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ABSTRACT 

 

Higher-Order Methods for Determining Optimal Controls and Their Sensitivities.  

(May 2010)  

Christopher Mathew McCrate, B.S., The University of Missouri  

Chair of Advisory Committee: Dr. Srinivas R. Vadali 

 

The solution of optimal control problems through the Hamilton-Jacobi-Bellman 

(HJB) equation offers guaranteed satisfaction of both the necessary and sufficient 

conditions for optimality. However, finding an exact solution to the HJB equation is a 

near impossible task for many optimal control problems. This thesis presents an 

approximation method for solving finite-horizon optimal control problems involving 

nonlinear dynamical systems. The method uses finite-order approximations of the partial 

derivatives of the cost-to-go function, and successive higher-order differentiations of the 

HJB equation. Natural byproducts of the proposed method provide sensitivities of the 

controls to changes in the initial states, which can be used to approximate the solution to 

neighboring optimal control problems. For highly nonlinear problems, the method is 

modified to calculate control sensitivities about a nominal trajectory. In this framework, 

the method is shown to provide accurate control sensitivities at much lower orders of 

approximation. Several numerical examples are presented to illustrate both applications 

of the approximation method.  
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1. INTRODUCTION 

 

 

 Optimal control theory provides a systematic approach for determining the most 

efficient way to control a dynamical system. The theory is applicable to a broad range of 

dynamical systems, spanning all fields of engineering. Over the years, the application of 

optimal control theory to linear systems has been researched extensively, and is largely 

understood. However, much work remains in the development of optimal control 

methods suitable for highly nonlinear systems, such as those found in Aerospace 

applications.  

 Several distinct approaches have been developed to solve nonlinear optimal 

control problems. In many instances, optimal control problems are solved through a 

direct solution of the necessary conditions via discrete-approximations, e.g., collocation 

[1,2]
 

or projection methods [3]. Indirect methods typically convert the necessary 

conditions into a two-point boundary-value problem (TPBVP) [4]. Both the direct and 

indirect approaches consider only the necessary but not the sufficient conditions for 

optimality. Conversely, the solution to the Hamilton-Jacobi-Bellman (HJB) equation 

provides a guarantee of closed-loop stability and the satisfaction of both the necessary 

and sufficient conditions for optimality [5]. Unfortunately, finding an analytical solution 

to the HJB equation is impossible for many nonlinear optimal control problems.   

 Many approaches have been developed to obtain approximate solutions to the  

____________ 
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monomial expansions [8,9], orthogonal functions
 
[10], radial basis functions [11], and 

neural networks [12]. Methods based on monomial expansions minimize local 

approximation errors and are best suited for systems with polynomial nonlinearities.  

Global approximation methods based on finite-differences [13], finite-elements [14], and 

finite-volume [15] have also been employed to solve the HJB equation.  Such methods 

are applicable to more general nonlinear systems. Recent advances, e.g., level-set 

methods [13], have been made for evaluating the spatial derivatives via finite-differences 

and approximating discontinuous cost functions. In general, these global approximation 

methods provide uniform approximations over a wider domain by allowing variable 

levels of discretization over different parts of the computational domain. However, 

practical implementations of these methods have been typically limited to lower-order 

systems, due to the enormous computational burden of performing discretization over 

the entire domain.   

 In many situations, it is beneficial to know the optimal control required to take a 

system from a variety of initial conditions to some set of fixed terminal conditions. To 

achieve this, a family of neighboring solutions, often referred to as a field of extremals 

[4], must be calculated. Both direct and indirect methods generate an open-loop solution 

to the optimal control problem, i.e., a solution for only one set of initial conditions. It has 

been widely recognized that if the open-loop optimal control problem can be solved in 

near-real-time, via either direct or indirect methods, then the solution provides extremal 

feedback controls. This is the motivation behind the development of model predictive 

control methods [16]. However, model predictive control methods require a near-real-
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time solution to a nonlinear constrained minimization problem at each time step, which 

can be extremely computationally demanding.  

Recently, there has been an interest in the computation of a field of extremals via 

higher-order sensitivity methods [17,18]. Such methods generate sensitivities of the 

controls to changes in the initial states, which allows for the immediate determination of 

neighboring optimal controls without the burden of re-solving the optimal control 

problem. Furthermore, these methods can be extended to account for changes in other 

conditions, e.g., constant parameters in the system dynamics and terminal constraints.  

 This thesis develops a general method for approximating the solution to the HJB 

equation for a class of nonlinear optimal control problems. The approximated solution 

provides both the nominal open-loop solution and the higher-order control sensitivities 

required to generate a field of extremals. The HJB equation is approximated locally, 

instead of over a large domain, which greatly reduces the computational burden 

associated with the approximation. To begin the developments of this thesis, Sections 

1.1, 1.2, and 1.3 introduce the fundamental concepts of optimal control theory relevant 

to this research.  

 

1. 1    Optimal Control Problem Statement 

 To motivate the developments of this thesis, consider the following optimal 

control problem.  

Minimize:  

  𝒥 = 𝜙 𝑥 𝑡𝑓  +  𝐿 𝑥, 𝑢, 𝑡 
𝑡𝑓
𝑡0

𝑑𝜏  (1.1) 
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Subject to: 

  𝑥 = 𝑓 𝑥, 𝑢, 𝑡    (1.2) 

 𝜓 𝑥 𝑡𝑓  = 0 (1.3) 

where 𝒥 is the cost function (performance index),  𝜙 𝑥 𝑡𝑓   is the final state penalty 

function (soft terminal constraint), 𝜓 𝑥 𝑡𝑓  ∈ ℜ 𝑝≤𝑛  is a vector function of hard 

terminal constraints, and 𝑓 𝑥, 𝑢, 𝑡  is a smooth, analytic, n-dimensional vector function 

with 𝑥 ∈ ℜ𝑛  and 𝑢 ∈ ℜ𝑚 . It is assumed that the initial time 𝑡0 and the initial states 𝑥0 

are given. The final time may or may not be specified, depending on the particular 

problem.  

 

1.2    Two Point Boundary Value Problem 

 The optimal control problem established in Section 1.1 is transformed into a 

TPBVP using the principles of variational calculus [19]. To begin, the state dynamics 

and terminal constraints are augmented to the cost function through costates 𝜆 and 

terminal constraint Lagrange multipliers 𝜈, respectively. The augmented cost function is 

written as: 

 𝒥𝑎 =  𝜙 𝑥 𝑡𝑓  + 𝜈𝑇𝜓 𝑥 𝑡𝑓   (1.4) 

 +   𝐿 𝑥, 𝑢, 𝑡 + λT 𝑓 𝑥, 𝑢, 𝑡 − 𝑥   
𝑡𝑓
𝑡0

𝑑𝜏 

where 𝜈 ∈ ℜ𝑝  is a vector of terminal constraint Lagrange multipliers and λ ∈ ℜ𝑛  is a 

vector of costates. Next, the Hamiltonian of the system is defined as: 

 𝐻 𝑥, 𝑢, λ, 𝑡 = 𝐿 𝑥, 𝑢, 𝑡 + λ𝑇𝑓 𝑥, 𝑢, 𝑡  (1.5) 

Using this definition, the first variation of the augmented cost function [19] is written as:  
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 𝛿𝒥𝑎 =  
𝜕𝜙  𝑥 𝑡𝑓  

𝜕𝑥  𝑡𝑓 
+

𝜕𝜓  𝑥 𝑡𝑓  

𝜕𝑥  𝑡𝑓 

𝑇

𝜈 − 𝜆 𝛿𝑥 𝑡𝑓 + 𝜓 𝑥 𝑡𝑓  
𝑇
𝛿𝜈 (1.6) 

 +    
𝜕𝐻

𝜕𝑥
+ λ  

𝑇

𝛿𝑥 +  
𝜕𝐻

𝜕λ
− 𝑥  

𝑇

𝛿𝜆 +  
𝜕𝐻

𝜕𝑢
 
𝑇

𝛿𝑢 
𝑡𝑓
𝑡0

𝑑𝜏 

First-order necessary conditions for optimality are established by requiring that the first 

variation of the augmented cost function is zero for arbitrary variations in 𝛿𝑥 𝑡𝑓 , 𝛿𝜈, 

𝛿𝑥, 𝛿𝜆, and 𝛿𝑢. The first-order necessary conditions are: 

 λ 𝑡𝑓 =
𝜕𝜙  𝑥 𝑡𝑓  

𝜕𝑥  𝑡𝑓 
+

𝜕𝜓  𝑥 𝑡𝑓  

𝜕𝑥  𝑡𝑓 

𝑇

𝜈 (1.7) 

 𝜓 𝑥 𝑡𝑓  = 0 (1.8) 

 𝑥 =
𝜕𝐻

𝜕λ
= 𝑓 𝑥, 𝑢, 𝑡  (1.9) 

 λ = −
𝜕𝐻

𝜕𝑥
= −𝐿𝑥 − 𝑓𝑥

𝑇λ (1.10) 

 
𝜕𝐻

𝜕𝑢
= 𝐿𝑢 + 𝑓𝑢λ = 0 (1.11) 

Equations (1.7) and (1.8) provide terminal conditions that must be satisfied to achieve 

optimality.
 
Equations (1.9) and (1.10)  provide governing state and costate differential 

equations, and are often referred to as Euler-Lagrange equations [4]. For systems affine 

in the control, Equation (1.11) provides a convenient means to express the control as a 

function of the states and costates. If the control terms cannot be expressed as a function 

of the states and costates, they must be treated as additional states. In such a case, 

differential equations are found for the controls by splitting the time derivative of 𝐻𝑢  

into partial derivatives: 

 
𝜕𝐻𝑢

𝜕𝑡
+

𝜕𝐻𝑢

𝜕𝑥
𝑥 +

𝜕𝐻𝑢

𝜕λ
λ +

𝜕𝐻𝑢

𝜕𝑢
𝑢 = 0 (1.12) 

This expression is rearranged to give: 
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 𝑢 = −𝐻𝑢𝑢
−1  

𝜕𝐻𝑢

𝜕𝑡
+

𝜕𝐻𝑢

𝜕𝑥
𝑥 +

𝜕𝐻𝑢

𝜕λ
λ   (1.13) 

Treating the controls as additional states, Equation (1.11) becomes a constraint that must 

be achieved for optimality. 

 After the control terms have been dealt with, the challenge is to find the proper 

initial costates to drive the states and costates to the desired terminal conditions. This is 

often accomplished through the use of an iterative method, e.g., the shooting approach. 

In the shooting approach, the initial costate values are guessed and the Euler-Lagrange 

equations are integrated to the final boundary conditions. If the terminal conditions are 

not satisfied, the initial costate values are updated using Newton’s method. This process 

is repeated until the initial costates have converged onto their proper values. Common 

shooting algorithms, e.g., Matlab’s fsolve.m, utilize first-order finite-differencing 

derivatives in the application of Newton’s method. Recently, there has been in interest in 

utilizing higher-order derivatives to provide faster convergence to the shooting algorithm 

[20].  

 Further insight can be gained by observing the value of the Hamiltonian along 

the optimal solution of the TPBVP. The time derivative of the Hamiltonian can be 

separated into partial derivatives as follows [19]. 

 𝐻 = 𝐻𝑥
𝑇𝑥 + 𝐻𝑢

𝑇𝑢 + 𝐻λ
𝑇λ + 𝐻𝑡  (1.14) 

Applying the first-order necessary conditions, the expression is reduced to:  

 𝐻 = 𝐻𝑡  (1.15) 
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Therefore, for problems in which the Hamiltonian doesn’t have any explicit time 

dependence, the Hamiltonian is a first integral of the optimal control problem [4]. This 

condition can be utilized to check the accuracy of the optimal solution.  

 

1.3    Hamilton-Jacobi-Bellman Equation 

 The field of Dynamic Programming provides another means for solving optimal 

control problems in the form of the HJB equation. To begin this formulation, the cost-to-

go (optimal value) function is defined as:  

   𝐽 𝑥, 𝑡 = 𝜙 𝑥 𝑡𝑓  +  𝐿 𝑥, 𝑢, 𝑡 
𝑡𝑓
𝑡

𝑑𝜏  (1.16) 

It is important to recognize the difference between the cost function 𝒥 and the cost-to-go 

function  𝐽. The cost function measures the total cost of the entire optimal trajectory; 

whereas, the cost-to-go function measures the remaining cost associated with completing 

the optimal trajectory. Therefore, the cost-to-go function at the initial time is equal to the 

cost function.  

The Hamilton-Jacobi-Bellman equation is a partial differential equation that 

defines the partial time derivative of the cost-to-go function. Solution of the HJB 

equation provides a guarantee of closed-loop stability and the satisfaction of both the 

necessary and sufficient conditions for optimality. The HJB equation is defined as
*
 

 −
𝜕𝐽

𝜕𝑡
= 𝐻 𝑥, 𝐽𝑥 , 𝑡   (1.17) 

                                                 
*
 A full derivation of the HJB equation is shown in Appendix A 
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where 𝐽𝑥  is the first-order partial derivative of the cost-to-go with respect to the states, 

and 𝐻 𝑥, 𝐽𝑥 , 𝑡  is the Hamiltonian defined as: 

 𝐻 𝑥, 𝐽𝑥 , 𝑡 = 𝐿 𝑥, 𝐽𝑥 , 𝑡 + 𝐽𝑥
T𝑓 𝑥, 𝐽𝑥 , 𝑡   (1.18) 

In this form of the Hamiltonian, all dependency on the control and costate terms has 

been removed. First, dependency on the controls is removed using the first-order 

necessary condition for optimality: 𝐻𝑢 = 0, as discussed in Section 1.2. Next, the 

dependency on the costates is eliminated by utilizing the following relationship. 

  𝐽𝑥 = λ  (1.19) 

This relationship is only valid when 𝐽 is continuous and differentiable over the entire 

domain of 𝑥. For cases where 𝐽 is not smooth over the entire domain, viscosity solutions 

must be considered. In this thesis, the smoothness of 𝐽 will be assumed for all problems. 

 Equation (1.19) provides the necessary link between the HJB equation and the 

TPBVP. An exact solution to the HJB equation provides the optimal values of 𝐽𝑥 , which 

are needed to solve the TPBVP. Unfortunately, finding an exact solution to the HJB 

equation is extremely difficult for most problems. Hence, some approximation scheme is 

necessary.    
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2. OPTIMAL CONTROL SOLUTION METHODOLOGY 

  

 As previously stated, the goal of this method is to obtain an open-loop solution to 

the TPBVP through a local approximation of the HJB equation. Section 2.1 provides a 

description of the finer details of this approximation, for a class of optimal control 

problems. Sections 2.2 and 2.3 extend the approximation method to handle optimal 

control problems formulated with hard terminal constraints and free final times. Finally, 

Sections 2.4 and 2.5 illustrate the application of the HJB equation approximation method 

to single dimension, linear and nonlinear optimal control problems, respectively.  

