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ABSTRACT

Algorithms for VLSI Circuit Optimization and GPU-based Parallelization.

(May 2010)

Yifang Liu, B.S., Univ. of Elec. Science and Technology of China, China

M.S., Univ. of Maryland, Baltimore County, USA

Chair of Advisory Committee: Dr. Jiang Hu

This research addresses some critical challenges in various problems of VLSI de-

sign automation, including sophisticated solution search on DAG topology, simulta-

neous multi-stage design optimization, optimization on multi-scenario and multi-core

designs, and GPU-based parallel computing for runtime acceleration.

Discrete optimization for VLSI design automation problems is often quite com-

plex, due to the inconsistency and interference between solutions on reconvergent

paths in directed acyclic graph (DAG). This research proposes a systematic solution

search guided by a global view of the solution space. The key idea of the proposal

is joint relaxation and restriction (JRR), which is similar in spirit to mathemati-

cal relaxation techniques, such as Lagrangian relaxation. Here, the relaxation and

restriction together provides a global view, and iteratively improves the solution.

Traditionally, circuit optimization is carried out in a sequence of separate opti-

mization stages. The problem with sequential optimization is that the best solution

in one stage may be worse for another. To overcome this difficulty, we take the ap-

proach of performing multiple optimization techniques simultaneously. By searching

in the combined solution space of multiple optimization techniques, a broader view

of the problem leads to the overall better optimization result. This research takes

this approach on two problems, namely, simultaneous technology mapping and cell
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placement, and simultaneous gate sizing and threshold voltage assignment.

Modern processors have multiple working modes, which trade off between power

consumption and performance, or to maintain certain performance level in a power-

efficient way. As a result, the design of a circuit needs to accommodate different

scenarios, such as different supply voltage settings. This research deals with this

multi-scenario optimization problem with Lagrangian relaxation technique. Multiple

scenarios are taken care of simultaneously through the balance by Lagrangian multi-

pliers. Similarly, multiple objective and constraints are simultaneously dealt with by

Lagrangian relaxation. This research proposed a new method to calculate the sub-

gradients of the Lagrangian function, and solve the Lagrangian dual problem more

effectively.

Multi-core architecture also poses new problems and challenges to design au-

tomation. For example, multiple cores on the same chip may have identical design

in some part, while differ from each other in the rest. In the case of buffer inser-

tion, the identical part have to be carefully optimized for all the cores with different

environmental parameters. This problem has much higher complexity compared to

buffer insertion on single cores. This research proposes an algorithm that optimizes

the buffering solution for multiple cores simultaneously, based on critical component

analysis.

Under the intensifying time-to-market pressure, circuit optimization not only

needs to find high quality solutions, but also has to come up with the result fast.

Recent advance in general purpose graphics processing unit (GPGPU) technology

provides massive parallel computing power. This research turns the complex compu-

tation task of circuit optimization into many subtasks processed by parallel threads.

The proposed task partitioning and scheduling methods take advantage of the GPU

computing power, achieve significant speedup without sacrifice on the solution quality.
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CHAPTER I

INTRODUCTION

A. Motivation and Major Contributions

In the past several decades Very Large Scale Integration (VLSI) technology has been

scaling down and now moves into nanometer regime. The complexity of the circuit

keeps growing. Besides increasing number of gates/transistors in circuits, more ad-

vanced technologies, such as multi-core architecture and adaptive working modes,

pose new challenges in design closure. VLSI design automation becomes more critical

in the design flow. Efficient algorithms are desired for the design of high performance,

low power consumption, and low cost chips.

Many optimization problems in VLSI design automation are NP-complete and

non-convex. These difficult problems are normally solved in two major approaches:

continuous optimization for numerical solutions and combinatorial optimization for

discrete solutions.

Continuous optimization methods have advantage in runtime efficiency and the-

oretical optimality under certain conditions. However, due to the limited number

of cells in the standard cell library and the discrete nature of circuit implementa-

tion, continuous optimization methods have to make significant approximation or use

heuristics in problem formulation and solution legalization. The solution quality is

largely compromised by various kinds of approximation. Moreover, because most

problems in VLSI design practice are non-convex, theoretical optimality conditions

The journal model is IEEE Transactions on Computer-aided Design of Integrated

Circuits and Systems.
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do not hold. Instead, the tendency to be trapped into local optimum qualifies them

more as a greedy approach.

This research takes the combinatorial optimization approach. Among existing

work in this approach, a simple discrete method is greedy algorithm. Because it re-

lies on local optimal view in the solution space, globally good solutions are hardly

reached. Due to its simplicity, however, it has fast runtime. To the other end, sim-

ulated annealing introduces randomness into solution search, and is able to find the

optimal solution given infinite runtime. But, in practice the runtime is prohibitive

to obtain decent solutions. A more systematical approach is dynamic programming.

For circuit optimization in tree topology, dynamic programming can come up with

optimal solutions in polynomial time. However, many discrete optimization prob-

lems in design automation is formulated on directed acyclic graph (DAG) topology.

Conventional dynamic programming encounters significant difficulty when applied to

directed acyclic graph (DAG), due to the inconsistency and interference between so-

lutions on reconvergent paths in a DAG. Thus, good solutions can not be guaranteed

on DAGs by conventional dynamic programming methods. This research proposes

a systematic solution search guided by a global view of the solution space. The key

idea of the proposal is joint relaxation and restriction (JRR), which is similar in spirit

to mathematical relaxation techniques. Here, the relaxation and restriction together

provides a global view, and iteratively improves the solution.

One of the challenges not taken care of well in traditional circuit design automa-

tion is sequential optimization in the design flow. As shown in Fig. 1, traditionally,

the design flow is carried out in a sequence of stages from high level synthesis, logic

synthesis, technology mapping, floor planning, cell placement, gate sizing, voltage

assignment, routing, to interconnect optimization, and so on. Early stages are per-

formed with some assumption/estimation on the result from later stages. If the design
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Gate Sizing,  
Voltage Assigment, …

Interconnect 
Optimization 

Routing 

Placement 
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Logic Synthesis 

Technology Mapping 

Other Optimization 

Timing, Power, Cost 
analysis 

Fig. 1. Design flow

requirement is not met in one of these stages, the procedure turns back to an earlier

stage with the assumption based on the result from current stages (the later stages).

The problem with this sequential procedure is the limit due to the inaccurate local

view on a part of the whole design flow. It does not ensure convergence or good over-

all solutions, since different later stage results lead to different earlier stage solution

during the backtracking, thus oscillation among poor solutions may occur. Evidently,

separately considering different stages suffers from the local view of individual opti-
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mization stages.

This research overcomes the limitation of the sequential optimization with simul-

taneous optimization on multiple traditional optimization stages. According to the

techniques in multiple stages, different types of optimization options are seamlessly

integrated together to form the combined optimization option set for each element

in the circuit. Consequently, the solution search is performed in a combined solu-

tion space. This way, multiple traditional optimization stages are performed in a

true simultaneous manner, which eliminates the oscillation between suboptimal solu-

tions. Regarding its impact on the runtime, this research manages to keep the overall

complexity linear to the square of the number of combined options on each element,

and linear to the total number of elements in the circuit. This scheme is applied

on two problems, namely, simultaneous technology mapping and cell placement, and

simultaneous gate sizing and threshold voltage assignment.

New challenges in VLSI circuit optimization also come from the increasingly

complex circuit design. Nowadays, micro-processors often consist of multiple cores

and run in multiple modes. To make a design optimal for multiple cores/modes is

much more difficult than for single core/mode. This research proposes multi-scenario

optimization methods for circuit design automation problems, which always consider

multiple scenarios simultaneously on each step during the optimization. For multi-

scenario gate sizing and threshold voltage assignment problem, Lagrangian relaxation

is employed to accommodate multiple modes in one design. A new Lagrangian dual

problem solving technique is introduced to achieve higher solution quality. For multi-

core buffer insertion problem, a critical component analysis based method is created

to handle different environmental parameters across different cores.

Under the intensening time-to-market pressure, circuit optimization not only

needs to find high quality solutions, but also has to come up with the result fast.
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Recent advance in general purpose graphics processing unit (GPGPU) technology

provides massive parallel computing power. This research turns the complex compu-

tation task of circuit optimization into many subtasks processed by parallel threads.

The proposed task partitioning and scheduling methods take advantage of the GPU

computing power, achieve significant speedup without sacrifice on the solution quality.

This parallel computing scheme is reflected in the fast gate sizing problem.

The major contributions in this research are summarized briefly as follows.

Specific problems they are applied on in this research are listed accordingly:

∙ Joint Relaxation and Restriction (JRR) for efficient systematic solution search

on DAGs in circuit optimization - a generic approach, applied on the following

problems

- The problem of simultaneous gate sizing and 𝑉𝑡 assignment

- The problem of simultaneous technology mapping and cell placement

∙ Multi-Technique Multi-Objective simultaneous circuit optimization by option

integration and improved Lagrangian dual problem solving with systematic sub-

gradient calculation, applied on the following problems

- The problem of simultaneous gate sizing and 𝑉𝑡 assignment

- The problem of simultaneous technology mapping and cell placement

∙ Multi-Scenario Multi-Core circuit optimization by critical component analysis

and Lagrangian relaxation, applied on the following problem

- The problem of multi-core buffer insertion

∙ Parallel computing scheme for circuit optimization by GPU-oriented task par-

tition and scheduling, applied on the following problem

- The problem of fast gate sizing and 𝑉𝑡 assignment
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B. Applications on Circuit Design Automation Problems

The rest of this dissertation is organized according to the problems investigated in

this research, which are solved using the proposed techniques briefly introduced in

the previous section.

Chapter II presents algorithms for simultaneous gate sizing and 𝑉𝑡 assignment.

Gate sizing and threshold voltage (𝑉𝑡) assignment are popular techniques for cir-

cuit timing and power optimization. Existing methods, by and large, are either

sensitivity-driven heuristics or based on discretizing continuous optimization solu-

tions. Sensitivity-driven heuristics are easily trapped in local optimum and the dis-

cretization may be subject to remarkable errors. Compared to continuous optimiza-

tion based methods, a combinatorial approach has three main advantages. First, it

can be easily applied with look-up table models for delay and power, which are the

de facto standard models in industrial designs. In contrast, continuous optimization

requires modification to the look-up table by data fitting [2, 3] or selection heuristic,

which incurs inaccuracy in delay and power calculation. This is true in the whole

continuous problem formulation, which takes a discrete problem and approximates it

with a continuous mathematical programming problem. Second, the solution of con-

tinuous optimization has to be rounded to obtain settings that exist in a cell library.

The rounding is subject to errors and the error can be significant if gate configura-

tions are highly discrete [4]. Moreover, it is very difficult for continuous optimization

to handle different pMOS/nMOS size ratios in cell library based designs. Third,

combinatorial optimization is easier to utilize parallel computing to gain more sig-

nificant speedup compared with continuous optimization. In this work, a systematic

combinatorial approach for simultaneous gate sizing and 𝑉𝑡 assignment is proposed.

The core idea of this approach is Joint Relaxation and Restriction (JRR), which em-



7

ploys consistency relaxation and coupled bi-directional solution search. The process

of joint relaxation and restriction is conducted iteratively to systematically improve

solutions. The proposed algorithm is compared with a state-of-the-art previous work

on benchmark circuits. The results from the algorithm can lead to about 22% less

power dissipation subject to the same timing constraints.

Chapter III presents algorithms for simultaneous technology mapping and cell

placement. Technology mapping and placement have significant impact on the delays

in standard cell based very large scale integrated (VLSI) circuits. Traditionally, these

steps are applied separately to optimize delays, possibly since efficient algorithms that

allow the simultaneous exploration of the mapping and placement solution spaces are

unknown. In fact, there is a cyclic dependency between these two steps. Timing

driven technology mapping needs the wire length information determined by place-

ment, while placement needs the result of technology mapping to see the cells to be

placed. The placement done after technology mapping may suggest a new mapping

solution other than the one before it. Thus, performing these two steps repeatedly in

a sequence can turn into a procedure wandering among different mapping and place-

ment solutions without convergence. Instead of performing mapping and placement

separately, this work proposes an exact polynomial time algorithm for delay-optimal

placement of a tree and extend the same to simultaneous technology mapping and

placement for optimal delay in the tree. For delay optimization in directed acyclic

graphs (DAGs), the algorithm is extended by employing Lagrangian relaxation tech-

nique, which assesses the timing criticality of paths beyond a tree. Experimental

results on benchmark circuits in a 70 nm technology show that the proposed al-

gorithms improve timing significantly with remarkably less run-times compared to a

competitive approach of iterative conventional timing driven mapping and multi-level

placement.
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Chapter IV presents algorithms for buffer insertion in multi-core designs. Re-

cently, microprocessor industry is headed in the direction of multi-core designs in

order to continue the chip performance improvement. This work investigates buffer

insertion, which is a critical timing optimization technique, in the context of an in-

dustrial multi-core processor design methodology. Different from the conventional

formulation, buffer insertion in this case requires a single solution to accommodate

multiple different scenarios. If the conventional buffer insertion is performed for each

scenario separately, there may be different solutions corresponding to these scenarios.

A naive approach is to judiciously select a solution from one scenario and apply it

to all the scenarios. However, a good solution for one scenario may be a poor one

for another. This work proposes algorithmic techniques to solve these multi-scenario

buffer insertion problems. Compared to the naive approach, the proposed algorithm

can improve slack by 102𝑝𝑠 on average for max-slack solutions. For min-cost solu-

tions, the algorithm causes no timing violation while the naive approach results in

35% timing violations. Moreover, the computation speed of our algorithm is faster.

Chapter V presents algorithms for fast gate sizing and 𝑉𝑡 assignment by GPU-

based parallelization. The progress of GPU (Graphics Processing Unit) technology

opens a new avenue for boosting computing power. This work is an attempt to exploit

the parallel computing power in GPUs for massive acceleration in VLSI circuit opti-

mization. This work proposes GPU-based parallel computing techniques and apply

them on the solution of simultaneous gate sizing and threshold voltage assignment

problem, which is often employed in practice for performance and power optimization.

These techniques are aimed to fully utilize the benefits of GPU through efficient task

scheduling and memory organization. Compared to conventional sequential compu-

tation, the proposed techniques can provide up to 56× speedup without any sacrifice

on solution quality.
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CHAPTER II

SIMULTANEOUS GATE SIZING AND 𝑉𝑇 ASSIGNMENT

A. Introduction

Gate/transistor sizing is a classic technique for optimizing circuit timing and power

dissipation. Continuous gate/transistor sizing is formulated as a geometric program-

ming problem in [5] and is solved by Lagrangian relaxation in [6]. The work of [7]

employs a randomized search method for discrete gate sizing. The method in [8]

applies backtracking on general networks in gate sizing. Recently, a continuous so-

lution guided dynamic programming algorithm [4] is proposed. When leakage power

becomes prominent, people start to use gates with different threshold voltage (𝑉𝑡)

levels in order to trade timing slack for leakage power reduction [9, 10, 11]. Due

to the similarity between them, gate/transistor sizing and 𝑉𝑡 assignment are often

conducted simultaneously [1, 12, 13, 14, 15, 16, 17]. Among these previous works,

[9] and [15] are greedy or sensitivity driven heuristics. In [10, 16], continuous opti-

mization is performed and then the results are rounded to obtain discrete solutions.

The work of [17] exploits parallelism in discrete 𝑉𝑡 assignment and continuous gate

sizing. In [14], it is found that linear programming based optimization often results in

discrete 𝑉𝑡 assignment solutions and therefore the rounding can be skipped. However,

such self-snapping is guaranteed only in certain scenarios, instead of general cases. A

combinatorial algorithm for transistor sizing and 𝑉𝑡 assignment is introduced in [12].

However, this algorithm is restricted to tree topologies. The work of [1] is an iterative

method. In each iteration, timing slack is allocated to each gate based on sensitivity

guided linear programming and then an implementation is selected for each gate such

that the allocated slack is traded for power reduction.



10

We propose a new combinatorial algorithm for simultaneous gate sizing and

threshold voltage assignment. Compared to continuous optimization based methods

[10, 16], a combinatorial approach has two main advantages. First, it can be easily

applied with look-up table gate model, which is the de facto standard in most indus-

trial designs, especially ASIC designs. In contrast, continuous optimization requires

modification to the look-up table by data fitting [2, 3] which causes inaccuracy in

delay and power estimation. Second, a continuous optimization solution has to be

discretized to obtain the 𝑉𝑡 assignment and gate size that exist in a cell library. The

discretization is subject to errors and the error can be significant if gate configurations

are highly discrete [4]. Moreover, it is difficult for continuous optimization to handle

different pMOS/nMOS size ratios in library based designs.

Our algorithm is in the same spirit as Dynamic Programming (DP). DP is a

systematic combinatorial optimization approach. A well-known example is Ginneken-

Lillis buffer insertion algorithm [18], which propagates solutions from leaf nodes of an

interconnect tree toward the root and finds the maximal slack solution in quadratic

runtime. In general, a tree topology allows DP to reach the optimal solution elegantly.

The main challenge of applying DP-like systematic solution search in gate sizing and

𝑉𝑡 assignment is that the underlying topology is typically a DAG (Directed Acyclic

Graph) instead of a tree, where solutions are often merged at path reconvergence.

Such merging requires that the histories of the solutions have to be consistent with

each other. Either maintaining or tracing back all history information entails large

computation and memory overhead. Due to this difficulty, there is no DP-like or other

systematic combinatorial optimization algorithm for gate sizing and 𝑉𝑡 assignment, to

the best of our knowledge. In this work, we propose a new method of Joint Relaxation

and Restriction (JRR), which enables DP-like solution search for gate sizing and 𝑉𝑡

assignment. JRR combines consistency relaxation and coupled bi-directional solution
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search to systematically improve the solution from a starting point. To improve

initial optimization, starting point search is realized with iterative joint relaxation

and restriction.

These new techniques distinguish our algorithm from the previous combinatorial

methods [9, 12, 15]. Compared to the sensitivity driven heuristics [9, 15], our algo-

rithm is more systematic and therefore can lead to improved solution quality. Our

algorithm can be directly applied on DAG topology as opposed to tree topology in

[12]. Experiments are performed on ISCAS85, ITC99, and IWLS 2005 benchmark

circuits to compare our algorithm with a state-of-the-art previous work [1]. The re-

sults indicate that on average our algorithm yields 22% more power reduction under

the same timing constraints.

B. Preliminaries

A combinational logic circuit can be described by a DAG 𝐺(𝑉,𝐸), where 𝑉 is a set

of nodes, each of which represents a logic gate, and each edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 indicates

the wire connection between node 𝑣𝑖 and 𝑣𝑗. Note that the edge is directed and logic

signals are propagated from 𝑣𝑖 to 𝑣𝑗. Every gate 𝑣𝑖 ∈ 𝑉 has multiple implementation

options, each of which consists of a size 𝑤𝑖 and a 𝑉𝑡 level 𝑢𝑖 for 𝑣𝑖. The simultaneous

gate sizing and 𝑉𝑡 assignment problem is to select a size 𝑤𝑖 ∈ 𝑊𝑖 and a 𝑉𝑡 level

𝑢𝑖 ∈ 𝑈𝑖 for every individual gate 𝑣𝑖, so that the total power is minimized subject

to timing constraints, i.e., no negative timing slack. A specific choice of size and 𝑉𝑡

options for a gate is called a solution for the gate. The solution for the whole circuit

is composed of a set of gate solutions, each of which is for an individual gate in the

circuit. For the clarity of presentation, we will first describe our algorithm for only

timing optimization, which aims to maximize the timing slack of the circuit. After
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that, we will show how to extend the algorithm to minimize power under timing

constraint. Then, we present a runtime-quality tradeoff method for high runtime

efficiency.

Main notations used in this paper are summarized below:

𝑣𝑖 the 𝑖th node/gate.
(𝑣𝑖, 𝑣𝑗) interconnect between gate 𝑣𝑖 and 𝑣𝑗 .
𝐼(𝐺) the set of entrance gates, whose fanins are

all primary inputs of circuit 𝐺.
𝒱 the set of all the multi-fanin gates in circuit 𝐺.
𝑊𝑖 the set of all possible sizes of gate 𝑣𝑖.
𝑈𝑖 the set of all possible 𝑉𝑡 level of gate 𝑣𝑖.
𝑣𝑘𝑖 the 𝑘th size and 𝑉𝑡 option for gate 𝑣𝑖.
𝑣𝑘𝑖 : 𝑣ℎ𝑓𝑜𝑢𝑡(𝑣𝑖) the 𝑘th option of 𝑣𝑖 with the gates on its fanout

implemented by combined options 𝑣ℎ𝑓𝑎𝑛𝑜𝑢𝑡(𝑣𝑖).

𝜒𝑖 the set of solutions at 𝑣𝑖, {(𝑣𝑘𝑖 : 𝑣ℎ𝑓𝑎𝑛𝑜𝑢𝑡(𝑣𝑖))}.
𝑋𝑖 the set of implementation options of gate 𝑣𝑖.
𝑐(𝑣𝑘𝑖 ) input capacitance of the 𝑘th option for gate 𝑣𝑖.
𝑟(𝑣𝑘𝑖 ) output resistance of the 𝑘th option for gate 𝑣𝑖.
𝐷(𝑣𝑖, 𝑣𝑗) gate and wire delay: 𝑑(𝑣𝑖) + 𝑑(𝑣𝑖, 𝑣𝑗).
𝑎(𝑣𝑖) maximum arrival time at 𝑣𝑖’s fanins.
𝑞(𝑣𝑖) minimum required arrival time at 𝑣𝑖’s fanins.
(𝑣𝑘𝑖 )[𝑐, 𝑞] the pair of 𝑐 and 𝑞 at 𝑣𝑖 for its option 𝑘.
𝑠(𝑣𝑖) time slack 𝑞(𝑣𝑖)− 𝑎(𝑣𝑖).
𝑝(𝑣𝑖) dynamic and leakage power on gate 𝑣𝑖.

We consider two types of power dissipation in this work. One is dynamic power,

which can be calculated by: 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =
1
2
𝛼𝑉 2

𝐷𝐷𝑓𝑐𝑙𝑘𝐶, where 𝛼 is the switching factor,

𝑓𝑐𝑙𝑘 is the clock frequency and 𝐶 is the load capacitance due to gates and wires.

The other is leakage power 𝑃𝑙𝑒𝑎𝑘𝑎𝑔𝑒 = 𝑉𝐷𝐷𝐼𝑜𝑓𝑓 , where the off current 𝐼𝑜𝑓𝑓 for a gate

of certain size and 𝑉𝑡 level is usually obtained in cell characterization and provided

along with a cell library. Short circuit power is relatively small and neglected in this

work. However, it is straightforward to consider short circuit power in our algorithm.

The size of a gate affects its delay, its input capacitance, dynamic and leakage

power dissipation. The 𝑉𝑡 level of a gate affects its delay and leakage power. In our
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algorithm, the delay can be estimated using either the Elmore delay model or more

accurate models like those employed in commercial timing analyzers. For example, if

the size and 𝑉𝑡 for both 𝑣𝑖 and 𝑣𝑗 are decided, the delay from 𝑣𝑖 to 𝑣𝑗 can be estimated

as follows. If the wire between 𝑣𝑖 to 𝑣𝑗 is neglected, the delay can be obtained based

on the lookup table for 𝑣𝑖. If the wire is considered, the wire delay can be computed

using higher-order model such as RICE [19]. The wire capacitance load to 𝑣𝑖 can be

evaluated by the effective capacitance technique [20]. We assume that the arrival time

at all primary inputs and the required arrival time at all primary outputs are given.

The timing criticality of each node 𝑣𝑖 ∈ 𝑉 is indicated by its slack 𝑠(𝑣𝑖) = 𝑞(𝑣𝑖)−𝑎(𝑣𝑖),
where 𝑞 and 𝑎 denote the required arrival time and the arrival time, respectively. The

overall timing performance of a circuit is characterized by the minimum slack among

all nodes.

C. Timing Optimization

In this section, we describe our simultaneous gate sizing and 𝑉𝑡 assignment algorithm

for timing optimization. Note that all gates can be simply assigned with the lowest

available 𝑉𝑡 level if timing is optimized without considering power. However, we still

include 𝑉𝑡 assignment in the presentation in order to be consistent with the algorithm

description in Section D, which introduces the algorithm for timing-constrained power

optimization. For a given cell library, choosing a size and 𝑉𝑡 level for a gate is

equivalent to selecting a gate type in the library that does the same logic operation.

Below is the formulation of the timing optimization problem.

Timing Optimization: Given a netlist of combinational logic circuit 𝐺(𝑉,𝐸),

arrival times at its primary inputs, required arrival times at its primary outputs, and

a cell library, select an implementation for each gate to maximize the circuit slack,
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Fig. 2. Solution search from 𝑣4 to 𝑣1. Solution prunings are performed at 𝑣2 and 𝑣3.

