
HARDWARE ACCELERATION OF ELECTRONIC DESIGN AUTOMATION

ALGORITHMS

A Dissertation

by

KANUPRIYA GULATI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2009

Major Subject: Computer Engineering

HARDWARE ACCELERATION OF ELECTRONIC DESIGN AUTOMATION

ALGORITHMS

A Dissertation

by

KANUPRIYA GULATI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Sunil P. Khatri
Committee Members, Peng Li

Jim Ji
Duncan M. Walker
Desmond A. Kirkpatrick

Head of Department, Costas N. Georghiades

December 2009

Major Subject: Computer Engineering

iii

ABSTRACT

Hardware Acceleration of Electronic Design Automation Algorithms. (December 2009)

Kanupriya Gulati, B.E., Delhi College of Engineering, New Delhi, India;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Sunil P. Khatri

With the advances in very large scale integration (VLSI) technology, hardware is going

parallel. Software, which was traditionally designed to execute on single core microproces-

sors, now faces the tough challenge of taking advantage of this parallelism, made available

by the scaling of hardware. The work presented in this dissertation studies the accelera-

tion of electronic design automation (EDA) software on several hardware platforms such

as custom integrated circuits (ICs), field programmable gate arrays (FPGAs) and graphics

processors. This dissertation concentrates on a subset of EDA algorithms which are heav-

ily used in the VLSI design flow, and also have varying degrees of inherent parallelism

in them. In particular, Boolean satisfiability, Monte Carlo based statistical static timing

analysis, circuit simulation, fault simulation and fault table generation are explored. The

architectural and performance tradeoffs of implementing the above applications on these

alternative platforms (in comparison to their implementation on a single core micropro-

cessor) are studied. In addition, this dissertation also presents an automated approach to

accelerate uniprocessor code using a graphics processing unit (GPU). The key idea is to

partition the software application into kernels in an automated fashion, such that multiple

instances of these kernels, when executed in parallel on the GPU, can maximally benefit

from the GPU’s hardware resources.

The work presented in this dissertation demonstrates that several EDA algorithms can

be successfully rearchitected to maximally harness their performance on alternative plat-

forms such as custom designed ICs, FPGAs and graphic processors, and obtain speedups

iv

upto 800×. The approaches in this dissertation collectively aim to contribute towards en-

abling the computer aided design (CAD) community to accelerate EDA algorithms on ar-

bitrary hardware platforms.

v

To My Grandmas,

Late Gurcharan Kaur Gulati and

Prakash Kaur Arora,

for their unassailable faith and patience.

vi

ACKNOWLEDGMENTS

I can no other answer make, but thanks, and thanks, and ever thanks.

- William Shakespeare

This acknowledgment is an insufficient platform to express my deep sense of gratitude,

but here’s my heartfelt attempt.

In order to present this dissertation in its entirety, I cannot not acknowledge my Ph.D.

adviser and mentor Dr. Sunil Khatri for his remarkable guidance, undying enthusiasm,

high expertise and especially his let’s get it done attitude. But for his constant support and

timely critisism, this work may have never seen the light of day.

My thanks are due to my mentor at my Intel internships, and my Ph.D. committee

member, Dr. Desmond Kirkpatrick, for inspiring me with his ingenious knowledge base,

and for providing me the opportunity to intern at Strategic CAD Labs (SCL), and for ex-

tending his confidence towards my research.

I am grateful to my Ph.D. committee members, Drs. Hank Walker, Peng Li and Jim Ji,

for their valuable feedback and encouragement for my research, and even more for being

outstanding teachers.

During the (rather long) course of my graduate studies, I have had the opportunity to

work with some extremely smart students in my research group. I would especially like to

thank Nikhil and Rajesh, for being excellent lab mates, and inspiring me with their intense

sincerity and hard work; Suganth, for letting me win at squash (at least until he learned

it); Kalyan, for sharing a (teeny) part of his Linux expertise; Karan and Charu, for their

tenacity at work and cheerful demeanor; and all past and present group members, for their

infectious dedication.

I was fortunate to befriend some excellent folks at Texas A&M University. I thank

vii

Prasenjit, for helping me believe over ’sushi and fish fry’ that ’it all works out’; Richa,

for interesting conversations over ’chai and paranthas’; Rouella and Harneet, for insanely

delicious home-cooked dinners; and Gaurav for always ensuring that I ’Don’t Panic’, for

driving thousands of miles and for being patient with me (more often than not).

I am grateful to my friends and family who helped me in ways one too many to list.

Above all, I owe it to my family - Mom, Dad, Samaira, Geety and Ashu, for being

there, always.

viii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

I-A. Hardware Platforms Considered in This Dissertation . . . 4

I-B. EDA Algorithms Studied in This Dissertation 5

I-B.1. Control Dominated Applications 6

I-B.2. Control Plus Data Parallel Applications 8

I-C. Automated Approach for GPU Based Software Acceleration 11

I-D. Chapter Summary . 12

II HARDWARE PLATFORMS . 14

II-A. Chapter Overview . 14

II-B. Introduction . 15

II-C. Hardware Platforms Studied in This Dissertation 15

II-C.1. Custom ICs . 15

II-C.2. FPGAs . 16

II-C.3. Graphics Processors 16

II-D. General Overview and Architecture 17

II-E. Programming Model and Environment 21

II-F. Scalability . 23

II-G. Design Turn-around Time 24

II-H. Performance . 24

II-I. Cost of Hardware . 27

II-J. Floating Point Operations 27

II-K. Security and Real Time Applications 28

II-L. Applications . 29

II-M. Chapter Summary . 30

III GPU ARCHITECTURE AND THE CUDA PROGRAMMING

MODEL . 31

III-A. Chapter Overview . 31

III-B. Introduction . 31

III-C. Hardware Model . 33

III-D. Memory Model . 34

III-E. Programming Model . 37

III-F. Chapter Summary . 40

ix

CHAPTER Page

IV ACCELERATING BOOLEAN SATISFIABILITY ON A CUS-

TOM IC . 41

IV-A. Chapter Overview . 41

IV-B. Introduction . 42

IV-C. Previous Work . 45

IV-D. Hardware Architecture 47

IV-D.1. Abstract Overview 47

IV-D.2. Hardware Overview 48

IV-D.3. Hardware Details 49

IV-D.3.a. Decision Engine 49

IV-D.3.b. Clause Cell 50

IV-D.3.c. Base Cell 55

IV-D.3.d. Partitioning the Hardware 59

IV-D.3.e. Inter-bank Communication 61

IV-E. An Example of Conflict Clause Generation 64

IV-F. Partitioning the CNF Instance 66

IV-G. Extraction of the Unsatisfiable Core 68

IV-H. Experimental Results . 70

IV-I. Chapter Summary . 76

V ACCELERATING BOOLEAN SATISFIABILITY ON AN FPGA . . 77

V-A. Chapter Overview . 77

V-B. Introduction . 78

V-C. Previous Work . 79

V-D. Hardware Architecture 82

V-D.1. Architecture Overview 82

V-E. Solving a CNF Instance Which Is Partitioned into

Several Bins . 83

V-F. Partitioning the CNF Instance 85

V-G. Hardware Details . 87

V-H. Experimental Results . 90

V-H.1. Current Implementation 90

V-H.2. Performance Model 92

V-H.2.a. FPGA Resources 92

V-H.2.b. Clauses/Variable Ratio 93

V-H.2.c. Cycles Vs. Bin Size 94

V-H.2.d. Bins Touched Vs. Bin Size 95

V-H.2.e. Bin Size . 96

x

CHAPTER Page

V-H.3. Projections . 97

V-I. Chapter Summary . 101

VI ACCELERATING BOOLEAN SATISFIABILITY ON A GRAPH-

ICS PROCESSING UNIT . 102

VI-A. Chapter Overview . 102

VI-B. Introduction . 103

VI-C. Related Previous Work 105

VI-D. Our Approach . 108

VI-D.1. SurveySAT and the GPU 108

VI-D.1.a. SurveySAT 109

VI-D.1.b. SurveySAT on the GPU 113

VI-D.1.c. SurveySAT Results on the GPU 115

VI-D.2. MiniSAT Enhanced with Survey Propagation

(MESP) . 117

VI-E. Experimental Results . 120

VI-F. Chapter Summary . 121

VII ACCELERATING STATISTICAL STATIC TIMING ANALY-

SIS USING GRAPHICS PROCESSORS 123

VII-A. Chapter Overview . 123

VII-B. Introduction . 124

VII-C. Previous Work . 127

VII-D. Our Approach . 129

VII-D.1. Static Timing Analysis (STA) at a Gate 130

VII-D.2. Statistical Static Timing Analysis (SSTA) at a Gate 133

VII-E. Experimental Results . 136

VII-F. Chapter Summary . 139

VIII ACCELERATING FAULT SIMULATION USING GRAPHICS

PROCESSORS . 141

VIII-A. Chapter Overview . 141

VIII-B. Introduction . 142

VIII-C. Previous Work . 144

VIII-D. Our Approach . 146

VIII-D.1. Logic Simulation at a Gate 147

VIII-D.2. Fault Injection at a Gate 151

VIII-D.3. Fault Detection at a Gate 152

xi

CHAPTER Page

VIII-D.4. Fault Simulation of a Circuit 153

VIII-E. Experimental Results . 155

VIII-F. Chapter Summary . 157

IX FAULT TABLE GENERATION USING GRAPHICS PROCESSORS 159

IX-A. Chapter Overview . 159

IX-B. Introduction . 160

IX-C. Previous Work . 163

IX-D. Our Approach . 164

IX-D.1. Definitions . 165

IX-D.2. Algorithms: FSIM∗ and GFTABLE 168

IX-D.2.a. Generating Vectors (Line 9) 169

IX-D.2.b. Fault Free Simulation (Line 10) 170

IX-D.2.c. Computing Detectabilities and Cumu-

lative Detectabilities (Lines 13, 14) 171

IX-D.2.d. Fault Simulation of SR(s) (Lines 15, 16) . . . 173

IX-D.2.e. Generating the Fault Table (Line 22-31) . . . 177

IX-E. Experimental Results . 177

IX-F. Chapter Summary . 180

X ACCELERATING CIRCUIT SIMULATION USING GRAPH-

ICS PROCESSORS . 186

X-A. Chapter Overview . 186

X-B. Introduction . 186

X-C. Previous Work . 190

X-D. Our Approach . 192

X-D.1. Parallelizing BSIM3 Model Computations on

a GPU . 194

X-D.1.a. Inlining If-Then-Else Code 194

X-D.1.b. Partitioning the BSIM3 Code into Kernels . . 196

X-D.1.c. Efficient Use of GPU Memory Model 197

X-D.1.d. Thread Scheduler and Code Statistics 200

X-E. Experiments . 200

X-F. Chapter Summary . 203

XI AUTOMATED APPROACH FOR GRAPHICS PROCESSOR

BASED SOFTWARE ACCELERATION 205

XI-A. Chapter Overview . 205

xii

CHAPTER Page

XI-B. Introduction . 206

XI-C. Our Approach . 208

XI-C.1. Problem Definition 209

XI-C.2. GPU Constraints on the Kernel Generation Engine 209

XI-C.3. Automatic Kernel Generation Engine 211

XI-C.3.a. Node Duplication 214

XI-C.3.b. Cost of a Partitioning Solution 215

XI-D. Experimental Results . 216

XI-D.1. Evaluation Methodology 216

XI-E. Chapter Summary . 219

XII CONCLUSIONS . 221

REFERENCES . 230

VITA . 253

xiii

LIST OF TABLES

TABLE Page

IV.1 Encoding of {reg,reg bar} Bits . 52

IV.2 Encoding of {lit,lit bar} and var implied Signals 54

IV.3 Partitioning and Binning Results . 72

IV.4 Comparing against MiniSAT (a BCP-based Software SAT Solver) 75

V.1 Number of Bins Touched with Respect to Bin Size 96

V.2 LUT Distribution for FPGA Devices . 97

V.3 Runtime Comparison XC4VFX140 Versus MiniSAT 99

VI.1 Comparing MiniSAT with SurveySAT (CPU) and SurveySAT (GPU) . . . 116

VI.2 Comparing MESP with MiniSAT . 120

VII.1 Monte Carlo Based SSTA Results . 137

VIII.1 Encoding of the Mask Bits . 151

VIII.2 Parallel Fault Simulation Results . 156

IX.1 Fault Table Generation Results with L = 32K 179

IX.2 Fault Table Generation Results with L = 8K 181

IX.3 Fault Table Generation Results with L = 16K 182

X.1 Speedup for BSIM3 Evaluation . 201

X.2 Speedup for Circuit Simulation . 202

XI.1 Validation of the Automatic Kernel Generation Approach 219

xiv

LIST OF FIGURES

FIGURE Page

I.1 CPU Performance Growth . 2

II.1 FPGA Layout . 17

II.2 Logic Block in the FPGA . 18

II.3 LUT Implementation Using a 16:1 MUX 19

II.4 SRAM Configuration Bit Design . 20

II.5 Comparing Gflops of GPUs and CPUs 21

II.6 FPGA Growth Trend . 25

III.1 CUDA for Interfacing with GPU Device 32

III.2 Hardware Model of the NVIDIA GeForce GTX 280 33

III.3 Memory Model of the NVIDIA GeForce GTX 280 34

III.4 Programming Model of CUDA . 37

IV.1 Abstracted View of the Proposed Idea 48

IV.2 Generic Floorplan . 49

IV.3 State Diagram of the Decision Engine 51

IV.4 Signal Interface of the Clause Cell . 52

IV.5 Schematic of the Clause Cell . 53

IV.6 Layout of the Clause Cell . 55

IV.7 Signal Interface of the Base Cell . 55

IV.8 Indicating a New Implication . 57

IV.9 Computing Backtrack Level . 59

xv

FIGURE Page

IV.10 (a) Internal Structure of a Bank (b) Multiple Clauses Packed in One

Bank-row . 60

IV.11 Signal Interface of the Terminal Cell . 60

IV.12 Schematic of a Terminal Cell . 62

IV.13 Hierarchical Structure for Inter-bank Communication 63

IV.14 Example of Implicit Traversal of Implication Graph 65

V.1 Hardware Architecture . 83

V.2 State Diagram of the Decision Engine 90

V.3 Resource Utilization for Clauses . 92

V.4 Resource Utilization for Variables . 93

V.5 Computing Aspect Ratio (16 Variables) 94

V.6 Computing Aspect Ratio (36 Variables) 95

VI.1 Data Structure of the SAT Instance on the GPU 115

VII.1 Comparing Monte Carlo Based SSTA on GTX 280 GPU and Intel

Core 2 Processors (with SEE Instructions) 139

VIII.1 Truth Tables Stored in a Look-up Table 147

VIII.2 Levelized Logic Netlist . 154

IX.1 Example Circuit . 166

IX.2 CPT on FFR(k) . 171

IX.3 Fault Simulation on SR(k) . 176

X.1 Industrial 2 Waveforms . 203

X.2 Industrial 3 Waveforms . 204

XI.1 CDFG Example . 213

xvi

FIGURE Page

XI.2 KDG Example . 214

XII.1 New Parallel Kernel GPUs . 226

XII.2 Larrabee Architecture from Intel . 226

XII.3 Fermi Architecture from NVIDIA . 227

XII.4 Block Diagram of a Single Shared Multiprocessor (SM) in Fermi 228

XII.5 Block Diagram of a Single Processor (Core) in SM 229

1

CHAPTER I

INTRODUCTION

With the advances in VLSI technology over the past few decades, several software appli-

cations got a ’free’ performance boost, without needing any code redesign. The steadily

increasing clock rates and higher memory bandwidths resulted in improved performance

with zero software cost. However, more recently, the gain in the single core performance

of general-purpose processors has diminished due to the decreased rate of increase of op-

erating frequencies. This is because VLSI system performance hit two big walls:

• the memory wall and

• the power wall.

The memory wall refers to the increasing gap between processor and memory speeds. This

results in an increase in cache sizes required to hide memory access latencies. Eventually

the memory bandwidth becomes the bottleneck in performance. The power wall refers to

power supply limitations or thermal dissipation limitations (or both) - which impose a hard

constraint on the total amount of power that processors can consume in a system. Together,

these two walls reduce the performance gains expected for general purpose processors,

as shown in Figure I.1 [1]. Due to these two factors, the rate of increase of processor

frequency has greatly decreased. Further, the VLSI system performance has not shown

much gain from continued processor frequency increases as was once the case.

Further, newer manufacturing and device constraints are faced with decreasing feature

sizes, making future performance increases harder to obtain. A leading processor design

company summarized the causes of reduced speed improvements in their white paper [2]

The journal model is IEEE Transactions on Automatic Control.

2

Fig. I.1. CPU Performance Growth

stating, First of all, as chip geometries shrink and clock frequencies rise, the transistor

leakage current increases, leading to excess power consumption and heat ... Secondly, the

advantages of higher clock speeds are in part negated by memory latency, since memory

access times have not been able to keep pace with increasing clock frequencies. Third, for

certain applications, traditional serial architectures are becoming less efficient as processors

get faster (due to the so-called Von Neumann bottleneck), further undercutting any gains

that frequency increases might otherwise buy. In addition, partly due to limitations in

the means of producing inductance within solid state devices, resistance-capacitance (RC)

delays in signal transmission are growing as feature sizes shrink, imposing an additional

bottleneck that frequency increases don’t address.

In order to maintain increasing peak performance trends without being hit by these

’walls’, the microprocessor industry rapidly shifted to multi-core processors. As a conse-

3

quence of this shift in microprocessor design, traditional single threaded applications no

longer see significant gains in performance with each processor generation, unless these

applications are rearchitectured to take advantage of the multi-core processors. This is due

to the instruction level parallelism (ILP) wall, which refers to the rising difficulty in find-

ing enough parallelism in the existing instructions stream of a single process, making it

hard to keep multiple cores busy. The ILP wall further compounds the difficulty of perfor-

mance scaling at the application level. These walls are a key problem for several software

applications, including software for electronic design.

The electronic design automation (EDA) field collectively uses a diverse set of soft-

ware algorithms and tools, which are required to design complex next generation elec-

tronics products. The increase in VLSI design complexity poses a challenge to the EDA

community, since single-thread performance is not scaling effectively due to reasons men-

tioned above. Parallel hardware presents an opportunity to solve this dilemma, and opens

up new design automation opportunities which yield orders of magnitude faster algorithms.

In addition to multi-core processors, other hardware platforms may be viable alternatives

to achieve this acceleration as well. These include custom designed ICs, reconfigurable

hardware such as FPGAs, and streaming processors such as graphics processing units. All

these alternatives need to be investigated as potential solutions for accelerating EDA appli-

cations. This dissertation studies the feasibility of using these alternative platforms for a

subset of EDA applications which

• address some extremely important steps in the VLSI design flow and

• have varying degrees of inherent parallelism in them.

The rest of this chapter is organized as follows. In the next section, we briefly intro-

duce the hardware platforms that are studied in this dissertation. In Section I-B we discuss

the EDA applications considered in this dissertation. In Section I-C we discuss our ap-

4

proach to automatically generate Graphics Processing Unit (GPU) based code to accelerate

uniprocessor software. Section I-D summarizes this chapter.

I-A. Hardware Platforms Considered in This Dissertation

In this dissertation, we explore three following hardware platforms for accelerating EDA

applications. Custom designed ICs are arguably the fastest accelerators we have today, eas-

ily offering several orders of magnitude speedup compared to the single threaded software

performance on the CPU [3]. These chips are application specific, and thus deliver high

performance for the target application, albeit at a high cost.

Field Programmable Gate Arrays (FPGAs) are arrays of reconfigurable logic and are

popular devices for hardware prototyping. Recently, high performance systems have begun

to increasingly utilize FPGAs because of improvements in FPGA speeds and densities.

The increasing cost of custom IC implementations along with improvements in FPGA tool

flows has helped make FPGAs viable platforms for an increasing number of applications.

Graphic Processing Units (GPUs) are designed to operate in a Single Instruction Mul-

tiple Data (SIMD) fashion. GPUs are being actively explore for general purpose computa-

tions in recent times [4, 5, 6]. The rapid increase in the number and diversity of scientific

communities exploring the computational power of GPUs for their data intensive algo-

rithms has arguably had a contribution in encouraging GPU manufacturers to design easily

programmable general purpose GPUs (GPGPUs). GPU architectures have been contin-

uously evolving towards higher performance, larger memory sizes, larger memory band-

widths and relatively lower costs.

In Chapter II, we compare and contrast the hardware platforms that are considered in

this dissertation. In particular, we discuss custom designed ICs, reconfigurable architec-

tures such as FPGAs, and streaming processors such as graphics processing units (GPUs).

5

This comparison is performed over various criteria such as architecture, expected perfor-

mance, programming model and environment, scalability, time to market, security, cost of

hardware, etc. In Chapter III, we describe the programming environment used for interfac-

ing with the GPUs.

Note that the hardware platforms discussed in this dissertation require an (expensive)

communication link with the host processor. All the EDA applications considered have to

work around this communication cost, in order to obtain a healthy speedup on their target

platform. Future generation hardware architectures may not face a high communication

cost. This would be the case if the host and the accelerator are implemented on the same

die, or share the same physical RAM. However, for existing architectures, it is important to

consider the cost of this communication while discussing the feasibility of the platform for

a particular application.

I-B. EDA Algorithms Studied in This Dissertation

In this dissertation, we study two different categories of EDA algorithms, namely control

dominated and control plus data parallel algorithms. Our work demonstrates the rearchi-

tecting of EDA algorithms from both these categories, to maximally harness their perfor-

mance on the alternative platforms under consideration. We chose applications for which

there is a strong motivation to accelerate, since they are used in key time-consuming steps

in the VLSI design flow. Further, these applications have different degrees of inherent

parallelism in them, which make them an interesting implementation challenge for these

alternative platforms. In particular, Boolean satisfiability, Monte Carlo based statistical

static timing analysis, circuit simulation, fault simulation and fault table generation are

explored.

6

I-B.1. Control Dominated Applications

In the control dominated algorithms category, this dissertation studies the implementation

of Boolean satisfiability (SAT) on the custom IC, FPGA and GPU platforms. SAT is a

classic NP-complete problem, and has been widely studied in the past. Given a set V of

variables, and a collection C of Conjunctive Normal Form (CNF) clauses over V , the SAT

problem consists of determining if there is a satisfying truth assignment for C. Given the

broad applicability of SAT to several diverse application domains such as logic synthesis,

circuit testing, verification, pattern recognition and others [7], there has been much effort

devoted to devising efficient heuristics to solve SAT. In this dissertation we present hard-

ware solutions to the SAT problem, with the main goals of scalability and speedup.

In Chapter IV, we discuss a custom IC based hardware approach to accelerate SAT.

In this approach, the traversal of the implication graph as well as conflict clause generation

are performed in hardware, in parallel. We also propose a hardware approach to extract the

minimum unsatisfiable core (i.e. the sub-formula consisting of the smallest set of clauses

of the initial formula which is unsatisfiable) for any unsatisfiable formula. We store the

clause literals in specially designed clause cells and implement the clauses in banks, such

that clauses of variable widths can be accommodated in these banks. We also perform an

upfront partitioning of the SAT problem in order to better utilize these banks. Our custom

IC based solution demonstrates significantly larger capacity than existing hardware SAT

solvers, and is scalable in the sense that several ICs can be effectively used to simultane-

ously operate on the same large SAT instance. We conducted layout and SPICE studies

to estimate the area, power and speed of this solution. Our approach has been function-

ally validated in Verilog. Our experiments show that instances with approximately 63K

clauses can be accommodated on a single IC of size 1.5cm×1.5cm. Our custom IC based

SAT solver results in over 3 orders of magnitude speed improvement over BCP based soft-

7

ware SAT approaches. Further, the capacity of our approach is significantly higher than all

existing hardware based approaches.

In Chapter V, we discuss an FPGA based hardware approach to accelerate SAT. In this

approach, we store the clause literals in the FPGA slices. In order to solve large SAT in-

stances, we partition the clauses into ’bins’, each of which can fit in the FPGA. This is done

in a pre-processing step. In general, these bins may share variables and hence do not solve

independent sub-problems. The FPGA operates on one bin at a time. All the bins of the

partitioned SAT problem are stored in the on-chip Block RAM (BRAM). The embedded

PowerPC processor on the FPGA performs the task of loading the appropriate bin from the

BRAM. Conflict clause generation and Boolean constant propagation (BCP) are performed

in parallel in the FPGA hardware. The entire flow, which includes the preprocessing step,

loading of the BRAM, programming the PowerPC and the subsequent communication be-

tween partitions (which is required for BCP, conflict clause generation and both inter- and

intra-bin non-chronological backtracking) has been automated and verified for correctness

on a Virtex-II Pro (XC2VP30) FPGA board. Experimental results and their analysis, along

with the performance models, are discussed in detail. Our results demonstrate that an or-

der of magnitude improvement in runtime can be obtained over the best-in-class software

based approach, by using a Virtex-4 (XC4VFX140) FPGA device. The resulting system

can handle instances with as many as 10K variables and 280K clauses.

In Chapter VI, we present a SAT approach which employs a new GPU-enhanced vari-

able ordering heuristic. In this approach, we augment a CPU-based complete procedure,

with a GPU based approximate procedure (which benefits from the high parallelism of the

GPU). The CPU implements MiniSAT, while the GPU implements SurveySAT. The SAT

instance is read and the search is initiated on the CPU. After a user-specified fraction of

decisions have been made, the CPU invokes the GPU based SurveySAT procedure multiple

times and updates its variable ordering based on any decisions made by SurveySAT. This

8

approach retains completeness (since it is implements a complete procedure) but has the

potential of high speedup (since the approximate procedure is executed on a highly paral-

lel graphics processor based platform). Experimental results demonstrate an average 64%

speedup up over MiniSAT, for several satisfiable and unsatisfiable benchmarks.

I-B.2. Control Plus Data Parallel Applications

Among EDA problems with varying amounts of control and data parallelism, we acceler-

ated the following applications using GPUs.

• Statistical Static Timing Analysis (SSTA) Using Graphics Processors With the dimin-

ishing minimum feature sizes of VLSI fabrication processes, the impact of process

variations is becoming increasingly significant. The resulting increase in delay vari-

ations significantly affects the timing yield and the maximum operating frequency

of designs. Static timing analysis (STA) is heavily used in a conventional VLSI

design flow to estimate circuit delay and the maximum operating frequency of the

design. Statistical STA (SSTA) was developed to include the effect of process vari-

ations, in order to analyze circuit delay more accurately. Monte Carlo based SSTA

is a simple and accurate method of performing SSTA. However, its main drawback

is its high runtime. We exploit the inherent parallelism in Monte Carlo based SSTA,

and present its implementation on a GPU in Chapter VII. In this approach we map

Monte Carlo based SSTA to the large number of threads that can be computed in

parallel on a GPU. Our approach performs multiple delay simulations of a single

gate in parallel. Our approach further benefits from a parallel implementation of the

Mersenne Twister pseudo-random number generator on the GPU, followed by Box-

Muller transformations (also implemented on the GPU). These are used for generat-

ing gate delay numbers from a normal distribution. We only need to store the µ and σ

9

of the pin-to-output delay distributions for all inputs and for every gate. This data is

stored in fast cached memory on the GPU, and we thereby leverage the large memory

bandwidth of the GPU. All threads compute identical instructions, but on different

data, with no control or data dependency, as required by the SIMD programming

semantics of the GPU. Our approach is implemented on a NVIDIA GeForce GTX

280 GPU card. Experimental results indicate that this approach can obtain an aver-

age speedup of about 818× as compared to a serial CPU implementation. With the

recently announced cards with quad GTX 280 GPUs, we estimate that our approach

would attain a speedup of over 2400×.

• Accelerating Fault Simulation on a Graphics Processor

In today’s complex digital designs, with possibly several million gates, the number

of faulty variations of the design can be dramatically higher. Fault simulation is an

important but expensive step of the VLSI design flow, and it helps to identify faulty

designs. Given a digital design and a set of input vectors V defined over its primary

inputs, fault simulation evaluates the number of stuck-at faults Fsim that are tested by

applying the vectors V . The ratio of Fsim to the total number of faults in the design

Ftotal is a measure of the fault coverage. The task of finding this ratio is often re-

ferred to as fault grading in the industry. Given the high computational cost for fault

simulation, it is extremely important to explore ways to accelerate this application.

The ideal fault simulation approach should be fast, scalable, and cost effective. In

Chapter VIII, we study the acceleration of fault simulation on a GPU. Fault simula-

tion is inherently parallelizable, and the large number of threads that can be executed

in parallel on a GPU can be employed to perform a large number of gate evalua-

tions in parallel. We implement a pattern and fault parallel fault simulator, which

fault-simulates a circuit in a levelized fashion. We ensure that all threads of the GPU

10

compute identical instructions, but on different data. Fault injection is also performed

along with gate evaluation, with each thread using a different fault injection mask.

Since GPUs have an extremely large memory bandwidth, we implement each of our

fault simulation threads (which execute in parallel with no data dependencies) using

memory lookup. Our experiments indicate that our approach, implemented on a sin-

gle NVIDIA GeForce GTX 280 GPU card, can simulate on average 47× faster when

compared to an industrial fault simulator. On a Tesla (8-GPU) system, our approach

is potentially 300× faster.

• Fault Table Generation using a Graphics Processor

A fault table is essential for fault diagnosis during VLSI testing and debug. Gener-

ating a fault table requires extensive fault simulation, with no fault dropping, This

is extremely expensive from a computational standpoint. We explore the generation

of a fault table using a GPU in Chapter IX. We employ a pattern parallel approach,

which utilizes both bit-parallelism and thread-level parallelism. Our implementation

is a significantly modified version of FSIM, which is pattern parallel fault simulation

approach for single core processors. Like FSIM, our approach utilizes critical path

tracing and the dominator concept to reduce runtime by pruning unnecessary sim-

ulations. Further modifications to FSIM allow us to maximally harness the GPU’s

immense memory bandwidth and high computational power. In this approach we do

not store the circuit (or any part of the circuit) on the GPU. We implement efficient

parallel reduction operations to speed up fault table generation. In comparison to

FSIM∗, which is FSIM modified to generate a fault table on a single core processor,

our approach on a single NVIDIA Quadro FX 5800 GPU card can generate a fault ta-

ble 15× faster on average. On a Tesla (8-GPU) system, our approach can potentially

generate the same fault table 90× faster.

11

• Fast Circuit Simulation Using Graphics Processor

SPICE based circuit simulation is a traditional workhorse in the VLSI design process.

Given the pivotal role of SPICE in the IC design flow, there has been significant in-

terest in accelerating SPICE. Since a large fraction (on average 75%) of the SPICE

runtime is spent in evaluating transistor model equations, a significant speedup can

be availed if these evaluations are accelerated. We study the speedup obtained by

implementing the transistor model evaluation on a GPU, and porting it to a com-

mercial fast SPICE tool in Chapter X. Our experiments demonstrate that significant

speedups (2.36× on average) can be obtained for the commercial fast SPICE tool.

The asymptotic speedup that can be obtained is about 4×. We demonstrate that with

circuits consisting of as few as about 1000 transistors, speedups in the neighborhood

of this asymptotic value can be obtained.

I-C. Automated Approach for GPU Based Software Acceleration

Due to the high degree of available hardware parallelism on the GPU, these platforms have

received significant interest for accelerating scientific software. The task of implement-

ing a software application on a GPU currently requires significant manual effort (porting,

iteration and experimentation). In Chapter XI, we explore an automated approach to par-

tition a uniprocessor software application into kernels (which are executed in parallel on

the GPU). The key idea here is to partition a software subroutine into kernels in an au-

tomated fashion, such that multiple instances of these kernels, when executed in parallel

on the GPU, can maximally benefit from the GPU’s hardware resources. The input to our

algorithm is a uniprocessor subroutine which is executed multiple times, on different data,

and needs to be accelerated on the GPU. Our approach aims at automatically partitioning

this routine into GPU kernels. This is done by first extracting a graph which models the

12

data and control dependencies of the subroutine in question. This graph is then partitioned.

Various partitions are explored, and each is assigned a cost which accounts for GPU hard-

ware and software constraints, as well as the number of instances of the subroutine that

are issued in parallel. From the least cost partition, our approach automatically generates

the resulting GPU code. Experimental results demonstrate that our approach correctly and

efficiently produces fast GPU code, with high quality. We show that with our partitioning

approach, we can speed up certain routines by 15% on average when compared to a mono-

lithic (unpartitioned) implementation. Our entire technique (from reading a C subroutine

to generating the partitioned GPU code) is completely automated, and has been verified for

correctness.

I-D. Chapter Summary

In recent times, improvements in VLSI system performance have slowed due to several

walls that are being faced. Key among these are the power and memory walls. Since

the growth of single-processor performance is hampered due to these walls, EDA software

needs to explore alternate platforms, in order to deliver the increased performance required

to design the complex electronics of the future.

In this dissertation, we explore the acceleration of several different EDA algorithms

(with varying degrees of inherent parallelism) on alternative hardware platforms. We ex-

plore custom ICs, FPGAs and graphics processors as the candidate platforms. We study the

architectural and performance tradeoffs involved in implementing several EDA algorithms

on these platforms. We study two classes of EDA algorithms in this dissertation, i) control

dominated algorithms such as Boolean Satisfiability (SAT) and ii) control plus data parallel

algorithms such as Monte Carlo based statistical static timing analysis, circuit simulation,

fault simulation and fault table generation. Another contribution of this dissertation is to

13

automatically generate GPU code to accelerate software routines that are run repeatedly on

independent data.

This dissertation is organized as follows. In Chapters II and III, different hardware

platforms are compared, and the programming model used for interfacing with the GPU

platform is presented. We present the following techniques to accelerate a control domi-

nated algorithm (Boolean Satisfiability). We present an IC-based approach (Chapter IV),

an FPGA-based approach (Chapter V) and a GPU-based scheme (Chapter VI) to accelerate

SAT. We present our approaches to accelerate control and data parallel applications in the

next four chapters. In particular we focus on accelerating Monte Carlo based SSTA (Chap-

ter VII), fault simulation (Chapter VIII), fault table generation (Chapter IX) and model

card evaluation of SPICE (Chapter X), on a graphics processor. Finally, in Chapter XI,

we present an automated approach for GPU based software acceleration. The dissertation

is concluded in Chapter XII, along with a brief description of next generation hardware

platforms. The larger goal of this work is to provide techniques to enable the acceleration

of EDA algorithms on different hardware platforms.

14

CHAPTER II

HARDWARE PLATFORMS

II-A. Chapter Overview

As discussed in Chapter I, single threaded software applications no longer obtain signifi-

cant gains in performance with the current processor scaling trends. With the growing com-

plexity of VLSI designs, this is a significant problem for the electronic design automation

(EDA) community. In addition to multi-core processors, hardware based accelerators such

as custom designed ICs, reconfigurable hardware such as FPGAs, and streaming processors

such as Graphics Processing units (GPUs) - are being investigated as a potential solution

to this problem. These platforms allow the CPU to offload compute intensive portions of

an application to the hardware for a faster computation, and the results are transferred back

to the CPU upon completion. Different platforms are best suited for different application

scenarios and algorithms. The pros and cons of the platforms under consideration are dis-

cussed in this chapter.

The rest of this chapter is organized as follows. Section II-B discusses the hardware

platforms studied in this dissertation, with a brief introduction of custom ICs, FPGAs and

GPUs in Section II-C. Sections II-D and II-E compare the hardware architecture and pro-

gramming environment of these platforms. Scalability of these platforms is discussed in

Section II-F, while design turn around time on these platforms is compared in Section II-

G. These platforms are contrasted for performance and cost of hardware in Sections II-H

and II-I, respectively. The implementation of floating point operations on these platforms

is compared in Section II-J, while security concerns are discussed in Section II-K. Suitable

applications for these platforms are discussed in Section II-L. The chapter is summarized

in Section II-M.

15

II-B. Introduction

Most hardware accelerators are not stand alone platforms, but are co-processors to a CPU.

In other words, a CPU is needed for initial processing, before the compute intensive task is

offloaded to the hardware accelerators. In some cases the hardware accelerator might com-

municate with the CPU even during the computation. The different platforms for hardware

acceleration in this dissertation are compared in the following sections.

II-C. Hardware Platforms Studied in This Dissertation

II-C.1. Custom ICs

Traditionally, custom ICs are included in a product to improve its performance. With a

high production volume, the high manufacturing cost of the IC is easily amortized. Among

existing hardware platforms, custom ICs are easily the fastest accelerators. By being ap-

plication specific, they can deliver very high performance for the target application. There

exist a vast literature of advanced circuit design techniques which help in reducing the

power consumption of such ICs while maintaining high performance [8]. Some of the

more well known techniques to reduce power consumption (both dynamic and leakage)

are design and protocol changes [9, 10], reducing supply voltage [11], variable Vt devices,

dynamic bulk modulation [12, 13], power gating [14] and input vector control [15, 16, 17].

Also, newer gate materials which help achieve further performance gains at a low power

cost are being investigated [18]. Due to their high performance and small footprint, custom

ICs are the most suitable accelerators for space, military and medical applications that are

compute intensive.

16

II-C.2. FPGAs

A field-programmable gate array (FPGA) is an integrated circuit which is designed to be

configured by the designer in the field. The FPGA is generally programmed using a hard-

ware description language (HDL). The ability of the user to program the functionality of

the FPGA in the field, along with the low non-recurring engineering costs (relative to a

custom IC design) make the FPGA an attractive platform for many applications. FPGAs

have significant performance advantages over microprocessors due to their highly parallel

architectures and significant flexibility. Hardware-level parallelism allows FPGA-based ap-

plications to operate 1 to 2 orders of magnitude faster than equivalent applications running

on an embedded processor, or even a high-end workstation. Compared to custom ICs, FP-

GAs have a somewhat lower performance, but their reconfigurability makes them an easy

choice for several (particularly low-volume) applications.

II-C.3. Graphics Processors

General purpose graphics processors turn the massive computational power of a modern

graphics accelerator into general-purpose computing power. In certain applications which

include vector processing, this can yield several orders of magnitude higher performance

than a conventional CPU. In recent times, general purpose computation on graphics pro-

cessors has been actively explored for several scientific computations [4, 5, 6, 19]. The

rapid increase in the number and diversity of scientific communities exploring the compu-

tational power of GPUs for their data intensive algorithms has arguably had a contribution

in encouraging GPU manufacturers to design GPUs that are easy to program for general

purpose applications as well. GPU architectures have been continuously evolving towards

higher performance, larger memory sizes, larger memory bandwidths and relatively lower

costs. Additionally, the development of open-source programming tools and languages for

17

interfacing with the GPU platforms, along with the continuous evolution of the computa-

tional power of GPUs, has further fueled the growth of general purpose GPU (GPGPU)

applications.

A comparison of hardware platforms considered in this dissertation is presented next,

in Sections II-D through II-L.

II-D. General Overview and Architecture

Logic Block

Interconnection Resources

I/O Cell

Fig. II.1. FPGA Layout

Custom designed ICs have no fixed architecture. Depending on the algorithm, technol-

ogy, target application and skill of the designers, custom ICs can have extremely diverse

architectures. This flexibility allows the designer to trade off design parameters such as

throughput, latency, power and clock speed. The smaller features also open the door to

higher levels of system integration, making the architecture even more diverse.

FPGAs are high density arrays of reconfigurable logic, as shown in Figure II.1 [20].

They allow a designer the ability to trade off hardware resources versus performance, by

giving the hardware designers the choice to select the appropriate level of parallelism to

18

CLK

DFF

M
U

X

4
-

L
U

T

f1

f2

f3

f4

X

Fig. II.2. Logic Block in the FPGA

implement an algorithm. The ability to tradeoff parallelism and pipelining yields signifi-

cant architectural variety. The circuit diagram for a typical FPGA logic block is shown in

Figure II.2, and it can implement both combinational as well sequential logic, based on the

value of the MUX select signal X . The Look-up Table (LUT) in this FPGA logic block

is shown in Figure II.3. It consists of a 16:1 MUX circuit, implemented using NMOS

passgates. This is the typical circuit used for implementing LUTs [21, 22]. The circuit

for the 16 SRAM configuration bits (labeled as ”S” in Figure II.3) is shown in Figure II.4.

The DFF of Figure II.2 is implemented using identical master and slave latches, each of

which has a NMOS passgate connected to the clock, and a pair of inverters in a feedback

configuration to implement the storage element.

In the FPGA paradigm, the hardware consists of a regular array of logic blocks.

Wiring between these blocks is achieved by reconfigurable interconnect, which can be pro-

grammed via passgates and SRAM configuration bits to drive these passgates (and thereby

customize the wiring).

Recent FPGAs provide on-board hardware IP blocks for DSP, hard processor macros,

and large amounts of on-chip Block RAM (BRAM). These hardware IP blocks allow a de-

19

out

f 1

f 1

f 1

f 1

S
V0

S

S

S

V1

V2

V3

SRAM

configuration

bits

f 2

f 2

f 3

f 4

Fig. II.3. LUT Implementation Using a 16:1 MUX

signer to perform many common computations without using FPGA logic blocks or LUTs,

resulting in a more efficient design.

One downside of FPGA devices is that they have to be reconfigured every time the

system is powered-up. This either requires the use of a special external memory device

(which has an associated cost and consumes real estate on the board) or the use of an

on-board microprocessor (or some variation on these techniques).

GPUs are commodity parallel devices which provide extremely high memory band-

widths and a large number of programmable cores. They can support thousand of si-

multaneously issued software threads operating in a SIMD fashion. GPUs have several

multiprocessors which execute these software threads. Each multiprocessor has a special

function unit, which handles infrequent, expensive operations, like divide, square root etc.

There is a high bandwidth, low latency local memory attached to each multiprocessor. The

threads executing on that multiprocessor can communicate among themselves using this

20

WR

Vi

WR

Fig. II.4. SRAM Configuration Bit Design

local memory. In the current generation of NVIDIA GPUs, the local memory is quite small

(16KB). There is also a large global device memory (over 4GB in some models) of GPU

cards. Virtual memory is not implemented, and so paging is not supported. Due to this

limitation, all the data has to fit in the global memory. The global device memory has very

high bandwidth (but also has high latency) to the multiprocessors. The global device mem-

ory is not directly accessible by the host CPU, nor is the host memory directly accessible

to the GPU. Data from the host that needs to be processed by the GPU must be transferred

via DMA (across an IO bus) from the host to the device memory. Similarly, data is trans-

ferred via DMA from the GPU to the CPU memory as well. GPU memory bandwidths

have grown from 42 GB/s for the ATI Radeon X1800XT to 141.7 GB/s for the NVIDIA

GeForce GTX 280 GPU [6]. A recent comparison of the performance in Gflops of GPUs

to CPUs is shown in Figure II.5 [23]. A key drawback of the current GPU architectures (as

compared to FPGAs) is that the onchip memory cannot be used to store the intermediate

data [24] of a computation. Only off-chip global memory (DRAM) can be used for stor-

ing intermediate data. On the FPGA, processed data can be stored in on-chip Block RAM

21

 0

 200

 400

 600

 800

 1000

Jan’03 Jun’03 Apr’04 Jun’05 Mar’06 Nov’06 May’07 Jun’08

P
e
a
k
 G

F
L
O

P
s

Comparing peak GFLOPs

NVIDIA GPU
Intel CPU

Fig. II.5. Comparing Gflops of GPUs and CPUs

(BRAM).

II-E. Programming Model and Environment

Custom designed ICs require several EDA tools in their design process. From functional

correctness at the RTL/HDL level to the hardware testing and debugging of the final silicon,

EDA tools and simulators are required at every step. For certain steps, a designer has to

manually fix the design or interface signals to meet timing or power requirements. Needless

to say, for ICs with several million transistors, design and testing can take months before

the hardware masks are finalized for fabrication. Unless the design and manufacturing cost

can be justified by large volumes or extremely high performance requirements, the custom

design approach is typically not practical.

FPGAs are generally customized based on the use of SRAM configuration cells. The

22

main advantage of this technique is that new design ideas can be implemented and tested

much faster compared to a custom IC. Further, evolving standards and protocols can be

accommodated relatively easily, since design changes are much simpler to incorporate. On

the FPGA, when the system is first powered-up, it can initially be programmed to perform

one function such as a self-test and/or board/system test, and it can then be reprogrammed

to perform its main task. FPGA vendors provide software and hardware IP cores [25] that

implement several common processing functions. More recently, high-end FPGAs have

become available that contain one or more embedded microprocessors. Tasks that used

to be performed by an external microprocessor, can now be moved into the FPGA core.

This provides several advantages such as cost reduction, significantly reduced data transfer

times from FPGA to the microprocessor, simplified circuit board design, and a smaller,

more power efficient system. Debugging the FPGA is usually performed using embedded

logic analyzers at the bitstream level [26]. FPGA debugging, depending on the design

density and complexity, can easily take weeks. However, this is still a small fraction of

the time taken for similar activities in the custom IC approach. Given these advantages,

FPGAs are often used in low and medium volume applications.

In the recent high level languages released for interfacing with GPUs, the hardware

details of the graphics processor are abstracted away. High level APIs have made GPU pro-

gramming very flexible. Existing libraries such as ACML-GPU [27] for AMD GPUs, and

CUFFT and CUBLAS [28] for NVIDIA GPUs have inbuilt efficient parallel implemen-

tations of commonly used mathematical functions. CUDA [29] from NVIDIA provides

guidelines for memory access and the usage of hardware resources for maximal speedup.

Brook+ [27] from AMD-ATI provides a lower level API for the programmer to extract

higher performance from the hardware. Further, GPU debugging and profiling tools are

available for verification and optimization. In comparison to FPGAs or custom ICs, using

GPUs as accelerators incurs a significantly lower design turn around time.

23

General purpose CPU programming has all the advantages of GPGPU programming,

and is a mature field. Several programming environments, debugging and profiling tools,

and operating systems have been around for decades now. The vast amount of existing code

libraries for CPU based applications is an added advantage of system implementation on a

general purpose CPU.

II-F. Scalability

In high performance computing, scalability is an important issue. Combining multiple ICs

together for more computing power or using an array of FPGAs for emulation purposes

are known techniques to enhance scalability. However, the extra hardware usually requires

careful reimplementation of some critical portions of the design. Further, parallel connec-

tivity standards (PCI, PCI-X, EMIF) often fall short when scalability and extensibility are

taken into consideration.

Scalability is hard to achieve in general, and should be considered during the architec-

tural and design phases of FPGA based or custom IC based algorithm acceleration efforts.

Scalability concerns are very specific to the algorithm being targeted, as well as the accel-

eration approach employed.

For graphics processors, existing techniques for scaling are intracluster and interclus-

ter scaling. GPU providers such as NVIDIA and AMD provide multi-GPU solutions such

as [30] and [31], respectively. These multi-GPU architectures claim high scalability, inspite

of limited parallel connectivity, provided the application lends itself well to the architec-

ture. Scalability requires efficient use of hardware as well as communication resources

in multi-core architectures, custom ICs, FPGAs and GPUs. Architecting applications for

scalability remains a challenging open problem for all platforms.

24

II-G. Design Turn-around Time

Custom ICs have a high design turn-around time. Even for modest sized designs, it takes

many months from the start of the design to when the silicon is delivered. If design revi-

sions are required, the cost and design turn-around time of custom ICs can become even

higher.

FPGAs offer better flexibility and rapid prototyping capabilities as compared to cus-

tom designs. An idea or concept can be tested and verified in an FPGA without going

through the long and expensive fabrication process of custom design. Further, incremental

changes or design revisions (on an FPGA) can be implemented within hours or days instead

of months. Commercial off-the-shelf prototyping hardware is readily available, making it

easier to rapidly prototype a design. The growing availability of high-level software tools

for FPGA design, along with valuable IP cores (prebuilt functions) for several commonly

used control and signal processing tasks, makes it possible to achieve rapid design turn-

arounds.

GPUs and CPUs allow for a far more flexible development environment and faster turn

around times. Newer compilers and debuggers help trace software bugs rapidly. Incremen-

tal changes or design revisions can be compiled much faster than in custom IC or FPGA

designs. Code profiling techniques for optimization purposes is a mature area [32, 29].

Thus, a software implementation can easily be used to rapidly prototype a new design or to

modify an existing design.

II-H. Performance

Depending on the application, custom designed ICs offer speedups of several orders of

magnitude as compared the single threaded software performance on the CPU. However,

as mentioned earlier, the time taken to design a IC can be prohibitive. FPGAs provide a

25

performance that is intermediate between that of custom ICs and single threaded CPUs.

Hardware-level parallelism allows some FPGA-based applications to operate 1 to 2 orders

of magnitude faster than an equivalent application running on a higher-end workstation.

More recently, high performance system designers have begun to explore the capabilities

of FPGAs [33]. Advances in FPGA tool flows, and the increasing FPGA speed and den-

sity characteristics (shown in Figure II.6) [34] have made FPGAs increasingly popular.

Compared to custom designed ICs, FPGA based designs yield lower performance, but the

reconfigurable property gives it an edge over custom designs, especially since custom ICs

incur significant NRE costs.

 0

 100

 200

 300

 400

 500

 600

 700

 800

1999 2000 2001 2002 2004 2007
0

10

20

30

40

L
o
g
ic

 E
le

m
e
n
ts

 (
K

)

M
e
m

m
o
ry

 B
it
s
 (

M
b
it
s
)

FPGA Growth Trend

Logic Elements (K)
Memory Bits (Mbits)

Fig. II.6. FPGA Growth Trend

When measured in terms of power efficiency, the advantages of an FPGA-based com-

puting strategy become even more apparent. Calculated as a function of millions of opera-

tions (MOPs) per watt, FPGAs have demonstrated greater than 1,000× power/performance

26

advantages over today’s most powerful processors [35]. For this reason, FPGA accelerators

are now being deployed for a wide variety of power-hungry computing applications.

