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ABSTRACT

An Automated System for the Creation of Articulatdddchanical Parts.
(December 2009)
Christopher Ryan Wheeler, B.E.D., Texas A&M Univgrs

Co-Chairs of Advisory Committee: Prof. Tim McLaughl
Prof. Philip Galanter

Proposes a new method to model the geometric fémamtioulated mechanical
parts while simultaneously testing their range otion in relation to other nearby parts.
Utilizing a database of mechanical parts in virtiaée-dimensional form, a software
tool assists users in quickly building a compleghhievel mechanical object which can
be placed directly into a visual effects productogpeline. The tool creates a workflow
that allows modeling and rigging problems to bezedlconcurrently within the same
interface. Optimized animation controls are getsetautomatically to expedite the
rigging process. A system of standardization ptesia framework for each part’s
functionality within the hierarchy of each new asbdy, while also guaranteeing re-
usability and backwards compatibility with all otressemblies created with this tool.
A prototype has been developed as a plug-in tdiegisommercial software to
showcase the described methodology. This protqiypeides a unique solution to

common modeling and rigging problems in the fididisual effects and animation.
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CHAPTER|

INTRODUCTION

The visual effects industry is dependent on robafitvare tools to complete a
wide range of tasks. The capacity of tools to cedwdundancy and increase
productivity is a key factor in the success of camips in highly competitive markets.
Computer graphics models are commonly broken imtodategories based on the type
of deformations applied to the surface geometrye first of these, weighted
deformations, use a weighted average at the viatexto determine the final geometric
form. Weighted deformations are commonly usedfganic models such as people
and animals, which have a single exterior surfaaderof skin. The second type, rigid
deformations, are the focus of this thesis. Radgtbrmations use simple matrix
transformations to describe the translations, imtat and scales applied to an object in
either local or world space. Rigidly bound geométrgrouped hierarchically using
parent-child relationships, and is typically foundnechanical assemblies such as
robots, vehicles, and buildings. The process etdeing how parts are hierarchically
connected to one another and how they are cordrbiledhe animator is called rigging.
Rigging and modeling are usually handled in sepgpatts of the pipeline by two or
more people and must be carefully coordinated smenthat the geometry and rig are

capable of handling the performance requirementseofinal animation. This

This thesis follows the style dEEE Transactions on Visualization and Computer
Graphics.



separation of duties introduces inefficiencies argtes the potential for error when the
initial process, modeling, fails to account for thege of motion that rigging must
accommodate. In addition, the complexity of meatelrassemblies can quickly
become overwhelming when hundreds of parts must wannison, regardless of the
workflow being utilized. Furthermore, if no systemstandardization exists to control
the connections between parts, changing the caafligm of an assembly from its
original design may introduce unnecessary compdinat and increase the amount of
time and money spent on a project. In orderleveite these problems, this thesis
introduces a new paradigm to bring modeling angdimig together in a unified, flexible

environment that can be integrated with existirgyal effects and animation workflows.

.1. Significance

The visual effects and animation industries ardinanusly pushing the
envelope to produce films that will captivate thaiidiences. This requires taking steps
forward in complexity and scale, while simultandgwelivering these feats on shorter
time frames with more limited budgets. Competiti®fierce in this ever-expanding
marketplace and any competitive advantage musilheutilized for these companies to
maintain profitability. Mechanical objects and caters continue to play an increasing
role in movies and thus require their own uniqui@tsans to integrate successfully with
an already strained production pipeline. Existongimercial techniques rely on a
heavily customized approach that requires all nsdetl rigs to be built in a sequential

process every time they are needed. Also, beazubke likelihood of continuous



revisions throughout the design process, it is s&gy to find an optimal method of
combining rigid parts in a way that creates an kecated, flexible workflow. In order to
demonstrate this workflow, a tool has been cretexktend the functionality of a
common 3D software package to include a systencdastl to the simultaneous

