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ABSTRACT

Understanding Churn in

Decentralized Peer-to-Peer Networks. (August 2009)

Zhongmei Yao, B.S., Donghua University;

M.S., Louisiana Tech University

Chair of Advisory Committee: Dr. Dmitri Loguinov

This dissertation presents a novel modeling framework for understanding the dy-

namics of peer-to-peer (P2P) networks under churn (i.e., random user arrival/departure)

and designing systems more resilient against node failure. The proposed models are

applicable to general distributed systems under a variety of conditions on graph con-

struction and user lifetimes.

The foundation of this work is a new churn model that describes user arrival and

departure as a superposition of many periodic (renewal) processes. It not only allows

general (non-exponential) user lifetime distributions, but also captures heterogeneous

behavior of peers. We utilize this model to analyze link dynamics and the ability

of the system to stay connected under churn. Our results offers exact computation

of user-isolation and graph-partitioning probabilities for any monotone lifetime dis-

tribution, including heavy-tailed cases found in real systems. We also propose an

age-proportional random-walk algorithm for creating links in unstructured P2P net-

works that achieves zero isolation probability as system size becomes infinite. We

additionally obtain many insightful results on the transient distribution of in-degree,

edge arrival process, system size, and lifetimes of live users as simple functions of the

aggregate lifetime distribution.

The second half of this work studies churn in structured P2P networks that are

usually built upon distributed hash tables (DHTs). Users in DHTs maintain two types
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of neighbor sets: routing tables and successor/leaf sets. The former tables determine

link lifetimes and routing performance of the system, while the latter are built for

ensuring DHT consistency and connectivity. Our first result in this area proves that

robustness of DHTs is mainly determined by zone size of selected neighbors, which

leads us to propose a min-zone algorithm that significantly reduces link churn in

DHTs. Our second result uses the Chen-Stein method to understand concurrent

failures among strongly dependent successor sets of many DHTs and finds an optimal

stabilization strategy for keeping Chord connected under churn.
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1

CHAPTER I

INTRODUCTION

1.1. Research Problem

Peer-to-peer (P2P) networks are a recently emerged distributed architecture, in which

all participants (i.e., peers) in the network often supply resources (e.g., bandwidth,

storage, and computing power) to each other and simultaneously serve as both servers

and clients. The most salient characteristic of these systems is that communication

between users takes place directly instead of relying on central servers (see Fig. 1

for an example). By utilizing resources at the edge of the Internet, P2P networks

have become an efficient and scalable platform for distributed applications (e.g., file

sharing, media streaming, and telephony) that support millions of users online. More

significantly, the power of P2P computing may soon revolutionize our computing

experience and reinvent the essence of data transfer in the Internet over the next ten

years [86].

Unlike other distributed systems where failures may be considered rare or abnor-

mal, most P2P networks constantly remain in the state of churn, which is a general

term describing dynamic behavior of these systems in which arrival/failure of indi-

vidual users are not synchronized. The analysis of how these systems behave during

churn has recently attracted significant attention and has become an important re-

search area [6], [16], [29], [26], [33], [34], [39], [40], [43], [46], [50], [61], [66].

While many properties of a system (e.g., throughput, load-balancing, efficiency

The journal model is IEEE/ACM Transactions on Networking.
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Fig. 1. Example of a P2P network, where edges connecting peers are virtual links

(dashed lines), e.g., pointers to IP addresses and port numbers of neighbors.

of routing, message overhead, and file popularity) affect its usefulness to the user, we

focus in this work on resilience of P2P networks, which is defined as the ability of

the network to continuously provide services when the system experiences churn. In

centralized P2P systems (e.g, Napster [75] and a swarm with a centralized tracker in

BitTorrent [66]) where central servers have a global view of the system and respond

to certain types of requests (e.g. content-search), the issue of resilience reduces to the

single point of failure problem. In contrast, decentralized P2P networks (e.g, Gnutella

[25], KaZaA [35], Chord [79], and Kademlia [58]) have no single point of failure and

embrace frequent node failures as part of their normal operation. The goal of this

work is to offer generic models for understanding churn in these decentralized P2P

networks and designing systems more resilient against node failure.

Recall that (decentralized) P2P networks organized users into distributed graphs

that provide system-wide services by routing requests between neighboring nodes. As

a result, two fundamental issues in these decentralized networks are understanding

link dynamics (i.e., delay between formation and failure of each link) and ability of

the system to stay connected under churn [3], [6], [26], [29], [34], [39], [40], [41], [43],
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[44], [50], [61], [79]. However, before resilience and performance of P2P networks

can be fully understood, a good model of churn is required since even today most

analytical models that consider churn [39], [43], [50], [61] do not capture the inher-

ent heterogeneity of users or the behavior of P2P networks under non-exponential

lifetimes.

1.1.1 Background

In many P2P networks, each user v creates k links to other peers when joining the sys-

tem, where k may be a constant or a function of system size [52], and detects/repairs

failed links in order to remain connected and perform P2P tasks (e.g., routing and

key lookups) [67], [71], [72], [79]. This type of churn was originally formalized in [43],

where Leonard et al. equipped joining users with random lifetimes Li that determined

the duration of their presence in the system and modeled neighbor replacement us-

ing random delays Si that included the timeouts to detect each neighbor failure and

protocol delays to actually obtain a new neighbor. Given this setup, link behavior

is often modeled as an ON/OFF process in which each link is either ON at time t,

which means that the corresponding user is currently alive, or OFF, which means

that the user adjacent to the link has departed from the system and its failure is

in the process of being detected and repaired. ON durations of links are commonly

called link lifetimes Ri and their OFF durations are repair delays Si that included the

timeouts to detect each failure and protocol delays to actually obtain a new neighbor.

The out-degree of a live user is simply the number of links that are in the ON state.

With this setup, it is not hard to see that characterizing link dynamics is fun-

damental to understanding the behavior of P2P networks since it directly affects

resilience, performance, and reliability of P2P networks. For instance, longer average

link lifetime means that users must repair failed links less frequently, which leads to
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smaller churn rates in the terminology of [26], and queries are less likely to encounter

dead neighbors during routing [39], which yields larger data delivery ratios [84] and

higher lookup success rates. This model [43], however, treated P2P users equally

in their online characteristics (i.e., all user lifetimes were drawn from the same dis-

tribution), did not capture the impact of in-degree on the resilience of the system,

and did not consider different neighbor replacement phenomena in unstructured and

structured P2P implementations.

1.2. Contributions

The foundation of this dissertation is a new user churn model in P2P systems. We

later utilize this model to understand the dynamics in both unstructured and struc-

tured P2P networks under a variety of conditions on user lifetimes and neighbor

selection strategies.

1.2.1 Modeling Foundation

Heterogeneity of lifetimes is a fundamental property of P2P systems where some

users consistently spend substantial periods of time in the system and others very

little [81]. This observation prompts the question of whether P2P systems can indeed

be modeled using a single homogeneous lifetime distribution without sacrificing model

accuracy? In addition to lifetimes, churn is characterized by the distribution of offline

durations, which together with lifetimes define the availability of each user [8], [74],

i.e., the average fraction of time a user is logged in. It is therefore important to

understand how offtimes contribute to the dynamics of the system and which peer

characteristics affect local graph-theoretic properties (e.g., distribution of in and out-

degree at each time t, probability that a given neighbor is alive, isolation probability
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within a lifetime) of each user.

To answer these questions, we offer a generic churn model that captures the

heterogeneous behavior of end-users, including their difference in online habits and

diversity of offline “sleep time.” We view each user as an alternating renewal pro-

cess that is ON when the user is logged in and OFF otherwise, where online/offline

durations of each user i are respectively drawn from distributions Fi(x) and Gi(x).

This approach creates a system of heterogeneous users, each with its own profile of

behavior that stays constant during the peer’s recurring participation in the network

[81].

Armed with this model, we obtain the aggregate lifetime distribution F (x) of all

users who have joined the system, the lifetime distribution J(x) of the users currently

online, and the residual lifetime distribution H(x) of a randomly selected user in the

network. Our results show that all three metrics are weighted functions of individual

lifetime distributions Fi(x), where H(x) is additionally dependent on the number of

users currently in the network, the probability that a given user is picked by joining

peers, and the conditional residual lifetimes of neighbors chosen by the selection

method. The model for H(x) is extremely complex and generally intractable unless

neighbor selection is performed uniformly among currently participating users (e.g.,

by picking users from uniformly random subsets of cached nodes or using special

random walks on the graph [99]), in which case we show that H(x) can be directly

obtained from F (x). This is an important conclusion that demonstrates that instead

of measuring n individual lifetime distributions, where n is the total number of users

participating in the system, one can measure lifetimes of joining users to obtain

F (x), which is then sufficient to entirely model the effect of churn on unstructured

P2P graphs.

We also revisit the observation of [81] that the users already present in Gnutella
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and BitTorrent networks exhibit larger average lifetimes than those joining the sys-

tem. We show that this effect is a consequence of J(x) being the spread [91] of

distribution F (x), which allows us to prove that random users currently in the sys-

tem have stochastically larger lifetimes than random arriving users regardless of the

shape of distributions Fi(x) and Gi(x). We additionally show that while F (x) may

appear to be heavy-tailed as observed in practice [12], [30], [47], it is possible that

individual lifetime distributions Fi(x) may all be exponential, or contain a mix of

exponential and heavy-tailed distributions. Occurrence of this effect depends on ran-

dom availability of each user and shows that conclusions on the individual habits of

peers may not be drawn from their aggregate behavior F (x).

1.2.2 Churn in Unstructured P2P Networks

Users in unstructured P2P systems (e.g., Gnutella [25], KaZaA [35]) rely solely on

their routing tables (i.e., sets of link pointers) to provide system-wide services to each

other. One of the primary metrics of resilience is graph disconnection during which a

P2P network partitions into several non-trivial subgraphs and starts to offer limited

service to its users. However, as shown in our early work [44], most partitioning

events in well-connected P2P networks are single-node isolations, which occur when

all neighbors in the routing table of a node v are in the failed status before v is able

to detect their departure and then replace them with other alive users. For such

networks, node isolation analysis has become the primary method for quantifying

network resilience in the presence of user churn.

Traditional analysis of node isolation and graph partitioning in unstructured P2P

networks [42], [61] have assumed exponential user lifetimes and only considered age-

independent neighbor replacement. In this dissertation, we overcome these limitations

by introducing a general node-isolation model for heavy-tailed user lifetimes and
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arbitrary neighbor-selection algorithms. Using this model, we analyze two age-biased

neighbor-selection strategies and show that they significantly improve the residual

lifetimes of chosen users, which dramatically reduces the probability of user isolation

and graph partitioning compared to uniform selection of neighbors. In fact, the second

strategy based on random walks on age-proportional graphs demonstrates that for

lifetimes with infinite variance, the system monotonically increases its resilience as

its age and size grow. Specifically, we show that the probability of isolation converges

to zero as these two metrics tend to infinity. We conclude the part with simulations

in finite-size graphs that demonstrate the effect of this result in practice.

The above approach only models the out-degree of each user and does not con-

sider the increased resilience arising from additional in-degree edges arriving in the

background to each user during its stay in the system. We overcome this shortcoming

and build a complete closed-form model characterizing the evolution of in-degree in

unstructured systems under the assumption of uniform neighbor selection. We for-

mally prove that despite node heterogeneity and non-Poisson arrival dynamics, the

edge-arrival process to each user approaches Poisson as system size becomes suffi-

ciently large. This allows relatively simple analytical treatment of the edge-arrival

process and leads to closed-form results on the transient distribution of in-degree as

a function of the general user lifetime distribution. We finish the part by combining

the in and out-degree isolation models into a single approximation that clearly shows

the contribution of in-degree to the resilience of the graph.

1.2.3 Churn in Structured P2P Networks

Unlike unstructured P2P graphs where nodes have more autonomy to choose neigh-

bors, structured P2P networks that are usually built upon Distributed Hash Tables

(DHTs) have limited choices to build edges. DHTs (e.g., Chord [79], Kademlia [58],
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CAN [67], and Pastry [72]) provide a lookup service similar to hash tables, but the

task of storing (key, value) pairs is distributed among users in the system. Nodes

in DHTs maintain routing tables and successor/leaf sets to ensure that any peer can

efficiently route a search request to the node that is responsible for the desired key.

In particular, routing tables determine link lifetimes and general routing performance

of the system, while successor sets are built for ensuring DHT consistency (so that

the system guarantees that all lookups are resolved correctly) and keeping the system

connected. While it was known that P2P system performance depended mainly on

link lifetimes and that successor lists were essential to DHT consistency, there were no

frameworks or even high-level approaches for studying these neighbor sets in DHTs

under churn.

In DHTs, link lifetimes are rather complicated since links actively switch to new

neighbors before current neighbors die in order to balance the load and ensure DHT

consistency. To understand neighbor churn in such networks, we propose a simple,

yet accurate, model for capturing link dynamics in structured P2P systems and ob-

tain the distribution of link lifetimes for fairly generic DHTs. Similar to [26], our

results show that deterministic networks (e.g., Chord [79], CAN [67]) unfortunately

do not extract much benefit from heavy-tailed user lifetimes since link durations

are dominated by small remaining lifetimes of newly arriving users that replace the

more reliable existing neighbors. We also examine link lifetimes in randomized DHTs

equipped with multiple choices for each link and show that users in such systems

should prefer neighbors with smaller zones rather than larger age as suggested in

prior work [45], [84]. We finish this analysis by demonstrating the effectiveness of the

proposed min-zone neighbor selection for heavy-tailed user lifetime distributions with

the shape parameter α obtained from recent measurements [12], [89].

The second neighbor set of each user in DHTs is the successor list consisting
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of peers that immediately follow it in the DHT key space. Periodic stabilizations

keep the successor list up to date. Successor lists are essential to structured P2P

networks because the system becomes disconnected as soon as the entire successor list

of any node fails. The main difficulty in analyzing this disconnection problem is that

successor lists of consecutive users in the DHT key space exhibit strong dependency.

We apply the Erdös and Rényi law and the Chen-Stein method to derive closed-form

results on the probability of partitioning in Chord under both static and dynamic

node failure and find an optimal stabilization strategy for keeping Chord connected

when the system experienced churn.

1.3. Dissertation Structure

The structure of the rest of this dissertation is shown in the following.

As illustrated in Fig. 2, Chapter II overviews P2P networks and the state of the

art of the analytical work on the dynamics of these networks. Chapter III introduces

our modeling foundation, i.e., heterogeneous user churn model, and studies three

important distributions that are later used for analyzing churn in unstructured and
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structured P2P networks. The second part of this work focuses on churn in unstruc-

tured P2P networks. Chapter IV presents a new generic node isolation model under

various neighbor selection strategies and for non-exponential user lifetimes. We fur-

ther propose an age-proportional random-walk algorithm for selecting neighbors. In

Chapter V, we derive closed-form results on the transient distribution of in-degree as

a function of the user lifetime distribution and then examine the joint in/out-degree

model.

The third part of this dissertation studies churn in DHTs. Chapter VI analyzes

link dynamics in classic DHTs and finds that zone sizes play a key role in determining

link lifetimes. This leads us to the min-zone selection algorithm which significantly

improve the robustness of DHTs. In Chapter VII, we study successor lists in DHTs

that are used to ensure graph connectivity and DHT consistency. We conclude this

dissertation and discuss the future work in Chapter VIII.



11

CHAPTER II

RELATED WORK

2.1. Basics of P2P Graphs

P2P networks can be broadly classified as unstructured and structured [54]. As

their names imply, the former systems organize users onto random graphs, while the

latter graphs are constructed based on fixed rules, where nodes’ links share common

structured patterns.

Many popular unstructured P2P networks, including Gnutella [25] [82], KaZaA

[35] [49], BitTorrent [9], [31], [65], [66] support keyword-based searches. In these

systems, nodes usually use flooding, random walks [23], or hybrid methods [24] to

route requests until some users that have the desired content are reached. Search

is often efficient only for popular content. To improve routing efficiency, Gnutella,

KaZaA, and Skype [28], [76] utilize the supernode and peer hierarchical structure

(i.e., parent-children structure) and organize supernodes onto decentralized graphs.

Supernodes resolve/forward queries for their children. In BitTorrent, a centralized

tracker is used to find peers that have the desired file. Other approaches without

relying on centralized servers will be discussed in Section 2.3.

Existing structured P2P networks that are developed on DHTs support efficient

exact key lookups [13], [29], [34], [55], [56], [67], [71], [80], [92]. They map keys of data

items and peers into the same identifier (ID) space (e.g., continuous space [0, 1) or

discrete set {0, 1, . . . , 264 − 1}) and assign each content’s key to a set of peers whose

IDs are closest to that key. Unlike unstructured graphs, DHTs have the coupling

between keys of data items and peers on the graph and thus ensure that queries are
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Fig. 3. User v’s successors and neighbors in Chord.

resolved. We use Chord as an example to understand the basics of DHTs.

Chord [80] maps each node and key using a uniform hashing function into the

identifier (ID) space {0, 1, . . . , 2m−1}, where m is some sufficiently large number that

can accommodate all nodes without conflict. Each key is assigned to the successor

node, i.e., the first peer whose identifier is larger than the key in the clockwise direction

along the ring. As illustrated in Fig. 3, each user v in Chord builds a successor

list and a finger table. Assuming n users in the system, the former set contains

r = Θ(log n) peers immediately following user v along the ring and the latter set

consists of k = Θ(log n) neighbor pointers where the i-th neighbor is the owner of the

key id(v) + 2i.

Finger tables are used during key lookup where the originating node performs

jumps of exponentially decreasing length until it finds the node responsible for the

key or encounters an inconsistent state (e.g., stale pointer, dead successor) at one

of the intermediate nodes. Inconsistent states in finger tables and successor lists are

periodically repaired using a stabilization technique, which allows Chord to fix links

broken during user departure, detect new peer arrival, and ensure lookup success

during churn. When any node v leaves the system, its predecessor u notices v’s

departure during its periodic stabilization. Peer u then replaces v with the next alive



13

user along the circle and adjusts its successor list accordingly. This process tolerates

multiple nodes failing simultaneously and only requires that no successor list sustain

a failure of all r nodes within a given stabilization interval. Similarly, node v learns

of new arrivals during its stabilization process and properly adjusts its successor list

to include the new peers.

Successor lists are generally used in routing only during the last step of a lookup

or when all finger pointers corresponding to desired jump lengths have failed. As

long as each node has at least one alive peer in its successor list, the system is able to

correct (after some delay) all stale finger pointers and re-populate each successor list

with r correct entries, thus ensuring consistency and efficiency of subsequent lookups.

However, when the entire successor list of any user v fails, that user is considered

isolated and Chord becomes partitioned [80]. Recovery from such disconnection is

not guaranteed in the general case.

2.2. Churn Models

One of the first models of churn was proposed in [61], which assumed an unstructured

P2P system with Poisson arrivals and departures that could be modeled as an M/M/1

queue. Neighbor replacement in this system was in direct response to failures and was

assumed to be instantaneous, where the possibilities for replacement were limited to

the nodes currently alive in a certain centralized cache. The paper showed that under

user churn the graph remained connected and exhibited a logarithmic diameter, both

with high probability.

Later models of churn [50] and recently [39] assumed a DHT-like system in which

repair algorithms were run independently of user failures and at exponentially dis-

tributed intervals (i.e., as Poisson processes). This approach modeled the consis-
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tency check algorithm in Chord, which periodically verified the successor list and

corrected invalid pointers. These models assumed homogeneous exponential lifetimes

and Poisson arrival/departure processes with no way of generalizing their results to

non-exponential system dynamics.

A different approach was undertaken in [43], where neighbor replacements were

explicitly initiated in response to failed links. In this setup, each joining user ran-

domly selected k neighbors from the graph and then monitored their online presence

using keep-alive messages. Once the failure of an existing neighbor was detected,

a uniformly random replacement was sought from among the currently alive users

in the system. Detection and replacement delays were also random, but explicitly

non-zero. Under these conditions, the paper showed that each user became isolated

with probability no larger than φout = kρ/(1 + ρ)k, where ρ was the ratio of the

average lifetime to the average replacement delay, for all lifetime distributions with

an exponential or heavier tail. This result was later generalized in [44] to show that

the probability of non-partitioning in many P2P networks converged as n → ∞ to

that of avoiding isolation for each online user.

2.3. Resilience in Unstructured P2P Networks

Construction and maintenance of overlay networks consists of initial neighbor se-

lection and subsequent replacement of dead links. Many P2P systems, including

structured [13], [34], [47], [58], [63], [67], [72], [79], [98], and unstructured [15], [57],

[61], [73], [88], perform neighbor selection and replacement to achieve the desired

routing efficiency and search performance in the face of node joins and departures.

Gnutella, for example, sends a ping message every 3 seconds and detects link
failure when TCP declares the connection aborted, which happens after several (e.g.,
5 in Windows) subsequently failed retransmission attempts.
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Previous work has used proximity-based neighbor selection to reduce lookup

latency [29], [57], [68], [97], capacity-based selection to improve system scalability

[15], [41], [78], and age-biased neighbor preference to improve reliability of the system

[12], [41], [58], [77]. Additional studies have analyzed the tradeoffs between resilience

and proximity [16] as well as studied how well different neighbor selection and recovery

strategies could handle churn in DHTs [26], [71]. In recent work [87], [88], random

walks have been used to build unstructured P2P systems and replace failed links

with new ones. Finally, only a handful of modeling studies of user isolation and

neighbor selection under churn exist [39], [42], [50], [61]. They are mostly limited to

exponential user lifetimes and age-unrelated user replacement and do not capture the

effect of in-degree on resilience.

2.4. Link Dynamics in DHTs

Among the recent studies of link lifetimes, one direction focuses on non-switching P2P

systems. Leonard et al. [42] show that heavy-tailed lifetimes allow link lifetime E[R]

to be significantly larger than user lifetime E[L]. Additional results of this model

and its application to unstructured networks are available in [45], [93], [96]. Another

recent study [84] examines DHTs without switching with a focus on the delivery

ratio, which is the fraction of time that all forwarding nodes between each source and

destination are alive. Their results show that the delivery ratio is a function of link

lifetime R for all examined neighbor-selection techniques.

The other direction also covers switching networks exemplified by traditional

DHTs. Godfrey et al. [26] study the impact of node-selection techniques on the churn

rate and observe that switching DHTs exhibit dramatically smaller link lifetimes than

non-switching networks. Krishnamurthy et al. [39] compute the probability that
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neighbors in Chord are in one of three states (alive, failed, or incorrect) and use this

model to predict lookup consistency and query latency.

Additional work [8], [13], [46], [47], [48], [71], [81] focuses on measurement and

simulation of structured P2P systems under churn.

2.5. Resilience of DHTs

Performance of DHTs under p-fraction node failure [29], [34], [80] and churn [13],

[39], [46], [48], [50], [58], [71] have received significant attention since the advent of

structured P2P networks. While the problem of connectivity under failure for general

graphs remains NP-complete [22], [36], [83], recent work [45] shows that several types

of deterministic and random networks remain connected if and only if they do not

develop isolated nodes after the failure. Despite its importance, the methodology

in [45] only considers the resilience of neighbor tables rather than that of successors

and does not model stabilization. The issues studied in this paper are analytically

different due to the much stronger dependency between successor lists of neighboring

nodes than between their finger tables and the fact that stabilization requires an

entirely different model than the one in [45].

Another modeling work by Krishnamurthy et al. [39] studies the probability of

finding a neighbor or successor in one of its three states (alive, failed or incorrect)

and uses this model to predict lookup consistency and latency for exponential user

lifetimes and exponential stabilization intervals.
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CHAPTER III

HETEROGENEOUS USER CHURN

3.1. Churn Model

To understand the dynamics of churn and performance of P2P systems, we start by

creating a model of user behavior and specifying assumptions on peer arrival, depar-

ture, and selection of neighbors. The focus of this section is to formalize recurring

user participation in P2P systems in a simple model that takes into account hetero-

geneous browsing habits and explains the relationship between the various lifetime

distributions observable in P2P networks.

Consider a P2P system with n participating users, where each user i is either

alive (i.e., present in the system) at time t ≥ 0 or dead (i.e., logged off). This behavior

can be modeled by an ON/OFF right-continuous process {Zi(t)} for each i:

Zi(t) :=

⎧⎪⎨⎪⎩
1 user i is alive at time t

0 otherwise

, 1 ≤ i ≤ n. (1)

This framework is illustrated in Fig. 4, where parameter m stands for the cy-

cle number and random variables Li,m > 0, Di,m > 0 are durations of user i’s ON

(life) and OFF (death) periods, respectively. The figure also shows the residual pro-

cess Ri(t), which is the duration of user i’s remaining online presence from time t

conditioned on the fact that it was alive at t.
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Fig. 4. Process {Zi(t)} depicting ON/OFF behavior of user i.

3.1.1 Assumptions

We next make several modeling assumptions about this system and explain how users

generate their online/offline durations.

Assumption 1. Set {Zi(t)}ni=1 consists of mutually independent, alternating renewal

processes.

To elaborate, we restrict ON durations {Li,m}∞m=1 of user i to independent ran-

dom variables (r.v.) with a general cumulative distribution function (CDF) Fi(x)

and OFF durations {Di,m}∞m=1 to independent r.v. with another CDF Gi(x). This

assumption also implies that the two sequences {Li,m}∞m=1 and {Di,m}∞m=1 are inde-

pendent. We leave discussion of the more general case of correlated ON/OFF cycles

to future work. Mutual independence in Assumption 1 additionally states that users

do not synchronize their arrival or departures and generally exhibit uncorrelated life-

time characteristics (e.g., users simultaneously present in the system with multiple

identities are not very common and have no large-scale impact on the dynamics of

the network).

While Assumption 1 is a good start and allows certain results below to hold,

asymptotically large systems require additional constraints on how users select their

distributions Fi(x), Gi(x). We next suppose that there are T ≥ 1 user types in the

system representing different behavior (e.g., desktop peers that stay in the system for
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days is one type, while laptop users that frequently disconnect is another). Before the

network starts to evolve, each user randomly decides on its type, which then remains

fixed for all t > 0.

Assumption 2. (a) There exists some set F of distinct pairs of non-lattice CDFs

defining non-negative random variables:

F :=
{(

F (1)(x), G(1)(x)
)
, . . . ,

(
F (T )(x), G(T )(x)

)}
,

where T ≥ 1 is a fixed number of user types. Further, each mean l(j) :=
∫∞
0

(1−

F (j)(x))dx and d(j) :=
∫∞
0

(1−G(j)(x))dx satisfies 0 < l(j), d(j) <∞ for all types

j = 1, . . . , T ;

(b) The pair of ON/OFF duration CDFs (Fi(x), Gi(x)) of each user i, i = 1, . . . , n,

is independently drawn from set F , where type j is selected with probability (w.p.)

pj ≥ 0 and
∑T

j=1 pj = 1;

(c) Defining S to be set of selections made by each user and conditioning on S,

Assumption 1 holds.

Assumption 2(a) uses T as the “diversity” factor of user behavior (e.g., T = 1

reduces the system to a network of homogeneous users) and mandates that all average

online/offline durations are both positive and finite. Part (b) allows for bias in the

selection process and lets certain user types be more popular than others. Part (c)

ensures that the system complies with Assumption 1 during its evolution. Note that

Assumption 1 is more general and includes Assumption 2 as a special case.

3.1.2 Properties

We next explain the ON/OFF distributions commonly considered in this chapter and

obtain basic properties of the system. The first lifetime distribution is exponential
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Fi(x) = 1− e−μix, μi > 0, with mean 1/μi. The second one is shifted Pareto

Fi(x) = 1− (1 + x/βi)
−αi , αi > 1, βi > 0, (2)

with mean βi/(αi − 1). Offline distributions Gi(x) do not affect our analysis and

are kept general. For convenience of notation, define the mean lifetime of each user

li := E[Li,m] and the mean offline duration di := E[Di,m], where the average is taken

over all cycles m = 1, 2, . . . Denote the reciprocal of the mean ON/OFF cycle length

of user i by

λi := (li + di)
−1, (3)

which is the time-averaged arrival rate of the user into the system. We easily ob-

tain from Smith’s theorem that the asymptotic availability of each user i, i.e., the

probability that it is in the system at an arbitrary instance t, is given by

ai := lim
t→∞

P (Zi(t) = 1) =
li

li + di
. (4)

The final metric related to our churn model is the distribution of the number

of users in the system. Denote by N(n, t) :=
∑n

i=1 Zi(t) the number of users in the

network at time t and notice that it is also a random process that fluctuates with

time. Since many P2P properties of interest require stationarity, our analysis below

is frequently confined to limiting distributions when network age t → ∞, which we

call equilibrium.

Define Zi to be a Bernoulli r.v. with the equilibrium distribution of Zi(t), i.e.,

P (Zi = 1) = ai, where ai is given in (4). Further define N(n) :=
∑n

i=1 Zi, which

is a r.v. with the equilibrium distribution of N(n, t). Based on Lyapunov’s central

limit theorem, it is easy to show that the equilibrium system size is approximately

Gaussian for large n.
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Lemma 1. Under Assumption 2, we have as n→∞

N(n)− N̄n

σn

D−→ N (0, 1), (5)

where N̄n :=
∑n

i=1 ai, σ2
n :=

∑n
i=1 ai(1− ai), and N (0, 1) denotes a standard normal

r.v.

Proof. The mean number of users alive in the equilibrium is

E[N(n)] =
n∑

i=1

E[Zi] =
n∑

i=1

ai, (6)

which is the sum of all users’ availability. Due to the independence among users, the

variance of N(n) is:

V ar[N(n)] =
n∑

i=1

V ar[Zi] =
n∑

i=1

ai(1− ai). (7)

Next, denote by mi2 the second central moment, and by mi3 the third central

moment of Bernoulli variable Zi = limt→∞ Zi(t). Since ai are constants, it is easy to

see that mi2 and mi3 are constants too. It immediately follows that(∑n
i=1 mi3

)1/3

(∑n
i=1 mi2

)1/2
→ 0, (8)

showing that the Lyapunov condition of the Central Limit Theorem [62] holds. Thus,

we conclude that the shifted and scaled N(n) tends to a Gaussian r.v. as n→∞.