 

2.1    Approximating the Hamilton-Jacobi-Bellman Equation 

 In Section 1.2, the cost-to-go function was shown to have an explicit dependence 

on the states of the system. Therefore, assuming the cost-to-go function continuous and 

differentiable, a finite-order of partial derivatives of the cost-to-go can be taken with 

respect to the states. In general, these partial derivatives will be defined as: 𝐽𝑥  for the 

first order, 𝐽𝑥𝑥  for the second order, 𝐽𝑥𝑥𝑥  for the third order, and so on.  

 From inspection of the HJB equation, it is evident that the values of 𝐽𝑥  must be 

known in order to compute the time derivative of  𝐽. Furthermore, because 𝐽 must be 

computed across the trajectory, the values of 𝐽𝑥  are needed across the trajectory. 

Therefore, a differential equation governing 𝐽𝑥  must be derived. This is accomplished, in 

the most general sense, by differentiating the HJB equation with respect to each of the 
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states. Doing so creates a vector of partial differential equations (PDEs) that govern each 

of the first-order partial derivatives of the cost-to-go, which is given as:   

 −
𝜕𝐽𝑥

𝜕𝑡
= 𝐻𝑥 𝑥, 𝐽𝑥 , 𝐽𝑥𝑥 , 𝑡   (2.1) 

Looking at Equation (2.1), it is evident that the values of 𝐽𝑥𝑥  must be known in order to 

compute the time derivative(s) of  𝐽𝑥 . Therefore, all of the PDEs contained within 

Equation (2.1) must be individually differentiated with respect to each state, forming a 

matrix of partial differential equations governing  𝐽𝑥𝑥 . Again, the new matrix of PDEs 

will contain the 𝐽𝑥𝑥𝑥  terms. This cycle of dependency on the next higher-order partial 

derivatives will continue for infinitely many differentiations. Because it is infeasible to 

take infinitely many derivatives, the partial derivatives must be truncated at some order. 

At the order of truncation, all terms for the next higher-order of partial derivatives 

appearing in the PDEs will be dropped. In this unique structure, there exists a link 

between all of the partial derivatives of the cost-to-go, i.e., truncating the partial 

derivatives at the n
th

 order will affect the accuracy of the 1
st
 through n-1

th
 orders of 

partial derivatives.  

 Once the PDEs have been derived to the desired order, they are solved by the 

method of lines. In this approach, the states are held constant at their initial values while 

the entire set of PDEs is integrated backwards in time from the terminal boundary 

conditions. Holding the states constant allows the PDEs to be solved as ordinary 

differential equations (ODEs), where time is the only independent variable allowed to 

change. The states are held at their initial values, because the goal of the method is to 
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approximate controls and control sensitivities that are valid at the initial time, i.e., for the 

initial conditions.  

Next, the terminal boundary conditions for the partial derivatives of the cost-to-

go must be established. This procedure can vary, depending on the type of terminal 

boundary conditions applied to the system, i.e., whether or not hard terminal constraints 

are present. The developments of this section assume an absence of hard terminal 

constraints. Taking this into account, the cost-to-go function at the final time is defined 

as: 

 𝐽 𝑡𝑓 = 𝜙 𝑥0  (2.2) 

where 𝜙 𝑥0  is the final state penalty function with the states fixed at their initial 

conditions. The necessary boundary conditions for the partial derivatives of the cost-to-

go are found by differentiating Equation (2.2) with respect to the states, as shown below. 

 𝐽𝑥 𝑡𝑓 = 𝜙𝑥 𝑥0       ,      𝐽𝑥𝑥  𝑡𝑓 = 𝜙𝑥𝑥  𝑥0       ,   … (2.3) 

 After the PDEs have been integrated backwards in time, a large set of partial 

derivatives of the cost-to-go with respect to the states is obtained. These values are used 

in two different ways. The first-order partial derivatives represent the system costates, as 

defined by Equation (1.19). The higher-order partial derivatives of the cost-to-go 

function represent the sensitivities of the costates with respect to changes in the states. 

These sensitivities are used to adjust the costates in the event of a variation in the states 

(δx). This is accomplished by expanding 𝐽𝑥  in a Taylor series about δx as: 

 λn = 𝐽𝑥 + 𝐽𝑥𝑥  𝛿𝑥 +
1

2!
𝐽𝑥𝑥𝑥  𝛿𝑥2 +

1

3!
𝐽𝑥𝑥𝑥𝑥  𝛿𝑥3 + ⋯   (2.4) 

where λn  represents the adjusted costates.  
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 A significant drawback to this method is that the partial derivatives of the cost-

to-go obtained from the back integration are only valid at the initial time. Therefore, the 

partial derivatives cannot be used as a form of feedback control valid for the duration of 

the trajectory. Instead, they must only be used to compute and adjust the costates at the 

initial time. After this initial computation, the TPBVP must be solved open-loop, by 

integrating the Euler-Lagrange equations to the terminal conditions. This drawback is a 

consequence of integrating the PDEs as ODEs, via the method of lines.  

 The advantage to this method is twofold. First, the optimal initial costates needed 

to solve the TPBVP are obtained without iteration; whereas, other solution methods 

require an unknown number of iterations to converge on the optimal solution. Secondly, 

the HJB approximation method automatically produces costate sensitivities, which are 

used to immediately compute guidance solutions about the nominal trajectory.   

  

2.2    Extension to Terminally Constrained Problems 

 For problems subject to hard terminal constraints, additional steps must be taken 

to approximate the HJB equation. In such a problem, the cost-to-go function takes the 

form:  

 𝐽 𝑥, 𝜈, 𝑡 =  𝜙 𝑥 𝑡𝑓  + 𝜈𝑇𝜓 𝑥 𝑡𝑓  +  𝐿 𝑥, u, 𝑡 
𝑡𝑓
𝑡

𝑑𝜏 (2.5) 

Clearly, this form of the cost-to-go function has a dependence on both the states and the 

terminal constraint Lagrange Multipliers (𝜈). Furthermore, the proper values of 𝜈 are 

needed to initialize the integration of the cost-to-go function. Hence, a procedure for the 
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proper selection of 𝜈 must be devised. The procedure is centered on satisfying the 

following condition for optimality [8]:   

 𝐽𝜈
∗ 𝑡 = 𝜓 𝑥 𝑡𝑓  = 0 (2.6) 

where 𝐽𝜈
∗(𝑡) is the optimal partial derivative of the cost-to-go with respect to 𝜈. Although 

this condition is valid throughout the optimal trajectory, it must be enforced at the initial 

time. Again, this is because 𝐽𝜈  is only accurate at the initial time when integrated using 

the method of lines. The differential equations governing 𝐽𝜈  are derived by differentiating 

the HJB equation with respect to 𝜈, as follows: 

 −
𝜕𝐽𝜈

𝜕𝑡
= 𝐻𝜈 𝑥, 𝐽𝑥 , 𝐽𝑥𝜈 , 𝑡  (2.7) 

Again, the cycle of dependency on the next higher order partial derivatives will occur in 

these PDEs. However, most of these partial derivatives will be a mixture of partial 

derivatives with respect to both 𝑥 and 𝜈. Because of this, it is convenient to treat each 𝜈 

as an additional state.  

 As previously mentioned, values of 𝜈 are needed to start the integration. 

However, the integration must be completed before the proper values of 𝜈 can be found. 

To resolve this causality dilemma, an iterative procedure is implemented, beginning with 

a guess for the values of 𝜈. The partial derivatives are then integrated via the method of 

lines, resulting in the initial time values of the partial derivatives. Next,  𝐽𝜈 𝑡0  is 

expanded in a Taylor series about 𝛿𝜈 as follows.  

 𝛿𝐽𝜈 𝑡0 = 𝐽𝜈𝜈  𝑡0 𝛿𝜈 +
1

2!
𝐽𝜈𝜈𝜈  𝑡0 𝛿𝜈

2 +
1

3!
𝐽𝜈𝜈𝜈𝜈  𝑡0 𝛿𝜈

3 + ⋯ (2.8) 
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A reversion of series is performed on the above equation to provide the proper 𝛿𝜈 values 

to satisfy Equation (2.8). Appendix B provides a description of the implementation of 

this reversion of series. The values of 𝛿𝜈 calculated in the series reversion are then added 

to the previous values of 𝜈. The updated values of 𝜈 are used to update the final time 

boundary conditions and the process is repeated. The number of iterations needed for 

convergence depends on the nonlinearity of the system, the series reversion order, and 

the accuracy of the initial guess.  

 Finally, additional steps must be taken to generate neighboring optimal 

trajectories for variations in the initial states (𝛿𝑥). In the terminally constrained problem, 

a variation in the initial states causes a variation in the terminal constraint Lagrange 

multipliers (𝛿𝜈). The adjusted initial costate (λ𝑛 ) is found by expanding the costates in a 

Taylor series about 𝛿𝑥 and 𝛿𝜈 as follows. 

 λ𝑛 = 𝐽𝑥 + 𝐽𝑥𝑥𝛿𝑥 + 𝐽𝑥𝜈𝛿𝜈 +
1

2!
𝐽𝑥𝑥𝑥 𝛿𝑥

2 + 𝐽𝑥𝑥𝜈 𝛿𝑥𝛿𝜈 +
1

2!
𝐽𝑥𝜈𝜈 𝛿𝜈

2 + ⋯ (2.9) 

Before this calculation is performed, the proper values of 𝛿𝜈 must be calculated through 

a Taylor series about the state variations: 

 𝛿𝜈 = 𝜈𝑥𝛿𝑥 +
1

2!
𝜈𝑥𝑥  𝑡0 𝛿𝑥

2 +
1

3!
𝜈𝑥𝑥𝑥 𝛿𝑥

3 + ⋯ (2.10) 

where 𝜈𝑥 , 𝜈𝑥𝑥 , and 𝜈𝑥𝑥𝑥  are the first three orders of partial derivatives of the Lagrange 

multipliers with respect to the states. To find these partial derivatives, the Lagrange 

Implicit Function Theorem [17] is applied to the following condition. 

 𝐽𝜈(𝑡0) = 0 (2.11) 



 15 

The partial derivative of the cost-to-go with respect to 𝜈 is implicitly defined as a 

function of both 𝑥 and 𝜈. Additionally, the terminal constraint Lagrange multiplier is 

implicitly defined as a function of 𝑥. Taking these functional relationships into account, 

successive total derivatives of 𝐽𝜈(𝑡0) with respect to 𝑥 are split into partial derivatives. 

The 1
st
 and 2

nd 
order expressions resulting from this process are shown below. 

 𝐽𝜈𝑥  𝑡0 + 𝐽𝜈𝜈  𝑡0 ∙ 𝜈𝑥 = 0 (2.12) 

 𝐽𝜈𝑥𝑥  𝑡0 + 2 ∙ 𝐽𝜈𝜈𝑥  𝑡0 ∙ 𝜈𝑥 + 𝐽𝜈𝜈𝜈  𝑡0 ∙ 𝜈𝑥 ∙ 𝜈𝑥 + 𝐽𝜈𝜈  𝑡0 ∙ 𝜈𝑥𝑥 = 0 (2.13) 

These equations are inverted to solve for the necessary partial derivatives, 𝜈𝑥  and 𝜈𝑥𝑥 . A 

more detailed description of this process is given in Appendix E.   

 

2.3    Extension to Free Final Time Problems 

 Some optimal control problems are formulated with a free final time. In such a 

problem, the final time becomes another variable to be optimized. As a result, these 

problems are subject to another terminal boundary condition [19].  

 𝐻 𝑡𝑓 +
𝜕𝜙

𝜕𝑡𝑓
+

𝜕𝜓

𝜕𝑡𝑓

𝑇
𝜈 = 0 (2.14) 

For the class of optimal control problems considered here, it is assumed that the penalty 

function and terminal constraints have no explicit dependence on time. Therefore, the 

condition 𝐻 𝑡𝑓 = 0  must be satisfied to achieve optimality. Furthermore, Section 1.2 

showed that the total derivative of the Hamiltonian is constant throughout the trajectory 

for problems formulated with no explicit time dependence. Combining these two 

conditions, the Hamiltonian must be equal to zero throughout the optimal trajectory.  
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 This condition for optimality is applied to the HJB approximation method in the 

following manner. The total time derivative of the Hamiltonian is separated into partial 

derivatives as:  

 
𝑑𝐻

𝑑𝑡
=

𝜕𝐻

𝜕𝑡
+

𝜕𝐻

𝜕𝑥

𝑇
𝑥 = 0 (2.15) 

This equation is rearranged to give the partial time derivative of the Hamiltonian as 

follows.   

 −
𝜕𝐻

𝜕𝑡
=

𝜕𝐻

𝜕𝑥

𝑇
𝑥  (2.16) 

This equation is added to the set of PDEs to be integrated via the method of lines. As 

with the other PDEs, the state terms in this equation must be fixed at their initial values 

during the integration. 

To begin the solution process, a final time must be chosen for the integration 

routine. After the system is integrated, the optimal time is found by observing the time at 

which the Hamiltonian equals zero. If the Hamiltonian never equals zero, then optimal 

time is greater than the chosen integration time. However, some optimal control 

problems, particularly those with a minimum-fuel performance index, don’t have a finite 

optimal time. In such a problem, the Hamiltonian will approach zero as time approaches 

infinity.    
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2.4    Scalar, Linear Example 

The following example demonstrates the HJB approximation methodology for a 

single state, linear optimal control problem with a quadratic performance index. The 

optimal control problem is solved in three different forms: 

1) Fixed Final Time Problem  

2) Terminally Constrained, Fixed Final Time Problem  

3) Free Final Time Problem  

All of the methodology developed in Sections 2.1, 2.2, and 2.3 will be demonstrated 

with these three forms of the linear quadratic problem.   

 

2.4.1    Fixed Final Time Problem 

 Minimize:  

 𝒥 =
1

2
𝑊 𝑥 𝑡𝑓 − 𝑥𝑓 

2
+

1

2
  𝑥2 + 𝑢2 

𝑡𝑓
0

𝑑𝑡  (2.17) 

Subject to: 

 𝑥 = 𝑥 + 𝑢 (2.18) 

 𝑥 0 = 1   ,    𝑡𝑓 = 2 (2.19) 

where 𝑊 is a final state weight and 𝑥𝑓  is the desired final state value. The values of 𝑊 

and 𝑥𝑓  used in this problem are given below.  

 𝑊 = 100   ,   𝑥𝑓 = 4 (2.20) 

 To begin the solution process, the problem is transformed into a TPBVP. First, the 

Hamiltonian is constructed as 
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  𝐻 =
1

2
 𝑥2 + 𝑢2 + λ 𝑥 + 𝑢  (2.21) 

where λ is the costate. Differentiating the Hamiltonian with respect to 𝑢 provides a 

relationship between the costate and control. 