The power of the GPGPU paradigm stems from the fact that GPUs, with their large

memories, large memory bandwidths, and high degrees of parallelism are readily available

as off-the-shelf devices, at very inexpensive prices. The theoretical performance of the

GPU [6] has grown from 50 Gflops for the NV40 GPU in 2004 to more than 900 Gflops

for GTX 280 GPU in 2008. This high computing power mainly arises due to a heavily

pipelined and highly parallel architecture, with extremely high memory bandwidths. GPU

memory bandwidths have grown from 42 GB/s for the ATI Radeon X1800XT to 141.7

GB/s for the NVIDIA GeForce GTX 280 GPU. In contrast, the theoretical performance

of a 3 GHz Pentium4 CPU is 12 Gflops, with a memory bandwidth of 8-10 GB/s to main

memory. The GPU IC is arguably one of the few VLSI platforms which has faithfully kept

up with Moore’s law in recent times. Recent CPU cores have 2-4 GHz core clocks, with

single and multi-threaded performance capabilities. The Intel QuickPath Interconnect (4.8

GT/s version) copy bandwidth (using triple-channel 1066 MHz DDR3) is 12.0 GB/s [36].

A 3.0 GHz Core 2 Quad system using dual-channel 1066 MHz DDR3 achieves 6.9 GB/s.

The level 2 and 3 caches have 10-40 cycle latencies. CPU cores today also support a limited

amount of SIMD parallelism, with SEE [37] instructions.

Another key difference between GPUs and more general purpose multi-core proces-

sors is hardware support for parallelism. GPUs have a hardware thread control unit that

manages the distribution and assignment of thread blocks to multiprocessors. There is

additional hardware support for synchronization within a thread block. Multi-core proces-

sors, on the other hand, depend on software and the OS to perform these tasks. However

the amount of power consumed by GPUs for executing only the accelerated portion of the

computation is typically more than twice than needed by the CPU with all its peripherals.

It can be argued that, since the execution is sped up, the power delay product (PDP) of a

27

GPU based implementation would potentially be lower. However, such a comparison is

application dependent, and thus cannot be generalized.

II-I. Cost of Hardware

The nonrecurring engineering (NRE) expense associated with custom IC design far exceeds

that of FPGA-based hardware solutions. The large investment in custom IC development

is easy to justify if the anticipated shipping volumes are large. However many designers

need custom hardware functionality for systems with low-to-medium shipping volumes.

The very nature of programmable silicon eliminates the cost for fabrication and long lead

times for chip assembly. Further, if system requirements change over time, the cost of

making incremental changes to FPGA designs are negligible when compared to the large

expense of redesigning custom ICs. The reconfigurability feature of FPGAs can add to the

cost saving, based on the application. GPU’s are the least expensive hardware platform

for the performance they can deliver. Also, the cost of the software tool-chain required

for programming GPUs is negligible compared to the EDA tool costs incurred by custom

design and FPGAs.

II-J. Floating Point Operations

In comparison to software based implementations, a higher numerical precision is a bigger

problem for FPGAs and custom ICs. In FPGAs, for instance, onchip programmable logic

resources are utilized to implement floating point functionality for higher precisions [38].

These implementations consume significant die-area and tend to require deep pipelining

before acceptable performance can be obtained. For example, hardware implementations

of double precision multipliers typically require around 20 pipeline stages, and the square

root operation requires 30-40 stages [39].

28

GPUs targeting scientific computations can handle IEEE double precision floating

point [40, 41] while providing peak performance as high as 900 GFlops. GPUs, unlike

FPGAs and custom ICs, provide native support for floating point operations.

II-K. Security and Real Time Applications

In industry practice, design details (including HDL code) are typically documented to make

reuse more convenient. At the same time, this makes IP piracy and infringement easier. It is

estimated that the annual revenue loss due to IP infringement in the IC industry is in excess

of $5 billion [42]. The goals of IP protection include: enabling IP providers to protect their

IPs against unauthorized use, protecting all types of design data used to produce and deliver

IPs, and detecting and tracing the use of IPs [42].

FPGAs, because of their re-programmability, are becoming very popular for creating

and exchanging VLSI IPs in the reuse-based design paradigm [43]. Existing watermarking

and fingerprinting techniques embed identification information into FPGA designs to de-

ter IP infringement. However, such methods incur timing and/or resource overheads, and

cause performance degradation. Custom ICs offer much better protection for intellectual

property [44].

CPU/GPU software IPs have higher IP protection risks. The emerging trend is that

most IP exchange and reuse will be in the form of soft IPs because of the design flexibility

they provide. The IP provider may also prefer to release soft IPs, and leave the customer-

dependent optimization process to the users [43]. From a security point of view, protecting

soft IPs is a much more challenging task than protecting hard IPs. Soft IPs are hard to trace

and therefore not preferred in highly secure application scenarios.

Compared to a CPU/GPU based implementation, FPGA and custom IC designs are

truly hard implementations. Software-based systems like CPUs and GPUs, on the other

29

hand, often involve several layers of abstraction to schedule tasks and share resources

among multiple processors or software threads. The driver layer controls hardware re-

sources and the operating system manages memory and processor utilization. For a given

processor core, only one instruction can execute at a time, and hence processor-based sys-

tems continually run the risk of time-critical tasks pre-empting one another. FPGAs and

custom ICs, which do not use operating systems, minimize these concerns with true parallel

execution and dedicated hardware. As a consequence, FPGA and custom IC implementa-

tions are more suitable for applications that demand hard real-time computation guarantees.

II-L. Applications

Custom ICs are a good match for space, military and medical compute intensive applica-

tions, where the footprint and weight constraints are tight. Due to their high performance,

several DSP based applications make use of custom designed ICs. A custom IC designer

can create highly efficient special functions such as arithmetic units, multi-port memories,

and a variety of non-volatile storage units. Due to their cost and high performance, custom

IC implementations are best suited for high-volume and high-performance applications.

Applications for FPGA are primarily hybrid software/hardware embedded applica-

tions including DSP, video processing, robotics, radar processing, secure communications,

and many others. These applications are often instances of implementing new and evolving

standards, where the cost of designing custom ICs cannot be justified. Further, the perfor-

mance obtained from high-end FPGAs are reasonable. In general, FPGA solutions are used

for low-to-medium volume applications that do not demand extreme high performance.

GPUs are an upcoming field, but have already been used for accelerating scientific

computations in fluid mechanics, image processing and financial applications among other

areas. The number of commercial products using GPUs are currently limited, but this might

30

change due to newer architectures and high level languages that make it easy to program

the powerful hardware.

II-M. Chapter Summary

In recent times, due to the power, memory and ILP walls, single threaded applications do

not see any significant gains in performance. Existing hardware based accelerators such as

custom designed ICs, reconfigurable hardware such as FPGAs, and streaming processors

such as GPUs, are being heavily investigated as potential solutions. In this chapter we

discussed these hardware platforms and pointed out several key differences among them.

In the next chapter we discuss the CUDA programming environment, used for inter-

facing with the GPUs. We describe the hardware, memory and programming models for

the GPU devices used in this dissertation. This discussion is intended to serve as back-

ground material for the reader, to ease the explanation of the details of the GPU based

implementations of several EDA algorithms described in this dissertation.

31

CHAPTER III

GPU ARCHITECTURE AND THE CUDA PROGRAMMING MODEL

III-A. Chapter Overview

In this chapter we discuss the programming environment and model for programming the

NVIDIA GeForce 280 GTX GPU, NVIDIA Quadro 5800 FX and NVIDIA GeForce 8800

GTS devices, which are the GPUs used in our implementations. We discuss the hardware

model, memory model and the programming model for these devices, in order to provide

background for the reader to understand the GPU platform better.

The rest of this chapter is organized as follows. We introduce the CUDA programming

environment in Section III-B. Sections III-C and III-D discuss the device hardware and

memory models. The programming model is discussed in Section III-E. Section III-F

summarizes the chapter.

III-B. Introduction

Early computing systems were designed such that the rendering of the computer display

was performed by the CPU itself. As displays became more complex, with higher reso-

lutions and color depths, graphics acclerator ICs were developed to handle the graphics

processing for computer displays. These ICs were initially quite primitive, with dedicated

hardwired units to perform the display rendering functionality. As more complex graphics

abilities were demanded by the growing gaming industry, the first graphics processing units

(GPUs) came into being, to replace the hardwired logic with a multitude of lightweight

processors, each of which performed display manipulation of the computer display. These

GPUs were natively designed as graphics accelerators for image manipulations, 3D ren-

dering operations, etc. These graphics acceleration tasks require that the same operations

32

are performed independently on different regions of the display. As a result, GPUs were

designed to operate in a SIMD fashion, which is a natural computational paradigm for

graphical display manipulation tasks.

Recently, GPUs are being actively exploited for general purpose scientific computa-

tions [4, 6, 5, 45]. The growth of the general purpose GPU (GPGPU) applications stems

from the fact that GPUs, with their large memories, large memory bandwidths, and high

degrees of parallelism are readily available as off-the-shelf devices, at very inexpensive

prices. The theoretical performance of the GPU [6] has grown from 50 Gflops for the NV40

GPU in 2004 to more than 900 Gflops for GTX 280 GPU in 2008. This high computing

power mainly arises due to a heavily pipelined and highly parallel architecture. The GPU

IC is arguably one of the few VLSI platforms which has faithfully kept up with Moore’s

law in recent times. Further, the development of open-source programming tools and lan-

guages for interfacing with the GPU platforms has further fueled the growth of GPGPU

applications.

GPU’s Memory GPU

Copy Result
Instruct the

Main Memory CPU

Data
Copy Processing

Processing

Process Kernel

Fig. III.1. CUDA for Interfacing with GPU Device

CUDA (Compute Unified Device Architecture), is an example of a new hardware and

software architecture for interfacing with (i.e. issuing and managing computations on) the

GPU. CUDA abstracts away the hardware details and does not require applications to be

mapped to traditional graphics APIs [23, 29]. CUDA was released by NVIDIA corporation

33

in early 2007. The GPU device interacts with the host through CUDA as shown in the

Figure III.1.

III-C. Hardware Model

GPU Device

Multiprocessor 2

Multiprocessor 1

Shared Memory

RegistersRegisters

Processor 1 Processor 2 Processor 8

Instruction

Unit

Constant
Cache

Texture
Cache

Registers

Device Memory

Multiprocessor 30

Fig. III.2. Hardware Model of the NVIDIA GeForce GTX 280

As shown in Figure III.2, the GeForce 280 GTX architecture has 30 multiprocessors

per chip and 8 processors (ALUs) per multiprocessor. The Quadro 5800 FX has the same

hardware model as the 280 GTX device. The 8800 GTS, on the other hand, has 16 multi-

processors per chip. During any clock cycle, all the processors of a multiprocessor execute

the same instruction, but may operate on different data. There is no mechanism to com-

municate between the different multiprocessors. In other words, no native synchronization

primitives exist to enable communication between multiprocessors. We next describe the

34

memory organization of the device.

III-D. Memory Model

Block (1,0)

Registers Registers

Thread (0,0)

Local
Memory

Local
Memory

Shared Memory

Grid

Block (0,0)

Registers Registers

Thread (0,0) Thread (1,0)

Local
Memory

Local
Memory

Memory

Memory

Memory

Global

Constant

Texture

Shared Memory

Thread (1,0)

Fig. III.3. Memory Model of the NVIDIA GeForce GTX 280

The memory model of NVIDIA GTX 280 is shown in Figure III.3. Each multiproces-

sor has on-chip memory of the following four types [23, 29]:

• One set of local 32-bit registers per processor. The total number of registers per

multiprocessor in the GTX 280 and the Quadro 5800 is 16384, and for the 8800 GTS

it is 8192.

• A parallel data cache or shared memory that is shared by all the processors of a

35

multiprocessor. The size of this shared memory per multiprocessor is 16 KB and it

is organized into 16 banks.

• A read-only constant cache that is shared by all the processors in a multiprocessor,

which speeds up reads from the constant memory space. It is implemented as a read-

only region of device memory. The amount of constant memory available is 64 KB,

with a cache working set of 8 KB per multiprocessor.

• A read-only texture cache that is shared by all the processors in a multiprocessor,

which speeds up reads from the texture memory space. It is implemented as a read-

only region of the device memory.

The local and global memory spaces are implemented as read-write regions of the

device memory and are not cached. These memories are optimized for different uses. The

local memory of a processor is used for storing data structures declared in the instructions

executed on that processor.

The pool of shared memory within each multiprocessor is accessible to all its pro-

cessors. Each block of shared memory represents 16 banks of single-ported SRAM. Each

bank has 1KB of storage and a bandwidth of 32 bits per clock cycle. Furthermore, since

there are 30 multiprocessors on a GeForce 280 GTX or Quadro 5800 (GTS 8800), this

results in a total storage of 480KB (256KB) per multiprocessor. For all practical purposes,

this memory can be seen as a logical and highly flexible extension of the local memory.

However, if two or more access requests are made to the same bank, a bank conflict results.

In this case, the conflict is resolved by granting accesses in a serial fashion. Thus, shared

memory must be accessed in a fashion such that bank conflicts are minimized.

Global memory is read/write memory that is not cached. A single floating point value

read from (or written to) global memory can take 400 to 600 clock cycles. Much of this

global memory latency can be hidden if there are sufficient arithmetic instructions that

36

can be issued while waiting for the global memory access to complete. Since the global

memory is not cached, access patterns can dramatically change the amount of time spent in

waiting for global memory accesses. Thus, coalesced accesses of 32-bit, 64-bit, or 128-bit

quantities should be performed in order to increase the throughput and to maximize the bus

bandwidth utilization.

The texture cache is optimized for spatial locality. In other words, if instructions that

are executed in parallel read texture addresses that are close together, then the texture cache

can be optimally utilized. A texture fetch costs one memory read from device memory only

on a cache miss, otherwise it just costs one read from the texture cache. Device memory

reads through texture fetching (provided in CUDA for accessing texture memory) present

several benefits over reads from global or constant memory.

• Texture fetching is cached, potentially exhibiting higher bandwidth if there is locality

in the (texture) fetches.

• Texture fetching is not subject to the constraints on memory access patterns that

global or constant memory reads must respect in order to get good performance.

• The latency of addressing calculations (in texture fetching) is better hidden, possibly

improving performance for applications that perform random accesses to the data.

• In texture fetching, packed data may be broadcast to separate variables in a single

operation.

Constant memory fetches costs one memory read from device memory only on a cache

miss, otherwise it just costs one read from the constant cache. The memory bandwidth is

best utilized when all instructions that are executed in parallel access the same address of

the constant memory. We next discuss the GPU programming and interfacing tool.

37

III-E. Programming Model

Host

Kernel 1

Kernel 2

Grid 1

Device

Block Block Block

BlockBlockBlock

(0,0) (1,0) (2,0)

(2,1)(1,1)(0,1)

Grid 2

Block (1,1)

Thread Thread Thread Thread Thread

ThreadThreadThreadThreadThread

Thread Thread Thread Thread Thread

(1,0) (2,0) (3,0) (4,0)

(4,1)(3,1)(2,1)(1,1)(0,1)

(0,2) (1,2) (2,2) (3,2) (4,2)

(0,0)

Fig. III.4. Programming Model of CUDA

CUDA’s programming model is summarized in Figure III.4. When programmed through

CUDA, the GPU is viewed as a compute device capable of executing a large number of

threads in parallel. Threads are the atomic units of parallel computation, and the code they

execute is called a kernel. The GPU device operates as a coprocessor to the main CPU, or

host. Data-parallel, compute-intensive portions of applications running on the host can be

off-loaded onto the GPU device. Such a portion is compiled into the instruction set of the

GPU device and the resulting program, called a kernel, is downloaded to the GPU device.

A thread block (equivalently referred to as a block) is a batch of threads that can coop-

erate together by efficiently sharing data through some fast shared memory and synchronize

38

their execution to coordinate memory accesses. Users can specify synchronization points in

the kernel, where threads in a block are suspended until they all reach the synchronization

point. Threads are grouped in warps, which are further grouped in blocks. Threads have

identifying numbers (threadIDs) which can be viewed as a one, two or three dimensional

value. All the warps composing a block are guaranteed to run on the same multiprocessor,

and can thus take advantage of shared memory and local synchronization. Each warp con-

tains the same number of threads, called the warp size, and is executed in a SIMD fashion;

a thread scheduler periodically switches from one warp to another to maximize the use

of the multiprocessor’s computational resources. In case of the NVIDIA GPUs discussed

in this dissertation, the warp size is 32. Thread blocks have restrictions on the maximum

number of threads in them. The maximum number of threads grouped in a thread block,

for all GPUs in this dissertation, is 512. The number of threads in a thread block, dimblock,

is decided by the programmer, who must ensure that i) the maximum number of threads

allowed in the block is 512 ii) the dimblock a multiple of the warp size.

A thread block can be executed by a single multiprocessor. However, blocks of same

dimensionality (i.e. orientation of the threads in them) and size (i.e number of threads in

them) that execute the same kernel can be batched together into a grid of blocks. The num-

ber of blocks in a grid is referred to as dimgrid. A grid of thread blocks is executed on the

device by executing one or more blocks on each multiprocessor using time slicing. How-

ever, at a given time, at most 1024 (768) threads can be active in a single multiprocessor

on the 280 GTX or the Quadro 5800 (8800 GTS) GPU devices. When deciding the dim-

block and dimgrid values, the restriction on the number of registers being used in a single

multiprocessor has to be carefully monitored. If this limit is exceeded, the kernel will fail

to launch.

In NVIDIA’s current GPU devices, the synchronization paradigm is local to a thread

block, and is very efficient. However, threads belonging to different thread blocks of even

39

the same grid cannot synchronize.

CUDA has several advantages over traditional GPGPU using graphics APIs. These

are as follows:

• CUDA allows code to read from arbitrary addresses in memory - i.e. scattered reads

are allowed.

• CUDA exposes a fast shared memory region (16KB in size) that can be shared

amongst threads. This can be used as a user-managed cache, enabling higher band-

width than is possible using texture lookups.

• CUDA allows faster downloads and readbacks to and from the GPU

• CUDA supports integer and bitwise operations completely, including integer texture

lookups.

The limitations of CUDA are as follows:

• CUDA uses a recursion-free, function-pointer-free subset of the C language, plus

some simple extensions. However, a single process must run spread across multiple

disjoint memory spaces, unlike other C language runtime environments.

• The double precision support has some deviations from the IEEE 754 standard. For

example, only two IEEE rounding modes are supported (chop and round-to-nearest

even). Also, the precision of division/square root is slightly lower than IEEE single

precision.

• CUDA threads should be running in groups of at least 32 for best performance, with

the total number of threads numbering in the thousands. If-else branches in the pro-

gram code do not impact performance significantly, provided that each of the 32

threads takes the same execution path.

40

• CUDA-enabled GPUs are only available from NVIDIA (GeForce 8 series and above,

Quadro and Tesla).

III-F. Chapter Summary

In this chapter we discussed the hardware and memory models for the NVIDIA GPU de-

vices used for experiments in this dissertation. These devices are the GeForce 280 GTX,

the Quadro 5800 FX and the GeForce 8800 GTS. This discussion was provided to help

the reader understand the details of our GPU based algorithms described in the later chap-

ters. We also described the CUDA programming model in detail, listing its advantages and

disadvantages as well.

41

CHAPTER IV

ACCELERATING BOOLEAN SATISFIABILITY ON A CUSTOM IC

IV-A. Chapter Overview

Boolean Satisfiability (SAT) is a core NP-complete problem. Several heuristic software and

hardware approaches have been proposed to solve this problem. In this work, we present

a hardware solution to the SAT problem. We propose a custom IC to implement our ap-

proach, in which the traversal of the implication graph as well as conflict clause generation

are performed in hardware, in parallel. Further, extracting the minimum unsatisfiable core

(i.e. the formula consisting of the smallest set of clauses of the initial formula which is

unsatisfiable) is also a computationally hard problem. Our proposed hardware approach,

in addition to solving SAT, also efficiently extracts the minimum unsatisfiable core for

any unsatisfiable formula. In our approach, clause literals are stored in specially designed

clause cells. Clauses are implemented in banks, in a manner that allows clauses of variable

width to be accommodated in these banks. To maximize the utilization of these banks,

we initially partition the SAT problem. Our solution has significantly larger capacity than

existing hardware SAT solvers, and is scalable in the sense that several ICs can be used

to simultaneously operate on the same SAT instance. Our area, power and performance

figures are derived from layout and SPICE (using extracted parasitics) estimates. The ap-

proach presented in this work has been functionally validated in Verilog. Experimental

results demonstrate that our approach can accommodate instances with approximately 63K

clauses on a single IC of size 1.5cm×1.5cm. Our hardware based SAT solving approach

results in over 3 orders of magnitude speed improvement over BCP based software SAT

approaches (1-2 orders of magnitude over other hardware SAT approaches). The capacity

of our approach is significantly higher than most hardware based approaches. Further, the

42

worst case power consumption was found to be ≤ 1mW for our implementation.

The rest of this chapter is organized as follows. The motivation for this work is de-

scribed in Section IV-B. Related previous approaches are discussed in Section IV-C. Sec-

tion IV-D describes the hardware architecture employed in our approach. It includes a

discussion on the generation of implications and conflicts (which is done in parallel), along

with the hardware partitioning utilized, the communication protocol that banks implement,

and the generation of conflict induced clauses. An example of conflict clause generation is

described in Section IV-E. Section IV-F describes the up-front clause partitioning method-

ology, which targets maximum utilization of the hardware. Section IV-G describes our

approach to finding the unsatisfiable core. The experimental results we have obtained are

reported in Section IV-H. Section IV-I summarizes the chapter with some directions for

future work in this area.

IV-B. Introduction

Boolean Satisfiability (SAT) [46] is a classic NP-complete problem, which has been widely

studied in the past. Given a set V of variables, and a collection C of Conjunctive Normal

Form (CNF) clauses over V , the SAT problem consists of determining if there is a satisfy-

ing truth assignment for C, and reporting it. If no such assignment exists, C is called an

unsatisfiable instance. A subset of C, such that this subset is also an unsatisfiable instance,

is called an unsatisfiable core. Formally, given a formula ψ, the formula ψC is an unsatisfi-

able core for ψ iff ψC is unsatisfiable and ψC ⊆ ψ. Computing or extracting the minimum

unsatisfiable core of a given unsatisfiable instance, is also reported to be a computationally

hard problem [47, 48].

Given the broad applicability of the SAT and the unsatisfiable core extraction problems

to several diverse application domains such as logic synthesis, circuit testing, verification,

43

pattern recognition and others [7], there has been much effort devoted to devising efficient

heuristics to solve them. Some of the more well-known software approaches for SAT

include [49, 50, 51] and [52].

There has been much interest in the hardware implementation of SAT solvers as well.

An excellent survey of existing hardware approaches to solve the SAT problem is found

in [53]. Although several hardware implementations of SAT solvers have been proposed,

there is, to the best of our knowledge, no hardware approach for extracting the unsatisfiable

core. We, therefore claim this work to be the first to present a hardware based solution for

minimum unsatisfiable core extraction.

Numerous applications can benefit from the ability to speedily obtain a small unsat-

isfiable core from an unsatisfiable Boolean formula. Applications like planning an assign-

ment [54], can be cast as a SAT instance (equivalently referred to as a CNF instance in

the sequel). The satisfiability of this instance implies that there exists a viable scheduling

solution. On the other hand, if a planning is proven infeasible due to the SAT instance be-

ing unsatisfiable, a small unsatisfiable core can help in locating the reason for infeasibility.

Similarly, an unsatisfiable instance in FPGA routing [55] implies that the channel is un-

routable. A smaller unsatisfiable core in this case would be a geometrically smaller region,

with potentially fewer routes, such that the routing is infeasible in this region. Quickly

identifying the reason for unroutability is of importance in routing. Further, SAT based

Unbounded Model Checking [56] also requires the efficient extraction of small unsatisfi-

able cores. Most approaches for extracting the unsatisfiable core are broadly based on the

conflict analysis procedure described in [49].

The key motivation for using a hardware approach for SAT or unsatisfiable core ex-

traction is speed. Therefore, in the bigger picture, the context in which our work would find

its usefulness is one in which SAT checking or unsatisfiable core extraction is to be sped up,

compared to the best-in-class software or hardware approaches. Our hardware based SAT

44

solver and unsatisfiable core extractor would be well suited for applications wherein the

same instance or a slight modification of the instance is solved repeatedly. This property

is found in applications like routing, planning or SAT based Unbounded Model Checking,

logic synthesis, VLSI testing, verification etc. The cost of initial CNF partitioning and of

loading the CNF instance onto the hardware is incurred only once, and the speedup ob-

tained with repeated SAT solving would amply recover this cost. Even a modest speed-up

of such SAT based algorithms is of great interest to the VLSI design automation commu-

nity, since the fraction of the time spent performing SAT checks in these algorithms is very

high.

A key requirement for any hardware approach for Boolean Satisfiability or unsatis-

fiable core extraction is capacity and scalability. By the capacity of a hardware SAT ap-

proach, we mean the largest size of a SAT instance (in terms of number of clauses) that

can fit in the hardware. Our proposed solution has significantly larger capacity than ex-

isting hardware based solutions. In our approach, a single IC of size 1.5cm x 1.5cm can

accommodate CNF instances containing∼63000 clauses (along with the logic required for

solving the instance). This is significantly larger than the capacity of previous hardware

approaches for Boolean satisfiability. By the scalability of a hardware SAT approach, we

mean that multiple hardware SAT units can be easily made to operate in tandem, to tackle

larger SAT instances.

In this work, we propose an approach that utilizes a custom IC to accelerate the SAT

solution and the unsatisfiable core extraction processes, with the goal of speedily solving

large instances in a scalable fashion. The hardware implements a variant of GRASP [49]

(i.e. a slightly modified strategy of conflict driven learning and non-chronological back-

tracking compared to [49]) . For the extraction of the unsatisfiable core, the hardware

approach is augmented to implement the approach described in [48]. In this IC, literals and

their complement are implemented as custom cells. Clauses of variable width are imple-

45

mented in banks. Any row of a bank can potentially accommodate more than one clause.

The SAT problem is mapped to this architecture in an initial partitioning step, in a manner

that maximizes hardware utilization. Experimental results are obtained using area, power

and performance figures derived from layout and SPICE (using extracted layout-level par-

asitics) estimates. Our hardware approach performs, in parallel, both the tasks of implicit

traversal of the implication graph, as well as conflict clause generation. The contribution

of this work is to come up with a high capacity, fast, scalable hardware SAT approach. We

do not claim to propose any new SAT solution or unsatisfiable core extraction heuristics

in this work. Note that although we used a variant of the BCP engine of GRASP [49] in

our hardware SAT solver, the hardware approach can be modified to implement other BCP

engines as well. The BCP logic of any BCP based SAT solver can be ported to HDL and

directly synthesized in our approach.

IV-C. Previous Work

There have been several hardware based SAT solvers reported in the literature, which are

summarized and compared in [53]. Among these approaches, [57, 58] utilize configurable

processors to accelerate SAT, demonstrating a maximum speedup of 60× using a board

with 121 configurable processors. The largest example mapped to this structure had 24,700

clauses. In [59] and [60], the authors describe an FPGA-based SAT accelerator. The

speedup obtained was 30×, with 64 FPGA boards required to handle an example contain-

ing 1280 clauses. The largest example that the approach of [61] handles has about 1300

clauses, with an average speedup of 10×. This work states that the hardware approaches

reported in [62], [63] and [64] do not handle large SAT problems.

In [65] and [66], the authors present a software plus configurable hardware (config-

ware) based approach to accelerate SAT. Software is used to do conflict diagnosis, back-

46

track and clause management. Configware is used to do implication computation and next

decision variable assignment. The speedup over GRASP [49] is between 1-2 orders of

magnitude for the accelerated fraction of the SAT problem. The largest problem tack-

led has 214,304 clauses [66] (after conversion to 3-SAT, which can double the number of

clauses [65]). In contrast, our approach performs all tasks in hardware, with a correspond-

ing speedup of 1-2 orders of magnitude over the existing hardware approaches, as shown

in the sequel. In most of the above approaches, the capacity of the proposed approaches

is clearly limited, and scalability is a significant problem. The approach in this work is

inspired by the requirement of handling significantly larger problems on a single die, and

also with the need to allow the design to scale more elegantly. By utilizing a custom IC

approach, a single die can accommodate significantly larger SAT instances than most of

what the above approaches report.

The previous approaches for the extraction of an unsatisfiable core have been software

based techniques. The complexity of this problem has been well studied and algorithms

have been reported in [67, 68, 69] and [47]. Some of the proposed solutions with ex-

perimental data to support their algorithms include [70], in which an adaptive search is

conducted, guided by clauses’ hardness. [71, 72] and [73] report resolution based tech-

niques for generating the empty clause. The unsatisfiable core reported in these cases is the

set of clauses involved in the derivation of the empty clause. The minimum unsatisfiability

prover from [74] improves upon the existing approaches by removing unnecessary clauses

from unsatisfiable sub-formulas to make them minimal.

The approach in [48] attempts to find the minimum unsatisfiable core for a given for-

mula. The augmentation of our hardware architecture for extracting the unsatisfiable core

is in accordance with this approach. Broadly speaking, [48] employs a SAT solver to search

for the minimum unsatisfiable core. This allows a natural match to our hardware based SAT

engine. Resolution based techniques for unsatisfiable core extraction are not a natural fit to

47

our approach, since resolution is inherently a serial process.

Extended abstracts of the work described in this chapter can be found in [75, 76].

IV-D. Hardware Architecture

We next discuss the hardware architecture of our approach, starting with an overview.

IV-D.1. Abstract Overview

Figure IV.1 shows an abstract view of our approach, to illustrate the main concept, and

to explain how Boolean Constraint Propagation (BCP) [49] is carried out. Note that the

physical implementation we use is different from this abstracted view, as subsequent sec-

tions will describe. In Figure IV.1, the clause bank stores all clauses (a maximum of n

clauses on m variables). In the hardware there are n ·m clause cells, each of which stores

a single literal of the SAT instance. The bank architecture is capable of implicitly storing

the implication graph and consequently generating implications and conflicts. A variable is

assigned by the decision engine and the assignment is communicated to the clause bank via

the base cells. The clause bank, in turn, generates implications and possible conflicts due

to this assignment. This is done in parallel, at hardware speeds. The base cells sense these

implications and conflicts, and in turn communicate them back to the decision engine. The

decision engine accordingly assigns the next variable or, in case of a conflict, generates a

conflict induced clause and backtracks non-chronologically [49].

As seen in Figure IV.1, a column in the bank corresponds to a variable, a row corre-

sponds to a clause and a clause cell corresponds to a literal (which can be positive, negative

or absent) in the clause. The clause cell is central to our idea and provides the parallelism

obtainable by solving the satisfiability problem in hardware.

The overall flow for solving any SAT instance S consists of first loading S into the

48

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

1

2
.
.

.

.

lit, lit_bar, var_implied

Clause cell

Clauses

Variables

Clause bank

Decision engine

n

Base cell

j

 1 2 i m

Fig. IV.1. Abstracted View of the Proposed Idea

clause bank. The hardware then solves S, after which a new SAT instance may be loaded

and solved.

IV-D.2. Hardware Overview

The actual hardware architecture of our SAT IC differs from the abstracted view of the

previous section. The differences are not functional, rather they are induced by circuit

partitioning and speed considerations. The different components of the hardware SAT IC

are briefly described next.

The hardware details are presented in the following order. The finite state machine

for the decision engine is explained in Section IV-D.3.a. The core circuit structure of our

implementation, the clause cell, is capable of computing the implication graph implicitly,

and also helps in generating implications and conflicts, all in parallel. This is explained in

Section IV-D.3.b. The implications and conflicts are sensed and forwarded to the decision

engine by the base cells. The base cell and its interaction with the decision engine are

explained in Section IV-D.3.c. In practice, we do not have a single clause bank as shown

in Figure IV.1. Rather, clauses are arranged in several banks, with a limited number of

rows (clauses) and columns (variables). Each bank has several strips, which partition the

49

columns of the bank into smaller groups. Between strips, we have special cells which allow

us to implement arbitrarily long rows (clauses). The bank and strip structures are explained

in Section IV-D.3.d. Because we partition the hardware into many banks, it is possible that

a particular variable occurs in several banks. Therefore, implications or assignments on

such variables, generated in a bank bi, must be communicated to other banks b j where the

same variable occurs. This communication is performed by a hierarchical arrangement of

communication units, arranged in a tree fashion. The details of this inter-bank communica-

tion are provided in Section IV-D.3.e. Figure IV.2 describes the banks, and the inter-bank

communication units. It also shows the centrally located BCP engine, as well as the banks

for storing conflict induced clauses.

����
����
����
����

����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

�������
�������
�������
�������

�������
�������
�������
�������

���������
���������
���������
���������

���������
���������
���������
���������

����
����
����
����

����
����
����
����

����
����
����

����
����
����

���������
���������
���������

���������
���������
���������

��������������
��������������
��������������

��������������
��������������
��������������

������
������
������
������

Clause banks

Banks for conflict

Decision engine and

induced clauses

Primary communication

Secondary communication

unit (level 0)

units (level 1)

Fig. IV.2. Generic Floorplan

IV-D.3. Hardware Details

IV-D.3.a. Decision Engine

Figure IV.3 shows the state machine of the decision engine. To begin with, the CNF in-

stance is loaded onto the hardware. Our hardware uses dynamic circuits so all signals are

initialized into their precharged or predischarged states (in the refresh state). The decision

engine assigns the variables in the order of their identification tag, which is a numerical

50

ID for each variable, statically assigned such that most commonly occurring variables are

assigned a lower tag. The decision engine assigns a variable (in assign next variable state)

and this assignment is forwarded to the banks via the base cells. The decision engine then

waits for the banks to compute all the implications during wait for implications state. If no

conflict is generated due to the assignment, the decision engine assigns the next variable.

If there is a conflict, all the variables participating in the conflict clause are communi-

cated by the banks to the decision engine via the base cell. Based on this information,

during the analyze conflict state, the base cell generates the conflict induced clause and

then stores it in the clause bank. Also it non-chronologically backtracks according to the

GRASP [49] algorithm. Each variable in a bank retains the decision level of the current

assignment/implication. When the backtrack level is lower than this stored decision level,

then the stored decision level is cleared before further action by the decision engine during

the execute conflict state. After a conflict is analyzed, the banks are again refreshed (in the

precharge state) and the backtracked decision is applied to the banks. If all the variables

have either been assigned or implied with no conflicts, (this is detected from the assignment

on the last level) the CNF instance is reported to be ’Satisfiable’ (in the satisfied state of the

decision engine finite state machine). On the other hand, if the decision engine has already

backtracked on the variable at the 0th level and a conflict still exists, the CNF instance is

reported to be ’Unsatisfiable’ (in the unsatisfiable state).

IV-D.3.b. Clause Cell

Figure IV.4 shows the signal interface of a clause cell. Figure IV.5 provides details of the

clause cell structure. Each column (variable) in the bank has three signals – lit, lit bar

and var implied, which are used to communicate assignments, implications and conflicts

on that variable. Each row (clause) in the bank has a signal clausesat bar to indicate if

the clause is satisfied. The 2-bit free lit cnt signals serve as an indicator of number of

51

analyze_conflict

satisfied

assign_next_variable

wait_for_implications

unsatisfiable

execute_conflict

precharge

refresh

idle

conflict

var_implied

0th level

last level

no_conflict

implication

Fig. IV.3. State Diagram of the Decision Engine

free literals in the clause. If the literal in the clause cell is free (indicated by iamfree)

then out free lit cnt is one more than in free lit cnt. The imp drv and cclause drv signals

facilitate generation of implications and conflict clauses respectively. Also, each row has a

termination cell at its end (which we assume is at the right side of the row) which drives

the imp drv and cclause drv signals. We next describe the encoding of these signals and

how they are employed to perform BCP.

Note that the signals lit, lit bar, var implied and cclause drv are predischarged and

clausesat bar is a precharged signal. Also, each clause cell has two single bit registers

namely reg and reg bar to store the literal of the clause. The data in these registers can be

driven in or driven out on the lit and lit bar signals.

A variable is said to participate in a clause if it appears as a positive or negative literal

in the clause. The encoding of the reg and reg bar bits is as shown in Table IV.1. The

iamfree signal for a variable indicates that the variable has not been assigned a value yet,

nor has it been implied.

52

lit var_implied

wr

lit_bar

precharge

in_free_lit_cnt
out_free_lit_cnt

imp_drv

cclause_drv

clausesat_bar

Fig. IV.4. Signal Interface of the Clause Cell

Table IV.1. Encoding of {reg,reg bar} Bits

Encoding Meaning

00 variable does not participate in clause.

10 variable participates as a positive literal.

01 variable participates as a negative literal.

11 Illegal.

The assignments and failure-driven assertions [49] are driven on lit, lit bar and

var implied signals by the decision engine whereas implications are driven by the clause

cells. Communication in both directions (i.e. from clause cell to the decision engine and

vice-versa) is performed via the base cells using the above signals. There exists a base cell

for each variable. Table IV.2 lists the encoding of the lit, lit bar and var implied signals.

If a variable Vi participates in clause C j and no value has been assigned or implied on

the lit and lit bar signals for Vi, then Vi is said to contribute a free literal to clause C j. This

is indicated by the assertion of the signal iamfree for the (j, i)th clause cell. Also, a clause

is satisfied when variable Vi participates in clause C j and the value on the lit and lit bar

signals for Vi matches the register bits in clause cell c ji. In such a case, the precharged

signal clausesat bar for C j is pulled down by c ji.

If clause C j has only one free literal and C j is unsatisfied, then C j is called a unit

53

QDQD

Participate

iamfree

reg_bar

reg

precharge

imp_drv

iamfree

imply

Vcc

cclause_drv

drv_data

lit lit_bar var_implied

!imply

Vcc
VccVcc

reg

wrwr reg_bar

in_free_lit_cnt[1]

out_free_lit_cnt[0]

out_free_lit_cnt[1]

in
_
fr

ee
_
li

t_
cn

t[
0
]

clausesat_bar

reg

drv_data drv_data

reg_bar

iamfree

lit

lit_b

!participate

cclause_drv

imp_drv

var_implied

lit_bar

lit

Fig. IV.5. Schematic of the Clause Cell

clause [49]. When C j becomes a unit clause with c ji as the only free literal, its termination

cell senses this condition by monitoring the value of free lit cnt and testing if its value is

1. If free lit cnt is found to be 1, the termination cell asserts the imp drv signal. When c ji

(which is the free literal cell) senses the assertion of imp drv, then it drives out its reg and

reg bar values on the lit and lit bar wires and also asserts its var implied signal, indicating

an implication on variable Vi.

A conflict is indicated by the assertion of the cclause drv signal. It can be asserted

54

Table IV.2. Encoding of {lit,lit bar} and var implied Signals

Encoding Meaning

00 0 Variable is neither assigned nor implied

01 0 Value 0 is assigned to the variable

10 0 Value 1 is assigned to the variable

01 1 Value 0 is implied on the variable

10 1 Value 1 is implied on the variable

11 1 0 as well as 1 implied i.e. conflict

11 0 Variable participates in conflict induced

clause

00 1 Illegal

by the termination cell or a clause cell. The termination cell asserts cclause drv when

free lit cnt indicates that there is no free literal in the clause and the clause is unsatisfied

(indicated by clausesat bar staying precharged). A participating clause cell c ji asserts

cclause drv for clause C j when it detects a conflict on variable Vi, and senses imp drv.

When cclause drv is asserted for clause C j, all the clause cells in C j drive out their re-

spective reg and reg bar values on the respective lit and lit bar wires. In other words the

drv data signal for the (j, i)th clause cell is asserted (or reg and reg bar are driven out on

lit and lit bar) when either of (i) cclause drv is asserted or (ii) imp drv is asserted, and

the current clause cell has its iamfree signal asserted. Thus, if two clauses cause different

implications on a variable, both clauses will drive out all their literals (which will both be

high, since lit and lit bar are predischarged signals). This indicates a conflict to the de-

cision engine, which monitors the state of lit, lit bar and var implied for each variable.

This can trigger a chain of cclause drv assertions leading to back-tracing of the implica-

tion graph in parallel, which causes all the variables taking part in the conflict clause to be

identified.

Figure IV.6 shows the layout view of our clause cell. The layout, generated in a full-

custom manner, had a size of 12µm by 9µm, and was implemented in a 0.1µm technology.

55

Fig. IV.6. Layout of the Clause Cell

IV-D.3.c. Base Cell

var_impliedlit_barlit

curr_lvl

assign_val

imply_val
new_impli

bck_lvl

clk

clr

identify_cclause

Fig. IV.7. Signal Interface of the Base Cell

There is one base cell for each variable in a bank. The base cell performs several func-

tions. It stores information about its variable (its identification tag, value, decision level

and assigned/implied state). It also detects an implication on the variable, participates in

generating the conflict induced clause, and helps in performing non-chronological back-

track. These aspects of the base cell functionality are discussed next, after an explanation

of its signal interface.

56

• Signal Interface

Figure IV.7 shows the signal interface of the base cell. The signals lit, lit bar and

var implied in the base cell are bidirectional and are the means of communication

between the decision engine and the clause bank. This communication is directed by

the base cell. The signal curr lvl stores the value of the current decision level. The

base cell of each variable keeps track of any decision or implication on its variable

through the signals assign val and imply val respectively. The signal identify cclause

is used during conflict analysis as described later. The bck lvl signal indicates the

level that the engine backtracks to, in case of a conflict. The new impli signal is

driven when an implication is detected.

• Detecting Implications

Figure IV.8 shows the circuitry in the base cell to generate the new impli signal,

which is high for one clock cycle when an implication occurs (this constraint is re-

quired for the decision engine to remain in the state wait for implications while there

are any new implications (indicated by new impli)). This is done as follows. Initially

both the flip-flop outputs are low. When the var implied signal is high during the

positive edge of a clock pulse, the flip-flop labeled A has its output driven high. This

causes the output of the AND gate feeding the wired-OR to be driven high. In the

next clock pulse, the flip-flop labeled B has its output driven high. This signal pulls

the output of the AND gate (feeding the wired-OR) low. Thus, due to a var implied

signal, the new impli is high for exactly one clock pulse. The flip-flops are cleared

using the clr signal which is controlled by the decision engine. The clr is asserted

during the refresh state for all base cells, and during the execute conflict state (for

base cells having a decision level higher than the current backtrack level bck lvl).

57

clr

var_implied

clr

new_impli

clk

A B

Q

Q

D

CK

Q

Q

D

CK

Fig. IV.8. Indicating a New Implication

• Conflict Clause Generation

The base cell also has the logic to identify a conflict clause literal and appropriately

communicate it to the clause banks (for the purpose of creating a new conflict clause).

During the analyze conflict state, the decision engine sets the identify cclause signal

high. The base cell then records the current values of lit, lit bar and var implied.

If the tuple is equal to 110, the base cell drives the complement of this variable to

the clause bank and asserts the clause write signal (wr) for the next available clause.

This ensures that the conflict clause is written into the clause bank. Thus, any variable

participating in the current conflict and having its lit, lit bar and var implied as 110

is recorded and hence, the conflict induced clause is generated.

As the conflict induced clauses are generated dynamically, the width of the conflict

clause banks can not be fixed while programming the CNF instance in the hardware.

Therefore, the width of conflict induced clause banks is kept equal to the number of

variables in the given CNF instance. The decision engine can still pack more than

one conflict induced clause in one row of the conflict clause banks. To be able to

use the space in the conflict induced clause banks effectively, we propose to store

only the clauses having fewer literals than a pre-determined limit, updated in a first-

58

in-first-out manner (such that old clauses are replaced by newly generated clauses).

Further, we can utilize the clause banks for regular or conflict clauses, allowing our

approach to devote a variable number of banks for conflict clauses, depending on the

SAT instance.

• Non-chronological Backtrack

The decision level to which the SAT solver backtracks, in case of a conflict, is deter-

mined by the base cell. The schematic for this logic is described next. Figure IV.9

shows the circuitry in the base cell to determine the backtrack level [49]. The signal

my lvl is the decision level associated with the variable. The signal bck lvl (back-

track level) is a wired-OR signal. The variable which has the highest decision level

among all the variables participating in a conflict sets the value of bck lvl to its

my lvl. This is done as follows. Let the set of variables participating in the con-

flict be called C. Let vmax be the variable with the highest decision level among all

variables v∈C. Each bit of every variable v’s decision level is XNORed with the cor-

responding bit of the current value of bck lvl. If the most significant bits my lvl[k]

and bck lvl[k] are equal (which makes the output of the corresponding XNOR high)

then the output of the XNOR of the next most significant bits are checked and so on.

If for a certain bit i, my lvl[i] is low and bck lvl[i] is high, then the value of bck lvl is

higher than this variable’s my lvl. The output of the XNOR of the rest of the lesser

significant bits (j < i) for this variable are ignored. This is done by ANDing the

output of the ith bit’s XNOR with the my lvl[i− 1] bit, to get a ’0’ result which is

wire-ORed into bck lvl[i− 1]. This in turn gets trickled down to the my lvl of the

least significant bit. On the other hand, in case my lvl[i] is high and bck lvl[i] is low,

then the AND gate feeding the wired-OR for the ith bit, would drive a high value to

the wired-OR and hence update bck lvl[i] to high. The above continues until all the

59

bits of bck lvl are equal to the corresponding bits of vmax’s decision level.

bck_lvl[k]

bck_lvl[k−1]

my_lvl[k]

bck_lvl[k]

bck_lvl[2]

my_lvl[k−1]

bck_lvl[k−1]

bck_lvl[1]my_lvl[1]

bck_lvl[2]

my_lvl[2]

Fig. IV.9. Computing Backtrack Level

Our hardware SAT solver, consisting of clause banks, clause cells, base cells, decision

engine, conflict generation, BCP, and non-chronological backtracking, has been imple-

mented in Verilog, and has been simulated and verified for correctness.

IV-D.3.d. Partitioning the Hardware

In a typical CNF instance, a very small subset of variables participate in a single clause.

Thus, putting all the clauses in one monolithic bank, as shown in the abstracted view of

60

the hardware (Figure IV.1) results in a lot of non-participating clause cells. For the DI-

MACS [77] examples, on average, more than 99% of the clause cells do not participate

in the clauses if we arrange all the clauses in one bank. Therefore we partition the given

CNF instance into disjoint subsets of clauses and put each subset in a separate clause bank.

Though a clause is fully contained in one bank, note that a variable may appear in more

than one banks.

�������
�������
�������

�������
�������
�������

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�������
�������
�������
�������

�������
�������
�������
�������

Columns of terminal cells

Clause strips

Multiple clauses packed in a row

(a) (b)

Fig. IV.10. (a) Internal Structure of a Bank (b) Multiple Clauses Packed in One Bank-row

in_clausesat_bar

in_cclause_drv

out_imp_drv

out_cclause_drv

out_free_lit_cntin_free_lit_cnt

out_clausesat_bar

in_imp_drv

Fig. IV.11. Signal Interface of the Terminal Cell

Figure IV.10 depicts an individual bank. Each bank is further divided into strips to

61

facilitate a dense packing of clauses (such that the non-participating clause cells are mini-

mized). We try to fit more than one clause per row with the help of strips. This is achieved

by inserting a column of terminal cells between the strips. Figure IV.11 describes the signal

interface of the terminal cell, while Figure IV.12 shows the detailed schematic of the ter-

minal cell. Each terminal cell has a programmable register bit indicating if the cell should

act as a mere connection between the strips or act as a clause termination cell. While act-

ing as a connection, the terminal cell repeats the clausesat bar, cclause drv, imp drv, and

free lit cnt signals across the strips, thereby expanding a clause over multiple strips. How-

ever, while acting as a clause termination cell, it generates imp drv and cclause drv signals

for the clause being terminated. A new clause can start from the next strip (the strip to the

right of the terminal cell).

The number of clause cell columns in a bank (or a strip) is called the width of a bank

(or a strip) and number of rows in a bank is called height of a bank. On the basis of

extensive experimentation, we settled on 25 rows and 6 columns in a strip. With the help of

terminal cells, we can connect as many strips as needed in a bank. Consequently, a bank

will have 25 rows but its width is variable since the bank can have any number of strips

connected to each other through the terminal cells.

The algorithm for partitioning the problem into banks, and for packing the clauses of

any bank into its strips (to minimize the number of non-participating cells) is described in

Section IV-F. Also, experimental results and optimal dimensions of the banks and strips

are presented in Section IV-H.

IV-D.3.e. Inter-bank Communication

Since a variable may appear in multiple banks (we refer to such variables as repeated

variables), implications on such variables need to be communicated between the banks.

Also, the assignments done by the decision engine need to be communicated to the banks

62

connect

connect

cclause_drv_right

connect

in_clausesat_bar

in_free_lit_cnt[1]

in_free_lit_cnt[0]

cclause_drv_left

in_imp_drv
out_imp_drv

in_clausesat_bar

out_clausesat_bar

in_free_lit_cnt[0]

connect

connect

out_free_lit_cnt[0]

out_free_lit_cnt[1]

in_free_lit_cnt[0]

in_free_lit_cnt[1]

cc drv pup

precharge

cc drv pup

connect

Fig. IV.12. Schematic of a Terminal Cell

and the implications or conflict clauses generated in the bank need to be communicated

back to the decision engine.

In our design, we employ a hierarchical arrangement of communication units to per-

form this communication between the banks and the decision engine, as depicted in Fig-

ure IV.13. Each column in the bank has a base cell that actually drives and senses the

lit, lit bar and var implied signals for that variable, and communicates with the decision

engine through a hierarchy of communication units. As seen in Figure IV.13, the com-

63

munication units and base cells form a tree structure. The communication unit directly

interacting with the decision engine is said to be at 0th level of hierarchy and base cells are

said to be at the highest level of hierarchy.

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�

�
�
�

��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

�
�
�
�
�

�
�
�
�
�

������������
������������
������������
������������

������������
������������
������������
������������

����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������

����
����
����
����
����
����

����
����
����
����
����
����

Highest level

1st level

0th level

One base cell per column

Clause Bank

Communication units

Fig. IV.13. Hierarchical Structure for Inter-bank Communication

Each variable is associated with an identification tag as explained in Section IV-D.3.a.

Every base cell has a register to store the identification tag of the variable it represents.