We next show simulations explaining this result and its accuracy in systems with

finite age and size. We generate a network of n users whose arrival/departure follows

the introduced churn model. The system evolves for at least 50 virtual hours before

being examined, which models non-trivial age of existing networks. We start by

generating T = 1, 000 pairs of means l(j) and d(j), which are drawn randomly from
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Fig. 5. Sample path and distribution of N(n, t) in system H with n = 1000 users. The

Gaussian fit is from Lemma 1 after 106 iterations.

two Pareto distributions with α = 3 as described next. For mean ON durations, we

use β = 1 and obtain E[l(j)] = 1/2 hour; for mean OFF durations, we use β = 2 and

get E[d(j)] = 1 hour. We study three cases throughout the chapter: 1) heavy-tailed

systemH with F (j)(x) ∼ Pareto(3, 2l(j)) and G(j)(x) ∼ Pareto(3, 2d(j)); 2) very heavy-

tailed system VH with F (j)(x) ∼ Pareto(1.5, l(j)/2) and G(j)(x) ∼ Pareto(1.5, d(j)/2);

and 3) exponential system E with F (j)(x) ∼ exp(1/l(j)) and G(j)(x) ∼ Pareto(3, 2d(j)),

where notation Pareto(αi, βi) refers to (2). The actual pairs (Fi(x), Gi(x)) are selected

uniformly randomly from F .

Fig. 5(a) shows one example for the evolution of system size N(n, t) as a function

time t. Part (b) of the figure shows the PMF (probability mass function) of N(n, t)

at t� 0 and a Gaussian fit from Lemma 1, confirming its accuracy.

3.1.3 Aggregate Lifetimes

Prior measurement studies [81], [89] sampled lifetimes of all joining users over some

long period of time to characterize the dynamics of P2P systems. We are now inter-



23

ested in what metric they estimated and how it can be expressed in our notation. For

each instance of user i being present in the system during interval [0, t], place its ON

duration Li,m into set Si(t) and define S(t) = ∪n
i=1Si(t). Then let F (n, t, x) be the

CDF of values collected in set S(t) (i.e., the probability that the obtained lifetimes

are less than or equal to x). Finally, define F (n, x) := limt→∞ F (n, t, x) to be the

aggregate lifetime distribution of the system and l(n) to be its mean (both exist from

Assumption 2).

Our next result shows that F (n, x) a weighted average of individual lifetime

distributions, where the weights are biased toward those peers who frequently join

and leave the system since their sessions constitute the majority of overall peer arrival

into the system.

Theorem 1. With Assumption 1 and any finite n ≥ 1:

F (n, x) =

n∑
i=1

biFi(x), l(n) =

n∑
i=1

bili, (9)

where bi := λi/
∑n

j=1 λj and λi is defined in (3).

Proof. For large t, set S(t) contains approximately

fi(t) =
	tλi
∑n
j=1	tλj


(10)

lifetime variables from user i. Bounding this metric, we have:

bi −
1∑n

j=1 tλj
≤ fi(t) ≤

tλi∑n
j=1 tλj − n

, (11)

where bi = λi/
∑n

j=1 λj. Sending t to infinity in (11), it immediately follows that

the proportion of r.v.’s from user i in S(t) converges to limt→∞ fi(t) = bi. Therefore,

the probability that the value of variable in set S(t) is no larger than fixed x ≥ 0
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converges to:

lim
t→∞

F (n, t, x) = lim
t→∞

n∑
i=1

P (Li ≤ x)fi(t)

=
n∑

i=1

P (Li ≤ x) lim
t→∞

fi(t), (12)

showing that the time limiting distribution exists.

Recalling that each li <∞ by Assumption 1-b), we integrate the tail distribution

1− F (n, x) for finite n to obtain:

E[L(n)] =

∫ ∞

0

(
1−

n∑
i=1

biFi(x)

)
dx

=
n∑

i=1

bi

∫ ∞

0

(1− Fi(x))dx,

which leads to desired results in (9).

Observe from (9) that the expected time that users stay in the system is equal

to the mean system population
∑

i λili =
∑

i ai divided by the aggregate user arrival

rate
∑

i λi, which is consistent with Little’s law.

Theorem 1 holds under the more general Assumption 1 as long as n is finite;

however, to guarantee that the sums in (9) converge one requires Assumption 2. We

show this analysis later in the chapter. In the meantime, we state similar results for

aggregate offline durations.

Corollary 1. With Assumption 1 and any finite n ≥ 1, the CDF of aggregate offline

durations is G(n, x) :=
∑n

i=1 biGi(x) and the its mean is d(n) :=
∑n

i=1 bidi.

We verify (9) in simulations and discuss several implications of this result. Two

typical simulations are presented in Fig. 6 for exponential and heavy-tailed lifetimes,

both of which show that the model is very consistent with simulation results. Both
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Fig. 6. Comparison of simulation results of F (n, x) to model (9) in a graph with

n = 1000 nodes. System evolved to age 105 hours.

figures are on log-log scale and plot 1− F (n, x) vs. 1 + x to make the shifted Pareto

distribution in (2) appear as a straight line. Notice in Fig. 6(a) that system E

produces an appearance of a heavy-tailed aggregate distribution F (n, x) even though

all individual Fi(x) are exponential. This can be explained as follows. It is well-known

[20] that for a hyper-exponential distribution in the form of (9) and any desired

distribution W (x) with a monotonic PDF (probability density function), there exists

a set of weights {b1, . . . , bn} such that (9) converges to W (x) as n → ∞. Given

numerous possibilities for the arrival-rate set {λ1, . . . , λn} in practice, it is possible

that one can observe a nicely shaped Pareto, Weibull, or other distribution F (n, x),

which is produced by a mixture of exponential Fi(x). It may therefore be premature

to conclude that Pareto F (n, x) measured experimentally [12], [74] necessarily reveals

the true nature of individual user behavior.

While our current conclusion shows that one cannot characterize the lifetimes

or availability of individual peers by observing their aggregate behavior, the next

question we seek to answer is whether the aggregate behavior F (n, x) can be used to
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characterize the parameters of a single user selected from the system randomly?

3.2. Characteristics of Selected Users

Suppose v picks a random currently-alive user i as a potential neighbor. Our primary

goal is to understand the properties of i in terms of two metrics: its remaining online

duration and its current session length.

3.2.1 Definitions

Let Ri(t) denote the remaining life of a given user i at time t, i.e., the remainder

of the current ON cycle illustrated in Fig. 4. Variable Ri(t) is important since it

determines how long this neighbor will remain online after it has been selected. The

equilibrium residual lifetime distribution Hi(x) := limt→∞ P (Ri(t) ≤ x|Zi(t) = 1) can

be written in terms of Fi(x) [91]:

Hi(x) =
1

li

∫ x

0

(1− Fi(u))du, x ≥ 0. (13)

Next, define R(n, t) to be the residual lifetime of the user randomly selected

from among N(n, t) ≥ 1 users that are alive. Denote by H(n, x) the equilibrium

distribution of R(n, t) conditioned on N(n, t) ≥ 1:

H(n, x) := lim
t→∞

P (R(n, t) ≤ x|N(n, t) ≥ 1). (14)

Our goal is to obtain an expression for (14). We start with the most general case

where choices may be based on the lifetimes of potential neighbors and then proceed

to the much-simpler case of uniform selection.
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3.2.2 General Case

To understand the results that follow, denote by

Si(t) :=

⎧⎪⎪⎨⎪⎪⎩
1 user i is selected by v at t

0 otherwise

(15)

the indicator process that shows whether user i is randomly selected at time t from

among N(n, t) ≥ 1 users currently in the system. Define

πi(x) = lim
t→∞

P (Si(t) = 1|Zi(t) = 1, Ri(t) ≤ x, N(n, t) ≥ 1) (16)

to be the equilibrium probability that user i is selected given that it is alive, its

residual is no larger than x, and the system contains at least one user. We next

elaborate on this metric.

In systems where the residual lifetime distribution of a user does not affect its

chance of being chosen, πi(x) = πi is not a function of x. This holds only in cases

when neighbor selection is independent of the lifetimes (or ages) of selected users

(e.g., this model was used in [43]). Examples that satisfy this condition include

uniform selection, selection based on content similarity or random hashing space,

age-independent popularity, etc. On the other hand, selection based on the age of

potential neighbors or random walks (which depend on the in-degree of each user,

which in turn depends on age) do not fall into this category (e.g., [96]).

Under uniform selection, each user i is picked with probability (conditioning on

i being alive):

πi(x) = πi = lim
t→∞

E[Si(t)|Zi(t) = 1, N(n, t) ≥ 1]

= lim
t→∞

E
[ 1

N i
n(t) + 1

]
, (17)
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where N i
n(t) =

∑n
j=1,j �=i Zj(t) is the population excluding user i.

For stationary random walks, πi(x) becomes the limiting version of expectation

E[di(t)/
∑N(n,t)

m=1 dm(t)|Zi(t) = 1, Ri(t) ≤ x, N(n, t) ≥ 1], where di(t) is node degree

of user i at time t. For content-based selection, assume that each user shares wi

files with others and that each peer is selected to be a neighbor proportionally to

its “content utility” wi. Then, the selection probability in (17) may be equal to

E[wi/
∑N(n)

m=1 wm|N(n) ≥ 1].

As must be evident, the general model above can implement quite complex rules

for choosing neighbors; however, tractability of the resulting distributionH(n, x) is

questionable for all except the simplest cases. Below, we first derive H(n, x) for the

most generic case and show that it can be expressed as a sum of weighted individual

residual distributions, where the weights are biased towards users with large availabil-

ity ai and high probability πi(x) of being selected. We later simplify this expression

for uniform selection.

Lemma 2. Given Assumption 1 and finite n ≥ 1:

H(n, x) =
n∑

i=1

aiπi(x)Hi(x), (18)

where πi(x) is given by (16).

Proof. Recalling the additivity rule for disjoint events, define qi(x, t) = P (Ri(t) ≤

x, Si(t) = 1, Zi(t) = 1|N(n, t) ≥ 1) and re-write (14) as H(n, x) = limt→∞
∑n

i=1 qi(x, t).

For ease of presentation, break qi(x, t) into a product of the following two terms using

conditional probabilities:

a(x, t) = P (Si(t) = 1|Zi(t) = 1, Ri(t) ≤ x, N(n, t) ≥ 1)

b(x, t) = P (Zi(t) = 1, Ri(t) ≤ x|N(n, t) ≥ 1) (19)
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It is now easy to notice that limt→∞ a(x, t) = πi(x) and limt→∞ b(x, t) = aiHi(x),

which leads to (18).

Next, we focus on H(n, x) under uniform selection and leave analysis of other

strategies to future work.

3.2.3 Uniform Selection

While (18) under uniform selection has a simpler shape

H(n, x) =
n∑

i=1

aiπiHi(x), (20)

the expectation in πi remains to be expanded in closed-form. Our first auxiliary result

establishes important properties of E[1/N(n)|N(n) ≥ 1].

Lemma 3. Given Assumption 2 and N(n) ≥ 1, μn/N(n) converges to 1 in r-th mean

for all r ≥ 1:

lim
n→∞

E
[∣∣∣ μn

N(n)
− 1
∣∣∣r |N(n) ≥ 1

]
= 0, (21)

where μn = E[N(n)] is the mean population.

Proof. Define An := N(n)/μn, given N(n) ≥ 1. In what follows, we first prove

that An
p−→ 1 (i.e., convergence in probability), then that A−1

n

p−→ 1, and finally show

uniform integrability [10] of A−r
n for constant r ≥ 1.

Chebyshev’s inequality implies

∀ε > 0, P

(∣∣∣∣N(n)

μn

− 1

∣∣∣∣ ≥ ε

)
≤ V ar[N(n)]

ε2μ2
n

→ 0, (22)

as n → ∞, since μn = Θ(n) and V ar[N(n)] =
∑

i ai(1 − ai) = Θ(n) from Lemma

1. Meanwhile, applying the Chernoff bound for the sum of independent Bernoulli
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variables N(n), we have that for any constant c > 0,

P (N(n) ≥ c) ≥ 1− exp(−μn(1− cμ−1
n )2/2)→ 1, (23)

as n→∞. It follows from (22)-(23) that

∀ε > 0, P (|An − 1| ≥ ε) = P

(∣∣∣∣N(n)

μn
− 1

∣∣∣∣ ≥ ε|N(n) ≥ 1

)
≤ P

(∣∣∣∣N(n)

μn
− 1

∣∣∣∣ ≥ ε

)
/P (N(n) ≥ 1)→ 0, (24)

as n→∞. The above shows that An
p−→ 1 as n→∞.

Next, note that g(x) := 1/x is a continuous function for all x > 0. Since 1/An > 0

given N(n) ≥ 1, using (24) and the continuity theorem [10, pp. 112] lead to

lim
n→∞

P
(∣∣A−1

n − 1
∣∣ ≥ ε

)
= 0, (25)

indicating that A−1
n

p−→ 1 in the limit.

Our final step is to show that the following condition holds in order to prove

uniform integrability of A−r
n :

sup
n

E
[
|A−r

n |1|A−r
n |>α

]
→ 0, (26)

as α → ∞. To this end, note that given N(n) ≥ 1, we have A−r
n ≤ μr

n ≤ nr, r ≥ 1.

It is thus clear that for n < α1/r, E[|A−r
n |1|A−r

n |>α] = 0. This leads to

sup
n

E
[
|A−r

n |1|A−r
n |>α

]
= sup

n≥α1/r

E
[
|A−r

n |1|A−r
n |>α

]
≤ sup

n≥α1/r

μr
nE
[
1|A−r

n |>α

]
, (27)

where E[1|A−r
n |>α] = P (|A−r

n | > α) will be examined next.
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By the Chernoof bound, we have that for all n ≥ 1,

P (|A−r
n | > α) = P (N(n) < α−1/rμn |N(n) ≥ 1)

≤ P (N(n) < α−1/rμn)/P (N(n) ≥ 1)

≤
exp
(
−μn(1− α−1/r)2/2

)
1− exp(−μn(1− μ−1

n )2/2)
. (28)

Using the upper bound in (28) and noting that for n ≥ α1/r, μn → ∞ as α → ∞,

(27) yields

sup
n

E
[
|A−r

n |1|A−r
n |>α

]
≤ sup

n≥α1/r

μr
nP (|A−r

n | > α)→ 0,

as α→∞, which proves that (26) holds.

Equipped with (25) and (26), applying Theorem 5 in [10, pp. 113] immediately

establishes this lemma.

Invoking Lemma 4, we readily obtain the following result.

Lemma 4. Given Assumption 2, N(n) ≥ 1, and constant c, we have that for all

r ≥ 1,

lim
n→∞

E

[( μn

N(n) + c

)r

|N(n) ≥ max(1, 1− c)

]
= 1. (29)

Proof. Note from (23) that N(n) ≥ max(1, 1−c) holds w.p. 1 as n→∞. This allows

us to replace the condition in (21) with N(n) ≥ max(1, 1− c) to reach

an := E
[∣∣ μn

N(n)
− 1
∣∣r |N(n) ≥ max(1, 1− c)]

]
→ 0, (30)

as n → ∞. It is then clear that μr
nE[1/N r(n)|N(n) ≥ max(1, 1 − c)] = 1. This
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directly leads to

bn := E

[∣∣∣∣ μn

N(n) + c
− μn

N(n)

∣∣∣∣r |N(n) ≥ max(1, 1− c)

]
= Θ(μ−r

n )→ 0, (31)

as n→∞. Further, since |f + g|r ≤ 2r(|f |r + |g|r) for r ≥ 1,

lim
n→∞

E
[∣∣∣ μn

N(n) + c
− 1
∣∣∣r |N(n) ≥ max(1, 1− c)

]
≤ lim

n→∞
2r(bn + an) = 0, (32)

where the last step is obtained using (30) and (31).

Finally, the convergence in r-th mean shown in (32) immediately leads to (29)

by Minkowski’s inequality.

In order to tackle the convergence of the sum in (20), our second auxiliary result

shows that both F (n, x) and l(n) have limiting distributions.

Lemma 5. Under Assumption 2, the following sequences converge almost surely (a.s.)

as n→∞:

F (n, x)
a.s.−−→ F (x) :=

∑T
j=1 pjλ

(j)F (j)(x)∑T
j=1 pjλ(j)

, (33)

l(n)
a.s.−−→ l :=

∑T
j=1 pja

(j)∑T
j=1 pjλ(j)

, (34)

where λ(j) := 1/(l(j) +d(j)) and a(j) := l(j)/(l(j) +d(j)). Furthermore, F (x) is a proper

CDF function and 0 < l <∞.

Proof. Re-writing (9), we get

F (n, x) =

∑n
i=1 λiFi(x)

n
· 1

1
n

∑n
i=1 λi

.
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Since {λi}, {Fi(x)} are i.i.d. sequences under Assumption 2, both sample means

1
n

∑n
i=1 λiFi(x) and 1

n

∑n
i=1 λi converge as n→∞ to their expected values w.p. 1 by

the strong law of large numbers, which leads to (33). Using the same reasoning for

l(n), we obtain (34) and complete the proof.

Combining the last two lemmas, we have our main result.

Theorem 2. Given Assumption 2, H(n, x) converges almost surely (a.s.) to the

following as n→∞:

H(n, x)
a.s.−−→ H(x) :=

1

l

∫ x

0

(1− F (u))du, (35)

where F (x) and l are given in (33)-(34).

Proof. Transform (20) into:

H(n, x) =

n∑
i=1

aiHi(x)

n
· nπi. (36)

We start with nπi. Observing that

E
[ μn

N(n) + 1
|N(n) ≥ 1

]
≤ μnπi ≤ E

[ μn

N(n)
|N(n) ≥ 1

]
and applying Lemma 4 to both bounds, we have

lim
n→∞

nπi = lim
n→∞

n

μn
· μnπi =

1∑T
j=1 pja(j)

, a.s. (37)

The second term in (36) simplifies to:

n∑
i=1

aiHi(x)

n
=

∑n
j=1 λj

n

n∑
i=1

[ λi∑n
j=1 λj

∫ x

0

(1− Fi(u))du
]

a.s.−−→
T∑

j=1

[
pjλ

(j)
] ∫ x

0

(1− F (u))du. (38)

Combining the pieces and noticing the emergence of 1/l, we establish (35).
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Fig. 7. Comparison of simulation results of H(n, x) to model (39) in a graph with

n = 1000 nodes. System age 500 hours and 105 iterations.

Leveraging this theorem allows us to use the following approximation:

H(n, x) ≈ 1

l(n)

∫ x

0

(1− F (n, u)) du =

∑n
i=1 aiHi(x)∑n

i=1 ai

, (39)

which we next examine in simulations with relatively small networks. As shown in Fig.

7 for the exponential and Pareto cases, simulation results of H(n, x) match the model

very well and also demonstrate that E may produce residual lifetime distributions

that appear to be non-exponential. In practice, n ≥ 50 is often sufficient to keep (39)

very accurate (simulations omitted for brevity).

Note that (35) is very important since it shows that in practice one only needs

to measure the aggregate lifetime distribution F (x) and its mean l rather than each

Fi(x) and each user availability ai in order to obtain the residual lifetime distribution

of a uniformly selected neighbor. Assuming from measurement studies [12], [30], [47],

that F (x) is Pareto with F (x) = 1− (1 + x/β)−α, (35) reduces to:

H(x) = 1− (1 + x/β)−(α−1). (40)
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Comparing (40) to F (x), we see that residuals are stochastically larger than

user lifetimes, which implies that a uniformly selected user is more reliable than new

arrivals in terms of failure. For other neighbor selection strategies, it is important

to realize that the distribution of residual lifetimes may be completely different from

(35) and should be analyzed accordingly.

3.2.4 Lifetime of Users in the System

Denote by J(n, x) the equilibrium lifetime distribution of users currently in the system

conditioned on N(n, t) ≥ 1. As observed in [81], distribution J(n, x) is clearly different

from F (n, x); however, no closed-form analysis has been made available to date. The

intuitional rationale behind this difference is that lifetimes of the peers observed in the

system are biased towards larger values, which is commonly known as the inspection

paradox [91]. Below, we formally derive J(n, x) is as a simple function of F (n, x) for

n→∞.

Denote by Ji(x) :=
(
xFi(x)−

∫ x

0
Fi(u)du

)
/li the CDF of the current ON cycle

of user i given that it is “inspected” at t � 0, i.e., its spread [91]. Since J(n, x) is

the same as the lifetime distribution of a uniformly randomly selected user from the

set of live peers, we reach the next result following the analysis in Theorem 2.

Corollary 2. Given Assumption 2, the lifetime distribution J(n, x) of living users

converges a.s. as n→∞:

J(n, x)
a.s.−−→ J(x) :=

1

l

(
xF (x)−

∫ x

0

F (u)du

)
, (41)

where all parameters are the same as in Theorem 2.

The accuracy of (41) for finite n was confirmed in simulations, but is omitted here

for brevity. Exponential lifetimes F (x) imply that J(x) is the Erlang(2) distribution
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with mean 2E[L]. For Pareto F (x), spread J(x) has no closed-form expression, but is

clearly more heavy-tailed than F (x). The next result summarizes these observations,

as well as those of [81], in more formal terms.

Corollary 3. With Assumption 2, spread distribution J(x) is stochastically larger

than F (x) and the mean lifetime of a user currently alive in the system is double the

mean residual lifetime of a uniformly selected user.

3.3. Summary

This chapter introduced a simple model of churn and developed numerous closed-form

results describing the behavior of users including their joint and residual lifetime dis-

tributions, evolution of system size. Our results demonstrate that given heterogeneous

users and uniform selection of neighbors, both metrics H(x) and J(x) can be reduced

to the aggregate behavior F (x) of joining users as long as n � 1. The rest of the

dissertation shows that F (x) in such systems can be additionally used to obtain the

distribution of in-degree as a function of users’ age and thus completely characterize

local resilience of unstructured P2P networks.
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CHAPTER IV

NODE OUT-DEGREE AND AGE-BASED

NEIGHBOR SELECTION∗

4.1. Introduction

Traditional analysis of node isolation [42], [45] focuses on the effect of average neighbor-

replacement delay E[S], average user lifetime E[L], and fixed out-degree k on the

resilience of the system. These results show that probability φ with which each arriv-

ing user is isolated from the system during its lifetime is proportional to kρ(1 + ρ)−k,

where ρ = E[L]/E[S]. While this result is asymptotically exact under exponential

user lifetimes and uniform neighbor selection, it remains to be investigated whether

stronger results can be obtained for heavy-tailed lifetimes observed in real P2P net-

works [12], [89] and/or non-uniform neighbor selection. We study these questions

below.

4.1.1 Chapter Structure and Contributions

The main focus of this chapter is to understand node isolation in the context of un-

structured networks (such as Gnutella) where neighbor selection is not constrained

by fixed rules. As in [42], we assume that each arriving user is assigned a random

lifetime L drawn from some distribution F (x) and is given k initial neighbors ran-

domly selected from the system. The user then constantly monitors and replaces its

∗Reprinted with permission from “Node Isolation Model and Age-Based Neighbor
Selection in Unstructured P2P Networks,” Z. Yao, X. Wang, D. Leonard, and D.
Loguinov, 2009. IEEE/ACM Transactions on Networking, vol. 17, no. 1, pp 144-
157, Copyright 2009 by IEEE.



38

neighbors to avoid isolation from the rest of the system. Random replacement delay

S is needed to detect the failure of an old neighbor and find a new one from among

the remaining alive users. Unlike [42], we allow L to come from any completely mono-

tone distribution (a PDF f(x) is completely monotone if derivatives f (n) of all orders

exist and (−1)nf (n)(x) ≥ 0 for all x > 0 and n ≥ 1 [21, page 415]), e.g., Pareto and

Weibull, as long as E[L] <∞, and neighbor selection to be arbitrary, as long as the

stationary distribution H(x) of residual lifetimes R of selected neighbors is known.

We first build a generic isolation model that allows computation of φ with ar-

bitrary accuracy for any completely monotone density function of residual lifetimes

R. This result is achieved by replacing the distribution H(x) of R with a hyper-

exponential distribution, which can be performed with any accuracy, and then solv-

ing the resulting Markov chain for the probability of absorption into the isolation

state before the user decides to leave the system. While this model only admits a

numerical solution through matrix manipulation, it allows very accurate computation

of φ for very heavy-tailed cases when the exponential upper bound φ ≤ kρ(1 + ρ)−k

[42] is rather loose. The model is also necessary for studying isolation behavior of

the various neighbor-selection strategies examined in later parts of the chapter where

simulations are impractical or impossible due to the small values of φ.

The second part of the chapter verifies the model of φ under uniform neigh-

bor replacement and analyzes its performance for very heavy-tailed lifetimes (i.e.,

V ar[L] =∞). We show that as the age T of the system becomes infinite and shape

parameter α of Pareto user lifetime distribution approaches 1, the isolation probability

decays to zero proportionally to (α − 1)k, which holds for any number of neighbors

k ≥ 1 and any search delay S, implying that such systems may achieve arbitrary

resilience without replacing any neighbors. In practice, however, α is a fixed num-

ber bounded away from 1 (common studies suggest that α is between 1.06 [12] and
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1.09 [89]) and T is finite, which cannot guarantee high levels of robustness without

neighbor replacement.

As an improvement over the uniform case, we next study the so-called max-age

neighbor selection [12], [41], [77], in which a user samples m uniformly random peers

per link it creates and selects the one with the largest current age to be its neighbor.

We show that larger values of m lead to stochastically larger R and improve the ex-

pected remaining lifetimes of found neighbors by a factor approximately proportional

to m1/(α−1) for m > 1. For example, α = 3 increases E[R] as
√

m, α ≈ 2 increases

E[R] linearly in m, and α < 2 results in E[R] =∞ regardless of m as long as T =∞.

We do not obtain a closed-form factor of reduction for φ compared to the purely

uniform case, but note that it is a certain monotonic function of m. This does not

change, however, the qualitative behavior of φ under the no-replacement policy and

still requires α→ 1 to achieve φ→ 0 for any fixed m.

While the max-age approach is viable and very effective in general, it relies on

the system’s ability to sample m peers uniformly randomly per created link. This

can be accomplished using Metropolis-style random walks [99]; however, this method

requires overhead that is linear in m and thus may not scale well for large m. To

build a distributed solution that requires only one sample per link, the last part of

the chapter proposes a novel technique based on random walks over directed graphs,

in which the weight of in-degree edges at each node is kept proportional to the age of

the corresponding user. Under these conditions, we derive a model for the residual

distribution H(x) and show that isolation probability φ converges to 0 for any 1 < α ≤

2 as system size n → ∞ and age T → ∞, which holds for any number of neighbors

k ≥ 1 and any search delay S. Compared to the uniform and max-age cases, this is a

much stronger result that shows that with just k = 1 neighbor and no replacement of

failing neighbors, large P2P systems with α ≤ 2 can guarantee arbitrarily low values
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of φ. We finish the chapter by studying in simulations the approach rate of φ to 0

and its effect in practice.

4.2. General Node Isolation Model

In this section, we build a model for the probability φ that a node v becomes isolated

due to all of its neighbors simultaneously reaching the failed state during its lifetime.

4.2.1 Background

We assume that user join/departure processes follow the user churn model in Chap-

ter III. For neighbor dynamics, we adopt conventions of [43]. Upon joins, user v

finds k initial neighbors and then continuously monitors their presence in the system.

Neighbor replacement occurs only when an existing neighbor fails. Each neighbor i

is either alive (i.e., ON) or dead (i.e., OFF) at any time t. The random ON duration

R is the residual lifetime of the neighbor from the instance it is selected by v until its

departure. The random OFF duration S is search delay until a replacement is found.

Note that residuals R depend on the neighbor-selection strategy [93] and should be

analyzed accordingly.

Let L be the lifetime of joining user v, drawn from the aggregate user lifetime

distribution F (x) that is known to our analysis (e.g., through an external measure-

ment process [12], [89]). Further, denote by X(t) the number of neighbors of user v at

time t. We can then define the first-hitting time T onto the isolation state X(t) = 0

as:

T = inf(t > 0 : X(t) = 0|X(0) = k). (42)

Note that T specifies the duration before user v becomes isolated (i.e., loses all of
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its neighbors). The goal of this section is to derive the node isolation probability

φ = P (T < L), which is the likelihood of v becoming isolated before it voluntarily

decides to leave the system. For systems with non-exponential user lifetimes, out-

degree process {X(t)} is not Markovian, which makes closed-form derivation of φ

very difficult. However, certain cases identified below can be solved with arbitrary

accuracy by replacing residual lifetimes and search delays with their hyper-exponential

equivalents.

The rest of this section deals with constructing a continuous-time Markov chain

that keeps track of v’s out-degree under the hyper-exponential approximation and

leads to very accurate closed-form models of T and φ.

4.2.2 Hyper-Exponential Approximation

Recall that the hyper-exponential distribution Hm is a mixture of m exponential

random variables with probability density function (PDF) in the form of [91]:

fH(x) =

m∑
j=1

pjμje
−μjx, (43)

where μj, pj ≥ 0 for all j and
∑m

j=1 pj = 1. The above distribution can be interpreted

as generating each exponential random variable exp(μj) with probability pj. It is well-

known [20] that any completely monotone density function f(x) can be represented

with any desired accuracy using (43), i.e., fH(x)→ f(x) as m→∞. In the analysis

below, we leverage this property of hyper-exponentials and the fact that Pareto and

Weibull residual PDFs are completely monotone. While some of the prior literature

[20] has used as many as 14 exponentials to approximate Pareto f(x), our analysis

suggests that as few as 3 are usually sufficient for achieving very accurate results on

φ (see below).

Before we proceed with the derivations, it is useful to visualize the meaning of
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hyper-exponential distributions in our lifetime model. Given that the PDF of neighbor

residual lifetimes R is fR(t) =
∑r

i=1 piμie
−μit, imagine that there are r different types

of neighbors, where residual lifetimes of peers of type i are exponentially distributed

with rate μi for i = 1, . . . , r. When v requires a new neighbor, it selects a node

of type i with probability pi. Similarly, provided that the PDF of search delay S

is fS(t) =
∑s

j=1 qiλje
−λjt, suppose that there are s types of searches that can be

currently in progress. A search of type j is instantiated by v with probability qj and

has duration exponentially distributed with rate λj for j = 1, . . . , s.

