters of them situated in windy locations can produce electricity for

many thousands of homes. These clusters, as in Figure 1, are called wind farms. Construc-

tion of the largest onshore wind farm in Europe started in thefall of 2006 south of Glasgow,

Scotland. The construction will take 3 years to complete andwill consist of 140 turbines

producing 322 MW of electricity, enough for about 200,000 homes. The largest wind farm

in the US is planned for a region just north of Los Angeles in California and will produce

over 1500 MW of power.

Figure 1: A typical wind farm in the state of Washington, USA.
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Figure 2 illustrates the amount of power that can be producedby a typical onshore

turbine at various wind speeds. At the cut-in speed, the blades begin to rotate, but the

power output increases rapidly even with very small increases in the wind speed. In this

range, power is proportional to the cube of wind speed, so small differences in speed can

make large differences in power output. The maximum power output of 1.8 MW for this

particular turbine occurs at about 30 miles per hour and shuts down at just over 50 miles

per hour. However, power depends not only on wind speed but also on variables such as

the diameter of the blades, the density of the air, and the direction from which the wind is

blowing. Thus, wind power varies from one turbine make and model to another.
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Figure 2: The potential power output of a wind turbine. The data is from a 1.8 MW Vesta
V80-1800II turbine.

A large amount of growth and research is now being invested inoffshore wind tur-

bines, whose larger sizes (up to 3 MW with 5 and 7 MW machines indevelopment) can

take advantage of stronger ocean breezes. Just over 15 offshore wind farms are currently in

operation, mainly off the coasts of Denmark, Sweden, and theUK, but many more are in

the planning stages. The Thames Estuary scheme announced bythe UK Secretary of State
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in December 2006 will use 341 turbines to generate a planned 1000 MW at a capital cost

of £2 billion. Most offshore wind farms are located in water lessthan 30 meters deep, but

engineers feel that they can draw on their experiences with oil platforms and move these

farms even farther from land and out of public view.

Compared to traditional power plants fired by coal, natural gas, or nuclear reactions

that produce, averaged over the year, 50% of their maximum designed output, wind farms

produce on average about 30% of their maximum rated output. In the US, the current cost

for a kilowatt hour of wind generated electricity is between$0.04 and $0.06, very similar

to traditional energy sources which cost between $0.04 and $0.055 (www.eia.doe.gov).

Opponents to wind energy claim that there are more start-up costs involved with wind

energy. Transmission lines to move electricity from windy places, which tend to be remote,

must be established, but once a wind farm is operable, it paysfor itself in its first 6 to 8

months of operation (www.bwea.com). In addition, decommissioning a wind farm, whose

turbines last 20 to 25 years, is simply a matter of disassembling the turbines, removing

them, and recycling the materials. This is a much simpler andenvironmentally friendly

process than decommissioning a nuclear power plant, for instance.

Wind farms have other tangible and intangible benefits. Onceinstalled and operable,

wind farms produce clean fuel, with no greenhouse gas pollutants or gas emissions. Quan-

tifying the importance of this benefit is difficult but recognized as significant. The Energy

Information Administration projects that oil and gas prices will remain high for at least the

next 20 years (www.eia.doe.gov). Every hiccup in these prices can send economies into

turmoil, so countries who invest in diversifying their energy portfolio, will help to stabilize

their economies. Not only will demand for oil and gas decrease, thereby causing a decrease

in prices, but more importantly, volatility in energy prices will be reduced.

Worldwide, only 1% of electricity is generated from wind, but the growth rate has

been rapid—24% overall in 2005, with a stunning 48% increasein Asian markets. The
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World Wind Energy Association expects that over 120,000 MW of wind power have been

installed through the end of 2008 (www.wwindea.org). Many countries already boast a

large proportion of wind generated electricity. The pioneering countries of Denmark and

Germany who generate over 20% and 8% of their total electricity needs from wind, respec-

tively, have set an example to others who plan to integrate wind electricity into their utility

systems. Countries such as the US and the UK (both currently generating 1% of their

electricity needs from wind) are aggressively developing their abundant wind resources.

Figure 3 shows how much electricity of the worldwide total isproduced by each of the top

6 countries.

Germany 23.7%

USA 17.9%

Spain 16.1%

India 8.4%

China 6.4%

Denmark 3.3%

Other 24.1%

Figure 3: The percentage of worldwide wind capacity generated by each country in 2007
(www.wwindea.org).

With all of the advantages of and interest in wind produced electricity, barriers to

widespread usage still exist. Indeed, utility companies must manage a delicate balance be-

tween electricity supply and demand. In larger markets, excess electricity can be sold, and
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deficits can be bought. But, depending on regulations in eachparticular market, monetary

penalties can be imposed when energy is wasted. In smaller markets, such as those on

islands, with no one else available to buy or sell electricity, there is little room for error.

Electricity demand by consumers varies in a nearly deterministic fashion based on

outdoor temperature, daylight hours, and holidays. Thus, demand can be predicted, but

when wind power is added as a source of electricity, supply becomes unpredictable (Giebel,

Brownsword, and Kariniotakis, 2003). Wind power is intermittent—obviously the wind

does not blow at a constant speed but is variable. No cost-effective solution to storing wind

energy has been found, so wind energy must be used immediately when it enters the grid.

A utility company consequently needs to schedule how much energy it needs to “order”

from its traditional plants so that supply will equal demand. Gas turbine plants need at

least 20 minutes notice to begin production, but large coal and oil plants require at least

8 hours to come online. Markets with slow-start production units would benefit the most

from accurate wind power forecasts.

2.2 Statistical Solutions

Utilities cannot rely completely on wind energy because of its uncontrollable and intermit-

tent nature. Given certain information, electricity dispatchers do not have to make blind

decisions without any knowledge of how much electricity thewind will produce during

a critical stage of decision-making. Statistical modelingto predict wind speeds or wind

power can improve on our “best guess” estimate, which is the current wind speed, called

the persistence model.

The number of hours ahead that a forecast is needed is called the forecast horizon and

can vary depending on the reason for the prediction. The maximum horizon needed would

be for 2 to 5 days ahead to schedule maintenance of the turbines during slow wind days.

Otherwise, 24 and 48 hour forecasts are needed for trading inthe electricity market. For
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scheduling and dispatch, a typical horizon is between 3 and 10 hours, but in systems whose

conventional sources generate electricity quickly, the horizon can be under 3 hours.

Both physical and statistical models for predicting wind power have been proposed

and are currently in use, but both approaches follow similarstrategies. The available data

that the models will be built with must be scaled to the hub height of the turbine. For

instance, the wind speeds for the past 24 hours may be available at a height of 10 meters

above ground level, but as the altitude increases, wind speed also increases in a logarithmic

fashion. As a result, doubling the altitude can increase thewind speed by 10% and the

power output by 34%.

The next step is deciding whether to predict the wind speed orjump straight to pre-

dicting wind power output, which is the bottom line for utilities. If wind speed is predicted,

then an additional step of translating that into power output for the particular types and

numbers of turbines in use must be done. However, solely predicting power for a particular

region may make it difficult to predict power output for a nearby wind farm with differ-

ent turbines. In statistical models used to date, it has beenfound that modeling the wind

speed itself is most efficient for horizons up to 8 hours and then modeling the power output

thereafter is sufficient (Giebel et al., 2003).

Finally, predictions can be upscaled for an entire region. This is especially important

for areas like the UK and Europe where wind farms are geographically dense, and utility

companies may manage several wind farms located in close proximity to each other.

Most physical models used to predict wind speed or power incorporate output from

Numerical Weather Prediction (NWP) models. The basic premise of these models is the

same–use a finer and finer grid of information to get a more complete picture of terrain and

air flow. NWP based models can cover thousands of kilometers horizontally with grid res-

olutions from 5 to 25 km, but they are computationally extremely expensive to run. Models

can require up to 4 hours of computer time and therefore cannot generate fast, reliable fore-
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casts for short horizons (Gneiting, Larson, Westrick, Genton, and Aldrich, 2006). These

short horizons are the typical time needed to schedule transmissions and dispatch. Thus,

physical models are more effective for 24 hour predictions.Ensemble models, averaging

many different physical models together or combining them with statistical models, are

also becoming popular.

Statistical models are the most competitive for short forecast lead times. Neural net-

works, fuzzy logic, local regression, and time series methods have all been applied to the

problem of wind speed prediction. Many of these models improve when additional infor-

mation from the wind farm is included, such as wind direction, time of day, atmospheric

pressure, and even physical model output (Gneiting et al., 2006). The best statistical mod-

els, however, do not use a “black box” approach but also incorporate expert knowledge of

the wind characteristics of a particular region (Gneiting et al., 2006). It also makes sense

that allowing parameters in these models to vary seasonallycan result in improvements

since a variable’s influence may change throughout the year.

A growing area of emphasis has been to incorporate off-site observations into statis-

tical models (Gneiting et al., 2006; Larson and Westrick, 2006). Changes in wind speeds

may be detected at upwind locations before reaching the windfarm and can improve pre-

dictions. An argument against this methodology is that sites “upwind” of a wind farm can

change as the wind direction changes (Kretzschmar, Eckert,and Cattani, 2004), and no

single off-site location may exist that has consistently high correlation with wind speeds at

the prediction site. The ANEMOS Project group (a consortiumin Europe whose goal is to

improve wind forecasting) found that with information on 23off-site locations, predictions

could be improved using 3 to 5 of these sites whose meteorological conditions were most

representative of the region (http://anemos.cma.fr). Even physical models have been shown

to benefit from the use of additional spatial information.

With the plethora of models being proposed and tested, a consistent way to compare
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them is needed but not straightforward. Differences in complexity of the terrain, forecast

and data resolution (10 minute, hourly, daily), and size andnumber of wind turbines at a

farm can all affect model comparison. A common way to evaluate a model is to compute

some function of the error–the actual observation minus what was forecast–such as the root

mean square error (RMSE). RMSE will vary from one dataset to another; a skill score is

used to remove the inherent variability in the observations. It is defined as the difference

between the RMSE of a reference forecast and the RMSE of a model, divided by the RMSE

of the reference forecast. The skill score can only be computed if a reference forecast (a

model currently in place or the persistence forecast) is available. Even though RMSE is

the most common measure to quantify error, it is not sensitive enough to reflect improve-

ments in prediction quality. In addition, comparisons madeonly against the persistence

model may be overly optimistic since improving upon the persistence forecast can be ac-

complished with the simplest of statistical techniques. The ANEMOS project group has

also suggested that errors be normalized with respect to theinstalled capacity of the wind

farm (http://anemos.cma.fr).

Besides the most obvious problem of forecasting the wind speed or wind power for

a particular horizon, more detailed information about the quality of the forecasts is also

desired. Statistical forecasts have a built in probabilistic error rate based on sampling dis-

tributions. These error bands around the predictions, or confidence bands, give dispatchers

an idea of how certain the forecasts are. Very wide bands may indicate an unpredictable

forecast, and smaller bands may indicate a more reliable estimate. Ensemble predictions

can also give a sense of the forecast uncertainty (http://anemos.cma.fr). If the predictions

from several different models are similar, then the collective prediction is more certain

than if the forecasts vary dramatically. It is also of interest to identify conditions that

lead to unpredictable power output or dramatic changes in power. When those conditions

occur, utilities can protect themselves by carrying largerrolling reserves from traditional
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energy sources.

2.3 Future Work

Predicting wind speed and power is a blossoming area of research. Besides the issues

previously mentioned, predictions at offshore wind farms add another dimension to the

process. The vertical wind profile (and thus the relationship between wind speed at an

observed height and the turbine hub height) differs offshore due to nonlinear interaction

between the wind and waves, surface heating, and the land-sea interface that modifies the

air flow. Understanding the wake effect behind massive offshore turbines will influence

turbine orientation and spacing. A wake is the decrease in wind speed since some energy

is lost after moving through the turbine blades. They differfrom one turbine to another and

can decrease power output by up to 10% (http://anemos.cma.fr).

Predictions both on and offshore may benefit from the use of more advanced statisti-

cal techniques. Many statistical methods are built on the assumption that the variable of

interest is normally (symmetric and bell-shaped) distributed. This is decidedly untrue for

wind speeds that are constrained to be positive and for whichlarge values occur less fre-

quently than small ones, as illustrated in Figure 4. Nonnormality should be incorporated

into statistical models. In addition, placement criteria for new wind farms and for turbines

within a wind farm can be evaluated and aided with the use of spatial statistics.

Improved statistical forecasting has already had an influence in increasing wind energy

production. As the industry continues to expand, the end wants of utilities will only grow in

number and complexity; they will need longer forecasts, more accurate forecasts, measures

of forecast quality, and good tools for forecasting. As statisticians and scientists work

together to provide these tools, the power in the wind will beharnessed and become a

mainstream solution to energy demands.
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Figure 4: The wind speed recorded hourly during the year 2005at Houston International
Airport in Houston, Texas, USA.
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CHAPTER III

SPACE-TIME WIND SPEED FORECASTING AND EVALUATION

3.1 Introduction

3.1.1 Wind Energy Background

The history of harnessing the power in wind for the benefit of man is long and diverse,

yet wind energy’s current role is evolving rapidly. Throughout the world, the number of

installed megawatts increased in 2008 from 2007 by 29%. Morefacts and information

on the role of statistics in wind power can be found in Genton and Hering (2007) and

the references therein. Wind farms capable of powering manythousands of homes are

springing up both on land and sea. Since the cost of a kilowatt(kW) of wind powered

electricity is now nearly the same as a kW produced by coal or nuclear energy, many

users are switching to this green energy that produces no greenhouse gases or harmful

byproducts. Uneven heating of the earth’s surface by the sunproduces wind and guarantees

that this natural resource will never be diminished or depleted.

Despite its many advantages, utilizing wind energy also presents its share of chal-

lenges. The windiest places tend to be the most remote, requiring transmission lines to

carry electricity to populated areas. Some complain that the wind turbines ruin the scenery

of pristine lands and interfere with bird migration. But by far, the biggest challenges are:

(1) the wind is not a steady, constant supply of energy, and (2) no cost-effective method

for storing its power currently exists. Its intermittent nature can create a problem for those

managing the electrical grid, which is where the supply and demand of electricity meet and

must be balanced. Electrical demand is easily predictable based on weather patterns, day-

light hours, and holidays or work days. Usually, an equal amount of electricity is ordered

to meet this demand from traditional sources. Wind-poweredelectricity must be used as
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soon as it enters the electrical grid, so the amount of additional electricity to order from

traditional sources becomes unpredictable. Ordering too much or too little electricity can

carry severe penalties and fines in utility markets.

Making accurate predictions of the future wind speed reduces the variability and risk

that the electrical grid faces once it accepts wind energy asa source (Smith, Parsons, Acker,

Milligan, Zavadil, Schuerger, and DeMeo, 2007). For a rangeof wind speeds, the amount of

energy that can be produced from a wind turbine is proportional to the cube of wind speed,

so small improvements in predicting wind speed lead to larger improvements in predicting

wind energy. Predictions of wind energy could be made directly, but these are highly

dependent upon the types, sizes, and number of wind turbinesin operation. A prediction

of wind speed, on the other hand, can be used to derive a prediction of wind energy for

a given wind farm. The typical forecast horizon needed for scheduling transmission and

dispatch is two to four hours. Longer horizons, such as two tothree days, are useful for

scheduling maintenance of the turbines, and numerical weather prediction models are best

for this purpose.

Statistical models, especially those that incorporate expert knowledge of wind char-

acteristics and geography, are unmatched in making short-term predictions (Giebel et al.,

2003). However, this area of application has not been exhaustively explored by statis-

ticians (Kestens and Teugels, 2002). Gneiting, Larson, Westrick, Genton, and Aldrich

(2006) have recently proposed several models for predicting the two-hour ahead average

wind speed near a wind farm in northern Oregon. Their best model, called the Regime-

Switching Space-Time Diurnal (RSTD) model, accounts for the diurnal, non-negative, and

volatile nature of wind speed. It takes advantage of the topography of the Columbia River

Gorge in which winds are generally channeled in either an easterly or westerly direction

to define two regimes. The regimes switch based on whether thewind direction at a point

west of the wind farm is blowing from the west or from the east.
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3.1.2 New Models and Evaluation Tools

In this work, two new models are introduced that eliminate the RSTD regimes, a loss mea-

sure to assess the quality of the predictions in terms of power is proposed, and experiments

demonstrate the robustness of the new models. The two new models highlight differences

in how the wind speed and direction variables may be treated—either in Polar coordinates

or in Cartesian coordinates. In the first model, the Trigonometric Direction Diurnal (TDD)

model, the wind direction is not simply used to determine theregimes. It is incorporated

directly into the predictive mean function of the RSTD modelby treating it as a circular

variable and using its sine and cosine. Weisberg (2005) found that including the sine and

cosine of wind direction did not improve wind speed prediction, but his model building

approach is not systematic. The TDD model is more general than the RSTD model and has

similar predictive ability.

The second model is called the Bivariate Skew-T (BST) model and uses the 2-dimensional

Cartesian wind vector at different locations and lags in time to model the wind speed at the

location of interest. The errors in this bivariate regression model are not distributed accord-

ing to a normal distribution but with a skew-t distribution which is normal in a special case;

see the review paper by (Azzalini, 2005). The skew-t distribution has additional parame-

ters that are flexible for capturing skewness and heavy tails. Predictions of wind speed are

ultimately for the purpose of predicting power; thus, assessing the quality of wind speed

predictions should link speed and power (Lange, 2005; Langeand Focken, 2005). Typi-

cal measures such as Root Mean Squared Error (RMSE) or Mean Absolute Error (MAE)

for gauging the quality of predictions do not make this link.Power curves describe the

relationship between speed and power, and we develop a new loss measure that depends

upon this curve. For various ranges of wind speeds, the poweroutput is either constant or

proportional to the cube of wind speed. Using a wind power curve for a standard turbine,
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penalties are assigned to each prediction in terms of power output. Finally, empirical ev-

idence has shown that underestimating wind power averages ahigher economic cost than

overestimating it does (Pinson, Chevallier, and Kariniotakis, 2007). Therefore, the penal-

ties are weighted based on the ratio between costs for over versus underproducing, and the

effect of the weight on model performance is investigated.

The robustness of these new models is investigated in various experiments. The RSTD

predictions are examined when another site besides the mostwesterly one is chosen to

determine the regimes. In fact, choosing a different site with northerly/southerly regimes

produces predictions that are as good as those produced withthe RSTD, and choosing a

poor set of regimes can deteriorate the predictions. This example illustrates that complex

decisions involved in selecting regimes can impact the predictions. Each model is rebuilt

to make predictions at other sites in the dataset, and the TDDmodel is found to perform

significantly better than the RSTD model. Finally, the models are rebuilt on data observed

at the ten-minute scale instead of data that have been aggregated to the hourly scale. These

data are more variable, but the TDD model performs significantly better than the RSTD

model.

This work is organized as follows. In Section 3.2, the RSTD, TDD, and BST models

are described in detail. Section 3.3 introduces the power curve loss measure. Predictive per-

formance of each model and robustness in several experiments are reported in Section 3.4.

We conclude in Section 3.5.