The base cells and the decision engine use the identification tags to communicate assign-

ments, implications, conflict clause variables and backtrack level. A base cell also has a

programmable register bit named repeat bit and a register named repeat level. The repeat

bit indicates if the variable represented by the base cell is a repeated variable. The repeat

level register for any variable v is pre-programmed with the hierarchy level of the commu-

nication unit that forms the root of the subtree containing all the base cells containing that

repeated variable v. If the repeat bit for variable v is set, and an implication has occurred on

v, the base cell of the variable v communicates the implied value, its identification tag and

its repeat level to the communication unit C at the next lower level of hierarchy. The com-

64

munication unit C communicates these data to other communication units at lower levels if

the repeat level of the implied variable v is lower than its own hierarchy level. In this way,

the inter-bank implication communication is completed using the smallest possible com-

munication subtree, allowing for maximal parallelism during inter-bank communication.

The assignments made by the decision engine are broadcast to all levels. The variables

participating in the conflict induced clause are also communicated to the decision engine

via this hierarchy.

Figure IV.2 shows the proposed floorplan. The decision engine is at the center of

the chip surrounded by the clause banks. Additional banks required to store the conflict

induced clauses are also near the center of the chip. Each communication unit resides at

the center of the chip area occupied by the banks in its communication subtree, as shown

in Figure IV.2.

IV-E. An Example of Conflict Clause Generation

Figure IV.14 shows an example CNF instance, its implication graph and how it is implicitly

traversed in this scheme. c1 . . . c6 are the clauses as shown in Figure IV.14(b). Let us

call the lit, lit bar and var implied signals for a variable as a signal triplet. Initially all

signal triplets are predischarged and held at high impedance. The implication graph in

Figure IV.14(a) shows a conflict occurring at decision level 7. a = 0, b = 0, p = 1 and

f = 1 are the assignments made before level 7 and q = 0 and y = 1 are the implications

caused by them. Figure IV.14(c) shows the transitions occurring on the signal triplet of

each variable. Decisions are reflected as logic low and implication as logic high on the

var implied signal. The decision c = 0 at level 7 causes implications on d and e due to

clauses c1 and c2 respectively. It results in c3 and c4 imposing conflicting requirements

on the value of z. Therefore, c3 drives 011 and c4 drives 101 on the signal triplet of z

65

e=1 @7

z=0 @7

c1

c1

c2

c2

c5
c6

c3

c3

d=1 @7

z=1 @7

p=1 @4

f=1 @2 y=1 @2

c4

b=0 @3

c=0 @7

a=0 @1

conflict

q=0 @4

(a) Implication Graph.

c1 (a+ c+ d)
c2 (b+ c+ e)
c3 (z̄+ ē+ q)
c4 (d̄ + z)
c5 (p̄ + q̄)
c6 (f̄ + y)

(b) CNF instance.

a b c d e f p q y z

Initial(predischarge) 000 000 000 000 000 000 000 000 000 000

Assignments till @7 010 010 100 100

Implications till @7 011 101

Assignment @7 010

Implications @7 101 101

Conflict at @7 111

Backtracing 111 111 111 111

Conflict clause variables 110 110 110 110

(c) Implicit, Parallel Generation of Conflict Induced Clause

Fig. IV.14. Example of Implicit Traversal of Implication Graph

and the resultant status on z becomes 111. Note that triplet signals that are 0 are initially

predischarged, so that they can be driven to 1 during the implication graph analysis. After

the occurrence of a conflict, an implicit process of back-traversal of the graph starts in

hardware. The conflict on z causes the assertion of the cclause drv signal in c3 and c4

which in turn causes the data in their registers to be driven on the lit and lit bar signals.

Thus, 111 gets driven on the signal triplets of d due to c4, and e and q due to c3 (as they are

implied variables). The 111 on d causes the assertion of cclause drv in c1, resulting in 110

on a and c as they are decision variables. Similarly 110 is driven on b and c due to c2 and

66

on p due to c5. And thus the variables taking part in the conflict clause are a, b, c and p and

the conflict clause is formed by inverting their assigned values i.e. (a+b+ c+ p̄). Also, it

can be seen that the status on f and y does not change as they are not a part of the conflict

graph. Thus implications and conflict clauses are implicitly generated and in parallel, and

hence the process is quite fast.

In case of multiple conflicts, our approach would create a single conflict clause which

is the disjunction of all the new conflict clauses. This leads to lesser pruning of the search

space as compared to storing the new conflict clauses individually.

In the current form, our hardware SAT solver only records the last row of the ta-

ble (only the variables with decisions) in the conflict clause. A possible extension of our

approach for generating smaller clauses (with fewer literals) is to store a row which is

below the row corresponding to the conflict (i.e. row 7 of Figure IV.14(c)), and has the

smallest number of entries (excluding the entry for the variable on which the conflict is de-

tected). For example, the literals of row 8 of Figure IV.14(c) would yield a conflict clause

(d + e +q). Variable z would not be added in this conflict clause since it is the variable on

which the conflict is detected. Adding this variable would not help in pruning the search

space efficiently.

IV-F. Partitioning the CNF Instance

This section describes the algorithms used to partition the given CNF instance into banks

and strips. We cast these problems as hypergraph partitioning problems, and use hMetis [78]

to solve them.

To partition the CNF instance into multiple banks, we represent the clauses as ver-

tices in the hypergraph and variables as hyperedges. Let C = c1,c2, . . . ,cn be the set of all

clauses and V = v1,v2, . . . ,vm be the set of all variables in the given CNF instance. Then

67

the resultant hypergraph is G = (U,E), where U = u1,u2, . . . ,un is a set of n vertices each

corresponding to a clause in C and E = e1,e2, . . . ,em is a set of m hyperedges each corre-

sponding to a variable in V . Edge ei connects vertex u j if and only if variable vi participates

in clause c j. This hypergraph is partitioned with hMetis such that each balanced partition

contains k vertices and the number of hyperedges cut due to partitioning is minimized.

To partition a bank into strips, we represent the clauses as hyperedges and variables as

vertices in the hypergraph. Similar to the above construction, let Ci = c1,c2, . . . ,ck be the

set of clauses and Vi = v1,v2, . . . ,vl be the set of variables in bank Bi. Then the resultant

hypergraph is Gi = (Ui,Ei), where Ui = u1,u2, . . . ,ul is a set of l vertices each correspond-

ing to a variable in Vi and Ei = e1,e2, . . . ,ek is a set of k hyperedges each corresponding to

a clause in Ci. Edge ep ∈ Ei connects vertex uq ∈Ui if and only if variable vq participates

in clause cp.

After each bank is partitioned into strips, we need to order the strips so as to minimize

the number of rows required to fit the clauses in the bank. For this purpose, we use a

2-dimensional graph bandwidth minimization heuristic along with a greedy bin-packing

approach to pack the clauses in the rows. Figure IV.10 b) illustrates the packing of multiple

clauses in one row. We perform bandwidth minimization on the matrix corresponding to the

clauses of a bank. The bandwidth minimization problem consists of finding a permutation

of the rows (clauses) and the columns (literals) of a matrix that keeps all the non-zero

elements in a band that is as close as possible to the main diagonal. We use the following

heuristic approach to perform bandwidth minimization.

For each clause Ci in the strip, we assign it a gravity G(Ci) which is computed as

follows: G(Ci) = ∑C j∈R(Ci)(P(C j) ·S(Ci,C j))

Here, R(Ci) is the set of clauses which have at least one variable common with clause

Ci and P(C j) is the index of the current row of C j and S(Ci,C j) is the number of common

variables between clauses Ci and C j.

68

The exact dual is used for computing the gravity of every variable in the current strip.

The pseudocode of the bandwidth minimization algorithm is shown in Algorithm 1.

Algorithm 1 Pseudocode of Bandwidth Minimization

Best Cost = Infinity

for i = 1; i ≤ Number of iterations; i++ do

Compute gravity of all clauses in bank s

Rearrange clauses in increasing order of gravity

Compute gravity of all variables in bank s

Rearrange variables in increasing order of gravity

Perform greedy bin packing of clauses into strips

Compute cost of current arrangement Costi
if (Best Cost ≥ Costi) then

Best Cost = Costi
Store current arrangement

end if

end for

return(Stored Arrangement)

As shown in Algorithm 1, we alternate the gravity computation and rearrangement

between clauses and variables. With every rearrangement of clauses and variables within

bank s in an increasing order of gravity, we compute a new cost. The cost of the arrange-

ment is the number of rows required to fit the clauses (of bank s). The greedy bin packing

step simply packs the rearranged clauses of a bank into its rows, such that each clause uses

an integral number of strips.

IV-G. Extraction of the Unsatisfiable Core

The work in [48] proposes a SAT-based algorithm for computing the minimum unsatisfiable

core. The approach of [48] in brief is as follows: Given a Boolean formula ψ defined

over n variables, X = x1, ...,xn, such that ψ has m clauses, Ω = ω1, ...,ωm, the approach

begins with the definition of a set S of m new variables S = s1, ...,sm, and the creation of

a new formula ψ′ defined on n +m variables, X ∪S, with m clauses Ω
′
= ω

′
1, ...,ω

′
m. Each

clause ω
′
i ∈ ψ

′
is derived from a corresponding clause ωi ∈ ψ as ω

′
i = ¬si + ωi. For a

69

certain assignment to the variables in S, ψ
′
can be satisfiable or unsatisfiable. The minimum

unsatisfiable core is obtained from the unsatisfiable sub-formula with the least number of S

variables assigned to value 1.

The model of [48] can be seamlessly implemented in our hardware architecture. This

is because this model simply extends the SAT problem. Since our approach exploits the

parallelism which is inherent in any SAT problem, the two approaches can be naturally

integrated. The experimental results reported in [48] are strongly limited by the number of

variables and clauses in the problem instances. Although they compute the minimum un-

satisfiable core, which was not reported by earlier approaches, the complexity of the model

is significant for a software based SAT solver. Testing on bigger instances was limited

due to the inability of software SAT solvers to handle such instances. This is where our

hardware based SAT solver fits in. It elegantly complements their approach by providing a

fast and scalable SAT solver to find the unsatisfiable core. Pseudocode for this algorithm is

shown in Algorithm 2.

Algorithm 2 Pseudocode for Extracting the Minimum Unsatisfiable core

min unsat core(ψ(X ,Ω)){
S← add new variables(|Ω|) // add variables s1, s2, ... ,sm

ψ
′ ← Φ

for i = 1; i≤ |Ω|; i++ do

ω
′
i←¬si + ωi

ψ
′ ← ψ

′ ∪ω
′
i

end for

min clause solve(ψ
′
) // explained in text

}

The following changes are made to our architecture to implement the above approach.

In order to introduce the set S of m new variables (m is the initial number of clauses), the

number of base cells are increased by m. The identification tag of any new variables (which

is also the decision level of the new variables), is set to be lower than all the variables in

the original SAT instance. Also since we add a new variable to each clause, we have

70

to add a new clause cell in each of the m clauses. Since we use efficient SAT instance

partitioning, clause bank partitioning and clause packing techniques, the overhead in terms

of new clause cells required is ≤ m2. The extraction procedure (min clause solve(ψ
′
))

for the unsatisfiable core proceeds as follows. We perform repeated invocations of the

hardware SAT solver with a different set of variables S
′ ⊆ S being assigned to 1. For a

certain run, prior to the first assignment made by the decision engine, the signals lit, lit bar

and var implied for all the variables in S
′

are driven to 100 (i.e. forcing a decision of 1 on

all variables si ∈ S
′
). If the SAT solver reports the SAT instance as unsatisfiable, the clauses

containing si ∈ S
′

are recorded. The corresponding clauses of the original SAT instance

together make one unsatisfiable core. Next, a new clause consisting of all the variables

in S
′

is added to the clause bank in a manner similar to adding a conflict induced clause.

In other words, we add a clause ∑(¬si), where si ∈ S
′
, to the instance. This new clause

avoids generating the same unsatisfiable core in future runs. Amongst all the unsatisfiable

cores, the core with the smallest number of clauses is the minimum unsatisfiable core and

is finally reported.

Other existing optimization techniques which are discussed in [48] can also be easily

grafted in the modified hardware SAT solver. For example, any conflict induced clause con-

taining only variables si ∈ S also generates an unsatisfiable core. This is because the clauses

of the original SAT instance, corresponding to the clauses which contain si, represent an

unsatisfiable core and can be recorded.

IV-H. Experimental Results

To validate our ideas, we tested several examples from the DIMACS [77] test suite and

from the SAT-2004 [79] competition benchmark suite. The examples we used are listed

in Table IV.3, along with the number of clauses and variables (Columns 1 through 3). For

71

a IC of size 1.5 cm on a side, we can accommodate 1.875 million clause cells. The total

number of strips in the IC is therefore 12,500. The IC implements a total of 6 hierarchical

levels in the inter-bank communication methodology.

We tested the functionality of the clause and termination cells, the implication gener-

ation and conflict clause generation logic in Verilog. The chip level performance estimates

were obtained by running SPICE [80], using layout-extracted parasitics. The hardware

SAT IC was implemented in a 0.1µm process, with a VDD of 1.2V.

For all the examples listed in Table IV.3, we performed partitioning (into banks) and

binning (into strips) as described in Section IV-F. The initial partitioning was performed to

create banks with 200 clauses. We define the packing factor (PF) as a figure of merit for

the partitioning and binning procedure.

PF = Total # of Cells
of Participating Cells

The PF before partitioning and binning is shown in Column 4. This corresponds to the

PF of a monolithic implementation. Note that this can be as high as ∼8300. The PF after

partitioning and binning is shown in Column 5, and it is about 10 on average. Attempting to

lower the PF beyond this value results in several variables appearing in multiple banks. The

total number of strips for all the examples are shown in Column 6. Note that all examples

require less than 12,500 strips, indicating that they would fit on our IC. This is a dramatic

improvement in capacity over existing monolithic hardware-based SAT approaches, which

can handle between 1280 and 24,700 clauses with 64 FPGA boards or 121 configurable

processors respectively, as opposed to about 63,000 clauses on a single IC for our approach.

Further, the total run-time for the partitioning (using hMetis [78]), diagonalization and

greedy bin-packing for the examples listed in Table IV.3 ranged from 8 to 200 seconds on a

3.6GHz, 3GB machine running Linux. These runtimes are significantly lower than the BCP

based software SAT runtimes for these examples. Even if the partitioning runtimes were

higher, the time spent in partitioning is amply recovered when multiple SAT calls need to

72

Table IV.3. Partitioning and Binning Results

Instance #Clauses #Vars PF (initial) PF (opt.) #strips avg #strips per cl.

par16-3 3344 1014 379 9.53 486 1.93

ii8b4 8214 1067 474 14.68 1548 2.19

am 7814 2268 835 8.42 1021 2.04

par32-5 10325 3175 1183 9.01 1426 1.76

ii16a1 19368 1649 719 25.71 10514 2.87

ii32c4 20862 758 137 12.45 8178 4.57

dekker 58308 19472 8346 10.40 8084 1.78

frg2mul 62943 10313 3063 8.68 10514 2.41

be made for the same instance.

The delay of each bank (the difference between the time a new decision variable is

driven to the time the last implication is driven out by the bank) was computed via SPICE

simulations to be ∆B = 3ns (for a bank with 3 strips, which is approximately the average

number of strips per clause as indicated in Column 7 of Table IV.3). We also estimated

the delay due to the inter-bank communication via SPICE simulations. To do this, we first

found the average number of implications caused by any decision, over all the examples

under consideration. The average number of implications per decision was found to be

about 21. For the computation of delay due to inter-bank communication, we conserva-

tively assumed that the average number of implications per decision was 25. We assumed

the worst-case situation (where each of these 25 implications are on variables that repeat

across banks, with a repeat level of 0). This results in the slowest inter-bank communication

scenario. Using SPICE delay values (computed using layout-extracted wiring parasitics),

we obtained the values of the delay between communication units at level i and i +1. Let

this delay be denoted by ∆i. Then the total delay is estimated as

∆C = 2 ·25 ·∑5
i=0(∆i)+∆B

Note that long wires (between communication units at different repeat levels) are opti-

mally buffered for minimal delay. Using the values of ∆i that we obtained, ∆C is computed

to be 27ns. Using this estimate, we compute the time for the solving of the SAT problem

73

in our hardware SAT engine as

Our Runtime = Number of Decisions ·∆C

The worst case time to generate and communicate implications (∆C) dominates the

conflict analysis time, and hence our runtime estimates are based on ∆C alone. Our runtime

is compared, in Table IV.4, against MiniSAT [81], a state-of-the-art BCP based software

SAT solver. We modified MiniSAT in two ways, in order to estimate the runtime of our

hardware approach. First, we modified MiniSAT to implement a static decision strategy

which is same as the decision strategy used in our hardware engine. MiniSAT performs a

smart conflict clause simplification by applying subsumption resolution [82] and caching of

intermediate results. So, in our second modification of MiniSAT, we disabled any simpli-

fication of the conflict clauses. This variant of MiniSAT (modified in the above two ways)

is referred to as MiniSAT∗ in the sequel. The number of decisions made by MiniSAT∗ was

used in computing our runtime using the above equation. Columns 2 and 3 of Table IV.4

list the number of decisions and the number of conflicts reported by MiniSAT. Column 4

lists the MiniSAT runtimes. The MiniSAT runtimes for these instances were obtained on

a 3.6 GHz, 3GB machine running Linux. Columns 5 and 6 list the number of decisions

and the number of conflicts reported by MiniSAT∗. Our estimated runtimes are reported

in Column 7. The speed up obtained over MiniSAT is reported in Column 8. The average

speed up over MiniSAT obtained is 1.84×103.

In other words, our approach yields over three orders of magnitude improvement in

runtime over an advanced BCP based software SAT solver. It achieves 1-2 orders of mag-

nitude speedup over other hardware SAT approaches as well. Other hardware SAT ap-

proaches have significant capacity problems, making them impractical for large instances.

Our approach has a large capacity and is highly scalable, and hence is ideally suited for

large SAT instances.

In order to estimate the power consumption of our approach, we conducted additional

74

SPICE simulations. These simulations were performed for computing the average power

required for a single implication within a bank, and the average power required for com-

municating this implication to every other bank. The power consumption for the long wires

(between communication units at different repeat levels), for the latter experiment was com-

puted using layout-extracted wiring parasitics. The value obtained was Pcomm.
single =∼3.69 nW.

Again assuming the worst-case situation (where each of the 25 implications/decision are

on variables that repeat across banks, with a repeat level of 0), the total power required for

all communications per decision (per clock cycle) is

Pcomm. = Pcomm
single · 25 = 92.25nW.

The average power consumed by the clause bank for generating an implication, P
imp
single,

was obtained to be about 0.363µW. The total number of banks per IC would be at most 64

(since only 6 levels of hierarchy are present in the IC). In the worst case, assume that the

partitions obtained from hMetis repeat a single variable v over all the 64 banks. Now sup-

pose that there is an implication on v in every bank. For driving an implication, as explained

in the previous sections, only one of the lit or lit bar signal along with the var implied sig-

nal is driven. For a conflict, on the other hand, all three signals are driven. Therefore

the average power consumption for driving a single conflict literal (P
con f
single) is (3/2) ·Pimp

single.

Since there are on average 25 implications per decision, and assuming each decision leads

to a conflict involving each of the 25 implications, there are in the worst case 25 implied

variables that can participate in analyzing the conflict. Hence the average power for the

BCP engine (which performs implication/conflict analysis) per clock cycle is

PBCP = P
con f
single· 25 · Number of Banks = 871.2µW.

The worst case power per cycle for our hardware SAT solver is therefore

Pavg = PBCP + Pcomm. = 871.3µW

Note that this low power arises from the fact that in practice, there is very little conflict

activity whenever any decision is made. A majority of the clause cells do not participate in

75

Table IV.4. Comparing against MiniSAT (a BCP-based Software SAT Solver)

Instance MiniSAT MiniSAT runtime(s) MiniSAT∗ Our Runtime(s) Speed Up

Decisions # Conflicts # Decisions # Conflicts

par16-3 6.26×103 5.98×103 5.68×10−1 1.43×104 1.15×104 3.11×10−4 1.83×103

ii8b4 5.70×102 0 6.00×10−3 5.01×102 0 1.35×10−5 4.44×102

am 4.64×107 3.95×107 1.26×104 4.62×109 3.64×109 1.24×102 1.02×102

par32-5 6.62×107 6.14×107 5.36×103 5.53×108 4.25×108 1.49×101 3.60×102

ii16a1 9.07×102 7 1.30×10−2 9.70×102 3 2.03×10−5 6.40×102

ii32c4 4.50×101 4 1.90×10−2 1.50×102 9.90×101 3.15×10−6 6.03×103

dekker 6.89×105 5.87×105 5.35×102 3.81×106 1.83×106 1.03×10−1 5.19×103

frg2mul 3.24×106 6.07×105 6.21×102 1.57×108 2.09×107 4.24 1.47×102

AVG 1.84×103

a conflict, thereby keeping the worst case power consumption low.

For the examples listed in Table IV.3 we compared the BCP based software SAT run-

times with or without a limit on the number and width of the conflict clauses. The purpose

of this experiment was to determine if limiting the number and width of conflict clauses

significantly affects SAT runtimes. The number and width of clauses corresponded to a

single row of clause banks in the center of the chip. With this limit, we noted a negligible

difference in the SAT runtimes compared to the case when there was no limit (for a timeout

of 1 hour). Since our clause banks can be interchangeably used for conflict clause stor-

age as well as regular clause storage, we can handle larger SAT instances by storing fewer

conflict clauses in the IC.

Larger designs can be handled elegantly by our approach, since multiple SAT ICs can

be connected to work cooperatively on a single large instance. A pair of such ICs would

effectively implement an additional level in the inter-bank communication tree. The only

wires that are shared between two such ICs are those implementing inter-bank communi-

cation. By implementing these using fast board-level IO, the system of cooperating SAT

ICs can be made to operate extremely fast. The decision engine of each IC other than the

root IC, behaves as a communication unit, in such a scenario.

76

IV-I. Chapter Summary

In this chapter, we have presented a custom IC implementation of a hardware SAT solver

and also augmented it for extracting the minimum unsatisfiable core. The speed and ca-

pacity for our SAT solver obtained are dramatically higher than those reported for exist-

ing hardware SAT engines. The speedup comes from performing the tasks of computing

implications and determining conflicts in parallel, using a specially designed clause cell.

Approaches to partition a SAT instance into banks and bin them into strips have been devel-

oped, resulting in a very high utilization of clause cells. Also, through SPICE simulations

we determined that the average power consumed per cycle by our SAT solver is under 1

mW which further strengthens the practicality of our approach. Note that although we used

a variant of the BCP engine of GRASP [49] in our hardware SAT solver, the hardware

approach can be modified to implement other BCP engines as well. For extracting the

unsatisfiable core, we implemented the approach described in [48] since our architecture

naturally complements the technique proposed in [48]. Also the additional optimizations

of [48] can be seamlessly implemented in our architecture.

77

CHAPTER V

ACCELERATING BOOLEAN SATISFIABILITY ON AN FPGA

V-A. Chapter Overview

In this chapter, we propose an FPGA-based SAT approach in which the traversal of the

implication graph as well as conflict clause generation are performed in hardware, in par-

allel. In our approach, clause literals are stored in the FPGA slices. In order to solve large

SAT instances, we heuristically partition the clauses into a number of ’bins’, each of which

can fit in the FPGA. This is done in a pre-processing step. These bins may share variables

and hence are not independent sub-problems. The FPGA operates on one bin at a given

instant, and the FPGA hardware also co-ordinates the handling of the bins of the entire

instance. An on-chip Block RAM (BRAM) is used for storing all the bins (or caching a

portion of the bins) of a partitioned CNF problem. The embedded PowerPC processor on

the FPGA performs the task of loading the appropriate bin from the BRAM. The core rou-

tines of conflict clause generation and Boolean constant propagation (BCP) are performed

in parallel in the hardware (implemented in Verilog). The entire flow, which includes the

preprocessing step, loading the BRAM, programming the PowerPC and the subsequent

communications between partitions (which is required for BCP, conflict clause generation

and non-chronological backtracking (both and inter- and intra-bin)) has been automated

and verified for correctness using a Virtex-II Pro (XC2VP30) FPGA board. The experi-

mental results and their analysis, along with the performance models derived from these

results, are discussed in detail. Further, we show that an order of magnitude improvement

in runtime can be obtained over MiniSAT (the best-in-class software based approach) by

using a Virtex-4 (XC4VFX140) FPGA device. The resulting system can handle instances

with as many as 10K variables and 280K clauses.

78

The rest of this chapter is organized as follows. The motivation for this work is de-

scribed in Section V-B. Section V-C discusses previous FPGA based SAT solvers. Sec-

tion V-D describes the hardware architecture employed in our approach. A general flow

for solving a CNF instance which is partitioned into bins, is described in Section V-E.

Section V-F describes the up-front clause partitioning methodology, which targets maxi-

mum utilization of the hardware with low variable overlap. The hardware details for our

approach are explained in Section V-G. Section V-H reports our current implementation

on a low-end FPGA evaluation board, followed by projected performance numbers on a

high-end FPGA board. These projections are derived based on a performance model ex-

tracted from detailed performance data from our current system. Section V-I summarizes

the chapter.

V-B. Introduction

As mentioned in the last chapter, Boolean Satisfiability (SAT) [46] is a core NP-complete

problem, and hence there is a strong motivation to accelerate SAT. In this work, we pro-

pose an FPGA-based approach to accelerate the SAT solution process, with the goal of

speedily solving large instances in a scalable fashion. By scalable, we mean that the same

platform can be easily made to work on larger SAT instances. The FPGA based hardware

implements the GRASP [49] strategy of non-chronological backtracking. In our approach,

a predetermined number of clauses of fixed width are implemented on the FPGA. The SAT

problem is mapped to this architecture in an initial step which partitions the original SAT

instance into bins which can be solved on the FPGA. Further, inter-bin (as well as intra-

bin) non-chronological backtrack is implemented in our approach. Our hardware approach

performs, in parallel, both the tasks of implicit traversal of the implication graph, as well as

conflict clause generation. The contribution of this work is to come up with a high capacity,

79

fast, scalable FPGA based SAT approach. We do not claim to propose any new SAT solu-

tion heuristics in this work. Similar to our custom IC based sat solver described in the last

chapter, we have used the GRASP [49] engine in our FPGA based SAT solver. As before,

the hardware approach can be modified to implement other BCP engines, since the BCP

logic of any BCP based SAT solver can be ported to an HDL and directly synthesized in

our approach.

Our approach is implemented and tested on a Xilinx Virtex II Pro evaluation board.

Experimental results on LUT utilization and performance figures are derived from an ac-

tual implementation using an XC2VP30 Virtex II Pro based FPGA platform. The results

from these experiments are projected to an industrial strength FPGA system, and indicate

a 17× speedup over the best-in-class software approach. The resulting system can handle

instances with as many as 10K variables and 280K clauses.

V-C. Previous Work

In addition to the existing work discussed in the previous chapter, several FPGA based

SAT solvers have been reported in the past. We classify them into instance specific and

application specific approaches. In instance specific approaches the hardware is recompiled

for every instance. This is a key limitation, since compilation times for an FPGA can take

several hours. The speedup numbers reported in the instance specific approaches, however,

do not present the compilation and configuration times. Approaches which are not instance

specific are application specific.

Instance specific approaches reported in literature are [58, 61, 63, 64, 83]. Among

these approaches, as reported in [61], the largest example that can be handled has about

1300 clauses with an average speedup of 10×. Our approach, in contrast, is application

specific and thus the same device, once configured, can be used multiple times for different

80

instances. Further, our approach can obtain a 17× speedup over the best-in-class software

approach, with a capacity of 10K variables and 280K clauses.

The multi-FPGA approach described in [84] demonstrates non-chronological back-

tracks and dynamic addition of conflict induced clauses. However, the approach is instance-

specific and requires re-synthesis, remapping, and regeneration and reconfiguration of the

bit stream, each time a conflict induced clause is added to the clause database. The approach

claims to perform these repeated tasks in an incremental fashion which is possible due to

a regular hardware structure. The new compile times (obtained with the incremental tasks)

are a few orders of magnitude higher than the actual runtime for most instances reported in

their results. Our approach, in contrast, uses a single FPGA device. For problem instances

which can not be accommodated in a monolithic fashion in a single FPGA, we partition

the instance into ’bins’ of clauses (which may share common variables). This allows our

approach to scale elegantly and solve large SAT problems, unlike previous reconfigurable

approaches. Each partition is then solved for satisfiability, while maintaining consistency

with the existing global decisions and assignments. This may require backtracking to a pre-

vious bin. Backtracking in our approach is performed in a non-chronological fashion, even

across bins. No other existing application-specific hardware or reconfigurable SAT solver

exhibits a non-chronological backtrack and dynamic addition of conflict induced clauses,

carried out entirely in hardware.

All existing application specific hardware or reconfigurable approaches eventually run

into the problem of an instance not fitting in a single FPGA or reconfigurable device. The

approach of [85, 83] implements the prototype on a Pamette board containing four Xil-

inx XC4028 FPGAs. These approaches do not propose anything for solving problem in-

stances whose size exceeds the board capacity. The application-specific approach in [86],

like [63, 60], employs several interlinked FPGAs, but assumes that the FPGA resources are

sufficient for solving a SAT instance. Also, the runtimes they reported were achieved based

81

on software simulations.

There are some application-specific approaches which can handle instances that do

not fit in a single FPGA device. The approaches described in [87, 88], like our approach,

are implemented on a single FPGA board. However, in these approaches, the memory

module storing the instance has to be reconfigured for different problem instances (or in-

dependent sub-instances for large instances). Their authors do not clarify the procedure

followed when independent sub-instances of feasible sizes cannot be obtained. The consis-

tency of assignments across sub-instances is not trivial to maintain in hardware, but this is

not addressed. Our approach maintains this consistency, and backtracks to a previous par-

tition (bin) non-chronologically, in case the offending decision was not made in the current

partition. The approach of [89] creates a matrix (where rows are clauses and column are

variables) from the problem instance, and searches for a ternary vector orthogonal to every

row, in order to satisfy the instance. For larger instances, it attempts at solving the problem

in software, until the sub-instance size is accommodable in the FPGA. In our approach,

software is used only for the initial partitioning and clause transfer, thereafter, all steps

are performed entirely in hardware. Further, the speedups reported in this paper against

GRASP are nominal and only for the holex benchmarks. Our approach reports speed up

against MiniSAT [81], which is known to be significantly faster than GRASP. Our results

are presented over a variety of benchmarks.

The work presented in this chapter is an FPGA version of the custom IC based SAT

solver described in the previous chapter. However, the custom IC approach solves the entire

instance in a monolithic fashion. Our FPGA-based approach, on the other hand, partitions

a CNF instance into bins, and is required to maintain consistency in assignments across all

bins while solving one bin at a time. This requires several changes in the pre-processing

step, the hardware design and the overall flow. An extended abstract of our FPGA based

SAT solver is described in [90].

82

V-D. Hardware Architecture

V-D.1. Architecture Overview

Figure V.1 shows the hardware architecture of our application-specific (i.e. not instance-

specific) approach. We use an FPGA board that has a duplex communication link with

the host system. The FPGA is first loaded with the configuration information for our SAT

engine. No instance information is loaded at this stage. Since most practical-sized CNF

instances would not readily fit on the FPGA fabric, we heuristically partition the original

CNF into smaller CNFs, called bins, such that their inter-dependence is reduced. In other

words, we aim at reducing the number of common variables across bins. Also, each of these

bins are sized such that they can individually fit in the FPGA fabric. This partitioning is

performed as a pre-processing step on the host system, before loading the bins to the FPGA

board. In reality, multiple CNF instances (each in their respective partitioned ’bin’ formats)

are stored in a 512 MB DDR DRAM memory card which is on the FPGA board. These

partitioned CNF instances are first loaded onto the on-board DRAM from the host system

using board level I/O. Next, all the bins of one of these CNF instances are loaded in the

on-chip Block RAM (BRAM). This is the instance which is being currently processed, and

we refer to it as the current instance in the sequel. Note that bins can potentially be cached

in the BRAM, enhancing scalability. The FPGA is then loaded with one of the bins of the

current instance. This is done using an embedded PowerPC processor, which transfers the

bin data from the BRAM to the FPGA fabric. The on-chip PowerPC manages both the

loading of the current instance from the DRAM to the BRAM, and the loading/unloading

of bins from BRAM onto the FPGA (as dictated by the hardware). These transfers are

performed using bus transfer protocols IPs provided by Xilinx. These IPs allow transfers

across the processor local bus (PLB) and on-chip peripheral bus (OPB). After the bin is

loaded into the FPGA fabric, the FPGA starts to perform implication and conflict clause

83

generation in parallel. The next section discusses our approach of solving a CNF instance

(which is partitioned across several bins) in our FPGA based hardware SAT solver.

Request_Bin_i

Configuration Data

....

Xilinx XC2VP30 FPGA

512 MB DDR DRAM

FPGA BOARD

BRAM

....Bin 1 Bin 2

Inst 1 Inst 3Inst 2

Update_Basecell

Inst k

Bin m

PowerPC
Core

Software

DRAM
Controller

HOST
COMPUTER

Board I/O

SAT Engine

Hardware
global_SAT

global_UNSAT

partial_UNSAT

Fig. V.1. Hardware Architecture

V-E. Solving a CNF Instance Which Is Partitioned into Several Bins

As mentioned above, the original CNF instance C is initially partitioned into smaller bins,

b1, b2, ..., bn. Our hardware engine tries to satisfy each bin bi, using the stored global

assignments on the variables. In this section our flow for solving a partitioned SAT instance

is explained. Implementation details are given in the sequel.

The variables V of the CNF C are statically awarded a decision level once the bins

have been created. Along with each bin bi, we load the decision levels of the variables

Vi ⊆ V it contains, along with the current state of every variable v ∈ Vi. The global state

of all variables V is stored in the on-chip BRAM. The state of a variable consists of the

following information:

84

• Whether the variable has been decided (assigned or implied).

• The current decision on the variable.

• If the variable has been decided, the decision level it was decided at.

• If the variable has been decided, the bin it was decided in.

• If the decision on this variable is the highest decision level we backtracked on.

We begin by solving the first bin. After any bin is solved, it results in a partial SAT

or partial UNSAT condition. Partial SAT indicates that the current bin has all clauses sat-

isfied, with no conflicts with the current status of any variable in V . A partial UNSAT

indicates the opposite. If a bin bi is partial SAT, we first update the states of the variables

v ∈ Vi into the global state. Also, any learned clauses generated during the operation on

bi are appended to the clauses of bin bi in the BRAM. We then load the FPGA with the

clauses of bin bi+1 and the states of the variables v ∈ Vi+1. The SAT engine then attempts

to partial SAT this new bin. With every partial SAT outcome on bin j, we proceed in a

sequential manner from bin b j to b j+1. If the last bin is also partial SAT, we declare the

instance to be global SAT or satisfiable.

In case there is a conflict with an existing state of variables {vc}, we non-chronologically

backtrack on vbkt , which is the variable with the highest decision level among {vc}. If the

variable vbkt was assigned in the current bin itself, we simply revert our decision. If the

variable vbkt was implied in the current bin, we backtrack on the variable which caused the

implication. On the other hand, if the variable vbkt was assigned or implied in a previous

bin, we declare the current bin to be partial UNSAT. Using the information contained in

the state of this variable, we obtain the bin number we need to backtrack to, in order to

revert the decision on vbkt . This allows us to backtrack across bins. In other words, we

perform non-chronological backtrack within bins and also across bins, ensuring the com-

85

pleteness of our SAT procedure. Let the new bin be b j. Now we load the FPGA with the

clauses of b j and the states of the related variables v ∈ Vj. On reverting the decision on

vbkt , (which could require recursive backtracking), we delete the decisions on all variables

with a decision level higher than vbkt ’s decision level. We then continue as usual with the

updated state of variables. As before, if bin b j is now partial SAT, we next load the FPGA

with bin b j+1. During conflict analysis, if the earliest decision level has been backtracked

on, and the current status of the variables still leads to a conflict, we declare the instance to

be global UNSAT or unsatisfiable.

In our approach, the FPGA hardware performs the satisfiability check of a bin, as

well as non-chronological (inter and intra-bin) backtrack. The software (running on the

embedded PowerPC) simply loads the next bin as requested by the hardware.

Each time a bin is loaded onto the FPGA, we say that the bin has been ’touched’, in

the sequel. The flow explained above allows us to perform BCP and non-chronological

backtrack. The next section details the algorithm used for partitioning the CNF instance

across bins.

V-F. Partitioning the CNF Instance

To partition a given CNF instance into multiple bins of bounded size (which can fit in the

FPGA fabric) we use a 2-dimensional graph bandwidth minimization algorithm, followed

by greedy bin-packing. Let us view the CNF instance as a matrix whose columns are la-

beled as variables, and rows as clauses. The bandwidth minimization algorithm attempts to

diagonalize this matrix. For each clause Ci, we assign it a gravity G(Ci) which is computed

as follows: G(Ci) = ∑C j∈R(Ci)(P(C j) ·S(Ci,C j))

Here, R(Ci) is the set of clauses which have at least one variable common with clause

Ci and P(C j) is the index of the current row of C j and S(Ci,C j) is the number of common

86

variables between clauses Ci and C j.

The exact dual is used for computing the gravity of every variable in the CNF instance.

The pseudocode of the bandwidth minimization algorithm is shown in Algorithm 2.

Algorithm 3 Pseudocode of Bandwidth Minimization

Best Cost = Infinity

for i = 1; i ≤ Number of iterations; i++ do

Compute Gravity of all clauses

Rearrange Clauses in increasing order of gravity

Compute Gravity of all variables

Rearrange Variables in increasing order of gravity

Greedy Bin packing for creating Bins

Compute cost of current arrangement Costi
if (Best Cost ≥ Costi) then

Best Cost = Costi
Store current arrangement

end if

end for

return(Stored Arrangement)

As shown in Algorithm 2, we alternate the gravity computation and rearrangement

between clauses and variables. With every rearrangement of clauses and variables in an

increasing order of gravity, we compute a new cost. The cost of the arrangement is the

equally weighted sum of the following:

• Number of bins. A smaller number of bins would reduce the overhead involved with

loading the FPGA with a new bins, and also reduce communication while solving

the instance.

• The sum, across all variables v in the CNF instance, of the number of bins in which

v occurs. The intuition for this cost criterion is to reduce the overlap of variables

across bins. A larger overlap would require more consistency checks and possibly

more backtracks across bins.

• The sum across all variables v in the CNF instance, of the number of bins v spans.

87

By span we mean the difference between the largest and the smallest bin index,

in which v occurs. While backtracking, we delete the intermediate decisions and

variables. Therefore, this criterion would help us reduce the amount of data deletion

which may be possibly done during backtracks.

The greedy bin packing step simply packs the rearranged CNF instance into bins

which have a predetermined maximum number of clauses Cmax and variables Vmax (such

that any bin can fit monolithically in the FPGA fabric). We take k ≤Cmax clauses and as-

sign them to a new bin provided the variable support of these clauses is less than or equal

to Vmax.

The hardware details of our implementation are discussed in the next section.

V-G. Hardware Details

Our FPGA based SAT solver is based partly on the custom IC approach presented in Chap-

ter IV. Hence, the reader is referred to the previous chapter for some details of the hardware.

In particular, the abstract view of our SAT solver for a single bin is identical to the abstract

view of the monolithic ’clause bank’ described in the last chapter. Also, the clause cell

and its implementation for generating implications and conflict induced clauses for a single

bin is identical to the clause cell described in the previous chapter. The only differences

between the clause bank in the last chapter and the single bin in the current chapter are:

• There is no precharge logic in the FPGA-based approach.

• There are no wired-OR signals in the FPGA-based approach.

• Each bidirectional signal in the clause cell described in Chapter IV, is replaced by a

pair of unidirectional in (input) and out (output) signals.

88

• There is no termination cell in the FPGA approach. This type of cell was used to al-

low more than one clause to reside on the same row of the clause bank in Chapter IV.

• In the FPGA approach, the learned clauses for bin bi are updated into the bin bi. In

Chapter IV, learned clauses were simply added to the clause bank. However, in the

FPGA-based approach, in order for a subsequent load of some bin i to take advantage

of a previously computed conflict induced clause for that bin, these learned clauses

are added to the clause data base of bin i in the BRAM.

The decision engine state machine in the current FPGA-based approach is enhanced

in order to process a CNF instance in a partitioned fashion. This is discussed next.

Figure V.2 shows the state machine of the decision engine. To begin with, the first bin

of the current CNF instance is loaded onto the hardware. All signals are initialized to their

refresh state. The decision engine assigns the variables in the order of their identification

tag, which is a numerical ID for each variable, statically assigned such that most commonly

occurring variables are assigned a lower tag. The decision engine assigns a variable (in

the assign next variable state) and this assignment is forwarded to all the clauses of the

bin. The decision engine then waits for the bin to compute all the implications during the

wait for implications state. For bins other than the first bin, the decision engine at first just

propagates any existing decisions on any of the variables of this bin, in the ascending order

of their decision levels. All variables implied due to these existing assignments, store the

decision level of the existing assignment due to which they were implied. Similarly, all

variables implied due to a new assignment store the decision level of the newly assigned

variable as their decision level. All implied variables store the current bin number in their

state information.

When an assignment is made, if no conflict is generated due to the assignment, the de-

cision engine assigns the next unassigned variable in the current bin. If the next unassigned

89

variable v does not occur in any of the clauses of the current bin, or all clauses containing v

are already satisfied, the decision engine skips an assignment on this variable and proceeds

to the next variable. This helps in avoiding an unnecessary decision on a variable which

could lead to a backtrack from another bin in the future. If all the clauses of the current bin

bi are satisfied and there are no conflicts, then bi is declared to be partial SAT. A new bin,

bi+1, is loaded on to the FPGA along with the states its related variables. If the last bin is

partial SAT, the given CNF instance is declared to be global SAT or satisfiable.

If there is a conflict in bi, all the variables participating in the conflict clause are com-

municated by the clauses in the bin, to the decision engine. Based on this information,

during the analyze conflict state, the conflict induced clause are generated and stored in

the FPGA fabric, just like regular clauses. Also the decision engine non-chronologically

backtracks according to the GRASP [49] algorithm. Using the information contained in

the state of a variable, the engine can compute the latest assignment among the variables

participating in the conflict, and the bin (backtrack bin) where the assignment on this vari-

able was made. When the backtrack bin is the current bin, and the backtrack level is lower

than a variable’s stored decision level, then the stored decision level is cleared before fur-

ther action by the decision engine during the execute conflict state. When the backtrack

bin is not the current bin, the decision engine goes to the partial UNSAT state, causing the

required bin to be loaded. After a conflict is analyzed, the backtracked decision is applied.

The variable to be backtracked on is flagged with this information. At any given instance,

only the flag of the lowest indexed variable is recorded. If a backtrack has been requested

on every variable involved in a conflict, and a conflict exists even by backtracking on the

earliest decision, the given CNF is declared as global UNSAT or unsatisfiable.

Our FPGA based SAT solver is a GRASP [49] based algorithm with static selection

of decision variables. Just like GRASP, it performs non-chronological backtracking and

dynamic addition of conflict induced clauses. As a result, it retains (within as well as

90

assign_next_variable

wait_for_implications execute_conflict

refresh

global_UNSAT

conflict

var_implied

0th level

no_conflict

implication

computed_bin != current_bin

computed_bin == current_bin

last level && not last bin

global_SAT

last level && last bin

idle

analyze_conflict

partial_UNSAT

partial_SAT

Fig. V.2. State Diagram of the Decision Engine

across bins) the completeness property of GRASP.

V-H. Experimental Results

The experimental results are discussed in the following sections. Section V-H.1 discusses

our current implementation briefly. Our working system is implemented on an FPGA evalu-

ation board. In order to obtain projected performance numbers on a high-end FPGA board,

we first extract detailed performance data from our system. Using this data, we develop a

mathematical performance model, in Section V-H.2, which estimates the bin size, numbers

of bins touched, and communication speeds as a function of SAT problem. Using this per-

formance model, we project the system performance (using our existing performance data)

for industrial strength FPGA boards, in Section V-H.3.

V-H.1. Current Implementation

To validate our approach, we have implemented our hardware SAT solver on a Xilinx

XC2VP30 device based evaluation board using ISE 8.2i for hardware (Verilog) and EDK

8.2i for instantiating the PowerPC, processor local bus (PLB), on-chip peripheral bus (OPB),

91

BRAM and PLB2OPB bridge cores. Our current implementation can solve CNF instances

of size 8K variables and 31K clauses. If we were to cache the bins in BRAM, then the

capacity of the system increases to 77K clauses over 8K variables. The size of a single bin

is 16 variables and 24 clauses. Of these, 4 clauses are designated as learned clauses. The

FPGA device utilization with this configuration, including the EDK cores, is ∼70%. With

larger FPGAs, significantly larger CNFs can be tackled.

Our current implementation correctly solves several non-trivial CNF instances. Our

regression suite consists of about 10,000 satisfiable and unsatisfiable instances. To validate

intermediate assignments and decisions at the bin level, we performed aggressive testing.

Each partial bin assignment is verified against MiniSAT [81]. This is done as follows: Say

the mth bin is part SAT and let the set of current assignments be pm. A CNF instance C is

created which includes all clauses from bins 1 through m and single literal clauses using

the current assignments i.e. set pm.

C = [∏m
i=1(bini)]·pm

The CNF instance, C, thus generated is solved using MiniSAT and verified to be satisfiable.

Similarly, if the nth bin is part UNSAT, a CNF instance D, s.t.

D = [∏n
i=1(bini)]·pn

is generated and solved using MiniSAT. This should be unsatisfiable. Several of our regres-

sion instances touch thousands of bins, and the assignments until each bin is verified in this

fashion. As mentioned previously, several CNF instances, after being partitioned into bins,

are loaded onto the board DRAM. Typically 100s of such instances are loaded at a time,

and tested for satisfiability one after another. Only the current instance resides completely

in the on-chip BRAM.

92

V-H.2. Performance Model

V-H.2.a. FPGA Resources

We conducted several FPGA synthesis runs, using different bin sizes, to obtain the depen-

dence of FPGA resource utilization on bin size. The aim of this experiment was to quantify

the FPGA resource utilization as a function of

• Number of variables of the bin.

• Number of clauses in the bin.

Fig. V.3. Resource Utilization for Clauses

Based on several experiments, we conclude that the LUT utilization is 20·V ·C +

300·V , where V and C are the number of variables and the number of clauses per bin,

respectively. Figures V.3 and V.4 graphically show the increase in number of LUTs used,

with an increase in number of clauses, and an increase in number of variables, respectively.

The X-axis of V.3 represents the number of clauses in a single bin which is currently stored

in the FPGA fabric. The X-axis of V.4 represents the number of variables in a single bin,

configured onto the FPGA fabric. The Y-axis on both graphs is the number of LUTs used

in case of XC2VP30 device. From these graphs, we conclude that the LUT utilization

93

Fig. V.4. Resource Utilization for Variables

increases as per the expression above. The LUT utilization graphs for a Virtex II Pro

(XC2VP30) were identical to those obtained for Virtex-4 (XC4VFX140) device.

V-H.2.b. Clauses/Variable Ratio

We conducted another set of experiments to find the golden ratio (Ag), of the maximum

number of clauses to the maximum number of variables in a bin. If the number of variables

in a bin are too high (low) compared to the number of clauses, the bin utilization can be

quite low. Bin utilization here is defined as follows: if a single bin is viewed as a matrix,

with clauses for rows and variables for columns, bin utilization is the number of filled

matrix entries over the total available matrix entries. For example, consider a bin with 3

clauses over 3 variables. If we store clauses (a +b) and (b + c) in this bin, our utilization

is 4
9 . For a set of 20 examples (taken from different CNF benchmark suites), we performed

several binning runs using the cost function explained in Section V-F. For a given number

of variables we varied the number of clauses in a bin, and obtained the µ, µ+σ and µ−σ of

bin utilization over all the benchmarks. The number of variables was 8, 12, 16, 36, 75 and

95. Two sample plots, for number of variables equal to 16 and 36, are shown in Figure V.5

and V.6, respectively. From the six plots obtained by this exercise, for a 60% bin utilization,

94

Ag was found to be 2
3 .

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

B
in

 U
ti
liz

a
ti
o

n

Maximum Num. of Clauses

(i) Computing Aspect Ratio (16 Variables)

Mean Utilization
Mean + Sigma
Mean - Sigma

Fig. V.5. Computing Aspect Ratio (16 Variables)

V-H.2.c. Cycles Vs. Bin Size

In order to study the effect of increasing bin size on runtime, we experimentally tried to

obtain the number of hardware instructions executed as a function of bin size. We ran sev-

eral satisfiable and unsatisfiable designs on our hardware platform, with different numbers

of variables V and clauses C = Ag ·V in a bin. The ratio of the total number of hardware

instructions executed to the number of bins was found to be roughly constant for different

(V , Ag ·V) values. In other words, the number of hardware instructions per bin is roughly

independent of the bin size. This constant was found to be ∼125 cycles/bin. The intuition

behind this behavior is that if the bin size is large, the total number of hardware cycles

decreases because the number of bins touched decreases, yielding a net constant number of

hardware cycles per bin.

95

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 15 20 25 30

B
in

 U
ti
liz

a
ti
o

n

Maximum Num. of Clauses

Computing Aspect Ratio (36 Variables)

Mean Utilization
Mean + Sigma
Mean - Sigma

Fig. V.6. Computing Aspect Ratio (36 Variables)

V-H.2.d. Bins Touched Vs. Bin Size

It is important to quantify the number of bins touched as a function of the bin size. We ran

several satisfiable and unsatisfiable designs, through our hardware platform, and recorded

the backtracks required for completely solving the instance. For a given bin size, we simu-

lated whether each of these backtracks would have resulted in a new bin being touched. A

subset of the results is shown in Table V.1. Column 1 lists the instance name, while Column

2 lists the number of bins obtained after bandwidth minimization. Column 3 lists the num-

ber of bins touched in order to completely solve the instance. Columns 4, 5 and 6 display

the number of bins touched if the bin size is increased by 5×, 10× and 20× respectively.