Given that there are r types of neighbors and s types of search processes, define

W (t) to be a random process that counts the number of v’s neighbors and searches

of each type at time t:

W (t) = (X1(t), . . . , Xr(t), Y1(t), . . . , Ys(t)), (44)

where Xi(t) is the number of v’s neighbors of type i at time t for i = 1, . . . , r and

Yj(t) the number of searches in progress of type j at time t for j = 1, . . . , s. Also

note that v’s out-degree X(t) =
∑r

i=1 Xi(t) is fully described by process {W (t)}. The

state space Ω for {W (t)} is:

Ω = {(x1, ..., xr, y1, ..., ys)}, (45)

where xi ∈ {0, 1, . . . , k}, yj ∈ {0, 1, . . . , k}, and
∑r

i=1 xi +
∑s

j=1 yj = k. As long

as neighbor residual lifetimes R and search delays S can be reduced to the hyper-

exponential distribution, the resulting process {W (t)} can be viewed as a homogenous

continuous-time Markov chain as we show next.

Theorem 3. Given that the density function of residual lifetimes fR(t) =
∑r

j=1 pjμje
−μjt

and the density function of search times fS(t) =
∑s

j=1 qjλje
−λjt, {W (t)} is a homo-
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geneous continuous-time Markov chain with a transition rate matrix Q given below.

Proof. Since neighbors of type i are exp(μi) and search processes of type j are exp(λj),

the sojourn time in state u = (x1, ..., xr, y1, ..., ys) is exponential with rate:

Λu =

r∑
i=1

xiμi +

s∑
j=1

yjλj. (46)

Observe that when a neighbor dies, a search starts immediately and its properties

are independent of those of the existing searches or neighbor lifetimes. Conversely,

when a search ends and a new neighbor is found, the characteristics of this neighbor

are independent of any previous behavior of {W (t)}. This independence allows us to

easily write transition probabilities between adjacent states of {W (t)}.

The first type of transition reduces W (t) by 1 in response to the failure of one of

v’s neighbors, which is equivalent to a jump from state:

(x1, ..., xi, ..., xr, y1, ..., yj, ..., ys) (47)

to state:

(x1, ..., xi − 1, ..., xr, y1, ..., yj + 1, ..., ys) (48)

for any suitable xi ≥ 1. For simplicity of notation, we call the above transition

(xi, yj) → (xi − 1, yj + 1). The corresponding probability that a neighbor of type i

dies and a search of type j starts is xiμiqj/Λu.

The second type of transition increases W (t) by 1 as a result of finding a replace-

ment neighbor, which corresponds to a jump from state:

(x1, ..., xi, ..., xr, y1, ..., yj, ..., ys) (49)

to state:

(x1, ..., xi + 1, ..., xr, y1, ..., yj − 1, ..., ys) (50)
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for any yj ≥ 1. The corresponding notation for this transition is (xi, yj) → (xi +

1, yj − 1). The related probability that a search process of type j ends and finds a

new neighbor of type i before any other event happens is yjλjpi/Λu.

By recognizing that the jumps behave like a discrete-time Markov chain and

the sojourn times at each state are independent exponential random variables, we

immediately conclude that {W (t)} is a homogeneous continuous-time Markov chain

with a transition rate matrix Q = (quu′) where

quu′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qjxiμi (xi, yj)→ (xi − 1, yj + 1)

piyjλj (xi, yj)→ (xi + 1, yj − 1)

−Λu u′ = u

0 otherwise

, (51)

are transition rates from u to u′, which represent any suitable states in the form of

(45) that satisfy transition requirements on the right side of (252).

Using notation W (t), the first-hitting time T in (42) can now be rewritten as:

T = inf
(
t > 0 :

r∑
i=1

Xi(t) = 0
∣∣∣ r∑

i=1

Xi(0) = k
)
, (52)

where Xi(t) is defined in (44). The next step is to obtain the initial state distribution

of {W (t)} and derive the PDF of the first-hitting time T based on the transition rate

matrix Q in (252). For small values of k, the matrix can be easily represented in

memory and manipulated in software packages such as Matlab. For example, when

r = s = 3 commonly used in this work, the size of Q is 252 × 252 for k = 5 and

792× 792 for k = 7.
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The initial state distribution π(0) is in form of:

π(0) =
(
π(x1,...,xr,y1,...,ys)(0)

)
, (53)

where each entry in the vector represents the probability that the chain starts in

state (x1, ..., xr, y1, ..., ys) for all possible permutations of variables xi and yj. Note,

however, that the only valid starting states are those in which the number of alive

neighbors
∑r

i=1 xi is exactly k and the number of searches in progress
∑s

j=1 yj is zero.

After rather straightforward manipulations, π(0) can be obtained as follows.

Lemma 6. Valid starting states have initial probabilities:

π(x1,...,xr,0,...,0)(0) =

r∏
i=1

(
k −

∑i−1
j=1 xj

xi

)
pxi

i , (54)

and all other states have initial probability 0.

Proof. Define Xi to be a random variable representing the number of neighbors of

type i for i = 1, . . . , r. Then, given a valid starting state u = (x1, ..., xr, 0, ..., 0) for∑r
i=1 xi = k, its initial probability can be described by:

πu(0) = P (X1 = x1, . . . , Xr = xr) =
r−1∏
i=1

qi, (55)

where qi is the probability that Xi = xi conditioned on all Xj for j < i being equal

to their corresponding xj :

qi = P
(
Xi = xi

∣∣∣ i−1⋂
j=1

Xj = xj

)
. (56)

Denote by:

B(x; k, p) =

(
k

x

)
px(1− p)k−x, for x = 0, 1, . . . , k, (57)

the binomial distribution with success probability p. Note that P (X1 = x1) is simply
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q1 = B(x1; k, p1). Next, it is clear that given X1 = x1 neighbors of type 1, the

probability that the initial state contains X2 = x2 neighbors of type 2 is also binomial,

but with success probability p2/(1− p1):

q2 = P (X2 = x2|X1 = x1) = B

(
x2; k − x1,

p2

1− p1

)
. (58)

It can be shown that the generalized version of (58) is:

qi = B

(
xi; k −

i−1∑
j=1

xj ,
pi

1−
∑i−1

j=1 pj

)
, (59)

which after substitution into (55) and some algebra, reduces (55) to (54).

Armed with this result, we next focus our attention on deriving φ.

4.2.3 Isolation Probability

Recall that Ω denotes the set of all valid states (i.e., in the form of (45) and satisfying

all constraints following the equation). Denote by:

E =
{

(0, ..., 0, y1, ..., ys) :
s∑

j=1

yj = k
}

(60)

the set of states with zero out-degree. Since we are only interested in the first-hitting

time T to any state in E, it suffices to assume that all states in E are absorbing.

Then, for each non-absorbing state u ∈ Ω \ E, its transition rate to E is given by:

quE =
∑
u′∈E

quu′ , (61)

where quu′ is the cell of matrix Q corresponding to transitions from state u to u′. We

can then write Q in canonical form as:

Q =

⎛⎜⎝ 0 0

r Q0

⎞⎟⎠ , (62)
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where r = (quE)T for u �∈ E is a column vector representing the transition rates to

the absorbing set E and Q0 = (quu′ , u, u′ ∈ Ω \ E) is the rate matrix obtained by

removing the rows and columns corresponding to states in E from Q. The following

lemma shows that the PDF of T is fully determined by π(0) and Q.

Lemma 7. For residual lifetimes and search delays with hyper-exponential distribu-

tions, the PDF of T is given by:

fT (t) = π(0)V D(t)V −1r, (63)

where π(0) is the initial state distribution in (54), V is a matrix of eigenvectors of

Q0, D(t) = diag(eξjt) is a diagonal matrix, ξj ≤ 0 is the j-th eigenvalue of Q0, and

Q0 and r are in (253).

Proof. Generalize the first hitting time from a starting state w ∈ Ω \ E to any

absorbing state in E as:

TwE = inf{t > 0 : W (t) ∈ E|W (0) = w}. (64)

For regular Markov chains [70, p. 375], it is not difficult to see that TwE has a

continuous density function fTwE
(t) such that for small dt:

P (t < TwE < t + dt) = fTwE
(t)dt + o(dt). (65)

At the same time, from last-step analysis [37, p. 211], [70, p. 388] we have:

P (t < TwE < t + dt) =
∑

u∈Ω\E

pwu(t)quEdt + o(dt), (66)

where pwu(t) = P (W (t) = u|W (0) = w) is the probability that the chain is in state

u at time t given that it started in state w and quE is transition rate from state u to
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any absorbing state in E. Combining (65)-(66) and letting dt→ 0, we easily obtain:

fTwE
(t) =

∑
u∈Ω\E

pwu(t)quE . (67)

Notice from the above that computation of fTwE
(t) requires transition probabili-

ties pwu(t) for all u ∈ Ω\E, which are rather difficult to obtain in explicit closed-form

for non-trivial Markov chains such as ours. Instead, we offer a solution that depends

on spectral properties of Q0 and a matrix representation of pwu(t) in the analysis that

follows.

Expressing (67) in matrix form, we have:

(fTwE
(t))T = P0(t)r, w ∈ Ω \ E, (68)

where (fTwE
(t))T is a column vector, P0(t) = (pwu(t)) for w ∈ Ω \ E, u ∈ Ω \ E

are transition probability functions corresponding to non-absorbing states, and r =

(quE)T for u ∈ Ω\E is a transition rate column vector. Then representing P0(t) = eQ0t

using matrix exponential [70] and Q0 = V ΛV −1 using eigen-decomposition [59], where

Q0 is given in (253), we get:

P0(t) = eQ0t = V eΛtV −1 = V D(t)V −1, (69)

where D(t) = diag(eξjt), ξj ≤ 0 is the j-th eigenvalue of Q0, and V is a matrix of

eigenvectors of Q0. Substituting (69) into (68), we obtain:

(fTwE
(t))T = V D(t)V −1r, w �∈ E. (70)

Finally, the PDF fT (t) of the first hitting time T is simply the product of row

vector π(0) and column vector (fTwE
(t))T :

fT (t) = π(0)(fTwE
(t))T = π(0)V D(t)V −1r, w �∈ E, (71)
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where π(0) is given by (54) for Markov chain {W (t)}.

With Lemma 7 in hand, integrating fT (t) using the distribution of user lifetimes

immediately leads to the following theorem.

Theorem 4. For hyper-exponential residual lifetimes and search delays, the proba-

bility of isolation is:

φ = π(0)V BV −1r, (72)

where B = diag(bj) is a diagonal matrix with:

bj =

∫ ∞

0

(1− F (t))eξjtdt, (73)

F (t) is the CDF of user lifetimes, and all other parameters are the same as in Lemma

7.

Proof. Note that for node v with lifetime L, its isolation probability is give by:

φ = P (T < L) =

∫ ∞

0

P (L > t)fT (t)dt

=

∫ ∞

0

(1− F (t))fT (t)dt, (74)

where F (t) is the CDF of user lifetimes. Invoking Lemma 7 and integrating 1−F (t)

using fT (t), we immediately obtain:

φ = π(0)V
(∫ ∞

0

(1− F (t))D(t)dt
)
V −1r, (75)

which directly leads to (72).

Using rate matrix Q0, vector r, and (72)-(256), the solution to node isolation

probability φ can be easily computed using numerical packages such as Matlab. We

perform this task next.
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4.2.4 Verification of Isolation Model

We examine the accuracy of (72)-(256) using the simplest example of uniform selec-

tion. We first explore the exponential case for comparison purposes and then derive

the same metric for Pareto lifetimes.

For exponential lifetimes, the next lemma immediately follows upon recalling

that neighbor residual lifetimes R are also exponentially distributed with m = 1 in

(43) due to the memoryless property of the distribution.

Lemma 8. For exponential L ∼ exp(μ) and search delays with a hyper-exponential

density fS(x), the transition rate matrix Q of {W (t)} is given by (252) with r = 1,

p1 = 1, and μ1 = μ. Isolation probability φ is in form of (72) where (256) is simply:

bj = 1/(μ− ξj), (76)

Proof. Due to the memoryless property of exponential distributions, it is clear that

residual lifetimes R have the same distribution as user lifetimes L, i.e., R ∼ F (x).

Thus we have fR(x) = μe−μx, requiring only one exponential in the hyper-exponential

mixture model (43). Next, re-writing (256) using F (t) = 1 − e−μt for exponential

lifetimes, we get:

bj =

∫ ∞

0

e−μteξjtdt =
1

μ− ξj

, (77)

which combined with (72) immediately establishes this theorem.

Our next theorem derives φ for Pareto lifetimes with the following CDF:

P (L < x) = 1−
(
1 +

x

β

)−α

, (78)

for shape parameter α > 1, scale parameter β > 0, and x ≥ 0. Denote by R the

residual lifetime of a uniformly random user in the system. Assuming a sufficiently
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large system age T , it follows from Theorem 2 in the previous chapter that the CDF

of R under uniform selection is given by:

P (R < x) = 1−
(
1 +

x

β

)−(α−1)

. (79)

It is clear from (79) that the PDF of Pareto residuals is completely monotone

and thus can be fitted with its hyper-exponential equivalent. Invoking Theorem 4,

we immediately obtain the following.

Lemma 9. For Pareto L ∼ 1 − (1 + x/β)−α and hyper-exponential search delays,

the transition rate matrix Q is shown in (252) where pi and μi for i = 1, . . . , r are

given by the hyper-exponential approximation of Pareto R with shape α − 1 in (79).

Isolation probability φ is given in (72) where (256) is:

bj = βe−ξjβEα(−ξjβ), (80)

where Eα(x) =
∫∞
1

e−xuu−αdu is the generalized exponential integral.

Proof. Invoking Theorem 4 and using F (t) = 1− (1 + t/β)−α, (256) yields:

bj =

∫ ∞

0

(
1 +

t

β

)−α

eξjtdt = βe−ξjβ

∫ ∞

1

u−αeξjβudu, (81)

which completes the proof by recognizing that:

Eα(x) =

∫ ∞

1

e−xuu−αdu. (82)

is the generalized exponential integral.

We perform simulations to see the accuracy of analytical results in systems with

finite age and size. To observe the accuracy of Lemmas 8-9, we run simulations over

different distributions of search times on a graph with n = 1, 000 nodes, k = 7, and

mean lifetime E[L] = 0.5 hours (additional simulations produce similar results and
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are omitted for brevity). The first search time distribution is Pareto with α = 3

and β = E[S](α − 1) to keep the mean equal to E[S]. The second distribution is

Weibull with CDF 1−e−(x/a)c
and mean E[S] = aΓ(1+1/c). The third is exponential

with rate 1/E[S]. To compute the model, Pareto residual lifetime R is fitted with a

hyper-exponential mixture model (43) using r = 3 and each non-exponential search

distribution is fitted with model (43) using s = 3.

Exponential and Pareto models of φ are compared to simulation results in Table

I. Notice in the table that both (76) and (80) are indeed very accurate for all examined

search and lifetime distributions. The table also confirms that as E[S] → 0, metric

φ becomes insensitive to the distribution of S, which was earlier observed in [42] but

never verified.

To understand the influence of tail weight of the lifetime distribution F (x) on

isolation, we use (80) to compute φ for several values of shape parameter α and keep

β = (α − 1)E[L] to ensure that the mean lifetime E[L] remains fixed. The result is

shown in Fig. 8 for two values of E[S] and k = 7. Notice in both sub-figures that

the relationship between φ and α is similar and that φ appears to be approximately

a logarithmic function of α for α ≤ 21, confirming that the more heavy-tailed the

lifetime distribution, the smaller φ.

4.2.5 Necessity of Neighbor Replacement

Fig. 8 suggests that φ tends to 0 as α approaches 1 from above, but it is not clear at

what rate this convergence takes place and whether this is indeed true. Furthermore,

since E[R] = ∞ for α ≤ 2, a natural question arises about whether a finite system

of n users and finite age T can in fact exhibit infinite expected residuals or φ = 0

when α = 1. We answer these questions next and show that condition α→ 1 indeed

guarantees φ→ 0 even in cases when no replacement of failed neighbors is performed;



54

1E-7

1E-6

1E-5

1E-4

1 3 5 7 9 11 13 15 17 19 21
shape parameter alpha

is
o

la
ti

o
n

 p
ro

b
ab

ili
ty

model
log fit

(a) E[S] = 6 minutes

1E-19

1E-18

1E-17

1E-16

1E-15

1 3 5 7 9 11 13 15 17 19 21
shape parameter alpha

is
o

la
ti

o
n

 p
ro

b
ab

ili
ty

model
log fit

(b) E[S] = 3.6 seconds

Fig. 8. Impact of shape parameter α on model φ under uniform selection, Pareto life-

times, E[L] = 0.5 hours, β = (α − 1)E[L], exponential search delays, and

k = 7.

however, it requires that the system be in equilibrium (i.e., the first renewal cycle of

each user must be drawn from its residual distribution or system age T be infinite.

See [91, page 65] for a definition) by the time it is observed by an arriving user.

Theorem 5. For an equilibrium system, Pareto lifetimes with α > 1, and infinitely

large search delays (i.e., S =∞), the isolation probability is:

φ =
k!

(γ + 1)× . . .× (γ + k)
, (83)

where γ = α/(α − 1). For fixed k and α → 1 (i.e., γ → ∞), (83) converges to zero

as Θ(γ−k).

Proof. Assuming that search delays S are infinity, the first hitting time T defined in

(52) equals the maximum residual lifetime among all neighbors:

T = max{R1, ..., Rk}. (84)

Then, due to the independence among k neighbors, it is easy to see that the distri-



55

bution of T for Pareto lifetimes under uniform selection is:

P (T < x) = [P (R < x)]k =

[
1−
(
1 +

x

β

)−α+1
]k

. (85)

It follows that given that S =∞, node isolation probability is simply [42]:

φ =

∫ ∞

0

P (T < x)f(x)dx =
Γ(1 + γ)k!

Γ(k + 1 + γ)
, (86)

where f(x) = α(1 + x/β)−α−1/β is the PDF of Pareto lifetimes, γ = α/(α− 1), and

Γ(x) is the gamma function.

Recalling that Γ(x) = (x−1)Γ(x−1) and canceling the common divisor Γ(1+γ),

(86) reduces to:

φ =
k!

(γ + 1)× . . .× (γ + k)
. (87)

As α→ 1, it is clear that γ →∞, which makes φ in (87) converge to 0. Noticing

that k is fixed, it is easy to see from (87) that φ = Θ(γ−k).

This result is very interesting since most prior work [42] does not consider α ≤ 2

as such cases result in infinite expected residual lifetimes, which cannot be observed

in any finite system. However, if the age of the system tends to infinity, i.e., T → ∞,

or the first lifetime of each user is drawn from the residual distribution (79), the

asymptotic bound in (83) is actually achievable. In such cases, as α tends to 1,

the isolation probability will decay to zero proportionally to (α − 1)k as given by

Theorem 5 and the system will attain any desired level of resilience without replacing

neighbors. On the other hand, for α sufficiently larger than 2 studied in prior work

[42], age T must simply exceed the convergence time to equilibrium of the underlying

user-lifetime renewal process, which usually happens very quickly.

Fig. 9 shows simulation results of φ with S = ∞ and two cases of very heavy-

tailed L. Notice in Fig 9(a) that for α = 1.5, simulation results converge to model φ
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Fig. 9. Convergence of simulation results to model φ in (83) as system age T → ∞
under uniform selection, no neighbor replacement, and Pareto lifetimes with

β = (α− 1)E[L] in a graph with n = 1, 000 nodes.

before system age reaches 104 hours (i.e., 1.14 years). However, as α reduces to 1.2,

the convergence takes a much longer time as shown in Fig 9(b), where simulations

approach the model when system age grows to more than T = 106 hours = 114 years.

The above analysis shows that the asymptotic result φ → 0 as α → 1 is not

readily achievable in finite P2P systems. Furthermore, recent measurement studies

of user lifetimes suggest that P2P networks exhibit α that is bounded away from 1

(i.e., α is between 1.06 [12] and 1.09 [89]). Hence, most current P2P systems are not

likely to satisfy the condition for φ → 0 under uniform selection and thus need to

utilize either a large number of neighbors k or perform dynamic replacement of dead

links with E[S] <∞.

4.2.6 Discussion

While the general form of φ in the exact model (72) is very complex, a simple qual-

itative rule of increasing resilience (i.e., reducing φ) can be formulated based on the
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properties of residual lifetimes selected by the users of a P2P system. Notice that for

a fixed lifetime distribution F (x), higher resilience is achieved by selecting neighbors

that exhibit larger (in some sense) remaining lifetimes. Thus, given two strategies

S1 and S2 for selecting neighbors, the strategy that obtains a neighbor with a larger

residual lifetime during every replacement instance τ guarantees a lower isolation

probability since the chosen neighbors survive longer and increase the chance that

the current user will depart before becoming isolated. Since comparison of residual

lifetimes of obtained neighbors in S1 and S2 can be performed only in the probabilistic

sense, the above discussion can be formalized as following:

Note, however, that future residual lifetimes of sampled peers are usually not

available in practice. Instead, assuming that F (x) is not memoryless (i.e., non-

exponential), current user age A may be used as a robust predictor of R. To un-

derstand this correlation for Pareto F (x) shown in (78), consider the probability that

a peer’s remaining lifetime is larger than y ≥ 0 given that its current age A is x ≥ 0:

P (R > y|A = x) =

(
1 +

y

β + x

)−α

. (88)

Observe that the above conditional probability is a monotonically increasing function

of age, i.e., the larger x, the more likely a node is to survive at least y time units in

the future. This implies that users with larger age demonstrate stochastically larger

residual lifetimes R.

This result can be generalized to all heavy-tailed distributions (defined in terms

of conditional mean exceedance [32] or tail-decay rate [85], e.g., Pareto, Weibull,

and Cauchy), in which the expected remaining lifetime increases and R becomes

stochastically larger with age. In contrast, light-tailed distributions (e.g., uniform

and Gaussian), exhibit expected residual lifetimes that are decreasing functions of

age. Finally, for the exponential distribution, age does not affect residual lifetimes



58

and hence does not provide any useful information for neighbor selection.

Armed with these observations and prior measurement results that demonstrate

heavy-tailed user lifetimes in real P2P systems [12], the rest of the chapter explores

two simple neighbor-selection methods that rely on age of existing peers to increase

network resilience.

4.3. Max-Age Selection

Recall that under uniform selection, each alive user is chosen by peer v with the same

probability. To prevent v from connecting to weak neighbors that are about to depart

(i.e., users with short remaining lifetimes), this section leverages the heavy-tailed

nature of the lifetime distribution F (x) and models the max-age neighbor-selection

strategy proposed in [12], [41], [77]. In this approach, a joining node v uniformly

randomly selects m alive users from the system and chooses the user with the maximal

age. It then repeats this procedure k times to obtain its k initial neighbors. The same

process is executed every time a dead link is detected.

In what follows in this section, we first analyze the distribution of residuals

obtained by the max-age method and then discuss the corresponding isolation prob-

ability φ.

4.3.1 Residual Lifetime Distribution

Denote by Ωm the set of m candidate nodes, by Um the residual lifetime of the max-age

user in Ωm, and by Hc(x) = P (Um > x) the complementary cumulative distribution

function (CCDF) of random variable Um. Then, we get:

Hc(x) = P
(
Ri > x|Ai = max

j∈Ωm

{Aj}
)
, (89)
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where Ai is the current age of a user i in Ωm and Ri is its residual lifetime. Intuitively,

(89) states that Um equals Ri given that user i has the maximum age in Ωm. Next,

following the derivation for the CDF of residual lifetimes under uniform selection

in the proof of Theorem 2, the equilibrium age distribution of existing users in the

system is reduced to

FA(x) = P (A < x) =
1

E[L]

∫ x

0

(1− F (u))du, (90)

where E[L] <∞ as assumed. The following theorem shows that Hc(x) is fully deter-

mined by the number of sampled users, lifetime distribution F (x), and age distribution

FA(x).

Theorem 6. Given that a user’s age is larger than that of m− 1 uniformly selected

alive users in the system, its residual lifetime has the following CCDF:

Hc(x) =
m

E[L]

∫ ∞

0

(1− F (x + y))F m−1
A (y)dy, (91)

where FA(x) is given by (90).

Proof. Recall that Ai represents the maximal user age among m uniformly randomly

selected users. It is then clear that the distribution of Ai is:

P (Ai < x) = P (max
j∈Ωm

{Aj} < x) = F m
A (x), (92)

where FA(x) is the equilibrium age distribution of existing users given by (90). Taking

the derivative of (294), we immediately get the PDF of Ai:

fAi
(x) =

dF m
A (x)

dx
= mF m−1

A (x)fA(x), (93)

where fA(x) = dFA(x)/dx is the PDF of existing user ages. Assuming an equilibrium
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renewal lifetime process, density fA(x) can be expressed using (90) as:

fA(x) =
dFA(x)

dx
=

1− F (x)

E[L]
. (94)

Substituting (94) into (295), fAi
(x) reduces to:

fAi
(x) =

m

E[L]
FA(x)m−1(1− F (x)). (95)

Next, conditioning on Ai = y, Hc(x) in (89) can be transformed to:

Hc(x) =

∫ ∞

0

P (Ri > x|Ai = y)fAi
(y)dy, (96)

where fAi
(x) is given by (296). Observing that P (Ri > x|Ai = y) is equal to P (Li −

y > x|Li > y) and i could be any user, (96) yields:

Hc(x) =

∫ ∞

0

P (Li > x + y)

P (Li > y)
fAi

(y)dy

=

∫ ∞

0

1− F (x + y)

1− F (y)
fAi

(y)dy, (97)

where F (x) is user lifetime distribution. The last step is to substitute (296) into

(297), which then directly leads to (91) after 1− F (y) is canceled.

Next, we use exponential lifetimes as an example to verify (91). Using F (x) =

FA(x) = 1− e−μx, (91) reduces to:

Hc(x) = mμ

∫ ∞

0

e−μ(x+y)(1− e−μy)m−1dy = e−μx. (98)

Hence, it follows from (98) that for exponential lifetimes:

P (Um > x) = P (L > x) = e−μx, for any m ≥ 1, (99)

which is consistent with the memoryless property of the exponential distribution.
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Substituting Pareto lifetimes into (91), we obtain:

Hc(x) =
m

E[L]

∫ ∞

0

(
1 +

x + y

β

)−α(
1−
(
1 +

y

β

)1−α)m−1

dy, (100)

where E[L] = β/(α− 1).

Although no closed-form solution for (100) exists in the general case, we next

perform a self-check using m = 1. Note that for m = 1, (100) yields:

Hc(x) =
α− 1

β

∫ ∞

0

(
1 +

x + y

β

)−α

dy =
(
1 +

x

β

)1−α

, (101)

which indicates that P (U1 > x) = P (R > x) (i.e., max-age selection with m = 1

reduces to single-user uniform selection).

Our next result shows that Um is stochastically larger than Um−1 for any heavy-

tailed F (x) and any m ≥ 2.

Theorem 7. For any distribution in which larger age implies stochastically larger

residuals (i.e., function (88) is monotonically increasing in x), the following holds:

P (Um > x) ≥ P (Um−1 > x), x ≥ 0, m ≥ 2. (102)

Proof. Denote the maximal user age among m uniformly randomly selected users by:

Am = max
j∈Ωm

{Aj}. (103)

It is shown in (294) that the distribution of Am is given by P (Am < x) = F m
A (x).

Then, we immediately obtain the following for m ≥ 1:

F m−1
A (x) ≥ F m

A (x)⇔ P (Am−1 < x) ≥ P (Am < x), (104)

which shows that Am is stochastically larger than Am−1, i.e., Am ≥st Am−1.
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Next, denote by:

g(y) = P (R > x|A = y), for fixed x > 0, (105)

the probability that the user residual lifetime is greater than x given that its current

age is y. The distribution of Um can then be transformed from (96) to the following

for any fixed x > 0:

P (Um > x) =

∫ ∞

0

g(y)dF m
A (y) = E[g(Am)]. (106)

Realizing that for any nondecreasing function g, the following holds [91, page 486]:

X ≥st Y ⇔ E[g(X)] ≥ E[g(Y )], (107)

we easily obtain (102) by using X = Am, Y = Am−1 and substituting (106) into

(107).

Simulation results in Fig. 10(a) show for m = 6 that model (100) is very accu-

rate and random variable U6 is indeed stochastically larger than R (simulations with

other m and those confirming (102) are omitted for brevity). Next, we solve for the

expectation of Um in closed-form for Pareto lifetimes and show the effect of m on the

average residual lifetimes of selected neighbors.

Lemma 10. For Pareto L ∼ 1− (1 + x/β)−α, α > 2, the expectation of Um is given

by:

E[Um] =
βm!Γ(α−2

α−1
)

(m(α− 1)− 1)Γ(m− 1
α−1

)
, m ≥ 1, (108)

where Γ(x) is the gamma function. For α ≤ 2, the expected residual lifetime converges

to infinity as system age T becomes large:

lim
T →∞

E[Um] =∞, m ≥ 1. (109)
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Fig. 10. Accuracy of models (100) and (115) for Pareto lifetimes with E[L] = 0.5 hours

and α = 3 in a graph with n = 5, 000 nodes.

Proof. Recall that the expectation of a non-negative random variable Um can be

obtained as:

E[Um] =

∫ ∞

0

P (Um > x)dx =

∫ ∞

0

Hc(x)dx. (110)

Substituting Hc(x) from (91) into the above and switching the order of integra-

tion variables, we have:

E[Um] =
m

E[L]

∫ ∞

0

∫ ∞

0

(1− F (x + y))dxF m−1
A (y)dy. (111)

Using F (x) = 1 − (1 + x/β)−α and FA(x) = 1 − (1 + x/β)−α+1 and integrating
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over x, (111) reduces to:

E[Um] = m

∫ ∞

0

(
1 +

y

β

)−α+1(
1− (1 +

y

β
)−α+1

)m−1
dy

= mβ

∫ ∞

1

z−α+1
(
1− z−α+1

)m−1
dz

= mβ

[
2F1

( 1

1− α
,−m;

α− 2

α− 1
; 1
)

− 2F1

( 1

1− α
, 1−m;

α− 2

α− 1
; 1
)]

, α > 2, (112)

where 2F1(a, b; c; z) is the Gauss hypergeometric function [19], which for z = 1 is:

2F1(a, b; c; 1) =
Γ(c)Γ(c− b− a)

Γ(c− a)Γ(c− b)
. (113)

Using (113) and recalling Γ(m) = (m− 1)!, (112) is transformed into:

E[Um] = mβ

(
Γ(α−2

α−1
)m!

