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ABSTRACT

Space-time Forecasting and Evaluation of Wind Speed witisSital Tests for
Comparing Accuracy of Spatial Predictions.
(August 2009)
Amanda S. Hering, B.S., Baylor University;
M.S., Montana State University

Chair of Advisory Committee: Dr. Marc G. Genton

High-quality short-term forecasts of wind speed are vitahtaking wind power a
more reliable energy source. Gneiting et al. (2006) havediiced a model for the av-
erage wind speed two hours ahead based on both spatial apdredrimformation. The
forecasts produced by this model are accurate, and subjacttracy, the predictive dis-
tribution is sharp, i.e., highly concentrated around itstee However, this model is split
into nonunique regimes based on the wind direction at asitdéflocation. This work both
generalizes and improves upon this model by treating wiretton as a circular variable
and including it in the model. It is robust in many experingrsuch as predicting at new
locations. This is compared with the more common approacamoafeling wind speeds and
directions in the Cartesian space and use a skdistribution for the errors. The quality
of the predictions from all of these models can be more razdify assessed with a loss
measure that depends upon the power curve relating windl dpegower output. This
proposed loss measure yields more insight into the trueevaleach model’s predictions.

One method of evaluating time series forecasts, such as spedd forecasts, is to

test the null hypothesis of no difference in the accuracywof¢competing sets of forecasts.



Diebold and Mariano (1995) proposed a test in this settirzg tias been extended and
widely applied. It allows the researcher to specify a wideetg of loss functions, and the
forecast errors can be non-Gaussian, nonzero mean, peoaielated, and contemporane-
ously correlated. In this work, a similar unconditionalttekforecast accuracy for spatial
data is proposed. The forecast errors are no longer padtgra@ially correlated but spa-
tially correlated. Simulations will illustrate the propies of this test, and an example with
daily average wind speeds measured at over 100 locationklah@ma will demonstrate
its use. This test is compared with a wavelet-based methiaxtionced by Shen et al. (2002)

in which the presence of a spatial signal at each locationardataset is tested.
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CHAPTER |

INTRODUCTION

Wind energy is a rapidly growing industry that is gaining ld@ride public interest. Once
a wind farm has been installed, this “green” energy prodmcegreenhouse gases and is
renewable and inexpensive. However, the United Stateemtlyrsupplies less than one
percent of its electricity needs with wind power. One of tlstacles to increasing this
percentage is that wind power must be distributed to consu@® it is produced. No
cost-effective storage system for wind power exists, ailyuproviders must constantly
balance the supply and demand of electricity. While demamelatively predictable, wind
power is by its very nature a variable source. To plan forgmaission and scheduling of
electricity, for maintenance, and for trading, forecastwiod power are necessary.

In Chapter I, the current state of wind power is describedi@l$ as the issues facing
forecasters who seek to minimize the disruptions thatiesliexperience when they incor-
porate wind energy into their generation mix. With a foreéczswind speed, a forecast
of wind power can be derived for various numbers and typesioflwurbines, so most
modelers focus on forecasting speed. Wind speed has sompeeucharacteristics, some
of which vary from one geographic location to another. Bugemeral, utilizing wind data
collected over time and spatially distributed around tloatmn where forecasts are desired
will improve forecasts.

Statistical models are just one type of model used to fotegesl speeds, but they

are generally the best for one to four hour horizons sinceg the be made quickly. They

The format and style follow that @iometrics



also come with a built-in estimate of the variability of tleedcast, giving utilities informa-
tion beyond a simple point forecast. Making improvementstatistical models over the
persistence forecast, in which the last observed valuesisutiure forecast, gives utilities
more incentive and more confidence in buying wind energy.

In Chapter Ill, two new models for wind speed forecasting jairesented and are
tested with wind data from the Pacific Northwest. A model dgyed by Gneiting, Larson,
Westrick, Genton, and Aldrich (2006) that makes two-howraahforecasts of the hourly
average wind speed at one of the three locations serves berthbmark. Their model de-
fines two sets of regimes based on the wind direction at onfgeddites. Given the regime,
the variables in the model change. These regimes are basadigqure geographical fea-
tures of this area, making it difficult to apply in other regso The first model we propose
eliminates the regimes and incorporates wind direction\agiable in the model, and the
second model transforms speed and direction to Cartes@udioates to forecast the wind
vector with a bivariate regression with skeverrors. Both models are regime-free, but
the second also forecasts wind direction, which is also ee¢al obtain an accurate wind
power forecast.

The forecasts produced by all three models are comparedwigiv loss function that
reflects the nonlinear relationship between wind speed and power. This loss function
does not impose any penalties on the forecasts when erersate in the constant region
of the power curve. It also allows underestimation and astération of wind speeds to
be penalized based on the costs associated with such etroevaluating the forecasts
with this loss function and various others, the regime-fremlels demonstrate that they
are more flexible and lose no predictive ability. Variousemments, such as predicting at
other locations, modeling ten-minute data instead of lyalaita, and tuning the penalty for
over and under estimation in the loss, demonstrate the iodgsof our proposed models.

The modeling approaches in Chapter Il suggest the needrwora general model-



ing strategy in which forecasts can also be made spatiallgtafistical test developed by
Diebold and Mariano (1995) for comparing the forecast amcyipf competing sets of time
series forecasts is applied to each pair of wind speed fsteaa Chapter Ill, but no com-

parable type of test is available for spatial data. In Chaptewe develop a similar type

of test for the null hypothesis that the difference between sets of spatial forecasts is,
on average, zero. This test accounts for contemporaneotedatmn, spatial correlation,

and non-Gaussianity in two sets of forecasts and allows argeloss function for com-

parison. Diebold and Mariano (1995) use a truncated sumeoéithpirical covariances to
estimate the variance of their test statistic, but we shawvgbmming the empirical covari-
ances across all spatial lags yields zero. Thus, estimatithre variance of the test statistic
is done parametrically with estimation of the semivariognaith weighted least squares
producing the best results.

Diebold and Mariano (1995) also did not encounter a timg+uagrmean since their
test is designed exclusively farstep ahead forecasts. With spatial predictions made at
varying lag distances from the nearest neighbor, a spatiallying mean can influence
estimation of the test statistic. Simulations show the gremance of the test under the
null and alternative hypotheses when both a constant $pag@n and a spatially varying
trend are present. With a spatially varying mean, the trendtrbe removed first, and
a nonparametric trend estimation routine is proposed. pésification of the trend can
result in an incorrectly sized test.

An existing test that can be compared with the one we progosaly applicable in
a narrow range of circumstances. Shen, Huang, and Cre$Xi@)(8eveloped a test for
detecting a significant spatial signal at each location endbmain, not on average across
all locations as our test does. They apply a discrete watralesform to complete data on
a dyadic grid and then seek to reduce the number of hypothedest by exploiting the

structure of the wavelet coefficients. When the spatial mga&onstant, the two tests are



equivalent, and simulations show that the test by Shen é2@02) is oversized when the
data is not Gaussian.

For illustration, the spatial forecast accuracy test isieddo a set of daily average
wind speeds observed at over one hundred locations in Oklah&inally, a summary of

all findings is provided in Chapter V.



CHAPTER I

STATISTICS IN WIND POWER

Part of the answer to rising energy needs and costs maylijtesblowing in the wind. In
industrialized countries, flipping on a light switch or biogtup a computer is practically
an unconscious act, but our dependence on electricity @geseaearly every aspect of life.
Among sustainable sources of electricity, only wind endrgythe capacity and technology
needed to compete in the open marketplace. In fact, thesiagreshore wind farm in
Europe has begun construction in Scotland, and the larmy#dst IUS is planned for southern
California. The biggest offshore wind farm production ie thiorld is slated for the Thames
Estuary. But, the wind is intermittent. In this work, we exipl how advanced statistical
techniques will enable wind energy to be more efficientlyomporated into the electrical

grid.

2.1 Wind Power Basics

Harnessing the power of wind to benefit humans is not a newegnglistorically, wind-
mills have been used to pump water from wells or to grind gfaircenturies. But fast-
forwarding into the21! century, “windmills” are being used to generate electyici/ind
turbines, as they are now commonly called, are enormouststas, generally up to 80
meters tall, which is roughly the equivalent of a 26 storyiding. With blades up to 40
meters in length and costing up to $2.5 million to manufaetaind install a single one
(www.eia.doe.gov), the science behind effective wind ingldesign has evolved rapidly

over the last two decades. Within the wind turbine housing gearbox to increase the

* Reprinted with permission from “Blowing in the wind” by G, M. G. and Hering, A.
S., 2007 Significance4, 11-14, Copyright 2007 by Wiley-Blackwell Publishing.



rotational speed and a generator to convert the motion ietdreeity. A computer in the
tower senses the wind direction, points the blades in thenapdirection, and shuts the
turbine off in dangerously high winds.

So, can these supercharged wind turbines actually prochaggé energy to make a
significant contribution to meeting demand? Most moderbihas installed onshore are
rated to produce between 1.5 and 1.8 megawatts (MW) of &iggteach, which is enough
to power 1,000 homes for an entire year (www.bwea.com). Deipg on the size and
number of turbines, clusters of them situated in windy locest can produce electricity for
many thousands of homes. These clusters, as in Figure lalsed wind farms. Construc-
tion of the largest onshore wind farm in Europe started irffah@f 2006 south of Glasgow,
Scotland. The construction will take 3 years to complete witidconsist of 140 turbines
producing 322 MW of electricity, enough for about 200,000nes. The largest wind farm
in the US is planned for a region just north of Los Angeles ifif@ania and will produce

over 1500 MW of power.

Figure 1: A typical wind farm in the state of Washington, USA.



Figure 2 illustrates the amount of power that can be prodiged typical onshore
turbine at various wind speeds. At the cut-in speed, thedsldmbgin to rotate, but the
power output increases rapidly even with very small inagsan the wind speed. In this
range, power is proportional to the cube of wind speed, sdl shfi@rences in speed can
make large differences in power output. The maximum powgowiof 1.8 MW for this
particular turbine occurs at about 30 miles per hour andsstioivn at just over 50 miles
per hour. However, power depends not only on wind speed batal variables such as
the diameter of the blades, the density of the air, and thextiim from which the wind is

blowing. Thus, wind power varies from one turbine make andehto another.

Typical Power Output of a Turbine

Maximum R
imum Rated Output Cutoff in High Winds

15

1.0

Output Increases Rapidly with Speed

MW/Hour

0.5

Cut-In Speed

0.0
L
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0 10 20 30 40 50 60 70

Wind Speed (Miles per Hour)

Figure 2: The potential power output of a wind turbine. Thads from a 1.8 MW Vesta
V80-1800IlI turbine.

A large amount of growth and research is now being investeaffghore wind tur-
bines, whose larger sizes (up to 3 MW with 5 and 7 MW machinedeirelopment) can
take advantage of stronger ocean breezes. Just over 16meffsind farms are currently in
operation, mainly off the coasts of Denmark, Sweden, andJtkegbut many more are in

the planning stages. The Thames Estuary scheme announteel Ui Secretary of State



in December 2006 will use 341 turbines to generate a plan@@@ MW at a capital cost

of £2 billion. Most offshore wind farms are located in water l&ssn 30 meters deep, but
engineers feel that they can draw on their experiences wlifplaiforms and move these
farms even farther from land and out of public view.

Compared to traditional power plants fired by coal, natuead, gr nuclear reactions
that produce, averaged over the year, 50% of their maximwsigded output, wind farms
produce on average about 30% of their maximum rated outpuhel US, the current cost
for a kilowatt hour of wind generated electricity is betwekh04 and $0.06, very similar
to traditional energy sources which cost between $0.04 #nd5$% (www.eia.doe.gov).
Opponents to wind energy claim that there are more startagps dnvolved with wind
energy. Transmission lines to move electricity from winéges, which tend to be remote,
must be established, but once a wind farm is operable, it foayisself in its first 6 to 8
months of operation (www.bwea.com). In addition, deconsioizing a wind farm, whose
turbines last 20 to 25 years, is simply a matter of disassemlbhe turbines, removing
them, and recycling the materials. This is a much simpler@amdronmentally friendly
process than decommissioning a nuclear power plant, faanos.

Wind farms have other tangible and intangible benefits. Omstalled and operable,
wind farms produce clean fuel, with no greenhouse gas witator gas emissions. Quan-
tifying the importance of this benefit is difficult but recoged as significant. The Energy
Information Administration projects that oil and gas psell remain high for at least the
next 20 years (www.eia.doe.gov). Every hiccup in theseegritan send economies into
turmoil, so countries who invest in diversifying their egyeportfolio, will help to stabilize
their economies. Not only will demand for oil and gas deceetisereby causing a decrease
in prices, but more importantly, volatility in energy pricwill be reduced.

Worldwide, only 1% of electricity is generated from wind,tlihe growth rate has

been rapid—24% overall in 2005, with a stunning 48% incraas&sian markets. The



World Wind Energy Association expects that over 120,000 MW iod power have been
installed through the end of 2008 (www.wwindea.org). Maoyrries already boast a
large proportion of wind generated electricity. The piaiege countries of Denmark and
Germany who generate over 20% and 8% of their total eletstm&eds from wind, respec-
tively, have set an example to others who plan to integratel wiectricity into their utility
systems. Countries such as the US and the UK (both currestigrgting 1% of their
electricity needs from wind) are aggressively developimgrtabundant wind resources.
Figure 3 shows how much electricity of the worldwide totgbisduced by each of the top

6 countries.

Other 24.1% Germany 23.7%

Denmark 3.3%

China 6.4%
USA 17.9%

India 8.4%

Spain 16.1%

Figure 3: The percentage of worldwide wind capacity gereraty each country in 2007
(www.wwindea.org).

With all of the advantages of and interest in wind producesttekity, barriers to
widespread usage still exist. Indeed, utility companiestmanage a delicate balance be-

tween electricity supply and demand. In larger marketsegxelectricity can be sold, and
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deficits can be bought. But, depending on regulations in padicular market, monetary
penalties can be imposed when energy is wasted. In smalldetsasuch as those on
islands, with no one else available to buy or sell elecyititere is little room for error.
Electricity demand by consumers varies in a nearly detasticnfashion based on
outdoor temperature, daylight hours, and holidays. Thasjahd can be predicted, but
when wind power is added as a source of electricity, suppipines unpredictable (Giebel,
Brownsword, and Kariniotakis, 2003). Wind power is intetemt—obviously the wind
does not blow at a constant speed but is variable. No costiefé solution to storing wind
energy has been found, so wind energy must be used immedteh it enters the grid.
A utility company consequently needs to schedule how muehngsnit needs to “order”
from its traditional plants so that supply will equal demar@as turbine plants need at
least 20 minutes notice to begin production, but large codl @l plants require at least
8 hours to come online. Markets with slow-start productioitsiwould benefit the most

from accurate wind power forecasts.

2.2 Statistical Solutions

Utilities cannot rely completely on wind energy becausdstincontrollable and intermit-
tent nature. Given certain information, electricity digypeers do not have to make blind
decisions without any knowledge of how much electricity wied will produce during
a critical stage of decision-making. Statistical modeliagpredict wind speeds or wind
power can improve on our “best guess” estimate, which is timeent wind speed, called
the persistence model.

The number of hours ahead that a forecast is needed is da#lddrecast horizon and
can vary depending on the reason for the prediction. Themnaxi horizon needed would
be for 2 to 5 days ahead to schedule maintenance of the tsrdumeng slow wind days.

Otherwise, 24 and 48 hour forecasts are needed for traditigeielectricity market. For
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scheduling and dispatch, a typical horizon is between 3 @rftbiirs, but in systems whose
conventional sources generate electricity quickly, thezoo can be under 3 hours.

Both physical and statistical models for predicting windveo have been proposed
and are currently in use, but both approaches follow sinsiieategies. The available data
that the models will be built with must be scaled to the hulghtbf the turbine. For
instance, the wind speeds for the past 24 hours may be aeadtib height of 10 meters
above ground level, but as the altitude increases, winddsplee increases in a logarithmic
fashion. As a result, doubling the altitude can increasentimel speed by 10% and the
power output by 34%.

The next step is deciding whether to predict the wind spegdrop straight to pre-
dicting wind power output, which is the bottom line for ui#is. If wind speed is predicted,
then an additional step of translating that into power oufputhe particular types and
numbers of turbines in use must be done. However, solelyginegl power for a particular
region may make it difficult to predict power output for a f®awind farm with differ-
ent turbines. In statistical models used to date, it has bm&md that modeling the wind
speed itself is most efficient for horizons up to 8 hours aed tmodeling the power output
thereafter is sufficient (Giebel et al., 2003).

Finally, predictions can be upscaled for an entire regidms s especially important
for areas like the UK and Europe where wind farms are geodggajy dense, and utility
companies may manage several wind farms located in closéty to each other.

Most physical models used to predict wind speed or powerparate output from
Numerical Weather Prediction (NWP) models. The basic pserof these models is the
same-—use a finer and finer grid of information to get a more ¢tatmpicture of terrain and
air flow. NWP based models can cover thousands of kilometaigdntally with grid res-
olutions from 5 to 25 km, but they are computationally extegnexpensive to run. Models

can require up to 4 hours of computer time and therefore dayererate fast, reliable fore-
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casts for short horizons (Gneiting, Larson, Westrick, @enand Aldrich, 2006). These
short horizons are the typical time needed to schedulerigsgons and dispatch. Thus,
physical models are more effective for 24 hour predictidBssemble models, averaging
many different physical models together or combining theith statistical models, are
also becoming popular.

Statistical models are the most competitive for short fasetead times. Neural net-
works, fuzzy logic, local regression, and time series mgghzave all been applied to the
problem of wind speed prediction. Many of these models impnwhen additional infor-
mation from the wind farm is included, such as wind directithme of day, atmospheric
pressure, and even physical model output (Gneiting et@D6R The best statistical mod-
els, however, do not use a “black box” approach but also paaite expert knowledge of
the wind characteristics of a particular region (Gneitihgle 2006). It also makes sense
that allowing parameters in these models to vary seasonafiyresult in improvements
since a variable’s influence may change throughout the year.

A growing area of emphasis has been to incorporate off-figeivations into statis-
tical models (Gneiting et al., 2006; Larson and Westrick)@0 Changes in wind speeds
may be detected at upwind locations before reaching the faimd and can improve pre-
dictions. An argument against this methodology is thassitgwind” of a wind farm can
change as the wind direction changes (Kretzschmar, Ecked,Cattani, 2004), and no
single off-site location may exist that has consistentfghhsorrelation with wind speeds at
the prediction site. The ANEMOS Project group (a consortinfaurope whose goal is to
improve wind forecasting) found that with information on@8&-site locations, predictions
could be improved using 3 to 5 of these sites whose meteadoalogonditions were most
representative of the region (http://anemos.cma.fr) nEphg/sical models have been shown
to benefit from the use of additional spatial information.

With the plethora of models being proposed and tested, astensway to compare
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them is needed but not straightforward. Differences in dexify of the terrain, forecast
and data resolution (10 minute, hourly, daily), and size mmehber of wind turbines at a
farm can all affect model comparison. A common way to evaaamodel is to compute
some function of the error—the actual observation minug wha forecast—such as the root
mean square error (RMSE). RMSE will vary from one datasentutteer; a skill score is
used to remove the inherent variability in the observatidngs defined as the difference
between the RMSE of a reference forecast and the RMSE of alntidded by the RMSE
of the reference forecast. The skill score can only be coetpiiita reference forecast (a
model currently in place or the persistence forecast) idada. Even though RMSE is
the most common measure to quantify error, it is not seresé@ivough to reflect improve-
ments in prediction quality. In addition, comparisons madé/ against the persistence
model may be overly optimistic since improving upon the {gesce forecast can be ac-
complished with the simplest of statistical techniquese MNEMOS project group has
also suggested that errors be normalized with respect tmstedled capacity of the wind
farm (http://anemos.cma.fr).

