
  

SENSOR FAULT DIAGNOSIS USING PRINCIPAL COMPONENT ANALYSIS 

 

 

A Dissertation 

by 

MAHMOUDREZA SHARIFI  

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  
 
 

DOCTOR OF PHILOSOPHY 
 

 

 

 

 

December 2009 

 

 

Major Subject: Mechanical Engineering  



  

SENSOR FAULT DIAGNOSIS USING PRINCIPAL COMPONENT ANALYSIS 

 

 

A Dissertation 

by 

MAHMOUDREZA SHARIFI  

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  
 

  
DOCTOR OF PHILOSOPHY 

 

Approved by: 
 
Chair of Committee,  Reza Langari 
Committee Members, Shankar Bhattacharyya 
 Richardo Guttierrez-Osuna 
 Alexander Parlos  
Head of Department, Dennis O‘Neal 
 
 
 
 

December 2009 
 
 
 

Major Subject: Mechanical Engineering 



iii 

 

ABSTRACT 

 

Sensor Fault Diagnosis Using Principal Component Analysis. (December 2009) 

Mahmoudreza Sharifi, B.S. Sharif University of Technology; 

M.S., University of Tehran 

Chair of Advisory Committee: Dr. Reza Langari 

 

The purpose of this research is to address the problem of fault diagnosis of sensors which 

measure a set of direct redundant variables. This study proposes:  

1. A method for linear senor fault diagnosis  

2. An analysis of isolability and detectability of sensor faults  

3. A stochastic method for the decision process  

4. A nonlinear approach to sensor fault diagnosis.  

In this study, first a geometrical approach to sensor fault detection is proposed. The 

sensor fault is isolated based on the direction of residuals found from a residual 

generator. This residual generator can be constructed from an input-output model in 

model based methods or from a Principal Component Analysis (PCA) based model in 

data driven methods. Using this residual generator and the assumption of white Gaussian 

noise, the effect of noise on the isolability is studied, and the minimum magnitude of 
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isolable fault in each sensor is found based on the distribution of noise in the 

measurement system.  

Next, for the decision process a probabilistic approach to sensor fault diagnosis is 

presented. Unlike most existing probabilistic approaches to fault diagnosis, which are 

based on Bayesian Belief Networks, in this approach the probabilistic model is directly 

extracted from a parity equation. The relevant parity equation can be found using a model 

of the system or through PCA analysis of data measured from the system. In addition, a 

sensor detectability index is introduced that specifies the level of detectability of sensor 

faults in a set of redundant sensors. This index depends only on the internal relationships 

of the variables of the system and noise level.  

Finally, the proposed linear sensor fault diagnosis approach has been extended to 

nonlinear method by separating the space of measurements into several local linear 

regions. This classification has been performed by application of Mixture of Probabilistic 

PCA (MPPCA).  

The proposed linear and nonlinear methods are tested on three different systems. The 

linear method is applied to sensor fault diagnosis in a smart structure and to the 

Tennessee Eastman process model, and the nonlinear method is applied to a data set 

collected from a fully instrumented HVAC system.  
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This dissertation follows the style of AIChE Journal.  

CHAPTER I 

INTRODUCTION TO SENSOR FAULT 

DIAGNOSIS SYSTEMS 

With the recent advances in safety and reliability standards and demands for reduction of 

maintenance cost, the importance of online fault detection has significantly increased 

[Wang et al. 2009][Isserman 2005][Nandi et al. 2005]. A subcategory of online fault 

detection, which is the subject of this study, is online detection of sensor faults and 

measurement errors. This problem is very similar to the general kinds of problems which 

are called estimation of missing data  [Muteki et al. 2005]  but more specifically directed 

at sensor technology, and is usually referred to as online sensor monitoring, gross error 

detection, sensor data validation, or sensor fault diagnosis (SFD). The latter term will be 

used in this research.  

Sensor fault diagnosis is mainly applicable in industrial facilities, such as nuclear power 

plants [Gross et al. 1997][Dorr et al. 1997][Hines et al. 1998] and [Hines and Davis 

2005], HVAC systems [Rossi and Braun 1993][Namburu et al. 2007][Yang et al. 

2008],and aerospace systems where a large number of sensors are used for control and 

diagnostic purposes. In these systems, usually after several operational cycles, sensors go 

out of calibration. This causes loss of performance of the overall system. In more critical 
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systems, such as aircraft engines, loss of accuracy of these sensors may even cause 

catastrophic failure [Duane et al. 1998]. The traditional method for alleviating this 

problem is periodic monitoring and replacement of sensors, which usually requires 

shutting down the entire system. Therefore the main advantage of SFD is to shift away 

from periodic maintenance to more efficient condition based maintenance (CBM).  

All methods of SFDs are based on some type of redundancy in the measurements. When 

several sensors are used to measure a single variable of the system, we have physical 

redundancy and the task of SFD is much easier. However, application of multiple sensors 

is not possible in many systems due to design limitations. Moreover, increasing the 

number of sensors results in a more costly system and further increases the cost of 

maintenance because added sensors need to be maintained as well.  

Another form of redundancy is Analytical redundancy which is based on inherent 

relationship between the variables of the system. This relationship can be found either by 

the physical model of the system in so called model based methods, or it may be derived 

based on a database gathered from a history of measurements from the system in data 

driven methods.  

Analytical redundancy itself has two categories: (1) static or direct redundancy (2) 

dynamic or temporal redundancy. The direct redundancy methods use algebraic 

relationship between the measured data, regardless of their dynamic behavior. It is the 

most popular method for SFD in large industries such as power plants and large HVAC 

systems that use multiple redundant sensors.  
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Dynamic redundancy methods, on the other hand, consider the dynamics of the system 

and use estimation theories to monitor the measurements of the system. Dynamic 

redundancy methods of SFD are in fact a part of general fault diagnosis which has a 

complete theoretical background in model based methods [Frank and Ding 1997]. 

Data driven SFD methods were mainly initiated after Autoassociative neural network 

(AANN) (as a nonlinear principal component analysis) method was proposed [Kramer 

1991]. The vast majority of data driven applications of SFD have used AANN as a basic 

tool [Guo and Musgrave 1995] [Hines et al. 1996] [Moller 1998][Guo et al. 1996][Wang 

and Cox 2004] [Hoffman and Kimble 2005]. However as reported by a number of 

researchers, there are many problems with using AANN in practice [Malthouse 1998] 

[Najafi et al. 2004] [Sharifi et al. 2004]. Since AANN is basically considered a principal 

component analysis (PCA) method, in this research these problems will be analyzed and 

classified into two separate or distinct categories. The first problem is that even a perfect 

method of PCA, without appropriate complementary algorithms, does not always work 

for SFD [Dunia et al. 1996]. The second problem is due to the inefficiency of AANN as a 

NLPCA tool as investigated by Malthouse [1998] and Moghaddam [2002]. Therefore it is 

necessary to study both of these issues (1) finding how to use principal component 

analysis, either linear or nonlinear, to reconstruct the faulty data, and (2) developing an 

effective NLPCA algorithm which is suitable for SFD. 
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Study of Linear SFD Using PCA  

PCA is the main tool for multivariate statistical process monitoring [Kresta  et al. 

1991][Wise and Ricker 1991] [MacGregor et al. 1991]. Typically, monitoring charts 

based on Hotelling T2 and the Q-Statistic, derived from the PCA analysis measured 

values, are used to detect faults using the concept of a contribution plot. In a contribution 

plot, the contribution of each individual variable to the Q-statistic and Hotelling T2 can be 

obtained and the variable having the largest contribution reflects the potential fault source 

[Miller et al. 1998]. Dunia and his colleagues investigated the application of PCA (linear) 

for SFD [Dunia et al. 1996]. They proposed a sensor validity index (SVI) to determine 

the status of each sensor. SVI is a number between zero and one. The closer this number 

is to 0, the more probable that the sensor is faulty. Accurate study of SVI shows that it is 

basically equivalent to the estimation of the value of a single sensor using its linear 

relationship with the rest of the sensors in the system.  Therefore, if we have 𝑛 sensors in 

the system, in order to evaluate the validity of the measurement in each sensor, we need 

to solve a set of 𝑛 − 1 linear equations. This problem is more troublesome when we want 

to extend this method to the nonlinear case. In fact in the linear case, as we will see in the 

next section, the relationship between the sensors is easily found with the PCA method, 

but this is not the case in the nonlinear case. Two alternative approaches will be presented 

in this research. The first approach is to use the parity equation and find the faulty sensor 

based on the direction of residuals to form an index called Sensor Failure Index (SFI). 

The second approach is to use the distribution of residuals to form the conditional 

probabilities of error in each sensor given the value of the residuals.   
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Study of Nonlinear PCA  

PCA has diverse application in machine learning and data compression. Therefore much 

research in this area has been performed to find a nonlinear version of PCA (NLPCA).  

Apart from AANN which was mentioned earlier; Principal Curves [Hastie 1984], Kernel 

PCA [Scholkopf et al. 1998], Mixture of Probabilistic PCA [Tipping and Bishop 2002], 

Input Training Neural Networks [Zhao and Xu 2004] and Gaussian Process Latent 

Variable Model [Lawrence 2005] are some of the suggested methods for implementing 

(and/or using) NLPCA. Some of these methods such as Kernel PCA (KPCA) and 

Principal Curves and have been used for process monitoring [Harkat et al. 2003][Cho et 

al. 2005]  but only AANN and Kernel PCA have been used in SFD problems [Cho et al.  

2004][Kramer 1992]. In this research, first the method of KPCA will be analyzed and a 

new method which is a combination of KPCA and Neural Networks is presented. Also a 

complete new algorithm for NLPCA will be presented which also uses properties of 

KPCA as will be explained in the next section.  

In summary, this research is to pursue three fundamental tasks. First, a framework for 

data driven SFD is presented. This part of the research is to answer a basic question apart 

from the methodologies and algorithms used, i.e. whether it is logically possible to 

validate the value of a sensor based on the readings from other sensors in the system. The 

second task is to analyze one of the most common methods for SFD, which is the 

application of AANN [Kramer 1991]. This analysis will specify the conditions under 

which we are able to have a successful SFD algorithm using AANN. The final task is to 
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present an effective method for the SFD problem which will incorporate the state-of-the-

art machine learning techniques. 

Technical Background 

Most data driven methods for SFD are nonlinear, i.e. it is assumed that there is a 

nonlinear correlation between the variables measured by the sensors. This is expected 

because most real systems have nonlinear behavior. Usually, an NLPCA algorithm is 

used in these methods. However, since there is no perfect algorithm for NLPCA, 

effectiveness of SFD is hindered by the inefficiency of existing NLPCA algorithms. With 

this in mind, in order to have a clear understanding of the limitations which are not 

related to inefficiency of NLPCA method, the first part of this research focuses on the 

linear methods for SFD. That is because orthogonal decomposition, which is used in 

linear PCA, can be considered as a perfect PCA method.  As an introduction to this 

subject, the nonlinear PCA method of AANN is first introduced in Section 2.1.  It is also 

explained how this method is used for SFD. In Section 2.2 the problem of linear SFD is 

explained and it is graphically demonstrated why PCA requires complementary 

algorithms to be used for sensor fault diagnosis. Finally, in Section 2.3 the KPCA method 

is explained.  

Introduction to Linear Approaches 

Before we study the 3 conditions of AANN introduced in 2.1, we need to investigate 

whether these conditions are satisfied under linear conditions. The linear form of AANN 
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is the general principal component analysis (PCA). The method of orthogonal 

decomposition or discrete Karhunene-Loeve transform, which is used in PCA, finds and 

orthonormal transformation of a set of correlated variables such that these variables have 

no correlation to each other in the new space.  

Induction to the Method 

Assume 𝐘 ∈ 𝓡𝑚×𝑛  is a matrix of measured values from a set of 𝑛 healthy sensors which 

are defined in the following form  

 

𝐘 =  𝐲𝟏 𝐲𝟐 … 𝐲𝐧 , (1) 

 

where 𝐲𝒊  ∈ 𝓡𝑚  is the history of 𝑚 measurements from the  𝑖𝑡ℎ  sensor. We also define 

the 𝑘𝑡ℎ row of matrix 𝐘, 𝒚<𝑘> =  y1
<𝑘> y2

<𝑘> … yn
<𝑘>  which is the 𝑘𝑡ℎ observation 

from the set of 𝑛 sensors. 
 

If we use 𝐓 to show the transformed form of the given data, we can write the following 

equation 

 

𝐘 = 𝐓𝐔T             (2) 
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where the matrix 𝐔 is the PCA transformation matrix. The data in 𝐓 are sorted according 

to their variance such that the first column has the maximum variance. Now if we 

decompose this matrix into a high variance part 𝐗, and a low variance part 𝚴, we have: 

 

𝐘 =  𝐗 𝚴  
𝐏T

𝐐T = 𝐗𝐏T + 𝚴𝐐T                            (3) 

 

where  𝐔 =  𝐏 𝐐 . The first part, 𝐗𝐏T, can be expressed as a latent variable model and 

the second part, 𝚴𝐐T , is the modeling error. It is important to notice that the dimension of 

𝐗 is m × r, where r < 𝑛 . In other words, the space of data has been reduced from 𝓡𝑛  to 

𝓡𝑟  

Once we find the PCA transformation, 𝐏, we can transform any set of new measurements 

into the space of high variance variables or principal spaces, 

 

𝒙 = 𝑷𝒚, (4) 

 

where 𝒚 = [𝑦1   𝑦2  … 𝑦𝑛] is a variable representing a set of measurement from this 

system. We can also simply regenerate the data from the latent variable space,  
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𝒚 = 𝑷𝑇𝒙 , (5) 

 

where  𝒚 =  𝑦 1 𝑦 2 … 𝑦 𝑛    is the estimated values of measurements after converting 

them into the latent variables space. Now if we combine these two transformations 

together, we find the relationship between the measured values and estimated values 

based on the existing linear relationship of the sensors. We will name this linear 

transformation, from measured values to estimated values, as PCA filtering,  

 

𝒚 = 𝐏T𝐏𝒚 . (6) 

 

The value of the residue between the measurements and the estimated values is simply  

 

𝒓 = 𝒚 − 𝒚 = 𝒚 − 𝐏T𝐏𝒚 =  𝐈𝑛×𝑛 − 𝐏
T𝐏 𝒚 . (7) 

 

We will show that, in general, PCA satisfies the identity and convergence condition but 

not the isolability condition. However, in some specific conditions PCA might also 

satisfy all three conditions. Only under those conditions PCA is usable for SFD.  
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This is graphically explained in Figure 1. This figure shows a 3-dimensional graphical 

representation of a set of 3 sensors which are linearly correlated to each other.  

 

   

Figure 1 Graphical demonstration of PCA filtering 

 

 

The blue dotted line is showing the correlation between Sensor S1, S3 and S3 which is 

found with PCA algorithm (Eq. (4)). Point A is the measured value point B is the 

reconstructed value and point C is the true value. i.e. every correct measurement should 

be on this line.  Now assume we want to measure the point C:  𝑦1
∗, 𝑦2

∗, 𝑦3
∗  which is the 

S3 

S1 

1 2 3( , , )y y y

S2 

C 
 

 

b 

1 2 3( , , )y y y

A 
 

B 
 

𝑟3  
𝑟2  

𝑟1  

S3 

S1 

 

S2 

 

a 

A: 𝑦1, 𝑦2 , 𝑦3  

C: 𝑦1
∗, 𝑦2

∗, 𝑦3
∗  

 
B: 𝑦 1, 𝑦 2 , 𝑦 3  
 



11 

 

 

true value of the variables, and assume that S3 is damaged therefore we measure the point 

A: 𝑦1 , 𝑦2 , 𝑦3  instead. If we use the regular method of PCA filtering, the point A is 

transformed to point B: 𝑦 1 , 𝑦 2 , 𝑦 3  which is the closest point on line L to this point in the 

sense of Euclidian norm shown. Therefore the residual vector, which is between the 

measured data and the estimated data is the vector 𝐴𝐵      = (𝑟1, 𝑟2, 𝑟3). It is clear from the 

right figure that the biggest element of this vector is not 𝑟3. Therefore, it is not necessarily 

true that the residual corresponding to the failed sensor is the biggest residual. This is the 

basic assumption in AANN based SFD. Therefore the indentifiability condition that was 

explained in Section 2.1 is not always met.   

It is obvious from this graph that even a perfect method of PCA does not always work for 

sensor fault diagnosis because of lack of isolability condition. Therefore, we need to 

modify the PCA method in order to make it capable of detecting the faulty sensor in the 

more general case. In other words the main problem for sensor fault diagnosis based on 

principal component analysis is how to map the data into the principal subspace such that 

it has minimum sensitivity to a single channel when we reconstruct them. This problem 

can be defined in the following form: 

We have a vector of 𝑛 variables 𝒚 =  𝑦1 𝑦2 … 𝑦𝑛   which are linearly related to a 

vector of 𝑝 variables (principal components) 𝒙 =  𝑥1 𝑥2 … 𝑥𝑝  in a fewer 

dimension space (𝑝 < 𝑛) by the matrix 𝐀[n×p] = [a𝑖𝑗 ]. 
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𝒚 = 𝐀𝒙 + 𝒆 (8) 

 

Here, 𝒆 is the modeling error and is related to the precision of sensors. If we consider the 

equations corresponding to each row of 𝐀 i.e.  a𝑖1 a𝑖2 ⋯ a𝑖𝑝  as a separate 

Equation,  

 

𝑦𝑖 =  a𝑖1 a𝑖2 ⋯ a𝑖𝑝  𝒙 + 𝑒𝑖  ,     𝑖 = 1,2,… , 𝑛  (9) 

 

The objective is to find 𝒙 such that it satisfies the maximum number of theses equations.  

This problem can be expressed as the famous problem of robust regression in which we 

want to find a linear regression which is not affected by departures from the model. Here 

is a typical robust regression problem:  

 

Least median of Squares   𝐿𝑀𝑆 = 𝐦𝐢𝐧𝐛 𝑤𝑖 − 𝒗𝒃 
2, (10) 
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where 𝑤𝑖  is the 𝑖𝑡ℎ  output and 𝒗 is the vector of inputs and 𝒃 is the linear relationship 

between the input and output variables that needs to be determined by regression 

analysis.  