The average reduction in the number of bins touched for the last four columns is displayed

in the last row. This experiment concludes that the number of bins touched reduces linearly

with an increase in bin size.

96

Table V.1. Number of Bins Touched with Respect to Bin Size

Instance Bins

Number of Bins Touched

By Increasing Bin Size
1× 5× 10× 20×

cmb 15 308 94 49 0

sct 57 1193 295 174 111

cc 27 48 11 6 3

cordic 58 1350 341 158 122

Reductions 1× 3.98× 8.33× 21.45×

V-H.2.e. Bin Size

Our current implementation uses a Xilinx XC2VP30 FPGA, which contains about 30K

LUTs. An industry-strength implementation of our FPGA SAT solver would be done using

best-in-class FPGA boards that are in the market today, which are based on the XC4VFX60

and XC4VFX140 FPGAs. These contain 60K and 140K LUTs respectively. We therefore

estimate the bin size for these boards. Table V.2 tabulates the distribution of the LUTs in

each of these devices over portions of our design that scale with bin size and also those

portions of the design that do not scale with bin size. The non-scaling parts are those for

which the LUT utilization does not increase while increasing the bin size. These include the

Xilinx cores for DDR, DCM, PowerPC, BRAM, PLB, OPB and the finite state machine for

the decision engine. The scaling parts are those for which the device utilization increases

with an increase in bin size. These include the clauses of the bin. Column 2 in Table V.2

tabulates this distribution for our current XC2VP30 based board. Out of the total 30K

available LUTS, and assuming a 70% device utilization, only 14K LUTs can be used for

storing the clauses of the bin. In case of the XC4VFX60 FPGA, as shown in Column

3, about 35K LUTs can be used for the clauses of the bin. Similarly, Column 4 lists the

available LUTs for clauses of the bin, for the XC4VFX140 FPGA.

Using the resource utilization for a single clause and a single variable, together with

the available resources for clauses of a bin, we can compute the maximum size of a bin

97

which can be contained in the bigger FPGAs mentioned above. Say a bin of size C clauses

and V variables can be configured into an FPGA device Device. We know that the number

of LUTs of Device utilized for clauses of the bin is 300·V + 20·V ·C. Since C = 2
3 ·V based

on the golden ratio Ag, we have 300·V + 20·23 ·V 2 = Available LUTs in Device.

Table V.2. LUT Distribution for FPGA Devices
FPGA Device: XC2VP30 XC4VFX60 XC4VFX140

Total Logic Cells (L) 30K 60K 140K

Xilinx Cores

7K 7K 7K(DDR + DCM + PowerPC

+ BRAM + PLB + OPB) and
Decision Engine

Available (0.7L - 7K):
14K 35K 91K

Clause of bin

(Vdevice, Ag ·Vdevice) (16, 10) (36, 24) (75, 50)

Solving this quadratic equation for V gives us the size of the bin (V , Ag ·V) that can

be accommodated in any FPGA device. The last row of Table V.2 lists the bin sizes for

the FPGA devices XC2VP30, XC4VFX60 and XC4VFX140. These calculated bin sizes

have been verified by synthesizing the design netlist generated for these bin sizes using the

Xilinx ISE 8.2i tool, for the corresponding device.

V-H.3. Projections

Detailed runtime data (for software and the hardware portions of our design) were extracted

using the XC2VP30 university evaluation board. Using the performance model of the

previous section, we project these runtimes for a Xilinx XC4VFX140 device.

From the performance models in Section V-H.2, we can project the system perfor-

mance (from the current implementation on the XC2VP30 device) as follows:

• Number of bins in the design are projected to grow as VXC2VP30
VDevice

.

This is because the number of bins required for a CNF instance is inversely propor-

tional to the bin size.

98

• Number of bins touched grows as VXC2VP30
VDevice

.

From our discussion on bins touched versus bin size in Section V-H.2, the number of

bins touched is inversely proportional to bin size, which in turn is proportional to the

number of variables in a bin.

• Software (PowerPC) runtimes improve as: FDevice

FXC2VP30
· VDevice

VXC2VP30
·50.

This expression can be analyzed in three parts.

– Software runtime is inversely proportional to the device frequency.

– If the number of bins touched is reduced, the number of bin transfers directed

by the PowerPC are reduced proportionately.

– The bus transfer rate using Xilinx bus transfer protocols is about 50 cycles per

word in our current implementation. This transfer rate can be reduced to 1 cycle

per word, by writing a custom bus transfer protocol.

• Hardware (Verilog) runtimes improve as: FDevice

FXC2VP30
· VDevice

VXC2VP30
· (

cycles
bin

)XC2VP30

(cycles
bin

)Device

.

Again, this expression can be analyzed in three parts.

– Hardware runtime is inversely proportional to the device frequency.

– If the number of bins touched is reduced, the total number of hardware cycles

required for solving the instance are reduced proportionately. This factor is

VDevice

VXC2VP30
.

– The total number of hardware cycles required is proportional to the number of

cycles required to solve a single bin.

Using the above expressions for the scaling of the hardware and software runtimes,

the projected runtimes for a XC4VFX140 based system are shown in Table V.3. Note that

99

Table V.3. Runtime Comparison XC4VFX140 Versus MiniSAT

Instance Name Num. Vars Num. Cls. Num Bins Bins Touched
Time (Sec)

PowerPC Verilog MiniSAT

mux u 133 504 13 1 1.24×10−8 1.43×10−9 9.39×10−4

cmb 62 147 4 66 6.90×10−6 2.84×10−5 1.01×10−3

cht u 647 2,164 48 6 9.32×10−7 1.00×10−6 1.97×10−3

frg1 u 310 2,362 71 1 1.79×10−7 5.02×10−7 1.03×10−3

ttt2 u 874 3,284 84 4 9.24×10−7 6.77×10−7 9.98×10−4

term1 u 1,288 4,288 114 3 1.06×10−6 3.72×10−7 1.99×10−3

x4 u 1,764 5,772 138 12 2.24×10−6 2.67×10−6 2.99×10−3

x3 u 3,301 10,092 257 18 3.84×10−6 3.39×10−6 3.01×10−3

aim-50-2 0-yes1-20 50 100 3 3 2.99×10−7 1.49×10−6 1.84×10−4

holes6 42 133 3 4600 5.00×10−4 2.23×10−3 8.98×10−3

holes8 72 297 5 276751 3.04×10−2 1.21×10−1 1.49

uuf100-0457 100 430 17 43806 4.39×10−3 2.58×10−2 1.90×10−2

uuf125-07 125 538 21 1120471 1.35×10−1 9.03×10−1 2.01×10−2

Geo. Mean 1.31×10−5 2.27×10−5 3.78×10−3

the results in Table V.3 are obtained by taking the actually hardware and software run-

times of our XC2VP30 based platform, and projecting these numbers to a industry strength

XC4VFX140 based platform. Column 1 lists the instance name, and Columns 2 and 3 list

the number of variables and clauses, respectively, in the instance. Column 4 lists the num-

ber of bins obtained after the CNF partitioning is performed on the host machine. Column

5 lists the number of bins ’touched’ by the XC4VFX140 based hardware for solving this

instance. The runtimes (in seconds) are listed in Columns 6, 7 and 8. Column 6 reports

the software runtime of our approach (i.e. the time taken by the PowerPC at 450 MHz to

perform the bin transfers). Column 7 reports the hardware runtime (i.e. hardware runtime

over all bins). The runtimes for the pre-processing step are not considered, since they are

negligible with respect to the hardware or software runtime. Even if the pre-processing

runtimes were higher, the time spent in partitioning the CNF instance is amply recovered

when multiple SAT calls need to be made for the same instance, which commonly occurs in

CAD based SAT instances. Finally, the last column reports the MiniSAT runtimes obtained

on a 3.6 GHz, Pentium IV machine with 3 GB of RAM, running Linux.

Over all test cases, the net speedup over MiniSAT is 90×, and for benchmarks in

100

which more than 4500 bins are touched, the speedup is about 17×. Also, for benchmarks

which fit in a single bin, the speedup is 2.85×104.

The capacity of the XC4VFX140 based system can be computed as follows. Assume

that we cache 500 bins in the BRAM. Each bin has 50 variables and 75 clauses. The

number of clauses Ctot on number of variables Vtot that can be accommodated in this system

is obtained by solving the following equation.

BRAMSIZE = (500 ·50 ·2 ·75)+ (Ctot

Ag
· log2(Vtot))+Vtot · (4+ log2(Vtot)+ log2(

Ctot

Ag·VDevice
)

The first term in the above equation represents the number of BRAM bits required to

cache 500 bins. The second term represents the number of BRAM bits required to store

the variable indices across all the bins. The third term represents the number of BRAM

bits required to store the global state of all the variables in the design. This is split into 3

smaller terms.

• The first term requires 4 bits in total. This is to record the decision on the variable

(2 bits) and the assigned / implied status of the variable (1 bit) and whether it is the

earliest indexed variable that we have backtracked on (1 bit).

• The second term represents the number of bits required to record the decision level

(log2(Vtot) bits).

• The third term represents the number of bits required to record the index of the bin

in which the variable was assigned or implied, which requires as many bits as the

logarithm of the number of bins (log2(
Ctot

Ag·VDevice
)).

The total BRAMSIZE for the XC4VFX140 part is 9.936Mb. Solving the above equa-

tion, using a maximum number of variables (Vtot) of 10K, gives Ctot = 280K clauses, the

capacity of the system.

101

V-I. Chapter Summary

In this chapter, we have presented an FPGA-based approach for Boolean satisfiability, in

which the traversal of the implication graph as well as conflict clause generation are per-

formed in hardware, in parallel. In our approach, clauses are stored in FPGA slices. In

order to solve large SAT instances, we heuristically partition the clauses into a number of

bins, each of which can fit in the FPGA. This is done in a pre-processing step. The entire

instance is solved using both intra- and inter-bin non-chronological backtrack, which is im-

plemented in hardware. The on-chip BRAM is used for storing all the bins of a partitioned

CNF problem. The embedded PowerPC processor on the FPGA performs the task of load-

ing the appropriate bin from the BRAM, as requested by the hardware. Our entire flow has

been verified for correctness on a Virtex-II Pro based evaluation platform. We project the

runtimes obtained on this platform to an industry strength XC4VFX140 based system, and

show that a speed up of 17× can be obtained over the best-in-class software approach. The

projected system can handle instances with as many as 280K clauses on 10K variables.

102

CHAPTER VI

ACCELERATING BOOLEAN SATISFIABILITY ON A GRAPHICS PROCESSING

UNIT

VI-A. Chapter Overview

In this chapter we present a Boolean Satisfiability solver with a new GPU-enhanced vari-

able ordering heuristic. Our approach is implemented in a CPU-based procedure, and lever-

ages the parallelism of a graphics processing unit (GPU). The CPU implements a complete

procedure (MiniSAT), while the GPU implements an approximate procedure (an imple-

mentation of survey propagation - SurveySAT). The SAT search is initiated on the CPU,

and after a user-specified fraction of decisions have been made, the GPU based SurveySAT

engine is invoked. The decisions made by this engine are returned to MiniSAT, which

now updates its variable ordering by giving a higher preference to the decision variables

returned by the GPU. This procedure is repeated until a solution is found. Our approach re-

tains completeness (since it is based on a complete procedure) but has the potential of high

speedup since the incomplete SurveySAT procedure that enhances the variable ordering in

the complete procedure, is implemented on a parallel platform. Our results demonstrate

that over several satisfiable and unsatisfiable benchmarks, our technique (referred to as

MESP) performs better than MiniSAT. We show a 64% speedup on average, over several

benchmarks from the SAT race (2006) competition.

The rest of this chapter is organized as follows. The motivation for this work is de-

scribed in Section VI-B. Section VI-C reports some related previous work. Section VI-D

describes our SAT algorithm. This section first briefly describes our GPU based imple-

mentation of SurveySAT. We then present the details of MESP. Experimental results are

reported in Section VI-E. Section VI-F summarizes this chapter.

103

VI-B. Introduction

In addition to well-known complete approaches to solve SAT such as [49, 50, 51, 52]

and [81], several incomplete or stochastic heuristics have been presented in the past. A

partial list of these is [91, 92, 93, 94, 95]. These heuristics are iterative, and usually very

effective for random SAT instances. For structured SAT instances (such as those that arise

out of VLSI logic circuits), their performance is mixed. For example survey propagation

based techniques [94, 95] can return a non-convergent or a contradiction result, both of

which give the user no conclusive indication of the satisfiability or unsatisfiability of the

instance. The advantage, however, of these incomplete techniques is that they are inher-

ently amenable to parallelization. In this work we present a complete algorithm for Boolean

satisfiability. Our algorithm implements a complete procedure (MiniSAT), which leverages

the speed of an incomplete procedure (survey propagation), to augment the variable order-

ing heuristic of the complete procedure. Our approach retains completeness (since it is

implements a complete procedure) but has the potential of high speedup (since the approx-

imate procedure is executed on a highly parallel graphics processor based platform).

This work is based on the implementation of a new variable ordering approach in a

complete procedure (MiniSAT [81]), which runs on the CPU. This instance of MiniSAT

is guided by a survey propagation based (SurveySAT) procedure which is implemented

on the GPU. Our new algorithm is referred to as MESP (MiniSAT enhanced with Survey

Propagation) in the sequel. The GPU is ideally suited for the (independent) variables to

clauses (V →C) and clauses to variables (C→V) computations that need to be performed

in the SurveySAT procedure. Note that in our approach, the set of clauses C on the GPU

contains a subset of the recent learned clauses that were generated in MiniSAT, in addition

to the original problem’s clause database. Using the partial assignments of the CPU-based

MiniSAT procedure, the GPU (in parallel) computes certain new variable assignments, and

104

returns these to the CPU. The CPU-based procedure now gives a higher preference to these

variables during the next set of decisions it makes. The intuition behind our approach is that

the assignments from the (GPU-based) survey propagation augment the variable ordering

heuristic of MiniSAT with the more global view of the clause database (including recent

learned clauses) that the SurveySAT procedure has. This procedure is repeated until the

instance is proven satisfiable or reported as unsatisfiable. In this manner, MESP retains

the best features of the ’complete’ procedure and also takes advantage of a GPU based

accelerated implementation of the ’incomplete’ procedure.

The key contributions of the work described in this chapter include:

• This is the first approach to present a CPU + GPU based complete SAT decision

procedure.

• Our SAT solver (MESP) retains the best features of a CPU based complete SAT

procedure, and a GPU implementation of a highly parallel SurveySAT procedure.

• Our solver frequently refreshes the learned clause database on the GPU with the

recently generated learned clauses on CPU, and thus takes advantage of the advanced

learned clause generation and resolution heuristics existing in MiniSAT.

• Our GPU implementation of the SurveySAT procedure is 22× faster than a CPU

based SurveySAT implementation for several hard random benchmarks. On these

random benchmarks, MiniSAT times out after several hours.

• Over several structural benchmarks from the SAT07 competition, on average MESP

shows a 64% speedup when compared to MiniSAT (which was run on the CPU).

105

VI-C. Related Previous Work

Existing SAT solvers can be categorized into complete, stochastic, hybrid and parallel

techniques. The complete techniques [96, 49, 50, 51, 52, 81] either provide a satisfying

assignment for the SAT instance or report the instance to be unsatisfiable. Stochastic tech-

niques [91, 92, 93, 94, 95] may be able to quickly provide a satisfying solution for certain

SAT instances. However, they cannot prove that a SAT instance is unsatisfiable. Also,

for a satisfiable instance, these solvers are not guaranteed to find a solution. Hybrid tech-

niques [97] aim at borrowing ideas from complete and stochastic approaches to improve the

overall performance. Parallel SAT solvers [98, 99, 100, 101] use multithreaded or MIMD

machines for their implementations, but require dynamic work load balancing heuristics

which can be expensive. Our approach falls under the hybrid category, making use of the

immense parallelism available in a GPU. Our approach is a complete technique, targeting

structural SAT instances (in addition to random instances). To the best of our knowledge,

there is no existing complete SAT solver, hybrid or otherwise, which employs the GPU for

improving its performance. Some of the existing work in Boolean satisfiability is outlined

next.

Among the complete approaches, the DPLL technique [96] was the first branch and

search algorithm developed for solving a SAT instance. GRASP [49] augmented DPLL

with non-chronological backtracking when a conflict was detected. SAT solvers like [50,

51, 52] inherited the features of GRASP and improved the search heuristics by employing

concepts like 2-literal watching, and learned clause-aging [50], improved decision strate-

gies [51] and stronger conflict clause analysis [52]. MiniSAT [81] is a more recent SAT

solver which performs a smart conflict clause simplification by applying subsumption reso-

lution [82] and caching of intermediate results. MiniSAT has been recognized to be among

the best SAT solvers in recent SAT competitions [102]. Our approach therefore employs

106

MiniSAT as the baseline complete SAT technique, and further improves its performance

by employing a fast, (albeit incomplete) SAT solver while retaining completeness.

A few examples of stochastic techniques for solving a SAT instance are discussed next.

WalkSAT [91] and GSAT [92] are heuristic approaches which start by assigning a random

value to each variable. If the assignment satisfies all clauses, the algorithm terminates, re-

turning the assignment. Otherwise, a variable is flipped and the above step is repeated until

all the clauses are satisfied. WalkSAT and GSAT differ in the methods used to select which

variable to flip. GSAT uses a probabilistic heuristic to flip a variable, which minimizes the

number of unsatisfied clauses (in the new assignment). WalkSAT first picks a clause which

is unsatisfied by the current assignment, then flips a variable within that clause. This clause

is generally picked at random among unsatisfied clauses. The variable is heuristically cho-

sen (with some probability of picking one of the variables at random), with the aim that

the variable flip will result in the fewest previously satisfied clauses becoming unsatisfied.

Note that WalkSAT is guaranteed to satisfy the current unsatisfied clause. WalkSAT has

to do less calculation than GSAT when selecting a variable to flip, because the number

of variables being considered by WalkSAT are fewer. Note that both WalkSAT and GSAT

may restart with a new random assignment, if no solution has been found after several flips.

This is done in order to escape out of a local minimum.

Discrete Lagrangian-based global search methods such as [93] avoid getting stuck

in a local trap by using Lagrange multipliers to force the current assignment out of the

current local minimum. Survey propagation [94, 95] is an iterative ’message-passing’ al-

gorithm designed to solve hard random k-SAT problems. Experimental results suggest that

it may be an effective technique even for problems that are close to the hard satisfiability

threshold [103]. However, it is an incomplete technique and is not effective for most hard

structural SAT problems. In [104], a GPU-based implementation of survey propagation is

presented. In contrast to our approach, [104] does not present a complete procedure. They

107

demonstrate a 9× speedup over a CPU based implementation of survey propagation [94].

However, [104] is an incomplete procedure, frequently returning a non-convergent or con-

tradiction result on real SAT problems which are structural. Our GPU-based implementa-

tion of survey propagation is 22× faster compared to [94].

The approach of [97] is an hybrid technique which, like our approach, integrates a

stochastic approach and a DPLL-based approach. A stochastic search is used to identify a

subset of clauses to be passed to a DPLL SAT solver. Over several benchmarks, [97] reports

on average 39% speedup against MiniSAT, however for their unsatisfiable benchmarks their

performance shows up to a 4X slowdown. Our approach, on the other hand, accelerates the

stochastic approach using a GPU and our results show on average 64% speedup over several

satisfiable and unsatisfiable benchmarks.

Among existing parallel SAT approaches, [98] is the first parallel implementation of

the DPLL procedure on a message based MIMD machine. The input formula is dynam-

ically divided into disjoint sub-formulas, which are solved by a DPLL based procedure

running on every processor. The approach also discusses dynamic load balancing tech-

niques to obtain higher parallelizing efficiency. However, only random instances or un-

satisfiable graph problems are discussed in the results provided by [98]. No intuition of

the performance on structural SAT problems is provided. Our technique on the other hand

employs a SIMD machine (GPU) for improving the performance of a complete procedure

for structural and random SAT instances. PSATO [99] is a DPLL solver for distributed ar-

chitectures, and it introduces a technique to define non-overlapping portions of the search

space to be examined. [105], a parallel-distributed DPLL solver, improves the workload

balancing of [98] by using a master-slave communication model and work stealing. The

authors emphasize the ping-pong phenomenon which may occur in workload balancing.

Unlike these techniques, our technique does not require any work load balancing heuris-

tics.

108

A parallel multithreaded SAT solver is presented in [100]. It is implemented on a

single multiprocessor workstation with a shared memory architecture It shows the negative

effect of parallel backtrack-search algorithm on a single multiprocessor workstation, due to

increased cache misses. Our approach implements a survey propagation based technique

on a SIMD GPU machine and employs it in conjunction with a complete DPLL based

solver (MiniSAT [81]). Survey propagation, as shown in the sequel, is highly amenable to

parallelization and therefore allows us to obtain high overall speedups.

GridSAT [101] also a DPLL solver is designed to run on a large number of widely

distributed and heterogeneous resources: the Grid. Its key philosophy is to keep the exe-

cution as sequential as possible and to use parallelism only when required. The underlying

solver is [50] and it implements a distributed learning clause database system on different

but non-dedicated nationally distributed Grids. Our approach uses off-the-shelf graphics

cards for accelerating Boolean satisfiability and is therefore extremely cost effective. To

the best of our knowledge, there is no existing complete SAT solver which employs the

GPU for obtaining a performance boost.

VI-D. Our Approach

Our implementation of survey propagation on the GPU is explained in Section VI-D.1 and

the MESP (MiniSAT enhanced with survey propagation) approach is described in Sec-

tion VI-D.2.

VI-D.1. SurveySAT and the GPU

In Section VI-D.1.a, we first describe the survey propagation based SAT procedure, fol-

lowed by a discussion of our implementation (SurveySAT) of this approach on the GPU in

Section VI-D.1.b. Finally, we present some results of our GPU based SurveySAT engine

109

(Section VI-D.1.c). These results are presented to illustrate the potential and the shortcom-

ings of SurveySAT, and motivate our MESP procedure.

VI-D.1.a. SurveySAT

Survey propagation based SAT solvers are based on an iterative message passing paradigm.

The survey propagation algorithm is shown in Algorithm 4. Consider a SAT instance con-

sisting of clauses C on a set of variables V . The SAT instance can be graphically represented

by a Factor Graph, which is a bipartite graph with two kinds of nodes – variable nodes and

function nodes or clause nodes. An undirected edge is present between variable node v and

function node c iff the variable v is present in the clause c (in either polarity). The factor

graph is cyclic in general, although it can be a tree. Survey propagation is exact on factor

graphs that are trees [94].

The SurveySAT algorithm consists of clauses sending surveys or messages (ηc→v ∈

[0,1]) to their variables. These surveys are probability values. A high value of ηc→v indi-

cates that the clause c needs variable v to satisfy it.

For the remainder of the discussion, let i, j be variables, and a, b be clauses. We

denote C(j) as the set of clauses that contain the variable j. Let Cu
a(j) be the set of clauses

that contain the variable j in the opposite polarity as it appears in clause a. Similarly, let

Cs
a(j) be the set of clauses that contain the variable j in the same polarity as it appears in

clause a. Also, let V (a) be the variables that appear in clause a.

Survey propagation begins by setting η values randomly (line 2). Then we attempt to

converge on values of the variables (line 3). Each call to the convergence routine computes

the survey values ηa→i. To do this, we first computes 3 message from each variable j ∈

V (a) \ i to the clauses that contain variable j in either polarity (line 17). These message

computations are shown in Equations 6.1 through 6.3. Equation 6.1 is explained below.

The survey from variable j to clause a has a high value when

110

Algorithm 4 Pseudocode of Survey Propagation based SAT Solver

1: survey SAT(C,V)
2: Set η’s to random values

3: while converge(C,V) do

4: Sort V in order of the absolute difference in their bias values

5: Fix variables v∗ ∈V s.t. |W (+)
v∗ −W

(−)
v∗ |> τ. If contradiction, exit

6: if all variables fixed then

7: Problem SAT

8: exit

9: end if

10: if Σ
∀a, j

(ηa→ j) < δ then

11: call walksat()

12: end if

13: end while

14:
15: converge(C,V)
16: repeat

17: Compute Π’s (Equation 6.1 through 6.3)

18: Compute η’s (Equation 6.4)

19: ε = max
∀a, j
|ηold

a→ j−ηa→ j|

20: iter++; ηold ← η

21: until (iter < MAX || ε > EPS)

22: if ε≤ EPS then

23: return 1

24: else

25: return 0

26: end if

• Other clauses (which contain variable j in the opposite polarity as clause a) have

computed a high value of the survey (first square parenthesis expression), and

• Other clauses (which contain variable j in the same polarity as clause a) have com-

puted a low value of the survey (second square parenthesis expression)

Equation 6.2 can be explained similarly.

Πu
j→a = [1− Π

b∈Cu
a(j)

(1−ηb→ j)][Π
b∈Cs

a(j)
(1−ηb→ j)] (6.1)

111

Πs
j→a = [1− Π

b∈Cs
a(j)

(1−ηb→ j)][Π
b∈Cu

a(j)
(1−ηb→ j)] (6.2)

Π0
j→a = [Π

b∈C(j)\a
(1−ηb→ j)] (6.3)

Once we have computed Πs
j→a, Πu

j→a and Π0
j→a, we compute the survey ηa→i as

shown in Equation 6.4 (line 18). The survey ηa→i has a large value if Πu
j→a is large,

thereby, clause a indicates to the variable i that it needs to be set in the polarity that would

satisfy clause a. Note that if V (a)\ i is empty, then ηa→i = 1.

ηa→i = Π
j∈V (a)\i

[
Πu

j→a

Πu
j→a +Πs

j→a +Π0
j→a

] (6.4)

Note that if any of the sets Cs
a(j), Cu

a(j) or C(j) are empty, then their corresponding

product term takes on a value 1. Equation 6.3 in the denominator of Equation 6.4 avoids a

possibility of a division by 0 in Equation 6.4.

After computing the ηs, we check for convergence, by computing the maximum of

the absolute value of the difference between ηa→i and ηold
a→i (from the last iteration) in the

converge() routine (line 19). If the largest entry of this vector of absolute differences is

smaller than a user-defined value EPS (line 22), then we declare convergence (line 23).

If convergence has not occurred after MAX iterations, we return a 0 (line 25) and the

survey SAT() returns unsuccessfully (line 3) with a non-convergent status. The converge()

routine is iterated until convergence is achieved, or a user-specified number of iterations

MAX is reached. We use MAX = 1000 in all our experiments, and EPS = 0.01.

Upon convergence, we compute two bias values for each variable, and sort the variable

list in the descending order of the absolute difference in their bias values (line 4). There

are two biases W
(+)
i and W

(−)
i that are computed, as shown in Equations 6.5 and 6.6. The

intuition behind the computation of these two values is similar to that of the computation of

112

surveys ηa→i, except for the fact that the biases are computed for each variable. Also, the

Π values that the bias computations are based on (Equations 6.7 through 6.9) are computed

for all clauses C+(i) (C−(i)) which contain the variable i in the positive (negative) polarity,

using the converged values of the surveys (η∗a→i). C(i) is the set of clauses which contain

the variable i in either polarity.

W
(+)
i =

Π̂+
i

Π̂+
i + Π̂−i + Π̂0

i

(6.5)

W
(−)
i =

Π̂−i
Π̂+

i + Π̂−i + Π̂0
i

(6.6)

Π̂+
i = [1− Π

a∈C+(i)
(1−η∗a→i)][Π

a∈C−(i)
(1−η∗a→i)] (6.7)

Π̂−i = [1− Π
a∈C−(i)

(1−η∗a→i)][Π
a∈C+(i)

(1−η∗a→i)] (6.8)

Π̂0
i = [Π

a∈C(i)
(1−η∗a→i)] (6.9)

All variables with the absolute difference in bias values |W (+)
i −W

(−)
i | > τ (a user-

specified value) are fixed (line 5). If all variables are fixed, then the problem is SAT, and

declared as such and we exit (lines 6-8). If all surveys are trivial (line 10) then we call a

local search process (WalkSAT() [91] in this instance). If neither condition above holds,

we run the converge() routine again. In subsequent runs of the converge routine, variables

that were previously fixed do not participate in the computation of Π’s (Equations 6.1

through 6.3 and 6.7 through 6.9). Similarly, clauses that are satisfied as a consequence

of fixing some variable do not participate in the computation of ηa→i and the bias values

(Equations 6.4, 6.5 and 6.6).

113

Note that the survey SAT algorithm can fail in two ways – it can fail to achieve con-

vergence, or it can converge such that the set of fixed variables is inconsistent although the

problem is satisfiable (returning a contradiction status in this case).

VI-D.1.b. SurveySAT on the GPU

Note that the survey SAT() procedure is naturally amenable for GPU implementation. Both

the Π and η computations are inherently parallelizable since the Π and η values are com-

puted using independent data. In our implementation of survey SAT() on the GPU, we

restrict the SAT instance to be a 3SAT instance. We compute Π’s (line 17) using by issuing

|V | parallel threads on the GPU, followed by a thread synchronization command. Next

we compute the surveys ηa→i (line 18) by issuing |C| threads on the GPU (each of which

computes the ηa→i values for all the 3 variables in its clause). The convergence check (line

19) is performed by computing a sum Z = Σ
∀a, j

[(|ηold
a→ j−ηa→ j|)≤ EPS?0 : 1]. If any ηa→ j

has not converged, then Z > 0. Hence convergence is checked by computing Z using an

integer add operation over all variables in all the clauses, using a reduction based addition

subroutine. On the GPU, line 21 similarly becomes

until (iter < MAX || Z > 0)

Also, the check of line 22 becomes

if Z = 0 then.

The test for trivial convergence (when all η’s are close to 0) (line 10) is performed

using a reduction based floating point add operation on the GPU. Both bias values (for all

variables) are computed by issuing 2|V | threads on the GPU, and they are sorted using a

parallel bitonic sorting operation on the GPU [29] (line 4). The fixing of variables (line 5)

is performed on the CPU.

The data structures on the GPU corresponding to the SAT instance are shown in Fig-

ure VI.1. The static information about the SAT instance is stored in two sets of arrays:

114

• Static per-variable data is stored in 3 arrays. Each array is indexed by the variable

number. For each variable, the arrays store the indices of the clauses it appears in,

the polarity of each appearance and the literal number of this variable in each clause

that it appears in.

• Static per-clause data is stored in 2 arrays. Note that each clause has at most 3

variables. Each array is indexed by the clause number. For each clause, the 2 arrays

store the variable index and polarity of each literal in that clause.

There are 2 additional sets of arrays that store the information computed during the

survey SAT computations. The first set of 2 arrays stores the Π
b∈C+(j)

(1−ηb→ j) and Π
b∈C−(j)

(1−

ηb→ j) values for each variable. These arrays are written by the variables and read by the

clauses. Another array stores the ηa→ j values, which are written by the clauses, and read

by the variables.

All the above data is stored in global memory on the GPU. Note that there is a single

burst transfer from the CPU to the GPU, to transfer the static information mentioned above.

During the computation of the Π and η quantities, there are no transfers between the GPU

and the CPU. The information that is transferred from the GPU to the CPU is the list of

variables sorted in decreasing order of the absolute difference of their bias values (|W (+)
i −

W
(−)
i |). After the CPU has fixed any variables, it returns to the GPU a list of variables that

are fixed (these do not participate in the η computations any more), and the clauses that are

satisfied as a result (these do not participate in Π computations any more).

The size of thread blocks on the GPU must be a multiple of 32. As a result, all the

arrays shown in Figure VI.1 are padded to the next highest multiple of 32 in our implemen-

tation. The reduction based add and sort operations are most efficient for arrays whose size

is a power of 2. For this reason, the arrays of the absolute difference of bias values and the

predicate value of |ηold
a→ j−ηa→ j|)≤ EPS are also padded to the next highest power of 2.

115

The NVIDIA GTX 280 has 1 GB of onboard memory. With the above memory orga-

nization, we can easily fit SAT instances with up to 1M variables and 10M clauses.

1 2 3 4
polarity

variable #

Per−clause data (static)

polarity

clause #

literal #

1 2 3

Per−variable data (static)

1 2 3 4

1 2 3 4

|C|

|V |

|V |

Π
b∈C−(j)

(1−ηb→ j)

Π
b∈C+(j)

(1−ηb→ j)

Π’s (written by variables, read by clauses)

|C|

η’s (written by clauses, read by variables)

ηb→ j

Fig. VI.1. Data Structure of the SAT Instance on the GPU

VI-D.1.c. SurveySAT Results on the GPU

The SurveySAT algorithm described in Section VI-D.1.b was implemented in CUDA. It

was run on a GTX 280 GPU card from NVIDIA which has 1 GB onboard (global) memory

and runs at a frequency of 1.4GHz. The results obtained for SurveySAT (on the GPU) were

compared against a CPU implementation of SurveySAT [94], and MiniSAT which was also

run on the CPU. The CPU used in our experiments is a 2.67 GHz, Intel i7 processor with 9

116

Table VI.1. Comparing MiniSAT with SurveySAT (CPU) and SurveySAT (GPU)

Benchmark Num. Var Num. Cl MiniSAT SurveySAT (CPU) SurveySAT (GPU) Speedup

(sec) (sec) (sec)

Random 1 20000 83999 > 2 hours 3009.67 172.87 17.41×
Random 2 16000 67199 > 2 hours 1729.48 110.60 15.63×
Random 3 12000 50399 > 2 hours 1002.48 57.98 17.29×
Random 4 8000 33599 > 2 hours 369.61 5.82 63.80×
Random 5 4000 16799 > 2 hours 65.01 3.69 17.617

uf200-097 200 860 0.15 0.20 0.08 2.50

hole10 187 792 1.3 - -

uuf200-018 200 860 0.15 - -

Average 22.37×

GB RAM, and running Linux.

Table VI.1 compares MiniSAT (on the CPU) with SurveySAT (on the CPU) and Sur-

veySAT (on the GPU) over 5 random and 3 structural benchmarks. Column 1 lists the

random and structural benchmarks. All random benchmarks are satisfiable. The first struc-

tural problem is satisfiable and the remaining 2 are unsatisfiable. Columns 2 and 3 report

the number of variables and clauses in each of the benchmarks. Column 4 reports the

MiniSAT runtimes (in seconds) on these benchmarks on the CPU and GPU respectively.

Columns 5 and 6 report the SurveySAT runtimes (in seconds) for the same benchmarks on

the CPU and GPU respectively. A ’-’ implies that either the procedure did not converge in

MAX iterations (MAX = 1000) or reported a contradiction. Column 6 reports the speedup

of SurveySAT on the GPU compared to SurveySAT on the CPU.

For random benchmarks, SurveySAT is several orders of magnitude faster than Min-

iSAT, however for structural examples the performance is mixed. In particular, for un-

satisfiable benchmarks, the response from SurveySAT (on the CPU or the GPU) is non-

conclusive. Our GPU based SurveySAT is on average 22X faster than the CPU implemen-

tation of SurveySAT, over the instances for which SurveySAT successfully completes. In

summary, even though SurveySAT can perform extremely well for random instances, for

structural instances its performance is mixed, and therefore the technique is not useful for

117

practical SAT instances. In the next section, we discuss our algorithm that retains the com-

pleteness of MiniSAT, while speeding it up with guidance obtained by SurveySAT (on the

GPU).

VI-D.2. MiniSAT Enhanced with Survey Propagation (MESP)

In our MESP approach we implement a CPU based complete SAT solver with a new GPU-

enhanced variable ordering heuristic. In MiniSAT, the inbuilt variable ordering heuristic,

(which determines what variable will be assigned next) is the Variable State Independent

Decaying Sum (VSIDS) heuristic. VSIDS makes a decision based on the activity value

of a variable. The activity is a literal occurrence count, with a higher weight placed on

variables of the more recently added clauses. The activity of all variables present in the

resolvent clauses, during conflict resolution and learned clause generation, is incremented

by fixed amount Fm. If any variable’s score becomes too high, the activity of all variables

is uniformly decayed. In MESP, we update the activities of certain variables based on

the guidance obtained from the (incomplete) survey propagation (on the GPU). This is

explained next.

In MESP, we first start the search in MiniSAT, after reading in the given SAT instance.

The SAT instance is also copied over to the GPU, organized in the manner illustrated in

Figure VI.1. After MiniSAT has made some progress (measured by the whether the number

of decisions it has made equal D% of the number of variables in the instance), it makes a

call to SurveySAT. MiniSAT transfers the current assignments and a subset of the recent

learned clauses onto the GPU. In our implementation, learned clauses with length less than

50 literals are transferred to the GPU. We augment the clause database on the GPU with 3

sets of learned clauses (set C1 with ≥0 and <10 literals, set C2 with ≥10 and <25 literals

and set C3 with ≥25 and <50 literals). Storage for learned clauses is statically allocated in

the global memory on the GPU. The routine converge(C,V) in SurveySAT is now modified

118

to converge(C, C1, C2, C3, V), where the η computations (over the clauses) are done in 4

separate kernels. Note that the η computation over all clauses is not done as a single kernel

in order to avoid underutilized threads due to the large variance in the length of the learned

clauses. Further, unless at least 256 learned clauses are transferred to the GPU in any of the

3 sets, the kernel for η computation for the corresponding set is not invoked. The number

of clauses in each set Ci was set to 8K.

After SurveySAT has converged and fixed a set of variables U (variables whose ab-

solute difference of bias values is greater than τ) on the GPU, it returns. MiniSAT now

increments the activity of all variables in the set U by Fsp, and continues with its search.

The idea is that since the instance converged (over all clauses as well as a subset of the re-

cent learned clauses) in SurveySAT by fixing the variables in set U with no contradiction,

an earlier decision on the variables in U would enable a better search in the CPU-based

MiniSAT procedure.

After MiniSAT makes more decisions (and implications), and another D% of the num-

ber of variables in the instance have been decided, the GPU based survey propagation algo-

rithm is invoked again. The total number of such calls to the SurveySAT routine is limited

to P, which is user specified. At every invocation of SurveySAT, any existing variable

assignments on the GPU are erased.

In the original MiniSAT approach, after a fixed number of conflicts R are detected

(or learned clauses are computed), the solver is restarted from the root of the decision

tree. This is done in order to allow the solver to start afresh with the guidance of the

learned clauses and the activities of the variables. Also the number of allowed conflicts

R is incremented by a factor of 1.5 upon each such restart. In our approach, each time

SurveySAT is invoked, the current allowable number of conflicts (or the maximum number

of stored learned clauses) in the MiniSAT portion of MESP is incremented (by a factor of

1.5, based on the existing strategy in MiniSAT). Thus our solver is not ’restarted’ as often

119

from the root of the decision tree, as often as the CPU based MiniSAT.

When the SurveySAT routine returns from the GPU after the ith call, four outcomes

are possible.

• The SurveySAT routine converges, and based on the absolute difference of the biases

of each variable, a set of variables U is found. These variables are passed along to

MiniSAT, which now increments their activity by an amount Fsp, and continues the

search.

• The SurveySAT routine converges, and based on the absolute difference of the biases

of each variable, no variables can be fixed. In this case, it returns an empty set U

to MiniSAT. In this case MiniSAT continues its search as it would have if there had

been no call to SurveySAT.

• The SurveySAT routine does not converge, or converges to a state which is inconsis-

tent. In this case also it returns an empty set U to MiniSAT.

• The SurveySAT routine converges, and heuristically determines that the factor graph

is a tree. On calling WalkSAT, if a satisfying solution is found we are done and the

Satisfiability of the instance is determined by SurveySAT. If WalkSAT is unable to

find a satisfying solution, the SurveySAT routine returns the set U to MiniSAT. The

CPU based MiniSAT now increments the activity of the variables in the set U by Fsp

and continues its search.

In the next section we discuss the experimental setup and compare the performance of

MESP to MiniSAT.

120

VI-E. Experimental Results

Table VI.2 compares the performance of our MESP technique to MiniSAT [81] on several

structural instances (both satisfiable and unsatisfiable) from the SAT RACE 2006 and SAT

2004 [102] benchmark suite. The CPU used in our experiments is a 2.67 GHz, Intel i7

processor with 9 GB RAM, running Linux. The GPU used is the NVIDIA GeForce 280

GTX.

Table VI.2. Comparing MESP with MiniSAT

k-SAT 3 SAT Speedup over

Benchmark S/U # Vars. # Cls. MiniSAT (k) # Vars. # Cls. MiniSAT (3) MESP MiniSAT(k) MiniSAT(3)

(sec) (sec) (sec)

139464p22 S 327932 1283772 29.84 530027 1890057 39.58 15.28 1.95× 2.59×
AProVE07-04 U 78607 208911 110.39 104732 287286 166.25 95.91 1.15× 1.73×
AProVE07-15 U 45672 97451 46.20 50711 112568 92.06 113.16 0.41× 0.81×

eijk.bs4863.S.aig-20 S 74044 276119 12.58 118092 408263 14.47 16.77 0.75× 0.86×
eijk.bs4863.S.aig-30 S 140089 530249 487.98 234412 813218 619.03 181.86 2.68× 3.40×

eijk.S298.S U 73222 283211 8.42 136731 473738 10.01 8.47 0.99× 1.18×
Intel-034.aig.smv-10 U 173475 593345 18.39 274460 896300 27.83 32.15 0.57× 0.87×
spec10-and-env-10 U 100444 593345 17.07 105949 668100 23.00 30.81 0.55× 0.75×
t22-034-10.aig.cnf U 12714 50237 24.96 13401 52789 27.95 8.20 3.04× 3.41×

vis.arbiter.E-50 U 12683 48336 24.87 13191 49860 26.05 7.66 3.25× 3.40×
hole10.cnf U 187 792 1.30 187 792 1.30 1.03 1.26× 1.26 ×
par16-3.cnf S 1015 3344 0.15 1015 3344 0.15 0.09 1.67× 1.67×

uf200-097.cnf S 200 860 0.15 200 860 0.15 0.05 3.00× 3.00×
Average 1.64× 1.92×

Columns 1 lists the benchmark name and Column 2 reports if the instance is satisfiable

or unsatisfiable. The number of variables and clauses in the original instance (referred to

as k-SAT) are reported in Columns 3 and 4 respectively. Column 5 reports the MiniSAT

runtime on the k-SAT version of the example (in seconds). All k-SAT instnaces are con-

verted to 3-SAT using a Perl script, before we can run MESP. This is because MESP only

handles 3-SAT instances. The number of variables and clauses in the 3-SAT version of the

instances are reported in Columns 6 and 7. The MiniSAT runtime (in secs) for the 3-SAT

version of the problem is reported in Column 8. Column 9 reports the runtime (in secs) of

121

the MESP approach, on the 3-SAT version of the problem. Columns 10 and 11 report the

ratio of the runtimes of MiniSAT (on the k-SAT instance) to MESP, and of MiniSAT (on

the 3-SAT instance) to MESP, respectively.

The various parameters of MESP were set as follows: MAX = 1000, EPS = 0.01, τ

= 0.1, D = 1, Fsp = Fm = 1. and maximum number of GPU calls (P) = 20. In MESP we

refreshed the learned clauses on the GPU on every 5th invocation of SurveySAT. During

the other invocations the learned clauses from a previous iteration were used. On the GPU

we statically allocate memory for 3 sets of 8K learned clauses, of length <10 literals, ≥10

literals and <25 literals, and ≥25 literals and <50 literals. In all our benchmarks, the

final decision of reporting the instance to be satisfiable or unsatisfiable was made by the

MiniSAT (CPU) portion of MESP. In other words, for these structural benchmarks, the

SurveySAT routine was never able exit early by determining a satisfying assignment using

WalkSAT.

Over our benchmarks, on average, MESP for the 3-SAT version of the instances

showed a 64% speedup compared to MiniSAT which was run on the original problem

instances (k-SAT). When compared to MiniSAT runtimes for the 3-SAT version of the

SAT instances, MESP is on average about 2× faster. We could have implemented our

SurveySAT approach on the GPU with the maximum length of the (regular) clauses being

>3, and obtained higher speedups in comparison to the MiniSAT runtimes for the original

(k-SAT) version of the instances.

VI-F. Chapter Summary

In this chapter, we have presented a complete Boolean Satisfiability approach with a new

GPU-enhanced variable ordering heuristic. Our approach is implemented in a CPU-based

complete procedure, which leverages the parallelism of a GPU to aid the complete algo-

122

rithm. The CPU implements MiniSAT, a complete procedure, while the GPU implements

SurveySAT, an approximate procedure. When a problem instance is read in, the SAT search

is initiated on the CPU. After a user-specified fraction of decisions have been made, the

GPU based SurveySAT engine is invoked. The decisions, if any, made by this engine are

returned to MiniSAT, which now updates its variable ordering by incrementing the activity

of the decision variables returned by the GPU. This procedure is repeated until a solution

is found. Our approach retains completeness (since it is implements a complete procedure)

but has the potential of high speedup (since the incomplete procedure is executed on a

highly parallel graphics processor platform). Experimental results demonstrate that over

several satisfiable and unsatisfiable benchmarks, our approach performs better than Min-

iSAT. On average, we demonstrate a 64% speedup over several benchmarks when com-

pared to MiniSAT runtimes (MiniSAT was run on the original versions of the instances).

When compared to MiniSAT runtimes for the 3-SAT version of the problems, our approach

yields a speedup of about 2×.

123

CHAPTER VII

ACCELERATING STATISTICAL STATIC TIMING ANALYSIS USING GRAPHICS

PROCESSORS

VII-A. Chapter Overview

In this chapter, we explore the implementation of Monte Carlo based statistical static timing

analysis (SSTA) on a Graphics Processing Unit (GPU). SSTA via Monte Carlo simulations

is a computationally expensive, but important step required to achieve design timing clo-

sure. It provides an accurate estimate of delay variations and their impact on design yield.

The large number of threads that can be computed in parallel on a GPU suggests a natural

fit for the problem of Monte Carlo based SSTA to the GPU platform. Our implementation

performs multiple delay simulations for a single gate in parallel. A parallel implementa-

tion of the Mersenne Twister pseudo-random number generator on the GPU, followed by

Box-Muller transformations (also implemented on the GPU) is used for generating gate

delay numbers from a normal distribution. The µ and σ of the pin-to-output delay distri-

butions for all inputs of every gate, are obtained using a memory lookup, which benefits

from the large memory bandwidth of the GPU. Threads which execute in parallel have no

data/control dependencies on each other. All threads compute identical instructions, but on

different data, as required by the Single Instruction Multiple Data (SIMD) programming

semantics of the GPU. Our approach is implemented on a NVIDIA GeForce GTX 280 GPU

card. Our results indicate that our approach can obtain an average speedup of about 818×

as compared to a serial CPU implementation. With the quad GTX 280 GPU [30] cards,

we estimate that our approach would attain a speedup of over 2400×. The correctness of

the Monte Carlo based SSTA implemented on a GPU has been verified by comparing its

results with a CPU based implementation.

124

The remainder of this chapter is organized as follows. Section VII-B discusses the

motivation behind this work. Some previous work in SSTA has been described in Sec-

tion VII-C. Section VII-D details our approach for implementing Monte Carlo based SSTA

on GPUs. In Section VII-E we present results from experiments which were conducted in

order to benchmark our approach. We summarize this chapter in Section VII-F.

VII-B. Introduction

The impact of process variations on the timing characteristics of VLSI design is becoming

increasingly significant as the minimum feature sizes of VLSI fabrication processes de-

crease. In particular, the resulting increase of delay variations strongly affects timing yield

and reduces the maximum operating frequency of designs. Processing variations can be

random or systematic. Random variations are independent of the locations of transistors

within a chip. An example is the variation of dopant impurity densities in the transistor

diffusion regions. Systematic variations are dependent on locations, for example exposure

pattern variations and silicon-surface flatness variations.

Static timing analysis (STA) is used in a conventional VLSI design flow to estimate

circuit delay, from which the maximum operating frequency of the design is estimated. In

order to deal with variations and overcome the limitations due to the deterministic nature

of traditional STA techniques, statistical STA (SSTA) was developed. The main goal of

SSTA is to include the effect of process variations and analyze circuit delay more accu-

rately. Monte Carlo based SSTA is a simple and accurate method for performing SSTA.

This method generates N samples of the gate delay random variable (for each gate) and

executes static timing analysis runs for the circuit using each of the N sets of the gate de-

lay samples. Finally, the results are aggregated to produce the delay distribution for the

entire circuit. Such a method is compatible with the process variation data obtained from

125

the fab line, which is essentially in the form of samples of the process random variables.

Another attractive property of Monte Carlo based SSTA is the high level of accuracy of

the results. However, its main drawback is the high runtime. We demonstrate that Monte

Carlo based SSTA, can be effectively implemented on a GPU. We obtain a 818× speed up

in the runtime, with no loss of accuracy. Our speedup numbers include the time incurred in

transferring data to and from the GPU.

Any application which has several independent computations that can be issued in

parallel, is a natural match for the GPU’s SIMD operational semantics. Monte Carlo based

SSTA fits this requirement well, since the generation of samples and the static timing anal-

ysis computations for a single gate can be executed in parallel, with no data-dependency.

We refer to this as sample parallelism. Further, gates at the same logic level can execute

Monte Carlo based SSTA in parallel, without any data dependencies. We call this data

parallelism. Employing sample-parallelism and data-parallelism simultaneously allows us

to maximally exploit the high memory bandwidths of the GPU, as well as the presence of

hundreds of processing elements on the GPU. In order to generate the random samples,

the Mersenne Twister [106] pseudo-random number generator is employed. This pseudo-

random number generator can be implemented in a SIMD fashion on the GPU, and thus

is well suited for our Monte Carlo based SSTA engine. The µ and σ for the pin-to-output

falling (and rising) delay distributions are stored in a lookup table (LUT) in the GPU device

memory, for every input of every gate. The large memory bandwidth allows us to perform

lookups extremely fast. The SIMD computing paradigm of the GPU is thus maximally

exploited in our Monte Carlo based SSTA implementation.