Besides the most obvious problem of forecasting the win@dme wind power for
a particular horizon, more detailed information about theldy of the forecasts is also
desired. Statistical forecasts have a built in probamslistror rate based on sampling dis-
tributions. These error bands around the predictions, ofidence bands, give dispatchers
an idea of how certain the forecasts are. Very wide bands ndigdte an unpredictable
forecast, and smaller bands may indicate a more reliabie@&s. Ensemble predictions
can also give a sense of the forecast uncertainty (httemtas.cma.fr). If the predictions
from several different models are similar, then the colNecprediction is more certain
than if the forecasts vary dramatically. It is also of ingréo identify conditions that
lead to unpredictable power output or dramatic changeswepoWhen those conditions

occur, utilities can protect themselves by carrying lamgdiing reserves from traditional
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energy sources.

2.3 FutureWork

Predicting wind speed and power is a blossoming area of ndsed@esides the issues
previously mentioned, predictions at offshore wind farrdgl another dimension to the
process. The vertical wind profile (and thus the relatiomsietween wind speed at an
observed height and the turbine hub height) differs offshdue to nonlinear interaction
between the wind and waves, surface heating, and the lanovseface that modifies the
air flow. Understanding the wake effect behind massive oftshurbines will influence
turbine orientation and spacing. A wake is the decrease il speed since some energy
is lost after moving through the turbine blades. They diffem one turbine to another and
can decrease power output by up to 10% (http://anemos.Qma.f

Predictions both on and offshore may benefit from the use eéradvanced statisti-
cal techniques. Many statistical methods are built on tlsemption that the variable of
interest is normally (symmetric and bell-shaped) disteblu This is decidedly untrue for
wind speeds that are constrained to be positive and for whrge values occur less fre-
quently than small ones, as illustrated in Figure 4. Nonraditgnshould be incorporated
into statistical models. In addition, placement critenariew wind farms and for turbines
within a wind farm can be evaluated and aided with the use atiastatistics.

Improved statistical forecasting has already had an infle@mincreasing wind energy
production. As the industry continues to expand, the endsarutilities will only grow in
number and complexity; they will need longer forecasts,aramcurate forecasts, measures
of forecast quality, and good tools for forecasting. Asistaians and scientists work
together to provide these tools, the power in the wind willha@nessed and become a

mainstream solution to energy demands.
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Hourly Wind Speeds: Houston, TX 2005
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Figure 4: The wind speed recorded hourly during the year 200%ouston International
Airport in Houston, Texas, USA.
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CHAPTER I

SPACE-TIME WIND SPEED FORECASTING AND EVALUATION

3.1 Introduction

3.1.1 Wind Energy Background

The history of harnessing the power in wind for the benefit ahns long and diverse,
yet wind energy’s current role is evolving rapidly. Throwgih the world, the number of
installed megawatts increased in 2008 from 2007 by 29%. Mects and information
on the role of statistics in wind power can be found in Gentod Eering (2007) and
the references therein. Wind farms capable of powering nthoysands of homes are
springing up both on land and sea. Since the cost of a kilojk&#t) of wind powered
electricity is now nearly the same as a kW produced by coaluatear energy, many
users are switching to this green energy that produces rengoeise gases or harmful
byproducts. Uneven heating of the earth’s surface by thesufuces wind and guarantees
that this natural resource will never be diminished or diejple

Despite its many advantages, utilizing wind energy alssqmts its share of chal-
lenges. The windiest places tend to be the most remote,riregjuransmission lines to
carry electricity to populated areas. Some complain trattimd turbines ruin the scenery
of pristine lands and interfere with bird migration. But lar,fthe biggest challenges are:
(1) the wind is not a steady, constant supply of energy, aha@Zost-effective method
for storing its power currently exists. Its intermittentue can create a problem for those
managing the electrical grid, which is where the supply asahd of electricity meet and
must be balanced. Electrical demand is easily predictadded on weather patterns, day-
light hours, and holidays or work days. Usually, an equal amaf electricity is ordered

to meet this demand from traditional sources. Wind-powetedtricity must be used as
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soon as it enters the electrical grid, so the amount of afditielectricity to order from
traditional sources becomes unpredictable. Ordering tachnor too little electricity can
carry severe penalties and fines in utility markets.

Making accurate predictions of the future wind speed resltice variability and risk
that the electrical grid faces once it accepts wind energysaairce (Smith, Parsons, Acker,
Milligan, Zavadil, Schuerger, and DeMeo, 2007). For a ravfgeind speeds, the amount of
energy that can be produced from a wind turbine is propaatitmthe cube of wind speed,
so small improvements in predicting wind speed lead to largprovements in predicting
wind energy. Predictions of wind energy could be made direbut these are highly
dependent upon the types, sizes, and number of wind turbingseration. A prediction
of wind speed, on the other hand, can be used to derive a poedaf wind energy for
a given wind farm. The typical forecast horizon needed ftresltiling transmission and
dispatch is two to four hours. Longer horizons, such as twibitee days, are useful for
scheduling maintenance of the turbines, and numericalhgeatediction models are best
for this purpose.

Statistical models, especially those that incorporateegxmowledge of wind char-
acteristics and geography, are unmatched in making shiornt{predictions (Giebel et al.,
2003). However, this area of application has not been exivalys explored by statis-
ticians (Kestens and Teugels, 2002). Gneiting, Larson,tiNgks Genton, and Aldrich
(2006) have recently proposed several models for predid¢hie two-hour ahead average
wind speed near a wind farm in northern Oregon. Their bestehadlled the Regime-
Switching Space-Time Diurnal (RSTD) model, accounts ferdiurnal, non-negative, and
volatile nature of wind speed. It takes advantage of thedogahy of the Columbia River
Gorge in which winds are generally channeled in either atedgor westerly direction
to define two regimes. The regimes switch based on whethevititedirection at a point

west of the wind farm is blowing from the west or from the east.
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3.1.2 New Models and Evaluation Tools

In this work, two new models are introduced that eliminateRSTD regimes, a loss mea-
sure to assess the quality of the predictions in terms of p@y#oposed, and experiments
demonstrate the robustness of the new models. The two newlsnoighlight differences
in how the wind speed and direction variables may be treatgther in Polar coordinates
or in Cartesian coordinates. In the first model, the Trigoawit Direction Diurnal (TDD)
model, the wind direction is not simply used to determinergggmes. It is incorporated
directly into the predictive mean function of the RSTD mobgltreating it as a circular
variable and using its sine and cosine. Weisberg (2005)daliat including the sine and
cosine of wind direction did not improve wind speed predicfibut his model building
approach is not systematic. The TDD model is more generalttteRSTD model and has
similar predictive ability.

The second model is called the Bivariate Skew-T (BST) modélses the 2-dimensional
Cartesian wind vector at different locations and lags irettmmodel the wind speed at the
location of interest. The errors in this bivariate regressnodel are not distributed accord-
ing to a normal distribution but with a sketdistribution which is normal in a special case;
see the review paper by (Azzalini, 2005). The skeslistribution has additional parame-
ters that are flexible for capturing skewness and heavy tfarsdictions of wind speed are
ultimately for the purpose of predicting power; thus, assesthe quality of wind speed
predictions should link speed and power (Lange, 2005; LamgeFocken, 2005). Typi-
cal measures such as Root Mean Squared Error (RMSE) or MesoluAé Error (MAE)
for gauging the quality of predictions do not make this lifRower curves describe the
relationship between speed and power, and we develop a mawrleasure that depends
upon this curve. For various ranges of wind speeds, the poutput is either constant or

proportional to the cube of wind speed. Using a wind powevetdior a standard turbine,
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penalties are assigned to each prediction in terms of poutpud Finally, empirical ev-
idence has shown that underestimating wind power averagaghar economic cost than
overestimating it does (Pinson, Chevallier, and Karirki®a2007). Therefore, the penal-
ties are weighted based on the ratio between costs for ovensvenderproducing, and the
effect of the weight on model performance is investigated.

The robustness of these new models is investigated in \saexperiments. The RSTD
predictions are examined when another site besides the wesderly one is chosen to
determine the regimes. In fact, choosing a different sitia wortherly/southerly regimes
produces predictions that are as good as those producedh&itRSTD, and choosing a
poor set of regimes can deteriorate the predictions. Thasngke illustrates that complex
decisions involved in selecting regimes can impact theiptieds. Each model is rebuilt
to make predictions at other sites in the dataset, and the mb&el is found to perform
significantly better than the RSTD model. Finally, the msdske rebuilt on data observed
at the ten-minute scale instead of data that have been aggde the hourly scale. These
data are more variable, but the TDD model performs signifigdretter than the RSTD
model.

This work is organized as follows. In Section 3.2, the RSTDPT and BST models
are described in detail. Section 3.3 introduces the powsedass measure. Predictive per-
formance of each model and robustness in several expesraemteported in Section 3.4.

We conclude in Section 3.5.

3.2 Predictive Wind Models
3.2.1 Data Description
The data used in this study were collected at 3 meteorolbtpesers near the Columbia

River which runs along the Oregon-Washington border. Thelspeed and direction were

recorded every ten minutes. Vansycle, Oregon is locatedtheaStateline wind energy
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center and is the location where prediction is desired. @oedHills, Washington lies
146 km west of Vansycle, and Kennewick, Washington lies 3%kmthwest of Vansycle.
Figure 5 shows the approximate relative locations of thedlstations. The time series of
wind speed and direction are simultaneously recorded & laltations for 55 days from
September 4, 2002 to October 28, 2002 (used for training)adswl for 279 days from
February 25, 2003 to November 30, 2003 (used for testing)ndvBpeed and direction
densities for the 2002 training data are in Figure 5. Eachtpm the circular histograms
represents an observed wind direction. A point at(hengle indicates that the wind is
blowing from the east to the west7a2 observation means the wind is blowing from the
north toward the south and so on. For complete details onatesdt and site information,
the reader is referred to Gneiting et al. (2006).

Many characteristics of the wind vector must be considemdalilding a model. In-
herent in this dataset is spatial correlation. As weathstesys move through the area, the
site upwind of the others will be affected first, and the cormgind conditions at that site
will soon prevail at the other sites (Alexiadis, Dokopoylasd Sahsamanoglou, 1999). Of
course, which site is upwind of the others will change dependn the orientation of the
weather system, but this can be addressed in the modelirepgStemporal correlation is
also present in the data with significant correlations irhlibe speed and direction lasting
for over 24 hours. The wind speed and wind direction are asmgly linked. Martin,
Cremades, and Santatbara (1999) note the strong correlation between winddsped
direction but then ignore it and model the two variables sspdy. There is a diurnal
pattern in the wind speeds, and seasonal differences db(Ekisk, 1999) but are more
difficult to model with this limited amount of data. Finally)e wind speed variance varies
in time as wind speeds change rapidly and with high frequenmbich will be referred to

as conditional heteroscedasticity.
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Figure 5. GH, KW, and VS denote Goodnoe Hills, Kennewick, sadsycle, respectively. The locations of each circle iatic
the relative location of each tower to the others. Each pminthe circular histograms at the top represents a wind tibrec
from the 2002 training data. For example, at Vansycle thentgjof the wind directions blow from the northwest towatte
southeast. The bottom panels are nonparametric denditya¢ss of the 2002 wind speed data.
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3.2.2 Regime-switching Space-time Diurnal Model

The best model that Gneiting et al. (2006) build incorpaateny of the variable char-
acteristics discussed in Section 3.2.1. This particuladehwill be presented briefly here
for clarity, but the reader should see the original papettiermost complete description.
In this model, the ten-minute observations of wind speedaaezaged over each hour to
yield a single hourly observation. The hourly wind speedatsycle is modeled with the

truncated normal distributiony * (1, %), whose mean and-quantile are given by
+_ o (H e
i mprao(2) (%) o)

and

=p+o-da+(1—a)®(—p/o)], (3.2)

respectively, where> and ® denote the density and distribution function of a standard
normal random variable. The key to the RSTD model is in chapsi structure for the
predictive centery, and foro, the predictive spread. The direction that the wind is bimyvi
during the last ten-minute observation of the hour is usexitch the regimes. When the
wind at Goodnoe Hills is blowing from the west to the east (ilee wind is westerly or in
the westerly regime), the mean hourly wind speed at a péatitocation,D;,, is regressed

on two pairs of harmonics as

. 27s 21s . 47s Arrs
D, = dy + d; sin (ﬂ) + dy cos (ﬂ) + dssin (ﬂ) + dy cos (ﬂ) ,

fors =1,2,...,24. Then the least squares fit from the wind speed series at eaatidn
is removed, resulting in residual series without a diuryale V;", K, andG; denote the
residual series at timefor Vansycle, Kennewick, and Goodnoe Hills, respectivélgen,

the predictive center is modeled by

puv2 = Dsyo + i1 (3.3)
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Dy, is the fitted diurnal component at Vansycle, arid, is a linear combination of the

present and past values of the residual series at the these si
M:+2 = ag + alvt’" + CZQX/;T_l + CLgK{ + G4Ktr_1 + CL5G:. (34)

When the wind is easterly (blowing from the east to the was§@dnoe Hills, removing
the diurnal variability from the wind speed series does esult in improvement, so the

predictive center is modeled as
P2 = ao + a1V + ag Ky, (3.5)

whereV; and K; are the original time series.
For the westerly regime, the conditional heteroscedagiincorporated by model-

ing o as a linear function of the volatility value with
Oty = b() + blvt. (36)

The coefficient$, andb, are constrained to be non-negative, and the volatilityesaly is

1 1/2
Ut = <% ; ((‘/tiz — VL )P+ (K = K )+ (G, — G:il)Q)) . (3.7)
This reflects the magnitude of the most recent changes in ithe speed. In the easterly
regime, the residual series in Equation (3.7) are replagatidoriginal wind series. The
parameters in Equations (3.4), (3.5), and (3.6) are esgtanaimerically by minimizing the
Continuous Ranked Probability Score (CRPS) for a truncadechal distribution (Gneiting

and Raftery, 2007).
The 2002 data is used for building and developing the priedichean structures in
Equations (3.4) and (3.5), and the model is tested durindas$te214 days of the 2003

series. A window of days in 2003 is used to estimate the pasms@ the model before

making the first prediction, and this window is rolled aheghe observation after each
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two-hour prediction is made, the parameters are estimagath,aand so on. Based on
experiments performed by Gneiting et al. (2006), the windiemgth that yields the best

predictions is 45 days.
3.2.3 Trigonometric Direction Diurnal Model

Much of the structure of the RSTD model is retained in the TDBdel, but Figure 6
clearly shows that the distribution of wind directions atd@noe Hills changes from the
spring to fall months. It is less clear for months such as @et@and November if two
regimes are sufficient. If not, it is even more difficult to el@dine how many regimes
would be necessary and where the boundaries for these regumeld be. Instead of
making a subjective decision about the number and posifitreaegimes, the TDD model
eliminates the regimes but includes the wind directionsgiabg at all three locations, as a
covariate in the predictive mean function. Since wind dioecis a circular variable, we
include it in the model as the sine or cosine of the wind dioegtfollowing the suggestion
by Mardia and Jupp (2000). We also use the hourly averagesdétirminute observations
of wind direction instead of the last observed wind directd each hour.

We build the predictive mean function from the pool of vakgblisted in Table 1
with the Bayesian Information Criterion, or BIC (Schwar878). Only lags up to three
hours are shown since none greater are selected with tkesien. Using the 2002 data
to build the model, the wind speed at Vansycle two hours aleaeressed on the first
variable, Vansycle’s wind speed at the current time. If th€ Bf this model is less than
the model including only an intercept, théf is retained in the model. Thef,_; is
added to the regression. If the BIC is reduced, then it is atkted to the model. If BIC
increases, then we do not inclutde ; in the model and skip the remaining lags of Vansycle
wind speed. Next, both the sine and cosine of the current dirgttion at Vansycle are

added simultaneously to make the model invariant with retsigethe axes, and they are
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Figure 6: Circular histograms of wind directions at Goodrbks for each month when
predictions are made in the year 2003. Easterly winds areatkéis those on the right-hand
side of the circle betweedwr /2 andr /2. Westerly winds are on the left-hand side.

Table 1: This table contains correlations between the bigaisted and the hourly wind
speed two hours ahead at Vansycle. They are based on therad2g data and are used
to build the TDD model.V, K, andG indicate the hourly wind speed at one of the three
locations, and)y, 0, andd; represent the corresponding hourly wind direction for each
location. Values in bold correspond to variables seleateie TDD model.

Time Lag
Variable t t—1 t—2 t-3
V 0.90 0.85 0.80 0.75

cos(fy) —0.55 —053 —051 —0.48
sin(fy) —0.21 —020 —0.18 —0.16
K 074 072 0.69 0.66
cos(fg) —0.63 —0.63 —0.62 —0.61
sin(fx) —0.02 —0.01 -0.00 0.01
G 060 060 058 0.56
cos(fs) —0.33 —0.33 —034 —0.35
sin(f;) —0.45 —043 —042 —0.41

retained if their addition reduces the BIC. This processejgeated with the remaining
variables in Table 1. The wind speed variables selectedibytbcess are the same as the

ones included in the RSTD westerly regime in Equation (3l4)addition, several wind
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direction components are also included—both the sine asthe®f the current Vansycle
wind direction, the sine and cosine of the current Kennewitid direction, and the sine
and cosine of the current Goodnoe Hills wind direction. Weade the wind direction at
these locations and times @&s;, 0, ;, andd ;.

Removing the diurnal component of the wind speed was heipfile RSTD model,
and a strong diurnal component in wind direction is alsoaetk In Figure 7, the fitted
values of a linear model regressing the hourly mean for spaddhe hourly circular mean
for direction (Fisher, 1993) on a pair of harmonics is pldtgainst the hour of the day for
each location. If there were no diurnal trend, then the lmesld be flat. All three locations
show a clear cyclical pattern in the wind direction, so theedithourly mean direction is
subtracted from each of the wind direction series. Thusptledictive mean is modeled
as in Equation (3.3), wherB,_, is still the fitted diurnal component of the wind speed at

Vansycle, and

Pipo = ao+arlV] +aVi |+ asK] + asK{ | + a5G} + ag sin(@(}’t) + ay cos(@(}vt)

+ agsin(0k ;) + ag cos(Vf ;) + aiosin(0g ;) + ai1 cos(0g ). (3.8)

The scale of the truncated normal distribution is modeleal lagear function of the volatil-

ity value as in Equation (3.6).
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3.2.4 Bivariate Skew-t Model

The BST model differs substantially from either the RSTD @D models. Instead of
using hourly wind speed and hourly direction directly, #n@ariables are converted into
Cartesian components with = rcos(d) andy = rsin(f) for » a wind speed and a
wind direction. LetV, = (V;,,V;,)" denote the Cartesian components of the wind vector
at Vansycle at time. Here,V, , is the east-west component, aig, is the north-south
component. LeK,; andG; denote similar vectors of values at Kennewick and Goodnoe
Hills. The diurnal cycle is again removed from each compoa¢each location by fitting

a pair of harmonics to each set of hourly means, denotefdpyand D, ,. Then, each
component is standardized by dividing by an overall stashdawriation computed at each
location, denoted, ando, (Brown, Katz, and Murphy, 1984). For example at Vansycle,

the series is transformed by

vi- (v

t,x

r \/ V;f,x_Ds,x V;‘,, _Ds, '
V;t,y) :( ’ Y Z/) )

o Oy
These centered and standardized residual series will ietbasv;, K7, andGj.

