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ABSTRACT 

 

Computational Analysis of  

Zel’dovich-von Neumann-Doering (ZND) Detonation. (May 2010) 

Tetsu Nakamura, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Adonios N. Karpetis 

 

The Transient Inlet Concept (TIC) involves transient aerodynamics and wave 

interactions with the objective of producing turbulence, compression and flow in ducted 

engines at low subsonic speeds. This concept relies on the generation and control of 

multiple detonation waves issuing from different “stages” along a simple ducted engine, 

and aims to eliminate the need for compressors at low speeds. Currently, the Zel’dovich-

von Neumann-Doering (ZND) steady, one-dimensional detonation is the simplest 

method of generating the waves issuing from each stage of the TIC device.  

 

This thesis focuses on the primary calculation of a full thermochemistry through a ZND 

detonation from an initially unreacted supersonic state, through a discontinuous shock 

wave and a subsonic reaction zone, to the final, reacted, equilibrium state. Modeling of 

the ZND detonation is accomplished using Cantera, an open-source object-oriented code 

developed at Caltech. The code provides a robust framework for treating 

thermodynamics, chemical kinetics, and transport processes, as well as numerical solvers 

for various reacting flow problems. The present work examines the effects of chemical 

kinetics on the structure of ZND detonation, by using a detailed chemical kinetics 

mechanism that involves 53 species and 325 simultaneous reactions (Gas Research 

Institute 3.0). Using a direct integration of the system of inviscid ordinary differential 

equations for the ZND detonation, I obtain results for the combination of different fuels 

(hydrogen and methane) and oxidizers (oxygen and air). The detailed thermochemistry 
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results of the calculations are critically examined for use in a future induced-detonation 

compression system. 
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NOMENCLATURE 

 

    Area, m2 

   Pre-exponential Arrhenius constant for reaction k 

   Specific heat under constant pressure for mixture, J/kg 

   Specific heat under constant pressure for species i, J/kg 

   Concentration of reactants for species i, mol/m3   

  Concentration of products for species i, mol/m3 

 Standard heat capacity under constant pressure of species i at reference 

temperature  

   Activation energy of the forward reaction for reaction k  

   Gibbs free energy for species i in reaction k 

   Difference of Gibbs free energy for reaction k 

    Specific enthalpy, J/kg 

    Standard enthalpy of species i at reference temperature, J/kmol 

    Sensible enthalpy of species i, J/kmol 

   Enthalpy of formation of species i, J/kmol  

 Specific reaction rate constant for forward reaction in reaction k, 

kmol/(m3s) 
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 Specific reaction rate constant for backward reaction in reaction k, 

kmol/(m3s)  

  Equilibrium constant based upon species concentration 

  Partial pressure equilibrium constant  

   Chemical symbol for species i  

   Molecular weight of species i , kg/kmol 

    Arrhenius pre-exponential temperature exponent 

    Total number of species in a mixture composition 

    Pressure, Pa 

    Pressure tensor 

    Heat flux vector  

    Heat generation through reaction process     

    Universal gas constant 

    Specific gas constant 

    Standard entropy of species i at reference temperature   

    Time, s 

    Temperature, K 

    Fluid velocity in the x-direction, m/s 

    Velocity vector, m/s 

    Diffusion velocity of species i, m/s 
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    Specific volume, m3/kg 

    Stoichiometric coefficient for species i appearing as a reactant 

    Stoichiometric coefficient for species i appearing as a product 

 Stoichiometric coefficients for species i appearing as a reactant in 

reaction k 

 Stoichiometric coefficients for species i appearing as a product in reaction 

k  

    Mass production/destruction rate of species i , kg/(m3s) 

   Molar fraction of species i  

    Mass fraction of species i 

 

Symbols 

    Ratio of specific heat 

   Distributed wall friction per unit flow area 

   Distributed heat transfer per unit flow area   

    Density, kg/m3  

   Progress of reaction variable for reaction k, kmol/(m3s)  

   Production or destruction rate of species i  in reaction k, kmol/(m3s) 

    Production or destruction rate of species i , kmol/(m3s) 
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1. INTRODUCTION 

 

Transient Inlet Concept 

 

Conventional jet engines operating under the Brayton cycle require rotational 

compressors to increase the air pressure flowing through the engine [1]. These 

compressors, in turn, need to be powered by turbines that further contribute to the 

complexity of the engine. The compressor is not the only device that can increase air 

pressure through the engine: as the air is slowed down in the diffuser, its static pressure 

increases through the ram effect. As the air speed increases to supersonic values, 

compression through the ram effect becomes comparable to, and sometimes exceeds, the 

pressure increase through the compressor. This allows for the construction of simple 

ducted engines (ramjets) that require no compressor or turbine to operate. It is important 

to note that a ramjet does not operate on its own, since the ramjet needs some other 

device to accelerate it to supersonic speed.          

 

 

 
 

 

Figure 1.1. Schematic diagram of transient inlet concept   

 This thesis follows the style and format of the Journal of Turbomachinery. 
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This research is part of a multi group work assembled in order to design and build a 

transient inlet device, which is meant to mimic the simplicity of the ramjet operation, 

even at low subsonic speeds (see Figure 1.1). A transient inlet concept aims to produce 

flow induction, turbulence generation, and flow compression. All three aspects are 

necessary before the main fuel and air input into the device, i.e. the transient inlet is 

supposed to fulfill these goals and not act as a thrust generating device. 

 

The transient inlet concept operates through the interaction and merging of multiple 

detonations, therefore it requires the presence of multiple stages of detonation 

generators.  Each single stage is a small scale detonation tube, and the individual stages 

are arranged symmetrically as shown in Figure 1.1. After ignition in each tube a 

deflagration (slow flame) ensues which transitions to a Chapman-Jouguet (CJ) 

detonation wave after a required induction time/length. A decaying detonation wave 

propagates into the main duct, as shown in Figure 1.1, until it meets and interacts with 

the wave issuing from the opposite generator. When two detonation waves interact in the 

main tube, a Mach stem is formed by the interaction of the regular and transverse wave 

fronts. Triple points appear at the intersections of these three waves, and the transverse 

waves move toward the wall of the main tube. Behind the triple points, the flow is 

separated by a slip line into two layers with different velocities. This velocity difference 

induces a turbulent flow behind the merged detonation wave. When the edge of the 

detonation wave reaches the tube wall, a shock-boundary interaction ensues, the 

boundary layer grows behind the wave, and additional turbulence is generated within the 

tube (all shown in Figure 1.1).           

 

Single Stage Detonation Generator 

 

The present research focuses on the computation of a single-stage detonation within one 

of the injectors shown in Figure 1.1. Figure 1.2 schematically describes the procedure of 

single detonation wave propagation. A detonation generator is an unsteady propulsive 
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device in which the combustion chamber is periodically filled with a reactive gas 

mixture, a detonation is initiated, the detonation propagates through the tube, and the 

product gases are exhausted [2, 3]. At first, the ignition induces a deflagration wave at 

the end of the closed tube. Since the closed tube is filled with unburnt reactants, the 

deflagration velocity increases and a deflagration-to-detonation transition (DDT) occurs 

during the wave propagation [4, 5, 6, 7]. A deflagration-to-detonation transition is the 

general process by which a subsonic combustion wave (deflagration) becomes a 

supersonic combustion wave (detonation). A steady detonation wave propagates along 

the tube by consuming the premixed unburnt mixture and pushes out unburnt reactants 

into the main device. The detonation reaches the end of the tube and propagates outward 

into the surroundings as a shock. If enough unburnt premixture remains in the 

surroundings, the detonation wave may still propagate as a supersonic shock front 

followed by a reaction zone, i.e. as a decaying detonation, as shown in Figure 1.2. 

 

 

 
Figure 1.2. Procedure of detonation generation for a closed tube    

 

 

This study examines in detail the steady state propagation of a Chapman-Jouguet (CJ) 

detonation as shown in the middle of Figure 1.2. The work computes the CJ detonation 

by using a detailed chemistry computer code (Cantera) to calculate the transient behavior 

behind the leading shock.     
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Structure of Zel’dovich-von Neumann-Doering Detonation 

 

The simplest description of a detonation structure was developed by Zel’dovich [8], von 

Neumann [9], and Doering [10] independently in the 1940s. They considered a 

detonation as consisting of two parts: a leading shock wave compressing the unburnt 

reactants, and a chemical reaction zone that follows the shock after some distance and 

completes the conversion to products. The shock region is assumed to be infinitesimally 

thin, and the mixture composition does not change through the discontinuous shock 

wave. Thermodynamic properties change due to the shock compression effect. As a 

result, when the unburnt reactant flow passes through the shock, the pressure, density, 

and temperature increase, while the fluid velocity decreases to a subsonic value, 

following the usual normal shock relations [11].  

