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ABSTRACT

A Concurrency and Time Centered Framework for

Certification of Autonomous Space Systems. (December 2009)

Damian Dechev, B.S., University of Indianapolis;

M.S., University of Delaware

Chair of Advisory Committee: Dr. Bjarne Stroustrup

Future space missions, such as Mars Science Laboratory, suggest the engineering

of some of the most complex man-rated autonomous software systems. The present

process-oriented certification methodologies are becoming prohibitively expensive and

do not reach the level of detail of providing guidelines for the development and vali-

dation of concurrent software. Time and concurrency are the most critical notions in

an autonomous space system. In this work we present the design and implementation

of the first concurrency and time centered framework for product-oriented software

certification of autonomous space systems. To achieve fast and reliable concurrent

interactions, we define and apply the notion of Semantically Enhanced Containers

(SEC). SECs are data structures that are designed to provide the flexibility and us-

ability of the popular ISO C++ STL containers, while at the same time they are

hand-crafted to guarantee domain-specific policies, such as conformance to a given

concurrency model. The application of nonblocking programming techniques is criti-

cal to the implementation of our SEC containers. Lock-free algorithms help avoid the

hazards of deadlock, livelock, and priority inversion, and at the same time deliver fast

and scalable performance. Practical lock-free algorithms are notoriously difficult to

design and implement and pose a number of hard problems such as ABA avoidance,

high complexity, portability, and meeting the linearizability correctness requirements.

This dissertation presents the design of the first lock-free dynamically resizable ar-



iv

ray. Our approach offers a set of practical, portable, lock-free, and linearizable STL

vector operations and a fast and space efficient implementation when compared to

the alternative lock- and STM-based techniques. Currently, the literature does not

offer an explicit analysis of the ABA problem, its relation to the most commonly

applied nonblocking programming techniques, and the possibilities for its detection

and avoidance. Eliminating the hazards of ABA is left to the ingenuity of the soft-

ware designer. We present a generic and practical solution to the fundamental ABA

problem for lock-free descriptor-based designs. To enable our SEC container with the

property of validating domain-specific invariants, we present Basic Query, our expres-

sion template-based library for statically extracting semantic information from C++

source code. The use of static analysis allows for a far more efficient implementation of

our nonblocking containers than would have been otherwise possible when relying on

the traditional run-time based techniques. Shared data in a real-time cyber-physical

system can often be polymorphic (as is the case with a number of components part of

the Mission Data System’s Data Management Services). The use of dynamic cast is

important in the design of autonomous real-time systems since the operation allows

for a direct representation of the management and behavior of polymorphic data. To

allow for the application of dynamic cast in mission critical code, we validate and

improve a methodology for constant-time dynamic cast that shifts the complexity of

the operation to the compiler’s static checker. In a case study that demonstrates the

applicability of the programming and validation techniques of our certification frame-

work, we show the process of verification and semantic parallelization of the Mission

Data System’s (MDS) Goal Networks. MDS provides an experimental platform for

testing and development of autonomous real-time flight applications.
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CHAPTER I

INTRODUCTION

In this work we present the design and application of the first concurrency and time

centered framework for product-oriented software certification of autonomous space

systems. The process of software certification establishes the level of confidence in a

software system in the context of its functional and safety requirements. A software

certificate contains the evidence required for the system’s independent assessment

by an authority having minimal knowledge and trust in the technology and tools

employed [1]. Providing such certification evidence may require the application of

a number of software development, analysis, verification, and validation techniques

[2]. The goal of our work is not to provide a grade or a rating of the software de-

velopment process and the existing software for cyber-physical systems. Instead, we

engineer a number of programming and validation techniques that play a critical

role for the design and implementation of reliable real-time autonomous software.

This dissertation offers the following contributions: the design of the first lock-free

dynamically resizable array, detailed analysis and generic solution to the fundamen-

tal ABA problem, a comparison study of the available state-of-the-art nonblocking

techniques, the application of static analysis to deliver most efficient and reliable

nonblocking designs than otherwise would have been possible, improved and verified

constant-time dynamic cast operation for polymorphic data, suggests the scope and

dimensions of product-oriented certification, a study on the applicability of lock-free

designs in mission critical code, the design and implementation of a framework for

formal verification and automatic parallelization of control modules for cyber-physical

This dissertation follows the style of IEEE Transactions on Software Engineering.
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systems.

A. Goals

The goal of this work is to provide the definition, design, and implementation of the

first concurrency and time centered framework for product-oriented software certifi-

cation of autonomous space systems. To achieve fast and reliable concurrent interac-

tions, we define and apply the notion of Semantically Enhanced Containers (SEC).

SECs are data structures designed to provide the flexibility and usability of the pop-

ular ISO C++ STL containers, while at the same time they are hand-crafted to

guarantee domain-specific policies, such as the validity of given semantic invariants

or the conformance to a specific concurrency model. In particular, to meet the chal-

lenges of engineering mission critical code, we require a SEC to provide the following:

a) built-in safe concurrent synchronization, b) use of static analysis for enhanced

safety and faster run-time execution, and c) syntactic interface and semantics similar

to the widely applied and supported containers of the programming language used for

the system implementation. As our experience with MDS demonstrates, shared data

can often be polymorphic. To allow for the direct representation of the polymorphic

behavior of such data in MDS, we describe and validate an improved constant-time

dynamic cast operation. Such an approach achieves safe real-time application and low

cost of the operation at the expense of some extra work performed by the compiler’s

static checker.

1. Semantically Enhanced Containers

To achieve higher safety and faster performance, we define the notion and propose

the application of Semantically Enhanced Containers (SEC) for lock-free synchroniza-
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tion. As defined by Herlihy [3], a concurrent object is nonblocking if it guarantees

that some process in the system will make progress in a finite amount of steps. Non-

blocking algorithms do not apply mutually exclusive locks and instead rely on a set

of atomic primitives supported by the hardware architecture. The most ubiquitous

and versatile data structure in the ISO C++ Standard Template Library [4] is vector,

offering a combination of dynamic memory management and constant-time random

access. A number of pivotal concurrent applications in the Mission Data System

framework employ a shared STL vector protected by mutually exclusive locks, such

as the Data Management Service containers [5], the Goal Checker — an application

for monitoring the status of goals, and Elf — a framework for message passing and

transportation. In this work we present and utilize the design of the first lock-free

implementation of a SEC dynamically-resizable array in ISO C++. It provides fast

linearizable operations, disjoint-access parallelism for random access reads and writes,

lock-free memory allocation and management, and fast execution. To allow the vali-

dation of domain-specific concerns in SEC and achieve faster run-time execution, we

utilize the Pivot framework for C++ program representation and static analysis [6]

and introduce Basic Query (BQ), an expression-template based library for the defini-

tion of static queries. While eliminating the hazards associated with the application

of locks, nonblocking programming techniques introduce a safety hazard on their own:

the ABA problem [7], [8]. Our SEC approach directly addresses the ABA problem

and offers a number of practical techniques for its avoidance. In addition, we define a

generic condition for ABA safety, called the λδ approach, that allows the elimination

of the ABA hazard in a time and space efficient manner and with no reliance on

complex atomic primitives. In an object-oriented design, the application of dynamic

cast provides flexibility in the use of data management facilities. The traditional com-

piler implementations of dynamic cast do not provide the timing guarantees needed
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for hard real-time embedded systems. Because of the dynamic cast’s important role

in the MDS Data Management Services, we explore the model-based semantic en-

hancement of the dynamic cast operation that allows for its application in embedded

autonomous space systems.

2. Verification and Semantic Parallelization of Real-Time C++ in the Mission

Data System Platform

We rely on the notion of Semantically Enhanced Containers to design and imple-

ment a methodology for verification and semantic parallelization of real-time C++.

Our notion of semantic parallelization implies the thread-safe concurrent execution

of system algorithms that utilize shared data, based on the application’s semantics

and invariants. As a practical industrial-scale application, we demonstrate the par-

allelization and verification of the MDS Temporal Constraint Networks. A Temporal

Constraint Network (TCN) defines the goal-oriented operation of a control system.

The Temporal Constraint Networks Library is at the core of the Jet Propulsion Labo-

ratory’s Mission Data System (MDS) [9] state- and goal-oriented unified architecture

for testing and development of mission software. The MDS framework and its as-

sociated system engineering processes and development tools have been successfully

applied on a number of test platforms including the physical rovers Rocky 7 and

Rocky 8 and a simulated Entry, Descent, and Landing (EDL) module for the Mars

Science Laboratory mission.

B. Challenges for Mission Critical Autonomous Software

The dominant paradigms for software development, assurance, and management of

autonomous flight applications rely on the principle ”test-what-you-fly and fly-what-
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you-test.” This methodology has been applied in a large number of robotic space

missions at the Jet Propulsion Laboratory. For such missions, it has proven suitable

in achieving adherence to some of the most stringent standards of man-rated certifi-

cation, such as DO-178B [10], the Federal Aviation Administration’s (FAA) software

standard. Its Level A certification requirements demand 100% coverage of all high-

and low-level assurance policies. Some future space exploration projects such as Mars

Science Laboratory (MSL) [11], Project Constellation [12], and the development of

the Crew Launch Vehicle (CLV) and the Crew Exploration Vehicle (CEV) [13] sug-

gest the engineering of some of the most complex man-rated software systems. As

stated in the Columbia Accident Investigation Board’s Report [14], the inability to

thoroughly apply the required certification protocols had been determined to be a

contributing factor to the loss of STS-107, Space Shuttle Columbia. Schumann and

Visser’s discussion in [15] suggests that the current certification methodologies are

prohibitively expensive for systems of such complexity. A detailed analysis by Lowry

[2] indicates that at the present moment the certification cost of mission-critical space

software exceeds its development cost. The challenges of certifying and re-certifying

avionics software has led NASA to initiate a number of advanced experimental soft-

ware development and testing platforms, such as Mission Data System (MDS) [9], as

well as a number of program synthesis, modeling, analysis, and verification techniques

and tools, such as JavaPathFinder [16], CLARAty project [17], Project Golden Gate

[18], and New Millenium Architecture Prototype (NewMAAP) [19]. The high cost

and demands of man-rated certification have motivated the experimental development

of several accelerated testing platforms [20].

Perrow [21] studies the risk factors in the modern high technology systems. His

work identifies two significant sources of complexity in modern systems: interactions

and coupling. The systems most prone to accidents are those with complex inter-
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actions and tight coupling. With the increase of the size of a system, the number

of functions it has to serve, as well as its interdependence with other systems, its

interactions become more incomprehensible to human and machine analysis and this

can cause unexpected and anomalous behavior. Tight coupling is defined by the pres-

ence of time-dependent processes, strict resource constraints, and little or no possible

variance in the execution sequence. Perrow classifies space missions in the riskiest

category since both hazard factors are present. The notions of concurrency and time

are the most critical elements in the design and implementation of an embedded au-

tonomous space system. According to a study on concurrent models of computation

for embedded software by Lee and Neuendorffer [22], the major contributing factors

to the development and design’s complexity of cyber-physical systems are the un-

derlying sequential memory models and the lack of first class representation of the

notions of time and concurrency in the applied programming languages.

C. Parallelism and Complexity

ISO C++ [23] is widely used for parallel and multi-threaded software, despite the fact

that the C++ Standard currently does not mention concurrency or thread-safety. In a

parallel application, there are a number of challenges that are not known in sequential

programming: most importantly to correctly manipulate data where multiple threads

access it. The most commonly applied technique for controlling the interactions of

concurrent processes is the application of mutual exclusion locks. A mutual exclu-

sion lock guarantees thread-safety of a concurrent object by blocking all contending

threads except the one holding the lock. This can seriously affect the performance of

the system and diminish its parallelism. For the majority of applications, the problem

with locks is one of difficulty of providing correctness more than one of performance.
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The application of mutual exclusion locks poses significant safety hazards (such

as livelock, deadlock, priority inversion, and convoying [24]) and incurs high complex-

ity in the testing and validation of mission-critical software. Mutual exclusion locks

can be optimized in some scenarios by utilizing fine-grained locks [25] or context-

switching. Often due to the resource limitations of flight-qualified hardware, opti-

mized lock mechanisms are not a desirable alternative [2]. Even for efficient locks,

the interdependence of processes implied by the use of locks, introduces the dangers

of deadlock, livelock, and priority inversion. The incorrect application of locks is hard

to detect with the traditional testing procedures and a program can be deployed and

used for a long period of time before the flaws trigger anomalous behavior [2].

1. The Mars Pathfinder Mission

As discussed by Lowry [2], in July 1997 The Mars Pathfinder mission experienced a

number of anomalous system resets that caused operational delay and loss of scien-

tific data. The follow-up study identified the presence of a priority inversion problem

caused by the low-priority meteorological process blocking the high-priority bus man-

agement process. The investigation furthermore revealed that it would have been

impossible to detect the problem with the black box testing applied at the time to

derive the certification artifacts. A safer priority inversion inheritance algorithm had

been ignored due to its frequency of execution, the real-time requirements imposed,

and its high cost incurred on the slower flight-qualified computer hardware.

The subtle interactions in the concurrent applications of the modern aerospace

autonomous systems are of critical importance to the system’s safety and correct

operation. Despite the challenges in debugging and verification of the system’s con-

current components, the existing certification process [10] does not provide guidelines

at the level of detail reaching the development, application, and testing of concurrent
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programs. This is largely due to the process-oriented nature of the current certifi-

cation protocols and the complexity and high level of specialization of the aerospace

autonomous embedded applications.

In the near future, NASA plans to deploy a number of diverse vehicles, habitats,

and supporting facilities for its imminent missions to the Moon, Mars and beyond.

The large array of complex tasks that these systems would have to perform implies

their high level of autonomy. Rasmussen et al. [9] present the challenges for these

systems’ control as one of the most demanding tasks facing NASA’s Exploration

Systems Mission Directorate. Some of the most significant challenges that the authors

identify are managing a large number of tightly-coupled components, performing

operations in uncertain remote environments, ability to respond and recover from

anomalies, guaranteeing the system’s correctness and reliability, and the effective

communication across the system’s components.

D. Overview and Contribution

Here, we summarize the contributions of this dissertation and provide an overview of

the remaining chapters:

• Chapter II presents in detail the theoretical background and the technical terms

that lay at the foundation of this work. The chapter discusses a. the concept

and requirements of Temporal Constraint Networks (TCN) and their applica-

tion in the Mission Data System Platform, b. the foundations of nonblocking

synchronization, and c. the challenges in the design and implementation of

lock-free containers and in particular a dynamically resizable array.

• In Chapter III we describe our design and implementation of the first lock-free

dynamically resizable array. Our approach offers a set of practical, portable,
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lock-free, and linearizable STL vector operations and a fast and space efficient

implementation that incorporates nonblocking memory management and al-

location libraries. The chapter presents nonblocking algorithms defining the

following vector’s operations: push back, pop back, reserve, read, write, and size.

The chapter further analyzes the concurrent semantics of the operations and the

implementation’s correctness. Our performance analysis contrasts our lock-free

vector implementation with a. the concurrent vector provided by Intel [25] and

b. an STL vector protected by a lock. The chapter discusses the following set

of experiments:

1. performance evaluation on a shared memory system: our experimental

data shows that under contention the lock-free vector outperforms the

alternative lock-based approaches by a factor of 10 or more,

2. evaluation of the vector’s performance using two different garbage collec-

tion approaches,

3. performance evaluation on a system without shared L2 cache: the results

demonstrate that in such systems the lock-free approach offers performance

comparable to that of the best available lock-based alternatives.

Our performance analysis concludes that the presented implementation is portable,

practical, fast, and space-efficient. Using the current implementation, a user has

to avoid one particular ABA problem.

• In Chapter IV we study the application of the state-of-the-art nonblocking

Software Transactional Memory libraries for the design of nonblocking contain-

ers. We demonstrate the use of the Rochester Software Transactional Memory

(RSTM) [26] library for the construction of a nonblocking shared vector. Our
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RSTM-based vector provides algorithms that implement the following basic

vector operations: push back, pop back, read, and write. In our performance

analysis we compare: a. the RSTM-based nonblocking vector, b. a variation of

the RSTM-based vector using lock-based transactions, and c. our hand-crafted

CAS-based design as presented in Chapter III. Our performance evaluation

suggests that while hard to design and implement, CAS-based algorithms pro-

vide fast and scalable performance and outperform the nonblocking STM-based

alternatives by a significant factor.

• In Chapter V we introduce the principles of our product-oriented certification

framework founded on the concept of source code enhancement and analysis.

The chapter offers a description of our classification of the certification artifact

types, the development and validation tools and techniques used to implement a

cyber-physical system, the application’s domain-specific factors, and the levels

of abstraction in the system’s design and implementation.

• In Chapter VI we introduce the concept of Semantically Enhanced Contain-

ers (SEC). We restrict the notion of a SEC to a container that meets three

core criteria: a) built-in safe concurrent synchronization suitable for real-time

embedded applications, b) use of static analysis for enhanced safety such as

the elimination of the ABA problem, and c) syntactic interface and seman-

tics similar to the widely applied and supported ISO C++ STL containers.

In Chapter VI we present a SEC vector engineered to ensure safe and effi-

cient concurrent synchronization as well as offer the mechanisms to establish

the validity of certain user-defined semantic guarantees. The chapter discusses

our application of static analysis and the Pivot framework [6] that help us

achieve more efficient run-time execution of the container’s operations (when
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compared to the use of dynamic checks and garbage collection). The chapter

further explains the design and application of Basic Query (BQ), our expression-

template based library for extracting semantic information from C++ source

code. BQ defines the programming techniques for specifying and statically

checking domain-specific properties in code. We apply BQ to avoid the ABA

problem in our lock-free vector implementation from Chapter III. According to

our performance analysis the SEC approach offers a cost-effiective and flexible

approach for the prevention of ABA hazards with only mild limitations on the

uses of the lock-free vector.

• In Chapter VII we present a generic and practical solution to the ABA prob-

lem, called the λδ approach, that can easily be adopted in any Descriptor-based

lock-free design. Currently the literature does not offer an explicit analysis of

the ABA problem, its relation to the most commonly applied nonblocking pro-

gramming techniques, and the possibilities for its detection and avoidance. At

the present moment of time, eliminating the hazards of ABA in a nonblocking

algorithm is left to the ingenuity of the software designer. In Chapter VII we

study in detail and define the conditions that lead to ABA. We investigate the

relationship between the ABA hazards and the most commonly applied non-

blocking programming techniques and correctness guarantees. Our performance

evaluation establishes that the single word CAS-based λδ approach delivers per-

formance comparable to the use of the architecture-specific CAS2 [27] and offers

considerable performance gains when compared to the use of garbage collection.

• In Chapter VIII we present the design, implementation, and practical appli-

cation of our framework for verification and semantic parallelization of real-

time C++ within JPL’s MDS framework. The nonblocking synchronizations
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techniques discussed in Chapters III, VI, and VII play a central role for the

realization of our framework. The end goal of the framework is, given the im-

plementation of the optimized iterative propagation scheme and the topology

of a particular goal network, to establish the correctness of the core TCN se-

mantic invariants and automatically derive a C++ implementation that can be

executed concurrently on one of JPL’s experimental testbeds for accelerated

testing. We describe the architectural principles of the Mission Data System

Platform in the context of our product-oriented certification [28] framework.

Furthermore, the chapter presents an optimized algorithm for constraint prop-

agation and proceeds by discussing our approach for modeling, formal verifica-

tion, and automatic parallelization of the TCN propagation scheme. We show

the Alloy formal models and the certification invariants applied. In addition,

we use the certification framework introduced in Chapter V to analyze the pro-

cess of model-based development of the parallel autonomic goals network. We

identify seven critical certification artifacts in the process of model-driven devel-

opment and validation of the MDS goal network. In the analysis of this process,

we establish the relationship among the seven certification artifacts, the applied

development and validation techniques and tools, and the levels of abstraction

of system design and development. The analysis and performance evaluation

of our approach show that the use of nonblocking synchronization is of signifi-

cant importance in achieving reliability, efficiency, and better scalability in our

parallel propagation algorithm.

• In Chapter IX we apply the principles of model-based analysis and certification

and source code enhancement to the use of the C++ dynamic cast operation

in MDS. The application of dynamic cast is considered hazardous for embed-
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ded real-time software due to the lack of constant time reply in its standard

implementation. However, the dynamic cast allows flexibility in the design

and use of data management facilities in object-oriented programs and has an

important role in the implementation of the MDS Data Management Services

Library. In Chapter IX we define and apply a co-simulation framework based

on the SPIN model checker to formally verify and evaluate the G&S fast dy-

namic casting approach [29], an implementation strategy that guarantees fast

constant-time execution of the dynamic cast operation. In the G&S scheme, a

heuristic algorithm assigns an integer type ID at link time to each class. Our

co-simulation framework consists of a. an abstract formal model of the G&S

type ID assignment heuristics and b. a procedure for exhaustive search of the

state space discovering the best type ID assignment. The chapter shows the

pseudocode of our co-simulation approach and an algorithm for the discovery

of a global minimum in the state space of the formal verification process. The

analysis of the heuristics simulation performed in SPIN provides us with ideas

of possible improvements to the G&S type ID assignment. The application of

the co-simulation framework helped us implement optimizations to the G&S

heuristics leading to the discovery of optimal type ID assignment in 85% of the

class hierarchies, in contrast to 48% for the original G&S algorithm.

