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ABSTRACT 
 

Evaluation of Oocyte Competency in Bovine and Canine Species via Non-

Invasive Assessment of Oocyte Quality. 

(December 2008) 

Lauri Willingham-Rocky, B.S., University of North Texas; 

M.S., Texas A&M University 

Co-Chairs of Advisory Committee:  Dr. Robert C. Burghardt 
    Dr. Mark E. Westhusin 

 

 Traditional methods of oocyte selection for in vitro studies have proven 

inefficient with respect to achieving a level of predictability for competency.  In 

this study, a novel method of oocyte selection was implemented that identified a 

relationship between oocyte morphological parameters (as defined by a ratio of 

a shape factor (SF) to average fluorescence intensity (AFI) and AFI, followed by 

in vitro fertilization (IVF) and in vitro culture (IVC) using the Well of Well (WOW) 

method to evaluate oocyte competency.  Specifically, we used non-cytotoxic 

fluorescent molecular probes and multiphoton microscopy to non-invasively 

characterize spatial localization and functional activity of mitochondria, 

mitochondrial membrane potential (Δψm), and intracellular calcium activity 

([Ca2+]i) using rhodamine 123, JC-1 and Fluo-4, AM, respectively in bovine and 

canine in vitro matured (IVM) oocytes.  Comparison of morphological grading 

with fluorescence intensity yielded similar trends between all grades of oocytes 

for both species with no visually obvious, distinct characteristic staining that 
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would permit classification of each oocyte as a specific morphological grade.  

Our studies confirmed that oocyte mitochondria were homogeneously distributed 

but primarily localized to the peri- and sub-cortical regions of the oocyte at MII 

stage for both species.  Further, heterogeneously polarized mitochondria were 

localized to the peri- and sub- cortical regions of the oocyte for both species.  In 

bovine oocytes labeled with Fluo-4, AM, levels of [Ca2+]i were either 

unremarkable, or very low and limited to the peri-cortical areas, just beneath the 

oolema. For canine MII stage oocytes, levels of [Ca2+]i were within the same 

range of AFI as bovine.  Ranges of fluorescence intensity compatible for optimal 

embryo development for bovine and optimal fertilization for canine oocytes were 

30-300 and 20-35, and 20-30 and 20-25.5 for rhodamine 123 and Fluo-4, AM, 

respectively.  The optimal range for bovine oocytes imaged with JC-1 was 1.25-

2.25 and <6 for canine.   
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______________ 
This dissertation follows the style of Molecular Reproduction and Development. 
 
 

CHAPTER I 

INTRODUCTION 

1.1 Overview 

High oocyte quality is linked to the production of superior embryos.  

Oocyte properties correlated with improved embryo development have been 

extensively studied, yet oocyte-grading criteria remain imprecise with respect to 

the correlation between “good” oocytes and developmental competence.  

Experimentally, the morphology of ovarian follicles and oocytes in the bovine 

has been linked to the prediction of embryo developmental competence 

(Gandolfi et al., 1997; Wurth and Kruip, 1992).  Some of these criteria include 

oocyte size, shape, color, stage of meiosis (metaphase II with first polar body 

extrusion), zona pellucida integrity, cumulus cell layers, and follicle size 

(Leibfried and First, 1979).  While these characteristics have been a useful 

guideline for numerous in vitro experiments, many oocytes that appear healthy 

and normal are incapable of supporting embryo development (Rocha et al., 

1998).  These findings are indicative of an obvious lack of understanding of the 

functional aspects of oocyte physiology which contribute to developmental 

competence. 

 Methods of morphological oocyte selection present major limitations for 

efficiently identifying reliable criteria of oocyte competency, especially in canids.  
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A more mechanistic physiological approach of assessing oocyte quality that has 

no adverse effects would greatly enhance this area of research.  Recent 

technological advances in microscopy (e.g. computer controlled instruments, 

laser light sources, sensitive detectors, biosensor technologies, image 

processing software) offer new avenues to assess both morphological and 

functional properties of living cells and tissues.  These technologies have been 

used to describe a number of functional properties of mammalian oocytes and 

embryos but have not yet been applied to the assessment of mammalian oocyte 

quality in a non-invasive fashion.  These approaches might also be useful for 

competence assessment in the canine oocyte, the maturation of which is poorly 

understood relative to other mammalian species.  

 

1.2 Canine female reproduction 

 Historically, the dog has played an integral role in the initial discovery of 

many facets of mammalian reproduction.  Antoine von Leeuwenhoek, coined by 

some as “the father of microscopy,” used semen from dogs during the late 

1600’s to describe the extent of spermatozoa dissemination into the female 

genital tract, and what capacity they had for survival under these conditions 

(Castellani, 1973).  Almost 100 years later in Italy, Lazzaro Spallanzani used 

semen siphoned from a naturally bred bitch to inseminate a different bitch in 

heat.  This breeding resulted in the birth of 3 pups and is the first recorded 

attempt of mammalian artificial insemination and also assisted reproduction in 
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the dog (Harrop, 1956).  Also, Ernest Von Baer used ova collected from dog 

ovaries to first describe the mammalian female gamete in the early 1900’s 

(O’Malley, 1956).   While the dog has contributed to the foundation of these 

scientific “firsts” for mammalian reproduction, progress in understanding canine 

reproductive physiology and assisted reproduction in the bitch lags far behind 

the technological advances reported for other mammalian species that include 

protocols for in vitro maturation (IVM), in vitro fertilization (IVF), in vitro culture 

(IVC), intracytoplasmic sperm injection (ICSI), and embryo/gamete 

cryopreservation.  Currently, clinical assisted reproduction in the dog is limited to 

semen collection and freezing, artificial insemination, and heterologous embryo 

transfer.  However, the application of modern advances in assisted reproductive 

technology such as somatic cell nuclear transfer, or “cloning” may potentially be 

an alternative to the preservation of superior genetics among various breeds, 

wild or endangered canids, or those of a beloved pet (Lee et al., 2005; Jang et 

al., 2007; Jang et al., 2008a, Jang et al., 2008b). 

 Domestic canines (Canis familiaris) are classified as monoestrous, 

meaning one estrus phase is exhibited per breeding season, unlike most 

mammalian species that are classified as either continuous or seasonal 

breeders.  Wild or rare breed canid bitches such as the gray wolf (Canis lupus) 

and the swift fox (Vulpes velox) are seasonal breeders and usually experience 

estrus only once per annum.  Conversely, the domestic bitch is considered a 

non-seasonal breeder due to her ability to exhibit estrus and produce off spring 
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at any time of the year.  Previous studies of numerous domestic breed bitches 

conducted in the 1970’s reported peak estrous activity during late winter and 

spring, similar to that observed in non-domestic canids suggesting an 

evolutionary contribution of domestication (Sokolowski, 1977; Jochle and 

Andersen, 1977; Christie and Bell, 1971; Tedor and Reif, 1978).  Nevertheless, 

all canids have an extended inter-estrus, or anestrus phase between fertile 

periods, the duration of which varies among breeds and limits reproductive 

opportunity to one or two times each year.   

From an endocrinology perspective, the canid estrous cycle is 

comparable to that reported for other mammalian species (i.e.: increasing 

estradiol levels, FSH and LH surges prior to ovulation, progesterone producing 

corpus luteum, etc.) with a number of species-specific exceptions.  Toward the 

end of proestrus, estradiol levels increase gradually, peaking just prior to onset 

of estrus (Fig. 1.1).  Unlike most mammals where estrogen dominates the pre-

ovulatory environment, canine pre-ovulatory follicles begin to luteinize just prior 

to the LH surge and produce progesterone that is detectable in sera throughout 

the estrus phase (Feldman and Nelson, 2004). 
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 Figure 1.1.  Canine estrous cycle (from Senger, 1999). 

 

Ovulation occurs roughly 2-3 days following the LH peak and is correlated 

with progesterone levels 4-10 ng/ml.  Progesterone production from the corpus 

luteum increases to levels and duration similar to that seen in pregnant bitches, 

with peak levels occurring 15-30 days following the LH surge and then gradually 

decreasing (Feldman and Nelson, 2004).  A return to anestrus is marked by 

progesterone levels that are <1-2 ng/ml, and remains persistent for several 

months until the subsequent cycle begins.  This phase is often referred to as a 

quiescent period of the canine estrous cycle from clinical and behavioral 

assessment, but not endocrinologically.  Small, pulsatile bursts of both LH and 
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FSH occur throughout anestrus, and increase just prior to the onset of proestrus, 

while prolactin levels decrease (Kooistra et al., 1999; Corrada et al., 2003).  

Fluctuations in estradiol concentrations also occur and increase during late 

anestrus, just prior to initiation of the breeding period (Onclin et al., 2002).   

The physiological mechanisms regulating follicle recruitment and the 

onset of proestrus both at puberty and after the prolonged inter-estrus period are 

poorly defined for canids.  Firstly, primordial follicle development is not 

completed until ~15-17 days after birth, and follicular growth of primary follicles 

is not observed until 4-5½ months of age when the bitch becomes sexually 

mature (Anderson and Simpson, 1973).  However, efforts to induce estrus in 

both prepubertal (120-150 days of age) and adult bitches have been successful 

using gonadotropins (LH, FSH, hCG, hMG, PMSG, eCG), GnRH and related 

agonists (deslorelin, luprolide acetate), the synthetic estrogen diethylstilbesterol 

(DES), prostaglandins (PGF2α), dopamine agonists to decrease prolactin levels 

(cabergoline, metergoline, or bromocriptine), or combinations thereof (Cain et 

al., 1989; Inaba et al., 1998; Verstegen et al., 1998; Kooistra et al., 1999; 

Concannon, 2002b; Marks et al., 2002; Gobello and Corrada, 2003; Beijerink et 

al., 2004).  Results from these experiments were variable with respect to degree 

of response and reaction times to proestrus.  Further, these experiments 

included the use of drugs that are not approved for veterinary use, are not 

available in some countries, or involved complex modes of administration (i.e. 

GnRH infusion pump) (Cain et al., 1989).  Also, induction protocols administered 
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to bitches in earlier stages of anestrus responded slower than those in mid or 

late anestrus (Wanke et al., 1996; Verstegen et al., 1998).  Presently, there is no 

standard protocol for the induction of estrus in canids recommended for clinical 

use.  

The process of canine oocyte development is even less understood than 

that reported for other species.  The physiology of canine female reproduction 

presents a challenge due to the uniqueness of the canine estrous cycle which is 

characterized by a prolonged inter-estrus phase (~6 months) between fertile 

period and the ovulation of immature ova (Farstad, 2000).  Further, oocyte 

maturation in vivo is delayed roughly 2 days post ovulation and occurs in the 

oviduct.  Therefore, the degree of developmental competence of the canine 

oocyte at ovulation is unclear.  This obscurity has presented major challenges 

for the development of in vitro maturation and fertilization procedures, resulting 

in very little advancement of knowledge in terms of defining the morphological 

and functional aspects of oocyte developmental competence in canines.   

The most remarkable dissimilarity in canine reproduction with other 

species is the process of ovulation and oocyte maturation.  Ovulation occurs 

roughly 2 days following the LH peak, and the resulting ova are at the prophase I 

(germinal vesicle, GV) stage of meiosis (Concannon et al., 1989).  Wildt et al., 

(1979) showed that 70% of ovulatory follicles ovulate in the first 24-72 hours 

after the LH peak, but that ovulation at any other time during the end of 

proestrus and estrus is possible.  After ovulation, oocytes must undergo both 
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nuclear and cytoplasmic maturation in the oviduct over a period of 24-72 hours.  

Reynaud et al., (2005) showed that in vivo ovulated oocytes did not progress 

beyond the GV stage until at least 44 hours, and that MII was not observed 

before 54 hours post-ovulation (Reynaud et al., 2005).  This hallmark in canine 

reproductive physiology is in sharp contrast to that of most other domestic 

mammalian species wherein ovulation of mature, metaphase II oocytes normally 

occurs ~30 hours post LH surge. Reports of viability for the canine oocyte have 

been suggested to span as many as 6-8 days as evidenced by litters produced 

from single matings 7-8 days post ovulation (Concannon, 2002b; Concannon 

and Verstegen, 2005).  Hence, the degree of developmental competence of the 

canine oocyte prior to or at ovulation is unclear.  

Fertilization occurs in the ampullary region of the oviduct for most 

mammals and resulting embryos enter the uterus about 3 days later (Wimsatt, 

1975).  However in canids, fertilization occurs in the distal third of the oviduct 

and embryos enter the uterus ~9-12 days later at the compact morula or 

blastocyst stage (Holst and Phemister, 1971; Valtonen and Jalkanen, 1993).  

Implantation occurs ~17-19 days post ovulation and the blastocysts average 2.5 

mm in diameter (Holst and Phemister, 1971).  Gestation length for domestic 

canines has been shown to range from 57-72 days from first mating, and 

averages 63 days post ovulation (Johnston et al., 2001). 

A number of canine IVM/IVF studies have indicated that sperm are able 

to penetrate the oocyte at the GV stage and form a pronucleus, indicating an 
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induction of meiotic resumption in in vitro matured oocytes similar to that 

reported for the human and cow (Chian et al., 1992; Van Blerkom et al., 1994; 

Farstad, 2000; Saint-Dizier et al., 2001).  However, the integrity of this meiotic 

resumption in vitro is unclear as reported in experiments by Saint-Dizier et al., 

(2001) wherein 41.7% of fertilized canine oocytes at the GV stage were 

polyspermic, averaging 3.5 spermatozoa per oocyte, and that all sperm nuclei 

were moderately decondensed (Saint-Dizier et al., 2001).  Contrary to this 

observation, studies defining in vivo meiotic resumption and fertilization in the 

bitch reported no sperm penetration in ovulated GV stage oocytes, only 3% 

fertilization in immature oocytes (GVBD-teleophase I), with fertilization occurring 

in most cases 90 hours post-ovulation in MII stage oocytes, and no incidence of 

polyspermy (Reynaud et al., 2005).  Thus, the ability of immature oocytes to 

allow sperm penetration and pronucleus formation in vitro could result from a 

number of factors including sub-optimal culture conditions, inappropriate sperm 

numbers, lack of cytoplasmic oocyte maturation, failure to block polyspermy, etc.   

The factors that trigger resumption of meiosis after ovulation in the 

domestic bitch are peculiar, and very limited information is available regarding 

the cell signaling mechanisms of canine cumulus-oocyte complexes (COC).  

Krogenæs et al., (1993) reported that the addition of FSH to IVM medium 

significantly increased cAMP levels, induced greater cumulus expansion, and 

caused a significant increase in the number of oocytes reaching MII at 48 and 72 

hours of culture.  Investigation of mitogen activated protein kinase (MAPK) 
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phosphorylation for IVM oocytes in presence of FSH and in ovulated oocytes 

matured in vitro as first reported in vixen oocytes occurs after 48-72 hours of 

culture, but in the absence of FSH in IVM media, phosphorylation is accelerated 

by at least 24 hours and exceeded phosphorylation levels of the former cultures 

(Kalab et al., 1997).  More recently, the activities of maturation promoting factor 

(MPF)/MAPK levels, as well as the cytoskeletal and chromatin organization 

patterns associated with these kinases in in vitro matured oocytes of domestic 

canines were comparable to those observed in other mammalian species (Saint-

Dizier et al., 2004).   

Gap junction intercellular communication (GJIC) has also been partially 

investigated.  Functional gap junction channels between cumulus cells and 

oocytes were reported in experiments using microinjected Lucifer Yellow into the 

oocyte cytoplasm of COC’s during late proestrus, which diffused into the 

cumulus cells, whereas no dye transfer was detected into oocytes of bitches in 

anestrus (Luvoni et al., 2001).  This observation suggests a functional difference 

in GJIC between the two estrous cycle stages that may be hormonally 

influenced.  Furthermore, connexin43 (Cx43) protein, the most abundant gap 

junction protein in the mammalian ovary, was identified in cumulus and corona 

radiata cells of the Blue fox during IVM experiments and showed a reduction, but 

not complete uncoupling of GJIC in corona cells after 72 hours of IVM (Srsen et 

al., 1998).  This is in sharp contrast to in vivo matured oocytes of the Blue fox on 

days 2-3 post-ovulation or for IVM bovine oocytes where gap junctions are 
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completely disconnected from the oocyte, suggesting the corona radiata cells 

may regulate the resumption of meiosis during in vitro, but not during in vivo 

oocyte maturation in this species (Hyttel et al., 1990; Hyttel et al., 1997).  

Messenger RNA expression profiles for GJA1, the gene encoding Cx43, were 

found to be consistent with those reported for other species and indicated an 

increased expression during proestrus, a marked decreased expression at 

estrus, rising levels during diestrus, followed by declining values during anestrus 

(Willingham-Rocky et al., 2006).  Taken together, these data indicate that the 

molecular events surrounding meiotic resumption and oocyte maturation in 

canids reported thus far are not significantly different from what is known in other 

mammals.  Conversely, the considerable delay of oocyte maturation in relation 

to the LH peak or to ovulation in canine oocytes is perplexing, and offers an 

interesting model to study oocyte competence. 

 The morphology of canine oocytes is distinctive from that of other 

carnivores, and mammals in general.  The most obvious difference being the 

appearance of a dense, dark, lipid-rich cytoplasm, which is generally typical of 

the lower, nonplacental vertebrates, and thus relatively rare among mammalian 

species (Tesoriero, 1981; Szabo, 1967).  Lipids are present in the oocytes of 

many other mammals (i.e. cow, cat, horse, and human) in varying amounts, but 

appear intensely concentrated in canid, mustelid and porcine oocytes 

(Tesoriero, 1981; Lindeberg, 2003; Sturmey and Leese, 2003).  Although the 

functional and biochemical aspects of oocyte lipids in mammals remains to be 
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elucidated, the general consensus is that lipids, and particularly triglycerides, 

serve as a metabolic reservoir for both the oocyte during maturation and the 

developing embryo after fertilization (McEvoy et al., 2000; Tesoriero, 1981).  The 

dark lipid masks the presence of the GV in canine oocytes, which is centrally 

located prior to the LH surge, and then relocates to a more cortical region as 

soon as 1 day post LH (Hyttel et al., 1990).  In most mammals, excluding 

rodents, the GV is located eccentrically in growing or fully-grown oocytes 

(Albertini and Barrett, 2004).  The size of canine oocyte is another important 

morphological factor and is reported to average 112 μm in diameter (excluding 

the zona pellucida) in sexually mature bitches (Farstad, 2000).  A relationship 

between canine oocyte size and meiotic competency suggests that oocytes 

>110 μm are competent to resume meiosis, but that oocytes >120 μm are the 

most competent and have significantly increased rates of maturation to MII than 

those of smaller size (Hewitt and England, 1998; Srsen et al., 1998; Farstad, 

2000; Otoi et al., 2001).  These data suggest a size-related ability of canine 

oocytes to undergo meiotic maturation, similar to that reported in the cow (Fair et 

al., 1995; Otoi et al., 1997). 

 However, IVM of canine oocytes >110 μm diameter remains inefficient in 

contrast to the mouse, cow, pig, sheep and human (Hewitt and England, 1998).  

Numerous variations in culture conditions and adaptations of the bovine model 

for in vitro culture have been investigated that include differences in serum type 

and concentration, temperature, gas composition, the use of bi-phasic culture 
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systems that incorporated meiotic inhibitors, and addition of hormones, growth 

factors and other metabolites.  Regardless, none of these variations in culture 

conditions have advanced the rate of maturation to MII above 25%, and they 

typically achieve 10-15% to MII (Mahi and Yanagimachi, 1976; Yamada et al., 

1992; Yamada et al., 1993, Nickson et al., 1993, Hewitt, 1997; Metcalfe, 1999, 

Otoi et al., 1999, 2000 and 2002; Songsasen et al., 2002; Bolamba et al., 2002; 

Willingham-Rocky et al., 2002; Rodrigues and Rodrigues, 2003; Songsasen et 

al., 2003; Willingham-Rocky et al., 2003; Kim et al., 2004).  Recent literature 

suggests that the estrous cycle stage from which canine oocytes are obtained is 

an important factor in their ability to resume meiosis and attain competency; and 

that oocytes recovered from bitches during the follicular and luteal phases of the 

estrous cycle resume meiosis at a significantly higher rate than do oocytes 

recovered from anestrus bitches (Luvoni et al., 2001; Otoi et al., 2001; 

Willingham-Rocky et al., 2003; Lee et al., 2006).  It is not known whether this is 

the result of atretic follicles that have lost their ability to maintain oocytes in an 

incompetent state, or is the result of acquisition of cytoplasmic competence 

influenced by hormonal exposure in viable follicles.   