 

 

 
 

 

 

The ZND detonation is a planar one dimensional structure with no transport effects, such 

as heat conduction, radiation, mass diffusion, and viscosity [12]. Figure 1.3 qualitatively 

shows the behavior of pressure, temperature, density, and velocity throughout the entire 

Unburned Gases Burned Gases
Induction 

Zone
Reaction Zone 

Shock-Fixed Frame 

X[cm] 

P∞ 

P0,T0,ρ0 

P(Post-Shock) 

(0) ( )∞

Inviscid Shock 

V0(Initial) 
T 

T∞(Equilibrium) 

( )R

V 
ρ V∞ 

( )PD 

ρ∞ 

UCJ 

Figure 1.3. Schematic diagram of pressure, temperature, density, and velocity in 
Zel’dovich-von Neumann-Doering detonation  
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process of a steady ZND detonation. First, an incoming unburnt reactant mixture, whose 

velocity is equal to the supersonic shock velocity (D), is compressed by the inviscid 

shock. Pressure increases discontinuously to its maximum value due to shock 

compression, and velocity behind the shock wave takes subsonic values. Then, the 

pressure gradually decreases to its equilibrium condition because of flow expansion 

through the reaction zone. Temperature also increases due to the shock compression, 

however, temperature continues to increase through the reaction zone due to the heat 

release associated with the reaction. The subsonic velocity in the reaction zone increases 

to its equilibrium state (V∞ = UCJ), which can be shown to coincide with the local sonic 

condition. The velocity behavior induces the inverse effect on density because of the one 

dimensional nature of the problem, and the constancy of mass flux (ρu = constant).  
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2. THEORY OF CHEMICALLY REACTING FLOW 

 

This section presents the steady one dimensional Zel’dovitch-von Neumann-Doering 

model and provides the fundamental equations of thermochemistry and chemical 

kinetics. Particular emphasis is placed on the chemical source terms that are calculated 

in every step of the solution of the premixed one-dimensional detonation. 

 

Conservation Equations 

 

The conservation laws of mass, momentum, energy, and species for the reactive mixture 

with transport effects, i.e. the reactive Navier-Stokes equations [13], are: 

  

( ) 0=⋅∇+
∂
∂ V

t
ρρ

 

( )V V P
t

ρ ∂
+∇ ⋅ = ∇⋅

∂
 

( ) ( ) : ( )
h P

V h P q P V
t

ρ
ρ ρ ρ
∂ −

+ ⋅∇ − = −∇ ⋅ − ∇ ⋅
∂

 

( ) ( )i
ii i

Y
VY Y V w

t
ρ ρ ρ i
∂

+∇ ⋅ +∇ ⋅ =
∂

 

 
where ρ is a fluid density, V  is a mass-average velocity of gas mixture,   is the stress 

tensor, P is the pressure of the gas mixture, h is the specific enthalpy of the gas mixture 

which includes both sensible and formation components, q is a heat flux vector, and Vi
 

is the diffusion velocity, Yi is the mass fraction, and w  is the mass 

production/destruction rate of species i. Each equation is composed of accumulation 

(transient), convection, diffusion, and reaction terms. In high speed flow we can assume 

that the diffusion terms are much smaller than the corresponding convection terms, and 

therefore the higher order diffusion terms can be eliminated from the above system of 

differential equations. In steady reactive flow, the accumulation term disappears, while 

i

P



7 

in the one dimensional case convection is assumed to operate only along the propagating 

direction x. The one dimensional flow assumption neglects wall boundary effects, which 

are considered negligible for inviscid flow anyway. Therefore, the equations for a 

compressible steady one dimensional detonation wave take the simpler forms shown 

below.    

0)( =u
dx
d ρ  

( ) 02 =+ uP
dx
d ρ  

0
2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

uh
dx
d

 

ρ
ii w

dx
dYu =  

 

where u is fluid velocity in the x-direction. The system of equations is augmented by 

appropriate equations of state (EOS) for ideal gases: 

 

Thermal equation of state:        P RTρ=  

Caloric equation of state:     
, , ,

s o o
i i f i p i f ih h h C dT h= + = +∫  

 

where s
ih  is the sensible enthalpy, 

,
o
f ih  is the enthalpy of formation, and 

,p iC  is the 

specific heat at constant pressure for each species i, and R is the specific gas constant of 

mixture. The sensible enthalpy is the thermal energy of mixture, while the formation 

enthalpy is the chemical energy associated with each species molecule. The specific 

enthalpy of the mixture can be calculated as: 

1

N

i i
i

h Y
=

= h∑  

where N is the total number of species in the mixture. 
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The differential form of steady one dimensional reactive flow equations can be 

integrated under a constant specific heat assumption to provide the following set of 

integral equations.  

2211 uu ρρ =  

2
222

2
111 upup ρρ +=+  

2
22

2
11 2

1
2
1 uhuh +=+  

or 

22

2
2

2

2
1

1
uTCQuTC pp +=++  

0 0
, ,

1 11 2

N N

i f i i f i
i i

Q Y h Y h
= =

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑  

 

where Q is the heat generation through the reaction process. This last step and the 

associated assumption of Cp = constant are not used during the computational solution of 

the problem. They are presented here solely as an aid to theoretical understanding.  

 

Chemical Kinetics for Mass Production/ Destruction Rates 

 

Some chemical reactions occur very rapidly and others very slowly. All chemical 

reactions take place at a finite rate that depends on thermochemistry, i.e. pressure and 

temperature of the mixture, as well as concentrations of the chemical compounds [14].  

 

A one-step elementary chemical reaction can be represented by the following 

stoichiometric equation 

' "

1 1

N N

i i i i
i i

v M v M
= =

=∑ ∑  
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where  are the stoichiometric coefficients of the reactants, 
iv′ iv′′  are the stoichiometric 

coefficients of the products, and Mi  symbolizes the chemical species. Thus, if the 

species Mi does not appear as a reactant, 0iv′ = , and if the species Mi does not appear as 

a product, .    0iv′′=

 

Most elementary reactions follow an Arrhenius law such as   

 

, expn k
f k k

E
k A T

RT
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

 

where kf,k is the specific reaction rate constant, Ak is the pre-exponential Arrhenius 

constant, and Ek is the activation energy of the forward reaction k.  

 

The backward reaction rate coefficients (kb,k) can be calculated from a relationship of the 

equilibrium constant to both forward and backward reaction rate coefficients, namely   
 

,
,

, ( )
f k

b k
C k

k
k

K T
=  

( ) ( ), , , ,

,
, ( ) ( )

exp
( )

( )
i k i k i k i k

i i

k

P k
C k

g
K T RT

K T
RT RT

ν ν ν ν′′ ′ ′′ ′− −

⎛ ⎞Δ
−⎜ ⎟
⎝ ⎠= =

∑ ∑

 

 

( )∑ ′−′′=Δ
i

kikikikik ggg ,,,, νν  

 

where KC,k is the equilibrium constant based on species concentration and KP,k is the 

partial pressure equilibrium constant. The equilibrium constant for each reaction is 

related to the difference of molar Gibbs free energy ( o
kgΔ ) between reactants and 
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products in each reaction as shown in the equation above. Both KC and KP are functions 

of temperature alone.    

 

The progress of reaction variables (
kω′) can be evaluated as  

    

, ,
, ,

1 1

i k i k
N N

k f k i b k i
i i

k C k Cν νω ′ ′′

= =

′ = −∏ ∏  

 

where is the concentration of species i. The rate of production/destruction of each 

species i by reaction k can be simply evaluated as  

iC

  

kkikiki ωννω ′′−′′= )(ˆ ,,,  

 

To evaluate the overall production/destruction rate of species i, we add the rates from 

each reaction k. 

∑
=

=
N

k
kii

1
,ˆˆ ωω  

 

The result is the net production or destruction rate for each species i ( iω̂ ) in molar basis. 

This can be converted to the mass-based rate of production/destruction for each species 

that appears in the species conservation equations  

ˆ .i iw MW iω=  
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3. COMPUTATIONAL PROCEDURES 

 

This section presents the computational scheme that was used to calculate the 

equilibrium Rankine–Hugoniot curves and the transient ZND detonation structure. For a 

successful numerical solution of the steady state ZND detonation, careful attention must 

be paid to the stiffness of the ordinary differential equations for chemically reacting flow 

and the numerical scheme that is used for their computation.     

 

Cantera Chemically Reacting Flow Program  

 

Cantera is a collection of object-oriented software tools for solving problems involving 

chemical kinetics, thermodynamics, and transport processes. The code was developed at 

Caltech by David Goodwin [15] during the last decade and is maintained as an open-

source project. In order to carry out a reacting flow simulation using Cantera, a proper 

chemical reaction mechanism is required. The Gas Research Institute Mechanism 

version 3.0 (GRI-3.0) has been developed for methane and natural gas oxidation, and has 

been exhaustively tested against a wide range of experimental data [16]. It is a 

compilation of 325 elementary chemical reactions and the associated rate coefficient 

expressions and thermochemical parameters for the 53 species involved in those 

reactions. GRI-3.0 has been optimized for hydrogen, methane, and natural gas fuels. 

     

Computational Algorithm  

 

Cantera simultaneously handles equations of state and thermodynamic properties 

through its thermodynamic manager, chemical kinetics through its chemical manager, 

and transport coefficients and processes through its transport manager. It uses all three 

managers to calculate the macroscopic behavior of chemically reacting flow.  
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The thermodynamic manager applies the thermal and caloric equations of state to 

calculate the thermodynamic properties of an ideal gas reacting mixture  

1

i i
i

P RT
X MW

ρ=
∑

 

where R  is the universal gas constant, Xi represents the mole fractions of each species i, 

and MWi is the molecular weight of each species i. 

 

The heat capacity, sensible enthalpy, and standard entropy at the temperature can be 

calculated by the NASA polynomial parameterizations [15] of the caloric equation of 

state for ideal gases, which are written as follows 

 

, 2 3
0 1 2 3 4

( )p iC T
a a T a T a T a T 4

R
= + + + +  

2 3 431 2 4
0 5

( )
2 3 4 5

ih T aa a a
a T T T T

RT
= + + + + + a  

0
2 3 432 4

0 1
( )

ln( )
2 3 4

is T aa a
a T a T T T T a

R
= + + + + + 6

 

 

All coefficients (a0 - a6) of NASA polynomials are tabulated as a Cantera input file (cti 

file).  