At node 𝑣1, when solution (𝑤2 = 1, 𝑤4 = 1) from 𝑣2 is merged with solution

(𝑤3 = 2, 𝑤4 = 2) from 𝑣3, they are based on different solutions at 𝑣4 and

therefore not consistent with each other.

i.e.,

max min
𝑣𝑗∈𝑉

𝑠(𝑣𝑗)

s.t. 𝑤𝑖 ∈ 𝑊𝑖, ∀𝑣𝑖 ∈ 𝑉

𝑢𝑖 ∈ 𝑈𝑖, ∀𝑣𝑖 ∈ 𝑉

1. Difficulty of DAG Optimization and the Main Ideas

On a DAG, it is very difficult to perform systematic yet efficient solution search, like

dynamic programming, mainly due to reconvergence paths. This can be illustrated

by a simple example in Fig. 2, where each node (gate) has two size options. Like

dynamic programming, the solution search can be performed backward, i.e., from

output toward input. At node 𝑣4, there are two solutions. When they are propagated

to 𝑣2, there are four possible solutions. To make the search efficient, unpromising

solutions are pruned out. Otherwise, the search is nothing but brute-force and would
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cause very slow runtime as well as very poor scalability. At node 𝑣2, let us assume

that only solution (𝑤2 = 1, 𝑤4 = 1) is retained and the others are pruned. Similarly,

only solution (𝑤3 = 2, 𝑤4 = 2) is kept at node 𝑣3. Next, solutions from 𝑣2 and 𝑣3

should be merged at node 𝑣1. However, the solution from 𝑣2 is based on 𝑤4 = 1 and

the solution from 𝑣3 is according to 𝑤4 = 2, i.e., their histories are not consistent with

each other. Therefore, they cannot be merged. If the search proceeds forward from

input to output, the same problem still exists.

The path reconvergence problem has two consequences on solution search. First,

history consistency check must be performed when solutions from two paths are

merged. Second, and more importantly, whether or not a solution is inferior may

depend on future solution mergings at reconvergence nodes. This is a key difference

from the case of tree, where the pruning at a node can be solely based on its current

characteristics.

To avoid the path reconvergence problem, one may consider to optimize indi-

vidual timing critical paths one after another. However, after optimizing a critical

path A, a previously non-critical path B may become critical. Next, if path B is op-

timized, path A may become critical again. Thus, the path-based optimization may

oscillate and is difficult to converge. Iteratively optimizing critical trees can alleviate

the problem, but cannot radically solve it.

In this work, we contribute some ideas which form the basis of a systematic and

efficient solution search on DAGs. Since the main difficulty is due to the history

consistency constraint, we relax this constraint at initial optimization stage and re-

store it back later. This is in the same flavor as other relaxation techniques, such as

Lagrangian relaxation. If the search is performed along only one direction, it is not

obvious if a seemingly inferior solution at a node will be useful in future. As a result,

it is very difficult to do the solution pruning. To solve this problem, we propose to
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perform both backward and forward search, which are carried out one after the other

iteratively. The information obtained in the backward search will help the solution

pruning in the forward search. Because the coupled bi-directional search after the

relaxation stage always maintains the historical consistency throughout the circuit,

it enforces the satisfaction of the constrains on solution search. Thus, we call this

method Joint Relaxation and Restriction (JRR). The solution found by one iteration

of relaxation and restricted bi-directional search may be a local optimum. To cope

with this situation, we propose multiple iterations of relaxation and restriction, where

each iteration is guided by the solution from the previous iteration, and seeks a bet-

ter solution in a carefully selected solution set. This approach is thus called Iterative

Joint Relaxation and Restriction (IJRR).

An overview of our algorithm framework is outlined in Algorithm 1. The outer

loop realizes the Iterative Joint Relaxation and Restriction (IJRR). Each iteration

consists of two phases. Phase I is an initial optimization composed by a consistency-

relaxation based search and a procedure of consistency restoration. Phase II is an

iterative refinement. In each iteration of the refinement, both forward search and

backward search are performed. The details of the algorithm are described in Sections

2, 3, and 4.

2. Phase I: Initial Optimization

The initial optimization phase consists of two stages: consistency relaxation and

consistency restoration. The two stages are elaborated as follows.

a. Consistency Relaxation

Consistency relaxation is a backward solution search procedure that proceeds from

the primary outputs to the primary inputs in reverse topological order. This process



17

Input : combinational circuit 𝐺 and cell library 𝐿
Output: size and 𝑉𝑡 assignment for all gates in 𝐺

//Initialize the option sets at multi-fanin gates
𝑋𝑖 ← {all implementaion options of 𝑣𝑖},∀𝑣𝑖 ∈ 𝑉 ;

repeat
//PHASE I: Initial Optimization
𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑅𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛(𝐺);
𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑅𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛(𝐺);

//PHASE II: Iterative Refinement
𝐼𝑛𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑅𝑒𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡(𝐺);

//Update the option sets at multi-fanin gates
𝑋𝑖 ← {𝑣𝑖’s used options in this iteration}, ∀𝑣𝑖 ∈ 𝒱 ;

until no improvement ;

Algorithm 1: 𝑆𝑖𝑧𝑒𝑉 𝑡 𝑀𝑎𝑥𝑆𝑙𝑎𝑐𝑘(𝐺)

is the same as the one in the buffer insertion [18]. During the search, all options

of sizes and 𝑉𝑡 levels are enumerated for each gate to generate possible solutions.

More precisely, every implementation option in a gate 𝑣𝑖’s option set 𝑋𝑖 is evaluated.

During the first JRR iteration, all the options of each gate are included in its option

set, while in later JRR iterations, option sets for multi-fanin gates are updated and

option evaluation on multi-fanin gates are confined to the sets. We explain the detail

of option sets in Section 4.

To make this paper self-contained, here we briefly describe the backward search

procedure. As mentioned in Section B, a solution on a gate is a specific imple-

mentation option (size and 𝑉𝑡 level) of it. For every solution of a gate, there is a

corresponding best solution on each of its fanout gates. Thus, every gate solution is

associated with a set of pointers linked to corresponding best downstream gate solu-

tions, so that later on we can trace back all the gate solutions from the best solution

at the primary inputs to the primary output. Each solution of gate 𝑣𝑖 is characterized

by the load capacitance 𝑐 seen by its upstream gates and the corresponding largest
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required arrival time 𝑞. (If higher-order delay model is employed, moments are propa-

gated along with the solutions.) All operations of solution propagation are performed

according to the solution characterization, which determines the timing at every node.

For better computation efficiency, it is crucial to identify and eliminate inferior gate

solutions during solution search. A main criterion of inferior gate solutions is based

on the 𝑐 and 𝑞 values as follows. Solution 𝑣𝑘𝑖 is inferior to 𝑣ℎ𝑖 , if

𝑐(𝑣𝑘𝑖 ) ≥ 𝑐(𝑣ℎ𝑖 ) and 𝑞(𝑣𝑘𝑖 ) ≤ 𝑞(𝑣ℎ𝑖 ). (2.1)

In situations where there is no confusion, we may represent a gate solution with the

implementation options for the gate and its fanout gates, or simply with the [𝑐, 𝑞]

values.

In order to generate solutions at a gate, solutions at its fanout gates are merged

first. When two solutions are merged, the merged solution is characterized by the

summation of load capacitances of the two solutions and the smaller required arrival

time 𝑞 of the two solutions. Based on the inferior solution rule given in formula (1),

the merging of the solution sets on two different gates, can be performed in linear-

time, by excluding inferior merged solutions during the merging. More specifically,

the solutions in each of the two solution sets are sorted in ascending order of their 𝑐

values. At the beginning, two points are linked to the two solutions with minimum

𝑐 values in each of the two solution sets, respectively. The two pointed solutions are

merged to form a merged solution. After that, the pointer linked to the solution

with smaller 𝑞 value (more critical one) between the two solutions moves to the next

solution in the same set. This solution merging continues until the end of the sorted

solution sets is reached. Once the merged solutions are generated, the gate delays

for different implementation options of the gate are added to each merged solution to

form the solutions at the gate. Thereafter, more inferior solutions are pruned out by
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formula (1).

Although the procedure on each gate in our algorithm is the same as in buffer

insertion [18], there are two essential differences. First, the gate sizing and 𝑉𝑡 assign-

ment problem faces the reconvergent path issue which often requires history consis-

tency when solutions are merged. Directly applying a dynamic programming algo-

rithm here actually implies a relaxation on the constraint of history consistency. As

a result, inconsistent solutions may emerge in the search on DAGs, which needs to

be resolved in the next restoration stage.

Second, instead of having the option of not inserting a buffer at each node as in

buffer insertion, there is always a gate ”inserted” at each node in gate sizing and 𝑉𝑡

assignment. This implies a critical property of solutions in our case.

Property 1 For a specific size 𝑤𝑖 and threshold voltage 𝑢𝑖 of any gate 𝑣𝑖, there is at

most one non-inferior solution at 𝑣𝑖 that can be preserved after pruning.

This property is justified by the fact that all solutions with a specific 𝑤𝑖 value at

𝑣𝑖 have an identical load 𝑐 and only the solution with the maximum required arrival

time 𝑞 is not pruned out.

The pseudo code of the consistency relaxation procedure is provided in Algorithm

??. For each node, the procedure performs three operations: merging the solution

sets from its fanouts, which is line 3; applying every option of the node on the

merged solutions (adding the gate delay of the node to the merged solutions), which

is implemented by lines 5 to 12, (note that only one solution for each implementation

option enters the solution set); pruning the solution set at the node is done by line

13.

Fig. 3 illustrates this procedure with a simple example. Solutions are propagated

backwards, i.e., in reverse topological order. Solution sets at 𝑣4, 𝑣2 and 𝑣3 have been
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Fig. 3. Multi-fanin node 𝑣4 diverges into two paths in backward direction - reverse

topological order, which rejoin at node 𝑣1. Required arrival times are prop-

agated in backward direction - topological order. Merging solutions at the

fanout of 𝑣1 yields merged solution set {[5, 5], [6, 6]}, which is combined with

𝑣1’s options to form its solution set {[6, 3.5], [5, 4.4]}. While solution [6, 3.5]

is inferior and pruned, solution 𝑣21[5, 4.4] traces back to conflicting ancestor

solutions 𝑣14 and 𝑣24 on 𝑣4.

created. Consider generating solutions at 𝑣1. Operation 𝑚𝑒𝑟𝑔𝑒(𝑣2, 𝑣3) merges two

solution sets: {[3, 7], [2, 5]} at 𝑣2 and {[4, 7], [3, 6]} at 𝑣3. The result is the non-inferior
merged solutions {[5, 5], [6, 6]} at the fanout of 𝑣1. Adding the gate delay of 𝑣1 to

each merged solution yields the solutions at 𝑣1: {[6, 3.5], [5, 4.4]}. By pruning rule

(2.1), the solution [6, 3.5] is pruned due to smaller required arrival time. At the end

of 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑅𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛, there may be history inconsistency in solutions. Solution

[5, 4.4] at 𝑣1 is an example. It is based on downstream solutions 𝑣12 and 𝑣23 at 𝑣2 and

𝑣3, respectively, which in turn refer to different solutions 𝑣14 and 𝑣24 at the multi-fanin
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Input : combinational circuit 𝐺 and cell library 𝐿
Output: solution sets of size and 𝑉𝑡 assignment for all gates in 𝐺

𝜒𝑖 ← ∅, ∀𝑣𝑖 ∈ 𝑉 ;1

for 𝑣𝑖 ∈ 𝐺 in reverse topological order do2

𝜒𝑓𝑜𝑢𝑡(𝑣𝑖) ← 𝑚𝑒𝑟𝑔𝑒
(
𝑓𝑜𝑢𝑡(𝑣𝑖)

)
;3

prune the solution set at 𝑣𝑖 by rule in (2.1);4

for every option 𝑣𝑘𝑖 of 𝑣𝑖 in 𝑋𝑖 do5

𝑞(𝑣𝑘𝑖 )← −∞ ;6

for merged solution 𝑣ℎ𝑓𝑜𝑢𝑡(𝑣𝑖) ∈ 𝜒𝑓𝑜𝑢𝑡(𝑣𝑖) do7

if 𝑞
(
𝑣ℎ𝑓𝑜𝑢𝑡(𝑣𝑖)

)
−𝐷

(
𝑣𝑘𝑖 , 𝑣

ℎ
𝑓𝑜𝑢𝑡(𝑣𝑖)

)
> 𝑞(𝑣𝑘𝑖 ) then8

𝑞(𝑣𝑘𝑖 )← 𝑞
(
𝑣ℎ𝑓𝑜𝑢𝑡(𝑣𝑖)

)
−𝐷

(
𝑣𝑘𝑖 , 𝑣

ℎ
𝑓𝑜𝑢𝑡(𝑣𝑖)

)
;

9

ℎ̂← ℎ;10

𝜒𝑖 ← 𝜒𝑖 ∪
(
𝑣𝑘𝑖 : 𝑣ℎ̂𝑓𝑜𝑢𝑡(𝑣𝑖)

)
[𝑐(𝑣𝑘𝑖 ), 𝑞(𝑣

𝑘
𝑖 )];11

prune the solution set at 𝑣𝑖 by the rule given in Formula (2.1);12

Algorithm 2: 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑅𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛(𝐺)

node 𝑣4. The conflict needs to be resolved in next stage 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑅𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛.

According to Property 1, the size of each solution set is upper bounded by 𝑚,

the maximum number of implementation options of a gate. Therefore, the run-

time of the merging procedure 𝑚𝑒𝑟𝑔𝑒(𝑓𝑎𝑛𝑜𝑢𝑡(𝑣𝑖)) is 𝑂(𝑚𝑏), where 𝑏 is the maxi-

mum number of fanout among all gates. Applying all implementation options of

𝑣𝑖 on merged solutions 𝜒𝑓𝑎𝑛𝑜𝑢𝑡(𝑣𝑖) takes 𝑂(𝑚2𝑏) time. Thus, the overall runtime of

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑅𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛(𝐺) is 𝑂(∣𝑉 ∣𝑚2𝑏) over all nodes.

b. Consistency Restoration

Consistency restoration is a forward search procedure that proceeds from the primary

inputs to the primary outputs in topological order. When a node is visited during

the search, only one gate implementation option (a size and a 𝑉𝑡 level of the gate in

library) is selected as the solution of the node. Thus, there is no history inconsistency
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when the search is completed.

The information obtained in the previous consistency relaxation stage is used to

guide consistency restoration. In particular, a specific gate implementation (size and

𝑉𝑡 level) of a node is associated with a unique required arrival time value obtained in

the relaxation stage according to Property 1.

Given the arrival time at the primary inputs, the arrival times at all the nodes are

updated when the solution is propagated through. At each node, the slack for each of

its implementation options is computed. Again, accurately it is the implementation

options in each gate’s option set that are actually evaluated. In the first JRR iteration,

every option set contains all possible implementation options at a gate. The option

with the maximum slack is selected as the solution for the gate. Then, the arrival

time corresponding to the chosen option is updated as the arrival time at this node,

which will be used in computing arrival times at its fanouts.

Fig. 4 illustrates the procedure by resolving the inconsistency that occurs in

Fig. 3. Suppose solution (𝑣21 : 𝑣12, 𝑣
2
3)[𝑐 = 6, 𝑞 = 4.4] is chosen as the solution of 𝑣1,

which has arrival time 𝑎(𝑣1) = 2. At this point, suppose options 𝑣12 and 𝑣23 of node 𝑣2

and 𝑣3 have also been chosen as solutions of them, respectively. Their arrival times

are shown in the figure. Recall that 𝑣12 and 𝑣23 are based on different options of 𝑣4

in the previous relaxation stage. Now, when consistency restoration considers the

solution for multi-fanin node 𝑣4, all of its three options are evaluated. With related

characteristic values known for each option of 𝑣4, all gate and wire delays between 𝑣4

and its fanins can be calculated, which are presented in the table in Fig. 4. Then,
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Fig. 4. Multi-fanin node 𝑣4 is under evaluation in consistency restoration procedure.

Arrival time and solutions are propagated forward in topological order. Given

the solutions 𝑣2 and 𝑣3 picked, the three options of 𝑣4 have arrival times eval-

uated. Option 𝑣34 is the winner for 𝑣4’s solution due to its larger slack.

the arrival time at 𝑣4 for each of its options are calculated as:

𝑎(𝑣14) = max{3.6 + 1.2, 3.6 + 3} = 6.6,

𝑎(𝑣24) = max{3.6 + 3, 3.6 + 2} = 6.6,

𝑎(𝑣34) = max{3.6 + 2.2, 3.6 + 2.2} = 5.8.

The slacks for the options are 𝑠(𝑣14) = 8.2 − 6.6 = 1.6, 𝑠(𝑣24) = 8.0 − 6.6 = 1.4,

and 𝑠(𝑣34) = 7.9 − 5.8 = 2.1. Option 𝑣34 is chosen as the solution of 𝑣4 due to the

largest slack. The corresponding arrival time 𝑎(𝑣34) = 5.8 is set as the arrival time at

𝑣4 at this point.

The pseudo code of 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑅𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛(𝐺) is given in Algorithm 3. Denote

by 𝐴 the preset arrival time at the primary inputs. Lines 1 to 3 choose the solution
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Input : combinational circuit 𝐺 and cell library 𝐿
Output : the solution of size and 𝑉𝑡 assignment for all gates in 𝐺

for 𝑣𝑖 ∈ 𝐼(𝐺) do1

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑣𝑖)← argmax𝑘∈𝑜𝑝𝑡𝑖𝑜𝑛𝑠(𝑣𝑖) 𝑞(𝑣
𝑘
𝑖 )− 𝐴;2

𝑎(𝑣𝑖)← 𝐴;3

for 𝑣𝑖 ∈ 𝐺− 𝐼(𝐺) in topological order do4

𝑚𝑎𝑥𝑆𝑙𝑎𝑐𝑘 ← −∞;5

for every option 𝑣𝑘𝑖 of 𝑣𝑖 in 𝑋𝑖 do6

𝑎(𝑣𝑘𝑖 )← max𝑣𝑗∈𝑓𝑎𝑛𝑖𝑛(𝑣𝑖)
(
𝑎(𝑣𝑗) +𝐷(𝑣𝑗, 𝑣

𝑘
𝑖 )
)
;7

if
(
𝑞(𝑣𝑘𝑖 )− 𝑎(𝑣𝑘𝑖 )

)
> 𝑚𝑎𝑥𝑆𝑙𝑎𝑐𝑘 then8

𝑚𝑎𝑥𝑆𝑙𝑎𝑐𝑘 ← (
𝑞(𝑣𝑘𝑖 )− 𝑎(𝑣𝑘𝑖 )

)
;9

𝑘 ← 𝑘;10

end11

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑣𝑖)← 𝑣𝑘𝑖 ;12

𝑎(𝑣𝑖)← 𝑎(𝑣𝑘𝑖 );13

Algorithm 3: 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑅𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛(𝐺)

with the maximum slack for each of the gates that are only driven by primary inputs.

Lines 4 to 13 assign a solution to every other gate 𝑣𝑖 in the circuit. Lines 6 to 11

calculate the gate and wire delay between every option of 𝑣𝑖 and the gates on its

fanin, and then compare the slacks of 𝑣𝑖’s options. The option with the maximum

slack is picked as its solution. The time complexity of 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑅𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛(𝐺)

is dominated by the loop between line 4 and 13. Clearly, it runs in 𝑂(∣𝑉 ∣𝑚𝑏) time,

where 𝑏 is the maximum fanin for any gate.

3. Phase II: Iterative Refinement

The solution obtained at the end of phase I is based on the RAT (required arrival

time) at each node estimated in the relaxation stage. Because of the relaxation,

the estimation may be inaccurate and thus compromise the solution quality. The

disadvantage of phase I is compensated by an iterative refinement procedure in phase
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II. Each iteration of phase II consists of a backward search followed by a forward

search. The backward search inherits the implementations of all multi-fanin nodes

from the forward search in the previous iteration and keeps them unchanged. At the

same time, it finds the non-inferior gate implementations of all single-fanin nodes.

In the subsequent forward search, the implementations of all multi-fanin nodes are

further improved in term of the objective function. Iterating between these two

coupled procedures leads to monotonic increasing of slack. History consistency is

maintained throughout all refinement iterations.

The necessity of phase II can be demonstrated by a simple example depicted in

Fig. 5. After the relaxation stage in phase I, it is likely that 𝐺1 is chosen to be 6×
based on 8× size of 𝐺0 while 𝐺4 is set to be 3× based on 6× size of 𝐺0, i.e., there is

inconsistency at 𝐺0. The restoration stage of phase I picks a single size for 𝐺0, e.g.,

7×, in order to balance the timing through 𝐺1 and 𝐺4. Evidently, 7× 𝐺0 presents

smaller load to 𝐺1 than 8× 𝐺0, according to which 𝐺1 and 𝐺2 size down to 5× and

3×, respectively, at the beginning of phase II. In the following iterations, 𝐺1 and 𝐺2

change to their best sizes 4× and 2×, respectively.
Each pass of backward search is initialized with a unique solution obtained from

the previous forward search. Then, it traverses the circuit from primary outputs

towards primary inputs and generates solutions at each node in a fashion similar to

the 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑅𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛. The key difference occurs at the multi-fanin nodes. At

each multi-fanin node, a set of possible solutions are generated, but only the one that

is the same as the initial solution is further propagated to its fanin gates. This can be

illustrated by reusing the example in Fig. 4. Assume that 𝑣34 is the unique solution at

𝑣4 obtained from the previous iteration/phase, i.e., 𝑣34 is in the initial solution for the

backward search. Possible solutions for every implementation of 𝑣4 are generated as

in 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑅𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛, but only 𝑣34 is further propagated toward 𝑣2 and 𝑣3. By
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Fig. 5. Suppose after the relaxation stage, gate 𝐺1 and 𝐺2 are 6× and 4×, respectively,
based on 𝐺0 of size 8×. 𝐺3 has a fixed size of 1×. Restoration stage chooses

the size 7× for 𝐺0 to balance the timing through 𝐺1 and 𝐺4. Then, 𝐺1 needs

to be sized down after the restoration stage to account for smaller load, which

happens at the beginning of phase II. In phase II, 𝐺1 and 𝐺2 gradually size

down to their best sizes 4× and 2×, respectively.

doing so, the history consistency is preserved in the backward search. The required

arrival times for the other solutions, which are different from the initial solutions,

e.g., 𝑣14 and 𝑣24, will be useful in the subsequent forward search.

The forward search inherits a set of gate solutions at each node from the previous

backward search. Note that there is a unique RAT (required arrival time) associated

with each implementation of a gate according to Property 1. The forward search

decides a single implementation for each gate during a from-PI-to-PO traversal with

the same method as the 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑅𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛 (see Section b).

The pseudo code for iterative refinement, looping between backward search and

forward search, is given in Algorithm 4. Lines 2 to 9 present backward search. As

shown by line 4, when a multi-fanin node is involved in the merging, only its solution

inherited from the previous iteration is used. Lines 10 to 18 presents forward search.

As by line 16, the option with maximum slack is chosen as the solution. Obviously, the
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Fig. 6. Circuit delay monotonically decreases by iterations. Delay converges at itera-

tion 8 in ISCAS85 benchmark circuit c2670.

time complexity of each refinement iteration (between line 2 and 18) is still 𝑂(∣𝑉 ∣𝑚2𝑏)

- the same as 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑅𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛.

Refinement iterations reduce the circuit delay monotonically. This conclusion

is easily justified by line 16 in Algorithm 4, since the selection of each new solution

always yields a slack equal or higher than previous one. This conclusion ensures the

convergence of the refinement iteration, which gradually improves the slack. An ex-

ample of optimization convergence is shown by the curve in Fig. 6 from an experiment

on ISCAS85 benchmark circuit c2670. Based on the experiments on ISCAS85, ITC99,

and IWLS 2005 benchmark circuits, the refinement converges within 10 iterations,

and there is no correlation observed between the size of the circuits, the variation of

cells in the library, and the number of refinement iterations before convergence.

4. Iterative Joint Relaxation and Restriction

Restricted bi-directional search improves the solution starting from the initial one

found in relaxation stage. Although the convergence process is systematic, the quality

of the converged solution depends on the initial optimization phase, which may come

up with an inferior starting solution and lead to a local optimum. We tackle the
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Input : combinational circuit 𝐺 and cell library 𝐿
Output : size and 𝑉𝑡 assignment for all gates in 𝐺

repeat1

𝜒𝑖 ← ∅, ∀𝑣𝑖 ∈ 𝑉 ;2

for 𝑣𝑖 ∈ 𝐺 in reverse topological order do3

𝜒𝑓𝑎𝑛𝑜𝑢𝑡(𝑣𝑖) ← 𝑚𝑒𝑟𝑔𝑒({𝜒𝑗∣𝑣𝑗 ∈ 𝑓𝑎𝑛𝑜𝑢𝑡(𝑣𝑖)}); //for the multi-fanin4

nodes ∈ 𝑓𝑜𝑢𝑡(𝑣𝑖), only their solutions inherited from the previous
forward search are involved in this merging;
for every option 𝑣𝑘𝑖 of 𝑣𝑖 in 𝑋𝑖 do5

ℎ̂← argmaxℎ∈𝜒𝑓𝑜𝑢𝑡(𝑣𝑖)
𝑞
(
𝑣ℎ𝑓𝑜𝑢𝑡(𝑣𝑖)

)
−𝐷

(
𝑣𝑘𝑖 , 𝑣

ℎ
𝑓𝑜𝑢𝑡(𝑣𝑖)

)
;

6

𝑞(𝑣𝑘𝑖 )← 𝑞
(
𝑣ℎ̂𝑓𝑜𝑢𝑡(𝑣𝑖)

)
−𝐷

(
𝑣𝑘𝑖 , 𝑣

ℎ̂
𝑓𝑜𝑢𝑡(𝑣𝑖)

)
;

7

𝜒𝑖 ← 𝜒𝑖 ∪
(
𝑣𝑘𝑖 : 𝑣ℎ̂𝑓𝑜𝑢𝑡(𝑣𝑖)

)
[𝑐(𝑣𝑘𝑖 ), 𝑞(𝑣

𝑘
𝑖 )];8

prune the solution set at 𝑣𝑖 by rule in (2.1);9

for 𝑣𝑖 ∈ 𝐼(𝐺) do10

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑣𝑖)← argmax𝑘∈𝑜𝑝𝑡𝑖𝑜𝑛𝑠(𝑣𝑖) 𝑞(𝑣
𝑘
𝑖 )− 𝐴;11

𝑎(𝑣𝑖)← 𝐴;12

for 𝑣𝑖 ∈ 𝐺− 𝐼(𝐺) in topological order do13

for every option 𝑣𝑘𝑖 of 𝑣𝑖 in 𝑋𝑖 do14

𝑎(𝑣𝑘𝑖 )← max𝑣𝑗∈𝑓𝑎𝑛𝑖𝑛(𝑣𝑖)
(
𝑎(𝑣𝑗) +𝐷(𝑣𝑗, 𝑣

𝑘
𝑖 )
)
;15

𝑘 ← argmax𝑘∈𝑋𝑖

(
𝑞(𝑣𝑘𝑖 )− 𝑎(𝑣𝑘𝑖 )

)
;16

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑣𝑖)← 𝑣𝑘𝑖 ;17

𝑎(𝑣𝑖)← 𝑎(𝑣𝑘𝑖 );18

until no improvement ;19

Algorithm 4: 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑅𝑒𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡(𝐺)

possible inferior starting point issue by strategically searching for better starting

points. This is done by conducting multiple iterations of relaxation and restriction.