In this work we have only considered uncorrelated random variables while implement-

ing SSTA. Our current approach can be easily extended to incorporate spatial correlations

between the random variables, by using principal component analysis (PCA) to transform

the original space into a space of uncorrelated principal components. PCA is heavily used

126

in multivariate statistics. In this technique, the rotation of axes of a multidimensional space

is performed such that the variations, projected on the new set of axes, behave in an uncor-

related fashion. The computational techniques for performing PCA have been implemented

in a parallel (SIMD) paradigm, as shown in [107, 108].

Although our current implementation does not incorporate the effect of input slew and

output loading effects while computing the delay and slew at the output of a gate, these

effects can be easily incorporated. Instead of storing just a pair of (µ and σ) values for each

pin-to-output delay distribution for every input of every gate, we can store K ·P pairs of µ

and σ values for pin-to-output delay distributions for every input of every gate. Here K is

the number of discretizations of the output load and P is the number of discretizations of

the input slew values.

To the best of our knowledge, this is the first work which accelerates Monte Carlo

based SSTA on a GPU platform. The key contributions of this work are:

• We exploit the natural match between Monte Carlo based SSTA and the capabilities

of a GPU, a SIMD-based device. We harness the tremendous computational power

and memory bandwidth of GPUs to accelerate Monte Carlo based SSTA application.

• The implementation satisfies the key requirements to obtain maximal speedup on a

GPU:

– Different threads which generate normally distributed samples and perform

STA computations are implemented so that there are no data dependencies be-

tween threads.

– All gate evaluation threads compute identical instructions but on different data,

which exploits the SIMD architecture of the GPU.

– The µ and σ for the pin-to-output delay of any gate, required for a single

127

STA computation, are obtained using a memory lookup, which exploits the

extremely large memory bandwidth of GPUs.

• Our Monte Carlo based SSTA engine is implemented in a manner which is aware of

the specific constraints of the GPU platform, such as the use of texture memory for

table lookup, memory coalescing, use of shared memory, use of a SIMD algorithm

for generating random samples etc., thus maximizing the speedup obtained.

• Our implementation can obtain about 818× speedup compared to a CPU based im-

plementation. This includes the time required to transfer data to and from the GPU.

• Further, even though our current implementation has been benchmarked on a single

NVIDIA GeForce GTX 280 graphics card, the NVIDIA SLI technology [109] sup-

ports up to four NVIDIA GeForce GTX 280 graphic cards on the same motherboard.

We show that Monte Carlo based SSTA can be performed about 2400× faster on a

quad GPU system, compared to a conventional single core CPU based implementa-

tion.

Our Monte Carlo based timing analysis is implemented in the Compute Unified Device

Architecture (CUDA) framework [23, 29]. The GPU device used for our implementation

and benchmarking is the NVIDIA GeForce 280 GTX. The correctness of our GPU based

timing analyzer has been verified by comparing its results against a CPU based implemen-

tation of Monte Carlo based SSTA. An extended abstract of this work is available at [110].

VII-C. Previous Work

The approach of [111, 112] are some of the early works in SSTA. In recent times, the inter-

est in this field has grown rapidly. This is primarily due to the fact that process variations

are growing larger and less systematic, with shrinking feature sizes.

128

SSTA algorithms can be broadly categorized into block-based and path-based. In

block-based algorithms, delay distributions are propagated by traversing the circuit under

consideration in a levelized breadth-first manner. The fundamental operations in a block

based SSTA tool are the SUM and the MAX operations of the µ and σ values of the distri-

butions. Therefore, block based algorithms rely on efficient ways to implement these op-

erations, rather than using discrete delay values. In path-based algorithms, a set of paths is

selected for a detailed statistical analysis. While block-based algorithms [113, 114] tend to

be fast, it is difficult to compute an accurate solution of the statistical MAX operation when

dealing with correlated random variables or reconvergent fanouts. In such cases, only an

approximation is computed, using the upper-bound or lower-bound of the probability distri-

bution function (PDF) calculation, or by using the moment matching technique [115]. The

advantage of path-based methods is that they accurately calculate the delay PDF of each

path since they do not rely on statistical MAX operations, and can account for correlations

between paths easily.

Similar to path-based SSTA approaches, our method does not need to perform statisti-

cal MAX and SUM operations. Our method is based on propagating the frontier of circuit

delay values, obtained from the µ and σ values of the pin-to-output delay distributions for

the gates in the design. Unlike path-based approaches, we do not need to select a set of

paths to be analyzed.

The authors of [116] present a technique to propagate PDFs through a circuit in the

same manner as arrival times of signals are propagated during STA. Principal component

analysis enables them to handle spatial correlations of the process parameters. While the

SUM of 2 Gaussian distributions yields another Gaussian distribution, the MAX of 2 or

more Gaussian distributions is not a Gaussian distribution in general. As a simplification,

and for ease of calculation, the authors of [116] approximate the MAX of 2 or more Gaus-

sian distributions to be Gaussian as well.

129

A canonical first-order delay model is proposed in [117]. Based on this model, and

an incremental block based timing analyzer is used to propagate arrival times and required

times through a timing graph. In [118, 119, 120], the authors note that accurate SSTA can

become exponential. Hence, they propose faster algorithms that compute only the bounds

on the exact result.

In [121], a block based SSTA algorithm is discussed. By representing the arrival times

as cumulative distribution functions and the gate delays as PDFs, the authors claim to have

an efficient method to do the SUM and MAX operations. The accuracy of the algorithm

can be adjusted by choosing more discretization levels. Reconvergent fanouts are handled

through a statistical subtraction of the common mode. The authors of [122] propagate delay

distributions through a circuit. The PDFs are discretized to help make the operation more

efficient. The accuracy of the result in this case is again dependent on the discretization.

The approach of [123] automates the process of false path removal implicitly (by using

a sensitizable timing analysis methodology [124]). The approach first finds the primary

input vector transitions that result in the sensitizable longest delays for the circuit, and then

performs a statistical analysis on these vector transitions alone.

In contrast to these approaches, our approach accelerates Monte-Carlo based SSTA

technique by using off-the-shelf commercial graphic processing units (GPUs). The ubiq-

uity and ease of programming of GPU devices, along with their extremely low costs, makes

GPUs an attractive choice for such an application.

VII-D. Our Approach

We accelerate Monte Carlo based SSTA by implementing it on a graphics processing unit

(GPU). The following sections describe the details of our implementation. Section VII-D.1

discusses the details of implementing STA on a GPU, while Section VII-D.2 extends this

130

discussion for implementing SSTA on a GPU.

VII-D.1. Static Timing Analysis (STA) at a Gate

The computation involved in a single STA evaluation at any gate of a design is as follows.

At each gate, the MAX of the SUM of the input arrival time at pin i plus the pin-to-output

rising (or falling) delay from pin i to the output is computed. The details are explained with

the example of a NAND2 gate.

Consider a NAND2 gate. Let AT
f all

i denote the arrival time of a falling signal at node

i and AT rise
i denote the arrival time of a rising signal at node i. Let the two inputs of the

NAND2 gate be a and b, and the output be c.

The rising time (delay) at the output c of a NAND2 gate is calculated as shown below.

A similar expression can be written to compute the falling delay at the output c.

AT rise
c = MAX [(AT f all

a +MAX(D11→00,D11→01)),

(AT
f all

b +MAX(D11→00,D11→10))]

where, MAX(D11→00,D11→01) is the pin-to-output rising delay from the input a, while

MAX(D11→00,D11→10) is the pin-to-output rising delay from the input b.

To implement the above computation on the GPU, a look-up table (LUT) based ap-

proach is employed. The pin-to-output rising and falling delay from every input, for every

gate is stored in a LUT. The output arrival time of an n-input gate G is then computed by

calling the two-input MAX operation n-1 times, after n computations of the SUM of the

input arrival time plus the pin-to-output rising (or falling) gate delay. The pin-to-output

delay for pin i is looked up in the LUT at an address corresponding to the base address of

gate G and the offset for the transition on pin i. Since the LUT is typically small, these

lookups are usually cached. Further, this technique is highly amenable to parallelization as

131

will be shown in the sequel.

In our implementation of the LUT based SSTA technique on a GPU, the LUTs (which

contain the pin-to-output falling and rising delays) for all the gates are stored in the texture

memory of the GPU device. This has the following advantages:

• Texture memory on a GPU device is cached unlike shared or global memory. Since

the truth tables for all library gates easily fit into the available cache size, the cost of

a lookup will typically be one clock cycle.

• Texture memory accesses do not have coalescing constraints as required for global

memory accesses. This makes the gate lookup efficient.

• The latency of addressing calculations is better hidden, possibly improving perfor-

mance for applications like STA that perform random accesses to the data.

• In case of multiple look-ups performed in parallel, shared memory accesses might

lead to bank conflicts and thus impede the potential improvement due to parallel

computations.

• In the CUDA programming environment, there are built-in texture fetching routines

which are extremely efficient.

The allocation and loading of the texture memory requires non-zero time, but is done only

once for a library. This runtime cost is easily amortized since several STA computations

are done, especially in an SSTA setting.

The GPU allows several threads to be active in parallel. Each thread in our implemen-

tation performs STA at a single n-input gate G by performing n lookups from the texture

memory, n SUM operations and n−1 MAX operations. The data, organized as a ’C’ struc-

ture type struct threadData, is stored in the global memory of the device for all threads. The

132

global memory, as discussed in Chapter III, is accessible by all processors of all multipro-

cessors. Each processor executes multiple threads simultaneously. This organization thus

requires multiple accesses to the global memory. Therefore, it is important that the mem-

ory coalescing constraint for a global memory access is satisfied. In other words, memory

accesses should be performed in sizes equal to 32-bit, 64-bit, or 128-bit values. The data

structure required by a thread for STA at a gate with 4 input is:

typedef struct align (8){

int offset; // Gate type’s offset

float a; float b; float c; float d; // input arrival times

} threadData;

The first line of the declaration defines the structure type and byte alignment (required

for coalescing accesses). The elements of this structure are the offset in texture memory

(type integer) of the gate for which this thread will perform STA, and the input arrival times

(type float).

The pseudocode of the kernel (the code executed by each thread) for the static timing

analysis of an inverting gate (for a rising output) is given in Algorithm 5. The arguments

to the routine static timing kernel are the pointers to the global memory for accessing the

threadData (MEM) and the pointers to the global memory for storing the output delay

value (DEL). The global memory is indexed at a location equal to the thread’s unique

threadID = tx, and the threadData data for any gate is accessed from this base address in

memory. Suppose the index of input x of the gate is i. Since we handle gates with up to 4

inputs, 0≤ i≤3. The pin-to-output rising (falling) delay for an input x of an inverting gate

is accessed by indexing the LUT (in texture memory) at the sum of the gate’s base address

(offset) plus 2 · i (2 · i+1) for a falling (rising) transition. Similarly, the pin-to-output rising

133

(falling) delay for an input x for a non-inverting gate, is accessed by indexing the LUT (in

texture memory) at the sum of the gate’s base address (offset) plus 2 · i+1 (2 · i) for a rising

(falling) transition.

The CUDA inbuilt one-dimensional texture fetching function tex1D(LUT, index) is

next invoked to fetch the corresponding pin-to-output delay values for every input. The

fetched value is added to the input arrival time of the corresponding input. Then, using

n−1 MAX operations, the output arrival time is computed.

In our implementation, the same kernel implements gates with n = 1, 2, 3 or 4 inputs.

For gates with less than 4 inputs, the extra memory in the LUT stores zeroes. This enables

us to invoke the same kernel for any instance of a 2, 3 or 4 input inverting (non-inverting)

gate.

Algorithm 5 Pseudocode of the Kernel for Rising Output STA for Inverting Gate

static timing kernel(threadData∗MEM, f loat ∗DEL){
tx = my thread id;

threadData Data = MEM[tx];
p2pdelay a = tex1D(LUT,MEM[tx].o f fset + 2×0);
p2pdelay b = tex1D(LUT,MEM[tx].o f fset + 2×1);
p2pdelay c = tex1D(LUT,MEM[tx].o f fset + 2×2);
p2pdelay d = tex1D(LUT,MEM[tx].o f fset + 2×3);
LAT = f max f (MEM[tx].a+ p2pdelay a,MEM[tx].b+ p2pdelay b);
LAT = f max f (LAT,MEM[tx].c+ p2pdelay c);
DEL[tx] = f max f (LAT,MEM[tx].d + p2pdelay d);
}

VII-D.2. Statistical Static Timing Analysis (SSTA) at a Gate

SSTA at a gate is performed by an implementation that is similar to the STA implementation

discussed above. The additional information required is the µ and σ of the n Gaussian

distributions of the pin-to-output delay values for the n inputs to the gate. The µ and σ used

for each Gaussian distribution are stored in LUTs (as opposed to storing a simple nominal

delay value as in the case of STA).

134

The pseudo-random number generator used for generating samples from the Gaussian

distribution is the Mersenne Twister pseudo-random number generation algorithm [106]. It

has many important properties like a long period, efficient use of memory, good distribution

properties and high performance.

As discussed in [125], the Mersenne Twister algorithm maps well onto the CUDA

programming model. Further, a special offline library called dcmt (developed in [126]) is

used for the dynamic creation of the Mersenne Twisters parameters. Using dcmt prevents

the creation of correlated sequences by threads that are issued in parallel.

Uniformly distributed random number sequences, produced by the Mersenne Twister

algorithm, are then transformed into the normal distribution N(0,1) using the Box-Muller

transformation [127]. This transformation is implemented as a separate kernel.

The pseudocode of the kernel for the SSTA computations of an inverting gate (for the

rising output) is given in Algorithm 6. The arguments to the routine

statistical static timing kernel are the pointers to the global memory for accessing the

threadData (MEM) and the pointers to the global memory for storing the output delay

value (DEL). The global memory is indexed at a location equal to the thread’s unique

threadID = tx, and the threadData data of the gate is thus accessed. The µ and σ of the

pin-to-output rising (falling) delay for an input x of an inverting gate accessed by indexing

LUTµ and LUTσ respectively, at the sum of the gate’s base address (offset) plus 2 · i (2 · i+1)

for a falling (rising) transition.

The CUDA inbuilt one-dimensional texture fetching function tex1D(LUT, index) is

invoked to fetch the µ and σ corresponding to the pin-to-output delay’s µ and σ val-

ues for every input. Using the pin-to-output µ and σ values, along with the Mersenne

Twister pseudo-random number generator and the Box-Muller transformation, a normally

distributed sample of the pin-to-output delay for every input is generated. This generated

value is added to the input arrival time of the corresponding input. Then, by performing

135

n−1 MAX operations, the output arrival time is computed.

Algorithm 6 Pseudocode of the Kernel for Rising Output SSTA for Inverting Gate

statistical static timing kernel(threadData∗MEM, f loat ∗DEL){
tx = my thread id;

threadData Data = MEM[tx];
p2pdelay aµ = tex1D(LUT µ,MEM[tx].o f fset + 2×0);
p2pdelay aσ = tex1D(LUT σ,MEM[tx].o f fset + 2×0);
p2pdelay bµ = tex1D(LUT µ,MEM[tx].o f fset + 2×1);
p2pdelay bσ = tex1D(LUT σ,MEM[tx].o f fset + 2×1);
p2pdelay cµ = tex1D(LUT µ,MEM[tx].o f fset + 2×2);
p2pdelay cσ = tex1D(LUT σ,MEM[tx].o f fset + 2×2);
p2pdelay dµ = tex1D(LUT µ,MEM[tx].o f fset + 2×3);
p2pdelay dσ = tex1D(LUT σ,MEM[tx].o f fset + 2×3);
p2p a = p2pdelay aµ + ka× p2pdelay aσ; // ka, kb, kc, kd

p2p b = p2pdelay bµ + kb× p2pdelay bσ; // are obtained by Mersenne

p2p c = p2pdelay cµ + kc× p2pdelay cσ; // Twister followed by

p2p d = p2pdelay dµ + kd× p2pdelay dσ; // Box-Muller transformations.

LAT = f max f (MEM[tx].a+ p2p a,MEM[tx].b+ p2p b);
LAT = f max f (LAT,MEM[tx].c+ p2p c);
DEL[tx] = f max f (LAT,MEM[tx].d + p2p d);
}

In our implementation of Monte Carlo based SSTA for a circuit, we first levelize the

circuit. In other words, each gate of the netlist is assigned a level which is one more than the

maximum level of its fanins. The primary inputs are assigned a level ’0’. We then perform

SSTA at all gates with level i, starting with i=1. Note that we do not store (on the GPU) the

output arrival times for all the gates at any given time. We use the GPU’s global memory for

storing the arrival times of the gates in the current level that are being processed, along with

their immediate fanins. We reclaim the memory used by all gates which are not inputs to

any of the gates at the current or a higher level. By doing this we incur no loss of data since

the entire approach is carried out in a single pass and we don’t revisit any gate. Although

our current implementation simultaneously simulates all gates with level i, the number of

computations at each gate is large enough to keep the GPU’s processors busy. Hence, we

could alternatively simulate one gate at a time on the GPU. Therefore, our implementation

136

poses no restrictions on the size of the circuit being processed.

GPUs allow extreme speedups if the different threads being evaluated have no data

dependencies. The programming model of a GPU is the Single Instruction Multiple Data

(SIMD) model, under which all threads must compute identical instructions, but on dif-

ferent data. Also, GPUs have an extremely large memory bandwidth, allowing multiple

memory lookups to be performed in parallel.

Monte Carlo based SSTA requires multiple sample points for a single gate being ana-

lyzed. By exploiting sample-parallelism, several sample points can be analyzed in parallel.

Similarly, SSTA at each gate at a specific topological level in the circuit can be performed

independently of SSTA at other gates. By exploiting this data parallelism, many gates can

be analyzed in parallel. This maximally exploits the SIMD semantics of the GPU platform.

VII-E. Experimental Results

We need to invoke S statistical static timing kernels in parallel in order to perform S gate

evaluations for SSTA. The total DRAM on an NVIDIA GeForce GTX 280 is 1GB. This off-

chip memory can be used as global, local and texture memory. Also the same memory is

used to store CUDA programs, context data used by the GPU device drivers, drivers for the

desktop display and NVIDIA control panels. The wall clock time taken for 16M executions

of statistical static timing kernels (by issuing 16M threads in parallel) is 0.023 seconds. A

similar routine using the conventional implementation on a 3.6 GHz CPU with 3 GB RAM,

running Linux, took 21.82 seconds for 16M calls. Thus asymptotically, the speedup of our

implementation is∼950×. The allocation and loading of the texture memory is a one time

cost of about 0.18 ms, which is easily amortized in our implementation. Note that the

Mersenne Twister implementation on the GTX 280, when compared to an implementation

on the CPU (3.6 GHz CPU with 3 GB RAM), is by itself about two orders of magnitude

137

faster. On the GTX 280, the Mersenne Twister kernel generates random numbers at the rate

of 2.71×109 numbers/second. A CPU implementation of the Mersenne Twister algorithm,

on the other hand, generates random numbers at the rate of 1.47 ×107 numbers/second.

The results obtained from the GPU implementation were verified against the CPU results.

Table VII.1. Monte Carlo Based SSTA Results

Circuit # Inputs # Outputs # Gates GPU runtimes (s) CPU runtime (s) Speedup

Single GPU SLI Quad Single GPU SLI Quad

b14 276 299 9496 19.39 5.85 17263.73 890.54 2949.15

b15 1 483 518 13781 28.53 8.89 25053.86 878.15 2817.45

b17 1450 1511 41174 85.24 26.57 74854.33 878.17 2817.63

b18 3305 3293 6599 28.39 18.99 11996.98 422.54 631.79

b21 521 512 20977 42.35 12.46 38136.19 900.50 3061.26

b22 1 734 725 25253 51.50 15.51 45909.95 891.51 2959.80

s832 23 24 587 1.23 0.39 1067.17 870.09 2736.15

s838.1 66 33 562 1.36 0.56 1021.72 752.26 1833.17

s1238. 32 32 857 1.78 0.56 1558.03 874.36 2778.84

s1196. 32 32 762 1.60 0.52 1385.32 865.07 2687.06

s1423 91 79 949 2.23 0.88 1725.28 773.56 1965.07

s1494 14 25 1033 2.04 0.57 1877.99 921.17 3314.06

s1488 14 25 1016 2.01 0.56 1847.09 920.60 3306.64

s5378 199 213 2033 4.83 1.93 3695.99 765.36 1912.97

s9234.1 247 250 3642 8.11 2.92 6621.16 816.64 2269.11

s13207 700 790 5849 14.55 6.21 10633.48 731.07 1712.24

s15850 611 684 6421 15.19 6.04 11673.38 768.44 1932.30

s35932 1763 2048 19898 46.50 18.14 36174.56 778.00 1993.97

s38584 1464 1730 21051 47.24 17.24 38270.72 810.19 2219.98

s38417 1664 1742 18451 43.11 16.81 33543.92 778.16 1995.02

C1355 41 32 715 1.55 0.53 1299.87 839.66 2456.18

C1908 33 25 902 1.87 0.58 1639.84 878.89 2825.11

C2670 233 140 1411 3.72 1.71 2565.20 688.66 1496.42

C3540 50 22 1755 3.55 1.05 3190.59 898.23 3035.12

C432 36 7 317 0.75 0.30 576.31 766.47 1919.90

C499 41 32 675 1.47 0.51 1227.15 833.61 2405.12

C5315 178 123 2867 6.26 2.17 5212.21 832.93 2399.48

C6288 32 32 2494 4.89 1.34 4534.09 926.80 3388.08

C7552 207 108 3835 8.20 2.74 6972.03 850.15 2548.23

C880 60 26 486 1.18 0.49 883.55 746.11 1797.11

Average 818.26 2405.48

We ran 60 large IWLS, ITC and ISCAS benchmark designs, to compute the per-circuit

speed of our Monte Carlo based SSTA engine implemented on a GPU. These designs were

first mapped in SIS [?] for delay optimality. The Monte Carlo analysis was performed with

1M samples. The results for 30 representative benchmark designs for our GPU based SSTA

approach are shown in Table VII.1. Column 1 lists the name of the circuit. Columns 2, 3

138

and 4 list the number of primary inputs, primary outputs and gates in the circuit. Columns 5

and 7 list the GPU and CPU runtime, respectively. The time taken to transfer data between

the CPU and GPU was accounted for in the GPU runtimes listed. In particular, the data

transferred from the CPU to the GPU is the arrival times at each primary input, and the

µ and σ information for all pin-to-output delays of all gates. The data returned by the

GPU are the 1M delay values at each output of the design. The runtimes also include the

time required for the Mersenne Twister algorithm and the computation of the Box-Muller

transformation. Column 8 reports the speedup obtained by using a single GPU card.

By using the NVIDIA SLI technology with four GPU chips on a single mother-

board [109], allows for a 4× speedup in the processing time. The transfer times, however,

do not scale. Column 6 lists the runtimes obtained when using a quad GPU system [109]

and the corresponding speedups against the CPU implementation is reported in Column 9.

We also compared the performance of our Monte Carlo based SSTA approach (im-

plemented on the GeForce 280 GTX), with a similar implementation on i) Single-core

and Dual-core Intel Conroe (Core 2) processors operating at 2.4GHz, with 2MB cache

(implemented in a 65 nm technology), and ii) Single-core, Dual-core and Quad-core Intel

Penryn (Core 2) processors operating at 3.0GHz, with 3MB cache (implemented in a 45 nm

technology). The implementations on the Intel processors used the Intel Streaming SIMD

Extensions (SSE) [37] instructions set which consists of 4-wide integer (and floating point)

SIMD vector instructions. These comparisons were performed over 10 benchmarks. The

normalized performance for all architectures is plotted in Figure VII.1. The performance

of the 280 GTX implementation of Monte Carlo based SSTA is on average 61× faster than

Conroe (Single), the Intel Core 2 (single core) with SSE instructions.

139

 0

 10

 20

 30

 40

 50

 60

 70

 80

280 GTX Conroe (Single) Conroe (Dual) Penryn (Single) Penryn (Dual) Penryn (Quad)

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

Comparing Monte Carlo based SSTA

61.49

1.00 1.58 1.48 2.12 2.67

Fig. VII.1. Comparing Monte Carlo Based SSTA on GTX 280 GPU and Intel Core 2 Pro-

cessors (with SEE Instructions)

VII-F. Chapter Summary

In this chapter, we have presented the implementation of Monte Carlo based SSTA on a

Graphics Processing Unit. Monte Carlo based SSTA is computationally expensive, but

crucial for design timing closure since it enables an accurate analysis of the delay varia-

tions. Our implementation computes multiple timing analysis evaluations of a single gate in

parallel. We used a SIMD implementation of the Mersenne Twister pseudo-random num-

ber generator, followed by Box-Muller transformations (both implemented on the GPU)

for generating delay numbers in a normal distribution. The µ and σ of the pin-to-output

delay numbers, for all inputs and for every gate, are obtained using a memory lookup,

which exploits the large memory bandwidth of the GPU. Threads which execute in parallel

do not have data or control dependencies. All threads execute identical instructions, but

on different data. This is in accordance to the SIMD programming semantics of the GPU.

Our results, implemented on a NVIDIA GeForce GTX 280 GPU card, indicate that our

approach can provide about 818× speedup when compared to a conventional CPU imple-

140

mentation. With the quad 280 GPU cards [109], our projected speedup is ∼2400×.

141

CHAPTER VIII

ACCELERATING FAULT SIMULATION USING GRAPHICS PROCESSORS

VIII-A. Chapter Overview

In this chapter, we explore the implementation of fault simulation on a Graphics Process-

ing Unit (GPU). In particular, we implement a parallel fault simulator. Fault simulation is

inherently parallelizable, and the large number of threads that can be computed in parallel

on a GPU results in a natural fit for the problem of parallel fault simulation. Our im-

plementation fault-simulates all the gates in a particular level of a circuit, including good

and faulty circuit simulations, for all patterns, in parallel. Since GPUs have an extremely

large memory bandwidth, we implement each of our fault simulation threads (which exe-

cute in parallel with no data dependencies) using memory lookup. Fault injection is also

done along with gate evaluation, with each thread using a different fault injection mask.

All threads compute identical instructions, but on different data, as required by the Sin-

gle Instruction Multiple Data (SIMD) programming semantics of the GPU. Our results,

implemented on a NVIDIA GeForce GTX 280 GPU card, indicate that our approach is

on average 47× faster when compared to a commercial fault simulation engine. With the

NVIDIA Tesla cards (which can house eight 280 GTX GPU cards) our approach would be

potentially 300× faster. The correctness of the GPU based fault simulator has been verified

by comparing its result with a CPU based fault simulator.

The remainder of this chapter is organized as follows: Section VIII-B discusses the

motivation to accelerate fault simulation. Some previous work in fault simulation has been

described in Section VIII-C. Section VIII-D details our approach for implementing LUT

based fault simulation on GPUs. In Section VIII-E we present results from experiments

which were conducted in order to benchmark our approach. We summarize the chapter in

142

Section VIII-F.

VIII-B. Introduction

Fault simulation is an important step of the VLSI design flow. Given a digital design and a

set of input vectors V defined over its primary inputs, fault simulation evaluates the number

of stuck-at faults Fsim that are tested by applying the vectors V . The ratio of Fsim to the total

number of faults in the design Ftotal is a measure of the fault coverage. The task of finding

this ratio is often referred to as fault grading in the industry. For today’s complex digital

designs with N logic gates (N is often in the several million), the number of faulty variations

of the design can be dramatically higher. Therefore, it is extremely important to explore

ways to accelerate fault simulation. The ideal fault simulation approach should be fast,

scalable, and cost effective.

Parallel processing of fault simulation computations is an approach that has rou-

tinely been invoked to reduce the compute time of fault simulation [128]. Fault simula-

tion can be parallelized by a variety of techniques. The techniques include parallelizing

the fault simulation algorithm (algorithm-parallel techniques [129, 130, 131]), partitioning

the circuit into disjoint components and simulating them in parallel (model-parallel tech-

niques [132, 133]), partitioning the fault set data and simulating faults in parallel (data-

parallel techniques [134, 135, 136, 137, 138, 139, 140]) and a combination of one or more

of these techniques [141]. Data parallel techniques can be further classified into fault-

parallel methods, wherein different faults are simulated in parallel, and pattern-parallel

approaches, wherein different patterns of the same fault are simulated in parallel. In this

chapter, we present an accelerated fault simulation approach that invokes data parallelism.

In particular, both fault and pattern parallelism are exploited by our method. The method

is implemented on a Graphics Processing Unit (GPU) platform.

143

Fault simulation of a logic netlist effectively requires multiple logic simulations of

the netlist, with faults injected at various gates (typically primary inputs and reconvergent

fanout branches). An approach for logic simulation (which can also be used for fault sim-

ulation), uses look-up table (LUT) based computations. In this approach the truth table for

all the gates in a library are stored in the memory, and multiple processors perform multiple

gate level (logic) simulations in parallel. This is a natural match for the GPU capabilities,

since it exploits the extremely high memory bandwidths of the GPU, and also simultane-

ously utilizes the large number of computational elements on the GPU. Several faults (and

several patterns for these faults) can be simulated simultaneously. In this way, both data

parallelism and pattern parallelism is employed. The key point to note is that the same

operation (of looking up gate output values in the memory) is performed on independent

data (different faults and different patterns for every fault). In this way, the SIMD comput-

ing paradigm of the GPU is exploited maximally by fault simulation computations that are

LUT-based.

This work is the first approach, to the best of the authors’ knowledge, which acceler-

ates fault simulation on a GPU platform. The key contributions of this work are:

• We exploit the novel match between data and pattern parallel fault simulation with the

capabilities of a GPU (a SIMD-based device) and harness the computational power

of GPUs to accelerate parallel fault simulation.

• The implementation satisfies all the key requirements which ensure maximal speedup

in a GPU

– The different threads, which perform gate evaluations and fault injection, are

implemented so that there are no data dependencies between threads.

– All gate evaluation threads compute identical instructions, but on different data,

which exploits the SIMD architecture of the GPU.

144

– The gate evaluation is done using a LUT, which exploits the extremely large

memory bandwidth of GPUs.

• Our parallel fault simulation algorithm is implemented in a manner which is aware

of the specific constraints of the GPU platform, such as the use of texture memory

for table lookup, memory coalescing, use of shared memory etc., thus maximizing

the speedup obtained.

• In comparison to a commercial fault simulation tool [142] our implementation is on

average ∼47× faster for fault simulating 32K patterns for each of 25 IWLS bench-

marks [143].

• Further, even though our current implementation has been benchmarked on a sin-

gle NVIDIA GeForce GTX 280 graphics card, the commercially available NVIDIA

Tesla cards [144], allows up to eight NVIDIA GeForce GTX 280 devices on the

same motherboard. We project that our implementation, on a Tesla card, performs

fault simulation on average ∼300× faster, when compared to the commercial tool.

Our fault simulation algorithm is implemented in the Compute Unified Device Archi-

tecture (CUDA), which is an open-source programming and interfacing tool provided by

NVIDIA corporation, for programming NVIDIA’s GPU devices. The GPU device used for

our implementation and benchmarking is NVIDIA GTX 280 GPU card. The correctness

of our GPU based fault simulator has been verified by comparing its results against a CPU

based serial fault simulator. An extended abstract of this work is available at [145].

VIII-C. Previous Work

Over the last three decades, several research efforts have attempted to accelerate the prob-

lem of fault simulation in a scalable and cost-effective fashion, by exploiting the paral-

145

lelism inherent in the problem These efforts can be divided into algorithm-parallel, model-

parallel and data-parallel.

Algorithm-parallel efforts aim at parallelizing the fault simulation algorithm, distribut-

ing workload and/or pipelining the tasks, such that the frequency of communication and

synchronization between processors is reduced [141, 129, 130, 131]. In contrast to these

approaches, our approach is data-parallel. In [141], the authors aim at heuristically as-

signing fault set partitions (and corresponding circuit partitions) to several medium-grain

multiprocessors. This assignment is based on a performance model developed by compar-

ing the communication (message passing or shared memory access) to computation ratio

of the multiprocessor units. The results reported in [141] are based on an implementation

of fault simulation on a multiprocessor prototype with up to 8 processing units. Our re-

sults, on the other hand, are based on off-the-shelf GPU cards (the NVIDIA GeForce GTX

280 GPU). The authors of [129] present a methodology to predict and characterize work-

load distribution, which can aid in parallelizing fault simulation. The approach discussed

in [130] suggests a pipelined design, where each functional unit performs a specific task.

MARS [131], a hardware accelerator, is based on this design. However, the application of

the accelerator to fault simulation has been limited [141].

In a model-parallel approach [132, 133, 141], the circuit to be simulated is parti-

tioned into several (possibly non-disjoint) components. Each component is assigned to

one or more processors. Further, in order to keep the partitioning balanced, dynamic re-

partitioning [146, 147] is performed. This increases algorithm complexity and may impact

simulation time [146, 147].

Numerous data-parallel approaches for fault simulation have been developed in the

past. These approaches use dedicated hardware accelerators, supercomputers, vector ma-

chines or multiprocessors [134, 135, 136, 137, 138, 139, 140]. There are several hardware

accelerated fault simulators in the literature, but they require specialized hardware, signif-

146

icant design effort and time, and non-trivial algorithm and software design efforts as well.

In contrast to these approaches, our approach accelerates fault simulation by using off-the-

shelf commercial graphic processing units (GPUs). The ubiquity and ease of programming

of GPU devices, along with their extremely low costs compared to hardware accelerators,

supercomputers, etc. makes GPUs an attractive alternative for fault simulation.

VIII-D. Our Approach

GPUs allow extreme speedups if the different threads being evaluated have no data de-

pendencies. The programming model of a GPU is the Single Instruction Multiple Data

(SIMD) model, under which all threads must compute identical instructions, but on dif-

ferent data. Also, GPUs have an extremely large memory bandwidth, allowing multiple

memory lookups to be performed in parallel.

Since fault simulation requires multiple (faulty) copies of the same circuit to be sim-

ulated, it forms a natural match to the capabilities of the GPU. Also, each gate evaluation

within a specific level in the circuit can be performed independently of other gate evalua-

tions. As a result, if we perform each gate evaluation (for gates with the same topological

level) on a separate GPU thread, these threads will naturally satisfy the condition required

for speedup in the GPU (which requires that threads have no data dependencies). Also,

we implement fault simulation on the GPU, which allows each of the gate evaluations in a

fault simulator to utilize the same thread code, with no conditional computations between

or within threads. In particular, we implement pattern-parallel and fault-parallel fault sim-

ulation. Fault injection is also done along with gate evaluation, with each thread using a

different fault injection mask. This maximally exploits the SIMD computing semantics of

the GPU platform. Finally, in order to exploit the extreme memory bandwidths offered by

GPUs, our implementation of the gate evaluation thread uses a memory lookup based logic

147

simulation paradigm.

Fault simulation of a logic netlist consists of multiple logic simulations of the netlist

with faults injected on specific nets. In the next three subsections we discuss i) GPU based

implementation of logic simulation at a gate, ii) fault injection at a gate and iii) fault de-

tection at a gate. Then we discuss iv) the implementation of fault simulation for a circuit.

This uses the implementations described in the first three subsections.

VIII-D.1. Logic Simulation at a Gate

Logic simulation on the GPU is implemented using a look-up table (LUT) based approach.

In this approach, the truth tables of all gates in the library are stored in a LUT. The output

of the simulation of a gate of type G is computed by looking up the LUT at the address

corresponding to the sum of the gate offset of G (Gof f) and the value of the gate inputs.

1 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 0 1

NOR2
offset

INV
offset

NAND3
offset

AND2
offset

Fig. VIII.1. Truth Tables Stored in a Look-up Table

Figure VIII.1 shows the truth tables for a single NOR2, INV, NAND3 and AND2 gate

stored in a one-dimensional look-up table. Consider a gate g of type NAND3 with inputs

A, B and C and output O. For instance if ABC = ’110’, O should be ’1’. In this case, logic

simulation is performed by reading the value stored in the LUT at the address NAND3of f

+ 6. Thus, the value returned from the LUT will be the value of the output of the gate being

simulated, for the particular input value. LUT based simulation is a fast technique, even

when used on a serial processor, since any gate (including complex gates) can be evaluated

by a single lookup. Since the LUT is typically small, these lookups are usually cached.

Further, this technique is highly amenable to parallelization as will be shown in the sequel.

148

Note that in our implementation, each LUT enables the simulation of 2 identical gates (with

possibly different inputs) simultaneously.

In our implementation of the LUT based logic simulation technique on a GPU, the

truth tables for all the gates are stored in the texture memory of the GPU device. This has

the following advantages:

• Texture memory of a GPU device is cached as opposed to shared or global memory.

Since the truth tables for all library gates will typically fit into the available cache

size, the cost of a lookup will be one cycle (which is 8192 bytes per multiprocessor).

• Texture memory accesses do not have coalescing constraints as required in case of

global memory accesses, making the gate lookup efficient.

• In case of multiple look-ups performed in parallel, shared memory accesses might

lead to bank conflicts and thus impede the potential improvement due to parallel

computations.

• Constant memory accesses in the GPU are optimal when all lookups occur at the

same memory location. This is typically not the case in parallel logic simulation.

• The latency of addressing calculations is better hidden, possibly improving perfor-

mance for applications like fault simulation that perform random accesses to the data.

• The CUDA programming environment has built-in texture fetching routines which

are extremely efficient.

Note that the allocation and loading of the texture memory requires non-zero time, but is

done only once for a gate library. This runtime cost is easily amortized since several million

lookups are typically performed on a given design (with the same library).

149

The GPU allows several threads to be active in parallel. Each thread in our implemen-

tation performs logic simulation of 2 gates of the same type (with possibly different input

values) by performing a single lookup from the texture memory.

The data required by each thread is the offset of the gate type in the texture memory

and the input values of the 2 gates. For example, if the first gate has a 1 value for some

input, while the second gate has a 0 value for the same input, then the input to the thread

evaluating these 2 gates is ’10’. In general, any input will have values from the set {00,

01, 10, 11}, or equivalently an integer in the range [0,3]. A 2 input gate therefore has 16

entries in the LUT, while a 3 input gate has 64 entries. Each entry of the LUT is a word,

which provides the output for both the gates. Our gate library consists of an inverter as well

as 2, 3 and 4 input NAND, NOR, AND and OR gates. As a result, the total LUT size is

4+4×(16+64+256) = 1348 words. Hence the LUT fits in the texture cache (which is 8192

bytes per multiprocessor). Simulating more than 2 gates simultaneously per thread does not

allow the LUT to fit in the texture cache, hence we only simulate 2 gates simultaneously

per thread.

The data required by each thread is organized as a ’C’ structure type struct threadData,

is stored in the global memory of the device for all threads. The global memory, as dis-

cussed in Chapter III, is accessible by all processors of all multiprocessors. Each processor

executes multiple threads simultaneously. This organization would thus require multiple

accesses to the global memory. Therefore, it is important that the memory coalescing con-

straint for a global memory access is satisfied. In other words, memory accesses should

be performed in sizes equal to 32-bit, 64-bit, or 128-bit values. In our implementation the

threadData is aligned at 128-bit (= 16 byte) boundaries to satisfy this constraint. The data

structure required by a thread for simultaneous logic simulation of a pair of identical gates

with up to 4 inputs is:

typedef struct align (16){

150

int offset; // Gate type’s offset

int a; int b; int c; int d;// input values

int m0; int m1; // fault injection bits

} threadData;

The first line of the declaration defines the structure type and byte alignment (required

for coalescing accesses). The elements of this structure are : the offset in texture memory

(type integer) of the gate which this thread will simulate, the input signal values (type

integer) and variables m0 and m1 (type integer). Variables m0 and m1 are required for fault

injection and will be explained in the next subsection. Note that the total memory required

for each of these structures, 1 × 4 bytes for the offset of type int + 4 × 4 bytes for the 4

inputs of type integer and 2 × 4 bytes for the fault injection bits of type integer. The total

storage is thus 28 bytes, which is aligned to a 16 byte boundary, thus requiring 32 byte

coalesced reads.

The pseudocode of the kernel (the code executed by each thread) for logic simulation

is given in Algorithm 7. The arguments to the routine logic simulation kernel are the

pointers to the global memory for accessing the threadData (MEM) and the pointer to the

global memory for storing the output value of the simulation (RES). The global memory

is indexed at a location equal to the thread’s unique threadID = tx, and the threadData data

is accessed. The index I to be fetched in the LUT (in texture memory) is then computed

by summing the gate’s offset and the decimal sum of the input values for each of the gates

being simultaneously simulated. Recall that each input value ∈ {0, 1, 2, 3}, representing

the inputs of both the gates. The CUDA inbuilt single-dimension texture fetching function

tex1D(LUT, I) is next invoked to fetch the output values of both gates. This is written at

the tx location of the output memory RES.

151

Algorithm 7 Pseudocode of the kernel for logic simulation

logic simulation kernel(threadData∗MEM, int ∗RES){
tx = my thread id

threadData Data = MEM[tx]
I = Data.of f set + 40×Data.a+ 41×Data.b+ 42×Data.c+ 43×Data.d
int out put = tex1D(LUT, I)
RES[tx] = out put

}

Table VIII.1. Encoding of the Mask Bits

m0 m1 Meaning

– 11 Stuck-at-1 Mask

11 00 No Fault Injection

00 00 Stuck-at-0 Mask

VIII-D.2. Fault Injection at a Gate

In order to simulate faulty copies of a netlist, faults have to be injected at appropriate

positions in the copies of the original netlist. This is performed by masking the appropriate

simulation values by using a fault injection mask.

Our implementation parallelizes fault injection by performing a masking operation on

the output value generated by the lookup (Algorithm 7). This masked value is now returned

in the output memory RES. Each thread has it own masking bits m0 and m1, as shown in

the threadData structure. The encoding of these bits are tabulated in Table VIII.1.

The pseudocode of the kernel to perform logic simulation followed by fault injection

is identical to pseudocode for logic simulation (Algorithm 1) except for the last line which

is modified to read

RES[tx] = (out put & Data.m0) ‖ Data.m1

RES[tx] is thus appropriately masked for stuck-at-0, stuck-at-1 or no injected fault.

Note that the two gates being simulated in the thread correspond to the same gate of the

circuit, simulated for different patterns. The kernel which executes logic simulation fol-

152

lowed by fault injection is called fault simulation kernel.

VIII-D.3. Fault Detection at a Gate

For an applied vector at the primary inputs (PIs), in order for a fault f to be detected at a

primary output gate g, the good-circuit simulation value of g should be different from the

value obtained by faulty-circuit simulation at g, for the fault f .

In our implementation, the comparison between the output of a thread that is simulat-

ing a gate driving a circuit primary output, and the good circuit value of this primary output

is performed as follows. The modified threadData Detect structure and the pseudocode of

the kernel for fault detection are shown below.

typedef struct align (16) {

int offset; // Gate type’s offset

int a; int b; int c; int d;// input values

int Good Circuit threadID; // The thread ID which computes

//the Good circuit simulation

} threadData Detect;

Algorithm 8 Pseudocode of the kernel for fault detection

f ault detection kernel(threadData Detect ∗ MEM, int ∗ GoodSim, int ∗ Detect, int ∗
f aultindex){
tx = my thread id

threadData Detect Data = MEM[tx]
I = Data.of f set + 40×Data.a+ 41×Data.b+ 42×Data.c+ 43×Data.d
int out put = tex1D(LUT, I)
if (tx == Data.Good Circuit threadID) then

GoodSim[tx] = out put

end if

synch threads()
Detect[f aultindex] = ((out put⊕GoodSim[Data.Good Circuit threadID])?1 : 0)
}

The pseudocode of the kernel for fault detection is shown in Algorithm 8. This

153

kernel is only run for the primary outputs of the design. The arguments to the routine

fault detection kernel are the global memory pointers for accessing the threadData Detect

structure (MEM), a pointer to the global memory for storing the output value of the good

circuit simulation (GoodSim) and a pointer in memory (faultindex) to store a 1 if the sim-

ulation performed in the thread results in fault detection (Detect). The first four lines of

Algorithm 8 are identical to those of Algorithm 7. Next, a thread computing the good-

circuit simulation value will write its output to global memory. Such a thread will have

its threadID identical to the Data.Good Circuit threadID. At this point a thread synchro-

nizing routine, provided by CUDA, is invoked. If more than one good circuit simulation

(for more than one pattern) is performed simultaneously, the completion of all the writes to

the global memory has to be ensured before proceeding. The thread synchronizing routine

guarantees this. Once all threads in a block have reached the point where this routine is

invoked, kernel execution resumes normally. Now all threads, including the thread which

performed the good circuit simulation, will read the location in the global memory which

corresponds to its good circuit simulation value. Thus, by ensuring the completeness of the

writes prior to the reads, the thread synchronizing routine avoids write-after-read (WAR)

hazards. Next, all threads compare the output of the logic simulation performed by them

to the value of the good-circuit simulation. If these values are different, then the thread

will write a 1 to a location indexed by its faultindex, in Detect, else it will write a 0 to this

location. At this point the host can copy the Detect portion of the device global memory

back to the CPU. All faults listed in the Detect vector are detected.

VIII-D.4. Fault Simulation of a Circuit

Our GPU-based fault simulation methodology is parallelized using the two data parallel

techniques, namely fault parallelism and pattern parallelism. Given the large number of

threads that can be executed in parallel on a GPU, we use both these forms of parallelism

154

simultaneously. This section describes the implementation of this two-way parallelism.

Given a logic netlist, we first levelize the circuit. By levelization we mean that each

gate of the netlist is assigned a level which is one more than the maximum level of its input

gates. The primary inputs are assigned a level ’0’. Thus, Level(G) = max(∀i∈ f anin(G)Level(i))

+ 1. The maximum number of levels in a circuit is referred to as L. The number of gates

at a level i is referred to as Wi. The maximum number of gates at any level is referred

to as Wmax, i.e. (Wmax = max(∀i(Wi))). Figure VIII.2 shows a logic netlist with primary

inputs on the extreme left and primary outputs on the extreme right. The netlist has been

levelized and the number of gates at any level i are labeled Wi. We perform data-parallel

fault simulation on all logic gates in a single level simultaneously.

4W L−1W LW

logic levels

Primary
Outputs

Primary
Inputs

1 2 3 4 L−1 L

Fig. VIII.2. Levelized Logic Netlist

Suppose there are N vectors (patterns) to be fault simulated for the circuit. Our fault

simulation engine first computes the good circuit values for all gates, for all N patterns. This

information is then transferred back to the CPU, which therefore has the good circuit values

at each gate for each pattern. In the second phase, the CPU schedules the gate evaluations

for the fault simulation of each fault. This is done by calling i) fault simulation kernel (with

155

fault injection) for each faulty gate G, ii) the same fault simulation kernel (but without fault

injection) on gates in the transitive fanout (TFO) of G, and iii) fault detection kernel for

the primary outputs in the TFO of G.

We reduce the number of fault simulations by making use of the good circuit values

of each gate for each pattern. Recall that this information was returned to the CPU after the

first phase. For any gate G, if its good circuit value is v for pattern p, then fault simulation

for the stuck-at-v value on G is not scheduled in the second phase. In our experiments, the

results include the time spent for the data transfers from CPU↔ GPU in all phases of the

operation of out fault simulation engine. GPU runtimes also include all the time spent by

the CPU to schedule good/faulty gate evaluations.

A few key observations are made at this juncture.

• Data-parallel fault simulation is performed on all gates of a level i simultaneously

• Pattern-parallel fault simulation is performed on N patterns for any gate simultane-

ously.

• For all levels other than the last level, we invoke the kernel fault simulation kernel.

For the last level we invoke the kernel fault detection kernel.

• Note that no limit is imposed by the GPU on the size of the circuit, since the entire

circuit is never statically stored in GPU memory.

VIII-E. Experimental Results

In order to perform TS logic simulations plus fault injections in parallel, we need to in-

voke TS fault simulation kernels in parallel. The total DRAM (off-chip) in the NVIDIA

GeForce GTX 280 is 1GB. This off-chip memory can be used as global, local and tex-

ture memory. Also the same memory is used to store CUDA programs, context data used

156

by the GPU device drivers, drivers for the desktop display and NVIDIA control panels.

With the remaining memory, we can invoke TS = 32M fault simulation kernels in parallel.

The time taken for 32M fault simulation kernels is 85.398 ms. The time taken for 32M

fault detection kernels is 180.440 ms.

The fault simulation results obtained from the GPU implementation were verified

against a CPU based serial fault simulator, and were found to verify with 100% fidelity.

Table VIII.2. Parallel Fault Simulation Results

Circuit # Gates # Inputs # Outputs # Faults Runtimes (in seconds) Speedup

Comm. Tool Single GPU Tesla Single GPU Tesla

s9234 1 1462 38 39 3883 6.190 0.134 0.022 46.067 275.754

s832 417 20 19 937 3.140 0.031 0.005 101.557 672.071

s820 430 20 19 955 3.060 0.032 0.005 95.515 635.921

s713 299 37 23 624 4.300 0.029 0.005 146.951 883.196

s641 297 37 23 610 4.260 0.029 0.005 144.821 871.541

s5378 1907 37 49 4821 8.390 0.155 0.025 54.052 333.344

s38584 12068 14 278 30989 38.310 0.984 0.177 38.940 216.430

s38417 15647 30 106 36235 17.970 1.405 0.254 12.788 70.711

s35932 14828 37 320 34628 51.920 1.390 0.260 37.352 199.723

s15850 1202 16 87 3006 9.910 0.133 0.024 74.571 421.137

s1494 830 10 19 1790 3.020 0.049 0.007 62.002 434.315

s1488 818 10 19 1760 2.980 0.048 0.007 61.714 431.827

s13207 2195 33 121 5735 14.980 0.260 0.047 57.648 320.997

s1238 761 16 14 1739 2.750 0.049 0.007 56.393 385.502

s1196 641 16 14 1506 2.620 0.044 0.007 59.315 392.533

b22 1 34985 34 22 86052 16.530 1.514 0.225 10.917 73.423

b22 35280 34 22 86205 17.130 1.504 0.225 11.390 75.970

b21 22963 34 22 56870 11.960 1.208 0.177 9.897 67.656

b20 1 23340 34 22 58742 11.980 1.206 0.176 9.931 68.117

b20 23727 34 22 58649 11.940 1.206 0.177 9.898 67.648

b18 136517 38 23 332927 59.850 5.210 0.676 11.488 88.483

b15 1 17510 38 70 43770 16.910 0.931 0.141 18.166 119.995

b15 17540 38 70 43956 17.950 0.943 0.143 19.035 125.916

b14 1 10640 34 54 26494 11.530 0.641 0.093 17.977 123.783

b14 10582 34 54 26024 11.520 0.637 0.093 18.082 124.389

Average 47.459 299.215

We ran 25 large IWLS benchmark [143] designs, to compute the speed of our GPU

based parallel fault simulation tool. We fault simulated 32K patterns for all circuits. We

compared our runtimes to those obtained using a commercial fault simulation tool [142].