 The production of canine embryos in vitro by IVF, ICSI, or somatic cell 

nuclear transfer (SCNT) is equally inefficient as IVM of canine oocytes with 

limited successful outcomes.  Although embryo collection and heterologous 

transfer attempts have been successful, only one clinical pregnancy has been 

established from IVM/IVF/embryo transfer, but failed to develop to term 



 14

(Kraemer et al., 1982; Jalkanen and Lindeberg, 1998; England et al., 2001).  

SCNT in the dog being the most recently achieved assisted reproductive 

technique has resulted in numerous clinical pregnancies and  live births 

(Westhusin et al., 2003 and personal communication; Lee et al., 2005; Jang et 

al., 2007; Kim et al., 2007).  The successful pregnancies and births reported in 

these experiments are the result of two independent laboratories employing the 

use of both in vitro and in vivo matured ova, and multiple embryo transfers 

(Westhusin et al., 2003 and personal communication; Lee et al., 2005; Jang et 

al., 2007; Kim et al., 2007).  However, it is important to clarify that all live births 

resulting from SCNT were the result of using in vivo matured ova after surgical 

collection (Lee et al., 2005; Jang et al., 2007; Kim et al., 2007).   

To achieve the aforementioned results, numerous IVM experiments 

attempting to increase the rates of maturation in vitro to MII were conducted to 

improve the understanding of oocyte physiology and the subsequent 

development of embryos.  While the results of these experiments yielded 

beneficial insight, there has been very little progress made in increasing the 

rates of maturation in vitro to MII.  Therefore, an investigation of the mechanistic 

and functional parameters associated with the acquisition of oocyte competence 

is warranted in order to improve our knowledge of canine oocyte maturation, and 

to use this information for the advancement of reproductive management in 

canids. 
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1.3 Mammalian follicular development  

 The mammalian ovary is heavily populated by large numbers of oocytes 

at birth, the majority of which are destined for atresia with each passing estrus or 

menstrual cycle, while only a select few will ovulate over a reproductive lifetime.  

The reserve of non-ovulating oocytes during this time period allows for in vivo 

and in vitro research opportunities that will narrow the gaps in our knowledge 

base of oocyte and embryo physiology.  Information gained from such 

experiments will not only benefit the treatment of those unable to or have difficult 

reproducing, but will also define species-specific differences, enhance fertility 

rates and offspring numbers, and aid in selective breeding and improved 

genetics.   

Oogenesis and folliculogenesis are closely coordinated and 

interdependent events that together regulate the growth and development of the 

female gamete beginning in early embryo development (day 10 for most 

domestic species).  The dynamics of this synergistic system insures the legacy 

of the female gamete, as ovarian follicles do not form without oocytes, and 

oocyte development is dependent on certain factors produced by the somatic 

cells of the follicle.  Therefore, in order to appreciate and understand 

characteristics of the mature, fertilizable ova that are capable of producing live 

offspring, it is imperative to understand the origin of female gametes. 

Oocytes arise from primordial germ cells that originate from endoderm of 

the yolk sac and migrate to the genital ridge of the primitive ovary by self-
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propulsive, independent morphogenic movement.  Response to certain 

chemotactic substances such as transforming growth factor β1 (TGFβ1), and 

other intercellular signaling molecules facilitated by gap junctions are also 

thought to contribute to the PGC migratory process (Picton, 2001; Perez-

Armendariz et al., 2003).  During their migration, the PGCs undergo rapid mitotic 

proliferation and begin to differentiate into oogonia.  The expansion of oogonia 

continues until a predetermined, species-specific population has been achieved 

before entering meiosis which occurs throughout most of fetal life.  Initiation of 

meiotic division promotes the germ cells to primary oocytes that arrest at the first 

meiotic prophase.  The cytoplasm of meiotically arrested oocytes continues to 

develop, increasing the size of the germ cell (more than 100-fold) as it 

accumulates the necessary cellular and molecular machinery to sustain its 

existence (Gosden, 2002). 

 Concomitant with the onset of germ cell meiosis is the commencement of 

folliculogensis.  The coordinated development of both the oocyte and somatic 

cells during follicle formation is the result of complex, bi-directional 

communication between the two cell types via paracrine secreted factors (i.e.: kit 

ligand and GDF-9), and gap junctional interactions, specifically via connexins 37 

(Cx37) and Cx43, that facilitate the intercellular exchange of small molecular 

weight cell signaling molecules and metabolites (Albertini and Barrett, 2003).   It 

is believed that epithelial cells of mesenchymal origin branch from the medulla of 

the ovary into the cortex and invade the clusters of oogonia and oocytes, 
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encasing them in a single, flattened layer of pregranulosa cells that in turn are 

separated from the differentiating stromal cells (theca cells) by a basement 

membrane, thus creating primordial follicles (Bukovsky et al., 2005; Skinner, 

2005).  It is this population of primordial follicles that comprise what is believed 

to be a finite source of germ cells in the post-natal ovary; the numbers of which 

vary among species.  Germ cells that do not form follicles degenerate.   

Initiation and selection of primordial follicle growth remains poorly 

understood, but begins during the perinatal period in domestic species and 

humans, and postnatally in rodents, rabbits and canids.  Histological 

assessment of ovarian architecture shows that non-growing primordial follicles 

are located in avascular, cortical regions of the ovary, while primordial follicles 

that have exited their quiescent stage are found in the intensely vascularized 

cortico-medullary border.  This implies that follicle growth and development are 

dependent on certain metabolic factors and nutrients carried via the blood 

(Picton, 2001).  The etiology of this spatial migration is vague, and is further 

clouded by the fact that not all primordial follicles activate at the same time.  

However, studies in mice and domestic species have reported spontaneous 

activation of primordial follicles in in vitro cultured cortical tissue, suggesting a 

possible growth inhibitory influence from the resting primordial pool in vivo 

(Fortune, 2003).  Nonetheless, growing primordial follicles are classified as 

having a mixture of flattened and cuboidal granulosa cells, and then graduate to 

primary follicles when they become completely surrounded by one layer of 
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cuboidal-shaped granulosa cells.  The continuous cycle of follicular recruitment 

begins during fetal life shortly after completion of follicle formation for most 

mammals, arresting just prior to birth, and resuming again at puberty where 

presumptive ova are destined for either ovulation or atresia.  This process of 

selection and recruitment does not cease until the follicular pool has been 

exhausted. 

Once selected, the cohort of primary follicles begins to grow in response 

to increasing levels of FSH secretion and under permissive conditions, 

expansion of granulosa cells occurs rapidly, and secondary follicles are formed 

when two complete layers have been generated around the oocyte (Fig. 1.2).  

As granulosa cell expansion continues, the cells begin to differentiate into mural 

granulosa cells found at the periphery of the follicle nearest to the basement 

membrane, and also into cumulus and corona radiata cells that immediately 

surround the growing oocyte.  Antrum formation occurs during this differential 

process, and this fluid-filled cavity continues to increase in volume with follicular 

development.  It is at this stage when the follicle unit is considered “activated” 

because intercellular communication increases among the somatic cells of the 

follicle and the oocyte (Hyttel et al., 1997).  During this pre-antral to antral 

transition, the oocyte gains meiotic competence necessary for reorganization of 

chromatin, meiotic resumption, and epigenetic modifications, all of which are 

associated with the accumulation of certain cell cycle regulatory factors 

necessary for cytoplasmic and molecular maturation (Matzuk et al., 2002).  The 
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somatic cells of the follicle (granulosa and theca cells) become responsive to 

gonadotrophins as the respective receptors are synthesized, and estradiol 

production increases in growing follicles. Increasing estrogen production 

contributes to the LH surge, followed by ovulation shortly thereafter for most 

mammals.  It is generally thought that the LH surge triggers a myriad of cell 

signaling events required for finalizing cytoplasmic, nuclear and molecular 

maturation of the oocyte and follicle cells necessary for the ovulation of a mature 

egg that is competent to undergo fertilization.   

 

 
Fig. 1.2.  Follicle development in the ovary. (Ownby, 2000.  Available: 
http://instruction.cvhs.okstate.edu/Histology/fr/HiFRp01.htm). 

 

 

 Selection of the ovulatory follicle(s) from the recruited cohort occurs 

throughout follicular development.  Those which escape the alternate pathway of 

http://instruction.cvhs.okstate.edu/Histology/fr/HiFRp01.htm
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death grow to the tertiary or Graffian follicle stage and contain an oocyte(s) that 

is fully grown and is surrounded by a thick zona pellucida.  The entire oocyte is 

surrounded by several layers of cumulus cells, connected to the mural granulosa 

cells of the follicle by a stalk of cumulus-granulosa cells.  At the LH surge, 

meiotic inhibition is relieved as gap junctions of the somatic cells become 

disconnected from the oocyte, finalizing oocyte maturation and arresting at the 

metaphase II stage for most mammals.  Ovulation occurs shortly thereafter 

(species dependent), and the mature, fertilizable ova are transported to the 

oviduct where it awaits its union with spermatozoa.  The residual follicle cells 

luteinize, forming an endocrine gland that continually secretes progesterone 

necessary for support and maintenance of the impending pregnancy. 

 

1.4 Mammalian oocyte maturation and mechanisms of developmental 

competence 

While improvements in assisted reproductive technologies (ART) have 

fairly alleviated the hardships of infertility of humans and animals, limitations in 

understanding the etiology of infertility problems continue.  Mammalian oocytes 

undergo spontaneous maturation when liberated from antral follicles and 

cultured in vitro, but in vivo oocyte maturation is under the control of 

gonadotropins, implying that the constraints limiting meiotic progression in vivo 

are strongly influenced the by cell signaling products of the somatic cells of the 

follicle (Pincus and Enzmann, 1935; Edwards 1962).  These observations have 
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launched decades of research dedicated to understanding the functional, 

physiological and biochemical mechanisms necessary to produce a competent 

oocyte during oogenesis and folliculogenesis.  Studies in mice, cows and other 

mammals have revealed that oocyte competence is achieved progressively in 

vivo during oogenesis within the follicle (Thibault et al,. 1987; Hyttel et al., 1997; 

reviewed by Albertini et al., 2003).  Furthermore, it has been well established 

that in vivo matured oocytes are more developmentally competent than in vitro 

matured oocytes, the cause of which is attributed to the absence of normal 

preovulatory follicular processes involving progressive changes at the cellular, 

molecular, and chromosomal stages of oocyte maturation (Lonergan et al., 

2003).   

Collectively, oocyte developmental competence can be defined as the 

achievement of nuclear, cytoplasmic and molecular maturation.  This process 

occurs in the ovarian follicle for most mammals and coincides initially with 

antrum formation at the secondary follicle stage until ovulation in preparation for 

fertilization and subsequent embryo development.  Thus, the oocyte has already 

accumulated the necessary RNA transcripts and proteins by the end of the 

growth phase that are required for meiotic and cytoplasmic maturation (Hyttel et 

al., 1997).  On the contrary, acquisition of the cellular and molecular machinery 

associated with oocyte maturation does not assure developmental competence, 

hence the rationale for lower in vitro-produced embryo development rates.  It is 

generally believed that oocytes matured in vivo undergo a final maturation phase 
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within the follicle immediately preceding ovulation in preparation for fertilization 

that may either be absent or incomplete in IVM oocytes (Hyttel et al., 1997).  

Consequently, IVF and early cleavage stage bovine embryos can be achieved at 

rates exceeding 95% from IVM oocytes, but the rate of blastocyst formation 

plateaus at approximately 30-40%, and these rates have not improved in the last 

decade (Hyttel et al., 1997; Lonergan et al., 2003).   

According to Fair et al., (1995), oocyte meiotic competence is gained in 

three phases.  First, the oocyte acquires the ability to break down the GV, 

second it achieves the ability to reach metaphase I (MI), and third, gains the 

ability to progress to MII (Fair et al., 1995).  Thus, maternal DNA is transformed 

from a disbursed configuration in the germinal vesicle (GV) to the highly 

condensed, yet organized MII chromatin structure following pre-ovulatory LH 

surge.  This process is mediated in part by protein kinases that bring about 

phosphorylation and dephosphorylation events, hence initiating chromatin 

condensation, transcriptional repression, histone exchange, and other factors 

necessary for chromatin remodeling after fertilization (Fan and Sun, 2004).  

Cytoskeleteal organization of microtubules and centrosome phosphorylation also 

aid in chromatin condensation and are thought to influence polarity and spatial 

segregation of cell cycle factors during the critical stages of nuclear maturation 

(reviewed by Albertini, 2003).  A number of oocyte and somatic cell specific 

gene products such as GDF-9, BMP-15, c-Kit contribute to the acquisition of 

meiotic arrest at MII which is maintained by inhibitory factors (including cAMP) 
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contained in the follicular fluid and/or secreted by the somatic cells that transfer 

information via trans-zonal projections to the developing oocyte until just prior to 

the LH surge (Hyttel et al., 1997).   

Molecular aspects of oocyte maturation have gained more attention 

recently with the discovery of novel oocyte-derived genes and proteins, the 

mechanics of countless inter- and intracellular systems affecting oocyte 

maturation, and the complexity of cell signaling pathway intermediates involved 

in oocyte maturation.  The functions of the oocyte-derived genes have been 

directly identified via knockout mice that serve as invaluable generalized models 

for mammalian oocyte physiology in order to reveal the individual contributions 

to the developing oocyte.  To name a few, genes such as KL, Gdf9, Nobox and 

Gja-4 are necessary for oocyte growth, while Spo11, Atm, Dmc1, Msh5, Mlh1, 

and Msh4 mediate recombination of homologous chromosomes and DNA 

mismatch repair beginning at the primordial to primary oocyte transition 

(Acevedo and Smith, 2005).  Yet these genes do not perform correctly without 

very specific precursors that are influenced by a series of highly coordinated, 

complex events between hormones, hormonally responsive follicle cells, and the 

oocyte (i.e. ligand-receptor binding, upstream signaling cascades, activation of 

transcription factors, etc.) during meiotic arrest, prior to ovulation. 

Cytoplasmic maturation continues during meiotic arrest wherein the 

oocyte is dependent on the production, modification and redistribution of new 

gene products and organelles.  The oocyte increases both in size (diameter), 
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and also in volume, or mass during this time, and is dependent upon the 

replication of mitochondria and associated DNA molecules, as well as 

accumulation of protein, mRNA transcripts and increased transcriptional and 

translational activities.  Such events are essential for supporting oocyte survival, 

maturation, fertilization, and early cleavage of embryos until the maternal zygotic 

transition and activation of the embryonic genome (Van Blerkom, 1991; de Moor 

and Richter, 1999; Memili and First, 1999; Anderson et al., 2001; Pickard et al., 

2001; Stojkovic et al., 2001; and Eichenlaub-Ritter and Peschke, 2002).  As a 

result, nuclear and cytoplasmic maturation are intimately coupled with metabolic 

and cell-signaling events that occur simultaneously in the oocyte, thus fueling a 

synergistic relationship.   

Additional markers of cytoplasmic maturation include an increase in lipid 

content, other membrane bound vesicles, glycogen granules, cortical granule 

synthesis, migration and alignment of the cortical granules at the oolemma, and 

retraction of trans-zonal projections, resulting in an interruption of GJIC, followed 

by cumulus cell expansion (Hyttel et al., 1997; Picton et al., 1998; Hendriksen et 

al., 2000).  In addition to the ultrastructural aspects of cytoplasmic maturation, 

there are a number of well characterized physiological factors that are thought to 

contribute to oocyte developmental competence.  Some of these factors include 

the spatial distribution and functional properties of mitochondria, glutathione 

levels, intracellular calcium homeostasis, as well as adverse factors such as 
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reactive oxygen species (ROS), all of which serve as potential bio-markers of 

oocyte competence. 

Mitochondria are among the most studied organelles in oocytes and are 

known to be present in large numbers in the mature ovum.  They are 

responsible in part for cellular respiration during the conversion of pyruvate to 

ATP via oxidative phosphorylation, and also contribute to regulation of calcium 

homeostasis within the cell, thereby participating in all phases of oocyte 

maturation and accumulation of energy stores for the developing embryo.  ATP 

is generated within the inner mitochondrial matrix via a proton gradient created 

by the outward pumping of protons generated from the reduction of NAD+ to 

NADPH, and FAD+ to FADH2 across the inner mitochondrial membrane.  The 

accumulation of protons establishes a high concentration gradient and an 

electrical gradient between the inner and outer mitochondrial membranes, 

creating potential energy called the mitochondrial membrane potential (ΔΨm).  

Protons can then begin to diffuse back into the inner mitochondrial membrane 

via ATP synthase, providing energy to phosphorylate ADP to ATP.  ATP is then 

transported from the inner mitochondrial membrane to the cytosol where it can 

be utilized to meet the metabolic requirements of the cell.   

In oocytes, the efficient production of ATP within the mitochondrial matrix 

is essential for successful physiological events surrounding embryo 

development including cell proliferation, DNA replication, and activation of the 

embryonic genome.  Increasing levels of ATP are generated during oocyte 
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growth as the mitochondria replicate and become primarily localized around the 

germinal vesicle, and then later disperse during meiotic resumption toward areas 

potentially requiring higher levels of ATP, such as the peri-cortical region of the 

cytoplasm in preparation of fertilization as reported for the human, mouse and 

cow (Van Blerkom et al., 1998; Stojkovic et al., 2001; Van Blerkom et al., 2002; 

Tarazona et al., 2006).  This spatial re-distribution of mitochondria continues 

with each embryonic division after fertilization.   

Stojkovic et al., (2001) reported increased levels of ATP in immature 

bovine oocytes deemed morphologically favorable (Grades 1 & 2) over those 

less favorable (Grades 3 & 4), and an overall significant increase in ATP content 

after IVM in all oocytes, regardless of quality.  Further, total blastocyst cell 

numbers after IVF were higher in embryos derived from Grade 1 & 2 oocytes 

than those originating from Grade 3 or 4, suggesting a functional diversity 

amongst oocyte quality and developmental potential.  Consequently, a direct 

relationship between mitochondrial function and oocyte development is 

hypothesized.  The extent to which mitochondria contribute to oocyte 

competence and embryo development remains obscure, but is of importance in 

order to better understand oocyte development, and also to learn how 

mitochondrial dysfunction may be related to oocyte wastage and early 

embryonic death leading to infertility or other major metabolic diseases 

(reviewed by Wilding et al., 2001).   
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Mitochondrial spatial localization and aggregation patterns have most 

recently been correlated with mitochondrial membrane potential (Δψm) and 

oocyte developmental competence in human, bovine and rodent oocytes and 

embryos (Wilding et al., 2001; Van Blerkom et al., 2002).  The use of specific 

potentiometric molecular probes and fluorescence microscopy has facilitated the 

measurement of such activity throughout oocyte maturation, thereby potentially 

identifying intracellular areas of metabolic demand.  Specifically, areas of 

heterogeneity with respect to Δψm have been reported that further support 

hypotheses surrounding independent, spatial metabolic energy requirements 

within oocytes and embryos suggesting that oocytes are polarized, and that the 

cytoplasmic mitochondrial aggregation patterns are directly related to the 

appearance of the oocyte under the light microscope (Wilding et al., 2001; 

VanBlerkom et al., 2002).  Wilding et al., (2001) further reported that 

mitochondrial activity is negatively correlated with maternal age which may 

contribute to lower embryo development and pregnancy rates in women 

considered to be at an advanced maternal age.  Therefore, the measurement of 

ΔΨm might be used as an indicator of mitochondria health in that it is reflective 

of the activity and integrity of the mitochondrial membrane.  Differences in 

activity at various stages of meiosis may represent specific energy requirements 

at each stage. 