In Equation (10), if we replace 𝑤𝑖 , 𝒗 and 𝒃 with 𝑦𝑖 , the 𝑖𝑡ℎ  row of 𝑨,  and 𝒙, it will 

convert robust regression problem to the problem of linear SFD. Therefore, different 

solutions that exist for robust regression problem can also be used in SFD.  

 

Previous Linear Approaches   

The problem of sensor fault diagnosis using PCA is studied by [Dunia et. al. 1996]. They 

have proved that the method of PCA filtering satisfies the convergence condition but 

since it does not satisfy the indentifiability condition, they used an optimization approach 

to reconstruct the faulty data. In this method, the notion of Sensor Validity Index (SVI) is 

introduced. SVI is a number between zero and one. When a given sensor is healthy SVI is 

close to one and vice versa. So the faulty sensor is detected and the estimated value of the 

faulty data is substituted for the wrong measurement and this value will converge to the 

correct value after several iterations.  

Before we introduce the sensor validity index, several auxiliary variables have to be 

defined. Consider the following PCA filtering matrix which is a combination of mapping 
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and de-mapping transformation matrices [Dunia et al. 1996]. Equations (11)-(16) are 

directly quoted from [Dunia et al. 1996]. 

 

𝑪 = 𝐏𝐏T =  𝒄𝟏 𝒄𝟐 ⋯ 𝒄𝒏 . (11) 

 

As noted, the columns of this matrix are denoted by  𝒄𝒊 

 

𝒄𝒊 =  𝑐1𝑖 𝑐2𝑖 ⋯ 𝑐𝑛𝑖  . (12) 

 

Next, 𝑮𝑖  were defined as 

 

𝑮𝑖
𝑇 =  𝝃𝟏 𝝃𝟐 ⋯ 𝒈𝑖 ⋯ 𝝃𝒏 ,  (13) 

 

where 𝝃𝒊 is a unit norm vector with zeros in all entries except the 𝑖𝑡ℎ  and 
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𝒈𝒊
T =

1

1−𝑐𝑖𝑖
 𝒄−𝑖  

𝑇 0 𝒄+𝑖  
𝑇 . (14) 

 

where 𝒄−𝑖 = [𝑐𝑖1  𝑐𝑖2  … 𝑐𝑖(𝑖−1) ] and 𝒄+𝑖 = [𝑐𝑖(𝑖+1)  𝑐𝑖(𝑖+2)  … 𝑐𝑖𝑛  ]. 

Sensor validity index, 𝜂𝑖 , is calculated by the following formula [Dunia et al. 1996]: 

 

𝜂𝑖 = 1 − (1 − 𝑐𝑖𝑖)
𝐷𝑖

   𝐷ℎ(1 − 𝑐ℎℎ )𝑛
ℎ=1

 (15) 

 

where the  𝐷𝑖  is defined by the following equation  

𝐷𝑖 =  𝒚 − 𝑮𝒊𝒚   (16) 

with 𝒚 as the vector of measurements. 

This method is computationally equivalent to solving (𝑛 − 1) system of equations for 

evaluating the validity of each sensor. For example consider the system of equations 

given in (8). In this system, we have 𝑛  equations which corresponds to 𝑛  sensor 

measurements and 𝑝 unknowns (𝑝 < 𝑛) which are the latent variables e.g. if we want to 

test the validity of the measurement in Sensor S1, we find the value of the latent variables 

by excluding the first equation from the system. Then, using the first equation and we 
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estimate the value of the first sensor and compare it with the measured value. If the first 

sensor is the faulty one, the measure value will be different from the estimated value; 

otherwise they are very close to each other.   

KPCA Based Methods 

Kernel Principal Component Analysis is a method of Nonlinear PCA in which we apply a 

linear PCA in a nonlinear kernel space [Scholkopf et al. 1998]. In other words, KPCA 

finds the functions defined in the following form: 

 

𝑓𝑗  𝒙 =  ∝𝑖,𝑗 𝑘 𝒙𝑖 , 𝒙 
𝑚
𝑖=1 ,       (17) 

 

such that maximizes the variance of 𝒛 ≡ 𝑓𝑗  𝒙 . In this equation, 𝑘 𝒙, 𝒚  is a kernel 

function in the dot product space  ℛ𝑚 × ℛ𝑚  with fixed parameters, 𝑓𝑗  𝑥  is the 𝑗𝑡ℎ  

principal function and ∝𝑖,𝑗  is 𝑖𝑡ℎ  coefficient of the 𝑗𝑡ℎ  principal component. 

Because of the linearity of the algorithm, this method is very popular among various 

approaches to NLPCA. However, the dependency of the solution on the type of kernel 

function and the parameters of the kernel function is a major drawback of this method, 

because we need to have some qualitative information about the data to understand which 

kernel function has better performance. Another disadvantage is that since the order of 
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calculations is dependent on the number of observations, there is a significant 

computational cost for large data sets.  

Method of KPCA has also been proposed for process monitoring [Cho et al. 2005] and 

sensor fault diagnosis [Cho et al. 2004]. The algorithm proposed for process monitoring 

does not need the reconstruction algorithm and defines two nonlinear monitoring indexes 

analogous to 𝑇2  and SPE, and process monitoring is performed based on statistical 

analysis of these indexes. SPE is the root mean squared of the residual between the 

original and the PCA-filtered data and 𝑇2 is the root mean squared of the principal 

components [Kresta et al. 1991][Wise and Ricker 1991] [MacGregor et al. 1991]. But, 

the sensor fault diagnosis method presented requires reconstruction from the principal 

space. This reconstruction requires nonlinear optimization, which makes the problem 

very difficult because a typical reconstruction error function for this problem has several 

local minima.  

Another KPCA based approach for fault diagnosis is ―Evolving KPCA‖ [Sun et al. 2007]. 

This approach addresses the problem of dependability of KPCA on the kernel function 

chosen a priori, but it does not provide the solution for SFD.  

In most solutions to SFD, which is present in the literature, the hidden assumption is that 

there is only one faulty sensor at one time. In some of the solutions presented in this 

study this assumption is also made. Before presenting every solution, it is clarified 

whether this solution works under single or multiple faulty sensor condition.   
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CHAPTER II 

PRINCIPAL COMPONENT ANALYSIS 

Assume we have a set of data in 𝑛 dimensions. Basically we can map these data on any 

set of 𝑛  orthonormal vectors in 𝑛  dimensional space which we call new coordinate 

system. Principal Component Analysis finds the a new coordinate system for a set of data 

in which we have the maximum of variance of data in the first dimension, and the second 

largest variance in the second dimension and so on.  

If we have a set of data such that there is correlation between some of the dimensions, 

principal component analysis can decompose them into a new set of data such that in the 

new set there is no cross-correlation between the dimensions of data in new coordinate 

system. The resulting transformed data usually have very high variance in the first few 

dimensions and very low variance in the last few dimensions which in machine learning 

terminology are usually referred to as ―noise dimensions‖. They are called noise 

dimension because their existence is the result of having error in the measurements or 

noise or any other factor in the system which cause ―imperfect‖ linear correlation 

between different variables.  Otherwise in a system in which we have perfect linear 

correlation between 𝑘 variables, the last 𝑘 variables in the PCA space would be zero. The 

PCA decomposition can be written in the following form:  

 

𝒀𝑚×𝑛 = 𝑻𝑚×𝑛𝑼
𝑇  𝑛×𝑛  , (18) 
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where 𝑼 = [𝒖1  𝒖2   𝒖3 …𝒖𝑛 ]  is a set of orthonormal vectors spanning 𝑅𝑛 .  

In this equation, the original set of data, 𝑌 is decomposed into two elements; principal 

component scores 𝑇 and principal component loadings 𝑈. Figure 2 illustrates how this 

transformation affects the variance of principal scores.  

 

 

 

 

Figure 2 Graphical explanation of PCA transformation 

 

 

V
ar

ia
nc

e 
 

= 

𝒚1   𝒚2   𝒚3    …    𝒚𝑛     

𝒀                         =                             𝑻                       𝑷 

 𝒕1   𝒕2   𝒕3    …    𝒕𝑛     

𝒖1  

  𝒖2    

𝒖3  

⋮
  𝒖𝑛

    

cov 𝒀 =

 
 
 
 
cov 𝒚1 , 𝒚1 cov 𝒚1 , 𝒚2 cov 𝒚1 , 𝒚3 cov 𝒚1 , 𝒚4 

cov 𝒚2 , 𝒚1 cov 𝒚2 , 𝒚2 cov 𝒚2 , 𝒚3 cov 𝒚2 , 𝒚4 

cov 𝒚3 , 𝒚2 cov 𝒚3 , 𝒚2 cov 𝒚3 , 𝒚3 cov 𝒚3 , 𝒚4 

cov 𝒚4 , 𝒚2  cov 𝒚4 , 𝒚2 cov 𝒚4 , 𝒚3 cov 𝒚4 , 𝒚4  
 
 
 

               𝑐ov 𝑻 =  

λ1 0 0 0

0 λ2 0 0
0 0 λ3 0
0  0 0 λ4
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If we decompose the matrix of scores into two parts of high variation scores and low 

variation scores as shown in Figure 3, we have:  

 

𝑻 = [𝑿 ⋮  𝑵] (19) 

where 𝑿 = [𝒕1   𝒕2   …    𝒕𝑘 ], 𝑵 = [𝒕𝑘+1   𝒕𝑘+2   …    𝒕𝑛 ] and 𝒕k is the vector of 𝑘𝑡ℎ scores.  

therefore, equation 1 can be written into the following form:  

 

𝒀 = 𝑻 𝑼𝑇 =  𝑿 ⋮  𝑵  
𝑷𝑇

𝑸𝑇
 = 𝑿𝑷𝑇 + 𝑵𝑸𝑇  (20) 

 

where 𝑷 = [𝒖1    𝒖2   …    𝒖𝑘 ] is the subspace of 𝑅𝑛  which spans the space of high 

variance of data and 𝑸 = [𝒖1    𝒖2   …    𝒖𝑘 ] is the complement of 𝑷 in 𝑅𝑛  which spans the 

noise space.  
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In fact, data matrix 𝒀 is decomposed into two parts as following:  

 

𝒀 = 𝒀 + 𝑬 (21) 

 

where  

 

 

𝒀 = 𝑿𝑷𝑇 (22) 

 

is the estimated (or modeled) value of 𝒀, and  

= 

𝑿                      𝑵 

𝑷𝑇  

 

𝑸𝑇  

𝒀                       = 

Figure 3 Graphical illustration of PCA decomposition 
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𝑬 = 𝑿𝑸𝑇  (23) 

 

is the non-modeled variations of Y or modeling error. These two components are 

orthogonal to each other because they are in different complementary subspaces of 𝑅𝑛 . 

 

𝒀 𝑬𝑇 = 𝟎 (24) 

 

and this property is valid for each row of these matrices (each observation) which are 

represented as following: 

 

𝒚 𝒆𝑇 = 𝟎 (25) 

 

 

Figure 4 shows the decomposition of data into these two components of principal 

component subspace and noise subspace.  
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Whether this correlation comes from a logic base (as in the redundant variables of a 

system) or is completely stochastic, (as in the information from a picture or a recorded 

wave sound) as long as we have information about this correlation (principal loadings) 

we don‘t need to carry all the data; with the aid of PCA we can select just the part of data 

that contain most of the variance of data and eliminate the rest of dimensions. In this 

view, PCA is a very good technique for data compression.  

Another Major Application of PCA method is in pattern analysis methods. In pattern 

analysis algorithms we first calculate a variety of different quantitative characteristics of 

an object which we call it features. Then we have to categorize the objects based on their 

location in the feature space. Usually, when the number of features is very large, the 

classification algorithms have low performance due to the large volume of calculations. 

Moreover, most of these features may be linearly correlated. Therefore we do not need to 

Principal Component subspace 

𝒚 

𝒚  

𝒆 

Figure 4  Decomposition of a data into principal component subspace 
and noise subspace 
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use all of these features for classification algorithms. With the aid of PCA method we 

find a few of new feature which are not only uncorrelated, but also contains very large 

variance. PCA has also been used in control for model reduction.  

The capability of PCA that we are using in this report is its application in multivariable 

statistical process monitoring. This technique is have these tree majors step 1-converting 

the data into PCA space 2- eliminating the dimensions with low variance 3- reverting 

from the PCA space to the original space. In this procedure those data which does not 

comply with the PCA model are more deviated than correct data and categorized as 

damaged measurement or flawed process. This algorithm is explained extensively in 

section 2. 

Derivation of PCA  

Several different approaches exist for the derivation of PCA. The simplest approach is 

based on this definition of PCA: a projection of data that have the most variance of the 

data.  

Assume 𝒂 = [𝑎1, 𝑎2, … , 𝑎𝑛 ] is an arbitrary unit vector in 𝑅𝑛     

Projection of a data vector 𝒚 = [𝑦1 , 𝑦2 , … , 𝑦𝑛 ]  onto 𝒂 = [𝑎1, 𝑎2, … , 𝑎𝑛] is the linear 

combination: 
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𝒂𝑻𝒚 =   𝑎𝑗𝑦𝑗

𝑛

𝑗 =1

 (26) 

Projected values of all data vectors in 𝒀 =  𝒚1, 𝒚2, … , 𝒚𝑛   𝒕 onto 𝒂 is 𝒀𝒂 therefore the 

variance along 𝒂 is  

 

𝜍𝑎 =  𝒀𝒂 𝑇𝒀𝒂 = 𝒂𝒀𝑇𝒀𝒂 = 𝒂𝑇𝑪𝒂, (27) 

 

where 𝑪 = 𝒀𝑇𝒀 is the covariance matrix of the data. 

Therefore, based on the aforementioned definition, the value of 𝒂 is obtained from 

solution of this optimization problem 

 

𝒂 = 𝐚𝐫𝐠𝐦𝐚𝐱 𝒂𝑇𝑪𝒂 , 

Constraint: 𝒂𝑻𝒂 = 1 

(28) 

 

The solution of this problem is easily found with the LaGrange multiplier method. The 

generalized objective function is defined as follow: 
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𝒖 = 𝒂𝑇𝑪𝒂 + 𝜆(1 − 𝒂𝑻𝒂) (29) 

 

This is a quadratic optimization problem and the solution is found by finding the roots of 

the first derivative of the function:  

 

𝝏𝒖

𝝏𝒂
= 𝟐𝑪𝒂 − 𝟐𝜆𝒂 = 𝟎 (30) 

 

 𝑪 − 𝜆𝑰 𝒂 = 𝟎 (31) 

 

As we see this is the characteristic equation of covariance matrix 𝑪. therefore the solution 

of the problem are the eigenvectors of 𝑪.  

 

Application of PCA in Statistical Process Monitoring  

Another major application of PCA method is in Statistical Process Monitoring (SPM). 

The basic idea of SPM based on PCA is to find a PCA model for a set of correct data 

from a healthy system and healthy measurements then apply PCA transformation to a 
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testing data. We consider the system to be healthy if this set of testing data complies with 

our original PCA model. In order to check the compatibility of testing data with the PCA 

model, we first map the original data into fewer dimension of principal components, and 

then reconstruct them out of these components the difference between the original data 

and estimated data out of its principal components suggest us the evaluate  of 

compatibility of the data with the model.  

 

𝒙 = 𝑷𝑻𝒚 (32) 

𝒚 = 𝑷𝑇𝑷𝒚 (33) 

𝒆 = 𝒚 − 𝒚 = (𝑰 − 𝑷𝑇𝑷)𝒚 (34) 

 

Figure 5 schematically describe the method of PCA based system monitoring for a simple 

2-D example which is based on mapping and reconstructing data from PCA model. 

Figure 5(a) shows a group of measured data from two different variables of a system. It is 

clear from this graph that these two variables are linearly correlation to each other. If we 

transform these data to a PCA space, we have the same data in a new coordinate system 

such that there is no correlation between the data in the new coordinate system. Figure 

5(b) shows the data in PCA space. In this figure, the variation of data in the second 

dimension 𝜐 is negligible compared to the first dimension 𝑥. Therefore, we eliminate this 

dimension of data and keep the data in just 𝑥 space. Graphical interpretation of this act is 



28 

 

 

like shifting all the data in Figure 5(b) to their closest point into 𝑥  axis because we 

assume that 𝜐 is zero for all the data in this space. Therefore, after reconstructing the data 

to the original space, as show in Figure 5(c), all the data would relocate to a straight line 

with no noise properties.  

 

 

Figure 5 Sensor fault detection using PCA  

 

The degree of being healthy is judged based of the amount of relocation from original to 

reconstructed data or  𝒚 − 𝒚  through this process. Usually we define a detection limit 

based on which, we can interpret the measurement/system as healthy or faulty.  

A Standard method of testing is monitoring of Squared Prediction Error (SPE) in residual 

space defined as  

 

𝑄𝑘 =  𝒚 𝑘 − 𝒚𝑘  (35) 

𝑦1  

𝜐 
t1 

(a) (b) (c) 

𝒕 =  
𝑥
𝜐
  𝒚 =  

𝑦 1
𝑦 2
  𝒚 =  

𝑦1

𝑦2
  

𝑦2  

𝑦 1 

 

𝑦 2  
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Which the square of relocation distance is as discussed earlier. We define detection limits 

based on this parameter as following  

 

95% control limit =𝑄𝑚𝑒𝑎𝑛  ± 2𝜍,      (36) 

99% control limit = 𝑄𝑚𝑒𝑎𝑛  ± 2𝜍, (37) 

 

where 𝜍 is the variance of 𝑄. 