Recall that during an iterative bi-directional search after one relaxation pro-

cedure, the implementation options for multi-fanin gates are constrained to those

inherited from previous bi-directional search iteration. However, due to the policy

that all options at a multi-fanin gate are evaluated no matter if they are considered

or not, solutions at multi-fanin gates are able to systematically improve during re-
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stricted iterative search. We call this set of options, which are picked as solutions

for a multi-fanin gate during the forward searches in a refinement phase, the used

options of the gate in the current JRR iteration. The improvement, which is gained

by the used options of multi-fanin gates, not only leads to better solutions, but also

provides crucial information about options that can improve the timing of critical

paths. This is because forward search always looks for the solution with largest slack

at every gate.

Based on the observation above, multiple iterations of relaxation and restriction

can leverage the critical path timing information in bi-directional search. Specifically,

in the second or later JRR iteration, the option set of every multi-fanin gate is filled

with the used options of the gate during the iterative search. For example, in Fig. 5,

after phase I and II finish in current JRR iteration, the used options of the multi-fanin

gate 𝐺0 are size 7×, 6×, and 5×. These size options replace the former options in the

option set 𝑋0 of multi-fanin gate 𝐺0, and are used in the next JRR iteration. This

way, each JRR iteration is guided by the previous one for a better starting point. This

strategy is reflected in Algorithm 1, where the option sets at multi-fanin gates are

updated at the end of each JRR iteration. Correspondingly in Algorithm 2, 3, and

4, only solutions in the option set 𝑋𝑖 at each multi-fanin gate are evaluated during

relaxation, restoration, and iterative refinement, respectively.

The option set at a multi-fanin gate evolve from one JRR iteration to another.

A better starting point given by the previous iteration provides the current iteration

with a more accurate timing over the reconvergent paths, thus a better set of used

options can be generated and provided to the next iteration. It is clear that this

evolution monotonically improves the solution at the end of each JRR iteration. This

conclusion simply follows from the fact that each JRR iteration inherits all the best

solution from previous JRR iteration, and produce solutions no worse than that in
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previous iteration. In practice, according to what we observe in experiments, the

number of JRR iterations is usually less than or equal to three. The improvement

gained by IJRR is shown in the experiment section for each benchmark circuits.

D. Timing-constrained Power Optimization

The algorithm described in Section C can be extended to simultaneously handle

timing and power by Lagrangian relaxation. This section will show how to use the

algorithm of Section C to solve the problem of timing-constrained power minimization,

which is formally stated as follows.

Timing-Constrained Power Optimization: Given a combinational logic cir-

cuit 𝐺(𝑉,𝐸), arrival times at its primary inputs, required arrival times at its primary

outputs and a cell library, select an implementation option (a size and threshold

voltage) for each gate to minimize the power under timing constraints, i.e.,

min
∑
𝑣𝑖∈𝑉

𝑝(𝑣𝑖)

s.t. 𝑞(𝑣𝑖) ≥ 𝑎(𝑣𝑖), ∀𝑣𝑖 ∈ 𝐼(𝐺)

𝑞(𝑣𝑖) ≥ 𝑞(𝑣𝑗) +𝐷(𝑣𝑗, 𝑣𝑖), ∀(𝑣𝑗, 𝑣𝑖) ∈ 𝐸

𝑤𝑖 ∈ 𝑊𝑖, ∀𝑣𝑖 ∈ 𝑉

𝑢𝑖 ∈ 𝑈𝑖, ∀𝑣𝑖 ∈ 𝑉

where 𝑤𝑖 and 𝑢𝑖 are the size and the 𝑉𝑡 level of gate 𝑣𝑖, respectively.

This constrained optimization problem can be solved using the iterative joint

relaxation and restriction method as in the previous sections. However, because of

the constraints, each gate solution needs to be characterized by a higher number of

variables, which makes the size of solution sets very large (due to low pruning ratio).
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Fig. 7. Convergence of subgradient method used in updating Lagrangian multipliers

on ISCAS85 benchmark circuit c2670.

Thus, directly applying IJRR on this problem can be computationally prohibitive.

Therefore, we employ Lagrangian relaxation to reduce the dimensionality of the prob-

lem. The timing-constraints can be transformed into a part of the cost function with

penalty terms for constraints (the Lagrangian function) through Lagrangian relax-

ation as in [6]. More specifically, we introduce a Lagrangian multiplier 𝜇 for each

timing constraint. Then, the Lagrangian function is given as:

𝜙(w,u, a,q;𝜇) =
∑
𝑣𝑖∈𝑉

𝑝(𝑣𝑖) +
∑

𝑣𝑖∈𝐼(𝐺)

𝜇𝑖0(𝑎𝑖 − 𝑞𝑖) +
∑

(𝑣𝑗 ,𝑣𝑖)∈𝐸
𝜇𝑗𝑖(𝑞𝑗 +𝐷(𝑣𝑗, 𝑣𝑖)− 𝑞𝑖),

(2.2)

where w, u, a, and q are the vectors of gate sizes, gate 𝑉𝑡 levels, arrival times, and

required arrival times, respectively.

By performing algebraic transforms as in [6], the number of variables is reduced

and the Lagrangian function is simplified to

𝜙(w,u;𝜇) =
∑
𝑣𝑖∈𝑉

𝑝(𝑣𝑖) +
∑

(𝑣𝑗 ,𝑣𝑖)∈𝐸
𝜇𝑗𝑖𝐷(𝑣𝑗, 𝑣𝑖). (2.3)

Then, the Lagrangian relaxation subproblem with given multiplier values is
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formed as:

min 𝜙(w,u;𝜇)

s.t. 𝑤𝑖 ∈ 𝑊𝑖, ∀𝑣𝑖 ∈ 𝑉

𝑢𝑖 ∈ 𝑈𝑖, ∀𝑣𝑖 ∈ 𝑉

Input : combinational circuit 𝐺 and cell library 𝐿
Output: size and 𝑉𝑡 assignment for all gates in 𝐺

repeat1

Update Lagrangian multipliers 𝜇 according to static timing analysis on2

current solution of 𝐺;
𝑆𝑖𝑧𝑒𝑉 𝑡 𝑠𝑢𝑚(𝐺);3

until improvement < 𝜎 in current iteration (outer loop);4

Algorithm 5: 𝑆𝑖𝑧𝑒𝑉 𝑡 𝑃𝑜𝑤𝑒𝑟𝐷𝑒𝑙𝑎𝑦(𝐺)

By Lagrangian relaxation, the timing-constrained power optimization problem

becomes two problems: one is the Lagrangian subproblem and the other is the La-

grangian dual problem, in which the value of the Lagrangian multipliers need to be

decided. The Lagrangian dual problem tunes the multipliers to maximize the mini-

mum value of the Lagrangian function enabled by optimal size and 𝑉𝑡 options. It can

be solved using subgradient method [21], which iteratively updates the values of the

multipliers in an outer loop. The Lagrangian subproblem is solved by an algorithm

similar to that from Section C in the inner loop. The overall algorithm flow for solving

the timing-constrained power optimization problem is outlined in Algorithm 5.

Subgradient method is effective in updating the Lagrangian multipliers. An

example of Lagrangian iteration convergence is shown in Fig. 7, in which the power

converges after 50 iterations on ISCAS85 benchmark circuit c2670.

The subroutine 𝑆𝑖𝑧𝑒𝑉 𝑡 𝑠𝑢𝑚(𝐺) in Algorithm 5 solves the Lagrangian subprob-

lem like the algorithm from Section C except the difference on the objective function
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Input : combinational circuit 𝐺 and cell library 𝐿
Output : size and 𝑉𝑡 assignment for all gates in 𝐺

𝑋𝑖 ← {all possible options of 𝑣𝑖},∀𝑣𝑖 ∈ 𝑉 ;1

repeat2

repeat3

for 𝑣𝑖 ∈ 𝐺 in reverse topological order do4

for every option 𝑣𝑘𝑖 of 𝑣𝑖 in 𝑋𝑖 do5

for 𝑣𝑗 ∈ 𝑓𝑜𝑢𝑡(𝑣𝑖) do6

ℎ̂← 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑣𝑗);7

if 𝑓𝑎𝑛𝑖𝑛(𝑣𝑗) == 1 OR 𝑟𝑒𝑓𝑖𝑛𝑒 𝑖𝑡𝑒𝑟 == 1 then8

ℎ̂← argminℎ∈𝑋𝑗

(
𝑓(𝑣ℎ𝑗 ) + 𝜇𝑖𝑗𝐷(𝑣𝑘𝑖 , 𝑣

ℎ
𝑗 )
)
+ 𝑝(𝑣𝑘𝑖 );9

end10

𝑓(𝑣𝑘𝑖 )←
∑

𝑣𝑗∈𝑓𝑜𝑢𝑡𝑠(𝑣𝑖)

(
𝑓(𝑣ℎ̂𝑗 ) + 𝜇𝑖𝑗𝐷(𝑣𝑘𝑖 , 𝑣

ℎ̂
𝑗 )
)
+ 𝑝(𝑣𝑘𝑖 );

11

𝜒𝑖 ← 𝜒𝑖 ∪ (𝑣𝑘𝑖 : 𝑣ℎ̂𝑓𝑜𝑢𝑡(𝑣𝑖))[𝑓(𝑣
𝑘
𝑖 )];12

for 𝑣𝑖 ∈ 𝐼(𝐺) do13

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑣𝑖)← argmin𝑘∈𝑜𝑝𝑡𝑖𝑜𝑛𝑠(𝑣𝑖) 𝑓(𝑣
𝑘
𝑖 );14

for 𝑣𝑖 ∈ 𝐺− 𝐼(𝐺) in topological order do15

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑣𝑖)←16

argmin𝑘∈𝑋𝑖

(
𝑓(𝑣𝑘𝑖 ) +

∑
𝑣𝑗∈𝑓𝑎𝑛𝑖𝑛(𝑣𝑖)

(
𝜇𝑗𝑖𝐷(𝑣𝑗, 𝑣

𝑘
𝑖 ) + 𝑝(𝑣𝑗)

))
;

until no improvement in current 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛;17

𝑋𝑖 ← {𝑣𝑖’s used options in this iteration}, ∀𝑣𝑖 ∈ 𝒱 ;18

until no improvement ;19

Algorithm 6: 𝑆𝑖𝑧𝑒𝑉 𝑡 𝑠𝑢𝑚



34

and its computation at each node. When evaluating the objective function 𝜙(w,u;𝜇)

in the algorithm, we define 𝑓(𝑣𝑘𝑖 ) to be the weighted summation of delay and power in

the fanout cone covering nodes from 𝑣𝑖 to the primary outputs. The minimum sum-

mation of delay and power in a fanout cone can be recursively calculated on sub-cones

inside it, i.e.,

𝑓(𝑣𝑘𝑖 ) =
∑

𝑣𝑗∈𝑓𝑎𝑛𝑜𝑢𝑡(𝑣𝑖)
min

ℎ∈𝑜𝑝𝑡𝑖𝑜𝑛𝑠(𝑣𝑗)

(
𝑓(𝑣ℎ𝑗 ) + 𝜇𝑖𝑗𝐷(𝑣𝑘𝑖 , 𝑣

ℎ
𝑗 )
)
+ 𝑝(𝑣𝑘𝑖 ). (2.4)

In the backward search, the graph is traversed in reverse topological order. When

an option 𝑘 of node 𝑣𝑖 is considered, its downstream solution on 𝑣𝑗 - one of its fanout

gates - is chosen as

ℎ̂ = argmin
ℎ∈𝑜𝑝𝑡𝑖𝑜𝑛𝑠(𝑣𝑗)

(
𝑓(𝑣ℎ𝑗 ) + 𝜇𝑖𝑗𝐷(𝑣𝑘𝑖 , 𝑣

ℎ
𝑗 )
)
+ 𝑝(𝑣𝑘𝑖 ), (2.5)

to minimize the summation of delay and power.

In the pseudo code of 𝑆𝑖𝑧𝑒𝑉 𝑡 𝑠𝑢𝑚(𝐺) in Algorithm 6, IJRR is implemented by

the outer loop, embedded between line 1, 2 and line 18, 19. In each JRR iteration,

line 4 to 12 represent backward search. Line 9 selects solutions of a node’s fanout

gates by Equ (2.5). Line 11 evaluates each implementation option of a gate by Equ

(2.4). Note that by condition given in line 8, after the first iteration, the only solution

of a multi-fanin node visible to other nodes is the solution inherited from the previous

refinement iteration.

Forward search procedure is presented by line 13 to 16 in the pseudo code. At

the beginning of forward search, the option of entrance gate 𝑣𝑖 with minimum sum of

delay and power value 𝑓(𝑣𝑘𝑖 ) is chosen as its solution. Line 13 and 14 implement this

selection. When any other node is processed, different options of 𝑣𝑖 lead to different

summation of delay and power on its fanins and in its fanout cone. Again, the option
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leading to minimum summation of delay and power is chosen as 𝑣𝑖’s solution, i.e.,

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑣𝑖) = argmin
𝑘∈𝑜𝑝𝑡𝑖𝑜𝑛𝑠(𝑣𝑖)

(
𝑓(𝑣𝑘𝑖 ) +

∑
𝑣𝑗∈𝑓𝑎𝑛𝑖𝑛(𝑣𝑖)

(𝜇𝑗𝑖𝐷(𝑣𝑗, 𝑣
𝑘
𝑖 ) + 𝑝(𝑣𝑗))

)
. (2.6)

𝑆𝑖𝑧𝑒𝑉 𝑡 𝑠𝑢𝑚 has the same runtime complexity 𝑂(∣𝑉 ∣𝑚2𝑏 × 𝑛𝑢𝑚 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) as

𝑆𝑖𝑧𝑒𝑉 𝑡 𝑀𝑎𝑥𝑆𝑙𝑎𝑐𝑘.

E. Solving Lagrangian Dual Problem Effectively

As mentioned in previous section, Lagrangian dual problem asks how to tune the

Lagrangian multipliers to maximize the minimal value of the Lagrangian function by

optimal gate size and 𝑉𝑡 solutions, i.e., to solve the following system.

argmax
𝜇≥0

min
𝑤𝑖∈𝑊𝑖,𝑢𝑖∈𝑈𝑖,∀𝑣𝑖

𝜙(w,u, a,q;𝜇), (2.7)

where

𝜙(w,u, a,q;𝜇) =
∑
𝑣𝑖∈𝑉

𝑝(𝑣𝑖) +
∑

𝑣𝑖∈𝐼(𝐺)

𝜇𝑖0(𝑎𝑖 − 𝑞𝑖) +
∑

(𝑣𝑗 ,𝑣𝑖)∈𝐸
𝜇𝑗𝑖(𝑞𝑗 +𝐷(𝑣𝑗, 𝑣𝑖)− 𝑞𝑖).

In this problem, the independent variables to be decided are the Lagrangian

multipliers, which affect the optimal solutions of gate size and 𝑣𝑡 levels. Most existing

subgradient methods, use only one rough subgradient value to estimate ∂𝜙
∂𝜇
, and they

do not take into account of the impact of 𝜇 value change on the optimal subproblem

solution. Furthermore, they utilize simple multiplier update scheme based on the

single subgradient value. Due to these issues, the LR dual problem may be solved

with non-trial errors in existing methods.

We propose a new LR dual problem solving method, featuring chain rule in

sensitivity computation for ∂𝜙
∂𝜇
, the computation of a spectrum of subgradient, and

nonlinear programming problem solving for optimal multiplier values.
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The chain rule calculation is carried out when both sides of Equ. (3.2) are

differentiated. The partial derivative of the Lagrangian function with respect to a

multiplier is calculated with approximation as follows.

∂𝜙

∂𝜇𝑗𝑖

=
∂𝑝(𝑣𝑖)

∂𝜇𝑗𝑖

+
∂𝑝(𝑣𝑗)

∂𝜇𝑗𝑖

+

(
𝜇𝑗𝑖

∂𝐷(𝑣𝑗, 𝑣𝑖)

∂𝜇𝑗𝑖

+ (𝑞𝑗 +𝐷(𝑣𝑗, 𝑣𝑖)− 𝑞𝑖)

)
,

where ∂𝑝(𝑣𝑖)
∂𝜇𝑗𝑖

and
∂𝐷(𝑣𝑗 ,𝑣𝑖)

∂𝜇𝑗𝑖
are due to the change of optimal subproblem solution with

the change of the Lagrangian multipliers. They can be calculated by measuring the

change on 𝑝(𝑣𝑖) and 𝐷(𝑣𝑗, 𝑣𝑖) under certain perturbation on the multiplier, Δ𝜇, i.e.,

∂𝑝(𝑣𝑖)
∂𝜇𝑗𝑖

≈ Δ𝜙
Δ𝜇𝑗𝑖

.

The subgradient spectrum is calculated according to a set of Δ𝜇 on each specific

multiplier, e.g., {0.05, 0.10, 0.15, ...}. Therefore, a set of Δ𝜙
Δ𝜇𝑗𝑖

values can be calculated

corresponding to the set of Δ𝜇𝑗𝑖.

Based on the spectrum of subgradients, first order and second order derivatives,

i.e., gradient and Hessian, can be obtained. Then, a nonlinear programming problem

is formed for Equ. (2.7) and solved by sequential quadratic programming.

F. Runtime-quality Tradeoff

Our systematic approach for timing optimization and timing-constrained power min-

imization involves iterative techniques on different levels, including Lagrangian relax-

ation iterations, joint relaxation and restriction iterations, and refinement iterations.

These iterations proceed until they converge. One observation is that the iterations

close to the convergence point normally do not make significant improvement on so-

lution quality, while they make up a large portion of the total number of iterations.

For example, in Fig. 7 Lagrangian relaxation on ISCAS85 c2670 circuit does not re-

duce much power after iteration 35. Tradeoff between algorithm runtime and solution
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quality can be realized by setting improvement thresholds to cut off future inefficient

iterations.

In this work, we create two improvement thresholds: 0 < 𝜙𝑛 < 1 for Lagrangian

iterations and 0 < 𝜙𝑟 < 1 for JRR iterations. In the outer loop, we trace the 5

latest Lagrangian iterations that produce solutions satisfying timing constraint. If

the reduction of circuit power in the 5 iterations is less than 𝜙𝑛×100%, the iterations

is stopped without converging.

Similarly, inefficient JRR iterations can be avoided too. If the chance of improve-

ment with further JRR iteration is not promising, the JRR iterations are stopped.

A JRR iteration consists of both phase I and phase II optimization. We predict the

chance of improvement JRR by checking the improvement in phase II - iterative im-

provement - in current JRR iteration. If the improvement on the Lagrangian function

in iterative refinement is less than 𝜙𝑟 × 100%, the chance of improvement by next

JRR iteration is small, thus, the JRR iterations are stopped in current Lagrangian

iteration.

The efficiency of the algorithm is also affected by the delay model used in timing.

For the ease of presentation, this paper demonstrated our method on Elmore delay

model. In fact, our method accommodates more accurate delay and power models.

For example, pin-to-pin gate delay can be applied without introducing extra compu-

tational cost. More specifically, before the solution merging operation, the pin-to-pin

gate delay can be counted into the required arrival time 𝑞 of each solution. This way,

each pin-to-pin delay is correctly counted in the timing. Furthermore, slew can be

considered in timing. In this case, solutions are searched from primary inputs to pri-

mary outputs in the consistency relaxation stage, so that the slew is propagated along

with the solutions. Now, each solution is characterized by one more value - slew, i.e.,

the characterization of a solution is 3-dimensional. To cope with the computational
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complexity due to the increased number of dimensions, approximation schemes can

be applied on the characterization values to control the size of solution sets; alter-

natively, relaxation techniques, such as Lagrangian relaxation, can be employed to

reduce dimensionality. This way, the solution quality is preserved and computational

complexity is controlled within a reasonable level.

G. Experiment

In order to validate the effectiveness of our algorithm, we compared it with a state-of-

the-art previous work [1]. The work of [1] is centered around slack allocation, which

is a linear programming guided by power-delay sensitivity. The size and 𝑉𝑡 level are

selected for each gate such that its allocated slack can be traded for power reduction.

We call this method as SA (Slack Allocation) based approach. Potential advantages

of our method over SA are as follows. First, in SA both the timing optimization

at the beginning and the slack allocation later requires first-order approximation to

the circuit delay and power model, while our method uses table lookup model and

has no approximation. Second, numerical optimization in SA produces continuous

solution for timing optimization, and then, the solution is rounded up to discrete

gate sizes, which is subject to significant error. Our combinatorial algorithm does not

need rounding up and thus have no such error. Third, sensitivity-based optimization

is more likely to be trapped into local optimum than our combinatorial method.

To see the effect of each technique, we obtained results from our algorithm with

different parts: applying our method with initial optimization phase in only one JRR

iteration to show the result without phase II - iterative refinement, applying the two-

phase algorithm in one JRR iteration to show the result without iterative relaxation

and restriction, applying our method with both phases in multiple JRR iterations to
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Table I. Comparison on power (𝜇𝑊 ) and CPU runtime - RT (seconds). All solutions

satisfy timing constraints.

SA [1] Phase I of JRR JRR IJRR IJRR w/ thresholds
Circuit #gates power RT power RT power RT power RT power RT

ISCAS85 c432 289 304 2 283 2 269 5 240 11 247 8
c499 539 617 2 655 5 649 9 496 24 506 14
c880 340 364 2 359 3 332 5 284 16 284 8
c1355 579 635 2 783 5 747 10 524 31 524 14
c1908 722 833 4 871 6 801 15 668 35 681 20
c2670 1082 969 7 807 9 760 18 733 50 733 24
c3540 1208 1440 8 1624 12 1512 26 1188 69 1188 36
c5315 2440 2596 21 2350 24 2099 51 2005 125 2005 68
c6288 2310 4427 9 4619 21 4358 49 4358 111 4384 64
c7552 3115 3153 38 2660 32 2528 71 2455 167 2455 94

ITC99 b03 101 93 1 69 1 64 1 61 4 64 2
b09 105 107 1 104 1 95 2 81 3 83 2
b10 147 166 1 163 1 152 3 129 6 132 4
b11 448 560 2 572 5 518 10 444 25 456 14
b12 827 911 3 763 8 694 15 676 42 696 24
b14 5524 6674 200 5479 97 5332 194 5215 426 5215 258
b15 5340 8212 142 7792 85 7457 159 6844 385 6844 228
b20 10590 13046 745 11262 247 10620 409 10215 1021 10215 434

IWLS05 des area 3255 3610 38 2979 45 2896 86 2866 203 2875 96
mem ctrl 8929 10359 438 7995 194 7867 311 7812 728 7812 348
spi 2317 2561 20 1977 33 1968 64 1955 160 1955 94
usb funct 11848 13060 528 9547 231 9519 348 9507 847 9602 474
aes core 15692 17835 1312 15256 400 13934 583 13904 1424 14001 928
systemcdes 2517 2650 34 2071 32 2054 67 2036 162 2036 76
tv80 5303 6593 168 5374 86 5169 148 5085 355 5085 180
ac97 ctrl 9672 10008 192 8908 121 7101 223 6995 602 6995 346
Average 4299 150 3666 65 3442 110 3337 270 3349 148
Norm. 1.0 1.0 0.85 0.44 0.80 0.73 0.776 1.79 0.778 0.98

show the full power of the algorithm, and applying the iterative JRR method with

improvement thresholds to test runtime-quality tradeoff. In the experiment, timing

and power are concurrently optimized with the formulation of minimizing total power,

including dynamic and leakage power, subject to timing constraints. We also carried

out experiment to verify the efficiency of our method for timing optimization. Both

the SA algorithm [1] and our algorithm were implemented in C++. The experiment

was conducted on a Windows machine with 2.6GHz Intel core 2 duo CPU and 2GB

memory.

The algorithms were tested on ISCAS85, ITC99, and IWLS 2005 benchmark

circuits. The circuits are synthesized by SIS [22] and placed by mPL [23] before

the optimization. The cell library is based on 70𝑛𝑚 technology. Each gate has

4 𝑉𝑡 levels and 7 size options (1x, 2x, 4x, 8x, 16x, 24x, 32x), i.e., each gate has

28 implementations. The 𝑉𝐷𝐷 is set to 0.9𝑉 . For the convenience of algorithm

implementation, the Elmore delay model and analytical models for dynamic and
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Table II. Comparison on circuit delay (ps) and CPU runtime (seconds).