Maintenance of intracellular calcium homeostasis is a critical element of 

oocyte physiology that has been well documented throughout oocyte 
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development and fertilization, but remains ill-defined with regards to certain 

molecular events surrounding calcium-dependent signaling (Carroll & Swann, 

1992; Homa, 1995; and Tosti, 2006).  During maturation, free intracellular 

calcium (Ca2+) is necessary for meiotic progression from one stage to the next 

and is regulated by certain cell cycle checkpoints that include maturation 

promoting factor (MPF), mitogen activated protein kinase (MAPK), and emission 

of the first polar body.  Other events in preparation for fertilization require the 

transient release of intracellular Ca2+ from intracellular stores for completion of 

meiosis and embryonic activation (Whitaker and Patel, 1990; Carroll and Swann, 

1992; He et al., 1997).  Very slight species-specific differences have been 

reported between rodents and other mammals regarding the timing of Ca2+ 

transients which may contribute to the variances in oocyte maturation.  In mice 

and hamsters, Ca2+ rises prior to GVBD, but in bovine and porcine species, 

increased intracellular Ca2+ levels are not recognized until the GVBD stage and 

beyond (reviewed by He et al., 1997).  These differences between species are 

thought to be related to LH-induced Ca2+ release from adjacent cumulus cells 

that provide an avenue for transfer of calcium via gap junctions connected 

directly to the oocyte.  For oocytes of domestic species, Ca2+ is required for 

initiation of cyclin synthesis, which occurs after the LH surge.  However, for 

rodent oocytes it is hypothesized that the synthesis of cyclin and associated 

proteins occurs during follicular development, prior to the LH surge (Homa, 

1995).  Thus the timing of Ca2+ release with respect to the LH surge may be 
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correlated with the timing of meiotic progression between species.  Other studies 

have confirmed the importance of Ca2+ during oocyte maturation by 

implementing the use of Ca2+ chelators that inhibited meiotic progression to 

GVBD in bovine species, but not in rodents (He at al., 1997; Carroll and Swann, 

1992).  Hence, the cellular events necessary for GVBD in the mouse are Ca2+ 

independent, while the opposite is true for bovine species.  This finding is likely a 

key factor in the ability of mouse oocytes to spontaneously mature in vitro and 

remain viable under minimal culture conditions, whereas bovine and other 

domestic species require hormonal and somatic cell support (Carroll and Swann, 

1992).  However, the importance of intercellular Ca2+ activity cannot solely be 

defined by the ootcyte’s ability to progress beyond GVBD, as its influence on the 

structural and biochemical modifications of other cytoplasmic and molecular 

events that occur during oocyte maturation in all mammals should be considered 

(Homa, 1995; Whitaker, 1996). 

Ca2+ current activity, intracellular Ca2+ stores and COC grade have been 

correlated with developmental potential in bovine species (Boni et al., 2002).  In 

research presented by Boni et al., (2002), immature bovine COCs were 

morphologically classified according to criteria set by Wurth and Kruip (1992), 

matured in vitro, and then 1) evaluated for their developmental potential by 

either IVF or parthenogenetic activation at both cleavage and blastocyst stages, 

2) Ca2+ current activity by whole-cell voltage clamp technique, and 3) 

intracytoplasmic Ca2+ stores by microfluorimetric evaluation.  Results indicated 
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that grade B- COCs showed the highest embryo production efficiency, as well as 

the greatest plasma membrane Ca2+ current activity, and the greatest 

intracellular Ca2+ concentration after IVM (Boni et al., 2002).  However, Ca2+ can 

also be a limiting factor to the competency of aged mouse oocytes and their 

ability to undergo normal embryonic development by initiating the Bcl-2 pathway 

of apoptosis rather than oocyte activation at fertilization, presumably due to 

aging mitochondria (Gordo, 2002).  At any rate, the maintenance of intracellular 

Ca2+ homeostasis is critical for both meiotic progression and cytoplasmic 

maturation in controlling cell-cycle checkpoints as the oocyte’s intracellular Ca2+ 

stores are accumulated.   

The prevention of ROS generation within the oocyte is another critical 

cellular mechanism in achieving oocyte developmental competence.  Oxygen is 

an indispensable element of life’s cellular processes, especially as its role of 

final electron acceptor in the respiratory chain.  Oxygen related free radical 

production resulting from cellular respiration or other metabolic events play key 

roles in maintaining intracellular homeostasis, certain cell signaling events and 

mediating stress responses at physiological levels.  However, if the generation 

of free radicals or O2 concentrations exceed physiological limitations, detrimental 

cellular damage may occur due to oxidative stress, affecting metabolism, cell 

signaling, amino acid transport, and DNA associated events, thus upsetting the 

homeostatic intracellular balance related to cellular disruptions and possibly cell 

death by altering the cell’s reduction-oxidation (redox) state (Burton et al., 2002).  
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Such imbalances may be prevented or rescued by the cell’s inherent antioxidant 

system(s) to resume normal function.  Perhaps the most widely studied of these 

systems utilizes glutathione (GSH), the major ubiquitous, intracellular thiol redox 

buffer.  Glutathione (the tripeptide, γ- glutamylcysteinylglycine) is synthesized in 

the cytosol, and participates in numerous detoxifying reactions, namely those 

involving hydrogen peroxide and other ROS (Burton et al., 2002; Harvey et al., 

2002; and Luberda, 2005). 

The relevance of GSH and redox state to reproductive function and 

embryo development has been closely investigated and have revealed that GSH 

concentrations are higher in the mature oocyte than in immature oocytes and 

that levels recede after fertilization, suggesting that GSH synthesis may be 

coupled with cell cycle events (Furnus et al., 1998; Kaneko et al., 2001; Zuelke 

et al., 2003).  Improvements in IVM and subsequent embryo development rates 

have also been reported from experiments supplementing IVM media with other 

thiols, or with amino acid precursors to GSH synthesis (Yoshikuni et al., 1988; 

Yoshida et al., 1993; deMatos et al., 1996; Abeydeera et al., 1999; deMatos and 

Furnus, 2000; Bing et al., 2001; Kim et al., 2004; Kobayashi et al., 2006; 

Maedomari et al., 2007).  Furthermore, the elevated concentration of GSH at MII 

has been hypothesized to play an important role in male pronucleus formation 

after fertilization, and hence correlated with improved embryo development in 

the mouse, hamster, pig and cow (Furnus et al., 1998; deMatos and Furnus, 

2000; deMatos et al., 2002; Liu et al., 2002; Zuelke et al., 2003).  In contrast, 
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GSH levels significantly decrease after fertilization and are not remarkable 

throughout embryo development (Zulke et al., 2003).  Thus, high concentrations 

of GSH are necessary for oocyte maturation and fertilization suggesting the 

importance of this metabolic pathway to both cytoplasmic and nuclear oocyte 

maturation necessary for quality embryo development.  For this reason, GSH 

levels may serve as a useful biomarker for evaluating oocyte competency. 

 

1.5 Selection and assessment of mammalian oocyte quality 

A relationship between follicle size, oocyte size and developmental 

competence has been established for many species (mice, cattle, swine, goat, 

and sheep) based exclusively on morphology (Otoi et al., 1997; Steeves and 

Gardner 1999; Salamone et al., 2001; Eichenlaub-Ritter and Peschke, 2002).  

For example in cattle, oocytes considered to be developmentally competent 

have been identified in follicles that have initiated antrum formation and are at 

least 3 mm in diameter, with an oocyte of at least 110μm in diameter, excluding 

the surrounding cumulus cells (Hyttell et al., 1997, Fair et al., 1995).  Otoi et al., 

(1997) reported a relationship between oocyte size and meiotic competence by 

improved IVM rates to MII in oocytes at 115 μm, 120μm and 125 μm (85%, 96% 

and 100%, respectively) (Otoi et al., 1997).  In contrast, oocytes obtained from 

small follicles (<3mm) and (<2mm) in cows and pre-pubertal calves, respectively 

are able to achieve nuclear maturation to MII but have poor embryo 

development rates suggesting that developmental competence is acquired 
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progressively and therefore independent of nuclear maturation. (Damiani et al., 

1996; Steeves and Gardner, 1999).  Moreover, many studies have revealed that 

oocytes retrieved from atretic follicles in cattle and horses have better in vitro 

maturation and/or embryo development than do oocytes from viable follicles 

(Blondin and Sirard, 1995; Gandolfi et al., 1997; Hinrichs and Williams, 1997; 

Rocha et al., 1998; Choi et al., 2004). 

In addition to size of both the follicle and oocyte, morphological 

characteristics for oocyte selection and grading depend on several other factors, 

but most notably, the number of cumulus layers surrounding the oocyte at 

retrieval.  COC morphology of the immature oocyte is related to oocyte 

developmental competence in the mouse, human, pig, and cow, and 

subsequently has been categorized into grades, using either a number (1, 2, 3 

or 4) or letter system (A, B, C) that are similarly defined.  Oocytes designated as 

“Grade A or 1” have the presence of a clear, compact and multi-layered cumulus 

and homogenous cytoplasm. “Grade B or 2” oocytes have a cytoplasm that is 

homogeneous with only few areas showing irregular pigmentation and a darker 

ooplasm, the fewer cumulus layers than in Grade A/1 COCs but have more than 

five layers of compact cumulus cells.   Grade B oocytes are thought to be 

derived from mature follicles that can no longer maintain meiotic arrest, and 

developmental potential of in vitro produced embryos that is surprisingly higher 

in grade B COC’s in cattle, as is also observed in the horse in expanded COCs 

(Blondin and Sirard, 1995; Hinrichs and Williams, 1997; Boni et al., 2002).  
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“Grade C or 3” oocytes have a cytoplasm that is heterogeneous/vacuolated, 

dark and unevenly pigmented and the zona pellucida is covered by three to five 

layers of cumulus cells except for small denuded areas.  Grades 3 & 4 are often 

combined as Grade 3 or C, however, Grade 4 can further be defined as having a 

cytoplasm that is heterogeneously pigmented and cumulus that is completely or 

in great part absent or expanded, (Wurth and Kruip, 1992; Stojkovic et al., 

2001).  Other general features of oocyte selection and grading can be assessed 

in mature, denuded oocytes and include the appearance of a smooth, round 

ooplasm, visualization of the first polar body, clear peri-vitelline space, absence 

of vacuoles in the cytoplasm, and an intact, round and clear zona pellucida 

(Allen et al., 1930; Pincus and Enzmann, 1935; Shettles, 1958; Motlik et al., 

1984; Hyttel et al., 1997; and Hendriksen et al., 2000).  However, differences 

can vary among these criteria depending on one’s interpretation during the 

selection process.  Furthermore, selection criteria established for mammals in 

general may not be applicable to species such as the horse.  

The rising interest in using ART has reinforced the importance of 

identifying egg quality as an indicative marker of embryo quality and its 

correlation to embryo development, thus improving the rates of pregnancy and 

live offspring.  However, the correlation between “good” oocytes and 

developmental competence remains obscure, as evidenced by comparatively 

low live birth rates among species.  Currently the molecular properties of oocyte 

quality are ill defined however decades of research have aided in identifying 
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several generic morphological parameters that have contributed to an 

improvement in oocyte selection.  On the contrary, a majority of oocytes that are 

favorable for ART procedures fail to exhibit any marked discrepancies in a given 

population that would allow an accurate forecast of embryo developmental 

potential (i.e.: follicle size, oocyte size, shape, color, cytoplasmic granularity, 

integrity of the zona pellucida and cumulus cell vestments, oocyte age post 

ovulation, and meiotic status among others) (Allen et al., 1930; Pincus and 

Enzmann, 1935; Shettles, 1958; Motlik et al., 1984; Hyttel et al., 1997; and 

Hendriksen et al., 2000).   

More recently, the emergence of specialized computer hardware and 

software programs have been designed to aid in oocyte and embryo 

assessment/selection that non-invasively detect and/or measure certain 

morphological features including 3-D imaging of oocyte external and internal 

architecture, and spindle and zona pellucida integrity (Fertimorph™, 

MetaMorph™, and OOsight™, respectively).  Regardless of the selection criteria 

reported and imaging technology available for identifying morphological oocyte 

qualities, there remains no adequate method by which mammalian oocytes can 

be efficiently evaluated other than by fertilization, and in the end, birth of live, 

healthy offspring.  Further, considering that the majority of oocytes used in 

current ART procedures across species are in vitro derived, it is imperative that 

markers of oocyte competency be defined on a more intrinsic, yet non-invasive 

level to complement the morphological standards. 



 36

1.6 Research objectives 

As suggested by the few reports mentioned herein, efforts have been 

made to unravel the mystery of what constitutes a healthy, competent oocyte.  

However, these methods are generally considered invasive and do not permit 

intimate evaluation without compromising cellular physiology or vitality.  The 

marriage of two non-invasive selection approaches (morphological and 

mechanistic) for determining oocyte quality may lead to the development of 

novel, “cell friendly” methods for oocyte screening and selection.  The 

application of certain microscopy tools such as multiphoton microscopy has 

already enabled the non-invasive exploration of various biological events in 

living cells/tissues such as neurons, capillaries, brain tissue, and embryos 

(Squirrell et al., 1999; Dedov et al., 2001; Larson et al., 2003; McLellan et al., 

2003 and Squirrell et al., 2003).  Multiphoton microscopy is a promising imaging 

tool thought to be more advantageous than conventional confocal laser scanning 

microscopy (CLSM) because it uses two (or more) photons simultaneously to 

excite a fluorophore, rather than one photon, thereby employing a longer 

wavelength light, which penetrates to a greater depth and is less destructive 

than short wavelength light.  Additionally, the multiphoton excitation occurs only 

at the focal point of the sample, thus tissues are exposed to less photo-damage 

compared to confocal laser scanning microscopy (CLSM) (White and Errington, 

2002).  Squirrell et al., (1999) have compared the developmental potential of 

hamster embryos imaged by both CLSM and multiphoton microscopy.  They 
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reported that embryos imaged by CLSM displayed signs of oxidative stress as 

evidenced by the production of hydrogen peroxide, which was further associated 

with decreased developmental competence.  Embryos imaged using multiphoton 

microscopy did not indicate comparable signs of oxidative stress and, in fact, 

were developmentally comparable to non-imaged control embryos.  These 

studies support the use of non-invasive and non-destructive microscopy and 

imaging techniques for the development of novel and potentially useful oocyte 

screening methods that might be applied for the selection of competent oocytes.  

Establishment of the aforementioned selection criteria has been achieved 

through the use of optical and electron microscopy, and has provided a 

foundation from which to generalize mammalian oocyte morphological 

characteristics based on non-invasive selection of the COC for use in vitro.  The 

gap in understanding more specific functional and mechanistic aspects of oocyte 

physiology has hindered recognition of true oocyte quality.  Therefore, the non-

invasive identification of specific molecular markers associated with oocyte 

quality and/or embryo development will establish an invaluable contribution 

toward improving embryo development and live birth rates in mammals. 
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The overall objective of this research project was to gain a better 

understanding of the physiological aspects of canine oocyte development and to 

establish better methods to assess mammalian oocyte quality in general.  To 

achieve these goals, we have developed methods that may be generically useful 

in assessing mammalian oocyte competence and that can ultimately be applied 

to the evaluation of canine oocyte quality.  Specifically, we have: 

1. Characterized the spatial distribution of mitochondria and mitochondrial 
activity, and intercellular Ca2+ stores as they relate to morphology of in 
vitro matured bovine oocytes and established baseline criteria of 
functional parameters for selection. 

2. Evaluated embryonic developmental potential of bovine oocytes from 
objective 1 via in vitro fertilization to determine optimal oocyte selection. 

3. Characterized the spatial distribution of mitochondria and mitochondrial 
activity and intercellular Ca2+ stores in relation to morphology of in vitro 
matured canine oocytes using criteria from objective 1 that could 
potentially be used to evaluate developmental competence in this 
species. 

4. Modified a unique IVF/IVC culture system that allowed for the tracking of 
individual embryos throughout development to the blastocyst stage.  
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CHAPTER II 

GENERAL MATERIALS AND METHODS 

2.1 Oocyte collection, in vitro maturation and selection 

Given that there is a lack of commercial resources for canine oocytes, as 

well as defined IVM/IVF protocols for the production of mature canine oocytes 

and embryos, experiments conducted to fulfill this objective were performed 

using commercially available bovine oocytes to serve as a reference oocyte 

model system for studies with canine oocytes.  Bovine oocytes were shipped in 

maturation medium (prepared by the commercial vendor) overnight to the 

laboratory in a portable incubator at 39°C.  Upon arrival, oocytes were 

transferred into an incubator at 38.5°C with 5% CO2 and humidified air until the 

designated maturation time of 24 hours.  Oocytes were then pooled and 

denuded of cumulus cells in a 0.3% solution of hyaluronidase (Sigma-Aldrich, St. 

Lois MO) in fresh TL Hepes medium supplemented with 3 mg/ml of BSA by 

vortexing, and washed two additional times in fresh TL Hepes.  Oocytes were 

further segregated into grades I, II, and III according to the cytoplasmic criteria 

described by Wurth and Kruip (1992), and then transferred to 500 µl of pre-

equilibrated holding medium consisting of M-199 medium without phenol red 

(Sigma-Aldrich, St. Louis, MO), 10% FCS (Hyclone, Logan, UT), and 1% 

Penicillin-Streptomycin (P/S) comprised of 10,000 units/ml of Penicillin G sodium 

and 10,000 μg/ml Streptomycin sulfate (Gibco, Grand Island, NY).  Briefly, 

Grade I oocytes exhibited a smooth plasma membrane and consistent, semi-

 



40 
 

translucent ooplasm, first polar body and noticeable peri-vitelline space; Grade II 

oocytes showed a smooth plasma membrane, darker, non-homogeneous 

ooplasm, presence of first polar body and noticeable peri-vitelline space; and 

Grade III oocytes showed a non-homogeneous ooplasm, that was often dark, 

irregularly shaped, and/or vacuolated (Fig. 2.1).   

 

 a b c 

 
Fig. 2.1.  Bovine oocytes graded according to Wurth & Kruip, 1992.  (a) Grade I; 
(b) Grade II, (c) Grade III 
 

For canines, reproductive tracts from normal bitches greater than 6 

months of age were collected after routine ovariohysterectomy at private 

veterinary clinics, placed immediately into physiological saline solution (PSS) at 

37°C and transported back to the laboratory in a styrofoam container (allowed to 

cool to room temperature during transport) for processing.  Ovaries were 

removed from the tract and washed free from blood in fresh PSS, and then 

repeatedly slashed with a scalpel blade to release oocytes from follicles in fresh 

TL Hepes medium supplemented with 3 mg/ml of BSA (Sigma-Aldrich, St. Louis, 

MO) and 1% (P/S).  Only oocytes with more than two layers of cumulus and a 

cytoplasm >110 μm in diameter were selected for use (Hewitt, 1997; Otoi et al., 

2000).  All oocytes within this size parameter were selected and included 
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oocytes characterized as having either a) a round, dark, homogenous cytoplasm 

and an in-tact vitelline membrane, notable peri-vitelline space and/or first polar 

body, or b) those described as having a non-homogeneous ooplasm that was 

often irregularly shaped, or vacuolated. Cumulus-oocyte complexes were 

washed three times in fresh TL Hepes medium before transfer to IVM medium. 

Oocytes were not sorted into groups and were randomly selected from a pool for 

experimentation due to the lack of a defined morphological grading criteria for 

canine oocytes.   

Canine oocytes were matured in vitro in medium containing modified 

tissue culture medium M-199 with Earles salts (Sigma-Aldrich, St. Louis, MO), 

supplemented with 2.92 mM lactic acid (Sigma-Aldrich, St. Louis, MO), 2.0 mM 

sodium pyruvate (Sigma-Aldrich, St. Louis, MO), 4.43 mM Hepes (Sigma-

Aldrich, St. Louis, MO), 10% heat-inactivated estrus bitch serum (EBS) and P/S 

(modified from Srsen et al., 1998).  The oocytes were cultured in four-well dishes 

(Nunc, Roskilde) with medium at a ratio of 10 μl per oocyte for ~65 h in an 

atmosphere of 5% CO2 in humidified air at 39°C.  Oocytes were denuded of 

surrounding cumulus cells prior to experiment by repeated mechanical pipetting 

in fresh TL Hepes medium containing 0.5% hyaluronidase, and segregated into 

two groups before transferring to 500 µl of pre-equilibrated holding medium 

consisting of M-199 medium, 10% EBS, and 1% Penicillin-Streptomycin (P/S).   
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2.2 Oocyte imaging   

In vitro matured, denuded bovine oocytes were utilized for the 

establishment of baseline imaging parameters, employing a system with well-

defined IVM/IVF/IVC protocols and expected embryo development results for the 

first part of this experiment.  Parallel experiments were conducted using canine 

oocytes when available.  Based upon preliminary analysis of several functional 

endpoints as biological markers (mitochondrial membrane potential (Δψm), 

mitochondrial distribution, and mitochondrial Ca2+; cytoplasmic and 

mitochondrial reduced pyridine nucleotides NADH and NADPH by utilization of 

the inherent fluorescence of reduced pyridine nucleotides (Patterson et al., 

2000); intracellular GSH levels and GST activity, these investigations focused 

primarily on mitochondrial distribution and function as well as intracellular Ca2+ 

homeostasis.   