3.2 Predictive Wind Models

3.2.1 Data Description

The data used in this study were collected at 3 meteorological towers near the Columbia

River which runs along the Oregon-Washington border. The wind speed and direction were

recorded every ten minutes. Vansycle, Oregon is located near the Stateline wind energy
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center and is the location where prediction is desired. Goodnoe Hills, Washington lies

146 km west of Vansycle, and Kennewick, Washington lies 39 kmnorthwest of Vansycle.

Figure 5 shows the approximate relative locations of the three stations. The time series of

wind speed and direction are simultaneously recorded at all3 locations for 55 days from

September 4, 2002 to October 28, 2002 (used for training) andalso for 279 days from

February 25, 2003 to November 30, 2003 (used for testing). Wind speed and direction

densities for the 2002 training data are in Figure 5. Each point on the circular histograms

represents an observed wind direction. A point at the0 angle indicates that the wind is

blowing from the east to the west, aπ/2 observation means the wind is blowing from the

north toward the south and so on. For complete details on the dataset and site information,

the reader is referred to Gneiting et al. (2006).

Many characteristics of the wind vector must be considered in building a model. In-

herent in this dataset is spatial correlation. As weather systems move through the area, the

site upwind of the others will be affected first, and the current wind conditions at that site

will soon prevail at the other sites (Alexiadis, Dokopoulos, and Sahsamanoglou, 1999). Of

course, which site is upwind of the others will change depending on the orientation of the

weather system, but this can be addressed in the modeling. Strong temporal correlation is

also present in the data with significant correlations in both the speed and direction lasting

for over 24 hours. The wind speed and wind direction are also strongly linked. Martin,

Cremades, and Santabárbara (1999) note the strong correlation between wind speed and

direction but then ignore it and model the two variables separately. There is a diurnal

pattern in the wind speeds, and seasonal differences do exist (Klink, 1999) but are more

difficult to model with this limited amount of data. Finally,the wind speed variance varies

in time as wind speeds change rapidly and with high frequency, which will be referred to

as conditional heteroscedasticity.
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Figure 5: GH, KW, and VS denote Goodnoe Hills, Kennewick, andVansycle, respectively. The locations of each circle indicate
the relative location of each tower to the others. Each pointon the circular histograms at the top represents a wind direction
from the 2002 training data. For example, at Vansycle the majority of the wind directions blow from the northwest towardsthe
southeast. The bottom panels are nonparametric density estimates of the 2002 wind speed data.
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3.2.2 Regime-switching Space-time Diurnal Model

The best model that Gneiting et al. (2006) build incorporates many of the variable char-

acteristics discussed in Section 3.2.1. This particular model will be presented briefly here

for clarity, but the reader should see the original paper forthe most complete description.

In this model, the ten-minute observations of wind speed areaveraged over each hour to

yield a single hourly observation. The hourly wind speed at Vansycle is modeled with the

truncated normal distribution,N+(µ, σ2), whose mean andα-quantile are given by

µ+ = µ + σ · φ
(µ

σ

)

/Φ
(µ

σ

)

(3.1)

and

z+
α = µ + σ · Φ−1 [α + (1 − α)Φ (−µ/σ)] , (3.2)

respectively, whereφ and Φ denote the density and distribution function of a standard

normal random variable. The key to the RSTD model is in choosing a structure for the

predictive center,µ, and forσ, the predictive spread. The direction that the wind is blowing

during the last ten-minute observation of the hour is used toswitch the regimes. When the

wind at Goodnoe Hills is blowing from the west to the east (i.e., the wind is westerly or in

the westerly regime), the mean hourly wind speed at a particular location,Ds, is regressed

on two pairs of harmonics as

Ds = d0 + d1 sin

(

2πs

24

)

+ d2 cos

(

2πs

24

)

+ d3 sin

(

4πs

24

)

+ d4 cos

(

4πs

24

)

,

for s = 1, 2, . . . , 24. Then the least squares fit from the wind speed series at each location

is removed, resulting in residual series without a diurnal cycle. V r
t , Kr

t , andGr
t denote the

residual series at timet for Vansycle, Kennewick, and Goodnoe Hills, respectively.Then,

the predictive center is modeled by

µt+2 = Ds+2 + µr
t+2. (3.3)
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Ds+2 is the fitted diurnal component at Vansycle, andµr
t+2 is a linear combination of the

present and past values of the residual series at the three sites

µr
t+2 = a0 + a1V

r
t + a2V

r
t−1 + a3K

r
t + a4K

r
t−1 + a5G

r
t . (3.4)

When the wind is easterly (blowing from the east to the west) at Goodnoe Hills, removing

the diurnal variability from the wind speed series does not result in improvement, so the

predictive center is modeled as

µt+2 = a0 + a1Vt + a2Kt, (3.5)

whereVt andKt are the original time series.

For the westerly regime, the conditional heteroscedasticity is incorporated by model-

ing σ as a linear function of the volatility value with

σt+2 = b0 + b1vt. (3.6)

The coefficientsb0 andb1 are constrained to be non-negative, and the volatility value,vt, is

vt =

(

1

6

1
∑

i=0

(

(V r
t−i − V r

t−i−1)
2 + (Kr

t−i − Kr
t−i−1)

2 + (Gr
t−i − Gr

t−i−1)
2
)

)1/2

. (3.7)

This reflects the magnitude of the most recent changes in the wind speed. In the easterly

regime, the residual series in Equation (3.7) are replaced by the original wind series. The

parameters in Equations (3.4), (3.5), and (3.6) are estimated numerically by minimizing the

Continuous Ranked Probability Score (CRPS) for a truncatednormal distribution (Gneiting

and Raftery, 2007).

The 2002 data is used for building and developing the predictive mean structures in

Equations (3.4) and (3.5), and the model is tested during thelast 214 days of the 2003

series. A window of days in 2003 is used to estimate the parameters in the model before

making the first prediction, and this window is rolled ahead by one observation after each
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two-hour prediction is made, the parameters are estimated again, and so on. Based on

experiments performed by Gneiting et al. (2006), the windowlength that yields the best

predictions is 45 days.

3.2.3 Trigonometric Direction Diurnal Model

Much of the structure of the RSTD model is retained in the TDD model, but Figure 6

clearly shows that the distribution of wind directions at Goodnoe Hills changes from the

spring to fall months. It is less clear for months such as October and November if two

regimes are sufficient. If not, it is even more difficult to determine how many regimes

would be necessary and where the boundaries for these regimes would be. Instead of

making a subjective decision about the number and position of the regimes, the TDD model

eliminates the regimes but includes the wind direction, possibly at all three locations, as a

covariate in the predictive mean function. Since wind direction is a circular variable, we

include it in the model as the sine or cosine of the wind direction, following the suggestion

by Mardia and Jupp (2000). We also use the hourly average of the ten-minute observations

of wind direction instead of the last observed wind direction of each hour.

We build the predictive mean function from the pool of variables listed in Table 1

with the Bayesian Information Criterion, or BIC (Schwarz, 1978). Only lags up to three

hours are shown since none greater are selected with this criterion. Using the 2002 data

to build the model, the wind speed at Vansycle two hours aheadis regressed on the first

variable, Vansycle’s wind speed at the current time. If the BIC of this model is less than

the model including only an intercept, thenVt is retained in the model. Then,Vt−1 is

added to the regression. If the BIC is reduced, then it is alsoadded to the model. If BIC

increases, then we do not includeVt−1 in the model and skip the remaining lags of Vansycle

wind speed. Next, both the sine and cosine of the current winddirection at Vansycle are

added simultaneously to make the model invariant with respect to the axes, and they are
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Figure 6: Circular histograms of wind directions at GoodnoeHills for each month when
predictions are made in the year 2003. Easterly winds are defined as those on the right-hand
side of the circle between3π/2 andπ/2. Westerly winds are on the left-hand side.

Table 1: This table contains correlations between the variables listed and the hourly wind
speed two hours ahead at Vansycle. They are based on the 2002 training data and are used
to build the TDD model.V , K, andG indicate the hourly wind speed at one of the three
locations, andθV , θK , andθG represent the corresponding hourly wind direction for each
location. Values in bold correspond to variables selected in the TDD model.

Time Lag
Variable t t − 1 t − 2 t − 3
V 0.90 0.85 0.80 0.75
cos(θV ) −0.55 −0.53 −0.51 −0.48
sin(θV ) −0.21 −0.20 −0.18 −0.16
K 0.74 0.72 0.69 0.66
cos(θK) −0.63 −0.63 −0.62 −0.61
sin(θK) −0.02 −0.01 −0.00 0.01
G 0.60 0.60 0.58 0.56
cos(θG) −0.33 −0.33 −0.34 −0.35
sin(θG) −0.45 −0.43 −0.42 −0.41

retained if their addition reduces the BIC. This process is repeated with the remaining

variables in Table 1. The wind speed variables selected by this process are the same as the

ones included in the RSTD westerly regime in Equation (3.4).In addition, several wind
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direction components are also included—both the sine and cosine of the current Vansycle

wind direction, the sine and cosine of the current Kennewickwind direction, and the sine

and cosine of the current Goodnoe Hills wind direction. We denote the wind direction at

these locations and times asθV,t, θK,t, andθG,t.

Removing the diurnal component of the wind speed was helpfulin the RSTD model,

and a strong diurnal component in wind direction is also detected. In Figure 7, the fitted

values of a linear model regressing the hourly mean for speedand the hourly circular mean

for direction (Fisher, 1993) on a pair of harmonics is plotted against the hour of the day for

each location. If there were no diurnal trend, then the lineswould be flat. All three locations

show a clear cyclical pattern in the wind direction, so the fitted hourly mean direction is

subtracted from each of the wind direction series. Thus, thepredictive mean is modeled

as in Equation (3.3), whereDs+2 is still the fitted diurnal component of the wind speed at

Vansycle, and

µr
t+2 = a0 + a1V

r
t + a2V

r
t−1 + a3K

r
t + a4K

r
t−1 + a5G

r
t + a6 sin(θr

V,t) + a7 cos(θr
V,t)

+ a8 sin(θr
K,t) + a9 cos(θr

K,t) + a10 sin(θr
G,t) + a11 cos(θr

G,t). (3.8)

The scale of the truncated normal distribution is modeled asa linear function of the volatil-

ity value as in Equation (3.6).
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Figure 7: The top panels plot the fitted diurnal model of wind speed at each hour of the day at all 3 sites. It is clearly diurnal in
nature for every month. The bottom panels plot the fitted diurnal model of wind direction at each hour of the day at all 3 sites.
The diurnal nature of the directions is strong for every month except December which had 10 days of missing data.
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3.2.4 Bivariate Skew-t Model

The BST model differs substantially from either the RSTD or TDD models. Instead of

using hourly wind speed and hourly direction directly, these variables are converted into

Cartesian components withx = r cos(θ) andy = r sin(θ) for r a wind speed andθ a

wind direction. LetVt = (Vt,x, Vt,y)
′ denote the Cartesian components of the wind vector

at Vansycle at timet. Here,Vt,x is the east-west component, andVt,y is the north-south

component. LetKt andGt denote similar vectors of values at Kennewick and Goodnoe

Hills. The diurnal cycle is again removed from each component at each location by fitting

a pair of harmonics to each set of hourly means, denoted byDs,x andDs,y. Then, each

component is standardized by dividing by an overall standard deviation computed at each

location, denotedσx andσy (Brown, Katz, and Murphy, 1984). For example at Vansycle,

the series is transformed by

V
r
t =

(

V r
t,x, V

r
t,y

)′
=

(

Vt,x − Ds,x

σx
,
Vt,y − Ds,y

σy

)′

.

These centered and standardized residual series will be denoted asVr
t , K

r
t , andG

r
t .

The residual series at timet + 2 at Vansycle is modeled by

V
r
t+2 = A0 + A1V

r
t + A2V

r
t−1 + A3K

r
t + A4K

r
t−1 + A5G

r
t + ǫt, (3.9)

whereA0 is a 2-dimensional vector of constants,Ai is a2 × 2 matrix of coefficients for

i = 1, . . . , 5, andǫt follows a bivariate skew-t distribution. Then the random vectorV
r
t+2

follows a skew-t distribution whose location parameter isξ = A0 + A1V
r
t + A2V

r
t−1 +

A3K
r
t + A4K

r
t−1 + A5G

r
t , with scale matrixΩ, shape parametersα = (α1, α2)

′ to model

skewness, and degrees of freedomν to model kurtosis (Azzalini, 2005). In short,V
r
t+2 ∼

ST2(ξ,Ω,α, ν). The variables in the model in Equation (3.9) are selected using a BIC

procedure similar to that used for the TDD model. The parameters are estimated using

maximum likelihood estimation with theR packagesn (Azzalini, 2006). Figure 8 shows
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that the skew-t distribution for the errors is a much better fit to the 2002 training data than

the normal distribution for the errors is.
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Figure 8: Comparison of the BST with normal errors (left plot) and with skew-t errors
(right plot) on the 2002 training data.

Then, the predicted vector of Cartesian components at Vansycle two hours ahead is

given by

V̂t+2 = Σ̂V̂
r
t+2 + Ds+2,

wheret = 1, 2, 3, . . . ands = ((t − 1) mod 24) + 1. TheÂi, i = 0, 1, . . . , 5, in V̂
r
t+2

are estimated from a 45 day window of data before the desired two-hour ahead predic-

tion; Σ̂ is a matrix with the standard deviations of thex components and they components

estimated from the 45 day window on the diagonal and zeroes onthe off-diagonal; and

Ds+2 = (Ds+2,x, Ds+2,y)
′ is the fitted diurnal mean of thex andy components at Vansycle.

Thus, the linear transformation ofVr
t+2 givesVt+2 a ST2 (Σξ + Ds+2,ΣΩΣ

′,Σ−1α, ν)

distribution (Azzalini and Capitanio, 2003). The predictive distribution of the wind speed

requires taking the norm ofVt+2, so the norm of 50,000 observations drawn from a skew-t
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distribution with parameters estimated from each 45 day window of data is taken as the

simulated predictive distribution. A large number of observations can be simulated quickly

and easily and ensures that the behavior in the tails of the distribution is accurately charac-

terized. The 45 day window length is chosen since it yields slightly better predictions than

30 and 60 day windows. This window length also makes the BST model easier to compare

with the RSTD and TDD models, which also use 45 day windows.

3.3 Power Curve Loss Measure

Wind speed predictions from different models are commonly compared with RMSE and

MAE, but these are not necessarily the appropriate loss functions in the wind forecasting

paradigm. A better loss function should relate predicted wind speeds to the wind power

since predicting power is the ultimate goal (Madsen, Pinson, Kariniotakis, Nielsen, and

Nielson, 2005). The power depends on several factors, such as the air densityρ, the radius

swept by the turbine bladesr, and the wind speedv as follows

P = 1
2
αρπr2v3, (3.10)

whereα is an efficiency constant. As a baseline power curve, we use the GE 1.5 megawatt

(MW) manufacturer’s power curve (black dots in Figure 9) with fixed air density. The rela-

tionship between speed and power is not perfectly predictable, potentially even depending

on the wind direction (Potter, Gil, and McCaa, 2007), but forpractical purposes, we assume

here that it is.

Four zones of the power curve are defined by the cut-in speed, the rated speed, and the

cut-out speed. The cut-in speed is the speed at which the turbine blades begin to rotate. The

rated speed is the lowest wind speed at which the maximum power output of the turbine

is achieved. The cut-out speed is the speed at which the blades stop rotating to protect the

turbine from damage. Zone 2 in Figure 9 is where the relationship in Equation (3.10) holds,
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Figure 9: The GE 1.5 MW power curve. The black dots are the manufacturer’s data. The
solid curve in Zone 2 is a nonparametric fit to those data. It has a cut-in speed of 3.5 m/s, a
rated speed of 13.5 m/s, and a cut-out speed of 25 m/s. These values change from one type
of turbine to another.

and the solid curve in this region is a nonparametric Nadaraya-Watson type of estimate

(Nadaraya, 1964; Watson, 1964) fitted with bandwidthh = 0.025. Small changes in the

wind speed here can result in large differences in power output since power depends on the

wind speed through a cubic function.

When both the observed and forecasted wind speeds are in Zone1, 3, or 4, either

no power output occurs or the maximum power output occurs. For example, if both the

forecasted and the observed wind speeds are in Zone 3, then the power output is the same

regardless of whether the wind speed forecast is close to theobserved speed or not. No

penalty would be assessed in terms of power for any differences in the observed and fore-

cast speeds. When both the predicted and observed wind speeds are in Zone 2, small

differences in forecasting wind speed will result in greater differences in forecasting wind

power. As a result, discrepancies between the observed and forecasted wind speeds should

receive greater penalties in this region.

We defineg(·) to be the nondecreasing function that maps speed to power. The power

curve is not a nondecreasing function, but only four of the 5136 wind speeds in the testing
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dataset are greater than the cut-out speed, so we ignore these cases. Precise power output

data is not available since the power generated at the wind farm near Vansycle is proprietary

information. Instead, an estimate of the true power is obtained withg(Vt+2) that will be

compared to the forecasted power output based on the forecast wind speed,g(V̂t+2). Thus,

a loss function that is of the Generalized Piecewise Linear form is defined to be

L(Vt+2, V̂t+2) =











γ(g(Vt+2) − g(V̂t+2)), V̂t+2 ≤ Vt+2

(1 − γ)(g(V̂t+2) − g(Vt+2)), V̂t+2 > Vt+2

, (3.11)

whereγ is a weight between 0 and 1 and allows underestimates to be penalized differently

than overestimates.

Empirical data from the Dutch electricity market in 2002 suggests thatγ = 0.73, pe-

nalizing underestimates more strongly than overestimates(Pinson et al., 2007), which may

at first seem counterintuitive. However when viewed from a holistic system perspective, an

underestimate of wind power will cause the system operator to order too much electricity

from traditional sources to meet the demand. In this case, the system operator now has a

surplus of electricity, and down-regulation (when generation must be reduced) tends to be

more expensive than up-regulation (when generation must beincreased). The Power Curve

Error, PCE, averages the penalties in Equation (3.11) over all forecasts and will be directly

related to the energy produced by a wind farm (Madsen et al., 2005).

The optimal forecast that minimizes a particular loss function is given by

V̂t+2 = arg minvt+2
EF [L(vt+2, Vt+2)] ,

whereF is the predictive distribution. In the simple cases where the loss function is squared

error or absolute error, the optimal forecast is the mean or the median, respectively. For

the error in Equation (3.11), theγth quantile minimizes PCE (Gneiting, 2008). Thus, the

mean, median, andγth quantile of each model’s predictive distribution will be used to
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compare the forecasts. The mean of the truncated normal distribution in Equation (3.1) and

the median andγth quantile from Equation (3.2) are extracted from the RSTD andTDD

models. The mean, median, andγth quantile are computed numerically from the simulated

predictive distribution generated from the BST model.

3.4 Model Robustness

3.4.1 Comparing Model Performance on Testing Data

A simple baseline forecast is the persistence model. The persistence forecast for the average

wind speed at Vansycle two hours ahead is simply the current wind speed at Vansycle.