Another popular method of testing is Hoteling 𝑇2 test which does not need the 

reconstruction of data and is done in PCA space. 𝑇2 test parameter is defined as:  

 

𝑇𝑖
2   =  

𝑡𝑖𝑗
2

𝜆𝑗

𝑘

𝑗=1

 (38) 

 

where ijt  are the elements of principal component scores, j is the jth eigenvalue of 

covariance matrix of original data and k is the number of selected scores. Detection 

limits can also be defined in the same method as shown for SPE residual error.  A typical 

graph of these two indexes with their 95% and 99% control limits are shown in Figure 6. 
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Figure 6  𝑻𝟐 and Squared Prediction Error (SPE)   
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Application of PCA in Sensor Fault Diagnosis  

Although PCA is a popular method in process monitoring, it has not been used widely for 

sensor fault diagnosis. The reason is very simple; in the process monitoring, we just need 

to check of the new set of data is complying the existing correlation between the healthy 

system data or not. But in sensor fault diagnosis, we need to find faulty sensor which 

causes this inconsistency and find the correct value of that sensor at that time based on 

other sensors in the array and this make the problem much more challenging.  

The first solution to this problem that comes to mind is to use the PCA filtering (PCA 

transformation and pseudo-inverse) and compare the value of measured data with the 

estimated data and the sensor with the most change in the value is considered faulty 

sensor.  

The formulation is the same as formulation of process monitoring. We call the difference 

between the measured value and estimated value as 𝒆  

 

𝒆 = 𝒚 − 𝒚 = (𝑰 − 𝑷𝑇𝑷)𝒚 (39) 

where 𝒆 = [𝑒1 , 𝑒2 , … , 𝑒𝑛 ] 

Then the 𝑗𝑡ℎ  sensor is considered faulty where  
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𝑗 = 𝑖𝑛𝑑(𝑚𝑎𝑥  𝑒𝑗  ) (40) 

 

Once we found the faulty sensor, we replace it with its corresponding estimated value.  

 

𝒚 <𝑛𝑒𝑤> =  𝑦1 𝑦2 … 𝑦 𝑗
<𝑜𝑙𝑑>… 𝑦𝑛    (41) 

 

Dunia et al. [1996] have proved that if there is just one faulty sensor and if we found the 

faulty sensor correctly, this procedure will converge to the correct value of sensor.  

But the problem is that this method cannot always find the faulty sensor. The reason is 

that some sensors are much more sensitive than others in a sensor array and therefore 

have more influenced to this kind of filtering.   This is explained graphically in Figure 7  
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Figure 7 The value of a faulty sensor compared with the reconstructed value   

 

In this figure, the value of data from 3 sensors is represented in 3D space. We assume 

that parameters measured by these 3 sensors are linearly correlated such that the correct 

measurement should be on the dotted line, L1. 

Now assume that the sensor 3S  which measure the property of 3y  is faulty and instead of 

measuring 𝒚∗ = [𝑦1
∗, 𝑦2

∗, 𝑦3
∗], we have measured 𝒚 = [𝑦1 , 𝑦2 , 𝑦3] where  𝑦1 − 𝑦1

∗ < 𝜖1  

and  𝑦2 − 𝑦2
∗ < 𝜖2, but  𝑦3 − 𝑦3

∗ < 𝜖3  and 𝜖𝑘  is the acceptable range of error in the 𝑘𝑡ℎ  

sensor.  
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For the sake of simplicity we assumed that 𝜖1, 𝜖2  and 𝜖3  are zero in the example shown in 

the graph. 

Now, if we apply PCA filtering, the measured point 𝒚 transfers to the closest point that 

meet the correlation line L1. This point is shown as 𝒚  in Figure 7.  

As we see in this figure, the difference between the measured data 𝒚, and estimated data 

𝒚  is 𝒆 = [𝑒1  𝑒2  𝑒3] so the maximum were the value of 1e and 2e is obviously larger than 

3e  however the faulty sensor is 𝑆3 therefore, this algorithm does not find the faulty 

sensor. Figure 8 shows the difference between perfect correction vector which transfers 

the measured data point to the correct data point and PCA correction vector which 

transfers the measured data to the estimated data point using PCA.  

 

  
Figure 8 Comparison of PCA correction vector and perfect PCA vector 

  

𝑒3  𝑒1  

𝑒2  

𝛿𝑦3  

𝒚 

ŷ  

𝒚∗ 

L1 

Perfect correction vector 
𝛿𝒚 = [0, 0, 𝛿𝑦3]  

PCA correction vector 
𝒆 = [𝑒1, 𝑒2, 𝑒3] 
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CHAPTER III    

 AUTO-ASSOCIATIVE NEURAL NETWORKS 

As stated in the introduction, AANN has been commonly used for sensor fault diagnosis. 

In this section we analyze the efficiency of SFD using AANN and specify under what 

condition this method works.  

Introduction to Auto-Associative Neural Networks 

Auto-Associative Neural Networks are feed-forward neural networks with five layers 

where the middle layer has minimum number of neurons and the input layers has the 

same number of neuron as the output layer. Usually the second and forth layer have 

neurons with nonlinear activation functions and the middle (bottleneck) layer and last 

layer have linear neurons with linear activation function. Figure 9 shows a diagram of   

AANN. 

 

Figure 9  Architecture of AANN 
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This network is trained for an identity function i.e. the input data is equal to the target 

data.  The premise is that since these data are forced to pass through a layer with fewer 

dimensions, the nonlinear relationship between the different channels of data is captured 

in the weights of the AANN during the training process. As a result, we have a network 

that in the ideal case replicates its input exactly.  Here the term ideal refers to the 

situation where the input channels are consistent with each other (or correlated in the 

sense that is further elaborated below.) However, when any single input channel differs 

from its ―correct‖ value, the output corresponding to that channel will be different from 

the input value and will be closer to the correct value.  

Application of AANN to Sensor Fault Diagnosis 

When we have a system with several redundant sensors, we can collect a complete 

history of the system measurements and train an AANN with these data. Then, during the 

operation of the system we can feed the AANN with these sensor readings and compare 

the output of the AANN with the input. As long as sensors have enough accuracy the 

relationship between their measured values are valid. Therefore, the output would be the 

same as its input. As soon as one of these sensors goes out of calibration or fails, the 

output of AANN will ideally show the corrected value of the sensor.  

However, in real cases as Kramer has explained in his original paper [Kramer 1991], 

when we have a faulty measurement in one of these sensors, all of the output values 

would be distorted. But, we are able to single out the faulty sensor by analyzing the 
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residue vector between the input and output, because it is expected that the maximum 

absolute value of residue is in the faulty sensor [Kramer 1991].  

After finding the faulty sensor, the next step is to feed the estimated value of the faulty 

sensor as AANN input. After several iterations, all of the residues will approach to zero 

and we have reconstructed the value of the faulty sensor by doing this. The diagram of 

Figure 10 shows this procedure [Kramer 1991]. 

 

 
Figure 10 Detection and reconstruction of faulty signal using an AANN algorithm 
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Requirements of AANN as an SFD Method 

According to this method, it is necessary that an AANN satisfies all of the following 

properties to be able to be used for SFD. In this research, these conditions have been 

observed and classified as:  

Identity condition: When the input values are not faulty, the difference between the input 

and output of the AANN should be within a limited tolerance. This tolerance can be 

estimated by the precision of the sensor.  

Isolability condition: When there is a wrong measurement in one of the sensors, the 

difference between input and output of the Neural Network should be highest in the 

faulty channel.  

Convergence condition: when there is a wrong measurement in one of the sensors, the 

output of the network should converge to the true value if we feedback the estimated 

value for the faulty channel 

One of the objectives of this project is to investigate each of these requirements and 

specify the conditions by which an AANN satisfies them. We are also seeking for 

alternative methods that meet these conditions.  

Next section is to study these three conditions on a special form of the problem when 

there is a linear correlation between the monitored sensors.  
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CHAPTER IV 

LINEAR METHOD OF SENSOR FAULT 

DIAGNOSIS 

Fault detection and isolation (FDI) is the subject of interest in many industries and 

engineering fields. There is a wide range of methodologies and approaches to FDI.  These 

methodologies are depend the type of knowledge that is available about the system, the 

type of the systems and even the type of the errors that need to be isolated. There are 

some outstanding review papers about these monitoring methods either model based 

methods [Gertler and Singer 1990] ,[Frank 1990],[Frank and Ding 1997], [Isermann 

2005] or statistical methods [Bermis et al. 2007] or a comprehensive one containing both 

methods [Venkatasubramanian et al. 2003].  

Sensor fault diagnosis can be viewed either as a subcategory of model based approaches 

to FDI or a problem in statistical process control. There are also some individual 

algorithms based on machine learning techniques. In the following sections a brief survey 

of these three approaches is discussed.  

Model Based Fault Diagnosis  

A category of model based methods which will be discussed in this article is the 

application of consistency (parity) equations. The parity equation-based approach is a 

well-developed category of general fault diagnosis in the analytical redundancy 

framework [Frank  and Ding 1997]. In aerospace terminology, the input-output models, 
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generating residuals, are referred to as parity equations [Satin and Gates 1978]. These 

residuals are zero in the absence of noise, modeling error, and any fault in the system. 

Therefore, statistical analysis of residuals can lead to detection and isolation of potential 

faults in the system.  Gertler [Gertler 1988] [Gertler and Singer 1990] offers a 

comprehensive survey of consistency equations-based fault diagnosis techniques.  In this 

category of fault diagnosis, the ability to detect a failure in the system depends not only 

on the size of the failure and the level of noise, but also on the ―direction of residuals 

relative to the failure‖ which depends on the structure of parity equations. With this in 

mind, Gertler proposed the method of structured residuals [Gertler and Singer 1990]. 

This method re-structures the parity equations by a linear transformation, and finds new 

residuals which are orthogonal to the system faults. By definition, a residual is 

orthogonal to a failure if it is unaffected by that failure. In the absence of failure, all of 

the residuals are close to zero but when a certain fault happens in a well-structured parity 

equation, one or more residuals remain close to zero but the rest become nonzero. Thus 

we can trace the specific fault through its corresponding orthogonal residuals.  Gertler 

also defines the concepts of Zero-threshold isolability and High-threshold isolability 

based on the structure of parity equations. Roughly speaking, Zero-threshold and High-

threshold isolability are the ability of tracing back a fault in a system based on a given set 

of residuals, respectively, in the absence and presence of noise [Gertler and Singer1990].  

Generally these approaches are used for diagnosis of faults in different parts of a control 

system resulting from a failure inside the plant or in the controller, actuators or sensors. 
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When the problem is focused on the detection of faults in the sensors, it is called sensor 

fault diagnosis or Instrument Detection and Isolation (IDI). 

Fault Diagnosis in Process Control 

Parallel to the above development, and almost independent of that work, multivariable 

statistical approaches have been used for monitoring complex chemical processes 

[MacGregor et al. 1989] [Miller et al. 1998]. Multivariate Statistical Process Control 

(MSPC) uses Principal Component Analysis (PCA) to model normal process behavior. 

System faults are then detected by referencing the observed behavior against this model. 

MacGregor [MacGregor et al. 1989] presents a brief survey of these methods. MSPC can 

be considered a data driven approach to fault diagnosis. However, in its general form 

MSPC can only ―detect‖ rather than ―isolate‖ a given fault. To address this problem, 

Dunia et. al. proposed a method for isolation of faulty sensors through reconstruction of 

each sensor by an optimization approach [Dunia et al. 1996]. Dunia‘s work can also be 

categorized as a data-driven approach to sensor fault diagnosis.  

PCA has also been further studied as a parity relation model for sensor fault diagnosis. 

Gertler defined the primary residuals as the projection of observed data into the residual 

space, and suggested the formation of new residuals which are selectively sensitive to 

different sensor faults by a linear transformation [Gertler and Monajemi 1995][Gertler et 

al. 1999]. In addition, Qin the used PCA method in combination with the structural 

residual approach to design an optimum residual generator structure. This structure 

makes one residual insensitive to one subset of faults while being most sensitive to other 
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faults [Qin and Li 1999]. In a more recent study, another optimal structure has been 

proposed which considers the ratio of the fault to the noise standard deviation as the 

objective function. The structure found is then obtained as a linear combination of 

eigenvectors spanning the residual space [Gertler and Cao 2005].  

Individual Approaches for Sensor Fault Diagnosis 

Sensor fault diagnosis basically targets the problem of detection and isolation of faulty 

sensors in large plants where several analytically redundant sensors are used. Industry has 

recently shown more interest in the data-driven approaches since these methods do not 

require an analytical input-output model, which may not be available in industrial settings 

[Hines et al. 1998]. One of the first intelligent based approaches to sensor fault diagnosis 

is based on the method of Autoassociative Neural Networks (AANN) [Kramer 1992]. 

AANN is a feedforward neural network with a specific architecture that is used to train 

an identity function (target data of the neural network is the same as its input data). It can 

be compared to the parity equation methods by considering the difference between the 

input and output of the network as the generated residual. The expectation from a perfect 

AANN is that once trained with sufficient amount of correct data, it can reconstruct the 

faulty observations as closely as the network allows. There is a wide range of industrial 

applications of AANN in sensor fault diagnosis, ranging from nuclear power plants to 

turbofan engines [Hines et al. 1998][Dune et al. 1998][Hoffman and Kimble 2005]. 

However as reported by a number of researchers [Malthouse 1998], [Najafi et al. 2004], 

[Sharifi et al. 2004], there are several difficulties with the application of AANN in 
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practice. Apart from its deficiency as a heuristic approach to nonlinear PCA, the main 

problem with AANN is lack of a theoretical foundation for this method. Therefore many 

critical questions about this method cannot be answered e.g., what is the optimum 

architecture of the network, how does one train the optimum AANN, or whether we can 

isolate a fault in any sensor.  

Other techniques of pattern classification have also been used in data driven fault 

diagnosis. Fisher Discriminant Analysis (FDA) and Partial Lease Squares (PLS) are 

among them. FDA determines the portion of the observation space that is most effective 

in classification amongst several data classes. Thus, all fault classes information is 

utilized when the discriminant function is evaluated for each class. PLS are data 

decomposition methods for maximizing the covariance between the predictor 

(independent) block and the predicted (dependent) block for each component. PLS 

attempts to find loading and score vectors that are correlated with the predicted block 

while describing a large amount of the variation in the predictor block [Chiang and 

Braatz 2001] 

In this study, we will define the concept of minimal parity equation. Then a sensor 

isolation method using this equation is presented. This methodology shows that once the 

minimal parity equation is obtained through PCA in data driven methods, the detection 

and isolation of faulty sensor does not need any additional restructuring.  In this new 

perspective, the concept of isolability, which is defined by Gertler [Gertler and Singer 

1990] as a property of a specific structure, will be considered as a property of the system.  
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Minimal Parity Equations 

There are basically two types of analytical redundancy: Direct or static redundancy and 

temporal or dynamic redundancy. In static redundancy, there is a relationship between 

instantaneous redundant sensor outputs whereas dynamic redundancy is the result of 

dynamic relationship between sensor outputs and actuator inputs. Because of 

measurement availability in many industrial plants and chemical processes, there is static 

redundancy in such plants and sensor data validation can be performed without any 

knowledge about the dynamics of the system [Schweppe and Wildes 1970][Vaclavec 

1969].   Therefore in this article we derive the parity equations for the static case.   

Analytical Derivation 

Consider a general input-output system in the following form: 

𝒙 = 𝑨𝒙 + 𝑩𝒖 (42) 

𝒚 = 𝑪𝒙 + 𝒆 (43) 

 

where 𝒙  is the 𝑘 × 1  state vector, 𝒖   the 𝑙 × 1  input vector, 𝒚  the  𝑛 × 1    vector of 

measured outputs and 𝑨,𝑩, 𝑪  are known matrices of appropriate dimensions. In this 

equation, 𝒆 is the measurement error which is the difference between the true value of 𝒚 

and its measured value. It is a combination of noise, and a potential sensor fault.  
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When the number of measurements is more than the number of states of the system  (𝑛 >

𝑘), we have static redundancy in the system. We shall show that, a necessary condition 

for detectability based on static redundancy is  𝑛 > 𝑘  , and a necessary condition for 

isolability based on static redundancy is 𝑛 > 𝑘 + 1 . 

The simplest form of residual is the difference between the measured data and its 

estimated value from the model. Rewriting Eq. (43), we have 

𝒆 = 𝒚 −𝑪𝒙. (44) 

The residual vector generated in this way is called the primary residual. Evidently we 

need to estimate the state of the system, 𝒙, to be able to use this equation. Further, note 

that the dimension of the residual vector is the same as the dimension of the system 

output. Therefore, when there is a linear correlation among the output variables, the 

residuals found by this equation would also become correlated. Now If we find the matrix 

𝑸 containing 𝑛 − 𝑘  orthonormal row vectors such that 𝑸𝑻  spans the null space of  𝑪𝑻 

(𝑪𝑻𝑸𝑻 = 𝟎 or 𝑸𝑪 = 𝟎), and multiply it by both sides of Eq. (44), we have: 

 

𝑸𝒆 = 𝑸𝒚− 𝑸𝑪𝒙 = 𝑸𝒚. (45) 

 

Therefore, if we define a new residual vector 𝒓 = 𝑸𝒆, based on Eq. (45) we have  
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𝒓 = 𝑸𝒚. (46) 

 

Equation 5 is a parity equation which generates the maximum number of independent 

residuals. Since there is no redundancy between the residuals found in this equation, we 

call this equation the minimal parity equation and the residual vector generated by this 

equation is called the minimal residual vector. As long as the column rank of matrix 𝑪 in 

Eq. (43) is less than its row rank, the matrix 𝑸 exists.  Notice that 𝑸 in the minimal parity 

equation is not unique but the other variants of 𝑸 simply reflect different coordinate 

systems of the residual space. As we will see shortly, this equation is the main equation 

used in the sensor fault diagnosis method presented in this chapter, and the detectability 

and isolability of each sensor can be determined based on 𝑸.  

PCA Based Derivation  

Principal Component Analysis (PCA) is a common technique in applications such as 

dimensionality reduction, data compression and feature extraction. It is also referred to as 

Karhunen-Loeve transform or Hotelling transform. The PCA transformation provides a 

new lower dimensional coordinate system in which there are no correlations among the 

variables. If we show the variables in the original coordinate system by 𝒚 and those in the 

new coordinate system by 𝒕, we have: 

𝒕 = 𝑼𝒚, (47) 
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such that  𝐜𝐨𝐯 𝑡𝑖 , 𝑡𝑗 = 0 ∀ 𝑖 ≠ 𝑗.              