SA [1] JRR
Circuit delay runtime delay runtime

ISCAS85 c432 874 0.1 788 0.3
c499 705 0.1 629 0.6
c880 650 0.1 566 0.3
c1355 787 0.2 716 0.3
c1908 971 0.4 875 0.6
c2670 1088 0.4 930 0.42
c3540 1160 0.6 1084 0.9
c5315 2149 0.7 2027 0.96
c6288 3548 0.5 3479 0.84
c7552 1268 1 1103 1.2

ITC99 b03 285 0.1 237 0.12
b09 182 0.1 160 0.3
b10 337 0.1 301 0.12
b11 722 0.1 656 0.24
b12 680 0.3 608 0.72
b14 5724 3 5157 4.2
b15 6463 3 5985 4.2
b20 7576 11 6888 11.4

IWLS05 des area 3253 1 2905 1.8
mem ctrl 6503 6 5655 8.4
spi 3048 1 2651 1.2
usb funct 8240 8 7103 9.6
aes core 3512 16 3193 17.4
systemcdes 3713 1 3315 1.2
tv80 4284 3 3758 3.6
ac97 ctrl 234 5 198 5.4
Average 2614 2.4 2345 2.9

leakage power [12] were employed for the experiment. Please note that our algorithm

can be directly applied with more accurate models. Wire delay was included in our

delay estimation.

The main results of timing-constrained power optimization are summarized in

Table I. It compares results on power and CPU runtime. Since the results from all

these methods can satisfy timing constraints, the timing data is not included in the

table. It can be seen that the initial optimization phase of our algorithm results in

15% less power than SA on average. If we run our complete two-phase algorithm in

one JRR iteration, the average power reduction increases to 20%. The two-phase al-

gorithm with multiple JRR iterations reduces the power dissipation further by 22.4%.

For both of our initial optimization phase and our 2-phase 1-iteration algorithm, the

runtime is significantly less than that of SA. Although SA is faster than our methods
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Fig. 8. For different timing budgets, our solutions always yield less power than SA [1]

on ISCAS85 benchmark circuit c2670.

on circuits with small size, our methods are much faster than SA on large circuits,

because the runtime of our methods is linear to the number of gates in the circuit. For

IJRR, the runtime is larger due to multiple iterations. Usually, the number of JRR

iterations is no more than 3. The runtime of IJRR is 1.79× of SA on average. A sig-

nificant speedup (near 2×) to IJRR is obtained by utilizing improvement thresholds

for runtime-quality tradeoff. The improvement thresholds are set to 𝜙𝑛 = 0.001 for

Lagrangian iterations and 𝜙𝑟 = 0.05 for JRR iterations. Running IJRR with thresh-

olds takes about half of the runtime of IJRR without thresholds, which is comparable

to SA and close to single JRR iteration. This improvement on runtime is achieved

with negligible difference on solution quality. Specifically, the IJRR with thresholds

reduces 22.2% more power than SA, compared to 22.4% by IJRR without thresholds.

The results of timing optimization are summarized in Table II. To obtain the

optimal timing solution without any constraint, SA only performs its first part:

sensitivity-based delay minimization, while our method applies one JRR iteration

without Lagrangian relaxation. The experimental results show that on average our
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method outperforms SA by about 270𝑝𝑠 with slightly higher runtime.

We also tested the algorithms for different timing constraints on circuit c2670.

The results are presented in Fig. 8. When the timing budget increases, the power

dissipation decreases. One can see that the power from our algorithm is significantly

less than that of SA [1] for all different timing constraints.

H. Conclusion

In this paper, we propose a new algorithm of gate sizing and 𝑉𝑡 assignment. Its core

idea is Joint Relaxation and Restriction, which employs consistency relaxation and

coupled bi-directional solution search. Our approach performs joint relaxation and

restriction iteratively. It is a systematic and efficient solution search on DAG. In

general, it is a practical approach because it accommodates accurate delay and power

models. It can be directly applied with industrial standard cell based designs and its

CPU runtime is reasonable. Compared to a state-of-the-art previous work, it leads to

about 22% less power dissipation with similar timing performance and CPU runtime.
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CHAPTER III

SIMULTANEOUS TECHNOLOGY MAPPING AND CELL PLACEMENT

A. Introduction

In today’s technologies, interconnects contribute to significant portion of the overall

delay in VLSI circuits. The trend is likely to continue, or worsen, as the technology

scaling continues, since the wire delays do not scale as well as cell delays. The

interconnect delay depends on the topology and layer assignment, which is determined

by the routing step. This freedom available in the routing phase is often insufficient

to optimize the circuit for the required performance. The placement and technology

mapping steps also have a great impact on the interconnect delay, since the former

decides where the locations of the driver and receivers of a net are and the latter

decides which nets exist in the design. Consequently, the algorithms for layout-driven

technology mapping, timing-driven placement, and physical synthesis have received

attention from CAD researchers over the last several years.

Technology mapping problem minimizing metrics such as total cell area for a di-

rected acyclic graph (DAGs) is known to be NP-hard. For relatively simple structures

such as trees, however, the problem can be solved optimally in a polynomial time.

The technology mapping algorithm to map individual trees rooted at multi-fanout

points or primary outputs in a DAG on to a set of cells in a library was first proposed

by Keutzer [24]. The algorithm employs dynamic programming technique and runs

in polynomial time in the size of the tree, ensuring optimality for the metrics such as

total cell-area. Most of the subsequent work employs the same technique to optimize

various cost functions involving area, delay, power possibly subject to constraints, as

in [25]. The layout-driven technology mapping was proposed by Pedram et al., where
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an initial placement of a subject graph and the assumption about the placement of

a match was employed to evaluate wire- and cell-delays to derive a delay-optimized

mapped netlist [26]. Obvious limitation of the work is that even for a tree, the place-

ment of the subject graph and that of the mapped netlist can be quite different and

that there are multiple placement possibilities for a choice at each node in the tree,

whereas only one placement, that of the center of gravity based on the locations of

choices at fanins and (unmapped) fanouts, is considered. The limitation was partially

eliminated in the subsequent work [27], which solved the problem of simultaneous

technology mapping and linear placement of trees in polynomial time. However, the

assumption about the placement of the cells in a tree in a single row is not practi-

cal, since the cells are allowed to be placed in different rows in 2-dimensional (2-D)

area. To overcome this limitation, the subsequent work employed iterative technology

decomposition, mapping, and placement [28, 29, 30] to place the primitive gates in

a given area, perform mapping with assumptions about the placement of a mapped

cell, and then place the mapped netlist or derive the placement of the subject graph

from the same for the next iteration. Many industrial tools, which perform physical

synthesis, are believed to employ similar iterative mapping and placement schemes to

improve the delays locally in parts of the circuit. The limitation of such an approach is

that it neither ensures optimality nor guarantees convergence, as a different mapping

solution leads to a new placement. Thus, the problem of simultaneous technology

mapping and 2-D placement even for trees remains unsolved even today. Recently,

Wang et al. proposed an iterative mapping scheme [31] employing multipliers, similar

to those in Lagrangian relaxation technique, to optimize the area/power under fixed

cell-delay model; the wire-delays based on the placement, however, are not considered.

Similar to technology mapping, placement for general graphs to optimize useful

objectives is a difficult problem and has been well researched over the last few decades;
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see [32] for the recent literature survey. The placement of special structures such as

trees, however, can be performed in a polynomial time optimizing certain metrics.

For example, Fischer et al. presented 𝑂(𝑛 log 𝑛) algorithm for the optimal placement

minimizing the sum of weighted edge-lengths for a tree with 𝑛 leaves [33]; recent work

includes a linear time algorithm to minimize the sum of half-perimeter wirelengths

for all nets in a tree[34]. The special case of linear placement for trees is also studied

well and several exact polynomial time algorithms exist to minimize total wirelength

or the cutwidth; for instance, Yannakakis’s algorithm [35] employed in [27] to perform

simultaneous mapping and linear placement. However, the problem of delay-optimal

placement for trees seem to have received relatively less attention in the published

literature, despite the potential usefulness of the solution.

Since the technology mapping and placement have great impact on the overall

delays in the circuit, exploring these two spaces simultaneously can result in circuits

with better delays than the conventional approach of searching those sequentially,

which results in the search in a relatively small solution space. A fundamental con-

tribution of this work is an exact polynomial time, 𝑂(𝑛𝑚2𝑓𝑚𝑎𝑥𝑃
2
𝑚𝑎𝑥), algorithm for

delay-optimal simultaneous technology mapping and 2-D placement of trees, where

𝑛, 𝑚, 𝑓𝑚𝑎𝑥, and 𝑃𝑚𝑎𝑥 are the number of nodes in the tree, the number of candidate

locations in 2-D area, maximum fanin over all the matches at any node, and the

maximum number of matches at any node in the tree, respectively. The algorithm

is based on the extension of an exact polynomial time, 𝑂(𝑛𝑚2𝑓𝑚𝑎𝑥), delay-optimal

placement algorithm for trees, which is another important contribution. To optimize

timing in directed acyclic graphs (DAGs), we propose an iterative algorithm, based on

Lagrangian relaxation (LR) technique, which employs the simultaneous technology

mapping and placement in the inner loop. The comparison of results on ISCAS’85

benchmarks, with a cell library characterized for a 70 nm technology, due to the algo-



46

rithm with those due to the conventional iterative delay-oriented mapping in SIS [36]

and timing driven placement mPL [37] shows more than 60% slack improvement with

7 times speed-up in runtime, on an average, implying that the proposed algorithms

are practical and can be employed to optimize timing during physical synthesis.

The rest of the paper is organized as follows. Section B describes the formal

notation employed in this article. Section C presents an algorithm for delay-optimal

placement of trees, whereas Section D extends the algorithm to perform delay-optimal

simultaneous technology mapping and placement. Section E briefly describes the

algorithm based on LR for simultaneous mapping and placement for DAGs. Section G

discusses the results due to the algorithms and compares them with those due to the

competitive approach, and Section H concludes the paper.

B. Preliminaries

Traditionally, a technology independent Boolean network is first decomposed into

a circuit containing only primitives such as two-input NANDs and inverters, which

are then mapped on to standard cells in a library during the technology mapping to

create a mapped netlist. Subsequently, the placement is carried out on the mapped

netlist to assign each cell a location in a given area. The graph theoretic structure

underlying either the Boolean network or the technology decomposed circuit or the

mapped netlist is a DAG 𝐺(𝑉,𝐸), where a node 𝑣 ∈ 𝑉 represents a standard cell in

case of mapped netlist or a primitive in case of the technology decomposed circuit.

The primary inputs and outputs of the DAG are denoted by 𝑖𝑛𝑝𝑢𝑡(𝐺) and 𝑜𝑢𝑡𝑝𝑢𝑡(𝐺),

respectively. Each directed edge 𝑒(𝑣𝑖, 𝑣𝑗) ∈ 𝐸 represents a net whose driver (receiver)

is the standard cell represented by 𝑣𝑖 (𝑣𝑗). Each node 𝑣𝑖 ∈ 𝑉 is associated with the

actual (required) arrival time 𝑎𝑖 (𝑞𝑖); the slack for the node is computed as 𝑞𝑖 − 𝑎𝑖.
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The delay between nodes 𝑣𝑖 and 𝑣𝑗 is denoted by 𝑑(𝑣𝑖, 𝑣𝑗), which comprises the cell

delay, 𝑑𝑐𝑒𝑙𝑙(𝑣𝑖), and the wire delay, 𝑑𝑤𝑖𝑟𝑒(𝑒(𝑣𝑖, 𝑣𝑗)). For a primary input 𝑖 to the circuit,

𝑑𝑐𝑒𝑙𝑙(𝑖) is simply the actual arrival time of that input. The delay of an input-output

path 𝜋 is denoted by 𝑑(𝜋) =
∑

(𝑣𝑖,𝑣𝑗)∈𝜋 𝑑(𝑣𝑖, 𝑣𝑗). The slack of the path is computed as

𝑠(𝜋) = 𝑞− 𝑑(𝜋), where 𝑞 is the required arrival time at the output of the path. Paths

with the minimum slack are critical paths in the circuit.

We introduce a polynomial time algorithm for the delay-optimal placement of a

tree in this section and describe its extension to simultaneous mapping and placement

in the next. A rooted tree is a tree 𝑇 (𝑉𝑇 , 𝐸𝑇 ), with one of its nodes designated as a

root. The tree may be a part of a DAG 𝐺(𝑉,𝐸), i.e., 𝑉𝑇 ⊆ 𝑉,𝐸𝑇 ⊆ 𝐸. The inputs

to the tree, also referred to as the leaves, have fixed locations and so does the root

of the tree. We want to place the tree in a layout area, which is divided into bins or

tiles, similar to those in conventional global placement [37]. Specifically, we want to

assign each node 𝑣 ∈ 𝑉𝑇 a bin (𝑥, 𝑦). There are several possible placements leading

to different delays, since the wire- and cell-delays are functions of the locations of the

driver and the receiver. Among these placements, we want to find the one with the

minimum delay. Formally, the problem of delay minimization during tree placement

can be stated as follows:

Problem definition B.1 Given a tree 𝑇 (𝑉𝑇 , 𝐸𝑇 ), and a set of candidate locations,

𝑍𝑖, for each node 𝑣𝑖, minimize

max
𝜋∈𝑖𝑛𝑝𝑢𝑡−𝑟𝑜𝑜𝑡 𝑝𝑎𝑡ℎ𝑠

𝑑(𝜋),

s.t.

(𝑥𝑖, 𝑦𝑖) ∈ 𝑍𝑖, ∀𝑣𝑖 ∈ 𝑉𝑇 .

The delay-optimal tree placement problem has optimal substructure, i.e., the
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delay-optimal placement for a tree rooted at a node 𝑣 contains the delay-optimal

placements for subtrees rooted at its fanins, since, otherwise we can change the place-

ment for the subtrees to yield delays smaller than that due to the delay-optimal

placement for the tree, leading to a contradiction. We exploit this optimal substruc-

ture property to come up with a tree placement algorithm based on the dynamic

programming.

Fig. 9. (a) A tree with fixed i/os 𝐼1, 𝐼2, 𝑂 and cells 𝑣1, 𝑣2, and 𝑣3, placeable in 4×5 grid.
(b) The placement-delay table for 𝑣1, where the entry in bin (𝑖, 𝑗) indicates

the delay of the subtree rooted at 𝑣1, when 𝑣1 is placed in (𝑖, 𝑗). (c) The

placement-delay table for 𝑣2. (d) The placement-delay table for 𝑣3, obtained

by using the optimal locations for fanins 𝑣1 and 𝑣2.

C. Tree Placement Algorithm

The tree placement algorithm has two phases: first phase of bottom-up solution gen-

eration and the second phase of actually choosing a placement from those solutions,

given the fixed location of the root. The first phase traverses the tree in a topologi-
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cal order and stores the delays due to optimal placements for subtrees rooted at all

nodes, assuming that the roots are fixed in all possible candidate locations. It can be

explained employing the example in Fig. 9(a), where a tree with fixed locations for

inputs 𝐼1, 𝐼2, and an output 𝑂 is shown. The cells 𝑣1, 𝑣2, and 𝑣3 are to be placed in a

4× 5 grid so that delay on any path from 𝐼1 or 𝐼2 to 𝑂 is minimum. For the sake of

illustration, the following assumptions are made: inputs arrive at 0; the cell-delay for

𝑣1, 𝑣2, 𝑣3 is 1; and the wire-delay equals the square of Manhattan distance between

nodes, which is same as the Elmore delay model with unit resistance and capacitance

per unit wire-length. Consider a location (3, 1) for the cell 𝑣1: the delay for the sub-

tree rooted at 𝑣1 is sum of the arrival time at 𝐼1, 𝑑
𝑐𝑒𝑙𝑙(𝐼1) = 0, the wire-delay from 𝐼1

to 𝑣1, 𝑑
𝑤𝑖𝑟𝑒(𝑒(𝐼1, 𝑣1)) = (∣1− 3∣+ ∣1− 1∣)2 = 4, and the cell delay for 𝑣1, 𝑑

𝑐𝑒𝑙𝑙(𝑣1) = 1.

Therefore, the optimal delay of the subtree rooted at 𝑣1, when the location of 𝑣1 is

fixed at (3, 1), is 5. Similarly, when 𝑣1 is fixed at (2, 1), the optimal delay for the

subtree rooted at 𝑣1 is 2, since the wire delay 𝑑𝑤𝑖𝑟𝑒(𝑒(𝐼1, 𝑣1)) = (∣1− 2∣+ ∣1− 1∣)2 = 1

and the cell-delay is also 1. There are 20 possible locations for 𝑣1 and for each of

those locations, the optimal delays for the subtree rooted at 𝑣1 are shown in Fig. 9(b)

depicting a table, referred to as a placement-delay table. Notice that the delay values

in bins (3, 1) and (2, 1) are 5 and 2, respectively, as explained before; the delay values

in other bins are derived similarly. The placement-delay table for 𝑣2 can be con-

structed in a similar fashion and is depicted in Fig. 9(c). The tables are constructed

for nodes 𝑣1 and 𝑣2 before generating that for 𝑣3, since these nodes occur before 𝑣3

in the topological order. Now, consider the construction of the placement-delay table

for 𝑣3. For each position (𝑥, 𝑦) for 𝑣3, we consider the optimum location of 𝑣1 and 𝑣2

to compute the delay. Therefore, when 𝑣3 is placed in (4, 1), the location chosen for 𝑣2

is also (4, 1), since that yields the minimum delay of the path from 𝐼2 to 𝑣3, which is

2 (1, optimal delay for the subtree at 𝑣2, when 𝑣2 is fixed at (4, 1), + 02, wire-delay, +
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1, cell-delay for 𝑣3). Similarly, two locations (3, 1) and (2, 1) for 𝑣1 result in the least

path delay of 7. Choosing either of those leads to the same delay, which is minimum

for the path from 𝐼1 to 𝑣3, when 𝑣3 itself is placed at (4, 1). The overall delay for the

subtree rooted at 𝑣3, when it is placed in (4, 1) is 𝑚𝑎𝑥(2, 7) = 7; this is reflected in

the bin (4, 1) in placement-delay table for 𝑣3, shown in Figure 9(d). Other entries in

the table are derived similarly. Thus, each entry at (𝑥, 𝑦) location in placement-delay

table for a node 𝑣 corresponds to the optimal delay of the subtree rooted at 𝑣, when

𝑣 itself is fixed at (𝑥, 𝑦), and is computed as follows:

𝑎𝑣(𝑥, 𝑦) = 𝑚𝑎𝑥𝑖∈𝑓𝑎𝑛𝑖𝑛(𝑣){𝑚𝑖𝑛∀(𝑥𝑖,𝑦𝑖)locations of 𝑖

{𝑎𝑖(𝑥𝑖, 𝑦𝑖) + 𝑑𝑤𝑖𝑟𝑒(𝑒(𝑖, 𝑣)) + 𝑑𝑐𝑒𝑙𝑙(𝑣)}} (3.1)

The following proposition states the optimality of the delay values stored in placement-

delay table for all nodes.

Proposition 1 The delay 𝑎𝑣(𝑥, 𝑦) is the optimal delay for the placement of the sub-

tree rooted at 𝑣, when 𝑣 is fixed at (𝑥, 𝑦).

Proof 1 We use induction on the depth of the node. Basis step: depth = 1. In this

case, all fanins to the node 𝑣 are from fixed leaf nodes. If 𝑣 is also fixed at (𝑥, 𝑦),

then there is only one possible delay for the subtree rooted at 𝑣 and therefore, 𝑎𝑣(𝑥, 𝑦)

is trivially optimal. Induction step: depth > 1. Assume that the proposition is true

for all the nodes with depth < 𝑘. We will prove that it is true for a node with depth

𝑘. Consider such a node 𝑣, for which 𝑎𝑣(𝑥, 𝑦) is given by Eq. (3.1). Suppose 𝑎𝑣(𝑥, 𝑦)

is not optimal. This implies that there exist some fanin node 𝑖, for which 𝑎𝑖(𝑥𝑖, 𝑦𝑖) is

not optimal - a contradiction, since the depth of 𝑖 is < 𝑘, because of which 𝑎𝑖(𝑥𝑖, 𝑦𝑖)

is optimal. Therefore, 𝑎𝑣(𝑥, 𝑦) must also be optimal.
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After the construction of placement-delay tables, the second phase of the al-

gorithm proceeds, traversing the tree in a reverse topological order to choose the

locations for 𝑣3, 𝑣2, and 𝑣1. Since the root node 𝑂 is fixed in the location (2, 5), the

optimal location of 𝑣3, which results in the minimum delay is (2, 3), yielding the delay

of 14 (10, 𝑎𝑣3(2, 3), i.e., delay of the subtree rooted at 𝑣3, + 22, wire-delay from (2, 3)

to (2, 5)). The optimal locations of 𝑣1 and 𝑣2, which resulted in the delay of 10 for

the subtree rooted at 𝑣3 are (1, 3) and (4, 3), respectively; these can be found out

in a constant time by storing additional information along with the placement-delay

table. Thus, the optimal placement for the tree is as follows: 𝑣1(𝑥𝑜𝑝𝑡, 𝑦𝑜𝑝𝑡) = (1, 3);

𝑣2(𝑥𝑜𝑝𝑡, 𝑦𝑜𝑝𝑡) = (4, 3); and 𝑣3(𝑥𝑜𝑝𝑡, 𝑦𝑜𝑝𝑡) = (2, 3).

The pseudo-code for the tree placement is shown in Algorithm 7. It processes

nodes in the tree in a topological order and for each node 𝑣𝑗, it considers all the possi-

ble locations (𝑥𝑗, 𝑦𝑗). For each of those placements, it finds out the placement for each

fanin resulting in the minimum delay. This operation requires 𝑂(𝑚 × ∣𝑓𝑎𝑛𝑖𝑛(𝑣𝑗)∣)
time, since for each node, we store the arrival times, 𝑎𝑣(𝑥, 𝑦), indexed by location

(𝑥, 𝑦) and these represent the optimal delays for the placement of the subtree rooted

at 𝑣, when 𝑣 itself is placed at (𝑥, 𝑦). Considering the minimum arrival times from

the fanins, the arrival times for the delay-optimal placements of the subtree rooted

at 𝑣𝑗 are computed and stored by indexing on the locations (𝑥𝑗, 𝑦𝑗). Other auxiliary

information such as the optimal locations of fanins for each placement of 𝑣𝑗 is also

stored so that the delay-optimal placement can be created, employing reverse topo-

logical traversal, after all the nodes are processed. The amount of memory required

to store the optimal delay values and other auxiliary information for an entire tree

is 𝑂(𝑛𝑚𝑓𝑚𝑎𝑥), for the tree containing 𝑛 nodes, each with 𝑚 placement possibilities,

and maximum fanin of 𝑓𝑚𝑎𝑥. The time complexity of the algorithm is 𝑂(𝑛𝑚2𝑓𝑚𝑎𝑥),

since it is dominated by the search for the optimal-delay placement for each fanin of
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1: for all 𝑣𝑗 in 𝑉𝑇 in topological order do

2: for all tiles (𝑥𝑗, 𝑦𝑗) in candidate locations set of 𝑣𝑗 do

3: for all fanins 𝑣𝑖 of node 𝑣𝑗 do

4: Choose (𝑥𝑖, 𝑦𝑖), the location for 𝑣𝑖, which yields the minimum value

for delay 𝑑(𝑣𝑖, 𝑣𝑗) + 𝑎(𝑣𝑖).

5: end for

6: Update arrival time:

𝑎𝑣𝑗(𝑥𝑗, 𝑦𝑗) = max𝑣𝑖∈𝑓𝑎𝑛𝑖𝑛(𝑣𝑗)(𝑑(𝑣𝑖, 𝑣𝑗) + 𝑎(𝑣𝑖))

7: Record corresponding optimal fanin locations:

∀𝑣𝑖 ∈ 𝑓𝑎𝑛𝑖𝑛(𝑣𝑗), 𝑙𝑜𝑝𝑡(𝑣𝑖, 𝑣𝑗, 𝑥𝑗, 𝑦𝑗) = (𝑥𝑖, 𝑦𝑖)

8: end for

9: end for

10: for all 𝑣𝑗 in 𝑉𝑇 in reverse topological order do

11: if 𝑣𝑗 != root(𝑇 ) then

12: f = fanout(𝑣𝑗)

13: placement(𝑣𝑗) = 𝑙𝑜𝑝𝑡(𝑣𝑗, 𝑓, 𝑥𝑓 , 𝑦𝑓 )

14: end if

15: end for

Algorithm 7: 𝑃𝑙𝑎𝑐𝑒𝑇𝑟𝑒𝑒(𝑇 )
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a given node.

Proposition 2 The tree placement procedure shown in Algorithm 7 returns optimal-

delay placement.

Proof 2 During the topological traversal, 𝑙𝑜𝑝𝑡(𝑖, 𝑣, 𝑥, 𝑦) is populated and it stores the

delay-optimal locations for fanins 𝑖 for all possible locations (𝑥, 𝑦) of all nodes 𝑣 ∈ 𝑉𝑇 .

Considering the location of the root, which is fixed, the reverse topological traversal,

assigns the optimal locations to all nodes from those stored in 𝑙𝑜𝑝𝑡(𝑖, 𝑣, 𝑥, 𝑦) based on

the location of their fanouts.

Even though we explained the tree placement algorithm employing constant and

Elmore delay models for cell- and wire-delays, respectively, the algorithm ensures

delay-optimality with other delay models also. For instance, asymptotic waveform

evaluation (AWE) can be employed to compute wire-delays and without any changes,

the algorithm still ensures the optimality. Similarly, the load-dependent cell-delay

models can be used, with slight changes in the computation of delays, without affect-

ing the optimality.