 

The chemical kinetics manager computes the reaction rates of progress, equilibrium 

constants, and species creation and destruction rates for each species i. A Cantera input 

file also contains reaction entries for each reaction in the chemical mechanism. The 

chemical manager uses this information to form the source terms (production/destruction 

rates) that appear in the species conservation equations as shown in the previous section. 

For example, when a reaction in the chemical mechanism follows the simple Arrhenius 

form, the Cantera chemical manager tabulates the pre-exponential coefficient, the 

temperature exponent, and activation energy for each reaction k (Ak, nk, Ek).  
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The transport manager handles the gas-phase transport properties such as viscosity, 

thermal conductivity, and binary or multi-component diffusion coefficients. During the 

present work the inviscid Euler equations are computed, therefore the transport manager 

is not utilized.  

 

 
 Figure 3.1. Schematic diagram of computing chemically reacting flow by Cantera  
 

 

 

As seen in Figure 3.1, the Cantera code uses all three aforementioned managers in 

combination with appropriate solvers to calculate reacting flows of specific 

dimensionality and complexity, such as transient zero dimensional (0D) open and closed 

well-stirred reactors, steady state 1D propagating flames, 1D opposed jet flames, etc. As 

will be shown subsequently, the 0D solvers can be used for the transient ZND 

calculation, but their use is highly problematic. The present work used the 

thermodynamic and chemical managers of Cantera with an externally set up 1D solver to 

calculate the spatial variation of the ZND detonation.    
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Rankine-Hugoniot Analysis 

 

The solution of the equilibrium endpoints of a detonation cannot involve any knowledge 

of the structure of the detonation wave. Considering steady, planar, and 1D detonation 

waves, the equilibrium state solution of the integral conservation laws presented in the 

previous section only requires thermodynamic calculations; this approach is the 

Rankine-Hugoniot analysis [17].  

 

When the velocity of the final state (1) is eliminated from the mass and momentum 

conservation equations, the results define a line in the pressure-specific volume (P-v) 

diagram, i.e. the Rayleigh line, which is expressed by the following equation   

    
2

2 21 0 0
0 02

1 0 0

( ) (
P P u

u mass flu
v v v

ρ
−

= − = − = −
−

)x   

 

where v is the specific volume (reciprocal density). An infinite number of Rayleigh lines 

can pass from one initial point (P0,v0), corresponding to different detonation velocities 

(u0) and mass fluxes (
0 0uρ ). The limiting cases of Rayleigh lines are the horizontal (u0 

= 0) and the vertical (u0 = ∞). The vertical Rayleigh line represents the constant volume 

detonation in which all material reacts instantaneously while the horizontal one is a 

constant-pressure process.    

 

The Hugoniot curve in the P-v diagram is obtained by eliminating the upstream and 

downstream velocities from the energy equation by using the mass and momentum 

equations to obtain  

( )(1 0 1 0 1 0
1
2

h h P P v v− = − + )  

or  
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( )( )1 0 1 0 1 0
1( )
2pC T T P P v v Q− − − + =  

 

where Cp is the average constant specific heat, and Q is heat generation through the 

reaction. Since the velocity is eliminated, the Hugoniot curve expresses a relationship 

solely among thermodynamic properties.  

 

 

 
Figure 3.2. Rayleigh line and Hugoniot curves for Chapman-Jouguet  

methane/oxygen detonation   
 

 

 
 
 
Figure 3.2 shows the Rayleigh line and two Hugoniot curves (frozen and equilibrium) 

for stoichiometric methane-oxygen detonation [18]. The location of the two Hugoniot 

curves is specified by the value of heat generation through the reaction. A frozen 
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Hugoniot curve is the collection of all possible thermodynamic states without any 

reaction (Q = 0). Inviscid shock compression does not change the mixture composition, 

therefore a frozen Hugoniot curve indicates all of the possible post-shock 

thermodynamic states of an adiabatic compression, hence the usual title ‘shock adiabat.’ 

An equilibrium Hugoniot curve is the collection of all possible thermodynamic states 

after the reactants have fully reacted and equilibrium has been achieved in the products. 

The equilibrium Hugoniot shown in Figure 3.2 was calculated using the Cantera 

thermodynamic manager, so no assumption of Cp = constant is necessary.  

 

The thermodynamic state after the inviscid shock must satisfy both Rayleigh line and 

shock adiabat conditions. This unique intersection of the two curves is the von Neumann 

point (VNP), and it denotes the post-shock thermodynamic state.   

 

Similarly, the conservation equations require that the final equilibrium state lies on both 

the Rayleigh line and the equilibrium Hugoniot curves. For a sufficiently small mass 

flux through the 1D system, the Rayleigh line and Hugoniot curve have no intersection, 

so there is no solution that satisfies the equilibrium condition. But there exists a 

minimum detonation velocity (Chapman-Jouguet or CJ velocity), which is the point 

where the Rayleigh line is tangent to the equilibrium Hugoniot. It can be shown that the 

flow is sonic at this point [14]. 

 

Discontinuous Shock Calculation 

 

Given the initial detonation velocity and thermodynamic properties, we need to calculate 

the post-shock conditions at the VNP. A dedicated Cantera shock and detonation tool 

box was developed at Caltech by Joseph Shepherd [18, 19, 20, 21]. The toolbox uses a 

Newton-Raphson scheme to solve the algebraic equations that connect the equilibrium 

conditions. The scheme is used here to solve for the jump conditions of a Chapman-

Jouguet detonation. Recall the momentum and energy equations at jump conditions as 
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( ) ( )2 2
1 1 1 0 0 0p u p uρ ρΡ = + − +  

 

2 2
1 1 0

1 1
2 2

h u h u⎛ ⎞ ⎛Η = + − +⎜ ⎟ ⎜
⎝ ⎠ ⎝

0
⎞
⎟
⎠

 

 

The exact solution to the discontinuous jump occurs when both H and P are identically 

zero. An approximate solution can be obtained by simultaneously iterating these two 

equations until H and P are less than a specified tolerance. An iteration algorithm can be 

developed by making an initial guess for the values of temperature and specific volume 

of the downstream thermodynamic state 1, and iterate until a solution has been obtained. 

The shock and detonation toolbox has been extensively used in this study.   

 

Well-stirred Reactor (WSR) 

 

In the early phases of the present work, the ZND detonation was simulated by using the 

built-in Cantera module of a Well-Stirred Reactor (WSR). The WSR is an idealization 

that assumes that all chemical reactions occur homogeneously in space, and the extent of 

product formation is governed simply by the thermochemistry of the reactor, as well as 

by the residence time. Once inside the reactor, the gases are presumed to mix 

instantaneously and perfectly with the gases already resident in the reactor. In reality, 

mixing cannot be perfectly instantaneous. In practice, the well-stirred reactors are 

designed to create intense turbulence that enhances mixing [22]. 

  

The benefit of using the WSR model for the ZND detonation calculation is that the 

reaction zone can be simulated in time; therefore, this simulation can generate the 

transient states of a ZND detonation. The WSR contains reactants at the post-shock 

(VNP) state, i.e. the initial state before the ZND reaction. The WSR is separated by a 

reservoir that contains the final equilibrium (CJ) states of the mixture with a freely 
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moving piston. When the WSR is a closed system, the mass is constant, while the 

volume can be changed, resulting in thermochemistry changes. Figure 3.3 shows the set-

up of the well-stirred reactor system used for ZND reaction zone calculation.  

 

 

  Before   After     
 

             

   

tΔ ∞ 

 

 

 

 

 Figure 3.3. A Well-Stirred Reactor (WSR) model for the computation  
      of a ZND reaction zone    

 

 

As the reaction progresses inside the WSR, the reacting mixture pushes the piston until 

the pressure within the WSR reaches the pressure of the reservoir outside. Therefore, the 

final pressure of the mixture will be the Chapman-Jouguet pressure. Assuming that there 

will be full conversion to products at the end of the WSR reaction, and since the system 

is adiabatic, the final equilibrium temperature in the WSR is going to be equal to the 

equilibrium adiabatic flame temperature. As the pressure has already been set to that of 

the CJ point, the equilibrium state of the WSR is identical to the CJ state since they share 

pressure, temperature, and composition.   

 

Figure 3.4 shows the results of WSR simulation using three different piston areas. When 

the piston area is small, the combustion inside a WSR occurs faster than the expansion 
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(Case 1 in Figure 3.4). This case is similar to the constant-volume combustion, and most 

mixture expansion occurs after the combustion has been completed. In fact, the transient 

pressure exceeds the von Neumann value, which is the theoretical maximum pressure 

encountered on a ZND detonation. With a moderate piston area the combustion and 

expansion rates are similar (Case 2 in Figure 3.5). When a piston area is large, expansion 

occurs faster than combustion (Case 3 in Figure 3.6). The mixture pressure immediately 

decreases to the Chapman-Jouguet pressure, and combustion takes place after the 

expansion. Thus, this case is similar to a constant-pressure combustion process taking 

place at the Chapman-Jouguet pressure.  

