

HIGHER-ORDER METHODS FOR DETERMINING OPTIMAL

CONTROLS AND THEIR SENSITIVITIES

A Thesis

by

CHRISTOPHER MATHEW MCCRATE

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2010

Major Subject: Aerospace Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4279626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HIGHER-ORDER METHODS FOR DETERMINING OPTIMAL

CONTROLS AND THEIR SENSITIVITIES

A Thesis

by

CHRISTOPHER MATHEW MCCRATE

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Srinivas R. Vadali

Committee Members, John L. Junkins

 Aniruddha Datta

Head of Department, Dimitris Lagoudas

May 2010

Major Subject: Aerospace Engineering

 iii

ABSTRACT

Higher-Order Methods for Determining Optimal Controls and Their Sensitivities.

(May 2010)

Christopher Mathew McCrate, B.S., The University of Missouri

Chair of Advisory Committee: Dr. Srinivas R. Vadali

The solution of optimal control problems through the Hamilton-Jacobi-Bellman

(HJB) equation offers guaranteed satisfaction of both the necessary and sufficient

conditions for optimality. However, finding an exact solution to the HJB equation is a

near impossible task for many optimal control problems. This thesis presents an

approximation method for solving finite-horizon optimal control problems involving

nonlinear dynamical systems. The method uses finite-order approximations of the partial

derivatives of the cost-to-go function, and successive higher-order differentiations of the

HJB equation. Natural byproducts of the proposed method provide sensitivities of the

controls to changes in the initial states, which can be used to approximate the solution to

neighboring optimal control problems. For highly nonlinear problems, the method is

modified to calculate control sensitivities about a nominal trajectory. In this framework,

the method is shown to provide accurate control sensitivities at much lower orders of

approximation. Several numerical examples are presented to illustrate both applications

of the approximation method.

 iv

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dr. Srinivas R. Vadali, for

his encouragement and support over the last two years. I have greatly benefited from his

dedication to my academic and professional successes. I would also like to thank my

committee members, Dr. John L. Junkins and Dr. Aniruddha Datta, for their time and

assistance in reviewing the technical aspects of this thesis.

I am grateful to Boeing and the Texas Space Grant Consortium for the

fellowships awarded to me during my graduate studies. I am also thankful for the

financial support provided by NASA Cooperative Agreement NNX07AC44A.

I would like to acknowledge Drs. James Turner, Raktim Bhattacharya, Martin

Berz, Pierluigi Di Lizia, and Walt Williamson for their contributions to this thesis. I truly

appreciate all the time and effort they spent sharing their technical expertise with me.

Thanks also to Karen Knabe and Lisa Willingham for helping out with all of the office

work.

Finally, I am grateful to my family, whose love and support made all of this

possible.

 v

TABLE OF CONTENTS

 Page

ABSTRACT .. iii

ACKNOWLEDGEMENTS .. iv

TABLE OF CONTENTS .. v

LIST OF FIGURES ... vii

LIST OF TABLES .. x

1. INTRODUCTION ... 1

 1.1 Optimal Control Problem Statement .. 3

 1.2 Two Point Boundary Value Problem ... 4

 1.3 Hamilton-Jacobi-Bellman Equation ... 7

2. OPTIMAL CONTROL SOLUTION METHODOLOGY 9

 2.1 Approximating the Hamilton-Jacobi-Bellman Equation 9

 2.2 Extension to Terminally Constrained Problems 12

 2.3 Extension to Free Final Time Problems ... 15

 2.4 Scalar, Linear Example .. 17

 2.4.1 Fixed Final Time Problem ... 17

 2.4.2 Terminally Constrained, Fixed Final Time Problem 21

 2.4.3 Free Final Time Problem ... 25

 2.5 Scalar, Nonlinear Example ... 28

3. NUMERICAL EXAMPLES ... 30

 3.1 Numerical Implementation ... 30

 3.2 Spacecraft Stabilization Problem ... 32

 3.3 Orbit Transfer Problem .. 39

 3.3.1 Low Thrust Transfer .. 41

 3.3.2 Earth to Mars Transfer .. 45

 vi

 Page

4. HIGH-ORDER GUIDANCE SOLUTIONS ... 51

 4.1 Perturbed HJB Equation Approximation .. 52

 4.2 Lagrange Implicit Function Theorem ... 54

 4.3 Orbit Transfer Guidance Problem ... 57

 4.4 Re-entry Guidance Problem .. 64

 4.4.1 Initial State Variations ... 68

 4.4.2 Parameter Variations ... 69

 4.4.3 Final State Variations .. 72

5. SUMMARY AND CONCLUSIONS .. 74

REFERENCES .. 76

APPENDIX A ... 79

APPENDIX B ... 81

APPENDIX C ... 83

APPENDIX D ... 85

APPENDIX E .. 87

VITA ... 90

 vii

LIST OF FIGURES

FIGURE Page

 2.1 Approximation method results and optimal open-loop solutions to the

linear problem .. 20

 2.2 Neighboring optimal trajectories for the linear problem, considering

initial state variations. .. 21

 2.3 Approximation method results and optimal open-loop solutions for the

terminally constrained, linear problem ... 23

 2.4 Neighboring optimal trajectories for the terminally constrained linear

problem, considering initial state variations. ... 24

 2.5 Approximation method results and optimal open-loop solutions to the

free final time, linear problem .. 26

 2.6 Neighboring optimal trajectories for the linear problem, considering

variations in the problem time .. 27

 2.7 Initial costate error as a function of 𝜺, for 3
rd

 through 6
th

 order

approximations. .. 29

 3.1 State and costate error for the terminally constrained, 5
th

 order

approximate spacecraft stabilization solution .. 35

 3.2 Final angular velocity as a function of the final state weight 37

 3.3 State and costate error for the penalized, 5
th

 order approximate

spacecraft stabilization solution ... 38

 3.4 Terminal constraint error as a function of final state weight and

approximation order for the low thrust transfer ... 43

 3.5 Approximate nominal solution for the low thrust transfer 44

 3.6 State and costate errors between the optimal and sub-optimal solutions

to the low thrust transfer. .. 45

 viii

FIGURE Page

 3.7 Terminal constraint error as a function of final state weight and

approximation order for the Earth to Mars transfer 46

 3.8 Approximate nominal solution for the Earth to Mars transfer 47

 3.9 State and costate errors between the optimal and sub-optimal solutions

for the Earth to Mars transfer ... 48

 3.10 Neighboring radial distances for the Earth to Mars transfer 49

 3.11 Neighboring radial velocities for the Earth to Mars transfer...................... 49

 3.12 Neighboring tangential velocities for the Earth to Mars transfer. 50

 3.13 Neighboring controls for the Earth to Mars transfer. 50

 4.1 Approximation error as a function of the final state weight and

approximation order for the orbit transfer guidance problem 60

 4.2 Neighboring radial distances for the orbit transfer guidance problem 62

 4.3 Neighboring radial velocities for the orbit transfer guidance problem 62

 4.4 Neighboring tangential velocities for the orbit transfer guidance problem 63

 4.5 Neighboring controls for the orbit transfer guidance problem 63

 4.6 Nominal re-entry solution. ... 67

 4.7 Neighboring re-entry profiles for initial altitude and velocity variations. . 68

 4.8 Neighboring re-entry profiles for variations in the reference density. 70

 4.9 Neighboring re-entry profiles for variations in the scale height. 70

 4.10 Neighboring re-entry profiles for variations in the lift coefficient. 71

 4.11 Neighboring re-entry profiles for variations in the drag coefficient. 72

 4.12 Nominal and neighboring trajectories for final velocity variations. 73

 ix

FIGURE Page

 4.13 A blown up view of near final time nominal and neighboring trajectories

for final velocity variations. ... 73

 x

LIST OF TABLES

TABLE Page

 3.1 Spacecraft stabilization results ... 35

 3.2 Boundary conditions for the low thrust transfer ... 42

 3.3 Boundary conditions for the Earth to Mars transfer 45

 4.1 Nominal orbit transfer boundary conditions .. 57

 4.2 Number of required partial derivatives for the orbit transfer guidance

problem, considering variations in the initial states 58

 4.3 Orbit transfer guidance results ... 61

 4.4 Simulation parameters for the re-entry problem .. 65

 4.5 Boundary conditions for the re-entry problem ... 66

 4.6 Re-entry guidance results for density and scale height variations 69

 4.7 Re-entry guidance results for lift and drag coefficient variations 71

 1

1. INTRODUCTION

 Optimal control theory provides a systematic approach for determining the most

efficient way to control a dynamical system. The theory is applicable to a broad range of

dynamical systems, spanning all fields of engineering. Over the years, the application of

optimal control theory to linear systems has been researched extensively, and is largely

understood. However, much work remains in the development of optimal control

methods suitable for highly nonlinear systems, such as those found in Aerospace

applications.

 Several distinct approaches have been developed to solve nonlinear optimal

control problems. In many instances, optimal control problems are solved through a

direct solution of the necessary conditions via discrete-approximations, e.g., collocation

[1,2]

or projection methods [3]. Indirect methods typically convert the necessary

conditions into a two-point boundary-value problem (TPBVP) [4]. Both the direct and

indirect approaches consider only the necessary but not the sufficient conditions for

optimality. Conversely, the solution to the Hamilton-Jacobi-Bellman (HJB) equation

provides a guarantee of closed-loop stability and the satisfaction of both the necessary

and sufficient conditions for optimality [5]. Unfortunately, finding an analytical solution

to the HJB equation is impossible for many nonlinear optimal control problems.

 Many approaches have been developed to obtain approximate solutions to the

This thesis follows the style of Journal of Guidance, Control, and Dynamics.

 2

monomial expansions [8,9], orthogonal functions

[10], radial basis functions [11], and

neural networks [12]. Methods based on monomial expansions minimize local

approximation errors and are best suited for systems with polynomial nonlinearities.

Global approximation methods based on finite-differences [13], finite-elements [14], and

finite-volume [15] have also been employed to solve the HJB equation. Such methods

are applicable to more general nonlinear systems. Recent advances, e.g., level-set

methods [13], have been made for evaluating the spatial derivatives via finite-differences

and approximating discontinuous cost functions. In general, these global approximation

methods provide uniform approximations over a wider domain by allowing variable

levels of discretization over different parts of the computational domain. However,

practical implementations of these methods have been typically limited to lower-order

systems, due to the enormous computational burden of performing discretization over

the entire domain.

 In many situations, it is beneficial to know the optimal control required to take a

system from a variety of initial conditions to some set of fixed terminal conditions. To

achieve this, a family of neighboring solutions, often referred to as a field of extremals

[4], must be calculated. Both direct and indirect methods generate an open-loop solution

to the optimal control problem, i.e., a solution for only one set of initial conditions. It has

been widely recognized that if the open-loop optimal control problem can be solved in

near-real-time, via either direct or indirect methods, then the solution provides extremal

feedback controls. This is the motivation behind the development of model predictive

control methods [16]. However, model predictive control methods require a near-real-

 3

time solution to a nonlinear constrained minimization problem at each time step, which

can be extremely computationally demanding.

Recently, there has been an interest in the computation of a field of extremals via

higher-order sensitivity methods [17,18]. Such methods generate sensitivities of the

controls to changes in the initial states, which allows for the immediate determination of

neighboring optimal controls without the burden of re-solving the optimal control

problem. Furthermore, these methods can be extended to account for changes in other

conditions, e.g., constant parameters in the system dynamics and terminal constraints.

 This thesis develops a general method for approximating the solution to the HJB

equation for a class of nonlinear optimal control problems. The approximated solution

provides both the nominal open-loop solution and the higher-order control sensitivities

required to generate a field of extremals. The HJB equation is approximated locally,

instead of over a large domain, which greatly reduces the computational burden

associated with the approximation. To begin the developments of this thesis, Sections

1.1, 1.2, and 1.3 introduce the fundamental concepts of optimal control theory relevant

to this research.

1. 1 Optimal Control Problem Statement

 To motivate the developments of this thesis, consider the following optimal

control problem.

Minimize:

 𝒥 = 𝜙 𝑥 𝑡𝑓 + 𝐿 𝑥, 𝑢, 𝑡
𝑡𝑓
𝑡0

𝑑𝜏 (1.1)

 4

Subject to:

 𝑥 = 𝑓 𝑥, 𝑢, 𝑡 (1.2)

 𝜓 𝑥 𝑡𝑓 = 0 (1.3)

where 𝒥 is the cost function (performance index), 𝜙 𝑥 𝑡𝑓 is the final state penalty

function (soft terminal constraint), 𝜓 𝑥 𝑡𝑓 ∈ ℜ 𝑝≤𝑛 is a vector function of hard

terminal constraints, and 𝑓 𝑥, 𝑢, 𝑡 is a smooth, analytic, n-dimensional vector function

with 𝑥 ∈ ℜ𝑛 and 𝑢 ∈ ℜ𝑚 . It is assumed that the initial time 𝑡0 and the initial states 𝑥0

are given. The final time may or may not be specified, depending on the particular

problem.

1.2 Two Point Boundary Value Problem

 The optimal control problem established in Section 1.1 is transformed into a

TPBVP using the principles of variational calculus [19]. To begin, the state dynamics

and terminal constraints are augmented to the cost function through costates 𝜆 and

terminal constraint Lagrange multipliers 𝜈, respectively. The augmented cost function is

written as:

 𝒥𝑎 = 𝜙 𝑥 𝑡𝑓 + 𝜈𝑇𝜓 𝑥 𝑡𝑓 (1.4)

 + 𝐿 𝑥, 𝑢, 𝑡 + λT 𝑓 𝑥, 𝑢, 𝑡 − 𝑥
𝑡𝑓
𝑡0

𝑑𝜏

where 𝜈 ∈ ℜ𝑝 is a vector of terminal constraint Lagrange multipliers and λ ∈ ℜ𝑛 is a

vector of costates. Next, the Hamiltonian of the system is defined as:

 𝐻 𝑥, 𝑢, λ, 𝑡 = 𝐿 𝑥, 𝑢, 𝑡 + λ𝑇𝑓 𝑥, 𝑢, 𝑡 (1.5)

Using this definition, the first variation of the augmented cost function [19] is written as:

 5

 𝛿𝒥𝑎 =
𝜕𝜙 𝑥 𝑡𝑓

𝜕𝑥 𝑡𝑓
+

𝜕𝜓 𝑥 𝑡𝑓

𝜕𝑥 𝑡𝑓

𝑇

𝜈 − 𝜆 𝛿𝑥 𝑡𝑓 + 𝜓 𝑥 𝑡𝑓
𝑇
𝛿𝜈 (1.6)

 +
𝜕𝐻

𝜕𝑥
+ λ

𝑇

𝛿𝑥 +
𝜕𝐻

𝜕λ
− 𝑥

𝑇

𝛿𝜆 +
𝜕𝐻

𝜕𝑢

𝑇

𝛿𝑢
𝑡𝑓
𝑡0

𝑑𝜏

First-order necessary conditions for optimality are established by requiring that the first

variation of the augmented cost function is zero for arbitrary variations in 𝛿𝑥 𝑡𝑓 , 𝛿𝜈,

𝛿𝑥, 𝛿𝜆, and 𝛿𝑢. The first-order necessary conditions are:

 λ 𝑡𝑓 =
𝜕𝜙 𝑥 𝑡𝑓

𝜕𝑥 𝑡𝑓
+

𝜕𝜓 𝑥 𝑡𝑓

𝜕𝑥 𝑡𝑓

𝑇

𝜈 (1.7)

 𝜓 𝑥 𝑡𝑓 = 0 (1.8)

 𝑥 =
𝜕𝐻

𝜕λ
= 𝑓 𝑥, 𝑢, 𝑡 (1.9)

 λ = −
𝜕𝐻

𝜕𝑥
= −𝐿𝑥 − 𝑓𝑥

𝑇λ (1.10)

𝜕𝐻

𝜕𝑢
= 𝐿𝑢 + 𝑓𝑢λ = 0 (1.11)

Equations (1.7) and (1.8) provide terminal conditions that must be satisfied to achieve

optimality.

