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ABSTRACT 

 

Fractional Snow-Cover Mapping Through Artificial Neural Network Analysis of 

MODIS Surface Reflectance. (December 2009) 

Iliyana Dancheva Dobreva, B.A., Concord University 

Co-Chairs of Advisory Committee: Dr. Andrew G. Klein 
  Dr. Anthony M. Filippi 

 

Accurate areal measurements of snow-cover extent are important for 

hydrological and climate modeling. The traditional method of mapping snow cover is 

binary where a pixel is approximated to either snow-covered or snow-free. Fractional 

snow cover (FSC) mapping achieves a more precise estimate of areal snow-cover extent 

by determining the fraction of a pixel that is snow-covered. The two most common FSC 

methods using Moderate Resolution Imaging Spectroradiometer (MODIS) images are 

linear spectral unmixing and the empirical Normalized Difference Snow Index (NDSI) 

method. Machine learning is an alternative to these approaches for estimating FSC, as 

Artificial Neural Networks (ANNs) have been used for estimating the subpixel 

abundances of other surfaces. The advantages of ANNs over the other approaches are 

that they can easily incorporate auxiliary information such as land-cover type and are 

capable of learning nonlinear relationships between surface reflectance and snow 

fraction. ANNs are especially applicable to mapping snow-cover extent in forested areas 

where spatial mixing of surface components is nonlinear. 
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This study developed an ANN approach to snow-fraction mapping. A feed-

forward ANN was trained with backpropagation to estimate FSC from MODIS surface 

reflectance, NDSI, Normalized Difference Vegetation Index (NDVI) and land cover as 

inputs. The ANN was trained and validated with high spatial-resolution FSC derived 

from Landsat Enhanced Thematic Mapper Plus (ETM+) binary snow-cover maps. 

ANN achieved best result in terms of extent of snow-covered area over evergreen 

forests, where the extent of snow cover was slightly overestimated. Scatter plot graphs of 

the ANN and reference FSC showed that the neural network tended to underestimate 

snow fraction in high FSC and overestimate it in low FSC. The developed ANN 

compared favorably to the standard MODIS FSC product with the two methods 

estimating the same amount of total snow-covered area in the test scenes.  
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1. INTRODUCTION 

 

1.1 Importance of Snow-Cover Research 

Frozen precipitation in the form of snow accumulates during the winter season in 

mid- to high-latitude and mountain environments. This has important implications for 

the hydrology and climate of these geographic areas. As a frozen-water reservoir, snow 

holds the stored precipitation until snowmelt runoff is released into streams. Runoff from 

snowmelt can pose a hazard from flooding because it is often released rapidly during 

spring (Rango, 1996). However, snowmelt runoff is essential for the water supply of 

more than one-sixth of world’s population who rely on fresh water from seasonal and 

glacial snowmelt (Barnett et al., 2005), including over 60 million people in the western 

United States (Bales et al., 2006).  

Runoff predictions from snowmelt are acquired by including snow-cover 

parameters in hydrological models (Bales et al., 2006). Runoff from snow also supplies 

the necessary water for sustaining forest ecosystems in watersheds (Douville et al., 

2002). In addition, snow plays a significant role in the fluvial geomorphology of high-

arctic watersheds as freshet carries sediments that are deposited in streams (Lamoureux 

et al., 2006). There is a recognized need to incorporate snow-cover extent and snow-

water equivalent within hydrologic models to derive snowmelt-runoff estimates that 

provide more accurate forecasts of water supply, runoff rates and soil moisture recharge 

(Dozier, 1992). Thus, various snowmelt algorithms incorporate information about the  

____________ 
This thesis follows the style of Remote Sensing of Environment.  
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evolution of snow-covered areas during the winter season (Liston, 1999).  

Snow is also an important component of the climate system because of its 

characteristically high albedo in the visible and near-infrared ranges of the 

electromagnetic spectrum. It reflects most of the incoming solar radiation which in turn 

modifies the energy exchanges between the Earth’s surface and the atmosphere over 

snow-covered areas causing these areas to experience lower temperatures than those 

without snowpack (Arnfield, 2006). Snow is also a poor conductor of heat, and snow 

cover acts as an insulator, not allowing the release of heat from Earth (Berry, 1981). 

Because snow cover affects energy exchanges at the surface, the areal extent of snow 

cover is incorporated in General Circulation Models (GCMs) (Marshall et al., 1994; 

Roesch et al., 2001) and forecasting models. However, a difficulty arises in modeling the 

snow’s interactions with the atmosphere when inaccurate estimations of snow-cover 

extent exist within climate models (Niu & Yang, 2007). For example, a warm bias over 

snow-covered regions in several of the National Center for Atmospheric Research 

Community Land Models has been attributed to inaccurate input of snow-cover extent 

(Dickinson et al., 2006).  

The importance of accurate snow-cover-extent input into General Circulation 

Models (GCMs) is because of the positive feedback between snow cover and 

temperature (Randall et al., 1994). Higher global temperatures lead to larger snowmelt 

and less snowfall, which in turn decreases surface albedo while increasing absorption of 

solar radiation which further increases global temperatures. In this respect, ice and snow-

covered surfaces have an essential cooling function for the whole planet (Prestrud, 
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2007). If snow cover is underestimated in GCMs the output has a considerable warm-

temperature bias. Conversely, overestimating snow-cover extent would cause predictions 

of colder temperatures than actual. Consequently, inaccurate climate-change models lead 

to erroneous climate-change conclusions which in turn may mislead decision makers and 

citizens. Thus, inadequate snow-cover estimates may have adverse social effects.  

1.2 Study Purpose and Objectives 

This study investigated the applicability of Artificial Neural Networks (ANNs) to 

successful mapping of snow fraction, which is the fraction of a remote-sensing pixel that 

is snow-covered. To accomplish this aim, a mutlilayer feed-forward ANN was trained 

with backpropagation and tested on Landsat Enhanced Thematic Mapper Plus (ETM+) 

scenes within North America representative of the different land covers typical of the 

snow-covered portions of the Northern Hemisphere. The methods is not intended to use 

in mountainous areas and therefore training and test scenes are selected over relatively 

flat areas.  

Inputs to the network were the seven 500m MODIS land-surface reflectance 

bands provided in the Surface Reflectance Daily L2G Global 500m and 1km 

(MOD09GA) product (Vermonte & Kotchenova, 2008), Normalized Difference Snow 

Index (NDSI) and Normalized Difference Vegetation Index (NDVI) which were 

calculated from the reflectance bands, and land cover in the International Geosphere-

Biosphere Programme (IGBP) classification scheme from the MODIS/Terra Land Cover 

96 Day L3 Global 1 km ISIN Grid (MOD12Q1) product (Hodges, 2002) (Table 1). The 

reference snow fraction was determined by applying a binary snow-mapping algorithm 
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(Hall et al., 1995) to higher resolution Landsat ETM+ images. The neural network was 

trained on eleven Landsat snow maps representative of different land covers and tested 

on three additional Landsat snow maps (Fig. 1). Finally, the snow-fraction maps 

produced through the ANN approach were compared to the snow-fraction maps 

provided as part of the MODIS/Terra Snow Cover Daily L3 Global 500m Grid 

(MOD10A1) product (Riggs et al., 2006). 

ANNs have been applied in only a few snow studies. Simpson and McIntire 

(2001) use recurrent ANN to differentiate between cloud, land, snow and mixed snow 

and land pixels. The mixed pixels are then used in a spectral linear unmixing method to 

derive snow fraction. ANN have also been applied for deriving Snow Water Equivalent 

(SWE) and snow depth from Special Sensor Microwave Imager (SSM/I) brightness 

temperatures (Tedesco et al., 2004). 
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Table 1 
Inputs to ANN 

Input Feature Description 

MOD09GA Band 1 
Reflectance in the Red portion of the electromagnetic spectrum 

(620-670 nm) 
 

MOD09GA Band 2 
Reflectance in the Near Infrared portion of the electromagnetic 

spectrum(841-876 nm) 
 

MOD09GA Band 3 
Reflectance in the Blue portion of the electromagnetic spectrum 

(459-479 nm) 
 

MOD09GA Band 4 
Reflectance in the Green portion of the electromagnetic spectrum 

545-565 nm (Green) 
 

MOD09GA Band 5 
Reflectance in the Shortwave Infrared portion of the 

electromagnetic spectrum (1230-1250 nm) 
 

MOD09GA Band 6 
Reflectance in the Shortwave Infrared portion of the 

electromagnetic spectrum (1628-1652 nm) 
 

MOD09GA Band 7 
Reflectance in the Shortwave Infrared portion of the 

electromagnetic spectrum (2105-2155 nm) 
 

NDSI 
Normalized Difference Snow Index 

(Band4 − Band6) 
(Band4 + Band 6)

 

NDVI 
Normalized Difference Vegetation Index 

(Band2 − Band1) 
(Band2 + Band 1)

 

Land Cover (IGBP) Yearly land cover classification in the International Geosphere-
Biosphere Programme (IGBP) classification system 
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Fig. 1. Training and test Landsat scenes are located in North America. Training sites were selected to be representative of land 
covers. 
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2. LITERATURE REVIEW 

 

2.1 Snow-Cover-Extent Mapping 

 Snow-cover extent is one of the snow-cover characteristics that are included in 

both hydrologic and climate models (Rango, 1996; Roesch et al., 2001), and it is also 

monitored to supply information for climate-change studies (Lemke et al., 2007). One 

way of collecting snow-cover information is through in situ snow measurements from a 

snow course which involves manual collections of snowpack information along a 

transect (Derksen & LeDrew, 2000). Another way of collecting field measurements of 

snow cover is through stationary snow-measuring instruments. Such instruments have 

been widely used by the United States Department of Agriculture since the 1970s and 

the archive of Snowpack Telemetry (SNOTEL) data has been applied to study snow-

cover properties and long-term changes in snowpacks (Serreze et al., 2001).  