 𝑢 = −λ          (2.22) 

This relationship is used to remove the control terms from the Hamiltonian. Next, first-

order necessary conditions give the Euler-Lagrange equations and the final time 

boundary condition for the costate as: 

 𝑥 =    𝑥 − λ (2.23) 

 λ = −𝑥 − λ  (2.24) 

 λ 𝑡𝑓 = 𝑊 𝑥 𝑡𝑓 − 𝑥𝑓  (2.25) 

Replacing all of the costate terms in the Hamiltonian with 𝐽𝑥 , the HJB equation is 

defined as:  

 −
𝜕𝐽

𝜕𝑡
=

1

2
𝑥2 −

1

2
𝐽𝑥

2 + 𝑥 𝐽𝑥  (2.26) 

Taking successive first and second order partial derivatives of the HJB equation with 

respect to 𝑥 gives the following scalar differential equations. 

 −
𝜕𝐽𝑥

𝜕𝑡
= 𝑥 − 𝐽𝑥  𝐽𝑥𝑥 + 𝐽𝑥 + 𝑥 𝐽𝑥𝑥  (2.27) 

  −
𝜕𝐽𝑥𝑥

𝜕𝑡
= 1 −  𝐽𝑥𝑥

2 + 2𝐽𝑥𝑥                (2.28) 

Because this is a linear quadratic problem, all of the partial derivates higher than 2
nd

 

order will naturally be equal to zero for all time. Therefore, no approximation of the HJB 

equation is necessary and the values of 𝐽𝑥  and 𝐽𝑥𝑥  will be solved for exactly. 

Additionally, Equation (2.28) is analogous to the Riccati Equation, which is given as: 
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  −𝑆 = 𝑄 − 𝑆𝐵𝑅−1𝐵T𝑆 + 𝐴T𝑆 + 𝑆𝐴                (2.29) 

where 𝑆 is equivalent to 𝐽𝑥𝑥 , and the variables 𝐴, 𝐵, 𝑄, and 𝑅 all have a constant value of 

one. Because this equation is independent of state terms, the values of 𝐽𝑥𝑥  are valid 

throughout the integration.  

 The value of the cost-to-go function at the final time is given by: 

 𝐽 𝑡𝑓 =
1

2
𝑊 𝑥 𝑡𝑓 − 𝑥𝑓 

2
 (2.30) 

The boundary conditions for 𝐽𝑥  and 𝐽𝑥𝑥  are derived by differentiating Equation (2.30) 

with respect to 𝑥, and fixing 𝑥 at the initial condition.    

 𝐽𝑥 𝑡𝑓 = 𝑊 𝑥 0 − 𝑥𝑓   (2.31) 

 𝐽𝑥𝑥  𝑡𝑓 = 𝑊                         (2.32) 

Finally, the differential equations governing 𝐽, 𝐽𝑥 , and 𝐽𝑥𝑥  are integrated via the method 

of lines. Integration is performed in MATLAB, using a 4
th

 order variable step Runge-

Kutta routine.  

The state and costate ( 𝐽𝑥 ) results of this integration are represented by the dashed 

lines in Figure 2.1. For comparison purposes, the optimal open-loop solution to the 

TPBVP is represented by the solid lines. As expected, the value of 𝐽𝑥  at the initial time is 

equal to the optimal initial costate, meaning that the correct initial costate was computed 

by the approximation method. Additionally, the figure shows that the condition 𝐽𝑥 = λ∗ 

is only accurate at the points on the trajectory where 𝑥∗ = 𝑥0.  
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Figure 2.1 Approximation method results and optimal open-loop solutions to the 

linear problem. 

 

 

 

Figure 2.2 shows neighboring optimal trajectories, approximated about the 

nominal solution, for the linear quadratic system. The neighboring trajectories are 

created by integrating the Euler-Lagrange equations from neighboring initial states 

(𝑥∗ + 𝛿𝑥) and costates (𝜆∗ + δλ).  To begin the procedure, the initial states are perturbed 

over a range of ±1. Then, the corresponding initial costates are perturbed using: 

 δλ = 𝐽𝑥𝑥𝛿𝑥 (2.33) 

An accurate value of 𝐽𝑥𝑥  ensures the neighboring trajectory is optimal.  
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Figure 2.2 Neighboring optimal trajectories for the linear problem, considering 

initial state variations. 

 

 

 

2.4.2    Terminally Constrained, Fixed Final Time Problem 

Minimize: 

  𝒥 =
1

2
  𝑥2 + 𝑢2 

𝑡𝑓
0

𝑑𝑡  (2.34) 

Subject to  

 𝑥 = 𝑥 + 𝑢 (2.35) 

 𝜓 𝑡𝑓 = 𝑥 𝑡𝑓 − 𝑥𝑓  (2.36) 

In this version of the linear problem, a hard terminal constraint is applied instead of a 

final state penalty function. If the problem is solved accurately, the terminal constraint 

will be satisfied, ensuring that the final state will exactly reach its desired final value 

(𝑥𝑓).  
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The addition of the terminal constraint has no effect on the HJB equation
†
, but 

does effect the cost-to-go function, which is now dependant on 𝑥 and 𝜈. Therefore, the 

HJB equation must now be differentiated with respect to both 𝑥 and 𝜈. This 

differentiation produces the following first and second order equations: 

 −
𝜕𝐽𝑥

𝜕𝑡
  = 𝑥 − 𝐽𝑥  𝐽𝑥𝑥 + 𝐽𝑥 + 𝑥 𝐽𝑥𝑥  (2.37) 

 −
𝜕𝐽𝜈

𝜕𝑡
  = −𝐽𝑥  𝐽𝑥𝜈 + 𝑥 𝐽𝑥𝜈  (2.38) 

 −
𝜕𝐽𝑥𝑥

𝜕𝑡
= 1 −  𝐽𝑥𝑥

2 + 2𝐽𝑥𝑥  (2.39) 

 −
𝜕𝐽𝑥𝜈

𝜕𝑡
= −𝐽𝑥𝜈  𝐽𝑥𝑥 + 𝐽𝑥𝜈  (2.40) 

 −
𝜕𝐽𝜈𝜈

𝜕𝑡
= −𝐽𝑥𝜈  𝐽𝑥𝜈    (2.41) 

The terminal boundary conditions for all five first and second order partial derivatives 

are given as: 

 𝐽𝑥 𝑡𝑓 = 𝜈     ,     𝐽𝜈 𝑡𝑓 =  𝑥 0 − 𝑥𝑓  (2.42) 

 𝐽𝑥𝑥  𝑡𝑓 = 0     ,     𝐽𝑥𝜈  𝑡𝑓 = 1      ,      𝐽𝜈𝜈  𝑡𝑓 = 0      (2.43) 

 Finally, the process to solve the terminally constrained optimal control problem 

requires iterations. A list of the steps required to solve the problem is given below.   

1) Guess a value for 𝜈. 

2) Integrate the 1
st
 and 2

nd
 order PDEs via the method of lines. 

3) Update the value of 𝜈 with the following equation:  

 𝜈𝑖+1 = 𝜈𝑖 − 𝐽𝜈𝜈
−1𝐽𝜈  (2.44) 

4) Repeat Steps 2 and 3 until the value of 𝜈 converges. 

                                                 
†
 Consult Appendix A for an explanation of why the HJB equation is unaffected by terminal constraints 
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Because this problem is linear, the proper value of 𝜈 will be obtained on the first 

iteration.  

 The results for this solution process can be seen in Figure 2.3. Again, the HJB 

approximation results are plotted against the optimal solution to the TPBVP. The figure 

shows the values of  𝐽𝑥  obtained on both iterations. In the first iteration, the simulation 

fails to meet the condition 𝐽𝑥 = λ∗ at any point along the trajectory. This is not 

surprising, given that the value of 𝜈 used to start the integration was inaccurate. In the 

second iteration, the proper value of 𝜈 was used to start the integration. As a result, the 

proper value of 𝐽𝑥  is obtained at the initial time. The condition 𝐽𝑥 = λ∗ is also satisfied at 

another point along the trajectory. The significance of this intersection point will be 

discussed in the next section. 

 

 

 

Figure 2.3 Approximation method results and optimal open-loop solutions for the 

terminally constrained, linear problem.  
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Figure 2.4 shows a field of extremals, about the nominal solution. Again, these 

neighboring solutions are generated by varying the initial state over a range of ±1. Using 

the second order cost-to-go sensitivities, variations in the terminal constraint Lagrange 

multipliers and initial costates are computed as a function of the initial state variations, 

as shown below.  

 𝛿𝜈 = −𝐽𝜈𝜈
−1𝐽𝜈𝑥𝛿𝑥 (2.45) 

 𝛿λ = 𝐽𝑥𝑥𝛿𝑥 + 𝐽𝑥𝜈𝛿𝜈 (2.46) 

After the initial states and costates are varied, the Euler-Lagrange equations are 

integrated to the terminal conditions, providing the neighboring optimal trajectories.  

 

 

Figure 2.4 Neighboring optimal trajectories for the terminally constrained linear 

problem, considering initial state variations.   
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2.4.3    Free Final Time Problem 

The free final time problem is analogous to the problem posed in Section 2.4.1, 

except for the unknown final time. The time history of the Hamiltonian will provide a 

condition for optimizing the final time. The differential equation governing the 

Hamiltonian is given as: 

 −
𝜕𝐻

𝜕𝑡
=  𝑥 − 𝐽𝑥  𝐽𝑥𝑥 + 𝐽𝑥 + 𝑥 𝐽𝑥𝑥   𝑥 − 𝐽𝑥  (2.47) 

The terminal boundary condition for the Hamiltonian is given as: 

  𝐻 𝑡𝑓 =
1

2
 𝑥0

2  +
1

2
 𝐽𝑥 𝑡𝑓 

2
−  𝑥0 𝐽𝑥 𝑡𝑓  (2.48) 

A final time of 2 seconds is used to integrate the differential equations. The cost-to-go 

and partial derivative results of the approximation method are analogous to those 

obtained in the fixed final time version of the problem. The difference between the two 

solutions will be the time at which the results are used. Instead of using the values at 

time 𝑡 = 0, the values at some other time along the back integration will provide the 

optimal solution.   

Figure 2.5 shows both the HJB approximation method results and the optimal 

open-loop solution. In the figure, the approximation method results are represented by 

the dashed line, and the optimal solution is represented by the solid line. From the figure, 

the condition for optimizing the final time is met at 1.023 seconds. Not only is the 

Hamiltonian equal to zero at this time, but the cost-to-go is also a minimum. Thus, the 

optimal final time is 0.977 seconds (𝑡𝑓
∗ = 2 − 1.023). The optimal open-loop solution is 

obtained by integrating the Euler-Lagrange equations from 1.023 seconds forward to 2 
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seconds, using 𝑥0 and 𝐽𝑥 1.023 . As the figure shows, 𝐽𝑥 1.023  was the proper optimal 

initial costate for the optimal time problem.  

 

 

Figure 2.5 Approximation method results and optimal open-loop solutions to the 

free final time, linear problem.   

 

 

 

The optimal time problem demonstrates an important point about the 

approximation method results, which has been ignored until now. Although the results 

are only valid at one point for a particular problem, each point is valid for a different 

optimal control problem. In other words, the approximation method results provide the 

initial costates needed to solve the open-loop optimal control problem formulated with 
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any final time ranging from 𝑡0 to 𝑡𝑓 . In this manner, the method provides a means of 

generating a field of extremal controls, for variations in the problem time. This point is 

illustrated in Figure 2.6, where the problem time is varied over a range of ±0.5 seconds 

about the optimal. As the figure shows, the optimal initial costate for each extremal path 

is located on the approximation method results (dashed line). 

 

 

  Figure 2.6 Neighboring optimal trajectories for the linear problem, considering 

variations in the problem time.    
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2.5    Scalar, Nonlinear Example 

Minimize:  

 𝒥 =
1

2
𝑊 𝑥 𝑡𝑓 − 𝑥𝑓 

2
+

1

2
  𝑥2 + 𝑢2 

𝑡𝑓
0

𝑑𝑡  (2.49) 

Subject to: 

 𝑥 = 𝑥 + 휀𝑥3 + 𝑢 (2.50) 

 𝑥 0 = 1   ,    𝑡𝑓 = 2 (2.51) 

where 휀 is a parameter that is adjusted to change the nonlinearity of the system. The 

penalty function parameters used to simulate this problem are identical to those given for 

the linear problem. 

 𝑥𝑓 = 4    ,   𝑊 = 100 (2.52) 

The HJB equation for the nonlinear problem is constructed as follows.  

 −
𝜕𝐽

𝜕𝑡
=

1

2
𝑥2 −

1

2
𝐽𝑥

2 + 𝑥 𝐽𝑥 + 휀𝑥3𝐽𝑥  (2.53) 

Because this is a nonlinear problem, an unknown number of partial derivatives of the 

cost-to-go are needed to accurately approximate the HJB equation. The appropriate order 

of approximation depends on the nonlinearity of the system, i.e., the chosen value of 휀. 

To illustrate this, Figure 2.7 shows the error in the initial costate (the difference between 

the optimal and approximated initial costates), calculated using 3
rd

 through 6
th

 order 

approximations, for increasing values of 휀. Two main conclusions can be drawn from the 

figure. First, the accuracy of the approximation is reduced as the nonlinearity of the 

system increases, for all orders of approximation. Secondly, each additional order of 

approximation further improves the accuracy of the solution over the entire range of 휀. 
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Figure 2.7 Initial costate error as a function of 𝜺, for 3
rd

 through 6
th

 order 

approximations.   
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3. NUMERICAL EXAMPLES 

  

The following section applies the HJB approximation methodology to nonlinear, 

multiple state, Aerospace-oriented optimal control problems. Section 3.1 provides an 

overview of the numerical implementation of the approximation method. Section 3.2 

presents a solution for the optimal stabilization of a spacecraft. Finally, Section 3.3 

presents a highly nonlinear, minimum-fuel, co-planar orbit transfer problem.  

 

3.1    Numerical Implementation 

 The Aerospace-oriented problems addressed in this section represent a significant 

increase in dimensionality and complexity. Because of this, computer aided 

differentiation is utilized to greatly reduce the effort required for the numerical 

implementation of the approximation method. Computer aided differentiation is 

typically accomplished using either symbolic or automatic differentiation. For this 

research, both methods of differentiation were investigated.  