The mean of the predictive distributions of RSTD, TDD, and BST is used to compute the

RMSE, the median is used in the MAE, and theγth quantile is used for the PCE. A measure

called the continuous ranked probability score (CRPS), which essentially measures the

spread of the predictive distribution subject to calibration is also computed. The CRPS can

be computed explicitly for the predictive truncated normaldistribution as given in Gneiting

et al. (2006), and the CRPS value for the BST model is computedusing the approximation

in Equation (3) from Grimit, Gneiting, Berrocal, and Johnson (2006). Table 2 lists the

results on the training data. The model with the lowest of each value in each column is

bolded.
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Table 2: Root mean squared error (RMSE), mean absolute error(MAE), power curve error (PCE), and continuous ranked
probability score (CRPS) for 2-hour point forecasts of hourly average wind speed at Vansycle in May through November 2003,
in m/s. CRPS is not given for the persistence model. The “Overall” column gives the measure over all forecasts from May
through November.

Measure Forecast May Jun Jul Aug Sep Oct Nov Overall
Persistence 2.14 1.97 2.37 2.27 2.17 2.38 2.11 2.21

RMSE RSTD 1.73 1.56 1.69 1.78 1.77 2.07 1.87 1.79
TDD 1.74 1.56 1.68 1.78 1.75 2.03 1.86 1.78
BST 1.69 1.59 1.64 1.81 1.85 2.09 2.00 1.82

Persistence 1.60 1.45 1.74 1.68 1.59 1.68 1.51 1.61
MAE RSTD 1.31 1.19 1.32 1.31 1.36 1.48 1.38 1.34

TDD 1.34 1.18 1.31 1.33 1.33 1.48 1.38 1.34
BST 1.26 1.19 1.27 1.37 1.42 1.51 1.50 1.36

Persistence 99.33 72.85 114.59 94.33 75.48 92.19 59.22 87.10
PCE RSTD 69.45 48.19 73.21 63.39 56.31 71.62 48.89 61.73

TDD 70.17 48.42 72.70 63.14 56.13 70.24 47.13 61.28
BST 67.51 50.46 73.42 66.90 61.57 73.83 50.98 63.65

RSTD 0.95 0.85 0.94 0.95 0.97 1.08 1.00 0.96
CRPS TDD 0.97 0.85 0.93 0.96 0.95 1.07 1.00 0.96

BST 0.92 0.86 0.91 0.98 1.01 1.10 1.08 0.98
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Overall, the TDD model has the smallest value or one of the smallest values for RMSE,

MAE, PCE, and CRPS. It has the advantage over the RSTD model ofbeing more general

but retains the RSTD’s predictive ability. In terms of PCE, the TDD model has the lowest

values through the majority of the months and does better or best in terms of the other

measures through the fall months. The BST model does not do aswell as TDD and RSTD in

any of the overall measures, but it does have the smallest RMSE, MAE, and CRPS in May

and July and the smallest PCE in May. The BST model, like any robust fitting technique,

fits to the majority of the data in the fitting window and is insensitive to unusually large

or small values (Azzalini and Genton, 2008). Thus, its forecast for unusually high wind

speeds tends to be poor. The wind speeds in May and July have the smallest standard

deviations of any of the months, so the BST model does well during these months.

The differences among the models may seem small, but small differences are still

important from a practical perspective. To test if these differences are significant, the large

sample test introduced by Diebold and Mariano (1995) for comparing the forecast accuracy

of competing models can be applied to check for significant differences between functions

of the errors of two models. We test the null hypothesis that there is no significant difference

between the overall MSE, MAE, or PCE of two models. With 5136 two-hour ahead hourly

forecasts, thep-value to test for significant differences between the MSE ofthe RSTD and

TDD models is 0.3337, and thep-value for the test of significant differences between their

MAE’s is 0.8713. Thus, we do not have evidence that the TDD model is significantly

different in terms of squared or absolute errors. Both the TDD and RSTD models are

significantly better than the BST model in terms of MSE and MAE. Thep-value to test

for a significant difference between the PCE of the TDD and RSTD models is 0.8457 and

between the RSTD and BST models is 0.4375, neither of which isstrongly significant.

A better sense of the difference between the two models in terms of wind power over

the testing set is given in Figure 10. For each observation, the difference in accumulated
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Figure 10: These graphs plot the difference in accumulated PCE (in kW) penalties between
the RSTD and TDD models (top), the RSTD and BST models (middle), and the BST and
TDD models (bottom). An upward (downward) trend means that the second model is
performing better (worse).
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PCE penalties between the RSTD and the TDD models (top), between the RSTD and the

BST models (middle), and between the BST and the TDD models (bottom) is plotted for

all predictions made up until that observation. It should benoted that what is plotted is

not PCE but the sum of the differences in penalties assigned by the PCE function for each

prediction and has not been averaged. A similar graphical approach is taken in de Luna

and Genton (2005) and serves to compare the cumulative forecasting ability of two models

over a given time period and the gains or losses that would result. Based on this, the RSTD

model makes steady improvements over the TDD model from May to the middle of July,

from the middle of August to mid-September, and then for the first few days in November.

However, the TDD model makes large gains in the beginning of August, middle of October,

and end of November that leave it with a better accumulated PCE at the end of the testing

period. When comparing the RSTD and TDD models with the BST model in the bottom

two panels, except for the short periods in May and July, the RSTD and TDD models

dominate the BST model in terms of PCE.

In all three models, the parameter estimates change with each new forecast, but to give

a sense of their values, the averages over all forecasts forµt+2 andσt+2 in the RSTD model

are 7.02 and 1.70, respectively. The average parameter estimates in the TDD model are

7.00 and 1.74, which are quite similar to the RSTD values. In the BST model, the average

estimated the skewness parameterα is (−0.17, 0.01)′, an indication that there is very little

skewness in the distribution of thex andy components. The most interesting parameter in

the BST model is the degrees of freedom,ν, which averages 5.26 and is always between

3.69 and 7.66, indicating that the distribution has very heavy tails.
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Figure 11: Comparing the predictive distributions for the models when the TDD model produces the best forecast (top panel)
and when the BST model produces the best forecast (bottom panel). The small vertical line on the x-axis of each plot represents
the observed wind speed.
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The predictive distributions of the three models can look quite different, depending

upon the forecast, as shown in Figure 11. The top panel shows the predictive distribution

of all 3 models when the TDD model produces the best forecast.The RSTD distribution

is very similar, but the BST model is centered incorrectly and is more concentrated. How-

ever, when the TDD model produces a poor forecast in the bottom panel of Figure 11, it

also can be centered incorrectly. The RSTD model, in this case, produces a good forecast,

but the predictive distribution is very widely spread. The BST model is not only centered

closer the forecast, but it is also very tightly distributed. Over all forecasts, the 90% predic-

tive intervals based on the upper 95% and lower 5% quantiles of these distributions have

mean width 5.44, 5.52, and 5.96 for the RSTD, TDD, and BST models, respectively, with

empirical coverages of 89.43%, 89.99%, and 91.59%. The TDD model has slightly wider

intervals than the RSTD model and also slightly better empirical coverage. The BST has

the widest intervals, and the coverage is a bit higher than the stated level.

3.4.2 Alternate Regime Selection

Some justification for using Goodnoe Hills as the site where the regimes are determined

for RSTD is given in Gneiting et al. (2006), but Kennewick does not seem to have been

considered as a potential site for the regimes to switch. We refit the RSTD model using

Kennewick to determine the regimes. First, an easterly/westerly set of regimes is tested

and then also a northerly/southerly set of regimes since Kennewick’s main mode is nearer

π/2 than it is toπ, see Figure 5. The TDD and BST models do not need to be refit. Table 3

shows the results for the RSTD model for both the east/west regimes and the north/south

regimes. The TDD and BST model results and the original RSTD model outcomes are also

displayed for comparison.

First of note is that using an east/west set of regimes switching at Kennewick does

deteriorate the RSTD predictions as compared to using Goodnoe Hills as the regime in-
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dicator. However, what is remarkable is that the north/south regimes at Kennewick can

produce very good results, some values of RMSE, MAE, and PCE being smaller than those

for the original RSTD model. The north/south regime is stillnot overall smaller than the

TDD in PCE, but in three months it does produce the best PCE values. This illustrates the

fact that unless all possible regimes and stations are tested, it may be impossible to empiri-

cally choose the site and regimes that yield the best predictions. If more stations with wind

speed and direction data become available, this would only complicate the selection of a

site at which to determine the regimes. In fact, the regimes may not depend on a single site

only but on a possibly nonlinear combination of several sites. It seems reasonable to avoid

such a selection when possible.

3.4.3 Predictions at Kennewick and Goodnoe Hills

To test the mobility of these models, the variables are reselected to make predictions at

the other two locations in the dataset, Kennewick and Goodnoe Hills. When predicting

at Kennewick and Goodnoe Hills, the best choice of regimes for the RSTD model may

change, but the model is applied “blindly” in the sense that we want to see how portable it

is to a new location. Variables are reselected for the RSTD predictive mean functions, but

the easterly/westerly regimes that switch at Goodnoe Hillsare held fixed.
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Table 3: RSTD model outcomes when easterly/westerly and northerly/southerly regimes are defined by the wind direction at
Kennewick. The original RSTD (with the regimes determined by the direction at Goodnoe Hills), the TDD, and the BST model
results are also given.

Measure Forecast May Jun Jul Aug Sep Oct Nov Overall
RSTD-KW-EW 1.77 1.56 1.75 1.83 1.79 2.07 1.89 1.82
RSTD-KW-NS 1.75 1.56 1.69 1.77 1.74 2.04 1.88 1.78

RMSE RSTD-GH-EW 1.73 1.56 1.69 1.78 1.77 2.07 1.87 1.79
TDD 1.74 1.56 1.68 1.78 1.75 2.03 1.86 1.78
BST 1.69 1.59 1.64 1.81 1.85 2.09 2.00 1.82

RSTD-KW-EW 1.36 1.19 1.36 1.37 1.37 1.52 1.42 1.37
RSTD-KW-NS 1.34 1.18 1.32 1.33 1.34 1.50 1.38 1.34

MAE RSTD-GH-EW 1.31 1.19 1.32 1.31 1.36 1.48 1.38 1.34
TDD 1.34 1.18 1.31 1.33 1.33 1.48 1.38 1.34
BST 1.26 1.19 1.27 1.37 1.42 1.51 1.50 1.36

RSTD-KW-EW 70.91 49.27 76.82 65.05 57.21 71.90 48.59 62.98
RSTD-KW-NS 70.73 47.30 73.46 64.04 54.76 68.90 49.19 61.35

PCE RSTD-GH-EW 69.45 48.19 73.21 63.39 56.31 71.62 48.89 61.73
TDD 70.17 48.42 72.70 63.14 56.13 70.24 47.13 61.28
BST 67.51 50.46 73.42 66.90 61.57 73.83 50.98 63.65
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Table 4: RSTD, TDD, and BST model outcomes for predictions made at Kennewick.

Kennewick Forecast May Jun Jul Aug Sep Oct Nov Overall
RSTD 2.34 1.96 2.09 2.17 2.13 2.36 2.34 2.21

RMSE TDD 2.32 1.94 2.08 2.15 2.11 2.36 2.30 2.19
BST 2.37 2.03 2.18 2.23 2.05 2.28 2.23 2.20

RSTD 1.82 1.44 1.60 1.58 1.60 1.77 1.66 1.64
MAE TDD 1.79 1.43 1.59 1.60 1.59 1.76 1.63 1.63

BST 1.80 1.45 1.64 1.61 1.51 1.72 1.54 1.61

RSTD 87.45 65.18 82.96 83.78 67.53 74.52 78.60 77.24
PCE TDD 85.63 64.93 83.81 83.19 66.91 71.31 80.51 76.69

BST 92.35 70.32 84.49 86.5866.47 72.34 73.91 78.18

Table 5: RSTD, TDD, and BST model outcomes for predictions made at Goodnoe Hills.

Goodnoe Hills Forecast May Jun Jul Aug Sep Oct Nov Overall
RSTD 1.69 1.51 1.38 1.55 1.68 1.87 1.75 1.64

RMSE TDD 1.69 1.55 1.40 1.55 1.68 1.87 1.73 1.65
BST 1.76 1.64 1.43 1.56 1.70 1.98 1.78 1.70

RSTD 1.31 1.16 1.06 1.18 1.25 1.37 1.31 1.23
MAE TDD 1.31 1.19 1.08 1.20 1.26 1.37 1.28 1.24

BST 1.38 1.29 1.09 1.19 1.27 1.45 1.34 1.28

RSTD 81.69 61.18 67.36 68.96 63.66 70.83 56.78 67.30
PCE TDD 82.54 64.33 68.52 69.17 64.6769.31 56.90 68.01

BST 86.46 67.47 68.9968.30 63.24 76.11 61.13 70.33
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The results in Tables 4 and 5 show that the TDD and BST models have smaller sum-

mary measures than the RSTD model at Kennewick, but RSTD is difficult to beat at Good-

noe Hills. The TDD model has a significantly lower RMSE at Kennewick than the RSTD

model does (p-value = 0.0052), and both TDD and BST have the smallest RMSE,MAE, or

PCE in various months. Predicting at Kennewick is more difficult due to the more highly

variable wind speeds observed there, which is also reflectedin Kennewick’s larger PCE

values. Goodnoe Hills is the one location situated directlyin the Columbia River Gorge,

so the regime-switching model best captures the wind flow pattern. Goodnoe Hills also

has the fewest unusually large wind speeds, which is evidenced by the lower RMSE and

MAE values. In this situation, RSTD has the lowest overall PCE, but it is not significantly

different from that of TDD (p-value= 0.7550).

3.4.4 Finer Scale Data

One final experiment on the models returns us to the full dataset with wind speed and

direction measured every ten minutes. This finer scale of data exhibits more variability and

is not as predictable as the hourly averaged wind speed. Two approaches are tested in which

models are rebuilt both on the full dataset and on the ten-minute observations that occur on

the hour. For models built on all ten-minute observations, atwelve-step forecast horizon is

needed to arrive at the two-hour prediction. Predictions are made for5136 × 6 = 30, 816

time-steps. The predictions made on the hour are reserved tocompare with the model built

from the ten-minute observations that occur on the hour. In that model, a two-step forecast

is the two-hour forecast, and only5, 136 predictions are made.
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Table 6: RSTD, TDD, and BST model outcomes for the two types ofmodels built on the ten-minute data.

All Ten-Min Forecast May Jun Jul Aug Sep Oct Nov Overall
RSTD 1.95 1.77 1.90 1.99 1.96 2.23 2.13 2.00

RMSE TDD 1.90 1.72 1.84 1.98 1.93 2.22 2.13 1.97
BST 1.85 1.73 1.76 2.00 2.02 2.32 2.35 2.02

RSTD 1.48 1.37 1.50 1.52 1.50 1.62 1.57 1.51
MAE TDD 1.45 1.32 1.44 1.49 1.47 1.63 1.60 1.49

BST 1.39 1.31 1.36 1.51 1.55 1.68 1.77 1.51

RSTD 79.42 56.21 83.5769.30 60.85 75.39 52.38 68.32
PCE TDD 78.10 54.86 79.34 69.64 59.53 75.26 51.60 67.07

BST 74.16 55.61 75.74 74.47 65.86 79.73 63.07 69.92

Hourly Ten-Min Forecast May Jun Jul Aug Sep Oct Nov Overall
RSTD 1.92 1.77 1.90 1.99 1.96 2.22 2.14 1.99

RMSE TDD 1.90 1.73 1.84 1.98 1.93 2.21 2.13 1.97
BST 1.86 1.74 1.76 1.97 2.01 2.27 2.30 2.00

RSTD 1.46 1.37 1.49 1.51 1.50 1.61 1.59 1.51
MAE TDD 1.44 1.33 1.44 1.48 1.47 1.62 1.61 1.48

BST 1.39 1.32 1.36 1.48 1.53 1.64 1.74 1.49

RSTD 78.80 56.24 81.84 70.37 61.11 75.4552.39 68.19
PCE TDD 77.65 54.83 78.50 70.31 60.07 74.05 53.11 67.08

BST 75.89 55.23 74.50 72.56 65.07 78.49 59.50 68.87
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Questions of interest in these models include whether usingthe full set of ten-minute

observations will improve the two-hour forecast and whether the models will have similar

results to those in Table 2. In Table 6, it is shown that modelsbuilt with all of the ten-

minute observations have very little predictive improvement compared to the models using

only the ten-minute observations on the hour. However, the TDD model appears stronger

relative to the RSTD model than it does in Table 2. In fact, it is significantly better than

the RSTD model in terms of MSE for both the full set of observations and the ten-minute

observations on the hour (p-values0.0031 and0.0000, respectively) and also in terms of

MAE (p-values0.0059 and0.0088).

3.4.5 Underestimation Penalty

The weight that is given in Section 3.3 for the Power Curve Error,γ = 0.73, deserves some

attention. The purpose of this weight is to penalize underestimation more strongly than

overestimation of wind power. However, it is not a fixed value. In the Dutch market over

the course of the year, the value ofγ ranges from 0.51 to 0.98 through the 4 quarters of the

year, and it varies from 0.14 to 0.96 over the 12 months of the year (Pinson et al., 2007).

Markets with different sets of rules can also affect the value. In addition, a single wind

farm usually does not produce enough energy to affect electricity prices, but the larger the

penetration of wind energy, the more significantlyγ would be affected.

We have usedγ = 0.73 as an example up to this point, but in Table 7, we show the

value of PCE for the three models based on hourly data whenγ = 0.73 is replaced with a

range of values. We want to determine if the results from PCE are influenced by the value

of γ, and in each case, the optimalγth forecast is used in the computation of PCE. With

the smallest and largest values ofγ, no one model has a consistently smallest PCE over

the months. Whenγ = 0.10, BST has more small monthly values of PCE than the other

models, and whenγ = 0.90, the TDD model appears to be favored.
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Table 7: RSTD, TDD, and BST model PCE results for varying penalties on underestimation versus overestimation. A value ofγ
less (more) than0.50 penalizes overestimates more (less) heavily than underestimation.

γ Forecast May Jun Jul Aug Sep Oct Nov Overall
RSTD 4.44 5.05 4.20 3.92 3.69 11.06 6.02 5.49

0.01 TDD 4.40 5.13 4.15 4.04 3.86 10.59 6.14 5.48
BST 4.76 5.72 4.47 4.15 3.47 13.02 6.72 6.05

RSTD 32.80 25.16 33.55 27.55 25.03 42.10 26.10 30.40
0.10 TDD 33.07 25.49 32.94 27.67 25.17 41.2425.85 30.27

BST 33.28 26.88 32.48 26.45 23.99 40.31 26.90 30.10

RSTD 77.28 57.24 84.96 69.28 63.21 81.65 55.23 70.00
0.50 TDD 78.60 57.48 83.77 68.54 62.69 80.99 53.00 69.46

BST 75.24 59.56 82.60 70.58 65.29 80.64 57.64 70.35

RSTD 41.36 26.61 40.55 36.38 33.90 48.24 35.37 37.56
0.90 TDD 42.12 27.14 40.29 36.16 33.26 45.87 31.26 36.67

BST 43.83 30.84 41.16 40.80 38.52 50.10 35.19 40.14

RSTD 7.76 4.65 5.95 7.79 7.01 29.28 42.14 14.90
0.99 TDD 7.65 4.61 6.44 6.97 7.48 26.63 41.56 14.43

BST 8.89 6.82 5.97 10.85 8.1723.01 43.39 15.24
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Whenγ = 0.50 and there are no penalties for overproducing or underproducing, both

BST and TDD have the smallest PCE for each of 3 months. This experiment just serves to

demonstrate that no one model is routinely favored over the others for every possible value

of γ, so PCE should be used only after a relatively stable estimate of γ for a given market

can be determined.