• Chapter X concludes this dissertation and provides directions for future re-

search.

1. Overview of the Algorithms

Table 1 shows a list of the algorithms presented in this dissertation.



14

Table 1. List of Algorithms
Component Operation Chapter

Descriptor-based Lock-free Vector push back Chapter III
Descriptor-based Lock-free Vector pop back Chapter III
Descriptor-based Lock-free Vector Allocate Memory Bucket Chapter III
Descriptor-based Lock-free Vector size Chapter III
Descriptor-based Lock-free Vector read Chapter III
Descriptor-based Lock-free Vector write Chapter III
Descriptor-based Lock-free Vector reserve Chapter III
Descriptor-based Lock-free Vector Complete Write Chapter III

RSTM-based Vector read Chapter IV
RSTM-based Vector write Chapter IV
RSTM-based Vector pop back Chapter IV
RSTM-based Vector push back Chapter IV

Semantically Enhanced Containers exclude push back Chapter VI
ABA-free Sync. CAS-based speculation at Li Chapter VII
ABA-free Sync. Two-step execution of a δ object Chapter VII
ABA-free Sync. Descriptor Object with obstruction-free semantics Chapter VII
ABA-free Sync. Implementing a λδ-modifying operation Chapter VII

Automatic Parallelization Framework TCN Propagation, Forward Pass Chapter VIII
Automatic Parallelization Framework TCN Propagation, Backward Pass Chapter VIII
Automatic Parallelization Framework Definition of Temporal Constraint and Time Point Chapter VIII
Automatic Parallelization Framework Definition of Time Phase and TP-based TCN Chapter VIII
Automatic Parallelization Framework Main TCN invariants Chapter VIII
Automatic Parallelization Framework Main TP-based TCN invariants Chapter VIII

Fast Dynamic Cast Co-simulation execution Chapter IX
Fast Dynamic Cast Finding the global minimum Chapter IX

2. Overview of the Experiments

Table 2 presents a list of the core experiments executed and described in this disser-

tation.
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Table 2. List of Experiments

Component Experiment Chapter
Descriptor-based Vector Comp. w/ Lock-based Vector, Intel Core Duo Ch. III, Figures 3, 4, 5, 6
Descriptor-based Vector Comp. w/ Lock-based Vectorss, AMD 8-way Opteron Ch. III, Figures 8, 9
Descriptor-based Vector Comp. of Alternative Memory Management Ch. III, Figure 7

RSTM-based Vector Comp. w/ CAS-based vector Ch. IV, Figures 10, 11, 12
SEC (Sem. Enh. Cont.) SEC Performance Analysis Ch. VI, Figure 14

ABA-free Sync. Comp. w/ CAS2 and All-GC Ch. VI, Figures 15, 16, 17, 18
Automatic Parallelization Frmk. TCN Constraint Propagation Ch. VIII, Figure 22

Fast Dynamic Cast Co-simulation of the Seven Cases Ch. IX, Table 16
Fast Dynamic Cast Search Time for Type ID Assignment Ch. IX, Figure 26
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CHAPTER II

BACKGROUND AND PREVIOUS WORK

As opposed to process-oriented certification, the product-oriented methodology [1]

relies on the application of safety concerns directly on implementation source code.

The product-oriented approach is inherently more flexible by offering the developers

the freedom to follow a variety of software development life-cycle paradigms. In addi-

tion, the certification authority itself has the ability to collect all required artifacts for

the system’s safety and quality assurance. Product-oriented certification has been ap-

proached by the application of a variety of formal verification [30], modeling ([31] and

[32]), code synthesis [33], and static analysis techniques [34]. An example of a pro-

gram synthesis technique is AutoFilter [35] that has been developed for the automatic

generation of the safety-critical parts of flight software that estimates the position and

altitude of the spacecraft. Since the correctness of the generated code is directly de-

pendent on the correctness of the program synthesis tool, FAA regulates that such

synthesis tools must meet the same certification criteria as the mission-critial software

being generated. The significant implementation effort and the sophisticated design

of such tools incur a prohibitive cost to the certification process in this approach.

As demonstrated by Denney and Fisher’s work [36], rewrite-based simplifications and

other program transformations are often necessary in order to reduce the verification

state space. In such methodologies, it is the developers’ responsibility to certify and

establish the fidelity of the formal models with respect to the source as well as the

semantic derivation in the applied program transformations.

The rest of this chapter presents the background knowledge accumulated and

needed to derive and apply the principles of our time and concurrency framework for

product-oriented software certification.
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A. Temporal Constraint Networks

A Temporal Constraint Network (TCN) defines the goal-oriented operation of a con-

trol system. The TCN library is at the core of the Jet Propulsion Laboratory’s

Mission Data System (MDS) [9] state-based and goal-oriented unified architecture

for testing and development of mission software. A TCN consists of a set of tempo-

ral constraints (TCs) and a set of time points (TPs). In this model of goal-driven

operation, a time point is defined as an interval of time when the configuration of

the system is expected to satisfy a property predicate. The width of the interval

corresponds to the temporal uncertainty inherent in the satisfaction of the predicate.

Similarly, temporal constraints have an associated interval of time corresponding to

the acceptable bounds on the interactions between the control system and the system

under control during the performance of a specific activity. A TCN graph topology

represents a snapshot at a given time of the known set of activities the control system

has performed so far, is currently engaged in, and will be performing in the near

future up to the horizon of the elaborate plan initially created as a solution for a set

of goals. Figure 1 illustrates an example of a TCN topology with 14 time points. The

topology of a temporal constraint network must satisfy a number of invariants.

(a) A TCN is a directed acyclic graph where the vertices represent the set of all time

points (Stps) and the edges the set of all temporal constraints (Stcs).

(b) For each time point TPi ∈ Stps, there is a set of temporal constraints that are

immediate successors (Ssucci
) of TPi and a set, Spredi

, consisting of all of TPi’s

immediate predecessors.

(c) Each temporal constraint TCj ∈ Stcs has exactly one successor TPsuccj
and one

predecessor TPpredj
.
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(d) For each pair {TPi,TCj}, where TPi ≡ TCsuccj
, TCj ∈ Spredi

must hold. The

reciprocal invariant must also be valid, namely for each pair of {TPi,TCj} such

that TPi ≡ TCpredj
, TCj ∈ Ssucci

.

(e) The firing window of a time point TPi ∈ Stps is represented by the pair of time

instances {TPmini
,TPmaxi

}. Assuming that the current moment of time is repre-

sented by Tnow, then TPmini
≤ Tnow ≤ TPmaxi

, for every TPi ∈ Stps.
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Fig. 1. An Example of a Temporal Constraint Network: A TCN Topology with 14

TPs

General-purpose programming languages lack the capabilities to formally specify

and check domain-specific design constraints. Direct representation and verification
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of the TCN invariants in the implementation source code would likely result in a

cumbersome and inefficient solution. However, any implementation (in C++, Java,

or another programming language) must operate under the assumption that the ba-

sic TCN invariants are satisfied. Thus, prior to implementing a solution to the TCN

constraint propagation problem, it is necessary to guarantee the correctness and con-

sistency of the topology of the goal network. We further discuss these issues as well

as demonstrate an approach for automatic semantic parallelization for accelerated

testing of the TCN propagation approach in Chapter VIII.

B. Lock-Free Dynamically Resizable Arrays

In this section we examine the following topics:

(1) Briefly introduce the foundations of lock-free programming.

(2) Examine in details the challenges for the design and implementation of a concur-

rent dynamic array.

(a) Discuss the possible consistency models and the assumed concurrent seman-

tics.

(b) Identify the most desirable characteristics of a nonblocking array, given the

assumed semantics.

(c) Analyze implementation issues related to:

(-) ensuring portability,

(-) meeting the requirements for linearizability,

(-) coping with the ABA problem,

(-) effectively incorporating nonblocking memory management techniques.
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(3) Present a study of three state-of-the-art approaches for a nonblocking design of

a concurrent dynamic array.

(a) The hand-crafted approach: lock-free dynamically resizable arrays (as further

discussed in Chapter III).

(b) The Software Transactional Memory (STM) approach: the design based on

the utilization of an STM library (Chapter IV).

(c) Predictive Log Synchronization: a recent concept suggested by Shalev and

Shavit [37].

1. Foundations of Lock-Free Programming

A concurrent object is nonblocking [8] if it guarantees that some process in the

system will make progress in a finite number of steps. An object that guarantees

that each process will make progress in a finite number of steps is defined as wait-

free.Obstruction-freedom [38] is an alternative nonblocking condition that guarantees

progress if a thread eventually executes in isolation. It is the weakest nonblocking

property and obstruction-free objects require the support of a contention manager to

prevent livelocking.

The lock-free, wait-free, and obstruction-free algorithms do not apply mutual

exclusion locks. Instead, they rely on a set of atomic primitives such as the word-size

CAS instruction [27]. Common CAS implementations [27], [8] require three argu-

ments: a memory location, Mem, an old value, Vold, and a new value, Vnew. The

instruction atomically exchanges the value stored in Mem with Vnew, provided that

its current value equals Vold. The architecture ensures the atomicity of the operation

by applying a fine-grained hardware lock such as a cache or a bus lock (e.g.: IA-32

[27]). The use of a hardware lock does not violate the nonblocking property as defined
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by Herlihy [8]. Common locking synchronization methods such as semaphores, mu-

texes, monitors, and critical sections utilize the same atomic primitives to manipulate

a control token. Such applications of the atomic instructions introduce interdepen-

dencies of the contending processes. In the most common scenario, lock-free systems

utilize CAS in order to implement a speculative manipulation of a shared object.

Each contending process speculates by applying a set of writes on a local copy of

the shared data and attempts to CAS the shared object with the updated copy (see

Chapter III for further details on the application of CAS in nonblocking designs).

This speculative execution guarantees that from within a set of contending processes,

there is at least one that succeeds within a finite number of steps (thus the system is

nonblocking). Linearizability [8] is an important correctness condition for concurrent

objects: a concurrent operation is linearizable if it appears to execute instantaneously

in a given point of time between the time τinv of its invocation and the time τend of

its completion. The consistency model implied by the linearizability requirements is

stronger than the widely applied Lamport’s sequential consistency model [39]. Ac-

cording to Lamport’s definition, sequential consistency requires that the results of

a concurrent execution are equivalent to the results yielded by some sequential ex-

ecution (given the fact that the operations performed by each individual processor

appear in the sequential history in the order as defined by the program).

2. Practical Lock-Free Programming Techniques

The practical implementation of a hand-crafted lock-free container is notoriously dif-

ficult: in addition to addressing the hazards of race conditions, the developer must

also find a way to incorporate nonblocking memory management and memory allo-

cation schemes. As suggested by the authors in [40], [41], and [24], the use of only

a single-word CAS operation makes the task of designing a practical non-trivial con-
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current container very difficult and complex. A simpler and more efficient design

of a nonblocking data container requires the atomic update of several memory loca-

tions. The use of a Double-Compare-And-Swap primitive (DCAS) has been suggest

by Detlefs et al. [41], however such complex atomic operations are rarely supported

by the hardware architecture.

Harris et al. describe [42] a software implementation of a multiple-compare-and-

swap (MCAS) algorithm based on CAS. This software-based MCAS algorithm has

been applied by Fraser in the implementation of a number of lock-free containers

such as binary search trees and skip lists [43]. The cost of the MCAS operation is

expensive requiring 2M+1 CAS instructions. Consequently, the direct application of

the MCAS scheme is not an optimal approach for the design of lock-free algorithms.

However, the MCAS implementation employs a number of techniques, such as pointer

bit marking and the use of Barne’s style announcements [44], that are useful for the

design of practical lock-free systems. A Barne’s style announcement is an object that

allows an interrupting thread help an interrupted thread complete. The pointer bit

marking technique exploits the last two bits of a pointer value, which are unused in

a pointer representation, to store up to three additional binary states. Thus, a single

CAS operation can atomically exchange the pointer and its state.

A number of advanced and recent Software Transactional Memory (STM) Li-

braries provide nonblocking transactions (typically obstruction-free) with linearizable

operations [45]. Such transactions can be utilized for some designs of nonblocking con-

tainers. The high cost of the conflict detection and validation schemes in such systems

would often not allow performance that is superior to that of a hand-crafted lock-free

container which relies solely on the application of the portable atomic primitives. In

addition, to prevent livelocking in an obstruction-free design, the implementor needs

to apply a contention manager [38].
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Predictive Log Synchronization (PLS) is an alternative paradigm suggested by

Shalev and Shavit [37] that allows for simpler designs and less costly conflict detection

and validation schemes. The core idea is to delegate all writes to a single thread

that performs the data structure’s modifications based on a log file protected by

a single mutual exclusion lock. The design is nonblocking because once a thread

finds the lock unavailable, it runs a speculative execution based on the description

of the concurrent operations available in the log file. The presented approach is very

recent and its implementation is still unavailable. PLS has been published simply as a

proof-of-concept and thus has not been applied and extensively tested in the design of

complex concurrent algorithms. The main drawbacks for its practical application are

the weaker consistency model that it provides (Lamport’s sequential consistency), its

inefficiency in the scenario of an application performing a larger volume of concurrent

writes, and the unbounded growth in the cost of its speculative routine in certain

scenarios.

a. Lock-Free Data Containers

Recent research in the design of lock-free data structures includes linked-lists ([46]

and [47]), double-ended queues ([48] and [49]), stacks [50], hash tables ([47] and [51]),

and binary search trees [43]. The problems encountered include excessive copying,

low parallelism, inefficiency, and high overhead. Despite the widespread use of the

STL vector in real-world applications, we are aware of only one published work [7]

that discusses the problem of the design and implementation of a lock-free dynamic

array. The vector’s random access, data locality, and dynamic memory management

poses serious challenges for its nonblocking implementation.
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3. Semantics

The semantics of a concurrent data container can be based on a number of assump-

tions. For the designs we study in this report, we assume that each processor can

execute a number of the vector’s operations. This establishes a history of invocations

and responses and defines a real-time order between them. An operation O1 is said

to precede an operation O2 if O2’s invocation occurs after O1’s response. Operations

that do not have real-time ordering are defined as concurrent. A sequential history

is one where all invocations have immediate responses. A linearizable history is one

where:

(1) all invocations and responses can be reordered so that they are equivalent to a

sequential history,

(2) the yielded sequential history must correspond to the semantic requirements of

the sequential definition of the object,

(3) in case a given response precedes an invocation in the concurrent execution, then

it must precede it in the derived sequential history.

It is the last requirement that differentiates the consistency model implied by the

definition of linearizability with Lamport’s sequential consistency model and makes

linearizability stricter.

4. Design Goals

In this section we synthesize the most desirable characteristics of a shared nonblocking

container:

(1) thread-safety: the data should be accessible to multiple processors at all times,
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(2) lock-freedom: apply nonblocking techniques for the implementation,

(3) portability: do not rely on uncommon architecture-specific instructions,

(4) easy-to-use interfaces: offer the interfaces, functionality, and guarantees available

in the sequential STL vector,

(5) high level of parallelism: concurrent completion of non-conflicting operations

should be possible,

(6) minimal overhead: achieve lock-freedom without excessive copying, levels of indi-

rection, and costly conflict detection and validation schemes, minimize the time

spent on redundant and speculative computations and the number of calls to

costly atomic primitives.

5. Implementation Concerns

We provide a brief summary of the most important implementation concerns for

the practical and portable design of a nonblocking dynamic array. The following

sections discuss the implementation issues related to guaranteeing portability, meet-

ing the requirements for linearizability, preventing race conditions, coping with the

ABA problem, and incorporating nonblocking memory management and allocation

schemes.

a. Portability

Virtually at the core of every known synchronization technique is the application

of a number of hardware atomic primitives. The semantics of such primitives varies

depending on the specific hardware platform. There are a number of architectures that

offer the support of some hardware atomic instructions that provide greater flexibility
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(compared to a single-word CAS) such as the Load-Link/Store Conditional (LL/SC)

supported by the PowerPC, Alpha, MIPS, and the ARM architectures or instructions

that perform atomic writes to more than a single word in memory, such as the Double-

Compare-And-Swap (DCAS) instruction [41]. The hardware support for such atomic

instructions can vastly simplify the design of a nonblocking algorithm as well as offer

immediate solutions to a number of challenging problems such as the ABA problem

[52]. However, to maintain portability across a large number of hardware platforms,

the design and implementation of a nonblocking algorithm cannot rely on the support

of such atomic primitives. The most common atomic primitive that is supported by

a large majority of hardware platforms is the single-word Compare-And-Swap (CAS)

instruction.

b. Linearizability Requirements

In a CAS-based design, a major difficulty is meeting the linearizability requirements

for operations that require the update of more than a single-word in the system’s

shared memory. To cope with this problem, it is possible to apply a combination of

a number of known techniques:

(1) Extra Level of Indirection: Reference semantics can be used in case that the data

being manipulated is larger than a memory word size.

(2) Descriptor Object: A Descriptor Object (see Chapter III) stores a record of a

pending operation on a given memory location. It allows the interrupting threads

help the interrupted thread complete an operation rather than wait for its com-

pletion.

(3) Descriptive Log: The Descriptive Log methodology lies at the core of virtually

all Software Transactional Memory implementations. A Descriptive Log stores a
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record of all pending reads and writes to the shared data. It is used for conflict

detection, validation, and optimistic speculation.

(4) Transactional Memory: A duplicate memory copy used to perform speculative

updates that are invisible to all other threads until the linearization point of the

entire transaction.

(5) Optimisitic Speculation: A complex nonblocking operation employs optimistic

speculative execution in order to carry out the memory updates on a local or

duplicate memory copy and commit once there are no conflicts with interfering

operations.

To illustrate the complexity of a CAS-based design of a dynamically resizable

array, Table 3 provides an overview of the number of shared memory locations that

need to be updated upon the execution of some of its basic operations.

Table 3. STL Vector — Number of Memory Locations to be Updated per Operation

Operations Memory Locations

push back V ector × Elem→ void 2: element and size

pop back V ector → Elem 1: size

reserve V ector × size t→ V ector n: all elements

read V ector × size t→ Elem none

write V ector × size t× Elem→ V ector 1: element

size V ector → size t none
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c. Interfaces of the Concurrent Operations

According to the ISO C++ Standard [23], the STL containers’ interfaces are inher-

ently sequential. The next ISO C++ Standard [53] is going to include a concurrent

memory model [54] and possibly a blocking threading library. In Table 4 we show

a brief overview of some of the basic operations of an STL vector according to the

current standard of the C++ programming language. Consider the sequence of opera-

Table 4. Interfaces of STL Vector
Operation Description

size type size() const Number of elements in the vector
size type capacity() const Number of available memory slots
void reserve(size type n) Allocation of memory with capacity n
bool empty() const true when size = 0
T* operator[] (size type n) const returns the element at position n
T* front() returns the first element
T* back() returns the last element
void push back(const T&) inserts a new element at the tail
void pop back() removes the element at the tail
void resize(n, t = T()) modifies the tail, making size = n

tions applied to an instance, vec, of the STL vector: vec[vec.size()-1]; vec.pop back();.

In an environment with concurrent operations, we cannot have the guarantee that

the element being deleted by thepop back is going to be the element that had been

read earlier by the invocation of operator[]. Such a sequential history is just one of the

several legal sequential histories that can be derived from the concurrent execution

of the above operations. While the STL interfaces have proven to be efficient and

flexible for a large number of applications [4], to preserve the semantic behavior im-

plied by the sequential definitions of STL, one can either rely on a library with atomic

transactions [45], [26] or alternatively define concurrent STL interfaces adequate with

respect to the applied consistency model. In the example we have shown, it might be

appropriate to modify the interface of the pop back operation and return the element

being deleted instead of the void return type specified in STL. Such an implementa-
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tion efficiently combines two operations: reading the element to be removed from the

container and removing the element. The ISO C++ implementation of pop back()

returns void so that the operation is optimal (and does not perform extra work) in

the most general case: the deletion of the tail element. Should we prefer to keep the

STL standard interface of void pop back() in a concurrent implementation, the task

of obtaining the value of the removed element in a concurrent nonblocking execution

might be quite costly and difficult to implement. Based on the shared containers’

usage, observing the possibilities for such combinations can deliver better usability

and performance advantages in a nonblocking implementation. Other possibly ben-

eficial combinations of operations are 1) CAS-based read-modify-write at location Li

that unifies a random access read and write at location Li and 2) the push back of a

block of tail elements.

d. The ABA Problem

The ABA problem [52] is fundamental to all CAS-based systems. A universal solution

to the ABA problem is to associate a version counter to each element on platforms sup-

porting Double-Compare-And-Swap or alternatively provide Load-Link/Store-Conditional

(LL/SC) semantics. We cannot assume availability of these atomic primitives since

they are specific to a limited number of hardware platforms.