Equations (1.9) and (1.10) provide governing state and costate differential

equations, and are often referred to as Euler-Lagrange equations [4]. For systems affine

in the control, Equation (1.11) provides a convenient means to express the control as a

function of the states and costates. If the control terms cannot be expressed as a function

of the states and costates, they must be treated as additional states. In such a case,

differential equations are found for the controls by splitting the time derivative of 𝐻𝑢

into partial derivatives:

𝜕𝐻𝑢

𝜕𝑡
+

𝜕𝐻𝑢

𝜕𝑥
𝑥 +

𝜕𝐻𝑢

𝜕λ
λ +

𝜕𝐻𝑢

𝜕𝑢
𝑢 = 0 (1.12)

This expression is rearranged to give:

 6

 𝑢 = −𝐻𝑢𝑢
−1

𝜕𝐻𝑢

𝜕𝑡
+

𝜕𝐻𝑢

𝜕𝑥
𝑥 +

𝜕𝐻𝑢

𝜕λ
λ (1.13)

Treating the controls as additional states, Equation (1.11) becomes a constraint that must

be achieved for optimality.

 After the control terms have been dealt with, the challenge is to find the proper

initial costates to drive the states and costates to the desired terminal conditions. This is

often accomplished through the use of an iterative method, e.g., the shooting approach.

In the shooting approach, the initial costate values are guessed and the Euler-Lagrange

equations are integrated to the final boundary conditions. If the terminal conditions are

not satisfied, the initial costate values are updated using Newton’s method. This process

is repeated until the initial costates have converged onto their proper values. Common

shooting algorithms, e.g., Matlab’s fsolve.m, utilize first-order finite-differencing

derivatives in the application of Newton’s method. Recently, there has been in interest in

utilizing higher-order derivatives to provide faster convergence to the shooting algorithm

[20].

 Further insight can be gained by observing the value of the Hamiltonian along

the optimal solution of the TPBVP. The time derivative of the Hamiltonian can be

separated into partial derivatives as follows [19].

 𝐻 = 𝐻𝑥
𝑇𝑥 + 𝐻𝑢

𝑇𝑢 + 𝐻λ
𝑇λ + 𝐻𝑡 (1.14)

Applying the first-order necessary conditions, the expression is reduced to:

 𝐻 = 𝐻𝑡 (1.15)

 7

Therefore, for problems in which the Hamiltonian doesn’t have any explicit time

dependence, the Hamiltonian is a first integral of the optimal control problem [4]. This

condition can be utilized to check the accuracy of the optimal solution.

1.3 Hamilton-Jacobi-Bellman Equation

 The field of Dynamic Programming provides another means for solving optimal

control problems in the form of the HJB equation. To begin this formulation, the cost-to-

go (optimal value) function is defined as:

 𝐽 𝑥, 𝑡 = 𝜙 𝑥 𝑡𝑓 + 𝐿 𝑥, 𝑢, 𝑡
𝑡𝑓
𝑡

𝑑𝜏 (1.16)

It is important to recognize the difference between the cost function 𝒥 and the cost-to-go

function 𝐽. The cost function measures the total cost of the entire optimal trajectory;

whereas, the cost-to-go function measures the remaining cost associated with completing

the optimal trajectory. Therefore, the cost-to-go function at the initial time is equal to the

cost function.

The Hamilton-Jacobi-Bellman equation is a partial differential equation that

defines the partial time derivative of the cost-to-go function. Solution of the HJB

equation provides a guarantee of closed-loop stability and the satisfaction of both the

necessary and sufficient conditions for optimality. The HJB equation is defined as
*

 −
𝜕𝐽

𝜕𝑡
= 𝐻 𝑥, 𝐽𝑥 , 𝑡 (1.17)

*
 A full derivation of the HJB equation is shown in Appendix A

 8

where 𝐽𝑥 is the first-order partial derivative of the cost-to-go with respect to the states,

and 𝐻 𝑥, 𝐽𝑥 , 𝑡 is the Hamiltonian defined as:

 𝐻 𝑥, 𝐽𝑥 , 𝑡 = 𝐿 𝑥, 𝐽𝑥 , 𝑡 + 𝐽𝑥
T𝑓 𝑥, 𝐽𝑥 , 𝑡 (1.18)

In this form of the Hamiltonian, all dependency on the control and costate terms has

been removed. First, dependency on the controls is removed using the first-order

necessary condition for optimality: 𝐻𝑢 = 0, as discussed in Section 1.2. Next, the

dependency on the costates is eliminated by utilizing the following relationship.

 𝐽𝑥 = λ (1.19)

This relationship is only valid when 𝐽 is continuous and differentiable over the entire

domain of 𝑥. For cases where 𝐽 is not smooth over the entire domain, viscosity solutions

must be considered. In this thesis, the smoothness of 𝐽 will be assumed for all problems.

 Equation (1.19) provides the necessary link between the HJB equation and the

TPBVP. An exact solution to the HJB equation provides the optimal values of 𝐽𝑥 , which

are needed to solve the TPBVP. Unfortunately, finding an exact solution to the HJB

equation is extremely difficult for most problems. Hence, some approximation scheme is

necessary.

 9

2. OPTIMAL CONTROL SOLUTION METHODOLOGY

 As previously stated, the goal of this method is to obtain an open-loop solution to

the TPBVP through a local approximation of the HJB equation. Section 2.1 provides a

description of the finer details of this approximation, for a class of optimal control

problems. Sections 2.2 and 2.3 extend the approximation method to handle optimal

control problems formulated with hard terminal constraints and free final times. Finally,

Sections 2.4 and 2.5 illustrate the application of the HJB equation approximation method

to single dimension, linear and nonlinear optimal control problems, respectively.

2.1 Approximating the Hamilton-Jacobi-Bellman Equation

 In Section 1.2, the cost-to-go function was shown to have an explicit dependence

on the states of the system. Therefore, assuming the cost-to-go function continuous and

differentiable, a finite-order of partial derivatives of the cost-to-go can be taken with

respect to the states. In general, these partial derivatives will be defined as: 𝐽𝑥 for the

first order, 𝐽𝑥𝑥 for the second order, 𝐽𝑥𝑥𝑥 for the third order, and so on.

 From inspection of the HJB equation, it is evident that the values of 𝐽𝑥 must be

known in order to compute the time derivative of 𝐽. Furthermore, because 𝐽 must be

computed across the trajectory, the values of 𝐽𝑥 are needed across the trajectory.

Therefore, a differential equation governing 𝐽𝑥 must be derived. This is accomplished, in

the most general sense, by differentiating the HJB equation with respect to each of the

 10

states. Doing so creates a vector of partial differential equations (PDEs) that govern each

of the first-order partial derivatives of the cost-to-go, which is given as:

 −
𝜕𝐽𝑥

𝜕𝑡
= 𝐻𝑥 𝑥, 𝐽𝑥 , 𝐽𝑥𝑥 , 𝑡 (2.1)

Looking at Equation (2.1), it is evident that the values of 𝐽𝑥𝑥 must be known in order to

compute the time derivative(s) of 𝐽𝑥 . Therefore, all of the PDEs contained within

Equation (2.1) must be individually differentiated with respect to each state, forming a

matrix of partial differential equations governing 𝐽𝑥𝑥 . Again, the new matrix of PDEs

will contain the 𝐽𝑥𝑥𝑥 terms. This cycle of dependency on the next higher-order partial

derivatives will continue for infinitely many differentiations. Because it is infeasible to

take infinitely many derivatives, the partial derivatives must be truncated at some order.

At the order of truncation, all terms for the next higher-order of partial derivatives

appearing in the PDEs will be dropped. In this unique structure, there exists a link

between all of the partial derivatives of the cost-to-go, i.e., truncating the partial

derivatives at the n
th

 order will affect the accuracy of the 1
st
 through n-1

th
 orders of

partial derivatives.

 Once the PDEs have been derived to the desired order, they are solved by the

method of lines. In this approach, the states are held constant at their initial values while

the entire set of PDEs is integrated backwards in time from the terminal boundary

conditions. Holding the states constant allows the PDEs to be solved as ordinary

differential equations (ODEs), where time is the only independent variable allowed to

change. The states are held at their initial values, because the goal of the method is to

 11

approximate controls and control sensitivities that are valid at the initial time, i.e., for the

initial conditions.

Next, the terminal boundary conditions for the partial derivatives of the cost-to-

go must be established. This procedure can vary, depending on the type of terminal

boundary conditions applied to the system, i.e., whether or not hard terminal constraints

are present. The developments of this section assume an absence of hard terminal

constraints. Taking this into account, the cost-to-go function at the final time is defined

as:

 𝐽 𝑡𝑓 = 𝜙 𝑥0 (2.2)

where 𝜙 𝑥0 is the final state penalty function with the states fixed at their initial

conditions. The necessary boundary conditions for the partial derivatives of the cost-to-

go are found by differentiating Equation (2.2) with respect to the states, as shown below.

 𝐽𝑥 𝑡𝑓 = 𝜙𝑥 𝑥0 , 𝐽𝑥𝑥 𝑡𝑓 = 𝜙𝑥𝑥 𝑥0 , … (2.3)

 After the PDEs have been integrated backwards in time, a large set of partial

derivatives of the cost-to-go with respect to the states is obtained. These values are used

in two different ways. The first-order partial derivatives represent the system costates, as

defined by Equation (1.19). The higher-order partial derivatives of the cost-to-go

function represent the sensitivities of the costates with respect to changes in the states.

These sensitivities are used to adjust the costates in the event of a variation in the states

(δx). This is accomplished by expanding 𝐽𝑥 in a Taylor series about δx as:

 λn = 𝐽𝑥 + 𝐽𝑥𝑥 𝛿𝑥 +
1

2!
𝐽𝑥𝑥𝑥 𝛿𝑥2 +

1

3!
𝐽𝑥𝑥𝑥𝑥 𝛿𝑥3 + ⋯ (2.4)

where λn represents the adjusted costates.

 12

 A significant drawback to this method is that the partial derivatives of the cost-

to-go obtained from the back integration are only valid at the initial time. Therefore, the

partial derivatives cannot be used as a form of feedback control valid for the duration of

the trajectory. Instead, they must only be used to compute and adjust the costates at the

initial time. After this initial computation, the TPBVP must be solved open-loop, by

integrating the Euler-Lagrange equations to the terminal conditions. This drawback is a

consequence of integrating the PDEs as ODEs, via the method of lines.

 The advantage to this method is twofold. First, the optimal initial costates needed

to solve the TPBVP are obtained without iteration; whereas, other solution methods

require an unknown number of iterations to converge on the optimal solution. Secondly,

the HJB approximation method automatically produces costate sensitivities, which are

used to immediately compute guidance solutions about the nominal trajectory.

2.2 Extension to Terminally Constrained Problems

 For problems subject to hard terminal constraints, additional steps must be taken

to approximate the HJB equation. In such a problem, the cost-to-go function takes the

form:

 𝐽 𝑥, 𝜈, 𝑡 = 𝜙 𝑥 𝑡𝑓 + 𝜈𝑇𝜓 𝑥 𝑡𝑓 + 𝐿 𝑥, u, 𝑡
𝑡𝑓
𝑡

𝑑𝜏 (2.5)

Clearly, this form of the cost-to-go function has a dependence on both the states and the

terminal constraint Lagrange Multipliers (𝜈). Furthermore, the proper values of 𝜈 are

needed to initialize the integration of the cost-to-go function. Hence, a procedure for the

 13

proper selection of 𝜈 must be devised. The procedure is centered on satisfying the

following condition for optimality [8]:

 𝐽𝜈
∗ 𝑡 = 𝜓 𝑥 𝑡𝑓 = 0 (2.6)

where 𝐽𝜈
∗(𝑡) is the optimal partial derivative of the cost-to-go with respect to 𝜈. Although

this condition is valid throughout the optimal trajectory, it must be enforced at the initial

time. Again, this is because 𝐽𝜈 is only accurate at the initial time when integrated using

the method of lines. The differential equations governing 𝐽𝜈 are derived by differentiating

the HJB equation with respect to 𝜈, as follows:

 −
𝜕𝐽𝜈

𝜕𝑡
= 𝐻𝜈 𝑥, 𝐽𝑥 , 𝐽𝑥𝜈 , 𝑡 (2.7)

Again, the cycle of dependency on the next higher order partial derivatives will occur in

these PDEs. However, most of these partial derivatives will be a mixture of partial

derivatives with respect to both 𝑥 and 𝜈. Because of this, it is convenient to treat each 𝜈

as an additional state.

 As previously mentioned, values of 𝜈 are needed to start the integration.

However, the integration must be completed before the proper values of 𝜈 can be found.

To resolve this causality dilemma, an iterative procedure is implemented, beginning with

a guess for the values of 𝜈. The partial derivatives are then integrated via the method of

lines, resulting in the initial time values of the partial derivatives. Next, 𝐽𝜈 𝑡0 is

expanded in a Taylor series about 𝛿𝜈 as follows.

 𝛿𝐽𝜈 𝑡0 = 𝐽𝜈𝜈 𝑡0 𝛿𝜈 +
1

2!
𝐽𝜈𝜈𝜈 𝑡0 𝛿𝜈

2 +
1

3!
𝐽𝜈𝜈𝜈𝜈 𝑡0 𝛿𝜈

3 + ⋯ (2.8)

 14

A reversion of series is performed on the above equation to provide the proper 𝛿𝜈 values

to satisfy Equation (2.8). Appendix B provides a description of the implementation of

this reversion of series. The values of 𝛿𝜈 calculated in the series reversion are then added

to the previous values of 𝜈. The updated values of 𝜈 are used to update the final time

boundary conditions and the process is repeated. The number of iterations needed for

convergence depends on the nonlinearity of the system, the series reversion order, and

the accuracy of the initial guess.

 Finally, additional steps must be taken to generate neighboring optimal

trajectories for variations in the initial states (𝛿𝑥). In the terminally constrained problem,

a variation in the initial states causes a variation in the terminal constraint Lagrange

multipliers (𝛿𝜈). The adjusted initial costate (λ𝑛) is found by expanding the costates in a

Taylor series about 𝛿𝑥 and 𝛿𝜈 as follows.

 λ𝑛 = 𝐽𝑥 + 𝐽𝑥𝑥𝛿𝑥 + 𝐽𝑥𝜈𝛿𝜈 +
1

2!
𝐽𝑥𝑥𝑥 𝛿𝑥

2 + 𝐽𝑥𝑥𝜈 𝛿𝑥𝛿𝜈 +
1

2!
𝐽𝑥𝜈𝜈 𝛿𝜈

2 + ⋯ (2.9)

Before this calculation is performed, the proper values of 𝛿𝜈 must be calculated through

a Taylor series about the state variations:

 𝛿𝜈 = 𝜈𝑥𝛿𝑥 +
1

2!
𝜈𝑥𝑥 𝑡0 𝛿𝑥

2 +
1

3!
𝜈𝑥𝑥𝑥 𝛿𝑥

3 + ⋯ (2.10)

where 𝜈𝑥 , 𝜈𝑥𝑥 , and 𝜈𝑥𝑥𝑥 are the first three orders of partial derivatives of the Lagrange

multipliers with respect to the states. To find these partial derivatives, the Lagrange

Implicit Function Theorem [17] is applied to the following condition.

 𝐽𝜈(𝑡0) = 0 (2.11)

 15

The partial derivative of the cost-to-go with respect to 𝜈 is implicitly defined as a

function of both 𝑥 and 𝜈. Additionally, the terminal constraint Lagrange multiplier is

implicitly defined as a function of 𝑥. Taking these functional relationships into account,

successive total derivatives of 𝐽𝜈(𝑡0) with respect to 𝑥 are split into partial derivatives.

The 1
st
 and 2

nd
order expressions resulting from this process are shown below.