The residual series at tintet 2 at Vansycle is modeled by
Vio=Ao+ AV, + AV | + A3K] + ALK + AsGJ + ¢, (3.9)

whereA, is a 2-dimensional vector of constants; is a2 x 2 matrix of coefficients for
i =1,...,5, ande, follows a bivariate skew-distribution. Then the random vectdf;,
follows a skewt distribution whose location parameteréis= Ay + A1 V] + A,V | +
AsKT + ALKL | + A5 GY, with scale matriX?, shape parametets = («a, o)’ to model
skewness, and degrees of freedeto model kurtosis (Azzalini, 2005). In shoN;_, ~
ST»(&,9Q2, o, v). The variables in the model in Equation (3.9) are selectéugus BIC
procedure similar to that used for the TDD model. The pararsedre estimated using

maximum likelihood estimation with thR packagesn (Azzalini, 2006). Figure 8 shows
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that the skewt-distribution for the errors is a much better fit to the 200iireg data than

the normal distribution for the errors is.

PP-plot for normal distribution PP—plot for skew—t distribution
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Figure 8: Comparison of the BST with normal errors (left planhd with skewt errors
(right plot) on the 2002 training data.

Then, the predicted vector of Cartesian components at \éams$wo hours ahead is

given by
vt+2 = 2‘77;2 + Ds+2,

wheret = 1,2,3,... ands = ((t — 1) mod 24) + 1. TheA;, i = 0,1,...,5,in Vi,
are estimated from a 45 day window of data before the desiveehbur ahead predic-
tion; 3 is a matrix with the standard deviations of theomponents and thecomponents
estimated from the 45 day window on the diagonal and zerogb®wff-diagonal; and
Dsi2 = (Dgto4, Dstay) is the fitted diurnal mean of theandy components at Vansycle.
Thus, the linear transformation &f;,, givesV,., a ST, (X€ + Dy, QY X7 e, v)
distribution (Azzalini and Capitanio, 2003). The predietdistribution of the wind speed

requires taking the norm of,; 5, so the norm of 50,000 observations drawn from a skew-
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distribution with parameters estimated from each 45 daydewn of data is taken as the
simulated predictive distribution. A large number of obsgions can be simulated quickly
and easily and ensures that the behavior in the tails of 8tallition is accurately charac-
terized. The 45 day window length is chosen since it yielaghtdly better predictions than
30 and 60 day windows. This window length also makes the BSdet@asier to compare

with the RSTD and TDD models, which also use 45 day windows.

3.3 Power Curve Loss Measure

Wind speed predictions from different models are commooingared with RMSE and
MAE, but these are not necessarily the appropriate losgifimxin the wind forecasting
paradigm. A better loss function should relate predicteddwgpeeds to the wind power
since predicting power is the ultimate goal (Madsen, Pingariniotakis, Nielsen, and
Nielson, 2005). The power depends on several factors, suttteaair density, the radius

swept by the turbine blades and the wind speedas follows
P = %ozpm"%:g, (3.10)

whereq is an efficiency constant. As a baseline power curve, we & 1.5 megawatt
(MW) manufacturer’s power curve (black dots in Figure 9hafiked air density. The rela-
tionship between speed and power is not perfectly predetalotentially even depending
on the wind direction (Potter, Gil, and McCaa, 2007), budfiactical purposes, we assume
here that it is.

Four zones of the power curve are defined by the cut-in spkeedated speed, and the
cut-out speed. The cut-in speed is the speed at which thieéubkades begin to rotate. The
rated speed is the lowest wind speed at which the maximum mpoutput of the turbine
is achieved. The cut-out speed is the speed at which thedbdp rotating to protect the

turbine from damage. Zone 2 in Figure 9 is where the relatigns Equation (3.10) holds,
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Figure 9: The GE 1.5 MW power curve. The black dots are the faatwrer's data. The
solid curve in Zone 2 is a nonparametric fit to those data. dteheut-in speed of 3.5 m/s, a
rated speed of 13.5 m/s, and a cut-out speed of 25 m/s. Thiesswange from one type
of turbine to another.

and the solid curve in this region is a nonparametric Nadak&gtson type of estimate

(Nadaraya, 1964; Watson, 1964) fitted with bandwilite- 0.025. Small changes in the

wind speed here can result in large differences in powenusipce power depends on the
wind speed through a cubic function.

When both the observed and forecasted wind speeds are inZdheor 4, either
no power output occurs or the maximum power output occurs.ekample, if both the
forecasted and the observed wind speeds are in Zone 3, tag@ower output is the same
regardless of whether the wind speed forecast is close tolikerved speed or not. No
penalty would be assessed in terms of power for any diffe®ntthe observed and fore-
cast speeds. When both the predicted and observed windsspeedn Zone 2, small
differences in forecasting wind speed will result in greali#erences in forecasting wind
power. As a result, discrepancies between the observedarschted wind speeds should
receive greater penalties in this region.

We definey(+) to be the nondecreasing function that maps speed to powerpder

curve is not a nondecreasing function, but only four of th8@&wind speeds in the testing
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dataset are greater than the cut-out speed, so we ignoeedhsss. Precise power output
data is not available since the power generated at the windrfear Vansycle is proprietary
information. Instead, an estimate of the true power is olethiwith g(V;») that will be
compared to the forecasted power output based on the f(bw'rmisspeedg(lzw). Thus,

a loss function that is of the Generalized Piecewise Lineanfis defined to be

L(Vio Vrsa) = W(Q(VGQA) — 9(Vis2)), ‘?ﬁ+2 < Vigo | (3.11)
(L =)(9(Vir2) = 9(Vit2)), Viga > Vigo
where~ is a weight between 0 and 1 and allows underestimates to ladipehdifferently
than overestimates.

Empirical data from the Dutch electricity market in 2002 gests thaty = 0.73, pe-
nalizing underestimates more strongly than overestin{@eson et al., 2007), which may
at first seem counterintuitive. However when viewed from liskio system perspective, an
underestimate of wind power will cause the system operatorder too much electricity
from traditional sources to meet the demand. In this casesyistem operator now has a
surplus of electricity, and down-regulation (when gernieramust be reduced) tends to be
more expensive than up-regulation (when generation mustcbeased). The Power Curve
Error, PCE, averages the penalties in Equation (3.11) dviEracasts and will be directly
related to the energy produced by a wind farm (Madsen et@5R

The optimal forecast that minimizes a particular loss fiomcis given by

Vt+2 =arg mirLt+2 Ep [L(vis2, Vig2)]

whereF' is the predictive distribution. In the simple cases wheedalss function is squared
error or absolute error, the optimal forecast is the meam@mtedian, respectively. For
the error in Equation (3.11), theh quantile minimizes PCE (Gneiting, 2008). Thus, the

mean, median, andth quantile of each model’s predictive distribution will beedsto
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compare the forecasts. The mean of the truncated normabdisbn in Equation (3.1) and
the median andth quantile from Equation (3.2) are extracted from the RSTD abid
models. The mean, median, anth quantile are computed numerically from the simulated

predictive distribution generated from the BST model.

3.4 Mode Robustness

3.4.1 Comparing Model Performance on Testing Data

A simple baseline forecast is the persistence model. Thegpence forecast for the average
wind speed at Vansycle two hours ahead is simply the currémd speed at Vansycle.
The mean of the predictive distributions of RSTD, TDD, andiBSused to compute the
RMSE, the median is used in the MAE, and tfté quantile is used for the PCE. A measure
called the continuous ranked probability score (CRPS)clvigssentially measures the
spread of the predictive distribution subject to calilatis also computed. The CRPS can
be computed explicitly for the predictive truncated norehiatribution as given in Gneiting
et al. (2006), and the CRPS value for the BST model is compugad) the approximation
in Equation (3) from Grimit, Gneiting, Berrocal, and Johng@006). Table 2 lists the
results on the training data. The model with the lowest oheadue in each column is

bolded.



Table 2: Root mean squared error (RMSE), mean absolute @viAE), power curve error (PCE), and continuous ranked
probability score (CRPS) for 2-hour point forecasts of hypaverage wind speed at Vansycle in May through NovembeB200
in m/s. CRPS is not given for the persistence model. The “@WVecolumn gives the measure over all forecasts from May

through November.

Measure Forecast May  Jun Jul Aug Sep Oct  Nov Overall
Persistence 2.14 197 237 227 217 238 211 2.21
RMSE RSTD 1.73 156 169 178 177 207 1.87 1.79
TDD 174 156 168 178 175 203 18 178
BST 169 159 164 181 1.8 2.09 200 1.82
Persistence 160 145 174 168 159 168 151 1.61
MAE RSTD 131 119 132 131 136 148 138 134
TDD 134 118 131 133 133 148 138 134
BST 126 119 127 137 142 151 150 1.36
Persistence 99.33 72.85 11459 94.33 75.48 92.19 59.22 087.1
PCE RSTD 69.45 48.19 73.21 63.39 56.31 71.62 48.89 61.73
TDD 70.17 48.42 7270 63.14 56.13 70.24 47.13 61.28
BST 6751 50.46 73.42 66.90 61.57 73.83 50.98 63.65
RSTD 095 08 094 09 097 108 100 096
CRPS TDD 097 08 093 09 09 107 100 096
BST 092 08 091 098 101 110 1.08 0.98

ve
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Overall, the TDD model has the smallest value or one of thdlestaalues for RMSE,
MAE, PCE, and CRPS. It has the advantage over the RSTD modein§ more general
but retains the RSTD'’s predictive ability. In terms of PClie TDD model has the lowest
values through the majority of the months and does betterest in terms of the other
measures through the fall months. The BST model does notwelbas TDD and RSTD in
any of the overall measures, but it does have the smallestRM&E, and CRPS in May
and July and the smallest PCE in May. The BST model, like abysbfitting technique,
fits to the majority of the data in the fitting window and is ins#ive to unusually large
or small values (Azzalini and Genton, 2008). Thus, its fas¢dor unusually high wind
speeds tends to be poor. The wind speeds in May and July hav&nthllest standard
deviations of any of the months, so the BST model does weihduhese months.

The differences among the models may seem small, but snifdtetices are still
important from a practical perspective. To test if theséed#nces are significant, the large
sample test introduced by Diebold and Mariano (1995) forganmg the forecast accuracy
of competing models can be applied to check for significaifémdinces between functions
of the errors of two models. We test the null hypothesis tinate is no significant difference
between the overall MSE, MAE, or PCE of two models. With 5186-tour ahead hourly
forecasts, the-value to test for significant differences between the MSEhefRSTD and
TDD models is 0.3337, and thevalue for the test of significant differences between their
MAE’s is 0.8713. Thus, we do not have evidence that the TDD ehal significantly
different in terms of squared or absolute errors. Both thdTdhd RSTD models are
significantly better than the BST model in terms of MSE and MARe p-value to test
for a significant difference between the PCE of the TDD and BR&lodels is 0.8457 and
between the RSTD and BST models is 0.4375, neither of whistrasgly significant.

A better sense of the difference between the two models mstef wind power over

the testing set is given in Figure 10. For each observatlmndifference in accumulated
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Figure 10: These graphs plot the difference in accumula@g h kW) penalties between
the RSTD and TDD models (top), the RSTD and BST models (m)ddled the BST and
TDD models (bottom). An upward (downward) trend means thatsecond model is
performing better (worse).



37

PCE penalties between the RSTD and the TDD models (top),deetthe RSTD and the
BST models (middle), and between the BST and the TDD modelsa(in) is plotted for
all predictions made up until that observation. It shouldnb&d that what is plotted is
not PCE but the sum of the differences in penalties assignedeoPCE function for each
prediction and has not been averaged. A similar graphigadcaeh is taken in de Luna
and Genton (2005) and serves to compare the cumulativeafstieg ability of two models
over a given time period and the gains or losses that wouldtrésased on this, the RSTD
model makes steady improvements over the TDD model from Madii¢ middle of July,
from the middle of August to mid-September, and then for tist few days in November.
However, the TDD model makes large gains in the beginningugfust, middle of October,
and end of November that leave it with a better accumulated &Ghe end of the testing
period. When comparing the RSTD and TDD models with the BST@ehm the bottom
two panels, except for the short periods in May and July, t8d R and TDD models
dominate the BST model in terms of PCE.

In all three models, the parameter estimates change withreae forecast, but to give
a sense of their values, the averages over all forecasts foando; , » in the RSTD model
are 7.02 and 1.70, respectively. The average parameteraést in the TDD model are
7.00 and 1.74, which are quite similar to the RSTD valueshéBST model, the average
estimated the skewness parameteas (—0.17,0.01)’, an indication that there is very little
skewness in the distribution of theandy components. The most interesting parameter in
the BST model is the degrees of freedamwhich averages 5.26 and is always between

3.69 and 7.66, indicating that the distribution has verykeails.
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The predictive distributions of the three models can lookegdifferent, depending
upon the forecast, as shown in Figure 11. The top panel shmvgredictive distribution
of all 3 models when the TDD model produces the best foreddst. RSTD distribution
is very similar, but the BST model is centered incorrectlg aamore concentrated. How-
ever, when the TDD model produces a poor forecast in the imopianel of Figure 11, it
also can be centered incorrectly. The RSTD model, in thie,qga®duces a good forecast,
but the predictive distribution is very widely spread. Th&Bmodel is not only centered
closer the forecast, but it is also very tightly distribut@Ver all forecasts, the 90% predic-
tive intervals based on the upper 95% and lower 5% quantflésese distributions have
mean width 5.44, 5.52, and 5.96 for the RSTD, TDD, and BST nspdespectively, with
empirical coverages of 89.43%, 89.99%, and 91.59%. The TDBDahhas slightly wider
intervals than the RSTD model and also slightly better eiwgdicoverage. The BST has

the widest intervals, and the coverage is a bit higher tharstiited level.
3.4.2 Alternate Regime Selection

Some justification for using Goodnoe Hills as the site whaeeregimes are determined
for RSTD is given in Gneiting et al. (2006), but Kennewick da®t seem to have been
considered as a potential site for the regimes to switch. &ffethe RSTD model using
Kennewick to determine the regimes. First, an easterlytavigsset of regimes is tested
and then also a northerly/southerly set of regimes sincan&eitk’s main mode is nearer
7/2than itis tor, see Figure 5. The TDD and BST models do not need to be refite Bab
shows the results for the RSTD model for both the east/wegghies and the north/south
regimes. The TDD and BST model results and the original RSDdehoutcomes are also
displayed for comparison.

First of note is that using an east/west set of regimes singcat Kennewick does

deteriorate the RSTD predictions as compared to using Guo#fils as the regime in-
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dicator. However, what is remarkable is that the northisaagimes at Kennewick can
produce very good results, some values of RMSE, MAE, and R&igjlsmaller than those
for the original RSTD model. The north/south regime is stdk overall smaller than the
TDD in PCE, but in three months it does produce the best PQlesalThis illustrates the
fact that unless all possible regimes and stations aredt@staay be impossible to empiri-
cally choose the site and regimes that yield the best pied&tIf more stations with wind
speed and direction data become available, this would ayplicate the selection of a
site at which to determine the regimes. In fact, the regimag not depend on a single site
only but on a possibly nonlinear combination of severaksiteseems reasonable to avoid

such a selection when possible.
3.4.3 Predictions at Kennewick and Goodnoe Hills

To test the mobility of these models, the variables are eesedl to make predictions at
the other two locations in the dataset, Kennewick and Goediitls. When predicting
at Kennewick and Goodnoe Hills, the best choice of regimeshie RSTD model may
change, but the model is applied “blindly” in the sense thatwant to see how portable it
is to a new location. Variables are reselected for the RSHdiptive mean functions, but

the easterly/westerly regimes that switch at Goodnoe Hiksheld fixed.



Table 3: RSTD model outcomes when easterly/westerly antheidy/southerly regimes are defined by the wind directibn a
Kennewick. The original RSTD (with the regimes determingdh® direction at Goodnoe Hills), the TDD, and the BST model

results are also given.

Measure Forecast May  Jun Jul Aug Sep Oct  Nov Overall
RSTD-KW-EW 1.77 156 1.75 183 1.79 2.07 1.89 1.82
RSTD-KW-NS 175 156 169 177 174 204 188 178

RMSE RSTD-GH-EW 1.73 156 1.69 178 177 2.07 1.87 1.79
TDD 1.74 156 168 178 1.75 203 1.86 1.78
BST 169 159 164 181 185 209 2.00 1.82

RSTD-KW-EW 136 1.19 136 137 137 152 142 1.37
RSTD-KW-NS 134 118 132 133 134 1.50 138 1.34
MAE RSTD-GH-EW 131 1.19 132 131 136 148 138 1.34
TDD 134 118 131 133 133 148 138 1.34
BST 126 119 127 137 142 151 1.50 1.36

RSTD-KW-EW 70.91 49.27 76.82 65.05 57.21 7190 4859 62.98
RSTD-KW-NS  70.73 47.30 73.46 64.04 54.76 68.90 49.19 61.35
PCE RSTD-GH-EW 69.45 48.19 73.21 63.39 56.31 71.62 48.89 7361.
TDD 70.17 48.42 72.70 63.14 56.13 70.24 4713 61.28
BST 6751 50.46 73.42 66.90 61.57 73.83 50.98 63.65

1%



Table 4: RSTD, TDD, and BST model outcomes for predictionderat Kennewick.

Kennewick Forecast May Jun Ju Aug Sep Oct Nov Overall
RSTD 234 196 209 217 213 236 234 221
RMSE TDD 232 194 208 215 211 236 230 219
BST 237 203 218 223 205 228 223 220

RSTD 182 144 160 158 160 1.77 1.66 1.64
MAE TDD 179 143 159 160 159 176 1.63 1.63
BST 1.80 145 164 161 151 172 154 161

RSTD 87.45 65.18 8296 83.78 67.53 74.52 78.60 77.24
PCE TDD 85.63 6493 83.81 8319 66.91 71.31 80.51 76.69
BST 92.35 70.32 84.49 86.58066.47 72.34 7391 78.18

Table 5: RSTD, TDD, and BST model outcomes for predictionderat Goodnoe Hills.

Goodnoe Hills Forecast May  Jun Ju Aug Sep Oct Nov Overall

RSTD 169 151 138 155 168 187 175 164
RMSE TDD 169 155 140 155 168 187 173 1.65
BST 176 164 143 156 170 198 1.78 1.70

RSTD 131 116 106 118 125 137 131 123
MAE TDD 131 119 108 120 1.26 137 128 1.24
BST 138 129 1.09 119 127 145 134 1.28

RSTD 8169 6118 67.36 68.96 63.66 70.8356.78 67.30
PCE TDD 82.54 64.33 68.52 69.17 64.689.31 56.90 68.01
BST 86.46 67.47 68.9968.30 6324 76.11 61.13 70.33

A%
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The results in Tables 4 and 5 show that the TDD and BST modets $raaller sum-
mary measures than the RSTD model at Kennewick, but RSTDfisulti to beat at Good-
noe Hills. The TDD model has a significantly lower RMSE at Kewick than the RSTD
model doesy-value = 0.0052), and both TDD and BST have the smallest RMBEE, or
PCE in various months. Predicting at Kennewick is more diffidue to the more highly
variable wind speeds observed there, which is also reflant&@nnewick’s larger PCE
values. Goodnoe Hills is the one location situated direictlthe Columbia River Gorge,
so the regime-switching model best captures the wind flowepat Goodnoe Hills also
has the fewest unusually large wind speeds, which is evatebg the lower RMSE and
MAE values. In this situation, RSTD has the lowest overalERBut it is not significantly

different from that of TDD f-value= 0.7550).
3.4.4 Finer Scale Data

One final experiment on the models returns us to the full éatasth wind speed and
direction measured every ten minutes. This finer scale af etibits more variability and
is not as predictable as the hourly averaged wind speed. ppr@aches are tested in which
models are rebuilt both on the full dataset and on the tenstmiobservations that occur on
the hour. For models built on all ten-minute observatiorsedve-step forecast horizon is
needed to arrive at the two-hour prediction. Predictioesnaade for5136 x 6 = 30, 816
time-steps. The predictions made on the hour are resenaahipare with the model built
from the ten-minute observations that occur on the houhahmodel, a two-step forecast

is the two-hour forecast, and only 136 predictions are made.