Γ(α−2
α−1

+ m)
−

Γ(α−2
α−1

)(m− 1)!

Γ(α−2
α−1

+ m− 1)

)
, (114)

which leads to (108) upon using Γ(x) = (x− 1)Γ(x− 1).

For α ≤ 2, recall that E[U1] = E[R] = ∞ under single-user uniform selection.

Then it is clear that E[Um] =∞ for m ≥ 1 upon invoking Theorem 7.

To better understand the effect of m on the mean of Um, we approximate E[Um] as

follows. Setting c = Γ(α−2
α−1

) and expanding the gamma function in the denominator,

(108) for α > 2 yields:

E[Um] ≈ cE[L]
(
m +

1

α

)1/(α−1)

. (115)

We next discuss several examples that use (115) with different α. For Pareto

lifetimes with E[L] = 0.5 hours and α = 3, it can be seen from (115) that E[Um]

follows the curve 0.886(m + 0.33)0.5 ∼
√

m as m → ∞. However, for smaller α,

a more aggressive increase in E[Um] can be obtained. For α → 2, E[Um] ∼ m is
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Fig. 11. Comparison of model φ to simulations using the max-age selection strategy

for Pareto lifetimes with E[L] = 0.5 hours and α = 3, exponential search

times and k = 7 in a graph with 5, 000 nodes.

approximately linear, and for α < 2, E[Um] = ∞ for any m ≥ 1 (as before, the

last results only holds conditioned on T = ∞). It is also apparent from (115) that

as shape parameter α tends to infinity, the impact of m on E[Um] is weakened and

E[Um]→ E[L], which confirms a well-known fact [42] that Pareto lifetimes with very

large α behave as exponential random variables.

Model (108) is confirmed to be exact using simulations not shown here due to

limited space. Fig. 10(b) shows the accuracy of the match between E[Um] predicted

by the exact model (108) and that by the approximate model (115) for α = 3.

Additional examples with smaller α are omitted for brevity.

4.3.2 Isolation and Resilience

To obtain model φ, we approximate the tail of Um in (91) with its hyper-exponential

equivalent in (43) and then compute φ by applying Theorem 4 as in Section 4.2.4. Fig.

11 shows φ predicted by the model compared to simulations for Pareto lifetimes with
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E[L] = 0.5 hours, k = 7, exponential search delays, and two values of m. As the figure

illustrates, the derived result is very accurate and indeed shows inversely proportional

dependency between the number of sampled users m and φ. The influence of m on

isolation probability for Pareto lifetimes is presented more clearly in Fig. 12. As the

trendlines show, φ is approximately a power-law function m−a for each fixed E[S],

where exponent a is 2.4 − 5.7 in the figure. Thus, for α = 3, m = 10 sampled

users reduce φ by a factor of 251 and m = 30 by a factor of 3, 508; however, for

α = 2, m = 10 drops φ by a factor of 489, 000 and m = 30 by a factor of 2.5 billion.

Interestingly, while E[Um] may exhibit an unimpressive growth as a function of m

(i.e., linear or slower), the corresponding φ demonstrates much faster decay rate and

almost always provides significant benefits as m increases.

In systems that do not replace neighbors and α→ 1, the limiting isolation prob-

ability in (83) is reduced along the corresponding curve in Fig. 12, i.e., proportionally

to m−a. Thus, for any finite m, (83) does not qualitatively change its decay rate to-

ward zero as a function of γ = α/(α−1) and leads to no novel discussion. In the next

section, however, we develop another neighbor selection framework that guarantees

a much stronger result in which φ converges to zero for any 1 < α ≤ 2, any number

of neighbors k ≥ 1, and any search delay as system age and size tend to infinity.

An additional reason for improving the max-age method in the next section is the

difficulty of implementing uniform neighbor selection in decentralized P2P networks

without global knowledge at each node. Distributed methods of uniform sampling of

users exist [23], [99]; however, they require either k-regular graphs [23] or complex

walk patterns [99]. In both cases, max-age selection forces a user to sample m peers to

obtain a single neighbor and may not scale well for large m. In contrast, the method

we describe below needs only one sample per neighbor and operates in graphs with

irregular degree distributions.
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Fig. 12. Influence of m on model φ under max-age selection for Pareto lifetimes with

E[L] = 0.5 hours, exponential search times with E[S] = 6 minutes, and k = 7.

4.4. Age-Proportional Neighbor Selection

In this section, we first introduce a new neighbor selection strategy that is based on

random walks over weighted directed graphs and then deal with the distribution of

neighbor residual lifetimes and the corresponding isolation probability.

4.4.1 Random Walks on Weighted Directed Graphs

We start by designing a low-overhead random-walk algorithm whose stationary dis-

tribution π ensures that the probability that a user u is selected by another peer is

proportional to u’s current age. We call the resulting method of choosing neighbors

age-proportional neighbor selection.

Recall that a directed graph G = (V, E) consists of a vertex set V and edge set E

(note that we use notation G instead of G(t) at time t under the assumption that G

remains the same while a random walk is performed). Let u→ v represent a directed

link (u, v) ∈ E, N+
u = {v ∈ V : u → v} be the set of out-degree neighbors of u, and
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N−
u = {v ∈ V : u ← v} be the set of in-degree neighbors of u. Further define Au to

be the age of user u and set the weight of each incoming edge v → u at node u to be

u’s age normalized by the number of in-degree neighbors:

w(v, u) =
Au

|N−
u |

. (116)

It then follows that the in-degree d−
u of u is simply its age:

d−
u =

∑
v∈N−

u

w(v, u) = Au, (117)

and its out-degree d+
u is the sum of normalized ages of its out-degree neighbors:

d+
u =

∑
v∈N+

u

w(u, v) =
∑

v∈N+
u

Av

|N−
v |

. (118)

Then, age-proportional random walks are executed by alternating between walk-

ing along incoming and outgoing edges as we describe next. Given that the walk

is currently at node u, the first jump is performed to an in-degree neighbor h of u,

h ∈ N−
u , with probability

puh =
w(h, u)

d−
u

. (119)

The second jump is performed to an out-degree neighbor v of h with probability:

phv =
w(h, v)

d+
h

. (120)

It is clear that the transition probability from u to v is puv =
∑

h∈N−
u

puhphv. After

the two jumps, v becomes the current node and this procedure repeats. Each step

consists of two jumps, the node reached after l steps is selected as the neighbor of the

current user. As shown in [100], the stationary distribution of this random walk is

given by π = (πu), where πu = d−
u /
∑

v∈V d−
v . Recalling (117), we immediately obtain
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that age-proportional random walks achieve the desired distribution:

πu =
Au∑

v∈V Av
, for all u ∈ V. (121)

The starting point of a random walk is determined as follows. Each new user

executes a random walk starting from an alive user obtained through bootstrap,

while each existing user uniformly randomly selects one of its currently alive out-

degree neighbors as the initial point of the walk. Note that if a node does not have

any incoming edges, it will never be selected by our walk. To avoid this situation, we

alternate between ending walks with an in-degree and an out-degree jump, which gives

new users an opportunity to receive incoming edges. Generally speaking, the walk

needs to be longer than the mixing time of the chain corresponding to the underlying

graph [53]. Simulations below use random walks of l = 10 steps as further increasing

l does not result in measurable improvements in π for the cases considered in this

chapter

4.4.2 Residual Lifetime Distribution

Denote by Z the residual lifetimes of neighbors obtained by age-proportional neighbor

selection and by Hc(x) = P (Z > x) its CCDF. We then obtain the distribution of Z

in the next theorem.

Theorem 8. Given that mean E[L] <∞ and variance V ar[L] <∞, neighbor resid-

ual lifetime Z has the following CCDF:

Hc(x) =
1

E[L]E[A]

∫ ∞

0

y(1− F (x + y))dy, (122)

where E[A] is the mean age of an alive user.

Proof. Denote by Ai the age of node i, i ∈ V , where V is the set of alive users, and
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by As the age of the user sampled by age-proportional selection. Further denote by

fAs(x) the PDF of As such that for infinitely small dx:

fAs(x)dx = P (x < As < x + dx). (123)

Conditioning on ages Ai for all i ∈ V , (123) is transformed into the following

under age-proportional selection:

fAs(x)dx =
x
∑

i∈V 1x<Ai<x+dx∑
i∈V Ai

, (124)

where 1X is an indicator function such that 1X = 1 if X is true and 1X = 0 otherwise.

In a system with a large number of users, we can then invoke the law of large numbers

to obtain:

fAs(x)dx =
x|V |fA(x)dx

|V |E[A]
, (125)

where E[A] is the mean age of an alive user, fA(x) is its PDF given by (94), and |V |

is the number of nodes in set V . It immediately follows that:

fAs(x) =
xfA(x)

E[A]
, (126)

which shows that the age distribution of sampled users is actually the spread distri-

bution [91] of A, i.e., a convolution of two equilibrium age distributions fA(x) given in

(94). This means that As = A + A, which implies that Z is the residual of a renewal

process whose cycle lengths are given by random variable A.

Next, following the derivation in (297) and using (126), we obtain the CCDF of
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Z as:

Hc(x) = P (Z > x) =

∫ ∞

0

P (Z > x|As = y)fAs(y)dy

=

∫ ∞

0

1− F (x + y)

1− F (y)

y

E[A]
fA(y)dy, (127)

which leads to (122) upon substituting (94) into (127) and then removing the common

divisor 1− F (y).

It is easy to show that for exponential lifetimes, (122) reduces to 1 − F (x),

again confirming the memoryless property of exponential distributions. For Pareto

lifetimes, the CCDF of Z is also very simple given our informal discussion in the

previous proof. Since Z is the residual of a renewal process with Pareto cycle length

A, we obtain that Z is also Pareto with shape that is smaller than that of A by 1.

Since A’s shape parameter is α− 1, Z exhibits shape α − 2. We formally prove this

in the next lemma.

Lemma 11. For Pareto lifetimes L ∼ 1 − (1 + x/β)−α with α > 2, the CCDF of Z

is given by:

Hc(x) =
(
1 +

x

β

)−(α−2)

. (128)

For 1 < α ≤ 2, Z converges in probability to ∞ as system age T and size n both tend

to ∞. For α > 3, the expectation of Z is E[Z] = β/(α − 3) and for 1 < α ≤ 3 it is

E[Z] =∞.

Proof. For Pareto lifetimes, straightforward integration of (122) leads to:

Hc(x) =
1

E[L]E[A]

∫ ∞

0

y
(
1 +

x + y

β

)−α

dy

=
β2

E[L]E[A]

(1 + x
β
)−α+2

(α− 2)(α− 1)
, α > 2, (129)
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Fig. 13. Comparison of model φ to simulations under age-proportional random walks

for Pareto lifetimes, E[L] = 0.5 hours, β = (α − 1)E[L], exponential search

delays, and k = 7 in a graph with n = 8, 000 nodes.

which gives us the desired result by recalling that E[L] = β/(α − 1) and E[A] =

β/(α − 2). For 1 < α ≤ 2, we have E[A] = ∞. In this case, it is known from [18]

that residuals Z converge in probability to ∞ as system T and size n become large.

Note that T → ∞ is needed to obtain the limiting distribution (94) of age A with

E[A] = ∞ and n → ∞ is needed for age Ai of selected user i to become the spread

of A during the process of selecting neighbors from the current user population.

For α > 2, integrating (128) leads to:

E[Z] =

∫ ∞

0

Hc(x)dx =

∫ ∞

0

(
1 +

x

β

)−α+2

dx

=

⎧⎪⎨⎪⎩
β

α− 3
α > 3

∞ 2 < α ≤ 3

. (130)

For 1 < α ≤ 2, it is easy to obtain that E[Z] =∞ since Z converges in probability

to ∞.
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Note that for α > 2, the PDF of Z is completely monotone and thus suitable for

our hyper-exponential model. Also notice that Z is stochastically larger than residual

lifetimes R under uniform selection for all choices of α. In fact, Z shifts the shape

of the Pareto distribution from α to α − 2, which is not achievable under max-age

selection even as m→∞. Furthermore, for 1 < α ≤ 2, residuals Z tend to a defective

random variable with all mass concentrated at +∞ as system size and age become

infinite. This shows that in asymptotically large systems, Z exceeds any lifetime L

with probability 1 and no user suffers isolation (more on this below).

4.4.3 Isolation and Resilience

To obtain model φ under age-proportional neighbor selection, we fit the distribution

of Z shown in (128) with its hyper-exponential equivalent and then invoke Theorem 4

to solve for φ. Next, we test the accuracy of model φ in simulations where n = 8, 000

nodes join and leave the system at random instances and each node performs age-

proportional random walks to find its neighbors. As shown in Fig. 13, simulation

results are very close to the values predicted by theoretical φ. Examples showing

the relationship between of φ and α are presented in Fig. 14. As shown in Fig.

14(a), simulation results are consistent with model φ under a variety of values α that

allow quick simulations and do not require very large T or n (i.e., α ≥ 3). It is

interesting to observe in the figure that as α decreases, the gap between φ under age-

proportional random walks and that under uniform selection drastically increases and

reaches a factor of 104 for α = 2.5. This shows that age-proportional random walks

are extremely effective in systems with very heavy-tailed lifetimes (i.e., α below 2.5).

Fig. 13(b) shows that the same conclusion holds for E[S] = 3.6 seconds, in which

case φ is on the order of 10−20 and only allows computation using the model since

simulations are impractical for such small probabilities.
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Fig. 14. Impact of α on φ under uniform selection and under age-proportional random

walks for Pareto lifetimes, E[L] = 0.5 hours, β = (α − 1)E[L], exponential

search delays, and k = 7.

The most intriguing result shown in Fig. 14 is that φ tends to 0 as α converges

to 2 from above. However, as before, this convergence requires that system age tend

to infinity. In addition, the following result states that system size n must also be

infinite to obtain φ = 0.

Theorem 9. For an equilibrium system, Pareto lifetimes with α > 2, and infinitely

large search delay (i.e., S =∞), isolation probability φ under age-proportional neigh-

bor selection is given by:

φ =
k!

(θ + 1)× . . .× (θ + k)
, (131)

where θ = α/(α− 2). For α→ 2 and fixed k, (131) converges to 0 as Θ(θ−k).

For Pareto lifetimes with 1 < α ≤ 2, any number of neighbors k ≥ 1, and any type

of search delay (including S = ∞), the isolation probability under age-proportional

neighbor selection converges to zero as system age T and size n approach infinity:

limn→∞ limT →∞ φ = 0.
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Proof. Let us consider φ for α > 2 and S = ∞ first. Recall that if S = ∞, the first

hitting time T is the maximum residual lifetime among k neighbors. Using (128), we

then readily get the following for α > 2:

P (T < x) = P (Z < x)k =

[
1−
(
1 +

x

β

)−α+2
]k

. (132)

Following derivations in the proof of Theorem 5, it is easy to obtain:

φ =

∫ ∞

0

P (T < x)f(x)dx =
k!Γ(1 + θ)

Γ(1 + k + θ)

=
k!

(θ + 1)× . . .× (θ + k)
, (133)

where f(x) = α(1 + x/β)−α−1/β is the PDF of Pareto L, θ = α/(α− 2), and Γ(x) is

the gamma function.

As α → 2, it is clear from (133) that θ → ∞, which makes φ approach 0 as

Θ(θ−k) for fixed k.

For 1 < α ≤ 2, it has been shown in Lemma 11 that P (Z < x) → 0 for any

x > 0 as system age T and system size n approach infinity. Supposing k = 1, we

readily obtain φ = P (Z < L) → 0. Noticing that φ for any k ≥ 2 (including S =∞

and S <∞) is smaller than that for k = 1, we immediately establish Theorem 9.

Note that Theorem 9 is a much stronger result than Theorem 5 since φ under

uniform selection does not asymptotically approach 0 for any fixed α ∈ (1, 2]. How-

ever, the asymptotic result of this section is more difficult to achieve since it requires

not only an equilibrium system, but also an infinitely large user population.

We finish this section by examining age-proportional random walks under finite

T and n using several values of 1 < α ≤ 2. For such cases, recall from Lemma

11 that Z converges in probability to ∞; however, initial analysis shows that the

convergence rate of Z →∞ and φ→ 0 can only be expressed using complex Appell



76

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+2 1E+3 1E+4 1E+5
system age (hours)

is
o

la
ti

o
n

 p
ro

b
ab

ili
ty

k=1
k=7

(a) α = 1.5, S =∞

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+2 1E+3 1E+4 1E+5
system age (hours)

is
o

la
ti

o
n

 p
ro

b
ab

ili
ty

k=1
k=7

(b) α = 1.2, S =∞

Fig. 15. Simulation results of φ under age-proportional selection as system age T and

size n increase for Pareto lifetimes with E[L] = 0.5 hours.

hypergeometric functions [19] of T and n for which no closed-form expansion exists.

We leave this task for future work and instead show simulations of φ in Fig. 15 as T

becomes large (n is kept equal to T /10). For both values of α, the figure shows that

φ monotonically decreases as system age T increases. In fact, for k = 7, the system

achieves isolation probability below 10−7 without replacing neighbors at T = 30, 000

hours and n = 3, 000 users. Additional simulations with k = 7 suggest that increasing

n to over 1 million users and keeping the age around 1 year will produce φ sufficiently

small for most large-scale networks today.

4.5. Summary

This chapter derived a general model of resilience for unstructured P2P networks

under heavy-tailed user lifetimes and formally analyzed two age-dependent neighbor-

selection techniques. Our results show that the proposed random-walk method may

achieve any desired level of resilience without replacing the neighbors as long as

Pareto shape parameter 1 < α ≤ 2 and system size n and age T are sufficiently
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large. This indicates that P2P systems under proposed neighbor selection and very

heavy-tailed lifetimes (i.e., α < 2) become progressively more resilient over time and

asymptotically tend to an “ideal” system that never disconnects as users join the

network.
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CHAPTER V

NODE IN-DEGREE AND JOINT IN/OUT-DEGREE

5.1. Introduction

Chapter IV focused on the out-degree of each user and did not consider the increased

resilience arising from additional in-degree edges arriving in the background to each

user during its stay in the system.

In this chapter, we overcome this shortcoming and build a complete closed-form

model characterizing the evolution of in-degree in unstructured systems under the

assumption of uniform neighbor selection. We first show that under certain mild as-

sumptions, the edge arrival process to each user tends to a Poisson distribution when

system size becomes sufficiently large, which is consistent with recent observation of

this phenomenon in certain real networks [81]. We then derive the transient distribu-

tion of in-degree as a simple function of F (x), including cases with non-exponential

peer lifetimes, and show that users who stay online longer quickly accumulate non-

trivial in-degree and become much more resilient to isolation over time. This outcome

was intuitively expected as it makes sense that current unstructured P2P networks

have been designed such that users with more contribution to the system (i.e., longer

lives) become better connected over time and provide more search capabilities to their

neighbors. In contrast, the original model of [43] showed that P2P users became pro-

gressively more susceptible to isolation as their age increased.

We finish the chapter by combining the in and out-degree isolation models into

a single approximation that clearly shows the contribution of in-degree to the re-

silience of the graph. Denoting by φ the isolation probability of a user (i.e., loss of all
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neighbors within its lifetime) and by φout the same metric with only the out-degree

being considered [43], we show that for exponential F (x) the following holds as search

delays become asymptotically small (i.e., tend to zero):

φ =
1− e−2k

2k
φout, (134)

where k is the initial number of neighbors obtained by each arriving user. This

result illustrates that the amount of improvement from the in-degree amounts to

approximately a factor of 2k reduction in the isolation probability. We also observe

from our closed-form Markov-chain model that for non-negligible search delays, ratio

φout/φ is often much larger than implied by (134), which suggests that (134) may be a

worst-case upper bound on φ. We finish the chapter with examples that demonstrate

this effect.

5.2. Edge Arrival

Before analyzing node in-degree under uniform selection, we study the process of edge

arrival into each user since this determines both the rate at which the user accumulates

incoming neighbors and the stationary in-degree distribution. Our neighbor churn

model prescribes that each joining user find k random out-degree neighbors and then

continuously replace them as they fail, as in [43]. Define initial edges to be those

added when users arrive in the system and replacement edges to be those added in

response to neighbor failures.

Assumption 3. The number of neighbors k a user selects upon joining the system is

a constant for all n.

This assumption often holds in unstructured P2P networks where individual

users are unaware of system size (e.g., Gnutella) and some structured P2P networks
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with constant node degree (e.g., de Bruijn [51]).

5.2.1 Definitions

Considering the time-limiting behavior of the system (i.e., t → ∞), the rest of the

chapter assumes that user ON/OFF process Zi := {Zi(t)}t≥0 (see Chapter III) are

stationary alternating renewal processes on time interval [0,∞), for i = 1, 2, . . . , n.

Denote by {τi,m}∞m=1 arrival times of user i. Then, τi,m+1 = τi,m + Li,m + Di,m, for

m ≥ 1. To ensure stationarity, let τi,1 := Le
i + Di w.p. ai and otherwise τi,1 := De

i ,

where Le
i has the equilibrium distribution of Fi(x) and De

i has that of Gi(x). Define

Mi(t) to be the number of arrivals of user i in interval [0, t]:

Mi(t) :=

∞∑
m=1

1τi,m∈[0,t], (135)

whose expectation (due to stationarity) is E[Mi(t)] = λit for any t ≥ 0, where λi is

given in (3).

Recall that in our resilience model, each user i has k out-degree neighbors, which

are either dead (i.e., a replacement is being sought) or alive at any given time. Let

Y c
i := {Y c

i (t)} be an alternating process indicating the state of i’s link c:

Y c
i (t) :=

⎧⎪⎨⎪⎩
1 out-link c of user i is ALIVE at t

0 otherwise (DEAD)

, (136)

for c = 1, . . . , k. If i is offline at t, all of its links are considered dead. The out-degree

of user i at time t is simply
∑k

c=1 Y c
i (t). Whenever Y c

i transitions from DEAD to

ALIVE, user i delivers one edge into the system (i.e., performs one selection). Thus,

processes {Y c
i }i,c determine the edge-generation rate of individual users.

As illustrated in Fig. 16, link c becomes ALIVE at arrival times {τi,m}m≥1

and then alternates between DEAD/ALIVE states during i’s ON periods. Note that
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Fig. 16. Process {Y c
i (t)} indicates DEAD/ALIVE behavior of the c-th out-link of user

i. Process {U c
i (t)} counts the number of DEAD→ALIVE transitions within

the current ON cycle of i.

ALIVE durations of Y c
i are neighbor residual lifetimes and DEAD durations are search

delays for finding replacement neighbors, with the exception of the very last ALIVE

cycle in each ON period, which is terminated by i’s departure rather than neighbor

failure. To save space, we assume that search delays (they can be accommodated

by changing link residual lifetime R(t) to R(t) + S(t), where S(t) is the search delay

at t) are negligible compared to Li,m and do not explicitly model their effect on the

in-degree process.

The figure also shows right-continuous process {U c
i (t)}, which is the number of

transitions DEAD→ALIVE within the current ON cycle up to time t. We assume

U c
i (τi,m) = 1 for all m ≥ 1, use notation t− to represent the instant just prior to t,

and denote by

U c
i (τ

−
i,m+1) = sup

τi,m≤t<τi,m+1

U c
i (t) (137)

the number of selections for link c in the m-th ON cycle. It then follows that U c
i :=

{U c
i (t)}, for all c and i, are stationary processes since they are functions of stationary
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{Zi(t)}.

Note that U c
i := {U c

i (t)}t≥0, for all c and i, are stationary processes since they are

functions of stationary processes Zi. We assume that the initial distribution of U c
i at

time 0 follows its stationary distribution (to this end, image that the 0-th arrival time

τi,0 of user i is placed at random distance to the left of t = 0 such that P (−τi,0 ≤ x)

is equal to the CDF of τi,1 and that user i monitors its out-links since τi,0 < 0. With

this setup, U c
i (0) has no jump at time 0 and follows the stationary distribution of U c

i ).

Further, observe that if user i starts with an ON period at time 0, U c
i (·) increases as

Y c
i turns ON in interval [0, τi,1); otherwise, U c

i (·) remains the same in that period.

Denote by {δc
i,z ≥ 0}∞z=1 random times at which Y c

i becomes ALIVE (i.e., an edge

is generated by i and delivered to some target peer). Define

W c
i (t) :=

∞∑
z=1

1δc
i,z∈[0,t] =

Mi(t)∑
m=1

U c
i (τ

−
i,m)− U c

i (0) + U c
i (t)

to be the number of selections for link c in [0, t]. Finally, denote by Wi(t) :=∑k
c=1 W c

i (t) the number of edges delivered by i into the system in [0, t]. Observe

that W (t) =
∑n

i=1 Wi(t) is the number of out-degree edges generated by n users in

[0, t], which is the same as the number of in-degree edges received by living users in

[0, t].

5.2.2 Edge Creation Process

Our next step is to analyze the rate of edge generation from a given user as n→∞.

Denote by R(n, δc
i,z) the residual lifetime of the peer selected by user i at a random

instance δc
i,z. Invoking Theorem 2, we next examine R(n, δc

i,z).

Lemma 12. Given Assumption 2 and uniform selection, fix user i and t > 0. Then,

(1) Random variables {U c
i (τ

−
i,m)} and {Wi(t)} are uniformly integrable in n;
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(2) For arbitrary t� > 0, residuals {R(n, δc
i,z)}z≤W c

i (t),t≤t� of selected neighbors con-

verge in distribution as n→∞ to i.i.d. r.v.’s with CDF H(x) in (35);

(3) The average number of selections per ON cycle for each out-link c converges as

n→∞ to

E[U c
i (τ−

i,m)]→ 1 +

∞∑
r=1

∫ ∞

0

H∗r(x)dFi(x) <∞, (138)

for m ≥ 2, where H∗r(x) is the r-th convolution of H(x) and Fi(x) is the lifetime

distribution of i.

Proof. We prove each of the statements in sequence.

5.2.2.1 Uniform Integrability

Part (1) paves the way to establish convergence results on moments of associated

variables. The key aspect of this proof is to show that U c
i (t) is stochastically smaller

than some variable Û c
i (t), which is independent of n. This independence automatically

implies uniform integrability of both Û c
i (t) and all r.v. stochastically smaller than

it. The major impediment to achieving this is that uniform selection allows user i

to repeated connections to the same user, which creates dependency of residuals of

acquired neighbors. While for n → ∞ this dependency diminishes, our analysis in

this proof takes it into account and creates a foundation that will be used in the

derivations that follow in the next section.

To proceed, call a new neighbor of user i if it is different from any previous selec-

tions that i makes for all of k out-links since τi,m. Denote by H(j)(x) := (l(j))−1
∫ x

0
(1−

F (j)(u))du the residual CDF for user-type j and by Ĥ(x) := max1≤j≤T H(j)(x) that is

stochastically smaller than all distributions H (j)(x) for j = 1, . . . , T . We now create

a virtual process for node i whose number of neighbor selections by time t within the
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current ON period is Û c
i (t) ≥st Ui(t). We achieve this by letting i acquire new selec-

tions with residuals drawn from Ĥ(x) and old (as opposed to new) selections with

residuals deterministically set to 0. Indeed, this represents the worst-case scenario

for all neighbor choices.

Now, define ηc
z, z ≥ 1, to be random times at which user i’s out-link c connects

to new neighbors in the current ON cycle and set ηc
1 = τi,m. Denote by Bc(t) the

number of new selections for link c in [τi,m, τi,m + t]. Note that Bc(ηc
z) = z. Further,

let Qc
z count the number of old selections in interval (ηc

z−1, η
c
z) and set Qc

1 = 0. Then,

we get

Û c
i (t) := Bc(t) +

Bc(t)∑
z=1

Qc
z, (139)

where Qc
z has a geometric distribution with success probability pc

z, i.e., the probability

that i gets its z-th new selection for link c, which will be studied next.

Define Xz to be the number of peers that are alive for selection at ηc
z

− and were

chosen as i’s neighbors in interval [τi,m, ηc
z) for all of its k links and set X1 = 0. Note

that E [Xz|Bc] ≤ kBc(ηc
z
−) = kz for z ≥ 2. Conditioning on the system size (without

i) N i
n(ηc

z) ≥ 1, the probability pc
z is then given by

pc
z = 1− Xz

N i
n(ηc

z)
, (140)

where Xz < N i
n(ηc

z), and the expectation of Qc
z is thus

E
[
Qc

z | Bc
]

= E

[
1− pc

z

pc
z

| Bc

]
= E

[ Xz

N i
n(ηc

z)−Xz
| Bc
]

≤ E [Xz|Bc] ≤ kz. (141)
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This immediately leads to

E
[Bc(t)∑

z=1

Qc
z

]
≤ E

[Bc(t)∑
z=1

kz
]
≤ kE [Bc(t)(Bc(t) + 1)] <∞,

where {Bc(t)} is a renewal process with renewal distribution Ĥ(x) independent of n.

We thus get that variables {Û c
i (t)} are uniformly integrable in n, which leads to

the same conclusion for {U c
i (t)} and {U c

i (τ
−
i,m+1)}. This directly implies that {Wi(t)}

are uniformly integrable in n, where Wi(t) is the number of selections made by i in

[0, t].

5.2.2.2 Residuals

We next show that i finds new neighbors w.p. 1 as n → ∞. Since the probability

that i selects the same peer at random instances δc
i,z, δ

c
i,z′ is 1/(N i

n(δc
i,z)N

i
n(δc

i,z′)), the

probability bn that i encounters at least one old user during selections for link c in

[0, t] is bounded by

bn ≤ E
[
(n− 1)

W c
i (t)∑

z=1

W c
i (t)∑

z′ �=z

1

N i
n(δc

i,z)N
i
n(δc

i,z′)
|N i

n ≥ 1
]
.