 𝐽𝜈𝑥 𝑡0 + 𝐽𝜈𝜈 𝑡0 ∙ 𝜈𝑥 = 0 (2.12)

 𝐽𝜈𝑥𝑥 𝑡0 + 2 ∙ 𝐽𝜈𝜈𝑥 𝑡0 ∙ 𝜈𝑥 + 𝐽𝜈𝜈𝜈 𝑡0 ∙ 𝜈𝑥 ∙ 𝜈𝑥 + 𝐽𝜈𝜈 𝑡0 ∙ 𝜈𝑥𝑥 = 0 (2.13)

These equations are inverted to solve for the necessary partial derivatives, 𝜈𝑥 and 𝜈𝑥𝑥 . A

more detailed description of this process is given in Appendix E.

2.3 Extension to Free Final Time Problems

 Some optimal control problems are formulated with a free final time. In such a

problem, the final time becomes another variable to be optimized. As a result, these

problems are subject to another terminal boundary condition [19].

 𝐻 𝑡𝑓 +
𝜕𝜙

𝜕𝑡𝑓
+

𝜕𝜓

𝜕𝑡𝑓

𝑇
𝜈 = 0 (2.14)

For the class of optimal control problems considered here, it is assumed that the penalty

function and terminal constraints have no explicit dependence on time. Therefore, the

condition 𝐻 𝑡𝑓 = 0 must be satisfied to achieve optimality. Furthermore, Section 1.2

showed that the total derivative of the Hamiltonian is constant throughout the trajectory

for problems formulated with no explicit time dependence. Combining these two

conditions, the Hamiltonian must be equal to zero throughout the optimal trajectory.

 16

 This condition for optimality is applied to the HJB approximation method in the

following manner. The total time derivative of the Hamiltonian is separated into partial

derivatives as:

𝑑𝐻

𝑑𝑡
=

𝜕𝐻

𝜕𝑡
+

𝜕𝐻

𝜕𝑥

𝑇
𝑥 = 0 (2.15)

This equation is rearranged to give the partial time derivative of the Hamiltonian as

follows.

 −
𝜕𝐻

𝜕𝑡
=

𝜕𝐻

𝜕𝑥

𝑇
𝑥 (2.16)

This equation is added to the set of PDEs to be integrated via the method of lines. As

with the other PDEs, the state terms in this equation must be fixed at their initial values

during the integration.

To begin the solution process, a final time must be chosen for the integration

routine. After the system is integrated, the optimal time is found by observing the time at

which the Hamiltonian equals zero. If the Hamiltonian never equals zero, then optimal

time is greater than the chosen integration time. However, some optimal control

problems, particularly those with a minimum-fuel performance index, don’t have a finite

optimal time. In such a problem, the Hamiltonian will approach zero as time approaches

infinity.

 17

2.4 Scalar, Linear Example

The following example demonstrates the HJB approximation methodology for a

single state, linear optimal control problem with a quadratic performance index. The

optimal control problem is solved in three different forms:

1) Fixed Final Time Problem

2) Terminally Constrained, Fixed Final Time Problem

3) Free Final Time Problem

All of the methodology developed in Sections 2.1, 2.2, and 2.3 will be demonstrated

with these three forms of the linear quadratic problem.

2.4.1 Fixed Final Time Problem

 Minimize:

 𝒥 =
1

2
𝑊 𝑥 𝑡𝑓 − 𝑥𝑓

2
+

1

2
 𝑥2 + 𝑢2

𝑡𝑓
0

𝑑𝑡 (2.17)

Subject to:

 𝑥 = 𝑥 + 𝑢 (2.18)

 𝑥 0 = 1 , 𝑡𝑓 = 2 (2.19)

where 𝑊 is a final state weight and 𝑥𝑓 is the desired final state value. The values of 𝑊

and 𝑥𝑓 used in this problem are given below.

 𝑊 = 100 , 𝑥𝑓 = 4 (2.20)

 To begin the solution process, the problem is transformed into a TPBVP. First, the

Hamiltonian is constructed as

 18

 𝐻 =
1

2
 𝑥2 + 𝑢2 + λ 𝑥 + 𝑢 (2.21)

where λ is the costate. Differentiating the Hamiltonian with respect to 𝑢 provides a

relationship between the costate and control.

 𝑢 = −λ (2.22)

This relationship is used to remove the control terms from the Hamiltonian. Next, first-

order necessary conditions give the Euler-Lagrange equations and the final time

boundary condition for the costate as:

 𝑥 = 𝑥 − λ (2.23)

 λ = −𝑥 − λ (2.24)

 λ 𝑡𝑓 = 𝑊 𝑥 𝑡𝑓 − 𝑥𝑓 (2.25)

Replacing all of the costate terms in the Hamiltonian with 𝐽𝑥 , the HJB equation is

defined as:

 −
𝜕𝐽

𝜕𝑡
=

1

2
𝑥2 −

1

2
𝐽𝑥

2 + 𝑥 𝐽𝑥 (2.26)

Taking successive first and second order partial derivatives of the HJB equation with

respect to 𝑥 gives the following scalar differential equations.

 −
𝜕𝐽𝑥

𝜕𝑡
= 𝑥 − 𝐽𝑥 𝐽𝑥𝑥 + 𝐽𝑥 + 𝑥 𝐽𝑥𝑥 (2.27)

 −
𝜕𝐽𝑥𝑥

𝜕𝑡
= 1 − 𝐽𝑥𝑥

2 + 2𝐽𝑥𝑥 (2.28)

Because this is a linear quadratic problem, all of the partial derivates higher than 2
nd

order will naturally be equal to zero for all time. Therefore, no approximation of the HJB

equation is necessary and the values of 𝐽𝑥 and 𝐽𝑥𝑥 will be solved for exactly.

Additionally, Equation (2.28) is analogous to the Riccati Equation, which is given as:

 19

 −𝑆 = 𝑄 − 𝑆𝐵𝑅−1𝐵T𝑆 + 𝐴T𝑆 + 𝑆𝐴 (2.29)

where 𝑆 is equivalent to 𝐽𝑥𝑥 , and the variables 𝐴, 𝐵, 𝑄, and 𝑅 all have a constant value of

one. Because this equation is independent of state terms, the values of 𝐽𝑥𝑥 are valid

throughout the integration.

 The value of the cost-to-go function at the final time is given by:

 𝐽 𝑡𝑓 =
1

2
𝑊 𝑥 𝑡𝑓 − 𝑥𝑓

2
 (2.30)

The boundary conditions for 𝐽𝑥 and 𝐽𝑥𝑥 are derived by differentiating Equation (2.30)

with respect to 𝑥, and fixing 𝑥 at the initial condition.

 𝐽𝑥 𝑡𝑓 = 𝑊 𝑥 0 − 𝑥𝑓 (2.31)

 𝐽𝑥𝑥 𝑡𝑓 = 𝑊 (2.32)

Finally, the differential equations governing 𝐽, 𝐽𝑥 , and 𝐽𝑥𝑥 are integrated via the method

of lines. Integration is performed in MATLAB, using a 4
th

 order variable step Runge-

Kutta routine.

The state and costate (𝐽𝑥) results of this integration are represented by the dashed

lines in Figure 2.1. For comparison purposes, the optimal open-loop solution to the

TPBVP is represented by the solid lines. As expected, the value of 𝐽𝑥 at the initial time is

equal to the optimal initial costate, meaning that the correct initial costate was computed

by the approximation method. Additionally, the figure shows that the condition 𝐽𝑥 = λ∗

is only accurate at the points on the trajectory where 𝑥∗ = 𝑥0.

 20

Figure 2.1 Approximation method results and optimal open-loop solutions to the

linear problem.

Figure 2.2 shows neighboring optimal trajectories, approximated about the

nominal solution, for the linear quadratic system. The neighboring trajectories are

created by integrating the Euler-Lagrange equations from neighboring initial states

(𝑥∗ + 𝛿𝑥) and costates (𝜆∗ + δλ). To begin the procedure, the initial states are perturbed

over a range of ±1. Then, the corresponding initial costates are perturbed using:

 δλ = 𝐽𝑥𝑥𝛿𝑥 (2.33)

An accurate value of 𝐽𝑥𝑥 ensures the neighboring trajectory is optimal.

 21

Figure 2.2 Neighboring optimal trajectories for the linear problem, considering

initial state variations.

2.4.2 Terminally Constrained, Fixed Final Time Problem

Minimize:

 𝒥 =
1

2
 𝑥2 + 𝑢2

𝑡𝑓
0

𝑑𝑡 (2.34)

Subject to

 𝑥 = 𝑥 + 𝑢 (2.35)

 𝜓 𝑡𝑓 = 𝑥 𝑡𝑓 − 𝑥𝑓 (2.36)

In this version of the linear problem, a hard terminal constraint is applied instead of a

final state penalty function. If the problem is solved accurately, the terminal constraint

will be satisfied, ensuring that the final state will exactly reach its desired final value

(𝑥𝑓).

 22

The addition of the terminal constraint has no effect on the HJB equation
†
, but

does effect the cost-to-go function, which is now dependant on 𝑥 and 𝜈. Therefore, the

HJB equation must now be differentiated with respect to both 𝑥 and 𝜈. This

differentiation produces the following first and second order equations:

 −
𝜕𝐽𝑥

𝜕𝑡
 = 𝑥 − 𝐽𝑥 𝐽𝑥𝑥 + 𝐽𝑥 + 𝑥 𝐽𝑥𝑥 (2.37)

 −
𝜕𝐽𝜈

𝜕𝑡
 = −𝐽𝑥 𝐽𝑥𝜈 + 𝑥 𝐽𝑥𝜈 (2.38)

 −
𝜕𝐽𝑥𝑥

𝜕𝑡
= 1 − 𝐽𝑥𝑥

2 + 2𝐽𝑥𝑥 (2.39)

 −
𝜕𝐽𝑥𝜈

𝜕𝑡
= −𝐽𝑥𝜈 𝐽𝑥𝑥 + 𝐽𝑥𝜈 (2.40)

 −
𝜕𝐽𝜈𝜈

𝜕𝑡
= −𝐽𝑥𝜈 𝐽𝑥𝜈 (2.41)

The terminal boundary conditions for all five first and second order partial derivatives

are given as:

 𝐽𝑥 𝑡𝑓 = 𝜈 , 𝐽𝜈 𝑡𝑓 = 𝑥 0 − 𝑥𝑓 (2.42)

 𝐽𝑥𝑥 𝑡𝑓 = 0 , 𝐽𝑥𝜈 𝑡𝑓 = 1 , 𝐽𝜈𝜈 𝑡𝑓 = 0 (2.43)

 Finally, the process to solve the terminally constrained optimal control problem

requires iterations. A list of the steps required to solve the problem is given below.

1) Guess a value for 𝜈.

2) Integrate the 1
st
 and 2

nd
 order PDEs via the method of lines.

3) Update the value of 𝜈 with the following equation:

 𝜈𝑖+1 = 𝜈𝑖 − 𝐽𝜈𝜈
−1𝐽𝜈 (2.44)

4) Repeat Steps 2 and 3 until the value of 𝜈 converges.

†
 Consult Appendix A for an explanation of why the HJB equation is unaffected by terminal constraints

 23

Because this problem is linear, the proper value of 𝜈 will be obtained on the first

iteration.

 The results for this solution process can be seen in Figure 2.3. Again, the HJB

approximation results are plotted against the optimal solution to the TPBVP. The figure

shows the values of 𝐽𝑥 obtained on both iterations. In the first iteration, the simulation

fails to meet the condition 𝐽𝑥 = λ∗ at any point along the trajectory. This is not

surprising, given that the value of 𝜈 used to start the integration was inaccurate. In the

second iteration, the proper value of 𝜈 was used to start the integration. As a result, the

proper value of 𝐽𝑥 is obtained at the initial time. The condition 𝐽𝑥 = λ∗ is also satisfied at

another point along the trajectory. The significance of this intersection point will be

discussed in the next section.

Figure 2.3 Approximation method results and optimal open-loop solutions for the

terminally constrained, linear problem.

 24

Figure 2.4 shows a field of extremals, about the nominal solution. Again, these

neighboring solutions are generated by varying the initial state over a range of ±1. Using

the second order cost-to-go sensitivities, variations in the terminal constraint Lagrange

multipliers and initial costates are computed as a function of the initial state variations,

as shown below.

 𝛿𝜈 = −𝐽𝜈𝜈
−1𝐽𝜈𝑥𝛿𝑥 (2.45)

 𝛿λ = 𝐽𝑥𝑥𝛿𝑥 + 𝐽𝑥𝜈𝛿𝜈 (2.46)

After the initial states and costates are varied, the Euler-Lagrange equations are

integrated to the terminal conditions, providing the neighboring optimal trajectories.

Figure 2.4 Neighboring optimal trajectories for the terminally constrained linear

problem, considering initial state variations.

 25

2.4.3 Free Final Time Problem

The free final time problem is analogous to the problem posed in Section 2.4.1,

except for the unknown final time. The time history of the Hamiltonian will provide a

condition for optimizing the final time. The differential equation governing the

Hamiltonian is given as:

 −
𝜕𝐻

𝜕𝑡
= 𝑥 − 𝐽𝑥 𝐽𝑥𝑥 + 𝐽𝑥 + 𝑥 𝐽𝑥𝑥 𝑥 − 𝐽𝑥 (2.47)

The terminal boundary condition for the Hamiltonian is given as:

 𝐻 𝑡𝑓 =
1

2
 𝑥0

2 +
1

2
 𝐽𝑥 𝑡𝑓

2
− 𝑥0 𝐽𝑥 𝑡𝑓 (2.48)

A final time of 2 seconds is used to integrate the differential equations. The cost-to-go

and partial derivative results of the approximation method are analogous to those

obtained in the fixed final time version of the problem. The difference between the two

solutions will be the time at which the results are used. Instead of using the values at

time 𝑡 = 0, the values at some other time along the back integration will provide the

optimal solution.

Figure 2.5 shows both the HJB approximation method results and the optimal

open-loop solution. In the figure, the approximation method results are represented by

the dashed line, and the optimal solution is represented by the solid line. From the figure,

the condition for optimizing the final time is met at 1.023 seconds. Not only is the

Hamiltonian equal to zero at this time, but the cost-to-go is also a minimum. Thus, the

optimal final time is 0.977 seconds (𝑡𝑓
∗ = 2 − 1.023). The optimal open-loop solution is

obtained by integrating the Euler-Lagrange equations from 1.023 seconds forward to 2

 26

seconds, using 𝑥0 and 𝐽𝑥 1.023 . As the figure shows, 𝐽𝑥 1.023 was the proper optimal

initial costate for the optimal time problem.

Figure 2.5 Approximation method results and optimal open-loop solutions to the

free final time, linear problem.

The optimal time problem demonstrates an important point about the

approximation method results, which has been ignored until now. Although the results

are only valid at one point for a particular problem, each point is valid for a different

optimal control problem. In other words, the approximation method results provide the

initial costates needed to solve the open-loop optimal control problem formulated with

 27

any final time ranging from 𝑡0 to 𝑡𝑓 . In this manner, the method provides a means of

generating a field of extremal controls, for variations in the problem time. This point is

illustrated in Figure 2.6, where the problem time is varied over a range of ±0.5 seconds

about the optimal. As the figure shows, the optimal initial costate for each extremal path

is located on the approximation method results (dashed line).

 Figure 2.6 Neighboring optimal trajectories for the linear problem, considering

variations in the problem time.

 28

2.5 Scalar, Nonlinear Example

Minimize:

 𝒥 =
1

2
𝑊 𝑥 𝑡𝑓 − 𝑥𝑓

2
+

1

2
 𝑥2 + 𝑢2

𝑡𝑓
0

𝑑𝑡 (2.49)

Subject to:

 𝑥 = 𝑥 + 𝜀𝑥3 + 𝑢 (2.50)

 𝑥 0 = 1 , 𝑡𝑓 = 2 (2.51)

where 𝜀 is a parameter that is adjusted to change the nonlinearity of the system. The

penalty function parameters used to simulate this problem are identical to those given for

the linear problem.

 𝑥𝑓 = 4 , 𝑊 = 100 (2.52)

The HJB equation for the nonlinear problem is constructed as follows.