 

At first glance, the WSR seems like a good model for analyzing a transient state of ZND 

detonation; however, the WSR poses a significant problem. As seen in Figure 3.4, either 

the piston area or the piston velocity must be specified in time in such a way that the 

ZND detonation will proceed along the Rayleigh line. This implies that we need to know 

the change of all physical properties before running the simulation. Thus, a WSR is not 

an adequate model for the simulation of the reaction zone of ZND detonation. 
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Figure 3.4 Results of well-stirred reactor model for A = 1.0 m2  
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Figure 3.5 Results of well-stirred reactor model for A = 10 m2  
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 Figure 3.6 Results of well-stirred reactor model for A = 100 m2  
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4. NUMERICAL METHODOLOGY AND STABILITY ANALYSIS 

 

Numerical Methodology 

 

The ZND reaction zone is calculated using both explicit and implicit schemes. An 

explicit algebraic solution for the mass, momentum, and energy conservation equations 

computes velocity, pressure, and enthalpy of the reacting flow in each step using the 

conservation equations  

u constρ =  

2p u constρ+ =  

21
2

h u const+ =  

 

The species conservation equations are solved using an implicit third-order Backward 

Differential Formula (BDF) method. The code was written in-house, and is based on an 

existing variable-coefficient ODE solver (VODE) for stiff and non-stiff problems [23]. 

The species equations are written below, and  is the chemical source term to be 

calculated by the Cantera chemical manager for every single step. 

iw

  

i idY w
dx uρ

=  

 

For stiff problems, the accuracy of the BDF method can be selected a priori to 

correspond to orders between first and fifth. However, the stability of the BDF method 

decreases for numerical schemes that are more than fourth-order accurate [24], and 

orders above sixth result in unstable schemes. The present computations use a third order 

BDF scheme.    
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The Cantera thermodynamic manager calculates all thermodynamic properties at each 

step using a constant pressure and enthalpy formulation for the open system, while the 

Cantera chemical manager calculates the species destruction/production rates needed in 

the right hand side of the species conservation equations. Then, the BDF scheme updates 

the values of composition ( ) and new velocity, pressure, and enthalpy (u, P, h) are 

computed algebraically. Thermodynamic variables and species mass fractions change in 

each step within the reaction zone. Therefore, it is difficult to compute the reactive 

source terms and the thermodynamic properties using a fully implicit method, solely 

because the Cantera managers must compute the thermodynamic variables and chemical 

sources explicitly in every step of the computation. Hence the mass 

production/destruction rates cannot be calculated implicitly, i.e. for many different steps 

at the same time, even if the actual integration is carried out by the BDF implicit 

scheme. The scheme used in this study separately solves the species equations and the 

mass, momentum, and energy equations in every step on the reaction zone.  

iY

 

 Limits on Step-size 

 

In order to provide examples of the numerical scheme and assess its accuracy and 

convergence properties, a number of computations were repeated using different step 

sizes. Figure 4.1 shows the solution of a stoichiometric CJ methane/oxygen (CH4-O2) 

detonation using six different step-sizes (Δx = 10-7, 5×10-8, 10-8, 5×10-9, 10-9, 5×10-10, all 

in meters). 
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Figure 4.1. Temperature profiles of the CH4-O2 Chapman-Jouguet (CJ) detonation 
  using different step-sizes  

ΔX 

 

 

 

 

The circles plotted on the graph point to a converged solution, i.e. number of different 

computations that collapse onto a single curve. For a sufficiently small step-size (less 

than 10-8
 m), the equilibrium temperature converges to the CJ condition, while for 

coarser step sizes (above 5×10-8 m) the temperature profile shows unphysical oscillations 

and the final equilibrium temperature is lower than the CJ one. 

 

Methane is completely consumed during the ZND reaction, no matter what step-size is 

set in the simulation (Figure 4.2). A cursory look at the O2 profiles shows the same 

effect of reactants approaching zero at the CJ point. However, the temperature resulting 

from setting a larger step-size is lower than the CJ condition; thus, we need to examine 

other, minor species which may cause the lower equilibrium temperature. 
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Figure 4.2. Mass fraction of methane molecules by using different step-sizes, 

legend as in Figure 4.1  
 

 

 

 
During the parametric computations, it was found that a smaller step-size yields a more 

accurate value. Figure 4.3 is a magnification of the square region shown in Figure 4.2. 

As is evident from the expanded figure, convergence is little improved by drastic 

reduction of the step size below 10-8 m. 
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Figure 4.3. Detail from Figure 4.2  
  

ΔX  

 

 

 

For the study of a chemically reacting flow, the system of ordinary differential equations 

(ODEs) is a stiff system with a wide range of time/length scales [25]. For a 

methane/oxygen (CH4-O2) ZND detonation, the characteristic time/length of a free 

radical species, such as a hydrogen atom, is extremely short, while the characteristic 

time/length of CH4 molecules is long. This time/length-scale difference leads to rapid 

changes in the solution of the fast species, and the numerical algorithm must resolve that 

large dynamic range of scales. When the step-size is large, substantial equilibrium values 

of H and O radical concentrations appear during the simulation (Figures 4.4 and 4.5) 

which should not happen in a realistic situation, as these species are highly reactive. The 

high values of energetic radicals, such as H, lead to artificial temperature increases early 

in the computation (e.g. x = 0.02 cm of Figure 4.1).   

 



28 

 
 

 

  

Figure 4.4. Mass fraction of hydrogen radicals using different step-sizes, 
legend as in Figure 4.1  

Figure 4.5. Mass fraction of oxygen radicals using different step-sizes, 
legend as in Figure 4.1  
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The first peak of the H radicals is correlated to the temperature oscillation for coarse 

step-sizes (10-7 m). When the step size is 5×10-8 m, the H and O show a second peak at x 

0.03 cm, at which point the remaining methane is consumed. Thus, there are two 

occurrences of combustion that take place when the step-size is relatively large. For final 

step-sizes (less than 10-8 m) the profiles of the H and O radicals successfully converge, 

and so does the temperature profile. It should be noted that due to the high equilibrium 

temperature some dissociation takes place, leading to small values of H, O, and other 

radical species at equilibrium.    

 

A similar issue can be identified with all other fast-lived radical species. The stiffness of 

the equations leads to problems whenever the species that have very short characteristic 

times exhibit sufficiently high reaction rates. When the step-size is large, the mass 

fractions of CH radicals are also amplified and result in a sharp maximum (see Figure 

4.6). The degree of CH radical amplification is proportional to the step-size. Even 

though the CH radicals are not present at equilibrium, their transient behavior is similar 

to that of the O and H radicals.    
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Figure 4.6. Mass fraction of CH radicals using different step-sizes, 

legend as in Figure 4.1  
 

 

 

 
Thus, we can conclude from the convergence test of the species equations that for 

successful implicit integration the step-size needs to be less than approximately 10-8 m. 

When the step-size is not sufficiently small, the third-order BDF method does not yield 

the appropriate mass fractions of the minor species and does not converge to a physical 

solution. If there are substantial concentrations of species such as H and O present at 

equilibrium, the temperature will be lower than the theoretical CJ value. The numerical 

solution accumulates errors, and the errors will continue to amplify until the method 

‘blows up’ [25].   
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Explicit Versus Implicit Methods and Their Orders 

 

Since the species equations involve highly non-linear source terms, their analytic 

solutions are usually very hard to obtain. For the study of explicit and implicit ODE 

accuracy, the example of an easily solvable system of linear stiff ordinary equations is 

given below. 

   

1 1 2

2 1 2

2000 999.75 1000.25y y y
y y y
′ = − +
′ = −

 

 

These equations will be solved using both explicit and implicit methods to determine 

which is more accurate. The initial condition is set as [y1, y2] = [0, -2], and the step-size 

is 10-4 m. The analytical solution of the system of stiff ODEs can be found as 

  
( 0.5 ) ( 2000.5 )

1
( 0.5 ) ( 2000.5 )

2

( ) 1.499875 0.499875 1

( ) 2.999975 0.000015 1

x x

x x

y x e e

y x e e

− −

− −

= − + +

= − − +
 

 

The characteristic scales of the first and second terms differ by four orders of magnitude, 

with the second term decaying very fast, and the first decaying slowly. 
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 Figure 4.7. Exposition of the implicit Backward Differential Formula (BDF) scheme 
 

 

 
Figure 4.7 shows the solution y1(x) for three different cases: an explicit first-order Euler 

integration, an implicit third-order BDF, and the exact solution (practically identical to 

the analytic one). The explicit first-order Euler integration method is clearly less 

accurate than the implicit method because, for large step sizes, instability is present in 

the explicit method. 
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 Figure 4.8. Qualitative description of a stiff Ordinary Differential Equation problem 
 

 

A qualitative explanation of the numerical instability present in explicit numerical 

schemes is shown in Figure 4.8. There the dependent variables (y1 or y2) are supposed to 

be known at some point (yn), along with the slope (
ny′). When the step-size is very large, 

despite the fact that we know both the value yn and the slope exactly, we grossly under-

predict the value of yn+1. An explicit method uses the erroneous value of yn+1 to calculate 

the following point in the solution (yn+2) that amplifies the error of the solution. When 

the step-size is too large, an explicit Euler integration cannot converge to the right 

solution. In the example problem presented here, the step-size is relatively small (10-4 

m), and an explicit method converges to a solution which is acceptable and comparable 

to the exact solution, yet still different from it by the error accumulated during the 

integration [25]. 