In situ methods, however, remain problematic for measuring snow-cover extent 

as the site where snow is sampled may not be representative of the entire study area, and 

the sampled site only gives snow-cover state at a particular location and does not provide 

information about whether the surrounding terrain is also snow-covered (Bales et al., 

2006). Adverse weather conditions in snow-covered areas and the remoteness of these 

areas often make manual collection of consistent snow-cover information difficult or 

impossible (Derksen & LeDrew, 2000). Further limitation of monitoring networks such 

as SNOTEL is the difficulty in accessing the instruments for maintenance. Stationary 

field instruments also require standardization of data collected from multiple sites and 
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instruments, as well as corrections to account for wetting loss, wind-induced undercatch 

and trace snowfall events (Derksen & LeDrew, 2000). 

 On the other hand, spaceborne and airborne remote sensing can be used instead 

or in addition to in situ snow-cover extent measurements. In fact, snow-cover maps 

produced by The National Oceanic and Atmospheric Administration/National 

Environmental Satellite, Data and Information Service are one of the longest 

environmental records produced using remote sensing (Robinson et al., 1993). The maps 

span a period of over four decades starting in 1966 and continuing to the present (NOAA 

2009). Another example of the application of remotely-sensed images used for snow-

cover mapping is the maps produced automatically from MODIS images. These have 

been available since the launch of the Terra satellite in December 1999 (Hall et al., 

2001). Using satellite remote sensing for monitoring of snow cover is advantageous 

because it offers consistent data collection over large geographical areas and thus long-

term studies and environmental models have a continuous supply of measurements 

(König et al., 2001). 

 Snow-cover extent is easily observed in true-color images due to its high albedo 

in the visible wavelengths. Snow reflects close to 90% of the incoming solar radiation in 

the visible region of the electromagnetic spectrum. Thus, snow is easily distinguished 

from other Earth surface components (Hall et al., 2005). Snow also has a low albedo in 

the short-wave infrared range of the electromagnetic spectrum which allows for the 

construction of a normalized snow difference index (NSDI) (Dozier, 1989; Hall et al., 

1995). This index is calculated by constructing a normalized ratio between reflectance in 
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the green and reflectance in the shortwave infrared (SWIR) ranges of the 

electromagnetic spectrum: 

NDSI =  (0.6μm−1.6μm)
(0.6μm+1.6μm)

 (1) 

The green range of the spectrum includes electromagnetic waves between 0.5 µm 

and 0.6 µm in length. The SWIR part of the spectrum includes waves with a length 

between 1.0 µm and 3.0 µm. NDSI ranges from -1 to 1 with snow typically having NDSI 

of above 0.4 which highlights snow-covered areas. The index makes remote sensing in 

the optical part of the electromagnetic spectrum very effective for detection of snow 

cover and for mapping its extent (Hall et al., 2001).  

 However, despite the benefits of using remotely-sensed images for extracting 

snow-cover extent, clouds often obscure the surface in the optical wavelengths. Clouds, 

just like snow, have a high albedo in the visible range of the spectrum (Hall et al., 2005). 

The need for relatively cloud-free images imposes a limitation on the temporal 

resolution of the number of cloud-free observations. Temporal resolution refers to how 

frequently images over a specific area are collected. The length of time between 

observations is often referred to as the revisit period of a sensor. Depending on the 

application there may be a need for a very high temporal resolution. For example, snow 

mapping for meteorological forecasts requires current snow-cover information (Basist et 

al., 1996). At the same time, snow-cover extent may rapidly change as more snow 

accumulates or melts. Therefore, in order to create current snow-cover maps there is a 

need for daily or even twice daily revisit periods.  
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 While certain remotely-sensed images have a high temporal resolution they 

frequently have a very low spatial resolution. For example, Advanced Very High 

Resolution Radiometer (AVHRR) offers daily coverage, but has a spatial resolution of 1 

km which means that each pixel within an AVHRR image covers an area of 1 km2. 

Moderate Resolution Imaging Spectroradiometer (MODIS) is another sensor that has 

daily revisit periods for most of the globe, but its spatial resolution is 500 m, which 

means that a MODIS pixel covers an area of 0.25 km2. There is a tradeoff between 

spatial and temporal resolutions. At the same time, low spatial resolution means that a 

large area (for example, 0.25 km2 for a MODIS image) is approximated to being snow-

covered or snow-free according to only 50% of its area. Such an approximation is 

problematic for hydrologic models (Bales et al., 2006; Dozier et al., 2008) and may also 

be related to inaccurate climate predictions (Niu and Yang, 2007). 

2.2 Fractional Snow Cover Mapping 

 One way to address the limitations of low spatial resolution images is to 

construct snow-cover maps where snow cover in each pixel is represented as a 

percentage of the area covered by snow in the pixel. Since a pixel integrates the spectral 

information of the whole area viewed, the snowpack cannot be spatially located within 

the pixel. However, it is possible to estimate the percentage of snow in a pixel from the 

surface reflectance of the pixel recorded by the remote-sensing sensor. This is an 

improvement over traditional snow-cover maps that are binary and represent a pixel as 

either covered with snow or snow-free (König et al., 2001). Typically in binary snow 

maps, a pixel is classified as containing snow if approximately fifty percent of its area is 
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snow-covered (Hall et al., 2002). This may introduce significant error in the estimations 

of the spatial extent of snow cover, which in return may cause erroneous results from 

hydrological (Rango, 1996) and General Circulation Models (GCMs) (Roesch et al., 

2001). Even slight variations in Fractional Snow Cover (FSC) produce significantly 

different results in GCMs. Consequently, incorrect estimates of FSC result in biased 

climate predictions (Niu & Yang, 2007). 

2.2.1 Linear Mixture Analysis 

 A popular method for deriving subpixel estimates of surface abundance is linear 

mixture analysis, which is also known as linear spectral unmixing. A pixel contains the 

spectral information from all surface components within a sensor’s Instantaneous Field 

Of View (IFOV). Linear mixture analysis is performed with the assumption that the 

reflectance of a pixel is a linear combination of the surface components within that pixel 

and that the weight of each component equals the proportion of the pixel’s IFOV that 

contains the component (Jensen, 2005). Endmembers are idealized, pure spectral 

signatures for a type of surface (Schowengerdt, 1997). The performance of the spectral-

unmixing model depends on availability of complete and accurate endmember sets 

which are usually stored in a spectral library referenced by the model during processing.  

Linear spectral unmixing had been applied extensively for deriving FSC. Nolin 

and Dozier (1993) reported a successful implementation of the method for mapping 

snow at subpixel level from images acquired with Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) over the Sierra Nevada Mountain Range. For each image, 

endmember spectra were identified from pixels representative of specific surface 
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components. The authors acknowledged that a component might in itself consist of 

several sub-elements, yet it might be represented by a single spectral signature. For 

example, a vegetation endmember was used as representative of all vegetation types. In 

that study endmember selection was performed manually, and later studies aimed at 

automating the linear mixture analysis for FSC mapping.  

Simpson et al. (1998) described the Multi-spectral Multi-stage Snow Detection 

(MSSD) procedure which used iterative split-and-merge clustering combined with 

dynamic cluster labeling to discriminate between land, cloud and snow pixels and to 

identify mixed snow pixels. Spectral signatures of snow, cloud and land endmembers 

were the mean vectors of the reflectances of the appropriate clusters.  

Further work included training Artificial Neural Networks (ANNs) to 

discriminate between snow, cloud and land pixels and identify mixed pixels (Simpson & 

McIntire, 2001). The ANN returned three outputs each having a value of 0 or 1 pointing 

the absence or presence of the component in a pixel. Mixed land and snow pixels were 

thus indentified and passed to a linear spectral unmixing model which then determines 

the snow fraction in the mixed pixel. ANNs were recognized as especially useful in 

identifying mixed pixels because of their ability to extract relationships between input 

variables and to function well despite sensor noise and calibration uncertainties 

(Simpson & McIntire, 2001). The approach was estimated to be successful in accurately 

delineating pure snow, cloud and land pixels. Its accuracy was related to the precision of 

the initial input to the ANN classifiers and to the number of training samples. 
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A different approach to determining snow, land and cloud pixels and mixed snow 

pixels and to extracting reference endmembers’ spectra was described by Shi (1999). 

The study automatically extracted endmember spectral signatures through a combination 

of image-based and in situ approaches. First, initial clustering of snow, snow-free and 

snow-mixed pixels through knowledge-based regression tree classifier was performed, 

and initial snow and snow-free endmembers were identified. Following that step was 

further classification of snow-mixed pixels through spectral-shape matching using the 

initially-identified endmembers. Then, snow and snow-free endmembers were merged to 

create mixed-snow endmembers, and the endmembers for the three classes were 

averaged to determine one spectral signature for each class. And finally, local vegetation 

and bare-surface endmember signatures were obtained by unmixing selected snow-free 

initial endmembers-candidates using in situ-collected spectral library of different snow-

free components.  

