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ABSTRACT 

 

Ocin_tsim – A DVFS Aware Simulator for NoC Design Space Exploration and 

Optimization. (May 2010) 

Subodh Prabhu, B.E., Delhi University 

Co-Chairs of Advisory Committee: Dr. Jiang Hu 

     Dr. Paul V. Gratz 

 

 Networks-on-Chip (NoCs) are a general purpose, scalable replacement for shared 

medium wired interconnects offering many practical applications in industry. Dynamic 

Voltage Frequency Scaling (DVFS) is a technique whereby a chip’s voltage-frequency 

levels are varied at run time, often used to conserve dynamic power. Various DVFS-

based NoC optimization techniques have been proposed. However, due to the resources 

required to validate architectural decisions through prototyping, few are implemented. 

As a result, designers are faced with a lack of insight into potential power savings or 

performance gains at early architecture stages. 

This thesis proposes a DVFS aware NoC simulator with support for per node 

power-frequency modeling to allow fine-tuning of such optimization techniques early on 

in the design cycle. The proposed simulator also provides a framework for 

benchmarking various candidate strategies to allow selective prototyping and 

optimization. 

As part of the research, DVFS extensions were built for an existing NoC 

performance simulator and released for public use. This thesis presents some of the 
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preliminary results from our simulator that show the average power consumed per node 

for all the benchmarks in SPLASH 2 benchmark suite [74] to be quite similar to each 

other. This thesis also serves as a technical manual for the simulator extensions. 

Important links for downloading and using the simulator are provided at the end of this 

document in Appendix C. 



 v

DEDICATION 

 

This thesis is dedicated to my father, who taught me the most important lesson of 

how to live this life with discipline and principles. It is also dedicated to my mother, who 

gave me my sense of perseverance, as well as encouraged me to pursue education. 

Without them, I would not have been me. 

This thesis is also dedicated to my lovely wife-to-be, my siblings and all other 

family members for their unstinted support. It is also dedicated to all my friends and 

support group for being there when I needed them, and for nurturing in me the ideas that 

extend well beyond this thesis. 



 vi

ACKNOWLEDGEMENTS 

 

I would like to thank my co-advisors and committee co-chairs, Dr. Jiang Hu and 

Dr. Paul V. Gratz, for their constant support and guidance in my research. Dr. Hu was 

instrumental in getting me started on an initial study, and with his expert guidance, 

paved the way for my thesis topic. Dr. Gratz, with his expertise in NoC, helped me in 

quickly ramping up on this topic and always kept me focused on the right step to carry 

my work forward. In Dr. Hu and Dr. Gratz, I found my ideal advisors. Without their 

expert advice and numerous insightful comments over the past year, it would have been 

virtually impossible to finish this body of work. As I proceed in my career, I hope to take 

with me, teachings and experiences accumulated from working with them. 

I would also like to acknowledge my other committee member, Dr. Vivek Sarin, 

for his support throughout the course of this research. Special thanks to Dr. Boris Grot, 

who along with Dr. Gratz, had built the initial Ocin_tsim simulator and who gave several 

insightful comments as the co-author of the initial paper on Ocin_tsim. 

Thanks are also due to Dr. Li-Shiuan Peh and her student Ms. Bin Li from 

Princeton University for providing the Orion modeling framework for development of 

our simulator. 

Thanks also go to all my friends, colleagues and CAMSIN group members for 

their encouragement and intellectual discussions which helped me shape this work. 

Finally, thanks to my department faculty and staff, external faculty and campus 

employers for making my time at Texas A&M University a great experience. 



 vii

NOMENCLATURE 

 

CAMSIN Computer Architecture, Memory Systems and Interconnect 

 Networks 

CMP Chip Multi-processor 

DFS Dynamic Frequency Scaling 

DVFS Dynamic Voltage Frequency Scaling 

FIFO First In First Out 

FPGA Field Programmable Gate Array 

GD GD Graphics Library 

HW Hardware 

I/O Input/Output 

IP Intellectual Property 

NoC Network on Chip 

Ocin_tsim On Chip Interconnect Network Timing Simulator 

OCR On Chip Regulator 

SoC System on Chip 

SVN Subversion 

SW Software 

VF Voltage Frequency 

VFI Voltage Frequency Island 

 



 viii 

TABLE OF CONTENTS 

 

              Page 

ABSTRACT ..............................................................................................................  iii 

DEDICATION ..........................................................................................................  v 

ACKNOWLEDGEMENTS ......................................................................................  vi 

NOMENCLATURE ..................................................................................................  vii 

TABLE OF CONTENTS ..........................................................................................  viii 

LIST OF FIGURES ...................................................................................................  x 

LIST OF TABLES ....................................................................................................  xi 

CHAPTER 

 I INTRODUCTION ................................................................................        1 

   1.1 Network on Chip (NoC) ...........................................................        2 

   1.2 Dynamic Voltage Frequency Scaling (DVFS) .........................        5 

   1.3 Motivation ................................................................................        8 

   1.4 Organization .............................................................................      10 

 II RELATED WORK ..............................................................................      11 

   2.1 Performance Modeling .............................................................      11 

   2.2 Power Modeling .......................................................................      18 

 III OCIN_TSIM .........................................................................................      21 

  3.1 Ideal Requirements ...................................................................      21 

  3.2 Organization .............................................................................      22 

         3.3 Simulator Internals ...................................................................      27 

 IV IMPLEMENTATION ..........................................................................      30 

  4.1 Novel Features ..........................................................................      30 

  4.2 Simulator Usage .......................................................................      31 



 ix

CHAPTER                                                                                                                   Page 

  

         4.3 Some Standard Test Cases .......................................................      32 

         V        CONCLUSIONS AND FUTURE WORK ............................................      36 

 5.1 Thesis Summary .......................................................................      36 

 5.2 Future Work .............................................................................      37 

 

REFERENCES ..........................................................................................................      39 

APPENDIX A ...........................................................................................................      50 

APPENDIX B ...........................................................................................................      52 

APPENDIX C ...........................................................................................................      58 

VITA .........................................................................................................................      59 



 x

LIST OF FIGURES 

 

FIGURE                                                                                                                        Page 

 1 Popular NoC topologies [9] – (a) SPIN, (b) Mesh 4x4, (c) Torus 4x4, (d) 

Folded Torus 4x4, (e) Octagon and (f) Butterfly Fat Tree (BFT) ..............  4 

 

 2 Graph showing VF variations in a DVFS system [25] ...............................  6 

 

 3 Popular OCR configurations [25] ..............................................................  7 

 

 4  NoC design trends from architecture to Silicon implementation ...............  9 

 

 5 System flow of transaction-level NoC simulator [52] ...............................  13 

 