Table 6: RSTD, TDD, and BST model outcomes for the two typesadels built on the ten-minute data.

All Ten-Min Forecast May Jun Jul Aug Sep Oct  Nov Overall
RSTD 195 177 190 199 196 223213 2.00
RMSE TDD 190 172 184 198 193 222 213 1.97
BST 18 173 176 2.00 202 232 235 2.02
RSTD 148 137 150 152 150162 157 151
MAE TDD 145 132 144 149 147 163 160 149
BST 139 131 136 151 155 168 1.77 151
RSTD  79.42 56.21 83.5769.30 60.85 75.39 52.38 68.32
PCE TDD 78.10 54.86 79.34 69.64 5953 75.26 51.60 67.07
BST 7416 55.61 7574 74.47 65.86 79.73 63.07 69.92
Hourly Ten-Min Forecast May  Jun Ju Aug Sep Oct Nov Overall
RSTD 192 177 190 199 196 222 214 1.99
RMSE TDD 190 173 184 198 193 221 213 1.97
BST 186 1.74 176 197 201 227 230 2.00
RSTD 146 137 149 151 150161 159 151
MAE TDD 144 133 144 148 147 162 161 148
BST 139 132 136 148 153 164 174 1.49
RSTD 78.80 56.24 81.84 70.37 61.11 75.4%.39 68.19
PCE TDD 77.65 54.83 78.50 70.31 60.07 74.05 53.11 67.08
BST 75.89 55.23 7450 72.56 65.07 78.49 59.50 68.87

144
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Questions of interest in these models include whether ubiadull set of ten-minute
observations will improve the two-hour forecast and whethe models will have similar
results to those in Table 2. In Table 6, it is shown that mobei# with all of the ten-
minute observations have very little predictive improvatmmmpared to the models using
only the ten-minute observations on the hour. However, BB Thodel appears stronger
relative to the RSTD model than it does in Table 2. In factsisignificantly better than
the RSTD model in terms of MSE for both the full set of obseoreg and the ten-minute
observations on the houp-{alues0.0031 and0.0000, respectively) and also in terms of

MAE (p-values0.0059 and0.0088).
3.4.5 Underestimation Penalty

The weight that is given in Section 3.3 for the Power Curvegrr = 0.73, deserves some
attention. The purpose of this weight is to penalize undien@sion more strongly than
overestimation of wind power. However, it is not a fixed vallethe Dutch market over
the course of the year, the value-ofanges from 0.51 to 0.98 through the 4 quarters of the
year, and it varies from 0.14 to 0.96 over the 12 months of e YPinson et al., 2007).
Markets with different sets of rules can also affect the galin addition, a single wind
farm usually does not produce enough energy to affect edgtprices, but the larger the
penetration of wind energy, the more significantlwould be affected.

We have used = 0.73 as an example up to this point, but in Table 7, we show the
value of PCE for the three models based on hourly data wher).73 is replaced with a
range of values. We want to determine if the results from Prekrdluenced by the value
of ~, and in each case, the optimglh forecast is used in the computation of PCE. With
the smallest and largest valuesgfno one model has a consistently smallest PCE over
the months. Whern = 0.10, BST has more small monthly values of PCE than the other

models, and when = 0.90, the TDD model appears to be favored.



Table 7: RSTD, TDD, and BST model PCE results for varying fi@saon underestimation versus overestimation. A value of
less (more) than.50 penalizes overestimates more (less) heavily than undeedsin.

v Forecast May Jun Ju Aug Sep Oct Nov Overall
RSTD 444 505 420 392 369 11.06 6.02 5.49
0.01 TDD 440 5.13 415 404 386 1059 6.14 548
BST 476 572 447 415 347 13.02 6.72 6.05
RSTD 3280 25.16 33.55 27.55 25.03 42.10 26.10 30.40
0.10 TDD 33.07 25.49 32.94 27.67 25.17 41.22585 30.27
BST 33.28 26.88 3248 2645 2399 40.31 26.90 30.10
RSTD  77.28 57.24 84.96 69.28 63.21 81.65 55.23 70.00
0.50 TDD 78.60 57.48 83.776854 62.69 80.99 53.00 69.46
BST 7524 59.56 82.60 70.58 65.29 80.64 57.64 70.35
RSTD 4136 26.61 4055 36.38 33.90 48.24 3537 37.56
0.90 TDD 42.12 27.14 4029 36.16 33.26 4587 3126 36.67
BST 43.83 30.84 41.16 40.80 38.52 50.10 35.19 40.14
RSTD 776 465 595 7.79 7.01 29.28 4214 14.90
0.99 TDD 765 461 6.44 697 7.48 26.63 4156 14.43
BST 8.89 6.82 597 10.85 8.1723.01 43.39 15.24

ov
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When~ = 0.50 and there are no penalties for overproducing or underprogduboth
BST and TDD have the smallest PCE for each of 3 months. Thisrerpnt just serves to
demonstrate that no one model is routinely favored over thers for every possible value
of ~, so PCE should be used only after a relatively stable estimiat for a given market

can be determined.

3.5 Conclusion

The importance of conserving natural resources and ekgpdoibe clean electricity pro-
vided by wind energy will only continue to grow in the futur®ne goal of this paper has
been to present model-building strategies for short-tema\wpeed predictions when both
the wind speed and direction information is available opaice and time. Wind farms with
different terrain and different numbers of nearby metemyal stations can use the TDD
or BST modeling approaches to fit similar predictive mearcfiams, whereas the RSTD
model is limited to few locations and known physics. Additdly, speed and direction
are often converted to the Cartesian coordinate systenmodels like TDD demonstrate
the benefit of treating wind direction as a circular variabkead. To conclude, the TDD
model produces forecasts that are as good as the RSTD modeisfoataset while main-
taining more generality. The BST model does not perform dsimweerms of PCE on this
data, but it does have the added feature of producing a wiedttn forecast, which the
other two models cannot do.

In comparing models, the power curve error assigns a grpatelty to wind speeds
predicted to be in the region where power is roughly propasl to the cube of speed and
also penalizes underestimates more strongly than oveass. Attributing loss in this
way directly exploits the nonlinear relationship betweemver and speed and puts wind
power into the larger context of the entire utility systenCHPcan easily be adapted for

different turbines and different markets and can be averager several wind farms to get
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a more stable estimate. Finally, it may not be reasonabledorae that an error made at
a low power has the same economic cost as the same error madegiter power. An
investigation into the effect that the magnitude of wind podor a given error has on the
associated loss would need to be conducted.

The work done here could be extended in several ways. Fugate of these models
should incorporate year-round observations so that maagt&mpnance can be assessed in
every season. Including additional covariate informatgurch as equatorial Pacific Ocean
sea surface temperatures that affect storm frequency, meaheeather prediction model
output, or pressure differences east and west of Vansyaed& also improve predictions.
The optimality of the forecasts can continue to be evaluai#iitests such as those intro-
duced in Patton and Timmermann (2007).

While the focus in this work has been on point forecasts,fauncertainty estimates
of the forecasts that include uncertainty about the pamnestimates and variable selec-
tion would also be of interest. Either model-free bootgtrag techniques (Alonso, Ra,
and Romo, 2006) or using a fully Bayesian analysis (Wikld]iffJiNychka, and Berliner,
2001) could be interesting approaches to obtain such ger\Finally, wind farms with
dominant weather patterns that differ from those of the fRaiorthwest and with vary-
ing numbers and locations of off-site observations woulthberesting applications for the
TDD and BST models. The TDD and BST models’ predictions fog tiata are promising

that these flexible models could work well with new datasets.

Note: All circular plots were plotted using tlee r cul ar package irR by Lund and

Agostinelli (2006).
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CHAPTER IV

SPATIAL FORECAST ACCURACY TEST

4.1 Introduction

Making predictions is one of the primary reasons to invefgrefn building models that
capture the salient features of data. These forecasts adeassa guide to make practical
decisions. Poor forecasts can lead to poor decisions atichately, to abandoning the
model used to produce them. Good forecasts can save timeynand resources. Decision
makers are often faced with choosing between the forecastiiped by more than one
model. Therefore, formally comparing the forecasts froompeting models is necessary
to be confident that the chosen predictive model truly predwstiperior forecasts.

Comparing the accuracy of forecasts is common in time san@sysis. Beginning
with the seminal work of Diebold and Mariano (1995), a testha null hypothesis of
equal forecast accuracy between two competing models wasluted. Their test, here-
after referred to as the DM test, can be used with the resesathoice of loss functions,
makes no distributional assumptions on the forecast emmasincorporates both serial and
contemporaneous correlation in competing forecast erhMasy extensions and improve-
ments to this test have been made (West, 1996; McCracked, Pladvey, Leybourne, and
Newbold, 1997; Giacomini and White, 2006), and we develojpndar type of hypothesis
test for spatial data that incorporates unique featurepaifa data not encountered in time
series.

Spatial predictions are made for many variables such aseesnpe, precipitation,
air pollution, concentration of geological resources sasloil and coal, home prices, and
disease concentrations. In the past, authors who havem#drto apply the DM test in

a spatial setting have discarded data to create an “indep&hdiataset (Wang, Anderson,
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Entekhabi, Huang, Su, Kaufmann, Potter, and Myneni, 206&ll S5opal, and Kaufmann,
2000). Some have simply noted that no such test is availabtaricorporates the spatial
correlation across forecasts (Longhi and Nijkamp, 2007angive point estimates of
forecast accuracy or choose the model that minimizes sossduaction, but they may not
quantify the uncertainty associated with those estimat@sctude potential spatial depen-
dence in their estimates (Atger, 2003; Gong, Barnston, aad)2003; Willis, 2002).

Currently, forecasting wind speeds for wind power genenrais a particularly impor-
tant area of application in which such a forecast accurastyweuld be beneficial (Genton
and Hering, 2007; Willis, 2002). No cost-effective method $toring wind energy exists,
so it must be used as soon as it is produced. This variabldysopgkes it difficult for
utility managers to maintain a balance between the suppdyd@mand of electricity. If
they fail to maintain this balance, they incur monetary pe®imposed by the state. The
United States possesses vast regions in which many windfaave been built, such as
the western region of Texas. For a given point in time, spitiacasts at these wind farms
help utility managers plan for the transmission, purchasel distribution of electricity.
Forecasts made by competing models can be evaluated witigaeuloss function that
incorporates the nonlinear relationship between winddpeel wind power and a penalty
for over or underestimation of wind speed (Hering and Ger2609). The forecast accu-
racy test that is described in this work would be instrumiantdetermining if on average
a difference in the loss produced by competing forecastgmficant.

The extension of the DM test we describe here is appropraateesting the null hy-
pothesis that on average there is no significant differelet&den two sets of spatial fore-
casts. It does not require the forecast errors to be Gaussiaaro-mean, and it allows
for both spatial correlation within the forecast errors andtemporaneous correlation be-
tween the forecast errors. Contemporaneous correlatamiraportant element to consider

since many models share sources of information, therebyngakmultaneously good or
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bad forecasts at a given location. One final advantage oftytpis of testing is that loss
functions beyond the conventional mean squared error (M®&&pllowed. For example,
a researcher may want to penalize overestimation more ligeghan underestimation, in
which case the loss function could be a piecewise lineartiom¢Gneiting, 2008).

To the best of our knowledge, no other method exists that teetsame hypothesis as
this proposal. One approach that is similar in nature isdaseimproving the power of
the false discovery rate methodology by performing a waddeomposition of the spatial
field (Shen et al., 2002; Sedur, Maxim, and Whitcher, 2005)s Thethodology, hereafter
SHC, tests for a difference in spatial signal at every larain the domain as opposed to
ours that tests for a difference in spatial signal on aveaagess all locations in the domain.
The wavelet-based approach will determine not only if aifitant difference between two
spatial signals exists but also where in the domain therdiffiee occurs. The drawback to
a wavelet approach is that the data must be on a regular gritlithee grid size must be
a dyadic power. For irregularly spaced data, the data musbbeced to a grid, and any
missing values must be imputed (Nychka, Wikle, and Royl®220atsuo, Nychka, and
Paul, 2006; Shi and Cressie, 2007). Nonstandard grid sezed to be padded with zeroes
or a combination of multiscale wavelets may be used (Deckamd Berre, 2005). This
method is developed for data assumed to be Gaussian and diopsrform well under
various loss functions that change the distribution of thiad

Our test procedure has the advantage of being computdyidiagt and simple to
implement. Only one hypothesis needs to be tested versusag lnypotheses as there
are locations for the SHC method. In Section 2 the backgraidifidrecast accuracy tests
in time series are reviewed, and these ideas are extendbd &pétial setting in Section
3. Section 4 summarizes the Shen et al. (2002) wavelet metibgpg which will be used
for comparative purposes. Size and power properties ar@nkgnated with Monte Carlo

experiments in Section 5. Section 6 provides an applied phaai the test to daily average
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wind speeds in Oklahoma, and we conclude with some disqugsi®ection 7.

4.2 History of the Test in Time Series

4.2.1 The Asymptotic DM Test

Let {41:}_, and{9x}L_, be two forecasts of the same time sefigg’_,. The associated
forecast errors arée;;}-_, and{e }., wheree;; = y;; — 9. The timet loss associated
with a forecast can be an arbitrary function of the realatnd the prediction, denoted
9(yi, 9i) (¢ = 1,2), which is often a function of the forecast error. Thus, fondicity, the
loss function will be written ag(e;;) for i = 1,2. The null hypothesis of equal forecast

accuracy for two sets of forecasts is

Hy : Elg(ewt)] = Elg(ex)] or Hy: E[d] =0,

whered; := [g(e1;) — g(e2)] is the loss differential.

The sample patHd;}Z_, is assumed to be covariance stationary and short memory.
Thus, the asymptotic distribution of the sample mean Idésreitial,d = + Zle[g(elt)—
g(es)] is such that

VT(d = p1) — N(0,254(0))

in distribution asi” goes to infinity. Herey is the population mean loss differential, and

s4(0) is the spectral density of the loss differential at frequediclt is defined to be

sa(0) = % > alr)

for v4(7) = E[(d; — p)(d;—, — p)] the autocovariance of the loss differential at tag

The large-sample standard normal test statistic for fatemecuracy is then
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wheres,(0) is a consistent estimator @f;(0). This consistent estimator is obtained by

taking a weighted sum of the available sample autocovagmnc

(T-1)

2msa0) = Y 1(%)%(7% (4.1)
r=—(T~1)
where
1 < . "
Bal(r) =7 D (di = d)dyr — d).
t=r|+1

and1(7/S(T)) is the lag window, and(7") is the truncation lag.
The choice of lag window and truncation lag are motivatedigyresult that the opti-
mal k-step forecast errors are at mést- 1) dependent, which can be checked empirically.

This suggests the uniform, or rectangular, lag window déflne

T <
1<7-): ' whengf] <1 (4.2)
S(T) 0 otherwise

This uniform window assigns unit weight to all included axgweariances, and only: — 1)
sample autocovariances are used in the estimatiofy(0) because all others are set to
zero.

Diebold and Mariano (1995) discuss their choice of lag wimdd hey say that the
Dirichlet spectral window associated with the rectangldgrwindow dips below 0 at cer-
tain locations, so the resulting estimator of the speceabdy is not guaranteed to be pos-
itive semidefinite. However, because the Dirichlet kerrssligns a large positive weight
near the origin, the estimate ef(0) is unlikely to be negative. In practice, they treat a
negative estimate of;(0) as an automatic rejection of the null hypothesis.

In small samples, it is not unusual to obtain a negative edérofs,(0). We suggest
avoiding this problem by fitting a covariance model to the gitg@l autocovariances that
is guaranteed to be positive definite. Instead of truncdatiegsum in (4.1), we estimate all

of the autocovariances for lags= 0,1,2,...,T7 — 1. Since empirical autocovariances at
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higher lags are more variable given that fewer observatoasvailable to compute them,
we only retain the empirical autocovariances computed Unatioof the maximum lag. We

fit an exponential covariogram of the form
C(r) = o exp7/°

using ordinary least squares or weighted least squares entipirical autocovariances. We

useC(r) to estimate the values of,(7) in

271 £4(0) = 44(0) + 2 i Aa(T)

for the parametrically estimated test statistic
d

9mfa(0)
T

Sp =

We compare this method to that described by Diebold and Mar{a995) by simu-
lating forecast errors as they describe and applying thdratia loss. They represent the
contemporaneous correlation withand the (moving average) MA(1) parameter with
Usinga = 0.10 as they do in their work, the observed size of the test is diiaally im-
proved withS,. Table 8 shows that in samples of size 8, the size is redudeebr 52.4%
and 58.1%. The difference in sizes is evident from sampleszef8 through samples of
size 64. In fact, empirical sizes reach the desired level at 128 for the DM test but at

n = 32 for the parametric test.
4.2.2 Extensions of the DM Test

Many authors have worked to improve the DM test in the yearsesit was published. One
of the first responses was a paper by West (1996) which eeticthe DM test for fail-
ing to address the fact that the forecasts can depend uporaesd regression parameters.

Diebold and Mariano (1995) do not mention this fact, so tkest implicitly assumes that
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Table 8: Empirical size of quadratic loss function for tinegies data simulated according
to the parameters and description in Diebold and Marian®@%19 The results for their
asymptotic test statistic5; and for the parametrically estimateéy, which uses an OLS
exponential covariogram estimate of varianceDoére given. 2,500 datasets are simulated
for each combination of parameters, ane- 0.10.

DM Test S, Test
T p|0=0 0=05 0=09|0=0 0=05 0=09

8 003252 31.28 28.96|15.20 13.12 12.92
8 053136 30.00 27.16|14.12 12.20 12.92
8 093252 2876 29.24/15.00 11.92 14.20

16 0.0| 20.48 20.00 17.60| 11.08 11.56 11.96
16 0.5| 21.96 19.36 17.80| 13.32 10.36 12.40
16 0.9] 2048 19.72 18.12| 10.40 10.96 10.76

32 0.0 15.12 13.56 13.12| 9.72 9.56 10.92
32 0.5)16.92 14.48 14.72| 11.76  10.40 11.92
32 091456 13.48 12.88| 10.36  9.80 10.00

64 0.0|12.04 11.44 10.92| 9.72 9.64 10.04
64 0.5)12.32 11.96 11.56| 9.80 10.12 10.32
64 0.9 1288 11.68 11.04| 10.24 10.00 9.76

128 0.0 11.52 10.32 10.00{ 10.04 9.32 9.48
128 0.5] 11.44 10.28 10.40| 9.44 9.60 9.32
128 0.9 12.04 11.48 9.52|10.36 10.12 8.84

256 0.0 10.84 10.44 10.64| 9.72  10.08 10.16
256 0.5] 9.96 10.24 10.64| 9.00 9.80 10.28
256 0.9 10.00 9.56 10.88| 9.20 8.88 10.52

512 0.0 9.72 10.84 10.84| 9.16 10.64 10.48
512 0.5/ 10.96 9.88 10.12| 10.36  9.60 9.60
512 0.9| 11.64 9.80 10.20| 11.12 9.44 9.40

Standard errors of values in the table are between 0.6% 86l 1.

the regression parameters are known. The adjustment imrtthvedele to estimating regres-

sion parameters depends upon several factors such as whanns being estimated in
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the loss function, the regression technique, the fractiohe total sample used for out-
of-sample estimation of the loss, and the probabilistigremvment. West assumes that the
loss function is twice differentiable in a neighborhoodted parameter vector and contends
that although this excludes mean absolute error (MAE), niapprtant loss functions are
still included. McCracken (2004) allows the loss functiorbe nondifferentiable.