 −
𝜕𝐽

𝜕𝑡
=

1

2
𝑥2 −

1

2
𝐽𝑥

2 + 𝑥 𝐽𝑥 + 𝜀𝑥3𝐽𝑥 (2.53)

Because this is a nonlinear problem, an unknown number of partial derivatives of the

cost-to-go are needed to accurately approximate the HJB equation. The appropriate order

of approximation depends on the nonlinearity of the system, i.e., the chosen value of 𝜀.

To illustrate this, Figure 2.7 shows the error in the initial costate (the difference between

the optimal and approximated initial costates), calculated using 3
rd

 through 6
th

 order

approximations, for increasing values of 𝜀. Two main conclusions can be drawn from the

figure. First, the accuracy of the approximation is reduced as the nonlinearity of the

system increases, for all orders of approximation. Secondly, each additional order of

approximation further improves the accuracy of the solution over the entire range of 𝜀.

 29

Figure 2.7 Initial costate error as a function of 𝜺, for 3
rd

 through 6
th

 order

approximations.

 30

3. NUMERICAL EXAMPLES

The following section applies the HJB approximation methodology to nonlinear,

multiple state, Aerospace-oriented optimal control problems. Section 3.1 provides an

overview of the numerical implementation of the approximation method. Section 3.2

presents a solution for the optimal stabilization of a spacecraft. Finally, Section 3.3

presents a highly nonlinear, minimum-fuel, co-planar orbit transfer problem.

3.1 Numerical Implementation

 The Aerospace-oriented problems addressed in this section represent a significant

increase in dimensionality and complexity. Because of this, computer aided

differentiation is utilized to greatly reduce the effort required for the numerical

implementation of the approximation method. Computer aided differentiation is

typically accomplished using either symbolic or automatic differentiation. For this

research, both methods of differentiation were investigated.

First, a symbolic differentiation tool was developed in Matlab, using the Maple

symbolic toolbox for Matlab [21]. The symbolic routine is employed to differentiate the

HJB equation to an arbitrary order, with respect to an arbitrary number of independent

variables. This produces a large volume of symbolic equations, which are automatically

stored in C files. The C files are then dynamically linked to Matlab as Executable files

(MEX-files) [22]. Storing the symbolic equations in C files offers two benefits. First, the

symbolic code is stored in an optimized structure within the C file, which reduces the

 31

size of the file. Secondly, the C files are compiled before simulation and run much faster

than regular Matlab M-files. This procedure is largely automated, eliminating most of

the burden normally associated with symbolic differentiation. The resulting C file

provides the differential equations needed to integrate the cost-to-go and its partial

derivatives via the method of lines. All integrations are performed in MATLAB, using a

4
th

 order variable step Runge-Kutta integration routine.

For problems formulated with state-space dimensions of two or more, the

computational efficiency of the approximation method is greatly improved by exploiting

the symmetry found in the tensor structured orders of partial derivatives of the cost-to-go

function. Therefore, the aforementioned symbolic differentiation routine accounts for the

symmetrical properties by only generating differential equations for unique partial

derivatives of the cost-to-go function. A more detailed discussion of the properties of the

tensor structured orders of partial derivatives, and the measures taken to handle them in

Matlab is given in Appendix C.

Next, two automatic differentiation approaches were investigated. Automatic

differentiation works by simultaneously deriving and evaluating partial derivatives in the

background, during the integration routine. In the first approach considered, an Object-

Oriented Cartesian Embedding Algorithm (OCEA) [23], developed by Dr. James Turner,

was implemented in FORTRAN. OCEA operates by automatically invoking the chain

rule of calculus. In its current form, OCEA is only capable of generating 1
st
 through 4

th

order partial derivatives. In the second approach considered, automatic differentiation

was performed using differential algebraic techniques within the COSY Infinity system

 32

[24], developed by Dr. Martin Berz. Unlike OCEA, COSY Infinity is capable of

performing differentiation to an arbitrary order.

When applied to moderately non-linear problems, all three approaches provided a

fast and efficient means of solving the HJB approximation method. However, several of

the examples presented in this research represent highly non-linear problems for which

extremely high orders of differentiation are necessary. For these problems, the symbolic

differentiation routine was found to be the best approach. OCEA was not utilized due to

its inability to provide derivatives higher than 4
th

 order. COSY Infinity was not selected

because the speed and performance of the program tended to decline at high orders of

approximation. Therefore, all of the examples presented in this thesis utilize the

symbolic differentiation routine in Matlab.

3.2 Spacecraft Stabilization Problem

 This section presents the optimal stabilization of a tumbling spacecraft [25]. The

optimal control problem is stated as:

Minimize:

 𝒥 =
1

2
 𝜔𝑇 𝐼 𝜔 + 𝑢𝑇𝑢

𝑡𝑓
0

 𝑑𝜏 (3.1)

Subject to:

 𝜔 = 𝐼 −1 𝑢 − 𝜔 𝐼 𝜔 (3.2)

 𝜓 𝑡𝑓 = 𝜔 𝑡𝑓 (3.3)

 33

where 𝜔 = ω1, ω2 , ω3
T ∈ ℜ3 is a vector of angular velocities, 𝑢 ∈ ℜ3 is a vector of

control torques, and 𝐼 ∈ ℜ3×3 is the moment of inertia matrix. Additionally, 𝜔 ∈

ℜ3×3 is a vector cross product matrix of angular velocities [26], which is given as:

 𝜔 =
0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0
 (3.4)

The moment of inertia (kg-m
2
) for this asymmetric spacecraft is represented in the

principal axis system as [25]:

 𝐼 =
86.24 0 0

0 85.07 0
0 0 113.59

 (3.5)

The initial angular velocities and final time for the problem are given as:

 𝜔 = −0.4 0.8 2 𝑇 , 𝑡𝑓 = 2 (3.6)

The Hamiltonian of this system is constructed as:

 𝐻 =
1

2
 𝜔𝑇 𝐼 𝜔 + 𝑢𝑇𝑢 + λT 𝐼 −1 𝑢 − 𝜔 𝐼 𝜔 (3.7)

where λ = λω1
, λω2

, λω3

T
∈ ℜ3 is a vector of costates. Differentiating the Hamiltonian

with respect to the control produces the following linear relationship.

 𝑢 = − 𝐼 −1λ (3.8)

This relationship is used to remove 𝑢 from the Hamiltonian. Next, the HJB equation is

defined as:

 −
𝜕𝐽

𝜕𝑡
=

1

2
𝜔𝑇 𝐼 𝜔 − 𝐽𝜔

𝑇 𝐼 −2𝐽𝜔 − 𝐽𝜔
T 𝐼 −1 𝜔 𝐼 𝜔 (3.9)

 34

where 𝐽𝜔 ∈ ℜ3 is a vector of partial derivatives of the cost-to-go with respect to 𝜔. For

this problem, the cost-to-go is defined as:

 𝐽 = 𝜈𝑇𝜔 𝑡𝑓 +
1

2
 𝜔𝑇 𝐼 𝜔 + 𝑢𝑇𝑢

𝑡𝑓
𝑡

 𝑑𝜏 (3.10)

where 𝜈 ∈ ℜ3 is a vector of terminal constraint Lagrange multipliers. The most efficient

way to deal with the Lagrange multipliers is to append them as additional states. Thus,

the first two partial derivatives of the cost-to-go with respect to the “states” are given as:

 𝐽𝑥 =
𝐽𝜔
𝐽𝜈

 , 𝐽𝑥𝑥 =
𝐽𝜔𝜔 𝐽𝜔𝜈

𝐽𝜔𝜈 𝐽𝜈𝜈
 (3.11)

To accurately solve the TPBVP, the HJB equation is approximated to the 5
th

 order. At

the 5
th

 order, there are 462 unique partial derivatives of 𝐽 with respect to 𝜔 and 𝜈.

Therefore, 462 unique PDEs are derived using the symbolic differentiation routine. The

conditions needed to start the integration are found by differentiating the cost-to-go at

the final time with respect to 𝜔 and 𝜈, and fixing the angular velocities at their initial

conditions. The only non-zero boundary conditions are:

 𝐽 = 𝜈𝑇𝜔 0 , 𝐽𝜔 =

𝜈1

𝜈2

𝜈3

 , 𝐽𝜈 =

𝜔1 0

𝜔2 0

𝜔3 0
 , 𝐽𝜔𝜈 =

1 0 0
0 1 0
0 0 1

 (3.12)

Because the proper values of 𝜈 are unknown, and iterative procedure is implemented. At

each step, a fourth order series reversion process is applied to update 𝜈. After three

iterations (starting from 𝜈 = 0,0,0 T), the values of 𝜈 converge on the approximate

solution. The results from each iteration, along with the optimal solution, are shown in

Table 3.1.

 35

Table 3.1 Spacecraft stabilization results

Iteration 𝜈1 𝜈2 𝜈3 λω1
 0 λω2

 0 λω3
 0

1 -2992.7 1447.2 12819.9 -67.9 134.0 449.1

2 -2987.8 1434.0 12803.2 -1507.5 2955.8 13065.4

3 -2987.8 1434.1 12803.3 -1509.2 2943.4 13053.3

Optimal -2986.4 1430.6 12802.9 -1510.5 2939.9 13054.2

 The table shows that even after convergence, error exists in both Λ(0) and 𝜈.

This error stems from the truncation of the partial derivatives at the 5
th

 order. To observe

the effect this error has on the solution of the TPBVP, the problem is also solved using

the optimal initial costates. The state and costate error between these two solutions is

shown in Figure 3.1. As the Euler-Lagrange equations are integrated forward in time, the

initial costate error propagates throughout the trajectory.

Figure 3.1 State and costate error for the terminally constrained, 5
th

 order

approximate spacecraft stabilization solution.

 36

The motivation behind enforcing hard terminal constraints on the trajectory is to

achieve extremely accurate results. However, due to the lack of feedback control scheme

and the error associated with calculating the terminal constraint Lagrange multipliers,

the approximation method fails to exactly satisfy the hard terminal constraints.

Furthermore, the hard terminal constraint approach requires the full set of PDEs to be

integrated for each iteration. This begs the question: Is the implementation burden of the

terminal constraint method worth the inexact results it provides? To answer this

question, the problem is re-solved without hard terminal constraints. Instead, a final state

penalty function (soft terminal constraint) is used to stabilize the spacecraft. The final

state penalty function takes the form:

 𝜙 𝑥 𝑡𝑓 =
1

2
𝜔T𝑊𝜔 (3.13)

where 𝑊 ∈ ℜ3×3 is a diagonal matrix of final state weights. The benefit of using the

penalty function method is twofold. First, all dependency of the cost-to-go function on

the terminal constraint Lagrange multipliers is eliminated. Because of this, the 5
th

 order

approximation method contains only 56 unique partial derivatives, instead of 462.

Additionally, the solution process will no longer be iterative. Instead, a fixed number of

equations are integrated one time to produce the optimal solution.

 The effectiveness of the penalty function method is determined by three

parameters: the nonlinearity of the system, the order of approximation applied to the

HJB equation, and the size of the final state weight. The nonlinearity of the system is

determined by the system dynamics and boundary conditions. The order of

approximation has already been chosen (to match the order used in the terminal

 37

constraint method). This leaves only the size of the final state weights to be determined.

To simplify the selection process, uniform weights are applied. The value of these

weights is chosen to minimize the final angular velocities (maximize the stabilization

performance). The variation in the final angular velocities is shown as a function of the

weight values in Figure 3.2. The figure shows that as the weight values are increased, the

effectiveness of the penalty function is increased. In fact, at extremely high final state

weighting values, the penalty function method outperforms the terminal constraint

method.

Figure 3.2 Final angular velocity as a function of the final state weight.

 38

Based on Figure 3.2, the final state weight values are chosen to be 10
10

. The final

state weights in this problem are set very high because the problem was not formulated

with non-dimensional variables. In general, it is best to scale the variables such that they

are bounded by ±1. From the approximation method, the initial costates are calculated

as:

 Λ 0 = −1510.39 , 2939.99 , 13053.78 (3.14)

These initial costates are much closer to the optimal values, than those obtained in the

terminally constrained solution method. However, some approximation error still exists

in this method. To observe the propagation of the approximation error through this

solution, the difference between the optimal and approximate solutions is shown in

Figure 3.3.

Figure 3.3 State and costate error for the penalized, 5
th

 order approximate

spacecraft stabilization solution

 39

Overall, it is much more advantageous to solve this problem using the penalty

function approach in place of hard terminal constraints. The penalty function approach is

non-iterative, requires less derivation and integration, and can produce accurate results.

The hard terminal constraint approach requires an unknown number of iterations to solve

for the proper values of the terminal constraint Lagrange multipliers. Each iteration

requires the integration of the full set of PDEs via the method of lines. This repetitive

integration of a large set of PDEs poses an unfavorable computational burden.

Therefore, the penalty function approach will be applied to solve the terminally

constrained problems found in the remainder of this thesis.

3.3 Orbit Transfer Problem

 This section presents the solution to a minimum-fuel, co-planar orbit transfer

problem. Two distinct cases are presented to illustrate the approximation method. The

system is defined in a heliocentric reference frame, and the dynamics are described in

polar coordinates by the following equations [27].

 𝑟 = 𝑣 (3.15)

 𝑣 =
𝑤2

𝑟
−

𝜇

𝑟2 + 𝑢𝑟 (3.16)

 𝑤 = −
𝑣𝑤

𝑟
+ 𝑢𝑡 (3.17)

where 𝑟 is the radial distance from the sun, 𝑣 is the radial velocity, 𝑤 is the tangential

velocity, 𝑢𝑟 and 𝑢𝑡 are the radial and tangential thrust terms, and 𝜇 is the gravitational

constant. The problem is non-dimensionalized such that the value of 𝜇 is 1. A minimum-

fuel performance index is given as

 40

 𝒥 =
1

2
 𝑢𝑟

2 + 𝑢𝑡
2

𝑡𝑓
𝑡0

 𝑑𝜏 (3.18)

The problem is subject to the following terminal constraints.

 𝜓 𝑡𝑓 =

𝑟 𝑡𝑓 − 𝑟𝑓

𝑣 𝑡𝑓 − 𝑣𝑓

𝑤 𝑡𝑓 − 𝑤𝑓

 (3.19)

where 𝑟𝑓 , 𝑣𝑓 , and 𝑤𝑓 are the desired values of the final states.

 To begin the developments, the TPBVP is constructed. As a first step, the

Hamiltonian is defined as follows.

 𝐻 =
1

2
 𝑢𝑟

2 + 𝑢𝑡
2 + 𝜆𝑟 𝑣 + 𝜆𝑣

𝑤2

𝑟
−

𝜇

𝑟2 + 𝑢𝑟 + 𝜆𝑤 −
𝑣𝑤

𝑟
+ 𝑢𝑡 (3.20)

Because the system is affine in the control, differentiating the Hamiltonian with respect

to 𝑢𝑟 and 𝑢𝑡 provides the following linear relationships.

 𝑢𝑟 = −𝜆𝑣 , 𝑢𝑡 = −𝜆𝑤 (3.21)

The costate differential equations are derived from the first-order necessary conditions

for optimality as:

 𝜆 𝑟 = 𝜆𝑣
𝑤2

𝑟2 −
2𝜇

𝑟3 − 𝜆𝑤
𝑣𝑤

𝑟2 (3.22)

 𝜆 𝑣 = −𝜆𝑟 + 𝜆𝑤
𝑤

𝑟
 (3.23)

 𝜆 𝑤 = −𝜆𝑣
2𝑤

𝑟
 + 𝜆𝑤

𝑣

𝑟
 (3.24)

Finally, the HJB equation is constructed as:

 −
𝜕𝐽

𝜕𝑡
= −

1

2
 𝐽𝑣

2 + 𝐽𝑤
2 + 𝐽𝑟 𝑣 + 𝐽𝑣

𝑤2

𝑟
−

𝜇

𝑟2 + 𝐽𝑤 −
𝑣𝑤

𝑟
 (3.25)

The HJB equation is approximated by differentiating the HJB equation a finite number

of times. The number of differentiations needed to accurately solve the problem is

 41

dependent on the nonlinearity of the system. Therefore, the order of approximation will

be addressed individually for each of the two orbit transfer cases presented below.