 6 FPGA based NoC emulation framework [57] ............................................  15 

 7 Overview of GEMS (with GARNET) [58] ................................................  16 

 8 Mapping problem in a tile based architecture [62] ....................................  17 

 9 Web interface for CACTI [64, 65] .............................................................  19 

 10 2x2 NoC in 2D mesh topology ...................................................................  23 

 11 Simulator-microarchitecture mapping ........................................................  26 

 12 Per-node average power in mW for Splash 2 benchmark suite. ................  34 

 



 xi

LIST OF TABLES 

 

TABLE                                                                                                                          Page 

 

      1     Average power dissipation per-node for Splash 2 benchmarks ....................    34



 1

CHAPTER I 

INTRODUCTION 

 

 Today’s dominant approach to scaling compute performance while mitigating 

wire delays and power consumption is through the use of single chip multi-processors 

(CMPs). Current commercial products in this family range from Intel’s 8-core 

superscalar CMP [1] to a 64-core network and media processor from Tilera [2] to a 256-

element reconfigurable processor array from Rapport, Inc. [3]. With technology scaling, 

CMPs with hundreds to thousands of general and special-purpose cores are likely to 

appear in a multitude of application domains in the near future. Similarly, system-on-

chip (SoC) designs have recently emerged in the embedded market as a means to reduce 

power consumption and costs by integrating a diverse set of many IP blocks onto a 

single chip. In both cases, with rising core and IP block counts, communication between 

cores has become a major challenge as bus-based and ad-hoc interconnects do not scale 

well [4, 5]. In response, researchers have proposed packet-based networks-on-chip 

(NoCs) as a structured and scalable alternative [5, 6]. For instance, Intel recently 

announced Tera-flop performance at 5 GHz using an 80-core substrate with a mesh 

interconnect [7, 8]. As NoCs are still an emerging field, it has enjoyed a considerable 

amount of recent research activity. 

 

____________ 

This thesis follows the style of IEEE Transactions on Computers. 
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1.1 Network on Chip (NoC) 

 

One of the major problems in future SOC designs arises from non-scalable delays 

in global wires [9]. Global wires carry signals across a chip and typically do not scale in 

length with technology scaling [10]. Though gate delays scale down with technology, 

global wire delays typically increase exponentially or linearly by inserting repeaters. 

Even after repeater insertion [11], the delay may exceed the limit of one or multiple 

clock cycles. In ultra-deep submicron processes, it is claimed that 80 percent or more of 

the delay of critical paths will be due to interconnects [12]. As a result, many large 

designs use as hoc FIFO buffers to synchronously propagate data over large distances to 

overcome this problem. According to the ITRS report, “Global synchronization becomes 

prohibitively costly due to process variability and power dissipation, and cross-chip 

signaling can no longer be achieved in a single clock cycle.” [13]. Thus, system design 

must work on networking and distributed computation paradigms with functional blocks 

integrated into the communication backbone. 

The most frequently used on-chip interconnect architecture is an arbitrated bus, 

where all communication devices share the same transmission medium. Advantages of 

such shared-bus architectures are simple topology, low area and extensibility. However, 

for a long bus line, the intrinsic parasitic resistance and capacitance can be quite high. 

Moreover, every additional IP block added to the bus adds to this parasitic capacitance, 

in turn increasing propagation delay. As the bus length and/or the number of IP blocks 

increases, the associated bit transfer delay over the bus becomes large and will 



 3

eventually exceeds the targeted clock period. This places a limit on the number of IP 

blocks that can be connected to a bus and thereby limits the system scalability [14]. 

One solution to deal with this problem is to split the bus into multiple segments 

and employ a hierarchical architecture [15]; however, this is ad hoc in nature and has the 

inherent limitations of the bus-based architecture. In SoCs consisting of several IP 

blocks, bus-based interconnects will face serious bandwidth problems as all attached 

devices must share the same medium [14]. To overcome the above-mentioned problems, 

use of a communication-centric approach to integrate IPs in complex SoCs is advocated. 

This new model separates the resource elements (i.e., the IPs) from the communication 

infrastructure (i.e., the network). The need for global synchronization thus disappears. 

This new approach is explicitly parallel, exhibits modularity to minimize global wires 

and utilizes locality in power minimization [16]. 

In a network-centric approach, communication between IPs happens in the form of 

packets. A common characteristic of such architectures is that the IP blocks 

communicate with each other using intelligent switches or routers. As such, these 

switches dubbed infrastructure IPs (I2Ps) [16] provide a robust data transfer medium for 

the functional IP modules. 

There is another manner of explaining the relevance of Network on Chips [17]. 

Reliable communication between circuit components requires a protocol definition that 

provides some rules describing how the interaction shall take place. These rules ensure 

that the overall system performance requirements are met, while physical resources like 

area or energy are minimized. Traditional on-chip communication designs use ad-hoc 
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approaches that often fail to meet some strict scalability requirement of next-generation 

SOC designs. Bottlenecks can arise in performance, throughput, power, energy, 

reliability, synchronization, predictability and concurrency Designers traditionally stuck 

to point-to-point connections and bus-based techniques. This approach is acceptable for 

a small number of blocks when the performance/ latency trade-off is relatively simple. 

 

 

Fig. 1: Popular NoC topologies [9] – (a) SPIN, (b) Mesh 4x4, (c) Torus 4x4, (d) Folded Torus 4x4, (e) 

Octagon and (f) Butterfly Fat Tree (BFT) 

 

To address these challenges, it was critical to take a global view of the 

communication problem. Communication design was introduced at higher levels of 

abstraction than the architecture and RTL level. Communication protocol functions were 

separated into layers that interact through via well-defined interfaces to simplify 

synthesis and validation tasks. Such an approach also maximizes re-use like for example 
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in 802.11 wireless network standards where a single media-access layer supports 

different physical implementations through unified interface. This layered-stack 

approach to the design of the on-chip inter-core communications is called the Network-

on-Chip (NOC) methodology [18]. Fig. 1 shows some of the popular topologies 

employed in an NoC architecture [9]. Designing NOCs is not an easy task, and may 

result in protocol implementations that are incorrect (e.g. due to deadlocks and race 

conditions), or sub-optimal (e.g. are power hungry or introduce unacceptable latency). 

 

1.2 Dynamic Voltage Frequency Scaling (DVFS) 

 

One active area of work on NoC has focused on dynamically varying operating 

voltage and frequency levels to achieve a balance between power and performance [19]. 