D. Delay-optimal Simultaneous Technology Mapping and Placement for Trees

Delay-optimal tree placement algorithm presented in the previous section can

be extended to perform simultaneous technology mapping and placement. Tradition-

ally, technology mapping transforms a Boolean network containing primitive gates

such as 2-input NANDs and inverters into an implementation based on the set of

cells in a library and is carried out in two steps: matching and covering. For con-

ventional delay oriented technology mapping employing load-dependent delay model

[36], the matching phase processes each node in a topological order and stores a piece-

wise linear load-delay curve corresponding to mapping solutions due to non-inferior
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1: for all nodes 𝑣𝑗 in topological order do

2: for all matches 𝑔𝑗 corresponding to cells in the library do

3: for all bins (𝑥𝑗, 𝑦𝑗) ∈ 𝒵𝑗, set of candidate locations, do

4: for all fanins 𝑖 of pattern 𝑔𝑗 matched at node 𝑣𝑗 do

5: Choose (𝑔𝑖, 𝑥𝑖, 𝑦𝑖) that gives the minimum value of delay

𝑑(𝑣𝑖, 𝑣𝑗) + 𝑎(𝑣𝑖).

6: end for

7: Update arrival time:

𝑎𝑣𝑗(𝑔𝑗, 𝑥𝑗, 𝑦𝑗) = max
𝑖∈𝑓𝑎𝑛𝑖𝑛(𝑔𝑗)

(𝑑(𝑣𝑖, 𝑣𝑗) + 𝑎(𝑣𝑖))

and record corresponding solutions of all its fanins:

{(𝑔𝑖, 𝑥𝑖, 𝑦𝑖)∣𝑖 ∈ 𝑓𝑎𝑛𝑖𝑛(𝑔𝑗)}
8: end for

9: end for

10: end for

Algorithm 8: 𝑀𝑎𝑡𝑐ℎ𝑃 𝑙𝑎𝑐𝑒𝑇𝑟𝑒𝑒(𝑇 )
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matches, found either by structural or Boolean techniques, at that node. In the cov-

ering phase, the mapping solution is generated by a reverse topological traversal, by

selecting the minimum delay matches for given loads. For trees, this algorithm results

in delay-optimal solution, ignoring the wire-delays based on placement. To account

for placement-based wire-delays, the approaches in the literature such as [26, 29, 28]

either assume that the match is placed at some location or iterate between the map-

ping, placement, and technology decomposition steps. Obviously, these approaches do

not claim delay-optimality considering the wire-delays based on the actual placement,

even for trees.

To overcome the limitations of the previous approaches, we propose a simulta-

neous mapping and placement algorithm, which returns the delay-optimal mapped

netlist and its placement in a polynomial time for a tree. The algorithm relies on the

matching step to store both the mapping choices and their delay-optimal placements,

whereas the covering phase, which is same as that in the traditional algorithm, gen-

erates a mapping solution with a reverse topological traversal by selecting the delay-

optimal choices. Since all the mapping choices and their delay-optimal placements

are considered, the final mapping and placement solution is optimal. The novelty of

the algorithm lies in its polynomial time and space complexities, despite storing the

delay-optimal placements for all the mapping solutions. The algorithm makes the

same assumption, as in previous section, that the locations of the inputs and output

of a tree are fixed beforehand. The inputs to the tree are either the primary inputs or

outputs from the multi-fanout roots of other trees in the DAG; the output is either a

primary output or serves as an input to other trees.

The pseudo-code for the matching step is shown in Algorithm 8. Similar to that

in conventional approaches, it processes nodes in the tree in a topological order. For

each node 𝑣𝑗, it considers all possible matches corresponding to the cells in the li-
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brary. For each match 𝑔𝑗, it considers all possible placements (𝑥𝑗, 𝑦𝑗) in 𝒵𝑗 and for

each of those, it finds out the optimal-delay due to the mapping solution and the

placement for each fanin (line 5 in the pseudo-code). This search for optimal delay

value at each node requires 𝑂(𝑚𝑃𝑚𝑎𝑥) time, since for each node, 𝑣𝑗, we store optimal

delay values 𝑎𝑣𝑗(𝑔𝑗, 𝑥𝑗, 𝑦𝑗) indexed by a match 𝑔𝑗 and its placement (𝑥𝑗, 𝑦𝑗) (line 7).

The auxiliary information about the matches at the fanins and their locations is also

indexed similarly and is employed during the covering phase to actually build the

mapped netlist and its placement. The amount of memory required to store the op-

timal delay values and other auxiliary information for entire tree is 𝑂(𝑛𝑚𝑓𝑚𝑎𝑥𝑃𝑚𝑎𝑥),

since there are 𝑛 nodes with 𝑃𝑚𝑎𝑥 possible matches and 𝑚 placement possibilities for

those matches. The time-complexity of the matching is dominated by the search for

the optimal delay value choice and its location at the fanin of a match, placed at all

possible locations, for a node. Since there are 𝑛 nodes with 𝑃𝑚𝑎𝑥 matches at most,

each of which has 𝑚 placement possibilities and have 𝑓𝑚𝑎𝑥 fanins at most, the time

complexity is 𝑂(𝑛𝑚2𝑓𝑚𝑎𝑥𝑃
2
𝑚𝑎𝑥).

E. Handling DAGs by Lagrangian Relaxation

A circuit represented by a DAG may contain multi-fanout nodes. Cells on differ-

ent fanouts of a gate affect each other on timing, since the load capacitance to the

multi-fanout node include the capacitance of all fanout cells. As a result, dynamic

programming, which deals with single fanout without properly incorporating the in-

teractive effect between different fanouts, can hardly find the overall best solution on

the fanout cone. This limits the application of dynamic programming to delay-optimal

mapping and placement on DAGs. This issue is illustrated by a simple example in

Fig. 10.
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Fig. 10. (a) Two cells (𝑣2 and 𝑣3) driven by a multi-fanout cell (𝑣1) placed on a 3× 4

grid without consideration of interactive effect between multiple fanouts. I/Os

and the multi-fanout cell 𝑣1 are fixed. (b) Optimal placement of 𝑣2 and 𝑣3,

considering the load affected by both fanouts of 𝑣1.

Consider the placement of a NAND gate and two INV gates it drives in a 3× 4

grid in Fig. 10(a). The primary input 𝐼, two outputs 𝑂1, 𝑂2, and cell 𝑣1 are fixed

at the locations shown in the figure. Here, the cell delay is load-dependent. In this

example, we use the Elmore model for both the cell delay and wire delay, where the

delay is linear to the load capacitance it drives and its resistance. For the sake of

clear presentation, we assume a unit length wire, every cell, and every I/O pin has

unit resistance and unit capacitance. In this case, if we still use the tree placement

algorithm in Section C to come up with the delay table for all placements of each node

in a topological order traversal, the delays at 𝑣2 and 𝑣3 are considered independently

from each other, which does not completely reflect the load-dependent cell delay. The
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independent delay calculation leads to an independent placement of 𝑣2 and 𝑣3 as in

Fig. 10(a). Cells 𝑣1 and 𝑣2 are uniformly spaced over the upper path, so are 𝑣1 and

𝑣3 over the lower path. This placement is optimal for either the upper path or the

lower path, individually. However, this placement is not optimal for all the three cells,

because the load 𝑣1 drives is doubled due to multi-fanout. The best placement of 𝑣2

and 𝑣3 are shown in Fig. 10(b), in which 𝑣2 and 𝑣3 are closer to 𝑣1 to compensate

its larger load. One may argue that this issue can be resolved by estimating the

overall load when considering the solution at one fanout. Unfortunately, this is not

true. No matter how much the estimated load on the upper path is, 𝑣3 still needs to

be placed on the middle point between 𝑣1 and 𝑂2, because of the quadratic relation

between wire delay and wire length on the lower linear path. The same happens to

𝑣2’s placement.

To overcome the difficulty, we propose a method based on Lagrangian relaxation

(LR): it applies the simultaneous tree mapping and placement to minimize delays

weighted by Lagrangian multipliers iteratively; the algorithm stops, if there is no

significant improvement in the slack. The whole circuit delay is broken into timing

constraints on every timing arc in nodal form. Then, the weighted delay is expressed

in the form of timing arc delay summation. Timing points are at the inputs of the

gates. Each timing arc, connecting two timing points, spans from the input of a cell

to the input a cell on its fanout. For example, there are two timing arcs covering gate

𝑣1 in Fig. 10(a): one is from the input of 𝑣1 to the input of 𝑣2; the other is from the

input of 𝑣1 to the input of 𝑣3. The basic idea behind the LR approach is to use weights

(Lagrangian multipliers) to put different focus on different parts of timing. We will

explain how the weights (Lagrangian multipliers) encode the mutual effect between

multiple fanouts of a cell into our problem with more details on the LR method next.

Let 𝑃𝑂(𝐺) be the set of primary outputs in 𝐺, and 𝑃𝐼(𝐺) be the primary inputs
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in 𝐺. The mapping and placement problem in a general circuit is then formulated as:

DAG Mapping and Placement: Given the net list of a decomposed circuit as

a DAG 𝐺(𝑉,𝐸), a set of candidate locations 𝒵𝑖 for each gate in the circuit, and a

given cell library ℬ, perform technology mapping and cell placement of the circuit to

maximize the circuit slack.

min −𝑠

s.t. 𝑞𝑖 − 𝑎𝑖 ≥ 𝑠, ∀𝑣𝑖 ∈ 𝑃𝑂(𝐺),

𝑎𝑗 ≥ 𝑎𝑖 +𝐷𝑖𝑗, ∀𝑣𝑗 ∈ 𝑉 ∪ 𝑃𝑂(𝐺),∀𝑣𝑖 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑗),

(𝑥𝑖, 𝑦𝑖) ∈ 𝒵𝑖, ∀𝑣𝑖 ∈ 𝑉,

𝑣𝑖 ∈ 𝑔, ∀𝑣𝑖 ∈ 𝑉, ∃𝑔 ∈ ℬ.

Notice that 𝑎𝑖 at 𝑣𝑖 ∈ 𝑃𝐼(𝐺) and 𝑞𝑗 at 𝑣𝑗 ∈ 𝑃𝑂(𝐺) are constants given by the

problem.

A non-negative Lagrangian multiplier is introduced for each constraint on arrival

time - the second constraint above. The Lagrangian function is a summation of the

objective and weighted timing constraints:

𝐿𝜆(𝑠, a) = −𝑠+
∑

𝑣𝑖∈𝑃𝑂(𝐺)

𝜆𝑖0(𝑠+ 𝑎𝑖 − 𝑞𝑖)

+
∑

𝑣𝑗∈𝑉−𝑃𝐼(𝐺)

∑
𝑣𝑖∈𝑖𝑛𝑝𝑢𝑡(𝑣𝑗)

𝜆𝑖𝑗(𝑎𝑖 +𝐷𝑖𝑗 − 𝑎𝑗) (3.2)

Then, the Lagrangian relaxation dual problem with given multiplier values is
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expressed by:

min 𝐿𝜆(𝑠, a)

s.t. (𝑥𝑖, 𝑦𝑖) ∈ 𝒵𝑖, ∀𝑣𝑖 ∈ 𝑉,

𝑣𝑖 ∈ 𝑔, ∀𝑣𝑖 ∈ 𝑉, ∃𝑔 ∈ ℬ.

As shown in [38], the problem can be simplified by eliminating the arrival times

in the Lagrangian function according to the Kuhn-Tucker conditions [21].

𝐿𝜆(𝑠, a) =
∑

𝑣𝑖∈𝑃𝑂(𝐺)

𝜆𝑖0𝑞𝑖 +
∑

𝑣𝑗∈𝑉−𝑃𝐼(𝐺)

∑
𝑣𝑖∈𝑖𝑛𝑝𝑢𝑡(𝑣𝑗)

𝜆𝑖𝑗𝐷𝑖𝑗. (3.3)

In our Lagrangian relaxation framework, there are two problems to solve. The

first one is the Lagrangian subproblem solved in each Lagrangian iteration, which is

to minimize 𝐿𝜆(𝑠, a) in Equ (3.3) with specific multiplier values. The other problem

is the Lagrangian dual problem, which updates the multipliers at the end of each La-

grangian iteration to maximize the minimum value of 𝐿𝜆(𝑠, a) with optimal mapping

and placement solutions.

The Lagrangian subproblem is solved using our combinatorial algorithm of si-

multaneous mapping and placement in Section D. The same method is employed

here, except the cost function used to evaluation each mapping and placement option

is different - instead of minimizing the arrival time, choose the options to reduce the

summation of delays. Specifically, line 5 in Algorithm 8 changes to use the following

formula.

𝐿𝜆(𝑣𝑖) + 𝜆𝑖𝑗𝐷𝑖𝑗,

where 𝑣𝑖’s mapping and placement solutions are under consideration for the minimum

cost function value at 𝑣𝑗.

The Lagrangian dual problem is solved by sub-gradient ([21]) method. The mul-
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tipliers are updated employing sub-gradients [21], following the static timing analysis

on the mapping and placement solution in the current iteration. Basically, timing arcs

that are more critical are updated with larger multipliers. This way, more attention

is focused on the critical parts in the circuit to reduce the overall delay.

The rational of Lagrangian multipliers explains why they help resolving the dif-

ficulty caused by multi-fanout in DAGs. Use the same example in Fig. 10. As

mentioned before, cell 𝑣1 is covered by two Lagrangian multipliers - one for (𝑣1, 𝑣2);

one for (𝑣1, 𝑣3). The weight on 𝑣1’s cell delay is the summation of the two multipliers,

thus is higher than the weight on 𝑣2 or 𝑣3. As a result, in order to minimize the total

weighted sum of delays, it is better to reduce the load of 𝑣1 with the cost of increasing

𝑣2 or 𝑣3’s load. Consequently, the dynamic programming applied on each of the two

fanouts of 𝑣1 would put 𝑣2 and 𝑣3 closer to 𝑣1, specifically in bins (1, 2) and (3, 2).

Therefore, by LR the best overall solutions can be found.

The time complexity of our algorithm is dominated by the number of iterations in

LR and the matching phase, whose complexity is same as that of𝑀𝑎𝑡𝑐ℎ𝑃 𝑙𝑎𝑐𝑒𝑇𝑟𝑒𝑒(𝑇 )

in the previous section, since the simultaneous mapping/placement is carried out on

individual trees in the DAG.

F. Handling Placement Density Constraint

To this point, our algorithms ignores the possibility of over crowded areas during

cell placement. Although cell overlapping is unlikely to happen when re-placement is

performed with carefully selected candidate locations for each cell in the whole under-

utilized placable area, this over-crowding issue still needs to be taken care of, because

a violation of non-overlapping constraint may result in unexpected timing penalty in

following legalization stage, which resolves cell overlapping. Therefore, it is better
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to deal with the overlapping risk early during our cell placement by controlling the

placement density in small tiles, each of which is composed of multiple bins, and all

of which together form the whole placement area. We take this approach and enforce

the density constraint on small tiles in our cell placement.

Suppose the whole placement area is divided into many small tiles, the 𝑘th

of which is denoted by 𝒴𝑘. Let the upper bound of the tile density be 𝛾, i.e.,∑
(𝑥𝑖,𝑦𝑖)∈𝒴𝑘

∣𝑣𝑖∣
∣𝒴𝑘∣ ≤ 𝛾 should hold, where ∣𝑣𝑖∣ and ∣𝒴𝑘∣ represents the area of the 𝑖th cell

and the 𝑘th tile, respectively. Then, the formulation of our simultaneous mapping

and placement problem can be updated as follows.

Density-Constrained DAG Mapping and Placement: Given the net list of a

decomposed circuit as a DAG 𝐺(𝑉,𝐸), a set of candidate locations 𝒵𝑖 for each gate in

the circuit, a tile density constraint 𝛾, and a given cell library ℬ, perform technology

mapping and cell placement of the circuit to maximize the circuit slack.

min −𝑠

s.t. 𝑞𝑖 − 𝑎𝑖 ≥ 𝑠, ∀𝑣𝑖 ∈ 𝑃𝑂(𝐺),

𝑎𝑖 ≥ 𝑎𝑗 +𝐷𝑗𝑖, ∀𝑣𝑖 ∈ 𝑉 ∪ 𝑃𝑂(𝐺), ∀𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖),

(𝑥𝑖, 𝑦𝑖) ∈ 𝒵𝑖, ∀𝑣𝑖 ∈ 𝑉,

𝑣𝑖 ∈ 𝑔, ∀𝑣𝑖 ∈ 𝑉, ∃𝑔 ∈ ℬ,∑
(𝑥𝑖,𝑦𝑖)∈𝒴𝑘

∣𝑣𝑖∣
∣𝒴𝑘∣ ≤ 𝛾, ∀𝒴𝑘.

To solve this problem with extra density constraint on tiles, we employ La-

grangian relaxation again. Similar to how we deal with arrival time constraints, we

turn the density constraint into a penalty term in the Lagrangian function (the cost

function). Each density constraint on a specific tile 𝒴𝑘 is assigned with a Lagrangian

multiplier 𝜇𝑘. Thus, the Lagrangian function becomes
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𝐿𝜆(𝑠, a) =
∑

𝑣𝑖∈𝑃𝑂(𝐺)

𝜆𝑖0𝑞𝑖

+
∑

𝑣𝑗∈𝑉−𝑃𝐼(𝐺)

∑
𝑣𝑖∈𝑖𝑛𝑝𝑢𝑡(𝑣𝑗)

𝜆𝑖𝑗𝐷𝑖𝑗

+
∑
𝒴𝑘

𝜇𝑘

(∑
(𝑥𝑖,𝑦𝑖)∈𝒴𝑘

∣𝑣𝑖∣
∣𝒴𝑘∣ − 𝛾

)
. (3.4)

In each Lagrangian iteration, the subproblem of minimizing the Lagrangian func-

tion is solved using our combinatorial mapping and placement algorithm. The only

difference induced by this subproblem is the cost function value in the characteriza-

tion of each solution during the solution search. Specifically, to perform the task here

Algorithm 8 is modified on line 5 using the following formula.

𝐿𝜆(𝑣𝑖) + 𝜆𝑖𝑗𝐷𝑖𝑗 + 𝜇𝑘
∣𝑣𝑗∣
∣𝒴𝑘∣ ,

where 𝒴𝑘 is the tile where the current candidate location of 𝑣𝑗 resides, i.e., (𝑥𝑗, 𝑦𝑗) ∈
𝒴𝑘.

The Lagrangian dual problem is also solved by updating the multipliers using sub-

gradient method. Besides the multipliers for timing constraints updated according

to criticality on different timing arcs, the multipliers for tile placement density are

updated to impose higher cost on tiles that are too crowded, thus, in succeeding sub-

problem solving iteration the cells are pushed away from over-crowded tiles to tiles

with lower density. This can be viewed as an analog to a flow driven by the difference

of potential (multiplier) at different spots (tiles).
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Table III. Comparison of conventional delay oriented mapping followed by timing

driven placement with proposed approaches employing only tree placement,

simultaneous tree mapping and placement, and Lagrangian relaxation (LR)

with simultaneous mapping and placement. The maximum path delay and

the minimum slack are in 𝑝𝑠; CPU time is in seconds; total wire length, cell

area are normalized with respect to the corresponding quantities due to the

conventional approach.

Conventional Simul tree mapping & placement LR /w simul mapping & placement
Circuit Delay Slack CPU Delay Slack CPU Wire Area Delay Slack CPU Wire Area

C432 1091 59 148 932 218 2 0.83 1.03 921 229 47 0.99 0.98
C499 1043 57 254 933 167 2 1.01 1.13 925 175 31 1.12 1.09
C880 989 11 140 803 197 1 0.92 1.02 788 212 29 0.95 1.00
C1355 1240 60 193 1099 201 1 0.94 1.01 1029 271 35 0.95 1.002
C1908 1465 85 290 1221 329 2 0.92 0.96 1203 347 39 0.96 0.97
C2670 1229 71 564 1039 261 6 1.03 1.07 1020 280 42 1.01 1.00
C3540 1760 90 637 1672 178 43 1.00 1.08 1593 257 395 1.07 0.98
C5315 2011 89 1101 1820 280 12 1.03 0.99 1799 301 102 1.02 1.00
C6288 5191 159 1118 5169 181 14 1.00 0.81 5148 202 69 0.99 1.007
C7552 1465 85 2555 1416 134 12 1.08 1.04 1307 243 165 1.06 1.008
Ave. 1748 77 700 1610 215 9.5 1573 251 95
Norm. 1 1 1 0.92 2.8 0.014 1.02 0.99 0.90 3.26 0.136 1.01 1.003

B14 3790 150 2025 3574 366 51 0.9 1.03 3533 407 259 1.01 1.03
B15 4185 325 1302 3792 718 268 1.01 1.02 3549 961 587 1.02 0.98
B20 4857 343 7154 4296 904 232 1.11 1.00 4281 919 862 1.05 0.99
Ave. 4277 818 3493 3887 1988 183 3788 2287 569
Norm. 1 1 1 0.884 2.43 0.05 1.001 1.012 0.881 2.80 0.163 1.02 0.998

G. Experimental Results

The algorithms described in this paper are implemented in a C++ program on Win-

dows platform with 3.0 GHz Pentium IV processor. To evaluate the efficacy of the

algorithms, the experiments are run on the set of ISCAS’85 combinational circuits

and selected ITC’99 benchmarks with a standard cell library characterized employing

70 nm technology parameters [39]. Typical cell utilization is around 50% for each of

the benchmarks, which is normally the case for average synthesizable blocks in high

performance microprocessor circuits. The results due to the following three iterative

approaches, whose goal is to maximize the worst case slack, are compared:

∙ Conventional: In this case, each iteration performs conventional delay ori-

ented technology mapping followed by timing driven placement. The technol-

ogy mapping algorithm is similar to that in [36] and considers the wire-delays
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based on placements, whereas the timing driven placement is implemented by

incorporating timing aware net weighting technique [40] with mPL6 [37].

∙ Simultaneous delay-optimal tree mapping and placement: In each itera-

tion, timing critical trees are optimized by simultaneous mapping and placement

algorithm discussed in Section D.

∙ LR with simultaneous tree mapping and placement: In each iteration,

timing critical cones are optimized by the LR-based extension of simultaneous

tree mapping and placement to DAGs, presented in Section E.

The stopping criterion for all the approaches is less than 10𝑝𝑠 slack improvement

in consecutive iterations. The results due to all the approaches are shown in Table III.

As compared to the conventional approach, Lagrangian relaxation based algorithm

improves the average slacks and maximum delays by 64 ∼ 69% and 11 ∼ 14%, re-

spectively, with 7 times speed-up in the run-time. Similarly, tree based simultaneous

mapping and placement leads to 59 ∼ 62% and 7 ∼ 13% improvements in the slacks

and delays, respectively, with approximately 2 orders of magnitude small run-times.

The improvement in runtimes over the conventional approach comes from the ab-

sence of timing-driven net-weighting and the placement of whole circuit. Moreover,

the conventional approach is likely to be more susceptible for divergence than tree

placement or simultaneous tree mapping and placement. Even in case of LR approach,

after the first iteration, we allow the placement of the cells within only certain ra-

dius, which although reduces the placement search space, still allows the complete

exploration of the mapping space and ensures placement stability. The improvements

highlight the fact that the simultaneous exploration of the mapping and placement

spaces can lead to the timing convergence not only faster but also with better quality

than exploring the mapping and the placement spaces separately, as in the conven-
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tional approach. One can observe that the proposed methods have limited impact

on wirelength and cell area, although these are not included in the problem formula-

tion. The results due to employing only tree placement to improve timing show that

it increases wirelength and cell area marginally, but still improves the slacks con-

siderably. This shows that employing simultaneous mapping and placement may be

a better approach than applying delay oriented mapping and placement separately,

since the technology mapping which considers the wire-delays based on placement is

sensitive to the placement of the subject graph and considering only center of gravity

placements for the matches, as opposed to all possible placements in simultaneous

mapping and placement approaches, limits the optimization scope.

H. Conclusion

In this paper, we proposed polynomial time algorithms for delay-optimal placement

as well as simultaneous technology mapping and placement for trees. We extended

the simultaneous mapping and placement algorithm to DAGs and placement density

constraints using Lagrangian relaxation technique. Compared to the conventional

iterative mapping and timing driven placement approach, our methods improve the

slacks by more than 60%, with 7 times or greater speed-up, and have negligible impact

on total wirelength and cell area.
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CHAPTER IV

BUFFER INSERTION IN MULTI-CORE DESIGNS

A. Introduction

When VLSI feature size shrinks to nanometer regime, chip power density approaches

its fundamental limit. Shackled by the tight power constraint, performance gain from

the frequency increase is diminishing. This fact forced microprocessor companies to

make a strategic move - pursuing multi-core designs. Nowadays, multi-core designs

become common in almost all kinds of processor applications: servers, desktops and

laptops.

Since multi-core is an architectural approach, most of related research works are

naturally focused on architecture level. In this paper, we will show that multi-core

designs sometimes also implicates circuit level issues and discuss a such problem.

In specific, we will investigate how to perform buffer insertion in the context of an

industrial multi-core processor design methodology. Buffer insertion is a powerful

technique for interconnect performance optimization. In traditional designs, buffer

insertion solutions are often found by using van Ginneken’s [41] or Lillis’ [42] algo-

rithm. Given an interconnect tree and candidate buffer locations on it, van Ginneken’s

algorithm [41] propagates a set of partial solutions from the leaf nodes toward the

source and eventually finds the best timing solution at the source. Lillis made an

important extension [42] that can deliver a set of solutions with different timing-cost

tradeoff. This allows people to find the minimum cost (or power) solution subject to

timing constraints. In both algorithms, inferior partial solutions are pruned during

the propagation so that the computation runtime is reasonable.