The commercial tool was run on a 1.5 GHz UltraSPARC-IV+ processor with 1.6 GB of

RAM, running Solaris 9.

157

The results for our GPU based fault simulation tool are shown in Table VIII.2. Column

1 lists the name of the circuit. Column 2 lists the number of gates in the mapped circuit.

Columns 3 and 4 list the number of primary inputs and outputs for these circuits. The

number of collapsed faults Ftotal in the circuit are listed in Column 5. These were computed

using the commercial tool. Columns 6 and 7 list the runtimes, in seconds, for simulating

32K patterns, using the commercial tool and our implementation, respectively. The time

taken to transfer data between the CPU and GPU was accounted for in the GPU runtimes

listed. In particular, the data transferred from the CPU to the GPU is the 32 K patterns at

the primary inputs, and the truth table for all gates in the library. The data transferred from

GPU to CPU is the array Detect (which is of type Boolean, and has length equal to the

number of faults in the circuit). The commercial tool’s runtimes include the time taken to

read the circuit netlist and 32K patterns. The speedup obtained using a single GPU card

are listed in Column 9.

By using the NVIDIA Tesla server housing up to eight GPUs [144], the available

global memory increases by 8×. Hence we can potentially launch 8× more threads simul-

taneously. This allows for a 8× speedup in the processing time. However, the transfer times

do not scale. Column 8 lists the runtimes on a Tesla GPU system. The speedup obtained

against the commercial tool in this case are listed in Column 10. Our results indicate that

our approach, implemented on a single NVIDIA GeForce GTX 280 GPU card, can perform

fault simulation on average 47× faster when compared to the commercial fault simulation

tool [142]. With the NVIDIA Tesla card, our approach would be potentially 300× faster.

VIII-F. Chapter Summary

In this chapter, we have presented our implementation of a fault simulation engine on a

Graphics Processing Unit (GPU). Fault simulation is inherently parallelizable, and the large

158

number of threads that can be computed in parallel on a GPU can be employed to perform

a large number of gate evaluations in parallel. As a consequence, the GPU platform is a

natural candidate for implementing parallel fault simulation. In particular, we implement a

pattern and fault parallel fault simulator. Our implementation fault-simulates a circuit in a

levelized fashion. All threads of the GPU compute identical instructions, but on different

data, as required by the Single Instruction Multiple Data (SIMD) programming semantics

of the GPU. Fault injection is also done along with gate evaluation, with each thread using

a different fault injection mask. Since GPUs have an extremely large memory bandwidth,

we implement each of our fault simulation threads (which execute in parallel with no data

dependencies) using memory lookup. Our experiments indicate that our approach, imple-

mented on a single NVIDIA GeForce GTX 280 GPU card, can simulate on average 47×

faster when compared to the commercial fault simulation tool [142]. With the NVIDIA

Tesla card, our approach would be potentially 300× faster.

159

CHAPTER IX

FAULT TABLE GENERATION USING GRAPHICS PROCESSORS

IX-A. Chapter Overview

In this chapter, we explore the implementation of fault table generation on a Graphics

Processing Unit (GPU). A fault table is essential for fault diagnosis and fault detection

in VLSI testing and debug. Generating a fault table requires extensive fault simulation,

with no fault dropping, and is extremely expensive from a computational standpoint. Fault

simulation is inherently parallelizable, and the large number of threads that a GPU can

operate on in parallel can be employed to accelerate fault simulation, and thereby accel-

erate fault table generation. Our approach, called GFTABLE, employs a pattern parallel

approach which utilizes both bit-parallelism and thread-level parallelism. Our implemen-

tation is a significantly modified version of FSIM, which is pattern parallel fault simulation

approach for single core processors. Like FSIM, GFTABLE utilizes critical path tracing

and the dominator concept to prune unnecessary simulations and thereby reduce runtime.

Further modifications to FSIM allow us to maximally harness the GPU’s huge memory

bandwidth and high computational power. Our approach does not store the circuit (or any

part of the circuit) on the GPU. Efficient parallel reduction operations are implemented in

our implementation of GFTABLE. We compare our performance to FSIM∗, which is FSIM

modified to generate a fault table on a single core processor. Our experiments indicate that

GFTABLE, implemented on a single NVIDIA Quadro FX 5800 GPU card, can generate

a fault table for 0.5 million test patterns on average 15.68× faster when compared with

FSIM∗. With the NVIDIA Tesla server, our approach would be potentially 89.57× faster.

The remainder of this chapter is organized as follows. The motivation for this work

is described in Section IX-B. Previous work in fault simulation and fault table generation

160

has been described in Section IX-C. Section IX-D details our approach for implementing

fault simulation and table generation on GPUs. In Section IX-E we present results of

experiments which were conducted in order to benchmark our approach. We summarize

the chapter in Section IX-F.

IX-B. Introduction

With the increasing complexity and size of digital VLSI designs, the number of faulty

variations of these designs are growing exponentially, thus increasing the time and effort

required for VLSI testing and debug. Among the key steps in VLSI testing and debug

are fault detection and diagnosis. Fault detection aims at differentiating a faulty design

from a fault free design, by applying test vectors. Fault diagnosis aims at identifying and

isolating the fault, in order to analyze the defect causing the faulty behavior, with the help

of test vectors which detect the fault. Both detection and diagnosis [148, 149, 150] require

precomputed information about whether vector vi can detect fault f j, for all i and j. This

information is stored in the form of a precomputed fault table. In general, a fault table is a

matrix [ai j] where columns represent faults, rows represent test vectors, and ai j = 1 if the

test vector vi detects the fault f j, else ai j = 0.

A fault table (also called a pass/fail fault dictionary [151]) is generated by extensive

fault simulation. Given a digital design and a set of input vectors V defined over its primary

inputs, fault simulation evaluates (for all i) the set of stuck-at faults F i
sim that are tested by

applying the vectors vi ∈V . The faults tested by each vector are then recorded in the matrix

format of the fault table described earlier. Since the detectability of every fault is evaluated

for every vector, the compute time for generating a fault table is extremely large. If a fault

is dropped from the fault list as soon as a vector successfully detects it, the compute time

can be reduced. However, thus produced may be insufficient for fault diagnosis. Thus, fault

161

dropping cannot be performed during the generation of the fault table. For fault detection,

we would like to find a minimal set of vectors which can maximally detect the faults. In

order to compute this minimal set of vectors, the generation of a fault table with limited

or no fault dropping is required. From this information, we could solve a unate covering

problem to find the minimum set of vectors that detects all faults. For these reasons, fault

table generation without fault dropping is usually performed. As a result, the high runtime

of fault table generation becomes a key concern, making it important to explore ways to

accelerate fault table generation. The ideal approach should be fast, scalable and cost

effective.

In order to reduce the compute time for generating the fault table, parallel implemen-

tations of fault simulation have been routinely used [128]. Fault simulation can be par-

allelized by a variety of techniques. These techniques include parallelizing the fault sim-

ulation algorithm (algorithm-parallel techniques [129, 130, 131]), partitioning the circuit

into disjoint components and simulating them in parallel (model-parallel techniques [132,

133]), partitioning the fault set data and simulating faults in parallel (data-parallel tech-

niques [134, 135, 136]) and a combination of one or more of these [141]. Data parallel

techniques can be further classified into fault-parallel methods, wherein different faults

are simulated in parallel, and pattern-parallel approaches, wherein different input patterns

(for the same fault) are simulated in parallel. Pattern-parallel approaches, as described

in [152, 146], exploit the inherent bit-parallelism of logic operations on computer words.

In this chapter, we present a fault table generation approach that utilizes a pattern parallel

approach implemented on Graphics Processing Units (GPUs). Our notion of pattern par-

allelism includes bit-parallelism obtained by performing logical operations on words and

thread level parallelism obtained by running several GPU threads concurrently.

Our approach for fault table generation is based on the fault simulation algorithm

called FSIM [152]. FSIM was developed to run on a single core CPU. However, since the

162

target hardware in our case is a SIMD GPU machine, and the objective is to accelerate fault

table generation, the FSIM algorithm is augmented and its implementation significantly

modified to maximally harness the computational power and memory bandwidth available

in the GPU. Fault simulation of a logic netlist effectively requires multiple logic simulations

of the true value (or fault free) simulations, and simulations with faults injected at various

gates (typically primary inputs and reconvergent fanout branches as per the checkpoint

fault injection model [153]). This is a natural match for the GPU’s capabilities, since it

exploits the extreme memory bandwidths of the GPU, as well as the presence of several

SIMD processing elements on the GPU. Further, the computer words on the latest GPUs

today allow 32 or even 64 bit operations. This facilitates the use of bit-parallelism to further

speed up fault simulation. For scalability reasons, our approach does not store the circuit

(or any part of the circuit) on the GPU.

This work is the first, to the best of the authors’ knowledge, to accelerate fault table

generation on a GPU platform. The key contributions of this work are:

• We exploit the match between pattern parallel (bit parallel and also thread parallel)

fault simulation with the capabilities of a GPU (a SIMD-based device) and harness

the computational power of GPUs to accelerate fault table generation.

• The implementation satisfies the key requirements which ensure maximal speedup in

a GPU. These are:

– The different threads, which perform gate evaluations and fault injections are

implemented such that the data dependencies between threads is minimized.

– All threads compute identical instructions, but on different data, which con-

forms to the SIMD architecture of the GPU.

– Fast parallel reduction on the GPU is employed for computing the logical OR

of thousands of words containing fault simulation data.

163

– The amount of data transfer between the GPU and the host (CPU) is minimized.

To achieve this, the large on-board memory on the recent GPUs is maximally

exploited.

• In comparison to FSIM∗ (i.e. FSIM [152] modified to generate the fault dictionary),

our implementation is on average 15.68× faster, for 0.5 million patterns, over the

ISCAS and ITC99 benchmarks.

• Further, even though our current implementation has been benchmarked on a sin-

gle NVIDIA Quadro FX 5800 graphics card, the NVIDIA Tesla GPU Computing

Processor [144] allows up to eight NVIDIA Tesla GPUs (on a 1U server). We esti-

mate that our implementation, using the NVIDIA Tesla server, can generate a fault

dictionary on average 89.57× faster, when compared to FSIM∗.

Our fault dictionary computation algorithm is implemented in the Compute Unified

Device Architecture (CUDA), which is an open-source programming and interfacing tool

provided by NVIDIA corporation, for programming NVIDIA’s GPU devices. The correct-

ness of our GPU based fault table generator, GFTABLE, has been verified by comparing

its results against the results of FSIM∗ (which is run on the CPU). An extended abstract of

this work can be found in [154].

IX-C. Previous Work

Efficient fault simulation is a requirement for generating a fault dictionary. We discussed

some previous work in accelerating fault simulation in Chapter VIII. We devote the rest of

this section to a brief discussion on FSIM [152], the algorithm that our approach is based

upon.

The underlying algorithm for our GPU based fault table generation engine is based on

an approach for accelerating fault simulation called FSIM [152]. FSIM is a data-parallel

164

approach that is implemented on a single core microprocessor. The essential idea of FSIM

is to simulate the circuit in a levelized manner from inputs to outputs, and to prune off

unnecessary gates as early as possible. This is done by employing critical path tracing [155,

156] and the dominator concept [157, 158], both of which reduce the amount of explicit

fault simulation required. Some details of FSIM are explained in Section IX-D. We use

a modification of FSIM (which we call FSIM∗) to generate the fault table, and compare

the performance of our GPU-based fault-table generator (GFTABLE) to that of FSIM∗.

Since the target hardware in our case is a GPU, the original algorithm is redesigned and

augmented to maximally exploit the computational power of the GPU.

The approach described in Chapter VIII accelerates fault simulation by employing a

table look-up based approach on the GPU. Chapter VIII, in contrast to the current chapter

does not target a fault table computation, but only accelerates fault simulation.

An approach which generates compressed fault tables or dictionaries is described

in [151]. This approach focuses on reducing the size of the fault table by using com-

paction [148, 159] or aliasing [160] techniques during fault table generation. Our approach,

on the other hand reduces the compute time for fault table generation by exploiting the im-

mense parallelism available in the GPU, and is hence orthogonal to [151].

IX-D. Our Approach

In order to maximally harness the high computational power of the GPU, our fault table

generation approach is designed in a manner that is aware of the GPU’s architectural, func-

tional features and constraints. For instance, the programming model of a GPU is the Single

Instruction Multiple Data (SIMD) model, under which all threads must compute identical

instructions, but on different data. GPUs allow extreme speedups if the different threads

being evaluated have minimal data dependencies or global synchronization requirements.

165

Our implementation honors these constraints and maximally avoids data or control depen-

dencies between different threads. Further, even though the GPU’s maximum bandwidth

to/from the on-board memory has dramatically increased in recent GPUs (to∼ 141.7 GB/s

in the NVIDIA Quadro FX 5800), the GPU to host communication in our implementation

is done using the PCIe 2.0 standard, with a data rate of∼500 MB/s for 16 lanes. Therefore,

our approach is implemented such that the communication between the host and the GPU

is minimized.

In this section, we provide the details of our GFTABLE approach. As mentioned ear-

lier, we modified FSIM [152] (which only performs fault simulation) to generate a complete

fault table on a single-threaded CPU, and refer to this version as FSIM∗. The underlying

algorithm for GFTABLE is a significantly re-engineered variant of FSIM∗. We next present

some preliminary information, followed by a description of FSIM∗, along with the mod-

ifications we made to FSIM∗ to realize GFTABLE, which capitalizes on the parallelism

available in a GPU.

IX-D.1. Definitions

We first define some of the key terms with the help of the example circuit shown in Fig-

ure IX.1. A stem (or fanout stem) is defined as a line (or net) which fans out to more than

one gate. All primary outputs of the circuit are defined as stems. For example in Fig-

ure IX.1, the stems are k and p. If the fanout branches of each stem are cut off, this induces

a partition of the circuit into fanout free regions (FFRs). For example, in Figure IX.1, we

get two FFRs as shown by the dotted triangles. The output of any FFR is a stem (say s),

and the FFR is referred to as FFR(s). If all paths from a stem s pass through a line l before

reaching a primary output, then the line l is called a dominator of the stem s. If there are

no other dominators between the stem s and dominator l, then line l is called the immediate

dominator of s. In the example, p is an immediate dominator of stem k in Figure IX.1.

166

The region between a stem s and its immediate dominator is called the stem region (SR)

of s, and is referred to as SR(s). Also, we define a vector as a 2-dimensional array with a

length equal to the number of primary inputs, and a width equal to P, the packet size. In

Figure IX.1, the vectors are on the primary inputs a, b, c, d and e. The packet size is P =

4. In other words, each vector consists of P fault patterns. In practice, the packet size for

bit-parallel fault simulators is typically equal to the word size of the computer on which the

simulator is implemented. In our experiments, the packet size (P) is 32.

1010

0111

0110
1001

0010

0000

1111
0000

0000
1111 1111

0000

0000

a

b

c

i

j

d

l

m

e

n

o

pk

FFR(p)FFR(k)

4-bit packets

of PI values
SR(k)

Fig. IX.1. Example Circuit

If the change of the logic value at line s is observable at line t, then detectability D(s,

t) = 1, else D(s, t) = 0. If a fault f injected at some line is detectable at line t, then fault

detectability FD(f , t) = 1, else FD(f , t) = 0. If t is a primary output, the (fault) detectability

is called a global (fault) detectability. The cumulative detectability of a line s, CD(s), is

the logical OR of the fault detectabilities of the lines which merge at s. The ith element

of CD(s) is defined as 1 iff there exists a fault f (to be simulated) such that FD(f , s) =1

under the application of the ith test pattern of the vector. Otherwise, it is defined as 0. The

following five properties hold for cumulative detectabilities:

167

• If a fault f (either s-a-1 or s-a-0) is injected at a line s and no other fault propagates

to s, then CD(s) = FD(f , s).

• If both s-a-0 and s-a-1 faults are injected at a line s, CD(s) = (11..1).

• If no fault is injected at a line s and no other faults propagate to s, then CD(s) =

(00..0).

• Suppose there is a path from s to t. Then CD(t) = CD(s) · D(s, t), where · is the

bitwise AND operation.

• Suppose 2 paths r→ t and s→ t merge. Then CD(t) = (CD(r)D(r, t) + CD(s)D(s,

t)), where + is is the bitwise OR operation.

Further details on detectability and cumulative detectability can be found in [152].

The sensitive inputs of a unate gate with two or more inputs are determined as follows:

• If only one input k has a Dominant Logic Value (DLV), then k is sensitive. AND and

NAND gates have a DLV of 0. OR and NOR gates have a DLV of 1.

• If all the inputs of a gate have a value DLV , then all inputs are sensitive,

• Otherwise no input is sensitive.

Critical path tracing (CPT), which was introduced in [130], is an alternative to con-

ventional forward fault simulation. The approach consists of determining paths of critical

lines, called critical paths, by a backtracing process starting at the POs for a vector vi. Note

that a critical line is a line driving the sensitive input of a gate. Note that the POs are critical

in any test. By finding the critical lines for vi, one can immediately infer the faults detected

by vi. CPT is performed after fault free simulation of the circuit for a vector vi has been

conducted. To aid the backtracing, sensitive gate inputs during fault free simulation are

marked.

168

For FFRs, CPT is always exact. In both approaches described in the next section,

FSIM∗ and GPU-TABLE, CPT is used only for the FFRs. An example illustrating CPT is

provided in the sequel.

IX-D.2. Algorithms: FSIM∗ and GFTABLE

The algorithm for FSIM∗ is displayed in Algorithm 9. The key modifications for GFTABLE

are explained in text in the sequel. Both FSIM∗ and GFTABLE maintain three major lists,

a fault list (FL), a stem list (STEM LIST) and an active stem list (ACTIVE STEM), all on

the CPU. The stem list stores all the stems {s} whose corresponding FFRs ({FFR(s)}) are

candidates for fault simulation. The active stem list stores stems {s∗} for which at least one

fault propagates to the immediate dominator of the stem s∗ . The stems stored in the two

lists are in the ascending order of their topological levels.

It is important to note that the GPU can never launch a kernel. Kernel launches are

exclusively performed by the CPU (host). As a result, if (as in the case of GFTABLE),

a conditional evaluation needs to be performed (lines 15, 17, and 25 for example), the

condition must be checked by the CPU, which can then launch the appropriate GPU kernel

if the condition is met. Therefore, the value being tested in the condition must be transferred

by the GPU back to the CPU. The GPU operates on T threads at once (each computing a

32-bit result). Hence, in order to reduce the volume of data transferred and to reduce it

to the size of a computer word on the CPU, the results from the GPU threads are reduced

down to one 32-bit value before being transferred back to the CPU.

The argument to both the algorithms is the number of test patterns (N) over which

the fault table is to be computed for the circuit. As a preprocessing step, both FSIM∗ and

GFTABLE compute the fault list FL, award every gate a gate id, compute the level of each

gate and identify the stems. The algorithms then identify the FFR and SR of each stem

(this is computed on the CPU). As discussed earlier, the stems and the corresponding FFRs

169

and SRs of these stems in our example circuit are marked in Figure IX.1. Let us consider

the following five faults in our example circuit: a s-a-0, c s-a-1, c s-a-0, l s-a-0 and l s-a-1,

which are added to the fault list FL. Also assume that the fault table generation is carried

out for a single vector of length 5 (since there are 5 primary inputs) consisting of 4-bit wide

packets. In other words, each vector consists of 4 patterns of primary input values. The

fault table [ai j] is initialized to the all zero matrix. In our example, the size of this matrix is

N × 5. The above steps are shown in lines 1 through 5 of Algorithm 9. The rest of FSIM∗

and GFTABLE are within a while loop (line 7) with condition v < N, where N is the total

number of patterns to be simulated and v is the current count of patterns which are already

simulated. For both algorithms, v is initialized to zero (line 6).

IX-D.2.a. Generating Vectors (Line 9)

The test vectors in FSIM∗ are generated using an LFSR-based pseudo-random number

generator on the CPU. For every test vector, as will be seen later, fault free and faulty

simulations are carried out. Each test vector in FSIM∗ is a vector (array) of 32-bit integers

with a length equal to the number of primary inputs (NPI). In this case, v is incremented by

32 (packet-width) in every iteration of the while loop (line 8).

Each test vector in GFTABLE is a vector of length NPI and width 32 × T , where T is

the number of threads launched in parallel in a grid of thread blocks. Therefore, in this case,

for every while loop iteration, v is incremented by T × 32. The test vectors are generated

on the CPU (as in FSIM∗) and transferred to the GPU memory. In all the results reported

in this chapter, both FSIM∗ and GFTABLE utilize identical test vectors (generated by the

LFSR-based pseudo-random number generator on the CPU). In all examples, the results

of GFTABLE matched those of FSIM*. The GFTABLE runtimes reported always include

the time required to transfer the input patterns to the GPU and the time required to transfer

results back to the CPU.

170

IX-D.2.b. Fault Free Simulation (Line 10)

Now, for each test vector, FSIM∗ performs fault free or true value simulation. Fault free

simulation is essentially the logic simulation of every gate, carried out in a forward lev-

elized order. The fault free output at every gate, computed as a result of the gate’s evalua-

tion, is recorded in the CPU’s memory.

Fault free simulation in GFTABLE is carried out in a forward levelized manner as

well. Depending on the gate type and the number of inputs, a separate kernel on the GPU

is launched for T threads. As an example, the pseudocode of the kernel which evaluates

the fault free simulation value of a two input AND gate is provided in Algorithm 10. The

arguments to the kernel are the pointer to global memory, MEM, where fault free values

are stored, and the gate id of the gate being evaluated (id) and its two inputs (a and b). Let

the thread’s (unique) threadID be tx. The data in MEM, indexed at a location (tx + a × T)

is ANDed with the data at location (tx + b × T) and the result is stored in MEM indexed

at location (tx + id × T). Our implementation has a similar kernel for every gate in our

library.

Since the amount of global memory on the GPU is limited, we store the fault free

simulation data in the global memory of the GPU for at most L gates1 of a circuit. Note

that we require two copies of the fault free simulation data, one for use as a reference and

the other for temporary modification to compute faulty circuit data. For the gates whose

fault free data is not stored on the GPU, the fault free data is transferred to and from the

CPU, as and when it is computed or required on the GPU. This allows our GFTABLE

approach to scale regardless of the size of the given circuit.

Figure IX.1 shows the fault free output at every gate, when a single test vector of

1We store fault free data for the L gates of the circuit that are topologically closest to the
primary inputs of the circuit.

171

packet width 4 is applied at its 5 inputs.

IX-D.2.c. Computing Detectabilities and Cumulative Detectabilities (Lines 13, 14)

Next, in the FSIM∗ and GFTABLE algorithms, for every stem s, CD(s) is computed. This is

done by computing the detectability of every fault in FFR(s) by using Critical Path Tracing

and the properties of cumulative detectabilities discussed in Section IX-D.1.

I

1

0

0

0

1

1

0

1

0

0

II

1

1

1

1

0

III

0

10

0

1

IV

a

b

c j

k
i

a

b

c j

k
i

a

b

c j

k
i

a

b

c j

k
i

Fig. IX.2. CPT on FFR(k)

This step is further explained by the help of Figure IX.2. The FFR(k) from the example

circuit is copied 4 times2, one for each pattern in the vector applied. In each of the copies,

the sensitive input is marked using a bold dot. The critical lines are darkened. Using these

markings, the detectabilities of all lines at stem k can be computed as follows: D(a, k) =

0001. This is because out of the four copies, only in the fourth copy a lies on the sensitive

path (i.e., a path consisting of critical lines) backtraced from k. Similarly we compute the

following:

2This is because the packet width is 4.

172

D(b, k) = 1000; D(c, k) = 0010; D(i, k) = 1001; D(j, k)=0010; D(k, k) = 1111; D(a, i) =

0111; D(b, i) = 1010 and D(c, j) = 1111.

Now for the faults in FFR(k) (i.e., a s-a-0, c s-a-0 and c s-a-1), we compute the FDs

as follows:

FD(a s-a-0, k) = FD(a s-a-0, a) · D(a, k).

For every test pattern, the fault a s-a-0 can be observed at a only when the fault free value

at a is different from the stuck at value of the fault. Among the four copies in Figure IX.2,

only the first and third copy have a fault free value of ’1’ at line a, and thus fault a s-a-0 can

be observed only in the first and third copies. Therefore FD(a s-a-0, a) = 1010. Therefore,

FD(a s-a-0, k) = 1010 · 0001 = 0000. Similarly, FD(c s-a-0, k) = 0010 and FD(c s-a-1, k) =

0000.

Now, by definition

CD(k) = (CD(i) · D(i, k) + CD(j) · D(j, k)) and CD(i) = (CD(a) · D(a, i) + CD(b) · D(b,

i)).

From the first property discussed for CD, CD(a) = FD(a s-a-0, a) = 1010, and by definition

CD(b) = 0000. By substitution and similarly computing CD(i) and CD(j), we compute

CD(k) = 0010.

The implementation of the computation of detectabilities and cumulative detectabili-

ties in FSIM∗ and GFTABLE is different, since in GFTABLE, all computations for com-

puting detectabilities and cumulative detectabilities are done on the GPU, with every kernel

executed on the GPU launched with T threads. Thus a single kernel in GFTABLE computes

T times more data, compared to the corresponding computation in FSIM∗. In FSIM∗, the

backtracing is performed in a topological manner from the output of the FFR to its inputs,

and is not scheduled for gates driving zero critical lines in the packet. We found that this

pruning reduces the number of gate evaluations by 42% in FSIM∗ (based on tests run on 4

benchmark circuits). In GFTABLE, however, T times more patterns are evaluated at once,

173

and as a result, no reduction in the number of scheduled gate evaluations were observed for

the same 4 benchmarks. Hence, in GFTABLE, we perform a brute-force backtracing on all

gates in an FFR.

As an example, the pseudocode of the kernel which evaluates the cumulative de-

tectability at output k of a 2-input gate with inputs i and j is provided in Algorithm 11.

The arguments to the kernel are the pointer to global memory, CD, where cumulative de-

tectabilities are stored, pointer to global memory, D, where detectabilites to the immediate

dominator are stored, the gate id of the gate being evaluated (k) and its two inputs (i and j).

Let the thread’s (unique) threadID be tx. The data in CD and D, indexed at a location (tx +

i × T) and (tx + j × T), and the result computed as per

CD(k) = (CD(i) · D(i, k) + CD(j) · D(j, k))

is stored in CD indexed at location (tx + k × T). Our implementation has a similar kernel

for 2, 3 and 4 input gates in our library.

IX-D.2.d. Fault Simulation of SR(s) (Lines 15, 16)

In the next step, the FSIM∗ algorithm checks that CD(s) 6= (00...0) (line 15), before it

schedules the simulation of SR(s) until its immediate dominator t, and the computation of

D(s, t). In other words, if CD(s) = (00...0), it implies that for the current vector, the frontier

of all faults upstream from s has died before reaching the stem s, and thus no fault can be

detected at s. In that case, the fault simulation of SR(s) would be pointless.

In the case of GFTABLE, the effective packet size is 32 × T . T is usually set to more

than 1000 (in our experiments it is ≥10K), in order to take advantage of the parallelism

available on the GPU and to amortize the overhead of launching a kernel and accessing

global memory. The probability of finding CD(s) = (00...0) in GFTABLE is therefore very

low (∼0.001). Further, this check would require the logical OR of T 32-bit integers on

the GPU, which is an expensive computation. As a result, we bypass the test of line 15 in

174

GFTABLE, and always schedule the computation of SR(s) (line 16).

In simulating SR(s), explicit fault simulation is performed in the forward levelized

order from stem s to its immediate dominator t. The input at stem s during simulation

of SR(s) is CD(s) XORed with fault free value at s. This is equivalent to injecting the

faults which are upstream from s and observable at s. After the fault simulation of SR(s),

the detectability D(s, t) is computed by XORing the simulation output at t with the true

value simulation at t. During the forward levelized simulation, the immediate fanout of

a gate g is scheduled only if the result of the logic evaluation at g is different from its

fault free value. This check is conducted for every gate in all paths from stem s to its

immediate dominator t. On the GPU, this step involves XORing the current gate’s T 32-bit

outputs with the previously stored fault free T 32-bit outputs. It would then require the

computation of a logical reduction OR of the T 32-bit results of the XOR into one 32-bit

result. This is because line 17 is computed on the CPU, which requires a 32-bit operand. In

GFTABLE, the reduction OR operation is a modified version of the highly optimized tree-

based parallel reduction algorithm on the GPU, described in [161]. The approach in [161]

effectively avoids bank conflicts and divergent warps, minimizes global memory access

latencies and employs loop unrolling to gain further speedup. Our modified reduction

algorithm has a key difference compared to [161]. The approach in [161] computes a SUM

instead of a logical OR. The approach described in [161] is a breadth first approach. In

our case employing a breadth first approach is expensive, since we need to detect if any

of the T × 32 bits is not equal to 0. Therefore, as soon as we find a single non-zero

entry we can finish our computation. Note that performing this test sequentially would be

extremely slow in the worst case. We therefore equally divide the array of T 32-bit words

into smaller groups of size Q words, and compute the logical OR of all numbers within

a group using our modified parallel reduction approach. As a result, our approach is a

hybrid of a breadth-first and a depth-first approach. If the reduction result for any group

175

is not (00...0), we return from the parallel reduction kernel and schedule the fanout of the

current gate. If the reduction result for any group, on the other hand, is equal to (00...0),

we compute the logical reduction OR of the next group and so on. Each logical reduction

OR is computed using our reduction kernel, which takes advantage of all the optimizations

suggested in [161] (and improves [161] further by virtue of our modifications). The optimal

size of the reduction groups was experimentally determined to be Q = 256. We found that

when reducing 256 words at once, there was a high probability of having at least one non

zero bit, and thus there was a high likelihood of returning early from the parallel reduction

kernel. At the same time, using 256 words allowed for a fast reduction within a single

thread block of size equal to 128 threads. Scheduling a thread block of 128 threads uses 4

warps (of warp size equal to 32 threads each). The thread block can schedule the 4 warps

in a time-sliced fashion, where each integer OR operation takes 4 clock cycles, thereby

making optimal use of the hardware resources.

Despite using the above optimization in parallel reduction, the check can still be ex-

pensive, since our parallel reduction kernel is launched after every gate evaluation. To

further reduce the runtime, we launch our parallel reduction kernel after every G gate eval-

uations. During in-between runs, the fanout gates are always scheduled to be evaluated.

Due to this, we would potentially do a few extra simulations, but this approach proved to

be significantly faster when compared to either performing a parallel reduction after every

gate’s simulation or scheduling every gate in SR(s) for simulation in a brute-force manner.

We experimentally determined the optimal value for G to be 20.

In the next step (lines 17 and 18), the detectability D(s, t) is tested. If it is not equal

to (00...0), stem s is added to the ACTIVE STEM list. Again this step of the algorithm is

identical for FSIM∗ and GFTABLE, however the difference is in the implementation. On

the GPU, a parallel reduction techniqu (as explained above), is used for testing if D(s, t)

6= (00...0). The resulting 32-bit value is transferred back to the CPU. The if condition (line

176

1111

1111

0010

0010

0010

0010

1111

0010

d

l

m

e

n

o

pk

SR(k)

Fig. IX.3. Fault Simulation on SR(k)

17) is checked on the CPU and if it is true, the ACTIVE STEM list is augmented on the

CPU.

For our example circuit, SR(k) is displayed in Figure IX.3. The input at stem k is 0010

(CD(k) XORed with fault free value at k). The two primary inputs d and e have the original

test vectors. From the output evaluated after explicit simulation until p, D(k,p) = 0010 6=

0000. Thus, k is added to the active stem list.

CPT on FFR(p) can be computed in a similar manner. The resulting values are listed

below:

D(l, p)=1111; D(n, p)=1111; D(d, p)=0000; D(m, p)=0000; D(e, p)=0000; D(o,p)=0000;

D(d, n)=0000; D(l, n)=1111; D(m, o)=0000; D(e, o)=1111; FD(l s-a-0, p)=0000; FD(l

s-a-1, p)=1111; CD(d) = 0000; CD(l)=1111; CD(m)=0000; CD(e)=0000; CD(n)=1111;

CD(o)=0000 and CD(p)=1111.

Since CD(p) 6= (0000) and D(p, p) 6= (0000), the stem p is added to ACTIVE STEM list.

177

IX-D.2.e. Generating the Fault Table (Line 22-31)

Next, FSIM∗ computes the global detectability of faults (and stems) in the backward order,

i.e., it removes the highest level stem s from the ACTIVE STEM list (line 23) and computes

its global detectability (line 24). If it is not equal to (00..0) (line 25), the global detectability

of every fault in FFR(s) is computed and stored in the [ai j] matrix (lines 26-28).

The corresponding implementation in GFTABLE maintains the ACTIVE STEM on

the CPU, and like FSIM∗, first computes the global detectability of the highest level stem

s from ACTIVE STEM list, but on the GPU. Also, another parallel reduction kernel is

invoked for D(s, t), since the resulting data needs to be transferred to the CPU for testing if

the global detectability of s is not equal to (00..0) (line 25). If true, the global detectability

of every fault in FFR(s) is computed on the GPU and transferred back to the CPU to store

the final fault table matrix on the CPU.

The complete algorithm of our GFTABLE approach is displayed in Algorithm 12.

IX-E. Experimental Results

As discussed previously, pattern parallelism in GFTABLE includes both bit parallelism,

obtained by performing logical operations on words (i.e. packet size is 32) and thread-

level parallelism, obtained by launching T GPU threads concurrently. With respect to bit

parallelism, the bit width used in GFTABLE implemented on the NVIDIA Quadro FX

5800 was 32. This was chosen to make a fair comparison with FSIM∗, which was run on a

32-bit, 3.6 GHz Intel CPU running Linux (Fedora Core 3), with 3 GB RAM. It should be

noted that Quadro FX 5800 also allows operations on 64-bit words.

With respect to thread-level parallelism, launching a kernel with a higher number of

threads in the grid allows us to better take advantage of the immense parallelism available

on the GPU, reduces the overhead of launching a kernel and hides the latency of accessing

178

global memory. However, due to a finite size of the global memory there is an upper limit

on the number of threads that can be launched simultaneously. Hence we split the fault list

of a circuit into smaller fault lists. This is done by first sorting the gates of the circuit in

increasing order of their level. We then collect the faults associated with every Z (=100)

gates from this list, to generate the smaller fault lists. Our approach is then implemented

such that a new fault list is targeted in a new iteration. We statically allocate global memory

for storing the fault detectabilities of the current faults (faults currently under consideration)

for all threads launched in parallel on the GPU. Let the number of faults in the current list

being considered be F , and the number of threads launched simultaneously be T , then

F × T × 4B of global memory is used for storing the current faults detectabilities. As

mentioned previously, we statically allocate space for two copies of fault free simulation

output for at most L gates. The gates of the circuit are topologically sorted from the primary

outputs to the primary inputs. The fault free data (and its copy) of the first L gates in the

sorted list are statically stored on the GPU. This further uses L × T × 2 × 4B of global

memory. For the remaining gates, the fault free data is transferred to and from the CPU as

and when it is computed or required on the GPU.

Further, the detectabilities and cumulative detectabilities of all gates in the FFRs of

the current faults, and for all the dominators in the circuit, are stored on the GPU. The

total on-board memory on a single NVIDIA Quadro FX 5800 is 4GB. With our current

implementation, we can launch T = 16K threads in parallel, while using L = 32K gates.

Note that the the complete fault dictionary is never stored on the GPU, and hence the

number of test patterns used for generating the fault table can be arbitrarily large. Also,

since GFTABLE does not store the information of the entire circuit on the GPU, it can

handle arbitrary sized circuits.

The results of our current implementation, for 10 ISCAS benchmarks and 11 ITC99

benchmarks, for 0.5M patterns, are reported in Table IX.1. All runtimes reported are in sec-

179

Table IX.1. Fault Table Generation Results with L = 32K

Circuit # Gates # Faults GFTABLE FSIM∗ Speedup GFTABLE-8 Speedup

c432 196 524 0.77 12.60 16.43× 0.13 93.87×
c499 243 758 0.75 8.40 11.20× 0.13 64.00×
c880 443 942 1.15 17.40 15.13× 0.20 86.46×
c1355 587 1574 2.53 23.95 9.46× 0.44 54.03×
c1908 913 1879 4.68 51.38 10.97× 0.82 62.70×
c2670 1426 2747 1.92 56.27 29.35× 0.34 167.72×
c3540 1719 3428 7.55 168.07 22.26× 1.32 127.20×
c5315 2485 5350 4.50 109.05 24.23× 0.79 138.48×
c6288 2448 7744 28.28 669.02 23.65× 4.95 135.17×
c7552 3719 7550 10.70 204.33 19.10× 1.87 109.12×
b14 1 7283 12608 70.27 831.27 11.83× 12.30 67.60×
b14 9382 16207 100.87 1502.47 14.90× 17.65 85.12×
b15 12587 21453 136.78 1659.10 12.13× 23.94 69.31×

b20 1 17157 31034 193.72 3307.08 17.07× 33.90 97.55×
b20 20630 35937 319.82 4992.73 15.61× 55.97 89.21×

b21 1 16623 29119 176.75 3138.08 17.75× 30.93 101.45×
b21 20842 35968 262.75 4857.90 18.49× 45.98 105.65×
b17 40122 69111 903.22 4921.60 5.45× 158.06 31.14×
b18 40122 69111 899.32 4914.93 5.47× 157.38 31.23×

b22 1 25011 44778 369.34 4756.53 12.88× 64.63 73.59×
b22 29116 51220 399.34 6319.47 15.82× 69.88 90.43×

Average 15.68× 89.57×

onds. The fault tables obtained from GFTABLE, for all benchmarks, were verified against

those obtained from FSIM∗, and were found to verify with 100% fidelity. Column 1 lists

the circuit under consideration, Columns 2 and 3 lists the number of gates and (collapsed)

faults in the circuit. The total runtimes for GFTABLE and FSIM∗ are listed in Columns

4 and 5 respectively. The runtime of GFTABLE includes the total time taken on both the

GPU and the CPU, and the time taken for all the data transfers between the GPU and the

CPU. In particular, the transfer time includes the time taken to transfer the following.

• The test patterns which are generated on the CPU (CPU→ GPU).

• The results from the multiple invocations of the parallel reduction kernel (GPU →

CPU).

• The global fault detectabilities over all test patterns for all faults (GPU→ CPU) and

• The fault free data of any gate which is not in the set of L gates (during true value

180

and faulty simulations) (CPU↔ GPU).

Column 6 reports the speedup of GFTABLE over FSIM∗. The average speedup over the

21 benchmarks is reported in the last row. On average, GFTABLE is 15.68× faster than

FSIM∗.

By using the NVIDIA Tesla server housing up to eight GPUs [144], the available

global memory increases by 8×. Hence we can potentially launch 8× more threads simul-

taneously, and set L to be large enough to hold the fault free data (and its copy) for all the

gates in our benchmark circuits. This allows for a ∼8× speedup in the processing time.

The first three items of the transfer times in the list above will not scale, and the last item

will not contribute to the total runtime. In Table IX.1, Column 7 lists the projected runtimes

when using a 8 GPU system for GFTABLE (referred to as GFTABLE-8). The projected

speedup of GFTABLE-8 compared to FSIM∗ is listed in Column 8. The average potential

speedup is 89.57×.

Tables IX.2 and IX.3 report the results with L = 8K and 16K, respectively. All columns

in Tables IX.2 and IX.3 report similar entries as described for Table IX.1. The speedup of

GFTABLE and GFTABLE-8 over FSIM∗ with L = 8K is 12.88× and 69.73×, respectively.

Similarly, the speedup of GFTABLE and GFTABLE-8 over FSIM∗with L = 16K is 14.49×

and 82.80× respectively.

IX-F. Chapter Summary

In this chapter, we have presented our implementation of fault table generation on a GPU,

called GFTABLE. Fault table generation requires fault simulation without fault dropping,

which can be extremely computationally expensive. Fault simulation is inherently paral-

lelizable, and the large number of threads that can be computed in parallel on a GPU can

therefore be employed to accelerate fault simulation and fault table generation. In partic-

181

Table IX.2. Fault Table Generation Results with L = 8K

Circuit # Gates # Faults GFTABLE FSIM∗ Speedup GFTABLE-8 Speedup

c432 196 524 0.73 12.60 17.19× 0.13 98.23×
c499 243 758 0.75 8.40 11.20× 0.13 64.00×
c880 443 942 1.13 17.40 15.36× 0.20 87.76×
c1355 587 1574 2.52 23.95 9.52× 0.44 54.37×
c1908 913 1879 4.73 51.38 10.86× 0.83 62.04×
c2670 1426 2747 1.93 56.27 29.11× 0.34 166.34×
c3540 1719 3428 7.57 168.07 22.21× 1.32 126.92×
c5315 2485 5350 4.53 109.05 24.06× 0.79 137.47×
c6288 2448 7744 28.17 669.02 23.75× 4.93 135.72×
c7552 3719 7550 10.60 204.33 19.28× 1.85 110.15×
b14 1 7283 12608 70.05 831.27 11.87× 12.26 67.81×
b14 9382 16207 120.53 1502.47 12.47× 21.09 71.23×
b15 12587 21453 216.12 1659.10 7.68× 37.82 43.87×

b20 1 17157 31034 410.68 3307.08 8.05× 71.87 46.02×
b20 20630 35937 948.06 4992.73 5.27× 165.91 30.09×

b21 1 16623 29119 774.45 3138.08 4.05× 135.53 23.15×
b21 20842 35968 974.03 4857.90 5.05× 170.46 28.50×
b17 40122 69111 1764.01 4921.60 2.79× 308.70 15.94×
b18 40122 69111 2100.40 4914.93 2.34× 367.57 13.37×

b22 1 25011 44778 647.15 4756.53 7.35× 113.25 42.00×
b22 29116 51220 915.87 6319.47 6.90× 160.28 39.43×

Average 12.88× 69.73×

ular, we implemented a pattern parallel approach which utilizes both bit-parallelism and

thread-level parallelism. Our implementation is a significantly re-engineered version of

FSIM, which is a pattern parallel fault simulation approach for single core processors. At

no time in the execution is the entire circuit (or a part of the circuit) required to be stored (or

transferred) on (to) the GPU. Like FSIM, GFTABLE utilizes critical path tracing and the

dominator concept to reduce explicit simulation time. Further modifications to FSIM allow

us to maximally harness the GPU’s computational resources and large memory bandwidth.

We compared our performance to FSIM∗, which is FSIM modified to generate a fault table.

Our experiments indicate that GFTABLE, implemented on a single NVIDIA Quadro FX

5800 GPU card, can generate a fault table for 0.5 million test patterns, on average 15×

faster when compared FSIM∗. With the NVIDIA Tesla server [144], our approach would

be potentially 90× faster.

182

Table IX.3. Fault Table Generation Results with L = 16K

Circuit # Gates # Faults GFTABLE FSIM∗ Speedup GFTABLE-8 Speedup

c432 196 524 0.73 12.60 17.33× 0.13 99.04×
c499 243 758 0.75 8.40 11.20× 0.13 64.00×
c880 443 942 1.03 17.40 16.89× 0.18 96.53×
c1355 587 1574 2.53 23.95 9.46× 0.44 54.03×
c1908 913 1879 4.68 51.38 10.97× 0.82 62.70×
c2670 1426 2747 1.97 56.27 28.61× 0.34 163.46×
c3540 1719 3428 7.92 168.07 21.22× 1.39 121.26×
c5315 2485 5350 4.50 109.05 24.23× 0.79 138.48×
c6288 2448 7744 28.28 669.02 23.65× 4.95 135.17×
c7552 3719 7550 10.70 204.33 19.10× 1.87 109.12×
b14 1 7283 12608 70.27 831.27 11.83× 12.30 67.60×
b14 9382 16207 100.87 1502.47 14.90× 17.65 85.12×
b15 12587 21453 136.78 1659.10 12.13× 23.94 69.31×

b20 1 17157 31034 193.72 3307.08 17.07× 33.90 97.55×
b20 20630 35937 459.82 4992.73 10.86× 80.47 62.05×

b21 1 16623 29119 156.75 3138.08 20.02× 27.43 114.40×
b21 20842 35968 462.75 4857.90 10.50× 80.98 59.99×
b17 40122 69111 1203.22 4921.60 4.09× 210.56 23.37×
b18 40122 69111 1399.32 4914.93 3.51× 244.88 20.07×

b22 1 25011 44778 561.34 4756.53 8.47× 98.23 48.42×
b22 29116 51220 767.34 6319.47 8.24× 134.28 47.06×

Average 14.49× 82.80×

183

Algorithm 9 Pseudocode of FSIM∗
1: FSIM∗(N){
2: Set up Fault list FL.

3: Find FFRs and SRs.

4: STEM LIST← all stems

5: Fault table [aik] initialized to all zero matrix.

6: v=0

7: while v < N do

8: v=v + packet width

9: Generate one test vector using LFSR

10: Perform fault free simulation

11: ACTIVE STEM← NULL.

12: for each stem s in STEM LIST do

13: Simulate FFR using CPT

14: Compute CD(s)

15: if (CD(s) 6= (00...0)) then

16: Simulate SRs and compute D(s, t), where t is the immediate dominator of s.

17: if (D(s, t) 6= (00...0)) then

18: ACTIVE STEM← ACTIVE STEM + s.

19: end if

20: end if

21: end for

22: while (ACTIVE STEM 6= NULL) do

23: Remove the highest level stem s from ACTIVE STEM.

24: Compute D(s, t), where t is an auxiliary output which connects all primary outputs.

25: if (D(s, t) 6= (00...0)) then

26: for (each each fault fi in FFR(s)) do

27: FD(fi, t) = FD(fi, s) · D(s, t).

28: Store FD(fi, t) in the ith row of [aik]
29: end for

30: end if

31: end while

32: end while

33: }

Algorithm 10 Pseudocode of the Kernel for Logic Simulation of Two-input AND Gate

logic simulation kernel AND 2(int ∗MEM, int id, int a, int b){
tx = my thread id

MEM[tx + id ∗T] = MEM[tx + a∗T] ·MEM[tx + b∗T]
}

184

Algorithm 11 Pseudocode of the kernel to compute CD of the output k of two-input gate

with inputs i and j

CPT kernel 2(int ∗CD, int ∗D, inti, int j, intk){
tx = my thread id

CD[tx + k ∗T] = CD[tx + i∗T] ·D[tx + i∗T]+CD[tx + j ∗T] ·D[tx + j ∗T]
}

185

Algorithm 12 Pseudocode of GFTABLE

GFTABLE(N){
Set up Fault list FL.

Find FFRs and SRs.

STEM LIST← all stems

Fault table [aik] initialized to all zero matrix.

v=0

while v < N do

v=v + T × 32

Generate using LFSR on CPU and transfer test vector to GPU

Perform fault free simulation on GPU

ACTIVE STEM← NULL.

for each stem s in STEM LIST do

Simulate FFR using CPT on GPU // bruteforce backtracking on all gates

Simulate SRs on GPU

// check at every Gth gate during

// forward levelized simulation if fault frontier still alive,

// else continue with for loop with s← next stem in STEM LIST

Compute D(s, t) on GPU, where t is the immediate dominator of s. // computed using hybrid

parallel reduction on GPU

if (D(s, t) 6= (00...0)) then

update on CPU ACTIVE STEM← ACTIVE STEM + s

end if

end for

while (ACTIVE STEM 6= NULL) do

Remove the highest level stem s from ACTIVE STEM.

Compute D(s, t) on GPU, where t is an auxiliary output which connects all primary outputs.

// computed using hybrid parallel reduction on GPU

if (D(s, t) 6= (00...0)) then

for (each each fault fi in FFR(s)) do

FD(fi, t) = FD(fi, s) · D(s, t). // computed on GPU

Store FD(fi, t) in the ith row of [aik] // stored on CPU

end for

end if

end while

end while

}

186

CHAPTER X

ACCELERATING CIRCUIT SIMULATION USING GRAPHICS PROCESSORS

X-A. Chapter Overview

SPICE [80] based circuit simulation is a traditional workhorse in the VLSI design process.

Given the pivotal role of SPICE in the IC design flow, there has been significant interest in

accelerating SPICE. Since a large fraction (on average 75%) of the SPICE runtime is spent

in evaluating transistor model equations, a significant speedup can be availed if these eval-

uations are accelerated. This chapter reports on our efforts to accelerate transistor model

evaluations using a Graphics Processing Unit (GPU). We have integrated this accelerator

with OmegaSIM, a commercial fast SPICE [162] tool. Our experiments demonstrate that

significant speedups (2.36× on average) can be obtained. The asymptotic speedup that can

be obtained is about 4×. We demonstrate that with circuits consisting of as few as about

1000 transistors, speedups of ∼3× can be obtained. By utilizing NVIDIA Tesla GPU sys-

tems [144], this speedup could be enhanced further, especially for larger designs.

The remainder of this chapter is organized as follows. Section X-B introduces cir-

cuit simulation along with the motivation to accelerate it. Some previous work in circuit

simulation has been described in Section X-C. Section X-D details our approach for im-

plementing device model evaluation on a GPU. In Section X-E we present results from

experiments which were conducted after implementing our approach and integrating it in

OmegaSIM. We summarize the chapter in Section X-F.

X-B. Introduction

SPICE [80] is the de facto industry standard for circuit level simulation of VLSI designs.