This technique, referred to as DVFS, is used quite often in SoC designs [20]. Dynamic 

voltage and frequency scaling (DVFS) was introduced in the 90’s [21] to dramatically 

reduce power consumption in large digital systems by varying both voltage and 

frequency of the system with respect to changing workloads [22, 23, 24, 25]. Fig. 2 

shows the time varying pattern of voltage and frequency in a system exhibiting DVFS 

[25]. 

Alternative techniques using voltage/frequency islands (VFIs) for IP blocks are 

used in achieving fine grain system-level power management [26]. Use of VFIs in the 

NoC context can provide better power-performance tradeoffs than single voltage, single 

clock frequency case as it benefits from the natural partitioning and mapping of 

applications onto the NoC platform. Despite the huge potential for energy savings with 
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VFIs, the NoC design methodologies considered so far are limited to a single voltage-

clock domain [27, 28, 29]. Studies that do consider multiple VFIs assume that each 

module/core in the design belongs to a different island and different islands are 

connected by point-to-point (P2P) links [30, 31]. 

 

 

Fig. 2:  Graph showing VF variations in a DVFS system [25] 

 

Power-gating is a standby-leakage reduction method developed in [32, 33, 34, 

35, 36]. In a power gating design, sleep transistors are used as switches to shut off power 

supplies to parts of a design in standby mode [37]. Clock gating was also proposed as a 

power saving technique [38, 39, 40]. Some studies indicate that the clock signals in 

digital computers consume a large (15–45%) percentage of the system power [41]. Thus, 

the circuit power can be greatly reduced by reducing the clock power dissipation.  Many 

clock power reduction techniques have focused on reduced voltage swings, buffer 

insertion, and clock routing [42]. In many cases, switching of the clock causes a huge 
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gate activity. In circuits with controllable clocks, master clock is used to derive all other 

clocks which, based on certain conditions, can be slowed down or stopped completely 

with respect to the master clock [43]. 

W. Kim, et al. have proposed per-core DVFS techniques for use in fine-grain 

power management [25]. In recent years, a huge interest has developed in building on 

chip integrated switching voltage regulators [44, 45, 46, 47]. Fig. 3 shows some of the 

popular configurations in which on-chip regulators may be employed (if at all) in a 

DVFS system. These regulators allow multiple on-chip power domains in CMP systems. 

CMP systems running heterogeneous workloads can benefit from per-core DVFS. 

 

 

Fig. 3: Popular OCR configurations [25] 
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1.3 Motivation 

 

In traditional NoC-based designs, power savings estimation and verification is 

delayed until design prototyping via FPGA or silicon implementation [48]. As indicated 

in Fig. 4, a large number of design candidates may exist in the planning stages. Once 

established, power, performance, and area objectives will subsequently reduce the 

possible design space. At this point, evaluation via simulation can provide a rapid, 

quantitative basis for refining a limited number of design candidates into a few good 

prototype choices. It also enables exploring a wider design space in cases where system 

objectives are relatively flexible. With this motivation behind us, we framed our thesis 

statement as “To develop a framework that would allow early estimation of power and 

performance characteristics as well as benchmarking of an NoC based design 

proposition”. 

This document introduces extensions to “Ocin_tsim” (On Chip Interconnection 

Network Timing Simulator), a cycle-accurate microarchitectural Network-On-Chip 

(NoC) simulator. These extensions to Ocin_tsim support per-node DVFS modeling for 

early identification of optimum power-performance savings possible given a proposed 

DVFS policy. 

Existing NoC simulators as we shall see later in this document, either do not 

model DVFS or assume global DVFS [49, 50, 51, 52, 53]. As a result, many 

architectural optimizations can be validated only for global performance benefits. To the 
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best of our knowledge, this simulator is the first to accurately model the power and 

performance of an NoC utilizing per-core DVFS. 

 

 

Fig. 4: NoC design trends from architecture to Silicon implementation 

 

This work on the Ocin_tsim simulator makes the following contributions: 

1) A novel DVFS-aware NoC simulation environment with power-performance 

calculations for each node, necessary for modeling multiple voltage-frequency regions 

dynamically managed at run-time. 

2) Support for modular integration of power models allowing users to plug-in 

their own power models for new process technologies and custom circuit designs. 
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3) Support for modeling and benchmarking of arbitrary interconnect topologies 

and router microarchitectures with power-performance calculations. 

 

1.4 Organization 

 

The rest of the thesis is organized as follows. Chapter II discusses prior relevant 

work, Chapter III discusses Ocin_tsim as it existed before and various decisions made in 

its design process. In Chapter IV we present the implementation of DFS and power 

modeling extensions to Ocin_tsim, while Chapter V covers potential use cases of our 

simulator for some standard designs. Chapter VI presents summary of conclusions and 

future work. Finally we present some detailed simulator information in Appendices A-D. 
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CHAPTER II 

RELATED WORK 

 

 

2.1 Performance Modeling 

 

 In this chapter we present some of the existing NoC simulation tools for 

performance and power calculations. We start off by identifying a basis for classifying 

these simulators. This also serves the purpose in showing how our simulator is different 

from existing simulators. 

 

2.1.1 Classification 

 

 Existing literature landscape in NoC architectural simulators at architectural 

stage can be classified into the following broad classes on the basis of the parameter that 

is being simulated: 

 

2.1.1.1 Class A: Micro-architectural Simulators 

 

These simulators compute actual physical quantities of an NoC such as network 

latencies [49, 50, 51], power consumption [50, 51, 52], and noise immunity [54]. While 

being exhaustive, they are computationally intense and limited in precision by models 

employed. 

 

 

 

 



 12

 

2.1.1.2 Class B: Abstract Simulators 

 

Class B simulators model only a specific section/layer of network such as task 

scheduling, packet arbitration, packet management and/or packet routing and generalize 

the results for complete interconnect network. [53]. Abstract simulators provide high 

simulation performance and can be effective at proving the underlying optimization 

without the complexities of an actual NoC implementation. These simulators rely upon 

generalized assumptions about the characteristics of network traffic and often prove 

inaccurate at estimating the performance of realistic workloads. 

 

2.1.1.3 Placement of Ocin_tsim 

 

The previous division is by no means exhaustive. Our simulator lies squarely in 

Class A and hence is different from all Class B simulators in that it directly models 

network latencies and dynamically estimates the power consumption for a given NoC 

configuration. Our simulator is different from other simulators in Class A in three 

respects: 

1) It allows each node to operate in independent voltage and frequency domains 

as in a per-core DVFS setup, 

2) It uses Orion system of power modeling [55] to compute both static and 

dynamic power consumption and 

3) It provides a textual as well as graphic representation of dynamic network 

traffic to allow an intuitive logging and visualization. 
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2.1.2 State of Art in NoC Simulation 

 

The following presents a list of state of the art in NoC simulation presented in no 

particular order. 