3.5 Conclusion

The importance of conserving natural resources and exploiting the clean electricity pro-

vided by wind energy will only continue to grow in the future.One goal of this paper has

been to present model-building strategies for short-term wind speed predictions when both

the wind speed and direction information is available over space and time. Wind farms with

different terrain and different numbers of nearby meteorological stations can use the TDD

or BST modeling approaches to fit similar predictive mean functions, whereas the RSTD

model is limited to few locations and known physics. Additionally, speed and direction

are often converted to the Cartesian coordinate system, butmodels like TDD demonstrate

the benefit of treating wind direction as a circular variableinstead. To conclude, the TDD

model produces forecasts that are as good as the RSTD model for this dataset while main-

taining more generality. The BST model does not perform as well in terms of PCE on this

data, but it does have the added feature of producing a wind direction forecast, which the

other two models cannot do.

In comparing models, the power curve error assigns a greaterpenalty to wind speeds

predicted to be in the region where power is roughly proportional to the cube of speed and

also penalizes underestimates more strongly than overestimates. Attributing loss in this

way directly exploits the nonlinear relationship between power and speed and puts wind

power into the larger context of the entire utility system. PCE can easily be adapted for

different turbines and different markets and can be averaged over several wind farms to get
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a more stable estimate. Finally, it may not be reasonable to assume that an error made at

a low power has the same economic cost as the same error made ata higher power. An

investigation into the effect that the magnitude of wind power for a given error has on the

associated loss would need to be conducted.

The work done here could be extended in several ways. Future tests of these models

should incorporate year-round observations so that model performance can be assessed in

every season. Including additional covariate information, such as equatorial Pacific Ocean

sea surface temperatures that affect storm frequency, numerical weather prediction model

output, or pressure differences east and west of Vansycle, should also improve predictions.

The optimality of the forecasts can continue to be evaluatedwith tests such as those intro-

duced in Patton and Timmermann (2007).

While the focus in this work has been on point forecasts, having uncertainty estimates

of the forecasts that include uncertainty about the parameter estimates and variable selec-

tion would also be of interest. Either model-free bootstrapping techniques (Alonso, Peña,

and Romo, 2006) or using a fully Bayesian analysis (Wikle, Milliff, Nychka, and Berliner,

2001) could be interesting approaches to obtain such intervals. Finally, wind farms with

dominant weather patterns that differ from those of the Pacific Northwest and with vary-

ing numbers and locations of off-site observations would beinteresting applications for the

TDD and BST models. The TDD and BST models’ predictions for this data are promising

that these flexible models could work well with new datasets.

Note: All circular plots were plotted using thecircular package inR by Lund and

Agostinelli (2006).
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CHAPTER IV

SPATIAL FORECAST ACCURACY TEST

4.1 Introduction

Making predictions is one of the primary reasons to invest effort in building models that

capture the salient features of data. These forecasts are used as a guide to make practical

decisions. Poor forecasts can lead to poor decisions and, ultimately, to abandoning the

model used to produce them. Good forecasts can save time, money, and resources. Decision

makers are often faced with choosing between the forecasts produced by more than one

model. Therefore, formally comparing the forecasts from competing models is necessary

to be confident that the chosen predictive model truly produces superior forecasts.

Comparing the accuracy of forecasts is common in time seriesanalysis. Beginning

with the seminal work of Diebold and Mariano (1995), a test ofthe null hypothesis of

equal forecast accuracy between two competing models was introduced. Their test, here-

after referred to as the DM test, can be used with the researcher’s choice of loss functions,

makes no distributional assumptions on the forecast errors, and incorporates both serial and

contemporaneous correlation in competing forecast errors. Many extensions and improve-

ments to this test have been made (West, 1996; McCracken, 2004; Harvey, Leybourne, and

Newbold, 1997; Giacomini and White, 2006), and we develop a similar type of hypothesis

test for spatial data that incorporates unique features of spatial data not encountered in time

series.

Spatial predictions are made for many variables such as temperature, precipitation,

air pollution, concentration of geological resources suchas oil and coal, home prices, and

disease concentrations. In the past, authors who have attempted to apply the DM test in

a spatial setting have discarded data to create an “independent” dataset (Wang, Anderson,
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Entekhabi, Huang, Su, Kaufmann, Potter, and Myneni, 2007; Snell, Gopal, and Kaufmann,

2000). Some have simply noted that no such test is available that incorporates the spatial

correlation across forecasts (Longhi and Nijkamp, 2007). Many give point estimates of

forecast accuracy or choose the model that minimizes some loss function, but they may not

quantify the uncertainty associated with those estimates or include potential spatial depen-

dence in their estimates (Atger, 2003; Gong, Barnston, and Ward, 2003; Willis, 2002).

Currently, forecasting wind speeds for wind power generation is a particularly impor-

tant area of application in which such a forecast accuracy test would be beneficial (Genton

and Hering, 2007; Willis, 2002). No cost-effective method for storing wind energy exists,

so it must be used as soon as it is produced. This variable supply makes it difficult for

utility managers to maintain a balance between the supply and demand of electricity. If

they fail to maintain this balance, they incur monetary penalties imposed by the state. The

United States possesses vast regions in which many wind farms have been built, such as

the western region of Texas. For a given point in time, spatial forecasts at these wind farms

help utility managers plan for the transmission, purchase,and distribution of electricity.

Forecasts made by competing models can be evaluated with a unique loss function that

incorporates the nonlinear relationship between wind speed and wind power and a penalty

for over or underestimation of wind speed (Hering and Genton, 2009). The forecast accu-

racy test that is described in this work would be instrumental in determining if on average

a difference in the loss produced by competing forecasts is significant.

The extension of the DM test we describe here is appropriate for testing the null hy-

pothesis that on average there is no significant difference between two sets of spatial fore-

casts. It does not require the forecast errors to be Gaussianor zero-mean, and it allows

for both spatial correlation within the forecast errors andcontemporaneous correlation be-

tween the forecast errors. Contemporaneous correlation isan important element to consider

since many models share sources of information, thereby making simultaneously good or
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bad forecasts at a given location. One final advantage of thistype of testing is that loss

functions beyond the conventional mean squared error (MSE)are allowed. For example,

a researcher may want to penalize overestimation more heavily than underestimation, in

which case the loss function could be a piecewise linear function (Gneiting, 2008).

To the best of our knowledge, no other method exists that tests the same hypothesis as

this proposal. One approach that is similar in nature is based on improving the power of

the false discovery rate methodology by performing a wavelet decomposition of the spatial

field (Shen et al., 2002; Sedur, Maxim, and Whitcher, 2005). This methodology, hereafter

SHC, tests for a difference in spatial signal at every location in the domain as opposed to

ours that tests for a difference in spatial signal on averageacross all locations in the domain.

The wavelet-based approach will determine not only if a significant difference between two

spatial signals exists but also where in the domain the difference occurs. The drawback to

a wavelet approach is that the data must be on a regular grid, and the grid size must be

a dyadic power. For irregularly spaced data, the data must becoerced to a grid, and any

missing values must be imputed (Nychka, Wikle, and Royle, 2002; Matsuo, Nychka, and

Paul, 2006; Shi and Cressie, 2007). Nonstandard grid sizes need to be padded with zeroes

or a combination of multiscale wavelets may be used (Deckmynand Berre, 2005). This

method is developed for data assumed to be Gaussian and does not perform well under

various loss functions that change the distribution of the data.

Our test procedure has the advantage of being computationally fast and simple to

implement. Only one hypothesis needs to be tested versus as many hypotheses as there

are locations for the SHC method. In Section 2 the backgroundof forecast accuracy tests

in time series are reviewed, and these ideas are extended to the spatial setting in Section

3. Section 4 summarizes the Shen et al. (2002) wavelet methodology, which will be used

for comparative purposes. Size and power properties are demonstrated with Monte Carlo

experiments in Section 5. Section 6 provides an applied example of the test to daily average
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wind speeds in Oklahoma, and we conclude with some discussion in Section 7.

4.2 History of the Test in Time Series

4.2.1 The Asymptotic DM Test

Let {ŷ1t}T
t=1 and{ŷ2t}T

t=1 be two forecasts of the same time series{yt}T
t=1. The associated

forecast errors are{e1t}T
t=1 and{e2t}T

t=1 whereeit = yit − ŷit. The time-t loss associated

with a forecast can be an arbitrary function of the realization and the prediction, denoted

g(yt, ŷit) (i = 1, 2), which is often a function of the forecast error. Thus, for simplicity, the

loss function will be written asg(eit) for i = 1, 2. The null hypothesis of equal forecast

accuracy for two sets of forecasts is

H0 : E[g(e1t)] = E[g(e2t)] or H0 : E[dt] = 0,

wheredt := [g(e1t) − g(e2t)] is the loss differential.

The sample path{dt}T
t=1 is assumed to be covariance stationary and short memory.

Thus, the asymptotic distribution of the sample mean loss differential,d̄ = 1
T

∑T
t=1[g(e1t)−

g(e2t)] is such that
√

T (d̄ − µ) → N(0, 2πsd(0))

in distribution asT goes to infinity. Here,µ is the population mean loss differential, and

sd(0) is the spectral density of the loss differential at frequency 0. It is defined to be

sd(0) =
1

2π

∞
∑

τ=−∞

γd(τ)

for γd(τ) = E[(dt − µ)(dt−τ − µ)] the autocovariance of the loss differential at lagτ .

The large-sample standard normal test statistic for forecast accuracy is then

S1 =
d̄

√

2πŝd(0)
T

,
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where ŝd(0) is a consistent estimator ofsd(0). This consistent estimator is obtained by

taking a weighted sum of the available sample autocovariances,

2πŝd(0) =

(T−1)
∑

τ=−(T−1)

1

(

τ

S(T )

)

γ̂d(τ), (4.1)

where

γ̂d(τ) =
1

T

T
∑

t=|τ |+1

(dt − d̄)(dt−|τ | − d̄),

and1(τ/S(T )) is the lag window, andS(T ) is the truncation lag.

The choice of lag window and truncation lag are motivated by the result that the opti-

malk-step forecast errors are at most(k−1) dependent, which can be checked empirically.

This suggests the uniform, or rectangular, lag window defined by

1

(

τ

S(T )

)

=











1 when
∣

∣

∣

τ
S(T )

∣

∣

∣
≤ 1,

0 otherwise.
(4.2)

This uniform window assigns unit weight to all included autocovariances, and only(k− 1)

sample autocovariances are used in the estimation ofsd(0) because all others are set to

zero.

Diebold and Mariano (1995) discuss their choice of lag window. They say that the

Dirichlet spectral window associated with the rectangularlag window dips below 0 at cer-

tain locations, so the resulting estimator of the spectral density is not guaranteed to be pos-

itive semidefinite. However, because the Dirichlet kernel assigns a large positive weight

near the origin, the estimate ofsd(0) is unlikely to be negative. In practice, they treat a

negative estimate ofsd(0) as an automatic rejection of the null hypothesis.

In small samples, it is not unusual to obtain a negative estimate ofsd(0). We suggest

avoiding this problem by fitting a covariance model to the empirical autocovariances that

is guaranteed to be positive definite. Instead of truncatingthe sum in (4.1), we estimate all

of the autocovariances for lagsL = 0, 1, 2, . . . , T − 1. Since empirical autocovariances at
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higher lags are more variable given that fewer observationsare available to compute them,

we only retain the empirical autocovariances computed up tohalf of the maximum lag. We

fit an exponential covariogram of the form

C(τ) = σ2 exp−3τ/θ

using ordinary least squares or weighted least squares to the empirical autocovariances. We

useĈ(τ) to estimate the values ofγd(τ) in

2πf̂d(0) = γ̂d(0) + 2
T−1
∑

τ=1

γ̂d(τ)

for the parametrically estimated test statistic

Sp =
d̄

√

2πf̂d(0)
T

.

We compare this method to that described by Diebold and Mariano (1995) by simu-

lating forecast errors as they describe and applying the quadratic loss. They represent the

contemporaneous correlation withρ and the (moving average) MA(1) parameter withθ.

Usingα = 0.10 as they do in their work, the observed size of the test is dramatically im-

proved withSp. Table 8 shows that in samples of size 8, the size is reduced between 52.4%

and 58.1%. The difference in sizes is evident from samples ofsize 8 through samples of

size 64. In fact, empirical sizes reach the desired level atn = 128 for the DM test but at

n = 32 for the parametric test.

4.2.2 Extensions of the DM Test

Many authors have worked to improve the DM test in the years since it was published. One

of the first responses was a paper by West (1996) which criticized the DM test for fail-

ing to address the fact that the forecasts can depend upon estimated regression parameters.

Diebold and Mariano (1995) do not mention this fact, so theirtest implicitly assumes that
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Table 8: Empirical size of quadratic loss function for time series data simulated according
to the parameters and description in Diebold and Mariano (1995). The results for their
asymptotic test statistic,S1 and for the parametrically estimatedSp, which uses an OLS
exponential covariogram estimate of variance ofD̄ are given. 2,500 datasets are simulated
for each combination of parameters, andα = 0.10.

DM Test Sp Test
T ρ θ = 0 θ = 0.5 θ = 0.9 θ = 0 θ = 0.5 θ = 0.9

8 0.0 32.52 31.28 28.96 15.20 13.12 12.92
8 0.5 31.36 30.00 27.16 14.12 12.20 12.92
8 0.9 32.52 28.76 29.24 15.00 11.92 14.20

16 0.0 20.48 20.00 17.60 11.08 11.56 11.96
16 0.5 21.96 19.36 17.80 13.32 10.36 12.40
16 0.9 20.48 19.72 18.12 10.40 10.96 10.76

32 0.0 15.12 13.56 13.12 9.72 9.56 10.92
32 0.5 16.92 14.48 14.72 11.76 10.40 11.92
32 0.9 14.56 13.48 12.88 10.36 9.80 10.00

64 0.0 12.04 11.44 10.92 9.72 9.64 10.04
64 0.5 12.32 11.96 11.56 9.80 10.12 10.32
64 0.9 12.88 11.68 11.04 10.24 10.00 9.76

128 0.0 11.52 10.32 10.00 10.04 9.32 9.48
128 0.5 11.44 10.28 10.40 9.44 9.60 9.32
128 0.9 12.04 11.48 9.52 10.36 10.12 8.84

256 0.0 10.84 10.44 10.64 9.72 10.08 10.16
256 0.5 9.96 10.24 10.64 9.00 9.80 10.28
256 0.9 10.00 9.56 10.88 9.20 8.88 10.52

512 0.0 9.72 10.84 10.84 9.16 10.64 10.48
512 0.5 10.96 9.88 10.12 10.36 9.60 9.60
512 0.9 11.64 9.80 10.20 11.12 9.44 9.40

Standard errors of values in the table are between 0.6% and 1.0%.

the regression parameters are known. The adjustment in the error due to estimating regres-

sion parameters depends upon several factors such as what moment is being estimated in
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the loss function, the regression technique, the fraction of the total sample used for out-

of-sample estimation of the loss, and the probabilistic environment. West assumes that the

loss function is twice differentiable in a neighborhood of the parameter vector and contends

that although this excludes mean absolute error (MAE), manyimportant loss functions are

still included. McCracken (2004) allows the loss function to be nondifferentiable.

Several situations arise in which the additional variance of the loss differential that

is due to estimating parameters is asymptotically irrelevant. For example, if the number

of observations used to estimate the unknown parameters is large relative to the number

of forecasts made, then the parameters can be treated as if they are known. Also, when

the predictors are uncorrelated with the prediction error,such as with MSE or comparing

non-nested models, then uncertainty due to the parameters is not important. In these cases,

West’s test reduces to the DM test.

An adjustment for the bias in the variance of the mean differenced series of the DM

test was proposed by (Harvey et al., 1997). This improves thesize of the test in small to

moderately sized samples. They also propose a companion test to the forecast accuracy test

called the forecast “encompassing” test (Harvey, Leybourne, and Newbold, 1998). They

make a combined forecast by taking weighted averages of individual forecasts, and if the

optimal combined forecast places all of the weight on one individual forecast, then that

individual forecast is said to encompass the others. A robust version of the DM test is sug-

gested by Dell’Aquila and Ronchetti (2004) who show that in small samples distributional

deviations can have a large impact on the size of the DM test. Their method also identifies

points that have a large influence on the size and power of the test.

Finally, Giacomini and White (2006) unite much of the preceding theory with their test

of predictive ability that allows the forecasting models tobe possibly misspecified, accounts

for parameter estimation in the models, and tests conditional (which forecast is best for a

particular horizon) versus unconditional (which forecastis best on average) forecasting
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objectives. Their treatment unifies theory on nested and non-nested models. Their test

applies to multistep point, interval, probability, or density forecast evaluations. They also

propose a two-step decision rule to select the best forecastfor a future date of interest.

Many of these extensions would be interesting to study in thespatial context as well.

However, given that many difficulties are already presentedby spatial data that are not

encountered in time series, we will assume that parameters in the forecasting models can

be estimated well by the data. We also assume that the sample size is adequately large and

that influential outliers are not present in the data.

4.3 Spatial Forecast Accuracy Test

We propose a test for spatial forecast accuracy following the form of the DM test for time

series data. Consider a spatial process{Z(s) : s ∈ D ⊂ R
2} that has been observed

at n locations. The observed value is denotedZ(si), for i = 1, 2, . . . , n. The location

of each observation is denoted bysi = (xi, yi). A fraction of thesen observed values,

φ, is reserved to be forecast based on models built from the(1 − φ)n observations. Let

L represent the number of randomly chosen locations to forecast, thusL = φ · n. Two

sets of spatial forecasts are made, denoted by{Ẑ1(si)}L
i=1 and{Ẑ2(si)}L

i=1. The associated

forecast errors are{e1(si)}L
i=1 and{e2(si)}L

i=1. Many times, it will be a direct realization

of the forecast error,g (ej(si)) for j = 1, 2.

However, the location-i loss associated with a forecast, sayj, could be an arbitrary

function of the realization and the prediction,g
(

Z(si), Ẑj(si)
)

. For example, in many

atmospheric applications, the correlation or “skill” between the forecasts and the observed

values is computed (Gong et al., 2003). In this setting, the loss functiong(·) would be

defined as follows:
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g
(

Z(si), Ẑj(si)
)

=
L

(L − 1)sZ(s)sẐj(s)

(

Z(si) − Z̄(s)
)

(

Ẑj(si) − Z̄j(s)
)

,

whereZ̄(s) is the mean of theL observed values,̄Zj(s) is the mean of theL forecasts

from modelj, sZ(s) is the standard deviation of the observed values, andsẐj(s)
is the stan-

dard deviation of the forecasts. In this way, the correlation skill of forecasts produced by

competing models can be tested with this method.