Several situations arise in which the additional variancéhe loss differential that
is due to estimating parameters is asymptotically irrelevdor example, if the number
of observations used to estimate the unknown parameteasgs telative to the number
of forecasts made, then the parameters can be treated &y iate known. Also, when
the predictors are uncorrelated with the prediction esoch as with MSE or comparing
non-nested models, then uncertainty due to the paramsteot important. In these cases,
West'’s test reduces to the DM test.

An adjustment for the bias in the variance of the mean diffeeel series of the DM
test was proposed by (Harvey et al., 1997). This improvesitte of the test in small to
moderately sized samples. They also propose a compantdo the forecast accuracy test
called the forecast “encompassing” test (Harvey, Leybeuamd Newbold, 1998). They
make a combined forecast by taking weighted averages afithdil forecasts, and if the
optimal combined forecast places all of the weight on onéviddal forecast, then that
individual forecast is said to encompass the others. A rolmrsion of the DM test is sug-
gested by Dell’Aquila and Ronchetti (2004) who show thatriral samples distributional
deviations can have a large impact on the size of the DM tdwstirmethod also identifies
points that have a large influence on the size and power oé#te t

Finally, Giacomini and White (2006) unite much of the praogdheory with their test
of predictive ability that allows the forecasting model&&possibly misspecified, accounts
for parameter estimation in the models, and tests conditigwhich forecast is best for a

particular horizon) versus unconditional (which forecasbest on average) forecasting
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objectives. Their treatment unifies theory on nested andrmested models. Their test
applies to multistep point, interval, probability, or dépgorecast evaluations. They also
propose a two-step decision rule to select the best forémaatfuture date of interest.
Many of these extensions would be interesting to study irsgiegial context as well.
However, given that many difficulties are already presefmgdpatial data that are not
encountered in time series, we will assume that parametdleiforecasting models can
be estimated well by the data. We also assume that the sainplis adequately large and

that influential outliers are not present in the data.

4.3 Spatial Forecast Accuracy Test

We propose a test for spatial forecast accuracy followirgfeinm of the DM test for time
series data. Consider a spatial procé€g$s) : s € D C R?} that has been observed
atn locations. The observed value is denoté@;), for i = 1,2,...,n. The location
of each observation is denoted by = (z;,y;). A fraction of thesen observed values,
¢, is reserved to be forecast based on models built from(the ¢)n observations. Let
L represent the number of randomly chosen locations to fetettausl = ¢ - n. Two
sets of spatial forecasts are made, denotefiiys;)}~, and{Z,(s;)} ~,. The associated
forecast errors arée; (s;)}=, and{es(s;)}~,. Many times, it will be a direct realization
of the forecast errog (e;(s;)) for j = 1,2.

However, the location-loss associated with a forecast, gaycould be an arbitrary
function of the realization and the predictiom(Z(si), Zj(si)>. For example, in many
atmospheric applications, the correlation or “skill” beem the forecasts and the observed
values is computed (Gong et al., 2003). In this setting, ¢iss functiong(-) would be

defined as follows:
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L
(L = 1)sz(5)57,)

9 (2(s0). 2i(s0)) = (2(s) = 2(5)) (Zi(s0) = Z(9))

where Z(s) is the mean of thd. observed valuesZ;(s) is the mean of the. forecasts
from modelj, sz(s) is the standard deviation of the observed values,sgnd, is the stan-
dard deviation of the forecasts. In this way, the correfaskill of forecasts produced by
competing models can be tested with this method.

The spatial process of interest takes the following form:

D(s) = g (ex(s)) — g (e2(s)) = f(s) + (s), s€D, (4.3)

where f(s) is the mean trend, anf(s) is a mean-0 stationary process with unknown co-
variance functiorC'(h) = cov(d(s), d(s+h)). This process has been observed at locations

{s;:i=1,..., L}. We wish to test the null hypothesis of equal forecast acyutfzat

Hy : |Ta/jDE[D(S)] ds =0, (4.4)

where|D]| is the area of the domain. The procdd3(s)} is referred to as the loss differ-
ential, and it is assumed to be isotropic with short range@caxice. Requiring thab(s)
be stationary, implies that the mean trend must be constamace. When the trend is as-
sumed to be constant in spag¢és) = 1, then the null hypothesis becom&s : . = 0 and
reduces to a spatial version of the DM test. However, in mases it is unlikely that the
mean is constant across all locations. In this case, théngpbthesis tests that the average
of the mean across all locations is zero.

Based on the two possible forms ¢fs), either constant or spatially varying, two
versions of the spatial forecast accuracy test will be égtaeparately. When estimating
an unknown trend, it becomes important to distinguish betweariability in D(s) due

to trend and variability due to spatial dependence. If teadris misspecified as spatial
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dependence, then the estimate of the variabilityDg§) increases. Likewise, including
spatial dependence in the trend estimation will reduce a@hniability of D(s). In the former
case, the test for forecast accuracy will be undersized pamctr will be too low; in the
latter case, the test will be oversized, rejecting the ngidthesis too often.

Under increasing domain asymptotics in which the domaididsvad to grow with-
out bound and spatial covariance that approaches zero ¢agthéstance increases (Park,
Kim, Park, and Hwang, 2008), the sample mean loss diffeatrll = 1 "7 | D(s,) is

asymptotically normal,

where

1
:ﬁz

i=1 7

L3 D(s)

i=1

Var [D] = Var C'(hij). (4.5)

1

t~

L L

Here,C'(h;;) is the covariance function for the loss differential’s $pladependence struc-
ture,d(s), andh,; is the distance between poirsands,. All forms of the test statistics
we employ to test the hypothesis in (4.4) are based on sonsewesf Equation (4.5) in
which C'(h;;) is replaced by an estimate.

EstimatingC'(h;;) is not as straightforward as it may initially seem. Firsguase that
the the trend is constant across space, f.&) = u for  some constant. The typical
empirical estimate of’(h;;) is

C(hij) = m Y (D(si) = D) (D(s;) — D), (4.6)
7NN (ki)
whereN (h;;) is the set of all pairs of locations that are distangeapart. Whereas in both
the time series setting (Brockwell and Davis, 1991) and fhece-time setting (Nychka
et al., 2002), such an estimator would have a valid positefnde form, in the purely

spatial setting, it does not. In addition, we have the foitay/fact that follows from a

similar outcome in time series (Percival, 1993).
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Propositionl. The sum

Var [D] = Var C(hiy) =0,

1

=

ZD@»] -y )

i=1 i=1j

Where(:‘(h,-j) is given in Equation (4.6).

The proof is given in the Appendix and has the following cajusnces:

1. SinceC'(0) > 0 unlessD(s) is constant irs, then at least some of tiig(h;,) are con-
strained to be negative for some lag distances even thoeghué spatial covariance

may not be negative.

2. UsingC'(h,;) as a basis for a parametric estimate(tf;;) can yield misleading
estimates of the parameters since negative valuéﬁ'élqg) will decrease the strength

of the spatial correlation.

This problem does not arise for the DM test since the sum irakgui (4.5) is trun-
cated att — 1 when makingk-step forecasts. In the spatial setting, the distance legtae
location to forecast and an observed location is not conhstéerefore, we turn to paramet-
ric estimates of the spatial covariance in which a positenite form will be guaranteed,
and only empirical estimates 6f(h;;) up to half of the maximum lag are used in forming
the parametric estimate, which is a common rule of thumb. Kerreative to estimating
the covariogram would be to estimate the semivariografh;;), taking advantage of the
relationshipy(h;;) = C(0) — C'(h;;). Then, replacef(hij) with 4(oco) — 4(hs;) in Equa-
tion (4.5) where

1

Y(hij) = Nl N%;)(D(Si) — D(s;))*. (4.7)

Standard texts such as Cressie (1993) describe how to finp#nia covariograms and

semivariograms to data. Our approach is to use weightetidgaares (WLS), minimizing

(o) = > ) (1) @8)
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for the semivariogram (Cressie, 1985) and

wie) = Y- Il (12 ) @9

1—r(hi|0)

for the correlogram (Gneiting, 2002). In Equations (4.8) §4.9), the functionsy(h;|0)
andr(h;|0) are the parametric forms of the semivariogram and corratogrespectively,
with parameter®). The maximum lag to which to sum, in each equatiom,iglefined
as half of the maximum lag. Using maximum likelihood to estiemthe parameters in
the covariogram or semivariogram is another approach himitéquires knowledge of the
distribution of the data at each location. A Gaussian maipically fit in practice (Mar-
dia and Marshall, 1984), but the application of the loss fiamcto the forecast error can
change the distribution of the data even when the forecestseaire Gaussian. Therefore,
assumptions about the distribution of the data are avoidehvitting the covariogram and
semivariogram with weighted least squares.

Thus, we propose the following two potential test statsstar testing the hypothesis

of equal forecast accuracy under constant trend:

D D
and Sy =

Sc = = = - —.
VT T, Clhyl) V= S Y ((00l8) — 4(hy16))

In application, the assumption of isotropy should be teststi(Li, Genton, and Sher-

man, 2007), and the functiayef i t in theR packagegeoR can be helpful in finding a
good-fitting parametric model and starting values for theghted least squares optimiza-
tion. Simple extensions can be made when the &t is irregularly spaced by smoothing
the observations within a specified tolerance region (Gxe$893).

As mentioned previously, a non-constant trend can interigth the estimation of the
variance ofD, causing the test to be either undersized or oversized.oiend Mariano
(1995) do not need to estimate the trend of their loss difigaeseries since all forecasts

are for the same forecast horizon. However, with any setatiaforecasts, the trend can
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be a concern since the forecasts are all made at varying $égndes. When the pattern
of the trend is known or suspected, then it can be estimatgity éeom the data,D(s;),

i = 1,...,L, and then the data in Equations (4.6) and (4.7) must be regladth the
residuals, denoted” (s;) = D(s;) — f(s;), andD in those equations should be replaced
with D" = (1/L)3.%, D'(s;). We denote a parametric covariogram or semivariogram
estimated from detrended data b (h;|6) and4"(h,;|0), respectively. Then, the test

statistics become

D D
Sé and Sj = :

22 20 Yo C(hyg|6) B (37 (00]0) — 47 (hiy16))

Of course, if the form of the trend is unknown, but it is likéhat a trend exists, it can

be estimated nonparametrically. We suggest using a bigakadaraya-Watson estimator

with Gaussian product kernel of the following form

S S K () K (452) D@, v)
Db(ﬁuyz) = 2521 % (x_be) % (%)

whereb is the bandwidth. Selecting the optinbalkhen the data is dependent is not straight-

, (4.10)

forward. Hart (1996) and Opsomer, Wang, and Yang (2001)udssthe difficulties and
approaches used to select the optimal bandwidth for timessdata. Francisco-Fernandez
and Opsomer (2005) present a method for selecting the ddtemnawidth for spatial data,
but they use local linear regression and utilizzxa2 matrix of bandwidths. The traditional

bandwidth by, selected by minimizing the cross-validation function,
1 L s 2
CV(b) =+ > (Ds) - Dy (s1)) (4.11)
=1

whereﬁé_i)(si) is the estimate oD (s;) with thes; location removed, is too small when
the data is positively spatially correlated. This leadswerfitting of the trend, removing

too much variability fromD(s), an underestimate of the denominator of the spatial fotecas
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accuracy test statistic, and a too frequent rejection ohtliehypothesis. The traditional
bandwidth must be adjusted to account for the presence tiikparrelation. Similar to

the adjustment for time series data (Hart 1996), the adjgstiior spatial data is

1/5
bo, (4.12)

ba = [Z > C(hi;)/C(0)

i=1 j=1
with the obvious circular problem of needing an estimatehef ¢tovariance structure to
properly estimate the trend which is needed to properlynedé the covariance.

For a rough estimate of this adjusted bandwidth, we suggesteated procedure.

Begin by substituting

0, i#7J,
into Equation (4.12) to get an initial adjusted bandwidih= (L)'/>-by. Estimate the trend
nonparametrically based dr), remove this trend fronD(s), estimateC'(k) using either
WLS estimation of the empirical covariogram or semivaragr Update the bandwidth and
continue iterating until the bandwidth stabilizes. Use stabilized bandwidth to estimate
the trend, remove this trend from the data, and comppter S7,.
In summary, the steps in performing the spatial forecastracy test (SFAT) are as

follows:

1. Evaluate the loss at each location for each set of forgcastl form the differenced

field, D(s).
2. Estimate the trend of the differenced field.
3. Compute the test statisti, or S7,.

4. Find thep-value, for example(1 — (®(|Sy/|))), where® is the cumulative distribu-

tion function of aV (0, 1) distribution.



64

When the trend appears to be constant, then Step 2 can bedkgmsy, andSj, can be

replaced withS- andSy in Step 3.

4.4 An Alternative Approach

Shen et al. (2002) proposed a method called the Enhanceel Balsovery Rate (EFDR),
which is based on controlling the False Discovery Rate (FDét)determining if there is
a significant difference between 2 spatial signals at evargtion in the domain. To re-
duce the number of hypotheses that must be tested, the nsa@giresented in the wavelet
domain. Then, the method tests not only if a statisticaliynsicant signal is present but
also estimates the location and magnitude of such a sighahus$t be emphasized that
this method is intended to be used on a complete grid of datdy as fMRI or climate
model output data. It was not introduced in the forecastimgtext, and it cannot be ap-
plied as generally as the spatial forecast accuracy tesbeailowever, for comparative
purposes, the basic outline is given, and a simulation @xget comparing SHC to the
spatial forecast accuracy test will be performed and replart Section 4.5.4.

The goal of the SHC method is to nonparametrically test thpothesis that a spatial
signal is present or not based on a single image. The proldestaied as?, : f = f
versusH, : f # fo wheref(-) is the deterministic mean function of a spatial Gaussian
process{Z(s) : s € D C R?} generated byZ(s) = f(s) + d(s). Here,i(-) is a mean-
0 stationary Gaussian process with an unknown stationargriamce functionC'(h) =
cov(d(s),d(s + h)). To increase the power of testing whethfér) is f, (and also where
and by how mucty (-) differs from f;), a parsimonious representation/df) is given with
a small number of wavelet coefficients.

Inference is made offi(-) based on observatioq$s;, Z(s;)) : ¢ = 1,...,n}. An ob-
servation” (s;) can be written ag (s;) = f(s;)+4d(s;) where{d(s;)} follows a multivariate

normal distribution withn x n covariance matrix” whose(j, k)th element isC'(s; — s;).
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The d-dimensional discrete wavelet transform (DWT) is appliedhis representation to
obtain a representation of wavelet coefficients= v° + €. Here,v® = (v0,...,10) is
the vector of wavelet coefficients ¢ff(s;)}. Now, € is a random component distributed
according toN,,(0, V*) with an almost diagonal matrix™, thereby nearly decorrelating
{6(s;)}. Then, testingd, : f(-) = 0 versusH, : f(-) # 0 is equivalent to simultane-
ously testing: simple versus composite hypothesHs—: 1) = 0 versusH,; : 1P # 0 for
1=1,...,n.

Part of the procedure is based on False Discovery Rates (H2RJ be the number
of rejected null hypotheses. Of theBdhypothesesy” are erroneously rejected, afd- V'
are correctly rejected. Defing = V/Rif R > 0and@ = 0if R = 0. Then, the FDR
is defined ad7(Q), the expected proportion of erroneously rejected null liypses. In a
family of L hypothesis tests to be performed, #tandard FDR procedureomputes the
p-value,p; for each set of hypotheses= 1, ..., L. Then, compute the order statistics of
the p-values,p(;) < --- < p(r) corresponding to the hypothesHg ), ..., Hyz). Denote
by K the largesti for which p;) < (i/L)a. If such aK > 1 exists, then reject all
Hyy; i=1,..., K. If such akK does not exist, then reject none of thg;; 7 =1,..., L.

In the spatial setting, a 2-dimensional DWT is used on tha.datsimultaneous test
that each of the wavelet coefficients is O or not could be darexttly with the standard
FDR procedure described above. However, this does not thkentage of the “spatial”
structure of the wavelet coefficients that is likely presamder the alternative hypotheses.
They gain more power by observing that wavelet coefficiehts signal within each scale
and across different scales are related. The “large” wagekdficients of a pure signal typ-
ically cluster both within each scale and across differeates, whereas the corresponding
wavelet coefficients of either white noise or correlatedsaare approximately uncorre-
lated. This spatial structure allows the test to predicttiviea wavelet coefficient of the

signal is 0 or not from observing its neighbors. This can bedu® identify individual
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SHC and FDR Method Powers
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Figure 12: Reproduction of powers from SHC and FDR methodsridzed in Shen et al.
(2002). The same number of replicates in the simulationQ1&f® generated for the circle
of radius 10 with mean in the interior of the circle varyingass the following values af,
0,0.1,0.2,..,0.9,and 1.

hypotheses that should be removed before applying the FD&egure. This is named the
enhanced-DR procedure, which we refer to as SHC.

A detailed formula is given for determining which waveleefcients are neighbors,
and a system with = 11 neighbors is adopted. Then, a method for determining botbtwh
and how many wavelet coefficients to retain to be tested \witstandard FDR procedure
is described. The null hypotheses of the eliminated testaecepted. The magnitude of
f wheref #£ 0 is estimated by performing the inverse DWT on the retainesffiments.
Further details can be found in the original paper.

To illustrate, we have reproduced the size and powers of thetisHC and the FDR

methods in which &4 x 64 grid of data is generated with a circle of radius 10 in the eent
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with varying values of a non-zero mean,In other words, fos = (z, y)

el (x —32.5)2 + (y — 32.5)* < 102,

0, otherwise

andd(s) is standard Gaussian white noise witk0) = 1 and zero elsewhere. As is evident
in Figure 12, both methods have the same level, but the SHBades far more powerful

in rejecting false null hypotheses.

4.5 Monte Carlo Simulation Study

In this section, the finite sample size and power properti¢iseotest statistic$~ and.Sy

for D(s) with constant trend and df{, with spatially varying trend in simulated datasets
are presented. The data simulation method is first descréoeti then results under the
null and nonzero constant trend are presented. Threeafifféypes of alternatives with
spatially varying mean are also simulated, and the effeestifnating the trend both under
the null and for these alternatives is explored. Finallg, power of these test statistics in
comparison with the Shen et al. (2002) wavelet method wheongptete dyadic grid of
forecasts is available is presented for various values w$temt trend and for the circular

pattern tested in their simulations.
4.5.1 Data Simulation

To demonstrate the size properties of the test, we vary idesgre, the spatial correlation,
the contemporaneous correlation, and the loss functioa bakic outline is to generate two
sets of forecast errors in space, each with a certain sgatialation and with a particular
correlation to each other, apply the loss function, and tteenpute each test statistic and
p-value. First, a realization of a bivariate Gaussian ranfietd on anr x ¢ grid is drawn.