First, a symbolic differentiation tool was developed in Matlab, using the Maple 

symbolic toolbox for Matlab [21]. The symbolic routine is employed to differentiate the 

HJB equation to an arbitrary order, with respect to an arbitrary number of independent 

variables. This produces a large volume of symbolic equations, which are automatically 

stored in C files. The C files are then dynamically linked to Matlab as Executable files 

(MEX-files) [22]. Storing the symbolic equations in C files offers two benefits. First, the 

symbolic code is stored in an optimized structure within the C file, which reduces the 
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size of the file. Secondly, the C files are compiled before simulation and run much faster 

than regular Matlab M-files. This procedure is largely automated, eliminating most of 

the burden normally associated with symbolic differentiation. The resulting C file 

provides the differential equations needed to integrate the cost-to-go and its partial 

derivatives via the method of lines. All integrations are performed in MATLAB, using a 

4
th

 order variable step Runge-Kutta integration routine.  

For problems formulated with state-space dimensions of two or more, the 

computational efficiency of the approximation method is greatly improved by exploiting 

the symmetry found in the tensor structured orders of partial derivatives of the cost-to-go 

function. Therefore, the aforementioned symbolic differentiation routine accounts for the 

symmetrical properties by only generating differential equations for unique partial 

derivatives of the cost-to-go function. A more detailed discussion of the properties of the 

tensor structured orders of partial derivatives, and the measures taken to handle them in 

Matlab is given in Appendix C.  

Next, two automatic differentiation approaches were investigated. Automatic 

differentiation works by simultaneously deriving and evaluating partial derivatives in the 

background, during the integration routine.  In the first approach considered, an Object-

Oriented Cartesian Embedding Algorithm (OCEA) [23], developed by Dr. James Turner, 

was implemented in FORTRAN. OCEA operates by automatically invoking the chain 

rule of calculus. In its current form, OCEA is only capable of generating 1
st
 through 4

th
 

order partial derivatives. In the second approach considered, automatic differentiation 

was performed using differential algebraic techniques within the COSY Infinity system 



 32 

[24], developed by Dr. Martin Berz. Unlike OCEA, COSY Infinity is capable of 

performing differentiation to an arbitrary order.  

When applied to moderately non-linear problems, all three approaches provided a 

fast and efficient means of solving the HJB approximation method. However, several of 

the examples presented in this research represent highly non-linear problems for which 

extremely high orders of differentiation are necessary. For these problems, the symbolic 

differentiation routine was found to be the best approach. OCEA was not utilized due to 

its inability to provide derivatives higher than 4
th

 order. COSY Infinity was not selected 

because the speed and performance of the program tended to decline at high orders of 

approximation. Therefore, all of the examples presented in this thesis utilize the 

symbolic differentiation routine in Matlab.   

 

3.2    Spacecraft Stabilization Problem 

 This section presents the optimal stabilization of a tumbling spacecraft [25]. The 

optimal control problem is stated as:  

Minimize:  

 𝒥 =  
1

2
  𝜔𝑇 𝐼 𝜔 + 𝑢𝑇𝑢 

𝑡𝑓
0

 𝑑𝜏 (3.1) 

Subject to: 

 𝜔 =  𝐼 −1 𝑢 −  𝜔   𝐼 𝜔  (3.2) 

 𝜓 𝑡𝑓 = 𝜔 𝑡𝑓  (3.3) 
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where 𝜔 =  ω1, ω2 , ω3 
T ∈ ℜ3 is a vector of angular velocities, 𝑢 ∈ ℜ3 is a vector of 

control torques, and  𝐼 ∈ ℜ3×3 is the moment of inertia matrix. Additionally,  𝜔  ∈

ℜ3×3 is a vector cross product matrix of angular velocities [26], which is given as:  

  𝜔  =  
0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0
   (3.4) 

The moment of inertia (kg-m
2
) for this asymmetric spacecraft is represented in the 

principal axis system as [25]: 

  𝐼 =  
86.24 0 0

0 85.07 0
0 0 113.59

  (3.5) 

The initial angular velocities and final time for the problem are given as: 

 𝜔 =  −0.4 0.8 2 𝑇    ,   𝑡𝑓 = 2 (3.6) 

The Hamiltonian of this system is constructed as: 

 𝐻 =
1

2
 𝜔𝑇 𝐼 𝜔 + 𝑢𝑇𝑢 + λT 𝐼 −1 𝑢 −  𝜔   𝐼 𝜔  (3.7) 

where λ =  λω1
, λω2

, λω3
 

T
∈ ℜ3 is a vector of costates. Differentiating the Hamiltonian 

with respect to the control produces the following linear relationship.  

 𝑢 = − 𝐼 −1λ (3.8) 

This relationship is used to remove 𝑢 from the Hamiltonian. Next, the HJB equation is 

defined as: 

  −
𝜕𝐽

𝜕𝑡
=

1

2
𝜔𝑇 𝐼 𝜔 − 𝐽𝜔

𝑇 𝐼 −2𝐽𝜔 − 𝐽𝜔
T 𝐼 −1 𝜔   𝐼 𝜔 (3.9) 
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where 𝐽𝜔 ∈ ℜ3 is a vector of partial derivatives of the cost-to-go with respect to 𝜔. For 

this problem, the cost-to-go is defined as: 

 𝐽 = 𝜈𝑇𝜔 𝑡𝑓 +
1

2
  𝜔𝑇 𝐼 𝜔 + 𝑢𝑇𝑢 

𝑡𝑓
𝑡

 𝑑𝜏 (3.10) 

where 𝜈 ∈ ℜ3 is a vector of terminal constraint Lagrange multipliers. The most efficient 

way to deal with the Lagrange multipliers is to append them as additional states. Thus, 

the first two partial derivatives of the cost-to-go with respect to the “states” are given as: 

 𝐽𝑥 =   
𝐽𝜔
𝐽𝜈

       ,     𝐽𝑥𝑥 =   
𝐽𝜔𝜔 𝐽𝜔𝜈

𝐽𝜔𝜈 𝐽𝜈𝜈
      (3.11) 

To accurately solve the TPBVP, the HJB equation is approximated to the 5
th

 order. At 

the 5
th

 order, there are 462 unique partial derivatives of 𝐽 with respect to 𝜔 and 𝜈. 

Therefore, 462 unique PDEs are derived using the symbolic differentiation routine. The 

conditions needed to start the integration are found by differentiating the cost-to-go at 

the final time with respect to 𝜔 and 𝜈, and fixing the angular velocities at their initial 

conditions. The only non-zero boundary conditions are: 

 𝐽 = 𝜈𝑇𝜔 0    ,    𝐽𝜔 =  

𝜈1

𝜈2

𝜈3

       ,     𝐽𝜈 =  

𝜔1 0 

𝜔2 0 

𝜔3 0 
      ,    𝐽𝜔𝜈 =   

1 0 0
0 1 0
0 0 1

      (3.12) 

Because the proper values of 𝜈 are unknown, and iterative procedure is implemented. At 

each step, a fourth order series reversion process is applied to update 𝜈. After three 

iterations (starting from 𝜈 =  0,0,0 T), the values of 𝜈 converge on the approximate 

solution. The results from each iteration, along with the optimal solution, are shown in 

Table 3.1.  
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Table 3.1 Spacecraft stabilization results 

 

Iteration 𝜈1 𝜈2 𝜈3 λω1
 0  λω2

 0  λω3
 0  

1 -2992.7 1447.2 12819.9 -67.9 134.0 449.1 

2 -2987.8 1434.0 12803.2 -1507.5 2955.8 13065.4 

3 -2987.8 1434.1 12803.3 -1509.2 2943.4 13053.3 

Optimal -2986.4 1430.6 12802.9 -1510.5 2939.9 13054.2 

 

 

 

 The table shows that even after convergence, error exists in both Λ(0) and 𝜈. 

This error stems from the truncation of the partial derivatives at the 5
th

 order. To observe 

the effect this error has on the solution of the TPBVP, the problem is also solved using 

the optimal initial costates. The state and costate error between these two solutions is 

shown in Figure 3.1. As the Euler-Lagrange equations are integrated forward in time, the 

initial costate error propagates throughout the trajectory.    

 

 

Figure 3.1 State and costate error for the terminally constrained, 5
th

 order 

approximate spacecraft stabilization solution.  
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The motivation behind enforcing hard terminal constraints on the trajectory is to 

achieve extremely accurate results. However, due to the lack of feedback control scheme 

and the error associated with calculating the terminal constraint Lagrange multipliers, 

the approximation method fails to exactly satisfy the hard terminal constraints. 

Furthermore, the hard terminal constraint approach requires the full set of PDEs to be 

integrated for each iteration. This begs the question: Is the implementation burden of the 

terminal constraint method worth the inexact results it provides? To answer this 

question, the problem is re-solved without hard terminal constraints. Instead, a final state 

penalty function (soft terminal constraint) is used to stabilize the spacecraft. The final 

state penalty function takes the form: 

 𝜙 𝑥 𝑡𝑓  =
1

2
𝜔T𝑊𝜔 (3.13) 

where 𝑊 ∈ ℜ3×3 is a diagonal matrix of final state weights. The benefit of using the 

penalty function method is twofold. First, all dependency of the cost-to-go function on 

the terminal constraint Lagrange multipliers is eliminated. Because of this, the 5
th

 order 

approximation method contains only 56 unique partial derivatives, instead of 462. 

Additionally, the solution process will no longer be iterative. Instead, a fixed number of 

equations are integrated one time to produce the optimal solution. 

 The effectiveness of the penalty function method is determined by three 

parameters: the nonlinearity of the system, the order of approximation applied to the 

HJB equation, and the size of the final state weight. The nonlinearity of the system is 

determined by the system dynamics and boundary conditions. The order of 

approximation has already been chosen (to match the order used in the terminal 



 37 

constraint method). This leaves only the size of the final state weights to be determined. 

To simplify the selection process, uniform weights are applied. The value of these 

weights is chosen to minimize the final angular velocities (maximize the stabilization 

performance). The variation in the final angular velocities is shown as a function of the 

weight values in Figure 3.2. The figure shows that as the weight values are increased, the 

effectiveness of the penalty function is increased. In fact, at extremely high final state 

weighting values, the penalty function method outperforms the terminal constraint 

method.  

 

 

Figure 3.2 Final angular velocity as a function of the final state weight. 
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Based on Figure 3.2, the final state weight values are chosen to be 10
10

. The final 

state weights in this problem are set very high because the problem was not formulated 

with non-dimensional variables. In general, it is best to scale the variables such that they 

are bounded by ±1. From the approximation method, the initial costates are calculated 

as:  

 Λ 0 =  −1510.39   , 2939.99  , 13053.78  (3.14) 

These initial costates are much closer to the optimal values, than those obtained in the 

terminally constrained solution method. However, some approximation error still exists 

in this method. To observe the propagation of the approximation error through this 

solution, the difference between the optimal and approximate solutions is shown in 

Figure 3.3.  

 

 

Figure 3.3 State and costate error for the penalized, 5
th

 order approximate 

spacecraft stabilization solution 
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Overall, it is much more advantageous to solve this problem using the penalty 

function approach in place of hard terminal constraints. The penalty function approach is 

non-iterative, requires less derivation and integration, and can produce accurate results. 

The hard terminal constraint approach requires an unknown number of iterations to solve 

for the proper values of the terminal constraint Lagrange multipliers. Each iteration 

requires the integration of the full set of PDEs via the method of lines. This repetitive 

integration of a large set of PDEs poses an unfavorable computational burden. 

Therefore, the penalty function approach will be applied to solve the terminally 

constrained problems found in the remainder of this thesis. 

 

3.3    Orbit Transfer Problem 

 This section presents the solution to a minimum-fuel, co-planar orbit transfer 

problem. Two distinct cases are presented to illustrate the approximation method. The 

system is defined in a heliocentric reference frame, and the dynamics are described in 

polar coordinates by the following equations [27]. 

 𝑟 = 𝑣  (3.15) 

 𝑣 =   
𝑤2

𝑟
−

𝜇

𝑟2 + 𝑢𝑟   (3.16) 

 𝑤 =  −
𝑣𝑤

𝑟
+ 𝑢𝑡  (3.17) 

where 𝑟 is the radial distance from the sun, 𝑣 is the radial velocity, 𝑤 is the tangential 

velocity, 𝑢𝑟  and  𝑢𝑡  are the radial and tangential thrust terms, and 𝜇 is the gravitational 

constant. The problem is non-dimensionalized such that the value of 𝜇 is 1. A minimum-

fuel performance index is given as 



 40 

 𝒥 =  
1

2
  𝑢𝑟

2 + 𝑢𝑡
2 

𝑡𝑓
𝑡0

 𝑑𝜏 (3.18) 

The problem is subject to the following terminal constraints. 

 𝜓 𝑡𝑓 =  

𝑟 𝑡𝑓 − 𝑟𝑓

𝑣 𝑡𝑓 − 𝑣𝑓

𝑤 𝑡𝑓 − 𝑤𝑓

  (3.19) 

where 𝑟𝑓 , 𝑣𝑓 , and 𝑤𝑓  are the desired values of the final states.  

 To begin the developments, the TPBVP is constructed. As a first step, the 

Hamiltonian is defined as follows. 

  𝐻 =
1

2
 𝑢𝑟

2 + 𝑢𝑡
2 + 𝜆𝑟 𝑣 + 𝜆𝑣  

𝑤2

𝑟
−

𝜇

𝑟2 + 𝑢𝑟 + 𝜆𝑤  −
𝑣𝑤

𝑟
+ 𝑢𝑡  (3.20) 

Because the system is affine in the control, differentiating the Hamiltonian with respect 

to 𝑢𝑟  and 𝑢𝑡  provides the following linear relationships. 

 𝑢𝑟 = −𝜆𝑣    ,   𝑢𝑡 = −𝜆𝑤    (3.21) 

The costate differential equations are derived from the first-order necessary conditions 

for optimality as:  

 𝜆 𝑟 = 𝜆𝑣  
𝑤2

𝑟2 −
2𝜇

𝑟3 − 𝜆𝑤  
𝑣𝑤

𝑟2    (3.22) 

 𝜆 𝑣 = −𝜆𝑟 + 𝜆𝑤  
𝑤

𝑟
  (3.23) 

 𝜆 𝑤 = −𝜆𝑣  
2𝑤

𝑟
 + 𝜆𝑤  

𝑣

𝑟
   (3.24) 

Finally, the HJB equation is constructed as: 

 −
𝜕𝐽

𝜕𝑡
= −

1

2
  𝐽𝑣

2 + 𝐽𝑤
2 + 𝐽𝑟 𝑣 + 𝐽𝑣  

𝑤2

𝑟
−

𝜇

𝑟2 + 𝐽𝑤  −
𝑣𝑤

𝑟
   (3.25) 

The HJB equation is approximated by differentiating the HJB equation a finite number 

of times. The number of differentiations needed to accurately solve the problem is 
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dependent on the nonlinearity of the system. Therefore, the order of approximation will 

be addressed individually for each of the two orbit transfer cases presented below.  