 

2.1.2.1 Transaction level Simulator 

 

 

Fig. 5: System flow of transaction-level NoC simulator [52] 

 

A transaction-level model written in SystemC is used for fast simulation speed 

[52]. Fig. 5 shows the system level view of transaction-level NoC simulator. An 

architectural energy model estimates communication energy for both dynamic and 

leakage, dissipating on routers and links through the transaction-level simulation. It 

supports temporal power profiling for each NoC component and spatial power snapshots 
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for the whole NoC, making it easy to inspect the power implications under application 

workloads. 

 

2.1.2.2 NoCSim 

 

NoCSim is an extensible and popular simulator for Networks on Chip [50]. It is 

written in Haskell with the ForSyDe library. It is extensible because it allows the user to 

define new switches, resources and resource-switch interfaces. The simulator is 

controlled by scripts based on Haskell commands and functions which are then compiled 

with the rest of the simulator. A variety of simulation commands produce simulation 

output data files. Plot commands are used to visualize simulation data with gnuplot. 

 

2.1.2.3 Nostrum NoC Simulation Environment (NNSE) 

 

NNSE allows analyzing performance impact of NoC configuration parameters 

[51, 56]. It also allows one to configure topology, flow control and routing algorithm etc. 

and various regular and application specific traffic patterns to evaluate the network in 

terms of latency and throughput. The simulator is built in SystemC and is reconfigurable 

so that it is possible to try different NoC platforms with different workload mappings. 

 

2.1.2.4 FPGA Based Emulator 

 

A flexible emulation environment suitable for exploring, evaluating and 

comparing a wide range of NoC solutions with a very limited effort was implemented on 
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an FPGA [57]. A HW-SW NoC emulation framework was proposed for achieving this 

(See Fig. 6). 

 

 

Fig. 6: FPGA based NoC emulation framework [57] 

 

 

2.1.2.5 GARNET 

 

GARNET (See Fig. 7) is a detailed network model [58, 59] incorporated inside a 

full-system simulator GEMS framework [60] which allows system-level performance 

and power modeling of network-level techniques. GARNET also can evaluate 

techniques that get maximum benefit out of memory hierarchy and the interconnection 

network. Using GEMS framework, interconnection network evaluations can be done in a 

full-system mode. GARNET can also interface with power models such as Orion or 

Wattch but has no support for per-node DVFS. It provides an evaluation of techniques 
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that use the interconnection network as well as other system-level components 

simultaneously. 

 

 

Fig. 7: Overview of GEMS (with GARNET) [58] 

 

 

2.1.2.6 Network Simulator (NS) 

 

NS is a public domain network simulator which can be used to build a proto-

model that can evaluate design options for a specific NOC architecture with 2D mesh of 

switches [49]. NS is an event driven simulator. 

 

2.1.2.7 Proteo NoC Simulator 

 

A VHDL-based simulation environment for PROTEO NoC was proposed [53]. 

VHDL was utilized to evaluate several features of virtual channels in mesh-based and 
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hierarchical NoC topologies. The accuracy of VHDL model is high, but it suffers from 

low simulation speed. 

 

2.1.2.8 VHDL Model 

 

N. Banerjee et al. present a VHDL based cycle accurate register transfer level 

model for evaluating latency, throughput, dynamic, and leakage power consumption of 

NoC based architectures [61]. An RTL design is parameterized on (i) size of packets, (ii) 

length and width of physical links, (iii) number, and depth of virtual channels, and (iv) 

switching technique. 

 

2.1.2.9 Mapping Tool 

 

 

 

Fig. 8: Mapping problem in a tile based architecture [62] 

 

While slightly orthogonal in this list of NoC performance simulators, for context 

we also cite an algorithm which automatically maps the IPs/cores onto a generic regular 

Network on Chip (NoC) architecture such that the total communication energy is 

minimized (See Fig. 8) [62]. The performance of the mapped system is guaranteed to 
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satisfy the specified constraints through bandwidth reservation. Authors have formulated 

the problem of energy-aware mapping, in a topological sense, and then propose an 

efficient branch-and-bound algorithm to solve it. 

 

2.2 Power Modeling 

 

Power dissipation has become a significant constraint in modern microprocessor 

design besides performance, clock frequency and die size [63]. In addition to extra heat 

created, high power consumption in embedded processors also reduces the battery 

lifetime and can cause thermal issues such as device degradation, higher packaging cost 

and reduced chip lifetime. In some sense, power has been elevated to a ‘first class design 

constraint’ and hence estimating power at the same time as performance studies in a 

design flow is becoming increasingly important. Just as performance analysis for a 

design candidate is performed during the design exploration phase with a cycle 

simulation, similarly augmented cycle simulators can be used to provide power 

estimates. The only caveat is that architectural power modeling should have sufficient 

details to have some meaning since there is a sizeable performance penalty for including 

any power model in the simulator. 

 

2.2.1 Cacti 

 

Cacti is an integrated cache access time, cycle time, area, aspect ratio, and power 

model [64, 65]. Cacti is used by computer architects to understand the performance 

tradeoffs inherent in different cache sizes and organizations. The original Cacti tool was 
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released in 1994 as a fast tool to model SRAM caches. Recent versions have added area 

and active power (including leakage power) modeling to Cacti while also updating the 

basic circuit structure and device parameters to reflect the advances in scaling 

semiconductors. A graphical web interface to Cacti exists as shown in Fig. 9. 

 

 

Fig. 9: Web interface for CACTI [64, 65] 

 

 

2.2.2 Wattch 

 

Wattch is an architectural framework for analyzing and optimizing 

microprocessor power dissipation [66]. Wattch was one of the first tools to complement 

existing lower-level tools by allowing architects to explore design space early on. Many 
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subsequent frameworks are either based or inspired from this work. Wattch was 

provided as a power evaluation methodology within the SimpleScalar framework [67]. 

 

2.2.3 Orion 

 

ORION [68] was amongst the first power models released with NoCs in mind. It 

has since been fairly widely used for early-stage power estimation and is interfaced with 

few NoC performance simulators. ORION 2.0 [55] was an enhancement over original 

ORION models with new subcomponent power models, area models, and updated 

technology models. 

 

2.2.4 Nostrum High-Level Power Model (Nos-HPM) 

 

Nos-HPM is a model allowing a fast power analysis to the accuracy of within 5% 

[69]. The empirical power model of links and switches was formulated and validated 

with the Synopsys Power Compiler. System simulations with Nos-HPM were shown to 

run up to 500 times faster than with Power Compiler for a 4 x 4 network. 