 

A large solution error (10-4) appears in each time step of an explicit Euler method as 

shown in Figure 4.9. The solution yielded by the implicit third-order BDF is very close 

to the exact solution. The error of the technique is on the order of 10-12 and the technique 

is stable even for relatively large time steps (10-4 m). This feature ensures that this 

method is stable for a sufficiently small time step. 
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Figure 4.9. Errors between explicit Euler and implicit Backward Differential ODEs 
solutions 

 

 

The truncation errors of a first-order forward Euler method and a third-order backward 

differential method are as follows [26]: 
2

2

1 ( )
2

y x
x
∂

− Δ
∂

 1st order Explicit Euler method: 

4
3

4

1 ( )
4

y x
x
∂

− Δ
∂

 3rd order Implicit BDF method: 

When the step-size is Δx ~ 10-4 m, the truncation error of the first-order explicit Euler 

method is of the same order as the step-size (10-4 m), while the error of the third-order 

BDF method is on the order of 10-12. Both truncation errors are clearly correlated to the 

solution errors shown in Figure 4.9. For stiff differential equations, the first-order 

explicit method is not optimal because it will propagate the errors along with the 
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solution, such that at the final equilibrium point, the error can be significant.  The third-

order implicit method is a better approximation to the desired solution, since it resolves 

the stability problems associated with stiffness. However, because it is a higher-order 

implicit method, more computational time is required at each step to solve the system of 

nonlinear species equations. 

 

Required Computational Time Study 

 

As already discussed, to avoid numerical instabilities, the step-size needs to be 

sufficiently small so that numerical round-off errors are damped and not amplified, and 

the solution of the ODEs is accurate. The elapsed computational time linearly increases 

as the step-size decreases (Figure 4.10).  

 

 

 
 Figure 4.10.  Total computational time for different step-sizes 
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For step-size of 10-10 m the extrapolated computational time is approximately 32 minutes 

(red point). This is not a prohibitive computational time, yet computations with such fine 

step-sizes routinely fail due to lack of memory. No attempt was made to improve the 

memory allocation scheme in the present study, as the coarser step-sizes (e.g. 10-8 m) 

exhibited good convergence.  
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5. RESULTS AND ANALYSIS 

H2-O2 Reaction Mechanism  

 
Hydrogen oxidation is a relatively simple and well-understood phenomenon, both 

theoretically and experimentally. The hydrogen/oxygen reaction mechanism will be 

briefly reviewed here, since it is applicable the ZND detonation of hydrogen fuel; this 

mechanism is also interesting as a subset of all hydrocarbon fuel oxidation mechanisms. 

Table 5.1 shows some of the reactions that can occur in hydrogen/oxygen reaction 

systems. The most probable initiation step at low temperatures is the generation of 

relatively stable hydroperoxyl (HO2) radicals and highly reactive hydrogen (H2) radicals 

(RXN 1) by the hydrogen and oxygen molecules. At very high temperatures, the 

hydrogen and oxygen molecules directly dissociate to hydrogen and oxygen radicals 

(RXN 2, 3).   

 

When the mixture (in the von Neumann state) is at a sufficiently high temperature (T > 

1200K), the initiation step provides hydrogen radicals. These hydrogen radicals initiate 

the chain branching mechanism (RXN 4-7), from which hydroxyl (OH), oxygen, and 

more hydrogen radicals are produced. These reactions are the primary means by which 

the OH concentration becomes significant and can play a role in the reaction processes. 

These reactions release significant amounts of energy, which accelerates the explosion. 

Note that the concentration of H radicals is replenished through this process, therefore, 

there is no chemical barrier to prevent the system from becoming explosive.  

 

Most of the chemical energy is released through the final oxidation process (RXN 8-12), 

i.e. the termination process. During the termination process, the accumulated radicals 

exothermically react to generate water (H2O) molecules. RXN 10 is technically a 

propagation process, but the HO2 radical is relatively un-reactive. The hydroxyl 

molecule dominates the final oxidation process in the hydrogen/oxygen reaction (RXN 
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11, 12). Therefore, the rate of hydroxyl generation is important for determining the 

explosion limits of hydrogen/oxygen combustion. 

 

 
Table 5.1. Possible reaction mechanism of H2-O2  

 

RXN  1: H2 + O2 ↔ HO2 + H           (Initiation) 
RXN  2: H2 + M ↔ 2H + M             (Initiation) 
RXN  3: O2 + M ↔ 2O + M             (Initiation) 
 
RXN  4: H + O2 ↔ O + OH               (branching) 
RXN  5: O + H2 ↔ H + OH              (branching) 
RXN  6: H2 + OH ↔ H2O + H          (propagation) 
RXN  7: O + H2O ↔ OH + OH         (branching) 
 
RXN  8: H + O + M ↔ OH + M       (termination) 
RXN  9: HO2 + H ↔ H2O + OH     (termination) 
RXN10: H + O2 + M ↔ HO2 + M  (propagation) 
RXN11: OH + HO2 ↔ H2O + O2    (termination) 
RXN12: OH + H + M ↔ H2O + M  (termination) 
 
RXN13: HO2 + H2 ↔ H2O2 + H       (propagation) 
RXN14: H2O2 + M ↔ 2OH + M       (branching) 
RXN15: HO2 + HO2 ↔ H2O2 + O2  (termination) 
RXN16: HO2 + H ↔ 2OH          (propagation) 
RXN17: HO2 + O ↔ OH + O2        (propagation) 
 
RXN18: H + H + M ↔ H2 + M       (termination) 
RXN19: O + O ↔ O2 + M                 (termination) 
RXN20: H + O + M ↔ OH + M       (termination) 
RXN21: H + OH + M ↔ H2O +M     (termination) 

 

  

At high pressure and low temperature conditions, the formation of the HO2 radical 

becomes important (RXN 13-17). The HO2 radical generates hydrogen peroxide (H2O2) 

radicals, which in turn produce OH radicals through the branching reactions (RXN 13-

15). In addition, the HO2 and atomic radicals contribute to the production of OH radicals 

(RXN 16, 17) resulting in a short-lived high concentration of OH radicals. From this set 
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of reactions it is easy to see that the HO2 radical produces OH, which can then react with 

more HO2 (RXN 11) to produce H2O product. Thus, the HO2 radical can both initiate 

and sustain the termination process.  

 

Molecular dissociation is a significant effect for a stoichiometric hydrogen/oxygen 

flame. Dissociation reactions have high activation energies, resulting in very sensitive 

temperature variations. Hence, the dissociation of the reactants results in H and O 

radicals at low pressure and high temperature conditions. These highly reactive radicals 

very quickly form stable molecules such as H2, O2, and H2O and OH radicals by several 

recombination processes (RXN 18-21).  

 

In particular, the conditions of interest in this study are the ZND post-shock conditions, 

which exist at high temperatures and pressures. The HO2 reaction processes (RXN 13-

17) occur during the induction process, but the temperature due to the shock-

compression is not high enough to induce dissociation. Thus, the high temperature 

mechanism mentioned above cannot be reliably applied to an induction zone. In fact, the 

ZND reaction processes mainly rely on the chain-branching and HO2 reaction 

mechanism.  

     

Structure of H2-O2 ZND Detonation  

 

The H2-O2 reaction mechanism was used in the simulation tool described here to 

compute the post-shock condition within a ZND detonation wave. The equilibrium 

calculation estimated the Mach number of the stoichiometric CJ H2-O2 detonation to be 

5.3.  This structure - the leading shock wave, the subsequent high pressures and 

temperatures, and the ensuing reaction zone - results in the ZND reaction mechanism.  
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Figure 5.1. Thermodynamic properties and velocity of the ZND detonation 

   (Initial P: 1 atm, T: 300 K, M: 5.3) 
 

 
 

 

Using the methodology presented herein, this reaction mechanism produces the 

following results. Figure 5.1 shows the variations of physical properties through a 

stoichiometric hydrogen/oxygen ZND detonation wave. Note the artificially imposed 

discontinuous jump due to shock compression. In the subsequent attached reaction zone, 

all physical property values vary smoothly from the von Neumann state to the CJ state.  

 

The mixture’s thermodynamic properties exhibit the opposite trend of velocity in the 

reaction zone of a CJ detonation. There is a plateau behind the inviscid shock wave, 

associated with the induction zone of the detonation, which can be attributed to the 

chemical initiation reactions. Reaction rates slowly increase in the region behind the 

shock wave, resulting in a continuous slow temperature increase. In fact, the large heat 
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release due to the branching and termination reactions cannot take place until the radical 

concentrations are high enough. This finite amount of time needed is the induction time.  

In a steady state system, this results in a finite distance, termed the induction length, by 

which the reaction zone trails from the shock wave while the radical concentrations 

increase to yield explosion. This is evident in the simulation through the profiles of all 

physical properties which remain nearly constant in the region after the shock. One can 

see from Figure 5.1 that the induction length is very thin (approximately 40 μm), 

corresponding to an induction time of approximately 8 ns. Once explosion happens, the 

temperature of the mixture rapidly increases to the CJ temperature, and all other physical 

properties also move towards the CJ state.  

 

 

Table 5.2. Pressure differences between an experimental and calculated result 

 

Peak Pressure  
27 atm (experiment Ref.28)  
34 atm (ZND calc.) 
 
Equilibrium Pressure 
19 atm (experiment Ref. 28) 
19 atm (ZND calc. CJ point) 
 

 

 

As shown in Table 5.2, the peak pressure of our hydrogen/oxygen ZND calculation is 

25% higher than experimental values [27]. Since the ZND model is the simplest 

representation of a detonation wave, the simulation does not include wall friction, heat 

transfer effects, or mass transport. 