The spatial process of interest takes the following form:

D(s) = g (e1(s)) − g (e2(s)) = f(s) + δ(s), s ∈ D, (4.3)

wheref(s) is the mean trend, andδ(s) is a mean-0 stationary process with unknown co-

variance functionC(h) = cov(δ(s), δ(s+h)). This process has been observed at locations

{si : i = 1, . . . , L}. We wish to test the null hypothesis of equal forecast accuracy that

H0 :
1

|D|

∫

D

E[D(s)] ds = 0, (4.4)

where|D| is the area of the domain. The process{D(s)} is referred to as the loss differ-

ential, and it is assumed to be isotropic with short range covariance. Requiring thatD(s)

be stationary, implies that the mean trend must be constant in space. When the trend is as-

sumed to be constant in space,f(s) = µ, then the null hypothesis becomesH0 : µ = 0 and

reduces to a spatial version of the DM test. However, in many cases it is unlikely that the

mean is constant across all locations. In this case, the nullhypothesis tests that the average

of the mean across all locations is zero.

Based on the two possible forms off(s), either constant or spatially varying, two

versions of the spatial forecast accuracy test will be treated separately. When estimating

an unknown trend, it becomes important to distinguish between variability inD(s) due

to trend and variability due to spatial dependence. If the trend is misspecified as spatial



59

dependence, then the estimate of the variability ofD(s) increases. Likewise, including

spatial dependence in the trend estimation will reduce the variability of D(s). In the former

case, the test for forecast accuracy will be undersized, andpower will be too low; in the

latter case, the test will be oversized, rejecting the null hypothesis too often.

Under increasing domain asymptotics in which the domain is allowed to grow with-

out bound and spatial covariance that approaches zero as thelag distance increases (Park,

Kim, Park, and Hwang, 2008), the sample mean loss differential, D̄ = 1
L

∑L
i=1 D(si) is

asymptotically normal,
D̄ − µ

√

Var
(

D̄
)

→ N(0, 1),

where

Var
[

D̄
]

= Var

[

1

L

L
∑

i=1

D(si)

]

=
1

L2

L
∑

i=1

L
∑

j=1

C(hij). (4.5)

Here,C(hij) is the covariance function for the loss differential’s spatial dependence struc-

ture,δ(s), andhij is the distance between pointssi andsj. All forms of the test statistics

we employ to test the hypothesis in (4.4) are based on some version of Equation (4.5) in

whichC(hij) is replaced by an estimate.

EstimatingC(hij) is not as straightforward as it may initially seem. First, assume that

the the trend is constant across space, i.e.,f(s) = µ for µ some constant. The typical

empirical estimate ofC(hij) is

Ĉ(hij) =
1

|N(hij)|
∑

N(hij)

(

D(si) − D̄
) (

D(sj) − D̄
)

, (4.6)

whereN(hij) is the set of all pairs of locations that are distancehij apart. Whereas in both

the time series setting (Brockwell and Davis, 1991) and the space-time setting (Nychka

et al., 2002), such an estimator would have a valid positive definite form, in the purely

spatial setting, it does not. In addition, we have the following fact that follows from a

similar outcome in time series (Percival, 1993).
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Proposition1. The sum

V âr
[

D̄
]

= V âr

[

1

L

L
∑

i=1

D(si)

]

=
1

L2

L
∑

i=1

L
∑

j=1

Ĉ(hij) = 0,

whereĈ(hij) is given in Equation (4.6).

The proof is given in the Appendix and has the following consequences:

1. SinceĈ(0) > 0 unlessD(s) is constant ins, then at least some of thêC(hij) are con-

strained to be negative for some lag distances even though the true spatial covariance

may not be negative.

2. Using Ĉ(hij) as a basis for a parametric estimate ofC(hij) can yield misleading

estimates of the parameters since negative values ofĈ(hij) will decrease the strength

of the spatial correlation.

This problem does not arise for the DM test since the sum in Equation (4.5) is trun-

cated atk − 1 when makingk-step forecasts. In the spatial setting, the distance between a

location to forecast and an observed location is not constant. Therefore, we turn to paramet-

ric estimates of the spatial covariance in which a positive definite form will be guaranteed,

and only empirical estimates ofC(hij) up to half of the maximum lag are used in forming

the parametric estimate, which is a common rule of thumb. An alternative to estimating

the covariogram would be to estimate the semivariogram,γ(hij), taking advantage of the

relationshipγ(hij) = C(0) − C(hij). Then, replacêC(hij) with γ̂(∞) − γ̂(hij) in Equa-

tion (4.5) where

γ̂(hij) =
1

|N(hij)|
∑

N(hij)

(D(si) − D(sj))
2. (4.7)

Standard texts such as Cressie (1993) describe how to fit parametric covariograms and

semivariograms to data. Our approach is to use weighted least squares (WLS), minimizing

W (θ) =

p
∑

i=1

|N(hi)|
(

γ̂(hi)

γ(hi|θ)
− 1

)2

(4.8)
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for the semivariogram (Cressie, 1985) and

W (θ) =

p
∑

i=1

|N(hi)|
(

r̂(hi) − r(hi|θ)

1 − r(hi|θ)

)2

(4.9)

for the correlogram (Gneiting, 2002). In Equations (4.8) and (4.9), the functionsγ(hi|θ)

andr(hi|θ) are the parametric forms of the semivariogram and correlogram, respectively,

with parametersθ. The maximum lag to which to sum, in each equation isp, defined

as half of the maximum lag. Using maximum likelihood to estimate the parameters in

the covariogram or semivariogram is another approach, but this requires knowledge of the

distribution of the data at each location. A Gaussian model is typically fit in practice (Mar-

dia and Marshall, 1984), but the application of the loss function to the forecast error can

change the distribution of the data even when the forecast errors are Gaussian. Therefore,

assumptions about the distribution of the data are avoided when fitting the covariogram and

semivariogram with weighted least squares.

Thus, we propose the following two potential test statistics for testing the hypothesis

of equal forecast accuracy under constant trend:

SC =
D̄

√

1
L2

∑L
i=1

∑L
j=1 Ĉ(hij|θ̂)

and SV =
D̄

√

1
L2

∑L
i=1

∑L
j=1(γ̂(∞|θ̂) − γ̂(hij |θ̂))

.

In application, the assumption of isotropy should be testedfirst (Li, Genton, and Sher-

man, 2007), and the functioneyefit in theR packagegeoR can be helpful in finding a

good-fitting parametric model and starting values for the weighted least squares optimiza-

tion. Simple extensions can be made when the dataD(s) is irregularly spaced by smoothing

the observations within a specified tolerance region (Cressie, 1993).

As mentioned previously, a non-constant trend can interfere with the estimation of the

variance ofD̄, causing the test to be either undersized or oversized. Diebold and Mariano

(1995) do not need to estimate the trend of their loss differential series since all forecasts

are for the same forecast horizon. However, with any set of spatial forecasts, the trend can
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be a concern since the forecasts are all made at varying lag distances. When the pattern

of the trend is known or suspected, then it can be estimated easily from the data,D(si),

i = 1, . . . , L, and then the data in Equations (4.6) and (4.7) must be replaced with the

residuals, denotedDr(si) = D(si) − f̂(si), andD̄ in those equations should be replaced

with D̄r = (1/L)
∑L

i=1 Dr(si). We denote a parametric covariogram or semivariogram

estimated from detrended data bŷCr(hij |θ̂) and γ̂r(hij|θ̂), respectively. Then, the test

statistics become

Sr
C =

D̄
√

1
L2

∑L
i=1

∑L
j=1 Ĉr(hij|θ̂)

and Sr
V =

D̄
√

1
L2

∑L
i=1

∑L
j=1(γ̂

r(∞|θ̂) − γ̂r(hij|θ̂))
.

Of course, if the form of the trend is unknown, but it is likelythat a trend exists, it can

be estimated nonparametrically. We suggest using a bivariate Nadaraya-Watson estimator

with Gaussian product kernel of the following form

D̂b(xi, yi) =

∑L
i=1 K

(

x−xi

b

)

K
(

y−yi

b

)

D(xi, yi)
∑L

i=1 K
(

x−xi

b

)

K
(

y−yi

b

) , (4.10)

whereb is the bandwidth. Selecting the optimalb when the data is dependent is not straight-

forward. Hart (1996) and Opsomer, Wang, and Yang (2001) discuss the difficulties and

approaches used to select the optimal bandwidth for time series data. Francisco-Fernandez

and Opsomer (2005) present a method for selecting the optimal bandwidth for spatial data,

but they use local linear regression and utilize a2×2 matrix of bandwidths. The traditional

bandwidth,b0, selected by minimizing the cross-validation function,

CV(b) =
1

L

L
∑

i=1

(

D(si) − D̂
(−i)
b (si)

)2

, (4.11)

whereD̂
(−i)
b (si) is the estimate ofD(si) with the si location removed, is too small when

the data is positively spatially correlated. This leads to overfitting of the trend, removing

too much variability fromD(s), an underestimate of the denominator of the spatial forecast
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accuracy test statistic, and a too frequent rejection of thenull hypothesis. The traditional

bandwidth must be adjusted to account for the presence of spatial correlation. Similar to

the adjustment for time series data (Hart 1996), the adjustment for spatial data is

ba =

[

L
∑

i=1

L
∑

j=1

C(hij)/C(0)

]1/5

b0, (4.12)

with the obvious circular problem of needing an estimate of the covariance structure to

properly estimate the trend which is needed to properly estimate the covariance.

For a rough estimate of this adjusted bandwidth, we suggest an iterated procedure.

Begin by substituting

C(hij) =











1, i = j,

0, i 6= j,

into Equation (4.12) to get an initial adjusted bandwidth,b1
a = (L)1/5 ·b0. Estimate the trend

nonparametrically based onb1
a, remove this trend fromD(s), estimateC(h) using either

WLS estimation of the empirical covariogram or semivariogram. Update the bandwidth and

continue iterating until the bandwidth stabilizes. Use this stabilized bandwidth to estimate

the trend, remove this trend from the data, and computeSr
C or Sr

V .

In summary, the steps in performing the spatial forecast accuracy test (SFAT) are as

follows:

1. Evaluate the loss at each location for each set of forecasts, and form the differenced

field, D(s).

2. Estimate the trend of the differenced field.

3. Compute the test statisticSr
C or Sr

V .

4. Find thep-value, for example2(1 − (Φ(|Sr
V |))), whereΦ is the cumulative distribu-

tion function of aN(0, 1) distribution.
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When the trend appears to be constant, then Step 2 can be skipped, andSr
C andSr

V can be

replaced withSC andSV in Step 3.

4.4 An Alternative Approach

Shen et al. (2002) proposed a method called the Enhanced False Discovery Rate (EFDR),

which is based on controlling the False Discovery Rate (FDR), for determining if there is

a significant difference between 2 spatial signals at every location in the domain. To re-

duce the number of hypotheses that must be tested, the model is represented in the wavelet

domain. Then, the method tests not only if a statistically significant signal is present but

also estimates the location and magnitude of such a signal. It must be emphasized that

this method is intended to be used on a complete grid of data, such as fMRI or climate

model output data. It was not introduced in the forecasting context, and it cannot be ap-

plied as generally as the spatial forecast accuracy test canbe. However, for comparative

purposes, the basic outline is given, and a simulation experiment comparing SHC to the

spatial forecast accuracy test will be performed and reported in Section 4.5.4.

The goal of the SHC method is to nonparametrically test the hypothesis that a spatial

signal is present or not based on a single image. The problem is stated asH0 : f = f0

versusHa : f 6= f0 wheref(·) is the deterministic mean function of a spatial Gaussian

process{Z(s) : s ∈ D ⊂ R
d} generated byZ(s) = f(s) + δ(s). Here,δ(·) is a mean-

0 stationary Gaussian process with an unknown stationary covariance functionC(h) =

cov(δ(s), δ(s + h)). To increase the power of testing whetherf(·) is f0 (and also where

and by how muchf(·) differs fromf0), a parsimonious representation off(·) is given with

a small number of wavelet coefficients.

Inference is made onf(·) based on observations{(si, Z(si)) : i = 1, . . . , n}. An ob-

servationZ(si) can be written asZ(si) = f(si)+δ(si) where{δ(si)} follows a multivariate

normal distribution withn × n covariance matrixV whose(j, k)th element isC(sj − sk).
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The d-dimensional discrete wavelet transform (DWT) is applied to this representation to

obtain a representation of wavelet coefficientsν = ν0 + ǫ. Here,ν0 = (ν0
1 , . . . , ν

0
n)′ is

the vector of wavelet coefficients of{f(si)}. Now, ǫ is a random component distributed

according toNn(0, V ∗) with an almost diagonal matrixV ∗, thereby nearly decorrelating

{δ(si)}. Then, testingH0 : f(·) = 0 versusHa : f(·) 6= 0 is equivalent to simultane-

ously testingn simple versus composite hypotheses–H0i : ν0
i = 0 versusHai : ν0

i 6= 0 for

i = 1, . . . , n.

Part of the procedure is based on False Discovery Rates (FDR). Let R be the number

of rejected null hypotheses. Of theseR hypotheses,V are erroneously rejected, andR−V

are correctly rejected. DefineQ = V/R if R > 0 andQ = 0 if R = 0. Then, the FDR

is defined asE(Q), the expected proportion of erroneously rejected null hypotheses. In a

family of L hypothesis tests to be performed, thestandard FDR procedurecomputes the

p-value,pi for each set of hypotheses,i = 1, . . . , L. Then, compute the order statistics of

thep-values,p(1) ≤ · · · ≤ p(L) corresponding to the hypothesesH0(1), . . . , H0(L). Denote

by K the largesti for which p(i) ≤ (i/L)α. If such aK ≥ 1 exists, then reject all

H0(i); i = 1, . . . ,K. If such aK does not exist, then reject none of theH0i; i = 1, . . . , L.

In the spatial setting, a 2-dimensional DWT is used on the data. A simultaneous test

that each of the wavelet coefficients is 0 or not could be done directly with the standard

FDR procedure described above. However, this does not take advantage of the “spatial”

structure of the wavelet coefficients that is likely presentunder the alternative hypotheses.

They gain more power by observing that wavelet coefficients of a signal within each scale

and across different scales are related. The “large” wavelet coefficients of a pure signal typ-

ically cluster both within each scale and across different scales, whereas the corresponding

wavelet coefficients of either white noise or correlated noise are approximately uncorre-

lated. This spatial structure allows the test to predict whether a wavelet coefficient of the

signal is 0 or not from observing its neighbors. This can be used to identify individual
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Figure 12: Reproduction of powers from SHC and FDR methods described in Shen et al.
(2002). The same number of replicates in the simulation, 1600, are generated for the circle
of radius 10 with mean in the interior of the circle varying across the following values ofv,
0, 0.1, 0.2,. . ., 0.9, and 1.

hypotheses that should be removed before applying the FDR procedure. This is named the

enhancedFDR procedure, which we refer to as SHC.

A detailed formula is given for determining which wavelet coefficients are neighbors,

and a system withb = 11 neighbors is adopted. Then, a method for determining both which

and how many wavelet coefficients to retain to be tested with the standard FDR procedure

is described. The null hypotheses of the eliminated tests are accepted. The magnitude of

f wheref 6= 0 is estimated by performing the inverse DWT on the retained coefficients.

Further details can be found in the original paper.

To illustrate, we have reproduced the size and powers of boththe SHC and the FDR

methods in which a64× 64 grid of data is generated with a circle of radius 10 in the center
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with varying values of a non-zero mean,v. In other words, fors = (x, y)

f(s) =











v, (x − 32.5)2 + (y − 32.5)2 ≤ 102,

0, otherwise,

andδ(s) is standard Gaussian white noise withC(0) = 1 and zero elsewhere. As is evident

in Figure 12, both methods have the same level, but the SHC method is far more powerful

in rejecting false null hypotheses.

4.5 Monte Carlo Simulation Study

In this section, the finite sample size and power properties of the test statisticsSC andSV

for D(s) with constant trend and ofSr
V with spatially varying trend in simulated datasets

are presented. The data simulation method is first described, and then results under the

null and nonzero constant trend are presented. Three different types of alternatives with

spatially varying mean are also simulated, and the effect ofestimating the trend both under

the null and for these alternatives is explored. Finally, the power of these test statistics in

comparison with the Shen et al. (2002) wavelet method when a complete dyadic grid of

forecasts is available is presented for various values of constant trend and for the circular

pattern tested in their simulations.

4.5.1 Data Simulation

To demonstrate the size properties of the test, we vary the grid size, the spatial correlation,

the contemporaneous correlation, and the loss function. The basic outline is to generate two

sets of forecast errors in space, each with a certain spatialcorrelation and with a particular

correlation to each other, apply the loss function, and thencompute each test statistic and

p-value. First, a realization of a bivariate Gaussian randomfield on anr × c grid is drawn.

To do so, the random field is generated using a linear model of coregionalization (Gelfand,
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Schmidt, Banerjee, and Sirmans, 2004). This model allows each set of forecast errors to

have its own spatial correlation.

The general cross-covariance matrix is

CX(hij) =
2
∑

k=1

rk(hij)aka
T
k ,

whererk(hij) = exp{−3hij/θk} is the stationary exponential correlation function for the

kth process, andaT
k is a column ofA. In the bivariate case,A is defined based onT where

T is defined as

T =







σ2
1 ρ

ρ σ2
2






.

Subsequently,A is

A =







√
t11 0

t12/
√

t11

√

t22 − t212/t11






=







σ1 0

ρ/σ1

√

σ2
2 − ρ2/σ2

1






.

Here,σ2
1 andσ2

2 are the variability of the first and second set of forecast errors, respec-

tively, and both are set to 1. The contemporaneous correlation between the forecast errors

is denoted byρ. We then generate the bivariate random field from a Gaussian distribution

with mean zero and2n × 2n (wheren = r × c) variance-covariance matrix of the forecast

errors

Ce(hij) =







σ2
1e

−3(hij)/θ1 ρe−3(hij)/θ1

ρe−3(hij)/θ1 σ2
2e

−3(hij)/θ2 +
(

ρ2

σ2
1

)

(

e−3(hij)/θ1 − e−3(hij)/θ2

)






.

Note that the spatial range of the first set of forecast errorsis θ1, but the spatial range of

the second set of errors depends uponθ1 andρ. Only when eitherρ = 0 or θ1 = θ2 is the

spatial range of the second set of forecast errors equal toθ2.

We generate grids of sizes5× 5, 8× 8, 10× 10, 16× 16, 20× 20, and25× 25. With

a forecasting fraction ofφ = 0.40, the number of randomly selected locations for each grid
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size isL = 10, 25, 40, 102, 160, and250. We consider values of the contemporaneous

correlation parameter,ρ, to be 0, 0.5, and 0.9. The spatial correlation parameters vary

amongθ1 = θ2 = 3; θ1 = θ2 = 6; θ1 = θ2 = 9; andθ1 = 3, θ2 = 9. The variance of each

process is set to 1 by dividing each simulated set of forecasterrors by the square root of

C(0) = σ2
1+σ2

2−2ρ, and the tests are performed at theα = 0.05 level. Three loss functions

are evaluated, the quadratic loss,g1(e(s)) = (e(s))2, the absolute loss,g2(e(s)) = |e(s)|,

and the simple loss,g3(e(s)) = e(s). Unless otherwise stated, for each combination of

parameters, 2500 simulated datasets are generated.