 Once again, a final state penalty function is used in place of the hard terminal

constraints. The penalty function is given as

 𝜙 =
1

2
𝜓 𝑡𝑓

T
 𝑊 𝜓 𝑡𝑓 (3.26)

Where 𝑊 ∈ ℜ3×3 is a diagonal matrix of final state weights. Again, this penalty function

is being used because it provides a non-iterative method, for which fewer partial

derivatives of the cost-to-go are required for each order of approximation. Using the

penalty function approach, the cost-to-go and its non-zero partial derivatives at the final

time are given as:

 𝐽 𝑡𝑓 =
1

2
𝜓 0 T 𝑊 𝜓 0 , 𝐽𝑥 = 𝑊 𝜓 0 , 𝐽𝑥𝑥 = 𝑊 (3.27)

where 𝜓 0 represents the terminal constraint function with the final states fixed at the

initial state values.

3.3.1 Low Thrust Transfer

 In the first case, a low thrust transfer is propagated over a long period of time.

Due to the length of the trajectory, this problem is difficult to solve via the HJB

approximation method. The boundary conditions for this case are shown in Table 3.2

 42

Table 3.2 Boundary conditions for the low thrust transfer

Variable Initial Final Units

Time 0 900 days

Radial Distance 1 1.25 AU

Radial Velocity 0 0 AU/TU

Tangential Velocity 1 1/1.25 AU/TU

Before the problem is solved, two parameters must be chosen: the order of

approximation and the value of the final state weights. To select these parameters, the

approximation method is implemented for range of final state weights and orders of

approximation. With each combination of parameters, the initial costates are computed.

From these initial costates, an “approximation error” is determined as follows:

 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 = 𝑚𝑒𝑎𝑛(𝑎𝑏𝑠 𝜆0 − 𝜆0
∗) (3.28)

where 𝜆0 is the vector of approximate initial costates and 𝜆0
∗ is the vector of optimal

initial costates (found using a shooting algorithm). Figure 3.4 shows the approximation

error for the combinations of final state weights and approximation order considered for

this study. Two main insights can be drawn from the figure. First, increasing the final

state weight improves the accuracy of the approximation. However, at some point, an

increase in the final state weight begins to diminish the accuracy of the approximation.

The point at which this decline is observed is directly related to the order of

approximation. In other words, increasing the approximation order increases the final

state weight value at which a decline in performance is observed.

 43

Figure 3.4 Terminal constraint error as a function of final state weight and

approximation order for the low thrust transfer.

From this figure, the order of approximation is chosen to be 14
th

 order and the

final state weight value is chosen to be 1000. A larger order of approximation would

yield more accurate results, but would require an enormous computational burden. With

a 14
th

 order approximation, 680 unique partial derivatives of the cost-to-go function

exist. Therefore, the symbolic differentiation routine is charged with deriving and storing

680 PDEs that govern these partial derivatives.

The nominal trajectory is generated by integrating the Euler-Lagrange equations

from the initial boundary conditions, using the initial costates obtained through the

approximation method. The nominal trajectory is shown in Figure 3.5. This trajectory is

 44

sub-optimal, due to the truncation involved in the HJB approximation method and the

application of soft terminal constraints.

Figure 3.5 Approximate nominal solution for the low thrust transfer.

To observe the inaccuracy of the sub-optimal trajectory, it will be compared to

the optimal trajectory for this problem. The optimal trajectory has no approximation

error and is subject to hard terminal constraints. Figure 3.6 shows the state and costate

errors between the optimal and sub-optimal trajectories. The figure shows a relatively

low amount of state and costate error for this problem. Error propagation throughout the

state trajectories is evident in Figure 3.6. Again, this propagation is attributed to the lack

of a feedback control law.

 45

Figure 3.6 State and costate errors between the optimal and sub-optimal solutions

to the low thrust transfer.

3.3.2 Earth to Mars Transfer

In the second case, the boundary conditions of the TPBVP were chosen to

represent an Earth to Mars orbit transfer, for which both the initial and final orbits are

circular. The boundary conditions are shown in Table 3.3.

Table 3.3 Boundary conditions for the Earth to Mars transfer

Variable Initial Final Units

Time 0 210 days

Radial Distance 1 1.5 AU

Radial Velocity 0 0 AU/TU

Tangential Velocity 1 1/1.5 AU/TU

 46

Again, the “approximation error” is calculated for a variety of final state weights and

orders of approximation, as shown in Figure 3.7. The same two insights drawn from

Figure 3.4 are evident in this figure. However, because the Earth to Mars transfer

represents a more non-linear problem, the point at which a decline in performance is

observed occurs at lower values of the final state weight.

Figure 3.7 Terminal constraint error as a function of final state weight and

approximation order for the Earth to Mars transfer.

From this figure, the order of approximation is chosen to be 14
th

 order and the

final state weight value is chosen to be 50. A larger order of approximation would yield

more accurate results, but would require an enormous computational burden. The

nominal trajectory is generated by integrating the Euler-Lagrange equations from the

initial boundary conditions, using the initial costates obtained through the approximation

 47

method. The nominal trajectory is shown in Figure 3.8. This trajectory is sub-optimal,

due to the truncation involved in the HJB approximation method and the application of

soft terminal constraints.

Figure 3.8 Approximate nominal solution for the Earth to Mars transfer.

To observe the inaccuracy of the sub-optimal trajectory, it will be compared to

the optimal trajectory for this problem. The optimal trajectory has no approximation

error and hard terminal constraints. Figure 3.9 shows the state and costate errors between

the optimal and sub-optimal trajectories. At this approximation order, there is still a

considerable amount of initial costate error, which leads to an error in the final states.

 48

Figure 3.9 State and costate errors between the optimal and sub-optimal solutions

for the Earth to Mars transfer.

 As previously mentioned, the sensitivities of the initial costates to changes in the

initial states are produced as a byproduct of the HJB approximation method. For a 14
th

order HJB approximation, 13 orders of sensitivities are produced. As outlined in Section

2.1, these sensitivities are used to produce a family of neighboring paths, about the

nominal solution. To observe this benefit of the approximation method, the initial radial

distance was varied over a range [0.9 1.1] AU. With each radial distance variation, the

tangential velocity was altered such that the initial orbit remained circular. The costate

sensitivities (up to 8
th

 order) were used to update the initial costates. The 9
th

 through 14

order sensitivities have virtually no effect on the costate update equation. Figures 3.10

through 3.13 show the solutions to the neighboring TPBVPs, using the updated costates.

 49

Figure 3.10 Neighboring radial distances for the Earth to Mars transfer.

Figure 3.11 Neighboring radial velocities for the Earth to Mars transfer.

 50

Figure 3.12 Neighboring tangential velocities for the Earth to Mars transfer.

Figure 3.13 Neighboring controls for the Earth to Mars transfer.

 51

4. HIGH-ORDER GUIDANCE SOLUTIONS

 Section 3.3 demonstrated the need for extremely high orders of approximation to

accurately solve a highly nonlinear optimal control problem. In the setting of a coplanar

orbit transfer problem, with a state-space dimension of three, this approximation was

feasible. However, as problem complexity and dimensionality increase, approximation

to high orders becomes increasingly computationally expensive. Hence, it would be

desirable to formulate a solution methodology for which lower orders of approximation

would provide accurate solutions.

 One such alternative is to utilize the HJB approximation methodology as a tool

for generating corrections to the nominal control law. In this application, the method no

longer produces the nominal optimal solution, but still provides the initial costate

sensitivities needed to generate a field of extremals. As a result, the problem is

significantly less nonlinear, which eliminates the need for extremely high orders of

approximation. The general problem of producing control corrections to generate

neighboring optimal trajectories is often referred to as the guidance problem [28].

 Section 4.1 describes the application of the HJB approximation method to solve

the guidance problem. Section 4.2 describes the application of an alternative guidance

approach, which utilizes the Lagrange Implicit Function Theorem. In Section 4.3, the

minimum-fuel, co-planar Earth to Mars transfer problem is re-solved in the guidance

scheme. Finally, a three-dimensional re-entry guidance problem is solved in Section 4.4.

 52

4.1 Perturbed HJB Equation Approximation

 To implement the HJB approximation procedure about the nominal trajectory,

the solution to the variation in the cost-to-go (𝛿𝐽) is approximated. The equation

governing this “perturbed” cost-to-go is referred to as the perturbed HJB (PHJB)

equation, which is defined as
‡

 −
𝜕

𝜕𝑡
 𝛿𝐽 = 𝐻 𝑥∗ + 𝛿𝑥, λ∗ + 𝛿λ − 𝐻∗ − 𝐻𝑥

∗𝑇𝛿𝑥 − 𝐻λ
∗𝑇𝛿λ (4.1)

where 𝑥∗ are the nominal states, λ∗ are the nominal costates, 𝐻∗ is the nominal

Hamiltonian, 𝛿𝑥 are the perturbed states, and 𝛿λ are the perturbed costates. The nominal

state, costate, and Hamiltonian values must be obtained a priori, using any of the

available optimal control solution methods, e.g., the Pseudospectral method or any other

direct approach. Again, a key relationship connecting the costates to the first order

partial derivatives of the cost-to-go function is given as:

 𝛿λ = δJδx (4.2)

 The solution to the PHJB equation is approximated in the same manner as the

HJB equation, i.e., successive partial derivatives of the PHJB equation are taken with

respect to the perturbed states. The first two partial derivatives are defined as:

 −
𝜕

𝜕𝑡
 𝛿𝐽𝛿𝑥 = 𝐻𝛿𝑥 𝑥

∗ + 𝛿𝑥, λ∗ + 𝛿λ − 𝐻𝑥
∗ − 𝛿𝐽𝛿𝑥𝛿𝑥 𝐻λ

∗ (4.3)

 −
𝜕

𝜕𝑡
 𝛿𝐽𝛿𝑥𝛿𝑥 = 𝐻𝛿𝑥𝛿𝑥 𝑥∗ + 𝛿𝑥, λ∗ + 𝛿λ − 𝛿𝐽𝛿𝑥𝛿𝑥𝛿𝑥 𝐻λ

∗ (4.4)

Again, each PDE is dependent on the next higher order of partial derivatives. Thus, the

partial derivatives must again be truncated at the n
th

 order, which will affect the accuracy

‡
 A full derivation of the PHJB equation is provided in Appendix D

 53

of the 1
st
 through n-1

th
 orders of partial derivatives. The symbolic PDEs governing the

partial derivatives of the perturbed cost-to-go are again integrated via the method of

lines, holding the perturbed states fixed at their initial conditions. Using soft terminal

constraints in place of hard ones, the boundary condition for the perturbed cost-to-go is

given as:

 𝛿𝐽 𝑡𝑓 = 𝜙 𝑥∗ + 𝛿𝑥 − 𝜙 𝑥∗ (4.5)

Partial differentiation of this condition with respect to the perturbed states leads to the

boundary conditions for the partial derivatives of the perturbed cost-to-go, which are

needed to initialize the integration process.

 The PHJB approximation is implemented about the nominal trajectory by

assuming zero variation in the initial states, i.e., 𝛿𝑥 = 0. If the approximation is

accurate, this implementation leads to the trivial solutions:

 𝛿𝐽 0 = 0 , 𝛿𝐽𝛿𝑥 0 = 0 (4.6)

These conditions provide a good check as to the accuracy of the approximation.

Meanwhile, the 2
nd

 through n
th

 orders of partial derivatives of the perturbed cost-to-go

provide the 1
st
 through n-1

th
 orders of sensitivities of the nominal costates to variations

in the initial states. These costate sensitivities are used to approximate neighboring

optimal initial costates, which are used to generate near-optimal solutions to neighboring

TPBVPs.

 In many problems, it is beneficial to calculate sensitivities of the initial costates

to variations in certain parameters of the system. The PHJB method is modified to

incorporate these sensitivities by treating the desired parameters as additional states. In

 54

doing this, the cost-to-go is assumed to be a function of both the states and desired

system parameters. Thus, the PHJB equation is differentiated with respect to both the

states and desired system parameters. The only discrepancy between the states and

parameter sensitivities is in their relationship to the costates. The first order parameter

sensitivities are not equivalent to the costates, and will not be used in the costate update

equation.

4.2 Lagrange Implicit Function Theorem

In this solution method, the implicit function theorem is applied to the terminal

conditions for optimality [17]. In doing so, equations containing the sensitivity of the

initial costates to changes in the initial states are produced. These equations are then

inverted, to provide solutions for the initial costate sensitivities. In this thesis, the LIFT

method is only applied to optimal control problems with known initial states and linear

constraints on the terminal states. Therefore, the methodology described in this section

will be tailored to this specific class of problems.

 To begin, the linear terminal constraint is given as follows.

 𝜓 𝑋 𝑡𝑓 = 𝑋 𝑡𝑓 − 𝑋𝑓 = 0 (4.7)

where 𝑋 𝑡𝑓 is the set of optimal states at the final time and 𝑋𝑓 is a set of desired final

state values. Again, the objective of the guidance solution is to correct the initial costates

such that the terminal constraints remain satisfied in the event of changes in the initial

states. In mathematical terms, this means that the total derivative of the terminal

constraint with respect to the initial states should be equal to zero.

 55

𝑑

𝑑𝑋0
𝜓 𝑋 𝑡𝑓 =

𝑑

𝑑𝑋0
𝑋 𝑡𝑓 = 0 (4.8)

Because 𝑋 𝑡𝑓 is an implicit function of the initial states and costates, the total

derivative of 𝑋 𝑡𝑓 can be split into partial derivatives as follows.

𝑑

𝑑𝑥0
𝑋 𝑡𝑓 = 𝑋 𝑡𝑓 𝑋0

+ 𝑋 𝑡𝑓 Λ0

𝑑Λ0

𝑑𝑋0
= 0 (4.9)

This equation can be rearranged to solve for the sensitivities of the initial costates to

changes in the initial states as follows.

𝑑Λ0

𝑑𝑋0
= −𝑋 𝑡𝑓 Λ0

−1
 𝑋 𝑡𝑓 𝑋0

 (4.10)

Higher order costate sensitivities are found by taking higher total derivatives of the

terminal constraint with respect to the states. These total derivatives can also be split into

partial derivatives, revealing similar expressions for the higher order costate sensitivities

[17]. A more detailed description of this process is provided in Appendix E.

 Before these costate sensitivities can be calculated, 𝑋 𝑡𝑓 𝑋0
 and 𝑋 𝑡𝑓 Λ0

 must be

calculated. These sensitivities are propagated throughout the nominal solution, starting

from the following known initial conditions.

𝑋 𝑡0 𝑋0

𝑋 𝑡0 Λ0

Λ 𝑡0 𝑋0
Λ 𝑡0 Λ0

 =
 1 0
 0 1

 (4.11)

It is necessary to propagate the partial derivatives of both the states and costates, because

of the coupling that occurs between the states and costates in the Euler-Lagrange

equations, as seen below.

𝑑

𝑑𝑡

𝑋 𝑡

Λ 𝑡
 =

𝐻Λ

−𝐻𝑋
 (4.12)

 56

Differentiating the Euler-Lagrange equations with respect to the states and costates

produces differential equations that govern the state and costate sensitivities exactly.

These equations are shown below for the first order.

𝑑

𝑑𝑡

𝑋 𝑡 𝑋0

𝑋 𝑡 Λ0

Λ 𝑡 𝑋0
Λ 𝑡 Λ0

 =
𝐻ΛΧ 𝐻ΛΛ

−𝐻XΧ −𝐻XΛ

𝑋 𝑡 𝑋0
𝑋 𝑡 Λ0

Λ 𝑡 𝑋0
Λ 𝑡 Λ0

 (4.13)

Again, successive derivatives of the Euler-Lagrange equations are taken to obtain

differential equations for 2
nd

 and higher order partial derivatives.

 The LIFT method can also be extended to handle sensitivities of the initial

costates with respect to system parameters. To do so, the total derivative of the terminal

constraint with respect to the parameters is separated into partial derivatives and

inverted.