modeling and rigging of articulated mechanical otge



CHAPTERIII

PROBLEM

Creating articulated mechanical parts in a 3D emvirent can be a challenge,
especially when all the parts must connect in &ebable way while maintaining the
ranges of motion needed for proper animation. Pphadlem is compounded by the lack
of re-usability of previously created geometry winenstandards exist for the way they
were modeled. Even after the models have beereckghere is still the issue of
articulation. Riggers must set up the animatiomtiass for every character in the
production and ensure that each part of a moddlesto move in way that
accommodates its performance requirements. Wimeodzl has parts that must
collapse or fold together in a particular way, getimintersections are a common
problem to be addressed. Finally, highly compledsis require the coordination of
many modelers and riggers to finish the job. Tigging process cannot start in earnest
until all geometry has been created, wasting vadutme in the initial stages of the
pipeline. My proposed approach has alleviated tpesklems through the following
techniques:

1. A database of parts is imported into the scemgg file naming conventions to
classify each part by identifier, type, and funectio

2. A system of standardization governs the conmestbetween parts. All parts
must adhere to a set of rules to avoid possibl#8ictswithin the object

hierarchy.



3. Athree-dimensional interface presents thespart actions to the user directly
within the viewport. The interface is simple amhcise yet flexible enough to
create models of considerable complexity.

4. An automated rigging system has been implendenié@e rigging controls
facilitate the process of combining the parts thgeaind allow articulation to be
explored to check for part conflicts within the garnof motion.

5. Two complementary modeling workflows are supgubr

a. Modeling can be done on-the-fly within the activerarchy to correct
interpenetrations as they are identified. Eachipavrapped in a parent
group to maintain its local coordinate system wlitate quick and
accurate vertex modifications.

b. Modeling can also be carried out in separate bieany number of
modelers. A swap function allows primitive buildiblocks to be used as
placeholders while the modeling process is comg@letsewhere. This
allows articulation to be solved earlier in theglipe, letting the final
models be interchanged as they are completed.sf@inelardized part
descriptions reduce the chance of error and gusganteroperability.

6. A working prototype has been successfully catgal and demonstrated.



CHAPTER 111

PRIOR WORK

This thesis builds on previous work in severaldgeincluding geometric

modeling, database-driven component building, dragpe grammars.

[11.1. Geometric Modeling

Many tools exist that do a fantastic job of creguamd editing geometric forms
[1]. These models can be arranged and articulatdds software as well, but the
process is usually complicated to set up corrextly the relationship between finished
pieces is not clearly defined except within the anrf the artist who is creating the
models. A program designed by Smith et al. [2¢x&ffa solution to the problem of
defining a relationship between the different pgeaegeometry in complex structures.
Using pin joints as a means of constraining andtipogng parts, the resulting structures
can be dynamically altered to optimize the geomaitry mass as needed, maintaining
correct physical properties in relation to the sgstas a whole. While this method is
sufficient for engineering structures such as legjdgt does not provide a generalized
framework that can easily be extended for worktlreodomains such as robotics.
[D]eOung et al. [3] offer another approach wherergetric constraints and model
features are used to allow generalized model regmtibn using “Frontier”, a
geometric constraint engine aimed at model assemilitys system successfully fit

existing parts together to create unique modeisdiounothing to address the way those



parts might move in relation to one another. Dei&ia et al. [4] have done interesting
work regarding the modeling of complex large-s@aleironments. Lessons can be
learned from their multi-level approach used tagleand manage large sets of
architectural models for use in virtual settinggowever, being strictly architecturally
focused limits the usefulness of their tool in etilemains, especially in regards to
articulation. Bush et al. [5] created a procedapgroach to building geometry that
used other objects as obstacles to avoid. Thosvatl each new part to fit into the
system automatically while avoiding interpenetnasio While this may be a desirable
initial condition, an ideal tool would help avoitkérpenetrations brought about by the
movement of the parts as well. Another procedm@dieling tool was created by
Morkel et al. [6] to control and vary models, addying levels of detail, increase model
complexity, and add base shape independence. aheggeat modeling-specific

features but do little to address the needs obpepty rigged articulated assembly.