The orthonormal matrix 𝑼 =  𝒖1  𝒖2 …𝒖𝑛   𝑻 comprises the unit vectors 𝒖𝑖  of the new 

coordinate system. Also, the variables in the new coordinate system are decreasingly 

ordered based on their standard deviations  𝜍 𝑡1 > 𝜍 𝑡2 > ⋯ > 𝜍 𝑡𝑛 . As a result, 

when there is a linear correlation between a set of variables, depending on the order of 

the correlation, the variances of the last few variables are considerably lower than those 

of the first few variables in the new coordinate system. Separating the high variance 

variables, 𝒙 , from the low variance variables, 𝒗 , in the form: 

𝒕 =  
𝒙
−
𝒗
 , (48) 

 

and their corresponding basis vectors, 𝑷 and 𝑸 , in the form: 

𝑼 =  
𝑷
−
𝑸
  (49) 

 

we have: 

𝒙 = 𝑷𝒚, (50) 

and,   

𝒗 = 𝑸𝒚, (51) 
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where matrices 𝑷 =  𝒖1  𝒖2 …𝒖𝑘   𝑻and 𝑸 =  𝒖𝑘+1 𝒖𝑘+2…𝒖𝑛   𝑻 are the upper and lower 

parts of 𝑼 respectively. Therefore, we have divided the entire space into a ―model space‖ 

represented by 𝑷 and a ―noise space‖ represented by 𝑸. This matrix is the equivalent of 

matrix 𝑸 derived using the model based parity equation (Eq. (45)).  

Now, if 𝒚 is a vector of statically redundant measurements, Eq. (51) would be a minimal 

parity equation because 𝒗 is zero in the absence of noise, and components of 𝒗 are 

independent. Notice that (50) and (51) are equivalent to (43) and (46). In fact the matrix 

𝑸 which is found here is equivalent to that found analytically in (45). The earlier is found 

based on a physical model of the system, whereas the later is found numerically from a 

database gathered from measuring of system variables. 

Sensor Isolability Theory 

The minimal parity equation is the basic equation used for sensor fault diagnosis. This 

section shows how to use this equation to find out whether it is possible to detect and 

isolate sensor faults, i.e. the analysis of isolability and detectability of sensors, and 

introduces a method for isolation of faulty sensors.  

Consider the vector of measurements 𝒚. Usually, this measurement contains the true 

value, measurement noise and a potential error in the system. So if we show the true 

value of 𝒚 by  𝒚∗ we have: 

𝒚 = 𝒚∗ + 𝜼+ 𝜟. (52) 
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In this equation, 𝜼 is the measurement noise, 𝚫 =  𝛿1 𝛿2 … 𝛿𝑛 
𝑇  where 𝛿𝑖 is the 

error in 𝑖𝑡ℎ  the sensor. Apparently, in the absence of any noise or measurement error, 

𝒚 = 𝒚∗ and the residual error is equal to zero:  

 

𝒓 = 𝑸𝒚∗ = 𝟎. (53) 

          

 

Now, assuming the amount of measurement noise is negligible;  𝜼 ≅ 0, (We shall deal 

with the noisy case in section IV) owe have: 

 

𝒚 = 𝒚∗ + 𝜟 (54) 

             

Calculating the minimal residual vector, we have: 

𝒓 = 𝑸𝒚 = 𝑸 𝒚∗ + 𝜟 = 𝑸𝜟. (55) 

Next, consider the 𝑸 matrix in the form of a combination of column vectors 𝒒𝑖  , 

𝑸 =  𝒒𝟏 𝒒𝟐  ⋯ 𝒒𝒏 . (56) 
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Therefore, the residual vector is:  

𝒓 =  𝛿𝑗𝒒𝒋

𝒏

𝒋=𝟏

. (57) 

             

Assuming there is error only in one sensor and it is the 𝑖𝑡ℎ  sensor, 𝛿𝑖 ≠ 0 and 𝛿𝑗 = 0 ,

∀𝑗 ≠ 𝑖,we have: 

 

𝒓 = 𝛿𝑖𝒒𝒊. (58) 

 

This means that the residual vector is in the same direction as the 𝑖𝑡ℎ  column of 𝑸. This 

simple fact can be used to detect the single faulty sensor in the system. In other words, 

each column of 𝑸 corresponds to one sensor in the system. So the faulty sensor is the 

sensor whose corresponding column in 𝑸 has the same direction as the residual vector. 

Since the 𝑖𝑡ℎ  column vector, 𝒒𝒊, is the key to finding the fault in the 𝑖𝑡ℎ  sensor we call it 

the fault image vector for the 𝑖𝑡ℎ  sensor. 

In order to compare the direction of the residual vector with the direction of columns 

of 𝑸, each column vector is normalized: 
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𝒏𝒊 =
𝒒𝒊
 𝒒𝒊 

   𝒊 = 𝟏,𝟐⋯𝒏. (59) 

we call 𝒏𝒊 the normalized fault image vector of the 𝑖𝑡ℎ  sensor. And similarly we define 

the normalized residual as: 

 

𝒏𝒓 =
𝒓

 𝒓 
. (60) 

          

 

The inner product of the normalized residual and the normalized fault image vector is 

defined as the sensor failure index (SFI). 

𝒇𝒊 = 𝒏𝒓 ∙ 𝒏𝒊 (61) 

             

where the 𝑑𝑜𝑡 sign is inner product of two vectors.  

When the 𝑖𝑡ℎ  sensor is faulty, these two vectors are in the same or opposite directions; 

therefore,  𝑓𝑘  = 1. In practice however, due to measurement noise the direction of 

residual vector deviate from that of fault image vector and this index becomes less than 

one. But assuming that there is a single faulty sensor in the system, the sensor which has 

the closest value of SFI to one is considered to be the faulty sensor.  



52 

 

 

Now we return to the basic question of sensor fault diagnosis. i.e. whether we are able to 

detect/isolate the fault in a specific sensor in a system using static analytical redundancy. 

In other words, whether there is significant static redundancy to be able to isolate the 

faulty sensor.  

The aforementioned method of sensor fault diagnosis gives us a good suggestion on how 

to find the answer. In fact we can simply answer this question based on the structure of 

the minimal parity equation i.e. the 𝑸 matrix. As long as all column vectors of 𝑸 are 

nonzero and linearly independent, it is possible to detect and isolate a single sensor fault 

in any sensor. If the corresponding column/vector of a sensor in 𝑸 is zero, that sensor is 

not detectable. If it is nonzero but it is collinear with any other column vector in 𝑸, both 

sensors whose corresponding column vectors in 𝑸 are collinear are non-isolable. This 

isolability test method is explained in Example 2.   

Definition: A sensor in a system is defined as single fault isolable if it is possible to 

detect and isolate a single fault in that sensor.   

Theorem 1: A sensor in a system is statically single fault isolable iff its corresponding 

fault image vector is nonzero and linearly independent. (The proof is presented in 

Appendix A) 

Notice that if the lines of fault image vector in two sensors are very close to each other, 

they are theoretically isolable, but in practice, we need a large number of sample 

measurements to be able to isolate them from each other. In this case, we call the system 
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as poorly isolable. Figure 11  illustrates the concept of isolability in a system of four 

measurements.  In this figure fault image vectors are shown in the 2D space of residuals. 

This implies that the degree of redundancy is 2. The system shown in part (a) has four 

different fault image vectors which are nonzero and linearly independent. Therefore, all 

sensors are isolable. The system shown in part (b) has two collinear fault image vectors 

(𝑞3 and 𝑞4).  Therefore, the two sensors corresponding to these fault image vectors are 

not isolable. Part (c) show a poorly isolable system. In this system, there are two fault 

image vectors which are not collinear, but they are very close to the same line (𝑞3 and 

𝑞4). This situation makes the isolation task for these two sensor very difficult when they 

are contaminated with noise.  

 

 
Figure 11 Graphical demonstration of isolability in different systems   
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Effect of Noise on Fault Isolation 

In the last section, we assumed that the measurements are noise free. However, in real 

systems we always have some level of noise/inaccuracy in the measurements. Presence of 

noise reduces the ability to detect the fault. Clearly the higher the level of noise in the 

system, the less likely it is to detect the faults. But the adverse effect of noise is not only 

dependent on the noise level, but it is also dependent on the structure of the problem or 

the parity equation. In this section, the effect of noise on the linear sensor fault detection 

is studied.  

As discussed earlier, the vector of measurements is composed of noise, 𝜼 and a potential 

error in one channel.  

𝒚 = 𝒚∗ + 𝜼+ 𝜟 (62) 

 

When we form the residual vector, for the single sensor error we have:  

 

𝒓 = 𝑸𝒚 = 𝑸 𝒚∗ +𝜟 +𝜼 = 𝑸𝜟+ 𝑸𝜼 = 𝛿𝑖𝒒𝒊 + 𝒗, (63) 

 

where 𝒒𝒊 is the 𝑘𝑡ℎ column of 𝑸, and 𝒗 = 𝑸𝒏 is the image of noise in the residual space. 

If we divide the residual vector by 𝛿𝑖, we have: 
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1

 𝛿𝑖
𝒓 = 𝒒𝒊 +

1

 𝛿𝑖
𝒗 (64) 

             

Based on Eq. , it is clear that the difference between the residual and its corresponding 

column in 𝑸 is proportional to  𝒗 
 𝛿𝑖

 as graphically shown in Figure 12. Therefore, as long 

as the magnitude of fault is of the same order as the noise level, it is not possible to detect 

the error. But as the magnitude of fault exceeds the level of noise, the ratio of  1

 𝛿𝑖
𝒗 

becomes smaller and detection of error becomes easier. Now the question is that what 

should be the maximum ratio of noise to error to be able to detect an error in the system.   

 

 
Figure 12 The vector of residual in the presence of noise and error in the 𝑘𝑡ℎ  sensor 

 

 

Minimum detectable level of error is different in each sensor. For finding the minimum 

detectable magnitude of fault in sensor 𝑖, we first need to find the sensor that has the 

closest fault image vector to that of the 𝑖𝑡ℎ  sensor. Consider the vectors 𝒒𝒊 shown in 

Figure 13 Accordingly, 𝒒𝒋 is selected such that: 
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𝒋 = 𝒂𝒓𝒈𝒎𝒂𝒙 
 𝒒𝒊 ∙ 𝒒𝒋 

 𝒒𝒊 ∙  𝒒𝒋 
  (65) 

 

 
 
  
 

 

 

 

In order to isolate the 𝑖𝑡ℎ  sensor as faulty, 𝒒𝒊 should be closer to the direction of the 

residual than 𝒒𝒋, (in Figure 2, 𝛼 < 𝛽):  

 𝒓 ∙ 𝒒𝒊 

 𝒓 ∙  𝒒𝒊 
>

 𝒓 ∙ 𝒒𝒋 

 𝒓 ∙  𝒒𝒋 
. (66) 

      

 

Substituting the value of 𝒓 from Equation 27, we have:  

 

 
Figure 13 Effect of noise on the residual vector 

𝒒𝒊 

𝒓 

𝒗 

𝒒𝒋 

𝛽 
𝛼 

𝒏𝒋 

𝒏𝒊 𝛿𝑖𝒒𝒊 
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  𝛿𝑖𝒒𝒊 + 𝝊 ∙ 𝒒𝒊 

 𝛿𝑖𝒒𝒊 + 𝝊 ∙  𝒒𝒊 
>
  𝛿𝑖𝒒𝒊 + 𝝊 ∙ 𝒒𝒋 

 𝛿𝑖𝒒𝒊 + 𝝊 ∙  𝒒𝒋 
. (67) 

      

 

Extracting 𝛿𝑖 from both sides, we have (Appendix B):  

 

 

𝜹𝒊 >
𝝆𝒊𝒋

 𝟏 −  𝒏𝒊 ∙ 𝒏𝒋   𝒒𝒊 
 (68) 

         

 

where  𝒏𝑖 =
𝒒𝒊

 𝒒𝒊 
  (𝑖 = 1,2,… 𝑛) , 𝜌𝑖𝑗 =  𝒗 ∙ 𝒏𝑖𝑗    and  𝒏𝑖𝑗  is defined as following: 

 

𝒏𝒊𝒋 =  
 𝒏𝒊+ 𝒏𝒋,  𝒏𝒊 ∙  𝒏𝒋 < 0

 𝒏𝒊− 𝒏𝒋,  𝒏𝒊 ∙  𝒏𝒋 ≥ 𝟎
 . (69) 

    

 

In Equation (68), all parameters, except 𝜌𝑖𝑗 , are exclusively related to the structure of the 

parity equation. The scalar parameter 𝜌𝑖𝑗  is related to the noise vector. Assuming the 

measurement noise is a white Gaussian noise with a known parameters,  𝜼~𝑵(0, 𝚺), the 

probability distribution of  𝜌𝑖𝑗   is also Gaussian; 𝜌𝑖𝑗  ~𝑁 0, 𝜍  where 
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𝜍𝑖𝑗
2 =  𝜮𝒓𝒏𝒊𝒋 ∙ 𝒏𝒊𝒋 (70) 

 

with 𝜮𝑟  as the covariance of  𝒗. Note that 𝜮𝑟  is related to the covariance of noise:  

 

𝜮𝑟 = 𝑸𝜮𝑸𝑇 .  (71) 

 

The confidence limit for 𝛿𝑖  i.e. 𝛿𝑖𝛼  is found based on the confidence limit of 𝜌𝑖𝑗  : 

 

𝛿𝑖𝛼 =
𝜌𝑖𝑗𝛼

𝟏 −   𝒏𝒊 ∙  𝒏𝒋    𝒒𝒊 
 

(72) 

 

where 𝛼 is the level of significance. 

Notice that this margin is found for a single set of measurements. In sensor fault 

diagnosis problems, we usually have continuous flow of measurements which helps to 

reduce the minimum isolation limit.  

Figure 14 shows the two different isolation criteria. The left panel (a) shows the faulty 

regions attributed to each sensor based on a certain confidence limit. e.g. if the residual 
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falls in the region of senor 𝑆1, with 95% certainty the sensor 𝑆1 is faulty. The minimum 

isolable fault magnitude is proportional to the length of the widened solid line shown in 

this figure for each sensor. This figure shows how the minimum detectable fault 

magnitude is affected by the structure of minimal parity equation (i.e. the angle between 

different sensor fault image vectors) and the noise model (i.e. the size, shape and angle of 

the dashed ellipses). Panel (b) show different regions of sensor faults in the residual space 

based on maximum probability. e.g. if the residual falls in this region of senor 𝑆1, the 

probability that this sensor is faulty is more than the probability of other sensors being 

faulty.  

 

  

        (b) Isolation based on confidence limit for each sensor       (a) Isolation based on competitive probability 

Figure 14 Graphical demonstration of isolability limit for each sensor  
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Algorithm of Single Fault Isolation in Real-Time Systems 

As explained earlier, once the minimal parity equation is found, the detection and 

isolation of a single fault in the system can be easily done. Detection of fault in the 

system is performed by the statistical monitoring of the residual vector. Assuming there is 

a normally distributed noise in the system, the fault detection index is defined as [Qin and 

Li 1999]: 

𝒇 = 𝒓𝑻𝜮𝒓
−𝟏𝒓. (73) 

               

When no fault is present, the fault detection index follows a Chi-squared distribution with 

𝑙 degrees of freedom where 𝑙 is the dimension of the residual vector (𝑙 = 𝑛 − 𝑘). 

 

𝒇 ∼ 𝝌(𝒍)              (74) 

 

Therefore, the 𝛼 significant level for 𝑓 is 

 

𝒇𝜶 ∼ 𝝌𝜶(𝒍) (75) 
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For the isolation of the faulty sensor, two different methods are presented. The first 

method is the calculation of the sensor failure index introduced in Eq. (61). Once the 

system is flagged as faulty, SFI for each sensor is calculated and the sensor with the 

maximum SFI is isolated as faulty.  

 As explained before, as long as the magnitude of the fault is large compared to the noise 

level, the angle between the residual vector and the image vector of the single faulty 

sensor is the lowest. As a result, the SFI of the faulty sensor is highest among SFIs of all 

sensors.  

Another method of isolation is by forming sensor residuals. We define sensor residual as:  

𝒓𝒊 = 𝜨𝒊𝒓, (76) 

    

where 𝜨𝑖  is the matrix containing orthonormal vectors that spans the orthogonal space of 

𝒒𝑖  (𝜨𝑖𝒒𝑖 = 0). 

Therefore, when the 𝑖𝑡ℎ  sensor is faulty, the sensor residual for 𝑖𝑡ℎ  sensor is:  

 

𝒓𝒊 = 𝜨𝒊 𝛿𝑖𝒒𝒊 + 𝒗 = 𝜨𝒊𝒗. (77) 
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Sine 𝒗 has a Gaussian distribution with known parameters, the distribution of 𝒓𝑖 = 𝜨𝒊𝒗 is 

found as 𝒓𝑖~𝑁 0,𝜣𝑖 , where: 

 

𝜣𝒊 = 𝜨𝒊
𝑻𝜮𝒊𝜨𝒊. (78) 

 

On the other hand, for other healthy sensors, the distribution of the sensor residual has a 

nonzero mean value which is related to the magnitude of error.  

 

𝒓𝒋 = 𝜨𝒋 𝛿𝑖𝒒𝒊 + 𝒗 = 𝛿𝑖𝜨𝒋𝒒𝒊+𝜨𝒊𝒗 (79) 

 

Therefore, the distributions of the healthy residuals are 𝒓𝒌~𝑁 𝛿𝑖𝜨𝑗𝒒𝑖 , 𝜣𝑖  where 𝜣𝒊 is 

defined in (78). 