The loading of fluorescent probes and instrument parameters used to 

assess functional cellular homeostasis mechanisms were optimized to allow for 

comparisons across all grades of mature bovine oocytes.  Probe selection was 

based on its effectiveness at low concentrations, non-invasive mode of delivery, 

and lack adverse influence on metabolism in the determination of a functional 

endpoint.  All fluorescent probes were obtained from Molecular Probes, Inc. and 

prepared according to the manufacturers instructions (Eugene, OR). Instrument 

parameters that optimize laser power and detection of emitted fluorescence 

signals were also determined for each probe.  Functional data related to oocyte 
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grade (morphology) was obtained by laser cytometry using a Bio-Rad Radiance 

2000MP multiphoton microscope with a tunable (750-1020 nm) Ti:Sapphire 

laser.  Digital images were rapidly captured of each oocyte in accordance with 

steady state analysis of each functional endpoint as indicated by its respective 

molecular probe.   

For defining mitochondrial distribution and function, rhodamine 123 and 

JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide) 

probes were selected.  Rhodamine 123 is a cell permeant dye that is readily 

sequestered by active mitochondria without cytotoxic effects.  Its steady uptake 

by mitochondria occurs as a consequence of the maintenance of a high 

electrochemical potential across the mitochondrial membrane (Johnson et al., 

1980).  Rhodamine 123 was prepared from stock solutions immediately 

preceding each experiment yielding a final loading concentration of 2.0 μg/ml 

when added to the holding medium, just prior to addition of oocytes.  Oocytes 

were incubated for either 10 minutes (bovine), or 20 minutes (canine) due to the 

high concentration of cytoplasmic lipid.  Oocytes were imaged using Ti:Sapphire 

laser at 950 nm excitation wavelength (equivalent to 475 nm wavelength in 

single photon excitation mode) and an emission wavelength of 525 +/- 25 nm.  

JC-1 is a cell permeant dye that accumulates in the mitochondria and is 

considered a sensitive marker for mitochondrial membrane potential.  This 

newer generation mitochondrial probe was selected because of its ability to exist 

as a monomer at low concentrations (polarized) yielding green fluorescence, 
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while at higher concentrations (hyperpolarized) the dye forms J-aggregates that 

exhibit a broad excitation spectrum yielding red fluorescence (VanBlerkom et al., 

2002).  JC-1 was prepared from stock solutions in DMSO immediately preceding 

each experiment yielding a final loading concentration of 2.0 μg/ml when added 

to the holding medium, just prior to addition of oocytes.  Oocytes were incubated 

for either 10 minutes (bovine), or 20 minutes (canine) due to the high 

concentration of cytoplasmic lipid.  Oocytes stained with JC-1 were excited at 

950 nm wavelength and emissions were collected at 520 +/- 25 nm and 590 +/- 

25 wavelength.  

To evaluate oocyte intracellular calcium activity, the non-ratiometric 

visible wavelength probe Fluo-4, AM was selected, as it is a cell permeable 

probe with high affinity for Ca2+ and exhibits approximately a 40 fold 

enhancement of fluorescence intensity with Ca2+ binding (Gee et al., 2000).  

Stock solution of 1.0 mM Fluo-4, AM was prepared in DMSO and diluted 

immediately preceding staining to yield a final loading concentration of 2.5 μg/ml 

when added to the holding medium, just prior to the addition of oocytes.  

Oocytes were incubated for 30 minutes (both bovine and canine) prior to 

imaging due to the high concentration of cytoplasmic lipid.  Oocytes were then 

imaged with an excitation wavelength of 950 nm and an emission wavelength of 

525 +/- 25 nm. 

Cellular GSH levels were evaluated with mBCl (monochlorobimane), by 

laser cytometry.  mBCl is a cell-permeant, non-fluorescent probe that forms a 
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fluorescent adduct with GSH in a reaction catalyzed by glutathione S-transferase 

(Rice et al., 1986; Shrieve et al., 1988).  mBCl was prepared according to the 

manufacturer’s specifications and diluted immediately preceding staining from a 

50mM stock solution to yield a final loading concentration of 25 μM.  Images 

were collected with an excitation wavelength of 800 nm (equivalent to 400 nm in 

a single photon excitation system) and an emission wavelength of 460 nm +/- 25 

nm.  Redox fluorometry based on intrinsic fluorescence of reduced pyridine 

nucleotides NADH and NADPH was also attempted to examine cellular energy 

due to the intrinsic fluorescence of NADH and NADPH (Patterson et al., 2000). 

For each parameter analyzed, approximately eight IVM, denuded oocytes 

of known grade for bovine and random selection for canine were placed into 1 

ml of fresh holding medium (previously described) containing the specific 

fluorescent probe at the desired concentration (described above), and incubated 

at 38.5°C in CO2 and humidified air for a loading interval specific for that 

particular probe (as previously indicated).  All oocytes were then washed three 

times in warm, fresh TL Hepes medium (phenol red-free) and placed individually 

in drops of 4 μl onto the glass bottom of a Lab-Tek 2-well chambered cell culture 

dish (Nunc International, Rochester, NY), and immediately imaged.  Each oocyte 

was assigned an identification number that continued consecutively from 1-64 

for bovine, beginning with Grade I oocytes, followed by Grades II & III.  The 

same procedure was followed for canine oocytes randomly selected, when 

available except the glass bottom of the Lab-Tek 2-well chambered cell culture 
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dish was previously coated with poly-L-lysine (Sigma, St. Louis) for a period of 

30 minutes, rinsed with fresh TL Hepes medium, and allowed to dry before 

placing oocytes into droplets for imaging.  This procedure was introduced as a 

method of anchoring the canine oocyte to the surface of the dish for imaging due 

to the observation that canine oocytes sometimes floated freely within the micro-

droplet.  Rapid acquisition of digital images of each oocyte were performed with 

a color CCD camera and R, G, and B color planes were stored in a reference 

library prior to functional analysis by laser cytometry.  These data were used to 

establish baseline criteria of specific functional characteristics in relation to 

oocyte quality. 

For bovine, a positive oocyte control group that was neither stained nor 

imaged was also formed and subjected to subsequent fertilization and 

monitoring of embryonic development in an identical manner to the oocytes 

prepared for imaging.  As a negative control, either two (for rhodamine 123) or 

three separate groups of oocytes were fertilized and cultured in bulk to address 

the issue of in vitro fertilization and embryo culture of individual oocytes/embryos 

vs. bulk fertilization of oocytes/embryos.  Bulk culture groups are defined as a) 

cumulus oocyte complexes (COC), b) denuded oocytes (DO) stripped of their 

cumulus cells (DO), and/or c) DO co-cultured with cumulus cells (DO+CU).  

Cumulus cells for co-culture were prepared as described below. Only the COC 

and DO bulk culture groups were used in the rhodamine 123 experiments. 
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As a positive control for the canine image analysis experiments, two 

separate groups from the same population of oocytes for any given experiment 

were a) neither stained nor imaged, or b) stained only for the reason that there is 

not a well-defined IVF or activation protocol for the production of canine embryos 

in vitro  and also to rule out any potential adverse effects of probe loading to the 

oocyte .  All canine oocytes were subjected to IVM in bulk, imaged individually 

and then fixed in a 3.7% formaldehyde-Triton X-100 (Sigma, St. Louis, MO) 

solution for 15 minutes, washed in a solution of DPBS (Gibco, Grand Island, NY) 

+ 3mg/ml Polyvinylpropinal (PVP) (Sigma, St. Louis, MO) for an additional 15 

minutes, and mounted on a glass slide in 15 μl of 1.9μM Hoechst 33342 (Sigma, 

St. Louis, MO) in glycerol (Sigma, St. Louis, MO).  Oocytes were then evaluated 

under UV light using a Nikon Eclipse TE300 with a Roper Scientific Cool Snap 

CF Camera and analyzed with the NIS Elements software to determine the 

stage of meiosis as defined by Hewitt (1997). 

Exception was taken in the canine JC-1 experiment whereby all oocytes 

analyzed using the improved selection method were fertilized using either 

cryopreserved or freshly collected canine semen, as part of a range-finding, 

informative study.  Semen preparation, IVF, IVC and analysis of embryo 

development are described below.   
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2.3 Bovine and canine sperm preparation 

 Bovine spermatozoa used in these experiments were prepared from 

cryopreserved bull semen according to Pertoft et al. (1978) by density gradient 

separation using 45%/90% Percoll (Sigma, St. Louis, MO).  Sperm concentration 

used for IVF was 2x106/ml.  While semen from two different bulls was used, the 

source remained consistent throughout any one particular experiment (i.e. all 

experiments using Fluo-4 and involving IVF were analyzed with semen from the 

same bull, and all JC-1 experiments involving IVF were analyzed with semen 

from the same bull, however, the source of semen differed between the two 

experiments).   

 Canine spermatozoa used in these experiments were prepared either 

from cryopreserved dog sperm or from freshly collected dog semen.  The 

cryopreserved semen was prepared according to Pertoft et al. (1978) by density 

gradient separation using 45%/90% Percoll (Sigma, St. Louis, MO), and 

fertilized at a concentration of either 2 x 106/ml or 5 x 106/ml. 

Fresh collected dog semen was extended 1:1 using Biladyl Part A 

(Minitube, Verona, WI), and slow-cooled overnight at 4°C.  The extended semen 

was then prepared for IVF by density gradient separation using 45%/90% 

Percoll (Sigma, St. Louis, MO) according to Pertoft et al. (1978).  Canine 

oocytes were fertilized in vitro at a concentration of 5 x 106/ml. 
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2.4 In vitro fertilization and embryo culture  

After imaging, both bovine and canine oocytes were fertilized in vitro in a 

modified Tyrode’s-lactate medium defined by Bavister and Yanagimachi (1977) 

using the “Well of the Well” (WOW) system in 4-well culture dishes (Nalgene-

Nunc, Denmark) as described by Vajta et al., (2000), in order to track and 

maintain oocyte/embryo identification through development (Fig. 2.2).  Briefly, 

mini-wells were made by hand under a dissecting microscope using a blunt 

tapestry sewing needle (#18) held by a hemostat and gently heated over an 

open flame from an alcohol lamp (Fig. 2.3).  The wells were formed by gently 

pressing the needle into the bottom of the plastic dish to the level of the needle’s 

bevel, allowing it to cool for easy removal.  This process was repeated until six 

rows of 8 wells were formed, for a total of 48 mini wells with well number 1 being 

the first well of the first row (from left to right) and well number 48 being the last 

well of the last row.  Only well 1 of the 4-well dish was converted to the WOW 

system.  Wells 2-4 were reserved for washing post culture.  The WOW was then 

washed 3 times with sterile saline solution to flush away any plastic debris or by-

products that may have been produced from melting the plastic, and then 

sterilized under UV light for a minimum of 30 minutes.  Fertilization medium was 

allowed to equilibrate in the WOW dishes for at least 1 hour prior to use.  

Imaged bovine or canine oocytes were placed in their respective wells according 

to the numbers assigned immediately preceding imaging.  Cumulus cells 

preserved from denuding the oocytes at the beginning of the experiment were 

 



50 
 

pelleted in a 15ml conical tube (BD Biosciences, San Jose, CA), and re-

suspended in ~100 μl of fertilization medium.  Approximately 10 μl of the 

cumulus cell solution was added to each WOW dish to aid in capacitation of 

spermatozoa, and to provide essential nutrients and cell signaling molecules for 

optimal embryo development.  

 

  
a b

 
Fig. 2.2.  Photograph of (a) WOW culture dish used for IVF and IVC of individual ova and 
embryos (b) and WOW culture dish harboring embryos taken with a NIKON SMZ1000 
dissecting microscope. 

 
 

      
a b 

Fig. 2.3.  Photograph of (a) hemostat-needle holding tool used to make mini-wells in 
WOW system, and (b)  of #18 tapestry needle tip used to make mini-wells. 
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 After 18 -20 hours post insemination, oocytes fluorescence labeled and 

imaged oocytes were subjected to IVF were washed free of remaining sperm in 

fresh TL Hepes at least two times, before transfer to G1/G2 version 3, embryo 

culture medium (VitroLife, Inc., Englewood, CO) and cultured according to 

manufacturer’s recommendations via the WOW method described above (Fig. 

2).  Non-cleaving embryos were removed from culture at 24 hour intervals, fixed 

in 3.7% paraformaldehyde, stained with Hoechest 33342 (Sigma, St. Louis, MO) 

and observed under UV light (as described previously for bovine) to evaluate 

developmental status.  On day 8 post insemination, the remaining embryos were 

fixed and stained accordingly to assess stage of development.   

 

2.5 Analysis of oocyte images captured 

For each oocyte image captured, specific measurements relating to 

oocyte morphology were recorded to include overall area of oocyte, diameter 

and shape factor.  The shape factor is a dimensionless quantity used in image 

analysis and microscopy to numerically describe the shape of a particle, 

independent of its size. It is calculated from the measured dimensions of 

diameter, area and perimeter following hand-drawing of a continuous outline of 

the ooplasm using the “region tools” available in Metamorph software version 

7.5.0 (MDS Analytical Technologies Inc., Mississauga, Ontario, CANADA). The 

shape factor often represents the degree of deviation from an ideal shape, such 

as a circle in the case of oocytes.  The value of shape factor ranges from zero to 
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one. A shape factor equal to one usually represents an ideal case or maximum 

symmetry, such as a circle. 

Average fluorescence intensity (AFI) or the ratio of fluorescence intensity 

for ratio-metric probes was evaluated  using Metamorph software.   For the 

probes rhodamine 123 and Fluo-4, AM, data collected with the Metamorph 

software were used to plot SF/AFI (defined as the ratio of SF to AFI against AFI 

in order to identify a specific relationship between the two parameters measured. 

For canine and bovine oocytes imaged using JC-1, analysis similar to that of 

rhodamine 123 was performed, with the exception of using fluorescence 

intensity (FI) of the ratio of green:red instead of AFI for analysis with Metamorph 

software in order to identify the specific relationship between SF/AFI and FI. The 

relationship between the two variables (SF/AFI) and AFI was found to be an 

exponential decay satisfying the following equation: 

SF/AFI = A * exp(-K*AFI) + B 

The curve starts theoretically at A+B (Span) and decays to end at B (plateau) 

with a rate constant K.  A, B and K are different for each probe tested. 

Further for canine JC-1 analysis, another selection method was evaluated 

in an attempt to enhance the selection criteria for a good oocyte.  Briefly, this 

method consisted of selecting retrospectively a reference oocyte.  The reference 

oocyte was selected based on a compilation of the most common values for SF 

and FI for each oocyte as well as good fertilization.  A maximum difference of 6 
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between the reference oocyte and the measured oocyte fluorescence intensity 

was determined as the cutoff limit for prediction.  

 

2.6 Statistical analysis 

Data comparing functional parameters based upon oocyte grade for both 

bovine and canine oocytes were compared statistically using ANOVA followed 

by Tukey’s test (for all pairwise comparisons) or the Bonferroni procedure (for a 

subset of pairwise comparisons) multiple comparison tests at P<0.05. 

Comparison of in vitro fertilization and embryo development based on the 

WOW IVF/IVC system were compared statistically using ANOVA followed by 

Tukey’s test (for all pairwise comparisons) or the Bonferroni procedure (for a 

subset of pairwise comparisons) multiple comparison tests at P<0.05. 

All statistical evaluations were analyzed using SPSS software version 

15.0. 
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CHAPTER III 

RESULTS 

3.1 Evaluation of loading parameters   

The loading of fluorescence probes of cellular function and evaluation of 

instrument parameters for the establishment of baseline imaging criteria were 

implemented in order to assess functional cellular homeostasis mechanisms.  

These criteria were further optimized to allow for comparisons across all grades 

of mature bovine oocytes.  Fluorescent molecular probes that were used include 

rhodamine 123 and JC-1 for assessment of mitochondrial 

localization/distribution and membrane potential (Δψm), Fluo-4, AM for 

evaluation of free intracellular calcium ion (Ca2+) levels, and monochlorobimane 

(mBCl) for assessment of glutathione (GSH) status.  Redox fluorometry based 

on intrinsic fluorescence of reduced pyridine nucleotides NADH and NADPH 

was also attempted to examine cellular energy due to the intrinsic fluorescence 

of NADH and NADPH.   
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Experiments using the probes for mitochondrial localization and 

membrane potential, as well as intracellular Ca2+ concentration were determined 

as suitable for oocyte assessment and are reported individually below.  In 

contrast, evaluation of GSH activity was determined to be unsuitable for oocyte 

assessment, as the mBCl probe irreversibly binds glutathione, thereby depleting 

the cell of cytosolic GSH necessary to combat oxidative stress resulting from 

generation of reactive oxygen species (ROS).  While GSH status could be 

evaluated, the assessment could not be performed without compromising 

oocytes that were to be further analyzed.  The evaluation of NADH and NADPH 

was also not successful due to the inability to reliably monitor the intrinsic 

fluorescence of these reduced pyridine nucleotides due to the high lipid 

concentration in both bovine and canine oocytes which limited detection 

sensitivity. 

 

 



56 
 

3.2 Experiment I - Characterization of the spatial distribution of 

mitochondria and mitochondrial activity and intracellular Ca2+ stores 

in relation to grade of in vitro matured bovine oocytes as they relate 

to morphology, and establishment of baseline criteria of functional 

parameters for oocyte selection 

3.2.1 Characterization of the spatial distribution of mitochondria and 

mitochondrial activity in relation to grade of IVM bovine oocytes 

In vitro matured bovine oocytes (n=200) denuded of cumulus cells were 

graded and sorted by morphology as previously described and labeled with the 

fluorescent dye, rhodamine 123.  Images captured revealed patterns of 

mitochondrial distribution and activity that were not unique from each other 

according to morphological grade.  Mitochondria were visualized as punctate 

areas of fluorescence and were distributed primarily in the peri-cortical and sub-

cortical areas of the oocyte cytoplasm, with the most densely populated areas 

being peri-cortical.  Comparison of morphological grading with fluorescence 

intensity also yielded similar trends between all grades of oocytes with no 

visually obvious, distinct or characteristic staining that would permit classification 

of each oocyte as a specific morphological grade (Fig. 3.1).   

 



57 
 

 
 
     Fig. 3.1. Individually graded IVM bovine oocytes imaged using multiphoton 
microscopy with the mitochondrial probe, rhodamine 123. G1 (a-d); G2 (e-l); G3 
(m-t).   
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Average fluorescence intensity (AFI) was recorded for each oocyte 

imaged and plotted against a parameter that combines morphology and 

mitochondrial fluorescence which is the ratio of a shape factor to the average 

fluorescence intensity (SF/AFI) where the shape factor is a measure of the 

circularity of the oocyte (a shape factor of 1.0 represents perfect circularity of the 

oocyte in 2 dimensional images) (Fig. 3.2).  Grade 2 oocytes were distributed 

throughout the curve and had AFI’s ranging from 27.3-109.9, while the majority 

of G1 oocytes had an AFI between 40-60 (range 45.5-97.7), and G3 oocytes 

were distributed between 26.9-68.1.  These data identified an inverse 

relationship between SF/AFI and AFI.  The mean values for SF/AFI and AFI are 

listed in Table 3.1 and plotted in Fig. 3.3.  Statistical analysis of SF/AFI and AFI 

values for each oocyte grade revealed significant differences between G1 and 

G2, as well as between G1 and G3 (P<0.05), respectively.   
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     Fig. 3.2.  Relationships between AFI and SF/AFI in G1, G2 & G3 bovine oocytes imaged using multiphoton 
microscopy with the mitochondrial probe, rhodamine 123. 
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     Fig. 3.3.  Relationships between mean SF/AFI (a) and AFI (b) and oocyte 
grades in oocytes imaged using multiphoton microscopy with the mitochondrial 
probe, rhodamine 123. 
 