 

2.2.5 PIRATE 

 

PIRATE is a design framework which supports a methodology to generate and 

simulate a configurable NoC–IP core for the power-performance exploration of the 

interconnect network [70]. The NoC–IP core itself is composed of a set of parameterized 

modules like interconnection elements and switches to form different on-chip micro-

network topologies. 
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CHAPTER III 

OCIN_TSIM 

 

 In this chapter, we discuss the implementation details of Ocin_tsim as it existed 

before. This chapter presents an eagle’s eye view as well specifics about the simulator. 

 

3.1 Ideal Requirements 

 

Ocin_tsim was born out of the need for a tool that could quickly and efficiently 

validate or reject NoC architectural propositions employing DVFS. Existing simulators, 

as listed in Chapter II, were found lacking for such purposes. As previously discussed, 

NoC power consumption and packet latency are highly dependent upon routing function, 

DVFS policy and network traffic. Therefore, detailed microarchitectural simulation of 

the proposed NoC under a given workload is required to provide an accurate 

measurement of the system’s performance and power characteristics. 

The goals of Ocin_tsim’s design are as follows: 

 

3.1.1 Flexible Design 

 

The simulator was designed for use in early stage, NoC architectural research 

where numerous designs must be evaluated. By supporting run-time configurability, 

Ocin_tsim enables rapid evaluation of diverse workloads and network parameters [71]. 

Such efficiency is not possible with compile-time configurable simulators. 
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3.1.2 Extensibility 

 

The simulator has a modular architecture that facilitates extensibility via user-

defined pluggable extensions. Sample components for visualization and power modeling 

are included in the standard distribution of the simulator and may easily be replaced with 

custom models. 

 

3.1.3 Fast Performance 

 

As with all architectural simulators, an important challenge lies in simulating 

more cycles in less wallclock time. One of the benefits of having modular simulator 

architecture is that it enables suppression of unused components to improve simulator 

performance. For example, in timing-only mode, Ocin_tsim achieves faster simulation 

speeds by disabling power modeling and visualization modules. 

 

3.2 Organization 

 

This section presents the organization of our simulator. We describe its modular 

structure, cover a top level overview and present some of the key components. We also 

discuss its various design decisions and tradeoffs involved therein. 

 

3.2.1 Modular structure 

 

To support our aims, we chose a modular, object-oriented design style to 

implement the simulator. Each logical component was implemented as a separate C++ 
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class. Such a structure not only supports our extensibility goal by being amenable to 

modular modifications, but also supports our flexibility goal by allowing use of 

inheritance and polymorphism to implement runtime configuration. 

As an example of how this modular structure can be exploited, consider how per-

node frequency support was added to the simulator. Initially Ocin_tsim supported a 

single, universal clock frequency across all the nodes. Simulation context was provided 

to each node by a simulator object every simulation step thereby evaluating and thus 

advancing the simulation. Therefore to implement dynamic, per-node frequency 

assignment, we simply had to constrain the number of simulation steps when a given 

simulator object would be evaluated. By including this count of cycles as a runtime 

configurable parameter, we were able to configure each node to be evaluated at different 

intervals thereby implementing multiple clock frequencies. 

 

3.2.2 Top-level Structure 

 

 

Fig. 10: 2x2 NoC in 2D mesh topology 
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Fig. 10 shows a structural organization as well as syntactical description of nodes 

in a simple 2x2 mesh-based NoC. As the diagram shows, each node of an NoC is 

modeled in Ocin_tsim as an object containing four different module instances. We 

briefly discuss the role of each of these nodes below: 

 

3.2.2.1 Router Model 

 

The router module models the flow of packets through the given router’s user-

defined microarchitecture. This module contains a simulator timing object which 

synchronizes the packet traversal at an interval set by its clock frequency. 

 

3.2.2.2 Power Model 

 

Each node also carries an Orion [55] instance that computes the per-node power 

consumption based on actual run-time activity. The original Orion release was modified 

to allow per-node voltage-frequency selection. These values may be changed at runtime 

for fully dynamic voltage and frequency modeling. Other power models can also be 

easily adapted for use with our simulator. 

 

3.2.2.3 Monitor and Visualization 

 

Ocin_tsim contains monitoring modules for data collection and subsequent post 

processing using built-in statistics and/or visualization blocks. Monitor modules can be 

used to report statistics on various network elements such as packet routing, arbitration 

logic, link bandwidth, FIFO usage and other router statistics. The visualization module 
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uses the “GD” standard graphics library to capture the selected monitor statistic into a 

series of images [72]. By processing the data gathered by various monitor modules, the 

simulator is able to generate graphic representations of network buffer occupancy, link 

utilization, and other network statistics at the end of the simulation or during the course 

of one, producing a time-varying series of images. When combined with a network 

power model, this tool can elucidate interesting trends into per-node differences in 

power consumption, thermals, and traffic congestion. For a complete list of supported 

visualization modes, please refer to Appendix B. In complex, time varying environments 

such as those found in NoCs, graphical representations can often present a more efficient 

way to gain an intuitive grasp of network performance bottlenecks. 

 

3.2.2.4 Input / Output Model 

 

Ocin_tsim contains injector and ejector modules which mimic traffic generation 

and reception by the local processor or IP block attached to each router. While injector 

and ejector modules mimic various possible ways in which traffic may be induced across 

the NoC, an instance of I/O module in each node controls their behavior on a per-node 

basis. 

Fig. 10 shows a sample node declaration in the network configuration file. 

Runtime configuration via simple text files allows the description of complex NoC 

topologies via simple declarative statements. The configuration files are discussed in 

detail in Appendix B. 
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3.2.3 Traffic Generation and Routing 

 

Ocin_tsim supports several traffic generation, routing, and port selection 

functions. As with other simulator fields, all of these are runtime configurable. Packets 

can be generated either in random or bimodal mode (alternate between two different 

packet sizes). 

 

 

Fig. 11: Simulator-microarchitecture mapping 

 

The simulator supports a variety of synthetic traffic patterns including bit 

complement, transpose, bit reverse and hotspot. In addition, Ocin_tsim has a trace-driven 

packet generation mode to support network-level replay of simulated applications. 

Similarly, routing functions, port selection functions, and resource allocation functions 

can be chosen at run-time. For a comprehensive list of run-time configuration options, 

please refer to Appendix B. 
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3.3 Simulator Internals 

 

This section presents the internals of our simulator. We describe its functionality, 

internal source structure and how it maps to the microarchitecture of an NoC router. 

Various command line arguments and configuration fields used in our simulator are 

presented in Appendix A and Appendix B. 