In summary, the procedure for online fault diagnosis is explained in the following 

algorithm. 
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Detection Algorithm 

1. Take new measurements 𝒚 

2. Find the minimal residual based on measurements  𝒓 = 𝑸𝒚 

3. Find the fault detection index 𝑓 = 𝒓𝑇𝜮𝑟
−1𝒓  

4. If  𝑓 < 𝑓𝛼  flag the system as a healthy and go to Step 1. Otherwise go to 

the Isolation algorithm 

Isolation Algorithm by Sensor Failure Index  

1. Normalize the residual vector 𝒏𝒓 =
𝒓

 𝒓 
 

2. Find the sensor failure index for all sensors  𝒇𝒊 = 𝒏𝒓 ∙ 𝒏𝒊  (𝑖 = 1. . . 𝑛) 

3. Find the maximum sensor failure index and flag its corresponding sensor 

as faulty  

4. Return to the detection  

Isolation Algorithm by Sensor Residual  

1. Form the sensor residual for all sensors 𝒓𝒊 = 𝜨𝒊𝒓 

2. Find the minimum sensor residual and flag its corresponding sensor as 

faulty 

3. Return to the detection 
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Extension of Results to the Dynamic Redundancy Methods  

In the algorithm of sensor fault diagnosis and the derivation of Detectability and 

Isolability, only the information from the ―direct redundancy‖ of the sensors has been 

used. This approach can cover three different types of problems. The first one is a case 

where the degree of direct redundancy is high enough that we do not need to use the 

information from the dynamic of the system for the purpose of sensor fault detection. The 

second observation about this approach is that the dominant dynamic of the system is so 

slow that we can ignore the dynamic of the system and the third type is general systems 

but the algorithm is used in the static condition of the system (𝒙 = 0).  

Either the degree of direct redundancy is enough to be able to isolate the faulty sensor or 

not, the information from the dynamic of the system can always enhance the performance 

of fault detection and Isolation. Also, when there is not enough direct redundancy for 

sensor fault detection, the application of the information from the dynamic of the system 

becomes necessary. In this part, the application of dynamic of the system to the PCA is 

explained and two simple examples are preformed to show the advantage of using the 

dynamic behavior of the system.  

In the dynamic model, instead of using correlation matrix, we find auto-correlation by 

using Augmented PCA. Augmented PCA is used just by adding a time shifted values of 

the data to the same matrix of data. Figure 15 shows how to generate augmented data.  
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The rest of algorithm is exactly the same and direct redundancy method. This method is 

in fact equivalent to the combination of system identification and Kalman filter. For 

example assume we have a system as following: 

 

𝒙(𝑘 + 1) = 𝑨𝒙(𝑘) + 𝑩𝒖(𝑘) 
𝒚(𝑘) = 𝑪𝒙(𝑘) + 𝑫𝒖(𝑘) 
 

(80) 

 

If we measure,  𝒚(𝑘) = 𝒙(𝑘) or  𝑪 = 𝑰,𝑫 = 𝟎  and then form the augmented data 𝒀𝒂 as 

explained, we can decompose 𝒚𝒂 (= a representative variable from this system) into the 

principal components and the residual components, we have:  

𝒚1   𝒚2   𝒚3    …    𝒚𝑛     

𝒀                          

 

Original data 
Augmented data 

𝒀[: ,1: 𝑛 − 1] 𝒀[: ,2: 𝑛]                          

 

𝒀𝒂                          

 

Figure 15 Augmented PCA 
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𝑸𝒚𝒂 = 𝝂 

 

(81) 

where  𝒚𝒂 =  𝒙𝒏+𝟏  𝒙𝒏  𝒖 𝑇  

Accordingly we define 𝑸 = [𝑸𝟏 𝑸𝟐 𝑸𝟑] 

Therefore we have  

 

 𝑸𝟏 𝑸𝟐 𝑸𝟑  
𝒙 𝑘 + 1 

𝒙 𝑘 
𝒖

 = 𝝂 

 

(82) 

Or 

𝑸𝟏𝒙𝒏+𝟏 + 𝑸𝟐𝒙𝒏 + 𝑸𝟑𝒖 = 𝝂 

 

(83) 

This is equivalent to the general dynamic systems model (Eq. (85)), where, 

 

𝑨 = −𝑸𝟏
−𝟏𝑸𝟐 

𝑩 = −𝑸𝟏
−𝟏𝑸𝟑 

𝑪 = 𝑰 

𝑫 = 𝟎 

 

Notice that this formulation is valid only if we measure all stated of the system. In 

general systems we may not be able to measure all states of the system in these cases, in 
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order to extract the full dynamic of the system, we need to have further data 

augmentation. So in general case the dynamic system model would be in this form:  

𝒙 𝑘 + s = 𝑨𝟏𝒙 𝑘 + 𝑨𝟐𝒙 𝑘 + 1 + ⋯+ 𝑨𝒔−𝟏𝒙 𝑘 + 𝑠 − 1 + 𝑩𝒖(𝑘) 

𝒚(𝑘) = 𝑪𝒙(𝑘) + 𝑫𝒖(𝑘), 
(84) 

which can be easily reformulated into the general form of Eq. (85). This method has been 

explained in the following example. 

 

Example 1: The pendulum box shown in Figure 16 is subject to random vibration of its 

base. Assume we have a history of measurements of the base vibrations 𝑢 and the angle 

of the pendulum 𝜃; we need to develop and algorithm to detect the fault in the angle 

sensor.   

 

 
Figure 16 The model of pendulum 

𝑢 

𝜃 

𝑢(𝑚𝑚) 𝜃(𝑟𝑎𝑑) 
0.023 0.2411 
-1.217 0.1931 
-0.621 0.1323 
1.901 0.0381 

⋮ ⋮ 

-0.726 0.2321 
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In this problem we have only one measured state where as the order of the system is two. 

Clearly there is no direct redundancy. Therefore, we need to use augmented PCA in order 

to find dynamic or temporal redundancy. We define the augmented database matrix as: 

𝒀𝑎 = [𝜃 𝑘 + 2    𝜃 𝑘 + 1   𝜃(𝑘)    𝑢(𝑘)]. 

The covariance of these data is equal to:  

𝐶 =  

0.0499 0.0459 0.0459 0.0001
0.0459 0.0499 0.0459 0
0.0459 0.0459 0.0499 0
0.0001 0 0 0.0099

 , 

which can be decomposed into:  

𝑪

=  

0.407   −0.708 −0.002     0.577
−0.817  0.001 0.000  0.577
0.409 0.706  0.003 0.577

 0  0.004 −1.0 0.001

  

0.004 0 0 0
0 0.004 0 0
0 0 0.01 0
0 0 0 0.142

  

0.407   −0.817    0.409 0
0.708 0.001 0.706  0.004
−0.002 0 0.003 −1
0.577 0.577 0.577 0.001

  

The eigenvalues are shown in Figure 17 

 
Figure 17 PCA analysis of example 1 
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If we assume the first third eigenvalues are due to the noise, we can find the residual 

generator as:  

𝑸 =  
0.407   −0.817    0.409 0
0.708 0.001 0.706  0.004
−0.002 0 0.003 −1

  

 

𝚺𝒓 = 𝑸𝑪𝑸𝑻 =  
0.004 0 0

0 0.004 0
0 0 0.01

  

Then, the residual vector is found as  𝒓 = 𝑸 𝜃 𝑘 + 2     𝜃 𝑘 + 1     𝜃 𝑘    𝑢(𝑘) 𝑻, and 

the fault detection index is found using  𝑓 = 𝒓𝑇𝜮𝑟
−1𝒓. The result of fault detection index 

for a set of artificially erroneous data are shown in Figure 18 
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Figure 18 Dynamic fault diagnosis result of example 1 
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CHAPTER V 

PROBABILISTIC METHOD OF SENSOR 

FAULT DIAGNOSIS 

Introduction to the Redundancy Models 

Depending on the type of the knowledge that we have about the system, different 

categories of FDI has been proposed in the literature. When the physical model of the 

system is available in the form of input-output model, we have a systematic knowledge 

about the system and model based methods are used. When the knowledge is in the form 

of a database of numerical records of the system during the healthy and faulty conditions, 

the data driven method is used which is usually in the form of statistical analysis 

methods. These two methods are among the quantitative methods however there is 

another category of methods called qualitative methods which is used when the 

knowledge of the system is in the form of cause-effect associations learned from history 

of the system. This kind of knowledge is called expertise knowledge and the methods the 

cased-base method are used for the diagnosis purposes [Lampis and Andrews 

2009][Venkatasubramanian et al. 2003].  

Generally, model based FDI methods use some form of redundancy to detect the 

inconsistency. This redundancy can be in the form of hardware redundancy or analytical 

redundancy. The hardware redundancy requires application of two or more sensors to 

measure a single variable of the system [Willsky 1976]. In such cases voting techniques 

are often used for fault detection. Voting schemes are easy to implement and are quick to 
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identify mechanical faults in instruments. However, the application of hardware 

redundancy is limited due to cost and design limitations. 

Analytical redundancy, on the other hand is based on the inherent relationships between 

different system variables. These relationships are usually represented the mathematical 

model of the system. When this model is a simple algebraic relationship between the 

measured variables, we have direct redundancy or algebraic redundancy but when it is a 

dynamic output-model or state space model, we have temporal redundancy or dynamic 

redundancy [Frank 1990]. Since the models provide redundant measurements in addition 

to the real measurements from the plant, we can also call them redundancy models.  

The first step toward the fault detection is to form some residuals based on the 

redundancy model. The residuals are the differences between the measured variables and 

their expected value from the redundancy model. Therefore, any discrepancy in the 

system will results in a nonzero residual. Usually, due to the noise in the system and 

inaccuracy of the model, the residuals are always nonzero, but in a healthy system the 

residual should have a distribution with the expected value of zero.  

A wide range of different methods of residual generation is introduced in the literature, 

the most straightforward method is to estimate the states of the system based on the 

measurements using  Kalman filter [Frank 1990], or Least square method [Isermann 

1997] and then use these estimated states to find the expected value of the measurements. 

These methods, known as observer-based FDI [Venkatasubramanian et al. 2003], develop 
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a set of observers, each one of which is sensitive to a subset of faults while insensitive to 

the remaining faults and unknown inputs.  

The more convenient method of residual generation is through parity equations.  Parity 

equations are a rearranged mathematical representation of the input-output or state space 

model of the system that directly generates the residuals from the measurements [Chow 

and Willsky 1984], [Gertler and Singer 1990]. One of the main requirements of the parity 

equations is their robustness i.e. the residuals generated by these parity equations should 

have minimum sensitivity to the uncertainties and noise. Also, they should be able to 

isolate different fault in the system. Fault isolation requires the ability to generate residual 

vectors which are orthogonal to each other [Ben-Haim 1980, 1983].  

In order to facilitate the isolation, two major methods of enhancement of residuals have 

been subjected: Structural Residuals and Directional Residual. In structural residual 

approach, the residuals are designed such that a unique subset of residuals is orthogonal 

to a specific fault. Therefore when that fault happens, the expected value of all residuals 

become nonzero except those corresponding to the fault [Gertler and Singer 1990]. In 

directional residual approach, the residual are designed such that each fault makes the 

expected residual vector to be a nonzero vector with a specific direction corresponding to 

that fault. 
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Decision Process 

The next step after residual generation is the decision process [Chow and Willsky 1984]. 

In the decision process, the residuals are examined to first detect the fault, and then 

isolate the fault in the system.  A decision process may consist of a simple threshold test 

on the residuals, moving averages of the residuals, or it may be directly based on 

advanced methods of statistical decision theories.   

Although the papers in the area of FDI usually present a method for both of these stages, 

the main focus of most of them is on the first stage i.e. to find the most effective residuals 

such that they have minimum sensitivity to the disturbances and can efficiently detect and 

isolate the faults. Typically, in these papers, the decision process itself has two phases. 

The first one is to detect the existence of the fault and the second one is to isolate the 

sources of the fault [Venkatasubramanian et al. 2003]. Moreover, the final decision is in 

the binary form of either faulty or healthy.  

In contrast, in this chapter the main focus is on the decision process. In the presented 

method,   the residual generation is suggested through a simple equation which is called 

Minimal Parity Equation. Based on this equation, a probabilistic model is presented that 

can find the probability of error in each sensor separately. Therefore, the detection and 

isolation is performed together.  

There are several advantages of this probabilistic model to the existing methods  
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1. The probabilistic model provides a better sense about the certainty of the 

decision and it provides more meaningful information to the end user. 

2. The result of this analysis can be easily combined with other sources of 

information about the health condition of the system 

3. In some cases that the fault is not isolable between two or more sensors, 

the algorithm provides equal probability of error in each one in the group 

such that the user can recognize the group of faulty sensors that has higher 

probability of error.  

4. The detection and Isolation are performed concurrently. 

Several researcher has used the probabilistic models for the sensor fault diagnosis these 

method are based on Bayesian Belief Networks(BBN) [Ibarguengoytia et al. 2006] 

[Maheshvari and Hakimi 1976] Fault trees [Huldle 2009] or combination of both 

[Andrews 2009]. These methods are mainly advantageous when there is no quantitative 

knowledge about the system. The difference between the probabilistic method presented 

in this chapter and the BBN based methods is that the former uses a residual generator 

which is based on an input-output model and then uses the probabilistic analysis on the 

residuals, whereas the later uses the ―Expertise knowledge‖ to find a probabilistic cause-

symptom model. 

The main assumption made for derivation of the probabilities of error is that there is 

maximum one faulty sensor in the system. However, this method can be extended to 

multiple fault detection depending on the degree of redundancy in the model.  
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Probabilistic Decision Process 

Assume sensors S1 , S2 …Sn  are used to measure the variable in the output vector Next 

assume the measurement in each Sensor 𝑆𝑖  has an error with the fixed magnitude of 𝛿𝑖, 

we have:  

𝒚 = 𝒚∗ + 𝒏 + 𝚫, (85) 

 

where 𝒚∗ is the expected value of the measured variable, 𝒏 is the noise and 𝚫 =

 𝛿1 𝛿2 …𝛿𝑛   𝑻 is the vector of measurement errors.  

Assuming the noise has a Gaussian distribution with known parameters,   

 

𝒏 ∝ 𝑁(0, 𝜮), (86) 

 

the distribution of 𝒚 would become: 

 

𝒚 ∝ 𝑁(𝒚∗ + 𝚫,𝜮). (87) 
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Since the residual of the expected value is zero, 𝑸𝒚∗ = 𝟎, the distribution of the residual 

is just dependent on the noise and the fault. 

𝒓 ∝ 𝑁   𝛿𝑗𝒒𝑗

𝑛

𝑗=1

, 𝜮𝐫  (88) 

 

where 𝜮𝐫 = 𝑸𝜮𝑸𝑻and 𝒒𝑗  is the 𝑗𝑡ℎ  column of 𝑸 called fault image vector. 

Eq. (88) shows the distribution residual in the general case, however if we assume only 

one sensor can be faulty at a time, it will simplify to (Assuming the faulty Sensor is  Si )  

 

𝒓 ∝ 𝑁 𝛿𝑖𝒒𝑖 , 𝜮𝐫 . (89) 

 

Based on this distribution the following conditional probabilities can be found:  

 

𝑝 𝒓 ℋ = 𝑁 0, 𝜮𝐫 . (90) 

𝑝 𝒓 𝒮𝑖 , 𝛿𝑖 = 𝑁 𝛿𝑖𝒒𝑖 , 𝜮𝐫 . (91) 
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where 𝑝 𝒓 ℋ  is the probability distribution of 𝒓 when the system is healthy and 

𝑝 𝒓 𝒮𝑖 , 𝛿𝑖  is probability distribution of 𝒓 when there is a error in measurement of Sensor 

Si  with the magnitude of 𝛿𝑖. 

Note that this distribution is dependent on the unknown variable 𝛿𝑖 but we can 

marginalize this variable by integrating it over 𝛿𝑖, 

 

𝑝 𝒓 𝒮𝑖 =  𝑝 𝒓 𝒮𝑖 , 𝛿𝑖 𝑝 𝛿𝑖 d𝛿𝑖 . (92) 

 

Assuming 𝛿𝑖 has a uniform distribution, (there is no a priori about the magnitude of fault) 

the result of this integration is:  

 

𝑝 𝒓 𝒮𝑖 = 𝑝 𝒓𝑖  𝒮𝑖 = 𝑁 0, 𝜮𝑘 , (93) 

 

where 𝒓𝑖 is defined as directional residual for the 𝑖𝑡ℎ  sensor and  𝒓𝑖 = 𝑸𝑖𝒓 , 𝜮𝑖 =

𝑸𝑖𝜮𝐫𝑸𝑖
𝑇,  and 𝑸𝑖  is the matrix containing orthonormal vectors in the null space of 𝒒𝑖. 

Now, in order to find the posterior probabilities or the probability of each sensor faulty 

given an observed value of 𝒓, we can use the Bayes‘ formula: 
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𝑝 𝒮𝑖  𝒓 =
𝑝 𝒓 𝒮𝑖 𝑝(𝒮𝑖)

𝑝(𝒓)
, (94) 

𝑝 ℋ 𝒓 =
𝑝 𝒓 ℋ 𝑝(ℋ)

𝑝(𝒓)
, (95) 

 

where the marginal probability can be found as: 

𝑝 𝒓 = 𝑝 𝒓 ℋ 𝑝 ℋ + 𝑝 𝒓 𝒮𝑖 𝑝 𝒮𝑖 

𝑛

𝑖=1

. (96) 

 

The a priori‘s 𝑝 ℋ  and 𝑝(𝒮𝑖) can also be estimated by their probability given the 

previous set of observations:  

 

𝑝 ℋ = 𝑝 ℋ 𝒓<𝑜𝑙𝑑>  (97) 

𝑝(𝒮𝑖) = 𝑝 𝒮𝑖  𝒓
<𝑜𝑙𝑑>  (98) 

 

where  𝒓<𝑜𝑙𝑑> is the value of residual from the previous measurement.  