There are two particular instances when the ABA problem can affect the cor-

rectness of the vector’s operations:

(1) The user intends to store a memory address value A multiple times.

(2) The memory allocator reuses the address of an already freed object.

To eliminate the ABA problem of (2) (in the absence of CAS2 [27] or LL/SC),

it is possible to incorporate a memory management scheme such as Herlihy et al.’s

Pass The Buck algorithm [55] that utilizes a separate thread to periodically reclaim
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unguarded objects. The vector’s vulnerability to (1) (in the absence of CAS2 or

LL/SC), can be eliminated by requiring the data structure to copy all elements and

store pointers to them. Such behavior complies with the STL value-semantics [4],

however it can incur significant overhead in some cases due to the additional heap

allocation and object construction. In a lock-free system, both the object construction

and heap allocation can execute concurrently with other operations.

e. Memory Allocation and Management

A nonblocking algorithm needs to be able to acquire and safely release memory in an

efficient, nonblocking manner. A garbage collected environment could significantly re-

duce the complexity of the implementation (by moving key implementation problems

inside the GC implementation). However, we do not know of any available general

lock-free garbage collector for C++ or Java.

Object Reclamation: it is possible to incorporate a reference counting tech-

nique as described by Michael and Scott [56]. The major drawback of such a scheme

is that a timing window allows objects to be reclaimed while a different thread is

about to increase the counter. Consequently, objects cannot be freed but only recy-

cled. Alternatives such as Michael’s Hazard Pointers [52] and Herlihy et al.’s Pass

The Buck [55] overcome this problem.

Allocator: recent research by Michael [57] and Gidenstam [58] presents imple-

mentations of practical lock-free memory allocators.
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CHAPTER III

LOCK-FREE VECTOR: DESIGN AND IMPLEMENTATION

In this chapter we provide an overview of our design and implementation of the first

lock-free dynamically resizable array. The presented approach is based on a single-

word atomic Compare-And-Swap (CAS) instruction. It provides a linearizable and

highly parallelizable STL-like interface, lock-free memory allocation and management,

and fast execution. Experiments on a dual-core Intel processor with shared L2 cache

indicate that our lock-free vector outperforms its lock-based STL counterpart and

the latest concurrent vector implementation provided by Intel by a large factor. The

performance evaluation on a quad dual-core AMD system with non-shared L2 cache

demonstrated timing results comparable to the best available lock-based techniques.

The presented design implements the most common STL vector’s interfaces, namely

random access read and write, tail insertion and deletion, pre-allocation of memory,

and query of the container’s size. Using the current implementation, a user has to

avoid one particular ABA problem. The lock-free vector’s design and implementation

provided follow the syntax and semantics of the ISO STL vector as defined in ISO

C++ [23].

In the following sections we define a semantic model of the vector’s operations,

provide a description of the design and the applied implementation techniques, outline

a correctness proof of the vector’s lock-free semantics based on the adopted semantic

model, address concerns related to memory management, and discuss some alterna-

tive solutions. The presented algorithms have been implemented in ISO C++ and

designed for execution on an ordinary multi-threaded shared-memory system sup-

porting only single-word read, write, and CAS instructions.

The major challenges of providing a lock-free vector implementation stem from



32

the fact that key operations need to atomically modify two or more non-colocated

words. For example, the critical vector operation push back increases the size of the

vector and stores the new element. Moreover, capacity-modifying operations such as

reserve and push back potentially allocate new storage and relocate all elements in case

of a dynamic table [59] implementation. Element relocation must not block concurrent

operations (such as write and push back) and must guarantee that interfering updates

will not compromise data consistency. Therefore, an update operation needs to modify

up to four shared memory locations: size, capacity, storage, and a vector’s element.

Fig. 2. Lock-free Shared Vector: UML Class Diagram

The UML diagram in Figure 2 presents the collaborating classes and their pro-

gramming interfaces and data members. Each vector object contains the memory

locations of the data storage of its elements as well as an object named Descriptor that

encapsulates the container’s size, a reference counter required by the applied memory

management scheme (Section C) and an optional reference to a Write Descriptor. Our

approach requires that data types bigger than word size are indirectly stored through

pointers. Like Intel’s concurrent vector [25], our implementation avoids storage re-

location and its synchronization hazards by utilizing a two-level array. Whenever

push back exceeds the current capacity, a new memory block twice the size of the
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previous one is added.

The semantics of the pop back and push back operations are guaranteed by the

Descriptor object. The use of a Descriptor and Write Descriptor allows a thread-safe

update of two memory locations thus eliminating the need for a DCAS instruction.

An interrupting thread intending to change the descriptor needs to complete any

pending operation. Not counting memory management overhead, push back executes

two successful CAS instructions to update two memory locations.

A. Operations

Table 5 illustrates the implemented operations as well as their signatures, descriptor

modifications, and runtime guarantees.

Table 5. Shared Vector - Operations Description and Complexity

Operations Descriptor (Desc) Complexity

push back V ector × Elem→ void Desct → Desct+1 O(1)× congestion

pop back V ector → Elem Desct → Desct+1 O(1)× congestion

reserve V ector × size t→ V ector Desct → Desct O(1)

read V ector × size t→ Elem Desct → Desct O(1)

write V ector × size t× Elem→ V ector Desct → Desct O(1)

size V ector → size t Desct → Desct O(1)

The remaining part of this section presents the generalized pseudo-code of the im-

plementation. It omits code necessary for a particular memory management scheme.

We use the symbols ^, &, and . to indicate pointer dereferencing, obtaining an ob-

ject’s address, and integrated pointer dereferencing and field access respectively. The
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function HighestBit returns the bit-number of the highest bit that is set in an integer

value. On modern x86 architectures HighestBit corresponds to the BSR assembly in-

struction [27]. FBS is a constant representing the size of the first bucket and equals

eight in our implementation.

Push back (add one element to the end): The first step is to complete a

pending operation that the current descriptor might hold. In case that the storage

capacity has reached its limit, new memory is allocated for the next memory bucket.

Then, push back defines a new Descriptor object and announces the current write

operation. Finally, push back uses CAS to swap the previous Descriptor object with

the new one. Should CAS fail, the routine is re-executed. After succeeding, push back

finishes by writing the element.

Pop back (remove one element from end): Unlike push back, pop back does

not utilize a Write Descriptor. The pop back operation completes any pending oper-

ation of the current descriptor, reads the last element, defines a new descriptor, and

attempts a CAS on the Descriptor object.

Non-bound checking read and write at position i: The random access

read and write do not utilize the descriptor and their success is independent of the

descriptor’s value.

Reserve (increase allocated space): In the case of concurrently executing

reserve operations, only one succeeds per bucket, while the others deallocate the

acquired memory.

Size (read number of elements): The size operation returns the size stored

in the descriptor minus a potential pending write operation at the end of the vector.
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Algorithm 1 push back vector, elem

1: repeat

2: desccurrent ← vector.desc

3: CompleteWrite(vector, desccurrent.pending)

4: bucket← HighestBit(desccurrent.size + FBS)− HighestBit(FBS)

5: if vector.memory[bucket] = NULL then

6: AllocBucket(vector, bucket)

7: writeop ← new WriteDesc(At(desccurrent.size), elem, desccurrent.size)

8: descnext ← new Descriptor(desccurrent.size+1, writeop)

9: until CAS(&vector.desc, desccurrent, descnext)

10: CompleteWrite(vector, descnext.pending)

Algorithm 2 AllocBucket vector, bucket

1: bucketsize← FBSbucket+1

2: mem← new T[bucketsize]

3: if not CAS(&vector.memory[bucket],NULL,mem) then

4: Free(mem)

B. Semantics

The vector’s operations are of two types: those whose progress depends on the vector’s

descriptor and those who are independent of it. We refer to the former as descriptor-

modifying and to the latter as non-descriptor modifying operations. All of the vector’s

operations in the set of concurrent descriptor-modifying operations S1 are thread-safe

and lock-free. The non-descriptor modifying operations such as random access read

and write are implemented through the direct application of atomic read and write

instructions on the shared data. In the set of non-descriptor modifying operations

S2, all operations are thread-safe and wait-free.
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Algorithm 3 size vector

1: desc← vector.desc

2: size← desc.size

3: if desc.writeop.pending then

4: size← size− 1

5: return size

Algorithm 4 read vector, i

1: return At(vector, i)^

Correctness: The main correctness requirement of the semantics of the shared

vector’s operations is linearizability [60]. A concurrent operation is linearizable if

it appears to execute instantaneously in some moment of time between the time

point τinv of its invocation and the time point τend of its response. Firstly, this

definition implies that each concurrent history yields responses that are equivalent

to the responses of some legal sequential history for the same requests. Secondly,

the order of the operations within the sequential history must be consistent with the

real-time order. Let us assume that there is an operation oi ∈ Svec, where Svec is the

set of all the vector’s operations. We assume that oi can be executed concurrently

with n other operations {o1, o2..., on} ∈ Svec. We outline a proof that operation oi is

linearizable.

Linearization Points: For all non-descriptor-modifying operations the lin-

earization point is at the time instance τa when the atomic read (Algorithm 4, line 1)

or write (Algorithm 5, line 1) of the element is executed. Assume oi is a descriptor-

modifying operation. It is carried out in two stages: modify the Descriptor object

and then update the data structure’s contents. Let time points τdesc (Algorithm 1,

line 10; Algorithm 6, line 6) and τwritedesc (Algorithm 9, line 2) denote the instances
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Algorithm 5 write vector, i, elem

1: At(vector, i)^← elem

Algorithm 6 pop back vector

1: repeat

2: desccurrent ← vector.desc

3: CompleteWrite(vector, desccurrent.pending)

4: elem← At(vector, desccurrent.size− 1)^

5: descnext ← new Descriptor(desccurrent.size− 1,NULL)

6: until CAS(& vector.desc, desccurrent, descnext)

7: return elem

of time when oi executes an atomic update to the vector’s Descriptor object and

when oi’s Write Descriptor is completed by oi itself or another concurrent operation

oc ∈ {o1, o2..., on}, respectively. Similarly, time point τreadelem (Algorithm 1, line 7;

Algorithm 6, line 4) defines when oi reads an element. oi is either a pop back or

push back operation. The linearization point is either τreadelem or τdesc for the former

case and τreadelem, τdesc, or τwritedesc for the latter case.

Sequential Semantics: Let Sc be the set of all concurrent operations {o1, ..., on}

in a time interval [τα, τβ]. If ∀oi ∈ Sc, DescriptorModifying(oi), the linearization point

for each operation is τdesc(oi). Similarly, if ∀oi ∈ Sc, NonDescriptorModifying(oi), the

linearization point for each operation is τa(oi). In these cases, the resulting sequential

histories are directly derived from the temporal order of the linearization points.

In the remaining cases, the derivation of a sequential history is significantly more

complex. It is possible to transform all non-descriptor modifying operations into

descriptor modifying in order to simplify the vector’s sequential semantics. Given

our current implementation, this can be achieved in a straightforward manner. We
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Algorithm 7 reserve vector, size

1: i← HighestBit(vector.desc.size + FBS -1)-HighestBit(FBS)

2: if i < 0 then

3: i← 0

4: while i < HighestBit(size + FBS− 1)− HighestBit(FBS) do

5: i← i+ 1

6: AllocBucket(vector, i)

Algorithm 8 At vector, i

1: pos← i+ FBS

2: hibit← HighestBit(pos)

3: idx← pos xor 2hibit

4: return &vector.memory[hibit− HighestBit(FBS)][idx]

have chosen not to do so in order to preserve the efficiency and wait-freedom of the

current non-descriptor modifying operations. Table 6 determines the linearization

points for each pair of concurrent operations (o1, o2) where DescriptorModifying(o1)

and NonDescriptorModifying(o2).

Table 6. Linearization Points of o1, o2

o1\o2 read write

push back τwritedesc(o1), τa(o2) τreadelem(o1), τa(o2)

pop back τdesc(o1), τa(o2) τreadelem(o1), τa(o2)

We emphasize that the presented ordering relations are not transitive. Consider

an example with three operations o1 (push back), o2 (write), and o3 (read), which

access the same element. We assume that time points τa(o2), τa(o3) occur between
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Algorithm 9 CompleteWrite vector, writeop

1: if writeop.pending then

2: CAS(At(vector, writeop.pos), writeop.valueold, writeop.valuenew)

3: writeop.pending← false

τreadelem(o1) and τwritedesc(o1) as well as that o2 returns before the invocation of o3.

The resulting sequential history is o1, o2, o3. It is derived from the real-time ordering

between o2 and o3, and the pair-wise ordering relation between push back and write in

Table 6. A thorough linearizability proof for even the simplest data structure is non

trivial and a further detailed elaboration is beyond the scope of this presentation.

Nonblocking: We prove the nonblocking property of our implementation by

showing that out of n threads at least one makes progress. Since the progress of non-

descriptor modifying operations is independent of all other concurrent operations,

they are wait-free. Thus, it suffices to consider an operation o1, where o1 is either a

push back or pop back. A Write Descriptor can be simultaneously read by n threads.

While one of them will successfully perform the Write Descriptor’s operation (o2), the

others will fail and not attempt it again. This failure is insignificant for the outcome

of operation o1. The first thread attempting to change the descriptor will succeed,

which guarantees the progress of the system.

C. Memory Management

Our algorithms do not require the use of a particular memory management scheme.

A garbage collected environment would have significantly reduced the complexity of

the implementation (by moving key implementation problems inside the GC imple-

mentation). However, we do not know of any available general lock-free garbage

collector for C++. Our concrete implementation uses reference counting as described
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by Michael and Scott [56]. Recent research by Michael [57] and Gidenstam [58]

presents implementations of true lock-free memory allocators. Due to its availability

and performance, we selected Gidenstam’s allocator for our performance tests.

D. The ABA Problem and the Shared Vector

We have outlined the ABA hazards in the design of a lock-free vector in Chapter II,

Section 5. In Chapters VI and VII we suggest new techniques for ABA prevention

that can be applied to our lock-free vector.

E. Alternatives

In this section we discuss several alternative designs for lock-free vectors.

Copy on Write: Alexandrescu and Michael present a lock-free map, where every

write operation creates a clone of the original map, which insulates modifications from

concurrent operations [40]. Once completed, the pointer to the map’s representation

is redirected from the original to the new map. The same idea could be adopted to

implement a vector. Since the complexity of any write operation deteriorates to O(n)

instead of O(1), this scheme would be limited to applications exhibiting read-often-

write-rarely access patterns.

Using Software DCAS: Harris et al. present a software Multi-Compare-And-

Swap (MCAS) implementation based on a single-word CAS [42]. While convenient,

the MCAS operation is expensive (requiring 2M + 1 CAS instructions). Thus, it is

not the best choice for an effective implementation.

Contiguous Storage: Techniques similar to the ones used in our vector im-

plementation could be applied to achieve a vector with contiguous storage. The

difference is that the storage area of the entire data structure can change over time.
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This requires resize to move all elements to a new location. Hence, storage and its ca-

pacity should become members of the descriptor. Synchronization between write and

resize operations is what makes this approach difficult. A straightforward solution is

to apply descriptor-modifying semantics for all of the vector’s operations as discussed

in Section B.

We discussed the descriptor- and non-descriptor modifying writes in the context

of the two-level array and the contiguous storage vector. However, these write prop-

erties are not inherent in these two approaches. In the two-level array, it is possible to

make each write operation descriptor-modifying, thus ensure a write within bounds.

In the contiguous storage approach, we could use pointer marking and element relo-

cation could replace the elements with marked pointers to the new location. Every

access to these marked pointers would get redirected to the new storage.

F. Performance Evaluation

We ran performance tests on an Intel IA-32 SMP machine with two 1.83GHz processor

cores with 512 MB shared memory and 2 MB L2 shared cache running the MAC OS

X operating system. In our performance analysis, we compare the lock-free approach

(with its integrated lock-free memory management and memory allocation) with the

concurrent vector provided by Intel [25] as well as an STL vector protected by a

lock. For the latter scenario we applied different types of locking synchronizations

— an operating system dependent mutex, a reader/writer lock, a spin lock, as well

as a queuing lock. We used this variety of lock-based techniques to contrast our

nonblocking implementation to the best available locking synchronization technique

for a given distribution of operations. We utilize the locking synchronization provided

by Intel [25].
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Similarly to the evaluation of other lock-free concurrent containers [43] and [47],

we have designed our experiments by generating a workload of various operations

(push back, pop back, random access write, and read). In the experiments, we varied

the number of threads, starting from 1 and exponentially increased their number to

32. Every active thread executed 500,000 operations on the shared vector. We mea-

sured the CPU time (in seconds) that all threads needed in order to complete. Each

iteration of every thread executed an operation with a certain probability; push back

(+), pop back (-), random access write (w), random access read (r). We use per-thread

linear congruential random number generators where the seeds preserve the exact se-

quence of operations within a thread across all containers. We executed a number of

tests with a variety of distributions and found that the differences in the containers’

performances are generally preserved. Analysis presented by Fraser [43] establishes

that in real-world concurrent applications read operations dominate and account to

about 70% to 75% of all operations. For this reason we illustrate the performance of

the concurrent vectors with a distribution of +:15%, -:5%, w:10%, r:70% on Figure

3. Figure 5 demonstrates the performance results with a distribution containing pre-

dominantly writes, +:30%, -:20%, w:20%, r:30%. The number of threads is plotted

along the x-axis, while the time needed to complete all operations is shown along the

y-axis. Both axes use logarithmic scale.

The current release of Intel’s concurrent vector does not offer pop back or any

alternative to it. To include its performance results in our analysis, we excluded the

pop back operation from a number of distributions. Figures 4 and 6 present two of

these distributions. For clarity we do not depict the results from the QueuingLock

and SpinLock implementations. According to our observations, the QueuingLock

performance is consistently slower than the other lock-based approaches. As indicated

in [25], SpinLocks are volatile, unfair, and not scalable. They showed fast execution
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Fig. 3. Shared Vector Performance Results A - Intel Core Duo

for the experiments with 8 threads or lower, however their performance significantly

deteriorated with the experiments conducted with 16 or more active threads. To find

a lower bound for our experiments we timed the tests with a non-thread safe STL-

vector with pre-allocated memory for all operations. For example, in the scenario

described in Figure 6, the lower bound is about 10% of the performance numbers of

the lock-free vector.

Under contention our nonblocking implementation consistently outperforms the

alternative lock-based approaches in all possible operation mixes by a large factor.
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Fig. 4. Shared Vector Performance Results B - Intel Core Duo

Our lock-free design has also proved to be scalable as demonstrated by the perfor-

mance analysis. Lock-free algorithms are particularly beneficial to shared data under

high contention. It is expected that in a scenario with low contention, the performance

gains will not be as considerable.

As discussed in Section C, we have incorporated two different memory man-

agement approaches with our lock-free implementation, namely Michael and Scott’s

reference counting scheme (RefCount) and Herlihy et al.’s Pass The Buck technique

(PTB). We have evaluated the vector’s performance using these two different memory
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Fig. 5. Shared Vector Performance Results C - Intel Core Duo

management schemes (Figure 7).

On systems without shared L2 cache, shared data structures suffer from perfor-

mance degradation due to cache coherency problems. To test the applicability of our

approach on such architecture we have performed the same experiments on an AMD

2.2GHz quad dual core Opteron architecture with 1 MB L2 cache and 4GB shared

RAM running the MS Windows 2003 operating system (Figure 8 and Figure 9). The

applied lock-free memory allocation scheme is not available for MS Windows. For the

sake of our performance evaluation we applied a regular lock-based memory allocator.
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Fig. 6. Shared Vector Performance Results D - Intel Core Duo

The experimental results on this architecture lack the impressive performance gains

we have observed on the dual-core L2 shared-cache system. However, the graphs

(Figure 8 and Figure 9) demonstrate that the performance of our lock-free approach

on such architectures is comparable to the performance of the best lock-based alter-

natives.