The above studies determined endmembers for each image, however, further 

work on linear spectral unmixing for snow-fraction mapping allowed per-pixel variation 

of endmembers (Painter et al., 2003; Painter et al., 2009). In the studies, each surface 

component was represented by a set of endmembers, snow endmembers differed 

depending on grain size. And each pixel was unmixed using permutations of two or 

more endmembers and the appropriate endmembers were selected according to a set of 

constraints. The calculated snow fraction through linear spectral unmixing was then 

shade normalized using calculated spectral fraction of photometric shade. Spectral 

libraries consisted of snow, soil, rock and vegetation endmembers, where snow 
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endmembers of various grain sizes were derived from radiative transfer modeling, and 

the snow-free endmembers were collected in situ. At first, the best results were derived 

for areas lacking vegetation. The shading of snow by tree canopies was reported as a 

possible cause for the larger error over areas with dense vegetation (Painter et al., 2003). 

Later, canopy-level endmembers were included in the spectral library of the model to 

address the non-linear spectral mixing in forests (Painter et al., 2009). 

A challenge in using satellite remotely-sensed images is clouds obscuring the 

surface and poor quality of observations. Dozier et al. (2008) used a time-series of daily 

MODIS snow fraction maps to fill the missing values. This was accomplished by first 

identifying the noise and cloud pixels. Then, smoothing and interpolation across time 

was applied to replace the missing values. Finally the space-time cube was smoothed 

with a Gaussian filter. Dozier et al. (2008) argued that daily snow-cover maps with filled 

values should be provided to users, as maps with gaps present were difficult to use in 

hydrologic models. 

Since the performance of the linear unmixing model is related to the quality of 

endmembers’ spectral signatures, various studies used locally-collected in situ 

endmembers for developing FSC-mapping techniques for specific areas. Metsämäki et 

al. (2005) adjusted the linear spectral model for extracting FSC over Finland, and the 

model was used for hydrological modeling and for forecasting by the Finish 

Environmental Institute. Foppa et al. (2004) described their use of linear spectral 

unmixing over the European Alps and demonstrated the method’s validation with 

ASTER data. Hongen and Suhong (2004) showed how a multiple endmember spectral-
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unmixing approach to processing AVHRR and MODIS data was utilized in determining 

FSC over the Tibetan Plateau. And Sirguey et al. (2009) used linear spectral unmixing to 

derive snow fraction over the Southern Alps of New Zealand. Unique in the study was 

that the 250m spatial resolution of MODIS bands 1 and 2 was utilized by producing 

snow maps at a 250m resolution through image fusion. Aggregating to a 500 m 

resolution improved the accuracy of the FSC maps compared to the FSC maps where 

image fusion was not applied. 

 Snow shadowed by tree canopies poses a recurrent problem in snow-cover 

mapping through satellite imagery (Klein et al., 1998). Vikhamer and Solberg (2002, 

2003) developed FSC methods targeted specifically at forested areas. Their sub-pixel 

reflectance (SnowFor) model used linear spectral unmixing and distinguished between 

bare, forested and snow-covered surfaces. The accuracy of the model was improved by 

accounting for the spectral reflectance from three of the most abundant tree species in 

the Norwegian Boreal Forest: birch, spruce and pine. The spectral characteristics of each 

of these species were collected in situ and stored in a spectral library. SnowFor was 

tested with Landsat TM data which had a much higher spatial resolution than the 

MODIS images used in SnowFor. Vikhamer and Solberg (2002, 2003) applied the 

method to derive the amount of snow cover from MODIS images; however, any type of 

remote-sensed images could be used with the model as long as the spatial footprint of the 

images is larger than the area covered by a tree (which is the case for most currently 

operating satellite systems). Using appropriate data, the SnowFor model could be used to 

map snow at subpixel resolution (SnowFrac). A study of how to apply these methods for 
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mapping FSC from MODIS images introduced a constraint to the spectral mixture 

analysis. SnowFrac was applied to a mixed pixel only if it had a forest component. If no 

forest component was present in the mixed pixel its FSC was estimated without the 

SnowFrac model (Vikhamar & Solberg, 2003).  

The constrained linear spectral mixture analysis was tested on MODIS images 

between May 2000 and May 2001 over Southern Norway and was compared to snow-

cover maps derived from Landsat ETM+ images. The method estimated snow fraction 

remarkably well in forested areas. The success of the method was attributed to the large 

number of endmembers selected that were typical of the Norwegian Boreal Forest. 

Applying the method to a different area would require selection of endmembers 

representative of that specific area. In this respect, SnowFrac is considered a location-

specific model. 

 Another FSC method based on linear spectral unmixing was adopted in the 

production of automated snow maps by National Oceanic and Atmospheric 

Administration (Romanov et al., 2003). The method uses data acquired by Imager which 

is a sensor aboard the Geostationary Operational Environmental Satellite (GOES).  An 

advantage of using data from a geostationary and not a polar-orbiting sensor was the 

geostationary sensors’ increased frequency of data acquisition. In this case data were 

acquired at least three times daily. The method was validated to perform well over areas 

with sparse or no vegetation such as cropland and other agricultural lands. Errors over 

vegetated areas were attributed to shadowing of the snow by tree canopies. The authors 

demonstrated that the relationship between FSC and tree cover fraction was nonlinear 
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and therefore linear spectral unmixing was inadequate in representing the reflectance of 

a pixel containing both snow and forest components. 

As illustrated by the FSC approaches developed by Vikhamer and Solberg (2002, 

2003), modifications of linear spectral unmixing can account for the shadowing of snow 

in forests. Thus, an accurate estimation of the subpixel percentage of snow using linear 

spectral unmixing in forested areas is possible. However, the adjustment of each linear 

mixture model for a specific area requires the selection of endmembers representative of 

all surface components present in that area. This may be accomplished by collecting in 

situ endmembers from the areas where the spectral unmixing would be applied.  

A problem with in situ-collected endmembers is relating them to the image. 

Another problem is that if the spectral characteristics of the endmembers are measured in 

situ and stored in spectral libraries, these spectral libraries might not always be 

transferable to other areas because surface components may vary geographically. 

Varying topography in mountainous areas requires that endmember spectral signatures 

are collected from various slope and illumination conditions. Collection of extensive 

endmember libraries may be extremely time-consuming.  

Snow reflectance is related mostly to grain size and impurities. The reflectance of 

the snow-free areas is related to type of land cover which is characterized by the specific 

components present in an area. For example, forests are typical of many snow-covered 

portions of the world; however, different locations have different combinations of tree 

species. Fine-tuning a linear spectral unmixing model to a specific area, requires that the 

model only uses surface components that are present in the area and that are contributing 
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to the reflectance of each pixel. The need for location-specific selection of endmembers 

decreases the spatial extension of the technique.  

2.2.2 Empirical Approaches to Fractional Snow Cover Mapping  

Empirical studies to FSC-mapping built models based on examples of observed 

reflectance (predictor variables) and measured snow fraction (response variable). The 

predictor variables are the reflectance provided by remotely-sensed images and the 

response variable is estimated FSC through high resolution images or aerial 

photographs.  Decision trees, a machine-learning technique, were trained to derive snow 

fraction from Landsat Thematic Mapper (TM) images (Rosenthal & Dozier, 1996). The 

reference FSC for the training sample was created through linear mixture analysis of 

Landsat TM images, and the study suggested that the decision trees were only 

considered as part of an automated linear-mixture approach. 

Kaufman et al. (2002), however, argued that a subpixel snow-fraction classifier 

applicable on a global scale has to rely only on the global spectral properties of the 

measured surface component. If such a method was applied, it would not need to be 

adapted for different geographic areas since it relied on characteristics of the measured 

surface component only. Previous research on remote sensing of aerosol particles in the 

atmosphere and the fact that both snow and aerosol appear to be dark at the 2.1 µm and 

bright at the 0.66 µm wavelength regions of the electromagnetic spectrum was utilized in 

the development of such a FSC method (Kaufman et al., 2002). The method operated by 

first establishing a relationship between the reflectance of snow-free pixels at the two 

wavelengths and then predicting what the reflectance in a snow-free pixel would be at 
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0.66 µm. Then, the algorithm examined each pixel and any extra reflectance at 0.66 µm 

was attributed to snow and used to estimate the snow-cover fraction. The reflectance at 

0.66 µm was initially processed to correct for atmospheric effects. Since this FSC model 

relied on spectral properties, it was found to perform well on different spatial scales. 

Best performance was expected for pixels with less than 30 percent snow cover. Also, 

the method was only tested over the Sierra Nevada’s. Kaufman et al. (2002) suggested 

that the approach should be further validated or that similar approaches relying on global 

snow characteristics were developed. 