In an industrial multi-core design methodology, the design of the cores and chip
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Fig. 11. The required arrival time and delay are denoted by 𝑞 and 𝑡, respectively. The

length of each wire segment is 300𝜇𝑚.

integration are performed at about the same time. An interconnect net may have

multiple instances for different cores. In Figure 11(a), the net has one instance for

core 𝐴 and another instance for core 𝐵. For each net, the interconnect inside the

cores should be identical for each instance since these cores have to be the same and

even a small difference may lead to large change through ripple effect. However,

the interconnect outside any core may vary as it is difficult for chip integration to

enforce core-based regularity to a large extent outside the cores. For example, in

Figure 11, the required arrival time 𝑞 at sink 𝑢 is 70𝑝𝑠 for core 𝐴 and 50𝑝𝑠 for core 𝐵.

Since these cores have to be identical, the buffer insertion solutions inside the cores

should be identical for all these instances. Therefore, we need to find a single buffer

insertion solution that accommodates different scenarios outside the cores. This is a

key difference from the conventional buffer insertion problem.

Please note that the multi-core processor design is different from the case of

IP-core design where the knowledge on the prospective applications is limited. In

contrast, in a microprocessor company, designers of the cores work side-by-side with

chip integration team and therefore know the out-core environment, at least approxi-
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mately. The often-aggressive performance goal in microprocessor designs requires that

such knowledge is utilized for performance improvement rather than being neglected.

Using certain interface, such as buffers at the boundary of cores, can decouple the

designs of in-core and out-core portions and therefore makes the problem much easier

to solve. However, such interface or boundary buffers may result in large area/power

overhead if they are deployed without scrutiny.

For the multi-scenario buffer insertion problem in multi-core processor designs,

a naive approach is to run Ginneken-Lillis algorithm separately on each instance and

then pick one eventually shared by all instances. However, the algorithm run on one

instance may prune a partial solution which is preferred in another instance. It is

also likely that the solution sets at the sources of these instances have no overlap.

If we pick the optimal solution for one instance and apply it to the other instances,

timing violation may occur in the other instances. For example, in Figure 11(a), the

minimum cost solution satisfying timing constraint for core 𝐴 is to insert a buffer

between the Steiner node and sink 𝑢. However, this solution causes negative slack of

−15𝑝𝑠 at sink 𝑢 for core 𝐵. A single solution that satisfies the timing constraints for

both core 𝐴 and core 𝐵 is to insert buffers at both branches as in Figure 11(b). This

solution is pruned out when Ginneken-Lillis algorithm is performed for either core 𝐴

or core 𝐵 separately.

In this work, we make significant extensions to Ginneken-Lillis algorithm such

that a single buffering solution can be found to accommodate difference scenarios for

different cores. In this paper, we focus on the following differences among instances:

(1) required arrival time (RAT) for sinks outside cores; (2) sink capacitance for sinks

outside cores; (3) arrival time (AT) for drivers outside cores; (4) driver resistance for

drivers outside cores. Please note that the arrival time at the driver is not important

for conventional buffer insertion problems as changing AT does not affect the relative
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timing criticality among all candidate solutions. For multi-core designs, different

arrival time implies different timing criticalities among the instances even when they

share the same delay and the same sink RATs. In our work, we deal with the overall

𝑛𝑒𝑡 solutions which are constituted by 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 solutions instead of handling the

instance solutions separately. The dimension of net solution space is much higher

than that of instance solution space. In general, the computation complexity grows

rapidly with the number of dimensions. We propose several techniques to reduce the

dimension of solution space with limited degradation to solution quality.

To the best of our knowledge, this is the first work on the multi-scenario buffer

insertion problem in multi-core processor designs. Compared to the naive approach

that applies one instance solution to all of the instances, our algorithm can improve

slack by 102𝑝𝑠 on average for max-slack solutions. For the formulation of minimizing

cost (buffer area, buffer capacitance or buffer power) subject to timing constraints,

our algorithm causes no timing violation while the naive approach results in 35%

timing violations. Moreover, the computation speed of our algorithm is faster.

B. Traditional Buffering

Traditional buffering problem is solved with Ginneken-Lillis style algorithms. Given

the layout of a Steiner tree with candidate buffering locations, Ginneken-Lillis algo-

rithm propagates candidate solutions from the sinks towards the source.

Each node 𝑣𝑖 is associated with a solution set, 𝑆(𝑣𝑖), which includes candidate

solutions propagated there. Each candidate solution is characterized by a 3-tuple

(𝑐(𝑣𝑖), 𝑞(𝑣𝑖), 𝑤(𝑣𝑖)), where the value of 𝑐(𝑣𝑖) denotes the downstream load capacitance,

𝑞(𝑣𝑖) represents the required arrival time, and 𝑤(𝑣𝑖) is the cost for the solution.

At each node, a candidate solution is formed with a combination of child solutions
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(solutions of immediate downstream nodes) and the buffer choice at node 𝑣𝑖. The

cost, 𝑤(𝑣𝑖) is the summation of child node costs and the cost of the buffer at node 𝑣𝑖.

The RAT at node 𝑣𝑖 is given by decreasing the minimum child solution RAT by wire

and buffer delay at node 𝑣𝑖, i.e.,

𝑞(𝑣𝑖) = min
𝑣𝑗∈children(𝑣𝑖)

𝑞(𝑣𝑗)− elmore(𝑤𝑖𝑟𝑒𝑖)− delay(𝑏𝑢𝑓𝑓𝑒𝑟𝑖), (4.1)

where children(𝑣𝑖) is the set of child nodes of node 𝑣𝑖, and the buffer delay is zero

when no buffer is inserted at node 𝑣𝑖, i.e., delay(∅) = 0.

Solutions that lead to worse source RAT and cost than other solutions are inferior

solutions. In order to prevent the solution set size from growing exponentially, inferior

solutions are kept from entering new solution sets and pruned from existing solution

sets.

A basic inferior solution detection rule [42] is as follows.

Property 2 Given two solutions 𝑠 = (𝑐, 𝑞, 𝑤) and 𝑠′ = (𝑐′, 𝑞′, 𝑤′) in a node’s solution

set, 𝑠 is inferior to 𝑠′ if the following condition holds:

𝑤 ≥ 𝑤′, 𝑐 ≥ 𝑐′, and 𝑞 ≤ 𝑞′. (4.2)

By implementing this rule with an efficient data structure, Lillis’ algorithm [42] limits

the solution set to a pseudo-polynomial size.

C. Multi-scenario Buffer Insertion

In buffering for multi-core designs, a net may have multiple instances, each of which

corresponds to one core. For example, in Fig. 11, the net has two instances, one for

core A and the other for core B. In the general case, some parts of the net are inside

cores and the other parts are outside cores. In Fig. 11, sink 𝑢 and 𝑣 are outside cores
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and the source 𝑠 is inside cores. In reality, it is also likely that the source is outside

cores. Since the cores are usually identical, the in-core part of the net is the same

in all instances. However, the out-core part may vary from one instance to another,

depending on the design of outside cores. In this work, we consider the following

differences among the out-core parts of different instances:

1. Required arrival time (RAT) of sinks outside cores.

2. Capacitance of sinks outside cores.

3. Arrival time (AT) of source outside cores.

4. Driver resistance of source outside cores.

In reality, the out-core topology may vary from one instance to another. In this paper,

we focus on the above four difference and will study the topology difference in future

work.

Because the cores are identical, buffering solutions for all instances have to be

the same, at least for in-core part. However, traditional buffering algorithms such as

Ginneken-Lillis algorithm [41, 42] are applicable to only individual instances. If they

are carried out on each instance separately, it is difficult to ensure that all instances

share the same buffering solution. Sometimes, the solution sets at the sources of

different instances have no overlap and consequently it is impossible to find a common

solution among these sets. A naive method is to perform Ginneken-Lillis algorithm

on one instance and apply the solution of this instance to all the other instances.

However, a good solution for one instance may be poor for other instances due to the

difference on out-core part.

In multi-core designs, the buffering problem is: how to find a single solution that

can accommodate all instances with differences? We consider two common problem
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formulations stated as follows.

Max-slack problem:Find a single buffering solution for all instances of a net such

that the minimum slack among all instances is maximized.

Min-cost subject to timing constraint problem: Find a single buffering solution

for all instances of a net such that the total buffering cost is minimized while the timing

constraints of all instances are satisfied.

We define critical slack as the minimum slack among all instances of a net.

Therefore, the max-slack problem is to maximize the critical slack of a net. In this

work, we use buffer capacitance as the buffer cost. Alternatively, the buffer cost can

be defined as buffer area or buffer power without affecting the algorithms.

D. The Algorithm

1. Algorithm Overview

Our algorithm also propagates candidate solutions from sinks toward sources like

the dynamic programming in Ginneken-Lillis algorithm. A key idea for solving the

multi-core buffering problem is to propagate the same buffering solutions among all

instances. In other words, we propagate net solutions. If there are ℎ cores, a net so-

lution consists of ℎ identical buffering solutions, one for each instance. The solutions

in conventional buffering can be treated as instance solutions. Therefore, we can

also say that a net solution is composed by multiple identical instance solutions. For

example, Fig 11(a) indicates one net solution composed of two instance solutions.

Although the instance solutions of a net solution are identical, they may have

different RATs and/or different load capacitances due to the differences on the out-

core parts. Therefore, a net solution is characterized in 2ℎ+ 1 dimensional space for

an ℎ-core design: ℎ dimensions for load capacitances, another ℎ dimensions for RATs
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and the other dimension for the buffering cost. For example, a solution at node 𝑣𝑖 is

characterized by

(𝑐(𝑣𝑖, 𝜙1), 𝑞(𝑣𝑖, 𝜙1), ..., 𝑐(𝑣𝑖, 𝜙ℎ), 𝑞(𝑣𝑖, 𝜙ℎ), 𝑤(𝑣𝑖))

where 𝑐(𝑣𝑖, 𝜙𝑗) and 𝑞(𝑣𝑖, 𝜙𝑗) are the load capacitance and RAT of node 𝑣𝑖 in instance

𝜙𝑗, 𝑗 ∈ {1, 2, ..., ℎ}, respectively.
The framework of our algorithm is similar as Ginneken-Lillis algorithm except

that we propagate net solutions instead of instance solutions. It is very difficult to

perform pruning for the net solutions since their dimension is significantly higher than

that of conventional buffering. Consequently, the algorithm on 2ℎ + 1 dimensional

solution space can be very slow. A main focus and contribution of our work is to

represent the 2ℎ + 1 dimensional problem by a 3-dimensional problem, which well

preserves solution quality with a complexity similar to conventional buffering. Such

transform is achieved through the concept of critical component.

Definition 1 The critical component of a solution at node 𝑣𝑖 in multi-core buffering

problem is a 3-tuple,

𝑠(𝑣𝑖) = (𝑐(𝑣𝑖), 𝑞(𝑣𝑖), �̂�(𝑣𝑖)), (4.3)

where �̂�(𝑣𝑖) = 𝑤(𝑣𝑖) is the cost and 𝑞(𝑣𝑖) is the minimum RAT over all instances,

i.e., 𝑞(𝑣𝑖) = minℎ
𝑘=1 𝑞(𝑣𝑖, 𝜙𝑘). The first element, 𝑐(𝑣𝑖) is a capacitance value extracted

in different ways under different conditions.

In Section 2, we introduce the algorithm for a relatively simple case where only

the sink RATs are different among instances. The algorithm for this case is still

optimal. In Section 3, we discuss more general and more difficult cases where each

sink has different load capacitances and different RATs in different instances. The

differences on source arrival time and driver resistance are addressed in Section 4.
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2. Cases with Only Sink RAT Differences

In this section, we introduce an algorithm for a multi-core buffering problem where

only sink RAT may be different among instances. Then, without loss of generality,

we can assume that the arrival times (ATs) at the sources of all instances are zero

1. In this case, the slack of a instance 𝜙𝑘 is equal to the RAT 𝑞(𝑣0, 𝜙𝑘) at the source

node 𝑣0. In addition, the critical slack is equal to the RAT of the critical component

at the source node 𝑣0. Then, the two multi-core buffering problems formulated in

Section C can be restated as max-slack problem:

maximize:
ℎ

min
𝑘=1

𝑞(𝑣0, 𝜙𝑘) = 𝑞(𝑣0), (4.4)

and min-cost subject to timing constraint problem:

min 𝑤(𝑣0) = �̂�(𝑣0),

s.t.
ℎ

min
𝑘=1

𝑞(𝑣0, 𝜙𝑘) = 𝑞(𝑣0) ≥ 0. (4.5)

Next, we introduce the notion of complementary solution to assist the presen-

tation of properties and algorithms. A complementary solution at node 𝑣𝑖, denoted

by 𝑢(𝑣𝑖), is a solution that contains buffer choices at all nodes in the net other than

those in the subtree rooted at node 𝑣𝑖. In the example shown in Fig. 12, a partial

solution at node 𝑣5, 𝑠(𝑣5) is composed of all the buffer choices at nodes outside the

shaded area. A complementary solution at node 𝑣5, 𝑢(𝑣5) consists of all the buffer

choices at nodes in the shaded area. Obviously, with a pair of partial and comple-

mentary solution, 𝑠(𝑣𝑖) and 𝑢(𝑣𝑖) at node 𝑣𝑖, 𝑢(𝑣𝑖) ∪ 𝑠(𝑣𝑖) forms an overall solution,

which contains buffer choices for all nodes in the net. Denote by 𝑈(𝑣𝑖) the set of

all possible complementary solutions at node 𝑣𝑖. Complementary solutions build up

1The difference of arrival time at the sources will be discussed in Section 4.4.
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a bridge between partial and overall solutions, which enables some general rules to

identify inferior solutions.
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Fig. 12. Complementary solutions

Property 3 Given two partial solutions 𝑠(𝑣𝑖) and 𝑠′(𝑣𝑖) at some node 𝑣𝑖, 𝑠(𝑣𝑖) is

inferior to 𝑠′(𝑣𝑖) if the following condition holds:

∀𝑢(𝑣𝑖) ∈ 𝑈(𝑣𝑖),

𝑢(𝑣𝑖) ∪ 𝑠(𝑣𝑖) is an overall solution inferior to 𝑢(𝑣𝑖) ∪ 𝑠′(𝑣𝑖).

Based on above general properties of inferior solutions, we develop more specific

properties for multi-core nets. The case of equal sink capacitance is investigated in

the rest of this section.

Definition 2 An iso-cap net is a multi-core net, such that each of its sinks has equal

capacitance over all instances. In another word, ∀𝑘 ∈ {1, ..., ℎ}, 𝐶(𝑣𝑖, 𝜙𝑘) = 𝐶(𝑣𝑖)

holds for each sink node 𝑣𝑖.
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Also, we define iso-cap solution at node 𝑣𝑖 to be a solution with equal downstream

capacitances across all instances, i.e., ∀𝑘 ∈ {1, ..., ℎ}, 𝑐(𝑣𝑖, 𝜙𝑘) = 𝑐(𝑣𝑖). It is obvious

that every solution at any node in an iso-cap net is an iso-cap solution.

For solutions in iso-cap nets, we set the first element of their critical component

to be the unique downstream capacitance across all instances, i.e., for a solution at

node 𝑣𝑖,

𝑐(𝑣𝑖) = 𝑐(𝑣𝑖, 𝜙𝑘), for any 𝑘 ∈ {1, ..., ℎ}. (4.6)

The following property of inferior solutions in iso-cap nets is based on this critical

component assignment.

Property 4 Given two partial solutions,

𝑠(𝑣𝑖) = (𝑐(𝑣𝑖), 𝑞(𝑣𝑖), �̂�(𝑣𝑖))

and 𝑠′(𝑣𝑖) = (𝑐′(𝑣𝑖), 𝑞′(𝑣𝑖), �̂�′(𝑣𝑖))

at node 𝑣𝑖 in an iso-cap net, 𝑠(𝑣𝑖) is inferior to 𝑠′(𝑣𝑖) if the following condition holds:

�̂�(𝑣𝑖) ≥ �̂�′(𝑣𝑖), 𝑐(𝑣𝑖) ≥ 𝑐′(𝑣𝑖), and 𝑞(𝑣𝑖) ≤ 𝑞′(𝑣𝑖). (4.7)

Proof 3 See appendix.

Based on property 4, a minor modification to Ginneken-Lillis algorithm is needed

to accommodate buffer insertion in iso-cap nets. At the beginning, the critical com-

ponents of all sinks are extracted. Then the solutions are propagated from sinks to

the source with critical component (𝑐, 𝑞, �̂�) being used as (𝑐, 𝑞, 𝑤) of each solution

in conventional buffering algorithm. This way, the algorithm reduces the computa-

tion complexity to single core problem by performing combination and pruning in



78

3-dimensional solution space, while the algorithm guarantees the optimal overall net

solution of iso-cap net.

An example of two merging solution sets in a net with 2 cores is shown in Fig.

13. The box next to each node contains the solutions at that node. Each solution is

expressed in the form of (𝑐(𝜙1), 𝑞(𝜙1), 𝑐(𝜙2), 𝑞(𝜙2), 𝑤). In this small example, 𝑠′(𝑣1)

and 𝑠(𝑣1) merges with the solution at node 𝑣2 to form solutions 𝑠′(𝑣3) and 𝑠(𝑣3) at

node 𝑣3, respectively. The two solutions at node 𝑣1 is not inferior to each other

by traditional pruning. However, with their critical components, (0.3, 2.5, 2.5) and

(0.5, 2.1, 3.1), 𝑠′(𝑣1) is determined to be inferior to 𝑠(𝑣1). As a result, 𝑠′(𝑣3) is inferior

to 𝑠(𝑣3) by critical components as predicted by property 4. In this example, 𝑠′(𝑣3)

happens to be inferior to 𝑠(𝑣3) by traditional pruning too.
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Fig. 13. A part of a net with equal sink capacitance over two instances.

3. Cases with Different Sink Cap and RAT

In this section, we first introduce the notion of iso-cap frontline, and then use it to

categorize nodes in the net and process them with different techniques.

The frontline at any moment during solution propagation is composed of pro-

cessed nodes whose parent nodes have not been processed yet. Fig. 14 is an ex-

ample in a very small net with two cores. Each solution set is shown with a box

next to its corresponding node. An node without a box next to it indicates empty

solution set for it (not processed yet). Each solution is expressed in the form of
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(𝑐(𝜙1), 𝑞(𝜙1), 𝑐(𝜙2), 𝑞(𝜙2), 𝑤). The example gives a snapshot of solution sets in the

middle of solution propagation. Node 𝑣5 and 𝑣6 have been processed, while their par-

ent nodes 𝑣7 and 𝑣8 have not yet. Therefore, node 𝑣5 and 𝑣6 constitute the frontline

at the moment.

In nets with different sink capacitances across different instances, property 4

does not apply directly. However, this does not mean that the dimension of solutions

should rise to 2ℎ + 1. We have two techniques to reduce solution dimension in this

case. Recall that a solution at node 𝑣𝑖 with buffer inserted at it must be an iso-cap

solution, though this is not the only way for a solution to be iso-cap. If all solutions at

the frontline nodes are iso-cap solutions, then the part of net above the propagation

frontline can be treated as an iso-cap net. We solve this part with help similar to

property 4 as in iso-cap nets. For the part of net below the front-line, we use a

heuristic to extract critical components of solutions, thus reduce solution space to

3-dimension while well preserving the quality of solution.
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Fig. 14. A net with different sink capacitance over two instances.

We call a solution set an iso-cap solution set if all solutions in it are iso-cap. If

all frontline solution sets are iso-cap, then the frontline is iso-cap. The part of the
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net composed of the nodes on the iso-cap frontline and all their upstream nodes is an

iso-cap sub-net. An iso-cap sub-net has similar property as iso-cap net. All solutions

in iso-cap sub-net are iso-cap. Again, for these solutions we set the first element of

their critical components to their unique downstream capacitance, i.e.,

𝑐 = 𝑐(𝜙𝑘), with any 𝑘 ∈ {1, ..., ℎ}. (4.8)

Property 5 Given two partial solutions,

𝑠(𝑣𝑖) = (𝑐(𝑣𝑖), 𝑞(𝑣𝑖), �̂�(𝑣𝑖))

and 𝑠′(𝑣𝑖) = (𝑐′(𝑣𝑖), 𝑞′(𝑣𝑖), �̂�′(𝑣𝑖))

at node 𝑣𝑖 in an iso-cap sub-net, 𝑠(𝑣𝑖) is inferior to 𝑠′(𝑣𝑖) if the following condition

holds:

�̂�(𝑣𝑖) ≥ �̂�′(𝑣𝑖), 𝑐(𝑣𝑖) ≥ 𝑐′(𝑣𝑖), and 𝑞(𝑣𝑖) ≤ 𝑞′(𝑣𝑖). (4.9)

Proof 4 The proof is similar to that of property 4.

During the solution propagation procedure, once the frontline is detected to be

iso-cap, we use property 5 to solve the iso-cap sub-net as in an iso-cap net. For the

downstream nodes below the iso-cap frontline, solutions are represented with critical

components extracted by another dimension reduction method.

For nodes below the iso-cap frontline, it is very difficult to determine if one

solution is strictly inferior to another only based on its min-RAT (𝑞), cost (�̂�), and

load capacitances. Because the solutions are not iso-cap, an instance with a small

RAT can have a low load capacitance; further more, solutions at other nodes also

have various load capacitance over different instances. Therefore, when two solutions
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are propagated upstream and are combined with solutions from other nodes, their

relative order in min-RAT may change along the way. One way to compensate this

variance is to incorporate the prediction of future capacitance difference into critical

component extraction. But it is computationally expensive and ineffective. Therefore,

we choose a simple yet effective method. Considering the worst case, in each solution

the maximum load capacitance over all instances is used as an estimation of the load

for critical component, i.e., the first element of critical component is set as

𝑐 =
ℎ

max
𝑘=1

𝑐(𝜙ℎ). (4.10)

For example, node 𝑣1 in Fig. 14 has its critical component as (0.3, 2.9, 2.0). Extracting

this critical component and using it as (𝑐, 𝑞, 𝑤) of a solution in conventional buffering,

our algorithm propagates solutions from the sinks to the iso-cap frontline in a slightly

different style from Gennekin-Lillis algorithm, which is introduced next.

1: if 𝑠𝑡𝑎𝑡𝑢𝑠[𝑣𝑖] has never been updated then

2: if ∀𝑣𝑗 ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑣𝑖), 𝑠𝑡𝑎𝑡𝑢𝑠[𝑣𝑗] = 𝑖𝑠𝑜𝑐𝑎𝑝 then

3: 𝑠𝑡𝑎𝑡𝑢𝑠[𝑣𝑖]← 𝑖𝑠𝑜𝑐𝑎𝑝

4: 𝑢𝑝𝑑𝑎𝑡𝑒 𝑖𝑠𝑜𝑐𝑎𝑝(𝑝𝑎𝑟𝑒𝑛𝑡(𝑣𝑖))

5: end if

6: end if

Algorithm 9: Procedure:𝑢𝑝𝑑𝑎𝑡𝑒 𝑖𝑠𝑜𝑐𝑎𝑝(𝑣𝑖)

There is one more issue to resolve: an efficient method to detect iso-cap frontline

during the propagation procedure. The iso-cap frontline is better to be detected

as early as possible, and we do not want to run the detection over and over during

solution propagation. Our method runs in linear time and ensures the detection of iso-

cap frontline at the earliest moment. The basic idea is as follows. When a new solution
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1: if 𝑠𝑡𝑎𝑡𝑢𝑠[𝑣𝑖] has never been updated by 𝑢𝑝𝑑𝑎𝑡𝑒 𝑛𝑜𝑛𝑖𝑠𝑜𝑐𝑎𝑝 then

2: 𝑠𝑡𝑎𝑡𝑢𝑠[𝑣𝑖]← 𝑛𝑜𝑛𝑖𝑠𝑜𝑐𝑎𝑝

3: for all 𝑣𝑗 ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑣𝑖) do

4: 𝑢𝑝𝑑𝑎𝑡𝑒 𝑛𝑜𝑛𝑖𝑠𝑜𝑐𝑎𝑝(𝑣𝑗)

5: end for

6: end if

Algorithm 10: Procedure:𝑢𝑝𝑑𝑎𝑡𝑒 𝑛𝑜𝑛𝑖𝑠𝑜𝑐𝑎𝑝(𝑣𝑖)

set is found to be iso-cap for the first time, it updates the status of the corresponding

node and its upstream nodes (if applicable) to 𝑖𝑠𝑜𝑐𝑎𝑝. If a newly created solution

set is not iso-cap, the status of the corresponding node and all nodes in the subtree

rooted at its parent node are set to 𝑛𝑜𝑛𝑖𝑠𝑜𝑐𝑎𝑝 (if they have not been processed yet).

Current frontline is detected to be iso-cap if the root’s status becomes 𝑖𝑠𝑜𝑐𝑎𝑝 at any

moment. Algorithm 9 and 10 give the outlines of status updating procedures called

each time a new solution set is created. Initially, the status of all nodes in the net

are set to 𝑛𝑜𝑛𝑖𝑠𝑜𝑐𝑎𝑝. Their status are updated during the propagation procedure. In

order to ensure the earliest detection of iso-cap frontline, only those 𝑛𝑜𝑛𝑖𝑠𝑜𝑐𝑎𝑝 parents

of frontline nodes can be the next node to be processed. This is a key difference of

iso-cap frontline detection from traditional propagation procedure.

In the example shown in Fig. 14, after node 𝑣5’s iso-cap solution set is created,

it invokes procedure 𝑢𝑝𝑑𝑎𝑡𝑒 𝑖𝑠𝑜𝑐𝑎𝑝(𝑣5) and keeps from propagating solutions towards

node 𝑣7, waiting for possible signal of source iso-cap. If, as in this example, node 𝑣6’s

solution set is created and found to be iso-cap, it invokes procedure 𝑢𝑝𝑑𝑎𝑡𝑒 𝑖𝑠𝑜𝑐𝑎𝑝(𝑣6).