We presented the first practical and portable design and implementation of a

lock-free dynamically resizable array. We developed an efficient algorithm that sup-

ports disjoint-access parallelism and incurs minimal overhead. To provide a practi-
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Fig. 7. Shared Vector Performance Results - Alternative Memory Management

cal implementation, our approach integrates nonblocking memory management and

memory allocation schemes. We compared our implementation to the best available

concurrent lock-based vectors on a dual-core system and have observed an overall

speed-up of a factor of ten.
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CHAPTER IV

SOFTWARE TRANSACTIONAL MEMORY

A variety of recent STM approaches [45], [26] claim safe and easy to use concurrent

interfaces. The most advanced STM implementations allow the definition of efficient

”large-scale” transactions, such as dynamic and unbounded transactions. Dynamic

transactions are able to access memory locations that are not statically known. Un-

bounded transactions pose no limit on the number of locations being accessed. The

basic techniques applied are the utilization of public records of concurrent operations

and a number of conflict detection and validation algorithms that prevent side-effects

and race conditions [45]. To guarantee progress, transactions help those ahead of them

by examining the public log record. The availability of nonblocking, unbounded, and

dynamic transactions provides an alternative to CAS-based designs for the implemen-

tation of nonblocking data structures. The complex designs of such advanced STMs

often come with an associated cost:

a. Two Levels of Indirection: A large number of the nonblocking STM designs require

two or more levels of indirection in accessing data.

b. Linearizability: The linearizability requirements are hard to meet for an unbounded

and dynamic STM. To achieve efficiency and reduce the design’s complexity, all

known nonblocking STMs offer the weaker obstruction-free nonblocking guarantee

[38].

c. STM-oriented Programming Model: The use of STM requires the developer to

be aware of the STM implementation and apply an STM-oriented programming

model. The effectiveness of such programming models is a topic of current discus-

sions in the research community.
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d. Closed Memory Usage: Both nonblocking and lock-based STMs often require a

closed memory system [45].

e. Vulnerability of Large Transactions: In a nonblocking implementation large trans-

actions are a subject to interference from contending threads and are more likely

to encounter conflicts. Large blocking transactions can be subject to time-outs,

requests to abort, or introduce a bottleneck for the computation.

f. Validation: A validation scheme is an algorithm that ensures that none of the trans-

actional code produces side-effects. Code containing I/O and exceptions needs to

be reworked as well as some class methods might require special attention. Con-

sider a class hierarchy with a base class A and two derived classes B and C. Assume

B and C inherit a virtual method f and B’s implementation is side-effect free while

C’s is not. A validation scheme needs to disallow a call to C’s method f.

With respect to our design goals, the main problems associated with the application

of STM are meeting the stricter requirements posed by the lock-free progress and

safety guarantees and the overhead introduced by the application of an extra level of

indirection and the costly conflict detection and validation schemes.

A. RSTM-based Vector

The Rochester Software Transactional Memory (RSTM) [26] is a word- and indirection-

based C++ STM library that offers obstruction-free nonblocking transactions. As ex-

plained by the authors [26], while helping provide lightweight committing and abort-

ing of transactions, the extra level of indirection can cause a dramatic performance

degradation due to the more frequent capacity and coherence misses in the cache.

In this section we employ the RSTM library (version 4) to build an STM-based
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nonblocking shared vector. We chose to use RSTM because of its flexible and effi-

cient object-oriented C++ design, demonstrated high performance when compared

to alternative STM techniques, and the availability of nonblocking transactions. In

Algorithms 10, 11, 12, and 13, we present the RSTM-based implementation of the

read, write, pop back, and push back operations, respectively. According to the RSTM

API [26], access to shared data is achieved by utilizing four classes of shared point-

ers: 1) a shared object ( class sh ptr < T >) representing an object that is untouched

by a transaction, 2) a read only object ( class rd ptr < T >) referring to an object

that has been opened for reading, 3) a writable object ( class wr ptr < T >) pointing

to an object opened for writing by a transaction, and 4) a privatized object ( class

un ptr < T >) representing an object that can be accessed by one thread at a time.

These smart pointer templates can be instantiated only with data types derived from

a core RSTM object class stm::Object. Thus, we need to wrap each element stored in

the shared vector in a class STMVectorNode that derives from stm::Object. Similarly,

we define a Descriptor class STMVectorDesc (derived from stm::Object) that stores

the container-specific data such as the vector’s size and capacity. The tail operations

need to modify (within a single transaction) the last element and the Descriptor ob-

ject (of type STMVectorDesc) that is stored in a location Ldesc. The vector’s memory

array is named with the string mem. In the pseudo-code in Algorithms 12 and 13

we omit the details related to the management of mem (such as the resizing of the

shared vector should the requested size exceed the container’s capacity).

B. Analysis and Results

To evaluate the performance of the discussed synchronization techniques, in this sec-

tion we analyze the performance of three approaches for the implementation of a
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Algorithm 10 RSTM vector, operation read location p

1: BEGIN TRANSACTION

2: rd ptr< STMVectorNode > rp(mem[p])

3: result = rp->value

4: END TRANSACTION

5: return result

Algorithm 11 RSTM vector, operation write v at location p

1: BEGIN TRANSACTION

2: wr ptr< STMVectorNode > wp(mem[p])

3: wp− > val = v

4: sh ptr< STMVectorNode > nv =

new sh ptr< STMVectorNode >(wp)

5: mem[p] = nv

6: END TRANSACTION

shared vector:

(1) The RSTM-based nonblocking vector implementation.

(2) An RSTM lock-based execution of the vector’s transactions. RSTM provides an

option for running the transactional code in a lock-based mode using redo locks

[26]. Though blocking and not meeting our goals for safe and reliable synchroniza-

tion, we include the lock-based RSTM vector execution to gain additional insight

about the relative performance gains or penalties that the discussed nonblocking

approaches offer when compared to the execution of a lock-based, STM-based

container.

(3) The hand-crafted CAS-based algorithms design as presented in Section III.
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Algorithm 12 RSTM vector, operation pop back

1: BEGIN TRANSACTION

2: rd ptr< STMVectorNode > rp(mem[Ldesc− > size− 1])

3: sh ptr< STMVectorDesc > desc =

new sh ptr< STMVectorDesc >

(new STMVectorDesc(Ldesc− > size− 1))

4: result = rp->value

5: Ldesc = desc

6: END TRANSACTION

7: return result

We ran performance tests on an Intel IA-32 SMP machine with two 1.83GHz

processor cores with 512 MB shared memory and 2 MB L2 shared cache running the

MAC OS X operating system. We designed our experiments by generating a work-

load of the various operations. We varied the number of threads, starting from 1 and

exponentially increased their number to 32. Each thread executed 500,000 lock-free

operations on the shared container. We measured the execution time (in seconds)

that all threads needed to complete. Each iteration of every thread executed an oper-

ation with a certain probability ( push back (+), pop back (-), random access write (w),

random access read (r)). We show the performance graph for a distribution of +:10%,

-:10%, w:40%, r:40% on Figure 10. Figure 11 demonstrates the performance results

in a read-many-write-rarely scenario, +:10%, -:10%, w:10%, r:70%. Figure 12 illus-

trates the test results with a distribution +:25%, -:25%, w:12%, r:38%. The number of

threads is plotted along the x-axis, while the time needed to complete all operations

is shown along the y-axis. To increase the readability of the performance graphs, the

y-axis uses a logarithmic scale with a base of 10. Our test results indicate that for
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Algorithm 13 RSTM vector, operation push back v

1: BEGIN TRANSACTION

2: sh ptr< STMVectorNode > nv =

new sh ptr< STMVectorNode >(new STMVectorNode(v))

3: sh ptr< STMVectorDesc > desc =

new sh ptr< STMVectorDesc >

(new STMVectorDesc(Ldesc− > size + 1))

4: mem[size] = nv

5: Ldesc = desc

6: END TRANSACTION

the large majority of scenarios the hand-crafted CAS-based approach outperforms by

a significant factor the transactional memory approaches. Our lock-free vector from

Chapter III offers simple application and fast execution. The STM-based design offers

a flexible programming interface and easy to comprehend concurrent semantics. The

main deterrent associated with the application of STM is the overhead introduced by

the extra level of indirection and the application of costly conflict detection and val-

idation schemes. According to our performance evaluation, the nonblocking RSTM

vector demonstrates poor scalability and its performance progressively deteriorates

with the increased volume of operations and active threads in the system. In addi-

tion, RSTM transactions offer obstruction-free semantics. To eliminate the hazards

of livelocking, the software designers need to integrate a contention manager with

the use of an STM-based container. Because of the limitations present in the state

of the art STM libraries [26], [45], we suggest that a shared vector design based on

the utilization of nonblocking CAS-based algorithms can better serve the demands

for safe and reliable concurrent synchronization in mission critical code. Our per-
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Fig. 10. STM Performance Results A

formance evaluation concluded that while difficult to design, CAS-based algorithms

offer fast and scalable performance and in a large majority of scenarios outperform

the alternative nonblocking STM-based approaches by a significant factor.

C. Predictive Log Synchronization

The primary advantages of the Software Transactional Memory approach is the re-

duction of the complexity for programming and verifying concurrent code. It allows

concurrent programs to be constructed by following a sequential style of programming

without the use of locks. Shalev and Shavit [37] point out that the transactional ap-
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proach still requires the developer to be aware of many issues related to concurrency

and some specifics of the STM-oriented programming model. Thus, the programmer

faces design decision that are often similar to the ones they have to make when apply-

ing locks. For instance, one has to always balance between performance and the size

of the transactions. A proposed alternative to the Software Transactional Memory

Model is a recent lock-based speculative scheme called Predictive Log Synchroniza-

tion [37]. The authors claim that following the Predictive Log Synchronization (PLS)

paradigm, a programmer can write simply specialized sequential code that is automat-

ically converted into nonblocking concurrent code. The paper presents the approach
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as a proof-of-concept. To avoid complexity the provided operations follow the weaker

Lamport’s sequential consistency model. Implementing efficient linearizable opera-

tions based on Predictive Log Synchronization is a topic of further research. The

method is founded on the utilization of a lock-controlled publicly shared log record.

All writes are serialized and executed by a single writer thread. The nonblocking

property is maintained by applying speculative execution based on the public record

of transactions, should a thread find the log’s lock unavailable. The presented design

is suitable mostly for applications that execute read-many-write-rarely operations.

The authors argue that a large number of the widely used data structures have a nat-
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ural bottleneck that prevents high volume of parallel input. Following this argument,

the authors claim that delegating all updates to a single writer does not significantly

affect the performance. PLS operates by duplicating the shared data structure and

preventing race conditions by applying a high level lock. All concurrent threads ac-

cess a publicly shared log record to store attempted updates and read the status of

the data structure. A single thread executes all pending updates recorded in the

transaction log on one of the memory copies. This allows the other threads to si-

multaneously have access and perform parallel reads with no interrupts and waits.

The memory copies are swapped right before the lock is released. Threads that are

unable to acquire the lock run an optimistic speculation. They examine the publicly

shared log, make a prediction of the data structure’s state and carry on with their

tasks. Preliminary performance tests indicate that in some scenarios the PLS scheme

offers performance gains when compare to STM-based approaches. The algorithm’s

performance deteriorates once the concurrency in the system increases. According

to the authors [37], the PLS programming model is simpler than the STM program-

ming model. However, it requires awareness of the way the log operates and it is not

a straightforward derivation of the sequential model. In contrast to STM, in PLS

the programmer does not need to consider issues related to nesting and side-effects

(including I/O and exceptions). PLS requires that operation nesting or I/O can be

executed only when a thread holds the global lock. The lack of linearizable lock-

free operations, low parallelism, decreased performance in the scenarios with higher

contention, the unavailability of the PLS implementation, and the early stage of the

library’s design and development, diminish the appeal of PLS for its use in the design

of lock-free linearizable arrays.
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CHAPTER V

SEMANTIC ENHANCEMENT OF THE SYSTEM IMPLEMENTATION

We define product-oriented certification as the process of measuring the system’s re-

liability and efficiency based on the analysis of its design (expressed in models) and

implementation (expressed in source code). In this chapter we introduce a framework

for model-based product-oriented certification founded on the concept of source code

enhancement and analysis. As opposed to process-oriented certification (as suggested

by DO-178B [10]), the product-oriented methodology [1] relies on the application of

safety concerns directly on implementation source code and its formal models. As

suggested in [6], the rationale for source code enhancement is to seek an effective al-

ternative to domain-specific programming languages for high-performance computing

systems. A language enhancement can be achieved by extending a programming lan-

guage by a library defining domain-specific concepts and algorithms and at the same

time employing program analysis and validation tools to ensure the correctness of the

introduced domain-specific notions. Source code enhancement (such as support for

domain-specific policies and concurrency) allows a programmer to reach a high level

of expressiveness and while still using the tool-chain of a mainstream programming

language. In this chapter we suggest the concept of semantic enhancement of the

source code and the application of a number of program analysis and transformation

techniques to achieve reliability and efficiency in the system implementation. We

describe how we identify and satisfy seven critical certification artifacts in the pro-

cess of model-driven development and validation of the MDS Goal Network. In the

analysis of this process, we establish the relationship among the seven certification

artifacts, the applied development and validation techniques and tools, and the levels

of abstraction of system design and development.
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A. Principles of Model-Based Product-Oriented Certification

In this section we describe a classification of the certification artifact types, the devel-

opment and validation tools and techniques, the application domain-specific factors,

and the levels of abstraction. In our framework a certification artifact type can be

one of the following:

(1) Invariant (η): a critical property or assumption that is constant (does not change

throughout the transformations of program/system states) and must hold at all

time to ensure the validity and correct operation of a program or a system. Ex-

ample a.: the values stored in a given shared vector must be word-sized pointers.

Example b.: a graph of temporal constraints [61] must contain no cycles.

(2) Guarantee (γ): a goal or condition that needs to be satisfied. Unlike invariants,

goals can be defined differently at different moments of the lifecycle of a system.

Example: an event Ea must precede an event Eb in the autonomic operation of a

robot.

(3) Constraint (κ): a physical and resource constraint that need to be observed.

Example: the physical memory available to store a graph of autonomic goals is

7168KB.

(4) Performance artifact (ε): an artifact describing the quality of operation and de-

gree of optimization. Example: complexity and space efficiency of a particular

propagation scheme in a network of temporal constraints.

(5) Comprehension artifact (σ): an artifact measuring the human understanding of

the interactions, coupling, and behavior of a system. Example: a list of the

concurrent interleaving of all processes in a goal network leading to a state of

inconsistency.
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(6) Re-certification and maintenance artifact (µ): an artifact demonstrating the abil-

ity to re-establish the validity of the system upon its evolution and reuse. Exam-

ple: an automated program analysis tool that checks for the separation of data

and algorithms and thus can demonstrate the validity of the graph implementa-

tion upon the replacement of the constraint propagation algorithm.

1. Development

Satisfying the certification artifacts in a software system requires the application of

a combination of software development, modeling, formal verification, and analysis

techniques and tools. Expressing as well as checking the certification requirements is

enabled and directly dependent on the following software development dimensions:

(1) Model of Computation (∆MC): the computing architecture defined by the hard-

ware and the operating system. It determines the sequential or parallel memory

model as well as the available basic machine-level instructions and atomic prim-

itives. Example: an embedded multi-core platform with eight cores supporting

only single-word atomic primitives, such as the single-word Compare-And-Swap

(CAS).

(2) Programming Language (∆PL): programming constructs, libraries, and tech-

niques available. Example: the availability of a nonblocking vector (Chapter III)

that can allow safe and lock-free access to shared data (and thus eliminate the

hazards of deadlock, livelock, and priority inversion).

(3) Modeling Tools (∆MT): expressing design notions, automated code generation,

and formal verification. Example: the application of the SPIN model checker [62]

to exhaustively search the interleaving of all concurrent processes.
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(4) Analysis Techniques (∆AT): program static and dynamic analysis. Example:

the application of static analysis utilizing a high-level program representation to

guarantee high performance in parallel systems [6].

(5) Software Architecture (∆SA): defines the most significant design notions such as

system states, system goals, and modes of communication. Example: Mission

Data System defines a unified model-driven architecture for testing and devel-

opment of autonomous flight software based on the notions of system goals and

states.

2. Application Domains

The application-domain factors have a direct impact on defining the certification

requirements and the development process. We identify the following significant

application-specific properties for mission critical software:

(1) Real-time (Rt): the system must achieve a goal or provide a response in a time-

constrained manner. Example: The real-time operation of a robot demands a

system guarantee that the meteorological process must complete prior to the

initiation of communication with mission control.

(2) Safety-critical (Sc): establishes that a failure would lead to a catastrophic or

hazardous consequences to the entire system. DO-178B [10] offers a hazards

analysis process to assess the risk level upon a module or sub-system failure.

Example: if the autonomous obstacle avoidance scheme fails, the rover might

crash. Thus, the system invariants and guarantees assuring the correct operation

of the obstacle avoidance sub-system are safety-critical.
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(3) Embedded (Em): since the system is designed and optimized according to a

set of pre-defined goals, its software must often control the hardware, consider

strict resource constraints, and handle failures and events that may occur in the

physical world. Example: the embedded nature and limited memory availability

of the rover places the constraint that a goal network should not exceed a certain

concrete limit of memory space.

(4) Autonomous (Au): the system must achieve a set of goals with little or no human

interaction, meanwhile possibly responding to the conditions and events in its

environment. Example: the autonomy of the meteorological and bus management

processes requires the invariant that the system is free of the hazards of priority

inversion.

3. Levels of Abstraction

We classify the system’s safety concerns according to their rank in the abstraction

hierarchy:

(1) Physical and Hardware (Φ): related to constraints in the hardware resources,

organization, and architecture and the conditions in the physical environment.

Example: the lack of complex atomic primitives on the flight-qualified hard-

ware requires all nonblocking code to rely on the single-word Compare-And-Swap

(CAS) atomic primitive. This demands the specification of an invariant that the

system must eliminate the possibility of occurrence of the ABA problem [7].

(2) Algorithms and Procedures (Θ): invariants of a particular computational routine

or algorithm. Example: the complexity of Floyd-Warshall’s all-pairs-shortest-

path algorithm [59] is O(N3). Due to the frequent execution of the constraint

propagation scheme in a goal network, the direct application of the algorithm can
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be prohibitively expensive. To meet the performance requirements a propagation

scheme should execute with complexity of at most O(N2).

(3) Libraries (Λ): domain-specific concerns on a set of algorithms that are grouped

in a standard or custom language extension. Example: a library of CAS-based

nonblocking algorithms must guarantee its ABA-freedom.

(4) Modules and Sub-Systems (Ψ): guarantees and quality of service provided by the

individual components and sub-systems. Example: the rover’s module performing

atmospheric experiments must coordinate its execution with the bus management

and the communication systems. Such a coordination might lead to a number of

safety-critical invariants and guarantees (such as no priority inversion).

(5) System (Ω): goals critical for the successful completion of the mission. Example:

the rover’s goal is to autonomously navigate the surface of Mars, perform scientific

exploration of the planet’s atmosphere and geology, and communicate results back

to mission control. Meeting these goals impacts the guarantees defined by all of

the robot’s sub-systems.

(6) Framework (Ξ): conditions related to the principle organization and design of

the software development. Example: Mission Data System defines the notions of

states and goals. Their definition and requirements are described (independently

from the implementation of a particular mission) in a number of MDS framework

papers such as [9].

As emphasized by Stroustrup in [63], the concept of higher-level systems pro-

gramming is of significant importance to systems of high complexity and size. Higher-

level systems programming implies that while low-level efficiency is important, the

emphasis is placed towards the design, maintenance, and validation of the larger sys-
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tem. With respect to the system implementation, it is the programming language

facilities for data abstraction and representation of domain-specific concerns that di-

rectly address this issue. As defined by Stroustrup [63]:

A programming language serves two related purposes: it provides a vehicle

for the programmer to specify actions to be executed and a set of concepts

for the programmer to use when thinking about what can be done. The

first aspect ideally requires a language that is ’close to the machine’, so

that all important aspects of a machine are handled simply and efficiently

in a way that is reasonably obvious to the programmer. The C language

was primarily designed with this in mind. The second aspect ideally

requires a language that is ’close to the problem to be solved’, so that

the concept of a solution can be expressed directly and concisely. The

facilities added to C to create C++ were primarily designed with this in

mind.

The application of C++ in a framework for complex, autonomous, and embedded

flight software, such as Mission Data System, further illustrates and emphasized the

significance of the ability of C++ to excel in providing both, instructions ’close to the

machine’ and facilities that are ’close to the problem to be solved’. Language facilities

allowing the definition of high-level design concepts and domain-specific concern are

often provided by language libraries. Such libraries enhance the language semantic

model by defining notions and guarantees that belong to the problem domain.

Modeling and formal verification tools such as SPIN [62], Alloy Analyzer [64],

and Eclipse [65] are used to express and validate high-level domain-specific and design

concerns. The challenges associated with the application of modeling and formal

verification tools in the development process are:
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(1) Bridging the implementation source and the software models.

(a) From implementation to models: as an abstraction and simplification of the

software implementation, a model represents an aspect of the software solu-

tion based on a number of assumptions and rules. Defining these assumptions

as well as the verification invariants, and establishing whether the model is

trustworthy with respect to the source are some of the most challenging tasks.

(b) From models to implementation: the application of program synthesis tech-

niques such as AutoFilter [35] have been applied successfully in a number

or flight applications. However, the certification of the produced software is

challenged by the strict FAA requirement of having the program synthesis

meet the same certification requirements as the produced flight software.