 

 

 

Table 3.1. Mean Values and Range for SF/AF (a) and AFI (b) of Bovine 
Oocytes Imaged Using Multiphoton Microscopy with the Mitochondrial 

Probe Rhodamine 123. 
 

 Grade (n)  (SF/AFI) Mean (SF/AFI) Range
 G1 8 0.172a 0.012-0.021 
 G2 125 0.024b 0.011-0.031 
 G3 67 0.025b 0.014-0.036 

a Total 200   
Lower case superscripts indicate significant differences in same column (P<0.05) 

 
 Grade (n) AFI Mean AFI Range 
 G1 8 61.629a 45.5-97.705 
 G2 125 45.928b 27.320-109.875
 G3 67 43.719b 26.914-68.118 

b Total 200   
Lower case superscripts indicate significant differences in same column (P<0.05) 
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In an effort to better define the spatial distribution of oocyte mitochondria 

and mitochondrial membrane potential (Δψm) as they relate to oocyte grade, 

239 IVM bovine oocytes denuded of cumulus cells were labeled with JC-1 

(5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide), a 

new generation, ratiometric fluorescent probe.  JC-1 exists as a monomer at low 

concentrations and yields green fluorescence in the FITC channel and red 

fluorescence in the RITC channel due to the formation J-aggregates (an 

accumulation of higher concentrations of probe within the mitochondrial 

membrane), indicating hyperpolarization of the mitochondrial membrane 

(VanBlerkom et al. 2002). 

Images captured in both the FITC and RITC channels revealed patterns 

of mitochondrial distribution and Δψm that were similar to that of the rhodamine 

123 probe, and again were not visually unique according to each grade (Fig. 

3.4).  Specifically, both green and red fluorescence (orange-yellow in merged 

image) appeared in the peri- and sub-cortical regions of the oocyte indicating a 

heterogeneous mitochondrial population. Further, when present in the field of 

view, the polar body fluoresced intensely in both FITC and RITC channels.  

However, a number of the G3 oocytes had much different patterns of 

fluorescence.  Specifically, some exhibited fluorescence signal throughout the 

entire cytoplasm, showing vacuoles devoid of probe (Fig. 3.4q), while others had 

significantly more hyperpolarized mitochondria in the peri-cortical area with  
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     Fig. 3.4.  Bovine oocytes classified as G1 (a-d), G2 (e-l) & G3 (m-t) and 
imaged using multiphoton microscopy with the ratiometric mitochondrial probe, 
JC-1.   
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vacuoles that fluoresced (4r), as well as probe uptake by the zona pellucida, with 

little fluorescence in the cytoplasm (4t).  When present, residual coronal and/or 

cumulus cells, along with their trans-zonal projections fluoresced red, indicating 

the presence of hyperpolarized mitochondria (Fig. 3.4b, 3.4g, & 3.4k). 

A ratio of the green:red fluorescence was used to quantify the 

fluorescence intensity (FI) within each oocyte for this experiment.  Fluorescent 

intensities and distribution of mitochondria recorded for all morphological grades 

yielded a similar trend to rhodamine 123, (i.e., there was an inverse relationship 

between SF/FI and FI (Fig. 3.5).  Specifically, G2 oocytes were distributed 

throughout the curve (0.9-2.1), while G1 were distributed between 1.3-1.9.  G3 

oocytes were distributed between 0.9-2.0 (Fig. 3.5).  There were no significant 

differences among SF/FI or FI between G1 and G2 (P<0.05).  However, G2 and 

G3 oocytes were significantly different from each other (P<0.05) for both SF/FI 

and FI.  The mean SF/FI and FI for each oocyte grade are shown in Table 3.2 

and plotted in Fig. 3.6.   
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    Fig. 3.5.  Relationships between SF/FI and FI of G1, G2 & G3 bovine oocytes imaged using multiphoton 
microscopy  with the ratiometric mitochondrial probe, JC-1. 
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     Fig. 3.6.  Relationships between mean SF/FI (a) and FI (b) and oocyte 
grades in oocytes imaged using multiphoton microscopy with the ratiometric 
mitochondrial probe, JC-1. 

 

 

Table 3.2.  Mean Values and Ranges for the Ratio of SF/FI (a) and FI (b) of 
Bovine Oocytes Imaged Using Multiphoton Microscopy with the 

Ratiometric Mitochondrial Probe JC-1. 
 

 Grade (n) SF Mean SF Range 
G1 18 0.636ab 0.553-0.792 

 G2 170 0.649a 0.490-1.107 
 G3 51 0.710b 0.522-1.291 

a Total 239   
Lower case superscripts indicate significant differences in same column (P<0.05) 

 Grade (n) AFI Mean AFI Range 
G1 18 1.607ab 1.272-1.85 

 G2 170 1.595a 0.925-2.080 
 G3 51 1.498b 0.907-1.991 

b Total 239   
Lower case superscripts indicate significant differences in same column (P<0.05) 
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3.2.2 Characterization of the spatial distribution of free intracellular Ca2+ in 

relation to grade of IVM bovine oocytes 

In vitro matured bovine oocytes (n=236) denuded of cumulus cells were 

sorted according to grade as previously described and incubated with the Ca2+-

sensitive fluorophore, Fluo-4, AM.  Images were captured rapidly to avoid cell 

damage and revealed spatial patterns of intracellular Ca2+ that were generally 

not unique according to grade.  Fluorescence intensity of the Fluo-4, AM within 

the oocyte cytoplasm was very low and areas of specific localization within the 

oocyte were either unremarkable, exhibited peri-cortical localized areas of 

fluorescence, or small aggregates of fluorescence indicative of localized 

elevations of intracellular Ca2+ levels.  Punctate fluorescence was present in the 

peri-vitelline space (PVS) and the first polar body had a very intense Fluo-4, AM 

signal indicating high free Ca2+ levels within this structure (Fig. 3.7).  Lastly when 

present, residual corona/cumulus cells, and trans-zonal projections showed 

evidence of intracellular Ca2+ activity within these structures as indicated by 

moderate fluorescence labeling as designated by the red arrows in Fig. 3.7. 

Comparison of morphological grading with fluorescence intensity yielded similar  
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a  

b   

c  

     Fig. 3.7.  Bovine G1 (a), G2 (b), and G3 (c) oocytes imaged using 
multiphoton microscopy with the Ca2+-sensitive fluorophore, Fluo-4, AM.  Red 
arrows indicate Ca2+ activity within residual corona/cumulus cells and trans-
zonal projections. 
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trends between all grades of oocytes with no visually obvious, distinct 

characteristic Fluo-4, AM signal that that would allow identification of each oocyte 

as belonging to a specific morphological grade.  However, Grade 3 oocytes 

showed more intense Fluo-4, AM fluorescence that was predominantly located in 

the peri-coritical region of the oocyte (Fig. 3.7).  When plotted together, the 

SF/AFI and AFI of imaged oocytes generated a curve that confirmed an inverse 

relationship between SF/AFI and AFI (Fig. 3.8).  The mean values for both 

SF/AFI and AFI are reported in Table 3.3 and plotted in Fig. 3.9.  Specifically, G2 

and G3 oocytes had AFI’s distributed throughout the curve with ranges of 

20.245-51.790 and 21.604-53.297, respectively, with the majority of oocytes for 

both grades having AFI’s between 21-26.  G1 oocytes were distributed in the 

20.303-26.130 range of lower Fluo-4, AM fluorescence intensity.  Statistical 

analysis of both SF/AFI and AFI revealed that G2 was significantly different from 

G3  (P<0.05), respectively (Table 3.3). 
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     Fig. 3.8.  Relationships between SF/AFI  vs. AFI (as an index of intracellular Ca2+) in  
G1, G2 & G3 bovine oocytes imaged using multiphoton microscopy with the Ca2+-sensitive 
fluorophore, Fluo-4, AM. 
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Table 3.3.  Mean Values and Ranges for the Ratio of SF/AFI (a) and AFI (b) 
of Bovine Oocytes Imaged Using Multiphoton Microscopy with the Ca2+-

sensitive Probe, Fluo-4. 
 

 Grade (n) SF Mean SF Range 
 G1 20 0.043ab 0.038-0.049 

 G2 170 0.044a 0.019-0.049 
 G3 46 0.041b 0.019-0.049 

a Total 236   
Lower case superscripts indicate significant differences in same column (P<0.05) 

 Grade (n) AFI Mean AFI Range 
 G1 20 23.504ab 20.303-26.130 

 G2 170 23.300a 20.245-51.790 
 G3 46 25.281b 21.604-53.3 

b Total 236   
Lower case superscripts indicate significant differences in same column (P<0.05) 
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     Fig. 3.9.  Relationships between mean SF/AFI  (a) and AFI (b) and oocyte 
grades in oocytes imaged using multiphoton microscopy with the Ca2+-sensitive 
fluorophore, Fluo-4, AM  
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3.2.3 Evaluation of embryonic developmental potential of bovine oocytes 

imaged by multiphoton microscopy and subsequently fertilized in vitro 

Using the WOW method as previously described (Vajta et al., 2000), 

bovine oocytes examined in experiments II & III were fertilized in vitro following 

fluorescence probe loading and imaging in order to assess embryonic 

developmental potential to the blastocyst stage (Fig. 3.10).  There were no 

visually obvious morphological differences between imaged and non-imaged in 

vitro derived hatched blastocysts (Fig. 3.11).  The identity of each oocyte imaged 

was maintained throughout the entire study, from the grading step, through probe 

loading and imaging followed by the IVF process and embryo culture.  Oocytes 

and embryos were maintained in their respective wells within the WOW system 

containing 10 μl of medium/oocyte during the course of the culture period.  

Embryonic development of imaged and non-imaged oocytes in the WOW culture 

system were also compared to a similar number of non-imaged oocytes cultured 

in larger groups using the same total amount of culture medium/oocyte (i.e., 50 

oocytes in 500 μl of culture medium).  Oocytes in the bulk cultures were 

.prepared as cumulus-oocyte complexes (COC), oocytes denuded of cumulus 

cells (DO), or denuded oocytes supplemented with cumulus cells (DO + CU). 

For bovine oocytes labeled with rhodamine 123 and imaged, the 

percentage of oocytes fertilized were 37.5, 75.2, and 53.7 for G1, G2, and G3 

oocytes, respectively.  The percentages of embryos undergoing cleavage were 

12.5, 28.0, and 23.9 for G1, G2 and G3 oocytes, respectively; and percentages 

of development to blastocyst were 12.5, 3.2, and 1.5 for G1, G2 and G3 oocytes,  
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A   
 

 

B   
 
     Fig. 3.10.  Photograph of the WOW culture system.  A: each well contains 48 
mini-wells for oocyte/embryo culture; B: higher magnification of individual wells 
that harbor cleaving/blastocyst stage embryos, several of which are shown 
(arrowheads). 
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     Fig. 3.11.  Fluorescence microscopy of fixed, hatched in vitro derived bovine 
blastocysts labeled with the DNA stain Hoechst 33342 comparing A: multiphoton 
microscopy imaged and B: non-multiphoton microscopy imaged embryos using 
the WOW system. 
 

 

respectively (Table 3.4, Fig. 3.12).  There were no significant differences among 

grades of imaged oocytes.  For the non-imaged control oocytes, percentages of 

oocytes fertilized were 88.9, 86.5, and 75.5 for G1, G2 and G3 oocytes, 

respectively; percentages of cleaved embryos were 55.6, 65.2, and 32.7 for G1, 

G2 and G3 oocytes respectively; and percentages of development to blastocyst 

were 0.0, 20.6, and 8.2 for G1, G2 and G3 oocytes, respectively (Table 3.4, Fig. 

3.12).  There were no significant differences in fertilization, cleavage or 

blastocyst embryo development between oocyte grades in the non-imaged 

control group.  For the bulk culture control groups, percentages of fertilization for 

the COC and DO groups were 68.1 and 64.2, respectively; embryo cleavage 

percentages were 44.9 and 11.3, respectively, and percentages of development 

to blastocyst were 18.8 and 0.0, respectively (Table 3.4, Fig. 3.12).  There were 
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no significant differences in fertilization, cleavage or blastocyst development 

among the bulk cultured control groups. Lastly, statistical analysis of the imaged 

vs. non-imaged vs. bulk cultured groups revealed significant differences between 

the imaged G1 and non-imaged G1 groups (P>0.05).  This part of the experiment 

included the initial trials using the WOW methods, thus embryo development for 

bovine oocytes labeled with rhodamine 123 and imaged were lower than that 

reported for subsequent experiments.  Further, there was not a DO+CU bulk 

culture group in the rhodamine 123 bovine imaging experiment.  

For bovine oocytes labeled with the ratiometric mitochondrial probe, JC-1 

and imaged using multiphoton microscopy, the percentages of oocytes fertilized 

were 93.8, 90.9, and 53.8 for G1, G2, and G3 oocytes, respectively; percentages 

of embryo cleavage were 93.8, 76.8 and 28.8 for G1, G2 and G3 oocytes, 

respectively; and development to blastocyst stage were 37.5, 19.5 and 1.9 for 

G1, G2 and G3 oocytes, respectively (Table 3.5, Fig. 3.13).  Statistical analysis 

revealed significant differences in the percentages of fertilization, embryo 

cleavage, and blastocyst development between JC-1 imaged G1 and G3 oocytes 

(P<0.05).  For the non-imaged control oocytes, percentages undergoing 

fertilization were 84.2, 87.7, and 88.4 for G1, G2 and G3 oocytes, respectively; 

embryo cleavage percentages were 78.9, 74.9, and 65.1 for G1, G2 and G3 

oocytes respectively; and development to blastocyst stage were 36.8, 26.9 and 

16.3 for G1, G2 and G3 oocytes, respectively (Table 3.5, Fig. 3.13).  



75 
 

Table 3.4.  Embryo Development in Non-imaged and Multiphoton 
Microscopy Imaged Bovine Oocytes Labeled with Rhodamine 123 and 

Maintained in the WOW System Compared with Bulk Cultures of Untreated 
Oocytes. 

 
Imaged Grade n # Fertilized 

(%) 
# Cleaved 

(%) 
# Blast  

(%) 
 G1 8 3/8A 

(37.5) 
1/8 

(12.5) 
1/8 

(12.5) 
 G2 125 94/125 

(75.2) 
35/125 

(28) 
4/125 
(3.2) 

 G3 67 36/67 
(53.7) 

16/67 
(23.9) 

1/67 
(1.5) 

 Total 200 133/200 
(66.5) 

52/200 
(26.0) 

6/200 
(3.0) 

      
Non-

Imaged  
Grade n # Fertilized 

(%) 
# Cleaved 

(%) 
# Blast  

(%) 
 G1 9 8/9B 

(88.9) 
5/9 

(55.6) 
0/9 

(0.0) 
 G2 141 122/141 

(86.5) 
92/141 
(65.2) 

29/141 
(20.6) 

 G3 49 37/49 
(75.5) 

16/49 
(32.7) 

4/49 
(8.2) 

 Total 199 167/199 
(83.9) 

113/199 
(56.8) 

33/199 
(16.6) 

      
Bulk Grade n # Fert (%) # Cleaved 

(%) 
# Blast 

(%) 
 COC 69 47/69 

(68.1) 
31/69 
(44.9) 

13/69 
(18.8) 

 DO 53 34/53 
(64.2) 

6/53 
(11.3) 

0/53 
(0.0) 

 Total 122 81/122 
(66.4) 

37/122 
(30.3) 

13/122 
(10.7) 

Lower case superscripts indicate significant differences in same column (P<0.05) 
Upper case superscripts indicate significant differences between groups (P<0.05) 
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     Fig. 3.12.  Comparisons of fertilization and embryo development of cultured 
bovine oocytes labeled with rhodamine 123 and multiphoton microscopy imaged 
(I), with non-imaged (NI) oocytes using the WOW system, or bulk (COC, DO) 
cultured bovine oocytes. 

 
 
 

 There were no significant differences in fertilization, cleavage or blastocyst 

embryo development between oocyte grades in the non-imaged control group.  

For the bulk culture control groups, fertilization percentages for the COC, DO & 

DO+CU were 85.2,  70.8 and 81.6, respectively; embryo cleavage percentages 

were 70.4, 44.1, and 66.7, respectively, and percentages of development to 

blastocyst were 25.9, 9.4, and 19.3, respectively (Table 3.5, Fig. 3.13).  There 

were no significant differences in fertilization, cleavage or blastocyst 

development among the bulk cultured control groups.  Further, there were no 

significant differences in embryo development among each grade for imaged vs. 

non-imaged oocytes.  Lastly, there were no distinct differences in morphology or 
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Table 3.5.  Embryo Development in Non-imaged and Multiphoton 
Microscopy Imaged Bovine Oocytes Labeled with JC-1 and Maintained in 

the WOW System Compared with Bulk Cultures of Untreated Oocytes. 
 

Imaged Grade n # Fertilized 
(%) 

# Cleaved 
(%) 

# Blast  
(%) 

 G1 16 15/16 a 
(93.8) 

15/16a 
(93.8) 

6/16b 
(37.5) 

 G2 164 149/164 ab 
 (90.9) 

126/164ab 
(76.8) 

32/164ab 
(19.5) 

 G3 52 28/52 b 
(53.8) 

15/52b 
(28.8) 

1/52b 
(1.9) 

 Total 232 192 
(82.8) 

156 
(67.2) 

39 
(16.8) 

      
Non-

Imaged  
Grade n # Fert (%) # Cleaved 

(%) 
# Blast 

(%) 
 G1 19 16/19  

(84.2) 
15/19 
(78.9) 

7/19 
(36.8) 

 G2 171 150/171 
(87.7) 

128/171 
(74.9) 

46/171 
 (26.9) 

 G3 43 38/110  
(88.4) 

28/43 
(65.1) 

7/43 
(16.3) 

 Total 233 204/233  
(87.6) 

171/233 
(73.4) 

60/233 
(16.3) 

      
Bulk Grade n # Fert (%) # Cleaved 

(%) 
# Blast 

(%) 
 COC 216 184/216 

(85.2) 
152/216 
(70.4) 

56/216 
(25.9) 

 DO 202 143/202 
(70.8) 

89/202 
(44.1) 

(19/202) 
(9.4) 

 DO+CU 207 169/207 
(81.6) 

138/207 
(66.7) 

40/207 
(19.3) 

 Total 625 496/625 
(79.4) 

241/625 
(38.6) 

75/625 
(12) 

Lower case superscripts indicate significant differences in same column (P<0.05) 
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     Fig. 3.13. Comparisons of fertilization and embryo development of cultured bovine oocytes labeled with JC-1 and 
multiphoton microscopy-imaged (I), with non-imaged (NI) oocytes using the WOW system, or bulk (COC, DO, & DO+CU) 
cultured bovine oocytes. 
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patterns of fluorescence between oocytes that developed to blastocyst when 

compared with those that did not (Fig. 3.4 & 3.14).   

For bovine oocytes labeled with Fluo-4, AM and imaged, percentages of 

oocytes fertilized were 89.5, 91.0, and 81.3 for G1, G2, and G3 oocytes, 

respectively; embryo cleavage percentages were 78.9, 76.9 and 64.1 for G1, G2 

and G3 oocytes, respectively; and percentages of development to blastocyst 

stage were 15.8, 18.6 and 6.3 for G1, G2 and G3 oocytes, respectively (Table 

3.6, Fig. 3.15).  For the non-imaged control oocytes, fertilization percentages 

were 88.2, 92.2, and 87.3 for G1, G2 and G3 oocytes, respectively; embryo 

cleavage percentages were 88.2, 80.7, and 73 for G1, G2 and G3 oocytes 

respectively; and percentages of development to blastocyst stages were 23.5, 

11.4 and 9.5 for G1, G2 and G3 oocytes, respectively (Table 3.6, Fig. 3.15).  For 

bulk culture control groups COC, DO, and DO+CU, fertilization percentages were 

86.0, 74.0, and 83.6, respectively; embryo cleavage percentages were 70.6, 

52.7, and 64.2, respectively; and percentages of embryo development to 

blastocyst stage were 16.9, 6.9, and 17.9, respectively (Table 3.6, Fig. 3.15).  