 Once again, a final state penalty function is used in place of the hard terminal 

constraints. The penalty function is given as   

 𝜙 =
1

2
𝜓 𝑡𝑓 

T
 𝑊 𝜓 𝑡𝑓  (3.26) 

Where 𝑊 ∈ ℜ3×3 is a diagonal matrix of final state weights. Again, this penalty function 

is being used because it provides a non-iterative method, for which fewer partial 

derivatives of the cost-to-go are required for each order of approximation. Using the 

penalty function approach, the cost-to-go and its non-zero partial derivatives at the final 

time are given as: 

 𝐽 𝑡𝑓 =
1

2
𝜓 0 T  𝑊 𝜓 0       ,      𝐽𝑥 = 𝑊 𝜓 0       ,      𝐽𝑥𝑥 = 𝑊 (3.27) 

where 𝜓 0  represents the terminal constraint function with the final states fixed at the 

initial state values.  

 

3.3.1    Low Thrust Transfer 

 In the first case, a low thrust transfer is propagated over a long period of time. 

Due to the length of the trajectory, this problem is difficult to solve via the HJB 

approximation method. The boundary conditions for this case are shown in Table 3.2 
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Table 3.2 Boundary conditions for the low thrust transfer 

Variable Initial Final  Units 

Time                      0 900 days 

Radial Distance                   1 1.25 AU 

Radial Velocity              0 0 AU/TU 

Tangential Velocity                    1  1/1.25 AU/TU 

 

 

 

Before the problem is solved, two parameters must be chosen: the order of 

approximation and the value of the final state weights. To select these parameters, the 

approximation method is implemented for range of final state weights and orders of 

approximation. With each combination of parameters, the initial costates are computed. 

From these initial costates, an “approximation error” is determined as follows: 

 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 = 𝑚𝑒𝑎𝑛(𝑎𝑏𝑠 𝜆0 − 𝜆0
∗ ) (3.28) 

where 𝜆0 is the vector of approximate initial costates and 𝜆0
∗  is the vector of optimal 

initial costates (found using a shooting algorithm). Figure 3.4 shows the approximation 

error for the combinations of final state weights and approximation order considered for 

this study. Two main insights can be drawn from the figure. First, increasing the final 

state weight improves the accuracy of the approximation. However, at some point, an 

increase in the final state weight begins to diminish the accuracy of the approximation. 

The point at which this decline is observed is directly related to the order of 

approximation. In other words, increasing the approximation order increases the final 

state weight value at which a decline in performance is observed.  
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Figure 3.4 Terminal constraint error as a function of final state weight and 

approximation order for the low thrust transfer. 

 

 

 

From this figure, the order of approximation is chosen to be 14
th

 order and the 

final state weight value is chosen to be 1000. A larger order of approximation would 

yield more accurate results, but would require an enormous computational burden.  With 

a 14
th

 order approximation, 680 unique partial derivatives of the cost-to-go function 

exist. Therefore, the symbolic differentiation routine is charged with deriving and storing 

680 PDEs that govern these partial derivatives.  

The nominal trajectory is generated by integrating the Euler-Lagrange equations 

from the initial boundary conditions, using the initial costates obtained through the 

approximation method. The nominal trajectory is shown in Figure 3.5. This trajectory is 
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sub-optimal, due to the truncation involved in the HJB approximation method and the 

application of soft terminal constraints.  

 

 

Figure 3.5 Approximate nominal solution for the low thrust transfer. 

 

 

 

To observe the inaccuracy of the sub-optimal trajectory, it will be compared to 

the optimal trajectory for this problem. The optimal trajectory has no approximation 

error and is subject to hard terminal constraints. Figure 3.6 shows the state and costate 

errors between the optimal and sub-optimal trajectories. The figure shows a relatively 

low amount of state and costate error for this problem. Error propagation throughout the 

state trajectories is evident in Figure 3.6. Again, this propagation is attributed to the lack 

of a feedback control law.  
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Figure 3.6 State and costate errors between the optimal and sub-optimal solutions 

to the low thrust transfer. 

 

 

   

3.3.2    Earth to Mars Transfer 

In the second case, the boundary conditions of the TPBVP were chosen to 

represent an Earth to Mars orbit transfer, for which both the initial and final orbits are 

circular. The boundary conditions are shown in Table 3.3.  

 

Table 3.3 Boundary conditions for the Earth to Mars transfer  

Variable Initial Final  Units 

Time                      0 210 days 

Radial Distance                   1 1.5 AU 

Radial Velocity              0 0 AU/TU 

Tangential Velocity                    1  1/1.5 AU/TU 

 

 

 



 46 

Again, the “approximation error” is calculated for a variety of final state weights and 

orders of approximation, as shown in Figure 3.7. The same two insights drawn from 

Figure 3.4 are evident in this figure. However, because the Earth to Mars transfer 

represents a more non-linear problem, the point at which a decline in performance is 

observed occurs at lower values of the final state weight.  

 

 
Figure 3.7 Terminal constraint error as a function of final state weight and 

approximation order for the Earth to Mars transfer. 

 

 

 

From this figure, the order of approximation is chosen to be 14
th

 order and the 

final state weight value is chosen to be 50. A larger order of approximation would yield 

more accurate results, but would require an enormous computational burden. The 

nominal trajectory is generated by integrating the Euler-Lagrange equations from the 

initial boundary conditions, using the initial costates obtained through the approximation 
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method. The nominal trajectory is shown in Figure 3.8. This trajectory is sub-optimal, 

due to the truncation involved in the HJB approximation method and the application of 

soft terminal constraints.  

 

 

Figure 3.8 Approximate nominal solution for the Earth to Mars transfer. 

 

 

 

To observe the inaccuracy of the sub-optimal trajectory, it will be compared to 

the optimal trajectory for this problem. The optimal trajectory has no approximation 

error and hard terminal constraints. Figure 3.9 shows the state and costate errors between 

the optimal and sub-optimal trajectories. At this approximation order, there is still a 

considerable amount of initial costate error, which leads to an error in the final states.  
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Figure 3.9 State and costate errors between the optimal and sub-optimal solutions 

for the Earth to Mars transfer.   
  

 

 

 As previously mentioned, the sensitivities of the initial costates to changes in the 

initial states are produced as a byproduct of the HJB approximation method. For a 14
th

 

order HJB approximation, 13 orders of sensitivities are produced. As outlined in Section 

2.1, these sensitivities are used to produce a family of neighboring paths, about the 

nominal solution. To observe this benefit of the approximation method, the initial radial 

distance was varied over a range [0.9 1.1] AU. With each radial distance variation, the 

tangential velocity was altered such that the initial orbit remained circular. The costate 

sensitivities (up to 8
th

 order) were used to update the initial costates. The 9
th

 through 14
 

order sensitivities have virtually no effect on the costate update equation. Figures 3.10 

through 3.13 show the solutions to the neighboring TPBVPs, using the updated costates.  
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Figure 3.10 Neighboring radial distances for the Earth to Mars transfer. 

 

 

 

 

 

Figure 3.11 Neighboring radial velocities for the Earth to Mars transfer. 
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Figure 3.12 Neighboring tangential velocities for the Earth to Mars transfer. 

 

 

 

 

Figure 3.13 Neighboring controls for the Earth to Mars transfer. 
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4. HIGH-ORDER GUIDANCE SOLUTIONS 

 

 Section 3.3 demonstrated the need for extremely high orders of approximation to 

accurately solve a highly nonlinear optimal control problem. In the setting of a coplanar 

orbit transfer problem, with a state-space dimension of three, this approximation was 

feasible. However, as problem complexity and dimensionality increase, approximation 

to high orders becomes increasingly computationally expensive. Hence, it would be 

desirable to formulate a solution methodology for which lower orders of approximation 

would provide accurate solutions.   

 One such alternative is to utilize the HJB approximation methodology as a tool 

for generating corrections to the nominal control law. In this application, the method no 

longer produces the nominal optimal solution, but still provides the initial costate 

sensitivities needed to generate a field of extremals. As a result, the problem is 

significantly less nonlinear, which eliminates the need for extremely high orders of 

approximation. The general problem of producing control corrections to generate 

neighboring optimal trajectories is often referred to as the guidance problem [28].
 
 

 Section 4.1 describes the application of the HJB approximation method to solve 

the guidance problem. Section 4.2 describes the application of an alternative guidance 

approach, which utilizes the Lagrange Implicit Function Theorem. In Section 4.3, the 

minimum-fuel, co-planar Earth to Mars transfer problem is re-solved in the guidance 

scheme. Finally, a three-dimensional re-entry guidance problem is solved in Section 4.4.      
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4.1    Perturbed HJB Equation Approximation  

 To implement the HJB approximation procedure about the nominal trajectory, 

the solution to the variation in the cost-to-go (𝛿𝐽) is approximated. The equation 

governing this “perturbed” cost-to-go is referred to as the perturbed HJB (PHJB) 

equation, which is defined as
‡
 

 −
𝜕

𝜕𝑡
 𝛿𝐽 = 𝐻 𝑥∗ + 𝛿𝑥, λ∗ + 𝛿λ − 𝐻∗ −  𝐻𝑥

∗𝑇𝛿𝑥 −  𝐻λ
∗𝑇𝛿λ  (4.1) 

where 𝑥∗ are the nominal states, λ∗ are the nominal costates, 𝐻∗ is the nominal 

Hamiltonian, 𝛿𝑥 are the perturbed states, and 𝛿λ are the perturbed costates. The nominal 

state, costate, and Hamiltonian values must be obtained a priori, using any of the 

available optimal control solution methods, e.g., the Pseudospectral method or any other 

direct approach. Again, a key relationship connecting the costates to the first order 

partial derivatives of the cost-to-go function is given as:  

 𝛿λ = δJδx   (4.2) 

 The solution to the PHJB equation is approximated in the same manner as the 

HJB equation, i.e., successive partial derivatives of the PHJB equation are taken with 

respect to the perturbed states. The first two partial derivatives are defined as: 

 −
𝜕

𝜕𝑡
 𝛿𝐽𝛿𝑥  = 𝐻𝛿𝑥  𝑥

∗ + 𝛿𝑥, λ∗ + 𝛿λ −  𝐻𝑥
∗ − 𝛿𝐽𝛿𝑥𝛿𝑥  𝐻λ

∗  (4.3) 

 −
𝜕

𝜕𝑡
 𝛿𝐽𝛿𝑥𝛿𝑥  = 𝐻𝛿𝑥𝛿𝑥  𝑥∗ + 𝛿𝑥, λ∗ + 𝛿λ − 𝛿𝐽𝛿𝑥𝛿𝑥𝛿𝑥  𝐻λ

∗  (4.4) 

Again, each PDE is dependent on the next higher order of partial derivatives. Thus, the 

partial derivatives must again be truncated at the n
th

 order, which will affect the accuracy 

                                                 
‡
 A full derivation of the PHJB equation is provided in Appendix D  
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of the 1
st
 through n-1

th
 orders of partial derivatives. The symbolic PDEs governing the 

partial derivatives of the perturbed cost-to-go are again integrated via the method of 

lines, holding the perturbed states fixed at their initial conditions. Using soft terminal 

constraints in place of hard ones, the boundary condition for the perturbed cost-to-go is 

given as: 

 𝛿𝐽 𝑡𝑓 = 𝜙 𝑥∗ + 𝛿𝑥 − 𝜙 𝑥∗  (4.5) 

Partial differentiation of this condition with respect to the perturbed states leads to the 

boundary conditions for the partial derivatives of the perturbed cost-to-go, which are 

needed to initialize the integration process. 

 The PHJB approximation is implemented about the nominal trajectory by 

assuming zero variation in the initial states, i.e., 𝛿𝑥 = 0. If the approximation is 

accurate, this implementation leads to the trivial solutions: 

  𝛿𝐽 0 = 0   ,    𝛿𝐽𝛿𝑥  0 = 0 (4.6) 

These conditions provide a good check as to the accuracy of the approximation. 

Meanwhile, the 2
nd

 through n
th

 orders of partial derivatives of the perturbed cost-to-go 

provide the 1
st
 through n-1

th
 orders of sensitivities of the nominal costates to variations 

in the initial states. These costate sensitivities are used to approximate neighboring 

optimal initial costates, which are used to generate near-optimal solutions to neighboring 

TPBVPs. 

 In many problems, it is beneficial to calculate sensitivities of the initial costates 

to variations in certain parameters of the system. The PHJB method is modified to 

incorporate these sensitivities by treating the desired parameters as additional states. In 
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doing this, the cost-to-go is assumed to be a function of both the states and desired 

system parameters. Thus, the PHJB equation is differentiated with respect to both the 

states and desired system parameters. The only discrepancy between the states and 

parameter sensitivities is in their relationship to the costates. The first order parameter 

sensitivities are not equivalent to the costates, and will not be used in the costate update 

equation.   

 

4.2    Lagrange Implicit Function Theorem  

In this solution method, the implicit function theorem is applied to the terminal 

conditions for optimality [17]. In doing so, equations containing the sensitivity of the 

initial costates to changes in the initial states are produced. These equations are then 

inverted, to provide solutions for the initial costate sensitivities. In this thesis, the LIFT 

method is only applied to optimal control problems with known initial states and linear 

constraints on the terminal states. Therefore, the methodology described in this section 

will be tailored to this specific class of problems. 

 To begin, the linear terminal constraint is given as follows. 

 𝜓 𝑋 𝑡𝑓  = 𝑋 𝑡𝑓 − 𝑋𝑓 = 0 (4.7) 

where 𝑋 𝑡𝑓  is the set of optimal states at the final time and 𝑋𝑓  is a set of desired final 

state values. Again, the objective of the guidance solution is to correct the initial costates 

such that the terminal constraints remain satisfied in the event of changes in the initial 

states. In mathematical terms, this means that the total derivative of the terminal 

constraint with respect to the initial states should be equal to zero.  
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𝑑

𝑑𝑋0
𝜓 𝑋 𝑡𝑓  =

𝑑

𝑑𝑋0
𝑋 𝑡𝑓 = 0 (4.8) 

Because 𝑋 𝑡𝑓  is an implicit function of the initial states and costates, the total 

derivative of 𝑋 𝑡𝑓  can be split into partial derivatives as follows.   

 
𝑑

𝑑𝑥0
𝑋 𝑡𝑓 = 𝑋 𝑡𝑓 𝑋0

+ 𝑋 𝑡𝑓 Λ0
 
𝑑Λ0

𝑑𝑋0
= 0 (4.9) 

This equation can be rearranged to solve for the sensitivities of the initial costates to 

changes in the initial states as follows.  

 
𝑑Λ0

𝑑𝑋0
= −𝑋 𝑡𝑓 Λ0

−1
  𝑋 𝑡𝑓 𝑋0

  (4.10) 

Higher order costate sensitivities are found by taking higher total derivatives of the 

terminal constraint with respect to the states. These total derivatives can also be split into 

partial derivatives, revealing similar expressions for the higher order costate sensitivities 

[17]. A more detailed description of this process is provided in Appendix E.   