Study of Sensor Fault Detectability  

In a set of sensors measuring variables of a system, based on the degree of redundancy 

and the association of measured variables in the redundancy relationship, some sensors 
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might not be detectable. It means that their contribution to the primary residual is zero or 

so small that if a fault happens in those sensors, the change in the residual cannot be 

detected. One fast method to find non-detectable sensors is to check their fault image 

vectors. The sensors, whose fault image vectors have very low magnitude, would 

probably be non-detectable. However, this method is however just a rough estimation. 

The more accurate answer should also consider the noise level and especially the 

direction of the noise. For example, in the system shown in figure 19, although the fault 

image vector of Sensor 𝑆3 is smaller than that of Sensor 𝑆1, it is easier to detect a fault 

with the same relative magnitude in Sensor 𝑆3  rather than  𝑆1 . In this figure, a two 

dimensional residual space is shown for a system of 3 redundant sensors. The 3 solid 

lines are the sensor fault images corresponding to these three sensors and the dashed 

ellipse is the contour of constant probability density of having a healthy system in the 

residual space. Now assume two cases where a single fault with relative magnitude of 𝛼 

happens in Sensor  𝑆1  and Sensor 𝑆3 base on this figure, the probability density of first 

case is less than that of the second  𝒓 = 𝛼𝒒1  ℋ > 𝑝 𝒓 = 𝛼𝒒3  ℋ . Consequently, their 

posterior probabilities will also have the same relationship  𝑝 ℋ  𝒓 = 𝛼𝒒1 >

𝑝 ℋ  𝒓 = 𝛼𝒒3  which means that the estimated probability of error for the first case is 

less than that of the second case.  
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Figure 19  Different level of detectability in sensors 

 

A quantitative measure for the level of detectability of sensors can be the value of 

probability density of for the case that a single fault with a unit magnitude 𝛼 = 1 happens 

given that the system is healthy: 

𝐷𝑀𝑖 = 𝑝 𝒓 = 𝒒𝑖   ℋ  (99) 

 

where 𝐷𝑀𝑖  is the detectability index for Sensor 𝑖. The more this number is, the less is the 

probability to detect a fault in that Sensor.  

  

𝑆1  

𝑆2 

𝑆3  

𝒒1  

𝒒3  

𝒒2  
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CHAPTER VI 

NONLINEAR SENSOR FAULT 

DETECTION 

In this chapter, a methodology for sensor fault diagnosis in nonlinear systems using 

Mixture of probabilistic principal component analysis (MPPCA) is introduced. MPPCA 

algorithm separates the input space or measurement space into several local linear 

regions. Each region is associated with a Probabilistic PCA model which is characterized 

with a Gaussian distribution model with reduced dimension and with the unit vectors of 

its principal subspace. Therefore the detectability and isolability properties of sensor are 

analyzed separately in each region. During the real-time monitoring of the sensors, first 

the local linear region and its corresponding PCA model is recognized using the 

probability distribution of the Gaussian component model. Then, the residuals are 

generated based on the recognized PCA model and using the probabilistic analysis of the 

residuals, probability of having error in each sensor is estimated.  

Introduction  

In the linear sensor fault diagnosis, a methodology was presented to detect and 

reconstruct the faulty sensor among a set of analytically redundant sensors [Sharifi and 

Langari 2009]. In that approach, the principal component analysis technique provides a 

static linear model and a parity equation of the system. This parity equation was then 

used to validate the future measurements of the system and to detect and reconstruct the 

abnormality in the measurements.  
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However, linear methods are applicable as long as the relationship between the sensors is 

linear or it can be approximated as a linear correlation with adequate accuracy. Therefore, 

it is needed to expand the method to cover the nonlinear systems as well. Unfortunately, 

in the literature of data driven sensor fault diagnosis, the nonlinear methods are 

developed almost independent of the linear methods. Consequently, there is not a sound 

theoretical background for nonlinear approaches. For example, one of the most frequently 

used methods of nonlinear sensor fault diagnosis is through the application of 

Autoassociative Artificial Neural Network (AANN) introduced by Kramer [Kramer 

1992]. In this method, the expectation is that with a perfectly trained AANN, the absolute 

error between the measurement values (input of AANN) and the estimated values (output 

of AANN) is highest in the faulty sensor. However, this expectation is contradictory to 

the proven results found in the linear approaches [Dunia et. al. 1995].  

In this approach, MPPCA method is used which is based on separation of the input space 

into several local linear areas. As a result, we are able to apply the linear sensor fault 

diagnosis results. Also, the method of KPCA helps to achieve model selection in 

MPPCA.  

Probabilistic PCA  

Before explaining MPPCA, it is needed to have a close look at probabilistic PCA to 

clarify the advantages of probabilistic approach especially when it is used in sensor fault 

diagnosis. PPCA is an expression of PCA as the maximum likelihood solution of a 

probabilistic latent variable model. This probabilistic model has two advantages. 
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Therefore, when we have some information about uncertainty of measurements, we can 

apply it to the model to prepare a more precise model. Moreover with a probabilistic 

model, Mixture of probabilistic PCA models can be formulated in a principled way and 

be trained using Expectation-Maximization (EM) algorithm [Dinov 2008]. 

Classical PCA can be written as a probability density model by using a latent variable 

approach, in which the data 𝒚 ∈ 𝓡𝑛  is expressed by a linear combination of hidden 

variable 𝒙 ∈ 𝓡𝑟   with fewer dimensions (𝑟 < 𝑛) [Tipping and Bishop 2002].  

 

 

𝒚 = 𝑷𝒙 + 𝝁 + 𝝊  (100)             

 

where the hidden variable 𝒙 has a Gaussian distribution with zero mean and unit isotropic 

variance, 𝒙 ∼ 𝑁(𝟎, 𝑰)  and 𝝁 is constant and 𝝊 is the process noise which is dependent 

on  𝒚  which is equivalent of measurement uncertainty in the context of sensor fault 

diagnosis and 𝑃 is the projection matrix. Usually the noise model is a Gaussian process 

with zero mean and a diagonal covariance matrix, 𝝊 ∼ 𝑁(𝟎, 𝚽). Therefore the model for 

𝒚  has a normal distribution  𝒙 ∼ 𝑁(𝝁,𝑷𝑷𝑻 + 𝚽) . Since 𝚽 is diagonal, the observed 

variables 𝒚 are conditionally independent given the values of latent variables 𝒙.  

If we assume the noise model has isotropic variance, 𝜱 = 𝜍2𝑰, the probability model for 

PPCA can be written as a combination of the conditional distribution:  
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𝒑 𝒚 𝒙 =
𝟏

 𝟐𝝅𝝇𝟐 𝒏/𝟐
𝒆𝒙𝒑 −

 𝒚 − 𝑷𝒙− 𝝁 𝟐

𝟐𝝇𝟐
  (101)             

 

and the latent variable distribution: 

 

𝒑(𝒙) =
𝟏

 𝟐𝝅 𝒓/𝟐
𝒆𝒙𝒑 −

𝒙𝑻𝒙

𝟐
  (102)             

 

The marginal distribution of 𝒚 is then obtained by integrating out the latent variables 𝒙: 

 

𝒑 𝒚 = 𝑵(𝝁,𝚺) =
𝟏

 𝟐𝝅𝝇𝟐 𝒏/𝟐𝚺𝟏/𝟐
𝒆𝒙𝒑 −

𝟏

𝟐
 𝒚 −𝝁 𝚺−𝟏(𝒚− 𝝁)  (103)             

 

where 

𝚺 = 𝑷𝑷𝑇 + 𝜍2𝑰 

 

(104)             

To fit this model to the 𝑚 set of measurements, we use log-likelihood as an error 

measure: 

𝓛 =  −
𝒎

𝟐

𝒎

𝒊=𝟏

 𝒏 𝒍𝒐𝒈 𝟐𝝅 + 𝒍𝒐𝒈 𝚺 + 𝒕𝒓(𝚺−𝟏𝑺) , (105)             
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where  

 

𝑺 =
1

𝑚
  𝒚𝑖 − 𝝁  𝒚𝑖 − 𝝁 

𝑇

𝑚

𝑖=1

 

 

(106)             

 

is the sample covariance of the observed data, provided that 𝝁 is set to its maximum 

likelihood estimate, which is the sample mean. Estimates of 𝑷 and 𝜍2 can be obtained by 

an iterative maximization of ℒ using an EM. But, in this case it is possible to find an 

analytic solution for the maximum likelihood estimate: 

 

𝑷𝑀𝐿 = 𝑼𝑟 𝚲r − 𝜍
2𝑰 1/2𝑹 (107) 

 

where 𝑼𝑟  is a matrix with 𝑟  column vector which are corresponding to the first 𝑟 

eigenvectors of 𝑺 and 𝜦𝑟  is a diagonal matrix which has the first 𝑟 eigenvalues of 𝑺 as its 

diagonal elements. Matrix 𝑹 is an arbitrary 𝑟 × 𝑟 orthonormal (rotation) matrix.  

If we substitute maximum likelihood solution for 𝑷, then the maximum likelihood 

estimator for 𝜍2 is given by: 
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𝜍𝑀𝐿
2 =

1

𝑛 − 𝑟
 𝜆𝑗

𝑛

𝑗=𝑟+1

 (108)             

 

which is in fact the equivalent noise of the system or the average of variances eliminated 

in the mapping to the latent space.  

If we assume that that we have the parameter of the noise model (𝚽 is known) likelihood 

estimator for 𝜍2 is related to the real noise by: 

 

𝜍𝑀𝐿
2 =

1

𝑛 − 𝑟
 𝒖𝑗

𝑇𝚽𝒖𝑗

𝑛

𝑗=𝑟+1

 

 

(109)             

 

where 𝒖𝑗  is the 𝑗𝑡ℎ  eigenvectors of 𝑺 

Figure 20 graphically illustrates how the noise in the measurement in two dimensions is 

related to the estimated noise by the assumption of isotropic noise. In this simple 

example, the covariance matrix of noise in the system 𝚽 is known and it is diagonal. The 

dashed ellipse is the one standard deviation contour of the noise covariance. And the 

dashed circle is the modeled noise with PPCA. Assuming 𝝇𝟏  and 𝝇𝟐  are the standard 

deviation errors of measurements 𝒚𝟏 and 𝒚𝟐,  
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  Φ =  
𝜍1

2 0

0 𝜍2
2 ,      

 

(110)             

 

the estimated standard deviation error 𝜍 is found as: 

𝜍2 = 𝒖2
TΦ𝒖2 = 𝜍1

2𝑢2,𝑦1
+ 𝜍2

2𝑢2,𝑦2
, (111)             

 

where 𝑢2,𝑦1
 and 𝑢2,𝑦2

 are the components of 𝑢2 in direction of 𝒚𝟏 and 𝒚𝟐,  
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Figure 20 Comparison of estimated noise and real noise models in a two dimensional 

system.  

 
 

Usually, in the problem of sensor fault diagnosis we have a good estimation of the noise 

in the system. This information may come from precision analysis of sensors provided by 

the sensor manufacturer, or though analysis of performance of sensors in the system. This 

𝜍 

𝜍1  

𝑦1  

𝑦2  

𝜍2 
𝒖2  

𝒖1  

Noise direction 

Principal direction 

𝑦1  

𝑦2  

𝑝(𝑦2) 

𝑝(𝑦1) 
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information about the noise is particularly valuable when we are dealing with nonlinear 

PCA methods or specifically Mixture of Probabilistic PCA.  

Mixture of Probabilistic PCA 

Mixture of PPCA is a nonlinear method of PCA which is based on separation of the input 

space into several local linear regions. Each region is defined by its own Gaussian model 

which is obtained by PPCA algorithm. Therefore, the whole space is defined by a 

Gaussian Mixture Model (GMM) which simulates the nonlinear behavior of the data. 

Assuming we have mixture of 𝑘 Gaussian models with mean value and covariance of 𝝁𝑘  

and 𝚺𝑘 , and mixing coefficient of 𝜋𝑘  for each model, Gaussian mixture distribution can 

be written as a linear combination of Gaussians in the form: 

 

𝑝 𝒚 =  𝜋𝑘𝑝 𝒚 𝑘 =  𝜋𝑘𝑁(𝒚|𝝁𝑘 , 𝚺𝑘)

𝐾

𝑘=1

𝐾

𝑘=1

 

 

(112)             

 

where probability of each component is a PPCA model which is associated with mean 

vector 𝝁𝑘 , projection matrix 𝑷𝑘 , and noise model 𝜍𝑘2 .  

The log-likelihood of this model over the observed data is:   
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ℒ =  𝑙𝑛 𝜋𝑘𝑝 𝒚
𝒊 𝑘 .

𝐾

𝑘=1

𝑚

𝑖=1

 

 

(113)             

 

Finding the maximum log-likelihood of this model is a typical problem of GMM which is 

solved by EM algorithm. In the E-step, we find the responsibility 𝑅𝑖𝑘  of component 𝑘 for 

generating data point 𝒚𝒊 by Bayesian Inference:  

 

𝑅𝑖𝑘 = 𝑃 𝑘 𝒚𝒊 =
𝑝 𝒚𝒊 𝑘 𝜋𝑘

𝑝(𝒚𝒊)
 (114)             

 

In the M-step the parameters of each component is updated.  

 

𝜋𝑘
<𝑛𝑒𝑤> =

1

𝑁
 𝑃<𝑜𝑙𝑑> 𝑘 𝒚𝒊 

𝑚

𝑖=1

 

 

(115)             

 

𝝁𝑘
<𝑛𝑒𝑤> =

 𝑃<𝑜𝑙𝑑> 𝑘 𝒚𝒊 𝒚𝒊𝑚
𝑖=1

 𝑃<𝑜𝑙𝑑> 𝑘 𝒚𝒊 𝑚
𝑖=1

 

 

(116)             
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Then the covariance structure is updated using the responsibility of the 𝑘𝑡ℎ  component. 

 

𝑺𝑘 =
1

𝜋𝑘
<𝑛𝑒𝑤>𝑚

 𝑃<𝑜𝑙𝑑> 𝑘 𝒚𝒊 

𝑚

𝑖=1

 𝒚𝑖 − 𝝁<𝑛𝑒𝑤>  𝒚𝑖 − 𝝁<𝑛𝑒𝑤> 
𝑇
 

 

(117)             

 

In practice, this algorithm is much faster when it is mixed with a separate clustering 

algorithm such as K-means clustering. Usually the early estimation of components of the 

mixture model is done using some iteration of K-means clustering algorithm then the EM 

algorithm is applied on the mixture model. A good advantage of this algorithm is its 

versatility to add more source of information to find a more accurate model of the data. 

This is very important when we want to apply in for sensor fault diagnosis. In the next 

part we explore what kind of information we can potentially have in the SFD problem 

and how to apply it on the algorithm to find an accurate model of the system.  

Sensor Fault Diagnosis Using Mixture of Probabilistic PCA 

The general approach in sensor fault diagnosis using MPPCA is to find an accurate 

mixture model from the input space. Then, during the online monitoring, once a new set 

of data is measured, we find the responsibility of each component with this new set. The 

component with the maximum responsibility is the winner and the parameters of the 
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winner component are used to test the validity of measurement using linear sensor fault 

diagnosis method.  

The most important problem in this approach is  how to model the input space that 

effectively represent the nonlinear correlation between different dimensions e.g. finding 

the optimum number of Gaussian models or clusters, 𝐾, the best location of center of 

each cluster 𝝁𝑘 , and its projection matrix 𝑷𝑘 . These parameters are dependent on training 

method and number of iteration used for the training.  

As explained before, when we want to apply MPCCA for a measurement set, we might 

have additional information that can help to find a more accurate model of the system. 

Here we discuss these information and find out how they can improve on the algorithm of 

training. There are four type of information that we have about the data: (1) The 

covariance of the noise in each measurement is known (2) The covariance matrix of the 

noise is the same for all Gaussian models (3) There is no discontinuity in the space of 

measurement data (4) There is a continuous change in the direction of principal 

components. However, depending on the specific type of the fault diagnosis problem, 

some of these assumptions may not be valid.  

One of the most important parameters in developing a MPPCA model is the number of 

Gaussian models. If the number of components is too low, there might not be enough 

linear behavior in each component and if the number of components is too high there is a 

chance to model the noise in the system. So it is very important to select the optimum 

number of Gaussian components. Figure 21 shows a simple data of two dimensions 



94 

 

 

which has been modeled by MPPCA with four different numbers of components. In this 

figure, the dashed ellipse is the one standard deviation contour of the noise covariance 

and solid lines shows the direction of principal components. Mixture models in parts a,b,c 

and d is composed of 3,5,7 and 15 components. graph (a) has too few components 

therfore the data inside each component has nonlinear behaviour. Overfitting proplem is 

also clearly shown in graph (d) when the number of components is too much.  It clearly 

shows that without any information about the noise in the system, the model tries to 

model the noise in the data when we increase the number of components. This problem is 

known as over-fitting problem in the machine learning terminology.  In this figure, the 

dashed ellipse is the one standard deviation contour of the noise covariance and solid 

lines shows the direction of principal components. Mixture models in parts a,b,c and d is 

composed of 3,5,7 and 15 components. As you can see model (a) has too few components 

therfore the data inside each component has nonlinear behaviour. Overfitting proplem is 

also clearly shown in model (d) when the number of components is too much.   
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Figure 21 Traning a MPPCA model for a set of data with different number of 

Gaussian models 

 

 

Now assume we have Gaussian distribution of noise, we want to see how we can use this 

information to model the noise. As explained in the PPCA section, we assume there is 

isotropic noise in the model, or the covariance of the noise is 𝜱 = 𝜍2𝑰. This means that 

the different sensors that is used in the measurement set has the same precision. This 

assumption is valid when the sensors of the system are identical e.g. there are several 

temperature sensors measuring the temperature of different parts of a plant and they are 

under the same working conditions. Therefore, the covariance of the noise is isotropic for 

all models and they are identical. The value of 𝜍2 is also found from characteristics of the 

sensor. On the other hand, the value of noise in the MPPCA is found through EM 

(c) 

(a) (b) 

(d) 
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algorithm. Therefore, we can compare the theoretical value of noise with the noise found 

from EM algorithm. These two values should be equal as long as we have an accurate 

model. However we will show that this is only the necessary condition for having a 

correct model.  