Another FSC algorithm, which also relies on global spectral characteristics of 

snow, takes advantage of the difference in spectral reflectance of snow in the visible and 

shortwave infrared ranges of the electromagnetic spectrum. The method was developed 

for the Terra and Aqua MODIS instruments (Salomonson & Appel 2004, 2006). A 

normalized difference snow index (NSDI) was constructed by using MODIS bands 4 

and 6, which record reflectance in the green and short-wave infrared ranges of the 

spectrum, respectively. The statistical linear relationship of NDSI and snow fraction in a 

MODIS pixel was established empirically by using high-resolution Landsat snow maps 

as reference snow fraction. The method was estimated to be applicable globally and has 

been validated to perform more accurately than the FSC method developed by Kaufman 

et al. (2002). However, it was suggested that the accuracy of this approach was increased 

by adjusting it to specific geographic areas. Currently the model is used in for deriving 

FSC provided as part of the MODIS/Terra Snow Cover Daily L3 Global 500m Grid 

(MOD10A1) product (Riggs et al., 2006). 
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Both the methods developed by Kauffman et al. (2002) and Salomonson and 

Appel (2004, 2006) rely on global spectral characteristics of snow and thus were 

applicable on a global scale. Neither approach, however, accounts for snow shadowed by 

tree canopies. As a result, the extent of snow cover in forested areas was underestimated. 

Underestimation of snow-cover extent in these areas could be attributing to the higher 

temperature bias in General Circulation Models (Dickinson et al., 2006; Niu & Yang 

2007) because possibly climate models predict more absorption of incoming solar 

radiation than is actually the case. A global- or even continental-scale FSC-mapping 

technique should be able to account for snow in forested areas especially if its results are 

used as inputs to environmental models.  

The methods described by Salomonson and Appel (2004, 2006) and by Kaufman 

et al. (2002) overcome the limitation of linear spectral unmixing by not requiring 

endmembers and thus achieved large-scale applicability. At the same time these 

empirical approaches fall short of correctly estimating subpixel abundance of snow in all 

land covers due to their underestimation of snow in forests.  

2.3 Artificial Neural Networks Approach to Snow Fraction Mapping 

The limitations of the existing FSC approaches should be addressed to improve 

snow-fraction mapping. Several of the approaches have different classification 

accuracies in different land-cover types while other approaches focus on deriving FSC 

for particular land cover types only (Vikhamar & Solberg 2002, 2003). All of the 

existing FSC approaches are linear while spectral mixing in forests is nonlinear. There is 

a need for implementing a nonlinear FSC approach that considers land cover. Artificial 
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Neural Networks (ANNs) are one class of nonlinear technique that is capable of 

handling contextual information such as land-cover type. 

ANNs are particularly useful for image processing because of their applications 

in pattern recognition (classification) and regression (function approximation). When 

applied to digital image processing, ANNs can be trained to recognize certain spectral 

patterns. The network stores the learnt patterns and it recovers them even when 

presented with only noisy or partial versions (Haykin 1999). The pattern-recognition 

capability of ANNs has been used in snow studies by Simpson and McIntire (2001) for 

deriving pure pixels of snow, land and cloud cover within a scene. These pixels were 

recognized by the ANN because it had learned the corresponding spectral pattern of each 

class.  

Function approximation is another ANN capability that could be applicable to 

snow-fraction mapping but has not been described in the literature. Similar to the 

decision trees which were trained to estimate snow fraction (Rosenthal & Dozier 1996), 

ANN learns relationship between predictor and response variables. Most commonly used 

for function approximation is backpropagation learning which is supervised. During 

backpropagation the network learns the relationship between the input and output 

variables by iteratively adjusting its parameters to minimize the error between the result 

at each of the iterations and the correct output. Given a sufficient number of training 

examples and a large number of training iterations, ANNs can successfully learn the 

relationship between snow-covered and snow-free areas based on the spectra of training 

examples. In snow studies, an ANN trained with backpropagation has previously been 
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used to estimate snow water equivalent from remotely-sensed images (Tedesco et al., 

2004). 

2.3.1 Advantages of Artificial Neural Networks 

There are several advantages of using ANNs for establishing complex 

relationships between variables. The first is that the network does not make any 

assumptions concerning the relationships between the variables. Thus, ANNs can handle 

both linear and nonlinear mixing of components (Guilfoyle et al., 2001). Such flexibility 

is advantageous for FSC modeling because in forested areas the mixing of snow-covered 

and snow-free surfaces has been demonstrated to be nonlinear (Romanov et al., 2003).  

Second, unlike linear spectral unmixing, ANNs do not require spectral 

endmember information. Endmembers are problematic for several reasons. It is difficult 

to obtain the exact spectral reflectance of pure surface components in non-laboratory 

environments. Linear mixture analysis performs best when endmembers for all surface 

components present in a scene exist and are available. Also, endmembers can be difficult 

to determine, especially in vegetated areas (Filippi & Jensen 2006). Thus, ANNs may be 

advantageous over linear mixture analysis in terms of ease of implementation. 

2.3.2 Artificial Neural Networks in Subpixel Studies 

There are various studies that utilize ANNs for determining the subpixel 

abundance of surface components. Foody et al. (1997) illustrated the method with a case 

study where AVHRR imagery of tropical forest was classified into pasture, forest and 

river land cover types. The study was one of the first attempts to use ANNs for subpixel 

classification in remote sensing. Foody et al. (1997) pointed that ANNs were preferable 
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to linear spectral unmixing because they did not assume linear relationship between 

surface components in a pixel and they did not require collection of spectral 

endmembers.  

Another study that presented a framework for utilizing ANN techniques for 

estimating subpixel abundance of surface components was presented by Lee and Lathrop 

(2006). The authors described a technique for estimating the subpixel percentage of 

impervious surface, grass and tree components within pixels of Landsat ETM+ imagery. 

The method was especially successful because it was able to distinguish between grassy 

and woody areas and, thus, presented a good representation of land cover types. There 

were other studies that also described ANN implementations for fractional land-cover 

estimation (Shabanov et al., 2005; Tatem et al., 2002). 

2.3.3 Artificial Neural Networks in Snow Studies 

ANNs had not only been used for determining subpixel abundance of surface 

components, but also for deriving certain snow-cover characteristics. In particular, 

Tedesco et al. (2004) used neural networks to extract snow-water equivalent and snow 

depth from images acquired by the Special Sensor Microwave Imager (SSM/I). Several 

training methods were employed, and it was estimated that the best performance was 

achieved when the network was trained with experimental data. This study is important 

because it presented an ANN method for deriving snow-cover characteristics from 

remotely-sensed images. ANN have also been used in avalanche hazard forecasting 

(Stephens et al., 2002) and in detecting and estimating snowfall using passive 

microwave images (Mejia et al. 2008). 
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3. METHODOLOGY 

 

3.1 Artificial Neural Networks 

 ANNs constitute an information-processing model that stores empirical 

knowledge and subsequently makes the stored knowledge available for future use. 

ANNs are loosely modeled after the brain of living organisms and resemble the brain in 

that knowledge is acquired from the environment through a learning process and is 

stored in the form of interneuron connection strengths (Haykin 1999).  

3.1.1 The Neuron  

 The fundamental processing unit of ANNs is the neuron (Fig. 2). A neuron 

consists of connection links (synapses) characterized with certain weights (strength). 

Input is passed from one end of the synapse, multiplied by the connection weight and 

passed on to the summing junction (adder) of the neuron. The adder sums the weighted 

inputs: 

uk =  ∑ wkj xj
m
j=1    (2) 

where xj  represents the jth  input signal from a total of m inputs; wkj  represents the 

strength of the connection weight from the jth  input signal to neuron k, and uk  is the sum 

of the weighted input signals. 
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Fig. 2. Nonlinear model of a neuron. Adapted after Haykin (1999). 
 

A bias bk  is added to the linear combined output uk  to derive the activation potential of 

vkof the neuron: 

vk  =  uk +  bk  (3) 

The activation potential  vk  is then passed to the transfer (activation or squashing) 

function φ, which computes the output yk of the neuron: 

yk =  φ(vk) (4) 

The two most common types of transfer functions are the threshold and sigmoid 

functions (Haykin 1999). The threshold function returns discrete output values 

depending on whether the activation potential of a neuron is below or above a predefined 

threshold. The sigmoid function, on the other hand, returns a range of continuous output 

values. It is also the most popular type of transfer functions (Haykin 1999). It has a 

typical S-shape curve and therefore it exhibits a balance between a linear and non-linear 
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behavior. Furthermore, it is differentiable, which is a necessary in some types of 

supervised neural-network-learning methods such as backpropagation. Computing the 

derivative of the transfer function of a neuron is required in computing the error 

associated with the neuron.  

 The two common types of sigmoid transfer functions are the logistic sigmoid and 

tangent hyperbolic functions (Fig. 3). The logistic sigmoid returns output ranging 

between 0 and 1: 

φ(vk) =  1
1+ e−v k

 (5) 

while the tangent hyperbolic returns output between -1 and 1: 

φ(vk) = tanh(vk) (6) 

 

 

Fig. 3. Transfer functions. (a) Logistic sigmoid. (b) Tangent hyperbolic.  
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3.1.2 Artificial Neural Network Architecture 

Neurons are connected to each other through their connection links. Thus, the 

output of a neuron is transmitted through a connection link, multiplied by the weight of 

the connection link and passed to the summing junction of the next neuron. The way 

neurons are structured in an ANN is determined by the network’s architecture. 

Typically, neurons are arranged in layers. Fig. 4 illustrates a multi-layer feedforward 

ANN architecture. The input layer does not consist of neurons, but of nodes which pass 

each input element to the first layer of neurons. In a remote sensing context an input 

layer is the available information about an image pixel such as reflectance, land cover or 

elevation. Each of the neurons in the first hidden layer receives weighted signal from the 

input layer and computes an output which is then passed to all of the neurons in the next 

hidden layer. The neurons in the final hidden layer pass their output to each of the 

neurons in the output layer. The output of each output layer neuron is returned as the 

output of the ANN. In the current application a multi-layer ANN with one hidden layer 

is used.   