 Before these costate sensitivities can be calculated, 𝑋 𝑡𝑓 𝑋0
 and 𝑋 𝑡𝑓 Λ0

 must be 

calculated. These sensitivities are propagated throughout the nominal solution, starting 

from the following known initial conditions.  

  
𝑋 𝑡0 𝑋0

𝑋 𝑡0 Λ0

Λ 𝑡0 𝑋0
Λ 𝑡0 Λ0

 =  
 1 0 
 0 1 

  (4.11) 

It is necessary to propagate the partial derivatives of both the states and costates, because 

of the coupling that occurs between the states and costates in the Euler-Lagrange 

equations, as seen below. 

 
𝑑

𝑑𝑡
  
𝑋 𝑡 

Λ 𝑡 
  =   

𝐻Λ

−𝐻𝑋
   (4.12) 
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Differentiating the Euler-Lagrange equations with respect to the states and costates 

produces differential equations that govern the state and costate sensitivities exactly. 

These equations are shown below for the first order. 

 
𝑑

𝑑𝑡
 
𝑋 𝑡 𝑋0

𝑋 𝑡 Λ0

Λ 𝑡 𝑋0
Λ 𝑡 Λ0

 =    
𝐻ΛΧ 𝐻ΛΛ

−𝐻XΧ −𝐻XΛ
   

𝑋 𝑡 𝑋0
𝑋 𝑡 Λ0

Λ 𝑡 𝑋0
Λ 𝑡 Λ0

  (4.13) 

Again, successive derivatives of the Euler-Lagrange equations are taken to obtain 

differential equations for 2
nd

 and higher order partial derivatives.  

 The LIFT method can also be extended to handle sensitivities of the initial 

costates with respect to system parameters. To do so, the total derivative of the terminal 

constraint with respect to the parameters is separated into partial derivatives and 

inverted.   

  
𝑑Λ0

𝑑𝑝
= −𝑋 𝑡𝑓 Λ0

−1
  𝑋 𝑡𝑓 𝑝

  (4.14) 

Before these control sensitivities can be calculated,  𝑋 𝑡𝑓 𝑝
 must be computed. These 

partial derivatives are propagated about the nominal solution, starting from the following 

known initial conditions.  

   
𝑋 𝑡0 𝑝
Λ 𝑡0 𝑝

  =   
0
0

    (4.15) 

Finally, differentiating the Euler-Lagrange equations with respect to the system 

parameters provides differential equations that propagate the parameter sensitivities 

throughout the nominal solution. 

 
𝑑

𝑑𝑡
  
𝑋 𝑡0 𝑝
Λ 𝑡0 𝑝

  =    
𝑓Χ 𝑓Λ
𝑔Χ 𝑔Λ

    
𝑋 𝑡0 𝑝
Λ 𝑡0 𝑝

  +   
𝑓𝑝
𝑔𝑝

   (4.16) 
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4.3    Orbit Transfer Guidance Problem  

 In this example, the orbit transfer problem is re-solved as a guidance problem, 

accounting for variations in all three of the initial states. The nominal boundary 

conditions represent the same Earth to Mars transfer generated in Section 3.3.2. These 

conditions can be seen again in Table 4.1. 

 

Table 4.1 Nominal orbit transfer boundary conditions 

 

Variable Initial Final  Units 

Time                      0 210 days 

Radial Distance                   1 1.5 AU 

Radial Velocity              0 0 AU/TU 

Tangential Velocity                    1  1/1.5 AU/TU 

 

 

 

This example is presented to compare the performance of the PHJB method to 

the LIFT method. Both guidance methods are implemented in Matlab, using a modified 

version of the symbolic differentiation routine to derive and store the appropriate PDEs. 

Hence, both methods consider the minimum number of partial derivatives required for 

solution. Both methods are employed to produce the first four orders of control 

sensitivities. A fifth-order approximation is required by the PHJB method to produce 

these sensitivities, while the LIFT method only requires four orders of differentiation. 

Due to the difference in methodologies, a different number of partial derivatives must be 

integrated about the nominal trajectory to solve each method. Table 4.2 provides an 

overview of the number of unique partial derivatives required in each method.  
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Table 4.2 Number of required partial derivatives for the orbit transfer guidance 

problem, considering variations in the initial states 

 

Order PHJB method LIFT method 

1 6 36 

2 10 126 

3 15 336 

4 21 756 

  

 

 

 As Table 4.2 shows, the PHJB method computes the costate sensitivities much 

more efficiently than the LIFT method. Fundamentally, both guidance methods operate 

by taking successive derivatives of the Hamiltonian. However, the methods differ in the 

form of the Hamiltonian used by each. In the PHJB equation, the Hamiltonian is 

formulated to be independent of the system costates. This is achieved by replacing the 

costates with 𝐽𝑥 . Alternatively, the Euler-Lagrange equations are formulated with a 

dependence on both the system states and costates. Thus, partial derivatives of the Euler-

Lagrange equations must be computed with respect to twice as many independent 

variables as the partial derivatives of the PHJB equation. Furthermore, the 1
st
 order 

matrix of partial derivatives of the Euler-Lagrange Equations is non-symmetric, while 

the equivalent (2
nd

 order) matrix of partial derivatives of the HJB equation is symmetric 

about the diagonal.  

To compare the performance of each method, the orbit transfer guidance problem 

is solved for variations in the initial states. The initial costate correction is determined 
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through a Taylor series expansion about the variations in the initial states, 𝛿𝑥0, which is 

given as: 

 𝛿Λ 0 = Λ 0 x0
𝛿𝑥0 +

1

2!
Λ 0 x0x0

𝛿𝑥0
2 +

1

3!
Λ 0 x0x0x0

𝛿𝑥0
3 + ⋯ (4.17) 

For this test case, the initial state variations are given as: 

  𝛿𝑥0 =    0.1 0 −0.0465   T .  (4.18) 

The altered initial states represent a circular orbit with a radius of 1.1 AU. Again, the 

PHJB method utilizes a final state penalty function, instead of hard terminal constraints. 

As a result, the non-zero boundary conditions needed to initialize the integration are 

given as: 

 𝛿𝐽𝛿𝑥𝛿𝑥  𝑡𝑓 =  
𝑊 0 0
0 𝑊 0
0 0 𝑊

  (4.19) 

Again, the proper final state weight value W is found by simulating the PHJB method for 

a range of final state weight values. Figure 4.1 shows the approximation error calculated 

for different combinations of final state weight and approximation order. The figure 

shows that the accuracy of the approximation method is improved by increasing both the 

approximation order, as well as, the final state weight value. For this example, a 5
th

 order 

approximation is chosen, and the final state weight value is selected to be 1x10
5
. As 

previously mentioned, a 5
th

 order PHJB approximation provides four orders of costate 

sensitivities.  
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Figure 4.1 Approximation error as a function of the final state weight and 

approximation order for the orbit transfer guidance problem.   

 

 

 

The results for each guidance method are shown in Table 4.3. The table shows 

that the two methods produce analogous results. In fact, the difference in the initial 

perturbed costates can be attributed to the tolerance chosen for the integration routine.  

The only significant difference between the two methods is in the runtime. The PHJB 

method runs approximately 5 times faster than the LIFT method. This significant savings 

in computational time is directly attributed to the reduction in the number of sensitivities 

required for solution.  
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Table 4.3 Orbit transfer guidance results  

 

 PHJB Method LIFT Method Difference 

𝛿𝜆𝑟 0  0.04082751 0.04082757 -5.9467 x 10
-8

 

𝛿𝜆𝑣 0  0.00181448 0.00181435  1.2670 x 10
-7

 

𝛿𝜆𝑤 0  0.04089636 0.04089652 -1.6053 x 10
-7

 

𝑟 𝑡𝑓  1.50001442 1.50001237  2.0488 x 10
-6

 

𝑣 𝑡𝑓  0.00012732 0.00012590  1.4201 x 10
-6

 

𝑤 𝑡𝑓  0.81662828 0.81662879 -5.1628 x 10
-7

 

Cost 0.01377348 0.01377349 -1.0830 x 10
-8

 

Runtime (s) 0.17  0.85  0.68  

 

 

 

  Finally, a family of neighboring approximate trajectories is shown in Figures 4.2 

through 4.5. These trajectories are generated using the costate sensitivities obtained from 

the PHJB method. However, if the trajectories generated with the LIFT method were to 

be plotted in the same figures, the two sets of trajectories would be indistinguishable. 

The neighboring trajectories are generated by varying the initial radius over a range [0.9 

1.1] AU. With each radial distance variation, the tangential velocity was altered such 

that the initial orbit remained circular. The same family of neighboring trajectories was 

generated in Section 3.3, using the full 14
th

 order HJB approximation. Comparing the 

two sets of neighboring trajectories, it is evident that the control sensitivities provided by 

the 5
th

 order guidance solution are more accurate than those obtained as a byproduct of 

the full problem solution.  
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Figure 4.2 Neighboring radial distances for the orbit transfer guidance problem.   

 

 

 

Figure 4.3 Neighboring radial velocities for the orbit transfer guidance problem.  
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Figure 4.4 Neighboring tangential velocities for the orbit transfer guidance 

problem. 

 

 

Figure 4.5 Neighboring controls for the orbit transfer guidance problem. 
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4.4    Re-entry Guidance Problem  

 This section presents the guidance solution for a three dimensional re-entry 

problem. Within the guidance framework, sensitivities of the initial costates to changes 

in the initial states, system parameters, and final states are computed. The motion of the 

re-entry vehicle is described by the following differential equations [29]: 

 𝑟 = 𝑉𝑠𝑖𝑛 𝛾  (4.20) 

 𝜃 =
𝑉 cos  𝛾 cos  𝜓 

𝑟 cos  𝜙 
 (4.21) 

 𝜙 =
𝑉 cos  𝛾 sin  𝜓 

𝑟
 (4.22) 

 𝑉 = −
𝜇

r2 sin γ − 𝐷 (4.23) 

 𝛾 = −
𝜇

r2

𝑐𝑜𝑠 𝛾 

𝑉
+ 

𝑉

r
𝑐𝑜𝑠 𝛾 +

𝐿

𝑉
𝑐𝑜𝑠 𝛽  (4.24) 

 𝜓 = −  
𝑉

r

co s 𝛾 𝑐𝑜𝑠 𝜓 sin  𝜙 

cos  𝜙 
−

𝐿

𝑉

𝑠𝑖𝑛  𝛽 

𝑐𝑜𝑠 𝛾 
 (4.25) 

where 𝑟 is the radial distance from earth, 𝜃 is the longitude, 𝜙 is the latitude, 𝑉 is the 

vehicles velocity, 𝛾 is the flight path angle, 𝜓 is the heading angle, and 𝜇 is the 

gravitational constant. The vehicle is controlled with the bank angle, 𝛽. Additionally, 𝐿 

and 𝐷 represent the aerodynamic lift and drag per unit mass given by:  

 𝐷 =  
1

2
𝐶𝐷𝜌𝑆

∗V2      ,       𝐿 =  
1

2
𝐶𝐿𝜌𝑆

∗V2 (4.26) 

where 𝐶𝐷 is the drag coefficient, 𝐶𝐿 is the lift coefficient , 𝑆∗ is the reference area per 

unit mass,  and 𝜌 is the density of earth’s atmosphere. The vehicles mass is absorbed into 

the reference area term, and thus doesn’t appear explicitly in the equations of motion. An 

exponential model for the atmospheric density is given as: 
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  𝜌 =  𝜌0𝑒
−𝑘(𝑟−𝑟𝑒) (4.27) 

where 𝜌0 is the density at sea level, 𝑘 is the scale height of the atmosphere, and 𝑟𝑒  is the 

radius of the earth. The objective of the controller is to minimize both the convective 

heating rate and the aerodynamically induced acceleration. Therefore, the performance 

index is a scaled combination of these quantities [29].   

 𝒥 =    𝐿2 + 𝐷2 1/2 + 20휀𝜌1/2  
𝑉

1000
 

3

 
𝑡𝑓

0
 𝑑𝑡   (4.28) 

where 휀 is a scaling factor applied to the convective heating rate quantity. The constant 

parameters used in this simulation [30] are given in Table 4.4 below.
 

 

Table 4.4 Simulation parameters for the re-entry problem 

Parameter Symbol Value Units 

Density at sea level                     𝜌0 2.7 x 10
-3

 slug/ft
3
 

Atmospheric scale height                   𝑘 4.2 x 10
-5

 1/ft 

Gravitational constant               𝜇 1.4077 x 10
16

 ft
3
/s

2
 

Lift Coefficient                 𝐶𝐿 0.35 - 

Drag Coefficient                                       𝐶𝐷 1.3 - 

Reference Area     𝑆∗ 0.3752 ft
2
/slug 

Scaling Factor         휀  1.0538 x 10
-6

 deg 

 

 

 

For brevity, the Hamiltonian, Euler-Lagrange equations, and HJB equation will not be 

shown. The formulation of these equations is straightforward, with the introduction of 

the system costates: Λ =  𝜆𝑟 , 𝜆𝜃 , 𝜆𝜙 ,𝜆𝑉 , 𝜆𝛾 , 𝜆𝜓  
T
. Although the system isn’t affine in the 
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control, a relationship between the control and the costates can still be found through 

differentiation of the Hamiltonian with respect to the bank angle.  

 −𝜆𝛾
𝐿

𝑉
𝑠𝑖𝑛 𝛽 − 𝜆𝜓

𝐿

𝑉𝑐𝑜𝑠 𝛾 
𝑐𝑜𝑠 𝛽 = 0 (4.29) 

Rearranging this equation gives an expression for the bank angle in terms of the states 

and costates. 

 𝑡𝑎𝑛 𝛽 = −
𝜆𝜓

𝜆𝛾𝑐𝑜𝑠 𝛾 
 (4.30) 

The boundary conditions for the nominal trajectory can be seen in Table 4.5. As the table 

shows, only the longitude, latitude, and velocity are terminally constrained. Because of 

this, three additional terminal conditions for optimality are given as: 

  𝜆𝑟 𝑡𝑓 = 0   ,   𝜆𝛾 𝑡𝑓 = 0   ,    𝜆𝜓 𝑡𝑓 = 0  (4.31) 

 

Table 4.5 Boundary conditions for the re-entry problem 

Variable Initial Final  Units 

Time                      0 390 s 

Altitude                    400,000 - ft 

Longitude                 0 0.33 rad 

Latitude                    0 -0.025 rad 

Velocity                       36,000 2,640 ft/s 

Flight Path Angle     -6.5 - deg 

Heading Angle         0 - deg 

 

 

 

A nominal optimal solution is obtained from a shooting algorithm performed with the 

Matlab nonlinear equation solver fsolve. The shooting method was only able to converge 
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on the optimal solution because it was given accurate guesses for the initial costates. The 

full optimal re-entry solution is shown in Figure 4.6. 