Given a stationary system, the above yields

lim
n→∞

bn = lim
n→∞

E
[ n− 1

N i
n(t)2

|N i
n ≥ 1

]
E
[
W c

i (t)2
]

= 0, (142)

where E[1/(N i
n(t))2|N i

n ≥ 1] = Θ(μ−2
n ) = Θ(n−2) from Lemma 4 and E[W c

i (t)2] <∞.

It follows almost surely that all neighbors selected by user i for its k links in [0, t] are

new as n → ∞. This immediately leads to the fact that residual lifetimes R(n, δc
i,z)

at random δc
i,z ≤ t are independent (as different users are independent of each other)

and have the same limiting distribution of residual R(n, t) selected at fixed t (due to

stationarity of Zi), where limn→∞ P (R(n, t) ≤ x) = H(x) is given in (35).
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5.2.2.3 Edges

The rest of the proof directly follows from renewal theory. Denote by {B(t)}t≥0 a

pure renewal process with waiting times Rr ∼ H(x) for r ≥ 1. We then have

E[B(t)] =

∞∑
r=0

P (B(t) > r) = 1 +

∞∑
r=1

H∗r(t). (143)

Noting that Li,m ∼ Fi(x) is independent of {B(t)}, the mean number of cycles

before user departure is given by

lim
n→∞

E[U c
i (τ−

i,m)] = E[B(Li,m)] =

∫ ∞

0

E[B(t)]dFi(t),

which establishes (138).

It is now clear that {U c
i (t)}t≥0 converge in distribution as n→∞ to a stationary

regenerative processes with regeneration epochs 0 < τi,1 ≤ τi,2 . . . Recalling that Wi(t)

is uniformly integrable and that E[Wi(t)] = kE[W c
i (t)], the next result is directly

obtained from Smith’s theorem for stationary regenerative processes.

Lemma 13. With Assumptions 2-3, uniform selection, and fixed user i and time t,

the expected number of edges from i in [0, t] converges

lim
n→∞

E[Wi(t)] = λit(k + θi) <∞, (144)

where λi is in (3) and θi := k
∑∞

r=1

∫∞
0

H∗r(x)dFi(x) is the mean number of replace-

ment edges created per session of i.

This result can be interpreted as each user generating k + θ edges per arrival

interval li +di and segment [0, t] containing tλi such intervals on average. We leverage

this observation in the next subsection.
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5.2.3 Edge Arrival Process

Now, given a set of n participating users, our approach is to set aside a certain peer of

interest and examine edge-arrivals to this peer during its lifetime from n other users

under uniform selection. Without loss of generality, we study edge-arrivals from users

1, . . . , n to special user 0 conditioned on its being alive during all manipulations.

Indeed, since ON/OFF periods of Z0 are independent of each other and the edge-

arrival process is independent of Z0, this analysis directly generalizes to other users.

Define Ic
i,z to be a Bernoulli r.v. indicating whether user 0 is chosen by i ≥ 1 at

time δc
i,z, where c = 1, . . . , k and z ≥ 1. Conditional on Nn := {N(n, t)} and Y c

i , the

probability that Ic
i,z = 1 under uniform selection is

pc
i,z := P (Ic

i,z = 1|Nn, Y
c
i ) =

1

N i
n(δc

i,z) + 1
, (145)

where N i
n(t) :=

∑n
j=1,j �=i Zj(t) is the population size excluding user i (to avoid self-

loops) and not counting the always-alive user 0, which is explicitly added in the

denominator of (145). Note that Ic
i,z are conditionally independent given Nn and all

processes {Y c
i }i,c, i.e.,

P
(⋂

i,z,c

[Ic
i,z = 1]|Nn, {Y c

i }i,c
)

=
∏
i,z,c

pc
i,z

for 1 ≤ i ≤ n, z ≥ 1, 1 ≤ c ≤ k. Then, the number of edges delivered by user i to user

0 in interval [0, t] is ξni(t) :=
∑k

c=1

∑
z:δc

i,z≤t I
c
i,z. Finally, the number of edges from

the system to user 0 in [0, t] is

ξn(t) :=

n∑
i=1

ξni(t). (146)

The properties of process ξn := {ξn(t)} are given next.

Theorem 10. Under Assumptions 2-3 and uniform selection, the point process ξn
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defined in (146) converges in distribution as n → ∞ to a Poisson process ξ with

constant rate:

ν :=
k + θ

l
, (147)

θ := k
∑∞

r=1

∫∞
0

H∗r(x)dF (x) is the mean number of replacement edges generated per

user ON cycle and is independent of n, F (x) is the lifetime CDF shown in (33), and

l is the mean lifetime in (34).

Proof. We set ξ to be a Poisson process with finite rate ν. It has been shown in [69,

Proposition 3.22] that ξn converges in distribution to ξ under the following constraints:

(1) ∀t > 0 : limn→∞ E[ξn(t)] = E[ξ(t)] = νt; and

(2) ∀t > 0 : limn→∞ P (ξn(t) = 0) = P (ξ(t) = 0) = e−νt.

We set ξ to be a Poisson process with rate ν and establish these conditions next.

5.2.3.1 Continuity

This condition is trivially met since the first, and thus the remaining, arrival times of

any user i have an absolutely continuous distribution, which is ensured by stationarity

and non-lattice lifetime distributions.

5.2.3.2 Mean Convergence

Our next step is to show that limn→∞ E[ξn(t)] = νt <∞. Write

E[ξn(t)|Nn, {Y c
i }i,c] = E

[ n∑
i=1

k∑
c=1

∑
z:δc

i,z≤t

Ic
i,z

]

=
n∑

i=1

k∑
c=1

∑
z:δc

i,z≤t

pc
i,z. (148)
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Leveraging Lemma 4 for uniform integrability of n/N(n), stationarity of users,

and Lemma 13 for the convergence of E[Wi(t)], we have after unconditioning of (148)

lim
n→∞

E[ξn(t)] = lim
t→∞

E
[ n∑

i=1

k∑
c=1

∑
z:δc

i,z≤t

pc
i,z

]

= lim
n→∞

E
[ n∑

i=1

Wi(t)
]
E[p1

1,1]

= lim
n→∞

∑n
i=1(k + θi)λit∑n

i=1 ai
, (149)

where θi is given in (144). By Lemma 5, the above reduces to

lim
n→∞

E[ξn(t)] =
t

l
lim

n→∞

∑n
i=1 λi(k + θi)∑n

i=1 λi

=
t

l
(k + θ), (150)

where the last limit holds a.s. Since θ is independent of n, we know that (150) is

finite.

5.2.3.3 Probability Convergence

In this step, we show that P (ξn(t) = 0)→ e−νt as n→∞. Since Ic
i,z are conditionally

independent given Nn and Y c
i , we have

P (ξn(t) = 0|Nn, {Y c
i }i,c) = e−Bn , (151)

where

Bn = −
n∑

i=1

k∑
c=1

∑
z:δc

i,z≤t

log(1− pc
i,z)

= − 1

E[N(n)]

n∑
i=1

Wi(t)∑
j=1

E[N(n)] log(1− pij), (152)

where pij is the probability for user i to choose v during its j-th selection in [0, t],

similar to one shown in (145). Note that P (ξn(t) = 0) is then simply E[e−Bn ]. We
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next show that Bn → νt in probability and that Bn is uniformly integrable, from

which the desired result follows immediately.

Define

f(x) = −E[N(n)] log
(
1− 1

x + 1

)
(153)

to be a continuous, monotonically decreasing function of x for x ≥ 1. We next sketch

a proof for f(N(n))→ 1 in r-th mean for all r ≥ 1. Following Lemma 4, E[f(N(n))]

can be split into two expectations conditioned on A = |N(n)/E[N(n)] − 1| ≤ 1 + δ

and B = |N(n)/E[N(n)]−1| > 1+δ. For the first condition A, which holds with w.p.

1−o(1) as n→∞, it is easy to show that the corresponding term E[f(N(n))|A]P (A)

converges to 1 for any δ > 0. For the second condition B, which holds w.p. o(1) as

n → ∞, we must ensure that E[f(N(n))|B)P (B) converges to zero. This trivially

holds since |f(N(n))| ≤ E[N(n)] and Chernoff bounds produce an exponentially

decaying tail for P (B). Repeating the same reasoning with f(N(n))r for r ≥ 1, we

obtain convergence in r-th mean using Lemma 4. Applying this result to (152), we

obtain E[Bn]→ νt where the individual steps are shown earlier in (150).

Next, notice that Bn is a sum of dependent, but identically distributed, variables

{−E[N ] log(1− pij)}i,j. We next prove that V ar[−E[N ] log(1− pij)] decays to zero.

First, notice that Xn → c < ∞ in mean-square implies that V ar[Xn] → 0. Second,

using the fact that f(N(n)) → 1 in r-th mean, observe that −E[N ] log(1 − pij)

converges to a constant in r-th mean for all r ≥ 1, which gives us the desired result.

Now, for identically-distributed variables {Xi}, V ar[
∑n

i=1 Xi] ≤ n2V ar[X1] and
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therefore for any r.v. Y

V ar
[ Y∑

i=1

Xi

]
= E

[
V ar

[ Y∑
i=1

Xi|Y
]]

+ V ar
[
E
[ Y∑

i=1

Xi|Y
]]

≤ E[Y 2]V ar[X1] + V ar[Y ]E2[X1]. (154)

Applying this result to (152) and noting that {Wi(t)}ni=1 are pairwise independent

variables for n→∞, we get

V ar[Bn] ≤
n
(
E[Wi(t)

2]εn + V ar[Wi(t)]ζn

)
E2[N(n)]

, (155)

where εn = V ar[−E[N ] log(1− pij)] and ζn = E2[−E[N ] log(1− pij)]. Observe that

n/E2[N ]→ 0, εn → 0, and ζn → 1 as n→∞. Using similar arguments as in Lemma

13, it is easy to show that E[Wi(t)
2] and V ar[Wi(t)] are both uniformly bounded in

n. We then obtain that V ar[Bn]→ 0 as n→∞.

Using Chebyshev’s inequality, we get Bn → νt in probability. Finally, noticing

that e−Bn is uniformly integrable since it is always bounded in [0, 1] as it represents the

probability in (151), we obtain the desired convergence again following the reasoning

in Lemma 4.

5.2.4 Simulations

Fig. 17 shows the distribution of edge inter-arrival delays to a single node obtained in

simulations with two types of systems. Notice in the sub-figures that the distribution

of inter-arrival delay is nearly exponential with the rate given by (147). Additionally,

Fig. 18 shows that the distribution of the number of edge arrivals to a node in an

interval of size Δt approaches a Poisson distribution with the same rate ν in (147).

Finally, note that the Poisson result in Theorem 10 is not an assumption of the

chapter as in prior work [39], [50], [61], but rather a consequence of the churn model
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(b) system VH with n = 5000

Fig. 17. Distribution of edge inter-arrival delays approaches exponential with rate ν

in (147) for k = 10 and θ = 10 using 109 iterations.

introduced earlier.

5.3. In-Degree

We now focus on understanding how the in-degree of each live user changes with

time. For the rest of the chapter, we assume n→∞ and the edge arrival process to

individual peers is Poisson with rate ν in (147).

5.3.1 Expected In-Degree

In a stationary system, define Xn(t) to be the in-degree of a random online user at

age t ≥ 0. In this section, we focus on transient and limiting distributions of Xn(t)

under uniform selection of neighbors. We then have the following result.

Theorem 11. Let {U(s)}s≥0 be a pure renewal process with cycle length R ∼ H(x).

Given that a user is alive in the system, its expected in-degree at fixed age t ≥ 0
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(b) system VH with Δt = 9 min

Fig. 18. Distribution of the number of edge arrivals to a node in the interval [t, t+Δt]

in a system with n = 1000 users, k = 10, and θ = 10. The lines show Poisson

fits with ν in (147) at t = 500 hours and after 105 iterations.

converges as n→∞ to a monotonically increasing function of age

E[Xn(t)]→ k

∫ ∞

0

(E[U(x)] −E[U(x − t)]) H(dx), (156)

where E[U(x)] =
∑∞

r=0 H∗r(x) and E[U(x)] = 0 for x < 0.

Proof. Fix t > 0, assume user 0 begins an ON period at time 0, and let i be any other

alive user in its stationary state, which implies that its age at t follows Ai(t) ∼ Hi(x).

Define τ = max(t − Ai(t), 0) to be time from which both users are simultaneously

present online and Ic
i (t) to be an indicator variable of the event that i delivers an

edge to user 0 in [τ, t] using its link c. Then, we are interested in computing

qi := P (Ic
i (t) = 1|Zi(t) = 1, Lv > t, N). (157)

Suppose Icr
i (t) is the indicator of user i hitting user 0 with an edge during its

r-th attempt. Then, qi =
∑∞

r=1 P (Icr
i (t) = 1|Zi(t) = 1), where multiple edges from i
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to user 0 occur w.p. 0 as n→∞. Observe that

P (Icr
i (t) = 1|Zi(t) = 1) =

P (U(Ai(t)− t) < r ≤ U(Ai(t)))

N(n)

where U(s) is the number of edges generated by i by time s along link c (i.e., number of

renewals of a pure renewal process with cycle length R). Simplifying this expression:

qi =
1

N(n)
E[U(Ai(t))− U(Ai(t)− t) | Zi = 1]. (158)

We now arrive at the expected number of edges received by user 0 in [0, t] from

the entire system

E[Xn(t)] = k

n∑
i=1

aiE[qi]

= E
[ k

N(n)

] n∑
i=1

ai

∫ ∞

0

E[U(x)]− E[U(x− t)]Hi(dx)

a.s.−−→ k

∫ ∞

0

(E[U(x)]− E[U(x− t)]) H(dx), (159)

which is the desired result.

Model (156) can be written as

lim
n→∞

E[Xn(t)] = k (E[U(R)]−E[U(R − t)]) , (160)

where U(R) is the number of renewals of process {U(s)}s≥0 in a random interval

[0, R], where R ∼ H(x). Furthermore, as t → ∞, (160) tends to kE[U(R)], which

provides a simple upper-bound at which the in-degree of each user saturates.

We next show that (160) can be expressed in simple closed-form for exponential

lifetimes.

Theorem 12. For exponential lifetimes L and n→∞, the mean in-degree at failure
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(b) Pareto (156) with α = 3

Fig. 19. Comparison of the model for E[X(t)] to simulation results for n = 2000,

E[L] = 0.5 hours, and k = 8 after 106 iterations.

θ = k and

E[Xn(t)]→ 2k(1− e−t/E[L]). (161)

Proof. Since F (x) is exponential, we have H(x) = 1−ex/E[L]. Then, the pure renewal

process {U(s)} with cycle length R ∼ H(x) is a Poisson process with a point at time

0. This leads to E[U(x)] = 1 + x/E[L]. Then, we have

E[Xn(t)]→ k
(∫ t

0

(
1 +

x

E[L]

)
H(dx) +

∫ ∞

t

x

E[L]
H(dx)

)
= k
(
H(x) +

E[min(L, t)]

E[L]

)
= 2k(1− e−t/E[L]).

Finally, θ = limn→∞
∫∞
0

E[Xn(t)]F (dt) = k, which completes this proof.

In (161), the mean in-degree of a node increases monotonically from Xn(0) = 0

when it arrives into the system to E[Xn(∞)] = 2k when its age tends to infinity. For

the exponential case we directly use (161), while for the Pareto case we numerically

solve (160). Simulation results in Fig. 19 demonstrate that the models are very

accurate and indeed saturate at predicted values 2k and kE[U(R)] as age t → ∞.
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Furthermore, if a node survives for more than 1 hour in the system, it develops an

average of 12 − 15 in-degree neighbors (depending on the distribution of L) and is

unlikely to be isolated from the graph from that point on. It is also interesting to

observe in the figure that the Pareto curve increases slower, but saturates at larger

values, which suggests more resilience support for users with very large lifetimes. The

saturation effect illustrated in Fig. 19 also shows that P2P implementations should

cap user in-degree at values no smaller than the limit of (156) for t → ∞. The

corresponding upper bound in Gnutella (i.e., 30 in-degree neighbors) satisfies this

condition for the two examples shown above.

5.4. Joint In/Out-Degree Model

Analytical results in the previous section show that the early stage in a node’s life

in the network is actually risky from the isolation point of view as it must rely

solely on its out-degree neighbors. However, once a node survives this early stage, it

increases its resilience to isolation through constantly arriving incoming edges. In this

section, we combine the in-degree and out-degree models to derive the joint isolation

probability of an arriving user. We drop subscript n and assume n→∞.

5.4.1 Preliminaries

Denote by X∗(t) the out-degree of a node v at given age t and define it to be isolated

when its in-degree and out-degree are simultaneously zero. Define time to isolation

T to be the first-hitting time of both processes to state 0:

T = inf{t > 0 : X∗(t) = X(t) = 0|X∗(0) = k, X(0) = 0}. (162)

Then the probability of node isolation is simply φ = P (T < L), where L is the
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random lifetime of node v. Unlike in the out-degree process, a node does not replace

its in-coming edges, which means that the in-degree and out-degree processes are

independent of each other.

In the next subsections, we derive φ for systems with exponential user lifetimes

and exponential search delays using two methods. The first approach provides an

exact model using matrix algebra, while the second one shows an asymptotically

accurate approximation that is available in simple closed-form.

5.4.2 Exponential Lifetimes (Exact Model)

Let pair (X∗(t), X(t)) be the joint process of out-degree and in-degree of a node at

age t and (i, j) denote any admissible state of the joint process for 0 ≤ i ≤ k and

0 ≤ j < n. Recall that edge arrival at any node occurs according to a Poisson process

with rate (147). Therefore, under uniform selection, incoming neighbors arrive to v

at rate:

ν =
k + θ

E[L]
=

2k

E[L]
(163)

since θ = k for exponential lifetimes. The current in-degree neighbors of v fail at rate

μ = 1/E[L] due to the memoryless property of exponentials. This directly leads to

the next result.

Lemma 14. Given L ∼ exp (μ) and search times S ∼ exp(σ) for finding replacement

neighbors, the joint process {(X∗(t), X(t))} is a homogeneous continuous-time Markov
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chain with a transition rate matrix Q = (quu′):

quu′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iμ (i, j)→ (i− 1, j)

(k − i)σ (i, j)→ (i + 1, j), for i < k

jμ (i, j)→ (i, j − 1)

2kμ (i, j)→ (i, j + 1)

−Λij (i, j)→ (i, j)

0 otherwise

, (164)

where u and u′ represent any suitable states of the joint chain satisfying transition

requirements on the right side of (164) and Λij = iμ + (k − i)σ + jμ + 2kμ.

Proof. Observe that given state (X∗(t) = i, X(t) = j), there currently exist i out-

going edges, k− i searches in process, and j in-coming edges, and each is independent

of one another. Since the in-coming edge arrival approaches a Poisson process at rate

2kμ (see (163)), edges are exp(μ) and search processes are exp(σ), the sojourn time

in state (i, j) is thus exponential with rate:

Λij = iμ + (k − i)σ + jμ + 2kμ, (165)

where the first two terms come from the out-degree process W (t) and the last two

from the in-degree process X(t).

Denote by puu′ the probability that state u′ is visited after some sojourn time

in the current state u. Recall that when an out-going edge dies, a search starts

immediately and its properties are independent of those of other search processes,

edge lifetimes and the in-coming edge arrival process. This type of transition reduces

W (t) by 1 (and meanwhile increases the number of search processes by 1) in response

to one failure of v’s out-going edges, which is equivalent to the jump: (i, j)→ (i−1, j)
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for i > 0. The corresponding probability that an out-going edge dies before any other

event happens is p(i,j)(i−1,j) = iμ/Λij.

Similarly, the second type of transition as a result of finding a replacement neigh-

bor is written as (i, j) → (i + 1, j) for i < k. Its related probability is p(i,j)(i+1,j) =

(k − i)σ/Λij . The third type of transition responding to one failure of existing in-

incoming edges is denoted by (i, j)→ (i, j−1) for j > 0, and the transition probability

is p(i,j)(i,j−1) = jμ/Λij . Finally, the last type of transition caused by the arrival of

a new in-coming edge is a jump: (i, j) → (i, j + 1) for j < n − 1 with probability

p(i,j)(i,j+1) = 2kμ/Λij.

By recognizing that the jumps behave like a discrete-time Markov chain and the

sojourn times in each state are independent exponential random variables, we immedi-

ately conclude that the joint chain {(X∗(t), X(t))} is a homogeneous continuous-time

Markov chain with a transition rate matrix Q = (quu′) shown in (164) .

It is convenient to treat {(X∗(t), X(t))} as an absorbing Markov chain in order

to derive the PDF of the first-hitting time T on state (0, 0). Assuming (0, 0) is an

absorbing state, we can write Q in canonical form as:

Q =

⎛⎜⎝ 0 0

r Q0

⎞⎟⎠ , (166)

where Q0 is the rate matrix obtained by removing the rows and columns corresponding

to state (0, 0) from Q and r is a column vector of transition rates into state (0, 0).

Applying Theorem 4 in Chapter IV, we obtain the next result.

Corollary 4. For exponential lifetimes L ∼ exp (μ) and exponential search delays

S ∼ exp(σ), the probability of node isolation is given by:

φ = π(0)V BV −1r, (167)
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Table II. Exact model (167) and simulations (n = 2000, E[L] = 0.5 hours)

E[S] k = 6 k = 8

min Simulations Model (167) Simulations Model (167)

6 3.63× 10−6 3.61× 10−6 2.80× 10−8 2.87× 10−8

18 3.15× 10−5 3.17× 10−5 5.91× 10−7 5.98× 10−7

30 6.04× 10−5 6.08× 10−5 1.48× 10−6 1.46× 10−6

42 8.38× 10−5 8.37× 10−5 2.30× 10−6 2.27× 10−6

60 1.06× 10−4 1.09× 10−4 3.27× 10−6 3.28× 10−6

where V is a matrix of eigenvectors of Q0, B = diag(bj) is a diagonal matrix with

bj = 1/(μ − ξj), ξj is the j-th eigenvalue of Q0, and π(0) = (π(i,j)(0)) is the initial

state distribution with π(k,0)(0) = 1 and π(i,j)(0) = 0 in all other pairs.

We verify (167) in simulations shown in Table II, which shows that our results are

indeed very accurate. While (167) provides values φ that are smaller than isolation

probability φout of the out-degree model [43] by several orders of magnitude, it is still

unclear what impact in-degree has on the probability that a user gets isolated as its

age increases and how large the improvement ratio φout/φ is. We study these issues

below.

5.4.3 Isolation with Increased Age

To better understand the impact of in-degree on φ, let us define the first hitting time

Tout on state 0 of the out-degree process {X∗(t)}, i.e., Tout = inf{t > 0 : X∗(t) =

0|X∗(0) = k}. Analysis in [43] shows that {X∗(t)} is a birth-death Markov chain

and derives its CDF function P (Tout < t) in matrix form. We use this result and the

CDF of T derived in the proof of Theorem 4 to compare the distribution of isolation

times in the joint in/out degree model with that studied in [43]. We plot the exact
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distributions of both Tout and T as functions of user age in Fig. 20. Notice in the

figure that P (Tout < t) increases almost linearly in time t indicating that users with

large lifetimes have proportionally higher probabilities of isolation. In contrast, the

curve of P (T < t) becomes almost flat as time t increases beyond 0.5 hours showing

that users with lifetimes in the range [0.5, 200] hours exhibit almost the same isolation

probabilities. In fact, once the initial 1/2-hour period is over, isolation probability is

orders of magnitude smaller than in the initial phase. As user age increases above

200 hours, the CDF of T slowly increases in time since X(t) becomes saturated and

can no longer keep up with the increased possibility of neighbor failure.

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

1.E-1 1.E+0 1.E+1 1.E+2 1.E+3

lifetime (hours)

C
D

F

(a) Tout

1.E-6

1.E-5

1.E-4

1.E-1 1.E+0 1.E+1 1.E+2 1.E+3

lifetime (hours)

C
D

F

(b) T

Fig. 20. The CDF of Tout and T for exponential lifetimes with E[L] = 0.5 hours,

exponential search delays with E[S] = 0.1 hours, and k = 6.

5.4.4 Exponential Lifetimes (Asymptotic Model)

Although (167) provides exact results for φ, it relies on numerical matrix algebra.

Our next task is to obtain a simple closed-form solution to φ when the mean search

delay E[S]→ 0.

We begin with obtaining the asymptotic distribution of the first-hitting time
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Tout onto state 0 of the out-degree process {X∗(t)} and then obtain node isolation

probability φout which only considers out-degree.

Lemma 15. For L ∼ exp(μ) and S ∼ exp(σ), φout converges to the following as

E[S]→ 0:

φout = ρk/(1 + ρ)k, (168)

where σ/μ = E[L]/E[S].

Proof. Using previous results in [4], we know that for Markov chain {X∗(t)}, the first

hitting time Tout of a rare event (e.g., state 0 of {X∗(t)}) behaves as an exponential

random variable with rate 1/E[Tout]:

P (Tout < t) = 1− e−t/E[Tout], as E[S]→ 0, (169)

where E[Tout] is available in closed form [43]:

E[Tout] =
E[S]

k
(1 + ρ)k , (170)

where S denotes the search delay and ρ = E[L]/E[S]. Observe that E[Tout]→∞ as

E[S]→ 0. Thus by Taylor expansion, (169) reduces to:

P (Tout < t) = t/E[Tout], as E[S]→ 0, (171)

showing that asymptotically Tout behaves like a uniform random variable. Taking the

derivative of (171), we obtain the asymptotic result on the PDF of Tout:

fTout(t) = 1/E[Tout], as E[S]→ 0. (172)

It is then straightforward to obtain:

φout = P (Tout < L) =

∫ ∞

0

P (L > t)fTout(t)dt =
E[L]

E[Tout]
, (173)
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as E[S]→ 0, which is the desired result.

We then derive the asymptotic CDF of T of the joint chain {X∗(t), X(t)} in the

following.

Lemma 16. Given L ∼ exp(μ) and S ∼ exp(σ), the CDF of T onto state (0, 0) of

the joint in/out-degree process approaches the following as E[S]→ 0:

P (T < x) = e−2k(Ei(2k)− Ei(2ke−μx))φout, (174)

where φout is given by (168) and Ei(x) = −
∫∞
−x

e−z/zdz is the exponential integral.

Proof. Observe that user lifetime L is small compared to the value of the first hitting

time T on state (0, 0). Therefore, P (T < L) is mainly affected by the CDF P (T < x)

only for small x. Next, note that the probability that out-degree process {X∗(t)}

hits more than once on state 0 within interval [0, x] for small x is negligible when

E[S] → 0 (i.e., E[Tout] → ∞). Thus, based on the property of the first hitting time

Tout and the probability that the in-degree is zero at epoch Tout, we obtain a simple

formula for the asymptotic CDF of T :

P (T < x) =

∫ x

0

P (X(t) = 0)fTout(t)dt, (175)

as E[S] → 0, where P (X(t) = 0) is given in (161) for exponential lifetimes. Substi-

tuting (161) and (172) into (175) leads to the following as E[S]→ 0:

P (T < x) =
1

E[Tout]

∫ x

0

e−2k(1−e−μt)dt

=
e−2k

μE[Tout]

∫ −2k

−2ke−μx

e−z

z
dz. (176)

Notice that: ∫ −2k

−2ke−μx

e−z

z
dz =

∫ ∞

−2ke−μx

e−z

z
dz −

∫ ∞

−2k

e−z

z
dz. (177)
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Substituting (177) into (176) and using μ = 1/E[L] and (168), we easily establish

(174).

The asymptotic result on the CDF of T for E[S] → 0 immediately leads to

finding isolation probability φ, as shown next.

Theorem 13. For L ∼ exp(μ) and S ∼ exp(σ), isolation probability converges to the

following as E[S]→ 0:

φ =
1− e−2k

2k
φout, (178)

where φout = ρk/(1 + ρ)k and ρ = σ/μ = E[L]/E[S].

Proof. Integrating (174) using the PDF f(x) = μe−μx of user lifetimes, we have:

φ =

∫ ∞

0

P (T < x)f(x)dx

= e−2k
(
Ei(2k)−

∫ ∞

0

Ei(2ke−μx))f(x)dx
)
φout

= e−2k
(
Ei(2k)− 1

2k

∫ 2k

0

Ei(x)dx
)
φout. (179)

Observe that: ∫ 2k

0

Ei(x)dx = 1− e2k + 2kEi(2k). (180)

Substituting (180) into (179), we easily obtain (178).

It can be seen from (178) that by considering both in-degree and out-degree,

the probability of node isolation is reduced by a factor of approximately 2k for non-

trivial k. The reason for this relatively small improvement is that only a handful

of users benefit from the in-degree in their isolation resilience since the majority of

users depart very quickly and are unable to accumulate any in-degree neighbors.

Nevertheless, analysis of this section has important consequences as it shows that

the most reliable users of the system (i.e., those with large lifetimes) extract huge



105

Table III. Convergence of (178) to (167) for E[L] = 0.5 Hours and k = 6

E[S] Exact model (167) Approx. model (178) Relative error

36 sec 8.721× 10−10 1.421× 10−9 62.91%

3.6 sec 1.498× 10−14 1.581× 10−14 5.57%

360 ms 1.589× 10−19 1.598× 10−19 0.55%

36 ms 1.600× 10−24 1.600× 10−24 0

benefits from the in-degree process and are thus allowed to continue providing services

to others with much higher probability than possible with just the out-degree.

To complete this section, Table III shows the relative approximation error of (178)

and confirms its asymptotic accuracy. For large S, our numerical results from the

exact model suggest that (178) provides an upper bound on the isolation probability,

where φout/φ is 3-10 times larger than the 2k suggested by (178). For instance, for

fixed E[L] = 0.5 hours and k = 6, ratio φout/φ is 39 when E[S] = 2 minutes and 120

when E[S] = 6 minutes.

5.5. Summary

This chapter formally proved that the edge-arrival process to each user under uniform

selection approached Poisson as system size became sufficiently large. We then de-

veloped numerous closed-form results describing transient in-degree distribution and

isolation probability under the joint in/out degree model.
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CHAPTER VI

LINK LIFETIMES IN DHTS

6.1. Introduction

Traditional metrics in analysis of resilience of P2P systems have been the ability of the

graph to stay connected during user departure [45], [50], [61], behavior of immediate

neighbors during churn [39], data delivery ratio [84], evolution of out-degree [42] and

in-degree [93], and churn rate in the set of participating nodes [26]. All metrics above

depend on one fundamental parameter of churn – link lifetime, which is defined as the

delay between formation of a link and its disconnection due to a sudden departure of

the adjacent neighbor.