In most cases the assumption of isotropic noise is not valid. Therefore, the noise found in 

MPPCA mode is an equivalent value of the noise which is related to the real noise trough 

Eq. (109). It can be seen that since the term 𝒖𝑗  exist in this equation, the relationship 

between the experimental noise and general noise covariance matrix is also a function of 

principal components. This dependency is shown in Figure 22. In this figure the level of 

noise in 𝑦2  is twice as big and the level of noise in 𝑦1  therefore the modeled noise is 

dependent on the local slope or principal component of the model, however the 

covariance matrix of the noise is fixed at all points. The dashed ellipse is 3 standard 

deviation contour of the noise covariance and the dashed lines are 3 standard deviation 

contour of data variation. The dashed circle shows 3 standard deviation contour of the 

equivalent isotropic noise modeled by PPCA algorithm. 
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Figure 22 The relationship between the modeled noise and real noise 
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CHAPTER VII 

CASE STUDIES AND CONLUTIONS 

In this chapter, three sample project of sensor fault diagnosis has been explained. The 

first one is a linear analysis of measurements from model of a smart structure. The second 

system is the model of Tennessee Eastman Reactor. The probabilistic algorithm of sensor 

fault diagnosis has been applied on that. Finally, the nonlinear sensor fault diagnosis has 

been applied to the measurement from a HVAC system.  

System 1: Linear SFD in a Model of a Smart Structure  

In this section, a three-story building structure employing a MR damper is presented.  

The goal is to evaluate the performance of the proposed PCA methodology for the sensor 

fault detection of the semiactive nonlinear fuzzy control system.  A typical example of a 

building structure employing a MR damper is depicted in Figure 23.  Note, the MR 

damper can be applied to arbitrary locations within this building structure. The reason to 

install the MR damper into the 1st floor is that previous researchers have demonstrated the 

effectiveness of this approach.  In addition, Figure 24 shows how a MR damper is 

implemented into a building structure.  

The associated equation of motion is given by  

 

𝐌∗𝐱 + 𝐂∗𝐱 + 𝐊∗𝐱 = Г𝐟MR  𝑡, 𝑥1, 𝑥 1, 𝑣1 − 𝐌
∗𝚲𝒘 g (118) 
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 where the system matrices are given by: 

 

𝐌∗ =  
𝑚1 0 0
0 𝑚2 0
0 0 𝑚3

  (119) 

 

is the mass matrix, 

 

𝐂∗ =  
𝑐1 + 𝑐2 −𝑐2 0
𝑐2 𝑐2 + 𝑐3 𝑐3

0 −𝑐3 𝑐3

  
(120) 

 

is the damping matrix, 

 

𝐊∗ =  
𝑘1 + 𝑘2 −𝑘2 0
𝑘2 𝑘2 + 𝑘3 𝑘3

0 −𝑘3 𝑘3

  (121) 

 

is the stiffness matrix, 

 

𝐟MR  𝑡, 𝑥1, 𝑥 1, 𝑣1 =  
𝑓MR 𝑡, 𝑥1, 𝑥 1, 𝑣1 

0
0

  (122) 
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is MR damper force input matrix; 𝑤 g denotes the ground acceleration; 𝑚𝑖 are the mass of 

the 𝑖𝑡ℎ  floor; 𝑘𝑖  are the stiffness of the 𝑖𝑡ℎ  floor columns; 𝑐𝑖  are the damping of the 𝑖𝑡ℎ  

floor columns; the vector 𝐱 and 𝐱  are the displacement and velocity relative to the 

ground; 𝐱  is the absolute acceleration; 𝑥1and 𝑥 1 are the relative displacement and the 

relative velocity at the 1st floor level to the ground of the three story building structure, 

respectively; v is the voltage level to be applied; and Г and 𝚲 are location vectors of 

control forces and disturbance signal, respectively.   

 

 

 

Figure 23  Schematic of the prototype 20-ton large-scale MR damper 
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Figure 24  Integrated building structure-MR damper system 

 

This second order differential equations can be converted into standard state space form 

 

𝐳 = 𝐀𝐳 + 𝐁𝐟MR 𝑡, z1, 𝑧4 , 𝑣 − 𝐄𝑤 g  

𝒚 = 𝐂𝐳 + 𝐃𝐟MR 𝑡, z1, 𝑧4, 𝑣 + 𝐧 
(123) 

 

where 
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𝐀 =  
𝟎 𝐈

−𝐌∗−𝟏𝐊∗ −𝐌∗−𝟏𝐂∗
  (124) 

 

is the state matrix,  

 

𝐁 =  
𝟎

𝐌∗−𝟏𝐅
  (125) 

 

is the input matrix,  

 

𝐂 =  
𝐈 𝟎
𝟎 𝐈

−𝐌∗−𝟏𝐊∗ −𝐌∗−𝟏𝐂∗
  (126) 

 

is the output matrix,  

 

𝐃 =  
𝟎
𝟎

𝐌∗−𝟏𝐅

  (127) 

 

is the feedthrough matrix,  

 

𝐄 =  
𝟎
𝐅
  (128) 
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is the disturbance location matrix, 

 

𝐅 =  
−1 1 0
0 1 1
0 0 −1

  (129) 

 

is the location matrix that a Chevron brace is located within a building structure, and z1  

and z4 are the displacement and the velocity at the 1st floor level of the three story 

building structure, respectively.  In this building structure, a SD-1000 MR damper has 

been applied. 

Properties of the three-story building structure are adopted from a scaled model (Dyke et 

al. 1996) of a prototype building structure.  The mass of each floor m1= m2=m3= 98.3 kg; 

the stiffness of each story k1 = 516,000 N/m, k2 = 684,000 N/m, and k3 = 684,000 N/m; 

and damping coefficients of each floor c1 = 125 Ns/m, c2 = 50 Ns/m and c3 = 50 Ns/m.  

In addition, a SD-1000 MR damper whose approximate capacity is 1,500 N is assumed to 

be installed into the 1st floor using a Chevron brace, which leads to a nonlinear dynamic 

model, i.e., a building-MR damper system.  In what follows, the PCA technique is 

applied to the building-MR damper system and then, sensor faults within the smart 

structure are isolated and detected.  
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PCA Modeling 

The first step for the sensor fault detection of the smart structures is to analyze the data to 

find out which sensor is isolable among the set of sensors: (1) the data used for analysis is 

taken from the simulation of the smart structure model. (2) the data obtained from each 

sensor is normalized so as to have a mean value of zero and standard deviation of one. 

The reason for this normalization is to give equal quantitative value to each sensor. (3) 

Then, the covariance matrix of the data is calculated and the eigenvalues of the 

covariance matrix is found. Figure 25 shows these eigenvalues in descending order.  

 

 
Figure 25 The Eigenvalues of the covariance matrix of measured data 

 

As shown in Figure 25, the last two values of eigenvalues are considerably lower than the 

rest. It means that the dimension of noise space is 2 and the dimension of principal space 

is 8. In Other words, the measured data can be projected on 8 dimensions and the 



105 

 

 

projected data can be reconstructed back to the original space without losing any 

information. This is true as long as all of the measurements are uncorrupted or they 

follow the same correlation relationship. If the projection of the measured data into the 

noise space, i.e., residuals would be greater than a threshold, the faulty sensors of the 

system can be detected.  The noise space is spanned by the eigenvectors corresponding to 

the minimum eigenvalues which is shown as 𝑸.  In this problem, 𝑸 is found as: 

 

𝑸 =  
0.1449 −0.7417 0.6322 0.0004 0.0025 0.0019 −0.0020 −0.1235 0.1181 −0.0045
0.6985 −0.3025 −0.4801 0.0019 −0.0017 −0.0002 0.1535 −0.0510 −0.2244 0.3369

    

 

Each column of this matrix is the fault image vector for a sensor in the system. Since the 

dimension of residual space is 2, the fault image vectors in the residual space can be 

easily represented as shown in  

From Figure 26, it can be judged if the sensor faults of the smart structure are detectable 

and isolable. (1) The line of fault image vector for sensors 𝑆1 , 𝑆3  and 𝑆9 are different 

from the other sensors, which means these 3 sensors are both detectable and isolable. (2) 

Fault image vectors in the sensor 𝑆2 is in the same line as the sensor 𝑆8 and fault image 

vectors of sensor 𝑆7 is in the same line as the sensor 𝑆10 , which means these sensors are 

detectable but not isolable. For instance, if a fault happens in sensor 𝑆2, the abnormality 

can be detected but it is not possible to identify that the fault is due to error from either 

sensor 𝑆2 or sensor 𝑆8. (3) The fault image vectors for 𝑆4, 𝑆5 and 𝑆6 are very close to 

zero. If a fault happens in any of these sensors, it does not show up in the residual space 
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since the vector of residual is equal to multiplication of fault image vector by the 

magnitude of the fault. Therefore, these three sensors are not even detectable.  These 

results are summarized in Table 1. 

 

 

 
Figure 26 Sensor fault image vectors 
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Table 1  Detectability and isolability of sensors 

Sensor #  𝑆1   𝑆2   𝑆3  𝑆4  𝑆5  𝑆6  𝑆7  𝑆8  𝑆9  𝑆10  

Detectable √ √ √ × × × √ √ √ √ 

Isolable √ × √ × × × × × √ × 

 

Linear Sensor Fault Diagnosis 

As explained previously, the detection and isolation of sensor faults are identified using 

the parity equation. In the detection step, fault detection index expressed in terms of the 

residual vector and covariance matrix of the residual is calculated. The level of noise in 

the measurement is closely related to the performance of fault detection and the minimum 

level of detectable faults.  In this analysis 3 different cases with different signal to noise 

ratios are considered. Table 2 shows these three cases and their corresponding 𝜮𝒓 which 

is calculated by projecting of the noise covariance on residual space.  
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Table 2  Noise to signal ratio in different sensors (percent) 

 Acceleration 

sensors 

Displacement 

sensors 
Other sensors 

𝚺𝐫 

Case 1 2 2 2  
4.0𝑒 − 4 0

0 4.0𝑒 − 4
  

Case 2 5 2 2  
4.6𝑒 − 4 −0.416𝑒 − 4

−0.416𝑒 − 4 5.6𝑒 − 4
  

Case 2 5 5 5  
2.5𝑒 − 3 0

0 2.3𝑒 − 3
  

 

In order to test the effectiveness of the algorithm, a shift sensor fault is generated in 

sensors in different times Figure 27 shows the pattern of the generated faults. The faulty 

region of data is shown with bolded lines.  Note that in order to better compare the 

isolability and detectability of the sensors, the measured values have been normalized 

such that they all have a mean value of zero and a standard deviation of one.  Then, a 

fixed error has added to the measurements. Since the capability of the sensors to detect 

and isolate the fault is also a direct function of magnitude of error, two different values of 

0.3 and 1 is considered as the magnitude of error. The magnitude of error in Figure 27 is 

1. The projection of these data onto the residual space is also shown in Figure 28.  
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The fault detection is performed via fault detection index introduced in Eq.(121)  If there 

is no fault in the system, the index must follow a chi-square distribution. The index 

values are shown in Figure 29 for two different fault magnitudes. The top graph and 

bottom graph shows the index values when the magnitude of the fault is 1 and 0.3, 

respectively. In the left graph, these values are filtered to have a better distinction 

between the normal and faulty modes.  It is clear from these graphs that: (1) the faults in 

sensors 𝑆4 , 𝑆5  and 𝑆6  are not detectable (2) even for the detectable sensor, there are 

different levels of sensitivity of the fault detection index. In other words, although some 

sensors are logically detectable, it is practically impossible to detect the fault because the 

magnitudes are too low, i.e., the sensitivity to the fault is too low.  
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Figure 27 The scaled sensor data contaminate with noise and faults 
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Figure 28 Projection of measurement into the residual space  
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Figure 29 The value of fault detection index for different fault magnitudes 
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System 2: Probabilistic SFD for the Model of Tennessee Eastman Reactor 

The proposed method of sensor fault diagnosis has been applied to the benchmark model 

presented by Downs and Vogel [Downs and Vogel 1993]. They have presented a model 

of an industrial chemical process for the purpose of developing, studding and evaluating 

process control technology. It consists of a reactor, a separator and recycle unit. This 

system was originally modeled in FORTRAN platform. Since then, the model has been 

evolved and now it is available as a SIMULINK model on web with several multivariable 

controllers designed for that. The whole plant has 12 valves for manipulation and 41 

measurements available for monitoring or control. In order to compare the results of this 

study with a reference [Gertler et al. 1999], in this study we only consider the reactor unit 

which has 12 variables (Figure 30). These 12 variables are listed in Table 3. 

These variables are reactor cooling water outlet temperature 𝑇𝑐  , reactor cooling water 

flow 𝑉𝑐  , and the fraction of each component of the input flow 𝑋𝐴 …𝑋𝐹.  

Of these variables, the cooling water flow is the manipulated input and the rest of them 

are measured values. The complete system is simulated with nine of the control loops 

operating with constant set points. The tree variables 𝑇, 𝑃 and 𝐿 are controlled with their 

setpoints varied. The model was run with 1330 different setpoints of 𝑇, 𝑃 and 𝐿 and the 

steady state values of them along with the values of 𝐹, 𝑇𝑐 , 𝑉𝑐  and 𝑋𝐴  where recorded. 

Then, these variables were centered and normalized such that they have mean value of 
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zero and standard deviation of one.  The eigenvalues of covariance matrix of these data 

are shown in Figure 31.  

Table 3  Variables of TE reactor 

Sensor # Variable notation Status 

Equivalent in Downs 

&Vogel model 

𝑺𝟏 Rate of feed flow 𝐹 Measured input 𝑋𝑀𝐸𝐴𝑆(6) 

𝑺𝟐 Reactor pressure 𝑃 Measured output 𝑋𝑀𝐸𝐴𝑆(7) 

𝑺𝟑 Level of reactor 𝐿 Measured output 𝑋𝑀𝐸𝐴𝑆(8) 

𝑺𝟒 Reactor temperature 𝑇 Measured output 𝑋𝑀𝐸𝐴𝑆(9) 

𝑺𝟓 
Reactor cooling water 

temperature 
𝑇𝑐  Measured output 𝑋𝑀𝐸𝐴𝑆(21) 

𝑺𝟔 
Fraction of component 

A 
𝑋𝐴 Measured input 𝑋𝑀𝐸𝐴𝑆(23) 

𝑺𝟕 
Reactor cooling water 

flow 
𝑉𝑐  Manipulated input 𝑋𝑀𝑉(10) 

Not used 
Fraction of component 

𝐵…𝐹 
𝑋𝐵 …𝑋𝐹 Measured output 

𝑋𝑀𝐸𝐴𝑆 24 … 

𝑋𝑀𝐸𝐴𝑆(24) 

 

 

 

 



115 

 

 

 
Figure 30 Tennessee Eastman reactor [Down and Vogel 1993] 

 

 

 

 
Figure 31 PCA results 
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Table 4  The directional analysis of covariance 

 Residual 

Direction 
Orthonormal direction 

Covariance of the directional 

residual 

𝒒𝑖 = 𝑸(: , 𝑖) 𝑸𝑖 = 𝑵𝒖𝒍𝒍(𝒒𝑖
𝑻) 𝜮𝑖 = 𝑸𝑖𝜮𝐫𝑸𝑖

𝑇 

𝑺𝟏  
−0.0007
−0.0152
0.8157

   
 −0.0187   −0.9998

  0.9997 −0.0186
−0.0186    0.0012

   
   0.0043 −0.0001
−0.0001    0.0001

  

𝑺𝟐  
−0.0196
−0.0808
0.4053

   
−0.1952    0.9796
   0.9636    0.1825

0.1825 0.0839
   

0.0060 0.0017
0.0017 0.0006

  

𝑺𝟑  
−0.0004
−0.0046
   0.0034

   
−0.8015    0.5940
   0.3990    0.4454
   0.4454    0.6698

   
0.0127 0.0187
0.0187 0.0280

  

𝑺𝟒  
−0.7121
−0.3990
−0.2508

   
−0.4672   −0.2937
  0.8810   −0.0748
−0.0748       0.9530

   
   0.0037 −0.0046
−0.0046    0.0548

  

𝑺𝟓  
0.7017
−0.4189
−0.2408

   
0.4917       0.2826
0.8674   −0.0762
−0.0762       0.9562

   
  0.0036 −0.0047
−0.0047    0.0552

  

𝑺𝟔  
0.0000
−0.0010
−0.0021

   
   0.4477       0.8942
  0.8002   −0.3991
−0.3991       0.2029

   
   0.0124 −0.0062
−0.0062    0.0032

  

𝑺𝟕  
−0.0101
−0.8115
0.2225

   
−0.9643    0.2644
   0.0811    0.2519
   0.2519    0.9309

   
0.0039 0.0142
0.0142 0.0526

  

 

The first four principal components are dominant. Therefore, the last three components 

would be considered the noise component and their eigenvectors are the transformation 

into the noise space.  
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𝑸 =  
−0.0007 −0.0196 −0.0004 −0.7121    0.7017    0.0000 −0.0101
−0.0152 −0.0808 −0.0046 −0.3990 −0.4189 −0.0010 −0.8115
   0.8157    0.4053    0.0034 −0.2508 −0.2408 −0.0021     0.2225

  

For the decision process, the covariance of the noise in the noise space is calculated as:  

𝜮𝐫 = 𝑸𝜮𝑸𝑻 =  
6.83𝑒 − 005 0 0

0 4.30𝑒 − 3 0
0 0 6.04𝑒− 2

  

Then, the transformation matrix into the directional residuals and their corresponding 

covariance of noise are calculated as shown in Table 4. 

Next, these using these distributions the diagnostic algorithm were modeled in a 

SIMULINK model. The block diagram of the SIMULINK model is shown in Figure 32. 