 

 

Figure 4.6 Nominal re-entry solution. 
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4.4.1    Initial State Variations  

In this section, sensitivities of the initial costates to changes in the initial altitude 

and velocity are computed. Due to the size and complexity of the re-entry problem, the 

PHJB method provides only three orders of control sensitivities. In total, 203 unique 

control sensitivities are computed: 21 first-order, 56 second-order, and 126 third-order 

sensitivities. A number of neighboring trajectories are simulated, simultaneously varying 

the initial altitude ±8000 ft and the initial velocity ±2000 ft/s. To show the results in an 

illustrative manner, the set of initial altitude and velocity variations are chosen to form 

an ellipse around the nominal initial conditions. Figure 4.7 shows the guidance solutions 

for these initial state variations. The average error in the final velocity for these 

neighboring solutions is 14.6 ft/s.  

 

 

Figure 4.7 Neighboring re-entry profiles for initial altitude and velocity variations. 
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4.4.2    Parameter Variations   

To demonstrate the use of parameter sensitivities, the re-entry guidance problem 

is solved for costate sensitivities with respect to atmospheric and aerodynamic 

parameters. Again, the PHJB method generates three orders of costate sensitivities. 

Considering one parameter variation at a time, a total of 330 unique control sensitivities 

are computed: 28 first order, 84 second order, and 210 third order sensitivities.  

 To begin, the effects of changes in the atmospheric density at sea level (𝜌0) and 

the atmospheric scale height (𝑘) are analyzed. First, the density parameter is varied ±20 

percent of the nominal. Next, the atmospheric scale height is varied ±5 percent of the 

nominal. Guidance results for these variations are shown in Table 4.6. The table shows 

that the error in the final velocity is less than 10 ft/s for these extreme cases.   

Additionally, neighboring re-entry profiles for variations in 𝜌0 and 𝑘 are shown in 

Figures 4.8 and 4.9, respectively. In these figures, the terminal constraint appears as a 

line because the final altitude is free to change.  

 

Table 4.6 Re-entry guidance results for density and scale height variations 

  𝛿𝜌0  𝛿𝜅 

 Nominal -20% +20%  -5% +5% 

𝛽 𝑡0  [deg] 147.0 149.2 145.2  142.2 151.2 

𝑉 𝑡𝑓  [ft/s] 2640.0 2647.9 2646.0  2636.7 2635.8 
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Figure 4.8 Neighboring re-entry profiles for variations in the reference density.  

 

 

 

 

Figure 4.9 Neighboring re-entry profiles for variations in the scale height. 
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Next, the effects of changes in the lift and drag coefficients are analyzed. Each 

coefficient is varied ±10 of the nominal. Guidance results for these variations are shown 

in Table 4.7. Additionally, neighboring re-entry profiles for variations in 𝐶𝐿 and 𝐶𝐷 are 

shown in Figures 4.10 and 4.11, respectively. Again, the PHJB method is able to provide 

accurate updated initial costates to account for the parametric variations.  

 

Table 4.7 Re-entry guidance results for lift and drag coefficient variations 

  𝛿𝐶𝐿  𝛿𝐶𝐷 

 Nominal -10% +10%  -10% +10% 

𝛽 𝑡0  [deg] 147.0 138.5 151.9  154.7 135.4 

𝑉 𝑡𝑓  [ft/s] 2640.0 2623.8 2623.0  2640.8 2633.6 

 

 

 

Figure 4.10 Neighboring re-entry profiles for variations in the lift coefficient. 
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Figure 4.11 Neighboring re-entry profiles for variations in the drag coefficient. 

 

 

 

4.4.3    Final State Variations   

In this section, sensitivities of the initial costates to changes in the final velocity 

are computed. Again, the PHJB method generates three orders of costate sensitivities. 

Six neighboring trajectories are generated with the following desired final velocities: 

 𝑉𝑓 =  1.5,   2.0,   2.5,   3.0,   3.5 ,   4.0    (4.32) 

where the final velocities are given in 1000 ft/s. Figure 4.12 shows the neighboring 

trajectories generated using the PHJB method. To observe the effectiveness of the 

guidance results, Figure 4.13 shows a blown up view of the results near the final time. 

The six neighboring trajectories have an average final velocity error of 12.6 ft/s. 



 73 

 

Figure 4.12 Nominal and neighboring trajectories for final velocity variations. 

 

 

 

 

Figure 4.13 A blown up view of near final time nominal and neighboring 

trajectories for final velocity variations. 
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5. SUMMARY AND CONCLUSIONS 

 

 This thesis presented a non-iterative method for solving finite-horizon optimal 

control problems involving nonlinear dynamical systems. Analytical partial 

differentiation of the Hamilton-Jacobi-Bellman equation with respect to the states led to 

an approximate solution of the cost-to-go function and its associated sensitivities. First 

order cost-to-go sensitivities provided the nominal open-loop solution to the optimal 

control problem, while higher order sensitivities provided a means of generating a family 

of extremals about the nominal trajectory. The method was extended to handle 

terminally constrained problems, as well as, free final time problems.   

The approximation method was shown to be well suited for moderately nonlinear 

problems with soft terminal constraints. Extremely high orders of approximation were 

shown to be needed to accurately solve highly nonlinear problems. The addition of hard 

terminal constraints was shown to be unfavorable because it imposed the need for an 

iterative solution process and introduced a second source of approximation error.  

Next, an alternative approach for generating a family of extremals was presented. 

This new approach approximated the solution to the Hamilton-Jacobi-Bellman equation 

about the nominal solution. As a result, the nonlinearity of the problem was greatly 

reduced, which allowed for accurate solutions with much lower orders of approximation. 

For comparison, the Lagrange Implicit Function Theorem was applied as another means 

of generating a family of extremals. The two approaches were found to provide 

analogous results when applied at equivalent orders. However, it was shown that the 
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Hamilton-Jacobi-Bellman equation approximation method was more efficient to 

perform, allowing for higher orders of control sensitivities.  
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APPENDIX A 

 

In this appendix, a derivation of the Hamilton-Jacobi-Bellman equation and the 

costate differential equation from the cost-to-go function is presented. To begin, assume 

the cost-to-go function takes the form: 

 𝐽 𝑥, 𝜈, 𝑡 =  𝜙 𝑥 𝑡𝑓  + 𝜈𝑇𝜓 𝑥 𝑡𝑓  +  𝐿(𝑥, 𝑢, 𝑡)
𝑡𝑓
𝑡

 (A.1) 

For this derivation, the relationship 𝐽𝑥 = 𝜆 is assumed. As Equation (A.1) shows, the 

cost-to-go is a function of the states, terminal constraint Lagrange multipliers, and time. 

To construct the HJB equation, the total time derivative of Equation (A.1) is taken. On 

the left hand side of the equation, the total time derivative is separated into partial 

derivatives with respect to the time, states, and terminal constraint Lagrange multipliers. 

On the right hand side of the equation, the second fundamental theorem of calculus is 

applied to simplify the expression. The resulting equation is given as: 

  
𝜕𝐽

𝜕𝑡
+ 𝐽𝑥

𝑑𝑥

𝑑𝑡
+ 𝐽𝜈

𝑑𝜈

𝑑𝑡
= −𝐿 𝑥, 𝑢, 𝑡   (A.2) 

Because 𝜈 is constant along the trajectory, 
𝑑𝜈

𝑑𝑡
 will be equal to zero and will drop out of 

the equation. Thus, the form of the HJB equation is the same with or without an applied 

terminal constraint. The same logic holds when including a dependence on some 

constant system parameter as well. Next, Equation (A.2) is rearranged give:  

  −
𝜕𝐽

𝜕𝑡
= 𝐿 𝑥, 𝑢, 𝑡 + 𝐽𝑥  𝑓 𝑥, 𝑢, 𝑡   (A.3) 

Utilizing the relationship 𝐽𝑥 = 𝜆, the right hand side of Equation (A.3) is equivalent to 

the Hamiltonian, thus giving the recognizable form of the HJB equation: 
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 −
𝜕𝐽

𝜕𝑡
= min𝑢 𝐻 𝑥, 𝑢, 𝐽𝑥 , 𝑡   (A.4) 

 −
𝜕𝐽

𝜕𝑡
= 𝐻 𝑥, 𝐽𝑥 , 𝑡   (A.5) 

Since we have assumed the relationship 𝐽𝑥 = 𝜆, the costate differential equation can be 

derived from the HJB equation in the following manner. 

 𝜆 =
𝑑

𝑑𝑡
  𝐽𝑥 = 𝐽𝑥𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝐽𝑥

𝜕𝑡
  (A.6) 

First, 
𝜕𝐽𝑥

𝜕𝑡
 is derived by taking the partial derivative of the HJB equation with respect to 𝑥, 

as shown below. 

 
𝜕𝐽𝑥

𝜕𝑡
= −𝐿𝑥 − 𝐽𝑥𝑓𝑥 − 𝐽𝑥𝑥

𝑑𝑥

𝑑𝑡
  (A.7) 

Substituting this expression into Equation (A.6) gives: 

 𝜆 = −𝐿𝑥 − 𝐽𝑥𝑓𝑥   (A.8) 

Finally, relating the right hand side of Equation (A.8) to the Hamiltonian, the costate 

differential equation is written in the recognizable form: 

 𝜆 = −
𝜕𝐻

𝜕𝑥
  (A.9) 
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APPENDIX B 

 

 In this appendix, a 4
th

 order reversion of series procedure is described. The series 

reversion process is applied to the following Taylor series expansion:  

 𝛿𝐽𝜈 = 𝐽𝜈𝜈  δν +
1

2!
𝐽𝜈𝜈𝜈  δν2 +

1

3!
𝐽𝜈𝜈𝜈𝜈  δν3 +

1

4!
𝐽𝜈𝜈𝜈𝜈𝜈  δν4  (B.1) 

where: 

 𝛿𝐽𝜈 = 𝐽𝜈
∗ − 𝐽𝜈 = −𝐽𝜈  (B.2) 

The aim of the reversion process is to obtain the proper perturbed terminal constraint 

Lagrange multiplier (δν) as a function of the partial derivatives of the cost-to-go function 

( 𝐽𝜈 , 𝐽𝜈𝜈 , 𝐽𝜈𝜈𝜈 , 𝐽𝜈𝜈𝜈𝜈 , 𝐽𝜈𝜈𝜈𝜈𝜈 ).  

 This is accomplished by solving expanding 𝐽𝜈  in 1
st
 through 4

th
 order Taylor 

series expansions, as shown below.  

 𝛿𝐽𝜈 = 𝐽𝜈𝜈  δν  (B.3) 

 𝛿𝐽𝜈 = 𝐽𝜈𝜈  δν +
1

2!
𝐽𝜈𝜈𝜈  δν2  (B.4) 

 𝛿𝐽𝜈 = 𝐽𝜈𝜈  δν +
1

2!
𝐽𝜈𝜈𝜈  δν2 +

1

3!
𝐽𝜈𝜈𝜈𝜈  δν3 (B.5) 

 𝛿𝐽𝜈 = 𝐽𝜈𝜈  δν +
1

2!
𝐽𝜈𝜈𝜈  δν2 +

1

3!
𝐽𝜈𝜈𝜈𝜈  δν3 +

1

4!
𝐽𝜈𝜈𝜈𝜈𝜈  δν4  (B.6) 

Each of these equations is inverted to solve for the first-order δν term. The equations are 

solved in ascending Taylor series expansion order, because the solution to each equation 

utilizes the values of δν obtained by the previous equation. To help illustrate this, a 

subscript will be given to each δν which corresponds to the order of Taylor series 

expansion considered. With this in mind, the update equations are given as: 
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 δν1 =   𝐽𝜈𝜈  
−1  𝛿𝐽𝜈    (B.7) 

 δν2 =   𝐽𝜈𝜈  
−1   𝛿𝐽𝜈 −

1

2!
𝐽𝜈𝜈𝜈   δν1 

2  (B.8) 

 δν3 =   𝐽𝜈𝜈  
−1   𝛿𝐽𝜈 −

1

2!
𝐽𝜈𝜈𝜈   δν2 

2 −
1

3!
𝐽𝜈𝜈𝜈𝜈   δν2 

3  (B.9) 

 δν4 =   𝐽𝜈𝜈  
−1   𝛿𝐽𝜈 −

1

2!
𝐽𝜈𝜈𝜈   δν3 

2 −
1

3!
𝐽𝜈𝜈𝜈𝜈   δν3 

3 −
1

4!
𝐽𝜈𝜈𝜈𝜈𝜈   δν3 

4  (B.10) 

The accuracy of δν increases with each additional order of Taylor series expansion. 

Therefore, δν4 is used to update the terminal constraint Lagrange multipliers.  

To implement these equations in Matlab, the partial derivatives of the cost-to-go 

function must be left in their natural structure as tensors. A procedure for dealing with 

these tensors is developed in Appendix E.   
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APPENDIX C 

 

This appendix provides a description of the properties of multivariable partial 

derivatives, and how they are exploited for efficiency. For problems formulated with 

state-space dimensions of two or more, the orders of partial derivatives of the cost-to-go 

assume the following structure: 1
st
 order partial derivatives are vectors, 2

nd
 order partial 

derivatives are matrices, and 3
rd

 through n
th

 order partial derivatives are tensors 

containing 3 through n indices, respectively.   

In multivariable calculus, the order of differentiation has no effect on the partial 

derivatives, i.e., the partial derivatives possess the commutative property. For example, 

given an arbitrary number of states, the commutative property is represented on 2
nd

 and 

3
rd

 order partial derivatives as: 

 𝐽𝑥𝑖𝑥𝑗
= 𝐽𝑥𝑗𝑥𝑖

 (C.1) 

 𝐽𝑥𝑖𝑥𝑗𝑥𝑘
= 𝐽𝑥𝑗𝑥𝑖𝑥𝑘

= 𝐽𝑥𝑖𝑥𝑘𝑥𝑗
= 𝐽𝑥𝑗𝑥𝑘𝑥𝑖

= 𝐽𝑥𝑘𝑥𝑖𝑥𝑗
= 𝐽𝑥𝑘𝑥𝑗𝑥𝑖

 (C.2) 

This creates symmetry within the structure of the multivariable partial derivatives, 

starting at the 2
nd

 order. With each additional order of derivation, this symmetry 

incorporates more and more terms. With this in mind, a scheme is devised to exploit the 

symmetry of these partial derivatives, which dramatically reduces the computational 

effort and storage requirements necessary to implement the HJB approximation method.  