The ANN in Fig. 4 is feedforward, as opposed to recurrent, which means that the 

network does not have any feedback loops, i.e. inputs to a neuron are not influenced by 

the output of that neuron. The difference between single- and multi-layer networks is that 

in single layer ANNs the input layer of source neurons projects directly to the output 

layer, whereas in multi-layer ANNs one or more hidden layers between the input and 

output layers are present.  
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Fig. 4. A multi-layer feed-forward ANN.  
 

3.1.3 Learning  

 ANNs learn a model of the environment so they can achieve the required goal of 

an application. Prior information could be built in the network or a network can acquire 

(learn) the knowledge from observations about (examples from) the environment 

through training. Examples could be labeled where each instance of the input signals is 

paired with a desired response (target output). In such case the learning process is 

categorized as supervised learning. When the examples are not labeled the process is 

called ‘learning without a teacher’ which could further be categorized as either 

unsupervised or reinforcement learning (Haykin 1999). 

 One of the most popular supervised learning methods is backpropagation which 

is a type of error-correction learning. The weights of the network are randomly 
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initialized and the error signal is calculated as the difference between the generated and 

target outputs. The error is backpropagated and the weights are adjusted to minimize the 

error. The process is repeated iteratively until the error reaches a predefined minimal 

value or until the generalization performance of network starts to deteriorate based on a 

set of examples excluded from the training. Network generalization refers to how well 

an ANN performs on input that has not been used in training the network. The set of 

examples used for checking the generalization performance during training is called 

validation set. 

 Typically, after the training an ANN is tested with examples that have not been 

used either during training or validation. This stage of ANN implementation is called 

testing. If the results of the testing stage are unsatisfactory, the training processed is 

repeated. If an ANN is tested to perform well, its weights are stored for later use. When 

the model is used later for performing a task, it only references the saved weights. 

3.1.4 Properties of Artificial Neural Network in Current Study  

In this study, a multi-layer feed-forward ANN is trained with backpropagation to 

compute snow fraction. Nine inputs were provided to the network (Table 1). These 

include the seven MODIS surface reflectance bands provided in the Surface Reflectance 

Daily L2G Global 500m and 1km (MOD09GA) product (Vermonte & Kotchenova, 

2008). Calculated NDSI and NDVI were added to emphasize snow covered and 

vegetated areas, respectively. NDVI is a normalized difference ratio of bands in the red 

and near-infrared portions of the electromagnetic spectrum and is one of the vegetation 

indices used to indicate presence of healthy green vegetation (Jensen, 2005). 
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Land-cover in the International Geosphere-Biosphere Programme (IGBP) 

classification scheme was also used as an input because spectral characteristics of snow 

are known to vary across land covers (Hall et al., 2001) and also because the reflectance 

of the snow-free surfaces depends on the surface type. The complete IGBP classification 

system was used as input to the ANN so that the network could learn to differentiate 

between different classes such as evergreen needleleaf forest and evergreen broadleaf 

forest. 

Several input combinations were attempted before the final ten inputs were 

chosen. For example, the neural network was trained on the seven reflectance bands and 

land cover but without NDVI and NDSI. An additional input, percent tree fraction, was 

also considered but it was not included as its addition did not improve the results. The 

best input combination was determined based on Root Mean Square Error (RMSE) and 

R2 of the test samples which were selected from the training scenes. 

The final neural network generated snow fraction values above 1 and below 0. 

Such values are unrealistic as a pixel cannot have a negative amount of snow cover and 

cannot have snow cover exceeding 100 percent of the pixel. Therefore, FSC values 

larger than 1 were set to 1, and smaller than 0 were set to 0. 

The following network properties were determined by trial-and-error: number of 

hidden-layer neurons, input-to-hidden transfer function and input-output normalization 

method. The neural network was trained while holding initial weights constant during 

the different runs to ensure that differences of the results were not caused by differences 

in initializations. Performance of the network was analyzed in terms of RMSE and by 
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visually comparing resulting ANN FSC maps to reference FSC maps. ANN properties 

are summarized in Table 2. 

 One hidden layer was chosen as it had been demonstrated that a single hidden 

layer can learn any mapping (Priddy & Keller, 2005). The number of hidden-layer 

neurons was chosen to be 20 which was twice the number of inputs. Experimenting with 

10 and 30 hidden-layer neurons was attempted and the ANN performance in terms of 

RMSE was best with 20 neurons. 

 The nonlinear transfer function was also determined by trial-and-error. A tangent 

hyperbolic transfer function between the input and hidden layer was selected for the final 

network but a logistic sigmoid transfer function was also tested. These are the two most 

common sigmoid transfer functions. The two approaches were tested with different input 

and output normalization methods as input features are often normalized to the same 

range to minimize bias of the network towards any of the inputs (Priddy & Keller, 2005). 

An input feature refers to all of the observations of a single input element across all 

examples. For example, an input feature is the set of all values of a band for all samples 

in the training, validation and test data sets. If a normalization method is used, the 

reverse normalization is applied to the target output and the normalized target output is 

used during training. After training, all generated output is also reverse-normalized to 

convert to physically-meaningful output. 
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Table 2 
ANN description and properties 
ANN Property Description 

 
Training method Levenberg-Marquardt backpropagation (supervised) 

 
Learning method Gradient descent with momentum weight and bias learning 

function 
Performance measure Mean Square Error (MSE) 

 
Network architecture Nine input neurons, one hidden layer with 20 hidden layer 

neurons, and one output neuron 
Transfer functions Tangent hyperbolic between input and hidden layers; 

Linear between hidden and output layers 
Input/output 
normalization 

Each input band is scaled between -1 and 1 

 

3.2 Reference Fractional Snow Cover Maps 

The performance of ANNs trained in a supervised manner is closely related to 

the quality of the data set used for training (Priddy & Keller, 2005), and therefore a 

training data set should be representative of the pixels that it would be used on. In the 

current study, it was important that the training examples were not biased towards a 

certain land-cover but instead adequately represented the land covers typical of mid- and 

high-latitude snow-covered environments. The training set should also not be biased 

towards particular snow cover fractions. Therefore stratified random sampling across 

land cover and snow fraction was performed to create the training, validation and test 

data sets. 
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3.2.1 Landsat ETM+ Scene Selection and Preprocessing 

 Selection of training and test scenes was restricted to partially snow-covered 

images acquired within North America during different months of the snow season. The 

main objective in selecting the training scenes was to represent land covers typical of the 

snow-covered mid to high latitudes. The land-cover classification system used in 

selecting samples combined the seventeen IGBP land-cover classes into eight: evergreen 

forest, deciduous forest, mixed forest, mixed agriculture, barren/sparsely vegetated, 

savannas, grasslands/shrublands and wetlands (Table 3) as a similar approach was used 

previously by Hall et al. (2001) to assess the accuracy of the MODIS snow product.  

 

Table 3  
Land-cover classes used in the study 

IGBP Land-cover Classes 
(used as input) Reclassified For Sampling 

Evergreen needleleaf forest Evergreen forests Evergreen broadleaf forest 
Deciduous needleleaf forest Deciduous forests Deciduous broadleaf forest 
Mixed forests Mixed forests 
Croplands 

Mixed agriculture Urban and built-up 
Cropland/natural vegetation mosaic 
Barren/sparsely vegetated Barren/sparsely vegetated 
Woody savannas Savannas Savannas 
Closed shrublands 

Grasslands/shrublands Open shrublands 
Grasslands 
Permanent wetlands Wetlands 
Permanent snow and ice n/a 
Water n/a 
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 The Landsat ETM+ scenes which were used for selecting training examples 

(Table 4) were selected for minimal cloud cover and were acquired between 2000 when 

MODIS became operational and 2003 when the Landsat ETM+ Scan Line Corrector 

(SLC) failed which degraded image quality (NASA, 2009b). Three of the selected 

scenes were previously used in developing the NDSI snow fraction method for mapping 

FSC (Salomonson & Appel, 2004, 2006). 

Landsat ETM+ images were obtained free of charge from the United States 

Geological Survey (USGS) Earth Resources Observation and Science (EROS) data 

center. This product is corrected from distortions related to sensor, satellite and Earth 

effects. All scenes were georegistered to a Universal Transverse Mercator (UTM) 

projection with a WGS84 datum. Each of the Landsat ETM+ images was converted to 

radiance using a standard approach (NASA, 2009b). Atmospheric correction and 

conversion to radiance was then performed using the Fast Line-of-sight Atmospheric 

Analysis of Spectral Hypercubes (FLAASH) module in the ENVI 4.5 software package 

(Kaufmann et al., 1997). For three of the scenes (Table 4) FLAASH was unsuccessful 

and therefore a simpler modified black body correction (Chavez, 1988) was applied.  