Recall that in many P2P networks, each joining user v creates and monitors k

links to other peers. Link behavior is often modeled as an ON/OFF process [43] in

which each link is either ON at time t, which means that the corresponding user is

currently alive, or OFF, which means that the user adjacent to the link has failed

and its failure is in the process of being detected and repaired. ON durations of links

are link lifetimes and their OFF durations are repair delays.

If links do not switch to other users during each ON duration (i.e., keep con-

necting to the same neighbors until they fail), then link durations are simply residual

lifetimes of original neighbors. We call this model non-switching and note that it ap-

plies to certain unstructured P2P networks [25] and some DHTs [58]. Link lifetimes

for non-switching systems have been studied in fair detail under both age-independent

[42] and age-biased [84] selection. However, many DHTs actively switch links to new

neighbors before the current neighbor dies in order to balance the load and ensure
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DHT consistency. We call such systems switching and note that their link lifetimes

require entirely different modeling techniques, which we present below (in the no-

tation of [26], switching/non-switching are agnostic neighbor replacement strategies,

where the former is called Active Preference List (APL) and the latter encompasses

both Passive Preference List (PPL) and Random Replacement (RR)).

6.1.1 Analysis of Existing DHTs

We start by introducing a stochastic process that keeps track of the changes in the

identity of neighbors adjacent to the i-th link of a given user v as the system ex-

periences churn. We show that this process is a regular semi-Markov chain whose

first hitting time to the absorbing state (which corresponds to the failure of the last

neighbor) is link lifetime R. Using this model, we find that the distribution of R is

determined not only by lifetimes of attached users, but also by the zone size of the

original neighbor holding the link.

We next obtain the Laplace transform of the distribution of R and derive its

expected value E[R] for general user lifetimes L, including heavy-tailed cases. We then

use this result to show that in systems with exponential peer lifetimes, link lifetime

R follows the same exponential distribution, which indicates that for such cases link

lifetimes are very similar to those in networks without switching [42]. However, for

heavy-tailed peer lifetimes (e.g., Pareto) observed in many real P2P networks [12],

[74], [89], our model shows that R is stochastically smaller than the residual lifetime

Z of the initial neighbor holding the link and, as first observed in [27], the mean link

lifetime E[R] is very close to E[L]. This is in stark contrast to the results of [42] where

E[R] is several times larger than E[L] depending on Pareto shape α of the lifetime

distribution (e.g., E[R] ≈ 11.1E[L] for α = 1.09 observed in [89] and E[R] ≈ 16.6E[L]

for α = 1.06 observed in [12]). This phenomenon occurs because older (i.e., more
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reliable) neighbors in DHTs are replaced with new arrivals that exhibit much shorter

remaining lifetimes. As a result, classical DHTs unfortunately do not extract any

benefits from heavy-tailed user lifetimes and suffer much higher link churn rates than

the corresponding unstructured systems [42]. A similar conclusion was obtained in

[26] for query failure rates in Chord.

6.1.2 Improvements

One method of overcoming the problem identified above is to utilize randomized

DHTs (e.g., randomized Chord [29], randomized hypercube [56], and Symphony [55])

in which the i-th finger pointer of a given user v is randomly selected from some

set Si of possible locations in the DHT space. By trying multiple options in Si and

linking to the user with the best characteristics (which we determine below), the hope

is to improve link lifetime and reduce the impact of churn on system performance.

Note that this method only works when set Si is sufficiently large. We assume that

each node has at least one link that satisfies this condition. The first randomized

technique, which we call max-age, selects m points in Si uniformly randomly and

connects v to the user with the largest age (this method was suggested in [84] for

DHTs and [96] for unstructured P2P systems). While quite effective in non-switching

scenarios, this strategy has minimal impact in DHTs since link lifetime is determined

by the remaining session length of not the first, but the last neighbor holding the

link.

To overcome this limitation, we propose a novel randomized strategy that stems

from our model of link lifetime R. Our theoretical results show that neighbors with

larger zones (e.g., in Chord [79], with larger distance to the predecessor) are less

reliable as they are more likely to be hit by a new arrival whose remaining lifetime

will be small. To extract benefits from randomized selection, we show that users must
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prefer neighbors in Si with the smallest zone size rather than maximum age or any

other characteristic. We call this strategy min-zone and show that it is vastly more

effective than max-age selection given lifetime distributions observed in real systems

[12], [89]. In addition to reduced link churn, min-zone selection benefits DHTs by

balancing the load such that users with smaller zone sizes are responsible for fewer

keys while forwarding more queries.

Note that min-zone selection allows one to achieve a spectrum of neighbor-

selection strategies, where m = 1 corresponds to regular switching behavior of DHTs

and m = ∞ emulates a non-switching system (in fact, different links of the same

peer may use different m depending on the size of each Si). However, unlike purely

non-switching networks that create inconsistences in finger tables and sometimes re-

quire routing along successor/predecessor links, min-zone selection always keeps the

network consistent.

We finish the chapter by showing that under min-zone selection and shape pa-

rameter 1 < α ≤ 2, the mean link lifetime E[R] tends to infinity as the number of

samples m becomes large. We also suggest simple formulas for E[R] using examples of

Pareto shape α obtained from recent measurements [12], [89] and show simple results

demonstrating the growth rate of E[R] as a function of m.

6.2. General DHT Model

We start by formulating assumptions on the DHT space, churn model, and link

switching in DHTs.
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6.2.1 Assumptions

Without loss of generality, we assume that the network maps keys and users into

the same identifier (ID) space, which is a continuous ring in the interval [0, 1) [60].

Each user is responsible for a fraction of the DHT space from its predecessor to itself,

which we call the user’s zone. To facilitate routing, each joining peer v selects and

then monitors using some stabilization technique k links in the DHT space as shown

in Fig. 21(a).

For the churn model, we adopt the framework of n alternating renewal processes

representing periodic online/offline behavior of users (see Chapter III) observed in

real P2P systems [26], [89]. While the total number of users n is fixed, the number of

currently alive peers Nt at time t is a random process that fluctuates over time. Once

stationarity is reached, we usually replace Nt with its limiting version N = limt→∞ Nt.

We finally assume that when a particular user rejoins the system, it generates a new

random ID (e.g., based on its IP-port pair) instead of using the same fixed hash.

Note that the use of new IDs helps balance the load in the DHT [79], [90]. As a

consequence of this churn model [93, Theorem 5], user arrivals into the system follow

a Poisson process with a constant rate λ = E[N ]/E[L], where E[N ] is the average

number of users in the steady state and E[L] is the mean user lifetime.

6.2.2 Neighbor Dynamics

Note that the main focus of the chapter is on the behavior of one particular link i

in Fig. 21(a) (other links are similar) and the lifetimes of neighbors adjacent to it

during v’s online session. As user v continues to stay in the system, the identity of its

neighbors (i.e., successors of its neighbor pointers) may change over time as users join

and leave the system. There are two types of changes in neighbor tables – graceful
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Fig. 21. User v’s neighbors in the DHT.

handoffs of an existing zone to another user and node departures without explicit

notification of v [79]. The former type, which we call a switch, occurs when a new

arrival takes ownership of a link by becoming the new successor of the corresponding

neighbor pointer. This is shown in Fig. 21(b) where a new arrival w splits the zone

of an existing neighbor u and becomes the new neighbor of v. The latter type of

neighbor change, which we call a recovery, happens when an existing neighbor dies

and the successor of the failed neighbor takes over that zone to become the new

neighbor of v.

We next define several additional metrics to facilitate explanation in later parts

of the chapter. Notice that one cycle in the life of a particular neighbor pointer is

composed of several switches and one recovery as shown in Fig. 22(a). In the figure,

thick horizonal lines represent online presence of peers that own v’s neighbor pointer

in the DHT space. The topmost line is the original neighbor with residual lifetime

Z1 acquired by v during join. As peers split the zone of the current neighbor, the

link switches to two additional users. Switch is complete after a new user performs

all join tasks [79]. Once the last user dies at time R1, the link is considered dead and

a replacement process is initiated. Specifics of detecting failure are not essential to
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Fig. 22. The i-th link failure and replacement of user v who joins at time 0 in a DHT,

1 ≤ i ≤ k.

our results as repair delay is not studied in this chapter. Recovery is finished after S

time units when another node takes over the zone of the dead peer and is selected as

v’s new neighbor.

In all other aspects, the second recovery cycle behaves identical to the first one

and leads to link failure after R2 time units. This ON/OFF nature of the link process

is shown in Fig. 22(b) where we assume that all repair delays S are i.i.d. random

variables, but the distribution of link lifetimes R1, R2, . . . may depend on the cycle

number (in fact they do in certain cases studied below).

The final note is that it is important to distinguish the residual lifetime of the

first neighbor from that of a link. While in non-switching systems the former metric

(e.g., variables Z1, Z2, . . .) determine how long a link stays alive, this is no longer

the case in switching networks. Instead, the latter metric formalized as R1, R2, . . .

determines query performance and a user’s ability to tolerate churn. Our next step

is to understand the behavior of these random variables under general lifetime distri-
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butions.

6.3. Link Lifetime Model

In this section, we construct a semi-Markov model for the distribution of lifetimes

R1, R2, . . . of a given link in a user’s routing table.

6.3.1 Preliminaries

Recall that arriving users split zones of existing nodes based on a uniformly random

hashing function. Denote by U the random zone size of existing users in a stationary

system as shown in Fig. 23(a). Further assume that during join or the current

recovery step that starts cycle j, successor u takes over pointer i as shown in Fig.

23(b). Then, define Yj to be the remaining zone size between this pointer and the

index of u. Intuitively, if the remaining zone Yj is large, then it is likely that a new

arrival will soon split the zone and the ownership of the link will be transferred to

another peer. Therefore, link lifetimes are determined not by the distribution of U ,

but rather by that of Yj. We derive both metrics later in the chapter and next show

how they can be used to obtain R1, R2, . . .

For simplicity of notation, define conditional link lifetime R(y) as the duration

of the link conditioned on the fact that the remaining zone size Yj is y > 0. Then,

observe that the CDF (cumulative distribution function) of link lifetimes Rj can be

written as:

P (Rj < x) =

∫ ∞

0

P (R(y) < x)fYj
(y)dy, (181)

where fYj
(y) is the PDF (probability density function) of remaining zone size Yj (note

that the distribution of Yj depends on cycle number j). Similarly, we can obtain the
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Fig. 23. Zone size U and remaining zone size Yj of user u.

expectation of Rj as:

E[Rj ] =

∫ ∞

0

E[R(y)]fYj
(y)dy. (182)

Thus, the task of deriving link lifetime Rj is reduced to analyzing the properties

of conditional link lifetime R(y) and the distribution of remaining zone size Yj . In

the rest of this section, we construct a semi-Markov process for each R(y) and leave

the derivation of the distribution of Yj for deterministic DHTs to Section 6.4. and

that for randomized DHTs to Section 6.5.

6.3.2 Neighbor Dynamics

For each zone size y, let variable Ay
δ count the number of switches (i.e., replacements

by new users) that have occurred along the link in the time interval [0, δ], where time

0 denotes the instance when user v finds the first neighbor at the beginning of the

current cycle. Denote by Ay
δ = F a special absorbing state into which Ay

δ arrives if

the current neighbor attached to the link is in the failed state at time δ.

Then, it is easy to see that {Ay
δ ; δ ≥ 0} is a continuous-time stochastic process
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with state space {F, 0, 1, 2, . . .} whose state transitions are shown in Fig. 24. As

depicted in this figure, for each state i ≥ 0, the process can jump into either state

i+1, which means that a given zone is further split by a new arrival (i.e., the number

of switches increases by 1), or state F , which represents link failure. The initial state

of the process at time 0 is always 0. 
 

 
 
 

0 1 m … 

F

… 

absorbing state, link failure 

switch switch switch switch 

Fig. 24. State diagram for the process {Aj
δ, δ ≥ 0} of neighbor changes.

Using notation {Ay
δ}, variable R(y) can be described as the first-hitting time of

process {Ay
δ} onto state F given that Ay

0 = 0:

R(y) = inf{δ > 0 : Ay
δ = F |Ay

0 = 0, Yj = y}. (183)

The next theorem shows that {Ay
δ ; δ ≥ 0} is a semi-Markov chain that describes

the process of new users entering a given zone of initial length y and repeatedly

splitting it.

Theorem 14. Process {Ay
δ , δ ≥ 0} for a given remaining zone size Yj = y is a

regular semi-Markov chain. The sojourn time τi in state i follows the following general

distribution:

P (τi > x) =

⎧⎪⎪⎨⎪⎪⎩
P (W0 > x)P (Zj > x) i = 0

P (Wi > x)P (L > x) i ≥ 1

, (184)
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where Zj is the residual lifetime of the first neighbor that starts the j-th cycle, L is

user lifetime with CDF F (x), Wi is an exponential random variable with rate λi:

λi =
E[N ]y

E[L]2i
, i ≥ 0, (185)

and E[N ] is the mean system size. Furthermore, transition probability pi,i+1 from

state i to i + 1 is given by:

pi,i+1 =

⎧⎪⎪⎨⎪⎪⎩
P (W0 < Zj) i = 0

P (Wi < L) i ≥ 1

, (186)

and the probability pi,F to absorb from state i is equal to 1− pi,i+1.

Proof. For the heterogeneous churn model of [93] used in this work, new user arrivals

into the DHT space approach a Poisson process with constant rate [93, Theorem 5]:

λ =
E[N ]

E[L]
, (187)

where E[N ] is the mean number of users in an equilibrium system and E[L] is the

mean user lifetime. Then from the Marked Poisson theorem [70], the arrival process

into any fixed zone with size y is Poisson with average rate:

λ0 = λpy, (188)

where py = y is the probability that a given zone of length y is selected from the DHT

space [0, 1).

Next, observe that the wait time W0 to transition from state 0 to state 1 (i.e., the

delay before the next arrival into the remaining zone of size y between the neighbor

pointer and the current neighbor) is exponentially distributed as exp(λ0). As the

given zone is successively divided by new arrivals over time, its length is reduced over
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time, which in turn reduces the user arrival rate into the zone. Since a given zone

of length y is uniformly divided under random split by a new arrival, the expected

length of the new zone is simply y/2. This implies that the wait time Wi to transition

from state i to state i + 1 is exponential with rate:

λi =
λ0

2i
=

E[N ]y

E[L]2i
, i ≥ 0, (189)

which depends not only on state i, but also the initial zone size y.

We now consider transitions to state F . Given Aδ = i, i ≥ 1, a jump to state F

is triggered by the departure of the current user, which happens L time units after

the chain arrives to state i, where L is the random user lifetime. For state i = 0, the

delay before the jump to state F is slightly different and equals the original user’s

remaining lifetime Zj where j is the cycle number of Rj . It then follows that due to

the independence among user departures and arrivals in a sufficiently large system,

the sojourn time τi in state i is simply:

τi =

⎧⎪⎪⎨⎪⎪⎩
min(W0, Zj) i = 0

min(Wi, L) i ≥ 1

, (190)

where Wi ∼ exp(λi) and is independent of Zj and L. Since Zj and L may follow

general distributions, respectively, sojourn time τi may have a non-exponential dis-

tribution.

Finally, transition probability pi,i+1 from state i to i + 1 is given by:

pi,i+1 =

⎧⎪⎪⎨⎪⎪⎩
P (W0 < Zj) i = 0

P (Wi < L) i ≥ 1

, (191)

and the probability pi,F to absorb from state i is equal to 1 − pi,i+1. Note that due

to Wi → ∞ for i → ∞, it is clear that pi,i+1 → 0 as i → ∞ and the decay rate is
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exponentially fast. Thus, {Ay
δ} is regular.

Recognizing that these transitions behave like a discrete-time Markov chain and

sojourn times in states depend only on their current states and follow general distribu-

tions, we immediately conclude that {Ai
δ} is a regular semi-Markov chain (SMC).

This theorem shows in (185) that as the number of switches within a zone (i.e.,

variable i) increases, arrival rate λi of news users into the zone decreases exponentially

fast (or alternatively, the mean waiting time E[Wi] until the next arrival increases at

the same rate). As i → ∞, the likelihood of a new arrival into the zone diminishes

and the delay in state i becomes simply the lifetime of the last user holding the edge.

For small i, however, analysis is much more complex as shown in the next subsection.

6.3.3 Conditional Link Lifetimes

Next, we study the distribution and expectation of conditional link lifetime R(y).

To understand our next theorem, several definitions are necessary. First, denote the

CDF of sojourn time τi in state i by:

Gi(t) = P (τi < t). (192)

Second, observing from (184) that τi of chain {Ay
δ} is independent of the next

state, define a semi-Markov kernel matrix Q(t) = [qik(t)] using [14]:

qik(t) = pikGi(t), i, k ∈ {F, 0, 1, . . .}, (193)

where pik is the transition probability from state i to state k given in (186). The

Laplace (Stieltjes) transform of qik(t) is then simply:

q̂ik(s) =

∫ ∞

0

e−stdqik(t) = pik

∫ ∞

0

e−stdGi(t). (194)
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Finally, define the Laplace transform of the first hitting time R(y) from state 0

to F as:

R̂(s, y) = E[e−sR(y)]. (195)

Although it is known that the Laplace transform of the first-hitting time of

a semi-Markov chain can be computed using spectral properties of kernel Q(t) [11],

this approach hides the effect of system parameters on the resulting distribution. Due

to the simplicity of state transitions of chain {Ay
δ}, we next derive R̂(s, y) without

involving matrix operations on Q(t).

Theorem 15. The Laplace transform R̂(s, y) of conditional link lifetime R(y) is given

by:

R̂(s, y) = q̂0F (s) +
∞∑

k=1

(
k−1∏
i=0

q̂i,i+1(s)

)
q̂kF (s), (196)

where q̂ik(s) are shown in (194).

Proof. Generalize the first hitting time from any starting state i ≥ 0 to state F as:

TiF = inf{δ > 0 : Ay
δ = F |Ay

0 = i, Yj = y} (197)

and define the following Laplace transform for TiF :

T̂iF (s) = E[e−sTiF ] =

∫ ∞

0

e−stdFTiF
(t), (198)

where FTiF
(t) is the CDF of TiF . Then, from first-step analysis, (198) can be trans-

formed into:

E[e−sTiF ] = piFE[e−sτi ] + pi,i+1E[e−s(τi+Ti+1,F )], (199)

where pik is the transition probability from state i to k shown in (186). Noting that τi
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is independent of Ti+1,F and conditioning on the current state being i, (199) reduces

to:

E[e−sTiF ] = piFE[e−sτi ] + pi,i+1E[e−sτi ]E[e−sTi+1,F ]

= q̂iF (s) + q̂i,i+1(s)E[e−sTi+1,F ], (200)

where q̂i,k(s) is defined in (194). Using the above recurrent functions and observing

that q̂i,i+1(s) → 0 for i → ∞ (due to transition probability pi,i+1 → 0 in this case),

we readily obtain:

E[e−sT0F ] = q̂0F (s) +
∞∑

k=1

(
k−1∏
i=0

q̂i,i+1(s)

)
q̂kF (s), (201)

which establishes (196) upon recalling that R(y) is defined as T0F .

With R̂(s, y) in hand, we can apply the inverse Laplace transform to retrieve the

distribution of R(y) and take the derivatives of R̂(s, y) to get its moments. Next, we

use a simpler approach to obtain the mean E[R(y)].

Theorem 16. The expected conditional link lifetime is:

E[R(y)] = E[τ0] +
∞∑

k=1

(
k−1∏
i=0

pi,i+1

)
E[τk], (202)

where E[τk] is the expected sojourn time in state k shown in (184) and pi,i+1 are state

transition probabilities in (186).

Proof. Given that the chain currently is in state i ≥ 0, it can jump either to state F

or i + 1. Then by conditioning on the first jump, it is not hard to see that:

E[TiF ] = E[τi] + pi,i+1E[Ti+1,F ], (203)
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where TiF is defined in (197). Using the above recurrence functions, we easily obtain:

E[R(y)] = E[T0F ] = E[τ0] + p01E[T1F ]

= E[τ0] + p01 (E[τ1] + p12E[T2F ])

= E[τ0] +

∞∑
k=1

(
k−1∏
i=0

pi,i+1

)
E[τk], (204)

where the last step is obtained by induction and recalling that pi,i+1 → 0 for i →

∞.

Theorems 14–16 demonstrate that variable R(y) is fully determined by user life-

times L and residual neighbor lifetimes Zj. Our remaining steps are to analyze the

properties of Zj and derive the distribution of remaining zone sizes Yj for both deter-

ministic and randomized DHTs.

6.4. Deterministic DHTs

In deterministic DHTs, each neighbor pointer of user v is generated based on a fixed

distance between the pointer and the user. We start this section by deriving a model

for R(y) under two types of user lifetimes and then analyze the distribution of residual

zone size Yj.

6.4.1 Residual Lifetimes of Neighbors

Using the user churn model summarized in Section 6.2.1, it has been shown in The-

orem 2 that the distribution of neighbor residual lifetime under uniform selection

converges to the following equilibrium CDF as system age t→∞:

H(x) =
1

E[L]

∫ x

0

(1− F (u))du, (205)
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where F (x) is the user lifetime distribution. Since recovery in our DHT model is not

biased with respect to user age, (205) is also the CDF of residual lifetime for users

that are found during recovery, which we formally state in the next lemma.

Lemma 17. For all j ≥ 1, the CDF of residual lifetime Zj of the initial neighbor

that starts the j-th cycle converges to (205) as system age approaches infinity.

It is important to emphasize that Lemma 17 holds when switching occurs in

DHTs in response to Poisson user arrivals into the system and may not hold otherwise.

When a neighbor pointer switches to a new user, it loses track of which peer on the

ring will be the neighbor that will start the next cycle in the link’s ON/OFF process.

Hence, neighbor selection during link recovery is essentially uniformly random among

the existing neighbors (due to random hash indexes) and independent of the selected

neighbor’s age.

Given Lemma 17, the mean residual lifetime E[Zj ] can be expressed directly

using the properties of L as [91]:

E[Zj ] =
E[L2]

2E[L]
. (206)

Before we show simulation results, we define rules for generating DHTs under

churn. In simulations, user arrivals follow a Poisson process with a constant rate

E[N ]/E[L], where the mean system size E[N ] and the average user lifetime E[L] are

determined a-priori. Each user departs at the end of its lifetime L, which is drawn

from a given distribution F (x). In addition, each joining user obtains a uniformly

random hash index in [0, 1), follows the random-split algorithm during join, and

performs recovery when its successors die. After the system has evolved for enough

time, we compare simulation results to the derived models to assess their accuracy in

finite graphs and systems with age t <∞.
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Fig. 25. Comparison of simulation results to model (205) in a deterministic DHT with

E[N ] = 1, 000. In both cases, E[L] = 1 hour.

Simulations of Zj for j = 2, 3 and two lifetime distributions are shown in Fig. 25.

As demonstrated by the figure, Lemma 17 correctly predicts that recovery obtains

neighbors whose residuals can be considered drawn uniformly randomly from the

system and whose residual lifetimes are given by (205). This result holds for both

heavy-tailed (e.g., Pareto) and light-tailed (e.g., uniform) user lifetimes. Additional

simulations for larger j and other lifetime distributions confirming (205) are not shown

here for brevity.

6.4.2 Exponential Lifetimes

We start by investigating R(y) under exponential lifetimes. Assume that user lifetimes

L are exponential with rate μ = 1/E[L]. Then, it is easy to obtain from Lemma 17

that residual lifetime Zj of the initial neighbor, for all cycles j ≥ 1, is exponential

with the same rate μ. Using L ∼ exp(μ) and Zj ∼ exp(μ) and invoking Theorem 15

leads to the following result.
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Theorem 17. For user lifetimes L with CDF 1−e−μx, link lifetime Rj is independent

of remaining zone size Yj and has the same distribution as L:

P (Rj < x) = 1− e−μx, for all j ≥ 1, (207)

where μ = 1/E[L].

Proof. Using the fact that neighbor residual lifetimes Zj and user lifetimes L have

the same exponential distribution with parameter μ = 1/E[L], we obtain the sojourn

time τi in state i ≥ 0 from (184):

P (τi > t) = P (Wi > t)P (L > t) = e−(λi+μ)t, (208)

where λi is the arrival rate given in (185). This means that τi is an exponential

random variable with rate λi + μ. Next, transition probabilities pi,i+1, i ≥ 0, can be

computed from (186) as:

pi,i+1 = P (Wi < L) =
λi

λi + μ
. (209)

Then, using (208) and (209), we easily get the Laplace transform q̂i,i+1(s) from

(194):

q̂i,i+1(s) = pi,i+1
λi + μ

λi + μ + s
=

λi

λi + μ + s
. (210)

Similarly, we obtain the Laplace transform q̂iF (s):

q̂iF (s) = (1− pi,i+1)
λi + μ

λi + μ + s
=

μ

λi + μ + s
. (211)

Invoking Theorem 15 and substituting (210) and (211) into (196), we get the
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Laplace transform of R(y) for exponential lifetimes:

R̂(s, y) =μ
( 1

λ0 + C
+

λ0

λ0 + C
· 1

λ1 + C
+

λ0

λ0 + C
· λ1

λ1 + C
· 1

λ2 + C
+ . . .

)
, (212)

where C = μ + s. Recalling that λi+1 = λi/2 and setting a = λ0, (212) reduces to:

R̂(s, y) =μ
( 1

a + C
+

a

a + C
· 1

a/2 + C
+

a

a + C
· a/2

a/2 + C
· 1

a/4 + C
+ . . .

)
.
= μf(C),

where f(C) is defined as the summation term in the last equation. Observe that f(C)

can be transformed into:

f(C) =
1

a + C
+

a

a + C
· 2

a + 2C
+

a

a + C
· a

a + 2C
·

4

a + 4C
+ . . . =

1

a + C

(
1 + 2a · f(2C)

)
. (213)

Solving the last recurrence, we have f(C) = 1/C, which is the only solution

since the infinite summation f(C) is a unique real number (convergence follows from

the monotonically increasing nature of the summation as a function of the number of

terms). We finally obtain:

R̂(s, y) =
μ

C
=

μ

μ + s
, (214)

which shows that R(y) is an exponential variable with parameter μ. It is apparent

from (214) that R(y) is independent of Yj = y, which then establishes this theorem.

Model (207) is very accurate as shown in Fig. 26. Notice from the left figure

that E[Rj ] is equal to mean user lifetime E[L] and from the right figure that the
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Fig. 26. Comparison of model (207) to simulations in a deterministic DHT with

E[N ] = 2, 000 and exponential user lifetimes with E[L] = 1 hour.

distribution of Rj is indeed exponential, which holds for any j ≥ 1 (only R3 is shown

in the figure).

The rationale behind Theorem 17 can be explained as follows. Recall that Zj is

the residual lifetime of the first neighbor u that owns the neighbor pointer in each

cycle. Due to the memoryless property of exponential distributions, the remaining

time of Zj obtained at a random instant is still exponential with rate μ, which matches

the lifetime distribution of new arrivals entering the same zone. Therefore, it makes

no difference whether a current neighbor u is replaced by a new arrival or not. Then,

it is not hard to see that the link lifetime has the same distribution as Zj, which is

exp(μ). A similar scenario is observed in M/M/1 queues [91] where customers can

be interrupted during services and the distribution of the total service time required

for a customer does not change.

Theorem 17 indicates that switching has no impact on link lifetimes in any DHT

with exponential user lifetimes, which makes analysis of system performance in such

systems very simple. However, we should note that this result does not hold for any
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non-exponential lifetime distribution. As recent measurements of P2P networks show

that user lifetimes are often heavy-tailed [12], [89], we next use the Pareto distribution

P (L < x) = 1− (1 + x/β)−α with shape parameter α > 1 and scale parameter β > 0

to estimate the performance of real DHTs under churn.

6.4.3 Pareto Lifetimes

For Pareto L, it is clear from Lemma 17 that the residual lifetime Zj of initial neigh-

bors follows the CDF P (Zj < x) = 1− (1+x/β)−(α−1) for all j ≥ 1, which shows that

Zj are also Pareto-distributed but more heavy-tailed. Next, we apply Theorem 15 to

obtain the Laplace transform R̂(y, s) and Theorem 16 to obtain the mean of R(y).

Theorem 18. For Pareto lifetimes L, the mean conditional link lifetime E[R(y)] is

given by (202) with

E[τi] = βeλiβEαi
(λiβ), pi,i+1 = λiE[τi] (215)

where arrival rate λi is given in (185), Ek(x) =
∫∞
1

e−xu u−kdu is the generalized

exponential integral, and

αi =

⎧⎪⎪⎨⎪⎪⎩
α− 1 i = 0

α i ≥ 1

. (216)

Furthermore, the Laplace transform R̂(y, s) is given by (196) with

q̂i,i+1(s) = λiE[τi]A, q̂iF (s) = (1− λiE[τi])A, (217)

where A = 1 + (1 − λi − s)βe(λi+s)βEαi
((λi + s)β), and E[τi] is shown in (215) and

αi in (216).

Proof. Since Zj ∼ Pareto(α−1, β) for all j ≥ 1, we obtain the distribution of sojourn
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time τ0 in state 0 from (184):

P (τ0 > t) = P (W0 > t)P (Zj > t)

= e−λ0t
(
1 +

t

β

)−(α−1)

, (218)

where λ0 is given in (185). Then, we easily get the PDF of τ0:

fτ0(t) = −dP (τ0 > t)

dt
= λ0e

−λ0t
(
1 +

t

β

)−(α−1)

+
α− 1

β
e−λ0t

(
1 +

t

β

)−α

, (219)

and its mean:

E[τ0] =

∫ ∞

0

P (τ0 > t)dt =

∫ ∞

0

e−λ0t
(
1 +

t

β

)−α+1
dt

= βeλ0βEα−1(λ0β), (220)

where Ek(x) =
∫∞
1

e−xu u−kdu is the generalized exponential integral. Next, the

transition probability p01 from state 0 to 1 can be computed from (186) as:

p01 = P (W0 < Zj) =

∫ ∞

0

P (W0 < t)fZ(t)dt

=

∫ ∞

0

(
1− e−λ0t

) α− 1

β

(
1 +

t

β

)−α

dt

= 1− (α− 1)eλ0βEα(λ0β)

= λ0βeλ0βEα−1(λ0β) = λ0E[τ0], (221)

where the last step is established upon recalling (220). Substituting (219) and (221)

into (194) and doing certain algebra, we obtain the Laplace transforms of the semi-
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Fig. 27. Comparison of model E[R(y)] in Theorem 18 to simulation results in a deter-

ministic DHT with mean size E[N ] = 2, 000 and Pareto user lifetimes L with

mean E[L] = 1 hour and β = E[L](α − 1).