 The devised scheme relies on treating each independent variable separately, thus 

disassembling the overall structure of the partial derivatives. As individual terms, 

conditions are enforced to ensure no repetitive partial derivatives are calculated. 



 84 

Specifically, each independent variable is given an index number, and partial 

differentiation is only allowed to occur in ascending order, i.e., 

 𝐽𝑥𝑖𝑥𝑗
  ,   ∀   𝑖 ≤ 𝑗 (C.3) 

 𝐽𝑥𝑖𝑥𝑗𝑥𝑘
  ,   ∀   𝑖 ≤ 𝑗 ≤ 𝑘 (C.4) 

 𝐽𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙
   ,    ∀     𝑖 ≤ 𝑗 ≤ 𝑘 ≤ 𝑙 (C.5) 

where 𝑖, 𝑗, 𝑘, 𝑙 are the index numbers of the variables. By only allowing differentiation in 

ascending index order, all of the repetitive terms are eliminated.  Once the partial 

derivatives have been derived, they are concatenated in into a single column, again in 

ascending order. 

 𝑃𝐷 =    𝐽𝑥𝑖
 ,  𝐽𝑥𝑗

 … ,  𝐽𝑥𝑖𝑥𝑖
 ,  𝐽𝑥𝑖𝑥𝑗

 , … ,  𝐽𝑥𝑖𝑥𝑖𝑥𝑖  
,  𝐽𝑥𝑖𝑥𝑖𝑥𝑗  , …  

T

 (C.6) 

Within the symbolic differentiation routine, the PDEs governing the partial derivatives 

are differentiated and stacked in the same manner. Thus, the unique partial derivatives 

are passed to and from the numerical integration routine (ode45) using this structure. 
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APPENDIX D 

 

 

 In this appendix, a derivation of the perturbed Hamilton-Jacobi-Bellman (PHJB) 

equation is presented. To begin assume some initial state perturbations 𝛿𝑥 𝑡0 . These 

initial perturbations will generate perturbations 𝛿𝑥 𝑡  governed by: 

 𝛿𝑥 = 𝑓 𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢 − 𝑓∗ (D.1) 

where the ∗ superscript indicates the nominal values. Next, assuming the problem is 

formulated with soft terminal constraints, the perturbed cost-to-go function is given by 

the following expression. 

 𝛿𝐽 = 𝜙 𝑥∗ 𝑡𝑓 + 𝛿𝑥 𝑡𝑓  − 𝜙∗ (D.2) 

 +   𝐻 𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢, 𝜆∗ − 𝐻∗ − 𝐻𝑥
∗𝛿𝑥 − 𝐻𝑢

∗𝛿𝑢 𝑑𝑡
𝑡𝑓
𝑡

 

To construct the PHJB equation, the total time derivative of Equation (D.2) is taken. On 

the left hand side of the equation, the total time derivative is separated into partial 

derivatives with respect to the time and perturbed states. On the right hand side of the 

equation, the second fundamental theorem of calculus is applied to simplify the 

expression. The resulting equation is given as: 

  
𝜕𝛿𝐽

𝜕𝑡
+

𝜕𝛿𝐽

𝜕𝛿𝑥

T
𝛿𝑥 = − 𝐻 𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢, 𝜆∗ − 𝐻∗ − 𝐻𝑥

∗𝛿𝑥 − 𝐻𝑢
∗𝛿𝑢  (D.3) 

To simplify this equation, the following relationships are exploited: 

 𝛿𝐽𝛿𝑥 = 𝛿𝜆   ;    𝐻𝑢
∗ = 0   ;    𝛿𝑥 = 𝑓 𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢 − 𝑓∗ ; (D.4) 

𝐻 𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢, 𝜆∗ + 𝛿𝜆 = 𝐻 𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢, 𝜆∗ + 𝛿𝜆T𝑓 𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢  

Making use of these relationships, Equation (D.3) is reduced to: 

  −
𝜕𝛿𝐽

𝜕𝑡
= 𝐻 𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢, 𝜆∗ + 𝛿𝜆 − 𝐻∗ − 𝐻𝑥

∗𝛿𝑥 − 𝐻𝜆
∗𝛿𝜆 (D.5) 
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From Equation (D.4), the perturbed Hamiltonian is defined as: 

  𝛿𝐻 = 𝐻 𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢, 𝜆∗ + 𝛿𝜆 − 𝐻∗ − 𝐻𝑥
∗𝛿𝑥 − 𝐻𝜆

∗𝛿𝜆 (D.6) 

A second order necessary condition for optimality is given as:  

  
𝜕𝛿𝐻

𝜕𝛿𝑢
= 0 (D.7) 

For systems affine in the control, Equation (D.7) will provide a means of expressing the 

control terms as a function of the costates. The control terms are removed and the final 

form of the PHJB equation is given as: 

  −
𝜕𝛿𝐽

𝜕𝑡
= 𝐻 𝑥∗ + 𝛿𝑥, 𝜆∗ + 𝛿𝜆 − 𝐻∗ − 𝐻𝑥

∗𝛿𝑥 − 𝐻𝜆
∗𝛿𝜆 (D.8) 

Since we have assumed the relationship 𝛿𝐽𝛿𝑥 = 𝛿𝜆, the perturbed costate differential 

equation can be derived from the PHJB equation in the following manner. 

 𝛿𝜆 =
𝑑

𝑑𝑡
  𝛿𝐽𝛿𝑥  =

𝜕

𝜕𝑡
 𝛿𝐽𝛿𝑥  +

𝜕𝛿𝜆

𝜕𝛿𝑥
𝛿𝑥   (D.9) 

First, 
𝜕

𝜕𝑡
 𝛿𝐽𝛿𝑥   is derived from the PHJB equation, as shown below. 

 
𝜕

𝜕𝑡
 𝛿𝐽𝛿𝑥  = − 𝐻𝑥 𝑥

∗ + 𝛿𝑥, 𝜆∗ + 𝛿𝜆 − 𝐻𝑥
∗ +

𝜕𝛿𝜆

𝜕𝛿𝑥
 𝐻𝜆 − 𝐻𝜆

∗    (D.10) 

Recognizing that 𝛿𝑥 = 𝐻𝜆 − 𝐻𝜆
∗, Equation (D.9) can be substituted back into Equation 

(D.8) revealing the following equation: 

 𝛿𝜆 = −𝐻𝑥 𝑥
∗ + 𝛿𝑥, 𝜆∗ + 𝛿𝜆 + 𝐻𝑥

∗  (D.11) 

Finally, it is worth noting the connection between 𝛿𝐻, 𝛿𝑥 , and 𝛿𝜆 : 

 𝛿𝑥 =
𝜕𝛿𝐻

𝜕𝛿𝜆
    ,    𝛿𝜆 = −

𝜕𝛿𝐻

𝜕𝛿𝑥
 (D.12) 
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APPENDIX E 

 

In this appendix, the implementation of the Lagrange Implicit Function Theorem 

is described up to the 4
th

 order. In this thesis, the implicit function theorem is used in two 

cases:  

1) To calculate the sensitivities of the terminal constraint Lagrange multipliers 

with respect to the states.  

2) To calculate the sensitivities of the initial costates with respect to the initial 

states. 

In both situations, the implicit function theorem is utilized the same manner. However, 

the constraint equation used in each case is different. These constraint equations are 

given for each case as: 

1) 𝐽𝜈 𝑥, 𝜈(𝑥) = 0  

2) 𝜓 𝑥, 𝜆(𝑥) = 0  

To avoid unnecessary repetition, the application of the implicit function theorem is 

demonstrated only once. To begin, assume the following general constraint equation: 

 𝑀 𝑥, 𝜆(𝑥) = 0 (E.1) 

The first four total derivatives of 𝑀 with respect to 𝑥 are taken and split into their 

respective partial derivatives as follows: 

  
𝑑

𝑑𝑥
𝑀  = 𝑀𝑥 + 𝑀𝜆  

𝑑𝜆

𝑑𝑥
  (E.2) 

  
𝑑2

𝑑𝑥 2 𝑀 = 𝑀𝑥𝑥 + 2𝑀𝜆𝑥  
𝑑𝜆

𝑑𝑥
 + 𝑀𝜆𝜆  

𝑑𝜆

𝑑𝑥
 

2

+ 𝑀𝜆  
𝑑2𝜆

𝑑𝑥 2  (E.3) 
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𝑑3

𝑑𝑥 3
𝑀 = 𝑀𝑥𝑥𝑥 + 3𝑀𝜆𝑥𝑥  

𝑑𝜆

𝑑𝑥
 + 3𝑀𝜆𝜆𝑥  

𝑑𝜆

𝑑𝑥
 

2

+ 𝑀𝜆𝜆𝜆  
𝑑𝜆

𝑑𝑥
 

3

 (E.4) 

  +3𝑀𝜆𝑥  
𝑑2𝜆

𝑑𝑥 2 + 3𝑀𝜆𝜆  
𝑑𝜆

𝑑𝑥
  

𝑑2𝜆

𝑑𝑥 2 + 𝑀𝜆  
𝑑3𝜆

𝑑𝑥 3   

  
𝑑4

𝑑𝑥 4 𝑀 = 𝑀𝑥𝑥𝑥𝑥 + 4𝑀𝜆𝑥𝑥𝑥  
𝑑𝜆

𝑑𝑥
 + 6𝑀𝜆𝜆𝑥𝑥  

𝑑𝜆

𝑑𝑥
 

2

+ 4𝑀𝜆𝜆𝜆𝑥  
𝑑𝜆

𝑑𝑥
 

3

+ 𝑀𝜆𝜆𝜆𝜆  
𝑑𝜆

𝑑𝑥
 

4

 (E.5) 

 +6𝑀𝜆𝑥𝑥  
𝑑2𝜆

𝑑𝑥 2 + 12𝑀𝜆𝜆𝑥  
𝑑𝜆

𝑑𝑥
  

𝑑2𝜆

𝑑𝑥 2 + 6𝑀𝜆𝜆𝜆  
𝑑𝜆

𝑑𝑥
 

2

 
𝑑2𝜆

𝑑𝑥 2  

 +4𝑀𝜆𝜆  
𝑑𝜆

𝑑𝑥
  

𝑑3𝜆

𝑑𝑥 3 + 4𝑀𝜆𝑥  
𝑑3𝜆

𝑑𝑥 3 + 3𝑀𝜆𝜆  
𝑑2𝜆

𝑑𝑥 2 
2

+ 𝑀𝜆  
𝑑4𝜆

𝑑𝑥 4  

These four equations are easily inverted to solve for the first four orders of sensitivities 

of 𝜆 with respect to 𝑥. However, many of the partial derivative terms in these equations 

are naturally represented as tensors.  

 To handle these equations in Matlab, the tensors are represented as matrices 

through a stacking operation. The tensors are stacked using a built-in concatenation 

function (cat.m). To illustrate the stacking procedure, assume the following: 

 𝑀 =  𝐴, 𝐵 T      ,    𝑥 =  𝑥1, 𝑥2 
T     ,     𝜆 =  𝜆1, 𝜆2 

T   (E.6) 

From this, 𝑀𝜆𝑥 ∈ ℜ2×2×2 is given as: 

  𝑀𝜆𝑥  : , : ,1 =  𝑀1 =  
𝐴𝑥1𝜆1

𝐴𝑥2𝜆1

𝐵𝑥1𝜆1
𝐵𝑥2𝜆1

  (E.7) 

 𝑀𝜆𝑥  : , : ,2 =  𝑀2 =  
𝐴𝑥1𝜆2

𝐴𝑥2𝜆2

𝐵𝑥1𝜆2
𝐵𝑥2𝜆2

  (E.8) 

The stacked version of this tensor is formed with the command: 𝑐𝑎𝑡 2, 𝑀1, 𝑀2 . The 

resulting matrix takes the form
§
: 

 𝑀𝜆𝑥
𝑆 =    𝑀1  𝑀2   =   

𝐴𝑥1𝜆1
𝐴𝑥2𝜆1

𝐵𝑥1𝜆1
𝐵𝑥2𝜆1

𝐴𝑥1𝜆2
𝐴𝑥2𝜆2

𝐵𝑥1𝜆2
𝐵𝑥2𝜆2

   (E.9) 

                                                 
§
 The superscript S denotes a stacked tensor 
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In Equation (E.5), 𝑀𝜆𝑥  is multiplied with 
𝑑𝜆

𝑑𝑥
∈ ℜ2×2. Before this multiplication can take 

place using the stacked tensor, the structure of 
𝑑𝜆

𝑑𝑥
 must be altered using a Kronecker 

product, as follows:   

 𝐼2 ⊗
𝑑𝜆

𝑑𝑥
=  

𝑑𝜆

𝑑𝑥
0

0
𝑑𝜆

𝑑𝑥

  (E.10) 

where 𝐼2 ∈ ℜ2×2 is an identity matrix. Using this notation, the equivalence between the 

stacked and non-stacked tensor multiplications is given as: 

  𝑀𝜆𝑥
𝑑𝜆

𝑑𝑥
 
𝑆

= 𝑀𝜆𝑥
𝑆  𝐼2 ⊗

𝑑𝜆

𝑑𝑥
  (E.11) 

 Close attention must be paid to the order in which 𝑥 and 𝜆 are differentiated, e.g., 

𝑀𝜆𝑥
𝑆 ≠ 𝑀𝑥𝜆

𝑆 . The difference between these stacked tensors is in the placement of 

individual terms. The manner in which the Kronecker product is applied can be used to 

compensate for this dissimilar structure, e.g.,  

 𝑀𝜆𝑥
𝑆  𝐼2 ⊗

𝑑𝜆

𝑑𝑥
 = 𝑀𝑥𝜆

𝑆  
𝑑𝜆

𝑑𝑥
⊗ 𝐼2  (E.12) 

Similarly, 𝑀𝜆𝜆
𝑆  is multiplied with 

𝑑𝜆

𝑑𝑥

2
 in the following manner. 

  𝑀𝜆𝜆
𝑑𝜆

𝑑𝑥

2
 
𝑆

= 𝑀𝜆𝜆
𝑆  

𝑑𝜆

𝑑𝑥
⊗

𝑑𝜆

𝑑𝑥
  (E.13) 

As the rank of the tensors increases, additional Kronecker products are used as follows: 

  𝑀𝜆𝑥𝑥
𝑑𝜆

𝑑𝑥
 
𝑆

= 𝑀𝜆𝑥𝑥
𝑆  𝐼2 ⊗  𝐼2 ⊗

𝑑𝜆

𝑑𝑥
   (E.14) 

  𝑀𝜆𝑥𝑥𝑥
𝑑𝜆

𝑑𝑥
 
𝑆

= 𝑀𝜆𝑥𝑥𝑥
𝑆  𝐼2 ⊗  𝐼2 ⊗  𝐼2 ⊗

𝑑𝜆

𝑑𝑥
    (E.15) 
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