[11.2. Data-driven Synthesis

Database-enhanced modeling techniques have beénvitkesome success
recently. Funkhouser et al. [7] have developegstem to take pieces of models from a
library of geometry and combine them with piecesrfrother models using seaming and
stitching techniques. An example given is one wlike head of a cow is transferred
onto the body of a dog. The automatic identif@atof similar part types offers a
significant advantage over manual classificatiostays, and a scalable implementation

of this feature would be necessary for wide-spaaaption of any truly universal



modeling tool. Corney et al. [8] have created@cpss in which rough stand-in models
are used as a coarse filter to refine the seledfi@ppropriate models from a database.
This idea has been repurposed in this thesis to foworkflow in which placeholder
geometry is used to solve basic articulation refeghips while the final geometry is

being completed.

[11.3. Shape Grammars

Shape grammars can be defined as a means of degdolbm in a manner that
can be communicated through a set of simple rulesscribing objects this way is of
particular interest to the realm of architectureevehfacades can be broken into
components that can be described with simple madtieah models. Using a
progressive refinement strategy coupled with cargersitive shape rules, Muller et al.
[9] added features to initially simple models terdtively increase complexity until
some terminal condition is met. A similar modeopgration is used in this thesis to
progressively add parts down the hierarchy of aembly until the user is satisfied with
the result. Berndt et al. [10] have implementedagleling language that takes
parameterized primitives and combines them usisgt @f commands. These
instructions form the building blocks for more cdepshapes which are then converted
to polygonal meshes. Another use of shape gramibyaBirch et al. [11] was to create a
system to rapidly build a range of historical atetiural styles using a simple interface.
The common features of each genre, such as roef tyipdow distribution, and exterior

finishes, were used as the starting point for tné&dimg model. Similarly, this thesis



uses common mechanical part types and combinesitharogical way. A range of

styles can be achieved by loading different sefsaofs that adhere to a particular theme.
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CHAPTER IV

METHODOLOGY

Because standardization is a key theme in this wegkt-world mechanical
objects were studied to determine commonalitiesraodrring themes in the means of
articulation. After distilling these componentsoisimple categories, five part types
were discovered (see Fig. 1) that can be configtogulovide a wide range of
mechanical functionality. The parts are as follows

1. Hinge joint: Allow rotation in a single axis permiaular to the normal of the
parent’s surface (local Z axis.) A complete Hingjat consists of a single
HingeA and a corresponding HingeB.

2. Ball joint: Allow rotation in all three axes. A nwplete Ball joint consists of
a single BallA and a corresponding BallB.

3. Screw joints: Allow rotation in a single axis paehto the normal of the
parent’s surface (local X axis.) A complete Scfjeint consists of a single
ScrewA and a corresponding ScrewB.

4. Piston: Connect two rods on either side of a joltcomplete Piston consists
of a pair of Hinge or Ball joints on opposing fadaiseled PistonAl and
PistonA2, and the piston object itself consistih@ single PistonB1 and
corresponding PistonB2. Pistons self-orient autarally and don't have

manual controls.
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5. Rod: Any intermediate geometry between joints andtalone geometry

acting as an accessory. Rods are a single piegeoofetry.

++ Hinge Joint - Ball Joint £ Screw Joint

.« Rod .« Piston

Fig. 1. The Five Part Types.