4.5.2 Constant Trend

In this section, both the size and power properties of the spatial forecast accuracy test are

explored whenf(s) = µ, for µ some constant. For reference, the simulated true variance

of D̄ for each combination of sample size, spatial and contemporaneous correlation in the

quadratic and absolute loss functions is found through simulation of 20,000 datasets. The

true covariance of̄D under the simple loss function is known and can be derived from

Ce(hij). The test statistic with this simulated or true variance is denotedST = D̄√
σ̂2

D

.

Tables 9, 10, and 11 give the size results (i.e.,f(s) = 0) for test statisticsST , SC , andSV ,

respectively.
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Table 9: Empirical size of loss functions under the true or simulated true estimate of variance ofD̄ for the spatial accuracy test.
All tests are reported at the 5% level, and 2,500 Monte Carlo replications are performed.

Quadratic Loss Absolute Loss Simple Loss
Grid L ρ θi,j = 3 θi,j = 6 θi,j = 9 θi,j = 3, 9 θi,j = 3 θi,j = 6 θi,j = 9 θi,j = 3, 9 θi,j = 3 θi,j = 6 θi,j = 9 θi,j = 3, 9

5 10 0.0 6.60 6.64 5.92 5.60 5.88 6.72 5.72 5.20 5.00 5.40 5.12 4.60
5 10 0.5 6.20 6.32 6.56 5.12 6.00 5.88 6.12 5.28 4.72 4.68 5.08 5.04
5 10 0.9 5.52 4.96 5.40 5.64 4.92 5.56 5.52 5.56 4.64 4.96 5.08 5.40

8 25 0.0 4.76 5.72 6.60 4.80 4.72 5.44 6.56 4.96 4.96 6.12 5.08 4.80
8 25 0.5 5.08 5.20 5.48 5.16 4.44 4.72 5.48 4.92 4.76 4.76 4.60 5.76
8 25 0.9 5.12 6.28 5.84 5.32 5.08 5.40 5.48 5.36 4.76 5.08 4.76 4.76

10 40 0.0 5.32 5.40 5.92 5.28 5.40 4.80 5.88 5.12 4.92 5.04 5.08 4.48
10 40 0.5 5.12 5.56 5.16 5.52 5.80 5.60 4.76 5.48 4.76 5.08 5.24 5.32
10 40 0.9 5.36 5.52 6.80 5.56 5.24 4.64 7.08 4.72 5.00 5.64 4.84 4.88

16 102 0.0 5.20 5.36 4.80 4.76 5.40 4.92 4.12 5.08 5.32 4.60 4.44 4.48
16 102 0.5 4.92 6.08 5.68 4.96 4.52 5.52 5.80 4.88 4.60 4.92 4.92 4.64
16 102 0.9 4.24 6.00 5.20 5.44 4.48 5.28 5.20 5.52 5.44 4.80 4.32 4.60

20 160 0.0 4.64 5.64 4.76 5.52 5.08 5.60 4.48 5.68 5.08 5.88 5.48 4.68
20 160 0.5 4.76 5.32 6.60 5.36 4.36 4.76 6.12 5.08 4.08 4.80 4.56 5.28
20 160 0.9 4.28 5.96 6.04 5.00 5.00 4.68 5.68 5.04 5.44 4.68 4.80 5.04

25 250 0.0 4.72 5.28 4.88 4.08 4.56 4.96 4.76 4.36 4.36 5.00 4.96 4.88
25 250 0.5 5.32 5.32 5.44 4.72 5.36 5.24 5.24 4.96 4.68 4.72 4.60 5.40
25 250 0.9 5.00 5.08 5.24 5.84 4.84 5.60 4.88 5.24 4.84 5.48 5.20 4.76

Standard errors of values in the table are between 0.4% and 1.0%.
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Table 10: Empirical size of loss functions under WLS covariogram estimate of variance of̄D for the spatial accuracy test. All
tests are reported at the 5% level, and 2,500 Monte Carlo replications are performed.

Quadratic Loss Absolute Loss Simple Loss
Grid L ρ θi,j = 3 θi,j = 6 θi,j = 9 θi,j = 3, 9 θi,j = 3 θi,j = 6 θi,j = 9 θi,j = 3, 9 θi,j = 3 θi,j = 6 θi,j = 9 θi,j = 3, 9

5 10 0.0 10.56 17.16 24.32 17.16 12.08 19.00 25.76 18.60 22.20 40.28 50.56 37.96
5 10 0.5 10.92 17.28 24.80 15.36 12.84 20.00 26.24 17.16 22.68 39.92 48.80 45.00
5 10 0.9 9.28 17.16 22.48 14.88 11.28 17.44 25.00 14.72 21.96 38.60 48.56 48.00

8 25 0.0 7.16 14.04 19.32 14.72 7.80 14.64 21.16 16.24 17.00 31.72 39.36 33.28
8 25 0.5 7.36 12.96 18.04 12.92 7.36 13.44 20.60 14.24 17.92 30.64 41.44 37.40
8 25 0.9 7.48 13.40 18.60 11.32 7.76 13.28 18.92 11.12 16.72 30.48 40.76 39.48

10 40 0.0 7.72 11.08 16.00 14.12 7.84 12.20 17.76 14.92 14.36 27.16 35.20 26.64
10 40 0.5 7.60 11.28 15.28 13.16 7.16 11.64 16.48 13.88 14.36 25.68 35.48 32.08
10 40 0.9 6.60 10.92 16.76 9.24 7.24 11.08 16.80 8.84 15.92 27.44 33.36 34.40

16 102 0.0 5.32 8.28 9.20 12.20 6.20 8.44 10.08 11.68 10.28 15.56 22.48 21.28
16 102 0.5 5.92 9.20 11.16 11.00 5.92 9.20 12.28 11.36 9.32 17.20 24.76 23.36
16 102 0.9 5.56 8.20 10.92 8.48 6.24 8.88 11.88 8.32 10.44 16.32 23.24 23.96

20 160 0.0 5.24 7.40 7.84 10.40 5.64 8.04 8.28 10.44 8.52 15.20 19.52 18.00
20 160 0.5 4.64 6.80 9.40 9.92 5.04 6.96 10.96 9.68 8.08 14.28 19.84 21.12
20 160 0.9 6.44 6.08 8.52 7.56 6.52 6.84 9.40 8.04 9.40 13.60 19.96 19.08

25 250 0.0 5.28 5.76 7.28 9.88 5.40 6.36 8.36 9.44 7.04 11.00 15.72 15.60
25 250 0.5 5.76 6.12 7.84 9.92 5.80 6.84 8.72 9.88 6.92 12.20 15.80 15.88
25 250 0.9 6.04 6.92 7.52 6.24 5.88 7.96 8.68 6.80 6.52 11.44 15.92 16.24

Standard errors of values in the table are between 0.4% and 1.0%.
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Table 11: Empirical size of loss functions under WLS semivariogram estimate of variance of̄D for the spatial accuracy test. All
tests are reported at the 5% level, and 2,500 Monte Carlo replications are performed.

Quadratic Loss Absolute Loss Simple Loss
Grid L ρ θi,j = 3 θi,j = 6 θi,j = 9 θi,j = 3, 9 θi,j = 3 θi,j = 6 θi,j = 9 θi,j = 3, 9 θi,j = 3 θi,j = 6 θi,j = 9 θi,j = 3, 9

5 10 0.0 5.64 9.76 11.68 8.96 7.00 11.36 13.84 10.44 12.68 22.44 26.68 20.52
5 10 0.5 5.60 8.96 13.24 7.80 6.84 11.12 14.60 9.44 12.92 23.12 26.20 24.32
5 10 0.9 5.08 8.68 11.96 7.88 6.12 10.20 13.24 7.36 11.40 22.44 25.16 26.12

8 25 0.0 4.32 6.80 7.40 8.08 5.12 7.52 9.28 9.16 8.40 13.84 16.28 17.64
8 25 0.5 4.28 6.52 7.60 7.64 4.40 7.16 8.68 8.56 9.44 14.52 17.44 17.48
8 25 0.9 4.40 5.92 7.88 5.96 4.56 6.52 10.40 6.12 9.08 13.60 17.52 17.16

10 40 0.0 5.12 6.32 7.28 7.84 5.48 6.72 7.64 9.48 8.36 11.96 14.96 14.32
10 40 0.5 4.64 5.52 6.48 7.96 4.80 7.08 7.88 8.96 8.56 11.80 15.12 16.60
10 40 0.9 4.40 6.64 7.64 5.64 4.96 6.64 8.24 5.40 8.84 12.68 15.36 14.48

16 102 0.0 4.44 5.92 5.68 8.00 5.32 6.32 5.84 8.04 6.84 8.92 10.16 13.32
16 102 0.5 4.24 5.32 5.72 8.48 4.72 6.04 6.88 8.88 6.08 9.48 11.56 13.16
16 102 0.9 4.64 4.68 5.24 6.32 5.20 6.16 8.36 6.48 7.32 8.24 11.08 11.32

20 160 0.0 4.36 5.68 4.52 8.88 4.80 5.68 5.36 8.72 6.36 9.16 9.68 12.28
20 160 0.5 4.08 5.32 6.28 8.32 4.36 5.32 7.64 8.20 6.00 8.08 10.24 13.36
20 160 0.9 5.04 4.44 5.48 5.64 5.56 4.92 7.08 6.92 6.76 7.88 10.80 9.96

25 250 0.0 5.12 4.60 4.96 7.96 5.08 5.52 6.00 8.08 5.96 7.32 8.44 12.08
25 250 0.5 4.96 5.20 5.16 8.76 5.04 5.76 6.24 8.48 5.92 8.00 8.96 10.84
25 250 0.9 5.16 5.48 4.92 5.40 5.32 6.84 7.04 5.96 5.32 7.56 8.32 9.48

Standard errors of values in the table are between 0.4% and 1.0%.
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When the true variance of̄D is used, the proper size of the test is attained for every

sample size, contemporaneous correlation, and spatial correlation. This simply illustrates

that if one can estimate the variance ofD̄ accurately, then the spatial forecast accuracy test

is correctly sized. In comparing test statisticsSC andSV in Tables 10 and 11, estimation

of the semivariogram produces a more accurate estimate of the variance ofD̄, resulting

in empirical sizes that are much closer toα. In simulations, the estimated parametric co-

variogram on average underestimated the true covariogram across all lag distances. The

estimated parametric semivariogram did not suffer from such a problem, so all results sub-

sequent to these will be based onSV . Upon examining Table 11, several points become

clear.

• The contemporaneous correlation appears to have little influence on the size of the

test.

• The size is strongly influenced by the strength of the spatialcorrelation. As the spatial

range increases, the null hypothesis is rejected more oftenthan it should be.

• When the spatial ranges of the errors differ, the size is larger than when the spatial

correlation is the same for both sets of forecast errors.

• As the sample size increases, the size of the test improves.

• The size is also influenced by the type of loss function that isused. The simple loss

performs much worse than the quadratic or absolute losses.

The effect of the quadratic loss on the spatial correlation can be explained theoretically.

Proposition2. If Z = (X,Y )T is a bivariate normal random vector with meanµ = (0, 0)T

and covariance matrix

Σ =







σ2
x ρσxσy

ρσxσy σ2
y






,
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then Corr(X2, Y 2) = ρ2.

In other words, when two Gaussian random variables whose correlation to each other is

ρ are squared, the correlation between the squared variablesis ρ2. The derivation of this

result is given in the Appendix. Thus, the positive spatial correlation is reduced under the

quadratic loss. A similar effect occurs for a general lossg(·), as stated in this proposition.

Proposition3. LetZ = (X,Y )T be a bivariate random vector with meanµ = (µx, µy)
T

and covariance matrix,Σ. When the first and second derivatives ofg(·) exist,

Corr(g(X), g(Y )) ≈
g′(0)2ρσxσy + 2g′′(0)2ρ2σ2

xσ
2
y

√

g′(0)2σ2
x + 2g′′(0)2σ4

x

√

g′(0)2σ2
y + 2g′′(0)2σ4

y

,

which reduces toρ2 wheng′(0) = 0.

The proof is given in the Appendix. The absolute loss is not twice differentiable, but its

form is still very similar to the quadratic loss’ form, and the spatial correlation will also be

reduced by it.

The power of the test using the test statisticSV is given in Figure 13 for all combina-

tions ofρ andθi andθj in grid sizes10 × 10, 16 × 16, and20 × 20. The mean,f(s) = µ,

is allowed to vary from 0 to 7 in increments of 0.5. From these figures, we see that

• For a given value ofµ, the power increases with an increase in sample size.

• The power reaches (or nearly reaches) 100% whenµ = 4, 2, 1 for grid sizes 10, 16,

and 20, respectively.

• The stronger the spatial correlation, the longer it takes the power to reach 100%.

• Contemporaneous correlation does not appear to have much effect on the power.
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Figure 13: Power curves for10×10 grid (top row) and16×16 grid (bottom row). First column is quadratic loss, second column
is absolute loss, and last column is the simple loss.
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Figure 13: Continued. Power curves for20 × 20 grid. Left plot is quadratic loss, middle plot is absolute loss, and right plot is
the simple loss.
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4.5.3 Spatially Varying Trend

In this section, results are given under both the null and possible alternatives when the

mean functionf(s) is not assumed to be constant. Under the null hypothesis and with

no information about the form of the trend, the trend can be estimated nonparametrically.

Under the null hypothesis, it should be noted that estimating the trend with a function

that is linear in the coordinates will simply return a value close to the mean of the field,

and results similar to those in Table 11 would be expected. Recall that the bandwidth for

nonparametric estimation must be adjusted to account for the spatial correlation inδ(s).

The results in Table 12 illustrate the effect on the size of the test when the bandwidth is

not adjusted for the spatial correlation. In other words, the traditional bandwidth,b0 is

used, and it is evident that the test is severely oversized. The selected bandwidth is too

small, and the trend is overfit, making the test reject more often than it should. Table 13

shows how much improvement is gained using the test statistic Sr
V when the bandwidth

is adjusted, even with a rudimentary iterative method. The size of the test still becomes

worse as the spatial correlation increases, but it does well, even in small samples, when the

spatial correlation is low, and the size improves as the sample size increases. Similar to the

outcome whenf(s) is constant, the size of the test when usingSr
C is still too large (results

not shown).



7
8

Table 12: Empirical size of loss functions under the weighted semivariogram estimate of variance ofD̄ for the spatial accuracy
test and unadjusted bandwidth used in the nonparametric trend estimation. All tests are reported at the 5% level, and 2,500 Monte
Carlo replications are performed.

Quadratic Loss Absolute Loss Simple Loss
Grid L ρ θi,j = 3 θi,j = 6 θi,j = 9 θi,j = 3, 9 θi,j = 3 θi,j = 6 θi,j = 9 θi,j = 3, 9 θi,j = 3 θi,j = 6 θi,j = 9 θi,j = 3, 9

5 10 0.0 16.04 30.84 39.16 27.28 17.12 31.36 40.00 29.40 33.44 57.88 66.52 51.64
5 10 0.5 16.04 29.84 40.72 25.16 16.84 29.32 40.32 26.32 32.88 55.24 65.44 58.32
5 10 0.9 15.72 32.08 39.08 24.80 16.84 31.76 37.68 24.52 34.84 56.40 64.68 65.04

8 25 0.0 10.84 27.64 46.44 27.92 10.84 26.52 44.44 27.00 33.16 63.16 75.20 58.48
8 25 0.5 11.16 30.04 46.84 25.88 11.12 29.92 44.32 24.36 33.96 65.20 75.48 68.92
8 25 0.9 11.84 29.28 45.44 20.56 11.40 27.04 41.24 19.16 33.56 64.20 74.40 73.76

10 40 0.0 10.00 30.64 50.16 29.88 9.96 29.68 47.32 28.96 33.12 67.04 80.40 63.44
10 40 0.5 10.12 30.68 48.80 27.00 10.32 28.04 46.56 25.04 33.36 69.92 79.08 74.56
10 40 0.9 10.12 29.72 50.36 22.52 9.44 25.76 45.44 19.00 34.00 68.24 80.72 76.48

16 102 0.0 8.28 33.68 55.68 32.32 8.08 29.52 51.72 30.72 34.92 74.32 83.04 70.48
16 102 0.5 7.20 32.88 57.44 28.52 8.04 28.56 53.20 25.92 35.44 76.44 84.12 79.16
16 102 0.9 8.44 34.04 55.64 23.08 7.08 27.28 47.68 18.96 35.68 73.60 84.84 83.36

20 160 0.0 8.40 35.08 57.80 33.64 7.72 32.24 54.80 32.04 37.44 74.96 83.20 71.60
20 160 0.5 7.08 34.72 59.84 31.40 6.96 30.04 54.72 27.80 37.68 75.92 83.92 80.32
20 160 0.9 8.00 35.20 59.48 21.84 6.84 26.80 49.64 17.52 37.76 75.08 84.84 85.28

Standard errors of values in the table are between 0.4% and 1.0%.
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Table 13: Empirical size of loss functions under the weighted semivariogram estimate of variance ofD̄ for the spatial accuracy
test and iteratively estimated adjusted bandwidth used in the nonparametric trend estimation. All tests are reported at the 5%
level, and 2,500 Monte Carlo replications are performed.

Quadratic Loss Absolute Loss Simple Loss
Grid L ρ θi,j = 3 θi,j = 6 θi,j = 9 θi,j = 3, 9 θi,j = 3 θi,j = 6 θi,j = 9 θi,j = 3, 9 θi,j = 3 θi,j = 6 θi,j = 9 θi,j = 3, 9

5 10 0.0 10.90 21.08 26.32 19.00 12.16 21.56 26.64 20.80 23.76 41.20 48.20 38.00
5 10 0.5 11.16 20.00 28.48 17.64 12.84 20.60 27.60 18.44 22.88 40.52 46.52 43.40
5 10 0.9 11.04 22.36 26.92 17.52 12.16 22.56 25.60 17.12 24.72 40.52 45.80 46.92

8 25 0.0 6.28 14.56 23.60 15.56 6.80 13.68 22.84 14.92 17.12 33.12 41.44 32.80
8 25 0.5 6.48 15.72 23.60 14.08 6.88 15.04 22.76 13.36 18.20 34.36 41.88 39.12
8 25 0.9 7.32 15.20 23.08 11.00 6.76 13.36 21.68 10.52 17.40 34.80 40.92 39.52

10 40 0.0 6.40 13.48 22.44 15.96 6.40 12.80 21.52 15.48 15.00 32.36 42.48 35.72
10 40 0.5 5.84 14.04 21.52 14.40 6.32 13.12 20.68 13.28 15.16 34.64 43.80 41.24
10 40 0.9 6.32 13.60 23.36 10.76 5.88 12.00 20.96 9.80 15.12 33.08 43.72 41.68

16 102 0.0 6.00 12.20 22.08 16.28 5.76 11.56 19.72 14.60 13.52 32.88 43.76 36.48
16 102 0.5 5.00 13.44 22.20 12.92 5.28 11.24 21.28 12.52 12.92 34.00 42.88 41.72
16 102 0.9 5.64 12.84 21.72 9.72 5.00 10.76 17.76 8.68 13.72 34.12 41.64 43.28

20 160 0.0 5.32 11.44 20.04 14.08 5.92 10.84 20.00 14.28 13.24 31.60 40.68 36.16
20 160 0.5 5.20 12.32 21.56 12.92 5.28 11.36 20.64 12.72 13.36 31.16 41.44 39.84
20 160 0.9 5.40 12.24 20.96 10.00 5.40 10.76 18.60 9.48 13.12 30.76 42.52 43.24

Standard errors of values in the table are between 0.4% and 1.0%.