 Finally, the atmospherically-corrected scenes were compared to orthorectified 

Landsat ETM+ images which were acquired through the Global Land-cover Facility 

(GLCF, 2009). Most of the scenes (Table 4) had to be georegistered through selection of 

Ground Control Points (GCPs) because of geolocation differences between the 

orthorectified scenes and those used in the study. At least fifteen GCPs were selected for 

each scene with a Root Mean Square (RMS) error of less than 0.1 pixels.   

http://eros.usgs.gov/�
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Table 4 
 Landsat ETM+ training (1 through 11) and test (A, B and C) scenes 

Scene WRS-2 
Path/Row 

Date 
Acquired Land-covers Number of 

Samples 
 

Training Scenes 

11, 2 24/23 04/24/2000 
Savannas, 
grasslands/shrublands, 
wetlands 

4,400 

2 24/28 12/10/2002 Deciduous forests, mixed 
forests, mixed agriculture 6,209 

3 24/28 02/28/2003 Deciduous forests, mixed 
forests 1,853 

4 26/29 02/07/2002 Deciduous forests, mixed 
forests, mixed agriculture 2,446 

5 26/30 02/07/2002 Mixed agriculture 
 1,288 

6 38/21 12/25/2001 Evergreen forests 
 1,400 

7 38/22 03/19/2003 Evergreen forests, mixed 
forests, savannas 2,228 

8 39/22 11/01/2002 
Evergreen forests, mixed 
forests, mixed agriculture, 
savannas 

4,625 

9 39/24 11/01/2002 Mixed agriculture, 
grasslands/shrublands 2,000 

101, 2, 3 65/17 05/12/2001 Savannas, 
grasslands/shrublands 3,400 

111, 2, 3 73/11 05/23/2002 Barren/sparsely vegetated, 
grasslands/shrublands 1,800 

 
Test Scenes 

A2, 3 11/20 11/07/2000 Barren/sparsely vegetated, 
grasslands/shrublands 61,531 

B 43/21 04/19/2002 Evergreen forests, mixed 
forests 116,874 

C 25/28 04/08/2003 Deciduous forests, mixed 
forests, mixed agriculture 96,282 

1 Modified Black Body Atmospheric correction used instead of FLAASH.  
2 Additional georeferencing was not performed  
3 Scene used in developing MODIS FSC product (Salomonson and Appel 2004, 
2006) 
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3.2.2 Landsat Snow Maps 

 Each of the pre-processed Landsat ETM+ images was used as input to a snow-

cover mapping algorithm (Hall et al., 1995) which classified pixels as either snow-

covered or snow-free. This is the algorimth used for creating the standard MODIS binary 

snow-cover product (MOD10). The 30-m Landsat snow maps were then used to 

calculate snow fraction within each MODIS pixel. The land surface reflectance bands 

provided in MOD09GA have a 500 m spatial resolution. However, MODIS geolocation 

errors (Wolfe, 2006) mean that each pixel samples a slightly larger area. A common 

approach for dealing with the geolocation differences is to calculate the snow fraction 

within a larger spatial footprint than the extent of a pixel. For example, in the validation 

of the snow-fraction method described by Painter et al. (2009) sampling was performed 

within a circular footprint with radius ranging from 500 m to 2000 m. In this study, a 

more conservative 750 m radius was applied (Fig. 5).  
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Fig. 5. Resampling to MODIS resolution. Binary snow-cover maps were resampled to MODIS resolution within a 750-m 

circular radius around each MODIS pixel. 
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3.3 MODIS Preprocessing 

MODIS is an instrument aboard the Terra and Aqua satellites which carry 

remote-sensing sensors designed for global environmental monitoring. MODIS aquires 

images from every point on Earth at least once every 1 or 2 days in 36 discrete spectral 

bands (NASA, 2009c). Science teams have developed a variety of standard data products 

which are distributed free of charge. The MODIS Surface Reflectance provides surface 

spectral reflectance in seven bands (Table 1) and is corrected for atmospheric effects 

(Vermonte & Kotchenova, 2008). The product is distributed by the Land Processes 

Distributed Active Archive Center (NASA, 2009a). Seven land surface reflectance bands 

at 500 m and 250 m spatial resolution are provided in the Surface Reflectance Daily L2G 

Global 500m and 1km (MOD09GA) product and the product was used in the study. The 

product also contains data sets describing cloud cover and data quality for each pixel. 

The data sets in the MOD09GA product are provided in the MODIS sinusoidal 

projection and in the current study were re-projected to a UTM projection with a 

WGS84 datum to match the respective reference snow maps. The reflectance data sets 

were also scaled by 0.0001 to convert from radiance to reflectance. 

Water was excluded from the analysis using the water mask acquired from the 

MODIS land-cover product MOD12Q1. The cloud state and quality data sets provided 

with the MOD09GA product were analyzed to exclude pixels that were cloud-covered, 

mixed, fell within cloud shadow or had been produced at less than ideal quality from 

further analysis. Finally, areas identified by visual examination as cloud covered in the 

Landsat images were also masked. 
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3.4 Sampling 

 A total of eleven Landsat snow maps (Fig. 1) were sampled to create the training, 

validation and test data sets. Following usage in the ANNs literature both the training 

and validation data sets were used during network training. The samples from the 

training data set were used in adjusting the weights of the ANN. The validation data set 

was used to measure the generalization performance of the network as represented by the 

mean square error (MSE) between the ANN FSC output and reference FSC output. 

Training ended when MSE of the validation set began to increase indicating that further 

training would decrease the generalization abilities of the network (Haykin, 1999).  

 To minimize training bias towards any land cover or snow-cover fraction, sample 

points were selected through stratified random sampling. Snow-cover fraction was 

categorized in 0.1 FSC intervals. Fig. 6 illustrates how random points were selected for 

the evergreen land cover class from training scene eight (Table 4). Due to scene 

availability some land covers were underrepresented in some FSC classes (Fig. 7). 
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Fig. 6.  Stratified random sampling per land cover and snow fraction. The figure 
illustrates selection of random points over evergreen forests for training scene eight. 
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Fig. 7. Sample points used in final ANN.
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3.4.1 Refinement of Samples and Network Training 

After sampling, the eleven Landsat ETM+ images used for creating the reference 

snow maps were visually examined. It was determined that some clouds had not been 

detected before sample point selection. Therefore, 297 points were removed from the 

sample data set because of apparent contamination by cloud cover or shadows. The final 

sample data set included 31,649 observations (Fig. 7). It was subsequently split in three 

fractions. One half of the samples were used for training, a fourth of the samples for 

network validation and the remaining was retained for testing the trained network.  

After determining the ANN architecture, the sample data set which included the 

pixels randomly sampled from the eleven Landsat training scenes was examined. 

Approximately 200 samples had errors of computed FSC larger than three standard 

deviations of the mean and were removed. The network was trained on the remaining 

data set. Different runs were performed allowing for random initialization of weights. 

The ANN initialized with the saved initial weights had best performance and its results 

were further analyzed by examining scatter plots comparing the neural network 

generated FSC and reference FSC for each of the Landsat reference training scenes. The 

estimated FSC of the samples from training scene 3 (Table 4) was considerably 

underestimated. Samples from this scene were removed and a final ANN was trained 

using the saved initial weights. 

 Three additional Landsat snow maps (Fig. 1) were selected and reserved to 

independently test the results on scenes not used during training. Test Scene A (Table 4) 

was located in Labrador, Canada and contained barren/sparsely vegetated and 
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grassland/shrublands land covers. Test Scene B contained evergreen and mixed forests 

and was located in Alberta, Canada. And Test Scene C contained deciduous and mixed 

forests and mixed agriculture. It was located in Michigan and Wisconsin, United States. 

All of the available MODIS pixels in these scenes were used in testing the trained 

network. 

 

3.5 Application Software Used in the Study 

Landsat and MODIS preprocessing was performed in ENVI 4.5 and IDL 7.0. 

Selection of random points was performed in ArcGIS 9.3. Feed-forward ANN 

implementation in the MATLAB R2008b Neural Network Toolbox was used. Statistical 

analysis was performed in SPSS 17.0. 
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4. RESULTS 
 

The performance of the ANN was analyzed by examining FSC maps for three 

reference Landsat snow maps which were not used to train the network. The test snow 

maps were prepared similarly to the ones used for creating the training, test and 

validation data sets. Test scene A covered a portion of Labrador, Canada and was 

acquired on November 7th, 2000 and has mostly barren/sparsely vegetated and 

grasslands/shrublands land-covers. This scene was also used in the development of the 

MODIS snow fraction algorithm (Salomonson & Appel, 2004, 2006). Test scene B was 

acquired over Alberta, Canada on April 19th, 2002 and is representative of evergreen 

forests and mixed forests. Test scene C was acquired over Michigan on April 8th, 2003 

and it contains mostly deciduous forests, mixed forests and mixed agriculture land 

covers. 

4.1 Overall Mapping Accuracy 

The overall mapping accuracy of the ANN-derived snow fraction maps was good 

as the total snow-covered area mapped in the test scenes was similar to the total snow-

covered area in the reference snow-fraction maps (Table 5; Figs. 8, 9). Specifically, the 

ANN FSC estimated a combined total of 35,152 km2 snow-covered are for the three test 

scenes which is 56% of the total area while the reference snow-cover extent was 37,531 

km2 which is 59% of the total area. The neural network underestimated the snow-cover 

extent by 2379 km2 or 3% of the total area. This means that for each 100 km2 in the 

reference FSC map that ANN mapped 3 km2 less snow. The best performance was over 

test scene B for which ANN underestimated the snow cover by 1 km2 per 100 km2. The 
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snow cover was underestimated by 5 km2 per 100 km2 and 6 km2 per 100 km2 for test 

scenes C and A, respectively.  