To do so, the random field is generated using a linear modelrefyronalization (Gelfand,
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Schmidt, Banerjee, and Sirmans, 2004). This model allowh gat of forecast errors to
have its own spatial correlation.

The general cross-covariance matrix is

2

Cx(hij) =Y re(hij)agay,

k=1
wherer,(h;;) = exp{—3h;;/6:} is the stationary exponential correlation function for the
kth process, and! is a column ofA. In the bivariate caseq is defined based ofi where

T is defined as

SubsequentlyA is

A \/tn 0 _ 01 0

tia/VE1  \/taa — tiy /[t ploi o3 — p?|o}

Here,o? ando? are the variability of the first and second set of forecastrsrrespec-
tively, and both are set to 1. The contemporaneous comwaléttween the forecast errors
is denoted by. We then generate the bivariate random field from a Gausssénibdtion
with mean zero andn x 2n (Wheren = r x ¢) variance-covariance matrix of the forecast

errors

0%6—3(hij)/61 p€—3(hij)/91
Ce(hij) = ,
pe3his)/0r 520=3(hiy)/02 | (%> (e=300is)/0n _ g=3(hi)/02)

1

Note that the spatial range of the first set of forecast eiigofig, but the spatial range of
the second set of errors depends ugpandp. Only when eithep = 0 or 6, = 0, is the
spatial range of the second set of forecast errors eqéal to

We generate grids of sizésx 5,8 x 8, 10 x 10, 16 x 16, 20 x 20, and25 x 25. With

a forecasting fraction ap = 0.40, the number of randomly selected locations for each grid
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size isL = 10, 25, 40, 102, 160, and250. We consider values of the contemporaneous
correlation parametep, to be 0, 0.5, and 0.9. The spatial correlation parametens va
amongld, = 0, = 3; 6, = 0, = 6; 6, = 6, = 9; and#, = 3, O, = 9. The variance of each
process is set to 1 by dividing each simulated set of foremaists by the square root of
C(0) = o?+03—2p, and the tests are performed at the- 0.05 level. Three loss functions

are evaluated, the quadratic logsic(s)) = (e(s))?, the absolute losgp(e(s)) = |e(s)

and the simple losgjs(e(s)) = e(s). Unless otherwise stated, for each combination of

parameters, 2500 simulated datasets are generated.
4.5.2 Constant Trend

In this section, both the size and power properties of théadarecast accuracy test are
explored whenf(s) = u, for x some constant. For reference, the simulated true variance
of D for each combination of sample size, spatial and contenmgonas correlation in the
quadratic and absolute loss functions is found through Isitian of 20,000 datasets. The

true covariance oD under the simple loss function is known and can be deriveoh fro

_D_
~2 "
9D

Tables 9, 10, and 11 give the size results (ifés, = 0) for test statisticsSr, Sc, andSy,,

Ce(hi;). The test statistic with this simulated or true variance éaatedS; =

respectively.



Table 9: Empirical size of loss functions under the true onsated true estimate of variance Bffor the spatial accuracy test.
All tests are reported at the 5% level, and 2,500 Monte Cayplications are performed.

Quadratic Loss Absolute Loss Simple Loss
Grid L P ai’j =3 92"]' =6 92"]' =9 91‘,]' = 3,9 91‘,]' =3 91',7' =6 ai’j =9 92"]' = 3,9 ai’j =3 92"]' =6 91‘,]' =9 91',7' = 3,9
5 10 0.0 6.60 6.64 5.92 5.60 5.88 6.72 5.72 5.20 5.00 5.40 5.12 4.60
5 10 05 6.20 6.32 6.56 5.12 6.00 5.88 6.12 5.28 4.72 4.68 5.08 5.04
5 10 0.9 5.52 4.96 5.40 5.64 4.92 5.56 5.52 5.56 4.64 4.96 5.08 5.40
8 25 0.0 4.76 5.72 6.60 4.80 4.72 5.44 6.56 4.96 4.96 6.12 5.08 4.80
8 25 05 5.08 5.20 5.48 5.16 4.44 4.72 5.48 4.92 4.76 4.76 4.60 5.76
8 25 09 5.12 6.28 5.84 5.32 5.08 5.40 5.48 5.36 4.76 5.08 4.76 4.76
10 40 00 5.32 5.40 5.92 5.28 5.40 4.80 5.88 5.12 4.92 5.04 5.08 4.48
10 40 05 5.12 5.56 5.16 5.52 5.80 5.60 4.76 5.48 4.76 5.08 5.24 5.32
10 40 09 5.36 5.52 6.80 5.56 5.24 4.64 7.08 4,72 5.00 5.64 4.84 4.88
16 102 0.0 5.20 5.36 4.80 4.76 5.40 4.92 4.12 5.08 5.32 4.60 4.44 4.48
16 102 0.5 4.92 6.08 5.68 4.96 4.52 5.52 5.80 4.88 4.60 4.92 4.92 4.64
16 102 0.9 4.24 6.00 5.20 5.44 4.48 5.28 5.20 5.52 5.44 4.80 4.32 4.60
20 160 0.0 4.64 5.64 4.76 5.52 5.08 5.60 4.48 5.68 5.08 5.88 5.48 4.68
20 160 0.5 4.76 5.32 6.60 5.36 4.36 4.76 6.12 5.08 4.08 4.80 4.56 5.28
20 160 0.9 4.28 5.96 6.04 5.00 5.00 4.68 5.68 5.04 5.44 4.68 4.80 5.04
25 250 0.0 4,72 5.28 4.88 4.08 4.56 4.96 4.76 4.36 4.36 5.00 4.96 4.88
25 250 0.5 5.32 5.32 5.44 4.72 5.36 5.24 5.24 4.96 4.68 4.72 4.60 5.40
25 250 0.9 5.00 5.08 5.24 5.84 4.84 5.60 4.88 5.24 4.84 5.48 5.20 4.76

Standard errors of values in the table are between 0.4% a6l 1.

0L



Table 10: Empirical size of loss functions under WLS covgiraon estimate of variance @ for the spatial accuracy test. All
tests are reported at the 5% level, and 2,500 Monte Carlaatjoins are performed.

Quadratic Loss Absolute Loss Simple Loss
Grid L P ai’j =3 92"]' =6 92"]' =9 91‘,]' = 3,9 91‘,]' =3 91',7' =6 ai’j =9 92"]' = 3,9 ai’j =3 92"]' =6 91‘,]' =9 91',7' = 3,9
5 10 0.0| 10.56 17.16 24.32 17.16 12.08 19.00 25.76 18.60 22.20 40.28 50.56 37.96
5 10 05| 1092 17.28 24.80 15.36 12.84 20.00 26.24 17.16 22.68 39.92 48.80 45.00
5 10 0.9 9.28 17.16 22.48 14.88 11.28 17.44 25.00 14.72 21.96 38.60 48.56 48.00
8 25 0.0 7.16 14.04 19.32 14.72 7.80 14.64 21.16 16.24 17.00 31.72 39.36 33.28
8 25 05 7.36 12.96 18.04 12.92 7.36 13.44 20.60 14.24 17.92 30.64 41.44 37.40
8 25 09 7.48 13.40 18.60 11.32 7.76 13.28 18.92 11.12 16.72 30.48 40.76 39.48
10 40 00 7.72 11.08 16.00 14.12 7.84 12.20 17.76 14.92 14.36 27.16 35.20 26.64
10 40 05 7.60 11.28 15.28 13.16 7.16 11.64 16.48 13.88 14.36 25.68 35.48 32.08
10 40 09 6.60 10.92 16.76 9.24 7.24 11.08 16.80 8.84 15.92 27.44 33.36 34.40
16 102 0.0 5.32 8.28 9.20 12.20 6.20 8.44 10.08 11.68 10.28 15.56 22.48 21.28
16 102 0.5 5.92 9.20 11.16 11.00 5.92 9.20 12.28 11.36 9.32 17.20 24.76 23.36
16 102 0.9 5.56 8.20 10.92 8.48 6.24 8.88 11.88 8.32 10.44 16.32 23.24 23.96
20 160 0.0 5.24 7.40 7.84 10.40 5.64 8.04 8.28 10.44 8.52 15.20 19.52 18.00
20 160 0.5 4.64 6.80 9.40 9.92 5.04 6.96 10.96 9.68 8.08 14.28 19.84 21.12
20 160 0.9 6.44 6.08 8.52 7.56 6.52 6.84 9.40 8.04 9.40 13.60 19.96 19.08
25 250 0.0 5.28 5.76 7.28 9.88 5.40 6.36 8.36 9.44 7.04 11.00 15.72 15.60
25 250 0.5 5.76 6.12 7.84 9.92 5.80 6.84 8.72 9.88 6.92 12.20 15.80 15.88
25 250 0.9 6.04 6.92 7.52 6.24 5.88 7.96 8.68 6.80 6.52 11.44 15.92 16.24

Standard errors of values in the table are between 0.4% a6l 1.

T.



Table 11: Empirical size of loss functions under WLS senagram estimate of variance @f for the spatial accuracy test. All
tests are reported at the 5% level, and 2,500 Monte Carlaatjoins are performed.

Quadratic Loss Absolute Loss Simple Loss
Grid L P ai’j =3 92"]' =6 92"]' =9 91‘,]' = 3,9 91‘,]' =3 91',7' =6 ai’j =9 92"]' = 3,9 ai’j =3 92"]' =6 91‘,]' =9 91',7' = 3,9
5 10 0.0 5.64 9.76 11.68 8.96 7.00 11.36 13.84 10.44 12.68 22.44 26.68 20.52
5 10 05 5.60 8.96 13.24 7.80 6.84 11.12 14.60 9.44 12.92 23.12 26.20 24.32
5 10 0.9 5.08 8.68 11.96 7.88 6.12 10.20 13.24 7.36 11.40 22.44 25.16 26.12
8 25 0.0 4.32 6.80 7.40 8.08 5.12 7.52 9.28 9.16 8.40 13.84 16.28 17.64
8 25 05 4.28 6.52 7.60 7.64 4.40 7.16 8.68 8.56 9.44 14.52 17.44 17.48
8 25 09 4.40 5.92 7.88 5.96 4.56 6.52 10.40 6.12 9.08 13.60 17.52 17.16
10 40 00 5.12 6.32 7.28 7.84 5.48 6.72 7.64 9.48 8.36 11.96 14.96 14.32
10 40 05 4.64 5.52 6.48 7.96 4.80 7.08 7.88 8.96 8.56 11.80 15.12 16.60
10 40 09 4.40 6.64 7.64 5.64 4.96 6.64 8.24 5.40 8.84 12.68 15.36 14.48
16 102 0.0 4.44 5.92 5.68 8.00 5.32 6.32 5.84 8.04 6.84 8.92 10.16 13.32
16 102 0.5 4.24 5.32 5.72 8.48 4.72 6.04 6.88 8.88 6.08 9.48 11.56 13.16
16 102 0.9 4.64 4.68 5.24 6.32 5.20 6.16 8.36 6.48 7.32 8.24 11.08 11.32
20 160 0.0 4.36 5.68 4.52 8.88 4.80 5.68 5.36 8.72 6.36 9.16 9.68 12.28
20 160 0.5 4.08 5.32 6.28 8.32 4.36 5.32 7.64 8.20 6.00 8.08 10.24 13.36
20 160 0.9 5.04 4.44 5.48 5.64 5.56 4.92 7.08 6.92 6.76 7.88 10.80 9.96
25 250 0.0 5.12 4.60 4.96 7.96 5.08 5.52 6.00 8.08 5.96 7.32 8.44 12.08
25 250 0.5 4.96 5.20 5.16 8.76 5.04 5.76 6.24 8.48 5.92 8.00 8.96 10.84
25 250 0.9 5.16 5.48 4.92 5.40 5.32 6.84 7.04 5.96 5.32 7.56 8.32 9.48

Standard errors of values in the table are between 0.4% a6l 1.

(A4
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When the true variance db is used, the proper size of the test is attained for every
sample size, contemporaneous correlation, and spatiadlatbon. This simply illustrates
that if one can estimate the variance/dficcurately, then the spatial forecast accuracy test
is correctly sized. In comparing test statistigs and .Sy in Tables 10 and 11, estimation
of the semivariogram produces a more accurate estimatesofatiance ofD, resulting
in empirical sizes that are much closerdo In simulations, the estimated parametric co-
variogram on average underestimated the true covariogcaossaall lag distances. The
estimated parametric semivariogram did not suffer fronhsuproblem, so all results sub-
sequent to these will be based 8n. Upon examining Table 11, several points become

clear.

e The contemporaneous correlation appears to have littleeinfle on the size of the

test.

e The size is strongly influenced by the strength of the spediaklation. As the spatial

range increases, the null hypothesis is rejected more tiftamit should be.

e When the spatial ranges of the errors differ, the size islatigan when the spatial

correlation is the same for both sets of forecast errors.
e As the sample size increases, the size of the test improves.

e The size is also influenced by the type of loss function thased. The simple loss

performs much worse than the quadratic or absolute losses.

The effect of the quadratic loss on the spatial correlatamlie explained theoretically.
Proposition2. If Z = (X,Y)” is a bivariate normal random vector with mean= (0, 0)"

and covariance matrix
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then Cor( X2, Y?) = p2.

In other words, when two Gaussian random variables whoselation to each other is
p are squared, the correlation between the squared variihiés The derivation of this
result is given in the Appendix. Thus, the positive spat@telation is reduced under the
quadratic loss. A similar effect occurs for a general lgs$, as stated in this proposition.
Proposition3. LetZ = (X,Y)” be a bivariate random vector with mean= (p., j1,)"
and covariance matrix3.. When the first and second derivativeg 0f exist,

g'(0)*poso, + 29"(0)°pP 00y

Corr(g(X),9(Y)) = ,
V0202 +20 (001 /9'(0)0} + 20" (0)%0

which reduces t@? wheng’(0) = 0.
The proof is given in the Appendix. The absolute loss is natdvdifferentiable, but its
form is still very similar to the quadratic loss’ form, ancetepatial correlation will also be
reduced by it.

The power of the test using the test statisticis given in Figure 13 for all combina-
tions of p andé, andé; in grid sizesl0 x 10, 16 x 16, and20 x 20. The meanf(s) = p,

is allowed to vary from 0 to 7 in increments of 0.5. From thegarks, we see that

For a given value ofi, the power increases with an increase in sample size.

The power reaches (or nearly reaches) 100% when4, 2, 1 for grid sizes 10, 16,

and 20, respectively.

The stronger the spatial correlation, the longer it takegibwer to reach 100%.

Contemporaneous correlation does not appear to have miech @h the power.
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Figure 13: Power curves fao x 10 grid (top row) andl6 x 16 grid (bottom row). First column is quadratic loss, seconidicm
is absolute loss, and last column is the simple loss.
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4.5.3 Spatially Varying Trend

In this section, results are given under both the null andipées alternatives when the
mean functionf(s) is not assumed to be constant. Under the null hypothesis éhd w
no information about the form of the trend, the trend can bienesed nonparametrically.
Under the null hypothesis, it should be noted that estimgative trend with a function
that is linear in the coordinates will simply return a vallese to the mean of the field,
and results similar to those in Table 11 would be expectedaRthat the bandwidth for
nonparametric estimation must be adjusted to account &sphatial correlation in(s).
The results in Table 12 illustrate the effect on the size efté#st when the bandwidth is
not adjusted for the spatial correlation. In other wordg, ttaditional bandwidthb, is
used, and it is evident that the test is severely oversizét: sklected bandwidth is too
small, and the trend is overfit, making the test reject motenothan it should. Table 13
shows how much improvement is gained using the test stafi$tiwhen the bandwidth
is adjusted, even with a rudimentary iterative method. Tihe sf the test still becomes
worse as the spatial correlation increases, but it does eadh in small samples, when the
spatial correlation is low, and the size improves as the $&asipe increases. Similar to the
outcome whery(s) is constant, the size of the test when ustfigis still too large (results

not shown).



Table 12: Empirical size of loss functions under the weidrgemivariogram estimate of varianceloffor the spatial accuracy
test and unadjusted bandwidth used in the nonparametnid é&gtimation. All tests are reported at the 5% level, and@Nsonte
Carlo replications are performed.

Quadratic Loss Absolute Loss Simple Loss
Grid L p | 0;i;=3 6;,;=6 0,;=9 0;,;=39]6,;=3 0,,;=6 0,;,=9 0,;,=39|6,;=3 6,=6 6,=9 0 ,;=39
5 10 0.0| 16.04 30.84 39.16 27.28 17.12 31.36 40.00 29.40 33.44 57.88 66.52 51.64
5 10 05| 16.04 29.84 40.72 25.16 16.84 29.32 40.32 26.32 32.88 55.24 65.44 58.32
5 10 09| 1572 32.08 39.08 24.80 16.84 31.76 37.68 24.52 34.84 56.40 64.68 65.04
8 25 00| 1084 27.64 46.44 27.92 10.84 26.52 44.44 27.00 33.16 63.16 75.20 58.48
8 25 05| 1116 30.04 46.84 25.88 11.12 29.92 44.32 24.36 33.96 65.20 75.48 68.92
8 25 09| 1184 29.28 45.44 20.56 11.40 27.04 41.24 19.16 33.56 64.20 74.40 73.76
10 40 0.0| 10.00 30.64 50.16 29.88 9.96 29.68 47.32 28.96 33.12 67.04 80.40 63.44
10 40 05| 1012 30.68 48.80 27.00 10.32 28.04 46.56 25.04 33.36 69.92 79.08 74.56
10 40 09| 1012 29.72 50.36 22.52 9.44 25.76 45.44 19.00 34.00 68.24 80.72 76.48
16 102 0.0 8.28 33.68 55.68 32.32 8.08 29.52 51.72 30.72 34.92 74.32 83.04 70.48
16 102 0.5 7.20 32.88 57.44 28.52 8.04 28.56 53.20 25.92 35.44 76.44 84.12 79.16
16 102 0.9 8.44 34.04 55.64 23.08 7.08 27.28 47.68 18.96 35.68 73.60 84.84 83.36
20 160 0.0 8.40 35.08 57.80 33.64 7.72 32.24 54.80 32.04 37.44 74.96 83.20 71.60
20 160 0.5 7.08 34.72 59.84 31.40 6.96 30.04 54.72 27.80 37.68 75.92 83.92 80.32
20 160 0.9 8.00 35.20 59.48 21.84 6.84 26.80 49.64 17.52 37.76 75.08 84.84 85.28

Standard errors of values in the table are between 0.4% a6l 1.

8L



Table 13: Empirical size of loss functions under the weidrgemivariogram estimate of varianceloffor the spatial accuracy
test and iteratively estimated adjusted bandwidth usedembnparametric trend estimation. All tests are reportedea5%
level, and 2,500 Monte Carlo replications are performed.