An initial set of these parts exist as separatefpas to assist the novice user in
learning the system. The part files follow a spedet of rules to guarantee
interoperability. Each part file contains the getrym needed for that part plus two null
objects that determine the beginning and end logatior insertion into the final
assembly. The name of the part matches the fitgenall transformations are set to

zero, and the first null object is located at thald origin. These rules streamline the
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process of integrating more parts with the systathraake it possible for independent

geometry builders to integrate their work efficignt

IV.1. User Interface

In order to display the pre-built parts to the usegin easy to understand
interface, a novel technique is used within thevpiert of the 3D software. Upon
loading the tool from a freshly opened file, a ¢usearch is done within the parts
directory to query the currently available pass new parts are added to the part
folder, they are automatically added to the intfthe next time the tool is loaded.
Once the tool is loaded, the parts are displayddras-dimensional objects in a series of
three arcs in the top-left corner of the viewp&e¢ Fig. 2). The outermost arc contains
the editing tools and interface modification bugomhese functions include Copy,
Mirror, Pin, and Swap. The Copy command duplicateart and all its associated
children. Mirror creates a copy and flips the enéissembly along a specified axis. Pin
updates the transformation matrices of a partithatbeen moved from its initial
insertion point. Swap removes the current partrepthces it with another. The arrow
in the corner allows the user to minimize the ifatee to maximize screen space.
Working inward, the next arc is the navigation secand it toggles between the
different types of parts available to the userr Himges, Balls, Screws, and Pistons, the
third arc is reserved for type A parts and thettoarc for type B. Since Rods do not
have A and B components, the third and fourth pustsallow more Rods to be

displayed. When a navigation button is pressesthost animation creates a seamless
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transition between sets of parts to inform the a$éhis change. A small scaling

animation identifies a part insertion operation.

Swap
Minimize Rods
Interface
Screw
Transform Joints
Interface
' b A Parts
Pistons . 3 k
: S~ BParts
Mirror
Ball
Hinge Joints
Joints

PinJ

Fig. 2. The Interface.

IV.2. UsingtheTool

As parts are inserted into the scene, the tootifilenthe intent of the user based
on the current selection. If no objects are setbdhe new part is placed at the world
origin facing down the x axis. If one object isested, the new part is inserted at the
location of the selected object’s default attachinpeint, and the new part’s X axis is

aligned with the selected object’s X axis. If djjext’s face is selected, the new part is
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inserted at the center of the face, pointing indinection of that face’s normal (see Fig.

3).

Object Selected Face Selected

locator 1

locator 2

Insertion at locator 2 Insertion at face

Fig. 3. Inserting New Parts. The two methods eéiting a new part onto an existing part.

Once a part has been inserted, a controller isiaported and bound to the new
part. Each part type has a unique controller tp entify its function. For instance, a
HingeA part gets a controller that looks like asf@bolts to emphasize that the
connection to its parent is rigid. Likewise, Hilgparts get a circular, gear-like control

to clarify that only one-dimensional rotations atlewed (see Fig. 4).
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HingeCON BallCON ScrewCON  RootCON

Fig. 4. The Four Types of Controls.

The primary function of the controls is to allovethiser to manipulate the
imported parts through translations, rotations, scades without affecting the local
coordinate system of the part. A unique attrilafténe controller is that it will maintain
its relative position to its parent as the parsrddaled without inheriting the scale factor
itself. This gives the effect of the part beingniped” to the surface of its parent and
allows for each part to have independent transfoomanatrices. This is where the
need for the Pin command becomes apparent. Iftasp@oved from its initial insertion
point to another location on its parent, the chilll appear to be pinned to its old
location unless the Pin command is executed, regets local transformation matrices
to zero at the new location. Under this paradigoaling a control object along its local
X axis changes the distance between the two imsepbints (null objects) of each part.