(2) Limited state space and heavy computational complexity: despite the advanced

state space reduction techniques in many modern formal verification tools, the

main limitations for their applicability arise from the heavy computational com-

plexity imposed and the state space explosion problem. Program simplification

and abstract interpretation techniques are often necessary to reduce the explored

state space. Certification standards (such as those from FAA) require the develop-

ers to establish the preservation of the program’s semantics upon the application

of any program transformation and abstract interpretation techniques.

(3) Project Scheduling: the application of formal logic can often be as demanding to

the software developers as the engineering of the system implementation itself.

The semantic enhancement of the implementation can allow for the direct val-

idation of some software invariants and guarantees and thus reduce the state space

and the computational complexity required in the process of formal verification. In
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addition, the increased expressiveness and abstraction level of the implementation

source can ease the manual or automated transition to and from the software mod-

els. Stroustrup and Dos Reis [6] present the notion of Semantically Enhanced Library

Languages (SELLs). As defined by the authors, a SELL is a domain-specific language

derived from a general-purpose programming language by extending it with libraries

defining the concepts and functionalities of the problem domain and then applying an

analysis tool to guarantee the higher-level semantic invariants. The main advantages

of defining and applying a SELL are founded in the availability of the maintenance,

training, and tool-chain of the general-purpose language that serves as its base. At

the same time, a SELL’s main purpose is to deliver a special-purpose language tai-

lored to the ideals and concepts of a specific application domain. The notion of SELL

is fundamental for the application of our model-based product-oriented framework

for software certification.

The following chapters describe the details of how we extend the semantics of

ISO C++ with the libraries defining Temporal Constraint Networks and Semantically

Enhanced Containers for safe lock-free concurrent access. Furthermore, in the process

of validation and automatic parallelization of MDS Goal Networks, we demonstrate

how the applied programming and modeling techniques, formal verification, program

transformation, and static analysis relate to our classification framework.
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CHAPTER VI

SEMANTICALLY ENHANCED CONTAINERS

In this chapter we present the definition, design, and implementation of the concept

of Semantically Enhanced Containers (SECs). SECs are data structures designed to

provide the flexibility and usability of the popular ISO C++ Standard Template Li-

brary (STL) containers [63], while at the same time they are hand-crafted to guarantee

domain-specific policies, such as the validity of given user-defined semantic invariants

and conformance to a specific concurrency model. In this dissertation we require a

SEC to address the following particular design goals: a) built-in safe concurrent syn-

chronization suitable for real-time embedded applications, b) use of static analysis

for enhanced safety such as the elimination of the ABA problem, and c) syntactic

interface and semantics similar to the widely applied and supported ISO C++ STL

containers. The objective of this chapter is to introduce the notion, present an initial

implementation, and demonstrate the benefits of Semantically Enhanced Containers.

The SEC implementation presented in this chapter targets the effective elimination

of the fundamental ABA problem with the application of C++ static analysis. For a

detailed discussion and examples on ABA please see Chapter VII. The core tool for

implementing our static checks is The Pivot [6], a general high-level framework for ISO

C++ program analysis and semantic-based transformations. The application of static

analysis allows us to shift the complexity of preventing ABA from the run-time of

the system to the compile-time program analysis stage. As our performance analysis

confirms, such an approach relying on static analysis delivers significant performance

benefits when compared to the traditional run-time and garbage collection-based ABA

prevention techniques. We demonstrate the SEC proof-of-concept by providing the

design and implementation of a concurrent Semantically Enhanced STL vector. The
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SEC vector presented in this work is engineered to meet the following design goals:

(a) Allow efficient and reliable concurrent interactions: to achieve high performance

and avoid the hazards of deadlock, livelock, and priority inversion, the shared

vector’s operations are lock-free and linearizable [66]. In addition, our design is

portable: all of the vector’s algorithms are based on the word-size Compare-And-

Swap (CAS) instruction [67] available on a large number of hardware platforms.

(b) Ensure the validity of user-defined semantic invariants: we introduce Basic Query

(BQ), an expression template-based library for extracting semantic information

from C++ source code. BQ defines the programming techniques for specifying

and statically checking domain-specific properties in code. We apply BQ to avoid

the ABA problem in the usage of our concurrent vector.

The shared vector presented in Chapter III does not employ an ABA prevention

scheme beyond the application of nonblocking memory management and if not used

according to its usage rules might be vulnerable to the occurrence of ABA. Our test

results show that the SEC vector delivers significant performance gains (a factor of

three or more) in contrast to the application of nonblocking synchronization amended

with the traditional ABA avoidance scheme.

A. Using Static Analysis to Express and Validate Domain-Specific Guarantees

In this section we present Basic Query (BQ), a static analysis library for extracting

semantic information from C++ source code. BQ user-defined actions are executed

by traversing a compact high-level abstract syntax tree (AST) called Internal Pro-

gram Representation (IPR) [6]. The use of static analysis allows us to reach a far

more efficient and reliable implementation of our nonblocking containers than would

otherwise have been possible. IPR is at the center of a C++ static analysis framework
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named The Pivot [6]. We the application of BQ by defining the semantic rule Ex-

clude push back that disallows the use of a push back operation in certain hazardous

scenarios and helps us avoid the ABA problem.

The Pivot is a compiler-independent platform for static analysis and semantics-

based transformation of the complete ISO C++ programming language and some

advanced language features proposed for the next generation C++, C++0x [53]. The

Pivot represents C++ programs in two distinct formats (Figure 13):

1. Internal Program Representation (IPR): IPR is a high level, compact, fully

typed abstract syntax tree that can represent complete ISO C++ programs as

well as incomplete program fragments and individual translation units,

2. eXternal Program Representation (XPR): XPR is a persistent and human read-

able format for program representation. XPR uses a prefix notation and is quick

to parse using only a single token look-ahead and not needing a symbol table.

In addition, The Pivot provides the basic tools for IPR construction from C++,

IPR-to-XPR and XPR-to-IPR conversion, some general traversal and transforma-

tion interfaces (such as the support of the visitor traversal pattern [68]), and an

IPR-to-C++ and IPR-to-XML back-ends. The present state-of-the-art of The Pivot

development allows IPR generation from the front ends of the popular EDG and GCC

C++ compilers. Our SEC approach is supported by the availability of the high-level

and compact Pivot’s Internal Program Representation (IPR). IPR aims at delivering

a C++ program representation that is general-purpose (effective for a large num-

ber of application domains), complete (able to elegantly express all of the language’s

features), and high-level (express program notions in a compiler-independent fashion

that is close to the source code and the programmer’s semantic concepts). In IPR a

C++ program is represented as a fully-typed AST graph. Each IPR node corresponds
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IPR

Fig. 13. An XPR and IPR Representation of a C++ Template Class Definition

to a high-level C++ notion such as a template, expression, declaration, statement,

scope, name, etc. The root of the AST graph is an ipr::Unit node that contains

the program representation of a translation union (post-template-instantation). IPR

focuses on the extensive support of C++ types and views types as a main mechanism

for ensuring program safety and efficiency. The set of ipr::Type nodes includes:

a. the recursive nodes ipr::Pointer to ipr::Type, ipr::Reference to ipr::Type,

ipr::Const, ipr::Volatile, and a template of a type (ipr::Template),

b. an array representation, ipr::Array,
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c. a function, ipr::Function,

d. a class, ipr::Class,

e. a union, ipr::Union,

f. an enum, ipr::Enum,

g. a namespace, ipr::Namespace,

h. a declaration type, ipr::Decltype,

i. a type expression, ipr::Type expr,

j. a product, ipr::Product,

k. a sum, ipr::Sum.

The nodes ipr::Pointer, ipr::Reference, and ipr::Array correspond directly

to the conventional C++ language constructs pointer, reference, and array. The

pair of nodes ipr::Decltype and ipr::Type expr allow for type querying the AST

nodes. The purpose of ipr::Type expr is to convert any ipr::Expr node into a

type. The ipr:Decltype class supports interfaces that allow the extraction of the

argument used to construct an ipr::Type expr. While not directly supported in

the present ISO C++ standard, this type querying functionality is considered to be

important for the support of generic programming [53] and is going to be included

in the next C++ generation, C++0x [53]. Similarly, the nodes ipr::Product and

ipr::Sum are used to better express higher-level notions and are not directly present

in the language’s syntax. An ipr::Product node represents a list of parameters. An

ipr::Sum node is a model of a C++0x concept [69], i.e. it represents a sum of types

that posses a set of common interfaces and properties. The ipr::Template node
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is a generalization of the C++ template construct. In C++ a function or a class

template declaration allows the generic definition of an algorithm or a data type.

IPR enhances the notion of a template by assuming that any C++ declaration (e.g.

variables, namespaces) could be defined in a generic fashion. An ipr::Template node

is instantiated with an ipr::Product node containing the template’s parameter list of

types and an ipr::Expr node representing the C++ expression (classes and functions

are viewed as expression nodes in IPR) to be parameterized. For space efficiency and

scalability, IPR features node unification [6], thus nodes that represent semantically

equivalent program entities share the same address space.

Fundamental to our BQ library is the design of a fast and flexible methodology

for traversing the IPR, The Pivot’s AST. We define a depth-first search (DFS) visitor

class, called the IPR Xplorer visitor class, that performs the AST search following

the order of the ISO C++ grammar definition. The Xplorer allows the programmer

to statically define a set of actions to be executed during the DFS traversal, including

a terminating condition as well as actions upon the encounter of specific IPR nodes

(C++ expressions, declarations, and statements) and AST edges (interfaces of the

IPR nodes). In such a design the cost of a user-defined action could be less than

a single traversal of the abstract syntax tree. When an action is specified, the pro-

grammer instantiates the traversal object with two compile-time arguments, a TRP

(trigger point) identifying the exact point in the AST of calling the action’s function,

and a TN (target nodes) specifying the type of IPR nodes which are the traversal’s

target. The following examples illustrate the usage of the Xplorer visitor:

(a) xplore expr node < discover, ipr::Call >, we specify an action at the point of dis-

covery of each ipr::Call node,

(b) xplore stmt node < body, ipr::Switch >, a user-defined action is executed prior to
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exploring the edge body of an IPR node of type ipr::Switch.

In some scenarios we prefer to have linear access to the nodes of a program unit

and at the same time manipulate the AST through an intuitive and familiar user

interface. Our Xplorer visitor defines the classes: IPR Visitor and IPR Iterator. Their

design closely follows the functionality and philosophy of the visitor design pattern

[70] and the C++ STL Iterator [63] classes, providing a convenient way to search,

manipulate, or modify a set of IPR objects. The convenience of this method comes

at a certain price: the DFS traversal needs to collect and store in advance all of the

nodes from a program unit, thus the cost of the user-specified actions is at least a

single traversal of the AST.

BQ user-defined actions are constructed at compile time by using the mecha-

nism of expression templates [71] (thus the query implementation avoids the usage

of costly pointers to class member functions). Expression templates are not used in

the construction of the entire pattern tree because of the heavy syntax that such an

approach would impose. Instead, the ’glue’ among all statically computed BQ ele-

ments is encoded in the BQ operations (Table 7). The clean and flexible syntax of the

BQ user-defined actions is achieved through the exploitation of the C++ compiler’s

ability to perform complex template argument inference. A BQ action (also a BQ

pattern) consists of three components: a Recursive Query Object (RQO) containing

the root of the traversal as well as the result from an applied pattern or a sequence of

patterns, a set of BQ elements, and a set of BQ operations. At each step of the AST

traversal, the RQO decides whether the target is reachable from the current point

and carry on with the execution of the pattern or terminate the search. A BQ pattern

is expressed through a combination of a number of BQ elements and BQ operations

applied to the recursive query object. There are a number of possible applications of
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the BQ operations on the BQ elements (Table 8 and Table 9). A BQ element specifies

one or several edges in the pattern tree. A BQ element could be one of three possible

types:

1. Exe member < x, e >. Execute Member (EM) generates a straightforward edge

e from an IPR node (vertex) x. For example, if the vertex x is an IPR node of

type ipr::Type decl and the edge e is ipr::initializer, the result of the operation is

the IPR node yielded by the execution of the IPR interface x→initializer (that

is the initializer of a C++ type declaration).

2. Exe condition < x, e, c >. Execute Condition (EC) generates an edge e from an

IPR node x, only if a specified boolean condition c is met.

3. Exe iprseq < x, en >. Execute Sequence (ES) produces a sequence of edges en

resulting in a set of IPR nodes. An example of such an edge in the pattern tree

is the call to retrieve all bases of a class declaration (x→bases()).

Table 7. Basic Query Operations

Operation Operand Description

Apply < applies action specified by a BQ element

Apply & Evaluate ∧ executes a BQ element and returns

Evaluate → applies a BQ pattern and returns

We use Basic Query to enforce domain-specific semantic rules and avoid certain

hazardous concurrent interleaving of the vector’s tail operations that might lead to

the occurrence of the ABA problem. In a number of MDS concurrent applications,

there are multiple reader threads but only a single writer. Such a scenario is ABA-free
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Table 8. Application of the Basic Query Operations

Operation Operation Description

RCO < ES applies an ES

RCO < EM executes an EM, stores the result in RQO

RCO < EC executes an EC, stores the result in RQO

RCO ∧ EC executes an EC, stores the result in RQO

(Set of IPR Nodes) ∧ EC searches for a match for EC’s condition

Table 9. Result Description of the Basic Query Operations

Operation Result Description

RCO < ES sequence of IPR nodes

RCO < EM a pointer to RQO

RCO < EC a pointer to RQO

RCO ∧ EC the evaluation of EC’s condition

(Set of IPR Nodes) ∧ EC true if at least one node satisfies the predicate

since it is not possible to have an interrupting writer thread placing a hazardous old

value back to its location. In such a case, it is necessary to implement a BQ routine

applied to all reader threads that checks for the exclusion of write operations. In a

scenario of multiple writer threads, the ABA-free semantics are achieved by statically

enforcing two distinct semantic phases for all writer threads in the system: a growth

phase and an operational phase. Table 10 enumerates the possible interleaving of two

concurrent operations of the SEC vector and indicates those prone to ABA and those

that are ABA-free. The semantic ABA-free phases are:
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1. Growth phase: allows only push back and random access read by all threads.

2. Operational phase: allows all operations (pop back and the random access read

and write) except push back.

The static enforcement of the semantic phases is achieved by defining BQ rules

that exclude the usage of certain operations during a given phase (such as the ex-

clusion of push back in the operational phase). In Algorithms 14 and 15 we show

the pseudo-code and the actual source code of the semantic rule Exclude push back

defined using the BQ elements and BQ operations. We use the Xplorer visitor to

collect all IPR Expression nodes. Afterwards, we apply the IPR Iterator to search the

collection of IPR Expressions for Function call nodes (expressed by the EM1 element in

Algorithm 14) and then test whether a function call’s name is ”push back” (expressed

by the EC1 element in Algorithm 14).

Algorithm 16 illustrates the source code of a test routine executing 32 threads,

each invoking 500,000 operations on the shared vector. To test the application of the

static rule shown in Algorithm 15, we have applied BQ and our Exclude push back

operation in order to raise a warning and eliminate the invocation of push back at

line 19, Algorithm 16, thus eliminate the hazards of ABA occurrence in the vector’s

operational phase.

Algorithm 14 Exclude push back: Find an Illegal push back

1: RCO: ipr::Expr

2: EM1: ipr::Function call → name

3: EC1: ipr::String → name cmp

4: Exclude push back: RCO < EM1 < EC1 → bool
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Table 10. ABA-free and ABA-prone Interleaving of Two Concurrent Operations

operation push pop read write

push ABA free ABA ABA free ABA

pop ABA ABA free ABA free ABA free

read ABA free ABA free ABA free ABA free

write ABA ABA free ABA free ABA

Algorithm 15 Exclude push back: Find an Illegal push back, source code

1: Input: an IPR Expression node e

2: Recursive query RCO(e);

3: Exe member<ipr::Function call, name> Get name;

4: Exe condition <ipr::String, name, const ipr::Name&, std::string>

Is Name(&name cmp, parent name);

5: return RCO < Get Name < Is Name;

B. SEC Performance Analysis

To gain insight of the possible performance gains of the SEC approach we ran perfor-

mance tests on an Intel IA-32 SMP machine with two 1.83GHz processor cores with

512 MB shared memory and 2 MB L2 shared cache running the MAC OS X operating

system. In our performance analysis we compare:

(a) The SEC vector approach (with the enforcement of semantic phases and inte-

grated lock-free memory management and allocation).

(b) The application of the nonblocking operations of the dynamically resizable array

from Chapter III. To prevent ABA we employed the traditional ABA avoidance

technique used in CAS-based designs, namely introducing an extra level of in-
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direction (to guarantee the uniqueness of each new element) and protecting the

deallocated memory (from being re-allocated and causing ABA) by a lock-free

memory management scheme. In our performance tests we used Herlihy et al.’s

Pass The Buck (PTB) algorithm [55].

Similarly to the evaluation of other lock-free concurrent containers [43], we have

designed our experiments by generating a workload of various operations (push back,

pop back, random access write, and read). We followed the semantic rules of the

operational and growth phase when executing the operations. We varied the number

of threads, starting from 1 and exponentially increased their number to 64. Each

thread executed 500,000 lock-free operations on the shared container. We measured

the execution time (in seconds) that all threads needed to complete. Each iteration

of every thread executed an operation with a certain probability; push back (+),

pop back (-), random access write (w), random access read (r). We use per-thread

linear congruential random number generators where the seeds preserve the exact

sequence of operations within a thread across all containers. We executed a number

of tests with a variety of distributions and found that the differences in the containers’

performances are generally preserved. We illustrate the performance of the concurrent

vectors with a distribution of +:16%, -:16%, w:18%, r:50% on Figure 14B. Figure 14A

demonstrates the performance results with a distribution containing predominantly

writes, +:25%, -:25%, w:12%, r:38%. The number of threads is plotted along the

x-axis, while the time needed to complete all operations is shown along the y-axis.

According to the performance results, the SEC approach delivers consistent per-

formance gains in all possible operation mixes by a large factor. The SEC vector

has also proved to be scalable as demonstrated by the performance analysis. These

observations come as a confirmation to our expectations that introducing an extra

level of indirection and the necessity to memory manage each individual element with

PTB (or an alternative memory management scheme) to avoid ABA comes with a

pricy performance overhead. The SEC approach offers an alternative by introducing

the notion of semantic phases in order to reduce the performance overhead of the

ABA avoidance mechanism.
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This chapter introduced the concept and initial implementation of the notion

of Semantically Enhanced Containers (SECs). We demonstrated the SEC proof-of-

concept by presenting the design and implementation of a concurrent nonblocking

SEC vector. The main design goals are to achieve efficient and reliable concurrent

synchronization and allow the specification and validation of user-defined semantic

guarantees. In the presented design, the SEC vector’s operations are safe (no hazards

of deadlock, livelock, priority inversion), lock-free, linearizable, fast, highly parallel,

and at the same time providing the semantics of the popular STL C++ vector, with

complexity of O(1). To deliver a mechanism for the specification and checking of user-

defined semantic invariants, we introduced Basic Query, an expression template-based

library for extracting semantic information from C++ source code. We applied Basic

Query to help us avoid a fundamental problem in all CAS-based systems, namely

the occurrence of the ABA problem. Providing domain-specific guarantees together

with a scheme for reliable concurrent synchronization is of critical importance for

the design and development of the modern complex and highly autonomous space

systems. The integration of the SEC vector’s lock-free algorithms can help achieve

better performance, scalability, and higher safety in a number of pivotal Mission

Data System applications. Our preliminary tests indicate that our SEC approach

provides significant performance gains in contrast to the application of nonblocking

synchronization amended with the traditional ABA avoidance scheme.
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Algorithm 16 Using BQ to eliminate ABA hazards, source code

1: static int no threads = 32;
2: static long no ops = 500000;
3: static int no reads = 307; {25%}
4: static int no writes = 512; {25%}
5: static int no push = 819; {37.5%}
6: static int no pop = 1024; {12.5%}
7: boost::rand48 nard;
8: size t vecsize = 0;
9: for (int i = 0; i < no ops; ++i) do
10: int op = (nard() % 1024);
11: value type elem = NULL;
12: char opdesc;
13: if (!vecsize) then
14: op = no writes;
15: if (op >= no writes) then
16: if (op < no push) then
17: opdesc = ’+’;
18: elem = new int(i);
19: vecsize = vec− >push back(elem);
20: else
21: opdesc = ’-’;
22: elem = vec− >pop back();
23: else
24: size t pos = nard() % (vecsize − (vecsize / 16));
25: if (op > no reads) then
26: opdesc = ’w’;
27: elem = new int(i);
28: vec− >write i(pos, elem);
29: else
30: opdesc = ’r’;
31: elem = vec− >read i(pos);
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CHAPTER VII

NONBLOCKING ABA-FREE SYNCHRONIZATION

Lock-free and wait-free algorithms exploit a set of portable atomic primitives such as

the word-size Compare-and-Swap (CAS) instruction [67]. The design of nonblocking

data structures poses significant challenges and their development and optimization is

a current topic of research [24], [8]. The Compare-And-Swap (CAS) atomic primitive

(commonly known as Compare and Exchange, CMPXCHG, on the Intel x86 and Itanium

architectures [27]) is a CPU instruction that allows a processor to atomically test and

modify a single-word memory location. CAS requires three arguments: a memory

location (Li), an old value (Ai), and a new value (Bi). The instruction atomically

exchanges the value stored at Li with Bi, provided that Li’s current value equals

Ai. The result indicates whether the exchange was performed. For the majority

of implementations the return value is the value last read from Li (that is Bi if

the exchange succeeded). Some CAS variants, often called Compare-And-Set, have

a return value of type boolean. The application of a CAS-controlled speculative

manipulation of a shared location (Li) is a fundamental programming technique in the

engineering of nonblocking algorithms [8], [24] (an example is shown in Algorithm 17).