𝑑Λ0

𝑑𝑝
= −𝑋 𝑡𝑓 Λ0

−1
 𝑋 𝑡𝑓 𝑝

 (4.14)

Before these control sensitivities can be calculated, 𝑋 𝑡𝑓 𝑝
 must be computed. These

partial derivatives are propagated about the nominal solution, starting from the following

known initial conditions.

𝑋 𝑡0 𝑝
Λ 𝑡0 𝑝

 =
0
0

 (4.15)

Finally, differentiating the Euler-Lagrange equations with respect to the system

parameters provides differential equations that propagate the parameter sensitivities

throughout the nominal solution.

𝑑

𝑑𝑡

𝑋 𝑡0 𝑝
Λ 𝑡0 𝑝

 =
𝑓Χ 𝑓Λ
𝑔Χ 𝑔Λ

𝑋 𝑡0 𝑝
Λ 𝑡0 𝑝

 +
𝑓𝑝
𝑔𝑝

 (4.16)

 57

4.3 Orbit Transfer Guidance Problem

 In this example, the orbit transfer problem is re-solved as a guidance problem,

accounting for variations in all three of the initial states. The nominal boundary

conditions represent the same Earth to Mars transfer generated in Section 3.3.2. These

conditions can be seen again in Table 4.1.

Table 4.1 Nominal orbit transfer boundary conditions

Variable Initial Final Units

Time 0 210 days

Radial Distance 1 1.5 AU

Radial Velocity 0 0 AU/TU

Tangential Velocity 1 1/1.5 AU/TU

This example is presented to compare the performance of the PHJB method to

the LIFT method. Both guidance methods are implemented in Matlab, using a modified

version of the symbolic differentiation routine to derive and store the appropriate PDEs.

Hence, both methods consider the minimum number of partial derivatives required for

solution. Both methods are employed to produce the first four orders of control

sensitivities. A fifth-order approximation is required by the PHJB method to produce

these sensitivities, while the LIFT method only requires four orders of differentiation.

Due to the difference in methodologies, a different number of partial derivatives must be

integrated about the nominal trajectory to solve each method. Table 4.2 provides an

overview of the number of unique partial derivatives required in each method.

 58

Table 4.2 Number of required partial derivatives for the orbit transfer guidance

problem, considering variations in the initial states

Order PHJB method LIFT method

1 6 36

2 10 126

3 15 336

4 21 756

 As Table 4.2 shows, the PHJB method computes the costate sensitivities much

more efficiently than the LIFT method. Fundamentally, both guidance methods operate

by taking successive derivatives of the Hamiltonian. However, the methods differ in the

form of the Hamiltonian used by each. In the PHJB equation, the Hamiltonian is

formulated to be independent of the system costates. This is achieved by replacing the

costates with 𝐽𝑥 . Alternatively, the Euler-Lagrange equations are formulated with a

dependence on both the system states and costates. Thus, partial derivatives of the Euler-

Lagrange equations must be computed with respect to twice as many independent

variables as the partial derivatives of the PHJB equation. Furthermore, the 1
st
 order

matrix of partial derivatives of the Euler-Lagrange Equations is non-symmetric, while

the equivalent (2
nd

 order) matrix of partial derivatives of the HJB equation is symmetric

about the diagonal.

To compare the performance of each method, the orbit transfer guidance problem

is solved for variations in the initial states. The initial costate correction is determined

 59

through a Taylor series expansion about the variations in the initial states, 𝛿𝑥0, which is

given as:

 𝛿Λ 0 = Λ 0 x0
𝛿𝑥0 +

1

2!
Λ 0 x0x0

𝛿𝑥0
2 +

1

3!
Λ 0 x0x0x0

𝛿𝑥0
3 + ⋯ (4.17)

For this test case, the initial state variations are given as:

 𝛿𝑥0 = 0.1 0 −0.0465 T . (4.18)

The altered initial states represent a circular orbit with a radius of 1.1 AU. Again, the

PHJB method utilizes a final state penalty function, instead of hard terminal constraints.

As a result, the non-zero boundary conditions needed to initialize the integration are

given as:

 𝛿𝐽𝛿𝑥𝛿𝑥 𝑡𝑓 =
𝑊 0 0
0 𝑊 0
0 0 𝑊

 (4.19)

Again, the proper final state weight value W is found by simulating the PHJB method for

a range of final state weight values. Figure 4.1 shows the approximation error calculated

for different combinations of final state weight and approximation order. The figure

shows that the accuracy of the approximation method is improved by increasing both the

approximation order, as well as, the final state weight value. For this example, a 5
th

 order

approximation is chosen, and the final state weight value is selected to be 1x10
5
. As

previously mentioned, a 5
th

 order PHJB approximation provides four orders of costate

sensitivities.

 60

Figure 4.1 Approximation error as a function of the final state weight and

approximation order for the orbit transfer guidance problem.

The results for each guidance method are shown in Table 4.3. The table shows

that the two methods produce analogous results. In fact, the difference in the initial

perturbed costates can be attributed to the tolerance chosen for the integration routine.

The only significant difference between the two methods is in the runtime. The PHJB

method runs approximately 5 times faster than the LIFT method. This significant savings

in computational time is directly attributed to the reduction in the number of sensitivities

required for solution.

 61

Table 4.3 Orbit transfer guidance results

 PHJB Method LIFT Method Difference

𝛿𝜆𝑟 0 0.04082751 0.04082757 -5.9467 x 10
-8

𝛿𝜆𝑣 0 0.00181448 0.00181435 1.2670 x 10
-7

𝛿𝜆𝑤 0 0.04089636 0.04089652 -1.6053 x 10
-7

𝑟 𝑡𝑓 1.50001442 1.50001237 2.0488 x 10
-6

𝑣 𝑡𝑓 0.00012732 0.00012590 1.4201 x 10
-6

𝑤 𝑡𝑓 0.81662828 0.81662879 -5.1628 x 10
-7

Cost 0.01377348 0.01377349 -1.0830 x 10
-8

Runtime (s) 0.17 0.85 0.68

 Finally, a family of neighboring approximate trajectories is shown in Figures 4.2

through 4.5. These trajectories are generated using the costate sensitivities obtained from

the PHJB method. However, if the trajectories generated with the LIFT method were to

be plotted in the same figures, the two sets of trajectories would be indistinguishable.

The neighboring trajectories are generated by varying the initial radius over a range [0.9

1.1] AU. With each radial distance variation, the tangential velocity was altered such

that the initial orbit remained circular. The same family of neighboring trajectories was

generated in Section 3.3, using the full 14
th

 order HJB approximation. Comparing the

two sets of neighboring trajectories, it is evident that the control sensitivities provided by

the 5
th

 order guidance solution are more accurate than those obtained as a byproduct of

the full problem solution.

 62

Figure 4.2 Neighboring radial distances for the orbit transfer guidance problem.

Figure 4.3 Neighboring radial velocities for the orbit transfer guidance problem.

 63

Figure 4.4 Neighboring tangential velocities for the orbit transfer guidance

problem.

Figure 4.5 Neighboring controls for the orbit transfer guidance problem.

 64

4.4 Re-entry Guidance Problem

 This section presents the guidance solution for a three dimensional re-entry

problem. Within the guidance framework, sensitivities of the initial costates to changes

in the initial states, system parameters, and final states are computed. The motion of the

re-entry vehicle is described by the following differential equations [29]:

 𝑟 = 𝑉𝑠𝑖𝑛 𝛾 (4.20)

 𝜃 =
𝑉 cos 𝛾 cos 𝜓

𝑟 cos 𝜙
 (4.21)

 𝜙 =
𝑉 cos 𝛾 sin 𝜓

𝑟
 (4.22)

 𝑉 = −
𝜇

r2 sin γ − 𝐷 (4.23)

 𝛾 = −
𝜇

r2

𝑐𝑜𝑠 𝛾

𝑉
+

𝑉

r
𝑐𝑜𝑠 𝛾 +

𝐿

𝑉
𝑐𝑜𝑠 𝛽 (4.24)

 𝜓 = −
𝑉

r

co s 𝛾 𝑐𝑜𝑠 𝜓 sin 𝜙

cos 𝜙
−

𝐿

𝑉

𝑠𝑖𝑛 𝛽

𝑐𝑜𝑠 𝛾
 (4.25)

where 𝑟 is the radial distance from earth, 𝜃 is the longitude, 𝜙 is the latitude, 𝑉 is the

vehicles velocity, 𝛾 is the flight path angle, 𝜓 is the heading angle, and 𝜇 is the

gravitational constant. The vehicle is controlled with the bank angle, 𝛽. Additionally, 𝐿

and 𝐷 represent the aerodynamic lift and drag per unit mass given by:

 𝐷 =
1

2
𝐶𝐷𝜌𝑆

∗V2 , 𝐿 =
1

2
𝐶𝐿𝜌𝑆

∗V2 (4.26)

where 𝐶𝐷 is the drag coefficient, 𝐶𝐿 is the lift coefficient , 𝑆∗ is the reference area per

unit mass, and 𝜌 is the density of earth’s atmosphere. The vehicles mass is absorbed into

the reference area term, and thus doesn’t appear explicitly in the equations of motion. An

exponential model for the atmospheric density is given as:

 65

 𝜌 = 𝜌0𝑒
−𝑘(𝑟−𝑟𝑒) (4.27)

where 𝜌0 is the density at sea level, 𝑘 is the scale height of the atmosphere, and 𝑟𝑒 is the

radius of the earth. The objective of the controller is to minimize both the convective

heating rate and the aerodynamically induced acceleration. Therefore, the performance

index is a scaled combination of these quantities [29].

 𝒥 = 𝐿2 + 𝐷2 1/2 + 20𝜀𝜌1/2
𝑉

1000

3

𝑡𝑓

0
 𝑑𝑡 (4.28)

where 𝜀 is a scaling factor applied to the convective heating rate quantity. The constant

parameters used in this simulation [30] are given in Table 4.4 below.

Table 4.4 Simulation parameters for the re-entry problem

Parameter Symbol Value Units

Density at sea level 𝜌0 2.7 x 10
-3

 slug/ft
3

Atmospheric scale height 𝑘 4.2 x 10
-5

 1/ft

Gravitational constant 𝜇 1.4077 x 10
16

 ft
3
/s

2

Lift Coefficient 𝐶𝐿 0.35 -

Drag Coefficient 𝐶𝐷 1.3 -

Reference Area 𝑆∗ 0.3752 ft
2
/slug

Scaling Factor 𝜀 1.0538 x 10
-6

 deg

For brevity, the Hamiltonian, Euler-Lagrange equations, and HJB equation will not be

shown. The formulation of these equations is straightforward, with the introduction of

the system costates: Λ = 𝜆𝑟 , 𝜆𝜃 , 𝜆𝜙 , 𝜆𝑉 , 𝜆𝛾 , 𝜆𝜓
T
. Although the system isn’t affine in the

 66

control, a relationship between the control and the costates can still be found through

differentiation of the Hamiltonian with respect to the bank angle.

 −𝜆𝛾
𝐿

𝑉
𝑠𝑖𝑛 𝛽 − 𝜆𝜓

𝐿

𝑉𝑐𝑜𝑠 𝛾
𝑐𝑜𝑠 𝛽 = 0 (4.29)

Rearranging this equation gives an expression for the bank angle in terms of the states

and costates.

 𝑡𝑎𝑛 𝛽 = −
𝜆𝜓

𝜆𝛾𝑐𝑜𝑠 𝛾
 (4.30)

The boundary conditions for the nominal trajectory can be seen in Table 4.5. As the table

shows, only the longitude, latitude, and velocity are terminally constrained. Because of

this, three additional terminal conditions for optimality are given as:

 𝜆𝑟 𝑡𝑓 = 0 , 𝜆𝛾 𝑡𝑓 = 0 , 𝜆𝜓 𝑡𝑓 = 0 (4.31)

Table 4.5 Boundary conditions for the re-entry problem

Variable Initial Final Units

Time 0 390 s

Altitude 400,000 - ft

Longitude 0 0.33 rad

Latitude 0 -0.025 rad

Velocity 36,000 2,640 ft/s

Flight Path Angle -6.5 - deg

Heading Angle 0 - deg

A nominal optimal solution is obtained from a shooting algorithm performed with the

Matlab nonlinear equation solver fsolve. The shooting method was only able to converge

 67

on the optimal solution because it was given accurate guesses for the initial costates. The

full optimal re-entry solution is shown in Figure 4.6.

Figure 4.6 Nominal re-entry solution.

 68

4.4.1 Initial State Variations

In this section, sensitivities of the initial costates to changes in the initial altitude

and velocity are computed. Due to the size and complexity of the re-entry problem, the

PHJB method provides only three orders of control sensitivities. In total, 203 unique

control sensitivities are computed: 21 first-order, 56 second-order, and 126 third-order

sensitivities. A number of neighboring trajectories are simulated, simultaneously varying

the initial altitude ±8000 ft and the initial velocity ±2000 ft/s. To show the results in an

illustrative manner, the set of initial altitude and velocity variations are chosen to form

an ellipse around the nominal initial conditions. Figure 4.7 shows the guidance solutions

for these initial state variations. The average error in the final velocity for these

neighboring solutions is 14.6 ft/s.

Figure 4.7 Neighboring re-entry profiles for initial altitude and velocity variations.

 69

4.4.2 Parameter Variations

To demonstrate the use of parameter sensitivities, the re-entry guidance problem

is solved for costate sensitivities with respect to atmospheric and aerodynamic

parameters. Again, the PHJB method generates three orders of costate sensitivities.

Considering one parameter variation at a time, a total of 330 unique control sensitivities

are computed: 28 first order, 84 second order, and 210 third order sensitivities.

 To begin, the effects of changes in the atmospheric density at sea level (𝜌0) and

the atmospheric scale height (𝑘) are analyzed. First, the density parameter is varied ±20

percent of the nominal. Next, the atmospheric scale height is varied ±5 percent of the

nominal. Guidance results for these variations are shown in Table 4.6. The table shows

that the error in the final velocity is less than 10 ft/s for these extreme cases.

Additionally, neighboring re-entry profiles for variations in 𝜌0 and 𝑘 are shown in

Figures 4.8 and 4.9, respectively. In these figures, the terminal constraint appears as a

line because the final altitude is free to change.

Table 4.6 Re-entry guidance results for density and scale height variations

 𝛿𝜌0 𝛿𝜅

 Nominal -20% +20% -5% +5%

𝛽 𝑡0 [deg] 147.0 149.2 145.2 142.2 151.2

𝑉 𝑡𝑓 [ft/s] 2640.0 2647.9 2646.0 2636.7 2635.8

 70

Figure 4.8 Neighboring re-entry profiles for variations in the reference density.

Figure 4.9 Neighboring re-entry profiles for variations in the scale height.

 71

Next, the effects of changes in the lift and drag coefficients are analyzed. Each

coefficient is varied ±10 of the nominal. Guidance results for these variations are shown

in Table 4.7. Additionally, neighboring re-entry profiles for variations in 𝐶𝐿 and 𝐶𝐷 are

shown in Figures 4.10 and 4.11, respectively. Again, the PHJB method is able to provide

accurate updated initial costates to account for the parametric variations.

Table 4.7 Re-entry guidance results for lift and drag coefficient variations

 𝛿𝐶𝐿 𝛿𝐶𝐷

 Nominal -10% +10% -10% +10%

𝛽 𝑡0 [deg] 147.0 138.5 151.9 154.7 135.4

𝑉 𝑡𝑓 [ft/s] 2640.0 2623.8 2623.0 2640.8 2633.6

Figure 4.10 Neighboring re-entry profiles for variations in the lift coefficient.

 72

Figure 4.11 Neighboring re-entry profiles for variations in the drag coefficient.

4.4.3 Final State Variations

In this section, sensitivities of the initial costates to changes in the final velocity

are computed. Again, the PHJB method generates three orders of costate sensitivities.