A typical session with the tool might go somethiikg this. The user runs the

initialization script in a newly opened file to i the interface and activate the
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commands. A Rod is inserted at the origin to adha highest parent in the hierarchy
(most likely the hip geometry for an anthropomogptobot). A face is selected where
the shoulder joint would be and a Ball joint A @avould be imported here. Since the
last object to be imported is left selected, alsirgick will insert a Rod at the default
insertion point of BallB. Another two clicks andHingeA and B are placed at the end of
the Rod. Another Rod and then another BallA arithiBhed by one last Rod completes
the arm assembly. The same sequence of stepslo®ulsed to create a leg assembly or
the Copy command can be used as a shortcut. Hyggdae controls, the length, width,
and depth of each part can be worked out untit#sered condition is met. At this

point, the Mirror command can be used to createamsd copies on the opposing side of
the first Rod inserted. This completes the foeamlages needed for a biped or
guadruped robot and the last part, the head, camsbded as a Rod at the front of the
first Rod. Additionally, pistons may be inserteztlseen any two faces as desired. The
joints can be run through their degrees of freetlofocate interpenetrations and
guarantee that the entire assembly meets the aomrsggecifications. The final phase of
the process is to swap out each part for its cporeding finished, high resolution
geometry if needed. The use of proper naming aainwes is critical to the successful
application of the swapping operation. An exteteat file holds the swappable name
pairs to allow ease of access by all team membetsafacilitate updates to the file
outside of the 3D software. As the swapped paesnaported, they acquire the length
(distance between null objects) of the placehgtdet but not its width or height to

avoid skewing the high resolution geometry. OmeeSwap operation has taken place,
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additional translation, rotation, or scaling mayneeessary to finesse any differences
between placeholder and final parts. Each jointmataken through its range of motion
to check for part interpenetrations which can therfixed at the object or vertex level
using standard modeling techniques.

Because of the explicit generality in the typepaits used, it should be obvious
that one could think of a situation where the toajht fail to create a level of
complexity suitable for some models. The procdsgging usually requires a highly
customized approach because of the unique fedted in a group of characters and
these need to be addressed on a case by case Dasiicus of this tool is to be
lightweight and intuitive enough to accelerateittigal character setup process without
burdening the rigger with unwanted complexity.

In the exploration of this thesis, a technique g$oints (or bones in some
software packages) eventually proved fruitlesse agsumption was that inverse
kinematics (IK) would be beneficial to the processnodeling and rigging a mechanical
object, and joints are necessary for the applinatidK. The benefit of IK is mainly
apparent during the animation phase of the pipelhethe additional overhead of
keeping a matching joint for each part created cessary complexity in all aspects of
the tool. A simple workaround is to only geneljaiats as needed for the special case

of IK to keep the files as clean and readable asipte.
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CHAPTER YV

IMPLEMENTATION

The tool was created as a plug-in to Autodesk M8 using Python as the
primary scripting language. Maya is used frequentkthe visual effects industry and
provides all of the necessary functions requiredodeling and rigging complex
characters and mechanical assemblies. The geomeidels created for this thesis
were composed of polygons, although NURBS or Sulnfases could be used just as
easily. Maya also provides a way to link objeotgether non-hierarchically using
constraint nodes, which bypasses some of the sunakrix inheritance issues
associated with simple parent-child relationships.

To begin the process of testing the tool, many ggdmparts have been modeled
in a format compatible with Maya. The geometriaistures are composed of vertices,
edges and polygons, and techniques such as extsusia bevels were used to add
detail. Each part resides in its own unique Malga(fma) and contains only the
geometry of the part along with two locator objetasned locatorl and locator2.
Locatorl sits at the world origin of the file arepresents the location this part will
“snap” to when inserted. Locator2 provides thead&fposition to which future children
parts may attach. A naming convention is useceterchine the function, identity, and
type of the part using this format: Functionldeniigpelndex. The Function prefix can
be either HingeA, HingeB, BallA, BallB, ScrewA, 8wrB, PistonA, PistonB, or Rod.

The Identity part of the name is unique for eact @ad becomes crucial during the
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swap phase of the process. Type can either be @@XEO, representing the terms
controller or geometry, respectively. Index isdige differentiate separate instances of
the same part in the same file. A typical exangblhis naming convention in use
might be HingeAmetalGEO12. Both the geometry tedfile share the same Function

and ldentity prefix (in this case HingAmetal.ma)sist the process of importing.