Percentages of embryo development from this experiment showed no significant 

differences between grades in fertilization, cleavage or blastocyst development 

for imaged, non-imaged or bulk control groups, nor were there any significant 

differences among imaged vs. non-imaged oocytes for each grade. Further, there 

were no distinct differences in morphology or patterns of fluorescence between 

oocytes that developed to blastocyst when compared with those that did not (Fig. 

3.7 & 3.16).   
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     Fig. 3.14.  Examples of bovine G1 (a, d), G2 (b, e), & G3 (c, f) imaged by 
multiphoton microscopy with the ratiometric mitochondrial probe, JC-1 that 
developed to blastocyst stage. 

 

When plotted with SF/AFI vs. AFI, the rhodamine 123, JC-1 and Fluo-4, 

AM imaged oocytes that developed to blastocyst had AFI’s that ranged from 35.0 

– 89.2, 1.1 - 2.1 and 20.8 - 35.5, respectively (Table 3.7 and Fig. 3.17, 3.18 & 

3.19).  Therefore, we report that 28% (144/200), 5.2% (220/233), and 11.9% 

(208/237) of bovine oocytes were selected using this form of image analysis by 

sorting oocytes that have been labeled with rhodamine 123 with an AFI that falls 

within the 30-100 range, labeled with JC-1 with an FI between 1.25-2.25, or 

labeled with Fluo-4, AM with an AFI that lies between 20-30.  Moreover, the 

achievement of embryo development to the blastocyst stage using this method of 

image analysis was 16.8% (37/220) and 15.9% (33/208) for JC-1 and Fluo-4, 

AM, respectively when sorting oocytes within these parameters.   
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     Fig. 3.15.  Comparisons of fertilization and embryo development of cultured 
bovine oocytes labeled with Fluo-4 and multiphoton microscopy-imaged (I), with 
non-imaged (NI) oocytes using the WOW system, or bulk (COC, DO, & DO+CU) 
cultured bovine oocytes. 
 
 

 

     Fig. 3.16.  Examples of bovine G1 (a, d), G2 (b, e), & G3 (c, f) imaged by 
multiphoton microscopy with the Ca2+-sensitive fluorophore that developed to 
blastocyst stage. 
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Table 3.6.  Embryo Development in Non-imaged and Multiphoton 
Microscopy Imaged Bovine Oocytes Labeled with Fluo-4  and Maintained in 

the WOW System Compared with Bulk Cultures of Untreated Oocytes. 
 

Imaged Grade n # Fertilized 
(%) 

# Cleaved 
(%) 

# Blast  
(%) 

 G1 19 17/19 
(89.5) 

15/19 
(78.9) 

3/19 
(15.8) 

 G2 156 142/156 
(91.0) 

120/156 
(76.9) 

29/156 
(18.6) 

 G3 64 58/70 
(81.3) 

41/64 
(64.1) 

4/64 
(6.3) 

 Total 239 
 

211/239 
(88.3) 

176/239 
(73.6) 

36/239 
(15.1) 

      
Non-

Imaged  
Grade     

 G1 17 15/17 
(88.2) 

15/17 
(88.2) 

4/17 
(23.5) 

 G2 166 153/166 
(92.2) 

134/166 
(80.7) 

19/166 
(11.4) 

 G3 63 55/63 
(87.3) 

46/63 
(73) 

6/63 
(9.5) 

 Total 246 223/246 
(90.7) 

195/246 
(29.0) 

29/246 
(11.8) 

      
Bulk Grade     

 COC 136 117/136 
(86.0) 

96/136 
(70.6) 

23/136 
(16.9) 

 DO 131 97/131 
(74.0) 

69/131 
(52.7) 

9/131 
(6.9) 

 DO+CU 134 112/134 
(83.6) 

86/134 
(64.2) 

24/134 
(17.9) 

 Total 401 326/401 
(81.3) 

251/401 
(62.6) 

56/401 
(14) 
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Table 3.7. Blastocyst Development of Bovine Oocytes Imaged Using 
Multiphoton Microscopy with Rhodamine 123 (a,b), JC-1 (c,d), or Fluo4 (e,f) 

Based upon Parameters Used in Tables 3.1-3.3. 
 

(a) 
Grade n SF/AFI Mean Range 

G1 Blast 
1 0.021 0.021 

G2 Blast 4 0.019 0.011-0.029 
G3 Blast 1 0.019 0.019 
Total 6   

 
(b) 

Grade n AFI Mean Range 

G1 Blast 
1 48.660 48.660 

G2 Blast 4 59.807 35.034-89.222 
G3 Blast 1 52.0 52.0 
Total 6   

 
(c) 

Grade n SF/FI Mean Range 

G1 Blast 
6 0.653 0.594-0.742 

G2 Blast 31 0.620 0.493-0.928 
G3 Blast 1 0.798 0.798 
Total 38   

 
(d) 

Grade n FI Ratio Mean Range 

G1 Blast 
6 1.560 1.38-1.712 

G2 Blast 31 1.593 1.110-2.08 
G3 Blast 1 1.401 1.401 
Total 38   

 
(e)   

Grade n SF/AFI Mean Range 

G1 Blast 
2 0.043 0.041-0.046 

G2 Blast 31 0.044 0.028-0.048 
G3 Blast 4 0.041 0.042-0.046 
Total 37   

 
(f) 

Grade n AFI Mean Range 
G1 Blast 2 22.973 21.725-24.222 
G2 Blast 31 23.828 20.845-35.488 
G3 Blast 4 23.312 22.444-24.073 
Total 37   
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Fig. 3.17.  Relationships between SF/AFI and AFI in bovine oocytes that developed to the blastocyst stage following 
imaging by multiphoton microscopy with the mitochondrial probe, rhodamine 123. 84 
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     Fig. 3.18.  Relationships between SF/AFI  and AFI in bovine oocytes that developed to the blastocyst stage following 
imaging by multiphoton microscopy with the ratiometric mitochondrial probe, JC-1. 
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     Fig. 3.19.  Relationships between SF/AFI vs. AFI (as an index of intracellular Ca2+) in bovine oocytes that 
developed to the blastocyst stage following imaging using multiphoton microscopy with the Ca2+-sensitive 
fluorophore, Fluo-4, AM . 
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3.3 Experiment II – Characterization of the spatial distribution of 

mitochondria, mitochondrial membrane potential (Δψm), and 

intracellular Ca2+ stores in relation to morphology of IVM canine 

oocytes using criteria from Experiment 1 that could potentially be 

used to evaluate developmental competence in this species 

3.3.1 Characterization of the spatial distribution of mitochondria and 

mitochondrial activity in relation to grade of IVM canine oocytes using the 

fluorescent probe rhodamine 123 

Given that canine oocytes harvested from excised ovaries for in vitro 

studies are at the GV stage of meiosis and have poor, inconsistent IVM to MII 

stage (unlike commercially available bovine oocytes for similar studies), they 

were not sorted into grades as previously described for the bovine prior to 

imaging and subsequent IVF. After IVM, canine oocytes were labeled with 

fluorescent dye and imaged with the identity of each oocyte maintained using 

the WOW method as previously described.  These data were then organized 

according to meiotic stage and statistically analyzed for SF/AFI and AFI for each 

oocyte in all experiments, again maintaining the identity of the oocyte throughout 

the evaluation. 

Canine oocytes were evaluated for mitochondrial localization and 

membrane potential using rhodamine 123 (n=84) and JC-1 (n=157) in the same 

manner as previously described for bovine oocytes.  Similar to the bovine 

oocyte, the localization pattern and mitochondrial fluorescence with rhodamine 
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123 (Fig. 3.20) was not different from that of oocytes labeled with JC-1 (Fig. 

3.21).  Canine oocyte mitochondria appeared as punctate areas of fluorescence 

and were primarily localized to the pericortical regions, with lighter punctate 

staining throughout the ooplasm.   

 

     Fig. 3.20.  Canine oocytes classified as DEG (a-e), GV-GVBD (f-j), MI (k-o), 
MII (p-t) and imaged using multiphoton microscopy with the mitochondrial probe, 
rhodamine 123. 
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     Fig. 3.21.  Canine oocytes classified as DEG (a,b), DEG-IMP (c,d), GV-
GVBD (e,f), GV-GVBD-IMP (g,h), MI (i,j), MI-IMP (k,l), MII (m-o), MII-IMP (p-t) 
1-CELL-IMP (u-w), CLEAVED (x) and imaged using multiphoton microscopy 
with JC-1. 
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Percentages of IVM oocytes labeled with rhodamine 123 and imaged 

versus non-imaged oocytes are presented in Table 3.8 and Fig. 3.22.  There 

were no significant differences in percentages of maturation for any meiotic 

stage within or between the imaged versus non-imaged groups, thus indicating 

no influence of rhodamine 123 or imaging on meiotic stage or progression in 

canine oocytes. 

Statistical analysis of SF/AFI for oocytes labeled with rhodamine 123 and 

imaged revealed significant differences between DEG and MI stage oocytes.  

There were no significant differences in AFI between meiotic stages.  Further, 

the means and ranges for SF/AFI and AFI for each meiotic stage are shown in 

Table 3.9 and plotted in Fig. 3.23.  When SF/AFI was plotted against AFI, the 

curve generated revealed an inverse relationship for all meiotic stages of canine 

oocytes labeled with rhodamine 123 and imaged as previously reported for the 

bovine (Fig. 3.24). 

Both DEG and GV-GVBD oocytes had AFI’s that were distributed 

throughout the curve (25.6 to 52.9), while MI and MII oocytes had AFI’s that 

ranged from 23.2 and 23.5 to 43.2 and 46.3, respectively, with 13/15 (87.0%) of 

MI and 11/14 (79%) MII oocytes having AFI’s between 20-35.  Therefore, we 

report that 28.6% (60/84) of canine oocytes were selected using this form of 

image analysis by selecting oocytes that have AFI’s that lie between 20-35 when 

imaged by multiphoton microscopy with rhodamine 123, thus excluding the 

remaining oocyte population from further experimentation.   
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Table 3.8.  In vitro Maturation of Non-imaged and Multiphoton Microscopy 
Imaged Canine Oocytes Labeled with Rhodamine 123 Compared with Bulk 

Cultures of Untreated Oocytes. 

Stage Imaged 
n 

(%) 

Non-
Imaged 

n 
(%) 

DEG 19 
(22.6) 

43 
(38.4) 

GV-GVBD 36 
(42.9) 

46 
(41.1) 

MI 15 
(17.9) 

13 
(11.6) 

MII 14 
(16.7) 

10 
(8.9) 

TOTAL 84 112 
 
 
 

Table 3.9. Mean Values and Range for SF/AFI (a) and AFI (b) of Canine 
Oocytes Imaged Using Multiphoton Microscopy with the Mitochondrial 

Probe Rhodamine 123. 

Stage n SF/AFI Mean SF/AFI  Range AFI 
Mean 

AFI Range 

DEG 19 0.029a 0.02-0.04 33.29 25.61-48.57
GV-
GVBD 

36 0.030a 0.018-0.041 32.80 24.02-52.95

MI 15 0.035b 0.022-0.043 29.24 23.25-43.21
MII 14 0.031ab 0.021-0.041 34.06 23.52-46.35
TOTAL 84     
Lower case superscripts indicate significant differences in same column (P<0.05) 
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     Fig. 3.22.  In vitro maturation of canine oocytes imaged using multiphoton 
microscopy with rhodamine 123 compared with non-imaged oocytes.  
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     Fig. 3.23.  Relationships between SF/AFI (a) and AFI (b) in canine oocytes 
imaged using multiphoton microscopy with rhodamine 123. 
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     Fig. 3.24.  Relationships between SF/AFI vs. AFI in canine oocytes imaged using multiphoton microscopy with 
rhodamine 123. 93 
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3.3.2 Characterization of the spatial distribution of free intracellular Ca2+ in 

relation to grade of IVM canine oocytes 

For canine oocytes labeled with Fluo-4, AM, images revealed spatial 

patterns of free intracellular Ca2+ that were not unique according to each meiotic 

stage.  Like the bovine, Fluo-4, AM fluorescence within the oocyte cytoplasm 

was, as expected, either very low with unremarkable areas of specific 

localization, or showed the same pattern of localization that was previously 

described for the Grade 3 bovine oocytes labeled with Fluo-4, AM, wherein 

higher intracellular Ca2+ levels were localized to the peri-cortical regions of the 

ooplasm (Fig. 3.25).   

Percentages of in vitro maturation of oocytes labeled with Fluo-4, AM and 

imaged versus non-imaged versus labeled only oocytes are presented in Table 

3.10 and Fig. 3.26.  There were no significant differences in percentages of 

maturation for any meiotic stage within the imaged versus non-imaged groups.  

Within the labeled only group, there were significant differences between GV-

GVBD and both MI and MII stage oocytes (P<0.05).  Between group analysis 

revealed no significant differences between groups of thesame meiotic stage 

(P<0.05).  Further, there were no significant differences in meiotic progression to 

MI or MII between the imaged, non-imaged or labeled only cultured groups. 

The mean values for SF/AFI and AFI of Fluo-4, AM labeled and imaged 

canine oocytes are listed in Table 3.11 and plotted in Fig. 3.27, indicating an 

inverse relationship between SF/AFI and AFI.  The SF/AFI was plotted against 

AFI and also showed an inverse relationship between the two measurements 
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(Fig. 3.28).  Statistical analysis of AFI revealed significant differences between 

the degenerating oocytes (DEG) and oocytes in the GV-GVBD, MI, and MII 

stages of meiosis, respectively (P<0.05).  For SF/AFI, statistical analysis 

indicated that DEG oocytes were significantly different from GVBD and MI, but 

not from MII oocytes, respectively (P<0.05). 

Both DEG and GV-GVBD oocytes had AFI’s that were distributed 

throughout the curve (21.6 to 39.2), while MI and MII oocytes had AFI’s that 

ranged from 21.8 to 36.9 and 21.3 to 29.7, respectively.  Therefore, we report 

that 48.8% of canine oocytes were selected by sorting oocytes that have an AFI 

that falls within the 20-25.5 (59/121) range and thus eliminating 48.7% of the 

oocyte population.  Further, 90.1 (10/11) MII and 90% (9/10) MI and MII stage 

oocytes had an AFI within this range.  Lastly, the loading of fluorescent probe to 

bulk cultured, non-imaged oocytes appears to have no effect on IVM of canine 

oocytes. 
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a  

 

b  

     Fig. 3.25.  Canine oocytes classified as DEG (a), GV-GVBD (b), MI (c), MII 
(d) and imaged using multiphoton microscopy with Fluo4. 
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c   

d  

          Fig. 3.25 (cont).   
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Table 3.10. In vitro Maturation of Non-imaged and Multiphoton Microscopy 
Imaged Canine Oocytes Labeled with Fluo-4, AM Compared with Bulk 

Cultures of Untreated Oocytes. 

Stage Imaged 
n 

(%) 

Non-
Imaged 

n 
(%) 

Bulk 
n 

(%) 

DEG 42/119 
(35.3) 

49/113 
(43.4) 

41/97ab 
(42.2) 

GV-GVBD 56/119 
(47.1) 

40/113 
(35.4) 

52/97a 
(53.6) 

MI 11/119 
(9.2) 

16/113 
(14.2) 

2/97b 
(2.1) 

MII 10/119 
(8.4) 

8/113 
(7.1) 

2/97b 
(2.1) 

Total 119 113 97 
Lower- case superscripts indicate significant differences in same column;  

upper-case superscripts indicate significant differences between columns (P<0.05) 
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     Fig. 3.26.  In vitro maturation of canine oocytes imaged using multiphoton 
microscopy with Fluo-4 compared with non-imaged control oocytes. 

 



99 
 

Table 3.11.  Mean Values and Range for SF/AFI (a) and AFI (b) of Canine 
Oocytes Imaged Using Multiphoton Microscopy with the Ca2+-sensitive 

Probe, Fluo-4, AM. 
 

 Grade (n) SF/AFI Mean SF/AFI Range 
 DEG 43 0.036a 0.014 - 0.046 
 GV-GVBD 57 0.039b 0.021-0.047 
 MI 11 0.041b 0.027-0.046 
 MII 10 0.043ab 0.023-0.047 
a 

TOTAL 
121   

Lower case superscripts indicate significant differences in same column (P<0.05) 

 
 Grade (n) AFI Mean AFI Range 

 DEG 43 28.489b 22.019-39.197 
 GV-GVBD 57 26.099a 21.645-35.640 
 MI 11 24.821a 21.808-36.908 
 MII 10 23.657a 21.343-29.703 
b 

TOTAL 
121   

Lower case superscripts indicate significant differences in same column (P<0.05) 
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     Fig 3.27.  Relationships between means of SF/AFI (a) and AFI (b) (as an 
index of intracellular Ca2+) in canine oocytes imaged using multiphoton 
microscopy with Fluo-4. 
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     Fig. 3.28.  Relationships between SF/AFI vs.  AFI (as an index of intracellular Ca2+) of all meiotic stages of canine 
oocytes imaged by multiphoton microscopy with Fluo-4. 100 
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3.3.3 Characterization of the spatial distribution of mitochondria and 

mitochondrial activity in relation to grade of IVM canine oocytes using the 

ratiometric fluorescent probe JC-1 

Initial survey of the JC-1 probe in the canine was evaluated by methods 

as previously reported for bovine and generated fluorescent localization of 

mitochondrial heterogeneity similar to that seen in the bovine for IVM MII 

oocytes.  Interestingly, the polar body in canines fluoresced primarily in the RITC 

channel, with very minimal fluorescence (if any) in the FITC channel, indicating a 

high degree of mitochondrial concentration and hyperpolarization, unlike that 

reported for mouse and human, or as observed in the bovine from this study.   

Analysis of the ratiometric JC-1 fluorescence generated the same inverse 

relationship between SF/FI and fluorescence intensity (FI; green:red) as 

observed for bovine (Fig. 3.29).  GV-GVBD oocytes had FI’s that were 

distributed throughout the curve (1.0-2.1), while MI and MII oocytes had FI’s that 

ranged from 1.6-1.8 and 0.1-2.9, respectively, with 33.3% (3/9) of MI and 66.7% 

(6/9) MII oocytes in the range of 0.5-2.0 (29/32), respectively (Fig. 3.30 and 

Table 3.12).   
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Further analysis of mitochondrial fluorescence using JC-1 in canine 

oocytes was investigated retrospectively and involved the use of an enhanced 

method of evaluating each oocyte for selection.  Briefly, this method consisted of 

selecting a reference oocyte based on a compilation of the most common values 

for SF and FI for each oocyte as well as good fertilization.  A maximum 

difference of 6 between the reference oocyte (a value of 0) was determined as 

the cutoff limit for prediction. The average values for each oocyte are plotted in 

Fig. 3.30, 3.32, 3.33 & 3.34 to illustrate the intensity with respect to other 

oocytes within the same meiotic grade for both the unfertilized and fertilized 

oocytes.  While this study characterized mitochondrial localization and Δψm in 

the canine oocyte using an improved method of image analysis, each fertilization 

repetition utilized a different sperm source (frozen v. fresh) as outlined in the 

Materials & Methods section and are reported independently herein as 

informative data.  Only the percentages of embryo development are reported for 

each sperm source, hence no statistical evaluation was made accordingly.   
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     Fig. 3.29.  Relationship between SF/AFI vs. FI (ratio of green:red 
fluorescence intensity)  in canine oocytes imaged by multiphoton microscopy 
with the ratiometric mitochondrial probe, JC-1. 

 

 

The mean values of the FI for each oocyte grade in the unfertilized group 

(repetition 1) were 43.4, 30.4, 6.4, and 19.6 for DEG, GV-GVBD, MI and MII, 

respectively and the ranges were 43.4, 1.5-50.2, 4.5-7.6, and 0-58.0 for DEG, 

GV-GVBD, MI and MII, respectively (Table 3.12).  For the fertilized oocytes, 

values for each repetition are reported individually and defined as 1) repetition 2  
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(n=47) using frozen semen fertilized at 2X106, 2) repetition 3 (n=46) using frozen 

semen fertilized at 5x106 and 3) repetition 4 (n=39) using fresh collected, 

extended semen fertilized at 5X106.  The average fluorescence values and 

ranges for each repetition are reported in Table 3.13 and Fig. 3.32, 3.33, & 3.34. 