Algorithm 17 CAS-controlled speculative manipulation of Li

1: repeat

2: value type Ai=^Li

3: value type Bi = fComputeB

4: until CAS(Li, Ai, Bi) == Bi

When the value stored at Li is the target value of a CAS-based speculative

manipulation, we call Li and ^Li control location and control value, respectively. We



85

indicate the control value’s type with the string value type. The size of value type must

be equal or less than the maximum number of bits that a hardware CAS instruction

can exchange atomically (typically the size of a single memory word). In the most

common cases, value type is either an integer or a pointer value. In the latter case,

the implementor might reserve two extra bits per each control value and use them

for implementation-specific value marking [24]. This is possible if we assume that the

pointer values stored at Li are aligned and the two low-order bits have been cleared

during the initialization. In Algorithm 17, the function fComputeB yields the new

value, Bi, to be stored at Li. We assume that Bi is not dependent on the control

value (Ai) and is usually derived from the function’s parameter list. A routine where

Bi’s value is dependent on Ai would be a read-modify routine in contrast to the modify

routine shown in Algorithm 17.

Definition 1: The ABA problem is a false positive execution of a CAS-based

speculation on a shared location Li.

As illustrated in Table 11, ABA can occur if a process P1 is interrupted at any

time after it has read the old value (Ai) and before it attempts to execute the CAS

instruction from Algorithm 17. An interrupting process (Pk) might change the value

at Li to Bi. Afterwards, either Pk or any other process Pj 6= P1 can eventually store

Ai back to Li. When P1 resumes, its CAS loop succeeds (false positive execution)

despite the fact that Li’s value has been meanwhile manipulated.

Table 11. ABA at Li
Step Action

Step 1 P1 reads Ai from Li
Step 2 Pk interrupts P1; Pk stores the value Bi into Li
Step 3 Pj stores the value Ai into Li
Step 4 P1 resumes; P1 executes a false positive CAS
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Definition 2: A nonblocking algorithm is ABA-free if its semantics cannot be

corrupted by the occurrence of ABA.

ABA-freedom is achieved when: a. occurrence of ABA is harmless to the al-

gorithm’s semantics or b. ABA is avoided. The former scenario is uncommon and

strictly specific to the algorithm’s semantics. The latter scenario is the general case

and in this work we focus on providing details of how to eliminate ABA.

A. Known ABA Detection and Avoidance Techniques, Part I

A general strategy for ABA avoidance is based on the fundamental guarantee that no

process Pj (Pj 6= P1) can possibly store Ai again at location Li (Step 3, Table 11). One

way to satisfy such a guarantee is to require all values stored in a given control location

to be unique. To enforce this uniqueness invariant we can place a constraint on the

user and request each value stored at Li to be used only once (Known Solution 1 ).

Enforcing this constraint can be facilitated if a programming language’s type system

supports uniqueness typing [72] that forbids the use of more than a single reference

to an object. We are not familiar with any programming language or library that

implements uniqueness typing in a concurrent environment. To achieve this goal, it

would be necessary to design and apply a complex tool-chain of static and dynamic

program analysis. For a large majority of concurrent algorithms, enforcing uniqueness

typing would not be a suitable solution since their applications imply the usage of a

value or reference more than once.

An alternative approach to satisfying the uniqueness invariant is to apply a ver-

sion tag attached to each value. The usage of version tags is the most commonly

cited solution for ABA avoidance [67]. The approach is effective, when it is possible

to apply, but suffers from a significant flaw: a portable single-word CAS instruction
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is insufficient for the atomic update of a word-sized control value and a word-sized

version tag. An effective application of a version tag [73] requires the hardware archi-

tecture to support a more complex atomic primitive that allows the atomic update

of two memory location, such as CAS2 (compare-and-swap two co-located words) or

DCAS (compare-and-swap two memory locations). The availability of such atomic

primitives might lead to much simpler, elegant, and efficient concurrent designs (in

contrast to a CAS-based design). It is not desirable to suggest a CAS2/DCAS-

based ABA solution for a CAS-based algorithm, unless the implementor explores the

optimization possibilities of the algorithm upon the availability of CAS2/DCAS. A

proposed hardware implementation (entirely built into a present cache coherency pro-

tocol) of an Alert-On-Update (AOU) instruction [74] has been suggested by Spear et

al. to eliminate the CAS deficiency of allowing ABA. The main drawbacks for using

version tags is the fact that a large number of the current hardware architectures, such

as the majority of real-time embedded systems [11], do not support complex atomic

primitives such as CAS2, DCAS, LL/SC, and AOU. A synchronization scheme on

such machines can rely only on the portable single-word CAS instruction.

In [75] Reinholtz offers a technique for applying version tags using a 32-bits single-

word memory swap (Known Solution 2 ). Similarly to the AtomicStampedReference in

the Java Concurrency Library, Reinholtz’s Reference Counting Pointers (RCP) split

a version counter into two half-words: a half-word used to store the control value (an

integer version counter in RCP’s case) and a half-word used as a version tag. The

limitations of this approach are: a. there is a limit of maximum 216 − 1 writes for

each control location, and b. the range of values that can be represented in a control

value is significantly decreased (by a factor of 216). To guarantee the uniqueness

invariant of a control value of type pointer in a concurrent system with dynamic

memory usage, we face an extra challenge: even if we write a pointer value no more
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than once in a given control location, the memory allocator might reuse the address

of an already freed object (Ai) and pose an ABA hazard. To prevent this scenario, all

control values of pointer type must be guarded by a concurrent nonblocking garbage

collection scheme such as Hazard Pointers [52] (that uses a list of hazard pointers per

thread) or Herlihy et al.’s Pass The Buck algorithm [55] (that utilizes a dedicated

thread to periodically reclaim unguarded objects). While enhancing the safety of

a concurrent algorithm (when needed), the application of a complementary garbage

collection mechanism might come at a significant performance cost (see Section H for

details).

B. The Descriptor Object

Linearizability [8] is a correctness condition for concurrent objects: a concurrent

operation is linearizable if it appears to execute instantaneously in a given point of

time τlin between the time τinv of its invocation and the time τend of its completion.

The literature often refers to τlin as a linearization point. The implementations of

many nonblocking data structures require the update of two or more memory locations

in a linearizable fashion [7], [24]. The engineering of such operations (e.g. push back

and resize in a dynamically resizable array) is critical and particularly challenging in

a CAS-based design. A common programming technique applied to guarantee the

linearizability requirements for such operations is the use of a Descriptor Object (δ

object) [7], [24]. The pseudocode in Algorithm 18 shows the two-step execution of a

Descriptor object. In our nonblocking design, a Descriptor object stores three types of

information:

(a) Global data describing the state of the shared container (υδ), e.g. the size of a

dynamically resizable array [7].
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(b) A record of a pending operation on a given memory location. We call such a

record requesting an update at a shared location Li from an old value, old val, to

a new value, new val, a Write Descriptor (ωδ). The shortcut notation we use is

ωδ @ Li : old val → new val. The fields in the Write Descriptor object store the

target location as well as the old and the new values.

(c) A boolean value indicating whether ωδ contains a pending write operation that

needs to be completed.

The use of a descriptor allows an interrupting thread help the interrupted thread

complete an operation rather than wait for its completion. As shown in Algorithm 18,

the technique is used to implement, using only two CAS instructions, a linearizable

update of two memory locations: 1. a reference to a Descriptor object (data type

pointer to δ stored in a location Lδ) and 2. an element of type value type stored in Li.

In Step 1, Algorithm 18, we perform a CAS-based speculation of a shared location Lδ

that contains a reference to a Descriptor object. The CAS-based speculation routine’s

purpose is to replace an existing Descriptor object with a new one. Step 1 executes

in the following fashion:

1. We read the value of the current δ reference stored in Lδ (line 3).

2. If the current δ object contains a pending operation, we need to help its completion

(lines 4-5).

3. We record the current value, Ai, in location Li (line 6) and compute the new value,

Bi, to be stored in Li (line 7).

4. A new ωδ object is allocated on the heap, initialized (by calling fωδ), and its fields

Target, OldValue, and NewValue are set (lines 8-11).
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5. Any other data stored in a Descriptor object must be computed (by calling fυδ).

Such data might be a shared element or a container’s size (line 12).

6. A new Descriptor object is initialized containing the new Write Descriptor ob-

ject and the new descriptor’s data. The new descriptor’s pending operation flag

(WDpending) is set to true (lines 13-14).

7. We attempt a swap of the old Descriptor object with the new one (line 15). Should

the CAS fail, we know that there is another process that has interrupted us and

meanwhile succeeded to modify Lδ and progress. We need to go back at the

beginning of the loop and repeat all the steps. Should the CAS succeed, we

proceed with Step 2 and perform the update at Li.

The size of a Descriptor object is larger than a memory word. Thus, we need

to store and manipulate a Descriptor object through a reference. Since the control

value of Step 1 stores a pointer to a Descriptor object, to prevent ABA, all references

to descriptors must be memory managed by a safe nonblocking garbage collection

scheme. We use the prefix µ for all variables that require safe memory management.

In Step 2 we execute the Write Descriptor, WD, in order to update the value at Li.

Any interrupting thread (after the completion of Step 1) detects the pending flag of

ωδ and, should the flag’s value be still positive, it proceeds to executing the requested

update ωδ @ Li : Ai → Bi. There is no need to execute a CAS-based loop and the

call to a single CAS is sufficient for the completion of ωδ. Should the CAS from Step

2 succeed, we have completed the two-step execution of the Descriptor object. Should

it fail, we know that there is an interrupting thread that has completed it already.

A false positive execution of the CAS operation from Step 2 can lead to a spurious

write of Bi into Li, violate the operation’s linearizability guarantee, and corrupt the
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semantics of a nonblocking algorithm. In the following sections (Sections C, F, G)

we discuss a number of possible techniques that help us avoid ABA in this scenario.

Algorithm 18 Two-step execution of a δ object

1: Step 1: place a new descriptor in Lδ
2: repeat
3: δ µOldDesc = ^Lδ
4: if µOldDesc.WDpending == true then
5: execute µOldDesc.WD
6: value type Ai = ^Li
7: value type Bi = fComputeB
8: ωδ WD = fωδ()
9: WD.Target = Li
10: WD.OldElement = Ai
11: WD.NewElement = Bi
12: υδ DescData = fυδ()
13: δ µNewDesc = fδ(DescData, WD)
14: µNewDesc.WDpending = true
15: until CAS(Lδ, µOldDesc, µNewDesc) == µNewDesc
16:
17: Step 2: execute the write descriptor
18: if µNewDesc.WDpending then
19: CAS(WD.Target, WD.OldElement, WD.NewElement) == WD.NewElement
20: µNewDesc.WDPending = false

C. Known ABA Detection and Avoidance Techniques, Part II

A known approach for avoiding a false positive execution of the Write Descriptor from

Algorithm 18 is the application of value semantics for all values of type value type

(Known Solution 3 ). As discussed in [50] and [7], an ABA avoidance scheme based

on value semantics relies on:

a. Extra level of indirection: all values are stored in shared memory indirectly through

pointers. Each write of a given value vi to a shared location Li needs to allocate

on the heap a new reference to vi (ηvi), store ηvi into Li, and finally safely delete

the pointer value removed from Li. If the value type of vi is pointer then ηvi ’s type
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is pointer to pointer .

b. Nonblocking garbage collection (GC): all references stored in shared memory (such

as ηvi) need to be safely managed by a nonblocking garbage collection scheme (e.g.

Hazard Pointers, Pass The Buck).

As reflected in our performance test results (Section H), the usage of both an extra

level of indirection as well as the heavy reliance on a nonblocking GC scheme for

managing the Descriptor objects and the references to value type objects is very ex-

pensive with respect to the space and time complexity of a nonblocking algorithm.

However, the use of value semantics is the only known approach for ABA avoidance

in the execution of a Write Descriptor object. In Section F we present a 3-step ex-

ecution approach that helps us eliminate ABA, avoid the need for an extra level of

indirection, and reduce the usage of the computationally expensive GC scheme.

D. Criteria

To provide a practical and generic solution to the ABA problem without incurring a

prohibitive cost to the lock-free application, our search for a solution has been guided

by the following design criteria:

(a) Complexity and Semantics Preservation: an ABA avoidance scheme should not

incur extra algorithmic complexity and should preserve the application’s non-

blocking guarantees and correctness conditions. For example, a shared vector’s

tail operations have a complexity of O(1) that must be preserved.

(b) Dynamic and Open Memory Usage: ability to support dynamic and open memory

[45] usage at a minimal cost.
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(c) Fast Performance: an ABA prevention scheme should make minimal usage of

expensive garbage collection and should not prevent disjoint-access parallelism.

Some lock-free container’s implementations provide a combination of lock-free (δ-

modifying) and wait-free (non-δ-modifying) operations [7]. Wait-free operations

are fast and progress regardless the contention on the shared memory. Preserving

the wait-free semantics of such operations might be critical to the container’s

performance. While sometimes necessary to use, the application of GC schemes

must be limited to an absolute minimum.

(d) Portability: we assume the availability of single-word atomic read, write, and CAS

instructions. We consider solutions based on multi-word CAS, Alert-On-Update

[74], or LL/SC to be platform-specific.

(e) Unlimited Data Usage: we prefer to avoid placing constraints on the usage of

the data values. We assume that the data values stored in a shared container

need not be unique, there is no restriction on the range of values (imposed by the

ABA prevention algorithm), data elements can be written and read an arbitrary

number of times to/from any location, and there is no restriction on the number

of writer threads.

(f) No Extra Levels of Indirection: a famous quote by David Wheeler states: ”Any

problem in computer science can be solved with another layer of indirection, but

that usually will create another problem” [4]. As illustrated in Section H, the

application of an extra level of indirection suffers performance penalties, leads to

heavy usage of the costly GC scheme, increases the complexity of the nonblock-

ing algorithm, and is difficult to integrate in an already existing nonblocking

implementation.
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E. Nonblocking Concurrent Semantics

The use of a Descriptor object provides the programming technique for the imple-

mentation of some of the complex nonblocking operations in a shared container, such

as the push back, pop back, and reserve operations in a shared vector [7]. The use

and execution of a Write Descriptor guarantees the linearizable update of two or more

memory locations.

Definition 3: An operation whose success depends on the creation and execution

of a Write Descriptor is called an ωδ-executing operation.

The operation push back of a shared vector (Chapter III, [7]) is an example of an

ωδ-executing operation. Such ωδ-executing operations have lock-free semantics and

the progress of an individual operation is subject to the contention on the shared

location Li (under heavy contention, the body of the CAS-based loop from Step 1,

Algorithm 18 might need to be re-executed). For a shared vector, operations such

as pop back do not need to execute a Write Descriptor object [7]. Their progress is

dependent on the state of the global data stored in the Descriptor object, such as the

size of a container.

Definition 4: An operation whose success depends on the state of the υδ data

stored in the Descriptor object is a δ-modifying operation.

A δ-modifying operation, such as pop back, needs only update the shared global

data (the size of type υδ) in the Descriptor object (thus pop back seeks an atomic

update of only one memory location: Lδ). Since an ωδ-executing operation by defini-

tion always performs an exchange of the entire Descriptor object, every ωδ-executing

operation is also δ-modifying. The semantics of a δ-modifying operation are lock-free

and the progress of an individual operation is determined by the interrupts by other

δ-modifying operations. An ωδ-executing operation is also δ-modifying but as is the
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case with pop back, not all δ-modifying operations are ωδ-executing. Certain opera-

tions, such as the random access read and write in a vector, do not need to access the

Descriptor object and progress regardless of the state of the descriptor (Chapter III).

Such operations are non-δ-modifying and have wait-free semantics (thus no delay if

there is contention at Lδ).

Definition 5: An operation whose success does not depend on the state of the

Descriptor object is a non-δ-modifying operation.

1. Concurrent Operations

When two δ-modifying operations (Oδ1 and Oδ2) are concurrent, according to Algo-

rithm 18, Oδ1 precedes Oδ2 in the linearization history if and only if Oδ1 completes

Step 1, Algorithm 18 prior to Oδ2 .

Definition 6: We refer to the instant of successful execution of the global de-

scriptor exchange at Lδ (line 15, Algorithm 18) as τδ.

Definition 7: A point in the execution of a δ object that determines the order

of an ωδ-executing operation acting on location Li relative to other writer operations

acting on the same location Li, is referred to as the λδ-point (τλδ) of a Write Descriptor.

The order of execution of the λδ-points of two concurrent ωδ-executing operations

determines their order in the linearization history. The λδ-point does not necessar-

ily need to coincide with the operation’s linearization point, τlin. As illustrated in

Chapter III, τlin can vary depending on the operations’ concurrent interleaving. The

linearization point of a shared vector’s ωδ-modifying operation can be any of the

three possible points: a. some point after τδ at which some operation reads data form

the Descriptor object, b. τδ or c. the point of execution of the Write Descriptor, τwd

(the completion of Step 2, Algorithm 18). The core rule for a linearizable operation

is that it must appear to execute in a single instant of time with respect to other



96

concurrent operations. The linearization point need not correspond to a single fixed

instruction in the body of the operation’s implementation and can vary depending on

the interrupts the operation experiences. In contrast, the λδ-point of an ωδ object

corresponds to a single instruction in the objects’s implementation. In the pseudo

code in Algorithm 18 τλδ ≡ τδ.

Table 12. ABA Occurrence in the Execution of a Descriptor Object
Step Action

Step 1 Oδ1 : τreadδ
Step 2 Oδ1 : τaccessi
Step 3 Oδ1 : τδ
Step 4 Oδ2 : τreadδ
Step 5 Oδ1 : τwd
Step 6 Oi: τwritei
Step 7 Oδ2 : τwd

Let us designate the point of time when a certain δ-modifying operation reads

the state of the Descriptor object by τreadδ , and the instants when a thread reads a

value from and writes a value into a location Li by τaccessi and τwritei , respectively.

Table 12 demonstrates the occurrence of ABA in the execution of a δ object with two

concurrent δ-modifying operations (Oδ1 and Oδ2) and a concurrent write, Oi, to Li.

We assume that the δ object’s implementation follows Algorithm 18. The execution

of Oδ1 , Oδ2 , and Oi proceeds in the following manner:

(1) Oδ1 reads the state of the current δ object as well as the current value at Li, Ai

(Steps 1-2, Table 12). Next, Oδ1 proceeds with instantiating a new δ object and

replaces the old descriptor with the new one (Step 3, Table 12).

(2) Oδ1 is interrupted by Oδ2 . Oδ2 reads Lδ and finds the WDpending flag’s value to

be true (Step 4, Table 12).
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(3) Oδ1 resumes and completes the execution of its δ object by storing Bi into Li

(Step 5, Table 12).

(4) An interrupting operation, Oi, writes the value Ai into Li (Step 6, Table 12).

(5) Oδ2 resumes and executes ωδ it has previously read, the ωδ’s CAS falsely succeeds

(Step 6, Step 12).

The placement of the λδ-point plays a critical role for achieving ABA safety in the

implementation of an ωδ-executing operation. The λδ-point in Table 12 guarantees

that the ωδ-executing operation Oδ1 completes before Oδ2 . However, at time τwd

when Oδ2 executes the Write Descriptor, Oδ2 has no way of knowing whether Oδ1 has

completed its update at Li or not. Since Oδ1 ’s λδ-point ≡ τδ, the only way to know

about the status of Oδ1 is to read Lδ. Using a single-word CAS operation prevents

Oδ2 from atomically checking the status of Lδ and executing the update at Li.

Definition 8: A concurrent execution of one or more non-ωδ-executing δ-

modifying operations with one ωδ-executing operation, Oδ1, performing an update at

location Li is ABA-free if Oδ1’s λδ-point ≡ τaccessi. We refer to an ωδ-executing

operation where its λδ-point ≡ τaccessi as a λδ-modifying operation.