80

Many types of spatially varying means for the alternative hypothesis could be imag-

ined. For a16× 16 size grid withρ = 0.50 andθ1 = θ2 = 6, three different types of trends

for f(s) will be examined, a random, a split, and a linear trend. For the random trend, a set

of A locations are randomly selected, and the mean function is

f(s) =











v, s ∈ A,

0, otherwise,

for v the value of the mean at locationsi. Without any pattern, a random trend will be
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Figure 14: Examples of a trend with randomly distributed cells with nonzero means. The
number of affected cells,A varies between 12, 24, 44, 68, 96, 128, 172, and 224. Shown
here is intensity level 4 without noise, but the intensity isallowed to vary through the values
2, 3, 4, and5.

difficult to estimate, but as the setA grows, it should become easier to detect a nonzero

averaged difference field. See Figure 14 for an example plotted without noise wheret, the

intensity, is 4. The split mean function at locations = (x, y) is

f(s) =











v, x ≤ 8,

−v, x > 8,

and Figure 15 illustrates this trend. A nonparametric estimate may capture this trend effec-

tively, but a linear fitted trend will simply estimate the overall mean. Finally, linear trends
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with varying coefficients,f(s) = A+Bx+Cy, are plotted in Figure 16. Of course, fitting

a linear trend should work well for such a mean function, but the nonparametric estimate

should do well also since the trend is a smooth function.
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Figure 15: Example of data simulated without noise in which the mean on the left-hand
side ist, and the mean on the right-hand side is−t.
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Figure 16: Linear trend patterns without noise that are usedfor the linear trend simulation.
The pattern follows the formulaf(s) = A + Bx + Cy.

The results for the random trend are given in Table 14. For comparison, the true trend

is removed as if it were known so that various methods of trendremoval can be fairly

evaluated. When no trend is removed, the test does not rejectthe null as often as it should,

particularly whenA is small or the intensity,v, is low. These low percentages of rejections

are due to the fact that these locations with non-zero means are spuriously increasing the

variance ofD(s). Removing a linear trend and an iteratively reweighted generalized least

squares trend (IRWGLS) yield very similar results to havingremoved no trend at all. This



82

is not surprising since the trend is not linear. Finally, thenonparametric trend with the

adjusted bandwidth has powers that are closer to those obtained when the true trend is

removed, particularly asL increases. But, this type of trend will not be estimated verywell

by the nonparametric procedures for low values ofL since it does not vary smoothly.

In the split pattern (results given in Table 15), it should benoted that under the simple

loss that the null hypothesis is actually true. The positiveand negative values will sum to

zero, so the expected outcome for the simple loss for any value of v is the size of the test.

Based on results in Table 11 whenθ1 = θ2 = 6, the empirical size of the test will be around

10%. However, in Table 15 when the true mean is removed, the sizes grow asv increases.

The key to understanding this phenomenon lies in the random selection of locations to keep

in the simulation. When 102 locations are selected out of the256 grid locations, they are

selected at random from across the entire grid. Asv grows, the effect of not selecting an

equal number of locations with positive and negative valuesonD̄ grows. For example, if 40

locations are chosen with meanv and 62 are chosen with mean−v, then for largev, D̄ will

be far from zero. If 51 locations with meanv and 51 locations with mean−v are selected

instead, then the sizes remain around 10%. Of all the trend removal techniques tested, the

size with the nonparametric trend removed is the closest to what is expected under the null.

Without any trend removed, the simple loss is undersized since variability in the values of

D(s) is high relative to the value of̄D. This is a classic example that illustrates how the

forecast accuracy test is only designed to detect a difference in two sets of spatial forecasts

on average and will not be successful in detecting local differences between two sets of

forecasts.
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Table 14: Percent of null hypotheses rejected in 2,500 simulated datasets with random trend
for the quadratic, absolute, and simple losses using weighted semivariogram estimator.

Quadratic Absolute Simple
True Trend Removed

v = 2 v = 3 v = 4 v = 5 v = 2 v = 3 v = 4 v = 5 v = 2 v = 3 v = 4 v = 5
A = 12 14.72 36.96 65.28 82.64 10.72 17.40 29.12 40.80 10.72 11.84 16.84 18.00
A = 24 32.28 72.56 93.36 98.80 21.16 44.36 65.68 81.88 14.88 21.48 31.40 40.08
A = 44 61.36 95.12 99.44 99.96 43.20 82.36 94.44 98.88 28.20 45.76 63.84 77.80
A = 68 82.04 99.16 100.0 100.0 70.72 97.12 99.72 99.92 47.48 73.32 89.56 95.52
A = 96 93.52 99.88 100.0 100.0 88.60 99.36 99.96 100.0 70.44 91.92 98.24 99.60
A = 128 97.68 99.96 100.0 100.0 96.40 99.92 100.0 100.0 86.84 98.00 99.56 99.80
A = 172 99.12 100.0 100.0 100.0 98.68 100.0 100.0 100.0 96.36 99.68 99.84 100.0
A = 224 99.60 100.0 100.0 100.0 99.64 100.0 100.0 100.0 99.04 99.92 100.0 99.96

No Trend Removed
v = 2 v = 3 v = 4 v = 5 v = 2 v = 3 v = 4 v = 5 v = 2 v = 3 v = 4 v = 5

A = 12 12.16 20.32 32.96 41.08 11.36 15.32 22.00 27.68 13.12 16.68 23.52 27.00
A = 24 20.88 45.84 67.28 80.16 18.24 33.96 49.80 60.56 17.36 26.52 38.00 44.48
A = 44 49.08 85.68 96.68 98.84 41.92 75.32 91.16 97.12 35.68 57.40 74.40 85.40
A = 68 71.20 96.80 99.68 99.92 67.00 95.20 99.52 100.0 58.88 85.84 95.96 98.36
A = 96 86.80 99.08 99.96 100.0 86.80 99.32 99.96 100.0 82.60 98.04 99.88 100.0
A = 128 91.16 99.56 100.0 100.0 92.92 99.88 100.0 100.0 94.32 99.84 100.0 100.0
A = 172 94.12 99.88 100.0 100.0 95.68 100.0 100.0 100.0 99.44 100.0 100.0 100.0
A = 224 94.28 99.56 100.0 100.0 96.68 99.92 100.0 100.0 99.84 100.0 100.0 100.0

Linear Trend Removed
v = 2 v = 3 v = 4 v = 5 v = 2 v = 3 v = 4 v = 5 v = 2 v = 3 v = 4 v = 5

A = 12 14.08 23.68 36.72 45.48 13.36 17.96 25.00 31.12 19.08 22.40 29.04 32.24
A = 24 23.64 49.44 71.80 83.28 20.20 36.96 53.96 63.92 24.04 32.84 44.04 49.48
A = 44 51.60 87.76 97.00 99.16 44.64 78.08 92.28 97.52 43.12 63.88 78.48 87.84
A = 68 74.64 97.72 99.84 99.96 70.64 96.28 99.72 100.0 66.68 89.12 97.04 99.00
A = 96 89.48 99.40 99.96 100.0 88.56 99.56 100.0 100.0 87.04 98.72 99.96 100.0
A = 128 94.20 99.84 100.0 100.0 95.20 99.92 100.0 100.0 96.72 99.96 100.0 100.0
A = 172 96.16 100.0 100.0 100.0 97.24 100.0 100.0 100.0 99.68 100.0 100.0 100.0
A = 224 96.96 99.96 100.0 100.0 98.16 100.0 100.0 100.0 100.0 100.0 100.0 100.0

IRWGLS Trend Removed
v = 2 v = 3 v = 4 v = 5 v = 2 v = 3 v = 4 v = 5 v = 2 v = 3 v = 4 v = 5

A = 12 13.96 23.60 36.68 45.40 13.24 17.84 24.80 31.00 18.00 21.32 28.36 31.64
A = 24 23.52 49.08 71.60 83.08 19.96 36.64 53.52 63.84 23.08 31.68 43.56 49.12
A = 44 51.12 87.44 96.92 99.12 44.40 77.84 92.28 97.44 41.88 63.04 77.84 87.52
A = 68 74.44 97.68 99.84 99.96 70.28 96.12 99.72 100.0 65.80 89.00 96.96 99.00
A = 96 89.16 99.32 99.96 100.0 88.36 99.56 99.96 100.0 86.16 98.60 99.96 100.0
A = 128 93.56 99.76 100.0 100.0 94.64 99.92 100.0 100.0 96.28 99.92 100.0 100.0
A = 172 95.36 99.96 100.0 100.0 96.80 100.0 100.0 100.0 99.52 100.0 100.0 100.0
A = 224 95.96 99.76 99.84 99.92 97.64 100.0 100.0 100.0 99.96 100.0 100.0 100.0

Nonparametric Trend Removed
v = 2 v = 3 v = 4 v = 5 v = 2 v = 3 v = 4 v = 5 v = 2 v = 3 v = 4 v = 5

A = 12 15.60 23.08 35.52 44.96 14.76 20.40 26.44 31.16 32.76 33.40 34.76 34.88
A = 24 24.72 48.84 70.44 82.96 21.96 38.84 54.44 63.40 34.80 41.32 46.92 54.08
A = 44 52.88 88.72 97.48 99.28 45.52 78.48 92.28 97.68 53.76 67.32 79.12 88.92
A = 68 76.84 98.08 99.88 99.88 72.40 97.00 99.84 99.92 73.00 89.68 96.80 99.24
A = 96 91.28 99.68 99.96 100.0 90.24 99.76 100.0 100.0 90.04 98.68 99.84 100.0
A = 128 96.08 99.92 100.0 100.0 96.80 100.0 100.0 100.0 97.36 100.0 100.0 100.0
A = 172 98.24 100.0 100.0 100.0 98.72 100.0 100.0 100.0 99.92 100.0 100.0 100.0
A = 224 99.08 99.92 100.0 100.0 99.52 99.96 100.0 100.0 100.0 100.0 100.0 100.0

Standard errors of values in the table are between 0.4% and 1.0%.
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Under the quadratic and absolute loss functions in the splitpattern, the alternative

hypothesis is true. The spatial forecast accuracy test doesvery well for these losses but

can be strongly undersized whenv = 1. If the left/right pattern is assumed known, and the

mean on each side of the domain is found and used to detrendD(s), then the results are

similar to knowing the true trend. The linear and IRWGLS trends are undersized forv = 1

andv = 2. Again, the nonparametric trend with adjusted bandwidth does the best job of

filtering out the trend independently with similar results to those obtained when removing

the true trend.

For the linear trend, results shown in Table 16, removing thecorrect mean for the mean

functions with coefficients given in Table 17 gives very goodresults. However, ignoring the

trend results in the rejection of almost none of the null hypotheses. This simply illustrates

how failure to remove a strong trend can negatively influencethe test. After the quadratic

and absolute losses are applied to the forecast errors, the trend is no longer linear, so a

quadratic trend is fit for the quadratic and absolute losses,but a linear trend is still fit for

the simple loss. Fitting these types of trends yields results much, much closer to removal of

the true mean. The IRWGLS fit (linear for the simple loss and quadratic for the quadratic

and absolute losses) is even more conservative, rejecting just a bit less frequently than when

the trend is estimated with least squares. Finally, the nonparametric fitted trend does not

fare as well as the linear and quadratic trends do.
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Table 15: Percent of null hypotheses (under weighted semivariogram estimation) rejected
in 2,500 simulated datasets for the split datasets.

Intensity
Loss v = 1 v = 2 v = 3 v = 4 v = 5
Simple 9.52 12.20 16.72 23.20 25.28

True Trend Quadratic 75.20 99.84 100.0 100.0 100.0
Absolute 72.96 99.84 100.0 100.0 100.0

Simple 0.08 0.00 0.00 0.00 0.00
No Trend Quadratic 42.68 95.60 99.64 99.92 100.0

Absolute 48.12 97.52 99.92 100.0 100.0

Simple 9.08 13.12 17.12 23.68 25.92
Pattern Known Quadratic 76.92 99.84 100.0 100.0 100.0

Absolute 74.92 99.84 100.0 100.0 100.0

Simple 6.84 1.20 0.40 0.04 0.00
Linear Trend Quadratic 52.44 98.16 99.92 100.0 100.0

Absolute 57.08 99.20 100.0 100.0 100.0

Simple 5.40 0.60 0.28 0.00 0.00
IRWGLS Trend Quadratic 49.88 96.72 99.56 99.84 99.92

Absolute 55.16 98.08 99.84 99.92 100.0

Simple 21.24 13.44 14.60 16.60 17.64
Nonparametric Trend Quadratic 69.48 99.56 100.0 100.0 100.0

Absolute 71.40 99.76 100.0 100.0 100.0

Standard errors of values in the table are between 0.4% and 1.0%.
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Table 16: Percent of null hypotheses (under weighted semivariogram estimation) rejected in 2,500 simulated datasets for the
linear trend datasets.

Combination of Coefficients
Loss 1 2 3 4 5 6 7 8 9 10
Simple 100 100 100 100 100 83.68 84.16 99.48 100 100

Right Mean Quadratic 100 100 100 100 100 100 100 100 100 100
Absolute 100 100 100 100 100 100 100 100 100 100

Simple 0 0 0 0 0 0 0 0 0 0
Wrong Mean Quadratic 0.04 0.04 0.08 0 0 0 0 0 0.08 0.4

Absolute 0 0 0 0 0 0.28 0.36 0.04 0.28 0

Linear Mean Simple 100 100 100 100 100 90.60 90.64 99.96 100 100
Quadratic Mean Quadratic 100 100 100 100 100 100 99.96 100 100100
Quadratic Mean Absolute 100 100 100 100 100 100 100 100 100 100

Simple 100 100 100 100 99.96 88.20 87.52 99.48 99.96 100
IRWGLS Mean Quadratic 99.8 99.96 99.88 99.68 99.84 98.44 97.60 98.08 99.96 99.92

Absolute 99.96 100 100 100 100 99.04 98.76 97.40 100 97.16

Simple 38.52 5.20 4.20 4.92 8.16 16.72 18.16 25.44 40.44 1.28
Nonparametric Mean Quadratic 56.28 31.36 29.40 24.80 36.6028.52 30.00 33.64 71.80 73.28

Absolute 56.24 13.60 12.64 12.36 19.64 33.68 33.56 40.72 60.36 2.20

Standard errors of values in the table are between 0.4% and 1.0%.
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Table 17: Coefficients for the linear trend simulation results given in Table 16.

# A B C
1 1 0.5 0.5
2 1 1 0.5
3 1 0.5 1
4 1 -0.5 -1
5 1 -0.15 -1
6 1 -0.5 0.5
7 1 0.5 -0.5
8 2 0.5 -0.5
9 20 0.5 -0.5
10 1 3 -0.5

4.5.4 Comparison with SHC Method

It should be noted that whenf(s) is constant, then the SHC method and the spatial forecast

accuracy test are testing the same null hypothesis that the constant mean of the spatial

process is zero. To compare the two methods in this setting, we need to make adjustments to

the spatial forecast accuracy setting so that the SHC methodwill work. Thus,16×16 dyadic

grids are generated in 1000 simulated datasets, and the fullfield of data is retained since the

SHC method is only defined for data on a regular grid with no missing values. A constant

mean alternative is generated in which the trend isf(s) = µ for µ = 0, 0.5, 1, 1.5, 2, 2.5, 3.

The spatial range isθ1 = θ2 = 6, and both the SHC method and the spatial forecast

accuracy test are applied to the quadratic, absolute, and simple loss differentials. The

results are given in Figure 17. It is immediately evident that whenµ = 0, which is the null

hypothesis, that the SHC method is oversized for the quadratic loss. In fact, for the absolute

and simple losses, the size is still about 5% too large. Thus,it is not sensible to compare

the powers at the remaining values ofµ since the SHC method is not correctly sized.

Shen et al. (2002) only test their method in simulations withnormally distributed

data and spatial independence. The data that is generated inthis simulation is multivariate
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Figure 17: Comparison of power between the SHC test and the spatial forecast accuracy
test (SFAT) when the trend is constant.

normal, but once the quadratic and absolute loss functions are applied to the errors, the data

is no longer normal. In fact, for interesting loss functions, the resulting loss differential

will rarely be normally distributed. Therefore, in the context of comparing the accuracy of

spatial predictions, many modifications would need to be made for the SHC method to be

generally applicable.

4.6 Oklahoma Wind Speed Example

The Oklahoma Mesonet provides meteorological informationat a network of over 100

stations across the state of Oklahoma and can be accessed at http://www.mesonet.org. The

daily average wind speed is the quantity we wish to forecast,but the daily averages of

temperature, pressure, humidity, dew point, and rainfall are recorded as well. The latitude,

longitude, and elevation of each site is given. While many years of data are available, the

day we choose to focus on is September 10, 2008. Two spatial models are built based on

70 locations to forecast the daily average wind speed at 46 reserved locations. Figure 18

gives a plot of these locations across the state. One time series model is also built based on

three years of daily wind speed averages collected at each ofthe 46 sites.
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Figure 18: Average daily wind speeds in miles per hour at 116 locations in Oklahoma on
September 10, 2008. On the left are the 70 locations used to build the spatial models. On
the right are the 46 locations where predictions are made.

The first spatial model, called S1, uses the latitude, longitude, and elevation as covari-

ates for the trend. This type of model might be used in a situation where the meteorological

tower is off-line, and no other meteorological informationis available. In the second spatial

model, S2, the covariates of temperature, pressure, humidity, and dew point are included.

For both models, the spatial dependence is modeled with an exponential covariance with a

nugget. Parameters are estimated in both cases using an iteratively reweighted generalized

least squares procedure described in Schabenberger and Gotway (2005). The preceding 3

years of daily average wind speed data before September 10, 2008 is used to build a time

series model, T, at each of the 46 locations where a forecast is desired. At each location, a

smoothed monthly mean and a smoothed monthly standard deviation is used to standardize

the data. These smoothed values are obtained by regressing the monthly means on a pair

of harmonics. Then, the order,p, of an AR(p) model is selected with BIC, and parameters

are estimated for the selected order.

Forecasts are made at each of the 46 locations based on these three models. These

forecasts are compared to the observed average wind speeds using Mean Squared Error

(MSE) and Power Curve Error (PCE). The PCE was introduced by Hering and Genton
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Table 18: MSE and PCE of each set of forecasts for the Oklahomawind speed dataset.