As previously described, a maximum difference of 6 was determined as 

the FI cutoff for selection of oocytes in our initial assessment using the new 

method of evaluation.  From these parameters, 9/32 29/47, 23/46 and 23/39 

oocytes from the unfertilized and fertilized groups (repetitions 2, 3 & 4), 

respectively were predicted competent, thus excluding 71.9, 38, 50, and 41% of 

the oocytes from both unfertilized and fertilized groups (repetitions 2, 3 & 4), 

respectively as non-competent based on the fluorescence intensity of 

mitochondria localization and activity.  Of the unfertilized oocytes, 4/9 (44.4%) 

were at MII using the improved selection method vs. 6/32 (18.8%) that were at 

MII from the total oocyte population evaluated (Table 3.14 and Fig. 3.30).  The 

mean fluorescence values for the unfertilized group are graphed to exemplify 

fluorescent differences within the population (Fig. 3.31).  
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     Fig. 3.30.  Relationships between FI and meiotic stages of unfertilized canine 
oocytes imaged using multiphoton microscopy with JC-1. 
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     Fig. 3.31.  FI means for canine oocytes imaged using multiphoton 
microscopy with  JC-1 (unfertilized). 

. 
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Table 3.12.  Average Fluorescence Values for Canine Oocytes Imaged 
Using Multiphoton Microscopy with the Ratiometric Mitochondria Probe, 

JC-1 (Unfertilized, Rep. 1). 
 

Grade (n) (n) FI < 6 
(% of 
Total/  
% of 
Grade) 

Avg. Value 
(All) 

Avg. 
Value 
(n<6) 

Range 
(All) 

DEG 1 0  
(0.0) 

43.4 0 43.4 

GV-
GVBD 

22 4 
(44.4/18.2) 

30.4 3.0 1.5-50.2 

MI 3 1 
(11.1/33.3) 

6.4 4.5 4.5-7.6 

MII 6 4 
(44.4/66.7) 

19.6 3.2 0.0-58.0 

Total 32 9 
(28.1) 

   

 

 



 

Table 3.13.  Average Fluorescence Values for Canine Oocytes Imaged Using Multiphoton Microscopy with 
the Ratiometric Mitochondria Probe, JC-1. and Fertilized In vitro Using Frozen Canine Semen Concentrated 

at 2 X 106 (Repetition 2), Frozen Canine Semen Concentrated at 5 X 106 (Repetition 3), Fresh Collected, 
Extended Canine Semen Concentrated at 5 X 106 (Repetition 4). 

 

Repetition 2 Repetition 3 
Grad
e 

(n) 
% 
Total 

(n) FI < 6 
(% of 
Total/ 
% of 
Grade) 

Avg. 
Fluor. 
Value 
(All) 

Avg. 
Fluor. 
Value 
(n<6) 

Range 
(All) 

(n) (n) FI < 
6 
(% of 
Total/ 
% of 
Grade) 

Avg. 
Fluor. 
Value 
(All) 

Avg. 
Fluor. 
Value 
(n<6) 

Range 
(All) 

DEG 
8 

(17.0) 
3 

(10.3/37.5) 
 

36.8 
 

4.8 
 

2.8-63.9 
15 

(32.6) 
3 

(13.0/20.
0) 

 
32.4 

 
3 

 
0.8-46.2 

GV-
GVBD 

23 
(48.9) 

17 
(58.6/73.9) 

 
5.6 

 
4.7 

 
2.5-12.5 

21 
(45.7) 

11 
(48-52.) 

 
17.5 

 
11 

 
1.1-41.2 

MI 5 
(10.6) 

4 
(13.8/80) 

 
5.3 

 
4.8 

 
4.0-7.0 

2 
(4.3) 

1 
(4.4/50) 

 
16 

 
1 

 
3.9-28.1 

MII 11 
(23.4) 

5 
(17.2/45.5) 

 
7.0 

 
3.3 

 
0.0-13.4 

7 
(15.2) 

7 
(30/100) 

 
2.7 

 
7 

 
0.0-5.8 

Fert. 0 
(0.0) 

0 
(0/0) 

 
0 

 
0 

 
0 

1 
(2.2) 

1 
(4.3/100) 

 
2.3 

 
1 

 
2.3 

Cleav. 0 
(0.0) 

0 
(0.0/0.0) 

 
0 

 
0 

 
0 

0 
(0.0) 

0 
(0.0/0.0) 

 
0.0 

 
0 

 
0 

Total  
47 

29 
(61.7) 

    
46 

23 
(50.0) 
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Table 3.13 (cont.). 
 
 

Repetition 4 

Grade 
(n) (n) FI < 6 

(% of 
Total/ 
% of 

Grade) 

Avg. 
Fluor. 
Value 
(All) 

Avg. 
Fluor. 
Value 
(n<6) 

Range 
(All) 

DEG 10 
(25.6) 

1 
(4.3/10) 

 
23.5 

 
4 

 
4.0-34.2 

GV-
GVBD 

13 
(33.3) 

7 
(30.4/53.9) 

 
9.1 

 
2.5 

 
1.1-24.8 

MI 2 
(5.1) 

2 
(8.7/100) 

 
3.0 

 
3 

 
2.8-3.2 

MII 8 
(20.5) 

8 
(34.8/100) 

 
2.8 

 
2.8 

 
1.4-5.1 

Fertilized 5 
(12.8) 

5 
(21.8/100) 

 
3.0 

 
3 

 
1.9-4.7 

Cleaved 1 
(2.6) 

0 
(0.0/0.0) 

 
6.3 

 
0 

 
6.3 

Total  
39 

23 
(50.0) 
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     Fig. 3.32.  Relationships between FI and meiotic stages of canine oocytes 
imaged using multiphoton microscopy with JC-1 and fertilized with frozen semen 
at 2x106/ml (repetition 2). 
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     Fig. 3.33.  Relationships between FI and meiotic stages of canine oocytes 
imaged using multiphoton microscopy with JC-1 and fertilized with frozen semen 
at 5x106/ml (repetition 3). 
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     Fig. 3.34.  Relationships between FI and meiotic stages of canine oocytes 
imaged using multiphoton microscopy with JC-1 and fertilized with fresh, 
extended semen at 5x106/ml (repetition 4). 
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Using the same method of selection followed by fertilization, 29/47 (62%), 

23/46 (57%) and 23/39 (59%)  oocytes were pre-selected using the improved 

method and of these, 5/29 (17%), 7/23 (30%) and 8/23 (35%) were at MII vs. 

11/47 (23%), 7/46 (15%) and 8/39 (21%) that were at MII from the total 

population evaluated and not pre-selected from repetitions 2, 3 and 4, 

respectively (Tables 3.15, 3.16 & 3.17).  In addition, 1/23 (4.0%) and 5/23 

(21.7%) oocytes with average fluorescent values <6 fertilized from repetitions 3 

and 4, respectively, (Fig. 3.35a) and one cleaved to 4-cell stage (FI = 6.3) 

(repetition 4), although the DNA of the cleaved embryo appeared to be 

degenerating at the time of removal from culture (Fig. 3.35b).  Thus, the pre-

selection of canine MII oocytes, has the potential to improve the overall 

efficiency of predicted competency from 15.2-23% (MII/total population) to 17-

44.4% (MII/total pre-selected population) and subsequently improving the 

selection of MII oocytes, including those competent to undergo fertilization.   

From these combined, informative data, a potential improvement in the 

overall efficiency of canine oocyte selection of 51.2% (84/164; pre-selected/total) 

using the improved method of oocyte selection is possible when labeled with JC-

1 and imaged using multiphoton microscopy.  Moreover, a potential 

improvement in the efficiency of canine MII oocyte selection (including oocytes 

competent to undergo fertilization and/or cleavage) of 18.8% (23/32; 

improved/total of MII FERT & CLEAVED, respectively) is possible using the 

improved method.  Furthermore, we report a collective reduction in the number 
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of oocytes needed for experimentation by 43.2% using this improved method of 

image analysis. Lastly, in both the unfertilized and fertilized groups, a distinct 

pattern in fluorescence intensity of the population was revealed whereby an 

absence of oocytes existed with FI’s ranging from 0.0-8.8 then 24.0-58.0 for the 

unfertilized group and 0.0-14.6 to 22.7-63.9 for the fertilized groups (Fig. 3.30, 

3.32, 3.33 & 3.34).  The portion of oocytes with FI >24 were either degenerating 

(DEG) or in the GV- GVBD stage, with exception of one MI stage canine oocyte 

that had an FI of 28.1.   

In vitro maturation and fertilization percentages of JC-1 labeled and 

imaged versus non-imaged versus labeled only oocytes are presented in Tables 

3.14, 3.15, 3.16 & 3.17 and Fig. 3.36, 3.37, 3.38 & 3.39.  Lastly, the loading of 

fluorescent probe to the labeled only group appears to have no effect on the 

meiotic status in canines. 
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     Fig. 3.35.  Canine fertilized oocyte (a) and 4-cell embryo (b) fixed and stained 
with Hoeschst 33342 following imaging using multiphoton microscopy with JC-1.  
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Table 3.14.  In vitro Maturation of Non-imaged and Multiphoton Microscopy 
Imaged Canine Oocytes Labeled with the Ratio Metric Probe JC-1 

Compared with Labeled Only Cultures of Untreated Oocytes (Unfertilized, 
Rep. 1). 

Stage Imaged 
n 

(%) 

Non-
Imaged 

n 
(%) 

Labeled 
Only 

n 
(%) 

DEG 1 
(3.1) 

2 
(7.1) 

3 
(9.7) 

GV-GVBD 22 
(68.8) 

18 
(64.3) 

18 
(58.1) 

MI 3 
(9.4) 

4 
(14.3) 

7 
(22.6) 

MII 6 
(18.8) 

4 
(14.3) 

3 
(9.7) 

Total 32 28 31 
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     Fig. 3.36.  In vitro maturation of canine oocytes imaged using multiphoton 
microscopy with JC-1 compared with non-imaged and bulk cultured oocytes 
(unfertilized, Rep. 1). 
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Table 3.15.  In vitro Maturation of Non-imaged and Multiphoton Microscopy 
Imaged Canine Oocytes Labeled with the Ratio Metric Probe JC-1 

Compared with Labeled Only Cultures of Untreated Oocytes (Fertilized, 
Rep. 2). 

Stage Imaged 
n 

(%) 

Non-
Imaged 

n 
(%) 

Labeled 
Only 

n 
(%) 

DEG 8 
(17.0) 

22 

(45.6) 
9 

(23.7) 
GV-GVBD 23 

(48.9) 
18 

(37.5) 
19 

(50) 
MI 5 

(10.6) 
3 

(6.3) 
5 

(13.2) 
MII 11 

(23.4) 
5 

(10.42) 
5 

(13.2) 
Fertilized 0 

(0) 
0 

(0.0) 
0 

(0.0) 
Cleaved 0 

(0.0) 
0 

(0.0) 
0 

(0.0) 
Total 47 48 38 
Lower- case superscripts indicate significant differences in same column;  
Upper-case superscripts indicate significant differences between columns (P<0.05) 
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Fig. 3.37.  In vitro maturation of canine oocytes imaged using multiphoton 
microscopy with JC-1 compared with non-imaged and labeled only cultured 

oocytes followed by IVF using frozen semen at 2 x 106/ml (Rep. 2).
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Table 3.16.  In vitro Maturation of Non-imaged and Multiphoton Microscopy 
Imaged Canine Oocytes Labeled with the Ratio Metric Probe JC-1 

Compared with Labeled Only Cultures of Untreated Oocytes (Fertilized, 
Rep. 3). 

Stage Imaged 
n 

(%) 

Non-
Imaged 

n 
(%) 

Labeled 
Only 

n 
(%) 

DEG 22 
(45.8) 

22 

(45.6) 
15 

(40.5) 
GV-GVBD 18 

(37.5) 
18 

(37.5) 
14 

(37.8) 
MI 3 

(6.3) 
3 

(6.3) 
2 

(5.4) 
MII 5 

(10.4) 
5 

(10.42) 
5 

(13.5) 
Fertilized 0 

(0) 
0 

(0.0) 
1 

(2.7) 
Cleaved 0 

(0.0) 
0 

(0.0) 
0 

(0.0) 
Total 48 48 38 

Lower- case superscripts indicate significant differences in same column;  
Upper-case superscripts indicate significant differences between columns (P<0.05) 
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Fig. 3.38.  In vitro maturation of canine oocytes imaged using multiphoton 
microscopy with JC-1 compared with non-imaged and bulk cultured oocytes 
followed by IVF using frozen semen at 5 x 106/ml (Rep. 3). 
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Table 3.17.  In vitro Maturation of Non-imaged and Multiphoton Microscopy 
Imaged Canine Oocytes Labeled with the Ratio Metric Probe JC-1 

Compared with Labeled Only Cultures of Untreated Oocytes (Fertilized, 
Rep. 4). 

 
Stage Imaged 

n 
(%) 

Non-
Imaged 

n 
(%) 

Labeled 
Only 

n 
(%) 

DEG 10 
(25.6) 

12 

(30.0) 
13 

(32.5) 
GV-GVBD 13 

(33.3) 
13 

(32.5) 
12 

(30) 
MI 2 

(5.13) 
2 

(5.0) 
3 

(7.5) 
MII 8 

(20.5) 
10 

(25.0) 
9 

(13.2) 
Fertilized 5 

(12.8) 
3 

(7.5) 
3 

(7.5) 
Cleaved 1 

(2.6) 
0 

(0.0) 
0 

(0.0) 
Total 39 40 40 
Lower- case superscripts indicate significant differences in same column;  
Upper-case superscripts indicate significant differences between columns (P<0.05) 
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     Fig. 3.39.  In vitro maturation of canine oocytes imaged using multiphoton 
microscopy with JC-1 compared with non-imaged and bulk cultured oocytes 
followed by IVF using fresh-collected semen at 5 x 106/ml (Rep. 4). 
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CHAPTER IV 

DISCUSSION AND SUMMARY 

Traditionally, the prediction of oocyte competency for in vitro studies 

and/or ART has been defined by morphological parameters using light 

microscopy (Wurth and Kruip, 1992; Gandolfi et al., 1997).  While these 

guidelines are useful for sorting, the efficiency of selecting oocytes that have 

achieved successful cytoplasmic, nuclear, and molecular maturation, and are 

competent to undergo successful fertilization, ultimately producing live, healthy 

offspring is inefficient.  This deficit is complicated by the unknown parameters 

surrounding oocyte competency that cannot be identified from a morphological 

assessment, as well as the highly variable interpretation of the grading criteria 

by each scientist.  The overall aim of this study was to non-invasively identify 

specific molecular markers within the oocyte that correspond to the achievement 

of embryonic development to the blastocyst stage using fluorescent molecular 

probes known to be “cell friendly,” or natural, inherent fluorescence, combined 

with advanced imaging technology and analysis wherein the bovine was used as 

a model system for the development of techniques for application to canine 

oocytes.  To our knowledge, this is the first report of implementing an image 

analysis system and multiphoton microscopy to evaluate mammalian oocytes for 

the potential prediction of competency. 
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4.1 Experiment I - Characterization of the spatial distribution of 

mitochondria and mitochondrial activity and intracellular Ca2+ stores 

in relation to grade of in vitro matured bovine oocytes as they relate 

to morphology, and establishment of baseline criteria of functional 

parameters for oocyte selection 

4.1.1 Characterization of the spatial distribution of mitochondria and 

mitochondrial activity in relation to grade of IVM bovine oocytes 

Mitochondrial metabolic activity and function within mammalian oocytes 

and embryos has only recently been investigated, specifically for the mouse and 

human (Squirrell et al., 1999; Van Blerkom et al., 2002; 2003; Van Blerkom 

2006, 2008).  Previous investigations of oocyte mitochondria have been limited 

to the various structural aspects of this dynamic organelle during oocyte and 

embryo development (Batten et al., 1987; Hyttel et al, 1990; Van Blerkom 1991; 

Van Blerkom et al., 1995; Hyttel et al., 1997).  However, studies in the last 

decade have determined that mitochondria have a complex central function that 

exceeds the historical dogma of this organelle as simply being the “power 

house” of the cell.  Research has shown that mitochondria also contribute to 

redox and intracellular Ca2+ homeostasis, provide intermediary metabolites and 

store proapoptotic factors (Reviewed by Dummolard et al., 2007).  As 

specifically related to the oocyte, studies conducted in the mouse, human and 

cattle have defined particular attributes of mitochondria that include cytoplasmic 
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localization and membrane potential, heterogeneity of mitochondria membrane 

potential, [ATP], polarity of mitochondria, mtDNA complement number and Ca2+-

induced Ca2+-release (CICR) from mitochondria of oocytes and embryos, all of 

which have been related to oocyte competency (Bavister and Squirrell, 2000; 

Van Blerkom, 2008).  Thus, the organization of mitochondria into specialized 

areas of metabolic need (i.e., “microzones”) in a transient fashion to meet the 

direct demands of cytoplasmic orderliness and regulation are likely more 

significantly related to oocyte competency than simply the production of ATP 

(Dumollard et al., 2007; VanBlerkom, 2008).   

Localization of mitochondria within the mammalian oocyte is stage 

specific with respect to the meiotic cell cycle; mitochondria undergo cytoplasmic 

remodeling by translocating to cytoplasmic areas with changes in energy 

demands or a required alteration in density (VanBlerkom, 2002). In the human, 

mouse, and pig, mitochondria are more densely populated around the nucleus 

during the GV stage and gradually translocate to the cortical and peri-cortical 

regions of the cytoplasm as the oocyte resumes meiosis and progresses to the 

MII stage (Van Blerkom et al., 2002; Van Blerkom, 2008).  This study focused on 

the localization and activity of mitochondria within MII stage bovine and canine 

oocytes and no attempt to quantify Δψm or relate this parameter to 

developmental competence was performed.  However, results obtained are 

consistent with other studies reported for mouse, human and pig with respect to 

the localization of mitochondria and the heterogeneity of depolarized and 

 



122 
 

hyperpolarized mitochondria that are primarily localized to the cortical and peri-

cortical regions of the ooplasm in MII stage bovine IVM oocytes (VanBlerkom et 

al., 2002).   

Research by Van Blerkom et al., (2002) first reported the presence of a 

heterogeneous population of depolarizing and hyperpolarized mitochondria 

within mouse and human oocytes and proposed that the presence of 

hyperpolarized mitochondria in the peri-cortical region of the ooplasm may be 

related to the acquisition of oocyte competence as well as the regulation of early 

developmental processes.  More specifically, the compartmentalization of 

mitochondria into microzones could represent a functional aspect of the specific 

spatial ATP requirements of the oocyte and early embryo as indicated by the 

fertilization and cortical granule exocytosis being restricted to regions of the 

plasma membrane that correspond with highly polarized mitochondria in the 

mouse (VanBlerkom and Davis, 2007).  Further, it has been hypothesized that 

mitochondrial compartmentalization may also participate in the regulation of free 

Ca2+ concentration within the cytoplasm due to the ability of mitochondria to 

release Ca2+ in response to external ionic Ca2+ influxes (CICR) and electrical 

signals associated with the molecular events surrounding fertilization (Gunter et 

al., 2004; Boni et al., 2007; VanBlerkom, 2008).   

Further, studies described here attempted to identify relationships 

between oocyte morphology (as defined by SF/AFI or FI) using light microscopy, 

and mitochondrial localization and function via multiphoton microscopy.  
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Evaluation of two different molecular probes for mitochondrial localization and 

function (rhodamine 123 and JC-1) did not identify any obvious, distinct 

fluorescent patterns that would help to classify any particular oocyte as 

belonging to a specific morphological grade for either species.  To the contrary, 

several bovine G3 oocytes and canine DEG oocytes had a higher ratio of 

green:red fluorescence intensity using JC-1 wherein the mitochondria exhibited 

very concentrated areas of labeling and appeared in a more diffuse localized 

pattern as compared to oocytes from other grades.  Historically, JC-1 has also 

been used to evaluate apoptosis in living cells wherein a higher ratio of 

green:red fluorescence is indicative of low Δψm levels of depolarization within 

dying cells (Troiano et al., 2007).  Although, this study did not investigate the use 

of JC-1 to evaluate apoptosis within the bovine oocyte, this pattern of intense 

fluorescence within the poor-quality oocytes is likely to be indicative of early 

stages of apoptotic or necrotic cell death pathways. 