Assume that in Table 12 the Oδ1 ’s λδ-point ≡ τaccessi . As shown in Table 12, the

ABA problem in this scenario occurs when there is a hazard of a spurious execution

of Oδ1 ’s Write Descriptor. Having a λδ-modifying implementation of Oδ1 allows any

non-ωδ-executing δ-modifying operation such as Oδ2 to check Oδ1 ’s progress while

attempting the atomic update at Li requested by Oδ1 ’s Write Descriptor. Our 3-

step descriptor execution approach, described in Section F, offers a solution based

on Definition 8. In an implementation with two or more concurrent ωδ-executing

operations, each ωδ-executing operation must be λδ-modifying in order to eliminate

the hazard of a spurious execution of an ωδ that has been picked up by a collaborating
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operation. To effectively avoid the ABA hazard at Li during a descriptor-based

linearizable update of Lδ and Li (see Algorithm 18), we generalize two fundamental

strategies:

(a) Guarantee that a Write Descriptor created by Oδ1 , or any other ωδ-executing

operation, succeeds at most once. We refer to such a δ object as a once-execute-

descriptor. Definition 8 offers the condition leading to a solution of this type.

In our example in Table 12, a once-execute-descriptor strategy would cause the

attempt to re-execute the Write Descriptor by Oδ1 (Step 7, Table 12) or by any

other operation to fail. Our 3-step δ execution approach presented in Section F

is one possible way of implementing a once-execute-descriptor.

(b) Guarantee that no concurrent interleaving of operations can lead to a write of a

value posing ABA hazard (such as Bi in Table 12) at Li. Relying on a method-

ology that employs unique values, such as Known Solution 1, is an approach of

this type. Requiring uniqueness typing for ABA prevention is an overkill. The

guarantee we need is that no thread can restore an old value Ai in a shared lo-

cation Li while there is an alive ωδ object in the system requesting ωδ @ Li : Ai

→ any valuei. Modern mainstream programming languages do not yet explicitly

support concurrency and lack the tools to express and enforce such a concurrent

and dynamic correctness condition.

F. Implementing a λδ-modifying Operation

In Algorithm 19 we suggest a design strategy for the implementation of a λδ-modifying

operation. Our approach is based on a 3-step execution of the δ object. While

similar to Algorithm 18, the approach shown in Algorithm 19 differs by executing a

fundamental additional step: in Step 1 we store a pointer to the new descriptor in
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Li prior to the attempt to store it in Lδ in Step 2. Since all δ objects are memory

managed, we are guaranteed that no other thread would attempt a write of the

value µNewDesc in Li or any other shared memory location. The operation is λδ-

modifying because, after the new descriptor is placed in Li, any interrupting writer

thread accessing Li is required to complete the remaining two steps in the execution

of the Write Descriptor. However, should the CAS execution in Step 2 (line 28) fail,

we have to unroll the changes at Li performed in Step 1 by restoring Li’s old value

preserved in WD.OldElement (line 20) and retry the execution of the routine (line 21).

To implement Algorithm 19, we have to be able to distinguish between objects of

type value type and δ. A possible solution is to require that all value type variables

are pointers and all pointer values stored in Li are aligned with the two low-order bits

cleared during their initialization. That way, we can use the two low-order bits for

designating the type of the pointer values. Subsequently, every read must check the

type of the pointer obtained from a shared memory location prior to manipulating

it. Once an operation succeeds at completing Step 1, Algorithm 19, location Li

contains a pointer to a δ object that includes both: Li’s previous value of type

value type and a Write Descriptor WD that provides a record for the steps necessary

for the operation’s completion. Any non-δ-modifying operation, such as a random

access read in a shared vector, can obtain the value of Li (of type value type) by

accessing WD.OldElement (thus going through a temporary indirection) and ignore the

Descriptor object temporarily stored at Li. Upon the success of Step 3, Algorithm 19,

the temporary level of indirection is eliminated. Such an approach would preserve

the wait-free execution of a non-δ-modifying operation. The ωδ data type needs to

be amended to include a field TempElement (line 9, Algorithm 19) that records the

value of the temporary δ pointer stored in Li. The cost of the λδ operation is 3 CAS

executions to achieve the linearizable update of two shared memory locations (Li and
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Lδ).

Algorithm 19 Implementing a λδ-modifying operation through a three-step execu-

tion of a δ object

1: Step 1: place a new descriptor in Li
2: value type Bi = fComputeB
3: value type Ai
4: ωδ WD = fωδ()
5: WD.Target = Li
6: WD.NewElement = Bi
7: υδ DescData = fυδ()
8: δ µNewDesc = fδ(DescData, WD)
9: WD.TempElement = &NewDesc
10: µNewDesc.WDpending = true
11: repeat
12: Ai = ^Li
13: WD.OldElement = Ai
14: until CAS(Li, Ai, µNewDesc) == µNewDesc
15:
16: Step 2: place the new descriptor in Lδ
17: bool unroll = false
18: repeat
19: if unroll then
20: CAS(WD.Target, µNewDesc, WD.OldElement)
21: goto 3
22: δ µOldDesc = ^Lδ
23: if µOldDesc.WDpending == true then
24: execute µOldDesc.WD
25: unroll = true
26: until CAS(Lδ, µOldDesc, µNewDesc) == µNewDesc
27:
28: Step 3: execute the Write Descriptor
29: if µNewDesc.WDpending then
30: CAS(WD.Target, WD.TempElement, WD.NewElement) == WD.NewElement
31: µNewDesc.WDPending = false

G. Alternative Solutions

We briefly mention two alternative approaches for ABA avoidance. While failing

our solution criteria from Section D by imposing undesirable constraints or inflating
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the performance overhead in the general case, we believe these alternative techniques

might prove helpful in certain application-specific scenarios where the imposed con-

straints are acceptable.

1. Enforcement of Usage Phases

In Chapter VI we suggested the effective elimination of ABA by restricting the use of

a lock-free vector to two usage phases: a growth phase and an operational phase. A

growth phase allows only push back and random access read by all threads. An oper-

ational phase allows all operations (pop back and the random access read and write)

except push back. This separation of reads and writes avoids the ABA hazardous

interleaving of the vector’s tail operations. The approach restricts the application of

the vector. However, where applicable, it eliminates the ABA problem at a very low

cost.

2. Serialize Contending Operations

Similar to the Predictive Log Synchronization approach suggested by Shalev and

Shavit in [37], it is possible to serialize all contending writes and delegate them to

a single dedicated writer thread. As mentioned in [37], such a design is very costly

in the general case and is mostly suitable for applications that execute read-many-

write-rarely operations.

H. Performance Evaluation

To evaluate the performance of the ABA-free programming techniques discussed in

this work, we incorporated the presented ABA elimination approaches in the im-

plementation of the nonblocking dynamically resizable array as presented in Chap-
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ter VI. Our test results indicate that the λδ approach offers ABA prevention with

performance comparable to the use of the platform-specific CAS2 instruction to im-

plement version counting. This finding is of particular value to the engineering of

some embedded real-time systems where the hardware does not support complex

atomic primitives such as CAS2 [2]. We ran performance tests on an Intel IA-32

SMP machine with two 1.83GHz processor cores with 512 MB shared memory and 2

MB L2 shared cache running the MAC OS X operating system. In our performance

analysis we compare:

(1) λδ approach: the implementation of a vector with a λδ-modifying push back and a

δ-modifying pop back. Table 13 shows that in this scenario the cost of push back

is three single-word CAS operations and pop back’s cost is one single-word CAS

instruction.

(2) All-GC approach: the application of Known Solution 3 (Section C), namely the

use of an extra level of indirection and memory management for each element.

Because of its performance and availability, we have chosen to implement and

apply Herlihy et al.’s Pass The Buck algorithm [55]. In addition, we use Pass

The Buck to protect the Descriptor objects for all of the tested approaches.

(3) CAS2-based approach: the application of CAS2 for maintaining a reference counter

for each element. A CAS2-based version counting implementation is easy to apply

to almost any pre-existent CAS-based algorithm. While a CAS2-based solution

is not portable and thus not meeting our goals as described in Section D, we be-

lieve that the approach is applicable for a large number of modern architectures.

For this reason, it is included in our performance evaluation. In the performance

tests, we apply CAS2 (and version counting) for updates at the shared memory

locations at Li and a single-word CAS to update the Descriptor object at Lδ.



103

Table 13 offers an overview of the shared vector’s operations’ relative cost in

terms of number and type of atomic instructions invoked per operation.

Table 13. A Shared Vector’s Operations Cost (Best Case Scenario)

ABA prevention approach / operation push back pop back read i write i

1. λδ approach 3 CAS 1 CAS atomic read atomic write
2.All-GC approach 2 CAS + GC 1 CAS + GC atomic read atomic write + GC

3. CAS2-based approach 1 CAS2 + 1 CAS 1 CAS atomic read 1 CAS2

Similarly to the evaluation of other lock-free algorithms [43], we designed our

experiments by generating a workload of the various operations. We varied the num-

ber of threads, starting from 1 and exponentially increased their number to 64. Each

thread executed 500,000 lock-free operations on the shared container. We measured

the execution time (in seconds) that all threads needed to complete. Each itera-

tion of every thread executed an operation with a certain probability (push back

(+), pop back (-), random access write (w), random access read (r)). We show the

performance graph for a distribution of +:40%, -:40%, w:10%, r:10% on Figure 15.

Figure 16 demonstrates the performance results with less contention at the vector’s

tail, +:25%, -:25%, w:10%, r:40%. Figure 17 illustrates the test results with a dis-

tribution containing predominantly random access read and write operations, +:10%,

-:10%, w:40%, r:40%. Figure 18 reflects our performance evaluation on a vector’s

use with mostly random access read operations: +:20%, -:0%, w:20%, r:60%, a sce-

nario often referred to as the most common real-world use of a shared container [43].

The number of threads is plotted along the x-axis, while the time needed to com-

plete all operations is shown along the y-axis. According to the performance results,

compared to the All-GC approach, the λδ approach delivers consistent performance

gains in all possible operation mixes by a large factor, a factor of at least 3.5 in the
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Fig. 15. ABA-free Synchronization Performance Results A

cases with less contention at the tail and a factor of 10 or more when there is a

high concentration of tail operations. Once again we have observed that introducing

an extra level of indirection and the necessity to memory manage each individual

element with PTB (or an alternative memory management scheme) to avoid ABA

comes with a pricy performance overhead. The λδ approach offers an alternative

by introducing the notion of a λδ-point and enforces it though a 3-step execution of

the δ object. The application of version counting based on the architecture-specific

CAS2 operation is the most commonly cited approach for ABA prevention in the
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Fig. 16. ABA-free Synchronization Performance Results B

literature [50], [55]. Our performance evaluation shows that the λδ approach delivers

performance comparable to the use of CAS2-based version counting. CAS2 is a com-

plex atomic primitive and its application comes with a higher cost when compared

to the application of atomic write or a single-word CAS. In the performance tests

we executed, we notice that in the scenarios where random access write is invoked

more frequently (Figures 17 and 18), the performance of the CAS2 version counting

approach suffers a performance penalty and runs slower than the λδ approach by

about 12% to 20%. The implementation of our λδ-modifying operation as shown in



106

C: 10+/10-/40w/40r

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32 64

threads

ti
m

e
 (

s)

1 2 3
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Algorithm 19 is similar to the execution of Harris et al.’s MCAS algorithm [42]. Just

like our λδ-modifying approach, for an MCAS update of Lδ and Li the cost of Harris

et al.’s MCAS is at least 3 successful executions of the single-word CAS instruction.

Harris et al.’s work on MCAS [42] brings forward a significant contribution in the

design of lock-free algorithms, however, it lacks an analysis of the hazards of ABA and

the way the authors manage to avoid it. According to our performance evaluation,

the λδ approach is a systematic, effective, portable, and generic solution for ABA

avoidance. The λδ scheme does not induce a performance penalty when compared
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to the architecture-specific application of CAS2-based version counting and offers a

considerable performance gain when compared to the use of All-GC.

In this chapter we studied the ABA problem and the conditions leading to its oc-

currence in a Descriptor-based lock-free linearzibale design. We offered a systematic

and generic solution, called the λδ approach, that outperforms by a significant factor

the use of garbage collection for the safe management of each shared location and

offers speed of execution comparable to the application of the architecture-specific

CAS2 instruction used for version counting. Having a practical alternative to the ap-
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plication of the architecture-specific CAS2 is of particular importance to the design

of some modern embedded systems such as Mars Science Laboratory. We defined

a condition for ABA-free synchronization that allows us to reason about the ABA

safety of a lock-free algorithm. We presented a practical, generic, and portable imple-

mentation of the λδ approach and evaluated it by integrating the λδ technique into

a nonblocking shared vector. The literature does not offer a detailed analysis of the

ABA problem and the general techniques for its avoidance in a lock-free linearizable

design. At the present moment of time, the challenges of eliminating ABA are left to

the ingenuity of the software designer. The goal of this chapter is to deliver a guide

for ABA comprehension and prevention in Descriptor-based lock-free linearizable al-

gorithms. In our future work, we plan to utilize a model-checker [76] to express the

λδ condition and be able to formally verify the ABA-freedom of nonblocking data

structures and algorithms.
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CHAPTER VIII

VERIFICATION AND SEMANTIC PARALLELIZATION OF GOAL-DRIVEN

AUTONOMOUS SOFTWARE

In this chapter we describe the design, implementation, and practical application of

our framework for verification and semantic parallelization of real-time C++ within

JPL’s MDS Framework (Figure 19). The input to the framework is the MDS mission

planning and execution module that is based on the definition of Temporal Constraint

Networks (Chapter II). At the core of the most recent implementations at JPL of this

critical module is an optimized iterative algorithm for the real-time propagation of

temporal constraints, developed and described by Lou [77]. Constraint propagation

poses performance challenges and speed bottlenecks due to the algorithm’s frequent

execution and the necessary real-time updates of the goal network’s topology. The end

goal of our work is, given the implementation of the optimized iterative propagation

scheme and the topology of a particular goal network, to establish the correctness

of the core TCN semantic invariants (see Chapter II) and automatically derive an

implementation that can be executed concurrently on one of the JPL’s experimental

testbeds for accelerated testing [20]. Our approach for achieving concurrent execution

is based on the idea of identifying Time Phases within a goal network, which allow

the semantic parallelization of the constraint propagation algorithm. In this work,

we define semantic parallelization as the thread-safe concurrent execution of an algo-

rithm (whose operation is dependent on shared data), derived from the application’s

semantics and invariants. In the following sections we describe how we reach our

goal of verification and semantic parallelization of the mission planning and control

module by constructing and executing a formal verification model in Alloy [64] that

represents the implementation’s core semantics and functionality. We refine a formal
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modeling and analysis methodology, initially suggested by Rouquette [78], that helps

us analyze the logical properties of the goal network model and automatically derive

a meta-model for our parallel solution.
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Fig. 19. A Framework for Verification and Semantic Parallelization

A. The MDS Architecture

Mission Data System (MDS) [9] is the Jet Propulsion Laboratory’s framework for

designing and implementing complete end-to-end data and control autonomous flight
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systems. The framework focuses on the representation of three main software archi-

tecture principles (defining the highest ∆SA level of development in the certification

framework):

(1) System control: a state-based control architecture with explicit representation of

controllable state [79].

(2) Goal-oriented operation: control intent is expressed by defining a set of goals and

a goal network [80].

(3) Layered data management: an integrated data management and transport pro-

tocols [5].

In MDS a state variable provides access to the data abstractions representing the

physical entities under control over a continuous period of time, spanning from the

distant past to the distant future. In other words, a state variable is a programming

(∆PL) and a modeling (∆MT ) representation of a set of constraint (κ) certification

variables (Sκsv) expressed in the library level of abstraction (Λ). As explained by

Wagner [5], the implementation’s intent is to define a goal timeline overlapping or

coinciding with the state variables’ timeline. This means that the implementation

must rely on an algorithm (abstraction level Θ) that transforms the engineers intent

together with Sκsv into a set of invariants Sηsv and a set of guarantees Sγsv and

establish the validity and consistency of all ηi ∈ Sηsv and all γi ∈ Sγsv so that the

system’s operations corresponds with its Rt, Sc, Em, and Au behavior.

Computing the invariants (a set of Sηgi) necessary for achieving a goal (any

γi ∈ Sγsv) might require the lookup of past states as well as the computation of

projected future states. MDS employs the concept of goals to represent control intent.

Goals are expressed as a set of temporal constraints. Each state variable is associated
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with exactly one state estimator whose function is to collect all available data and

compute a projection of the state value and its expected transitions. Control goals are

considered to be those that are meant to control external physical states. Knowledge

goals are those goals that represent the constraints on the software system regarding

a property of a state variable. Not all states are known at all time. The most trivial

knowledge goal is the request for a state to be known, thus enabling its estimator. A

data state is defined as the information regarding the available state and goal data and

its storage format and location. The MDS framework considers data states an integral

part of the control system rather than a part of the system under control. There are

dedicated state variables representing the data states. In addition, data states can be

controlled through the definition of data goals. A data state might store information

such as location, formatting, compression, and transport intent and status of the

data. A data state might not be necessary for every state variable. In a simple

control system where no telemetry is necessary, the state variable implementation

might as well store the information regarding the variable’s value history and its

extrapolated states.

The representation of the data states and the data management in MDS is im-

plemented in the Data Management Service module [5]. The problem of data man-

agement in an embedded control system (often requiring the satisfaction of Em, Rt,

Au, and Sc -driven certification requirements at the same time) is one of translating

the intent of remote operations into actions and then safely returning the observed

information. The system should be robust to the extent of overcoming possible com-

munication loss, hardware failures or a system reboot. The resource constraint of

an embedded control systems (its collection of κ variables) dictate that command-

oriented control systems typically do not retain information specific to the intent of

the observations. In addition, telemetry systems process and transport data in un-
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labeled packages where the scientific data is often mixed with other data. In this

context, Wagner argues that it is of significant importance to address the challenges

of providing uniform models for managing the flow of observation and control data.

The MDS Data Management Service Library implements a Catalog for organizing

the storage of physical observations in terms of storage products. Its functionality is

responsible for the remote transport of data products with respect to the behavior

of other spacecraft components. According to the current lock-based Catalog design,

locks are applied in a complex manner within the inheritance hierarchy that leads to

an exponential increase of the verification state space.

To achieve higher reliability (expressed as a set of safety invariants Sηsafety) and

enhance the performance (measured in terms of speed of execution in the εexe vari-

able), we consider the application of lock-free synchronization (see Chapter III). Lock-

free algorithms rely on a set of atomic primitives supported by the hardware archi-

tecture. This means that a nonblocking technique represents an algorithmic (Θ) or

library (Λ) solution to an important Sc problem, namely avoidance of the hazards of

deadlock, livelock, and priority inversion (expressed as three separate Sc invariants:

ηlvlock, ηdelock, and ηpinv) while at the same time offering a significant performance

boost (measured in εexe). The application of a library of nonblocking algorithms

shifts the complexity of engineering shared data access from the user’s source into

the lock-free library’s implementation. Thus lock-free programming techniques can

often help increase the comprehensibility of the concurrent interactions in the user’s

implementation. In the process of creating a parallel network of temporal constraints

(by utilizing nonblocking synchronization), we measure the increased simplicity of

the code (in contrast to the application of mutual exclusion) with the certification

variable σptcn.
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Practical nonblocking programming techniques stand at a development level ∆PL

and when used properly help in assuring safe and efficient access to shared data (in a

concurrent system defined by the system’s ∆MC) and their semantics and implemen-

tation is directly related to the atomic primitives available by the system’s Φ level

(such as the availability of atomic primitives like Compare-And-Swap or Double-

Compare-And-Swap). In hardware platforms that do not provide complex atomic

primitives (involving the atomic update of more than a single-word location), the

implementation of lock-free algorithms is CAS-based. Such systems impose yet an-

other important invariant ηaba where the programmer must eliminate the possibility

of occurrence of the ABA problem (Chapter VII).

One approach to eliminating ABA is to strictly define the semantic usage pattern

of a nonblocking algorithm (meaning that not all operations might be total at all

time). Such usage rules are another example of a transformation of an invariant (ηaba)

into a set of guarantees (Sγaba) variables that need to be satisfied. One possibility

is the application of static analysis (Chapter VI) that can check for a hazardous

interleaving of the concurrent processes. In such a scenario the ABA problem (ηaba)

is resolved by the application of ∆AT development tools.