 

Figure 5.2 shows the temperature profile and mass fractions for the CJ hydrogen/oxygen 

detonation wave. The combustion of H2-O2 generates hydrogen and oxygen radicals in 
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the high temperature region. However, it is slightly easier to dissociate H2 than O2, hence 

H radicals appear faster than O radicals. Then, the hydroxyl radical concentration rapidly 

increases when chain branching occurs.      

 

 

 
 Figure 5.2. Temperature and species mass fractions in the reaction zone 
 

 

As the final equilibrium state is reached, the mass fraction of hydroxyl remains quite 

high (0.18). Since the H2-O2 mixture has a very high equilibrium temperature, the 

dissociation of the products occurs even at the final CJ state (RXN 16). Moreover the 

hydroperoxyl radicals generate hydroxyl radicals through the final oxidation process 

(RXN 9) which also causes high OH mass fractions at equilibrium.  
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Structure of H2-Air ZND Detonation  
 

Figure 5.3 shows the pressure and temperature change of both the hydrogen/oxygen and 

the hydrogen/air ZND detonations. The structure of a hydrogen/air reaction zone is 

similar to that of a hydrogen/oxygen reaction zone. However, the induction of the 

hydrogen/air mixture is five times longer than that of the hydrogen/oxygen mixture. 

Another characteristic of the hydrogen/air ZND detonation is that the thermodynamic 

properties at the von Neumann and equilibrium states are lower than for the equivalent 

hydrogen/oxygen system.  

 

 

 
Figure 5.3. The CJ detonation of hydrogen/oxygen and hydrogen/air mixture  
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In stoichiometric hydrogen/air mixtures, the nitrogen (N2) molecules are the dominant 

species because air is composed of 78% inert nitrogen molecules. After the shock 

compression, numerous nitrogen molecules inertly collide with hydrogen and oxygen 

molecules, and this delays the chain-branching reactions. In fact, the reaction rates of the 

final oxidation of hydrogen become slower than those of the hydrogen/oxygen system. 

Therefore, the induction plateau of a mixture longer than that of the hydrogen/oxygen 

system. Lower temperatures at the CJ state are due to the presence of N2. The presence 

of inert N2 reduces the equilibrium adiabatic temperature of a hydrogen/air detonation: 

less enthalpy is available for heating the products, since N2 contributes no enthalpy of 

formation. 

 

According to Table 5.3, the ZND detonation velocity of hydrogen/air is lower than that 

of hydrogen/oxygen reactions. The hydrogen/air mixture has a large initial detonation 

velocity because the CJ condition is sonic at equilibrium state, the combination of 

different fuel and oxidizers need an unequal detonation velocity. 

 

Table 5.3. Comparison of physical properties between H2-O2 and H2-Air Detonation, 
no equivalent accuracy should be inferred 

 

Detonation Velocity 
2836 m/s (CJ. H2 - O2) 
1969 m/s (CJ. H2 - Air) 
 
Post-shock Pressure 
32.8 atm (CJ H2 - O2 ) 
27.4 atm (CJ. H2 - Air) 
 
Post-shock Temperature 
1765 K (CJ. H2 - O2) 
1531 K (CJ. H2 - Air) 
ΔT = 233 K 
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Figure 5.4 shows pressure-specific volume (P-v) diagrams of hydrogen/oxygen and 

hydrogen/air detonations. According to the figure, the density of hydrogen/air system is 

higher than that of hydrogen/oxygen since the two systems have different chemical 

compositions at initial states. If the density of hydrogen/air has the same density as that 

hydrogen/oxygen system, and both initial states are identical, then the slope of 

hydrogen/oxygen should be larger because the detonation velocity of hydrogen/oxygen 

is faster than that of hydrogen/air, as shown in Table 5.3. In fact, the hydrogen/oxygen 

CJ detonation obtains higher pressure and temperature after the shock compression. As 

the reaction rates follow the Arrhenius law, the lower post-shock temperature extends 

the induction length of the hydrogen/air detonation.        

 

 

 
 Figure 5.4. P-v diagrams of hydrogen/oxygen and hydrogen/air detonations 
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One last difference between the hydrogen/oxygen and hydrogen/air reaction mechanisms 

is the possibility for NOX species generation when atmospheric nitrogen is present. 

There are three mechanisms by which nitrogen and oxygen combine to form NOX: 

thermal, prompt, and fuel NOX production mechanisms [28]. The thermal NOX 

production mechanism takes place when a large heat release results in a chemical 

combination of atmospheric nitrogen and atmospheric oxygen. The prompt NOX 

production mechanism occurs when hydrocarbon fuels combine with atmospheric 

nitrogen. The fuel NOX production mechanism occurs when nitrogen atoms present in 

the fuel combine with atmospheric oxygen. In hydrogen/air reactions, fuel and prompt 

NOX reactions cannot happen; only the thermal NOX mechanism, as shown in Table 5.4, 

will occur according to the following reactions:  

 

 
Table 5.4.  Details of thermal NOX reaction mechanism  

  

RXN  1: O + N2 ↔ NO + N  
RXN  2: N + O2 ↔ NO + O     
RXN 3: N + OH ↔ NO + H   

  

 

The Zel’dovich thermal NOX mechanism consists of three chain propagation reactions: 

(1) highly reactive oxygen radicals react to nitrogen molecules, (2) nitrogen radicals 

react to oxygen molecules, and (3) nitrogen radicals react to hydroxyl radicals. Each 

reaction must overcome high activation energies; therefore, the thermal mechanism is 

highly sensitive to temperature and becomes active for temperatures above 1800 K.  
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Figure 5.5. Mass fraction of NO and temperature for a hydrogen/air detonation  

 

 

As shown in Figure 5.5, the NO mass fraction takes the value of 5.5×10-4 at the final CJ 

state. Thus, the NOX mechanism does not contribute substantially to the differences 

between the hydrogen/air detonations. 

 

Comparison between Full and Reduced H2-O2 Reaction Mechanisms 
 

The hydrogen and oxygen reaction mechanism has been studied by many researchers. At 

Los Alamos Scientific Laboratory (LASL, the former name of Los Alamos National 

Laboratory), Bird and his colleagues developed a FORTRAN code for computing 

normal shock and reactive flow in gases [29]. Any reactive mixture could be simulated 

by two distinct computer programs: ‘HUG,’ which calculates the shock wave and 

Chapman-Jouguet (CJ) states, and ‘KIN,’ which integrates the rate equations to obtain a 
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steady-state solution. The KIN program uses reduced chemical kinetics of 9 species and 

12 reactions for the hydrogen/oxygen/argon ZND detonation wave. The present work 

achieves a similar result by using the Cantera shock and detonation tool box to calculate 

the von Neumann and equilibrium states, while using an ODE integrator with the 

detailed chemical kinetics of GRI 3.0 with 53 species and 325 reactions. 

 

  

 
 Figure 5.6. 2H2 + O2 + 9Ar CJ detonation: GRI 3.0 reaction mechanism compared 

  to KIN reaction mechanism 

 

Figure 5.6 shows the temperature profile for the H2-O2-Ar detonation, computed using 

LASL and GRI 3.0 kinetics. The initial condition is set at standard pressure and 

temperature (P0 = 1 atm, T0 = 300 K) with a CJ detonation velocity of D = 1572 m/s, 
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analytically computed by Cantera shock and detonation tool box1. Note that all physical 

properties at the VNP, i.e. after the shock compression, are identical for both the LASL 

and GRI-3.0 detonations. The results of the reaction zone calculation, however, are 

slightly different: the temperature of the LASL reaction mechanism reaches the CJ 

temperature faster than it does with the GRI 3.0 (Figure 5.6). 

 
Table 5.5 lists all hydrogen/oxygen/argon reactions of the LASL code. In the initiation 

process (RXN 5), the hydrogen and oxygen molecules directly generate two hydroxyl 

molecules; such reactions that lead from two stable molecules to two radical species 

cannot be true elementary steps. Indeed, it would be difficult to accomplish the breaking 

of two homonuclear bonds and the formation of two heteronuclear ones in a single step. 

Instead, the GRI-3.0 kinetic scheme is based on a more detailed reaction mechanism, 

which incorporates more reactions to generate hydroxyl molecules. According to the 

hydrogen/oxygen reaction mechanism in Table 5.5, the hydroxyl radicals begin forming 

the product water (H2O) molecules through RXN 3 & 4. 
 