 

3.3.1 Topology and Router Microarchitecture 

 

Fig. 11 shows a simple five-node NoC connected in a star topology as 

implemented in our simulator. Each router connects a local resource to the rest of the 

network via a node interface. Packets are routed over network links and stored in Virtual 

Channel (VC) buffers. Virtual Channels and switch bandwidth are assigned by allocation 

modules. Data injection (from resource into the router) and ejection (from router into the 

resource) is handled by generator and ejector modules. Each router instance also has a 

monitor module for statistics and visualization. 

 

3.3.2 Simulator Code Descriptions 

 

As shown in Fig. 11, code for Ocin_tsim is completely modular; each file maps 

to a component C++ class. Top level files integrate the microarchitectural components of 

a router into a single router object instance. Multiple instances of this router object are 

replicated and connected together to simulate the behavior of an NoC. The following list 

describes the functionality of the code files in src/ directory. 
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− ocin/tsim_ocin.cpp: top level file. Performs top level argument parsing, binds 

simulation agent to an instance of ocin_top. 

− ocin/ocin_top.*: top level integration files, perform parameter instantiation from 

configuration files, creates and initializes tiles and wires structure and invoke all 

required modules such as visualization or ejector (See Fig. 11). 

− ocin/ocin_router.*: router class. Includes routines for assigning numbered VCs and 

logical ports to each router, also include the evaluate subroutine (See Fig. 11(a)). 

− ocin/ocin_channel.*: include routines to transmit flits and calculate corresponding 

credit/cost (See Fig. 11(b)). 

− ocin/ocin_cost_msg.*: define the cost message structure to be used later on. 

− ocin/ocin_defs.*: top level define files containing various shared macros and custom 

data types. 

− ocin/ocin_helper.*: contains various utility functions used elsewhere in simulator. 

− ocin/ej_modules/*: default, non-blocking top-level ejector module (See Fig. 11(d)). 

− ocin/gen_modules/*: various traffic generation modes including random, complement, 

transpose, reverse, selfsimilar, file trace and hotspot (See Fig. 11(e)). 

− ocin/io_modules/*: router I/O component modules (See Fig. 11(f)), input units (See 

Fig. 11(m)) and output units (See Fig. 11(n)). 

− ocin/monitors/*: monitor modules. Maintains copies of various network parameters 

such as flits traversed through a node, injection/acceptance ratio, stalls encountered, and 

requests/grants made (See Fig. 11(g)). 
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− ocin/rt_modules/*: routing functions such as adaptive, XY dimension-order and o1turn 

(See Fig. 11(h)). 

− ocin/sel_modules/*: selection function. Arbitration modules (See Fig. 11(i)). 

− ocin/vc_modules/*: virtual channel allocation modules (See Fig. 11(j)). 

− ocin/xbar_modules/*: crossbar allocation including routines for simple, 2-level and 

speculative allocation (See Fig. 11(k)). 

− ocin/vis_modules/*: visualization modules. Includes routines for interacting with 

PNG/JPEG/GD libraries (See Fig. 11(l)). 

− tsim/*: the simulation engine and modular agent tsim module. Defines the simulation 

interface (See Fig. 11(c)). 
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CHAPTER IV 

IMPLEMENTATION 

 

 In this chapter, we present the novel features that were introduced in Ocin_tsim 

as part of this thesis and also show results from new experiments that could be run as a 

direct result of these changes. 

 

4.1 Novel Features 

 

Following novel features were introduced in Ocin_tsim as part of the work for 

this thesis. 

 

4.1.1 DFS Modeling 

 

Ocin_tsim models per-node frequency in a manner analogous to sim clock in 

Verilog. Each clock period used in simulator is specified as a multiple of root clock time 

period where root clock is the time step at which simulation is advanced. Thus, a node 

with a clock period multiplier of two will be evaluated every two simulation steps. 

Signals crossing clock domains pay a synchronization latency of twice the destination 

clock period. 

It is important to note here that root frequency sets the relative updating interval 

of software execution cycle and hence determines the simulation time. As a result, for 

optimum simulation time, root clock should normally be set to Highest Common Factor 

(HCF) of all the clock periods in the network. In addition to its applications in DVFS, 
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dynamic frequency scaling (DFS) is also applied in globally asynchronous, locally 

synchronous (GALS) designs containing mesochronous clock boundaries. Our simulator 

does not impose any restrictions on the use of dynamic frequency tuning and can be used 

for DVFS as well as DFS designs. 

 

4.1.2 Power Modeling 

 

Another novel feature of our simulator is support for power modeling at 

architectural level in a DVFS setup. Each node in Ocin_tsim can compute per node 

power consumption based on actual, traffic-induced activity. Our simulator can be used 

with any off-the-shelf or custom power model to generate power estimates with desired 

accuracy. 

 

4.2 Simulator Usage 

  

This section describes installation procedure and presents typical use cases for 

NoC based design. The software is made available under MIT license [73]. 

 

4.2.1 Required Libraries 

 

The following libraries are required to successfully build Ocin_tsim: 

− GD Graphics library, required by visualization module can be found at 

http://www.boutell.com/gd/. 

−  PNG Library, required by visualization module in drawing to PNG files can be 

found at http://www.libpng.org/pub/png/. 
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−  JPEG Library, required by visualization module in drawing to jpeg files can be 

found at http://www.ijg.org/. 

−  Orion library, if you wish to perform power estimations in your simulation. We 

have tested our simulator to work with Orion version 2.0. Orion 2.0 library can be 

downloaded from http://www.princeton.edu/~peh/orion.html. You may also use the 

version of Orion 2.0 library made available at http://www.ece.tamu.edu/~ocintsim/ 

which supports programmatic control of voltage and frequency. 

 

4.2.2 Installation 

 

Ocin_tsim may be obtained online at http://www.ece.tamu.edu/~ocintsim/. The 

following commands may be used to extract and build the simulator: 

tar -zxvf ocin_tsim.tar.gz  

cd tmax 

make ocin 

 

4.3 Some Standard Test Cases 

 

4.3.1 Timing Simulation 

 

A simple Ocin_tsim use case is timing simulation for a small 2x2 NoC design. 

Ocin_tsim comes with a preconfigured 2x2 NoC network out-of-the-box. For this 

particular configuration, we have chosen a 10% injection bandwidth, 1 hop per cycle, 

128 baseline channel width and run all the nodes at same clock frequency. Each node 
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has 8 virtual channels and 4 element deep queues. Per-node configuration for this NoC is 

specified in the included simple test net.cfg file. 

cd simple test 

../bin/tsim_ocin -config simple test.cfg -n 1000 

 

4.3.2 Timing Simulation with Power 

 

To demonstrate the use of Ocin_tsim for DVFS modeling, we will use the same 

4-node NoC from the example above. Node configuration file should be modified to 

assign different startup voltage/frequency, if so desired. By altering the 

voltage/frequency level of a node based upon a required parameter (say, the incoming 

traffic), end-user can implement a policy for DVFS level selection. It is important to 

note here that in the absence of a power model, any DVFS level may be provided and 

the simulator would still successfully finish the simulation. However, for the simulation 

to have any physical relevance it is important to stick to the granularity and/or valid 

DVFS levels/range to switch between, as defined in your power model. 