Forecast MSE PCE
TS 5.29 121.81
S1 4.01 97.79
S2 2.51 72.84

(2009) as a more realistic assessment of wind speed forecasts in the context of wind power

generation. It incorporates not only information about thepower curve that transforms

wind speed observations to wind power but also allows the user to specify an asymmetric

penalty for overestimation versus underestimation. It is also an example of a loss function

that cannot be written in terms of the forecast errors alone.Table 18 gives the values of

MSE and PCE for each of the three models. Spatial model S2 produces forecasts with the

smallest MSE and PCE, and the time series forecasts have the largest MSE and PCE.

The top left-hand plots in Figures 19 through 24 show the differences in the squared

errors or power curve errors at each location comparing the time series forecasts with the

S1 forecasts and with the S2 forecasts and also comparing theS1 and S2 forecasts to each

other. With no knowledge of the trend, estimating the trend nonparametrically is likely

the best option. The bandwidth is first selected by minimizing the cross-validation curve;

the top right-hand plots in Figures 19 through 24 show where the curve is minimized.

This initial bandwidth is then adjusted to account for spatial correlation, and the adjusted

bandwidth is used to estimate the differenced field at a fine grid of points (bottom left-hand

plots). The biggest difference between the forecasts of thetime series and spatial models

appears to occur in the northwestern region of the state, andthe time series forecasts only

has smaller errors in isolated regions of the state. The spatial models’ forecasts differ

the most in the southeastern part of the state. Finally, the empirical semivariogram of the

detrended difference field is computed, and a Gaussian covariance is fitted in all six cases

(bottom right-hand plots).
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Figure 19: Plots of (upper left) quadratic errors differenced field (time series errors minus
S1 errors), (upper right) traditional bandwidth selectionignoring spatial correlation, (lower
left) reconstructed spatial field using nonparametric smooth and adjusted bandwidth, and
(lower right) empirical semivariogram of detrended field with fitted Gaussian semivari-
ogram overlaid.
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Figure 20: Plots of (upper left) power curve errors differenced field (time series errors
minus S1 errors), (upper right) traditional bandwidth selection ignoring spatial correlation,
(lower left) reconstructed spatial field using nonparametric smooth and adjusted bandwidth,
and (lower right) empirical semivariogram of detrended field with fitted Gaussian semivar-
iogram overlaid.
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Figure 21: Plots of (upper left) quadratic errors differenced field (time series errors minus
S2 errors), (upper right) traditional bandwidth selectionignoring spatial correlation, (lower
left) reconstructed spatial field using nonparametric smooth and adjusted bandwidth, and
(lower right) empirical semivariogram of detrended field with fitted Gaussian semivari-
ogram overlaid.
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Figure 22: Plots of (upper left) power curve errors differenced field (time series errors
minus S2 errors), (upper right) traditional bandwidth selection ignoring spatial correlation,
(lower left) reconstructed spatial field using nonparametric smooth and adjusted bandwidth,
and (lower right) empirical semivariogram of detrended field with fitted Gaussian semivar-
iogram overlaid.
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Figure 23: Plots of (upper left) quadratic errors differenced field (S1 errors minus S2 er-
rors), (upper right) traditional bandwidth selection ignoring spatial correlation, (lower left)
reconstructed spatial field using nonparametric smooth andadjusted bandwidth, and (lower
right) empirical semivariogram of detrended field with fitted Gaussian semivariogram over-
laid.
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Figure 24: Plots of (upper left) power curve errors differenced field (S1 errors minus S2 er-
rors), (upper right) traditional bandwidth selection ignoring spatial correlation, (lower left)
reconstructed spatial field using nonparametric smooth andadjusted bandwidth, and (lower
right) empirical semivariogram of detrended field with fitted Gaussian semivariogram over-
laid.
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Bin centers at 15, 25, and 35 km of the semivariograms estimated from the detrended

loss differentials in Figures 19 through 24 all give some indication of spatial dependence

for those distances. These values are not spurious, and the data is sufficient to reflect such

estimates. Figure 25 shows a histogram of the distances fromeach forecast location to

the closest model building location. These values range from roughly 8 km to 70 km, and

seventy-five percent of the distances are less than 40 km. Theaverage of the distances is

34.3 km.
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Figure 25: Histogram of the distance from each forecast location to its nearest model build-
ing neighbor’s location. Seventy-five percent of these 46 distances are less than 40 kilome-
ters.

We obtain estimates of the denominator of the forecast accuracy test, test statistics, and

p-values given in Table 19. The time series forecasts and the forecasts produced by model

S1 are not significantly different from each other on averagein terms of MSE or PCE. Even

though S1 has MSE that is 1.275 less than the time series forecasts and has PCE 24.02 less,

the variability in the squared errors and the power curve errors is quite large. The S1 and S2

models also do not differ significantly from each other on average in either MSE or PCE.

However, the S2 model does produce significantly better forecasts on average in terms of

MSE and PCE than the time series model does. This would lead a researcher to conclude
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that when covariates such as average temperature, humidity, pressure, and dew point are

available, they can produce on average a significantly superior forecast.

Table 19: Comparison of the time series forecast, T, with twosets of spatial forecasts, S1
and S2, for the Oklahoma wind speed dataset.

Comparison Loss Numerator Denominator Test Statisticp-value
T versus S1 MSE 1.275 1.214 1.05 0.2935

PCE 24.02 14.85 1.62 0.1057
T versus S2 MSE 2.774 0.375 7.41 < 0.001

PCE 48.97 17.99 2.72 0.0065
S1 versus S2 MSE 1.50 0.86 1.75 0.0799

PCE 25.95 18.88 1.32 0.1864

4.7 Discussion and Conclusion

Several versions of the spatial forecast accuracy test havebeen proposed in this work. Test

statistics under parametric estimation of the covariogramand the semivariogram for both

constant and spatially varying trends have been studied. Estimating the semivariogram

yields better estimates of the variability in the loss differenced field and is recommended

in practical applications. When a spatially varying trend is present, the importance of

estimating this trend cannot be understated. Yet overall, the spatial forecast accuracy test is

simple to compute, accounts for the presence of spatial correlation amongst the errors of a

given loss function and for contemporaneous correlation, and allows flexible loss functions.

A comparison in the accuracy of competing models should not be the only diagnostic

check used when comparing models. Forecasts produced by onemodel may contain infor-

mation not included in another set, so a test of forecast encompassing, such as the one by

Harvey et al. (1997), or a weighted average of forecasts can be very valuable tools as well.

This work highlights promising directions for future research. Some are evident, such

as a forecast accuracy test for multivariate spatial forecasts or for space-time data. In fact,
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many of the most interesting examples involve forecasting multiple variables over space,

and the wind speed forecasting example makes it clear that spatial forecasts made through

time are necessary. In the space-time setting, it would be prudent to follow the example of

Giacomini and White (2006) in which they propose both conditional (for a given forecast

horizon) and unconditional (averaged over all forecast horizons) tests of forecast accuracy.

More generally, an improved and optimal method for selecting the bandwidth in the non-

parametric estimate of the trend would have important applications beyond the forecast

accuracy test.

The SHC method is at a disadvantage since it is more complex toimplement, can

only be applied to full dyadic grids (without making modifications), and does not per-

form well with non-Gaussian and spatially correlated data.However, one advantage of the

SHC method that the spatial forecast accuracy test lacks is that it is able to estimate where

the significant differences occur spatially. Looking at maps of the estimated trend,̂f(s),

produced when detrending the data in the spatial forecast accuracy test does give some

qualitative information about where the differences may exist, but reducing the domain of

interest to detect regional differences may be a better quantitative solution. Benjamini and

Heller (2007) argue that in analyzing fMRI data differencesin signals at the individual lo-

cations are not as important as detecting differences in clusters of voxels. Their approach is

more powerful than the SHC test since they have fewer hypotheses of interest to test. This

suggests that one solution to detecting regional differences in forecast accuracy could be

to apply the spatial forecast accuracy test in local regionsof interest instead of across the

entire set of forecasts.

In summary, the spatial forecast accuracy test is a very flexible and easily applied test.

Used as a tool in model evaluation, it can help researchers determine if the difference they

see in the average losses of two competing models is significant or not, which gives them a

more complete, informed picture of their forecasts.
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CHAPTER V

CONCLUSION

Forecasting wind speeds accurately is important for wind power integration into utility

systems, and having the tools to statistically evaluate forecasts is important for decision

makers. The TDD and BST models have been introduced, and theyare flexible and can

be fitted with a sparse number of locations. Neither is limited by the selection of regimes

based on the prevailing wind patterns. The TDD model’s predictions perform as well as

the RSTD model predictions do, and the BST model outperformsboth of the other models

when the variability in the wind speed is low. In addition, the BST model produces a wind

direction forecast as well, which is crucial in obtaining a wind power forecast. The TDD

and BST models perform similarly when built to forecast at other locations in the dataset

and when the hourly data is replaced with ten-minute data.

The PCE is a sketch of a loss function that incorporates the relationship between wind

speed and wind power. It can be adapted to different types of turbines, and the penalty

for underestimating wind speeds can be tuned to the particular season and utility system

at hand. The optimal forecast from the predictive distribution for minimizing PCE is the

quantile based on the underestimation penalty, and varyingthis penalty can have an effect

on which model’s forecasts are favored. The differences between the losses observed for

each model can be tested for statistical significance using the time series test by Diebold

and Mariano (1995). Using this test, we observe no significant difference in MSE, MAE,

or PCE between the RSTD and TDD models and no significant difference in MAE or PCE

between the RSTD and BST models.

For wind speed models that produce spatial predictions, they can be compared with

the spatial forecast accuracy test, which tests the null hypothesis of equal forecast accuracy
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averaged across all spatial locations under a given loss function. This test does not require

that the data at each location be normally distributed, and it incorporates spatial correlation

in the difference field as well as contemporaneous correlation between sets of forecasts.

The best estimator of the variance ofD̄ uses the weighted least squares estimate of the

semivariogram. The main factor slowing the convergence of the test statistic to normality

is the strength of the spatial correlation. As the spatial correlation increases, the larger the

empirical size of the test becomes, and the loss function canhave an effect on the spatial

correlation, such as the quadratic loss that shrinks the spatial correlation.

Separating the difference between the trend and the spatialcovariance contributs di-

rectly to how well the variance of̄D is estimated. If the trend is treated as covariance, then

the null hypothesis will be rejected less often than it should be, and the reverse is true if

the covariance is treated as trend. If the spatial trend of the difference field is constant,

then detrending the data with a linear or a constant trend does not affect the outcome of the

test. However, in the presence of a spatially varying trend,removing the trend with a non-

parametric regression and a bandwidth adjusted for the spatial correlation does negatively

affect the empirical size of the test, although it diminishes as the sample size increases.

It must be emphasized that this test is designed to determineif the average of the

difference field is zero or not. If local regions of positive and negative values in the domain

still sum to zero, as in the split pattern simulation with simple loss, then the null hypothesis

of the test is still true. The SHC test, on the other hand, is designed to estimate regions in

the domain where the signal is nonzero. Yet when the mean is constant, the SHC and spatial

forecast accuracy tests are equivalent. In this case, the SHC test is missized, especially for

the quadratic loss, since applying the loss function to the forecast errors transforms the data

to a non-Gaussian distribution. Even if the SHC test were correctly sized, it can only be

applied to full sets of gridded data of dyadic size, while thespatial forecast accuracy test

can be used under more general conditions.
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The spatial forecast accuracy test is demonstrated by comparing spatial forecasts of

daily average wind speed at locations in Oklahoma. The difference field is formed for each

set of forecasts based on the quadratic loss and the power curve loss. A nonparametric trend

is removed on the data after adjusting the bandwidth selected by cross-validation for spatial

correlation. The second set of spatial forecasts are shown to be significantly different on

average from the time series forecasts in both quadratic andpower curve losses.

Tests of forecast accuracy provide a rich area for future research. Improvements in

the spatial version for small samples and adaptations for space-time forecasts can both be

studied. These tests are just one type of tool that can be usedto determine with statistical

confidence whether two sets of forecasts are on average significantly different or not. This

information can be used to select the best models, which ultimately guides decision-making

and resource allocation.
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APPENDIX A

PROOFS OF PROPOSITIONS PRESENTED IN CHAPTER IV

Proof of Proposition 1:

Consider anL × L matrix, whereL is the number of locations in a spatial dataset whose

(i, j)th entry is(D(si) − D̄)(D(sj) − D̄) for 1 ≤ i, j ≤ L:

S =











(D(s1) − D̄)(D(s1) − D̄) (D(s1) − D̄)(D(s2) − D̄) . . . (D(s1) − D̄)(D(sL) − D̄)
(D(s2) − D̄)(D(s1) − D̄) (D(s2) − D̄)(D(s2) − D̄) . . . (D(s2) − D̄)(D(sL) − D̄)

...
...

. . .
...

(D(sL) − D̄)(D(s1) − D̄) (D(sL) − D̄)(D(s2) − D̄) . . . (D(sL) − D̄)(D(sL) − D̄)











.

(A.1)

The sum of the elements in this matrix is zero. This can be seensince the sum of any row

in the matrix is zero. For example, the sum of theith row is

L
∑

j=1

(D(si) − D̄)(D(sj) − D̄) = (D(si) − D̄)
L
∑

j=1

(D(sj) − D̄)

= (D(si) − D̄)

(

L
∑

j=1

D(sj) − LD̄

)

= (D(si) − D̄)
(

LD̄ − LD̄
)

= 0.

Let h = {h0, h1, h2, . . . , hm} be the ordered set of unique distances between all pairs of

observations. For example, on a lattice with locations spaced one unit apart,h0 = 0, h1 =

1, andh2 = 1.41, andhm is the maximum distance between any two pairs of observations.

Then,N(hi) is the set of all pairs of points(si, s
′
i) distancehi apart, and|N(hi)| is the

number of pairs of points distancehi apart. The sum of all of the elements in the matrix in

Equation (A.1) is
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∑

{i,j}

sij =
L
∑

i=1

(D(si) − D̄)2 +
∑

N(h1)

(D(s1) − D̄)(D(s′1) − D̄) + . . .

. . . +
∑

N(hm)

(D(sm) − D̄)(D(s′m) − D̄)

= LĈ(0) + |N(h1)|Ĉ(h1) + . . . + |N(hm)|Ĉ(hm).

Now, we show that Equation (4.5) with the estimated covariances substituted forC(hij) is

equal to
∑

{i,j} sij.

V âr
[

D̄
]

=
1

L2

L
∑

i=1

L
∑

j=1

Ĉ(hij)

=
1

L2

[

LĈ(0) + |N(h1)|Ĉ(h1) + |N(h2)|Ĉ(h2) + . . . + |N(hm)|Ĉ(hm)
]

(after collecting like terms according to distance)

=
1

L2





∑

{i,j}

sij



 = 0.

�

Proof of Proposition 2:

We must find Cov(X2, Y 2) = E(X2Y 2)−E(X2)E(Y 2). With mean zero, E(X2) = σ2
x and

E(Y 2) = σ2
y. The moment generating function (mgf) can be used to find E(X2Y 2). The

mgf for a multivariate normal distribution is

MZ(t) = exp

(

µ′
t +

1

2
t
′
Σt

)

= exp

(

1

2
t
′
Σt

)

, for µ = 0

= exp
(

(1/2)(s1t
2
1 + 2s2t1t2 + s3t

2
2)
)

.

Then, E(X2Y 2) = ∂4

∂t2
1
∂t2

2

MZ(t)|t=0.

The partial derivative is:
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∂4

∂t21∂t22
MZ(t) = exp

(

(1/2)(s1t
2
1 + 2s2t1t2 + s3t

2
2)
)

(s1t1 + s2t2)
2(s2t1 + s3t2)

2

+ 2s2 exp
(

(1/2)(s1t
2
1 + 2s2t1t2 + s3t

2
2)
)

(s1t1 + s2t2)(s2t1 + s3t2)

+ s3 exp
(

(1/2)(s1t
2
1 + 2s2t1t2 + s3t

2
2)
)

(s1t1 + s2t2)
2

+ 2s2 exp
(

(1/2)(s1t
2
1 + 2s2t1t2 + s3t

2
2)
)

(s2t1 + s3t2)(s1t1 + s2t2)

+ 2s2
2 exp

(

(1/2)(s1t
2
1 + 2s2t1t2 + s3t

2
2)
)

+ s1 exp
(

(1/2)(s1t
2
1 + 2s2t1t2 + s3t

2
2)
)

(s2t + s3t2)(s2t1 + s3t2)

+ s1s3 exp
(

(1/2)(s1t
2
1 + 2s2t1t2 + s3t

2
2)
)

.

Evaluating att = 0 yields

E(X2Y 2) = 2s2
2 + s1s3 = 2(ρσxσy)

2 + σ2
xσ

2
y

= 2ρ2σ2
xσ

2
y + σ2

xσ
2
y , so

Cov(X2, Y 2) = 2ρ2σ2
xσ

2
y + σ2

xσ
2
y − σ2

xσ
2
y

= 2ρ2σ2
xσ

2
y.

The correlation is

Corr(X2, Y 2) =
Cov(X2, Y 2)

√

Var(X2)
√

Var(Y 2)

=
2ρ2σ2

xσ
2
y

√

2σ4
x

√

2σ4
y

= ρ2,

which is obtained by computing Var(X2) and Var(Y 2) similarly. �
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Proof of Proposition 3:

For Z = (X,Y )T ∼ (0,Σ), the effect ofg(·) is similar to that ofg(x) = x2, whereg is a

function such thatg(0) = g′(0) = 0, andg(·) is twice differentiable. Performing a second

order Taylor expansion ofg(x) about0 yields

g(x) = g(µ) + g′(µ)(x − µ) + g′′(µ)(x − µ)2 + R

= g′′(0)x2 + R.

Then,

E(g(X)) ≈ g′′(0)E(X2),

E(g(X)g(Y )) ≈ (g′′(0))2E(X2Y 2), and

Var(g(X)) ≈ (g′′(0))2Var(X2).

The correlation betweeng(X) andg(Y ) is then

Corr(g(X), g(Y )) =
Cov(g(X), g(Y ))

√

Var(g(X))
√

Var(g(Y ))

≈ (g′′(0))2 · (E(X2Y 2) − E(X2)E(Y 2))
√

g′′(0)2Var(X2)
√

g′′(0)2Var(Y 2)

= Corr(X2, Y 2), which, if Z = (X,Y )′ ∼ N2(0,Σ)

= ρ2

However, if the functionsg(·) andg′(·) are not zero at0, then for a second order expansion

of g(X) and using tactics similar to the ones above, the correlationtakes the following

form.

Corr(g(X), g(Y )) ≈
g′(0)2ρσxσy + 2g′′(0)2ρ2σ2

xσ
2
y

√

g′(0)2σ2
x + 2g′′(0)2σ4

x

√

g′(0)2σ2
y + 2g′′(0)2σ4

y

This reduces toρ2 wheng′(0) = 0 andg′′(0) 6= 0. It reduces toρ wheng′′(0) = 0 and

g′(0) 6= 0.

�
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