 

Table 5.5. Reaction mechanism of LASL program for H2-O2-Ar reaction 

 

RXN  1: H + O2 ↔ OH + O           (branching) 
RXN  2: H2 + O ↔ OH + H           (branching) 
RXN  3: H2 + OH ↔ H2O + H            (propagation) 
RXN  4: OH + OH ↔ H2O + H            (termination) 
RXN  5: M + H2 + O2  ↔ 2OH + M     (initiation) 
RXN  6: H + H +Ar ↔ H2 + Ar         (termination) 
RXN  7: H + H + H2O ↔ H2 + H2O  (termination) 
RXN  8: H + O2 + Ar ↔ HO2 + Ar  (propagation) 
RXN  9: H + O2 + H2O ↔ HO2 + H2O (propagation) 
RXN10: H + OH + Ar ↔ H2O +Ar  (termination) 
RXN11: H + OH + H2O ↔ 2H2O  (termination) 
RXN12: OH + HO2 ↔ H2O +O2   (termination) 

                                                           
1 It should be noted that despite the use of 4 and 5 digits in the description of observables (such as D) no 
equivalent accuracy should be inferred. For example, the detonation velocity of a planar H2-O2 detonation 
would be approximately 1600 m/s, if such a one-dimensional system could be generated in practice. 
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 Figure 5.7. OH mole fraction for LASL and GRI kinetic mechanisms in a reaction zone 
 
 

 

Figure 5.7 shows the mole fractions of hydroxyl radicals for the LASL and GRI-3.0 

reaction mechanisms. The mole fraction of hydroxyl for the GRI-3.0 mechanism 

increases from 10-8 to 10-6 in the induction zone. Then, the chain-branching reactions 

cause the temperature to increase exponentially up to the CJ state. Since the LASL 

mechanism has faster hydroxyl generation, the branching reaction also begins sooner 

than with the GRI-3.0 mechanism. The difference between the hydroxyl mole fractions 

indicates that the temperature increases faster with the LASL reaction mechanism than 

with the GRI-3.0 mechanism (steeper slope). 
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CH4-O2 Reaction Mechanism 

 
Table 5.6 shows the main reactions in the methane/oxygen system. At low temperature 

conditions, the chain-initiation step occurs through the reaction of stable methane and 

oxygen molecules and generation of methyl (CH3) and hydroperoxyl (HO2) radicals 

(RXN 1). At high temperatures, the methane molecule reacts with dissociated H, O, and 

OH radicals (RXN 2-4) to produce more methyl radicals. 

 

At low temperatures, formaldehyde (CH2O) can form directly from the reaction of 

methyl radicals and oxygen molecules (RXN 5).  At this point, rapid oxidation of methyl 

radicals would require a sufficient concentration of oxygen molecules at high 

temperatures. If there is an insufficient oxygen concentration in the reacting mixture, the 

methyl radicals will react with the oxygen radicals (instead of reacting with oxygen 

molecules) to form formaldehyde (RXN 6).  

 

The formaldehyde produced by RXN 5 or 6 can be further broken down to produce 

formyl (CHO) radicals by several different chain branching reactions (RXN 7-9). The 

CHO radicals will rapidly react with oxygen or M (any stable gas molecule) to generate 

carbon monoxide (CO) (RXN 10-11). Carbon-monoxide is a critical factor for the final 

oxidation processes to generate carbon dioxide (CO2).  

 

There are several reactions that generate CO2 molecules from CO (RXN 12 – 14). 

Referring back to the hydrogen/oxygen reaction mechanism, it was seen that a high 

concentration of hydrogen radicals is a good indicator of a high overall reaction rate. 

Similarly, for the methane/oxygen reaction, formaldehyde concentrations are a good 

indicator of the overall reaction rate. 
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Table 5.6. Main reactions and mechanism of methane/oxygen combustion 

RXN  1: CH4 + O2 ↔ CH3 + HO2   (Initiation) 
RXN  2: CH4 + H ↔ CH3 + H2    (propagation) 
RXN  3: CH4 + O ↔ CH3 + OH    (branching) 
RXN  4: CH4 + OH ↔ CH3 + H2O   (propagation) 
 
RXN  5: CH3 + O2 ↔ CH2O + OH    (propagation) 
RXN  6: CH3 + O ↔ CH2O + H      (termination) 
 
RXN  7: CH2O + O2 ↔ CHO + HO2  (branching) 
RXN  8: CH2O + HO2 ↔ CHO + H2O2 (branching) 
RXN  9: CH2O + CH3 ↔ CHO + CH4  (propagation) 
RXN10: CHO + O2 ↔ CO + HO2       (propagation) 
RXN11: CHO + M ↔ CO + H + M     (propagation) 
 
RXN12: CO + O2 ↔ CO2 + O             (branching) 
RXN13: CO + OH ↔ CO2 + H             (propagation) 
RXN14: CO + H2O ↔ CO2 + H2         (termination) 

 

 Figure 5.8. Mass production/destruction rates of CJ CH4-O2 detonation 
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Figure 5.8 shows the mass production/destruction rates for certain major and minor 

species. In the induction zone, CH3 radicals cannot sustain themselves and immediately 

react to generate CH2O. Once the temperature becomes high enough, CH3 is retained 

because of a large CH4 decomposition reaction. However, CH3 will be completely 

consumed when all the CH4 is depleted during the reaction.  

 

Structure of CH4-O2 ZND Detonation  

 

Figure 5.9 shows the pressure profile of the CJ methane/oxygen detonation through the 

reaction zone.  

 

 

 
Figure 5.9. Pressure contour for the CJ detonation of stoichiometric CH4-O2 reaction 
  (Initial P: 1 atm, T: 300 K) 
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Pressure sharply decreases from its value at the von Neumann point to the CJ condition.  

The pressure path of the methane/oxygen ZND detonation is similar to that of the 

hydrogen/oxygen case, but the induction length of methane/oxygen detonation is longer 

than that of hydrogen/oxygen detonation by approximately a factor of four (CH4-O2: 150 

μm, H2-O2: 40μm). This is expected since methane, a more complicated molecule, needs 

to be broken down to many intermediate species, while the H2-O2 system is a sub-system 

of the CH4-O2 mechanism.   

 

 

 
 

 

Figure 5.10. Temperature and mass fractions of main species in the reaction zone for the 
 CJ detonation of stoichiometric CH4-O2 mixture (Initial P: 1 atm, T: 300 K) 

 

Figure 5.10 shows the temperature and selected mass fractions for the CJ 

methane/oxygen detonation wave. At the post-shock state, the high temperature results 
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in a modest reaction, which in turn changes the initial compositions of methane and 

oxygen molecules. At the same time the temperature is not high enough to induce 

dissociation or activate the high reaction rates of the high-temperature oxidation 

mechanism. The breakdown of the reactants slowly generates methyl and other reactive 

radicals (RXN 1-4), which quickly react to form formaldehyde; thus, the behavior of the 

mass fractions of formaldehyde coincides with the increase in methane consumption. 

Carbon monoxide is generated by the chain-branching and propagation reactions through 

the formyl reactions (RXN 10-11). The final oxidation of the CH4-O2 reaction occurs 

when enough carbon monoxide molecules have been generated such that RXN 12-14 

activate and produce CO2. These exothermic reactions finally raise the temperature to 

the Chapman-Jouguet state. When the methane molecules are completely consumed, the 

temperature slowly converges to the Chapman-Jouguet state, and the remaining carbon 

monoxide molecules appear in the equilibrium products.  

 

 

 
 Figure 5.11. Velocity, sound speed, and Mach number in the reaction zone for the 

CJ detonation of stoichiometric CH4-O2 mixture (Initial P: 1 atm, T: 300 K) 
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Figure 5.11 shows the relationships between flow speed, sound speed, and Mach number 

for the methane/oxygen CJ detonation wave. The flow velocity after shock compression 

is subsonic (Mach = 0.33). In the induction zone, the velocity increases as the density of 

the mixture decreases due to the reaction. The sound speed is primarily a function of 

temperature ([γRT]1/2 for the equilibrium speed of sound), and hence [γRT]1/2 increases as 

the temperature increases.    

 

Structure of CH4-Air ZND Detonation  

 

Figure 5.12 shows the pressure and temperature change of both methane/oxygen and 

methane/air mixtures in the ZND reaction zone. The structure of the methane/air reaction 

zone is similar to that of the methane/oxygen reaction. As in the hydrogen/air 

mechanism, temperatures at von Neumann and CJ states are lower, and the induction 

length is 100 times longer than that of methane/oxygen ones.  

 

 

 Figure 5.12. The CJ detonation of methane/oxygen and hydrogen/air mixture 
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The longer induction length of methane/air detonation is caused by lower temperature 

after shock compression and the inert collisions of reactive molecules with N2 molecules. 

After the shock compression, a large number of nitrogen molecules inertly collide with 

methane and oxygen molecules, which delays the chain-branching reactions.  

 

According to Table 5.7, the detonation velocity of methane/air is lower than that of 

methane/oxygen reactions. The initial pressure and temperature are identical in both 

cases, while the specific volumes are very close, yet the methane/oxygen mixture has a 

large detonation velocity2.  

 

 

 

Detonation Velocity 
2390 m/s (CJ. CH4 - O2) 
1802 m/s (CJ. CH4 - Air) 
 
Post-shock Pressure 
55.1 atm (CJ. CH4 - O2 ) 
31.1 atm (CJ. CH4 - Air) 
 
Post-shock Temperature 
1884 K (CJ. CH4 - O2) 
1525 K (CJ. CH4 - Air) 

Table 5.7. Comparison of physical properties between CH4-O2 and CH4-Air Detonation, 

ΔT = 359 K 

no equivalent accuracy should be inferred 

 

                                                           
2 It should be noted that this is a clear difference between hydrogen fuel detonations and 
methane fuel detonations. The first one exhibits large density and specific volume 
sensitivity to the presence of nitrogen while the second one does not. This is clearly due 
to the large disparity between the molecular weights of hydrogen and all other species 
under consideration. 
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 Figure 5.13. P-v diagrams of methane/oxygen and methane/air detonations 
 

 

Figure 5.13 shows P-v diagrams of methane/oxygen and methane air detonations. In this 

case, the initial states of a methane/air detonation are close to that of a methane/oxygen 

detonation. The slope of the methane/air Rayleigh line, which is associated with the 

detonation velocity, is lower than that of methane/oxygen. In fact, the pressure and 

temperature are also lower than that of the methane/oxygen case at the von Neumann 

and CJ states, as shown in Table 5.7. The presence of N2 reduces the equilibrium 

adiabatic temperature of a methane/air detonation since N2 acts as diluent in the system.  