V.1. User Interface

To create the interface, additional files were t@édor each component to allow
updates or modifications individually without affeg the rest. The interface is unique
in that it is composed completely of three dimenalgeometry and the parts displayed
as buttons are the actual parts that will be inggbwthen pressed. As the interface is
built, the folder containing the Maya files is snad to include the most recently
updated parts available. Because the interfaceade from polygonal surfaces, a
solution needed to be found to avoid intersecthmtsveen the geometry of the interface
and that of the geometry in the scene. The fiv isreate a group under the tool’s
camera object that has been scaled down to ameeiyresmall value under which all
interface objects reside. By placing this groupy\aose to the camera, it is unlikely
that a user will be able to create a condition whbe interface intersects other geometry
in the scene. A three-point lighting setup is @sauped under the tool's camera
ensuring proper lighting of the interface and wogkmodel as the camera navigates the

scene.
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V.2. Real-time Animation

Using the Python scripting language, it is possiblatercept the signal
representing a change in the current selectionen\m interface object is selected, a
check is made against all known interface objentesato determine if there is a match.
If it is a valid name, animation routines are aalle let the user know a button has been
pressed and the importing procedure begins. Theiseations are a hecessary addition
to the usability and simplicity of the interfaclowever, real-time animation is not a
feature that is normally allowed outside of theltbimi timeline. An interesting
workaround is to increment a time function withire tPython script while manually
changing an attribute of the animated object ah ¢éate step. By forcing a screen
refresh at the end of each step, custom animatam$e displayed using any framerate
desired. When an interface navigation button ésged, the currently active group of
parts is swept off the screen and replaced witlttineect group of parts waiting off-
screen. This transition minimizes the screen spacessary to display all possible parts
and notifies the user that a change has occurrédgeimenu structure. While initializing
the tool, all part groups are minimized off theeser except for the Rods which tend to

be used first in a new file.

V.3. Importing Objects
After a new file is created and the program is émhdhe user will likely begin by
pressing one of the Rod icons in the interfacad¢ate a new part to serve as a base.

This object becomes the default top level parenaligparts to come. In order to create
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a parent above this one, a check is run every aimew part is imported onto the top
level object, and a dialog asks the user if theyldidike to make the newly imported
part the top level parent. However, the normakaten for all parts other than the top
level parent is for the newly imported object tdcaniatically snap to the locator2 object
under the currently selected part. The first stiejhe operation is to call Maya’s import
command to bring the new part geometry (GEO) frtanilie into the current one at the
world origin. A new controller (CON) is importetbin its respective file and bound to
the new geometry and renamed to match the pathe Ipart is a Rod, Piston, HingeA,
BallA, or ScrewA, a RootCON is used to control itingeB, BallB, and ScrewB parts
have unique controllers that help identify theindtion (see Fig. 4).

A vector is created between locatorl of the new gaal locator2 of the selected
part. The new controller is translated along Heaistor, pulling the new geometry along
for the ride, until the final position is reachetihe controller is aligned in the direction
of its new parent by looking at the difference bextw their respective direction vectors
in world space. All of the transforms of the nesntoller are set to zero in its new
location to make this its default position and otaion. A similar sequence of events
occurs when a face is selected. The import comnsacalled and the controller is
connected. This time, the average position afhalvertices connected to the selected
face is obtained and a new temporary locator igtetkein this location. A vector is
created between locatorl of the new part and theaeary locator to move the new
controller along. The orientation of the new pambtained from the normal of the

selected face by comparing it to its current oaénh (see Fig. 3).
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Once the part and controller are in their finalipos and orientation, constraints are
used to connect all the parts together to obtardésired behavior.

One might assume that a condition might be createzte children parts are
connected cyclically back to their parent or graarépt parts, freezing the articulation
controls in place. Within the framework of the tamnstraints are only created upon
the initial insertion of a part, avoiding this cgal condition entirely. If a user chooses
to manually connect parts in this way, Maya willlwghem that unexpected behavior is
likely to occur.