As the result of the update procedures, the source’s status would become 𝑖𝑠𝑜𝑐𝑎𝑝; thus,

the iso-cap frontline is detected at node 𝑣5 and 𝑣6. This way, all upstream nodes above

the frontline are enabled to take advantage of iso-cap sub-net. If, in another case, node
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𝑣6, 𝑣8 and 𝑣10’s solution sets are created to be not iso-cap, then the 𝑢𝑝𝑑𝑎𝑡𝑒 𝑛𝑜𝑛𝑖𝑠𝑜𝑐𝑎𝑝

procedure updates their status while they propagate solutions upstream. Until the

source push the 𝑛𝑜𝑛𝑖𝑠𝑜𝑐𝑎𝑝 status all the way down to node 𝑣7, solution set at node

𝑣7 is created, and solutions are propagated upstream to the source and form overall

solutions.

We also use another criterion to prune solution sets further. For each buffer,

there is a limit on the load capacitance it can drive [43]. Denote by 𝑚𝑎𝑥 𝑐𝑎𝑝 the

maximum load capacitance any buffer can drive. Then, any solution with its critical

capacitance 𝑐 > 𝑚𝑎𝑥 𝑐𝑎𝑝 is pruned.

Now, with all parts of the algorithm introduced, we assemble them to show how

critical component buffering algorithm works on each node. The process is outlined

in Algorithm 11.

4. Handling Source Difference

In the multi-core buffering problem, the signal arrival time (AT) at the source may

be different for different instances. Consequently, one buffering solution may result in

different slacks at different instances, even if these instances share the same sink cap,

same sink RAT and the same driver resistance. It is difficult to directly consider the

effect of source AT in a bottom-up dynamic programming. Our approach is to shift

the source AT and all sink RAT of each instance such that the source AT of every

instance is aligned to zero. For each instance, if we shift its source AT and all of its

RAT by the same amount, the slack, which is the difference between AT and RAT,

is not affected. Therefore, the problem after the AT alignment is equivalent to the

original problem. We construct an equivalent dual problem as follows:

Given a net of ℎ instances, the source ATs (𝑔(𝑣0, 𝜙𝑘)) and sink RATs of each
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1: if 𝑠𝑡𝑎𝑡𝑢𝑠[𝑣0] = 𝑖𝑠𝑜𝑐𝑎𝑝 then

2: Process node 𝑣𝑖 by critical component (𝑐, 𝑞, �̂�) as in Lillis’ algorithm

3: else

4: Generate solutions by combining child solutions and inserting buffers,

with critical components (𝑐, 𝑞, �̂�).

5: for all 𝑠 ∈ 𝑆(𝑣𝑖) do

6: Update (𝑐(𝜙1), 𝑞(𝜙1), ..., 𝑐(𝜙ℎ), 𝑞(𝜙ℎ), 𝑤) of 𝑠

7: Extract (𝑐, 𝑞, �̂�) of 𝑠 with 𝑐 given by equation (4.10)

8: end for

9: Prune 𝑆(𝑣𝑖) by property 4

10: Add wire to each solution in 𝑆(𝑣𝑖)

11: Prune 𝑆(𝑣𝑖) by property 4 and 𝑚𝑎𝑥 𝑐𝑎𝑝

12: if 𝑆(𝑣𝑖) is iso-cap then

13: 𝑠𝑡𝑎𝑡𝑢𝑠[𝑣𝑖]← 𝑖𝑠𝑜𝑐𝑎𝑝

14: 𝑢𝑝𝑑𝑎𝑡𝑒 𝑖𝑠𝑜𝑐𝑎𝑝(𝑝𝑎𝑟𝑒𝑛𝑡(𝑣𝑖))

15: else

16: 𝑠𝑡𝑎𝑡𝑢𝑠[𝑣𝑖]← 𝑛𝑜𝑛𝑖𝑠𝑜𝑐𝑎𝑝

17: 𝑢𝑝𝑑𝑎𝑡𝑒 𝑛𝑜𝑛𝑖𝑠𝑜𝑐𝑎𝑝(𝑝𝑎𝑟𝑒𝑛𝑡(𝑣𝑖))

18: end if

19: end if

Algorithm 11: 𝑛𝑜𝑑𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑣𝑖)
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instance 𝜙𝑘 are shifted as follows:

𝑔(𝑣0, 𝜙𝑘) = 0,

∀𝑣𝑖 ∈ {v∣v is a sink node}, 𝑞(𝑣𝑖, 𝜙𝑘) = 𝑞(𝑣𝑖, 𝜙𝑘)− 𝑔(𝑣0, 𝜙𝑘). (4.11)

Similarly, the driver resistance may be different in different instances. As a result,

a partial net solution inferior to another in the cores may become superior to the later

net solution when propagated to the source, if the source is outside the cores. Solution

inferiority reversion like this does not happen with small driver resistance difference.

If the difference between driver resistances in different instances is large, we insert a

buffer at the source to make the resistance at the driver identical, which only induces

a minor decrease of slack.

E. Experimental Results

1. Experiment Setup

The multi-core buffering algorithms are implemented with C++ code and tested on

200 nets based on industrial designs. The number of sinks varies from 2 to 36. The

number of candidate buffer locations for each instance of each net is up to 300. The

distribution of number of sinks is shown in Table IV.

We consider 4-core designs so that there are 4 instances for each net. For each

sink, its capacitances at different instances vary by at most ±10% around a center

value. The sink RATs may vary by up to ±10% of max source-sink delay. The

variations of driver resistance is about ±5% of a center value. The buffer library

contains 5 buffers. The driving resistance of buffers varies between 45Ω and 120Ω,

and the buffer input capacitance is from 6.27 𝑓𝐹 to 12.15 𝑓𝐹 .

All interconnect delays at buffers and wires are calculated according to Elmore
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Table IV. Sink distribution of the testcases.

Number of sinks [1, 5) [5, 20) [20, 35) [35, 50)
Number of nets 35 98 38 29

Table V. Max-slack solution results for 200 nets.

Instance Based Buffering Our Algorithm
Avg slack improvement/net (𝑝𝑠) 0 (baseline) 102.08
Avg slack improvement/instance (𝑝𝑠) 0 (baseline) 77.69
Total buffer capacitance (𝑓𝐹 ) 2503.66 2514.65
Total CPU time (𝑠) 6408 849

delay model. Our algorithms can be extended for accurate delay models like in [44].

The total cost of a net is measured based on the total input capacitance of all inserted

buffers.

To the best of our knowledge, there is no previous work on the multi-core buffer-

ing problem. We compared our algorithm with instance based buffering (IBB). As

mentioned previously, IBB basically solves a traditional buffering problem on each

individual instance. It selects the instance whose best solution (for whichever objec-

tive) is the most timing-critical among all the instances, and applies this best solution

to all the other instances.

2. Max-slack Solution

In the max-slack problem formulation, the objective is to maximize the critical slack,

which is the minimum slack among all instances of a net. For each net, we compute

the critical slack improvement from our algorithm over IBB, which is the critical slack

from our algorithm minus the critical slack from IBB. Fig. 15 shows the histogram of

the critical slack improvement of all nets. For most of the nets, the slack improvement

from our algorithm is at least 20 𝑝𝑠. The average slack improvement is 102 𝑝𝑠. The

maximum source-sink delay in these nets is usually less than 1100𝑝𝑠. Therefore, the

average delay reduction is about 9%.
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Fig. 15. Histogram of critical slack improvement from our algorithm over IBB for the

max-slack problem.
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Fig. 16. Histogram of instance slack improvement from our algorithm over IBB for the

max-slack problem.

In order to obtain more insight, we compared the slack of individual instances in

addition to the critical slack of each net. Fig. 16 shows the histogram of the instance

slack improvement from our algorithm over IBB. Most of the time, our algorithm

results in remarkable improvement over IBB. Occasionally, the improvement is a

small negative value. This is because that our algorithm attempts to provide good

solutions for all instances of a net while IBB is usually focused only on one instance

for a net. Although IBB may occasionally yield a good solution to a specific instance,

the solution is often poor for the other instances. For those instances with poor
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Table VI. Min-cost solution results for 200 nets.

Instance Based Buffering Our Algorithm
Total # of critical timing violations (𝑝𝑠) 155 (77.50% of 200 nets) 0
Total # of instance timing violations (𝑝𝑠) 282 (35.25% of 800 instances) 0
Total buffer capacitance (𝑓𝐹 ) 2312.12 2314.77
Total CPU time (𝑠) 6412 851

IBB solutions, the improvement from our algorithm can be very large. This is why

the histogram of instance slack improvement in Fig. 16 is spread out more than the

critical slack improvement in Fig. 15.

Table V summarizes the average slack improvement, total cost and computation

time of the two algorithms. Our algorithm has slightly (0.6%) higher total cost, in

term of buffer capacitance, than IBB. The computation complexity of our algorithm

is similar to that of Lillis’ algorithm and does not grow with the number of cores.

In contrast, IBB basically calls Lillis’ algorithm ℎ times for ℎ cores. Therefore, our

algorithm runs faster than IBB and is much more scalable with respect to the number

of cores.

3. Min-cost Solution

Min-cost solutions are from the formulation that minimizes the total buffer cost sub-

ject to timing constraints. In other words, a min-cost solution should have non-

negative slack. Otherwise, it has timing violation.

Fig. 17 presents the distribution of critical slack, which is the minimum slack

among all instances for a net, from both our algorithm and IBB. It is clear that our

algorithm can ensure non-negative slacks while IBB cause many timing violations.

IBB picks the solution from an instance and applies it to the other instances. Although

such a solution is feasible for one instance, there is no guarantee it is feasible for the

other instances. The distributions of slacks for individual instances are shown in
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Fig. 17. Histograms of critical slacks for min-cost problem.
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Fig. 18. Histograms of instance slacks for min-cost problem.

Fig. 18. Again, all instance slacks from our algorithm are non-negative while IBB

causes many timing violations.

The number of timing violations, total buffer capacitance and CPU time for min-

cost solutions are listed in Table VI. The total buffer capacitance from our algorithm

is slightly larger than that from IBB, but the difference is negligible.
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F. Conclusion and Future Work

This paper proposes algorithms for multi-scenario buffer insertion in an industrial

multi-core processor design methodlogy. Experiment results show our algorithm sig-

nificantly outperforms an extension to conventional buffering in terms of both slack

quality and computation speed. In future, we will extend the multi-scenario buffer

insertion to handle topology differences among out-core interconnect. Further, we

will incorporate various speedup techniques, such as those in [45], into our algorithm

framework.
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CHAPTER V

GPU-BASED PARALLELIZATION FOR FAST CIRCUIT OPTIMIZATION

A. Introduction

Fast circuit optimization technique is an increasingly compelling need for chip designs.

While the pressure of time-to-market is almost never relieved, design complexity keeps

growing along with transistor count. In addition, more and more issues need to be

considered – from conventional objectives like performance and power to new concerns

like process variability and transistor aging. On the other hand, the advancement of

chip technology opens new avenues for boosting computing power. One example is

the amazing progress of GPU (Graphics Processing Unit) technology. In the past 5

years, the computing performance of GPU has grown from about the same as CPU to

about ten times of CPU in term of GFLOPS [46]. GPU is particularly good at fine-

grained parallelism and data-intensive computations. Recently, GPU-based parallel

computation has been successfully applied for the speedup of fault simulation [47]

and power grid simulation [48].

In this work, we propose GPU-based parallel techniques for simultaneous gate

sizing and threshold voltage assignment. Gate sizing is a classic approach for op-

timizing performance and power of combinational circuits. Threshold voltage (𝑉𝑡)

assignment is a popular technique for reducing leakage power without degrading tim-

ing performance. Since both of them essentially imply a certain implementation for a

logic gate, it is not difficult to perform them simultaneously. It is conceivable that a

simultaneous approach is often superior to a separated one in term of solution qual-

ity. We will focus on discrete algorithm because (1) it can be directly applied with

cell library based timing and power models; (2) 𝑉𝑡 assignment is a highly discrete
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problem. Discrete gate sizing and 𝑉𝑡 assignment faces two inter-dependent difficul-

ties. First, the underlying topology of a combinational circuit is typically a DAG

(Directed Acyclic Graph). The path reconvergence of DAG makes it difficult to carry

out systematic solution search like dynamic programming (DP). Second, the size of

a combinational circuit can be very large, sometimes with dozens of thousands of

gates. As a result, most of existing methods are simple heuristics [7, 9, 15]. Recently,

a Joint Relaxation and Restriction (JRR) algorithm [49] is proposed to handle the

path reconvergence problem and enable a DP-like systematic solution search. Indeed,

the systematic search [49] remarkably outperforms its previous work. To address the

large problem size, a grid-based parallel gate sizing method is introduced in [50]. Al-

though it can obtain high solution quality with very fast speed, it concurrently uses

20 computers and entails significant network bandwidth. In contrast, GPU-based

parallelism is much more cost-effective. The expense of a GPU card is only a few

hundreds of dollars and the local parallelism obviously causes no overhead on network

traffic.

It is not straightforward to map a conventional sequential algorithm onto GPU

computation and achieve desired speedup. In general, parallel computation implies

that a large computation task needs to be partitioned to multiple threads. For the par-

titioning, one needs to decide its granularity levels, balance the computation load and

minimize the interactions among different threads. Data and memory management is

also very important. One needs to properly allocate the data storage to various parts

of the somewhat complex memory system of a GPU. Apart from general parallel com-

puting issues, the characteristics of GPU should be taken into account. For example,

the parallelization should be SIMD (Single Instruction Multiple Data) in order to

better exploit the advantages of GPU. In this work, we propose task scheduling and

memory management techniques for performing gate sizing/𝑉𝑡 assignment on GPU.
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To the best of our knowledge, this is the first work on GPU-based combinational

circuit optimization. In the experiment, we compared our parallel version of the joint

relaxation and restriction algorithm [49] and its original sequential implementation.

The results show that our parallelization achieves speedup of up to 56× and 39× on

average. At the same time, our techniques can retain the exactly same solution qual-

ity as [49]. Such speedup will allow many systematic optimization approaches, which

were slow and previously regarded as impractical, to be widely adopted in realistic

applications.

B. Algorithm of Simultaneous Gate Sizing and 𝑉𝑡 Assignment

We briefly review the simultaneous gate sizing and 𝑉𝑡 assignment algorithm proposed

in [49], since the parallel techniques proposed here are built upon this algorithm.

This algorithm has two phases: relaxation phase and restriction phase. It is called

Joint Relaxation and Restriction (JRR). Each phase consists of two or multiple

circuit traversals. Each traversal is a solution search in the same spirit as dynamic

programming. The main structure of the algorithm is outlined in Algorithm 12.

For the ease of description, we call a combination of certain size and 𝑉𝑡 level as an

implementation of a gate (or a node in the circuit graph).

The relaxation phase includes two circuit traversals: history consistency relax-

ation and history consistency restoration. The history consistency relaxation is a

topological order traversal of the given circuit, from its primary inputs to its primary

outputs. In the traversal, a set of partial solutions are propagated. Each solution is

characterized by its arrival time (𝑎) and resistance (𝑟). A solution is pruned without

further propagation if it is inferior on both 𝑎 and 𝑟. This is very similar to dynamic

programming based buffer insertion algorithm [51]. However, the topology here is a
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Phase I: Relaxation1

history consistency relaxation;2

history consistency restoration;3

Phase II: Restriction4

repeat5

topological order search;6

reverse topological order search;7

until improvement < 𝜎 in current iteration;8

Algorithm 12: Outline of the Joint Relaxation and Restriction (JRR) Al-

gorithm

DAG as opposed to a tree in buffer insertion. Therefore, two fanin edges 𝑒1 and 𝑒2 of

a node 𝑣𝑖 may have a common ancestor node 𝑣𝑗. When solutions from 𝑒1 and 𝑒2 are

merged, normally one need to ensure that they are based on the same implementation

at 𝑣𝑗. This is called history consistency constraint. When apply DP-like algorithm

directly on a DAG, this constraint requires to keep or trace all history information

and consequently causes substantial computation or memory overhead. To solve this

difficulty, the work of [49] suggests to relax this constraint in the initial traversal, i.e.,

solutions are allowed to be merged even if they are based on different implementations

of their common ancestor nodes. Although the resulting solutions are not legitimate,

they provide a lower bound to the 𝑎 at each node, which is useful for subsequent

solution search.

In the second traversal of the relaxation phase, any history inconsistency resulted

from the first iteration is solved in a reverse topological order, from the primary

outputs to the primary inputs. When a node is visited in the traversal, only one
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implementation is selected for the node. Hence, no history inconsistency should exist

after the traversal is completed. The implementation selection at each node is to

maximize the timing slack at the node. The slack can be easily estimated by the

required arrival time (𝑞), which is propagated along with the traversal, and the 𝑎

obtained in the previous traversal.

The solution at the end of the relaxation phase can be further improved. This

is because the solution is based on the 𝑎 obtained in the relaxation, which is not

necessarily an accurate one. Due to the relaxation, the 𝑎 is just a lower bound, which

implies optimistic deviations. Such deviations are compensated in the restriction

phase. In contrast to relaxation, where certain constraints are dropped, restriction

imposes additional constraints to a problem. Both relaxation and restriction are for

the purpose of making solution search easy. A restricted search provides a pessimistic

bound to the optimal solution. Using pessimistic bounds in the second phase can

conceivably compensate the optimistic deviation of the relaxation phase.

The restriction phase consists of multiple circuit traversals with one reverse topo-

logical order traversal following each topological order traversal. Each topological

order traversal generates a set of candidate solutions at each node, with certain re-

strictions. Each reverse topological order traversal selects only one solution in the

same way as the history consistency restoration traversal in the relaxation phase. A

topological order traversal starts with an initial solution inherited from the previous

traversal. The candidate solution generation is also similar to DP-based buffer inser-

tion algorithm. The restriction is that only those candidate solutions based on the

initial solution is propagated at every multi-fanout node. For example, at a multi-

fanout node 𝑣𝑖, candidate solutions are generated according to its implementations,

but only the candidates which are based on the initial solution of 𝑣𝑖 are propagated

toward its child nodes. By doing so, the history consistency can be maintained
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Fig. 19. A generic GPU hardware architecture.

throughout the traversal. The candidate solutions which are not based on the initial

solution are useful for the subsequent reverse topological order traversal.

The description so far is for the formulation of maximizing timing slack. If power

and/or other objectives are considered simultaneously, one can apply the Lagrangian

relaxation technique [6] together with the algorithm of Joint Relaxation and Restric-

tion.

C. GPU-based Parallelization

1. Background on GPU

A GPU is usually composed of an array of multiprocessors and each multiprocessor

consists of multiple processing units (or ALUs), as shown in Fig. 19. Each ALU is

associated with a set of local registers and all the ALUs of a multiprocessor share a

control unit and some shared memory. There is basically no synchronization mech-

anism among different multiprocessors. A typical GPU may have over one hundred

ALUs. GPU is designed for SIMD (Single Instruction Multiple Data) parallelism. As

such, an ideal usage of GPU is to execute identical instructions on a large volume of

data, each element of which is processed by one thread.

The software program applied on GPU is called kernel function, which is executed
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on multiple ALUs in the basic unit of thread. The threads are organized in a two-

level hierarchy. Multiple threads form a warp and a set of warps constitute a block.

All warps of the same block run on the same multiprocessor. This organization is

for convenience of sharing memory and synchronization among thread executions.

The thread blocks are often organized in a 3-dimensional grid, just as threads in

themselves are. The global memory for a GPU is usually a DRAM off the GPU chip

but on the same board as GPU. The latency of global memory access can be very

high, due to the small cache size. Similarly, loading the kernel function onto GPU

also takes a long time. In order to improve the efficiency of GPU usage, one needs to

load data infrequently and make the ALUs dominate the overall program runtime.

2. Two-level Task Scheduling

Exploring GPU-based parallelism for gate sizing and 𝑉𝑡 assignment is motivated by

the observation that the algorithm repeats a few identical computations on many

different gates. When evaluating the effect of an implementation (a specific gate and

𝑉𝑡 level) for a gate, we compute its corresponding delay, AT/RAT, and power. These

a few computations are repeated for many gates, sometimes hundreds of thousands

of gates, and for multiple iterations [49]. Evidently, such repetitive computations on

a large number of objects fit very well with SIMD parallelism.

We propose a two-level task scheduling method which allocates the computations

to multiple threads. At the first level, the computations for each gate is allocated to

a set of thread blocks. The algorithm, software and hardware unit of this level are

gate, thread block and multiprocessor, respectively. Since different implementations

of a gate share the same context (fanin and fanout characteristics), such allocation

matches the shared context information with the shared memory for each thread

block. At the second level, the evaluation of each gate implementation is assigned
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to a set of threads. The algorithm, software and hardware unit of this level are gate

implementation, thread and ALU, respectively. For each gate, the evaluations for all

of its implementation options are independent of each other. Hence, it is convenient to

parallelize them on multiple threads. The two-level task scheduling will be described

in details in the subsequent sections.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

processed gates 
independent 
current gates prospective gates 

 G1 

 G2 

 G3 

 G4 

 G5 

 G6 

 G7 

 G8 

 G9 

 G10 

 G1 

 G2 

 G3 

 G4 

 G5 

 G6 

 G7 

 G8 

 G9 

 G10 

         
G6 

                
G10 

                
G9 

                
G8 

                
G7 

                
G1 

                
G5 

                
G3 

                
G4 

                
G2 

(a) 

(c) (b) 

Fig. 20. Processed gates: dashed rectangles; independent current gates: grey rectan-

gles; prospective gates: solid white rectangles. For the scenario in (a), one

can choose at most 4 independent current gates for the parallel processing.

In (b): if G1, G2, G3 and G4 are selected, we may choose another 4 gates in

G5, G6, G7, G8 and G9 for the next parallel processing. In (c): if G2, G3,

G4 and G5 are selected, only 3 independent current gates G1, G9 and G10

are available for the next parallel processing.
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3. Gate-level Task Scheduling

We describe the gate-level task scheduling in the context of topological order traversal

of the circuit. The techniques for reverse topological order traversal are almost the

same. In a topological order traversal, a gate is a processed gate if the computation of

delay/power for all of its implementations is completed. A gate is called a current gate

if all of its fanin gates are processed gates. We term a gate as a prospective gate when

all of its fanin gates are either current gates or processed gates. In GPU-based parallel

computing, multiple current gates can be processed at the same time because there

is no inter-dependency among their computations. A set of current gates are called

independent current gates (ICG), since there is no computational interdependency

among them. Due to the restriction of GPU computing bandwidth, the number of

current gates which can be processed at the same time is limited. A critical problem

here is how to select a subset of independent current gates for parallel processing.

This subset is designated as concurrent gate group, which has a maximum allowed

size.

The way of forming a concurrent gate group may greatly affect the efficiency of

utilizing the GPU-based parallelism. This can be illustrated by the example in Fig.

20. In Fig. 20, the processed gates, independent current gates and prospective gates

are represented by dashed, grey and white rectangles, respectively. If the maximum

group size is 4, there could be at least two different ways of forming a concurrent gate

group for the scenario of Fig. 20(a). In Fig. 20(b), {𝐺1, 𝐺2, 𝐺3, 𝐺4} are selected

to be the concurrent gate group. After they are processed, any four gates among

{𝐺5, 𝐺6, 𝐺7, 𝐺8, 𝐺9} may become the next concurrent gate group. Alternatively, we

can choose {𝐺2, 𝐺3, 𝐺4, 𝐺5} as in Fig. 20(c). However, after {𝐺2, 𝐺3, 𝐺4, 𝐺5} are
processed, we can include at most three gates {𝐺1, 𝐺9, 𝐺10} for the next concurrent
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gate group since a fanin gate for {𝐺6, 𝐺7, 𝐺8} has not been processed yet. The

selection of concurrent gates in Fig. 20(c) is inferior to that in Fig. 20(b) since Fig.

20(c) cannot fully utilize the bandwidth of concurrent group size 4.

The problem of finding concurrent gate group among a set of independent current

gates can be formulated as a max-throughput problem, which maximizes the minimum

size of all concurrent gate groups. The max-throughput problem is very difficult to

solve. Therefore, we will focus on a reduced problem: max-succeeding-group. Given

a set of independent current gates, the max-succeeding-group problem asks to choose

a subset of them as the concurrent gate group such that the size of the succeeding

independent gate group is maximized. We show in the appendix that the max-

succeeding-group problem is NP-complete.

Input : 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑟𝑝, 𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑔𝑟𝑝

Output: 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑟𝑝

𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑟𝑝← ∅;1

repeat2

𝑝𝑟𝑜𝑝 𝑔𝑎𝑡𝑒← gate(𝑚𝑖𝑛 𝐼𝐶𝐺𝑓𝑎𝑛𝑖𝑛);3

𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑔𝑟𝑝← 𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑔𝑟𝑝− 𝑝𝑟𝑜𝑝 𝑔𝑎𝑡𝑒;4

𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑟𝑝← 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑟𝑝
∪
(inputs(𝑝𝑟𝑜𝑝 𝑔𝑎𝑡𝑒)

∩
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑟𝑝);5

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑟𝑝← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑟𝑝− inputs(𝑝𝑟𝑜𝑝 𝑔𝑎𝑡𝑒) + 𝑝𝑟𝑜𝑝 𝑔𝑎𝑡𝑒;6

update ICGfanin (outputs(inputs(𝑝𝑟𝑜𝑝 𝑔𝑎𝑡𝑒)));7

until ∣𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑟𝑝∣ ≥ 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑢𝑑𝑔𝑒𝑡;8

Algorithm 13: Concurrent Gate Group Selection

Since the max-succeeding-group problem is NP-complete, we propose a linear-

time heuristic to solve it. This heuristic iteratively examines the prospective gates
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and puts a few independent current gates into the concurrent gate group. For each

prospective gate, we check its fanin gates which are independent current gate. The

number of such fanin gates is called ICG (independent current gate) fanin size. In

each iteration, the prospective gate with the minimum ICG fanin size is selected.