In the SIMULINK model, the measured variables are first normalized, then the primary 

residual is found by pre-multiplication of residual by 𝑸 and the directional residuals are 

found by pre-multiplication of primary residual by 𝑸𝒊. Next, using the probability 

distribution of the primary and the directional residuals, the conditional probabilities of 

fault in each sensor 𝑝 𝒓 𝒮𝑖  conditional and probability of having healthy measurement 

𝑝 𝒓 ℋ   is found. In the last step, using the Bayes‘ formula, the probability of error in 

each sensor is calculated.  

 



118 

 

 

 
Figure 32  Diagnostic procedure modeled in SIMULNK 

 

Before starting the simulation, the detectability index for each sensor was formed to find 

the level of detectability of each sensor in the system. These values are found and listed 

in Table 5. 

The sensors in Table 5 are sorted based on their detectability. Based on this table, we can 

expect that the last two sensors 𝑺3 and 𝑺6 are not detectable these two sensors are 

Setpoints 

𝑇 

𝑃 

𝐿 

Closed loop 
model of TE 
process + 
sensor faults 

Measured data 

𝑸 

𝒓𝑖  

Primary residuals 

 

𝑸𝟏 𝑸𝟏 𝑸𝒏 
𝒓𝑖  

Directional 
residuals 

… 

𝒚 

… 

𝑝 𝒓 𝒮1 𝑝(𝒮1)

𝑝(𝒓)
 𝑝 𝒓 𝒮2 𝑝(𝒮2)

𝑝(𝒓)
 𝑝 𝒓 𝒮𝑛 𝑝(𝒮𝑛)

𝑝(𝒓)
 𝑝 𝒓 ℋ 𝑝(ℋ)
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… 

𝑝(𝒮1) 𝑝(𝒮2) 𝑝(𝒮𝑛) 𝑝(ℋ) 

Normalizing 
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measuring the level of the reactor 𝐿 and the fraction of component 𝐴 in the entering 

flow 𝑋𝐴 . 

Table 5  Sensors sorted based on their detectability index 

 𝑺4 𝑺5 𝑺7 𝑺1 𝑺2 𝑺3 𝑺6 

Detectability 

index 
0 0 0 1.47 3.42 483 486 

 

The process was simulated for 70 hours of working and during these 70 hours the 

setpoint values of temperature pressure and level of reactor changed slowly. In order to 

test the capability of the algorithm, several artificial faults were added to the 

measurements of the process. In each 10 hours of operation a period of 8 hours of 

progressive amount of error, was added to one of measurements. Figure 33 shows the 

values of sensors contaminated with error.  
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Figure 33  The measured values contaminated with error 

 

These data then were centered and normalized and then using the primary residual and 

the directional residuals, the probability of error in each sensor were estimated. These 

probabilities are shown in Figure 34. 
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Figure 34  he estimated probability of error in each sensor 

 

Figure 34 shows that error in sensor 𝑺3 and 𝑺6 has not been detected and this is in 

accordance with our detectability analysis. Also, it is clear that the faults in sensors 𝑺4 

and 𝑺5 has been easily detected even with the small magnitude of error.  
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System 3: Nonlinear SFD on a Data From a Real HVAC System  

A fully instrumented HVAC system has been studied in this part. The data was gathered 

from this system in four different working conditions describe in Table 7 and during each 

working condition the parameters of the system was recorded. The diagram of cooling 

system for the HVAC is shown in Figure 35. The measured parameters of the system are 

listed in Table 6. 

 

 

 

 

 

 

 

 

 

 

Evaporator FI 

Figure 35 Diagram of the cooling system in HCAC 

TI: Temperature Indicator   HI: Humidity Indicator  
PI: Pressure Indicator FI: Flow Indicator 
VI: Voltage Indicator  
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Each test was run for 60 minutes. Each of the four conditions described above were tested 

for both a step change in the evaporator fan and a step change in the condenser fan. Aside 

from #2, all tests were run with the compressor at first stage. The default settings for 

startup were: 

 Evaporator Fan – 3V input signal (~13.3 m/s outlet air velocity) 

 Condenser Fan – 5V signal 

 Compressor at first stage (Except in #2) 

Scenario #3 was simulated by partially (approximately half way) closing the shut off 

maintenance valve right after the condenser. Scenario #4 was simulated by blocking off 

half of the entry air path to the evaporator with cardboard boxes. The step changes are 

described below: 

Evapfanstep – Step change in the evaporator fan introduced 20 minutes after startup, and 

brought back down 20 minutes later. 

 20 min – Default Settings 

 20 min – Evaporator Fan sent 10V Signal (~16.4 m/s outlet air velocity) 

 20 min – Default settings 

Condfanstep – Step change in the condenser fan introduced 20 minutes after startup, and 

brought back down 20 minutes later. 

 20 min – Default Settings 
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 20 min – Condenser Fan sent 10V Signal (~16.4 m/s outlet air velocity) 

 20 min – Default settings 

Table 6  List of sensors used in the HVAC system 

Sensor # Description Unit 

𝑺𝟏 Superheat °C  

𝑺𝟐 Relative Humidity Air Handler Outlet % 

𝑺𝟑 Relative Humidity Air Handler Inlet % 

𝑺𝟒 Refrigerant Mass Flow L/min 

𝑺𝟓 Refrigerant Pressure Compressor Inlet psig 

𝑺𝟔 Refrigerant Pressure Compressor Outlet psig 

𝑺𝟕 Power Consumption Outdoor Unit Watts 

𝑺𝟖 Subcooling °C  

𝑺𝟗 Condenser Air Outlet temp. °C  

𝑺𝟏𝟎 Condenser Refrigerant Outlet °C  

𝑺𝟏𝟏 Air Handler Air Outlet °C  

𝑺𝟏𝟐 Compressor Refrigerant Inlet °C  

𝑺𝟏𝟑 Compressor Refrigerant Outlet °C  

𝑺𝟏𝟒 Condenser Air Inlet °C  

𝑺𝟏𝟓 Air Handler Air Inlet °C  
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Table 7  Explanation of working conditions 

Index # Working conditions 

1 
Compressor Stage 1- Evaporator Fan -medium, 

Condenser Fan – medium 

2 
Compressor at Stage 2. Evaporator Fan -medium, 

Condenser Fan – medium 

3 Same as #1 expansion valve is partially blocked 

4 Same as #1 evaporator is partially blocked 

 

Figure 36-Figure 43 show the value of measured data from the sensors in different 

working conditions. For the training of the Mixture of Probabilistic PCA model, the data 

from different working conditions were mixed, then the data for each variable were 

separately normalized such that all variables has the mean value of zero and standard 

deviation of one. Different numbers of Gaussian components were used to model the 

entire data and the optimum number of components was estimated to be 10.  

Algorithm of nonlinear sensor fault diagnosis was applied to these sensor data and the 

results in detail can be found in appendix C. Figure 44 shows the result of this algorithm 

when the magnitude of fault is different values of 0.3, 0.5, 0.7 and 1. The top graph in 

this figure shows the value of normalized data. The widened red regions are the faulty 

regions and the magnitude of errors is written behind them. The second graph shows the 
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estimated probability of error in that sensor. The third figure is the moving average value 

of the probability of error. The fourth graph specify whether the error is detected or not 

and the last graph shows whether the error is isolated or not. The values of last two 

graphs are binary of 0 and 1 where 0 is not detected or not isolated and 1 mean detected 

or isolated.  

Notice that as the magnitude of error increases, the ability to detect and isolate that error 

is also increasing. However, when the magnitude of error is too big, the algorithm cannot 

detect or isolate the error. Higher detectability and isolability with bigger errors are 

predictable and is discussed in the linear method however when the magnitude of error is 

too big, a problem that happens in the nonlinear sensor fault diagnosis is that it will be 

difficult to detect that the measured data set belongs to which category. Therefore the 

misclassification error happens and although the error might be detected but it may not be 

able to isolate the source of error. In order to understand the effect of misclassification, 

Figure 45 has been produced. The top graph is this figure show the rate of classification 

error. The rest of graphs in this figure are the same as Figure 44 but under the assumption 

that the classification has been done correctly. As you seen for the lower magnitudes of 

error there is almost no classification error. However, as the magnitude of error increases, 

the rate of classification error also increases and for the magnitude of error of 1 it is 

almost always misclassified. Also notice that under the assumption of correct 

classification, the isolation is performed perfectly with high magnitudes of error.  
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Figure 36  Sensor data for the Case # 1 and evaporator fan step 
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Figure 37  Sensor data for the Case # 1 and condenser fan step 
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Figure 38 Sensor data for the Case # 2 and evaporator fan step 
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Figure 39 Sensor data for the Case # 2 and condenser fan step 
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Figure 40 Sensor data for the Case # 3 and evaporator fan step 
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Figure 41 Sensor data for the Case # 3 and condenser fan step 
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Figure 42  Sensor data for the Case # 4 and evaporator fan step 
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Figure 43 Sensor data for the Case # 4 and condenser fan step 
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Figure 44 Results of nonlinear sensor fault detection 
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Figure 45 Analysis of detectability and isolability vs. classification error 
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APPENDIX A  

PROOF OF THEOREM 1 

Proof: First we prove that if a sensor is isolable, its corresponding fault image vector is 

unique. Assume the sensors 𝑺𝒊 and 𝑺𝒊 in a system have the same fault image vector. This 

means that their corresponding column vectors in the parity equation are mutually 

collinear.  

Consider 𝒒𝒊 and 𝒒𝒋 , the column vectors in the minimal parity structure, corresponding to 

sensors 𝑺𝒊 and 𝑺𝒊 

𝑸 =  𝒒𝟏  𝒒𝟐  … 𝒒𝒊…𝒒𝒋 …   

If sensors 𝑺𝒊 and 𝑺𝒊 in a system have the same fault image vector, it means: 

 𝒒𝒊
 𝒒𝒊 

=
𝒒𝒋

 𝒒𝒋 
 

Therefore, 𝒒𝒊 and 𝒒𝒋 are mutually collinear, which can be written as  

𝒒𝒊 = 𝜶𝒒𝒋  

where 𝛼 is a parameter which is dependent on the relative magnitudes of 𝒒𝒊 and 𝒒𝒋.  

Now, if we have a fault with magnitude of 𝑑 in sensor 𝑖, we have  

𝐲 = 𝒚∗ + 𝒏 + 𝛿𝑖𝝃𝒊            
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And the minimal residual is: 

𝒓 = 𝑸𝒚 = 𝑸𝒏 + 𝛿𝑖𝒒𝒊 = 𝑸𝒏 + 𝛿𝑖𝛼𝒒𝒋,       

  

which is the same as the residual when we have fault in the 𝑗𝑡ℎ  sensor with magnitude of 

𝛿𝑖𝛼. They also have the same residual in any other parity equation, because all other 

residuals are just a linear transformation of minimal residual. Therefore these two sensors 

are not isolable from each other.  

Now we prove that if a sensor has a unique sensor fault image, it is isolable. Assume the 

sensor 𝑖 has a unique fault image vector, 𝒏𝒊; therefore, its corresponding column 

vector, 𝒒𝒊 is linearly independent from all other column vectors of 𝑸. Therefore, when a 

fault with the magnitude of 𝑑 happens in sensor 𝑆𝑖  , the minimal residual is 

𝒓 = 𝑸𝒚 = 𝑸𝒏 + 𝛿𝑖𝒒𝒊. 

Assuming the noise has a Gaussian distribution 𝒏 ~ 𝑵(0, 𝚺), the distribution of the 

residual is 𝒓~ 𝑵(𝛿𝑖𝒒𝒊, 𝑸𝜮𝑸)  

Since 𝒒𝒊 is linearly independent from all other column vectors of 𝑸, the mean value of 

residual for error in sensor 𝑖, 𝛿𝑖𝒒𝒊, is also independent from any other single sensor fault. 

Therefore, it has a unique direction and it is isolable.  
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APPENDIX B 

DERIVATION OF EQUATIOB 68 

In order to derive Eq. (68) we consider the following four different cases and show in 

each case the equation is valid  

𝒓 ∙ 𝒒𝒊 > 0  and 𝒓 ∙ 𝒒𝒋 > 0 

𝒓 ∙ 𝒒𝒊 < 0  and  𝒓 ∙ 𝒒𝒋 > 0 

𝒓 ∙ 𝒒𝒊 > 0  and  𝒓 ∙ 𝒒𝒋 < 0 

𝒓 ∙ 𝒒𝒊 < 0  and  𝒓 ∙ 𝒒𝒋 < 0 

 

Case 1:   𝒓 ∙ 𝒒𝒊 > 0   and  𝒓 ∙ 𝒒𝒋 > 0 

 𝛿𝑖𝒒𝒊 + 𝝊 ∙ 𝒒𝒊
 𝛿𝑖𝒒𝒊 + 𝝊 ∙  𝒒𝒊 

>
 𝛿𝑖𝒒𝒊 + 𝝊 ∙ 𝒒𝒋

 𝛿𝑖𝒒𝒊 + 𝝊 ∙  𝒒𝒋 
 

Expanding the first part and elimination the common denominator factor   𝜹𝒒𝒊 + 𝝊 , we 

have 

𝛿𝑖𝒒𝒊 ∙ 𝒒𝒊 + 𝝊 ∙ 𝒒𝒊
 𝒒𝒊 

>
 𝛿𝑖𝒒𝒊 + 𝝊 ∙ 𝒒𝒋

 𝒒𝒋 
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𝛿𝑖 𝒒𝒊 
2 + 𝝊 ∙ 𝒒𝒊
 𝒒𝒊 

>
 𝛿𝑖𝒒𝒊 + 𝝊 ∙ 𝒒𝒋

 𝒒𝒋 
 

𝛿𝑖 𝒒𝒊 + 𝝊 ∙ 𝒏𝒊 >  𝛿𝑖𝒒𝒊 + 𝝊 ∙ 𝒏𝒋 

𝛿𝑖 𝒒𝒊 − 𝛿𝑖𝒒𝒊 ∙ 𝒏𝒋 > 𝝊 ∙ 𝒏𝒋 − 𝝊 ∙ 𝒏𝒊 

Factoring the term 𝜹 𝒒𝒊   from the left hand side and the term 𝝊 from the right hand side, 

𝛿𝑖 𝒒𝒊 (1 −
𝒒𝒊 ∙ 𝒏𝒋
 𝒒𝒊 

) > 𝝊 ∙  𝒏𝒋 − 𝒏𝒊  

𝛿𝑖 𝒒𝒊 (1 − 𝒏𝒊 ∙ 𝒏𝒋) > 𝝊 ∙  𝒏𝒋 − 𝒏𝒊  

On the other hand in equation 28 we defined 𝒏𝑖𝑗  as:  

𝒏𝑖𝑗 =  
 𝒏𝒊+ 𝒏𝒋,  𝒏𝒊 ∙  𝒏𝒋 < 0

 𝒏𝒊− 𝒏𝒋,  𝒏𝒊 ∙  𝒏𝒋 ≥ 𝟎
 . 

since   𝛿𝑖𝒒𝒊 + 𝝊 ∙ 𝒒𝒊 > 0   and   𝛿𝑖𝒒𝒊 + 𝝊 ∙ 𝒒𝒋 > 0, as  a result, 𝒒𝒊 ∙ 𝒒𝒋 > 0  which 

means 𝒏𝒊 ∙ 𝒏𝒋 > 0  and according to Eq 28.   𝒏𝑖𝑗 =  𝒏𝒊− 𝒏𝒋  therefore, we have  

𝛿𝑖 >
−𝝊 ∙  𝒏𝒊𝒋 

 𝒒𝒊 (1 − 𝒏𝒊 ∙ 𝒏𝒋)
 

On the other hand 𝒏𝒊 ∙ 𝒏𝒋 > 0 as a result 𝒏𝒊 ∙ 𝒏𝒋 =  𝒏𝒊 ∙ 𝒏𝒋  also defining 𝜌𝑖𝑗 =  𝒗 ∙ 𝒏𝑖𝑗   

we have  
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𝛿𝑖 >
𝝆𝒊𝒋

 𝒒𝒊  𝟏 −  𝒏   𝒊 ∙ 𝒏   𝒋  
 

Case 2:  𝒓 ∙ 𝒒𝒊 < 0   and  𝒓 ∙ 𝒒𝒋 > 0 

Simalrly in this case we can show: 

-𝛿𝑖 𝒒𝒊 (1 + 𝒏𝒊 ∙ 𝒏𝒋) > 𝝊 ∙  𝒏𝒋 + 𝒏𝒊  

On the other hand in equation 28 we defined 𝒏𝑖𝑗  as:  

𝒏𝑖𝑗 =  
 𝒏𝒊+ 𝒏𝒋,  𝒏𝒊 ∙  𝒏𝒋 < 0

 𝒏𝒊− 𝒏𝒋,  𝒏𝒊 ∙  𝒏𝒋 ≥ 𝟎
  . 

since   𝛿𝑖𝒒𝒊 + 𝝊 ∙ 𝒒𝒊 < 0   and   𝛿𝑖𝒒𝒊 + 𝝊 ∙ 𝒒𝒋 > 0, as  a result, 𝒒𝒊 ∙ 𝒒𝒋 < 0  which 

means 𝒏𝒊 ∙ 𝒏𝒋 < 0  and according to Eq 28   𝒏𝑖𝑗 =  𝒏𝒊+ 𝒏𝒋 therefore, we have 𝛿𝑖 >

−𝝊∙ 𝒏𝒊𝒋 

 𝒒𝒊 (1+𝒏𝒊∙𝒏𝒋)
 

On the other hand 𝒏𝒊 ∙ 𝒏𝒋 < 0 as a result 𝒏𝒊 ∙ 𝒏𝒋 = − 𝒏𝒊 ∙ 𝒏𝒋  also defining 𝜌𝑖𝑗 =  𝒗 ∙ 𝒏𝑖𝑗   

we have  

𝛿𝑖 >
𝝆𝒊𝒋

 𝒒𝒊  𝟏 −  𝒏   𝒊 ∙ 𝒏   𝒋  
 

For the two other cases similarly we can show this expression is valid. 
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APPENDIX C  

COMPLETE ANALYSIS OF SENSOR DIAGNOSIS IN HVAC 
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