 

Table 5 
Total snow-covered area.  Snow-cover extent in square kilometers and as percentage of 
the area of the three test scenes individually and combined. 

  

 
Snow-Covered Area  

(km2)/(percent of total area) 
 

Test 
Scene 

Total 
area 
(km2) 

 
Reference 

 
ANN 

 
MOD10 
(snow 

fraction) 

 
MOD10 
(binary) 

A 14,177 12,299 / 87 11,671 / 82 12,451 / 88 12,760 /  90 
B 26,928 9,222 / 34 8,950 / 33 8,166 / 30 12,525 / 47 
C 22,183 16,010 / 72 14,531 / 66 14,794 / 67 18,076 / 82 

All 63,288 37,531 / 59 35,152 / 56 35,411 / 56 43,361 / 69 
 

 

 
Fig. 8. Total snow-covered area. Snow-cover extent as percentage of the total area for 
the three test scenes and combined and for the different land-covers.  
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Fig. 9. Difference in percentage of snow-covered area.  

 

The mapping accuracy of the ANN was also examined by calculating Root Mean 

Square Error (RMSE) and coefficient of determination (R2) between ANN and reference 

snow fraction. RMSE was calculated as 

RMSE =  � 1
1−n

∗ ∑ (x′ − x)2n
i=1  (7) 

where n is the number of samples, x′ is the estimated FSC and x is the reference FSC. R2 

is a measure of the correlation between the estimated and reference FSC and is the 

square of the Person correlation coefficient. 

The agreement between the reference FSC and the ANN-estimated FSC was high 

with R2 ranging from 0.91 to 0. 80 and the RMSE ranging between 10.39% and 13.30% 

(Table 6). RMSE between ANN FSC and reference FSC (10.39%) was lowest over the 

non forested Labrador test scene. The two forested scenes had slightly higher but similar 

RMSE of 12.66% for Alberta and 12.75% for Michigan/Wisconsin.  
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Table 6 
RMSE and R2 for test scenes. RMSE and R2 between ANN FSC and reference FSC and 
between MOD10 FSC and reference FSC 

 Test Samples Test Scene A Test Scene B Test Scene C 
 R2 RMSE (%) R2 RMSE (%) R2 RMSE (%) R2 RMSE (%) 
ANN 0.80 13.30% 0.89 10.39% 0.89 12.66% 0.91 12.75% 
MOD10 n/a n/a 0.91 8.99% 0.90 12.16% 0.89 12.50% 

 

The good agreement between the ANN FSC and the Landsat FSC can be seen 

through scatter plot graphs of estimated versus reference FSC (Figs. 10, 11, 12). While, 

overall agreement was high, the neural network appeared to overestimate snow fraction 

at low FSC and underestimate it at high FSC.  

 

 

Fig. 10. Scatter plots of test scene A. Scatter plots showing ANN and MODIS FSC 
estimates with respect to reference FSC for test scene A.  
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Fig. 11. Scatter plots of test scene B. Scatter plots showing ANN and MODIS FSC 
estimates with respect to reference FSC for test scene B. 

 

 

Fig. 12. Scatter plots of test scene C. Scatter plots showing ANN and MODIS FSC 
estimates with respect to reference FSC for test scene C. 
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The underestimation of FSC is also evident by comparing reference and ANN 

snow fraction maps (Figs. 13, 14 and 15). The ANN FSC captured the spatial variability 

of snow cover successfully with the same areas having highest and lowest snow fraction 

in both ANN and reference FSC maps. Spatial variability of ANN FSC was least in the 

test scene over Michigan and Wisconsin (Fig. 15).   

Differences between ANN and reference FSC were examined spatially by 

creating error maps (Figs. 16, 17, 18). Error maps for the ANN result were created by 

subtracting the reference snow fraction form the ANN snow fraction. Similarly, error 

maps for the MODIST snow fraction was created by subtracting the reference FSC from 

the MODIS FSC. These error maps illustrate areas where ANN underestimates snow as 

negative values, and where ANN overestimated – as positive. Histograms of the error 

indicated a nearly normal distribution of the differences between ANN and reference 

snow fraction. 
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Fig. 13. ANN results of the network over Test Scene A. (a) A false-color image 
composite of MODIS bands 6, 2 and 1 as R, G and B shows snow as cyan colors; (b) 
reference snow map shows pixels covered with large snow fraction as light blue and 
snow-free pixels as dark blue; (c) MODIS and (d) neural network FSC maps. 
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Fig. 14. ANN results of the network over Test Scene B. The displayed maps are 
patterned after those in Fig. 13. 
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Fig. 15. ANN results of the network over Test Scene C. The displayed maps are 
patterned after those in Fig. 13. 
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Fig. 16. Error maps of test scene A. Difference between estimated and reference snow fraction for (a) ANN and (b) MODIS; 
(c) land cover map of the test area; (d) histograms of the error distribution for ANN and MODIS.  
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Fig. 17. Error maps of test scene B. The displayed maps and histograms are patterned after those in Fig. 16. 
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Fig. 18. Error maps of test scene C. The displayed maps and histograms are patterned after those in Fig. 16. 
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4.2 Mapping Accuracy by Land Cover 

The mapping accuracy as indicated by difference in snow-covered area between 

reference and ANN FSC was also analyzed for different land-cover categories (Table 7; 

Figs. 8 and 9). Evergreen forests had the least difference in percent snow-covered area 

(2%) which means that for a 100 km2 the ANN estimated 2 km2 more snow cover than 

the reference. Evergreen forests were also the only land-cover category where ANN 

overestimated the total snow-cover extent. The difference in snow-cover extent between 

the ANN and reference snow-fraction maps was also low for savannas where for a 100 

km2 ANN underestimated snow cover by 3 km2.  

 

Table 7 
Snow-covered area per land cover 

  

 
Snow-Covered Area 

(km2)/(percent of total area) 
 

Test Scene 
Total 
area 
(km2) 

 
Reference 

 
ANN 

 
MOD10 
(snow 

fraction) 

 
MOD10 
(binary) 

Evergreen 15,547 4,380 / 28 4,658 / 30 3,967 /26 6,888 / 44 
Deciduous 4,981 3,528 / 71 3,232 / 65 3,127 / 63 3,759 / 75 

Mixed 
Forests 23,805 14,783 / 62 13,445 / 56 13,356 / 56 17,354 / 73 

Mixed 
Agriculture 3,644 1,921 / 53 1,600 / 44 1,879 / 52 2,035 / 56 

Barren 1,448 1,363 / 94 1,263 / 87 1,390 / 96 1,414 / 98 
Savannas 1,027 404 / 39 370 / 36 404 / 39 462 / 45 
Grassland 12,830 11,147 / 87 10,580 / 82 11,284 / 88 11,444 /89 
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RMSE and R2 were also calculated for the different land-cover categories (Table 

8). The ANN FSC over Mixed Agriculture had the highest correlation with the reference 

FSC (R2 = 0.97); however, it also had the largest RMSE (13.85%). The lowest RMSE 

(10.32%) was over Grasslands/shrublands. The forest land-cover categories had RMSEs 

ranging from 11.89% to 12.86% and R2 from 0.88 to 0.95. 

 

Table 8 
RMSE and R2 per land cover 

 Number of 
samples ANN MOD10 

  R2 RMSE (%) R2 RMSE (%) 
Evergreen forests 67,479 0.88 12.24 0.86 12.16 
Deciduous forests 21,617 0.95 11.89 0.95 12.32 
Mixed forests 103,320 0.90 12.86 0.90 12.95 
Mixed agriculture 15,817 0.97 13.85 0.97 7.47 
Barren/sparsely vegetated 6,283 0.61 12.31 0.74 7.48 
Savannas 4,456 0.91 13.80 0.91 13.72 
Grasslands/shrublands 55,686 0.89 10.32 0.90 9.12 
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5. DISCUSSION  

 

5.1 Overall Performance of ANN 

 The neural network was able to successfully map snow fraction using MODIS 

surface reflectance, NDSI, NDVI and land cover as inputs. Mapping accuracy of the 

three independent test scenes was good and the best performance was achieved over a 

test scene dominated by evergreen forests. The correlation between ANN and reference 

snow fraction as measured by R2 was good. However, the ANN tended to underestimate 

the Landsat-derived FSC at higher snow fractions and overestimate them at lower snow 

fractions. 

5.2 Comparison to MODIS Snow-Cover Products 

The ANN FSC was also compared to the FSC provided as part of the 

MODIS/Terra Snow Cover Daily L3 Global 500m Grid (MOD10A1) product (Riggs et 

al., 2006) (Tables 5-8, Fig. 8-18) and to the binary snow cover product also provided in 

MOD10A1 (Fig. 8). The two products are distributed by the National Snow and Ice Data 

Center (NSIDC, 2009). Both the ANN and the snow-fraction MODIS product estimated 

the same percent (56%) of the combined area of the test scenes as snow-covered which 

is 3% less than the reference which means that for a 100 km2 both the ANN and MODIS 

snow-fraction maps underestimate the snow-cover extent by 3 km2. For the Alberta test 

scene which had mainly evergreen forests, the neural network had estimated only 1% 

less snow than the reference, while the snow-fraction MODIS product had derived 4% 

less. The ANN and snow-fraction MODIS results were most similar over the Michigan 
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test scene which had mixed and deciduous forests and mixed agriculture land-cover 

categories. The differences between the two FSC methods were largest over the 

Labrador test scene which had mostly savannas and barren/sparsely vegetated land-

covers categories. For that scene, the snow-fraction MODIS product overestimated the 

snow-covered area by 1% while the ANN underestimated it by 5%. Notably, that is a 

training scene for the snow-fraction MODIS product (Salomonson & Appel, 2004, 2006) 

and therefore the good agreement between the estimated by the snow-fraction MODIS 

method and the reference FSC could be expected. 