Next we provide the simulator a ‘hook’ to a power model. This hook is a simple 

API call for the power computing function (in power model) made for each flit activity. 

For this exercise we use a modified version of the Orion 2.0 library made available at 

http://www.ece.tamu.edu/~ocintsim/. This library is derived from Orion 2.0 and 

modified to support programmatic control of voltage and frequency. By including the 

power calculating APIs in the simulator, any simulation now will perform both timing 

measurements as well as power estimation. 
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Fig. 12 and TABLE 1 show the results from a simulation done on an 8x8 NoC 

with the SPLASH (Stanford ParalleL Applications for SHared memory) 2 benchmark 

suite [74]. SPLASH 2 is a suite of parallel programs popularly used as a workload for 

quantitative evaluation of ideas in shared address-space multiprocessing. Based on our 

trace-driven simulations, we observe that the average power consumed per node for all 

the benchmarks in SPLASH 2 benchmark suite is quite similar to each other. 

 

 

Fig. 12: Per-node average power in mW for Splash 2 benchmark suite. 

 

TABLE 1 

Average power dissipation per-node for Splash 2 benchmarks 

 

Benchmark Barnes FFT LU Ocean Radix Raytrace 
Water 

NS 

Water 

SP 

Power 

(mW) 
8.66 8.686 8.62 8.633 8.673 8.699 8.673 8.686 
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Similarly, power figures over the complete simulation time can be plotted across 

regular windows to observe a dynamic power profile for any such NoC design. Such a 

simulation would be quite useful in identifying any performance bottlenecks or thermal 

hotspots and resolve them by modifying the design proposition. It can be seen here that 

having an architectural tool that can estimate power as well as performance can be used 

to attain an early understanding of the expected savings from a new design proposition. 

By extending Ocin_tsim for DVFS modeling, we believe that we have taken a key step 

in attaining this goal. 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

 

 

5.1 Thesis Summary 

 

 An accurate estimation of power and timing of interconnection networks in early 

phases of the design process can prove to be effective in deeper exploration of NoC 

design space. Existing NoC simulators are inadequate for power performance simulation 

of future technologies employing per-node DVFS with the goal of minimizing power 

consumption. In this work, we introduced a simulator that combines power and 

performance models, thereby enabling rapid and accurate evaluation of future NoC 

architectures. We have also presented an extensible framework for integrating power 

models from external sources into our timing simulator. 

Extensions to Ocin_tsim are both underway and planned. These are covered 

briefly in the Future Work section. At present, this tool provides researchers with a fast 

and efficient simulation infrastructure for screening architectural propositions before 

deploying them for FPGA testing or production. We hope that you find these tools 

useful, and encourage you to contact us with suggestions on improving the release, 

documentation and the tool itself. Relevant accessibility and support information are 

provided in Appendix C. 
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5.2 Future Work 

 

We believe that Ocin_tsim is a great tool for performing architectural simulations 

of NoC and gives researchers a tool to evaluate their NoC architectural propositions 

early on in the design cycle. An extensible project such as this leaves one with many 

possible future development paths to pick from. We cover some of those in this section. 

 

5.2.1 DVFS Extensions 

 

Work is underway on using our simulator for performing a limit study on DVFS 

switching times. We believe that such a study could provide insights into emphasis 

required on approaches utilizing faster DVFS switching for performance benefits at the 

cost of reduced regulator efficiency. Work is also planned on implementing certain basic 

DVFS policies and to expose them to the end user by means of a configuration field. 

Currently the users need to implement their own DVFS policies by tinkering with the 

simulator. 

 

5.2.2 Plugin-like Interface 

 

An extension planned for future is to provide an API layer for integration of 

power models. Such an API layer would provide a standard interface enabling 

researchers to import their custom power models into Ocin_tsim framework easily. 
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5.2.3 3D Visualization 

 

Another thought for a possible future extension is using a 3D visualization 

engine to provide real-time 3D rendering of various network parameters using time as 

the third dimension. Such a visualization technique could be more intuitive for some 

users in faster debugging of performance degradation issues rooted in real-time 

bottlenecks. Current visualization strategy is computationally prohibitive to be 

performed in real-time. 
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APPENDIX A 

COMMAND LINE ARGUMENTS 

 

The following command-line arguments are available in the simulator. 

-h, --help: displays usage information 

-v, --version: displays version information 

-n cycles: maximum number of simulation cycles (default = 10000000) 

-config filename: input configuration file 

-out filename: prefix for output file (and path) 

-debug, -d: displays verbose debug info in the log 

-debug_start_cycle: verbose debug info display start at given cycle 

-debug_stop_cycle: verbose debug info display stops at given cycle 

-parms, -p : creates simulator parameters file 

-noparms: does not create simulator parameters file 

-stats, -s: creates simulator statistics file 

-nostats: does not create simulator statistics file 

-logfile: enables simulator logging to file 

-nologfile: disables simulator logging to file 

-logout: enables simulator logging to stdout 

-nologout: disables simulator logging to stdout 

-logerr: enables simulator logging to stderr 

-nologerr: disables simulator logging to stderr  
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--< name >: initializes simulator parameter < name > with a value of 1 

--< name >=< value >: initializes simulator parameter < name >=< value >. 
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APPENDIX B 

CONFIGURATION FIELDS 

 

Configuration parameters are broadly divided into global and local (node based) 

categories and are stored in two separate files. While global settings affect network-wide 

parameters, local settings determine per-node configurations. 

 

B.1 Global Configuration 

 

Global configuration file specifies NoC-wide parameters such as packet generation 

mode, wire latency, switch for visualization module, percent injection bandwidth or 

number of warm up cycles. Valid values are presented in parentheses, with default 

parameters de-italicized. 

 

B.1.1 General 

 

Used in controlling generic parameters of NoC and global parameters of routers. 

– inj_vc_count: injector VC count (1) 

– ej_vc_count: ejector VC count (1) 

– percent_inj_bw: percent injection bandwidth (20) 

– hops_per_cycle: number of hops per cycle (0) 

– wire_delay: models per-hop link latency (0) 

– router_pipeline_lat: models any additional router pipeline latency (0) 
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– random_req_size: request size in random mode. When enabled, all packets are sized 

randomly. (0) 

– bimodal_req_size: request size in bimodal mode. When enabled, all packets are sized 

to one of two different possible lengths. (0) 

– bimodal_size1: packet size 1 in bimodal mode (64) 

– bimodal_size2: packet size 2 in bimodal mode (512) 

– selfsim_inj: self similar injection switch. When enabled, random numbers used in 

packet injection rate calculations are read from the “selfsim file” trace file rather being 

calculated via the pseudo-random number generator. This allows the off-line generation 

of self similar random numbers to drive the packet injection. 