Then all of its ICG fanin gates are put into the concurrent gate group. After this,

the selected prospective gate will no longer be considered in subsequent iterations.

At the same time, the selected ICG fanin gates are not counted in the ICG fanin size

of the remaining prospective gates.

In the example of Fig. 20, the prospective gate with the minimum ICG fanin

size is 𝐺9. When it is selected, gate 𝐺3 is put into the concurrent gate group. Then,

the ICG fanin size of 𝐺7 becomes 1, which is the minimum. This requires that gate

𝐺1 is put into the concurrent gate group. Next, any two of 𝐺2, 𝐺4 and 𝐺5 can be

selected to form the concurrent gate group of size 4.

Here is the rationale behind the heuristic. The maximum allowed size of concur-

rent gate group can be treated as a budget. The goal is to maximize the number of

succeeding ICGs. If a prospective gate has a small ICG fanin size, selecting its ICG

fanin gates can increase the number of succeeding ICGs with the minimum usage of

concurrent gate group budget.

This heuristic is performed on CPU once. The result, which is the gate-level

scheduling, is saved since the same schedule is employed repeatedly in the traversals

of the JRR algorithm (see Section B). The pseudo code for the concurrent gate

selection heuristic is given in Algorithm 13. The minimum ICG fanin size is updated

each time an ICG fanin size is updated, so the computation time is dominated by

fanin size updating. If the maximum fanin size among all gates is 𝐹𝑖, each gate can

be updated on its ICG fanin size for at most 𝐹𝑖 times. Thus, the time complexity of

this heuristic is 𝑂(∣𝑉 ∣𝐹𝑖), where 𝑉 denotes the set of nodes in the circuit.
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Fig. 21. A multiprocessor with on-chip shared memory. Device memory is connected

to the processors through on-chip caches.

4. Parallelization for Gate Implementation Evaluation

When processing a gate, we need to evaluate all of its implementations. It is not

difficult to see that the evaluations for different implementations of the same gate

are independent of each other. Therefore, we can allocate these evaluations into

multiple threads without worrying interdependency. These evaluations include a few

common computations: the timing and power estimation for each implementation.

Different implementations of the same gate also share some common data such as

the parasitics of the fanin and fanout. According to this observation, the evaluations

of implementations for the same gate are assigned to the same thread block and the

same multiprocessor. Since all the ALUs of the same multiprocessor have access to a

fast on-chip shared memory (see Fig. 21), the shared data can be saved in the shared

memory to reduce memory access time.

In order to facilitate simultaneous memory access, the shared memory is usually

divided into equal-sized banks. Memory requests on addresses that fall in different

banks are able to be fulfilled simultaneously, while requested addresses falling in the

same bank cause a bank conflict and the conflicting requests have to be serialized. In
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order to reduce the chance of bank conflict and avoid the cost of serialized access, we

store all information of a gate in the same bank and separate it from that of other

gates in other banks.

GPU global memory often has memory coalescing mechanism for improved ac-

cess efficiency. In order to take advantage of the memory coalescing, we save gate

information of sibling nodes in the circuit adjacent to each other in the global memory

whenever possible. The benefit is that global memory requests from different threads

in a warp have a greater chance to be coalesced and the access latency is thereby

reduced.

GPU global memory contains a constant memory, which is a read-only region.

This constant memory can be accessed by all ALUs through a constant cache (see

Fig. 21), which approximately halves the access latency if there is a hit in the cache.

We save cell library data, which are constant, in the constant memory so that the

data access time can be largely reduced.

Loading the kernel function to GPU can be very time consuming. Sometimes,

the loading time is comparable with time of all computations and memory access for

one gate. Therefore, it is highly desirable to reduce the number of calls to the kernel

function. Since the computation operations for all gates are the same, we load the

computation instructions only once and apply them to all of the gates in the circuit.

This is made possible by the fine-grained parallel threads and the pre-computed gate-

level task schedule (see Section 3.3). In other words, the gate-level task schedule is

computed before the circuit optimization and saved in the GPU global memory. Once

the kernel function is called, the optimization follows the schedule saved on GPU and

no kernel reloading is needed.

To reduce the idle time of the multiprocessors during memory access, we assign

multiple thread blocks to a multiprocessor for concurrent execution. This arrange-
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ment has positive impact on the performance, because memory access takes a large

portion of the total execution time of the kernel function.

Table VII. Comparison on power (𝜇𝑊 ) and runtime (seconds). All solutions satisfy

timing constraints.

SA [1] Sequential JRR [49] Parallel JRR
Circuit #gates power runtime power runtime runtime speedup

c432 289 703 1.7 701 3.25 0.317 10×
c499 539 1669 4.9 1590 6.27 0.295 21×
c880 340 1817 5.1 1050 3.61 0.328 11×
c1355 579 1385 3.3 1076 7.36 0.218 34×
c1908 722 2502 10.7 2296 9.20 0.327 28×
c2670 1082 3412 18.6 2509 15.70 0.376 42×
c3540 1208 4645 22.3 3830 21.30 0.515 41×
c5315 2440 8406 26.8 5023 64.88 1.156 56×
c6288 2342 13685 19.2 12356 53.47 1.295 41×
c7552 3115 9510 46.1 5949 67.44 1.595 42×
Average 4773 15.87 3638 25.25 0.64 39×
Norm. 1.0 0.76

D. Experimental Results

In our experiment, the testcases are the ISCAS85 combinational circuits. They are

synthesized by SIS [22] and their global placement is obtained by mPL [23]. The

global placement is for the sake of including wire delay in the timing analysis. The

cell library is based on 70𝑛𝑚 technology. Each gate has 6 different sizes and 4 𝑉𝑡

levels so that it has 24 options of implementation.

In order to test the runtime speedup of our parallel techniques, we compare our

parallel version of the JRR algorithm [49] with its original sequential implementation.

Regarding solution quality, we compare the results with another previous work [1]

in addition to ensuring that the parallel JRR solutions are identical with those of

sequential JRR. The method of [1] starts with gate sizing that maximizes timing
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slack. Then, the slack is allocated to each gate using a linear programming guided

by delay/power sensitivity. The slack allocated to each gate is further converted to

power reduction by greedily choosing a gate implementation. We call this as Slack

Allocation (SA) based method. The problem formulation for all these methods is to

minimize total power dissipation subject to timing constraints. The power dissipation

here includes both dynamic and leakage power. The timing evaluation accounts for

both gate and wire delay. Since we do not have lookup table based timing and

power information for the cell library, we use analytical model for power [49] and the

Elmore model for delay computation. However, the JRR algorithm and our parallel

techniques can be easily applied with lookup table based models.

The SA method and sequential JRR algorithm are implemented in C++. The

parallel JRR implementation includes two parts: one part is in C++ and runs on the

host CPU; the other part runs on the GPU through CUDA. CUDA (Compute Unified

Device Architecture) is a parallel programming model and interface developed by

NVIDIA [52]. The major components of the parallel programming model and software

environment include thread groups, shared memory and thread synchronization. The

experiment was performed on a Windows XP based machine with an Intel core 2

duo CPU of 2.66GHz and 2GB memory. The GPU is NVIDIA GeForce 9800GT,

which has 14 multiprocessors and each multiprocessor has 8 ALUs. The GPU card

has 512MB off-chip memory. We set the maximum number of gates being parallel

processed to 4. Therefore, at most 96 gate implementations are evaluated at once.

The main results are listed in Table VII. Since all of these methods can satisfy

the timing constraints, timing results are not included in the table. The solution

quality can be evaluated by the results of power dissipation. One can see that JRR

can reduce power by about 24% on average when compared to SA [1]. The parallel

JRR achieves exactly the same power as the sequential JRR. Our parallel techniques



106

0

0.2

0.4

0.6

0.8

1

c432 c880 c499 c1355 c1908 c2670 c3540 c6288 c5315 c7552

G
P

U
 r

u
n

ti
m

e 
ra

ti
o

Fig. 22. The ratio of GPU runtime over overall runtime.

 
 
 
 
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1000 2000 3000 4000

Circuit size (#gates)

T
o

ta
l r

u
n

ti
m

e 
(S

ec
)

0
0.2
0.4
0.6

0.8
1

1.2
1.4
1.6
1.8

2

0 1000 2000 3000 4000

Circuit size (#gates)

G
P

U
 m

em
o

ry
 (

M
B

)

Fig. 23. Runtime and GPU memory scalability.

provide runtime speedup from 10× to 56×. One can see that the speedup tends to

be more significant when the circuit size grows. One of the reasons is that both small

and large circuits have similar overhead for setup.

In Fig. 22, we depict the ratio between the GPU runtime and the total runtime.

The ratio is mostly between 0.4 and 0.6 among all circuits. Usually, larger circuits have

higher GPU runtime percentage. This may be due to the higher parallel efficiency of

larger circuits.

In Fig. 23, the total runtime and GPU memory usage versus circuit size are
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plotted to show the runtime and memory scalability of our techniques. The main

trend of the runtime curve indicates a linear dependence on circuit size. There are

a few non-monotone parts in the curve which can be explained by the fact that the

runtime depends on not only the circuit size but also circuit topology. The memory

curve exhibits a strong linear relationship with circuit size. At least for ISCAS85

benchmark circuits, we can conclude that our techniques scale well on both runtime

and memory.

E. Conclusions and Future Work

It has long been a challenge to optimize combinational circuit in a systematic yet fast

manner due to its topological reconvergence and large size. A recent progress [49]

suggests an effective solution to the reconvergence problem. This work addresses

the large problem size by exploiting GPU-based parallelism. The proposed parallel

techniques are integrated with the state-of-the-art gate sizing and 𝑉𝑡 assignment al-

gorithm [49]. These techniques and the integration effectively solves the challenge of

combinational circuit optimization. A circuit with thousands of gates can be opti-

mized with high quality in less than 2 seconds. The parallel techniques provide up to

56× runtime speedup. They also show an appealing trend that the speedup is more

significant on large circuits. In future, we will test these techniques on larger circuits,

for example, circuit with hundreds of thousands of gates.
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CHAPTER VI

CONCLUSIONS

This research addresses several critical issues in VLSI circuit design automation prob-

lems, and achieves significant runtime speedup on the proposed algorithms.

A number of combinatorial optimization problems in circuit optimization are

NP-hard due to the Directed Acyclic Graph (DAG) topology of circuit RTLs. These

problems pose significant difficulty for circuit design closure. The proposed systematic

solution search scheme, called Joint Relaxation and Restriction (JRR), takes this

challenge and manages to produce quality solutions in polynomial time regardless of

the complexity of this problem. Experiments for a typical problem solved with JRR

shows 24% average improvement on solution quality compared to another state-of-art

algorithm.

The multi-scenario optimization and high-dimension solution complexity are

coped with Lagrangian relaxation approach. A novel Lagrangian dual problem solv-

ing method is proposed to effectively update the Lagrangian multipliers. Instead

of ignoring the effect of multiplier on the optimal subproblem solution as in most

existing methods, the proposed scheme uses chain rule in sub-gradient calculation,

which captures more complete impact of the multiplier change. With a spectrum of

sub-gradients, better multipliers are obtained by solving a non-linear programming

problem.

Performing multiple stages in the design flow simultaneously avoids oscillation

between sub-optimal solutions. In this research, the simultaneous optimization tech-

nique is realized by combining different solution options in different design stages. It

is applied on two specific problems, namely, simultaneous technology mapping and

placement, and simultaneous gate sizing and threshold voltage assignment. Experi-
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ments show 10% improvement in solution quality compared to sequential optimization

approach.

This research also takes advantage of the fast-growing GPU parallel computing

power. After proving the optimal parallelization of the circuit optimization algorithm

is NP-complete, an efficient task partition and scheduling algorithm is proposed. For

optimization on smaller circuits, experiments show average speedup of 38× over the

sequential version. The speedup tends to increase while the circuit size increases and

the number of processing units on the GPU grows. Since the parallelization scheme

is targeted on a fairly generic circuit optimization algorithm, the proposed parallel

computing scheme is generic for a variety of problems.

Because this research aims at some common critical issues in VLSI design au-

tomation, the methods/algorithms are not restricted to the problems shown as ex-

amples in this dissertation. Other problems in the design flow can benefit from the

proposed methods. Specific adjustment on the methods can be done according to

problem-specific details in the formulation.
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APPENDIX A

PROOF OF PROPERTY 4 IN CHAPTER IV

Proof 5 According to property 2, in order to prove that 𝑠(𝑣𝑖) is inferior to 𝑠′(𝑣𝑖),

we just need to show that with any complementary solution 𝑢(𝑣𝑖), overall solution

𝑠(𝑣𝑖) ∪ 𝑢(𝑣𝑖) is inferior to 𝑠′(𝑣𝑖) ∪ 𝑢(𝑣𝑖).

We prove this by induction on the steps of solution propagation from current

node to the source.

Basic step: at the current node 𝑣𝑖, following inferiority relation holds on 𝑠(𝑣𝑖)

and 𝑠′(𝑣𝑖).

�̂�(𝑣𝑖) ≥ �̂�′(𝑣𝑖), 𝑐(𝑣𝑖) ≥ 𝑐′(𝑣𝑖), and 𝑞(𝑣𝑖) ≤ 𝑞′(𝑣𝑖)

Induction step: for any two consecutive nodes 𝑣𝑗 and its parent 𝑣𝑘 on the path

from 𝑣𝑖 to the source 𝑣0, if the inferior relation holds on two solutions at 𝑣𝑗, i.e.,

�̂�(𝑣𝑗) ≥ �̂�′(𝑣𝑗), 𝑐(𝑣𝑗) ≥ 𝑐′(𝑣𝑗), and 𝑞(𝑣𝑗) ≤ 𝑞′(𝑣𝑗),

then the inferior solution relation is also held on the solutions, 𝑠(𝑣𝑘) and 𝑠′(𝑣𝑘) at 𝑣𝑘,

which are derived from 𝑠(𝑣𝑗) and 𝑠′(𝑣𝑗) respectively, i.e.,

�̂�(𝑣𝑘) ≥ �̂�′(𝑣𝑘), 𝑐(𝑣𝑘) ≥ 𝑐′(𝑣𝑘), and 𝑞(𝑣𝑘) ≤ 𝑞′(𝑣𝑘).

Apparently, if the induction above stands, we have �̂�(𝑣0) ≥ �̂�′(𝑣0), 𝑐(𝑣0) ≥ 𝑐′(𝑣0),

and 𝑞(𝑣0) ≤ 𝑞′(𝑣0) at the source 𝑣0, i.e., 𝑠(𝑣𝑖) ∪ 𝑢(𝑣𝑖) is inferior to 𝑠′(𝑣𝑖) ∪ 𝑢(𝑣𝑖).

The basic step holds immediately from the problem. Now, we prove the induction

step. Each solution propagation step from node 𝑣𝑗 to its parent 𝑣𝑘 is composed of two

operations: merging of solutions from the children of 𝑣𝑘, and adding buffer and wire

delay on the fanin of 𝑣𝑘.
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First, we prove that when 𝑠(𝑣𝑗) and 𝑠′(𝑣𝑗) are merged with a solution 𝑠(𝑣𝑙) from

its sibling 𝑣𝑙, the new merged solutions 𝑠(𝑣𝑘) and 𝑠′(𝑣𝑘) formed at their parent 𝑣𝑘

still have the relation, �̂�(𝑣𝑘) ≥ �̂�′(𝑣𝑘), 𝑐(𝑣𝑘) ≥ 𝑐′(𝑣𝑘), and 𝑞(𝑣𝑘) ≤ 𝑞′(𝑣𝑘). By the

definition of iso-cap nets, �̂�(𝑣𝑘) ≥ �̂�′(𝑣𝑘) and 𝑐(𝑣𝑘) ≥ 𝑐′(𝑣𝑘) are trivially true. Here,

𝑞(𝑣𝑘) ≤ 𝑞′(𝑣𝑘) is proved by contradictory.

Assume 𝑞(𝑣𝑘) > 𝑞′(𝑣𝑘) instead. Since merging operation changes each 𝑞 value in

a solution in a non-increasing way, in order for 𝑞(𝑣𝑘) to become larger than 𝑞′(𝑣𝑘),

𝑞′(𝑣𝑘) < 𝑞′(𝑣𝑗) must hold.

Without loss of generality, let

𝑞′(𝑣𝑘) = 𝑞′(𝑣𝑘, 𝜙1). (A.1)

The fact 𝑞′(𝑣𝑗) ≤ 𝑞′(𝑣𝑗, 𝜙1) and the above relation 𝑞′(𝑣𝑘) < 𝑞′(𝑣𝑗) imply 𝑞′(𝑣𝑘, 𝜙1) <

𝑞′(𝑣𝑗, 𝜙1), which leads to 𝑞(𝑣𝑙, 𝜙1) < 𝑞′(𝑣𝑘, 𝜙1). Then, we have

𝑞(𝑣𝑘, 𝜙1) ≤ 𝑞(𝑣𝑙, 𝜙1) < 𝑞′(𝑣𝑘, 𝜙1). (A.2)

Since 𝑞(𝑣𝑘) = min𝑟 𝑞(𝑣𝑘, 𝜙𝑟), we have

𝑞(𝑣𝑘) ≤ 𝑞(𝑣𝑘, 𝜙1). (A.3)

From (A.1), (A.2) and (A.3), we get 𝑞(𝑣𝑘) ≤ 𝑞′(𝑣𝑘), which contradicts with the

assumption 𝑞(𝑣𝑘) > 𝑞′(𝑣𝑘).

Therefore, we have proved that 𝑞(𝑣𝑘) ≤ 𝑞′(𝑣𝑘) holds after merging operation.

Next, we show that the relation also holds after adding buffer and wire delay at

the fanin of 𝑣𝑘. Since every solution has identical capacitance for all instances, all

instances are shifted by the same amount of delay in a solution. Because 𝑐(𝑣𝑘) ≥
𝑐′(𝑣𝑘), the buffer and wire delay 𝑑 for 𝑠(𝑣𝑘) is larger than 𝑑′ for 𝑠′(𝑣𝑘). As a result,

𝑞(𝑣𝑘)− 𝑑 ≤ 𝑞′(𝑣𝑘)− 𝑑′ still holds, since 𝑞(𝑣𝑘) ≤ 𝑞′(𝑣𝑘). Thus, after adding buffer and
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wire delay, �̂�(𝑣𝑘) ≥ �̂�′(𝑣𝑘), 𝑐(𝑣𝑘) ≥ 𝑐′(𝑣𝑘), and 𝑞(𝑣𝑘) ≤ 𝑞′(𝑣𝑘) still hold.

Therefore, the induction step is proved by showing that merging solutions and

adding buffer and wire delay preserve the inferiority relation in each induction step.
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APPENDIX B

PROOF OF THE NP-COMPLETENESS OF MAX-SUCCEEDING-GROUP

PROBLEM IN CHAPTER V

The NP-completeness ofmax-succeeding-group is proved by reducingCLIQUE

problem to an auxiliary problem MIN-EDGECOVER, which in turn is reduced to

MIN-DEPCOVER. Then, we show that MIN-DEPCOVER is equivalent to max-

succeeding-group.

Before getting into the first part of our proof, we introduce the concept of edge

cover. An edge is covered by a node, if the node is its source or sink. The problem

MIN-EDGECOVER asks if 𝑏 nodes from the node set, 𝑉 in a graph 𝐺(𝑉,𝐸) can be

selected, such that the number of edges covered by the nodes is at most 𝑎.

Lemma 1 MIN-EDGECOVER is NP-complete.

Proof 6 First, MIN-EDGECOVER ∈ NP, because checking if a set of 𝑏 nodes covers

at most 𝑎 edges takes linear time.

Second, MIN-EDGECOVER is NP-hard, because CLIQUE is polynomial-time

reducible to MIN-EDGECOVER, i.e., CLIQUE ≤𝑃 MIN-EDGECOVER. We con-

struct a function to transform a CLIQUE problem to a MIN-EDGECOVER problem.

For a problem that asks if a 𝑏-node complete sub-graph can be found in 𝐺(𝑉,𝐸), the

corresponding MIN-EDGECOVER problem is whether there exists a set of ∣𝑉 ∣ − 𝑏

nodes in 𝐺(𝑉,𝐸) that covers at most ∣𝐸∣ − 𝑏(𝑏 − 1)/2 edges. If the answer to the

first question is true, then the ∣𝑉 ∣ − 𝑏 nodes apart from the 𝑏 nodes in the complete

sub-graph found in the first question are nodes that cover the ∣𝐸∣ − 𝑏(𝑏 − 1)/2 edges

outside the complete sub-graph. In this case, the answer to the second question is also
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true. On the other hand, if the answer to the second question is true, then at least

𝑏(𝑏 − 1)/2 edges other than the ∣𝐸∣ − 𝑏(𝑏 − 1)/2 edges found in second question are

between the rest 𝑏 nodes. Then, the 𝑏 nodes make a complete graph. Thus, the answer

to the first question is true. Therefore, the answer to each of the two problems above

is true if and only if the answer to the other is positive too.

Due to the simply arithmetic calculation, the transform of the reduction above

clearly runs in 𝑂(1) time. Therefore, CLIQUE ≤𝑃 MIN-EDGECOVER.

By the two steps of reasoning above, it is proved that MIN-EDGECOVER problem

is NP-complete.

Next, in the second part of our proof, we show that MIN-EDGECOVER is

polynomial-time reducible to the problem MIN-DEPCOVER, which is equivalent to

MAX-INDEPSET. Independent graph is a directed graph 𝐺(𝑉,𝐸 ′) with two sets of

nodes 𝑉1 and 𝑉2 (𝑉 = 𝑉1

∪
𝑉2, 𝑉1

∩
𝑉2 = ∅), and every edge 𝑒′ ∈ 𝐸 ′ originates from a

node in 𝑉1 and ends at a node in 𝑉2. A node 𝑣2 in 𝑉2 is said to be dependently covered

by a node 𝑣1 in 𝑉1, if there is an edge from 𝑣1 to 𝑣2. MIN-DEPCOVER asks if a set

of 𝑏 nodes can be selected from 𝑉1, so that at most 𝑎 nodes in 𝑉2 are dependently

covered.

Lemma 2 MIN-DEPCOVER is NP-complete.

Proof 7 First, MIN-DEPCOVER ∈ NP, because checking if a set of 𝑏 nodes in 𝑉1

dependently cover at most 𝑎 nodes in 𝑉2 takes polynomial-time.

Second, we verify that MIN-DEPCOVER is NP-hard by showing MIN-EDGECOVER

≤𝑃 MIN-DEPCOVER. We transform any given MIN-EDGECOVER problem on

𝐺(𝑉,𝐸) into a MIN-DEPCOVER problem on 𝐺(𝑉1

∪
𝑉2, 𝐸

′). Each node in 𝑉 cor-

responds to a node in 𝑉1, and each edge in 𝐸 corresponds to a node in 𝑉2. An edge

𝑒′ ∈ 𝐸 ′ from node 𝑣1 ∈ 𝑉1 to 𝑣2 ∈ 𝑉2 exists if and only if the node 𝑣 corresponding
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to 𝑣1 is adjacent to the edge 𝑒 corresponding to 𝑣2. If the answer to the first question

is true, then there are 𝑏 nodes in 𝑉1 that dependently-covers at most 𝑎 nodes in 𝑉2,

therefore, the answer to the second question is true too. And vice versa, if the answer

to the second question is true, then there are 𝑏 nodes in 𝑉 that covers at most 𝑎 edges

corresponding to 𝑎 nodes in 𝑉2. So, the answer to the first question is true. Therefore,

each of the positive answers to the two problems holds if and only if the other one

holds.

During the construction of the corresponding MIN-DEPCOVER problem given a

MIN-EDGECOVER problem, going through every edge in 𝐺(𝑉,𝐸) and its adjacent

nodes takes 𝑂(𝐸) time. So, the transform above takes polynomial time. Consequently,

MIN-EDGECOVER ≤𝑃 MIN-DEPCOVER.

By the two steps of reasoning above, it is proved that MIN-DEPCOVER problem

is NP-complete.

In the final part of our proof, we show that max-succeeding-group problem is

NP-complete. Before getting into it, we review the concept in max-succeeding-group

problem. The decision problem of max-succeeding-group asks if a set of 𝑏 gates from

current gate group can be chosen as concurrent gate group, so that the size of the

succeeding independent group is at least 𝑎.

Theorem 1 max-succeeding-group is NP-complete.

Proof 8 First, max-succeeding-group ∈ NP, because it takes polynomial time to check

if a set of 𝑏 independent gates enable at least 𝑎 prospective gates to become independent

gates.

Second, we verify that max-succeeding-group is NP-hard by showing MIN-

DEPCOVER ≤𝑃 max-succeeding-group. It is true simply because max-succeeding-

group is equivalent to MIN-DEPCOVER. The situation that at least 𝑎 gates in the
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prospective group are made independent by selecting 𝑏 gates from the independent

current set is the same as the situation that at most ∣𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑔𝑟𝑜𝑢𝑝∣ − 𝑎 gates

in the prospective group are prevented from becoming independent gates by exclud-

ing ∣𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑟𝑜𝑢𝑝∣ − 𝑏 independent gates from entering the concurrent

group. The two statements above are sufficient and necessary conditions to each other,

since they are equivalent.

Clearly, above transform takes 𝑂(1) time, therefore, MIN-DEPCOVER ≤𝑃 max-

succeeding-group.

By the two steps of reasoning above, it is proved that max-succeeding-group prob-

lem is NP-complete.

In fact, the NP-completeness of MAX-THROUGHPUT can be verified by a

straightforward polynomial-time transform that reduces max-succeeding-group to

MAX-THROUGHPUT.
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