Six neighboring trajectories are generated with the following desired final velocities:

 𝑉𝑓 = 1.5, 2.0, 2.5, 3.0, 3.5 , 4.0 (4.32)

where the final velocities are given in 1000 ft/s. Figure 4.12 shows the neighboring

trajectories generated using the PHJB method. To observe the effectiveness of the

guidance results, Figure 4.13 shows a blown up view of the results near the final time.

The six neighboring trajectories have an average final velocity error of 12.6 ft/s.

 73

Figure 4.12 Nominal and neighboring trajectories for final velocity variations.

Figure 4.13 A blown up view of near final time nominal and neighboring

trajectories for final velocity variations.

 74

5. SUMMARY AND CONCLUSIONS

 This thesis presented a non-iterative method for solving finite-horizon optimal

control problems involving nonlinear dynamical systems. Analytical partial

differentiation of the Hamilton-Jacobi-Bellman equation with respect to the states led to

an approximate solution of the cost-to-go function and its associated sensitivities. First

order cost-to-go sensitivities provided the nominal open-loop solution to the optimal

control problem, while higher order sensitivities provided a means of generating a family

of extremals about the nominal trajectory. The method was extended to handle

terminally constrained problems, as well as, free final time problems.

The approximation method was shown to be well suited for moderately nonlinear

problems with soft terminal constraints. Extremely high orders of approximation were

shown to be needed to accurately solve highly nonlinear problems. The addition of hard

terminal constraints was shown to be unfavorable because it imposed the need for an

iterative solution process and introduced a second source of approximation error.

Next, an alternative approach for generating a family of extremals was presented.

This new approach approximated the solution to the Hamilton-Jacobi-Bellman equation

about the nominal solution. As a result, the nonlinearity of the problem was greatly

reduced, which allowed for accurate solutions with much lower orders of approximation.

For comparison, the Lagrange Implicit Function Theorem was applied as another means

of generating a family of extremals. The two approaches were found to provide

analogous results when applied at equivalent orders. However, it was shown that the

 75

Hamilton-Jacobi-Bellman equation approximation method was more efficient to

perform, allowing for higher orders of control sensitivities.

 76

REFERENCES

 [1] Betts, John T., Practical Methods for Optimal Control using Nonlinear

Programming, SIAM, Philadelphia, 2001, pp. 162–165.

 [2] Fahroo, F., and Ross, I.M., “Direct Trajectory Optimization by a Chebyshev

Pseudospectral Method,” AIAA Journal of Guidance, Control, and Dynamics, Vol.

25, No. 1, January–February 2002, pp. 160–166.

 [3] Singh, B., Bhattacharya, R., and Vadali, S. R., “Verification of Optimality and

Costate Estimation using Hilbert Space Projection,” AIAA Journal of Guidance,

Control, and Dynamics , Vol. 32, No. 4, 2009, pp. 1345-1344.

 [4] Bryson, A.E., and Ho, Y.-C., Applied Optimal Control, Hemisphere, Washington

D.C., 1975, pp. 47–50 and 128–136.

 [5] Bellman, R. E., and Dreyfus, S. E., Applied Dynamic Programming, Princeton

University Press, Princeton, NJ, 1962, pp. 180–204.

 [6] Speyer, J.L., and Crues, E.Z., “Approximate Optimal Atmospheric Guidance Law

for Aeroassisted Plane-Change Maneuvers,” AIAA Journal of Guidance, Control,

and Dynamics, Vol. 13, No. 5, 1990, pp. 792–802.

 [7] Xin, M., Balakrishnan, S.N., Stansbery, D.T., and Ohlmeyer, E.J., "Nonlinear

Missile Autopilot Design with Theta-D Technique," AIAA Journal of Guidance,

Control and Dynamics, Vol. 27, No. 3, 2004, pp. 406–417.

 [8] Vadali, S.R., and Sharma, R., “Optimal Finite-Time Feedback Controllers for

Nonlinear Systems with Terminal Constraints,” AIAA Journal of Guidance,

Control, and Dynamics, Vol. 29, No. 4, 2006, pp. 921–928.

 [9] Park, C., and Scheeres, D. J., “Solutions of Optimal Feedback Control Problem

with General Boundary Conditions using Hamiltonian Dynamics and Generating

Functions,” Automatica, Vol. 42, 2006, pp. 869–875.

[10] Beard, R., Saridis, G., and Wen, J., “Galerkin Approximation of the Generalized

Hamilton-Jacobi-Bellman Equation,” Automatica, Vol. 33, 1997, pp. 2159–2177.

[11] Huang, C.-S., Wang, S., Chen, C. S., and Li, Z.-C., “A Radial Basis Collocation

Method for Hamilton-Jacobi-Bellman Equations,” Automatica, Vol. 42, 2006, pp.

2201–2207.

http://www-personal.umich.edu/~scheeres/reprints/Automatica_chan.pdf
http://www-personal.umich.edu/~scheeres/reprints/Automatica_chan.pdf
http://www-personal.umich.edu/~scheeres/reprints/Automatica_chan.pdf

 77

[12] Cheng, T., Lewis, F. L., and Murad, A., “A Neural Network Solution for Fixed-

Final Time Optimal Control of Nonlinear Systems,” Automatica, Vol. 43, 2007,

pp. 482–490.

[13] Osher, S., and Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces,

Springer-Verlag, New York, 2003, pp. 47–59.

[14] Kumar, M., Chakravorty, S., and Junkins, J. L., “Computational Nonlinear

Control,” AIAA Journal of Guidance, Control and Dynamics, Vol. 32, No. 3, 2009,

pp. 1050–1055.

[15] Richardson, S., and Wang, S., “Numerical Solution of Hamilton-Jacobi-Bellman

Equations by an Exponentially Fitted Finite Volume Method 1,” Optimization,

Vol. 55, Nos. 1&2, Feb 2006, pp. 121–140.

[16] Mayne, D. Q., Rawlings, J. B., Rao, C. V., and Scokaert, P. O. M., “Constrained

Model Predictive Control: Stability and Optimality,” Automatica, Vol. 36, 2000,

pp. 789–814.

[17] Junkins, J.L., Turner, J.D., and Majji, M., “Generalizations and Applications of the

Lagrange Implicit Function Theorem,” The F. Landis Markley Astronautics

Symposium of the American-Astronautical-Society, AAS 08-302, Cambridge, MD,

2008, pp. 723–744.

[18] Di Lizia, P., Armellin, R., Ercoli-Finzi, A., and Berz, M., “High-order Robust

Guidance of Interplanetary Trajectories Based on Differential Algebra,” Journal of

Aerospace Engineering, Sciences and Applications, Vol. 1, No. 1, 2008, pp. 43–57.

[19] Lewis, F.L. and Syrmos, V.L., Optimal Control, 2 ed., John Wiley & Sons, New

York, 1995, pp. 131–135.

[20] Griffith, D.T., Turner, J.D., Vadali, S.R., and Junkins, J.L., “Higher Order

 Sensitivities for Solving Nonlinear Two-Point Boundary Value Problems,”

 AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA-2004-5404,

Providence, RI, 2004.

[21] MapleSoft, “Maple Toolbox for MATLAB,”

http://www.maplesoft.com/products/MapleMATLAB/, 2010.

[22] MathWorks, “Product Support: MEX Files Guide,”

http://www.mathworks.com/support/tech-notes/1600/1605.html, 2010.

[23] Turner, J.D., “Automated Generation of High-Order Partial Derivative Models,”

AIAA Journal, Vol. 41, No. 8, August 2003, pp. 1590–1599.

 78

[24] Berz, M., and Makino, K., “COSY Infinity Version 9,” Technical Report

MSUHEP 06083, Michigan State University, East Lansing, MI, 2006.

[25] Sharma, R., “A Series Solution Framework for Finite-Time Optimal Feedback

Control, H-Infinity Control and Games,” Ph.D. Thesis, Texas A&M University,

College Station, 2008.

[26] Schaub, H., and Junkins, J.L, Analytical Mechanics of Space Systems, American

Institute of Aeronautics and Astronautics, Inc., Reston, VA, 2003, pp. 77.

[27] McCrate, C. M., and Vadali, S. R, “Simultaneous Computation of Optimal

Controls and Their Sensitivities,” AAS/AIAA Astrodynamics Specialist Conference,

Pittsburgh, PA, AAS 09-406, 2009.

[28] Di Lizia, P., “Robust Space Trajectory and Space System Design Using

Differential Algebra,” Ph.D. Thesis, Politecnico di Milano, 2008.

[29] Tapley, B.,D., and Williamson, W. E., “Comparison of Linear and Riccati

Equations Used to Solve Optimal Control Problems,” AIAA Journal, Vol. 10, No.

9, 1972, pp. 1154–1159.

[30] Williamson, W. E., “Optimal Three Dimensional Re-entry Trajectories for Apollo

Type Vehicles,” AMRL Rept. 1013, University of Texas, Austin, TX, 1970.

 79

APPENDIX A

In this appendix, a derivation of the Hamilton-Jacobi-Bellman equation and the

costate differential equation from the cost-to-go function is presented. To begin, assume

the cost-to-go function takes the form:

 𝐽 𝑥, 𝜈, 𝑡 = 𝜙 𝑥 𝑡𝑓 + 𝜈𝑇𝜓 𝑥 𝑡𝑓 + 𝐿(𝑥, 𝑢, 𝑡)
𝑡𝑓
𝑡

 (A.1)

For this derivation, the relationship 𝐽𝑥 = 𝜆 is assumed. As Equation (A.1) shows, the

cost-to-go is a function of the states, terminal constraint Lagrange multipliers, and time.

To construct the HJB equation, the total time derivative of Equation (A.1) is taken. On

the left hand side of the equation, the total time derivative is separated into partial

derivatives with respect to the time, states, and terminal constraint Lagrange multipliers.

On the right hand side of the equation, the second fundamental theorem of calculus is

applied to simplify the expression. The resulting equation is given as:

𝜕𝐽

𝜕𝑡
+ 𝐽𝑥

𝑑𝑥

𝑑𝑡
+ 𝐽𝜈

𝑑𝜈

𝑑𝑡
= −𝐿 𝑥, 𝑢, 𝑡 (A.2)

Because 𝜈 is constant along the trajectory,
𝑑𝜈

𝑑𝑡
 will be equal to zero and will drop out of

the equation. Thus, the form of the HJB equation is the same with or without an applied

terminal constraint. The same logic holds when including a dependence on some

constant system parameter as well. Next, Equation (A.2) is rearranged give:

 −
𝜕𝐽

𝜕𝑡
= 𝐿 𝑥, 𝑢, 𝑡 + 𝐽𝑥 𝑓 𝑥, 𝑢, 𝑡 (A.3)

Utilizing the relationship 𝐽𝑥 = 𝜆, the right hand side of Equation (A.3) is equivalent to

the Hamiltonian, thus giving the recognizable form of the HJB equation:

 80

 −
𝜕𝐽

𝜕𝑡
= min𝑢 𝐻 𝑥, 𝑢, 𝐽𝑥 , 𝑡 (A.4)

 −
𝜕𝐽

𝜕𝑡
= 𝐻 𝑥, 𝐽𝑥 , 𝑡 (A.5)

Since we have assumed the relationship 𝐽𝑥 = 𝜆, the costate differential equation can be

derived from the HJB equation in the following manner.

 𝜆 =
𝑑

𝑑𝑡
 𝐽𝑥 = 𝐽𝑥𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝐽𝑥

𝜕𝑡
 (A.6)

First,
𝜕𝐽𝑥

𝜕𝑡
 is derived by taking the partial derivative of the HJB equation with respect to 𝑥,

as shown below.

𝜕𝐽𝑥

𝜕𝑡
= −𝐿𝑥 − 𝐽𝑥𝑓𝑥 − 𝐽𝑥𝑥

𝑑𝑥

𝑑𝑡
 (A.7)

Substituting this expression into Equation (A.6) gives:

 𝜆 = −𝐿𝑥 − 𝐽𝑥𝑓𝑥 (A.8)

Finally, relating the right hand side of Equation (A.8) to the Hamiltonian, the costate

differential equation is written in the recognizable form:

 𝜆 = −
𝜕𝐻

𝜕𝑥
 (A.9)

 81

APPENDIX B

 In this appendix, a 4
th

 order reversion of series procedure is described. The series

reversion process is applied to the following Taylor series expansion:

 𝛿𝐽𝜈 = 𝐽𝜈𝜈 δν +
1

2!
𝐽𝜈𝜈𝜈 δν2 +

1

3!
𝐽𝜈𝜈𝜈𝜈 δν3 +

1

4!
𝐽𝜈𝜈𝜈𝜈𝜈 δν4 (B.1)

where:

 𝛿𝐽𝜈 = 𝐽𝜈
∗ − 𝐽𝜈 = −𝐽𝜈 (B.2)

The aim of the reversion process is to obtain the proper perturbed terminal constraint

Lagrange multiplier (δν) as a function of the partial derivatives of the cost-to-go function

(𝐽𝜈 , 𝐽𝜈𝜈 , 𝐽𝜈𝜈𝜈 , 𝐽𝜈𝜈𝜈𝜈 , 𝐽𝜈𝜈𝜈𝜈𝜈).

 This is accomplished by solving expanding 𝐽𝜈 in 1
st
 through 4

th
 order Taylor

series expansions, as shown below.

 𝛿𝐽𝜈 = 𝐽𝜈𝜈 δν (B.3)

 𝛿𝐽𝜈 = 𝐽𝜈𝜈 δν +
1

2!
𝐽𝜈𝜈𝜈 δν2 (B.4)

 𝛿𝐽𝜈 = 𝐽𝜈𝜈 δν +
1

2!
𝐽𝜈𝜈𝜈 δν2 +

1

3!
𝐽𝜈𝜈𝜈𝜈 δν3 (B.5)

 𝛿𝐽𝜈 = 𝐽𝜈𝜈 δν +
1

2!
𝐽𝜈𝜈𝜈 δν2 +

1

3!
𝐽𝜈𝜈𝜈𝜈 δν3 +

1

4!
𝐽𝜈𝜈𝜈𝜈𝜈 δν4 (B.6)

Each of these equations is inverted to solve for the first-order δν term. The equations are

solved in ascending Taylor series expansion order, because the solution to each equation

utilizes the values of δν obtained by the previous equation. To help illustrate this, a

subscript will be given to each δν which corresponds to the order of Taylor series

expansion considered. With this in mind, the update equations are given as:

 82

 δν1 = 𝐽𝜈𝜈
−1 𝛿𝐽𝜈 (B.7)

 δν2 = 𝐽𝜈𝜈
−1 𝛿𝐽𝜈 −

1

2!
𝐽𝜈𝜈𝜈 δν1

2 (B.8)

 δν3 = 𝐽𝜈𝜈
−1 𝛿𝐽𝜈 −

1

2!
𝐽𝜈𝜈𝜈 δν2

2 −
1

3!
𝐽𝜈𝜈𝜈𝜈 δν2

3 (B.9)

 δν4 = 𝐽𝜈𝜈
−1 𝛿𝐽𝜈 −

1

2!
𝐽𝜈𝜈𝜈 δν3

2 −
1

3!
𝐽𝜈𝜈𝜈𝜈 δν3

3 −
1

4!
𝐽𝜈𝜈𝜈𝜈𝜈 δν3

4 (B.10)

The accuracy of δν increases with each additional order of Taylor series expansion.

Therefore, δν4 is used to update the terminal constraint Lagrange multipliers.

To implement these equations in Matlab, the partial derivatives of the cost-to-go

function must be left in their natural structure as tensors. A procedure for dealing with

these tensors is developed in Appendix E.

 83

APPENDIX C

This appendix provides a description of the properties of multivariable partial

derivatives, and how they are exploited for efficiency. For problems formulated with

state-space dimensions of two or more, the orders of partial derivatives of the cost-to-go

assume the following structure: 1
st
 order partial derivatives are vectors, 2

nd
 order partial

derivatives are matrices, and 3
rd

 through n
th

 order partial derivatives are tensors

containing 3 through n indices, respectively.