In order to keep the scale of each part localizeahfits children, groups are
needed to buffer the effects of inherited transfrreach part geometry and controller is
grouped with itself one time and all constraints ereated at this level of the hierarchy.
Each controller’s group is parent constrained @laion and orientation) to the
geometry of its parent’s control with the exceptadrihe top level parent control (whose
implied parent is the world). This allows the s¢ddble geometry of the controller to
move and rotate its children by transforming theugrabove them, keeping their local
transforms at zero. The part geometry (GEO) helgyhtly different set of constraints.
The group above each piece of part geometry i€ sxaistrained to its corresponding
controller to obtain localized scaling. This grag@lso parent constrained to the same
controller so it will inherit translation and ortation as well. The overall effect is to
keep the geometry “pinned” to the surface of iteptas the parent is scaled. This
produces beneficial results for the end user becacaling operations no longer become

a destructive force further down the hierarchyafdren (see Fig. 5).
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V.4. Editing Operations

A number of editing operations are available touker to modify parts and
groups of parts that have already been importdeeyTnclude Copy, Mirror, Pin, and
Swap. The Copy command duplicates a part alongaliitof its children while

correctly maintaining all constraints. The usdests the control of the part to copy

Fig. 5. Scaling Within the Hierarchy. Scaling tivey part in the center slides the blue part

and its children forward.
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and presses the Copy button. A recursive algorlibgins to search through the
constraint hierarchy to find all children assoaiktéth the part. Once all the children
have been selected, Maya’s duplicate command lisdcadth special parameters to
maintain the constraints. One drawback to this@gugh is that Maya’s handling of
object names is not comprehensive; thus, requaihigewly copied object’'s names to be
verified and fixed after the copy operation is céebg.  The newly created top level
controller becomes the current selection so tlsatgle mouse drag can efficiently place

the copied group in a new location (see Fig. 6).

Step 1 Step 2
RootCON is selected, New RootCON is
Copy button is pressed (¢ a) translated into place

Fig. 6. The Copy Command.

The Mirror command takes a similar, but more ineolyapproach. Again, the

desired part’s controller is selected and the Milmatton is pressed. A dialog appears
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querying the user for information about which gxedative to the parent) to mirror
around. The same recursive algorithm is calleithtbthe children of the base object
and a copy is made as above. A data structureadex] to map the information about
which parts are connected with constraints and #flesonstraints are deleted. The
entire set of newly copied parts is collected uratex group and the group’s appropriate
scale axis (selected earlier in the dialog boxgisto -1. All transformations for the
group and its children are collapsed to zero amd the group is deleted. The recursive
data structure is then read to re-establish thé@qare constraints. This method allows
the mirrored state to become the base state wigwitithing the direction of the rotation

axes (see Fig. 7).

Mirror m@@
Miror around parent's:

X
™ ¥ ais
G-

Step 2

Choose an axis to
mirror around

3
1)

Step 1 Step 3
RootCON is selected, Further modifications can
Mirror button is pressed ( 5 ) be made to mirrored assembly

as desired (optional)

Fig. 7. The Mirror Command.
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The Pin command is necessary when parts have beeednfrom their initial
imported position. When a part is imported, thastaints that are created use the
current object transformation matrices to deternaimmefault home state for the
constraint. Also, the pivot location of the graalpove the part’s control is placed in the
same location as the part itself. When a congrtianslated, scaled or rotated after the
initial import, there now exists an offset betwekeea transformation values of the part
and its group. To make this new condition the dikfaome state, the Pin command
deletes the current constraints from the part tpibeed, moves the pivot points of the
parent group to match the new location, sets #restormation matrices to zero, and
creates new constraints to match the previous tondiLeaving out this step creates
unpredictable behavior within the hierarchy, espécsince the pivot locations are

generally hidden from the user (see Fig. 8).