SPICE simulation is typically infeasible for designs larger than 20,000 devices. With the

187

rapidly decreasing minimum feature sizes of devices, the number of devices on a single

chip has significantly increased. As a result, it becomes critically important to run SPICE

on larger portions of the design to validate their electrical and timing behavior before tape-

out. Further, process variations increasingly impact the electrical behavior of a design.

This is often tackled by performing Monte Carlo SPICE simulations, requiring significant

computing and time resources.

As a result, there is a significant motivation to speed up SPICE simulations without

losing accuracy. In this chapter, we present an approach to accelerate the computation-

ally intensive component of SPICE, by exploiting the parallelism available in graphics

processing units (GPUs). In particular, our approach parallelizes and accelerates the tran-

sistor model evaluation in SPICE, for BSIM3 [163] models. Our benchmarking shows that

BSIM3 model evaluations comprise about 75% of the SPICE runtime. By accelerating this

portion of SPICE, therefore, a speedup of up to 4× can be obtained in theory. Our results

show that in practice, our approach can obtain a speedup of about 2.36× on average, with

a maximum speedup of 3.07×. The significance of this is further underscored by the fact

that our approach is implemented and integrated in OmegaSIM [162], a commercial SPICE

accelerator tool, which presents significant speed gains over traditional SPICE implemen-

tations, even without GPU based acceleration.

The SPICE algorithm and its variants simulate the nonlinear time-varying behavior of

a design, by employing the following key procedures:

• Formulation of circuit equations using Modified Nodal Analysis [164] (MNA) or

Sparse Tableau Analysis [165] (STA).

• Evaluating the time-varying behavior of the design using numerical integration tech-

niques, applied to the non-linear circuit model

• Solving the non-linear circuit model using Newton-Raphson (NR) based iterations.

188

• Solving a linear system of equations in the inner loop of the engine.

The main time-consuming computation in SPICE is the evaluation of device model

equations in different iterations of the above flow. Our profiling experiments, using BSIM3

models, show that on average 75% of the SPICE runtime is spent in performing these eval-

uations. This is because these evaluations are performed for each device, and possibly

repeated for each time step, until the convergence of the NR based non-linear equation

solver. The total number of such evaluations can easily run into the billions, even for small

to medium sized designs. Therefore, the speed of the device model evaluation code is a

significant determinant of the speed of the overall SPICE simulator [164]. For more accu-

rate device models like BSIM4 [166], which account for additional electrical behaviors of

deep sub-micron (DSM) devices, the fraction of the total runtime which model evaluations

require is even higher. Thus the asymptotic speedup that can be obtained by accelerating

these evaluations is more than 4×.

This chapter focuses on the acceleration of SPICE by performing the transistor model

evaluations on the GPU. An industrial design could require several thousand device model

evaluations for a given time step. These evaluations are independent. In other words the

device model computation requires that the same set of model equations be evaluated,

possibly several thousand times, for different devices with no data dependencies. This

property of the device model evaluations matches well with the single instruction multiple

data (SIMD) computational paradigm that GPUs implement. Our current implementation

handles BSIM3 models. However, using the approach described in the chapter, we can

easily handle BSIM4 models, or a combination of different models.

Our device model evaluation engine is implemented in the Compute Unified Device

Architecture (CUDA) framework, which is an open-source programming and interfacing

tool provided by NVIDIA for programming their GPU devices. The GPU device used for

189

our implementation and benchmarking is the NVIDIA GeForce 8800 GTS.

Performing the evaluation of device model equations for several thousand devices

is a natural match for capabilities of the GPU. This is because such an application can

exploit the extreme memory bandwidths of the GPU, as well as the presence of several

computation elements on the GPU. To the best of the authors’ knowledge, this work is the

first to accelerate circuit simulation on a GPU platform.

An extended abstract of this work can be found at [167]. The key contributions of this

work are:

• We exploit the match between parallel device model evaluation and the capabilities

of a GPU, a SIMD-based device. This enables us to harness the computational power

of GPUs to accelerate device model evaluations.

• Our implementation caters to the key features required to obtain maximal speedup

on a GPU.

– The different threads, which perform device model evaluations, are implemented

so that there are no data or control dependencies between threads.

– All device model evaluation threads compute identical instructions, but on dif-

ferent data, which exploits the SIMD architecture of the GPU.

– The values of the device parameters required for evaluating the model equations

are obtained using a texture memory lookup, thus exploiting the extremely large

memory bandwidth of GPUs.

• Our device model evaluation is implemented in a manner which is aware of the spe-

cific constraints of the GPU platform such as the use of (cached) texture memory

for table lookup, memory coalescing for global memory accesses and the balancing

190

of hardware resources used by different threads. This helps maximize the speedup

obtained.

• Our approach is integrated into a commercial circuit simulation tool OmegaSIM [162].

A CPU-only implementation of OmegaSIM is on average 10× to 1000× faster than

SPICE (and about 10× faster than other fast SPICE implementations). With the de-

vice model evaluation performed using our GPU based implementation, OmegaSIM

is sped up by an additional factor of 2.36×, on average.

X-C. Previous Work

Several fast SPICE implementations depend upon hierarchical isomorphism to increase

performance [168, 169, 170]. In other words they extract hierarchical similarities in the de-

sign, and avoid redundant simulations. This approach works well for regular designs such

as memories, which exhibit a high degree of repetitive and hierarchical structure. However,

it is less successful for random logic or other designs without repetitive structures. This ap-

proach is not efficient for simulating a post place-and-routed design, since back-annotated

capacitances vary significantly so that repetitive blocks of hierarchy can no longer be con-

sidered to be identical in terms of their electrical behavior. Our approach parallelizes device

model evaluations at each timestep, and hence exhibits a healthy speedup regardless of the

regularity (or lack thereof) in a circuit. As such, our approach is orthogonal to the hierar-

chical isomorphism based techniques.

A transistor level engine targeted for interconnect analysis is proposed in [171]. It

makes use of the successive chord (SC) integration method (as opposed to NR iterations)

and a table-lookup model to determine Ids currents. The approach re-uses LU factoriza-

tion results across multiple timesteps and input stimuli. As noted by the authors, the SC

method does not provide all desired convergence properties of the NR method for general

191

analog simulation analysis. In contrast, our approach speeds up device model evaluation

for arbitrary circuits in a classical SPICE framework, due to its robustness and industry-

wide popularity. Our early experiments demonstrate that model evaluation comprises the

majority (∼75%) of the total circuit simulation runtime. Our approach is orthogonal to the

non-linear system solution approach, and can thus be used in tandem with the approach

of [171] if desired.

The approach of [172] proposed speeding up device model evaluation by using the

PACE [173] distributed memory multiprocessor system, with a four-processor cluster. They

targeted transient analysis in ADVICE, an AT&T circuit simulation program similar to

SPICE, which is available commercially. Our approach, in contrast, exploits the parallelism

available in an off-the-shelf GPU for speeding up device model evaluations. Further, their

experimental results discuss the speedup obtained for device model evaluation (alone) to

be about 3.6×. Our results speed up device model evaluation by 30-40× on average. The

speedup obtained using our approach for the entire SPICE simulation is 2.36× on average.

Further, their target multiprocessor system requires the user to perform load balancing up-

front. The CUDA architecture and its instruction scheduler (which handles the GPU mem-

ory accesses) together abstract the problem of load balancing away from the user. Also, the

thread scheduler on the GPU periodically switches between processors to efficiently and

dynamically balance their computational resources, without user intervention.

The authors of [174] proposed speeding up circuit simulation using a shared memory

multiprocessor system, namely the Alliant FX/8 with a six-processor cluster. They too tar-

get transient analysis in ADVICE, but concentrate on two routines – i) an implicit numerical

integration scheme to solve the time-varying non-linear system, and ii) a modified approach

for solving the set of non-linear equations. In contrast, our approach uses a commercial

off-the-shelf GPU to accelerate only the device model evaluations, by exploiting the SIMD

computing paradigm of the GPU. During numerical integration, the authors perform device

192

model evaluation by device type. In other words, all resistors are evaluated at once, then

all capacitors are evaluated followed by MOSFETs etc. In order to avoid potential conflicts

due to parallel writes, the authors make use of locks for consistency. Our implementation

faces no such issues, since all writes are automatically synchronized by the scheduler and

are thus conflict free. Therefore, we obtain significantly higher speedups. The experimental

results of [174] indicate a speedup for device model evaluation of about 1-6×. Our results

demonstrate speedups for device model evaluation of about 30-40×. The authors of [174]

do not report runtimes or speedup obtained for the entire circuit simulation. We improve

the runtime for the complete circuit simulation by 2.36× on average.

The commercial tool we used for integrating our implementation of GPU based device

model evaluation is OmegaSIM [162]. OmegaSIM’s core is a multi-engine, current-based

architecture with multi-threading capabilities. Other details about the OmegaSIM architec-

ture are not pertinent to this chapter, since we implement only the device model evaluations

on the GPU.

X-D. Our Approach

The SPICE [175, 80] algorithm simulates the nonlinear time-varying behavior of a circuit

using the following steps.

• First, the circuit equations are formulated using Modified Nodal Analysis (MNA).

This is typically done by stamping the MNA matrix based on the types of devices

included in the SPICE netlist, as well as their connectivity.

• The time-varying behavior of the design is solved using numerical integration tech-

niques applied to the non-linear circuit model. Typically, the trapezoidal method of

numerical integration is used, although the Gear method may be optionally used.

Both these methods are implicit methods and are highly stable.

193

• The non-linear circuit model is solved using Newton-Raphson (NR) based iterations.

In each iteration, a linear system of equations needs to be solved. During the lin-

earization step, device model equations need to be evaluated, to populate the coeffi-

cient values in the linear system of equations.

• Solving a linear system of equations forms the inner loop of the SPICE engine.

We profiled the SPICE code to find the fraction of time that is spent performing device

model evaluations, on several circuits. These profiling experiments, which were performed

using OmegaSIM, showed that on average 75% of the total simulation runtime is spent in

performing device model evaluations for industrial designs. As an example, for the design

Industry 1, which performs the functionality of a Linear Feedback Shift Register (LFSR),

74.9% of the time was spent in BSIM3 device model evaluations. The Industry 1 design

had 324 devices, and required 1.86×107 BSIM3 device model evaluations over the entire

simulation.

We note that the device model evaluations can be performed in parallel, since they

need to be evaluated for every device. Further, these evaluations are possibly repeated (with

different input data) for each time step until the convergence of the NR based non-linear

equation solver. Therefore, billions of these evaluations could be required for a complete

simulation, even for small to medium designs. Also, these computations are independent of

each other, exposing significant parallelism for medium to large sized designs. The speed

of execution of the device model evaluation code, therefore, significantly determines the

speed of the overall SPICE simulator. Since the GPU platform allows significant paral-

lelism, it forms an ideal candidate platform for speeding up transistor model evaluations.

Since device model evaluations consume about 75% of the runtime of a CPU based SPICE

engine, we can obtain an asymptotic maximum speedup of 4× if these computations are

parallelized. This is in accordance with Amdahl’s Law [176], which states that the overall

194

algorithm performance is limited by the portion that is not parallelizable. In the sequel

we discuss the implementation of the GPU based device model evaluation portion of the

SPICE flow.

Our implementation is integrated into an industrial accelerated SPICE tool called

OmegaSIM. Note that OmegaSIM, running in a CPU-only mode, obtains significant speedup

over competing SPICE offerings. Our implementation, after integration into OmegaSIM re-

sults in a CPU+GPU implementation which is 2.36× faster on average, compared to the

CPU-only version of OmegaSIM.

X-D.1. Parallelizing BSIM3 Model Computations on a GPU

Our implementation supports BSIM3 models. In this section, we make several observa-

tions about the careful engineering required in order to parallelize BSIM3 device model

computations on a GPU. These ideas are implemented in our approach, and together help

us achieve the significant speedup in BSIM3 model computations. Note that BSIM4 device

model computations can be parallelized in a similar manner.

X-D.1.a. Inlining If-Then-Else Code

The BSIM3 model evaluation code consist of several if-then-else statements, with a max-

imum nesting depth of 4. This code does not contain any while or for loops. The input

to the BSIM3 device model evaluation routine is a number of device parameters, some of

which are unchanged during the model evaluation (these parameters are referred to as run-

time parameters), while others are computed during the model evaluation. The key task

is to perform these computations on a GPU, which has a SIMD computation model. For

instance, a code fragment such as

Codefragment1()

if(cond) {

195

CODE-A;

}

else {

CODE-B;

}

would be converted into the following code fragment for execution on the GPU.

Codefragment2()

CODE-A;

CODE-B;

if(cond) {

return result of CODE-A;

}

else {

return result of CODE-B;

}

As mentioned, the programming paradigm of a GPU is the Single Instruction Multiple

Data (SIMD) model, wherein all threads must compute identical instructions, but on differ-

ent data. The different threads being computed in parallel should have no data or control

dependency among them, to obtain maximal speedup. GPUs also have an extremely large

memory bandwidth, which allows multiple memory accesses to be performed in parallel.

The SIMD paradigm is thus an appropriate match for performing several device model eval-

uations in parallel. Our code (restructured as shown in Codefragment2()) can be executed

in a SIMD fashion on a GPU, with all kernels executing the same instruction in lock-step,

but on different data. Of course, this code fragment requires the GPU to perform more

instructions than is the case with the original code fragment. However, the large degree of

196

parallelism on the GPU overcomes this disadvantage, and yields impressive speedups, as

we will see in the sequel. The above conversion is handled by the CUDA compiler.

X-D.1.b. Partitioning the BSIM3 Code into Kernels

The key task in implementing the BSIM3 device model evaluations on the GPU is the parti-

tioning of the BSIM3 code into smaller fragments, with each fragment being implemented

as a GPU kernel.

In the limit, we could implement the entire BSIM3 code in a single kernel, which in-

cludes all the device model evaluations required for a BSIM3 model card. However, this

would not allow us to execute a sufficiently large number of kernels in parallel. This is be-

cause of the limitation on the hardware resources available for every multiprocessor on the

GPU. In particular, the limitation applies to registers and shared memory. As mentioned

earlier, the maximum number of registers for a multiprocessor is 8192. Also, the maximum

amount of shared memory for a multiprocessor is 16 KB. If any of these resources are ex-

ceeded, additional kernels cannot be run. Therefore, if we had a kernel with 4000 registers,

then no more than 2 kernels can be issued in parallel (even if the amount of shared memory

used by these 2 kernels is much less than 16 KB). In order to achieve maximal speedup,

the GPU code needs to be implemented in a manner that hides memory access latencies,

by issuing hundreds of threads at once. In case a single thread (which implements all the

device model evaluations) is launched, it will not leave sufficient hardware resources to in-

stantiate a sufficient number of additional threads to execute the same kernel (on different

data). As a result, the latency of accessing off-chip memory will not be hidden in such

a scenario. To avert this, the device model evaluation code needs to be partitioned into

smaller kernels. These kernels are of an appropriate size such that a large number of them

can be issued without depleting the registers or shared memory of the multiprocessor. If,

on the other hand, the kernels are too small, then large amounts of data transfer will be

197

required from one kernel to another (this transfer is done via global memory). The data

that is written by kernel k, and needs to be read by kernel k + j, will be stored in global

memory. If the kernels are extremely small, a large amount of data will have to be written

and read to/from global memory, hampering the performance. Hence, in the other extreme

case of very small kernels, we may run into a performance bottleneck as well.

Therefore, keeping in mind the limited hardware resources (in terms of registers and

shared memory), and the global memory latency and bandwidth constraints, the device

model evaluations are partitioned into appropriately sized kernels which maximize paral-

lelism and minimize the global memory access latency. Satisfying both these constraints

for a kernel is important in order to maximally exploit the speedup obtained on the GPU.

Our approach for partitioning the BSIM3 code into kernels first finds the control and

dataflow graph (CDFG) of the BSIM3 code. Then we find the disconnected components

of this graph, which form a set D. For each component d ∈ D, we partition the code of

d into smaller kernels as appropriate. The partitioning is performed such that the number

of variables that are written by kernel k and read by kernel k + j, are minimized. This

minimizes the number of global memory accesses. Also, the number of registers R used by

each kernel is minimized, since the total number of threads that can be issued in parallel on

a single multiprocessor is 8192/R, rounded down to the nearest multiple of 32, as required

by the 8800 architecture. The number of threads issued in parallel cannot exceed 768 for a

single multiprocessor.

X-D.1.c. Efficient Use of GPU Memory Model

In order to obtain maximum speedup of the BSIM3 model evaluation code, the different

forms of GPU memory need to be carefully utilized. In this section, we discuss the ap-

proach taken in this regard.

198

• Global Memory

At a coarse analysis level, the device model evaluations in a circuit simulator are

divided into

– Creating a DC model for the device, given the operating voltages at the device

terminals.

– Calculating the different output values that are part of the BSIM3 device evalu-

ation code. These are the values that are returned by the BSIM3 device evalua-

tion code, to the calling routine.

In order to minimize the data transfers from GPU (device) to CPU (host), the results

of the set of kernels that compute the DC model parameters are stored in global mem-

ory and are not returned back to the host. Next, when the kernels which calculate the

values that need to be returned by the BSIM3 model evaluation routine are executed,

they can read (or write) the global memory to fetch the DC model parameters. GPUs

have an extremely large memory bandwidth as discussed earlier, which allows mul-

tiple memory accesses to the global memory to be performed in parallel, and their

latencies to be hidden.

• Texture Memory

In our implementation, the values of the parameters (referred to as runtime parame-

ters) required for performing device model evaluations are stored in the texture mem-

ory, and are accessed by performing a texture memory lookup. Using the texture

memory (as opposed to global, shared or constant memory) has the following advan-

tages:

– Texture memory of a GPU device is cached as opposed to shared or global

memory. Hence we can exploit the benefits obtained from the cached texture

199

memory lookups.

– Texture memory accesses do not have coalescing constraints as required in case

of global memory accesses, making the runtime parameters lookup efficient.

– In case of multiple look-ups performed in parallel, shared memory accesses

might lead to bank conflicts and thus impede the potential speedup.

– Constant memory accesses in the GPU, as discussed in Chapter III, are optimal

when all lookups occur at the same memory location. This is typically not the

case in parallel device model evaluation.

– The CUDA programming environment has built-in texture fetching routines

which are extremely efficient.

Note that the allocation and loading of the texture memory requires non-zero time,

but this cost is easily amortized since several thousand lookups are typically per-

formed from the same runtime parameter data.

• Constant Memory

Our implementation makes efficient use of the constant memory for storing physical

constants such as π, εo, etc., required for device model evaluations. Constant mem-

ory is cached, and thus, performing several million device model evaluations in the

entire circuit simulation flow allows us to exploit the advantage of a cached constant

memory. Since the processors in any multiprocessor of the GPU operate in a SIMD

fashion, all lookups for the constant parameters occur at the same memory location

at the same time. This results in the most optimal usage of constant memory.

200

X-D.1.d. Thread Scheduler and Code Statistics

Once the threads are issued to the GPU, an in-built hardware scheduler performs the

scheduling of these threads.

The blocks that are processed by one multiprocessor in one batch are referred to as

active. Each active block is split into SIMD groups of threads called warps. Each of these

warps contain the same number of threads (warp size) and are executed by the multipro-

cessor in a SIMD fashion. Active warps (i.e. all the warps from all the active blocks) are

time-sliced – a thread scheduler periodically switches from one warp to another to maxi-

mize the use of the multiprocessor’s computational resources.

The statistics for our implementation of the BSIM3 device model evaluation code are

reported next. The warp size for a NVIDIA 8800 device is 32. Further, the pool of registers

available for the threads in a single multiprocessor is equal to 8192. In our implementation,

the dimblock size is 32 threads. The average number of registers used by a single kernel in

our implementation is around 12. A register count limit of 8192 allows 640 threads of the

possible 768 threads in a single multiprocessor to be issued, thus having an occupancy of

about 83.33% on average. The multiprocessor occupancy is calculated using the occupancy

calculator worksheet provided with CUDA. The number of registers used per kernel, and

the shared memory per block are obtained using the CUDA compiler (nvcc) with the ’-

cubin’ option.

X-E. Experiments

Our device model evaluation engine is implemented and integrated in a commercial SPICE

accelerator tool OmegaSIM [162]. In this section, we present details of our experimental

setup and results.

In all our experiments, the CPU used was an Intel Core 2 Quad Core (4 processor)

201

machine, running at 2.40 GHz with 4 GB RAM. The GPU card used for our experiments

is the NVIDIA GeForce 8800 GTS with 512 MB RAM, operating at 675 MHz.

We first profiled the circuit simulation code. Over several examples, we found that

about 75% of the runtime, is consumed by BSIM3 device model evaluations. For the

design Industrial 1, the code profiling is as follows:

• BSIM3 device model evaluations = 74.9%

• Non-accelerated portion of OmegaSIM code = 24.1%

Thus, by accelerating the BSIM3 device evaluation code, we can asymptotically obtain

around 4× speedup for circuit simulation.

Table X.1 compares our approach of implementing the device model evaluation on the

GPU to the device model evaluation on the CPU in terms of runtime. Column 1 reports the

number of evaluations performed. Columns 2 and 3 report the GPU runtimes (wall clock),

in ms, for evaluating the device model equations and the data transfers (CPU → GPU as

well as GPU→ CPU), respectively. In particular, the data transfers include transferring the

runtime parameters and the operating voltages at the device terminal (for all evaluations)

from CPU to GPU. The data transfers from the GPU to CPU include the outputs of the

BSIM3 device model evaluation code. Column 4 reports the total (processing+transfer)

GPU runtimes (in ms). The CPU runtimes (in ms) are reported in Column 5 and the speedup

obtained is reported in Column 6.

Table X.1. Speedup for BSIM3 Evaluation

Evaluations GPU runtimes (ms) CPU runtime (ms) Speedup

Processing Transfer Total

1M 81.17 196.48 277.65 8975.63 32.33 ×
2M 184.91 258.79 443.7 18086.29 40.76 ×

Table X.2 compares the runtime of AuSIM (which is OmegaSIM with our approach

202

integrated. AuSIM runs partly on GPU and partly on CPU) against the original OmegaSIM

(running on the CPU alone). Columns 1 and 2 report the circuit name and the number of

transistors in the circuit, respectively. The number of evaluations required for full circuit

simulation is reported in Column 3. Columns 4 and 5 report the CPU-alone and GPU+GPU

runtimes (in seconds), respectively. The speedups are reported in Column 6. The circuits

Industrial 1, Industrial 2 and Industrial 3 perform the functionality of an LFSR. Circuits

Buf 1, Buf 2 and Buf 3 are buffer insertion instances for buses of 3 different sizes. Circuits

ClockTree 1 and ClockTree 2 are symmetrical H-tree clock distribution networks. These

results show that an average speedup of 2.36× can be achieved over a variety of circuits.

Also, note that with an increase in the number of transistors in the circuit, the speedup

obtained is higher. This is because the GPU memory latencies can be better hidden when

more device evaluations are issued in parallel.

Table X.2. Speedup for Circuit Simulation

Ckt Name # Trans. Total # Eval. OmegaSIM (s) AuSIM (s) SpeedUp

CPU-alone GPU+CPU

Industrial 1 324 1.86×107 49.96 34.06 1.47 ×
Industrial 2 1098 2.62×109 118.69 38.65 3.07 ×
Industrial 3 1098 4.30×108 725.35 281.5 2.58 ×

Buf 1 500 1.62×107 27.45 20.26 1.35 ×
Buf 2 1000 5.22×107 111.5 48.19 2.31 ×
Buf 3 2000 2.13×108 486.6 164.96 2.95 ×

ClockTree 1 1922 1.86×108 345.69 132.59 2.61 ×
ClockTree 2 7682 1.92×108 458.98 182.88 2.51 ×

Avg 2.36 ×

The NVIDIA 8800 GPU device supports IEEE 754 single precision floating point op-

erations. However, the BSIM3 model code uses IEEE 754 double precision floating point

computations. We first converted all the double precision computations in the BSIM3 code

into single precision before modifying it for use on the GPU. We determined the error that

was incurred in this process. We found that the accuracy obtained by our GPU-based im-

plementation of device model evaluation (using single precision floating point) is extremely

203

close to that of a CPU-based double precision floating point implementation. In particular,

we computed the error over 106 device model evaluations, and found that the maximum ab-

solute error was 9.0×10−22 Ampheres, and the average error was 2.88×10−26 Ampheres.

The relative average error was 4.8×10−5. NVIDIA has announced the availability of GPU

devices which support double precision floating point operations. Such devices will further

improve the accuracy of our approach.

Figure X.1 and X.2 show the voltage plots obtained for Industrial 2 and Industrial 3

circuits, obtained by running AuSIM and comparing it with SPICE. Notice that the plots

completely overlap.

Fig. X.1. Industrial 2 Waveforms

X-F. Chapter Summary

Given the key role of SPICE in the design process, there has been significant interest in

accelerating SPICE. A large fraction (on average 75%) of the SPICE runtime is spent in

204

Fig. X.2. Industrial 3 Waveforms

evaluating transistor model equations. The chapter reports our efforts to accelerate transis-

tor model evaluations using a GPU. We have integrated this accelerator with a commercial

fast SPICE tool, and have shown significant speedups (2.36× on average). The asymptotic

speedup that can be obtained is about 4×. With the recently announced quad GPU systems,

this speedup could be enhanced further, especially for larger designs.

205

CHAPTER XI

AUTOMATED APPROACH FOR GRAPHICS PROCESSOR BASED SOFTWARE

ACCELERATION

XI-A. Chapter Overview

Significant manual design effort is required to implement a software routine on a GPU.

This chapter presents an automated approach to partition a software application into ker-

nels (which are executed in parallel) that can be run on the GPU. The software application

should satisfy the constraint that it is executed multiple times on different data, and there

exists no control dependencies between invocations. The input to our algorithm is a C sub-

routine which needs to be accelerated on the GPU. Our approach automatically partitions

this routine into GPU kernels. This is done as follows. We first extract a graph which mod-

els the data and control dependencies of the target subroutine. This graph is then partitioned

using a K-way partition, using several values of K. For every partition a cost is computed

which accounts for GPU’s hardware and software constraints. The cost also accounts for

the number of instances of the subroutine that are issued in parallel. We then select the least

cost partitioning solution and automatically generate the resulting GPU code corresponding

to this partitioning solution. Experimental results demonstrate that our approach correctly

and efficiently produces high quality, fast GPU code. We demonstraate that with our parti-

tioning approach, we can speedup certain routines by 15% on average, when compared to

a monolithic (unpartitioned) implementation. Our approach is completely automated, and

has been verified for correctness.

The remainder of this chapter is organized as follows. The motivation for this work is

described in Section XI-B. Section XI-C details our approach for kernel generation for a

GPU. In Section XI-D we present results from experiments, and summarize in Section XI-

206

E.

XI-B. Introduction

There are typically two broad approaches that have been employed to accelerate scien-

tific computations on the GPU platform. The first approach is the most common, and

involves taking a scientific application, and re-architecting it’s code to exploit the GPU’s

capabilities. This redesigned code is now run on the GPU. Significant speedup has been

demonstrated in this manner, for several algorithms. Examples of this approach include the

GPU implementations of sorting [177], the map-reduce algorithm [178], database opera-

tions [179] etc. A good reference in this area is [45].

The second approach involves identifying a particular subroutine S in a CPU based

algorithm (which is repeated multiple times in each iteration of the computation, and is

found to take up a majority of the runtime of the algorithm), and accelerating it on the

GPU. We refer to this approach as the porting approach, since only a portion of the orig-

inal CPU based code is ported on the GPU without any re-architecting of the code. This

approach requires less coding effort than the re-architecting approach. The overall speedup

obtained through this approach is, however, subject to Amdahl’s Law, which states that if

a parallelizable subroutine which requires a fractional runtime of P, is sped up by a factor

Q, then the final speedup of the overall algorithm is

1

(1−P)+ P
Q

(11.1)

The re-architecting approach typically requires a significant investment of time and

effort. The porting approach is applicable for many problems in which a small number of

subroutines are run repeatedly on independent data values, and take up a large fraction of

the total runtime. Therefore, an approach to automatically generate GPU code for such

207

problems would be very useful in practice.

In this chapter, we focus on automatically generating GPU code for the porting class

of problems. Porting implementations require careful partitioning of the subroutine into

kernels which are run in parallel on the GPU. Several factors must be considered in order

to come up with an optimal solution:

• To maximize the speedup obtained by executing the subroutine on the GPU, numer-

ous and sometimes conflicting constraints imposed by the GPU platform must be

accounted for. In fact, if a given subroutine is run without considering certain key

constraints, the subroutine may fail to execute on the GPU altogether.

• The number of kernels, and the total communication and computation costs for these

kernels must be accounted for as well.

Our approach partitions the program into kernels, multiple instances of which are exe-

cuted (on different data) in parallel on the GPU. Our approach also schedules the partitions

in such a manner that correctness is retained. The fact that we operate on a restricted class

of problems1, and a specific parallel processing platform (the GPU) makes the task of au-

tomatically generating code more practical. In contrast the task of general parallelizing

compilers is significantly harder, There has been significant research in the area of paral-

lelizing compilers. Examples include the Parafrase Fortran reconstructing compiler [180].

Parafrase is an optimizing compiler preprocessor that takes as input scientific Fortran code,

constructs a program dependency graph, and performs a series of optimization steps that

creates a revised version of the original program. The automatic parallelization targeted

in [180], is limited to the loops and array references in numeric applications. The re-

sultant code is optimized for Multiple Instruction Multiple Data (MIMD) and Very Long

1Our approach is employed for subroutines that are executed multiple times, on independent
data

208

Instruction Word (VLIW) architectures. The Bulldog Fortran reassembling compiler [181]

is aimed at automatic parallelization at the instruction level. It is designed to detect par-

allelism that is not amenable to vectorization by exploiting parallelism within the basic

block.

The key contrasting features of our approach to existing parallelizing compilers are

as follow. First, our target platform is a GPU. Thus the constraints we need to satisfy

while partitioning code into kernels arise due to the hardware and architectural constraints

associated with the GPU platform. The specific constraints are detailed in the sequel. Also,

the memory access patterns required for optimized execution of code on a GPU are very

specific, and quite different from a general vector or multi-core computer. Our approach

attempts to incorporate these requirements while generating GPU kernels automatically.

XI-C. Our Approach

Our kernel generation engine automatically partitions a given subroutine S into K kernels in

a manner that maximizes the speedup obtained by multiple invocations of these kernels on

the GPU. Before our algorithm is invoked, the key decision to be made is the determination

of which subroutine(s) to parallelize. This is determined by profiling the program and

finding the set of subroutines Σ that

• are invoked repeatedly and independently (with different input data values) and

• collectively take up a large fraction of the runtime of the entire program. We refer to

this fraction as P.

Now each subroutine S∈Σ are passed to our kernel generation engine, which automatically

generates the GPU kernels for S.

Without loss of generality, in the remainder of this section, our approach is described

in the context of kernel generation for a single subroutine S.

209

XI-C.1. Problem Definition

The goal of our kernel generation engine for GPUs is stated as follows. Given a subroutine

S, and a number N which represents the number of independent calls of S that are issued

by the calling program (on different data), find the best partitioning of S into kernels, for

maximum speedup when the resulting code is run on a GPU.

In particular, in our implementation, we assume that S is implemented in the C pro-

gramming language, and the particular SIMD machine for which the kernels are generated

is an NVIDIA Quadro 5800 GPU. Note that our kernel generation engine is general, and

can generate kernels for other GPUs as well. If an alternate GPU is used, this simply

means that the cost parameters to our engine need to be modified. Also, our kernel genera-

tion engine handles in-line code, nested if-then-else constructs of arbitrary depth, pointers,

structures, and non-recursive function calls (by value).

XI-C.2. GPU Constraints on the Kernel Generation Engine

In order to maximize performance, GPU kernels need to be generated in a manner that sat-

isfies constraints imposed by the GPU based SIMD platform. In this section, we summarize

these constraints. In the next section, we describe how these constraints are incorporated

in our automatic kernel generation engine. Our target GPU

• As mentioned earlier, the NVIDIA Quadro 5800 GPU consists of 30 multiprocessors,

each of which has 8 processors. As a result, there are 240 hardware processors in all,

on the GPU IC. For maximum hardware utilization, it is important that we issue

significantly more than 240 threads at once. By issuing a large number of threads in

parallel, the data read/write latencies of any thread are hidden, resulting in a maximal

utilization of the processors of the GPU, and hence ensuring maximal speedup.

• There are 16384 32-bit registers per multiprocessor. Therefore if a subroutine S is

210

partitioned into K kernels, with the ith kernel utilizing ri registers, then we should

have maxi(ri)· (# of threads per MP) ≤ 16384. This argues that across all our ker-

nels, if maxi(ri) is too small, then registers will not be completely utilized (since the

number of threads per multiprocessor is at most 1024), and kernels will be smaller

than they need to be (thereby making K larger). This will increase the communication

cost between kernels.

On the other hand, if maxi(ri) is very high (say 4000 registers for example), then no

more than 4 threads can be issued in parallel. As a result, the latency of accessing

off-chip memory will not be hidden in such a scenario. In the CUDA programming

model, if ri for the ith kernel is too large, then the kernel fails to launch. Therefore,

satisfying this constraint is important to ensure the execution of any kernel. We try

to ensure that ri is roughly constant across all kernels,

• The number of threads per multiprocessor must be

– A multiple of 32 (since 32 threads are issued per warp, the minimum unit of

issue),

– Less than or equal to 1024, since there can be at most 1024 threads issued at a

time, per multiprocessor.

If the above conditions are not satisfied, then there will be less than complete uti-

lization of the hardware. Further, we need to ensure that the number of threads per

block is at least 128, to allow enough instructions such that the scheduler can effec-

tively overlap transfer and compute instructions. Finally, at the most 8 blocks per

multiprocessor can be active at a time.

• When the subroutine S is partitioned into smaller kernels, the data that is written by

kernel k1 and needs to be read by kernel k2 will be stored in global memory. So we

211

need to minimize the total amount of data transferred between kernels in this manner.

Due to high global memory access latencies, this memory is accessed in a coalesced

manner.

• To obtain maximal speedup, we need to ensure that the cumulative runtime over all

kernels is as low as possible, after accounting for computation as well as communi-

cation.

• We need to ensure that the number of registers per thread is minimized such that the

multiprocessors are not allotted less than 100% of the threads that they are configured

to run with.

• Finally, we need to minimize the number of kernels K, since each kernel has an in-

vocation cost associated with it. Minimizing K ensures that the aggregate invocation

cost is low.

Note that the above guidelines often place conflicting constraints on the automatic

kernel generation engine. Our kernel generation algorithm is guided by a cost function

which quantifies these constraints, and hence is able to obtain the optimal solution for the

problem.

XI-C.3. Automatic Kernel Generation Engine

The pseudocode for our automatic kernel generation engine is shown in Algorithm 13. The

input to the algorithm is the subroutine S which needs to be partitioned into GPU kernels,

and the number N of independent calls of S that are made in parallel.

The first step of our algorithm constructs the companion control and dataflow graph

G(V,E) of the C program. This is done using the Oink [182] tool. Oink is a set of C++

static analysis tools. Each unique line li of the subroutine S corresponds to a unique vertex

212

Algorithm 13 Automatic Kernel Generation(N, S)

BESTCOST ← ∞

G(V,E)← extract graph(S)
for K = Kmin to Kmax do

P← partition(G,K)
Q← make acyclic(P)
if cost(Q) < BESTCOST then

golden con f ig← Q

BESTCOST ← cost(Q)
end if

end for

generate kernels(golden con f ig)

vi of G. If there is a variable written in line l1 of S which is read by line l2 of S, then the

directed edge (v1,v2)∈ E. Each edge has a weight associated with it, which is proportional

to the number of bytes that are transferred between the source node and the sink node.

An example code fragment and its graph G (with edge weights suppressed) are shown in

Figure XI.1.

Note that if there are if-then-else statements in the code, then the resulting graph has

edges between the node corresponding to the condition being checked and each of the

statements in the then and else blocks, as shown in Figure XI.1.

Now our algorithm computes a set P of partitions of the graph G, obtained by per-

forming a K-way partitioning of G. We use hMetis [78] for this purpose. Since hMetis

(and other graph partitioning tools) operate on undirected graphs, there is a possibility of

hMetis’ solution being infeasible for our purpose. This is illustrated in Figure XI.2. Con-

sider a companion CDFG G which is partitioned into 2 partitions k1 and k2 as shown in

Figure XI.2 a). Partition k1 consists of nodes a, b and c, while partition k2 consists of nodes

d, e and f . From this partitioning solution, we induce a kernel dependency graph (KDG)

GK(VK,EK) as shown in Figure XI.2 b). In this graph, vi ∈VK iff ki is a partition of G. Also,

there is a directed edge (vi,v j) ∈ EK iff ∃np,nq ∈ V s.t. (np,nq) ∈ E and np ∈ ki, nq ∈ k j.

Note that a cyclic kernel dependency graph in Figure XI.2 b) is an infeasible solution for

213

c !c

x = 3 y = 4

z = x

v = n

t = v + z

w = y + r

c = (a < b)

u = m * l

{

}
else
{

}

c = (a < b);

z = x;

if (c)

y = 4;
w = y + r;
v = n;

x = 3;

t = v + z;
u = m * l;

Fig. XI.1. CDFG Example

our purpose, since kernels need to be issued sequentially. To fix this situation, we selec-

tively duplicate nodes in the CDFG, such that the modified KDG is acyclic. Figure XI.2

c) illustrates how duplicating node a ensures that the modified KDG that is induced (Fig-

ure XI.2 d)) is acyclic. We discuss our duplication heuristic in Section XI-C.3.a.

In our kernel generation engine, we explore several K-way partitions. K is varied from

Kmin to a maximum value Kmax. For each of the explored partitions of the graph G, a cost

is computed. This estimates the cost of implementing the partition on the GPU. The details

of the cost function are described in Section XI-C.3.b. The lowest cost partitioning result

golden config is stored. Based on golden config, we generate GPU kernels (using a PERL

script). Suppose that golden config was obtained by a k-way partitioning of S. Then each

of the k partitions of golden config yields a GPU kernel, which is automatically generated

by our PERL script.

Data that is written by a kernel ki and read by another kernel k j (ki, k j< k) is stored

in the GPU’s global memory, in an array of length equal the number of threads issued,

and indexed at a location which is always aligned to a 32 byte boundary. This enables

214

c

b

a d

e

f

a

c

b

a d

e

f

a) Partitioned CDFG b) Resulting KDG

c) CDFG afterDuplication d) Modified KDG

k1 k2

k1 k2

k2k1

k2k1

Fig. XI.2. KDG Example

coalesced write and read accesses by threads executing kernel ki and k j respectively. Since

the cached memories are read-only memories, we cannot use them for communication

between kernels. Also, since the given subroutine S is invoked N times on independent

data, our generated kernels do not create any memory access conflicts when accessing

global memory.

XI-C.3.a. Node Duplication

To understand our node duplication heuristic, we first define a few terms. A border node

(of a partition m of G) is a node i∈V which has an outgoing edge to at least one node j ∈V

215

such that j belongs to a partition n 6= m.

Our heuristic selectively duplicates border nodes until all cycles are removed. The

duplication heuristic selects a node to duplicate based on the criteria below:

• A border node i ∈ G (belonging to partition m, say) with an incoming edge from

another partition n (which is a part of a cycle that includes m)

• If the above criterion is not met, we look for border nodes i belonging to partitions

which are on a cycle in the KDG, such that these nodes have a minimum number of

incident edges (z, i) ∈ E, where z ∈G belongs to the same partition as i.

XI-C.3.b. Cost of a Partitioning Solution

The cost of each partitioning solution is computed using several cost parameters, which are

described next. In particular, our cost function C considers 4 parameters x = {x1,x2, · · · ,x4}.

We consider a linear cost function, C = α1x1 +α2x2 +α3x3 +α4x4.

1. Parameter x1: The first parameter of our cost function is the number of partitions

being used. The GPU runtime is significantly modulated by this term, and hence it is

included in our cost model.

2. Parameter x2: This parameter measures the total time spent in communication to

and from the device’s global memory.

x2 = [∑K
i=1(Bi)
BW

].

Here Bi is the number of read or write transfers that are required for the partition i,

and BW is the peak bandwidth for coalesced global memory transfers. Therefore the

term x2 represents the total amount of time that is spent in communicating data, when

any one of the N calls of the subroutine S is executed.

216

3. Parameter x3: The total computation time is estimated in this parameter. Note that

due to node duplication, the total computation time is not a constant across different

partitioning solutions. Let Ci be the number of GPU clock cycles taken by partition

i. We estimate Ci based on the number of clock cycles for various instructions like

integer and floating point addition, multiplication and division, library functions for

exponential, square root, etc. This information is available from NVIDIA. Also let

F be the frequency of operation of the GPU. Therefore, the time taken to execute the

ith kernel is Ci

F
. Based on this, x3 = ∑K

i=1(Ci)
F

.

4. Parameter x4: We also require that the average number of registers over all kernels

is a small number. As discussed earlier, this is important to maximize speedup. This

parameter (for each kernel) is provided by the nvcc compiler that is provided along

with the CUDA distribution.

XI-D. Experimental Results

Our kernel generation engine handles C programs. It handles non-recursive function calls

(by value), pointers, structures, and if-else constructs. The kernel generation tool is imple-

mented in perl [183], and it uses hMetis [78] for partitioning, and Oink [182] for generating

the CDFG.

XI-D.1. Evaluation Methodology

Our evaluation of our approach is perfromed in steps.

In the first step, we compute the weights α1,α2, · · · ,α4. This is done by using a set

L of benchmarks. For all these C-code examples, we generate the GPU code with 1, 2, 3,

4, · · · 20 partitions (kernels). The code is then run on the GPU, and the values of runtime

as well as all the x variables are recorded in each instance. From this data, we fit the cost

217

function C = α1x1 + α2x2 + α3x3 + α4x4 in MATLAB. For any partitioning solution, we

take the actual runtime on the GPU as the cost C, for curve-fitting. This yields the values

of αi.

In the second step, we use the values of αi computed in the first step, and run our

kernel generation engine on a different set of benchmarks which are to be accelerated on

the GPU. Again, we create 1, 2, 3 · · · 20 partitions for each example. From these, we

select the best 3 partitions (those which produce the 3 smallest values of the cost function).

The kernel generation engine generates the GPU kernels for these partitions. We determine

the best solution among the 3 (i.e. the solution which has the fastest GPU runtime) after

executing them on the GPU.

Our experiments were conducted over a set of 4 benchmarks. These were:

• BSIM3: This code computes the MOSFET model evaluations in SPICE [80]. The

code computes 3 independent device quantities which are implemented in separate

subroutines, namely BSIM3-1, BSIM3-2 and BSIM3-3.

• MMI: This code performs integer matrix-matrix multiplication. We experiment with

MMI for matrices of various sizes (4x4 and 8x8).

• MMF: This code performs floating point matrix-matrix multiplication. We experi-

ment with MMF for matrices of various sizes (4x4 and 8x8).

• LU: This code performs LU-decomposition, required during the solution of a linear

system. We experiments with systems of varying sizes (matrices of size 4x4 and

8x8).

In the first step of the approach, we use the MMI, MMF and LU benchmarks for ma-

trices of size 4x4 and determined the values of αi. The values of these parameters obtained

were:

218

α1 = 0.6353,

α2 = 0.0292,

α3 = -0.0002 and

α4 = 0.1140.

Now in the second step, we tested the usefulness of our approach on the remaining bench-

marks (MMI, MMF, and LU for matrices of size 8x8, and BSIM3-1, BSIM3-2 and BSIM3-

3 subroutines).

The results which demonstrate the fidelity of our kernel generation engine are shown

in Table XI.1. In this table, the first column reports the number of partitions being consid-

ered. Columns 2, 4, 6, 8, 10 and 12 indicate the 3 best partitioning solutions based on our

cost model, for the MMI8, MMF8, LU8, BSIM3-1, BSIM3-2 and BSIM3-3 benchmarks,

respectively. If our approach had perfect prediction fidelity, then these 3 partitioning so-

lutions would have the lowest runtimes on the GPU. Columns 3, 5, 7, 9, 11 and 13 report

the actual GPU runtimes for the MMI8, MMF8, LU8, BSIM3-1, BSIM3-2 and BSIM3-3

benchmarks respectively. The 3 solutions that actually had the lowest GPU runtimes are

highlighted in bold font in these columns.

Generating the partitioning solutions followed by automatic generation of GPU code

(kernels) for each of these benchmarks was completed in less than 5 minutes on a 3.6GHz

Intel processor with 3GB RAM, and running Linux. The target GPU for our experiments

was the NVIDIA Quadro 5800 GPU.

From these results, we can see the need for partitioning these subroutines. For in-

stance in MMI8 benchmark, the fastest result obtained is with partitioning the code into

4 kernels, which makes it 17% faster compared to the runtime obtained using one mono-

lithic kernel. Similar observations can be made for all other benchmarks. On average over

these 6 benchmarks, our best predicted solution is 15% faster than the solution with no

partitioning.

219

We can further observe that our kernel generation approach correctly predicts the best

solution in 3 (out of 6 benchmarks), one of the best two solutions in 5 (out of 6 benchmarks)

and one of the best three solutions in all 6 benchmarks. In comparison to the manual par-

titioning of BSIM3 subroutines, which was discussed in Chapter X, our automatic kernel

generation approach obtained a partitioning solution that was 1.5× faster. This is a signifi-

cant result, since the manual partitioning approach took us roughly a month for completion.

In general, the GPU runtimes tend to be noisy, and hence it is hard to obtain 100% predic-

tion fidelity.

Table XI.1. Validation of the Automatic Kernel Generation Approach

Part. MMI8 MMF8 LU8 BSIM3-1 BSIM3-2 BSIM3-3

Pred. GPU time Pred. GPU time Pred. GPU time Pred. GPU time Pred. GPU time Pred. GPU time

1
√

0.88
√

4.12
√

1.64 41.40
√

3.84 53.10

2 0.96 3.13
√

1.77 39.60
√

4.25 40.60

3
√

0.84 4.25 2.76
√

43.70
√

4.34
√

43.40

4
√

0.73
√

6.04
√

6.12 44.10 3.56
√

38.50

5 1.53 7.42 1.42 43.70 3.02
√

42.20

6 1.14 5.06 8.53 43.40 4.33 43.50

7 1.53 6.05 5.69 43.50 4.36 43.70

8 1.04
√

3.44 7.65 45.10 11.32 98.00

9 1.04 8.25 5.13
√

40.70 4.61 49.90

10 1.04 15.63 10.00
√

35.90 24.12 57.50

11 1.04 9.79 14.68 43.40 35.82 43.50

12 2.01 12.14 16.18 44.60 40.18 41.20

13 1.14 13.14 13.79 43.70 17.27 44.00

14 1.55 14.26 10.75 43.90 52.12 84.90

15 1.81 11.98 19.57 45.80 36.27 53.30

16 2.17 12.15 20.89 43.10 4.28 101.10

17 2.19 17.06 19.51 44.20 18.14 46.40

18 1.95 13.14 20.57 46.70 34.24 61.30

19 2.89 14.98 19.74 49.30 35.40 46.80

20 2.89 14.00 19.15 52.70 38.11 51.80

XI-E. Chapter Summary

GPUs are highly parallel SIMD engines, with high degrees of available hardware paral-

lelism. These platforms have received significant interest for accelerating scientific soft-

220

ware applications in recent times. The task of implementing a software application on

a GPU currently requires significant manual intervention, iteration and experimentation.

This chapter presents an automated approach to partition a software application into ker-

nels (which are executed in parallel) that can be run on the GPU. The input to our algorithm

is a subroutine which needs to be accelerated on the GPU. Our approach automatically par-

titions this routine into GPU kernels. This is done by first extracting a graph which models

the data and control dependencies in the subroutine in question. This graph is then parti-

tioned. Any cycles in the graph induced by the partitions are removed by duplicating nodes.

Various partitions are explored, and each is given a cost which accounts for GPU hardware

and software constraints. Based on the least cost partition, our approach automatically

generates the resulting GPU code. Experimental results demonstrate that our approach cor-

rectly and efficiently produces fast GPU code, with high quality. Our results show that

with our partitioning approach, we can speedup certain routines by 15% on average when

compared to a monolithic (unpartitioned) implementation. Our entire flow (from reading

a C subroutine to generating the partitioned GPU code) is completely automated, and has

been verified for correctness.

221

CHAPTER XII

CONCLUSIONS

In recent times, the gain in single-core performance of general-purpose microprocessors

has declined due to the diminished rate of increase of operating frequencies. This is at-

tributed to the power, memory and ILP walls that are encountered as VLSI technology

scales. At the same time, microprocessors are becoming increasingly complex with multi-

ple cores being implemented on the same IC. This problem of reduced gains in performance

in single-core processors is significant for EDA applications, since VLSI design complex-

ity is continuously growing. In this dissertation, we evaluated the viability of alternate

platforms (such as custom ICs, FPGAs and graphics processors) for accelerating EDA al-

gorithms. We chose applications for which there is a strong motivation to accelerate, since

they are used several times in the VLSI design flow. and have varied degrees of inherent

parallelism in them. We studied two different categories of EDA algorithms,

• control dominated and

• control plus data parallel.

In particular, Boolean satisfiability (SAT), Monte Carlo based statistical static timing anal-

ysis, circuit simulation, fault simulation and fault table generation were explored.

In this dissertation, we discussed hardware platforms, namely custom designed ICs,

FPGAs and graphics processors. These hardware platforms are compared in Chapter II,

using criteria such as their architecture, expected performance, programming model and

environment, scalability, design turn-around time, security, cost of hardware, etc. In Chap-

ter III, we described the programming environment used for interfacing with the GPU

devices. Three hardware implementations for accelerating SAT (a control dominated EDA

algorithm) were presented in this dissertation. A custom IC implementation of a hard-

222

ware SAT solver was described in Chapter IV. This solver is also capable of extracting the

minimum unsatisfiable core. The speed and capacity for our SAT solver obtained are dra-

matically higher than those reported for existing hardware SAT engines. The speedup was

attributed to the fact that our engine performs the tasks of computing implications and de-

termining conflicts in parallel, using a specially designed clause cell. Further, approaches

to partition a SAT instance into banks and bin them into strips were developed, resulting

in a very high utilization of clause cells. Also, through SPICE simulations we determined

that the average power consumed per cycle by our SAT solver is under 1 mW, which further

strengthens the practicality of our approach.