 

Like the hydrogen/air system, the thermal NOX production mechanism is also active here 

at high temperature. The peak temperature (2780K) is lower than the temperatures at 

which N2 dissociates, and as a result, the importance of thermal NOX is reduced. For 
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CH4, as well as for all other hydrocarbons, there exists an additional NOX production 

mechanism, namely the prompt NOX mechanism [30].  

 

 
Table 5.8.  Details of prompt NOX reaction mechanism  

 

RXN  1: CH + N2   ↔ HCN + N 
RXN  2: CH2 + N2 ↔ HCN + NH 
RXN  3: C + N2 ↔ CN + N 
RXN  4: HCN + O ↔ NCO + H 
RXN  5: NCO + H ↔ NH + CO 
RXN  6: NH + H ↔ N + H2 
RXN  7: N + OH ↔ NO + H 
RXN  8: O + N2 + M ↔ N2O + M 
RXN  9: N2O + O ↔ 2NO 

 

 

At low temperatures, hydrocarbons react with N2 to form hydrogen cyanides (HCN) in 

Table 5.8. There are two reactions to produce HCN from the CH4 molecules: (1) the CH 

radicals react with N2 to form HCN and N, (2) the CH2 radicals react with N2 to form 

HCN and NH. Since nitrogen radicals are generated through RXN 1, 3, and 6, the 

nitrogen radicals react with hydroxide to produce NO, as in the thermal NOX production 

mechanism (RXN 7). At high temperatures, nitrous oxide (N2O) also generates NO 

when oxygen radicals exist at sufficient concentrations.  

 

Figure 5.14 shows the temperature and mass fraction of NO for a methane/air 

detonation. When temperature is not high enough, no NO is generated.  
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Figure  5.14. Mass fraction of NO and temperature for a methane/air detonation  
 

 

When the combustion begins, NO increases to its final CJ value of 3.7×10-4. In fact, the 

NOX mechanism does not contribute substantially to temperature reduction.        

 

Chapman-Jouguet and Overdriven Detonation on P-v Diagram   

 

Figure 5.15 shows the computation of the reaction zone of a stoichiometric 

methane/oxygen CJ detonation on the P-v diagram. The slope of the computed line 

(purple line) exactly matches the slope of the Rayleigh line (green line) of the 

methane/oxygen CJ detonation because the total mass flux of the flow is constant 

throughout the entire process of the one-dimensional detonation.   
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Figure 5.15. The CJ detonation of CH4-O2 reaction on a Rankine-Hugoniot diagram  

 

 

An overdriven detonation occurs when a piston forcefully induces an additional velocity 

(from right to left) onto the detonation wave as shown in Figure 5.16. A strong 

overdriven detonation can be maintained by a piston whose velocity is independently 

controlled, thereby providing additional downstream velocity to the detonation wave.  

 

 
 

 

VNP 
(0) (∞)

 Figure 5.16. Schematic diagram of over-driven detonation by a piston 
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Since the supersonic shock wave compresses an unburnt incoming flow, the von 

Neumann point of an overdriven detonation is higher than for the case of the Chapman-

Jouguet detonation. The slope of the Rayleigh line indicates a larger mass flux induced 

by the piston (Figure 5.17). A reaction slope always follows the Rayleigh line for any 

inviscid one-dimensional ZND detonation; therefore, the new final equilibrium point lies 

in the subsonic region of the equilibrium Hugoniot curve. 

 

 

 
Figure 5.17. Comparison between an overdriven detonation (MCJ = 1.2) 

 and a Chapman-Jouguet detonation (MCJ = 1.0) in P-v diagram 
 

 

 
 
 

Mollier Diagrams 

 

Figure 5.18 shows both thermal and chemical enthalpies due to the methane/oxygen 

ZND detonation. The Mollier diagram is a graphical representation of the relationship 
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between the enthalpy and entropy of the ZND detonation. The blue solid line in the 

Mollier diagram indicates the enthalpy change along the shock adiabat. The purple solid 

line represents the thermal and chemical components of the enthalpy change due to the 

reaction process along the Rayleigh line. 

 

  

 
   Figure 5.18. The Mollier diagram (h-s) of a CH4-O2 Chapman-Jouguet detonation  
 

 

According to the energy equations, the stagnation total enthalpy remains a constant 

throughout the ZND detonation structure. Thus, the difference between the stagnation 

enthalpy (hstag) and the enthalpies along the Rayleigh trajectory is equal to the specific 

kinetic energy in the reaction zone.   
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The temperature of the mixture increases due to the reaction process (Figure 5.19), and 

as a result, the thermal enthalpy also increases, while the chemical enthalpy decreases 

due to the reaction. In fact, the overall enthalpy slightly decreases throughout the 

reaction, due to the acceleration inherent in the process from the VNP to the final 

equilibrium state.  

 

  

 

(0) 

(∞) 

Figure 5.19. Temperature-Entropy diagram of a CH4-O2 Chapman-Jouguet detonation  

 

 

According to the P-v diagram shown in Figure 5.15 the computational solution of the 

ZND detonation exactly matches the Rayleigh line up to the equilibrium state. However, 

the reaction follows only the subsonic region of the Rayleigh line. Thus, the Rayleigh 

line has another path that represents the supersonic region, which is a dashed line on 

Figure 5.19. This figure presents a T-s diagram, which can be useful in visualizing the 
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different causes of entropy increase through the detonation. As shown in the figure, the 

shock results in entropy increase due to irreversible compression, while the reaction 

results in entropy increase mostly through the difference in chemical potential between 

reactants and products. The entropy increase due to the reaction is stronger than the one 

due to the shock compression. 

Differential Area Effect (Diffuser) 
 

One straightforward application of the direct ODEs integration is the addition of an area 

function into the mass conservation equations. As shown in Figure 5.20, a diffuser can 

be made by linearly increasing the cross-sectional area of the one-dimensional 

detonation stream tube. The same numerical scheme presented in this study can be used 

to calculate a methane/oxygen detonation through a diffuser.    

 

  

  

 

 D = CJ 

V↑ (supersonic)  V↓ (subsonic)  
 

 

 

Figure 5.20. Chapman-Jouguet detonation through a diffuser  

 

 

Figure 5.21 shows the result of a simple linear change in the diffuser area. The end tube 

area is linearly increased by 0.1%, 1%, 5%, and 10% of the initial cross-sectional area, 

while the distance between the changes was constant and equal to 0.2 cm. Since the 

reaction process of the methane/oxygen CJ detonation occurs within a very narrow 

region (much less than 0.1 cm), the slow linear area increase can only affect the pressure 

expansion substantially when most of the reactions are complete.   
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Figure 5.21. Pressure change using different diffuser cross-sectional areas  

 

 

According to Figure 5.21, the flow expansion occurs after the reaction ends, and the 

pressure increase corresponds to the area increase. A good application for the area 

expansion is a bell-shaped nozzle configuration which offers rapid nozzle area increase. 

If the rate of area change is high enough in the initial stages of a reaction after the VNP 

state, the reactions may be affected, and the detonation may be “frozen” at some 

particular state.   

Future Research  
 

One possible future research direction includes the addition of wall friction forces or 

external heat transfer terms into the ODEs detonation integration. The equations would 

take the following form 
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2 2
0 0 0 1 1 1 ( )

FP u P u
A x
δρ ρ+ = + + ∫

Momentum equation: 

 
 
Energy equation:  2 2

0 1
0 12 2p p

u u Qc T Q c T
( )A x
δ

+ + = + + ∫ 

 

where Fδ  is an effective wall friction force that represents the effect of the boundary 

layer, and Qδ  is an effective wall heat transfer term.  

 

A more accurate detonation model should also include transport effects into the one-

dimensional conservation equations [30]. The simpler case would be including a 

viscosity term into the conservation equations as  

 

Momentum equation:   2 4( )
3

d dP u
dx dx

ρ μ 0u
+ − =  

Energy equation:     21 4[ ( ) ]
2 3

d du h u u
dx dx

ρ μ 0u
+ − =  

 

where μ is the kinematic viscosity. Other transport effects, such as heat conduction and 

mass diffusion, would be omitted from such a simple model [31, 32].  
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6. CONCLUSIONS 

 

This thesis presents a computational simulation of the Zel’dovich-von Neumann-

Doering detonation using detailed chemical kinetics and thermodynamics solvers. 

 

The Zel’dovich-von Neumann-Doering detonation is the combination of an inviscid 

shock and a reaction zone. The flow through the inviscid shock results in algebraic jump 

equations that are numerically solved by using a Newton-Raphson iterative technique. In 

the reaction zone, the direct integration of ordinary differential equations with detailed 

chemical kinetics and thermodynamics provides a numerical solution of 

thermochemistry. The present work contributed knowledge about the calculation of the 

Zel’dovich-von Neumann-Doering detonation for four different fuel/oxidizer mixtures: 

H2-O2, H2-Air, CH4-O2, and CH4-Air. Computational results describe the behavior of 

thermochemistry, i.e. physical properties (pressure, velocity, temperature, etc), and mass 

fractions within a Zel’dovich-von Neumann-Doering detonation.    

 

Future work will concentrate on including additional terms, such as wall friction, 

external heat transfer, and transport effects and should lead to a more accurate 

description of the detonation and ultimately contribute to the implementation of the 

transient inlet concept. 
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