In multivariable calculus, the order of differentiation has no effect on the partial

derivatives, i.e., the partial derivatives possess the commutative property. For example,

given an arbitrary number of states, the commutative property is represented on 2
nd

 and

3
rd

 order partial derivatives as:

 𝐽𝑥𝑖𝑥𝑗
= 𝐽𝑥𝑗𝑥𝑖

 (C.1)

 𝐽𝑥𝑖𝑥𝑗𝑥𝑘
= 𝐽𝑥𝑗𝑥𝑖𝑥𝑘

= 𝐽𝑥𝑖𝑥𝑘𝑥𝑗
= 𝐽𝑥𝑗𝑥𝑘𝑥𝑖

= 𝐽𝑥𝑘𝑥𝑖𝑥𝑗
= 𝐽𝑥𝑘𝑥𝑗𝑥𝑖

 (C.2)

This creates symmetry within the structure of the multivariable partial derivatives,

starting at the 2
nd

 order. With each additional order of derivation, this symmetry

incorporates more and more terms. With this in mind, a scheme is devised to exploit the

symmetry of these partial derivatives, which dramatically reduces the computational

effort and storage requirements necessary to implement the HJB approximation method.

 The devised scheme relies on treating each independent variable separately, thus

disassembling the overall structure of the partial derivatives. As individual terms,

conditions are enforced to ensure no repetitive partial derivatives are calculated.

 84

Specifically, each independent variable is given an index number, and partial

differentiation is only allowed to occur in ascending order, i.e.,

 𝐽𝑥𝑖𝑥𝑗
 , ∀ 𝑖 ≤ 𝑗 (C.3)

 𝐽𝑥𝑖𝑥𝑗𝑥𝑘
 , ∀ 𝑖 ≤ 𝑗 ≤ 𝑘 (C.4)

 𝐽𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙
 , ∀ 𝑖 ≤ 𝑗 ≤ 𝑘 ≤ 𝑙 (C.5)

where 𝑖, 𝑗, 𝑘, 𝑙 are the index numbers of the variables. By only allowing differentiation in

ascending index order, all of the repetitive terms are eliminated. Once the partial

derivatives have been derived, they are concatenated in into a single column, again in

ascending order.

 𝑃𝐷 = 𝐽𝑥𝑖
 , 𝐽𝑥𝑗

 … , 𝐽𝑥𝑖𝑥𝑖
 , 𝐽𝑥𝑖𝑥𝑗

 , … , 𝐽𝑥𝑖𝑥𝑖𝑥𝑖
, 𝐽𝑥𝑖𝑥𝑖𝑥𝑗 , …

T

 (C.6)

Within the symbolic differentiation routine, the PDEs governing the partial derivatives

are differentiated and stacked in the same manner. Thus, the unique partial derivatives

are passed to and from the numerical integration routine (ode45) using this structure.

 85

APPENDIX D

 In this appendix, a derivation of the perturbed Hamilton-Jacobi-Bellman (PHJB)

equation is presented. To begin assume some initial state perturbations 𝛿𝑥 𝑡0 . These

initial perturbations will generate perturbations 𝛿𝑥 𝑡 governed by:

 𝛿𝑥 = 𝑓 𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢 − 𝑓∗ (D.1)

where the ∗ superscript indicates the nominal values. Next, assuming the problem is

formulated with soft terminal constraints, the perturbed cost-to-go function is given by

the following expression.

 𝛿𝐽 = 𝜙 𝑥∗ 𝑡𝑓 + 𝛿𝑥 𝑡𝑓 − 𝜙∗ (D.2)

 + 𝐻 𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢, 𝜆∗ − 𝐻∗ − 𝐻𝑥
∗𝛿𝑥 − 𝐻𝑢

∗𝛿𝑢 𝑑𝑡
𝑡𝑓
𝑡

To construct the PHJB equation, the total time derivative of Equation (D.2) is taken. On

the left hand side of the equation, the total time derivative is separated into partial

derivatives with respect to the time and perturbed states. On the right hand side of the

equation, the second fundamental theorem of calculus is applied to simplify the

expression. The resulting equation is given as:

𝜕𝛿𝐽

𝜕𝑡
+

𝜕𝛿𝐽

𝜕𝛿𝑥

T
𝛿𝑥 = − 𝐻 𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢, 𝜆∗ − 𝐻∗ − 𝐻𝑥

∗𝛿𝑥 − 𝐻𝑢
∗𝛿𝑢 (D.3)

To simplify this equation, the following relationships are exploited:

 𝛿𝐽𝛿𝑥 = 𝛿𝜆 ; 𝐻𝑢
∗ = 0 ; 𝛿𝑥 = 𝑓 𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢 − 𝑓∗ ; (D.4)

𝐻 𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢, 𝜆∗ + 𝛿𝜆 = 𝐻 𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢, 𝜆∗ + 𝛿𝜆T𝑓 𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢

Making use of these relationships, Equation (D.3) is reduced to:

 −
𝜕𝛿𝐽

𝜕𝑡
= 𝐻 𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢, 𝜆∗ + 𝛿𝜆 − 𝐻∗ − 𝐻𝑥

∗𝛿𝑥 − 𝐻𝜆
∗𝛿𝜆 (D.5)

 86

From Equation (D.4), the perturbed Hamiltonian is defined as:

 𝛿𝐻 = 𝐻 𝑥∗ + 𝛿𝑥, 𝑢∗ + 𝛿𝑢, 𝜆∗ + 𝛿𝜆 − 𝐻∗ − 𝐻𝑥
∗𝛿𝑥 − 𝐻𝜆

∗𝛿𝜆 (D.6)

A second order necessary condition for optimality is given as:

𝜕𝛿𝐻

𝜕𝛿𝑢
= 0 (D.7)

For systems affine in the control, Equation (D.7) will provide a means of expressing the

control terms as a function of the costates. The control terms are removed and the final

form of the PHJB equation is given as:

 −
𝜕𝛿𝐽

𝜕𝑡
= 𝐻 𝑥∗ + 𝛿𝑥, 𝜆∗ + 𝛿𝜆 − 𝐻∗ − 𝐻𝑥

∗𝛿𝑥 − 𝐻𝜆
∗𝛿𝜆 (D.8)

Since we have assumed the relationship 𝛿𝐽𝛿𝑥 = 𝛿𝜆, the perturbed costate differential

equation can be derived from the PHJB equation in the following manner.

 𝛿𝜆 =
𝑑

𝑑𝑡
 𝛿𝐽𝛿𝑥 =

𝜕

𝜕𝑡
 𝛿𝐽𝛿𝑥 +

𝜕𝛿𝜆

𝜕𝛿𝑥
𝛿𝑥 (D.9)

First,
𝜕

𝜕𝑡
 𝛿𝐽𝛿𝑥 is derived from the PHJB equation, as shown below.

𝜕

𝜕𝑡
 𝛿𝐽𝛿𝑥 = − 𝐻𝑥 𝑥

∗ + 𝛿𝑥, 𝜆∗ + 𝛿𝜆 − 𝐻𝑥
∗ +

𝜕𝛿𝜆

𝜕𝛿𝑥
 𝐻𝜆 − 𝐻𝜆

∗ (D.10)

Recognizing that 𝛿𝑥 = 𝐻𝜆 − 𝐻𝜆
∗, Equation (D.9) can be substituted back into Equation

(D.8) revealing the following equation:

 𝛿𝜆 = −𝐻𝑥 𝑥
∗ + 𝛿𝑥, 𝜆∗ + 𝛿𝜆 + 𝐻𝑥

∗ (D.11)

Finally, it is worth noting the connection between 𝛿𝐻, 𝛿𝑥 , and 𝛿𝜆 :

 𝛿𝑥 =
𝜕𝛿𝐻

𝜕𝛿𝜆
 , 𝛿𝜆 = −

𝜕𝛿𝐻

𝜕𝛿𝑥
 (D.12)

 87

APPENDIX E

In this appendix, the implementation of the Lagrange Implicit Function Theorem

is described up to the 4
th

 order. In this thesis, the implicit function theorem is used in two

cases:

1) To calculate the sensitivities of the terminal constraint Lagrange multipliers

with respect to the states.

2) To calculate the sensitivities of the initial costates with respect to the initial

states.

In both situations, the implicit function theorem is utilized the same manner. However,

the constraint equation used in each case is different. These constraint equations are

given for each case as:

1) 𝐽𝜈 𝑥, 𝜈(𝑥) = 0

2) 𝜓 𝑥, 𝜆(𝑥) = 0

To avoid unnecessary repetition, the application of the implicit function theorem is

demonstrated only once. To begin, assume the following general constraint equation:

 𝑀 𝑥, 𝜆(𝑥) = 0 (E.1)

The first four total derivatives of 𝑀 with respect to 𝑥 are taken and split into their

respective partial derivatives as follows:

𝑑

𝑑𝑥
𝑀 = 𝑀𝑥 + 𝑀𝜆

𝑑𝜆

𝑑𝑥
 (E.2)

𝑑2

𝑑𝑥 2 𝑀 = 𝑀𝑥𝑥 + 2𝑀𝜆𝑥
𝑑𝜆

𝑑𝑥
 + 𝑀𝜆𝜆

𝑑𝜆

𝑑𝑥

2

+ 𝑀𝜆
𝑑2𝜆

𝑑𝑥 2 (E.3)

 88

𝑑3

𝑑𝑥 3
𝑀 = 𝑀𝑥𝑥𝑥 + 3𝑀𝜆𝑥𝑥

𝑑𝜆

𝑑𝑥
 + 3𝑀𝜆𝜆𝑥

𝑑𝜆

𝑑𝑥

2

+ 𝑀𝜆𝜆𝜆
𝑑𝜆

𝑑𝑥

3

 (E.4)

 +3𝑀𝜆𝑥
𝑑2𝜆

𝑑𝑥 2 + 3𝑀𝜆𝜆
𝑑𝜆

𝑑𝑥

𝑑2𝜆

𝑑𝑥 2 + 𝑀𝜆
𝑑3𝜆

𝑑𝑥 3

𝑑4

𝑑𝑥 4 𝑀 = 𝑀𝑥𝑥𝑥𝑥 + 4𝑀𝜆𝑥𝑥𝑥
𝑑𝜆

𝑑𝑥
 + 6𝑀𝜆𝜆𝑥𝑥

𝑑𝜆

𝑑𝑥

2

+ 4𝑀𝜆𝜆𝜆𝑥
𝑑𝜆

𝑑𝑥

3

+ 𝑀𝜆𝜆𝜆𝜆
𝑑𝜆

𝑑𝑥

4

 (E.5)

 +6𝑀𝜆𝑥𝑥
𝑑2𝜆

𝑑𝑥 2 + 12𝑀𝜆𝜆𝑥
𝑑𝜆

𝑑𝑥

𝑑2𝜆

𝑑𝑥 2 + 6𝑀𝜆𝜆𝜆
𝑑𝜆

𝑑𝑥

2

𝑑2𝜆

𝑑𝑥 2

 +4𝑀𝜆𝜆
𝑑𝜆

𝑑𝑥

𝑑3𝜆

𝑑𝑥 3 + 4𝑀𝜆𝑥
𝑑3𝜆

𝑑𝑥 3 + 3𝑀𝜆𝜆
𝑑2𝜆

𝑑𝑥 2
2

+ 𝑀𝜆
𝑑4𝜆

𝑑𝑥 4

These four equations are easily inverted to solve for the first four orders of sensitivities

of 𝜆 with respect to 𝑥. However, many of the partial derivative terms in these equations

are naturally represented as tensors.

 To handle these equations in Matlab, the tensors are represented as matrices

through a stacking operation. The tensors are stacked using a built-in concatenation

function (cat.m). To illustrate the stacking procedure, assume the following:

 𝑀 = 𝐴, 𝐵 T , 𝑥 = 𝑥1, 𝑥2
T , 𝜆 = 𝜆1, 𝜆2

T (E.6)

From this, 𝑀𝜆𝑥 ∈ ℜ2×2×2 is given as:

 𝑀𝜆𝑥 : , : ,1 = 𝑀1 =
𝐴𝑥1𝜆1

𝐴𝑥2𝜆1

𝐵𝑥1𝜆1
𝐵𝑥2𝜆1

 (E.7)

 𝑀𝜆𝑥 : , : ,2 = 𝑀2 =
𝐴𝑥1𝜆2

𝐴𝑥2𝜆2

𝐵𝑥1𝜆2
𝐵𝑥2𝜆2

 (E.8)

The stacked version of this tensor is formed with the command: 𝑐𝑎𝑡 2, 𝑀1, 𝑀2 . The

resulting matrix takes the form
§
:

 𝑀𝜆𝑥
𝑆 = 𝑀1 𝑀2 =

𝐴𝑥1𝜆1
𝐴𝑥2𝜆1

𝐵𝑥1𝜆1
𝐵𝑥2𝜆1

𝐴𝑥1𝜆2
𝐴𝑥2𝜆2

𝐵𝑥1𝜆2
𝐵𝑥2𝜆2

 (E.9)

§
 The superscript S denotes a stacked tensor

 89

In Equation (E.5), 𝑀𝜆𝑥 is multiplied with
𝑑𝜆

𝑑𝑥
∈ ℜ2×2. Before this multiplication can take

place using the stacked tensor, the structure of
𝑑𝜆

𝑑𝑥
 must be altered using a Kronecker

product, as follows:

 𝐼2 ⊗
𝑑𝜆

𝑑𝑥
=

𝑑𝜆

𝑑𝑥
0

0
𝑑𝜆

𝑑𝑥

 (E.10)

where 𝐼2 ∈ ℜ2×2 is an identity matrix. Using this notation, the equivalence between the

stacked and non-stacked tensor multiplications is given as:

 𝑀𝜆𝑥
𝑑𝜆

𝑑𝑥

𝑆

= 𝑀𝜆𝑥
𝑆 𝐼2 ⊗

𝑑𝜆

𝑑𝑥
 (E.11)

 Close attention must be paid to the order in which 𝑥 and 𝜆 are differentiated, e.g.,

𝑀𝜆𝑥
𝑆 ≠ 𝑀𝑥𝜆

𝑆 . The difference between these stacked tensors is in the placement of

individual terms. The manner in which the Kronecker product is applied can be used to

compensate for this dissimilar structure, e.g.,

 𝑀𝜆𝑥
𝑆 𝐼2 ⊗

𝑑𝜆

𝑑𝑥
 = 𝑀𝑥𝜆

𝑆
𝑑𝜆

𝑑𝑥
⊗ 𝐼2 (E.12)

Similarly, 𝑀𝜆𝜆
𝑆 is multiplied with

𝑑𝜆

𝑑𝑥

2
 in the following manner.

 𝑀𝜆𝜆
𝑑𝜆

𝑑𝑥

2

𝑆

= 𝑀𝜆𝜆
𝑆

𝑑𝜆

𝑑𝑥
⊗

𝑑𝜆

𝑑𝑥
 (E.13)

As the rank of the tensors increases, additional Kronecker products are used as follows:

 𝑀𝜆𝑥𝑥
𝑑𝜆

𝑑𝑥

𝑆

= 𝑀𝜆𝑥𝑥
𝑆 𝐼2 ⊗ 𝐼2 ⊗

𝑑𝜆

𝑑𝑥
 (E.14)

 𝑀𝜆𝑥𝑥𝑥
𝑑𝜆

𝑑𝑥

𝑆

= 𝑀𝜆𝑥𝑥𝑥
𝑆 𝐼2 ⊗ 𝐼2 ⊗ 𝐼2 ⊗

𝑑𝜆

𝑑𝑥
 (E.15)

 90

VITA

Name: Christopher Mathew McCrate

Address: Texas A&M University

 Department of Aerospace Engineering

 H.R. Bright Building, Ross Street – TAMU 3141

 College Station, TX 77843-3141

Email Address: chris.mccrate@gmail.com

Education: B.S., Mechanical Engineering, The University of Missouri, 2008

 M.S., Aerospace Engineering, Texas A&M University, 2010

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	OPTIMAL CONTROL SOLUTION METHODOLOGY
	NUMERICAL EXAMPLES
	HIGH-ORDER GUIDANCE SOLUTIONS
	SUMMARY AND CONCLUSIONS
	REFERENCES
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	APPENDIX E
	VITA