An FPGA-based approach for SAT was presented in Chapter V. In this approach, the

traversal of the implication graph as well as conflict clause generation are performed in

hardware, in parallel. In our approach, clause literals are stored in FPGA slices. In order

to solve large SAT instances, we heuristically partitioned the clauses into a number of bins,

each of which could fit in the FPGA. This was done in a pre-processing step. The on-

chip Block RAM (BRAM) was used for storing all the bins of a partitioned CNF problem.

The FPGA based SAT solver implements a GRASP [49] like BCP engine, which performs

non-chronological backtracks both within a bin and across bins. The embedded PowerPC

processor on the FPGA performed the task of loading the appropriate bin from the BRAM,

as requested by the hardware. Our entire flow was verified for correctness on a Virtex-II

Pro based evaluation platform. We projected the runtimes obtained on this platform to an

industry strength XC4VFX140 based system, and showed that a speed up of 17× can be

obtained, over MiniSAT [81], a state-of-the-art software SAT solver. The projected system

handles instances with as many as 280K clauses on 10K variables.

A SAT approach with a new GPU-enhanced variable ordering heuristic was presented

in Chapter VI. Our approach was implemented in a CPU-based procedure which leverages

the parallelism of a GPU. The CPU implements MiniSAT, a complete procedure, while the

223

GPU implements SurveySAT, an approximate procedure. The SAT search is initiated on

the CPU and after a user-specified fraction of decisions have been made, the GPU based

SurveySAT engine is invoked. Any new decisions made by the GPU based engine are

returned to MiniSAT, which now updates its variable ordering. This procedure is repeated

until a solution is found. Our approach retains completeness (since it is implements a

complete procedure) but has the potential of high speedup (since the incomplete procedure

is executed on a highly parallel graphics processor based platform). Experimental results

demonstrate that on average, a 64% speedup was obtained over several benchmarks, when

compared to MiniSAT.

We presented several algorithms (with varying degrees of control and data parallelism)

using a graphics processor. Monte Carlo based SSTA was accelerated on a GPU in Chap-

ter VII. In this approach we map Monte Carlo based SSTA to the the large number of

threads that can be computed in parallel on a GPU. Our approach performs multiple delay

simulations of a single gate in parallel. It benefits from a parallel implementation of the

Mersenne Twister pseudo-random number generator on the GPU, followed by Box-Muller

transformations (also implemented on the GPU). We store the µ and σ of the pin-to-output

delay distributions for all inputs and for every gate on fast cached memory on the GPU. In

this way, we leverage the large memory bandwidth of the GPU. This approach was imple-

mented on a NVIDIA GeForce GTX 280 GPU card and experimental results indicate that

this approach can obtain an average speedup of about 818× as compared to a serial CPU

implementation. With the recently announced quad GTX 280 GPU cards, we estimate that

our approach would attain a speedup of over 2400×.

In Chapter VIII, we accelerate fault simulation on a GPU. A large number of gate eval-

uations can be performed in parallel by employing the large number of threads on a GPU.

We implemented a pattern and fault parallel fault simulator which fault-simulates a circuit

in a forward levelized fashion. Fault injection is also performed along with gate evaluation,

224

with each thread using a different fault injection mask. Since GPUs have an extremely large

memory bandwidth, we implement each of our fault simulation threads (which execute in

parallel with no data dependencies) using memory lookup. Our experiments indicate that

our approach, implemented on a single NVIDIA GeForce GTX 280 GPU card, can sim-

ulate on average 47× faster when compared to an industrial fault simulator. On a Tesla

(8-GPU) system [144], our approach can potentially be 300× faster.

The generation of a fault table is accelerated on a GPU in Chapter IX. We employ a

pattern parallel approach, which utilizes both bit-parallelism and thread-level parallelism.

Our implementation is a significantly modified version of FSIM [152], which is a pattern

parallel fault simulation approach for single core processors. Our approach, like FSIM

utilizes critical path tracing and the dominator concept to prune unnecessary computations

and thereby reduce runtime. We do not store the circuit (or any part of the circuit) on

the GPU, and implement efficient parallel reduction operations to communicate data to the

GPU. When compared to FSIM∗, which is FSIM modified to generate a fault table on a

single core processor, our approach (on a single NVIDIA Quadro FX 5800 GPU card) can

generate a fault table (for 0.5 million test patterns) 15× faster on average. On a Tesla (8-

GPU) system [144], our approach can potentially generate the same fault table 90× faster.

In Chapter X, we study the speedup obtained when implementing the model evaluation

portion of SPICE on a GPU. Our code is ported to a commercial fast SPICE [162] tool. Our

experiments demonstrate that significant speedups (2.36× on average) can be obtained for

the application. The asymptotic speedup that can be obtained is about 4×. We demonstrate

that with circuits consisting of as few as about 1000 transistors, speedups of about 3× can

be obtained.

In this dissertation we also presented an automated approach for GPU based software

acceleration of serial code in Chapter XI. The input to our algorithm is a subroutine which

is executed multiple times, on different data, and needs to be accelerated on the GPU. Our

225

approach aims at automatically partitioning this routine into GPU kernels. This is done by

first extracting a graph which models the data and control dependencies of the subroutine

in question, and then partitioning it. Various partitions are explored, and each is assigned a

cost which accounts for GPU hardware and software constraints, as well as the number of

instances of the subroutine that are issued in parallel. From the least cost partition, our ap-

proach automatically generates the resulting GPU code. Experimental results demonstrate

that our approach correctly and efficiently produces fast GPU code, with high quality. We

show that with our partitioning approach, we can speed up certain routines by 15% on

average when compared to a monolithic (unpartitioned) implementation. Our entire tech-

nique (from reading a C subroutine to generating the partitioned GPU code) is completely

automated, and has been verified for correctness.

All the hardware platforms studied in this dissertation require a communication link

with a host processor. This link often limits the performance that can be obtained using

hardware acceleration. The EDA applications presented in this dissertation need to be

carefully designed, in order to work around the communication cost and obtain a speedup

on the target platform. Future generation hardware architectures may have much lower

communication costs. This would be possible, for example, if the host and the accelerator

are implemented on the same die, or share the same physical RAM. However, for the exist-

ing architectures, it is crucial to consider the cost of this communication while architecting

any hardware accelerated application.

Some of the upcoming architectures are the ’Larrabee’ GPU from Intel and the ’Fermi’

GPU from NVIDIA. These newer GPUs aim at being more general purpose processors, in

contrast to current GPUs. A key limiting factor of the current GPUs is that all the cores of

these GPUs can only execute one kernel at a time. However, the upcoming architectures

have a distributed instruction dispatch unit, allowing more than one kernel to be executed

on the GPU at once (as shown conceptually in Figure XII.1).

226

The block diagram of Intel’s Larrabee GPU is shown in Figure XII.2. This new archi-

tecture is a hybrid between a multi-core CPU and a GPU, and has similarities to both. Like

a CPU, it offers cache coherency and compatibility with the x86 architecture. However, it

also has wide SIMD vector units and texture sampling hardware like the GPU. This new

GPU has a 1024-bit (512-bit each way) ring bus for communication between cores (16 or

more) and to DRAM memory [184].

Kernel 1

Kernel 2

Kernel 2

Kernel 3

Kernel 5

Kernel 1 Kernel 2

Kernel 2 Kernel 3 Ker

nel
4 Kernel 5

Kernel 4

Serial Kernel Execution Parallel Kernel Execution

T
im

e

Fig. XII.1. New Parallel Kernel GPUs

Multi−Threaded

Wide SIMD

I$ D$

Multi−Threaded

Wide SIMD

I$ D$

Multi−Threaded

Wide SIMD

I$ D$

Multi−Threaded

Wide SIMD

I$ D$

M
em

o
ry

 C
o

n
tr

o
ll

er

F
ix

ed
 F

u
n

ct
io

n
T

ex
tu

re
 L

o
g

ic

M
em

o
ry

 C
o

n
tr

o
ll

er

D
is

p
la

y
 I

n
te

rf
a

ce
S

y
st

em
 I

n
te

rf
a

ce

L2 Cache

Fig. XII.2. Larrabee Architecture from Intel

227

The block diagram of NVIDIA’s Fermi GPU is shown in Figure XII.3. In comparison

to G80 and GT200 GPUs, Fermi has double the number of (32) cores per shared multi-

processor (SM). The block diagram of a single SM is shown in Figure XII.4 and the block

diagram of a core within an SM is shown in Figure XII.5.

D
R

A
M

 I
/F

H
O

S
T

 I
/F

D
R

A
M

 I
/F

D
R

A
M

 I/F
D

R
A

M
 I/F

D
R

A
M

 I/F
D

R
A

M
 I/F

G
ig

a
 T

h
re

a
d

L2

Shared Multiprocessor Core

Fig. XII.3. Fermi Architecture from NVIDIA

With these upcoming architectures, newer approaches for hardware acceleration of al-

gorithms would become viable. These approaches could exploit the more general comput-

ing paradigm offered by the newer architectures. For example, the close coupling between

the GPU and the CPU (which reside on the same die) would reduce the communication

cost. Also, in these upcoming architectures the instruction dispatch unit is distributed, and

the instruction set is more general purpose. These enhancements would enable a more gen-

eral computing paradigm (in comparison to the SIMD paradigm for current GPUs), which

in turn would enable acceleration opportunities for more EDA applications.

228

Core Core Core Core

CoreCoreCoreCore

Core Core Core

Core Core Core Core

Core

Core Core Core Core

CoreCoreCoreCore

Core Core Core

Core Core Core Core

Core

Instruction Cache

Register File

Dispatch Dispatch

SchedulerScheduler

Load/Store Unites X 16

Special Func Units X 4

Interconnect Network

Cache/Shared Mem

64K Configurable

Uniform Cache

Fig. XII.4. Block Diagram of a Single Shared Multiprocessor (SM) in Fermi

The approaches presented in this dissertation collectively aim to contribute towards en-

abling the CAD community to accelerate EDA algorithms on modern hardware platforms.

Our work demonstrates techniques to rearchitect several EDA algorithms to maximally

harness their performance on the alternative platforms under consideration.

229

Dispatch Port

Operand Collector

FP Unit INT Unit

Result Queue

CUDA Core

Fig. XII.5. Block Diagram of a Single Processor (Core) in SM

230

REFERENCES

[1] “GPU Architecture Overview SC2007,” [Online] Available:http://www.gpgpu.org

(accessed July 2009).

[2] “A Platform-2015 Workload Model,” [Online]

Available:http://download.intel.com/technology/computing/archinnov/

platform2015/download/RMS.pdf (accessed September 2009).

[3] D. Bursky, “Denser, Faster Chips Deliver Knockout DSP Performance,” [Online]

Available:http://electronicdesign.com/Articles/ArticleID1̄0676 (accessed Septem-

ber 2009).

[4] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, “GPU cluster for high perfor-

mance computing,” in SC ’04: Proceedings of the 2004 ACM/IEEE Conference on

Supercomputing, 2004, pp. 47–49.

[5] D. Luebke, M. Harris, N. Govindaraju, A. Lefohn, M. Houston, J. Owens, M. Se-

gal, M. Papakipos, and I. Buck, “GPGPU: general-purpose computation on graphics

hardware,” in SC ’06: Proceedings of the 2006 ACM/IEEE Conference on Super-

computing, 2006, pp. 208–208.

[6] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Philips, “GPU

Computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, May 2008.

[7] J. Gu, P. Purdom, J. Franco, and B. Wah, “Algorithms for the satisfiability (SAT)

problem : A survey,” DIMACS Series in Discrete Math. and Theoretical Computer

Science, vol. 35, pp. 19–151, 1997.

231

[8] T. Raja, V. D. Agrawal, and M. L. Bushnell, “CMOS circuit design for minimum

dynamic power and highest speed,” in VLSID ’04: Proceedings of the 17th Interna-

tional Conference on VLSI Design, 2004, pp. 1035–1040.

[9] G. Minana, O. Garnica, J. I. Hidalgo, J. Lanchares, and J. M. Colmenar, “A power-

aware technique for functional units in high-performance processors,” in DSD ’06:

Proceedings of the 9th EUROMICRO Conference on Digital System Design, 2006,

pp. 456–459.

[10] D. G. Chinnery and K. Keutzer, “Closing the power gap between ASIC and cus-

tom: An ASIC perspective,” in DAC ’05: Proceedings of the 42nd Annual Design

Automation Conference, 2005, pp. 275–280.

[11] A. J. Bhavnagarwala, B. L. Austin, K. A. Bowman, and J. D. Meindl, “A minimum

total power methodology for projecting limits on CMOS GSI,” IEEE Trans. Very

Large Scale Integr. Syst., vol. 8, no. 3, pp. 235–251, 2000.

[12] L. Wei, Z. Chen, M. Johnson, K. Roy, and V. De, “Design and optimization of low

voltage high performance dual threshold CMOS circuits,” in DAC ’98: Proceedings

of the 35th Annual Conference on Design Automation, 1998, pp. 489–494.

[13] B. Yu and M. L. Bushnell, “A novel dynamic power cutoff technique DPCT for ac-

tive leakage reduction in deep submicron CMOS circuits,” in ISLPED ’06: Proceed-

ings of the 2006 International Symposium on Low Power Electronics and Design,

2006, pp. 214–219.

[14] S. Bhunia, N. Banerjee, Q. Chen, H. Mahmoodi, and K. Roy, “A novel synthesis

approach for active leakage power reduction using dynamic supply gating,” in DAC

’05: Proceedings of the 42nd Annual Conference on Design Automation, 2005, pp.

479–484.

232

[15] F. Gao and J. Hayes, “Exact and heuristic approaches to input vector control

for leakage power reduction,” in Proceedings of the International Conference on

Computer-Aided Design, Nov 2004, pp. 527–532.

[16] A. Abdollahi, F. Fallah, and P. Massoud, “An effective power mode transition tech-

nique in MTCMOS circuits,” in DAC ’05: Proceedings of the 42nd Annual Confer-

ence on Design Automation, 2005, pp. 13–17.

[17] L. Yuan and G. Qu, “Enhanced leakage reduction technique by gate replacement.,”

in DAC ’05: Proceedings of the 42nd Annual Conference on Design Automation,

2005, pp. 47–50.

[18] G. Molas, M. Bocquet, J. Buckley, H. Grampeix, M. Gély, J. P. Colonna, F. Martin,

P. Brianceau, V. Vidal, C. Bongiorno, S. Lombardo, G. Pananakakis, G. Ghibaudo,

B. De Salvo, and S. Deleonibus, “Evaluation of HfAlO high-k materials for control

dielectric applications in non-volatile memories,” Microelectron. Eng., vol. 85, no.

12, pp. 2393–2399, 2008.

[19] Z. Feng and P. Li, “Multigrid on GPU: tackling power grid analysis on parallel

SIMT platforms,” in ICCAD ’08: Proceedings of the 2008 IEEE/ACM International

Conference on Computer-Aided Design, 2008, pp. 647–654.

[20] B. Zeidman, “The Death of the Structured ASIC,” [Online]

Available:http://www.chipdesignmag.com/print.php/articleId/434/issueId/16 (ac-

cessed March 2009).

[21] P. Mal, J. Cantin, and F. Beyette, “The circuit designs of an SRAM based look-up

table for high performance FPGA architecture,” in 45th Midwest Symposium on

Circuits and Systems (MWCAS), Aug 2002, vol. III, pp. 227–230.

233

[22] P. Chow, S. Seo, J. Rose, K. Chung, G. Paez-Monzon, and I. Rahardja, “The design

of a SRAM-based field-programmable gate array - part II : Circuit design and lay-

out,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 7,

no. 3, pp. 321–330, Sept 1999.

[23] “NVIDIA CUDA,” [Online] Available:http://www.beyond3d.com/content/

articles/12/1 (accessed May 2009).

[24] B. Cope, P.Y.K. Cheung, W. Luk, and S. Witt, “Have GPUs made FPGAs redun-

dant in the field of video processing?,” in Field-Programmable Technology, 2005.

Proceedings. 2005 IEEE International Conference on, Dec 2005, pp. 111–118.

[25] “CORE Generator System,” [Online] Available:http://www.xilinx.com/products/

design-tools/logic-design/design-entry/coregenerator.htm (accessed March 2009).

[26] P. Graham, B. Nelson, and B. Hutchings, “Instrumenting bitstreams for debugging

FPGA circuits,” in FCCM ’01: Proceedings of the the 9th Annual IEEE Symposium

on Field-Programmable Custom Computing Machines, 2001, pp. 41–50.

[27] “ATI Stream Computing,” [Online] Available:http://ati.amd.com/technology/

streamcomputing/sdkdwnld.html (accessed November 2008).

[28] “CUDA Zone,” [Online] Available:http://www.nvidia.com/object/cuda.html (ac-

cessed March 2007).

[29] “NVIDIA CUDA Homepage,” [Online]

Available:http://developer.nvidia.com/object/cuda.html (accessed May 2009).

[30] “SLI Technology,” [Online] Available:http://www.slizone.com/page/slizone.html

(accessed June 2009).

234

[31] “ATI CrossFire,” [Online] Available:http://ati.amd.com/technology/crossfire/

features.html (accessed March 2007).

[32] “Valgrind,” [Online] Available:http://valgrind.org/ (accessed January 2009).

[33] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” in FPGA

’06: Proceedings of the 2006 ACM/SIGDA 14th International Symposium on Field

Programmable Gate Arrays, 2006, pp. 21–30.

[34] D. Orecchio, “Mammoth FPGAs Require New Tools,” [Online]

Available:http://www.gaterocket.com/device-native-

verification/bid/7966/Mammoth-FPGAs-Require-New-Tools (accessed July

2009).

[35] “FPGA-based hardware acceleration of C/C++ based applications,” [Online] Avail-

able:http://www.pldesignline.com/howto/201800344 (accessed November 2008).

[36] “Intel Nehalem,” [Online] Available:http://en.wikipedia.org/wiki/Nehalem-CPU-

architecture (accessed July 2009).

[37] “Intel SSE.,” [Online] Available:http://www.tommesani.com/SSE.html (accessed

July 2009).

[38] S. Che, J. Li, J.W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-

intensive applications with GPUs and FPGAs,” in Application Specific Processors,

2008. SASP 2008. Symposium on, 2008, pp. 101 – 107.

[39] R. Scrofano, G.Govindu, and V.K. Prasanna, “A library of parameterizable floating

point cores for FPGAs and their application to scientific computing,” in Proceedings

of the 2005 International Conference on Engineering of Reconfigurable Systems and

Algorithms, 2005, pp. 137–148.

235

[40] “Industry’s First GPU with Double-Precision Floating Point,” [Online] Avail-

able:http://ati.amd.com/products/streamprocessor/specs.html (accessed Feburary

2009).

[41] “Tesla S1070,” [Online] Available:http://www.nvidia.com/object/product-tesla-

s1070-us.html (accessed July 2008).

[42] L. Yuan, G. Qu, L. Ghout, and A. Bouridane, “VLSI design ip protection: Solu-

tions, new challenges, and opportunities,” in AHS ’06: Proceedings of the First

NASA/ESA Conference on Adaptive Hardware and Systems, 2006, pp. 469–476.

[43] A. K. Jain, L. Yuan, P. R. Pari, and G. Qu, “Zero overhead watermarking technique

for FPGA designs,” in GLSVLSI ’03: Proceedings of the 13th ACM Great Lakes

Symposium on VLSI, 2003, pp. 147–152.

[44] A. L. Oliveira, “Robust techniques for watermarking sequential circuit designs,” in

DAC ’99: Proceedings of the 36th ACM/IEEE Conference on Design Automation,

1999, pp. 837–842.

[45] M. Pharr and R. Fernando, GPU Gems 2: Programming Techniques for High-

Performance Graphics and General-Purpose Computation, Addison-Wesley Pro-

fessional, Reading, MA, 2005.

[46] S. Cook, “The complexity of theorem-proving procedures,” in Proceedings, Third

ACM Symp. Theory of Computing, 1971, pp. 151–158.

[47] C. H. Papadimitriou and D. Wolfe, “The complexity of facets resolved,” in Journal

of Computer and System Sciences, 1998, pp. 37(1):2–13.

[48] J. Lynce and J. Marques-Silva, “On computing minimum unsatisfiable cores,” in

In Seventh International Conference on Theory and Applications of Satisfiability

236

Testing, May 2004, pp. 305–310.

[49] M. Silva and J. Sakallah, “GRASP-a new search algorithm for satisfiability,” in

Proceedings of the International Conference on Computer-Aided Design (ICCAD),

November 1996, pp. 220–7.

[50] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering

an efficient SAT solver,” in Proceedings of the Design Automation Conference, July

2001, pp. 530–535.

[51] E. Goldberg and Y. Novikov, “BerkMin: A fast and robust SAT solver,” in Proc.,

Design, Automation and Test in Europe (DATE) Conference, 2002, pp. 142–149.

[52] H. Jin, M. Awedh, and F. Somenzi, “CirCUs: A satisfiability solver geared towards

bounded model checking,” in Computer Aided Verification, 2004, pp. 519–522.

[53] I. Skliarova and A. Ferrari, “Reconfigurable hardware SAT solvers: A survey of sys-

tems,” IEEE Transactions on Computers, vol. 53, no. 11, pp. 1449–1461, November

2004.

[54] H. A. Kautz and B. Selman, “Planning as satisfiability,” in Proceedings, Tenth

European Conference on Artificial Intelligence, 1992, pp. 359–363.

[55] G. Nam, K. A. Sakallah, and R. A. Rutenbar, “Satisfiability-based layout revisited:

detailed routing of complex FPGAs via search-based Boolean SAT,” in FPGA ’99:

Proceedings of the 1999 ACM/SIGDA Seventh International Symposium on Field

Programmable Gate Arrays, 1999, pp. 167–175.

[56] K. L. McMillan, “Interpolation and SAT-based model checking,” in Proceedings,

Computer Aided Verification, May 2003, pp. 1–13.

237

[57] Y. Zhao, S. Malik, M. Moskewicz, and C. Madigan, “Accelerating Boolean Sat-

isfiability through application specific processing,” in Proceedings, International

Symposium on System Synthesis (ISSS), 2001, pp. 244–249.

[58] Y. Zhao, S. Malik, A. Wang, M. Moskewicz, and C. Madigan, “Matching archi-

tecture to application via configurable processors: A case study with Boolean Sat-

isfiability problem,” in Proceedings, International Conference on Computer Design

(ICCD), Sept 2001, pp. 447–452.

[59] P. Zhong, P. Ashar, S. Malik, and M. Martonosi, “Using reconfigurable computing

techniques to accelerate problems in the CAD domain: A case study with Boolean

Satisfiability,” in Proceedings, Design Automation Conference, Jun 1998, pp. 194–

199.

[60] P. Zhong, M. Martonosi, P. Ashar, and S. Malik, “Accelerating Boolean Satisfiabil-

ity with configurable hardware,” in Proceedings, IEEE Symposium on FPGAs for

Custom Computing Machines,, April 1998, pp. 186–195.

[61] T. Pagarani, F. Kocan, D. Saab, and J. Abraham, “Parallel and scalable architecture

for solving Satisfiability on reconfigurable FPGA,” in Proceedings, IEEE Custom

Integrated Circuits Conference (CICC), May 2000, pp. 147–150.

[62] M. Abramovici and D. Saab, “Satisfiability on reconfigurable hardware,” in Pro-

ceedings, International Workshop on Field Programmable Logic and Applications,

1997, pp. 448–456.

[63] T. Suyama, M. Yokoo, H. Sawada, and A. Nagoya, “Solving satisfiability problems

using reconfigurable computing,” IEEE Transactions on Very Large Scale Integra-

tion (VLSI) Systems, vol. 9, no. 1, pp. 109–116, Feb 2001.

238

[64] M. Abramovici, J. de Sousa, and D. Saab, “A massively-parallel easily-scalable

satisfiability solver using reconfigurable hardware,” in Proceedings, Design Au-

tomation Conference (DAC), June 1999, pp. 684–690.

[65] J. T. de Souza, M. Abramovici, and J. M. da Silva, “A configware/software approach

to SAT solving,” in IEEE Symposium on FPGAs for Custom Computing Machines,

May 2001.

[66] N. A. Reis and J. T. de Sousa, “On implementing a configware/software SAT

solver,” in FCCM ’02: Proceedings of the 10th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, 2002, pp. 282–282.

[67] H. K. Büning, “On subclasses of minimal unsatisfiable formulas,” Discrete Appl.

Math., vol. 107, no. 1-3, pp. 83–98, 2000.

[68] G. Davydov, I. Davydova, and H. K. Buning, “An efficient algorithm for the mini-

mal unsatisfiability problem for a subclass of CNF,” in Annals of Mathematics and

Artificial Intelligence, 1998, vol. 23, pp. 229 – 245.

[69] H. Fleischner, O. Kullmann, and S. Szeider, “Polynomial-time recognition of min-

imal unsatisfiable formulas with fixed clause-variable difference,” in Theoretical

Computer Science, 2002, vol. 289, pp. 503–516.

[70] R. Bruni and A. Sassano, “Restoring satisfiability or maintaining unsatisfiability by

finding small unsatisfiable subformulae,” in LICS Workshop on Theory and Appli-

cations of Satisfiability Testing, June 2001, pp. 162–173.

[71] E. Goldberg and Y. Novikov, “Verification of proofs of unsatisfiability for CNF

formulas,” in Proceedings, Design and Test in Europe Conference, March 2003, pp.

10886 – 10891.

239

[72] Y. Oh, M. Mneimneh, Z. S. Andraus, K. A. Sakallah, and I. L. Markov, “AMUSE: A

minimally unsatisfiable subformula extractor,” in Proceedings, Design Automation

Conference, June 2004, pp. 518–523.

[73] L. Zhang and S. Malik, “Validating SAT solvers using an independent resolution-

based checker: Practical implementations and other applications,” in DATE ’03:

Proceedings of the Conference on Design, Automation and Test in Europe, 2003,

pp. 10880–10885.

[74] J. Huang, “MUP: a minimal unsatisfiability prover,” in ASP-DAC ’05: Proceedings

of the 2005 Asia and South Pacific Design Automation Conference, 2005, pp. 432–

437.

[75] M. Waghmode, K. Gulati, S.P. Khatri, and W. Shi, “An efficient, scalable hardware

engine for Boolean satisfiability,” in Proceedings, IEEE International Conference

on Computer Design (ICCD), Oct 2006, pp. 326–331.

[76] K. Gulati, M. Waghmode, S.P. Khatri, and W. Shi, “Efficient, scalable hardware

engine for Boolean satisfiability and unsatisfiable core extraction,” IET Comput.

Digit. Tech., vol. 2, no. 3, pp. 214–229, 2008.

[77] “ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/,” The DIMACS FTP site (ac-

cessed March 2007).

[78] G. Karypis and V. Kumar, A Software package for Partitioning Unstructured

Graphs, Partitioning Meshes and Computing Fill-Reducing Orderings of Sparse Ma-

trices, [Online] Available:http://www-users.cs.umn.edu/∼karypis/metis, September

1998.

240

[79] “Available:http://www.lri.fr/∼simon/contest04/results/,” The SAT’04 Competition

(accessed January 2007).

[80] L. Nagel, “SPICE: A computer program to simulate computer circuits,” University

of California, Berkeley UCB/ERL Memo M520, May 1995.

[81] “The MiniSAT Page,” [Online] Available:http://www.cs.chalmers.se/Cs/Research/

FormalMethods/MiniSat/Main.html (accessed March 2007).

[82] L. Zheng and P. J. Stuckey, “Improving SAT using 2SAT,” in ACSC ’02: Proceed-

ings of the Twenty-fifth Australasian Conference on Computer science, 2002, pp.

331–340.

[83] M. Platzner and G. D. Micheli, “Acceleration of satisfiability algorithms by recon-

figurable hardware,” in FPL ’98: Proceedings of the 8th International Workshop on

Field-Programmable Logic and Applications, From FPGAs to Computing Paradigm,

1998, pp. 69–78.

[84] P. Zhong, M. Martonosi, and P. Ashar, “FPGA-based SAT solver architecture with

near-zero synthesis and layout overhead,” IEE Proceedings - Computers and Digital

Techniques, vol. 147, no. 3, pp. 135–141, May 2000.

[85] O. Mencer and M. Platzner, “Dynamic circuit generation for Boolean Satisfiability

in an object-oriented design environment,” in HICSS ’99: Proceedings of the Thirty-

Second Annual Hawaii International Conference on System Sciences-Volume 3,

1999, pp. 3044–3049.

[86] M. Redekopp and A. Dandalis, “A parallel pipelined SAT solver for FPGAs,” in

FPL ’00: Proceedings of the The Roadmap to Reconfigurable Computing, 10th In-

ternational Workshop on Field-Programmable Logic and Applications, 2000, pp.

241

462–468.

[87] M. Safar, M.W. El-Kharashi, and A. Salem, “FPGA-based SAT solver,” in Pro-

ceedinga, Canadian Conference on Electrical and Computer Engineering, May 2006,

pp. 1901–1904.

[88] M. Safar, M. Shalan, M. W. El-Kharashi, and A. Salem, “Interactive presentation:

A shift register based clause evaluator for reconfigurable SAT solver,” in DATE ’07:

Proceedings of the Conference on Design, Automation and Test in Europe, 2007,

pp. 153–158.

[89] I. Skliarova and A. B. Ferrari, “A software/reconfigurable hardware SAT solver,”

IEEE Trans. Very Large Scale Integr. Syst., vol. 12, no. 4, pp. 408–419, 2004.

[90] K. Gulati, S. Paul, S. P. Khatri, S. Patil, and A. Jas, “FPGA-based hardware acceler-

ation for Boolean satisfiability,” ACM Trans. Des. Autom. Electron. Syst., vol. 14,

no. 2, pp. 1–11, 2009.

[91] “WalkSAT homepage,” [Online] Available:http://www.cs.rochester.edu/u/

kautz/walksat (accessed March 2007).

[92] “GSAT-USERS-GUIDE,” [Online] Available:http://www.cs.rochester.edu/u/kautz/

papers/GSAT (accessed March 2007).

[93] Y. Shang, “A discrete Lagrangian-based global-search method for solving satisfia-

bility problems,” Journal of Global Optimization, vol. 12, pp. 61–99, 1998.

[94] A. Braunstein, M. Mezard, and R. Zecchin, “Survey propagation: an algorithm for

satisfiability,” Random Structures and Algorithms, vol. 27, pp. 201–226, 2005.

242

[95] J. Chavas, C. Furtlehner, M. Mezard, and R. Zecchina, “Survey-propagation dec-

imation through distributed local computations,” J. Stat. Mech, pp. 11016–11041,

2005.

[96] M. Davis, G. Logemann, and D. Loveland, “A machine program for theorem-

proving,” Commun. ACM, vol. 5, no. 7, pp. 394–397, 1962.

[97] L. Fang and M. S. Hsiao, “A new hybrid solution to boost SAT solver performance,”

in DATE ’07: Proceedings of the Conference on Design, Automation and Test in

Europe, 2007, pp. 1307–1313.

[98] M. Bohm and E. Speckenmeyer, “A fast parallel SAT-solver - efficient workload

balancing,” Annals of Mathematics and Artificial Intelligence, vol. 17, no. 2, pp.

381–400, 1996.

[99] H. Zhang, M. P. Bonacina, and J. Hsiang, “PSATO: a distributed propositional

prover and its application to quasigroup problems,” J. Symb. Comput., vol. 21, no.

4-6, pp. 543–560, 1996.

[100] Y. Feldman, “Parallel multithreaded satisfiability solver: Design and implementa-

tion,” 2005, vol. 128, pp. 75–90.

[101] W. Chrabakh and R. Wolski, “GridSAT: A Chaff-based distributed SAT solver for

the grid,” in SC ’03: Proceedings of the 2003 ACM/IEEE Conference on Super-

computing, 2003, pp. 37–51.

[102] “Available:http://www.satcompetition.org/,” The International SAT Competitions

Web Page (accessed June 2007).

[103] E. Maneva, E. Mossel, and M. J. Wainwright, “A new look at survey propagation

243

and its generalizations,” in SODA ’05: Proceedings of the sixteenth Annual ACM-

SIAM Symposium on Discrete algorithms, 2005, pp. 1089–1098.

[104] P. Manolis and Y. Zhang, “Implementing survey propagation on graphics processing

units,” in SAT ’06: Proceedings of the International Conference on Theory and

Applications of Satisfiability Testing, 2006, pp. 311–324.

[105] B. Jurkowiak, C. M. Li, and G. Utard, “A parallelization scheme based on work

stealing for a class of SAT solvers,” J. Autom. Reason., vol. 34, no. 1, pp. 73–101,

2005.

[106] M. Matsumoto and T. Nishimura, “Mersenne Twister: a 623-dimensionally equidis-

tributed uniform pseudo-random number generator,” ACM Trans. Model. Comput.

Simul., vol. 8, no. 1, pp. 3–30, 1998.

[107] D. Heras, J. Cabaleiro, V. Perez, P. Costas, and F. Rivera, “Principal component

analysis on vector computers,” in Proceedings of VECPAR, 1996, pp. 416 – 428.

[108] J. Cabaleiro, J. Carazo, and E. Zapata, “Parallel algorithm for principal component

analysis based on Hotelling procedure,” in Proceedings of EUROMICRO Workshop

On Parallel and Distributed Processing, 1993, pp. 144 – 149.

[109] “SLI Technology,” [Online] Available:http://www.slizone.com/page/slizone.html

(accessed July 2009).

[110] K. Gulati and S. P. Khatri, “Accelerating statistical static timing analysis using

graphics processing units,” in Proceedings, IEEE/ACM Asia and South Pacific De-

sign Automation Conference (ASPDAC), 2009, pp. 260–265.

[111] J. Benkoski and A. J. Strojwas, “A new approach to hierarchical and statistical

timing simulations,” IEEE Transactions on Computer-Aided Design of Integrated

244

Circuits and Systems, vol. 6, no. 6, pp. 1039–1052, Nov 1987.

[112] H. Jyu and S. Malik, “Statistical delay modeling in logic design and synthesis.,” in

DAC ’94: Proceedings of the 31st Annual Conference on Design Automation, 1994,

pp. 126–130.

[113] L. Zhang, W. Chen, Y. Hu, and C. C. Chen, “Statistical timing analysis with ex-

tended pseudo-canonical timing model,” in DATE ’05: Proceedings of the Confer-

ence on Design, Automation and Test in Europe, 2005, pp. 952–957.

[114] J. Le, X. Li, and L. T. Pileggi, “STAC: statistical timing analysis with correlation,”

in DAC ’04: Proceedings of the 41st Annual Conference on Design Automation,

2004, pp. 343–348.

[115] I. Nitta, T. Shibuya, and K. Homma, “Statistical static timing analysis technology,”

FUJITSU Sci. Tech J., vol. 43, no. 4, pp. 516–523, Oct 2007.

[116] H. Chang and S. S. Sapatnekar, “Statistical timing analysis under spatial correla-

tions,” Sept. 2005, vol. 24, pp. 1467–1482.

[117] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and S. Narayan, “First-

order incremental block-based statistical timing analysis,” in DAC ’04: Proceedings

of the 41st Annual Conference on Design Automation, 2004, pp. 331–336.

[118] A. Agarwal, V. Zolotov, and D. T. Blaauw, “Statistical timing analysis using bounds

and selective enumeration,” in IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Sept 2003, vol. 22, pp. 1243–1260.

[119] A. Agarwal, D. Blaauw, and V. Zolotov, “Statistical timing analysis for intra-die

process variations with spatial correlations,” in Proceedings of the International

Conference on Computer-Aided Design, 2003, pp. 900–907.

245

[120] A. Agarwal, D. Blaauw, V. Zolotov, and S. Vrudhula, “Statistical timing analysis

using bounds,” in DATE ’03: Proceedings of the Conference on Design, Automation

and Test in Europe, 2003, pp. 62–67.

[121] A. Devgan and C. V. Kashyap, “Block-based static timing analysis with uncer-

tainty.,” in Proceedings of the International Conference on Computer-Aided Design,

2003, pp. 607–614.

[122] J. Liou, K. Cheng, S. Kundu, and A. Krstic, “Fast statistical timing analysis by

probabilistic event propagation.,” in DAC ’01: Proceedings of the 38th Annual

Conference on Design Automation, 2001, pp. 661–666.

[123] R. Garg, N. Jayakumar, and S. P. Khatri, “On the improvement of statistical timing

analysis,” in International Conference on Computer Design, Oct 2006, pp. 37–42.

[124] P. McGeer, A. Saldanha, R. Brayton, and A. Sangiovanni-Vincentelli, Logic Syn-

thesis and Optimization, chapter Delay Models and Exact Timing Analysis, pp. 167–

189, Kluwer Academic Publishers, Hingham, MA, 1993.

[125] “Parallel Mersenne Twister,” [Online]

Available:http://developer.download.nvidia.com/∼MersenneTwister (accessed June

2009).

[126] M. Matsumoto and T. Nishimura, Monte Carlo and Quasi-Monte Carlo Meth-

ods, chapter Dynamic Creation of Pseudorandom Number Generators, pp. 56–69,

Springer, London, UK, 1998.

[127] “Box-Muller Transformation,” [Online] Available:http://mathworld.wolfram.com/Box-

MullerTransformation (accessed June 2009).

246

[128] P. Banerjee, Parallel Algorithms for VLSI Computer-aided Design, Prentice Hall,

New Jersey, 1994.

[129] M. B. Amin and B. Vinnakota, “Workload distribution in fault simulation,” J. Elec-

tron. Test., vol. 10, no. 3, pp. 277–282, 1997.

[130] A. Abramovici, Y.M. Levendel, and P.R. Menon, “A logic simulation engine,” IEEE

Transactions on Computer-Aided Design, vol. 2, pp. 82–94, April 1983.

[131] P. Agrawal, W. J. Dally, W. C. Fischer, H. V. Jagadish, A. S. Krishnakumar, and

R. Tutundjian, “MARS: a multiprocessor-based programmable accelerator,” IEEE

Des. Test, vol. 4, no. 5, pp. 28–36, 1987.

[132] V. Narayanan and V. Pitchumani, “Fault simulation on massively parallel simd ma-

chines: algorithms, implementations and results,” J. Electron. Test., vol. 3, no. 1,

pp. 79–92, 1992.

[133] S.E. Tai and D. Bhattacharya, “Pipelined fault simulation on parallel machines using

the circuitflow graph,” in Computer Design: VLSI in Computers and Processors,

Oct 1993, pp. 564–567.

[134] G. F. Pfister, “The Yorktown simulation engine: introduction,” in DAC ’82: Pro-

ceedings of the 19th Conference on Design Automation, 1982, pp. 51–54.

[135] D. K. Beece, G. Deibert, G. Papp, and F. Villante, “The IBM engineering verifi-

cation engine,” in DAC ’88: Proceedings of the 25th ACM/IEEE Conference on

Design Automation, 1988, pp. 218–224.

[136] F. Ozguner and R. Daoud, “Vectorized fault simulation on the Cray X-MP super-

computer,” in Computer-Aided Design, 1988. ICCAD-88. Digest of Technical Pa-

pers., IEEE International Conference on, Nov 1988, pp. 198–201.

247

[137] F. Ozguner, C. Aykanat, and O. Khalid, “Logic fault simulation on a vector hy-

percube multiprocessor,” in Proceedings of the Third Conference on Hypercube

Concurrent Computers and Applications, 1988, pp. 1108–1116.

[138] R. Raghavan, J.P. Hayes, and W.R. Martin, “Logic simulation on vector proces-

sors,” in Computer-Aided Design, Digest of Technical Papers., IEEE International

Conference on, Nov 1988, pp. 268–271.

[139] N. Ishiura, M. Ito, and S. Yajima, “High-speed fault simulation using a vector pro-

cessor,” in Proceedings of the International Conference on Computer-Aided Design

(ICCAD), Nov 1987, pp. 305–320.

[140] M. B. Amin and B. Vinnakota, “Data parallel fault simulation,” IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 7, no. 2, pp. 183–190, 1999.

[141] R.B. Mueller-Thuns, D.G. Saab, R.F. Damiano, and J.A. Abraham, “VLSI logic

and fault simulation on general-purpose parallel computers,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 12, pp. 446–460,

March 1993.

[142] “Commercial fault simulation tool,” Licensing agreement with the tool vendor re-

quires that we do not disclose the name of the tool or its vendor.

[143] “IWLS 2005 Benchmarks,” [Online] Available:http://www.iwls.org/iwls2005/

benchmarks.html (accessed March 2009).

[144] “NVIDIA Tesla GPU Computing Processor,” [Online]

Available:http://www.nvidia.com/object/IO 43499.html (accessed March 2009).

[145] K. Gulati and S. P. Khatri, “Towards acceleration of fault simulation using graphics

processing units,” in DAC ’08: Proceedings of the 45th Annual Conference on

248

Design Automation, 2008, pp. 822–827.

[146] S. Parkes, P. Banerjee, and J. Patel, “A parallel algorithm for fault simulation based

on PROOFS,” in ICCD ’95: Proceedings of the 1995 International Conference on

Computer Design, 1995, pp. 616–621.

[147] S. Patil and P. Banerjee, “Performance trade-offs in a parallel test generation/fault

simulation environment,” in IEEE Transactions on Computer-Aided Design, 1991,

vol. 10, pp. 1542–1558.

[148] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing and

Testable Design, Computer Science Press, New York, NY, 1990.

[149] I. Pomeranz and S. M. Reddy, “A same/different fault dictionary: an extended

pass/fail fault dictionary with improved diagnostic resolution,” in DATE ’08: Pro-

ceedings of the Conference on Design, Automation and Test in Europe, 2008, pp.

1474–1479.

[150] J. Richman and K. R. Bowden, “The modern fault dictionary,” in Proc. International

Test Conference, 1985, pp. 696–702.

[151] I. Pomeranz and S. M. Reddy, “On the generation of small dictionaries for fault

location,” in ICCAD ’92: 1992 IEEE/ACM International Conference Proceedings

on Computer-Aided Design, 1992, pp. 272–279.

[152] H. K. Lee and D. S. Ha, “An efficient, forward fault simulation algorithm based on

the parallel pattern single fault propagation,” in Proceedings of the IEEE Interna-

tional Test Conference on Test, 1991, pp. 946–955.

[153] D. C. Bossen and Se June Hong, “Cause-effect analysis for multiple fault detection

in combinational networks,” IEEE Trans. Comput., vol. 20, no. 11, pp. 1252–1257,

249

1971.

[154] K. Gulati and S. P. Khatri, “Fault table generation using graphics processing units,”

in IEEE International High Level Design Validation and Test Workshop, 2009, pp.

60–67.

[155] S. J. Hong, “Fault simulation strategy for combinational logic networks,” in Pro-

ceedings of Eighth International Symposium on Fault-Tolerant Computing, June

1979, pp. 96–99.

[156] M. Abramovici, P. R. Menon, and D. T. Miller, “Critical path tracing - an alternative

to fault simulation,” in DAC ’83: Proceedings of the 20th Conference on Design

Automation, 1983, pp. 214–220.

[157] K.J. Antreich and M.H. Schulz, “Accelerated fault simulation and fault grading

in combinational circuits,” IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, vol. 6, no. 5, pp. 704–712, 1987.

[158] D. Harel, R. Sheng, and J. Udell, “Efficient single fault propagation in combina-

tional circuits,” in Proceedings of the International Conference on Computer-Aided

Design ICCAD, 1987, pp. 2–5.

[159] R. E. Tulloss, “Fault dictionary compression: Recognizing when a fault may be

unambiguously represented by a single failure detection,” in Proc. International Test

Conference, 1980, pp. 368–370.

[160] I. Pomeranz, S.M. Reddy, and R. Tangirala, “On achieving zero aliasing for modeled

faults,” in Proc. [3rd] European Conference on Design Automation, 1992, pp. 291–

299.

250

[161] “Parallel Reduction,” [Online]

Available:http://developer.download.nvidia.com/∼reduction.pdf (accessed June

2009).

[162] “OmegaSim Mixed-Signal Fast-SPICE Simulator,” [Online] Avail-

able:http://www.nascentric.com/product.html (accessed June 2009).

[163] “BSIM3 Homepage,” [Online]

Available:http://www-device.eecs.berkeley.edu/∼bsim3 (accessed Jan 2008).

[164] L. T. Pillage, R. A. Rohrer, and C. Visweswariah, Electronic Circuit & System

Simulation Methods, McGraw-Hill, New York, NY, Dec 1994, ISBN-13: 978-

0070501690 (ISBN-10: 0070501696).

[165] G. Hachtel, R. Brayton, and F. Gustavson, “The sparse tableau approach to network

analysis and designlation,” Circuits Theory, IEEE Transactions on, vol. 18, no. 1,

pp. 101–113, 1971.

[166] “BSIM4 Homepage,” [Online]

Available:http://www-device.eecs.berkeley.edu/∼bsim4 (accessed June 2008).

[167] K. Gulati, J. Croix, S. P. Khatri, and R. Shastry, “Fast circuit simulation on graph-

ics processing units,” in Proceedings, IEEE/ACM Asia and South Pacific Design

Automation Conference (ASPDAC), 2009, pp. 403–408.

[168] “Virtuoso UltraSim Full-chip Simulator,” [Online]

Available:http://www.cadence.com/products/custom ic/ultrasim/index.aspx (ac-

cessed Feb 2008).

[169] “FineSIM SPICE[Online],” [Online]

Available:http://www.magmada.com/Pages/FineSimSPICEḣtml (accessed June

251

2009).

[170] “Capsim Hierarchical Spice Simulation,” [Online]

Available:http://www.xcad.com/xcad/spicesimulation.html (accessed June 2009).

[171] F. Dartu and L. T. Pileggi, “TETA: transistor-level engine for timing analysis,” in

DAC ’98: Proceedings of the 35th Annual Conference on Design Automation, 1998,

pp. 595–598.

[172] P. Agrawal, S. Goil, S. Liu, and J.A. Trotter, “Parallel model evaluation for circuit

simulation on the PACE multiprocessor,” in Proceedings of the Seventh Interna-

tional Conference on VLSI Design, 1994, pp. 45–48.

[173] P. Agrawal, S. Goil, S. Liu, and J. A. Trotter, “PACE: A multiprocessor system for

VLSI circuit simulation,” in Proceedings of SIAM Conference on Parallel Process-

ing, 1993, pp. 573–581.

[174] P. Sadayappan and V. Visvanathan, “Circuit simulation on shared-memory multi-

processors,” IEEE Trans. Comput., vol. 37, no. 12, pp. 1634–1642, 1988.

[175] L.W. Nagel and R.A. Rohrer, “Computer analysis of nonlinear circuits, excluding

radiation,” IEEE Journal of Solid States Circuits., vol. SC-6, pp. 162–182, Aug

1971.

[176] Gene M. Amdahl, “Validity of the single processor approach to achieving large

scale computing capabilities,” in AFIPS ’67 (Spring): Proceedings of the April 18-

20, 1967, Spring Joint Computer Conference, 1967, pp. 483–485.

[177] E. Sintorn and U. Assarsson, “Fast parallel GPU-sorting using a hybrid algorithm,”

J. Parallel Distrib. Comput., vol. 68, no. 10, pp. 1381–1388, 2008.

252

[178] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: a mapreduce

framework on graphics processors,” in PACT ’08: Proceedings of the 17th Interna-

tional Conference on Parallel Architectures and Compilation Techniques, 2008, pp.

260–269.

[179] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha, “Fast computation

of database operations using graphics processors,” in SIGMOD ’04: Proceedings of

the 2004 ACM SIGMOD International Conference on Management of Data, 2004,

pp. 215–226.

[180] D. Kuck, D. Lawrie, R. Cytron, A. Sameh, and D. Gajski, “The architecture and

programming of the Cedar System,” Cedar Document no. 21, University of Illinois

at Urbana-Champaign, August 1983.

[181] J. A. Fisher, J. R. Ellis, J. C. Ruttenberg, and A. Nicolau, “Parallel processing: a

smart compiler and a dumb machine,” SIGPLAN Not., vol. 19, no. 6, pp. 37–47,

1984.

[182] “Oink - A collaboration of C static analysis tools,” [Online] Avail-

able:http://www.cubewano.org/oink (accessed March 2007).

[183] L. Wall and R. Schwartz, Programming perl, O’Reilly and Associates, Inc., Se-

bastopol, CA, 1992.

[184] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,

A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Hanra-

han, “Larrabee: a many-core x86 architecture for visual computing,” ACM Trans.

Graph., vol. 27, no. 3, pp. 1–15, 2008.

253

VITA

Kanupriya Gulati received her B.E. honors degree in computer engineering from Delhi

College of Engineering, India in 2003. She received her M.S. and Ph.D. degrees in com-

puter engineering from Texas A&M University, College Station, in 2006 and 2009 respec-

tively. She has been employed as an intern with several companies including Strategic

CAD Laboratories, Intel, Cadence Research Laboratories, Mentor Graphics and Atrenta.

During her graduate and doctoral studies she has done research and published papers in

many aspects of VLSI including acceleration of CAD algorithms in hardware, optimiza-

tion in logic synthesis, application of network coding in VLSI, computation of converged

temperatures and sub-threshold leakage values in FPGAs, low power SRAM design, 2x2

space time decoding on a graphics processor, etc. Kanupriya is a recipient of the NVIDIA

fellowship award (2008-09) for her research on accelerating EDA algorithms in hardware.

She received the best student paper award at IEEE International Test and Synthesis Work-

shop 2009.

Kanupriya may be reached via her advisor at :

333F WERC MS 3259

Department of ECEN,

Texas A&M University,

College Station TX 77843

Email: kanu.gulati@gmail.com

The typist for this dissertation was Kanupriya Gulati.