With exception of the Labrador test scene the ANN RMSE were also comparable 

to the snow-fraction MODIS product. Based on the two test scenes not used in the 

developing of the MODIS FSC method, the ANN and the empirical NDSI approaches 

achieve similar FSC accuracy as measured by RMSE when compared to the reference 

Landsat snow maps. The correlation between the estimated and reference snow fraction 

was also comparable with R2 of both approaches for the three test scenes ranging 

between 0.89 and 0.91. 

Scatterplots of ANN-derived and reference snow fraction and MODIS and 

reference snow fraction (Figs. 11, 12, 13) show less scatter for the ANN FSC. This means 

a larger range in errors in the MODIS FSC product that in the ANN-derived FSC maps. 

Yet, the error maps and the histograms of the errors (Figs. 16, 17, 18) showed more pixels 

had snow-fraction errors close to 0 in the MODIS product that in the ANN FSC map.  

Comparing the ANN and snow-fraction MODIS for different land covers showed 

that over the forested areas ANN was more accurate. For a 100 km2 of evergreen forests 
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the MODIS snow-fraction map underestimated the snow-cover extent by 6 km2 while 

ANN overestimated it by 2 km2. Over deciduous forests, snow-fraction MODIS 

estimated 8 km2 less and ANN – 6 km2 less. Both methods calculated similar snow-

covered area over mixed forests – 6 km2 less. Yet, the ANN performed slightly better – 

for the total of 14, 783 km2 of mixed forests, the ANN estimated 89 km2 more snow-

cover than the snow-fraction MODIS. For the non-forested areas snow-fraction MODIS 

mapped the snow-covered area more accurately that the ANN –  for mixed agriculture, 

snow-fraction MODIS had estimated only 1 km2 less than the reference while ANN had 

estimated 9 km2 less. The binary snow-cover MODIS product consistently overestimated 

the snow-covered area (Fig. 8). The greatest overestimation was for forests while the 

snow-covered area over grasslands/shrublands and barren/sparsely vegetated was similar 

to the reference. 

5.3 Comparison to Linear Spectral Unmixing 

The overall mapping accuracy of the ANN snow-fraction maps was compared to 

the reported accuracies of linear spectral unmixing snow-fraction approaches. SnowFrac 

which has been developed and tested over Norway and Switzerland, has a reported R2 of 

0.95 and 0.85 (Vikhamar & Solberg, 2002). These are similar to the developed ANN 

FSC for which R2 of three independent test scenes was between 0.89 and 0.91. The most 

recent study of linear mixture analysis for FSC mapping (Painter et al., 2009), reported 

an average RMS error of 5%. Validation scenes were located in the Colorado Rocky 

Mountains, the Sierra Nevada of California, the headwaters of the Rio Grande, and the 

Himalayas. Due to topography barren areas, brush, meadows and alpine savannas were 
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present at high altitudes while coniferous and deciduous forests were present at the lower 

elevations of the validation areas. However, the study did not report error analysis per 

land cover and due to the assumption of linear spectral mixing the method may not be 

performing well in forested areas. 

5.4 Error Analysis 

 The better mapping accuracy of the ANN over forested areas than over non-

forested areas vcan be attributed to the large percentage (42%) of forested training pixels 

(Table 9). Evergreen, deciduous and mixed forests were considered as separate land-

cover categories (Fig. 7) and therefore each forest category was represented by a large 

number of training examples. The grassland pixels were dominated by high FSC so even 

small differences in snow-fraction result in large variations in snow-cover extent (Fig. 

19). It should also be noted that nearly all of the grassland pixels in the three test scenes 

came from the Labrador test scene which was used during the development of the 

MODIS snow fraction method. 
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Table 9 
Number and percent training samples per land covers 

 Number of 
training samples 

Percent of 
training samples 

Evergreen forests 2,176 15 
Deciduous forests 910 6 
Mixed forests 3,144 21 
Mixed agriculture 2,472 17 
Barren/sparsely vegetated 219 1 
Savannas 2,258 15 
Grasslands/shrublands 2,818 19 
Perm. Snow and Ice 708 5 
Wetlands 88 1 
Total 14,793 100 
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Fig. 19. Test points. Number of pixels in the three test scenes combined for each land cover and snow fraction categories.
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6. CONCLUSIONS AND FUTURE DIRECTIONS 

 

In this study, a neural network trained with backpropagation successfully learned 

the relationship between MODIS snow fraction and surface reflectance in seven 

wavelength bands, NDSI, NDVI and land cover. The network was applied to scenes 

independent of those used for training and results were compared to reference Landsat 

snow maps and to the MODIS FSC product. The ANN performance across the test 

scenes and across different land cover types was comparable to the standard MODIS 

snow fraction product and other fractional snow-cover approaches. 

ANN achieved the best result in terms of extent of snow-covered area over 

evergreen forests where it slightly overestimated the snow-cover extent. The developed 

neural network tended to underestimate in high FSC and overestimate in low FSC. ANN 

snow-fraction results compared favorably to the standard MODIS FSC product with the 

two methods estimating the same amount of total snow-covered area in the test scenes 

(56% of the total area). However, both approaches underestimated the snow-cover extent 

compared to the reference FSC maps (59% of the total area). In estimating the extent of 

snow-covered area the ANN was more accurate in forested areas than the snow-fraction 

MODIS product. The neural network approach to snow-fraction mapping compared well 

to the linear spectral unmixing approaches as well. 

This was the first study that the authors were aware of training where an artificial 

neural network was trained to estimate snow-cover fraction. The network architecture 

employed was a traditional backpropagation feed-forward network. Improved snow-
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mapping accuracy may be obtained by developing a more sophisticated ANN. For 

examples, a combination of self-organizing maps, learning vector quantization and a 

Gaussian mixture model have been applied to estimate the subpixel abundance of urban 

surfaces from landsat ETM+ images (Lee & Lathrop, 2006). Better snow-fraction 

mapping may also be achieved by including additional inputs such as tree-cover fraction, 

elevation or any of the MODIS thermal bands.  
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APPENDIX A 
 

MATLAB program for training ANN 
 

function net = train_net 
  
%inputs has 9 columns %columns 1-7 - MODIS reflectance bands  
%column 8-9 - indices (NDSI, NDVI) 
  
    %read input and target otput 
    inputs = textread (' C:\geogtmp\ANN\mod.dat'); 
    p = inputs'; 
    targets = textread (' C:\geogtmp\ANN\fsc.dat'); 
    t = targets'; 
     
    %read indeces of sampels used for training, validation and test 
    train_in = textread (' C:\geogtmp\ANN\ind_train.txt'); 
    val_in = textread (' C:\geogtmp\ANN\ind_val.txt');  
    test_in = textread (' C:\geogtmp\ANN\ind_test.txt');  
  
    %Specify numebr of hidden neurons 
    numHiddenNeurons = 20;   
  
    %Normalize  
    [pn, ps] = mapminmax (p, -1, 1); 
    [tn, ts] = mapminmax (t, -1, 1); 
  
    %Save normalization settings so they can be refered when using the network 
    net_ps = ' C:\geogtmp\ANN\net_ps'; 
    save(net_ps,'ps'); 
    net_ts = ' C:\geogtmp\ANN\net_ts'; 
    save(net_ts,'ts'); 
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    %Create Network 
    net = newff(pn,tn,numHiddenNeurons,{'tansig', 'purelin'}, ...   
    'trainlm', 'learngdm', ... 
    'mse', {'fixunknowns','removeconstantrows'}, ... 
    {'removeconstantrows'}, 'dividerand');  
  
    %specify indeces of sampels used for training, validation and test 
    net.divideParam.trainInd = train_in;   
    net.divideParam.valInd = val_in;   
    net.divideParam.testInd = test_in;   
  
    % Train Network         
    [net,tr] = train(net,pn,tn); 
 
    %Save Network 
    my_network = ' C:\geogtmp\ANN\net'; 
    save(my_network,'net'); 
  
end 
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APPENDIX B 
 

MATLAB program for using the trained ANN 
 

function use_net 
  
%inputs has 10 columns - columns 1-7 - MODIS reflectance bands; column 8-9 - indices (NDSI, NDVI) 
%column 10 - land cover 
  
    %read input 
    inputs = textread (' C:\geogtmp\ANN\MOD_TestA.dat'); 
  
    %load the saved ANN and the input/output normalization  
    load ' C:\geogtmp\ANN\net'; 
    load ' C:\geogtmp\ANN\net_ps'; 
    load ' C:\geogtmp\ANN\net_ts'; 
  
    %normalize input 
    pnew = inputs'; 
    pnew = mapminmax('apply', pnew, net_ps); 
  
    %simulate ANN and reverse-normalize the output 
    anew = sim(net,pnew); 
    anew = mapminmax('reverse', anew, net_ts); 
  
    %write output to file 
    outputs = anew'; 
    dlmwrite (' C:\geogtmp\ANN\TestA.dat', outputs, 'delimiter', '\t'); 
 
end 
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