Quadratic Loss Absolute Loss Simple Loss
Grid L p | 0;i;=3 6;,;=6 0,;=9 0;,;=39]6,;=3 0,,;=6 0,;,=9 0,;,=39|6,;=3 6,=6 6,=9 0 ,;=39
5 10 0.0| 10.90 21.08 26.32 19.00 12.16 21.56 26.64 20.80 23.76 41.20 48.20 38.00
5 10 05| 11.16 20.00 28.48 17.64 12.84 20.60 27.60 18.44 22.88 40.52 46.52 43.40
5 10 09| 11.04 22.36 26.92 17.52 12.16 22.56 25.60 17.12 24.72 40.52 45.80 46.92
8 25 0.0 6.28 14.56 23.60 15.56 6.80 13.68 22.84 14.92 17.12 33.12 41.44 32.80
8 25 05 6.48 15.72 23.60 14.08 6.88 15.04 22.76 13.36 18.20 34.36 41.88 39.12
8 25 09 7.32 15.20 23.08 11.00 6.76 13.36 21.68 10.52 17.40 34.80 40.92 39.52
10 40 00 6.40 13.48 22.44 15.96 6.40 12.80 21.52 15.48 15.00 32.36 42.48 35.72
10 40 05 5.84 14.04 21.52 14.40 6.32 13.12 20.68 13.28 15.16 34.64 43.80 41.24
10 40 09 6.32 13.60 23.36 10.76 5.88 12.00 20.96 9.80 15.12 33.08 43.72 41.68
16 102 0.0 6.00 12.20 22.08 16.28 5.76 11.56 19.72 14.60 13.52 32.88 43.76 36.48
16 102 0.5 5.00 13.44 22.20 12.92 5.28 11.24 21.28 12.52 12.92 34.00 42.88 41.72
16 102 0.9 5.64 12.84 21.72 9.72 5.00 10.76 17.76 8.68 13.72 34.12 41.64 43.28
20 160 0.0 5.32 11.44 20.04 14.08 5.92 10.84 20.00 14.28 13.24 31.60 40.68 36.16
20 160 0.5 5.20 12.32 21.56 12.92 5.28 11.36 20.64 12.72 13.36 31.16 41.44 39.84
20 160 0.9 5.40 12.24 20.96 10.00 5.40 10.76 18.60 9.48 13.12 30.76 42.52 43.24

Standard errors of values in the table are between 0.4% a6l 1.

6.



80

Many types of spatially varying means for the alternativedthesis could be imag-
ined. For al6 x 16 size grid withp = 0.50 andf; = 0, = 6, three different types of trends
for f(s) will be examined, a random, a split, and a linear trend. Ferg#mdom trend, a set

of A locations are randomly selected, and the mean function is

v, sE€EA,
fs) =

0, otherwise

for v the value of the mean at locatiei. Without any pattern, a random trend will be

A=12, i=a A=24, i=a A=aa, i=a A=68, i=a

5

0

Figure 14: Examples of a trend with randomly distributedscefith nonzero means. The
number of affected cells4 varies between 12, 24, 44, 68, 96, 128, 172, and 224. Shown
here is intensity level 4 without noise, but the intensitgllswed to vary through the values
2,3,4, andb.

difficult to estimate, but as the st grows, it should become easier to detect a nonzero
averaged difference field. See Figure 14 for an examplegulatithout noise wherg the

intensity, is 4. The split mean function at locati®r- (z,y) is

v, x <8,
f(s) =
—v, x> 8,
and Figure 15 illustrates this trend. A nonparametric estinmay capture this trend effec-

tively, but a linear fitted trend will simply estimate the ok mean. Finally, linear trends
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with varying coefficientsf(s) = A+ Bx + C'y, are plotted in Figure 16. Of course, fitting
a linear trend should work well for such a mean function, betionparametric estimate

should do well also since the trend is a smooth function.

Intensity = 1 Intensity = 2 Intensity = 3 Intensity = 4 Intensity = 5

0

Figure 15: Example of data simulated without noise in whiod mmean on the left-hand
side ist, and the mean on the right-hand side-is

A=1, B=—0.5, C=—1 A=1, B=—0.15, C=—1
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A=1, B=—0.5, C=0.5 A=1, B=0O.5, C=—0.5 A=2, B=0.5, C=—0.5 A=20, B=0.5, C=-0.5 A=1, B=3, c=—0.5

0
0
0

Figure 16: Linear trend patterns without noise that are @isetthe linear trend simulation.
The pattern follows the formulé(s) = A + Bz + Cy.

The results for the random trend are given in Table 14. Forpawison, the true trend
is removed as if it were known so that various methods of tneamdoval can be fairly
evaluated. When no trend is removed, the test does not thgatll as often as it should,
particularly whenA is small or the intensity,, is low. These low percentages of rejections
are due to the fact that these locations with non-zero me@nspairiously increasing the
variance ofD(s). Removing a linear trend and an iteratively reweighted gdized least

squares trend (IRWGLS) yield very similar results to haviegioved no trend at all. This
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IS not surprising since the trend is not linear. Finally, ttemparametric trend with the
adjusted bandwidth has powers that are closer to thosenebtavhen the true trend is
removed, particularly as increases. But, this type of trend will not be estimated veell
by the nonparametric procedures for low valued.aiince it does not vary smoothly.

In the split pattern (results given in Table 15), it shoulchibéed that under the simple
loss that the null hypothesis is actually true. The positind negative values will sum to
zero, so the expected outcome for the simple loss for anyevaflu is the size of the test.
Based on results in Table 11 wheén= 0, = 6, the empirical size of the test will be around
10%. However, in Table 15 when the true mean is removed, #es gjrow ag increases.
The key to understanding this phenomenon lies in the raneébeotson of locations to keep
in the simulation. When 102 locations are selected out oR&tqgrid locations, they are
selected at random from across the entire grid.vAgows, the effect of not selecting an
equal number of locations with positive and negative vatwe® grows. For example, if 40
locations are chosen with mearand 62 are chosen with mean, then for largey, D will
be far from zero. If 51 locations with meanand 51 locations with meanv are selected
instead, then the sizes remain around 10%. Of all the tremdval techniques tested, the
size with the nonparametric trend removed is the closeshttd ¥8 expected under the null.
Without any trend removed, the simple loss is undersizetkesiariability in the values of
D(s) is high relative to the value ab. This is a classic example that illustrates how the
forecast accuracy test is only designed to detect a difterentwo sets of spatial forecasts
on average and will not be successful in detecting locaerbfices between two sets of

forecasts.
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Table 14: Percent of null hypotheses rejected in 2,500 sitedldatasets with random trend
for the quadratic, absolute, and simple losses using weiigbgmivariogram estimator.

Quadratic Absolute Simple
True Trend Removed

v=2 v=3 wv=4 wv=5|v=2 wv=3 wv=4 wv=5|v=2 v=3 wv=4 v=5
A=12 14.72 36.96 65.28 82.64 10.72 17.40 29.12 40.80 10.72 11.84 16.84 18.00
A=24 32.28 72.56 93.36 98.80 21.16 44.36 65.68 81.8§4 14.88 21.48 31.40 40.08
A=144 61.36 95.12 99.44 99.9 43.20 82.36 94.44 98.8§ 28.20 45.76 63.84 77.80
A =68 82.04 99.16 100.0 100.9 70.72 97.12 99.72 99.92 47.48 73.32 89.56 95.52
A =96 93.52 99.88 100.0 100.g 88.60 99.36 99.96 100.9 70.44 91.92 98.24 99.60
A =128 | 97.68 99.96 100.0 100.0 96.40 99.92 100.0 100.0 86.84 98.00 99.56 99.80
A =172 | 99.12 100.0 100.0 100.g 98.68 100.0 100.0 100.0 96.36 99.68 99.84 100.0
A =224 | 99.60 100.0 100.0 100.0 99.64 100.0 100.0 100.9 99.04 99.92 100.0 99.96
No Trend Removed
v=2 wv=3 wv=4 wv=5|v=2 wv=3 wv=4 wv=5|v=2 wv=3 wv=4 wv=5
A=12 12.16 20.32 32.96 41.08 11.36 15.32 22.00 27.68 13.12 16.68 23.52 27.00
A=24 20.88 45.84 67.28 80.1§ 18.24 33.96 49.80 60.56 17.36 26.52 38.00 44.48
A =144 49.08 85.68 96.68 98.84 41.92 75.32 91.16 97.12 35.68 57.40 74.40 85.40
A =68 71.20 96.80 99.68 99.92 67.00 95.20 99.52 100.0 58.88 85.84 95.96 98.36
A =96 86.80 99.08 99.96 100.0 86.80 99.32 99.96 100.9 82.60 98.04 99.88 100.0
A =128 | 91.16 99.56 100.0 100.g 92.92 99.88 100.0 100.9 94.32 99.84 100.0 100.0
A=172 | 94.12 99.88 100.0 100.g 95.68 100.0 100.0 100.9 99.44 100.0 100.0 100.0
A =224 | 94.28 99.56 100.0 100.0 96.68 99.92 100.0 100.9 99.84 100.0 100.0 100.0
Linear Trend Removed
v=2 v=3 v=4 wv=5|v=2 wv=3 wv=4 wv=5|v=2 v=3 wv=4 v=5
A=12 14.08 23.68 36.72 45483 13.36 17.96 25.00 31.12 19.08 22.40 29.04 32.24
A=24 23.64 49.44 71.80 83.2§ 20.20 36.96 53.96 63.92 24.04 32.84 44.04 49.48
A =44 51.60 87.76 97.00 99.1§ 44.64 78.08 92.28 97.52 43.12 63.88 78.48 87.84
A =68 74.64 97.72 99.84 99.96 70.64 96.28 99.72 100.0 66.68 89.12 97.04 99.00
A =96 89.48 99.40 99.96 100.0 88.56 99.56 100.0 100.9 87.04 98.72 99.96 100.0
A =128 | 94.20 99.84 100.0 100.g 95.20 99.92 100.0 100.9 96.72 99.96 100.0 100.0
A =172 | 96.16 100.0 100.0 100.9 97.24 100.0 100.0 100.0 99.68 100.0 100.0 100.0
A =224 | 96.96 99.96 100.0 100.g 98.16 100.0 100.0 100.9 100.0 100.0 100.0 100.0
IRWGL S Trend Removed
v=2 v=3 wv=4 wv= v=2 v=3 v=4 v=5|v=2 v=3 wv=4 wv=
A=12 13.96 23.60 36.68 45,40 13.24 17.84 24.80 31.00 18.00 21.32 28.36 31.64
A=24 23.52 49.08 71.60 83.08 19.96 36.64 53.52 63.84 23.08 31.68 43.56 49.12
A=44 51.12 87.44 96.92 99.12 44.40 77.84 92.28 97.44 41.88 63.04 77.84 87.52
A =68 74.44 97.68 99.84 99.96 70.28 96.12 99.72 100.0 65.80 89.00 96.96 99.00
A =96 89.16 99.32 99.96 100.g 88.36 99.56 99.96 100.0 86.16 98.60 99.96 100.0
A =128 | 93.56 99.76 100.0 100.0 94.64 99.92 100.0 100.0 96.28 99.92 100.0 100.0
A =172 | 95.36 99.96 100.0 100.0 96.80 100.0 100.0 100.9 99.52 100.0 100.0 100.0
A =224 | 95.96 99.76 99.84 99.92 97.64 100.0 100.0 100.9 99.96 100.0 100.0 100.0
Nonparametric Trend Removed
v=2 wv=3 wv=4 wv=5|v=2 wv=3 wv=4 wv=5|v=2 wv=3 v=4 wv=5
A=12 15.60 23.08 35.52 44,99 14.76 20.40 26.44 31.1 32.76 33.40 34.76 34.88
A=24 24.72 48.84 70.44 82.9§ 21.96 38.84 54.44 63.40 34.80 41.32 46.92 54.08
A =144 52.88 88.72 97.48 99.2§ 45.52 78.48 92.28 97.68 53.76 67.32 79.12 88.92
A =68 76.84 98.08 99.88 99.8§4 72.40 97.00 99.84 99.92 73.00 89.68 96.80 99.24
A =96 91.28 99.68 99.96 100.0 90.24 99.76 100.0 100.9 90.04 98.68 99.84 100.0
A =128 | 96.08 99.92 100.0 100.0 96.80 100.0 100.0 100.9 97.36 100.0 100.0 100.0
A=172 | 98.24 100.0 100.0 100.9 98.72 100.0 100.0 100.9 99.92 100.0 100.0 100.0
A =224 | 99.08 99.92 100.0 100.0 99.52 99.96 100.0 100.9 100.0 100.0 100.0 100.0

Standard errors of values in the table are between 0.4% 8Aal 1.




84

Under the quadratic and absolute loss functions in the pplitern, the alternative
hypothesis is true. The spatial forecast accuracy test deryswell for these losses but
can be strongly undersized when= 1. If the left/right pattern is assumed known, and the
mean on each side of the domain is found and used to defoésid then the results are
similar to knowing the true trend. The linear and IRWGLS tleiare undersized far= 1
andv = 2. Again, the nonparametric trend with adjusted bandwidtksdbe best job of
filtering out the trend independently with similar resutigtiose obtained when removing
the true trend.

For the linear trend, results shown in Table 16, removingtreect mean for the mean
functions with coefficients given in Table 17 gives very goesults. However, ignoring the
trend results in the rejection of almost none of the null Higpees. This simply illustrates
how failure to remove a strong trend can negatively influghegest. After the quadratic
and absolute losses are applied to the forecast errorsrethe s no longer linear, so a
quadratic trend is fit for the quadratic and absolute logsatsa linear trend is still fit for
the simple loss. Fitting these types of trends yields resualich, much closer to removal of
the true mean. The IRWGLS fit (linear for the simple loss anddyatic for the quadratic
and absolute losses) is even more conservative, rejectg pit less frequently than when
the trend is estimated with least squares. Finally, the aapetric fitted trend does not

fare as well as the linear and quadratic trends do.
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Table 15: Percent of null hypotheses (under weighted seingram estimation) rejected
in 2,500 simulated datasets for the split datasets.

Intensity
Loss v=1 v=2 v=3 v=4 v=5>
Simple 9.52 12.20 16.72 23.20 25.28
True Trend Quadratic 75.20 99.84 100.0 100.0 100.0

Absolute 7296 99.84 100.0 100.0 100.0

Simple 0.08 0.00 0.00 0.00 0.00
No Trend Quadratic 42.68 95.60 99.64 99.92 100.0
Absolute 48.12 97.52 99.92 100.0 100.0

Simple 9.08 13.12 17.12 23.68 25.92
Pattern Known Quadratic 76.92 99.84 100.0 100.0 100.0
Absolute 74.92 99.84 100.0 100.0 100.0

Simple 6.84 120 040 0.04 0.00
Linear Trend Quadratic 52.44 98.16 99.92 100.0 100.0
Absolute 57.08 99.20 100.0 100.0 100.0

Simple 540 0.60 0.28 0.00 0.00
IRWGLS Trend Quadratic 49.88 96.72 99.56 99.84 99.92
Absolute 55.16 98.08 99.84 99.92 100.0

Simple 21.24 13.44 14.60 16.60 17.64
Nonparametric Trend Quadratic 69.48 99.56 100.0 100.0 0100.
Absolute 71.40 99.76 100.0 100.0 100.0

Standard errors of values in the table are between 0.4% &f6l 1.




Table 16: Percent of null hypotheses (under weighted seimgram estimation) rejected in 2,500 simulated datasetshie
linear trend datasets.

Combination of Coefficients

Loss 1 2 3 4 5 6 7 8 9 10
Simple 100 100 100 100 100 83.68 84.16 99.48 100 100
Right Mean Quadratic 100 100 100 100 100 100 100 100 100 100
Absolute 100 100 100 100 100 100 100 100 100 100
Simple 0 0 0 0 0 0 0 0 0 0
Wrong Mean Quadratic 0.04 0.04 0.08 0 0 0 0 0 0.08 0.4
Absolute 0 0 0 0 0 0.28 036 0.04 0.28 0
Linear Mean Simple 100 100 100 100 100 90.60 90.64 99.96 100 0 10
Quadratic Mean Quadratic 100 100 100 100 100 100 99.96 100 10000
Quadratic Mean Absolute 100 100 100 100 100 100 100 100 100 100

Simple 100 100 100 100 99.96 88.20 87.52 99.48 99.96 100
IRWGLS Mean Quadratic 99.8 99.96 99.88 99.68 99.84 98.446097.98.08 99.96 99.92
Absolute  99.96 100 100 100 100 99.04 098.76 97.40 100 97.16

Simple 3852 520 420 492 816 16.72 18.16 25.44 40.44 1.28
Nonparametric Mean Quadratic 56.28 31.36 29.40 24.80 368852 30.00 33.64 7180 73.28

Absolute 56.24 13.60 12.64 12.36 19.64 33.68 33.56 40.723660.2.20
Standard errors of values in the table are between 0.4% a#a6l 1.

98
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Table 17: Coefficients for the linear trend simulation ré&sgiven in Table 16.

# A B C
1 1 05 05
2 1 1 0.5
3 1 05 1
4 1 -05 -1
5 1 -015 -1
6 1 -05 05
7 1 05 -05
8 2 05 -05
9 20 05 -05
10 1 3 -05

4.5.4 Comparison with SHC Method

It should be noted that whef(s) is constant, then the SHC method and the spatial forecast
accuracy test are testing the same null hypothesis thatahstant mean of the spatial
processis zero. To compare the two methods in this settiage&d to make adjustments to
the spatial forecast accuracy setting so that the SHC methiloglork. Thus, 16 x 16 dyadic
grids are generated in 1000 simulated datasets, and tHefdlbf data is retained since the
SHC method is only defined for data on a regular grid with ncsimgsvalues. A constant
mean alternative is generated in which the trenfl(is = p for p = 0,0.5,1,1.5,2,2.5, 3.
The spatial range i8; = 6, = 6, and both the SHC method and the spatial forecast
accuracy test are applied to the quadratic, absolute, anplesiloss differentials. The
results are given in Figure 17. It is immediately evident thiaeny = 0, which is the null
hypothesis, that the SHC method is oversized for the quadoas. In fact, for the absolute
and simple losses, the size is still about 5% too large. Tihisnot sensible to compare
the powers at the remaining values,o$ince the SHC method is not correctly sized.

Shen et al. (2002) only test their method in simulations witilimally distributed

data and spatial independence. The data that is generatad simulation is multivariate
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SHC vs SFAT, Constant,p=0 SHC vs SFAT, Constant,p=0.5

8 @ i @- - L is O i §
3 - ==3

L =E=mie==
rd ”
P
.

e
8 o o ’
o , ,/
S // )
2 o ’ o
s o
e Y/
T Quadratic

/

Power
Power

Difference Difference

Figure 17: Comparison of power between the SHC test and #@uwgakforecast accuracy
test (SFAT) when the trend is constant.

normal, but once the quadratic and absolute loss functi@aplied to the errors, the data
is no longer normal. In fact, for interesting loss functiptiee resulting loss differential
will rarely be normally distributed. Therefore, in the cexit of comparing the accuracy of
spatial predictions, many modifications would need to beerfadthe SHC method to be

generally applicable.

4.6 OklahomaWind Speed Example

The Oklahoma Mesonet provides meteorological informatbm network of over 100

stations across the state of Oklahoma and can be accesggul/attvw.mesonet.org. The

daily average wind speed is the quantity we wish to foredast the daily averages of
temperature, pressure, humidity, dew point, and rainfallracorded as well. The latitude,
longitude, and elevation of each site is given. While margryef data are available, the
day we choose to focus on is September 10, 2008. Two spati@élsare built based on
70 locations to forecast the daily average wind speed at géfved locations. Figure 18
gives a plot of these locations across the state. One tinessandel is also built based on

three years of daily wind speed averages collected at edtie @ sites.
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Wind Speed at Model Building Locations Wind Speed at Forecast Locations

Latitude
Latitude

Longitude Longitude

Figure 18: Average daily wind speeds in miles per hour at dbtétions in Oklahoma on
September 10, 2008. On the left are the 70 locations usediltbthe spatial models. On
the right are the 46 locations where predictions are made.