Markov kernel starting from state 0:

q̂01(s) = p01

∫ ∞

0

e−stfτ0(t)dt = λ0E[τ0]

× [1 + (1− λ0 − s)βe(λ0+s)βEα−1((λ0 + s)β)], (222)

q̂0F (s) = (1− λ0E[τ0])
[
1 + (1− λ0 − s)β

× e(λ0+s)βEα−1((λ0 + s)β)
]
. (223)

Laplace transforms q̂i,i+1(s) and q̂iF (s), i ≥ 1 can be obtained by replacing λ0

with λi and α− 1 with α in the above equations. Invoking Theorems 15-16, we have

the desired result.

Fig. 27 shows simulation results of E[R(y)] for several values of remaining zone

sizes y and the plots the corresponding model from Theorem 18. Besides the accuracy

of the model, notice from this figure that as remaining zone size y reduces, E[R(y)]

increases and converges to E[Z1], where the distribution of neighbor residual lifetime
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Z1 is given in (205).

We next derive the distribution of zone sizes in deterministic DHTs in order to

obtain a computable model for Rj .

6.4.4 Zone Sizes

In order to determine the distribution of zone sizes U and Yj in Fig. 23, we must

decide on the zone splitting method. The derivations below only cover the random-

split [90] mechanism (i.e., zones are split at hash indexes of arriving users) that is

used in Chord [79] and only considers one-dimensional DHTs. A similar derivation

can be carried out for the center-split [52], [67] strategy (i.e., zones are always split

in the center) and multi-dimensional DHTs, but this analysis is much more tedious

and is not shown here.

Since all arriving users are placed in the interval [0, 1), the average zone size

is approximately 1/E[N ], where N is the random system size in the steady-state.

Approximation E[1/N ] = 1/E[N ] is asymptotically accurate as system size tends to

infinity for the ON/OFF churn model of [93]. This follows from the fact that N/E[N ]

converges to 1 in probability. The next result states that in equilibrium DHTs, zone

sizes no larger than 1/
√

E[N ] are distributed approximately exponentially. Since

most zone sizes do not deviate from the mean very far, this result directly applies to

random variable U defined earlier.

Lemma 18. As the mean system size tends to infinity, the distribution of small zones

in the DHT becomes approximately exponential:

lim
E[N ]→∞

P (U > x)

e−E[N ]x
= 1 (224)

for all x such that x2E[N ]→ 0.
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Proof. We assume that the probability that a user of any given zone size departs

is equally likely (i.e., zone sizes do not depend on user lifetimes and vice versa).

Then, given that hash index Xi of any user i is uniformly random in [0, 1) at any

time t, it is well-known that zone sizes U are uniformly distributed on the simplex

{(x1, · · · , xN)|xi ≥ 0;
∑

xi = 1} [17]. It follows that conditioning on N = z, the

probability that a zone of size x from a given point Xi of user i is unoccupied by the

remaining z − 1 users is simply:

P (U > x|N = z) = (1− x)z−1. (225)

Note that (1− x)z−1 can be transformed into:

(1− x)z−1 = e(z−1) log(1−x) = e−x(z−1)+O(x2)(z−1), (226)

where the expansion uses the Taylor approximation of log(1− x). Substituting (226)

into (225) and keeping in mind that x = o(1/
√

E[N ]), we obtain:

P (U > x|N = z)

e−xz
= ex+O(x2)(z−1) → 1, (227)

as E[N ]→∞.

For the heterogeneous user churn model, recall from [93, Lemma 1] that N is a

Gaussian variable with PDF fN (z). The distribution P (U > x) can then be computed

by integrating P (U > x|N = z) with respect to z:

lim
E[N ]→∞

P (U > x)

e−E[N ]x
=

∫∞
0

e−xzfN(z)dz

e−E[N ]x
, (228)

where the last step is obtained by using (227). It then follows from (228) that:

lim
E[N ]→∞

P (U > x)

e−E[N ]x
=

e−E[N ]x+V ar[N ]x2/2

e−E[N ]x
, (229)

since e−xN is a lognormal random variable. Recalling V ar[N ] < E[N ] [93, Lemma 1]
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and x2E[N ]→ 0 as E[N ]→∞, (229) yields:

lim
E[N ]→∞

P (U > x)

e−E[N ]x
= 1, (230)

which is the desired result. Finally, note that the requirement of x2E[N ]→ 0 is tight

and cannot be relaxed for computing the distribution of U .

Our next task is to obtain the distribution of remaining zone size Yj in each cycle

j ≥ 1.

Lemma 19. For a given zone size y, assume that y2E[N ]→ 0 as E[N ]→∞. Then,

the PDF fYj
(y) of remaining zone size Yj is asymptotically:⎧⎪⎪⎪⎨⎪⎪⎪⎩

lim
E[N ]→∞

fY1(y)

E[N ]e−E[N ]y
= 1 j = 1

lim
E[N ]→∞

fYj
(y)

E[N ]2ye−E[N ]y
= 1 j ≥ 2

, (231)

where E[N ] is the mean system size in equilibrium.

Proof. Due to the memoryless property of the exponential limiting distribution of U

shown in (224), the remaining zone size Y1 from a neighbor pointer, which randomly

splits the zone of some neighbor u, to the hash index of u follows the same distribution

of U .

Next, note that Yj, j ≥ 2, is the initial zone size of a replacement neighbor u

obtained by user v during each recovery. At this time, replacement neighbor u covers

its own zone as well as that of the failed user. Thus, it is clear that Yj = Y1 + U ,

which has the same distribution as U +U . It then immediately follows that Yj, j ≥ 2,

has the Erlang-2 distribution since it is a sum of two exponentials.

Lemma 19 shows that the distribution of Y1 is exponential and that of Yj for

j ≥ 2 is Erlang-2. As demonstrated in Fig. 28, model (231) is very accurate even for
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Fig. 28. Comparison of simulation results of Yj to model (231) in a deterministic DHT

with mean size E[N ] = 500 under churn produced by Pareto L with α = 3

and E[L] = 1 hour.

small average system size E[N ] = 500 users. Additional simulation results confirming

(231) for larger E[N ] and different j are not shown for brevity.

6.4.5 Putting the Pieces Together

The final step is to apply (181) and (182) to uncondition the distribution of link

lifetime Rj and its mean E[Rj ] using the distribution of initial zone size Yj given in

(231). To this end, substituting E[R(y)] shown in Theorem 18 and the PDF of Yj in

(231) into (182) leads to the final result on the mean link lifetime E[Rj ]. Similarly,

to get the distribution of Rj , we first retrieve the distribution of R(y) from R̂(s, y)

in Theorem 18 by applying an existing inverse Laplace transform software package

[1]. Then substituting the distribution of R(y) and (231) into (181) leads to the final

model of the distribution of link lifetime Rj.

Fig. 29 shows simulations results and the model of the mean link lifetime E[Rj ]

and the average residual lifetime E[Zj ] of the initial neighbor that starts the j-th cycle.
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Fig. 29. Comparison of E[Rj ] to E[Zj] in a deterministic DHT with mean size

E[N ] = 2, 500 users, Pareto lifetimes with mean E[L] = 1 hour, and

β = E[L](α− 1).

The model of E[Zj] is obtained using (206) and the general solution to E[Rj ] is given

in (182). As shown in the figure, both models match simulation results very well and

as α becomes smaller, the difference between E[Rj ] and E[Zj] increases as expected.

Recall that smaller α leads to stochastically larger Zj and thus increases reliability of

non-switching systems [42]. The above results also show that the process of switching

to new users can significantly reduce the lifetime of a link and that deterministic

DHT systems with Pareto L can exhibit E[Rj ] very close to E[L]. This is in contrast

to unstructured P2P systems where E[Rj ] can be 11 − 16 times higher than E[L]

depending on shape parameter α [12], [89].

Further observe from the model and Fig. 29 that link lifetimes are completely

characterized by two random variables R1 and R2 since Rj for j ≥ 3 has the same

distribution as R2. This arises from the fact that zone size Y1 is different from Y2,

while Yj for j ≥ 3 are all distributed as Y2. Since Y1 is stochastically smaller than

Y2 (see Lemma 19), it follows that R1 is stochastically larger than R2. Furthermore,
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Fig. 30. Link lifetimes R4 are less heavy-tailed than Pareto user lifetimes L in a de-

terministic DHT with mean size E[N ] = 2, 500 peers, E[L] = 1 hour, and

β = (α− 1)E[L].

from the analysis of the Markov chain in previous sections, it becomes clear that

selecting neighbors with smaller initial zone sizes leads to larger link lifetimes since

such neighbors are less likely to be replaced by newly arriving users and the link’s

E[Rj ] will be closer to E[Zj ].

The most intriguing result shown in Fig. 29 is that E[Rj ] for all j ≥ 2 is very close

to the mean user lifetime E[L] under different values of α (e.g., E[R4] = 0.986 hours

for α = 3 and 1.096 for α = 2.2). However, from the model of the tail distribution

of link lifetime R4 shown in Fig. 30, observe that the distribution of Rj for j ≥ 2

is actually different from that of lifetime L and is less heavy-tailed than the original

distribution. A similar result holds for other values of α and other distributions,

which we do not show for brevity.
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6.5. Randomized DHTs

Since the user arrival process into a DHT usually cannot be changed to achieve better

system resilience, peers may utilize the knowledge of residual lifetime Zj of the initial

owner of a given link and/or remaining zone size Yj to improve link lifetime Rj . In

the following, we make use of the freedom of selecting links in randomized DHTs to

achieve the goal of increasing Rj using two different link-selection strategies.

6.5.1 Max-Age Selection

The first strategy we apply for selecting neighbor pointers is called max-age [84], [96].

In this technique, which we explain using the example of Randomized Chord [29],

user v with hash index id(v) ∈ [0, 1) uniformly randomly samples m points in the

range [id(v) + 2i/264, id(v) + 2i+1/264) and selects the point whose successor has the

maximum age as its i-th neighbor pointer. Note that switching occurs as described

before (i.e., when new users split a given zone and replace existing neighbors) and

link failure is repaired by replacing the dead neighbor (i.e., the last user holding the

link) with the current successor.

It is clear that link lifetimes Rj for all cycles j ≥ 1 have the same distribution

since the neighbor pointer in each cycle is uniformly randomly generated within a

certain range of users (as mentioned before, we assume the range is large enough to

support non-trivial choices). Simulation results of max-age selection and the model

of E[Zj ] from [96] are shown in Fig. 31. First notice from part (a) that for a

fixed number of samples m = 6, as shape α decreases, the mean link lifetime E[Rj ]

increases much slower than the mean residual lifetime E[Zj ] of the initial neighbor

(in fact, E[Zj] = ∞ for α ≤ 2). A similar phenomenon appears in part (b) where

E[Zj] increases at the rate of
√

m for α = 3 (see [96, Lemma 5]), while E[Rj ] rises



137

1

10

100

1.5 2.6 3.7 4.8 5.9 7
shape alpha

h
o

u
rs

model E[Z]
simulations E[Z]
simulations E[R]

(a) m = 6

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15 17 19
number of samples m

h
o

u
rs

model E[Z]
simulations E[Z]
simulations E[R]

(b) α = 3

Fig. 31. Impact of shape α and number of samples m on mean link lifetime E[Rj ]

under max-age selection in a randomized DHT with mean size E[N ] = 2, 000

for Pareto lifetimes with E[L] = 1 hour and β = E[L](α − 1).

from 1.17 hours to only 2.09 hours as m increases from 1 to 19. These two subfigures

demonstrate that the improvement in terms of the mean link lifetime E[Rj ] under

max-age selection is generally very small since new arrivals sooner or later split initial

neighbors to take ownership of the link and hence ages or residual lifetimes of original

neighbors do not affect link churn rate very much.

6.5.2 Min-Zone Selection

To reduce the likelihood that new arrivals replace old neighbors when splitting a given

zone, we propose a new strategy called min-zone. Similar to the max-age method,

user v uniformly samples m points in [id(v)+2i/264, id(v)+2i+1/264), but then selects

the point whose successor has the minimum zone size.

To obtain a model for E[Rj ] under min-zone selection, first note that residual

lifetime Zj of the initial neighbor starting the j-th cycle follows the distribution given

in (205) since all m samples are uniformly random and zone sizes are independent
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Fig. 32. Comparison of mean link lifetime E[Rj ] under min-zone selection to that

under max-age selection in a randomized DHT with mean size E[N ] = 2, 000

for Pareto user lifetimes with E[L] = 1 hour and β = E[L](α− 1).

of user ages or lifetimes. It is then clear that for a fixed remaining size Yj = y, the

Laplace transform and the mean conditional link lifetime given in Theorem 18 are

both still valid. Next, given that initial zone size Yj is minimum among m uniformly

randomly selected samples, we readily obtain:

P (Yj > y) = [P (U > y)]m , for all j ≥ 1, (232)

where U is the zone size of a randomly selected user on the ring whose limiting

distribution is shown in (224). The final step is to combine Theorem 18 and (232) to

obtain the distribution of Rj and its mean under min-zone selection.

As shown in Fig. 32, the model of E[Rj ] matches simulation results very well.

Most interestingly, the figure demonstrates that the mean link lifetime E[Rj ] under

min-zone selection is significantly larger than that under max-age selection for both

choices of α and that the difference between the two metrics becomes more pronounced

as the number of samples m increases or shape α decreases. Furthermore, this figure
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suggests that as m → ∞, E[Rj] for min-zone selection and α < 2 goes to infinity,

while E[Rj] for max-age selection converges to some fixed number regardless of α.

The following theorem confirms this result.

Theorem 19. For Pareto user lifetimes with 1 < α ≤ 2, the expected link lifetime

under min-zone selection approaches infinity for sufficiently large system population

and random sample size:

lim
E[N ]→∞

lim
m→∞

E[Rj ] =∞. (233)

For max-age selection and any α, the mean link lifetime converges to a constant:

lim
E[N ]→∞

lim
m→∞

E[Rj ] <∞. (234)

Proof. To obtain E[Rj ] under min-zone selection for m → ∞, first note from (232)

that P (Yj > y) → 0 as m → ∞ for all fixed y > 0. This indicates that Yj → 0

in probability. It is then clear that the probability that a new arrival splits a given

zone with size Yj also approaches 0, and hence in the limit Rj is simply residual

lifetime Zj of the initial neighbor. Recalling from (205) that E[Zj] = ∞ for α ≤ 2,

we immediately obtain E[Rj ] → E[Zj] = ∞ as m → ∞. The condition E[N ] → ∞

is required for m→∞.

When max-age selection is used, it is shown in [96, Theorem 5] that residual

lifetimes Zj → ∞ with probability 1 as m → ∞ for Pareto lifetimes. It is then

easy to obtain using the semi-Markov chain {Ay
δ} in Theorem 1 that sojourn time τ0

in state 0 is min(Zj, W0) → W0 as m → ∞, where W0 is exponential with rate λ0

given in (185), and transition probability p0,1 = P (W0 < Zj) → 1. After the chain

jumps into state 1, sojourn times are min(L, Wi), which are no longer affected by the

number of samples m. Hence, E[Rj ] is finite since the mean sojourn time in each

state i is finite and the probability that the chain jumps into the failed state increases
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Fig. 33. Approximation of E[Rj ] as a linear function of number of samples m un-

der min-zone selection for Pareto user lifetimes with E[L] = 1 hour and

β = E[L](α− 1).

exponentially fast.

The above analysis indicates that min-zone selection is significantly better than

max-age selection for very heavy-tailed user lifetimes. Since real systems have been

observed to exhibit α ≈ 1.06 in [12] and α = 1.09 in [89], this result paves a simple

way for building better DHTs in practice. The amount of actual improvement in

E[Rj ] for these two values of α is shown in Fig. 33, where the growth rate in both

curves is approximately linear in m. The figures also show the corresponding linear

fits to the model, which can be used to predict how m affects link lifetime E[Rj ] in

these two cases. For instance, with α = 1.09, users can obtain E[Rj ] ≈ 76 hours

by sampling m = 10 points for each suitable (i.e., with enough random choices) link

in a randomized DHT. For α = 1.06, the corresponding average link lifetime is 127

hours. Comparing these numbers to E[Rj ] ≈ E[L] = 1 hour in deterministic DHTs,

the extent of improvement is undoubtedly dramatic.
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6.6. Summary

This chapter formalized the notion of “link lifetimes” in certain types of DHTs where

link pointers switch to new neighbors in response to arriving peers. We introduced

a semi-Markov process to model random replacement of neighbors along a given

link and showed that lifetimes of deterministic links are much worse than those in

unstructured P2P networks with heavy-tailed user lifetimes. For randomized DHTs,

our results show that the proposed min-zone selection method is substantially more

effective than the commonly-used max-age selection strategy and that the mean link

lifetime E[Rj ] under min-zone selection can be increased approximately linearly in

the number of points m each user v samples.



142

CHAPTER VII

SUCCESSOR LISTS IN DHTS

7.1. Introduction

Peer-to-peer (P2P) networks have received tremendous interest in recent years among

both Internet users and computer networking professionals. One of fundamental

problems in the study of these systems is the ability of the network to stay connected

under node failure [2], [6], [16], [29], [34], [40], [42], [50], [61], [71], [80]. While previous

analytical work [42], [45] on disconnection of P2P networks has focused on neighbor

tables and partitioning arising from failure of entire routing tables, structured P2P

networks usually maintain auxiliary sets called successor lists [72], [80], whose sole

purpose is to recover the system from inconsistent states and provide resilience [80].

In this chapter, we focus on partitioning of one particular Distributed Hash Table

(DHT) called Chord [80] and note that similar results can be obtained for other types

of successor/leaf sets.

Recall that each node v in Chord maintains a list consisting of its r = Θ(log n)

successors and a routing table containing k = Θ(log n) neighbor pointers, where n is

the system size. Note that routing tables are used to reduce lookup latency, while

successors ensure resilience during churn. Even if all routing tables are in the failed

state, Chord is still able to function by forwarding queries, repairing failures, and

finding new neighbors via successor lists. When all r successors of any node fail si-

multaneously, the system becomes partitioned and is potentially unable to recover

without a bootstrap. Although neighbors in some routing tables may still be alive,

there is no guarantee that the system can return to a consistent state after partition-
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ing. We generally call the event of a user losing all of its successors node isolation

and note that it determines the likelihood of graph partitioning:

P (graph disconnects) = P (X > 0), (235)

where X is the number of users that are isolated in the system. Due to the strong

dependency among successor lists of consecutive users along the circle and entirely

different stabilization strategies studied in this chapter, previous neighbor churn mod-

els [42] cannot be applied to obtain the probability in (235). We perform this task

below for both static and dynamic node failure.

7.1.1 Static Failure

Many prior studies have been interested in the resilience of structured P2P networks

against static node failure [29], [34], [80], i.e., when each node independently fails with

a certain probability p. We apply the Erd̈os-Rényi theorem to show that under p-

fraction node failure, the probability that Chord with size n→∞ remains connected

is asymptotically:

lim
n→∞

P (X = 0)

e−n(1−p)pr = 1, (236)

where r = Θ(log n) is the number of immediate successors a user monitors. It is rather

surprising to find from (236) that although the dependency among successor lists of

consecutive users is very strong, Chord enjoys the same level of static resilience as

networks where connectivity is determined using routing tables consisting of largely

independent neighbors [45]. Setting r = c log2 n, where c > 0 is a constant, (236)

shows that as n→∞ the probability that Chord remains connected approaches 1 if

p < 2−1/c and 0 if p > 2−1/c.
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7.1.2 Dynamic Failure

As observed in deployed structured P2P file-sharing systems [64], [81], users join

and fail at a high rate of churn. The second part of this chapter focuses on the

connectivity of Chord under dynamic node failure. We assume that each joining user

v obtains r clockwise closest peers as its successor list and then stays in the system

for L time units, where L is drawn from some user lifetime distribution F (x). User

v then stabilizes its successor list every S time units, where S can be random or

constant, and brings the number of successors back to r after each stabilization. For

a particular stabilization to be successful, at least one user among r successors must

stay alive for the entire interval S.

Assuming exponential user lifetimes L and exponential intervals S, we show that

probability φ that node v is isolated due to simultaneous failure of its r successors

within v’s lifetime is upper bounded by:

φ ≤ ρρ!r!

(ρ + r)!
, (237)

where ρ = E[L]/E[S]. Furthermore, we prove that as ρ→∞, the above upper bound

becomes exact.

We then examine how individual node isolation affect partitioning of the system

as nodes continuously join and leave. Using the Chen-Stein method [5], we establish

that when r → ∞ the probability that Chord stays connected after experiencing N

user joins is asymptotically:

lim
N→∞

P (X = 0)

(1− φ)N
= 1, (238)

where φ is the node isolation probability given in (237). This result shows that

isolations of individual users in Chord can be treated as independent when system
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size and successor lists become large. While a similar phenomenon has been observed

in [45] without proof for independent neighbor behavior in routing tables, our result

in (238) is again for dependent node isolations and is formally proven.

As (238) indicates that the task of studying global connectivity can be reduced

to that of local connectivity, we next focus on isolation probability φ under different

stabilization strategies. We derive closed-form models of φ for uniform and constant

S, both of which have been suggested for use in Chord [80]. Our results show that

both stabilization strategies are much better than the exponential S suggested in

[39], often reducing φ by several orders of magnitude. We further show that constant

stabilization delays S are optimal and keep Chord’s isolation probability as E[S]→ 0

approximately equal to:

φ ≈ ρρ!

(ρ + r)!
, (239)

where ρ = E[L]/E[S]. The amount of improvement over the exponential version

(237) of this metric is by a factor of r!, which is significant in most cases.

We finish the chapter by studying non-exponential lifetimes observed in real P2P

graphs [89]. Even though models of φ for heavy-tailed user lifetimes are currently

intractable, we show that φ in such systems is upper bounded by the exponential

metric (237). We confirm this effect and demonstrate the distance to the upper

bound in simulations.

7.2. Static Node Failure

In this section, we tackle resilience of Chord under static node failure, which means

that the system sustains a one-time simultaneous failure event where each user be-

comes dead with an independent probability p. This analysis introduces a new model
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of handling dependent random events in Chord and can be applied to systems of non-

human entities (e.g., file systems) where failures can in fact be synchronized. The

next section covers the more typical case of user churn observed in human-based P2P

systems.

7.2.1 Basic Asymptotic Model

Suppose that Chord is in a consistent state such that each node correctly links to

its r closest successors. Under static node failure, p fraction of nodes in the system

fail simultaneously, where 0 ≤ p ≤ 1 is a given number [29], [34], [45], [80]. Define

a Bernoulli random variable Xi indicating whether node i is isolated due to the fact

that its r successors all fail while i survives:

Xi =

⎧⎪⎪⎨⎪⎪⎩
1 user i is alive and its r successors failed

0 otherwise

. (240)

Note that unlike [45], our definition does not involve finger tables since we are only

interested in disconnection/isolation arising from disrupted successor lists. Then, the

number of isolated nodes X in the system is the sum of a large number of dependent

random variables Xi:

X =
n∑

i=1

Xi, (241)

where n is the number of nodes in Chord. It is then clear from (235) that the

probability that Chord remains connected (i.e., is not partitioned) is equal to P (X =

0). The next theorem provides an asymptotic closed-form expression of P (X = 0);

however, we should note that this result is very different from similar analysis in [45]

for two reasons: 1) the model in [45] only considers variables Xi with diminishing

dependency as r →∞, which is not the case here; 2) the final result on the behavior
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of X is given in [45] without a formal proof due to a much wider variety of neighbor

sets covered by [45].

Theorem 20. The probability that each user in Chord remains connected to at least

one successor under p-fraction node failure is asymptotically:

lim
n→∞

P (X = 0)

e−n(1−p)pr = 1, (242)

where r is the number of successors at each node.

Proof. Denote by a Bernoulli random variable Yi the event that node i has failed.

Then, we have:

p = P (Yi = 1) = 1− P (Yi = 0). (243)

Define Ln to be the length of the longest consecutive run of 1s in sequence

{Y1, . . . , Yn}:

Ln = max
1≤i≤n−k+1

{k : Yi = Yi+1 = · · · = Yi+k−1 = 1}. (244)

Now notice that computing P (X = 0) can be reduced to finding the distribution

of Ln and ensuring that no run longer than r − 1 peers exists:

P (X = 0) = P (Ln < r). (245)

Given that r = Θ(log n) so that r → ∞ as n → ∞, the distribution of Ln

converges to the following based on the Erdös and Rényi law [7]:

P (Ln < r)

e−n(1−p)pr → 1, (246)

as n→∞, which immediately leads to (242).
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The asymptotic result in (242) allows us to utilize a very accurate approximation:

P (Chord is connected) = P (X = 0) ≈ e−n(1−p)pr

, (247)

which we verify next in finite-size graphs. Simulation results of P (X = 0) in Chord

under static node failure are presented in Table IV. In simulations, each node selects

its node ID according to a uniform hashing function and connects to its r successors.

After p fraction of users are uniformly randomly chosen and removed, the graph is

checked to see how many users X are isolated. Notice from the first three columns

in Table IV that simulation results with r = �2 log2 n� and p = 2−1/2 = 0.993 show

that as n increases from 1, 000 to 10, 000, the discrepancy between model (247) and

simulation results reduces fast. The rest of the table shows additional examples of

model’s accuracy for several choices of p and r.

7.2.2 Discussion

We next relate our results in Theorem 20 to those in [45, Proposition 3]. Recall that

[45] defines isolation as an event of a user losing all of its neighbors in Fig. 21(b).

Their results show that all users have at least one alive neighbor with probability:

P (X = 0) ≈ e−n(1−p)pk

, (248)

where n is the system size, p is the independent node failure probability, and k is

the number of neighbors in each node’s table. Note that we have obtained an almost

identical result (247) for successor lists in Chord, which is rather surprising since the

dependency among isolation of nodes in Chord is much more significant than assumed

in [45] (e.g., node i and node i + 1 in Chord share r − 1 common successors).

In fact, observe that the probability that node i is isolated due to the failures of
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its r successors is simply:

φ = P (Xi = 1) = (1− p)pr, 1 ≤ i ≤ n (249)

where Xi is the Bernoulli variable defined in (240). Note that given that r → ∞

as n → ∞, it is readily seen from (249) that φ → 0 as n → ∞. Using (249), the

approximation in (247) can be transformed into:

P (X = 0) ≈ e−nφ ≈ (1− φ)n, (250)

where Taylor expansion e−x = 1−x holds for small enough x as n→∞. Thus, (250)

indicates that

P (X = 0) = P
( n⋂

i=1

[Xi = 0]
)
≈

n∏
i=1

P (Xi = 0) (251)

as n → ∞, which shows that variables Xi in Chord behave as if they are com-

pletely independent. Note that when r →∞ as n→∞, node isolations become rare

events. Then (251) can be explained by the Chen-Stein theorem [5], which proves

that the number of occurrences of dependent rare events Xi is approximately a Pois-

son random variable under certain conditions (this method will be explicitly used in

the next section when we discuss these conditions). Therefore, as n → ∞, Chord

asymptotically exhibits the same static resilience using its successor lists composed

of largely dependent users as other P2P networks using mostly independent peers in

their neighbor sets [45]. However, the rate of convergence of P (X = 0) in (247) and

(248) is different.
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7.3. Dynamic Node Failure: General Results

Recent measurements of P2P networks [12], [64], [81] show that peers continuously

join and depart the system, which is often called churn. Thus, unlike static node fail-

ures which happen simultaneously, node failures in human-based P2P networks often

occur dynamically as the system evolves over time. In this section, we first intro-

duce the successor list model under churn, examine probability φ that all successors

of node v’s fail within its lifetime, and then derive the probability that Chord re-

mains connected when stabilization intervals are exponentially distributed. We leave

derivations for non-exponential intervals for the next section.

7.3.1 Successor List Model

When each user v joins the system, it acquires a successor list with r nearest nodes

and then maintains it through periodic stabilizations (i.e., checks for consistency

and dead users). We assume that v does not attempt to track failure of individual

users as soon as they occur, but rather performs stabilization every S time units on

the entire successor list (i.e., as done in Chord). At each stabilization interval, v

corrects its successor list by skipping over failed nodes and appropriately adding to

the list new arrivals (if any) [50], which always brings the number of successors at

the end of stabilization back to r as long as the system has not been disconnected

at some earlier time. For stabilization to be successful, at least one user among

r successors must survive the entire stabilization interval. The interval S between

two successive stabilizations reflects the duration needed to complete network-related

activity to detect failure, exchange neighbor information, and any stabilization rate-

limiting applied by the nodes.

Fig. 34 illustrates the evolution of user v’s successor list in our simple model. As
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Fig. 34. Evolution of a node’s successor list over time.

shown in this figure, the number of successors is r in the beginning of each stabilization

interval of size S. This number then monotonically decreases over time until the next

interval starts. If all r successors fail within any interval S before v departs, v is

isolated and Chord is disconnected.

In general, as users continuously join and leave the system, the evolution of a

node’s successor list is rather complicated. It involves not only newly arriving users

that replace existing successors, but remaining lifetimes of existing successors at the

start of each stabilization interval. For exponential user lifetimes, however, user

disconnection under this successor-list model becomes tractable as we show next.

Before we proceed with derivations, we introduce the rules for running simula-

tions that verify our theoretical results. In simulations, user arrivals occur according

to a Poisson process derived in [93] for the heterogenous churn model proposed therein.