The lower Screw joint Scaling the parent object After the Pin button is
was translated into place breaks the connection pressed, the part stays
after a Copy operation between the two parts locked to the surface

Fig. 8. The Pin Command.



27

The Swap command allows parts to be freely intergbd with one another and
has several uses. During the modeling processp $aeditates the switching of
function or form of any part in the assembly. Fmtance, a user may decide to change
a Rod into a series of HingeA and HingeB partsdi jaint functionality to a previously
rigid region of the assembly. A dialog appearsrduthe swapping process to query the
user for their intent. The number of parts magpecified, with a value of two or more
splitting the distance between the locators ofdlldepart into equal segments. An
external file may be specified that contains adfsall parts in the assembly, each with a
corresponding replacement part. This facilitatesoekflow tailored to the demands of
modern visual effects pipelines by letting the mideand rigging processes take place
simultaneously. Consequently, there is no neeudsibfor the final geometric
components to begin solving the problem of artitola Scaling is used to create a
rough approximation of the final geometry, since tolative proportions between
different parts are generally all that is needad.the final parts are swapped into place,
there may be slight variations between them ang#nethey are replacing due to
refinements in the final geometry. By default, vegths of the articulated schematic
model take precedent over the imported geometaytod unwanted shifting (although
this can easily be modified.) Uniform scaling sed to change the length of the
imported geometry without distorting it. Some finadifications may be necessary to

fix minor issues once everything is in place (see 9).
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High resolution
geometry

Simple placeholder
geometry

Fig. 9. The Swap Command.
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CHAPTER VI

FUTURE WORK

The field of geometric modeling and rigging willntue to grow for years to
come and further advances must be made to rebkziili creative potential of the
entertainment, robotic and related industries. @utential area of research is in the
creation of an open-exchange database through wtacidardized parts can be shared
among an international community. Users wouldtie o create new parts and govern
the standards set forth by the system much like pages are used for information or
open-source software development organizationg@rerned. Another way the system
could be extended is through the development dfiafieed rigs for specific object
configurations. A study could be used to deternsim@mon high-level assemblies of
parts and a new library of these rigs could be igesl and integrated into the system.
Another obvious extension to this thesis is toudel organic geometry in a manner
similar to Funkhouser et al. [7]. Combining angaelements into a single organic
object is an interesting and much more difficuttidem, primarily because the pieces
must be joined into a single mesh upon completissues such as topology and surface
continuity become the most challenging aspecthisfrhedium, however, many of the

solutions offered by this work are still applicabdethe rest of the process.
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CHAPTER VII

CONCLUSION

The tool presented in this thesis solves a numbiequently encountered
problems during the modeling and articulation othamical objects. A simple,
intuitive interface assists in the creation of thebjects and allows the user a great deal
of control and flexibility in the design procesA.focus on visual effects pipeline
integration gives the tool a pragmatic quality amakes its value immediately apparent.
A case study was conducted to verify the robustoé#ise tool under working
conditions. The robotic character Bumblebee froenTransformers© movie franchise
was re-created to a high level of detail, includd®j separate moving parts comprised
of approximately 1,000,000 polygons (see Fig. T@E robot was animated successfully
using only the automatically generated rigging oalst

The tool also serves as a means for aspiring tiayitists to participate in a
process that was previously much more convoluteldspecialized than necessary. It
provides a great deal of automation for the madtimelant aspects of building
mechanical assemblies, while leaving room for ferrttustomization using traditional
techniques. It is not the intent of this thesiatitomate every possible situation that can
arise, but to provide a method for effortless aolimver the more fundamental
characteristics of standard rigging and modeliragedures. The value of this tool
should also be apparent to model builders in dibkts such as robotics and

architecture. Real-world objects can be modeldt piecision and added to the
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database to quickly test the compatibility and itahty of different types of assemblies.
Finally, the ability to share standardized databasearts allows disparate communities

of developers the option of connecting on a glob@ss-discipline platform.

Fig. 10. Case Study: Bumblebee Process.
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