The first spatial model, called S1, uses the latitude, lowigit and elevation as covari-
ates for the trend. This type of model might be used in a sdoathere the meteorological
tower is off-line, and no other meteorological informatiemmvailable. In the second spatial
model, S2, the covariates of temperature, pressure, hiymealid dew point are included.
For both models, the spatial dependence is modeled with@onextial covariance with a
nugget. Parameters are estimated in both cases usingativebr reweighted generalized
least squares procedure described in Schabenberger andy5@005). The preceding 3
years of daily average wind speed data before Septembe08,i€ used to build a time
series model, T, at each of the 46 locations where a forezastsired. At each location, a
smoothed monthly mean and a smoothed monthly standardidevisiused to standardize
the data. These smoothed values are obtained by regrebsimganthly means on a pair
of harmonics. Then, the order, of an AR{p) model is selected with BIC, and parameters
are estimated for the selected order.

Forecasts are made at each of the 46 locations based on linesartodels. These
forecasts are compared to the observed average wind spsiadsMean Squared Error

(MSE) and Power Curve Error (PCE). The PCE was introduced é&ynlg and Genton
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Table 18: MSE and PCE of each set of forecasts for the Oklahanthspeed dataset.

Forecast MSE PCE
TS 5.29 12181
S1 4.01 97.79
S2 251 72.84

(2009) as a more realistic assessment of wind speed fosdoake context of wind power
generation. It incorporates not only information about plosver curve that transforms
wind speed observations to wind power but also allows the tosgpecify an asymmetric
penalty for overestimation versus underestimation. Itde an example of a loss function
that cannot be written in terms of the forecast errors aldrahle 18 gives the values of
MSE and PCE for each of the three models. Spatial model S2ipesdorecasts with the
smallest MSE and PCE, and the time series forecasts havargest MSE and PCE.

The top left-hand plots in Figures 19 through 24 show theediffices in the squared
errors or power curve errors at each location comparingithe $eries forecasts with the
S1 forecasts and with the S2 forecasts and also comparirigltlaed S2 forecasts to each
other. With no knowledge of the trend, estimating the trendparametrically is likely
the best option. The bandwidth is first selected by miningzime cross-validation curve;
the top right-hand plots in Figures 19 through 24 show whkesdurve is minimized.
This initial bandwidth is then adjusted to account for sglatorrelation, and the adjusted
bandwidth is used to estimate the differenced field at a firteafipoints (bottom left-hand
plots). The biggest difference between the forecasts ofithe series and spatial models
appears to occur in the northwestern region of the statetrentime series forecasts only
has smaller errors in isolated regions of the state. Thdaspabdels’ forecasts differ
the most in the southeastern part of the state. Finally, t@recal semivariogram of the
detrended difference field is computed, and a Gaussianiaocaris fitted in all six cases

(bottom right-hand plots).
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Figure 19: Plots of (upper left) quadratic errors differetidield (time series errors minus
S1 errors), (upper right) traditional bandwidth selecigmoring spatial correlation, (lower
left) reconstructed spatial field using nonparametric smamd adjusted bandwidth, and
(lower right) empirical semivariogram of detrended fieldhwiitted Gaussian semivari-
ogram overlaid.
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Power Curve Differences, T and S1 PCE Field, T & S1, Traditional Bandwicth
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Figure 20: Plots of (upper left) power curve errors differed field (time series errors
minus S1 errors), (upper right) traditional bandwidth sete ignoring spatial correlation,

(lower left) reconstructed spatial field using nonparametnooth and adjusted bandwidth,
and (lower right) empirical semivariogram of detrendedifiglth fitted Gaussian semivar-
iogram overlaid.
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Squared Differences, T and S2 MSE Field, T & S2, Traditional Bandwidth
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Figure 21: Plots of (upper left) quadratic errors differedidield (time series errors minus
S2 errors), (upper right) traditional bandwidth selecigmoring spatial correlation, (lower
left) reconstructed spatial field using nonparametric smamd adjusted bandwidth, and
(lower right) empirical semivariogram of detrended fieldhwfitted Gaussian semivari-
ogram overlaid.
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Figure 22: Plots of (upper left) power curve errors differed field (time series errors
minus S2 errors), (upper right) traditional bandwidth seten ignoring spatial correlation,

(lower left) reconstructed spatial field using nonparametnooth and adjusted bandwidth,
and (lower right) empirical semivariogram of detrendedifiglth fitted Gaussian semivar-
iogram overlaid.
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Figure 23: Plots of (upper left) quadratic errors differethdield (S1 errors minus S2 er-
rors), (upper right) traditional bandwidth selection igng spatial correlation, (lower left)
reconstructed spatial field using nonparametric smoottadpgted bandwidth, and (lower
right) empirical semivariogram of detrended field with fitl@aussian semivariogram over-
laid.
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Figure 24: Plots of (upper left) power curve errors differed field (S1 errors minus S2 er-
rors), (upper right) traditional bandwidth selection igng spatial correlation, (lower left)

reconstructed spatial field using nonparametric smoottadpgted bandwidth, and (lower
right) empirical semivariogram of detrended field with fitl@aussian semivariogram over-

laid.
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Bin centers at 15, 25, and 35 km of the semivariograms estuhfabm the detrended
loss differentials in Figures 19 through 24 all give somddation of spatial dependence
for those distances. These values are not spurious, anéthesdsufficient to reflect such
estimates. Figure 25 shows a histogram of the distances darh forecast location to
the closest model building location. These values ranga fimughly 8 km to 70 km, and
seventy-five percent of the distances are less than 40 kmavédrage of the distances is

34.3 km.

Distance to Closest Model Building Location

Frequency

= 1

Distance (km)

Figure 25: Histogram of the distance from each forecastimc#o its nearest model build-
ing neighbor’s location. Seventy-five percent of these 46adices are less than 40 kilome-
ters.

We obtain estimates of the denominator of the forecast acguest, test statistics, and
p-values given in Table 19. The time series forecasts anditeedsts produced by model
S1 are not significantly different from each other on averagerms of MSE or PCE. Even
though S1 has MSE that is 1.275 less than the time seriesafsteeand has PCE 24.02 less,
the variability in the squared errors and the power curversiis quite large. The S1 and S2
models also do not differ significantly from each other onrage in either MSE or PCE.
However, the S2 model does produce significantly betteicksts on average in terms of

MSE and PCE than the time series model does. This would leadearcher to conclude
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that when covariates such as average temperature, hunpdigsure, and dew point are

available, they can produce on average a significantly suferecast.

Table 19: Comparison of the time series forecast, T, with$ets of spatial forecasts, S1
and S2, for the Oklahoma wind speed dataset.

Comparison Loss Numerator Denominator Test Statistievalue

TversusS1 MSE 1.275 1.214 1.05 0.2935
PCE 24.02 14.85 1.62 0.1057

TversusS2 MSE 2.774 0.375 7.41 < 0.001
PCE 48.97 17.99 2.72 0.0065

S1versus S2 MSE 1.50 0.86 1.75 0.0799
PCE 25.95 18.88 1.32 0.1864

4.7 Discussion and Conclusion

Several versions of the spatial forecast accuracy testleme proposed in this work. Test
statistics under parametric estimation of the covariogaah the semivariogram for both
constant and spatially varying trends have been studiedim&iing the semivariogram
yields better estimates of the variability in the loss d#feced field and is recommended
in practical applications. When a spatially varying tresdpresent, the importance of
estimating this trend cannot be understated. Yet ovehalspatial forecast accuracy test is
simple to compute, accounts for the presence of spatiabledion amongst the errors of a
given loss function and for contemporaneous correlatiod alows flexible loss functions.
A comparison in the accuracy of competing models should edhb only diagnostic
check used when comparing models. Forecasts produced byaohe may contain infor-
mation not included in another set, so a test of forecastrapassing, such as the one by
Harvey et al. (1997), or a weighted average of forecasts earety valuable tools as well.
This work highlights promising directions for future resda Some are evident, such

as a forecast accuracy test for multivariate spatial fatsoar for space-time data. In fact,
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many of the most interesting examples involve forecastindfipie variables over space,
and the wind speed forecasting example makes it clear théibbforecasts made through
time are necessary. In the space-time setting, it would begnt to follow the example of

Giacomini and White (2006) in which they propose both caoddl (for a given forecast

horizon) and unconditional (averaged over all forecasizibos) tests of forecast accuracy.
More generally, an improved and optimal method for selegctive bandwidth in the non-

parametric estimate of the trend would have important appins beyond the forecast
accuracy test.

The SHC method is at a disadvantage since it is more complé@xgtement, can
only be applied to full dyadic grids (without making modificens), and does not per-
form well with non-Gaussian and spatially correlated detewever, one advantage of the
SHC method that the spatial forecast accuracy test lackaisttis able to estimate where
the significant differences occur spatially. Looking at sap the estimated tren(f,(s),
produced when detrending the data in the spatial forecastracy test does give some
gualitative information about where the differences maigtebut reducing the domain of
interest to detect regional differences may be a bettertgaave solution. Benjamini and
Heller (2007) argue that in analyzing fMRI data differengesignals at the individual lo-
cations are not as important as detecting differences stalsi of voxels. Their approach is
more powerful than the SHC test since they have fewer hygethef interest to test. This
suggests that one solution to detecting regional diffexene forecast accuracy could be
to apply the spatial forecast accuracy test in local regainsterest instead of across the
entire set of forecasts.

In summary, the spatial forecast accuracy test is a venbliexind easily applied test.
Used as a tool in model evaluation, it can help researcheéesrdime if the difference they
see in the average losses of two competing models is sigmificanot, which gives them a

more complete, informed picture of their forecasts.
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CHAPTER V

CONCLUSION

Forecasting wind speeds accurately is important for wingdigvantegration into utility
systems, and having the tools to statistically evaluatedasts is important for decision
makers. The TDD and BST models have been introduced, andatieeffexible and can
be fitted with a sparse number of locations. Neither is lichibg the selection of regimes
based on the prevailing wind patterns. The TDD model’s ptexhs perform as well as
the RSTD model predictions do, and the BST model outperfdrotis of the other models
when the variability in the wind speed is low. In additiong BST model produces a wind
direction forecast as well, which is crucial in obtaining e@vpower forecast. The TDD
and BST models perform similarly when built to forecast dtentlocations in the dataset
and when the hourly data is replaced with ten-minute data.

The PCE is a sketch of a loss function that incorporates thgaaship between wind
speed and wind power. It can be adapted to different typearbfries, and the penalty
for underestimating wind speeds can be tuned to the patic@ason and utility system
at hand. The optimal forecast from the predictive distidrufor minimizing PCE is the
quantile based on the underestimation penalty, and vatiiisgenalty can have an effect
on which model’s forecasts are favored. The differencewdent the losses observed for
each model can be tested for statistical significance usiadime series test by Diebold
and Mariano (1995). Using this test, we observe no signifiddference in MSE, MAE,
or PCE between the RSTD and TDD models and no significantrdiffee in MAE or PCE
between the RSTD and BST models.

For wind speed models that produce spatial predictiony, ¢aa be compared with

the spatial forecast accuracy test, which tests the nubbthgsis of equal forecast accuracy
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averaged across all spatial locations under a given logdifum This test does not require
that the data at each location be normally distributed, aimd¢orporates spatial correlation

in the difference field as well as contemporaneous corcgldtetween sets of forecasts.
The best estimator of the variance bfuses the weighted least squares estimate of the
semivariogram. The main factor slowing the convergencéetest statistic to normality

is the strength of the spatial correlation. As the spatialetation increases, the larger the
empirical size of the test becomes, and the loss functiorhesa an effect on the spatial
correlation, such as the quadratic loss that shrinks thiga$parrelation.

Separating the difference between the trend and the spatratiance contributs di-
rectly to how well the variance dP is estimated. If the trend is treated as covariance, then
the null hypothesis will be rejected less often than it sidag, and the reverse is true if
the covariance is treated as trend. If the spatial trend efdifference field is constant,
then detrending the data with a linear or a constant trend doeaffect the outcome of the
test. However, in the presence of a spatially varying treechoving the trend with a non-
parametric regression and a bandwidth adjusted for théaspatrelation does negatively
affect the empirical size of the test, although it diminislas the sample size increases.

It must be emphasized that this test is designed to deterihthe average of the
difference field is zero or not. If local regions of positivedanegative values in the domain
still sum to zero, as in the split pattern simulation with gienloss, then the null hypothesis
of the test is still true. The SHC test, on the other hand, sgieed to estimate regions in
the domain where the signal is nonzero. Yet when the meamsaot, the SHC and spatial
forecast accuracy tests are equivalent. In this case, ti@t8ét is missized, especially for
the quadratic loss, since applying the loss function todinedast errors transforms the data
to a non-Gaussian distribution. Even if the SHC test wereectly sized, it can only be
applied to full sets of gridded data of dyadic size, while $ipatial forecast accuracy test

can be used under more general conditions.
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The spatial forecast accuracy test is demonstrated by aomgpspatial forecasts of
daily average wind speed at locations in Oklahoma. Theréiffee field is formed for each
set of forecasts based on the quadratic loss and the powerloss. A nonparametric trend
is removed on the data after adjusting the bandwidth seldsteross-validation for spatial
correlation. The second set of spatial forecasts are showe significantly different on
average from the time series forecasts in both quadratipawer curve losses.

Tests of forecast accuracy provide a rich area for futureaieh. Improvements in
the spatial version for small samples and adaptations #cestime forecasts can both be
studied. These tests are just one type of tool that can betasktermine with statistical
confidence whether two sets of forecasts are on averagdisagmiy different or not. This
information can be used to select the best models, whianatély guides decision-making

and resource allocation.
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APPENDIX A

PROOFS OF PROPOSITIONS PRESENTED IN CHAPTER IV

Proof of Proposition 1:

Consider anl, x L matrix, whereL is the number of locations in a spatial dataset whose

(i,7)th entry is(D(s;) — D)(D(s;) — D) for1 <i,j < L:

(D(s1) — D)(D(s1) = D) (D(s1) — D)(D(s) — D) (D(s1) — D)(D(sz) — D)
o_ | (Dls2) = D)(D(s1) = D) (Dls2) ~ D)(Dlsz) ~ D) (D(s>) — D)(D(s1) — D)
(D(s) — D)(D(s1) — D) (D(sz)— D)(D(ss) — D) ... (D(sy)— D)(D(sz) — D)

(A1)
The sum of the elements in this matrix is zero. This can be sieee the sum of any row

in the matrix is zero. For example, the sum of itierow is

L L
Y (D(si) = D)(D(s;) = D) = (D(s;) = D) (D(s;) = D)
7j=1 7=1
= (D(si) = D) ZD(S]) LD)
j=1
— (D(si)— D) (LD — LD) =0
Leth = {hg, hi, ho, ..., h,} be the ordered set of unique distances between all pairs of

observations. For example, on a lattice with locations spamne unit aparty, = 0, h; =
1, andh, = 1.41, andh,,, is the maximum distance between any two pairs of obsenation
Then, N(h;) is the set of all pairs of pointgs;, s}) distanceh; apart, and N (h;)| is the
number of pairs of points distanég apart. The sum of all of the elements in the matrix in

Equation (A.1) is
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L

D sy o= Y (D(si) = D)*+ > (D(s1) = D)(D(s}) — D) + ...

{i.5} =1 N(h1)
..+ Y (D(sw) - D)(D(s],) — D)
N(hm)

LC(0) + [N (7)|C(hy) + ... + [N (hyn)|C(hyn).

Now, we show that Equation (4.5) with the estimated covagarsubstituted faf’(k;;) is

equal toy _; .,y sij-
_ 1 S
Var[D] = 5303 Clh)
i=1 j=1

= L [LO©) 4 INGICM) + N () Clha) + .+ IN (1))

(after collecting like terms according to distance)

— % [ZSJ] = 0.

{5}

Proof of Proposition 2:
We must find CoyX?, Y?) = E(X?Y?) —E(X?)E(Y?). With mean zero, EX?) = ¢2 and
E(Y?) = o;. The moment generating function (mgf) can be used to fiodi*®&?). The

mgf for a multivariate normal distribution is

1 1
Mz(t) = exp (u/t - §t/2t> = exp (it/Et) ,forp=0

= exp ((1/2)(s1t] + 2sat1ts + s3t3)) -

Then, EX2Y2) = 9 My (t)|¢—o.

- 2942
02012

The partial derivative is:
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exp ((1/2)(81t% + 252t1t2 + Sgtg)) (Sltl + 82t2)2(82t1 + 83t2)2

(

2s5exp ((1/2)(

2s5exp ((1/2)(
(

+ o+ o+ o+ o+ o+

Evaluating at = 0 yields

The correlation is

E(X2Y?) =

Cov(X?Y?) =

Corm(X? Y?)

282 exp ((1/2)(8175% + 282t1t2 -+ Sgt%)) (Sltl + 52t2)<52t1 + Sgtg)

S3 exp ( 1/2)(81t1 + 252t1t2 + Sgtz)) (Sltl -+ Sztg)z

Sltl + 282t1t2 + 83t2)) (Sgtl + Sgtg)(Sltl + Sgtg)

)(s1t] + 2sat1ts + s3t3))

S1 €xp ( 1/2)(s185 + 2sat1ts + s3ts )) (st + s3ta)(s2t1 + S3t2)

siszexp ((1/2)(s1t] + 2satits + s3t3)) .

255 + s153 = 2(po,0,)* + ol0,

2p20202 + amay, SO

g

2 2 2 2 2 2 2
-y

2p°0y0, + 0,0, —0

2p%0%0?

Cov(X? Y?)
V/Var(X2),/Var(Y2)
2p2 2 2
\/2U§\/2a§

=

which is obtained by computing ak?) and Va(Y?) similarly. O
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Proof of Proposition 3:

ForZ = (X,Y)T ~ (0,%), the effect ofg(-) is similar to that ofg(z) = 22, whereg is a
function such thag(0) = ¢’(0) = 0, andg(+) is twice differentiable. Performing a second

order Taylor expansion af(x) about0 yields

g(x) = 9w+ () (x—p) +9¢"(p)(x—p)?+R

= ¢"(0)2* + R.

Then,
E(g(X)) ~ ¢"(0)E(X?),
E(g(X)g(Y)) ~ (¢"(0))E(X?Y?), and
Var(g(X)) ~ (¢"(0))2Var(X2).

The correlation betweegi X') andg(Y) is then
Covg(X),9(Y))
V/Var(g(X))y/Var(g(Y))
(9"(0)? - (E(X*Y?) — E(X*)E(Y?))
v/ g"(0)2Var(X?),/¢"(0)2Var(Y'?)
= Corr(X? Y?), which, if Z = (X,Y)" ~ Ny(0,%)

Corr(g(X),9(Y)) =

—= p2

However, if the functiong(-) andg’(-) are not zero &, then for a second order expansion
of g(X) and using tactics similar to the ones above, the correldt&as the following

form.

/02 - +2//02222
Cor(g(X). o(V)) ~ g'(0)*posoy + 29"(0)*p*030,
V(0202 +2¢"(0)207 \/ 9'(0)%03 +29"(0)%0y,
This reduces t@? wheng/(0) = 0 andg”(0) # 0. It reduces tg wheng”(0) = 0 and

g9'(0) # 0.
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