Evaluation of the fluorescence intensity of both mitochondrial probes 

revealed relationships between the morphological characteristics (SF) of the 

bovine oocyte and mitochondrial activity using multiphoton microscopy.  For both 

probes, G2 and G3 oocytes were distributed throughout the curve (Fig. 3.2 & 

3.5), while G1 oocytes were concentrated in a more narrow range that was 

consistent with optimal embryo development as discussed below.  Lastly, 

through these experiments it was possible to non-invasively establish baseline 
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criteria of functional parameters reflective of mitochondrial activity in bovine 

oocytes. 

 

4.1.2 Characterization of the spatial distribution of free intracellular Ca2+ in 

relation to grade of IVM bovine oocytes 

 The role of intracellular Ca2+ has been well characterized with respect to 

both oocyte maturation and fertilization in mammals and lower vertebrates 

(reviewed by Ducibella, 2008).  In the oocyte, Ca2+ is an essential cation 

involved in gap junction-mediated intercellular communication between the 

cumulus cells and the oocyte, which is essential during the resumption of 

meiosis in the cow and pig (Tosti et al., 2000; Boni et al., 2007).  This mode of 

intercellular communication also allows for the transport of second messengers 

generated by the cumulus cells that act on the oocyte to trigger Ca2+ release 

from the ER of the oocyte.  Ultrastructural studies have established that 

organelles such as mitochondria, ER and cortical granules, among others, are 

very concentrated at the cortical regions of MII stage oocytes of mouse, human, 

cow, and dog, presumably for the Ca2+ release at fertilization necessary to 

induce oocyte activation (Hyttel et al., 1990; Hyttel et al., 1997; reviewed by Van 

Blerkom 2008; Viaris De Lesegno et al., 2008; and Viaris De Lesegno et al., 

2008b).  This sperm-oocyte interaction triggers a sharp Ca2+ release response 

and subsequent oscillations, thereby changing the resting potential of the 

plasma membrane and also increasing the steady-state levels of intracellular 
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Ca2+ within the oocyte.  In contrast, sustained elevated levels of intracellular 

Ca2+ have been linked to apoptosis in both mature oocytes and in individual 

embryo cells (Sergeev and Norman, 2003).  Moreover, regulation of intracellular 

Ca2+
 levels also involves mitochondria, as this organelle is capable of releasing 

and sequestering intracellular Ca2+ to maintain cellular homeostasis (Tosti et al., 

2000; Gunter et al., 2004; Boni et al., 2007). 

The implementation of optical microscopy methods for analysis of 

intracellular Ca2+ localization and responses in oocytes and embryos has been 

primarily limited to laser scanning confocal microscopy, and only recently using 

more advanced optical systems such as multiphoton laser scanning microscopy 

in lower order vertibrates (Lee et al., 2004; Fein and Terasaki, 2005; Zhou and 

Jin, 2007).  While the goals of these experiments and others were to better 

characterize or define a specific functional role for intracellular Ca2+, the aim of 

the current study was to characterize the spatial distribution of intracellular Ca2+ 

as it relates to morphological grades of bovine oocytes using image analysis and 

multiphoton microscopy technologies.  No attempt was made in these studies to 

quantify the levels of intracellular Ca2+
 within the oocyte. 

The fluorescence intensity of Ca2+-sensitive probes was either 

unremarkable or very low and localized to the peri-cortical region of the oocyte 

as expected considering the localization of ER in the MII stage oocyte and the 

low levels of free intracellular Ca2+ in healthy oocytes.  In a few cases, especially 

in G3 oocytes, small aggregates of fluorescence were observed which are 
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indicative of concentrated, localized areas of intracellular Ca2+
.  The observation 

of minimal fluorescence are consistent with the maintenance of low levels of free 

intracellular Ca2+ in MII stage oocytes prior to fertilization.  Higher levels of Fluo-

4, AM fluorescence were likely to be associated with unhealthy oocytes which 

were probably in the early stages of apoptosis.  Fluorescence observed in the 

PVS is likely to reflect the presence of free Ca2+  that had escaped the oolema 

via Ca2+ channels or as a result of damage to the plasma membrane.   

Further, through experiments using Fluo-4, AM as a Ca2+-sensitive 

fluorophore, we were able to identify a relationship between oocyte morphology 

(as defined by SF/AFI) and Fluo-4 fluorescence intensity.  Specifically, G2 and 

G3 oocytes were distributed throughout the curve (Fig. 3.8) whereas G1 oocytes 

were localized to a particular area of the curve (AFI 20-30) that corresponded 

with optimal embryo development as discussed below. Lastly, through these 

experiments we were able to non-invasively establish baseline criteria of 

functional parameters related to Ca2+ homeostasis in bovine oocytes. 

 

4.1.3 Evaluation of embryonic developmental potential of IVM bovine oocytes 

imaged by multiphoton microscopy and subsequently fertilized in vitro 

In order to accomplish the ultimate goal of this project, to non-invasively 

identify specific, functional molecular markers as they relate to oocyte 

competency, the embryonic developmental potential of each imaged oocyte 

using the WOW method was evaluated (Vajta et al., 2000).  For all three 
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fluorescent probes (rhodamine 123, JC-1, and Fluo-4, AM), ranges of oocyte 

fluorescence intensity that were compatible with blastocyst production after IVF 

were identified which was used to narrow the range of oocytes that were 

considered competent from the initial populations, regardless of morphological 

grading criteria.  Further, there were no visually obvious differences or patterns 

in fluorescence intensities among any of the probes used that would 

characterize any of the oocytes as belonging to a particular grade.  Therefore, 

these data are consistent with others wherein oocyte competency cannot be 

determined based solely on morphological parameters, nor by patterns of 

fluorescence intensity characterized by oocyte grade as investigated in the 

current study.   

Moreover, the percentages of embryo development to blastocyst stage 

were lower than that currently reported in the literature of (~40%) (Longeran and 

Fair, 2008).  We attribute this difference in part to the effects of cumulus cell 

removal in all oocytes prior to IVF (except the COC Bulk control group).  Several 

studies have shown that removal of cumulus cells prior to IVF decreases embryo 

development, however, this step was necessary in the current study in order to 

obtain oocyte-specific information derived from fluorescence probes of cellular 

function (Fatehi et al., 2002; Luciano et al., 2005; Wongsrikeao et al., 2005; Ge 

et al., 2008).  In contrast, differences in the percentages of embryo development 

to blastocyst were not statistically significant between any of the WOW cultured 

groups and the COC Bulk cultured control group.  These percentage differences 
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would suggest that the WOW method for IVF and IVC is an effective method for 

the production of in vitro derived embryos.  Another possible explanation for the 

decreased development to blastocyst in all groups may be related to the timing 

of the IVF procedure.  All groups were fertilized at the same time, i.e., at the 

conclusion of our imaging experiments, generally ~2-3 hours post the 24 hour 

maturation time.  Therefore, the delay in the timing of fertilization may be a factor 

in the overall decline in embryo development.  Finally, while this system proved 

efficient for supporting IVF (not previously reported in the literature), and IVC for 

bovine embryos, more research is needed to optimize its efficiency in an attempt 

to improve embryo development. 

For oocytes imaged with rhodamine 123, an AFI ranging from 35.0-89.2 

was consistent with a combined G1, G2 & G3 blastocyst production to only 4% 

(6/144).  There were no statistically significant differences in blastocyst 

development between morphological grades.  While experiments with 

rhodamine 123 produced a very low percentage of embryo development, they 

are representative of initial trials using the WOW method for IVF and IVC and 

were likely affected by the initial trials using this system for embryo culture 

versus a traditional micro-drop IVC system in order maintain the individuality of 

each imaged oocyte.  Also, these initial investigations did not implement the use 

of a co-culture system with cumulus cells as outlined in later experiments.  

Lastly, there were no differences between the imaged and non-imaged group, 
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indicating that the exposure of bovine oocytes to rhodamine 123, followed by 

multiphoton microscopy had no adverse effect on embryo development. 

JC-1 imaged bovine oocytes having fluorescence ratios of green:red 

ranging from 1.25 to 2.25 showed a combined embryo blastocyst development 

of 16.8% (37/220).  In these experiments a relationship between factors linking 

oocyte morphology (as defined by SF/FI) and mitochondrial fluorescence 

intensity were identified that defined parameters conducive to optimal embryo 

development.  Although this potential improved efficiency may be interpreted as 

nominal, further experimentation utilizing these techniques would add value to 

these data, and are expected to further improve the efficiency of bovine oocyte 

selection. 

For oocytes labeled with Fluo-4, AM and imaged, fluorescence intensities 

in the range of 20 to 30 were indicative of combined blastocyst development to 

15.9% (33/208) among all oocyte grades.  A relationship between oocyte 

morphology (as defined by SF/AFI) and Fluo-4 fluorescence intensity levels was 

identified by combining image analysis and multiphoton microscopy.   

Again, while the potential improved efficiency for bovine oocyte selection 

may be interpreted as modest for both JC-1 and Fluo-4, AM, further 

experimentation utilizing these techniques should add value to these data, and is 

likely to improve the efficiency of bovine oocyte selection, and should also be 

applicable to the selection of other mammalian oocytes.  These experiments and 
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findings identify a novel method for the evaluation of oocyte competency in the 

bovine using non-invasive techniques. 

 

4.2 Experiment II – Characterization of the spatial distribution of 

mitochondria and mitochondrial activity, and intracellular Ca2+ 

stores in relation to morphology of in vitro matured canine oocytes 

using criteria from Experiment I that could potentially be used to 

evaluate developmental competence in this species 

4.2.1 Characterization of the spatial distribution of mitochondria and 

mitochondrial activity in relation to meiotic status of IVM canine oocytes 

To our knowledge, this is the first report using image analysis and 

multiphoton microscopy technologies on canine oocytes to study possible 

connections between oocyte function and morphology on living cells.  

Historically, efforts at unraveling the mysteries of canine oocyte biology have 

largely been limited to supplementation of IVM media, and structural studies 

using both electron microscopy and epifluorescence (Szabo, 1967; Mahi and 

Yanagimachi, 1976; Hyttel et al., 1990;Yamada et al., 1992; Yamada et al., 

1993, Nickson et al., 1993, Hewitt, 1997; Metcalfe, 1999, Otoi et al., 1999, 2000 

and 2002; Songsasen et al., 2002; Bolamba et al., 2002; Willingham-Rocky et 

al., 2002; Rodrigues and Rodrigues, 2003; Songsasen et al., 2003; Willingham-

Rocky et al., 2003; Kim et al., 2004; Saint-Dizier M et al., 2004; Viaris De 
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Lesegno et al., 2008a; Viaris De Lesegno et al., 2008b).  However, no significant 

advances have been made toward improving in vitro maturation to the MII stage. 

An aim of this investigtion was to apply the knowledge developed from the 

multiphoton fluorescence imaging of bovine oocytes to canine oocytes in order 

to conduct similar characterization of functional endpoints including the spatial 

distribution of mitochondria, Δψm, and intracellular Ca2+ in oocytes and to use 

this information to establish criteria for oocyte selection. 

Localization of mitochondria in the MII canine oocyte revealed a similar 

pattern to that reported for other mammalian species indicating active 

mitochondrial localized to the peri- and sub-cortical regions of the oocyte.  For 

rhodamine 123, labeling was primarily in the peri-cortical area, closest to the 

oolema of the canine oocyte, whereas for bovine, mitochondria appeared to 

have a more dispersed localization throughout the ooplasm, with more 

concentrated areas at the peri-and sub-cortical regions.  When labeled with JC-

1, canine MI and MII oocytes fluoresced in a similar pattern as bovine MII stage 

oocytes, indicating concentrated areas of mitochondrial activity in the peri-

cortical regions of the oocyte.  DEG and GV-GVBD oocytes labeled with JC-1 

had higher ratios of green:red fluorescence which is indicative of early oocyte 

apoptosis.  While labeling for both mitochondrial probes revealed similar areas 

of localized fluorescence compared to that of bovine, the fluorescence intensity 

was not as distinctly visualized in the non-cortical regions of the oocyte.  

According to ultrastructural studies in the IVM canine oocyte as described below, 
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mitochondria are distributed throughout the cytoplasm and more are 

concentrated in the peri- and sub-cortical regions.  Therefore, it is not possible to 

rule out the prospect that the abundant and concentrated lipid stores in the 

canine oocyte may potentially mask the ability to detect the total mitochondrial 

fluorescence signal within oocytes of this species. 

Of particular interest in the current study was the unusual level of 

hyperpolarized mitochondria within the 1PB of the canine MII oocyte, as 

compared to those reported for the mouse and human, as well as in this 

investigation of bovine oocytes.  For canine oocytes, mitochondria in the 1PB 

fluoresced primarily in the RITC channel, with very minimal fluorescence (if any) 

in the FITC channel, indicating mitochondrial hyperpolarization, unlike that 

reported for mouse and human, or as observed in the bovine from this study.  

Moreover, the integrity of the 1PB (when in the field of view) was often 

compromised or appeared fragmented and/or irregularly shaped as compared to 

that observed for bovine oocytes.  While the significance of these findings is 

unclear, the morphological integrity of the 1PB may be related to a combination 

of compromising factors such as oocyte source (estrous cycle stage, age of 

bitch, and general health/nutrition, etc.), handling (poorly defined ovary transport 

and oocyte collection protocols, etc.) and/or a poorly defined IVM protocol for 

this species.    

The spatial distribution of hyperpolarized mitochondria function to provide 

ATP within the oocyte in areas of high metabolic need, however, little is known 
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about mitochondrial function in the polar body.  Furthermore, aside from its 

morphology, ultrastructural organization, utility for preimplantation genetic 

diagnosis and potential cloning applications, the 1PB in general has received 

negligible attention (Gitlin, 2003).  Moreover, the relationship between 1PB 

morphology and embryo development is controversial but is believed to be an 

indicator of both postovulatory age of the oocyte and synchrony between nuclear 

and cytoplasmic maturation (Ciotti et al., 2004).   

Recent ultrastructurel studies of canine in vivo matured oocytes reported 

that after the LH surge, mitochondria undergo massive replication, and after 

ovulation, they remain quite numerous and homogenously distributed (Viaris De 

Lesegno et al., 2008a).  After meiotic resumption and achievement of MII stage, 

the cytoplasm of the oocyte is primarily composed of mitochondria and smooth 

endoplasmic reticulum (SER) that are homogenously distributed between lipid 

droplets.  Therefore, in the canine oocyte at final maturation in vivo, the 

association of SER/mitochondria and SER/lipid droplet is much more organized 

than has been observed in oocytes of other mammals.  Further, cytoplasmic 

maturation of the canine oocyte involves very extensive reconstruction at final 

maturation as compared to late follicle stages suggesting that canine oocytes 

obtained from late follicle stages may be more immature than that reported for 

other species which may account for the difficulty in achieving successful 

maturation in vitro (Viaris De Lesegno et al., 2008a).  Ultrastructural studies of in 

vitro matured canine oocytes performed by the same investigators revealed an 

 



134 
 

accumulation of mitochondria in the cytoplasm beginning at the MI stage that 

were primarily localized to the cortical regions of the ooplasm.  This pattern 

remained consistent through the progression to MII, with more intense 

accumulation of mitochondria localized to the cortical region (Viaris De Lesegno 

et al., 2008b). 

Consequently, considering the extensive accumulation of mitochondria 

during final maturation, the concentrated cortical localization of mitochondria 

during MII of IVM, and the highly concentrated lipid content in the canine oocyte, 

the metabolic demands of mitochondrial function and ATP synthesis may be 

greater in the canine than in other species in preparation for fertilization.  

Furthermore, the observation of hyperpolarized mitochondria in the 1PB may be 

a consequence of the metabolic demands related to the extrusion of the 1PB 

since it is generated from the same spatial location, or may be a consequence of 

the abundance of hyperpolarized mitochondria just beneath the oolema.  

However, future studies are required to confirm this hypothesis.   

As a consequence of the investigations performed in this dissertation, it 

was possible to implement the use of a novel selection method for canine 

oocytes using the JC-1 mitochondrial probe that further narrowed the 

parameters necessary for efficiently selecting oocytes that were deemed 

competent to achieve fertilization and cleavage.  From these combined data, a 

potential improvement in the overall efficiency of canine oocyte selection by 

63.6% (84/132; pre-selected/total) was obtained using the improved method of 
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oocyte selection.  Moreover, it was possible to predict a potential improvement in 

the efficiency of canine MI and MII oocyte selection (including oocytes 

competent to undergo fertilization and/or cleavage) by 31% (29/42; 

improved/total of MI, MII, FERT & CLEAVED, respectively) using these 

improved methods.  Furthermore, a collective reduction in the number of oocytes 

needed for experimentation by 43.2% was obtained using this improved method 

combining image analysis and multiphoton microscopy of JC-1-labeled canine 

oocytes.   

 

4.2.2 Characterization of the spatial distribution of free intracellular Ca2+ 

in relation to grade of IVM canine oocytes 

 Analysis of intracellular Ca2+ in canine oocytes provided similar results to 

that reported for bovine oocytes in this investigation.  Again, a relationship was 

identified between oocyte morphology (as defined by SF/AFI) and Fluo-4 

fluorescence intensity that indicates a range for MI and MII canine oocyte 

selection of 20-25.5.  With these data, the efficiency of selection of MI and MII 

canine oocytes can potentially be improved by 32.2%, while also potentially  
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eliminating almost 50% of the oocyte population collected and subjected to IVM 

that would have been identified as unsuitable.   

Although the localization of Fluo-4 fluorescence was primarily observed in 

the peri-cortical region and exhibited a uniform distribution in MI and MII oocytes 

 with comparable AFI’s to that observed in bovine oocytes, the fluorescence 

intensity of canine oocytes in the DEG and/or GV-GVBD meiotic stages was 

more intense and exhibited localized accumulation of free intracellular Ca2+
 in 

the peri-and sub-cortical regions of the ooplasm, that were interpreted as 

associated with early events of apoptosis and/or cell death.  Also, both DEG and 

GV-GVBD grades had oocytes distributed throughout the curve (Fig. 3.28), 

whereas MI and MII oocytes were primarily confined to the lower end of the 

curve, and within the predicted range of potential optimal selection efficiency.  

Finally, considering the many insufficiencies related to selection of high quality 

canine oocytes and successful IVM, this technique could prove useful for 

optimizing oocyte selection and resources for in vitro studies. 
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CHAPTER V 

CONCLUSIONS 

 
The ultimate test of oocyte competency from in vitro studies is the 

successful maturation, fertilization, embryo development, implantation, gestation 

and finally, birth of live, healthy offspring.  For in vitro studies, the achievement 

of successful outcomes at each of these developmental stages is sensitive and 

can be problematic, due to the number of physiological events in oocyte 

maturation that remain unknown.  In this investigation, additional details related 

to oocyte selection have been developed that may provide a means to non-

invasively increase the efficiency of identifying oocytes with a range of predicted 

competency for the bovine.  Further, knowledge derived from analysis of bovine 

oocytes has been applied to the canine oocytes in which physiological 

processes related to oocyte development and maturation remains relatively 

unexplored (as compared to human, rodents and other domestic mammals), and 

has only recently been aggressively investigated.  Here, baseline data related to 

functional endpoints of cellular function were identified using 3 different 

fluorescence probes that provided the potential to improve oocyte selection 

criteria. Further, application of the WOW system that was originally designed for 

IVC of embryos, was adapted for IVF with successful outcomes for both bovine 

and canine oocytes. 
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In conclusion, the primary objective of these investigations was 

accomplished, i.e., to non-invasively identify specific, functional molecular 

markers that may relate to oocyte competency.  While additional improvements 

to the techniques described herein will be necessary to better optimize this 

experimental approach, future development of image analysis and multiphoton 

microscopy could significantly advance the area of oocyte selection in ART for 

academic research, commercial and clinical settings. 
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