The rate of this arrival process is given by E[N ]/E[L], where E[N ] is the mean system

size in equilibrium and E[L] is the mean user lifetime. When a new user joins the

system, it is assigned a uniformly random ID in the set {0, 1, . . . , 232−1} and given r

immediate successors. Each user then monitors its r successors, stabilizes them every

S-interval, and departs from the system after L time units, where L is drawn from
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some user lifetime distribution F (x).

7.3.2 Node Isolation

Denote by Z(t) the number of successors of node v at time t, where t = 0 is the time

when v joins the system. Note that Z(0) = r and Z(t) ≤ r at any age t. In the

following, we show that {Z(t)} is a Markov chain for exponential user lifetimes and

exponential stabilization intervals, which is followed by the derivation of the exact

model of node isolation probability φ. This exact model is necessary for verifying the

accuracy of our later closed-form bounds on φ.

Observe from Fig. 34 that state transitions of process {Z(t)} are triggered by

either failure of existing successors or stabilizations that occur at rate of θ = 1/E[S].

Due to the memoryless property of exponential lifetime distributions, the failure rate

of each existing successor (no matter old or new) is μ = 1/E[L], which is the key

reason that makes the successor list tractable for exponential L. This leads to the

following lemma.

Lemma 20. For exponential lifetimes L ∼ exp(μ) and exponential stabilization in-

tervals S ∼ exp(θ), the process {Z(t)} is a continuous-time Markov chain with the

state space {0, 1, . . . , r} and transition rate matrix Q = (Qjj′):

Qjj′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ j �= r, j′ = r

jμ 1 ≤ j ≤ r, j′ = j − 1

−θ − jμ j′ = j < r

−jμ j = j′ = r

0 otherwise

, (252)

where θ = 1/E[S] and μ = 1/E[L].
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Fig. 35. Markov chain {Z(t)} modeling a node’s successor list.

Proof. We first consider state Z(t) = r, i.e., the full list of successors at time t (see

Fig. 35). Note that if a stabilization occurs when the current state is Z(t) = r, some

current successors may be replaced by newly arriving users based on the successor

rule. However, the successor failure rate is μ = 1/E[L] for both old successors and

newly joining users due to the memoryless property of exponential distributions.

Thus, it makes no difference whether new successors replace old ones or not (i.e., no

matter if stabilizations happen when the state is r). This immediately follows that

the transition probability from state r to r − 1 is pr,r−1 = 1, triggered by the failure

of a successor, and the sojourn time in state r is exponential with rate ar = rμ. We

then readily obtain that the transition rate from r to r − 1 is arpr,r−1 = rμ.

Likewise, given that the stabilization intervals S ∼ exp(θ), it is not hard to

obtain that the transition rate from state j to j − 1 is jμ for 1 ≤ j < r, and the

transition rate from state j to r is θ for 1 ≤ j < r. This directly leads to the desired

result.

The state diagram and transition rates of process {Z(t)} are illustrated in Fig.

35, where each state models the number of alive successors and absorbing state 0

corresponds to user isolation. We usually write matrix Q in (252) in the canonical

form:

Q =

⎛⎜⎝ 0 0

r Q0

⎞⎟⎠ , (253)
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where r = (qj0)
T for j �= 0 is a column vector representing the transition rates to

the absorbing state 0 and Q0 is the rate matrix obtained by removing the rows and

columns corresponding to state 0 from Q.

Define the first-hitting time T onto state 0 as:

T = inf(t > 0 : Z(t) = 0|Z(0) = r}. (254)

Using Theorem 4 in Chapter IV, the isolation probability φ = P (T < L) can be

reduced to:

φ = π(0)V BV −1r, (255)

where π(0) = (0, . . . , 1)1×r is the initial state distribution, V is a matrix of eigenvectors

of Q0, B = diag(bj) is a diagonal matrix with:

bj = 1/(μ− ξj), (256)

μ = 1/E[L], ξj ≤ 0 is the j-th eigenvalue of Q0, and Q0 and r are in (253).

Simulation results of isolation probability φ are shown in Fig. 36. Notice from

this figure that model (255) is very accurate compared to simulations. Also observe

that as ρ or r increase, node isolation probability sharply decreases. While (255)

allows easy numerical computation, it provides little qualitative information about

how φ behaves as a function of ρ and r. It is further difficult to compare the various

stabilization strategies (studied later in the chapter) if an explicit model of φ is not

derived. We perform this task next.

7.3.3 Closed-Form Bounds on φ

Note from Fig. 34 that the sequence of stabilization intervals forms a renewal process

with cycle length S. It then follows that isolation probability φ is equal to the
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Fig. 36. Comparison of model (255) to simulation results on node isolation probability

φ for exponential lifetimes with E[L] = 0.5 hours and exponential stabilization

intervals with E[S] = E[L]/ρ.

probability that r successors simultaneously fail in any interval S before user v’s

lifetime expires. Note that the probability that all r successors fail in a particular

interval S is given by:

f = P (max{L1, . . . , Lr} < S), (257)

where Li ∼ exp(μ) is the remaining lifetime of the i-th successor at the beginning of

a particular interval. Then, from Jensen’s inequality [38, page 118], it is not hard to

obtain the following closed-form upper bound on φ and prove that it becomes exact

as the ratio E[L]/E[S]→∞.

Theorem 21. For L ∼ exp(μ) and S ∼ exp(θ), isolation probability φ is upper-

bounded by:

φ < ρf, (258)

where f = ρ!r!/(ρ+r)! and ρ = E[L]/E[S] = θ/μ. Moreover, the bound becomes tight
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as stabilization intervals become negligible compared to user lifetimes:

lim
ρ→∞

φ

ρf
= 1. (259)

Proof. Given that S ∼ exp(θ), probability f that all r successors fail with a particular

interval S in (257) reduces to:

f =

∫ ∞

0

(
1− e−μt

)r
θe−θtdt. (260)

Setting ρ = θ/μ and z = 1− e−μt, (268) yields:

f = ρμ

∫ 1

0

zr(1− z)ρ 1

μ(1− z)
dz =

ρ!r!

(ρ + r)!
. (261)

It is ready to see from (261) that as ρ→∞ and/or r →∞, f → 0.

Next, note from Fig. 34 that the evolution of node v’s successor list can be

decomposed into a sequence of stabilization intervals. Let random variable D be the

number of stabilization intervals with user v’s lifetime L. Conditioning on D = j, we

obtain that isolation probability φ(j) is approximately:

φ(j) = 1− (1− f)j , j ≥ 1, (262)

where (1− f)j is the probability that user v survives all j stabilization intervals and

f is given in (261).

It is then clear from Jensen’s inequality [38] in the discrete form that for concave

function φ(j) shown in (262), the unconditional isolation probability φ yields:

φ = E[φ(D)] ≤ 1− (1− f)E[D], (263)

showing that our remaining task is to obtain E[D].

For exponential S, it is not hard to obtain that the renewal function E[D(t)], the
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expected number of stabilizations that have been executed by fixed time t, is simply:

E[D(t)] = θt, for all t ≥ 0. (264)

Then, the mean number of stabilization intervals within random time units L can be

obtained as:

E[D] =

∫ ∞

0

E[D(t)]fL(t)dt, (265)

where fL(t) is the PDF of user lifetimes L. Substituting (264) into the above readily

leads to:

E[D] = θE[L] = ρ, (266)

where ρ = E[L]/E[S]. Using (266), (263) is reduced to:

φ ≤ 1− (1− f)ρ ≤ ρf, (267)

where f < 1 is given in (261), showing that ρf is an upper bound for φ.

Finally, note from Taylor expansion that as ρ→∞, (1− f)j → 1− jf for given

j where f = O(ρ−r) from (261). This immediately leads φ(j) in (262) into:

φ(j)

jf
=

1− (1− f)j

jf
→ 1, ρ→∞. (268)

Invoking (268), isolation probability φ can be transformed into the following for ρ→

∞:

φ

fρ
=

∑∞
j=1 φ(j)P (D = j)

fρ
→ fE[D]

fρ
, (269)

which directly leads to (259) recalling (266).

The result in (259) indicates that for ρ → ∞, probability φ for any user v
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Table V. Comparison of the asymptotic model (258) to the exact model (255) of node

isolation probability φ with E[L] = 0.5 hours, ρ = E[L]/E[S], and r = 8

ρ E[S] s exact model upper bound Relative Error

10 180 1.46× 10−4 2.29× 10−4 57.05%

50 36 2.30× 10−8 2.61× 10−8 13.41%

100 18 2.66× 10−10 2.84× 10−10 6.85%

200 9 2.55× 10−12 2.64× 10−12 3.46%

500 3.6 4.74× 10−15 4.80× 10−15 1.29%

1, 000 1.8 3.86× 10−17 3.89× 10−17 0.69%

to become isolated within its lifetime L can be approximated as the summation of

probabilities that v is isolated in each individual interval. Indeed, an average user

has approximately ρ = E[L]/E[S] intervals in its lifetime and it gets isolated in any

interval with probability f . Thus, since φ is asymptotically equal to ρf , isolation

events in different intervals behave as if they were independent.

Table V illustrates the relative distance between the upper bound in (258) and

the exact result (255) for E[L] = 0.5 hours and r = 8. It is clear from the table that

as ρ increases, the two models converge and that the upper bound is never violated.

Also note that other comparisons for different values of E[L] and r exhibit similar

results and are omitted for brevity.

We finish this section by examining how individual node isolations affect the

connectivity of Chord as users continuously join and depart the system.

7.3.4 Graph Disconnection

Notice that Bernoulli variable Xi in (240) can be used to indicate whether user i is

isolated due to the failure of its successor list under churn as well. Then node isolation
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probability can be expressed as:

φ = P (Xi = 1) = 1− P (Xi = 0), (270)

where φ is given by (255) or approximated by the upper bound in (258). If user i is

isolated during its lifetime, we consider the system disconnected during that user’s

presence in the system; otherwise, the network is said to survive the join of peer i.

Supposing that N users have joined the system, we have that:

XN =

N∑
i=1

Xi, (271)

is the number of isolations among N join events. In the following, we use the Chen-

Stein method [5] to study the probability that Chord survives N user joins without

disconnection, i.e., P (XN = 0). Note that again this result is stronger than that in [45]

since it applies to successor lists that exhibit much higher dependency during failure

than neighbor lists studied in prior work and relies on more rigorous derivations.

Theorem 22. Given that Nφr → 0 as N → ∞, the probability that Chord survives

N user joins without disconnection approaches:

lim
N→∞

P (XN = 0)

(1− φ)N
= 1, (272)

where XN is defined in (271) and φ is given in (255).

Proof. The basic idea of the Chen-Stein method is that the distance between the

distribution of XN , i.e., a sum of N dependent Bernoulli variables, and that of a

Poisson random variable of the same mean can be upper-bounded by [5]:

|P (XN = 0)− P (VN = 0)| ≤ α(b1 + b2 + b3), (273)

where VN is a Poisson random variable with mean E[VN ] = E[XN ] = Nφ, α =
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min(1, 1/E[XN ]), and constants b1, b2 and b3 are defined in [5]. Convergence to the

Poisson distribution happens when all of b1 − b3 tend to zero as N →∞. Our main

task is to compute these metrics and observe under what condition they become

negligibly small.

Define Bi to be a set of users who share at least one successor of user i in Chord:

Bi = {i− r + 1, . . . , i, . . . , i + r − 1} (274)

with i ∈ Bi and size |Bi| = 2r − 1. It follows that b3 = 0 since Bernoulli variable Xi

is independent of Xj for j �∈ Bi. To calculate b1, note that:

b1 =

N∑
i=1

∑
j∈Bi

P (Xi = 1)P (Xj = 1) =

N∑
i=1

∑
j∈Bi

φ2

= N(2r − 1)φ2. (275)

Likewise, we obtain:

b2 =

N∑
i=1

∑
j �=i,j∈Bi

P (Xi = Xj = 1)

=
N∑

i=1

φ
∑

j �=i,j∈Bi

P (Xj = 1|Xi = 1)

≤ Nφ(2r − 2). (276)

The last step is to observe that b1 = Nφ2(2r− 1)→ 0 and b2 ≤ Nφ(2r− 2)→ 0

as N → ∞. Finally, given b1 + b2 → 0, it is shown in (273) that X approaches a

Poisson random variable with mean E[XN ]. This directly leads to:

lim
N→∞

P (XN = 0)

e−E[XN ]
= lim

N→∞

P (XN = 0)

e−Nφ
= 1. (277)

Recalling that φ→ 0 as N →∞ given the assumption of this theorem and using
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Taylor expansion e−φ = 1− φ for φ→ 0, (277) yields:

lim
N→∞

P (XN = 0)

(1− φ)N
= 1, (278)

which establishes the desired result.

Theorem 22 indicates that as long as φ is sufficiently small, probability P (XN =

0) that Chord accommodates N joining users without partitioning simply converges

to the product of probabilities that individual nodes remain non-isolated. Note that

(272) holds under a wider set of conditions on φ that do not necessarily require

Nφr → 0, but derivations in those cases are more tedious. Also note that a typical

way of accomplishing Nφr → 0 is to scale r with N so as to converge φ to zero faster

than product Nr converges to infinity.

Armed with (272), we propose the following approximation to P (XN = 0) for

finite N :

P (XN = 0) ≈ (1− φ)N , (279)

where the exact model of φ is given by (255) and its asymptotic approximation is

shown in (258).

Comparison of simulation results of P (XN = 0) to (279) is presented in Table

VI where model φ is computed based on (255). Notice from the first three columns

in this table that simulation results are very close to (279) from N = 103 to 106 for

ρ = 40. The rest of this table shows that as ρ increases (i.e., φ gets closer to zero), the

model becomes more accurate as expected. Simulations for different r show similar

results that are omitted for brevity. As an example of applying (279), assume that

Chord has a mean size 5, 000 users, r = �log2 5000� = 13 successors, E[L] = 0.5 hours

and E[S] = 21 seconds. We then obtain from (279) that the probability that Chord
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Table VI. Comparison of model (279) of P (XN = 0) to simulation results for r = 8,

mean system size 2, 500, exponential L with E[L] = 0.5 hours, and expo-

nential S with E[S] = E[L]/ρ.

ρ = 40 (E[S] = 45 s) N = 50, 000

N Simul. (279) ρ E[S] s Simul. (279)

1, 000 1.000 .9999 16 112.5 .4831 .4557

5, 000 .9996 .9995 24 75.0 .9176 .9139

8, 000 .9993 .9993 32 56.3 .9833 .9829

10, 000 .9992 .9991 40 45.0 .9954 .9955

50, 000 .9954 .9955 48 37.5 .9985 .9985

100, 000 .9910 .9910 56 32.1 .9995 .9994

500, 000 .9555 .9556 64 28.1 .9998 .9998

1, 000, 000 .9129 .9131 80 25.7 1.000 .9999

survives N = 1 billion user joins without disconnection is 0.999987. If we assume that

each user joins and departs the network once per hour, this duration corresponds to

228 years. Furthermore, the system survives for N = 100 billion joins (i.e., 22, 831

years) with probability 0.998558.

7.4. Dynamic Node Failure: Effect of Stabilization Intervals

Results in the previous section only apply to exponential intervals S between two

consecutive stabilizations. Though many modeling studies assume exponential stabi-

lization intervals [39], [42] to obtain Markovian models, Chord by default uses uniform

intervals [80]. In this section, we study isolation probability φ for uniform S, deal

with φ for constant S, and then find the optimal method for stabilizing successors.
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7.4.1 Uniform Stabilization Delays

Denote by fu the probability that all r successors of node v fail within interval S

where S is uniformly distributed in [0, 2E[S]]. Based on the renewal process with

cycle length S, it is not hard to show that for uniform S, node isolation probability

φu converges to:

φu

ρfu
→ 1, (280)

as E[S]→ 0, which is similar to the result shown in (259). Then, the ratio of isolation

probability φu for uniform S to φ for exponential S is φu/φ = fu/f , where f is given

in (258). Deriving fu, we obtain the next theorem.

Theorem 23. For fixed r and E[L], and uniform S ∈ [0, 2E[S]], the ratio of isolation

probability φu for uniform S to φ for exponential S converges to the following constant:

lim
E[S]→0

φu

φ
=

2r

(r + 1)!
. (281)

Proof. The proof proceeds in two steps. First, for exponential L with a given E[L]

and uniform S in interval [0, 2E[S]], f in (257) is reduced to:

fu =

∫ ∞

0

(1− e−μt)rfS(t)dt =

∫ 2E[S]

0

(1− e−μt)r

2E[S]
dt.

Recalling ρ = E[L]/E[S], the above yields:

fu =
ρ

2

∫ 1−e−2/ρ

0

xr

(1− x)
dx

=
ρ(1− e−2/ρ)r+1

2(r + 1)
2F1(r + 1, 1; r + 2; 1− e−2/ρ),

where 2F1(a, b; c; z) is a hypergeometric function, which is always 1 for z = 0. Note

that as E[S] → 0 (i.e., ρ → ∞ since E[L] is fixed), z = 1 − e−2/ρ → 0. This
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immediately follows that:

lim
E[S]→0

fu =
ρ(1− e−2/ρ)r+1

2(r + 1)
=

2r

(r + 1)ρr
, (282)

where the last step is obtained using Taylor expansion.

Next, recall from (269) that isolation probability φ for any distribution of S can

be expressed as the product of f and E[D] as ρ→∞, where D is the random variable

denoting the number of stabilization intervals with a lifetime L.

To obtain E[D] for uniform S, we first derive D(t) conditioning on user v’s

lifetime L = t. As E[S] → 0 (which implies D(t) → ∞), it is clear from the strong

law of large numbers that:

D(t)E[S]→ t. (283)

Invoking (283) and integrating D(t) using PDF fL(t) of user lifetimes L leads to:

E[S]E[D] =

∫ ∞

0

E[S]D(t)fL(t)dt→ E[L], (284)

as E[S]→ 0. The above can be easily transformed into:

lim
E[S]→0

E[D]

ρ
= 1 (285)

for any distribution of S. Combining (269) and (285), we immediately obtain isolation

probability φu for uniform S:

φu

ρfu
→ 1, E[S]→ 0. (286)

It is then ready to see that the ratio of φu to φ shown in (259) for exponential S

converges to:

φu

φ
→ fu

f
, ρ→∞, (287)
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Table VII. Convergence of simulation results to model φu/φ = .0127 from (281) for

E[L] = 0.5 hours, r = 6, and ρ = E[L]/E[S]

ρ E[S] s Simulations of φu Simulations of φ φu/φ

20 90 2.15× 10−6 7.10× 10−5 .0303

40 45 7.59× 10−8 3.86× 10−6 .0197

60 30 9.98× 10−9 6.10× 10−7 .0164

80 22.5 2.28× 10−9 1.62× 10−7 .0141

100 18 7.18× 10−10 5.59× 10−8 .0128

where f is given in (258) and ρ→∞ is met under given assumptions in this theorem.

Using Sterling’s formula for ρ→∞ and fixed r, f in (258) can be reduced to:

lim
ρ→∞

f = r!
er

ρr

(
1− r

ρ + r

)ρ+r+1/2

=
r!

ρr
, (288)

where the last step is obtained based on Taylor expansion for for fixed r. Finally,

substituting (282) and (288) into (287) directly leads to (281).

Simulation results of φu for uniform S are shown in Table VII. Notice from this

table that the ratio φu/φ indeed approaches that given by our model (281) as E[S]

becomes small. Since φu ≤ φ for all r, the above result demonstrates that using

uniform S is a better strategy than using exponential S and that the amount of

improvement becomes more significant when r increases, e.g., φu/φ = 7.055 × 10−4

for r = 8 and φu/φ = 6.578× 10−7 for r = 12.

7.4.2 Constant Stabilization Delays

Next, following the derivations of φu/φ in Theorem 23, we easily obtain isolation

probability φc for constant S.
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Theorem 24. For fixed r and E[L], and constant S, the ratio of isolation probability

φc to φ approaches:

lim
E[S]→0

φc

φ
=

1

r!
. (289)

Proof. Following the derivations in the proof for Theorem 23, we readily obtain:

fc =
(
1− e−1/ρ

)r → ρ−r, ρ→∞, (290)

and

φc

φ
→ fc

f
, ρ→∞, (291)

where f for exponential S is given in (288) and ρ → ∞ is satisfied under given

assumptions. Substituting (288) and (290) into (291) immediately leads to (289).

Table VIII presents simulation results on φc when stabilization intervals are con-

stant. Notice that ratio φc/φ obtained from simulations is very close to that predicted

by model (289) even for ρ = 60 and that it converges to (289) as ρ increases further.

Model (289) indicates that simply stabilizing successors at constant intervals can re-

duce isolation probability φc by a factor of r! compared to φ as E[S] → 0. To show

the exact improvement over exponential S, we have φc/φ = 2.480 × 10−5 for r = 8

and 2.088 × 10−9 for r = 12. In addition, it is easy to notice from (281) and (289)

that φc ≤ φu and the ratio φc/φu approaches (r + 1)/2r ≤ 1 as E[S]→ 0. This ratio

is 0.035 for r = 8 and 0.003 for r = 12.
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Table VIII. Convergence of simulation results to model φc/φ = .0014 from (289) for

E[L] = 0.5 hours, r = 6, and ρ = E[L]/E[S]

ρ E[S] s Simulations of φc Simulations of φ φc/φ

20 90 2.72× 10−7 7.10× 10−5 .0038

40 45 8.51× 10−9 3.86× 10−6 .0022

60 30 9.82× 10−10 6.10× 10−7 .0016

80 22.5 2.35× 10−10 1.62× 10−7 .0015

100 18 7.61× 10−11 5.59× 10−8 .0014

7.4.3 Optimal Strategy

The above analysis shows that for exponential lifetimes, the ratio of φc under constant

S to φo under any other S can be transformed into:

lim
E[S]→0

φc

φo
=

P (max{L1, . . . , Lr} < E[S])

P (max{L1, . . . , Lr} < S)
, (292)

where Li ∼ exp(μ) is the residual lifetime of the i-th successor of node v at the

beginning of a particular interval. While we already established that the above ratio

is asymptotically less than 1 for both exponential and uniform S, the next theorem

indicates that the same result holds for all other distributions as well.

Theorem 25. For exponential user lifetimes with fixed E[L] > 0 and the same mean

stabilization interval E[S] → 0, node isolation probability φc under constant S is no

greater than that under any random S.

Proof. For exponential user lifetimes with mean E[L] = 1/μ, recall that the proba-

bility that all r successors of node v fail within a particular interval S is:

P (max{L1, . . . , Lr} < S) =

∫ ∞

0

G(x)fS(x)ds, (293)
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where G(x) = P (max{L1, . . . , Lr} < x) = (1− e−μx)r. The second derivative of G(x)

is thus:

G′′(x) = rμ2e−μx(1− e−μx)r−2(re−μx − 1), (294)

for r ≥ 3. Then, it is easy to see that for r ≥ 3:⎧⎪⎪⎨⎪⎪⎩
G′′(x) > 0 x < E[L] ln r

G′′(x) ≤ 0 otherwise

, (295)

which indicates that G(x) is a convex function for x < E[L] ln r and concave for

x > E[L] ln r.

For E[S] → 0, notice that S ≤ E[L] ln r holds with probability approaching 1.

This immediately transforms (293) into:

P (max{L1, . . . , Lr} < S) =

∫ E[L] ln r

0

G(x)fS(x)ds, (296)

showing that the convex part of G(x) determines the above metric. Then, for E[S]→

0 we obtain from Jensen’s inequality [38] that:

P (max{L1, . . . , Lr} < S) ≥ P (max{L1, . . . , Lr} < E[S]),

since G(x) is strictly convex for x < E[L] ln r. This directly leads to:

lim
E[S]→0

φc

φo

=
P (max{L1, . . . , Lr} < E[S])

P (max{L1, . . . , Lr} < S)
≤ 1, (297)

for any random S, which completes the proof.

Theorem 25 shows that using constant S is not only a simple but optimal method

to stabilize successors in Chord.
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7.5. Heavy-tailed Lifetimes

Without the memoryless property on lifetime L, derivation of probability f that all

r successors fail within interval S is simply intractable. However, for systems with

heavy-tailed lifetimes [12], [89] where old users are more likely to remain alive for a

longer time in the system, a mixture of old and new users within a given successor list

leads to a smaller f compared to that for exponential lifetimes. Thus, the probability

of node isolation due to failure of the entire successor list in Chord is smaller when

the distribution of user lifetimes is heavy-tailed compared to the exponential case

studied earlier in this chapter, which we next confirm in simulations.

We examine four different distributions of interval S, including exponential with

rate 1/E[S], Pareto with CDF F (x) = 1 − (1 + x/β)−α where α = 3 and β =

(α− 1)E[S], uniform in [0, 2E[S]], and constant equal to E[S]. Simulation results of

isolation probability φ for exponential and Pareto lifetimes under the four stabilization

strategies are plotted in Fig. 37. Notice in the figure that S with the highest variance

(i.e., Pareto S) performs the worst, followed by exponential and uniform cases, while

constant S is the best. Further observe that φ for Pareto lifetimes is smaller than that

for exponential lifetimes under all four stabilization strategies and that the difference

becomes smaller as E[S] decreases. In fact, the model is a very close match to the

Pareto case in Fig. 37(c)-(d). These observations confirm that our exponential model

of φ provides an upper bound for systems with heavy-tailed lifetimes over a wide

range of stabilization delays S.

7.6. Summary

This chapter tackled the problem of deriving formulas for the resilience of Chord’s

successor list under both static and dynamic node failure. We found that under
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Fig. 37. Comparison of simulation results on node isolation probability φ under dif-

ferent stabilization strategies for exponential and Pareto lifetimes with α = 3

and E[L] = 0.5 hours, mean system size 2, 500, and r = 8 in Chord.

static node failure, Chord exhibited the same resilience through the successor list as

that many other DHTs and unstructured P2P networks [45] through their randomized

neighbor tables. We also demonstrated that when Chord experienced continuous node

joins/departures, stabilization with constant intervals was optimal and kept Chord

connected with the highest probability.



172

CHAPTER VIII

CONCLUSION AND FUTURE WORK

8.1. Conclusion

This dissertation started with proposing a novel model for user churn in P2P systems

and later utilized it to understand P2P resilience under a variety of conditions on

user lifetimes and graph construction. Our work can be broadly partitioned into the

following five topics.

Heterogeneous Churn Model [93]. Previous analytical work has universally as-

sumed exponential user lifetimes and homogenous users. However, measurement stud-

ies have recently revealed that user lifetimes in real P2P networks were heavy-tailed

and users differed in terms of resources they contributed to the network. Our work

proposed a much more generic churn model that allowed non-exponential lifetimes and

captured the heterogeneous behavior of peers, including their difference in availability

(i.e., the percentage of time a user is logged in), online habits, and diversity of offline

delays. In this model, each user was viewed as an alternating renewal process that was

ON when the user was logged in and OFF otherwise. Despite the complexity of user

arrivals in this model, we showed that the aggregate lifetime distribution of joining

peers was sufficient to completely characterize the effect of churn on heterogeneous

P2P networks, but only when system size was asymptotically large.

Node Out-degree and Age-Based Neighbor Selection [96]. Users in unstructured

P2P systems rely solely on their routing tables to reduce lookup latency, avoid iso-

lation of individual nodes, and prevent graph partitioning. Prior work including

our early results [43] focused on neighbor dynamics under uniform selection in net-
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works with exponential user lifetimes. Our work in this part of the dissertation built

a non-exponential model that offered exact computation of isolation probabilities

for any monotone lifetime distribution, including heavy-tailed cases. The versatil-

ity of this model was illustrated by analyzing the node out-degree process under

various neighbor-selection strategies in unstructured P2P networks. Leveraging the

decreasing failure rate property of heavy-tailed lifetimes (i.e., larger node age means

smaller failure probability) observed in real P2P networks, we proposed a novel age-

proportional distributed algorithm for creating links that converged isolation proba-

bility to zero as system size became infinite.

Node In-Degree [93]. The above approach focused on only out-degree neighbors

and did not consider the impact of in-degree neighbors on resilience. We formally

proved that under heterogeneous user churn and uniform neighbor selection, the edge-

arrival process to each user approached Poisson as system size became sufficiently

large. This led us to simple analytical treatment of the edge-arrival process and

offered closed-form results on the transient distribution of in-degree as a function

of the aggregate user lifetime distribution and clearly illustrated the contribution of

in-degree to resilience.

Link Lifetimes in DHTs [94]. Several models of user churn, resilience, and link

lifetime have recently appeared in the literature [42], [45], [93]; however, these results

do not directly apply to classical Distributed Hash Tables (DHTs) in which neighbor

replacement occurs not only when current users die, but also when new users arrive

into the system, and where replacement choices are often restricted to the successor

of the failed zone in the DHT space. Using a semi-Markov chain, we showed that the

zone size (i.e., fraction of the DHT key space) of neighbors plays a crucial role in link

lifetimes and proposed a min-zone algorithm to significantly improve the resilience of

DHTs to node isolation.



174

Successor Lists in DHTs [95]. Previous analytical work [42], [45] on the resilience

of P2P networks has been restricted to disconnection arising from simultaneous failure

of all neighbors in routing tables of participating users. In this part, we focus on

a different technique for maintaining consistent graphs – Chord’s successor sets and

periodic stabilizations – under both static and dynamic node failure. We derive closed-

form models for the probability that Chord remains connected under both types of

node failure and show the effect of using different stabilization interval lengths (i.e.,

exponential, uniform, and constant) on the probability of partitioning in Chord.

8.2. Future Work

Future work includes derivation of residual lifetime distributions in finite systems,

development of more sophisticated algorithms for increased DHT resilience, and anal-

ysis of neighbor selection techniques in asymptotically small networks where limiting

results similar to Theorem 19 do not hold.

The other direction involves modeling non-stationary user churn in P2P net-

works. Despite the elegance and pervasive use of stationary models in prior work

including ours, measurement studies have revealed that user churn in P2P systems

was non-stationary. In fact, non-stationary churn models are applicable to many user-

driven systems, where time-varying arrival/departure processes reflect the rhythm of

human activity. Future work includes offering generic non-Poisson models that can

be applied to a broader class of problems, analysis of the performance of networked

systems under churn, and verification of theoretical results in real networks.



175

REFERENCES
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