– aggressive_vc_alloc: switch for aggressive VC allocation (can be used only with 

deterministic routing functions) (0) 

– adaptive_1avail: switch for ensuring winning out port has at least one VC available (0) 

– baseline_channel_width: baseline channel width (128) 

 

B.1.2 Regional Congestion Awareness (RCA) 

 

RCA is an efficient method for port selection based on aggregated congestion 

information communicated by neighboring nodes [75]. 

Following configuration fields control this behavior. 

– extra_rca_delay: models Regional Congestion Awareness (RCA) delay (0) 

– low_bw_rca: switch for modeling serialized updates over multi-cycles for bandwidth 

limited RCA (0) 
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– low_bw_rca_latency: models serialization latency for low bandwidth RCA field (0) 

– 0delay_cost_msg_update: switch for updating cost message with zero delay (0) 

– same_cycle_local_cost: switch for computing local congestion cost in same cycle. If 

local congestion is a function of grant signals which come late in cycle, then congestion 

cost should be computed in next cycle. On the other hand, if local congestion depends 

upon VC/crossbar requests, then local cost can be computed in same cycle. (0) 

– cost_multiplier_local: weightage for local cost. Local costs at each node are scaled by 

this factor before computing total cost. (1) 

– cost_multiplier_remote: weightage for remote cost. Remote costs arrived at by 

aggregating costs upstream are scaled by this factor before computing total cost. (1) 

– use_max_quadrant_cost: switch for using maximum congestion as representative for a 

quadrant, by default performs average (0) 

– cost_precision: cost precision (0) 

– dim_ave: perform diminishing average with existing value while updating history 

FIFO (0) 

 

B.1.3 Visualization and Statistics 

 

It configures visualization module and also defines interval as well as verbosity 

with which statistics are reported. 

– vis_on: visualization switch (0) 

– vis_start: time instant to start visualization (MAX VAL) 

– vis_stop: time instant to stop visualization (MAX VAL) 
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– vis_fifo_type: buffer parameter selected for visualization (free_buff | vc_alloc) 

– vis_link_type: link parameter selected for visualization (xbar_gnts | used_buff | 

vc_used | xbar_reqs | xbar_demand | xb_buff | link_util | pkt_delay) 

– stats_interval: statistics print interval (1000) 

– node_stats: switch to display per-node statistics (0) 

– node_bw_stats: display switch for node by node offered bandwidth statistics (0) 

– chkpt_interval: checkpoint interval (1) 

– incr_stats: switch for printing incremental statistics (0) 

 

B.1.4 Simulation and Trace File 

 

It contains various configuration fields for controlling simulator behavior as well 

as trace file handling. 

– flit_max: maximum flit count (1) 

– midpoint_file: fast forward to the middle of generator file (0) 

– seed: unique seed (random) 

– netcfg_file: location of node configuration file (“) 

– tracefile_name: trace file location (“). Traces are accepted in compressed SPLASH file 

format [76]. 

– incr_chkpt: switch for check pointing cost variables (0) 

– cost_reg_history: limit on history depth for maintaining cost (1) 

– warmup_cycles: number of warm up cycles not included in simulation log (0) 

– max_packets: maximum number of packets allowed in simulation (0) 
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– pkt_throttle: throttle on packet size to avoid simulator hang-ups (5000) 

– selfsim_trace1: self similar trace file 1 (“) 

– selfsim_trace2: self similar trace file 2 (“) 

 

B.2 Local Configuration 

 

Local configuration file specifies node-specific parameters such as 

source/destination info, mode of routing, connected ports, traffic pattern generation and 

selection as well as startup clock frequency/voltage level. Node-specific parameters 

follow a line starting with node: declaration and are applicable only for the node number 

specified. Following is a list of various local configuration fields supported. Valid values 

are presented in parentheses with default value de-italicized. 

− node: node name declaring a new node with specified name, remaining lines till next 

node declaration or EOF to be treated in this node’s context (“) 

− coord: node coordinates (x and y coordinates specified on two separate lines in that 

order) 

− is source: source switch (true | false) 

− is_destination: destination switch (true | false) 

− src_type: source traffic pattern (rand | bitcomp | transpose | selfsim | bitrev | hotspot | 

file) 

− dst_type: destination traffic pattern (noblock) 

− router_type: type of router (basic) 

− xbar_type: type of crossbar design (fullcon) 
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− vc_alloc: VC allocator type (2level) 

− xb_alloc: crossbar allocator type (2level | spec_2level | bec_2level | bec_power_2level 

| bec_spec_2level) 

− clock: clock frequency divider, divides the root clock frequency by specified value to 

arrive at clock frequency for each node (1) 

− volt: voltage level (default Vdd of power model used) 

− rt_algo_type: routing algorithm (xydor | adaptive_xy | o1turn_bec | xydor_bec) 

− rt_sel_type: routing selection function for choosing output port (bec | o1turn | 

last_match | first_match | first_avail | no_turn | random | stat | local) 

− rt_cost_fn: routing cost function in computing link cost (local | free_vc_nohist | 

buff_nohist | buff_hist) 

− rt_cost_reg: routing cost function in computing cost of an output port (free_vc_nohist | 

buff_nohist | xb_demand) 

− rt_cost_mgr: routing cost manager for aggregating and propagating congestion info 

(none | local | 1D | 1domni | fanin | quadrant) 

− vc_count: VC count per port (4) 

− vc_classes: number of priority classes in a VC (1) 

− que_depth: FIFO queue depth per VC (2) 

− port_count: number of ports (2) 

− port_dest: named destination port (“) 
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APPENDIX C 

ACCESSIBILITY AND SUPPORT 

 

 While an internal SVN based repository was used for the source code under 

development, a read only mirror access (with option of allowing collaborators if 

required) is provided through Google code via following link: 

http://code.google.com/p/ocintsim/ 

 For more formalized distribution of the simulator as a downloadable package as 

well as for future updates, a website was setup for the simulator at following link: 

 http://www.ece.tamu.edu/~ocintsim/ 

For technical support and bug fixes,  following distribution list can be used: 

ocintsim-dev@listserv.tamu.edu 

First-time users need to register themselves beforehand by sending an email to 

listserv@listserv.tamu.edu with only following text in its body: 

 SUBSCRIBE ocintsim-dev firstname lastname 
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