B. TCN Constraint Propagation

A classic solution to the problem of constraint propagation in TCN is the direct

application of Floyd-Warshall’s all-pairs-shortest-path algorithm [59], offering a com-

plexity of O(N3), where N is the number of time points in the TCN topology. Since,

by definition, the goal of the TCN propagation algorithm is to compute the real-time

values of the network’s temporal constraints, the algorithm is frequently executed

and, given the massive scale of a real world goal network, can cause significant bot-
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tleneck for the overall system’s performance. Lou [77] derives a TCN propagation

scheme with a complexity close to linear. Lou’s TCN propagation is based on the

concept of alternating forward and backward propagation passes. A forward pass

updates the time interval at each time point by considering only its incoming tem-

poral constraints (Algorithm 20). Similarly, a backward pass recomputes the time

windows at each time point by considering only its outgoing temporal constraints

(Algorithm 21). The scheme utilizes a shared container, named a propagation queue,

to keep track of all time points whose successor time points’ windows are about to

be updated next (during a forward pass) and all time points whose predecessor time

points’ windows are about to be updated next (during a backward pass). A forward

pass begins by selecting all time points with no predecessors and inserts them into

the propagation queue. A backward pass begins by selecting all time points with no

successors and inserts them into the propagation queue. Each iteration is carried out

until:

(a) An iteration completes without updating any temporal constraints (thus indicat-

ing that there are no more updates to be performed during the pass). In this

case, the TCN topology is considered to be temporally consistent.

(b) The iteration has stumbled upon a time window of negative value and the algo-

rithm terminates with the outcome of having a temporally inconsistent network.

As stated by Lou [77], prior to the execution of the optimized propagation scheme,

we need to guarantee the validity of the core TCN invariants for the topology of the

particular goal network. For example, the propagation scheme operates under the

assumption that the goal network graph is cycle free. Should there be cycles, the

propagation would enter into an endless loop.
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Algorithm 20 Forward Pass. Arguments: a reference to the time point about to be

updated (tp) and a reference to the global data structure recording the state updates

(vstate).

1: mintmp ← tp.min
2: maxtmp ← tp.max
3: for j = 0 to tp.preds size do
4: mintmp ← std::max(mintmp, tp.preds[j].pred.min + tp.preds[j].min)
5: maxtmp ← std::min(maxtmp, tp.preds[j].pred.max + tp.preds[j].max)
6: if tp.min! = mintmp then
7: ASSERT ( tp.min < mintmp )
8: tp.min← mintmp

9: vstate.aIncr(vstate.count) {atomically increment the state vector’s counter}
10: if tp.max! = maxtmp then
11: ASSERT ( tp.max > maxtmp )
12: tp.max← maxtmp

13: vstate.aIncr(vstate.count) {atomically increment the state vector’s counter}

14: return !(mintmp > maxtmp)

C. Modeling, Formal Verification, and Automatic Parallelization

Alloy [64] is a lightweight formal specification and verification tool for the automated

analysis of user-specified invariants on complete or partial models. The Alloy An-

alyzer is implemented as a front-end, performing the role of a model-finder, to a

boolean SAT-solver. Formal verification and modeling of JPL’s flight software has

been previously demonstrated to be effective and successful by Holzmann [76]. We

use the Alloy specification language [64] to formally represent and check the semantics

of the temporal constraint networks library (Algorithm 22) and its main invariants

(Algorithm 23). In our C++ goal networks implementation we have applied generic

programming techniques and concepts [69], so that we can maintain a higher level of

expressiveness. As a result we have achieved a significant similarity in the way the

main TCN notions and invariants are expressed in our actual implementation and the

Alloy verification models.
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Algorithm 21 Backward Pass. Arguments: a reference to the time point about to be

updated (tp) and a reference to the global data structure recording the state updates

(vstate).

1: mintmp ← tp.min
2: maxtmp ← tp.max
3: for j = 0 to tp.succs size do
4: mintmp ← std::max(mintmp, tp.succs[j].succ.min− tp.succs[j].max)
5: maxtmp ← std::min(maxtmp, tp.succs[j].succ.max− tp.succs[j].min)
6: if tp.min! = mintmp then
7: ASSERT ( tp.min < mintmp )
8: tp.min← mintmp

9: vstate.aIncr(vstate.count) {atomically increment the state vector’s counter}
10: if tp.max! = maxtmp then
11: ASSERT ( tp.max > maxtmp )
12: tp.max← maxtmp

13: vstate.aIncr(vstate.count) {atomically increment the state vector’s counter}

14: return !(mintmp > maxtmp)

We utilize the Alloy Analyzer to implement our semantic parallelization ap-

proach. Our method for semantic parallelization of the goal network is based on

the observation that in a topology we can identify groups of time points that would

allow the concurrent execution of the propagation passes. A possible criterion for

identifying such groups would be to identify the time points in a topology that al-

low disjoin-access to the shared data. Given the method used to compute the time

window [TPmini ,TPmaxi ] for each TPi ∈ Stps, we have observed that the functionally-

independent time points are the time points that are equidistant (with respect to the

longest path) from the root of the graph. Thus, in our methodology, we define a Time

Phase TPHi as the set of the time points (STPHi) in a topology that are equidistant,

with respect to the longest path, from the root of the graph. In such a way, by

definition, the computations of [TPmina ,TPmaxa ] and [TPminb ,TPmaxb ] for every pair

of {TPa,TPb}, such that TPa ∈ STPHi and TPb ∈ STPHi , are mutually independent

and allow disjoin-access to the shared data. With the support of Alloy Analyzer
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we define and identify the time phases in a goal network graph (Algorithm 24 and

Algorithm 25). Figure 20 provides an example of a goal network containing 15 time

points and 6 time phases.

Algorithm 22 Definition of the notions of Temporal Constraint and Time Point

1: sig TC {declaration of the Temporal Constraint signature}
2: tc pred: one TP,
3: tc succ: one TP
4: sig TP {declaration of the Time Point signature}
5: tp preds: set TC,

6: tp succs: set TC

Algorithm 23 Main TCN invariants expressed in the Alloy Specification Language

1: all tc:TC | tc in tc.tc pred.tp succs
2: all tc:TC | tc in tc.tc succ.tp preds
3: all tc:TP | some tp.tp preds ⇒ tp.tp preds.tc succ = tp
4: all tc:TP | some tp.tp succs ⇒ tp.tp succs.tc pred = tp
5: no ∧(tc pred.tp preds) & iden {check for cycles}

6: no ∧(tc succ.tp succs) & iden {check for cycles}

Algorithm 24 Definition of the notions of Time Phase and Temporal Constraint

Network (with time phases)

1: sig Tph {declaration of the Time Phase signature}
2: events: set TP,
3: next: lone Tph,
4: tcn: one TCN
5: sig TCN {declaration of the TCN signature}
6: epoch: TP,
7: tps: set TP,
8: tcs: set TC,

9: init: one Tph

Having identified the time phases in our temporal constraint network specifi-

cation in Alloy, the aim of the rest of our tool-chain is to automatically derive the

C++ implementation of the parallel solution through a number of code transforma-

tion techniques. Following Rouquette’s methodology [78] for model transformation
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Algorithm 25 Main Time Phase invariants expressed in the Alloy Specification

Language

1: all p:Tph
2: p.events.tp succs.tc succ in p.∧next.events
3: p.events.tp preds.tc pred in p.∧∼next.events
4: p in p.tcn.init.*next
5: p.events in p.tcn.tps

6: no p.events & p.∧(next).events

through the application of the Object Constraint Language (OCL) and the Eclipse

Modeling Framework (EMF), we are able to automatically derive an intermediary

XML and XSD representations of the graph’s topology and the TCN semantic no-

tions, respectively. We apply an XML parser (XercesC) and a CodeSynthesis XSD

transformation tool to deliver the C++ implementation of the goal network and our

parallel propagation method.

To achieve higher safety and better performance, our parallel propagation scheme

employs a number of recent multi-processor synchronization techniques. In our im-

plementation we have encountered and addressed the following challenges:

(1) Achieving low-overhead parallelization. Our experiments indicated that the wide-

spread pthreads are computationally expensive when applied to the parallel prop-

agation algorithm. Given the frequent real-time changes in the graph topology,

employing a thread per iteration for the computations of each time phase comes

at a prohibitive cost. To avoid this problem, we have incorporated in our design

the application of the Intel tasks from the Threading Building Blocks Library

[25]. Our experiments indicate that the Intel tasks provide low-cost overhead

when applied in the concurrent execution of the forward and backward passes of

the propagation scheme.

(2) Allowing fast and safe access to the shared data. The parallel algorithm re-
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Fig. 20. A Parallel TCN Topology with 15 Time Points and 6 Time Phases

quires the safe and efficient concurrent synchronization of its shared data: the

propagation queue and the vector containing control data (reflecting the updates

during an iteration). By the definition of our algorithm, the propagation queue

is synchronized by allowing only disjoint-access writes. While the access to the

shared vector is less frequent, its concurrent synchronization is more challenging

since we do not have a guarantee that the concurrent writes would be disjoint.

The application of mutual exclusion locks is a possible but likely an ineffective

solution due to the risks of deadlock, livelock, and priority inversion. We have

employed the implementation of the lock-free vector described in Chapter III in
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order to meet our goals for thread-safe and effective nonblocking synchronization.

The lock-free vector provides the functionality of the popular STL C++ vector

as well as linearizable and safe operations with complexity of O(1) and fast exe-

cution (outperforming the STL vector protected by a mutex by a factor of 10 or

more).

A number of graph properties, in a particular TCN topology, have a significant

impact on the application and performance of the parallel propagation scheme. We

expect better performance (with respect to the sequential propagation scheme) when:

(1) The computational load per time point is high. This is the case of a real-world

massive-scale goal network. For instance, instructing the Mars Science Labora-

tory to autonomously find its way in a Martian crater, probe the soil, capture

images, and communicate to Mission Control will result in a goal network contain-

ing tens or hundreds of thousands of time points. In a small experimental graph

topology with a low computational cost per time point (such as a few arithmetic

operations), a single processor computation will perform best (when we take into

account the parallelization overhead).

(2) Time phases with large number of time points: a topology implying a sequential

ordering of the planned events will not benefit from a parallel propagation scheme.

The parallel propagation algorithm is beneficial to goal networks representing a

large number of highly interactive concurrent system processes.

D. Framework Application for Accelerated Testing

The presented design and implementation of our parallel propagation technique en-

able the incorporation of the optimized propagation approach described by Lou [77] in

an experimental framework for accelerated testing currently still under development
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at NASA. Accelerated testing platforms suggest a paradigm shift in the certification

process employed by NASA from system testing with the actual flight hardware and

software to accelerated cost-effective certification using hardware simulators and dis-

tributed software implementations (Figure 21). Such frameworks aim faster-than-real-

time testing and analysis of the complex software interactions in JPL’s autonomous

flight systems. A number of these platforms require automated refactoring of pre-

viously sequential code into modular parallel implementations. Preliminary results

reported in academic work [20] as well as experience reports from a number of com-

mercial tools (such as Simics by Virtutech and ADvantage BEACON by Applied

Dynamics International) suggest the possible speedup of the flight system testing by

a significant factor. We have followed Rouquette’s methodology [78] that suggests

the application of formal modeling and validation techniques that provide certifica-

tion evidence for a number of functional dependencies in order to compensate for the

added hazards in establishing the fidelity of the simulators. Due to the incomplete

status of the accelerated testing framework as well as the lack of the actual flight hard-

ware, it is difficult to measure a priori the effect of our parallel propagation scheme in

achieving acceleration (with respect to the execution on the actual flight hardware)

in the process of flight software testing. To gain insight of the possible performance

gains and the algorithm’s behavior we ran performance tests on a conventional In-

tel IA-32 SMP machine with two 2.0GHz processor cores with 1GB shared memory

and 4 MB L2 shared cache running the MAC OS X operating system. In our perfor-

mance analysis we have measured the execution time in seconds of two versions of our

parallel propagation algorithm (one applying mutually exclusive locks and the other

relying on nonblocking synchronization) and the original sequential scheme presented

by Lou [77]. In the experiments (Figure 22), we have generated a number of TCN

graph topologies (each consisting of 4 to 8 Time Phases), in a manner similar to the
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Fig. 21. Testing Scenarios of Mission Software

pseudo-random graph generation methodology described in [81]. In the presented

results on Figure 22 the x− axis represents the average measured execution time (in

seconds) of each propagation scheme and the y− axis represents the number of time

points in the exponentially increasing graph size (starting with a graph of 20000 TPs

and reaching a TCN having 160000 TPs). In the experimental setup we observed

that the parallel propagation algorithm offers effective execution and a considerable

speedup in all scenarios on our dual-core platform. We measured performance accel-

eration reaching 28% in the case of the nonblocking implementation and 20% for our

algorithm relying on mutually exclusive locks. Lock-free algorithms deliver significant

speedup in applications utilizing shared data under high contention (Chapter III). In

a scenario like our parallel TCN propagation scheme with medium or low contention
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Fig. 22. TCN Constraint Propagation Performance Analysis

on the shared data, besides safety and prevention of priority inversion and deadlock,

a lock-free implementation can guarantee better scalability. As our experimental re-

sults suggest, the gains from the lock-fee implementation gradually progress and we

observe better scalability with respect to the blocking propagation scheme.

Table 14 provides a summary of the applied development tools that help us

satisfy the seven critical certification variables in the process of TCN verification and

parallelization. Each non-empty cell indicates the level of abstraction of the applied

development tool. Empty cells are designated by the ∅ symbol. Below we briefly

explain each entry in the table:
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Table 14. Linking Certification Artifacts, Development Tools, and Levels of Abstrac-

tion

Cert. Artifact ∆MC ∆PL ∆MT ∆AT ∆SA

Sηsafety ∅ Θ, Λ ∅ ∅ ∅

εexe ∅ Θ, Λ ∅ ∅ ∅

ηnb Φ, Θ Θ ∅ ∅ ∅

ηlin Φ, Θ Θ ∅ ∅ ∅

ηaba Φ, Θ Θ ∅ Λ ∅

Sηtcn ∅ ∅ Λ Λ Ξ

σptcn ∅ Λ Ψ Θ, Λ ∅

(1) Sηsafety : to eliminate the dangers of deadlock (ηdelock), livelock (ηlvlock), and prior-

ity inversion (ηpinv) we have relied on the use of a library of nonblocking algorithms

that allow the fast and safe implementation of shared data access of the C++

STL vector. Thus our approach to deliver safe concurrent interactions is based

on the application of advanced algorithms (Θ) and language library extensions

(Λ).

(2) εexe: as described in detail in Chapter III, when used under contention a non-

blocking shared vector can deliver a significant performance boost (by a factor of

10 or more) when compared with the application of the most recent and optimized

mutual exclusion schemes. In the scenarios when the shared data structure access

patterns show less contention, the nonblocking techniques provide a scalable and

efficient solution with performance better or equal to the most optimal mutual

exclusive schemes [61]. Achieving better performance and scalability of our par-

allel goal network is also based on the application of programming techniques at
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the algorithms/library level.

(3) ηnb: the careful application of CAS-based speculation on single-word memory

locations allows us to guarantee that among a set of contending processes trying to

manipulate the shared vector, there is at least one that is guaranteed to progress.

To construct our library of nonblocking algorithms we have relied on the atomic

primitives provided by the hardware architecture (Φ) and a set of practical lock-

free programming techniques (Θ).

(4) ηlin: some operations in a shared vector require the update (in a linearizable

fashion) of two or more memory locations. Such operations are push back (need

to update the tail and the size of the vector) and resize (need to update the size

and copy all elements). Implementing such operations in a linearizable fashion

with the support of only single-word atomic primitives is notoriously difficult. We

have employed a set of practical lock-free programming techniques to guarantee

that the vector’s operations are linearizable (such a technique is the use of a

Descriptor Object, Chapter VII).

(5) ηaba: the ABA problem is fundamental to all CAS-based systems and can affect

the semantics of the nonblocking algorithms. In systems allowing complex atomic

primitives such as CAS2 or DCAS, ABA can be easily avoided by attaching a

version counter to each value. In such a case we would have had an algorithmic

solution with a strong support from the hardware architecture. We cannot assume

the availability of such complex atomic primitives in the hardware architecture of

the flight-qualified embedded hardware. One possible solution we suggest to the

ABA problem (Chapter VI) is the application of a library for program analysis [6]

that can help us eliminate the hazardous interleaving of concurrent operations.
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(6) Sηtcn : to guarantee the correct operation of our autonomous goal-driven appli-

cation, we have build a framework (Figure 19) that relies on modeling, program

analysis, and program transformation programming techniques.

(7) σptcn: we have increased the comprehensibility of our parallel goal network imple-

mentation by: a. shifting the complexity of allowing safe and efficient concurrent

operations into a library of nonblocking containers (Λ), b. used the Alloy model-

ing notation to express the software architectural and design notions (Ψ), and c.

applied program analysis and transformation techniques to automatically derive

the implementation source. Any further evolution of the system would rely on

high-level models expressed in simpler design-level domain-specific terms.

In Chapter V we introduced a framework for model-based product-oriented certi-

fication founded on the concept of source code enhancement and analysis. We offered

a classification of the certification artifact types, the development and validation tools

and techniques, the application’s domain-specific factors, and the levels of abstrac-

tion used in our certification platform. In this chapter, we used our certification

platform to analyze the model-driven development of a parallel propagation scheme

of the MDS temporal constraint network module. In our analysis we identified seven

critical certification artifact:

1. providing the safety of the concurrent interactions (by eliminating the hazards

of deadlock, livelock, and priority inversion),

2. achieving better scalability and overall system performance,

3. allowing nonblocking synchronization,

4. having linearizable operations on the shared data,
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5. eliminating the possibility of ABA corrupting the concurrent operations’ se-

mantics,

6. establishing the correctness of the core TCN graph invariants,

7. having simpler to analyze and maintain parallel processes.

In our discussion we explained the relationships among these seven certification arti-

facts and the underlying hardware architecture, the applied programming techniques,

and program analysis, modeling, and transformation techniques. Our certification

framework helped us formulate, express, and analyze the process of product-oriented

certification for a complex computer-based system, such as the model-driven devel-

opment tool-chain of parallel autonomous goal networks.

We presented in this chapter a first time and concurrency centered framework for

validation and semantic parallelization of real-time C++ within JPL’s MDS Frame-

work. We demonstrated the application of our framework in the validation of the

semantic invariants of the Temporal Constraint Network Library. Temporal con-

straint networks are at the core of the mission planning and control architecture of

the Mission Data System framework. In addition, we presented an approach for auto-

matic semantic parallelization of the propagation scheme establishing the consistency

of the temporal constraints in a goal network. Our parallel propagation scheme is

based on the identification of time phases within a goal network and is implemented

through the application of model transformation and formal analysis techniques to

the model specifications of the TCN semantics. We have relied on lock-free synchro-

nization techniques to achieve better performance and higher safety of our parallel

implementation.
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CHAPTER IX

C++ DYNAMIC CAST IN AUTONOMOUS SPACE SYSTEMS

The dynamic cast operation allows flexibility in the design and use of data manage-

ment facilities in object-oriented programs. Shared data in a real-time cyber-physical

system can often be polymorphic (as is the case with a number of components part

of the MDS Data Management Services (DMS) [5]). The use of dynamic cast is

important in the design of autonomous real-time systems since the operation allows

for a direct representation of the management and behavior of polymorphic data.

Workaround techniques often lead to restricted error-prone solutions with poor main-

tainability and high complexity. To allow for the application of dynamic cast in

mission critical code, we analyze and validate a methodology for constant-time dy-

namic cast that transfers the complexity of the operation to the compiler’s static

checker. Dynamic cast has an important role in the implementation of the Data

Management Services (DMS) of the Mission Data System Project (MDS). DMS is

responsible for the storage and transport of control and scientific data in a remote

autonomous spacecraft. Like similar operators in other languages, the C++ dynamic

cast operator does not provide the timing guarantees needed for hard real-time em-

bedded systems. In a recent study, Gibbs and Stroustrup (G&S) devised a dynamic

cast implementation strategy that guarantees fast constant-time performance [29].

This chapter presents the definition and application of a co-simulation framework to

formally verify and evaluate the G&S fast dynamic casting scheme and its applicabil-

ity in the Mission Data System DMS application. We describe the systematic process

of model-based simulation and analysis that has led to performance improvement of

the G&S algorithm’s heuristics by about a factor of two.

ISO Standard C++ [23] has become a common choice for hard real-time embed-
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ded systems such as the Jet Propulsion Laboratory’s Mission Data System [82]. This

is so because ISO C++ offers efficient abstraction model, good hardware use, and pre-

dictability. C++’s model of computation has helped engineers deliver more correct,

maintainable, and comprehensible software compared to code relying on lower-level

programming concepts [83]. However, several C++ features are usually considered

unsuitable for programming real-time systems because they do not guarantee predi-

cable constant-time performance [4]. ISO C++ does not provide the necessary timing

guarantees for free store (heap) allocation, exception handling, and dynamic casting.

In particular, the most common compiler implementations of the dynamic cast oper-

ator traverse the representation of the inheritance tree (at run time) searching for a

match. Such implementations of dynamic cast are not predictable and are unsuitable

for real-time programming. Gibbs and Stroustrup (G&S) [29] describe a technique

for implementing dynamic cast that delivers significantly improved and constant-time

performance. The key idea is to replace the runtime search through the class hierar-

chy with a simple (constant-time) calculation, much as the common implementations

of the C++ virtual function calls search the class hierarchy at compile time to reduce

the runtime action to a simple array subscripting operation. In the G&S scheme, a

heuristic algorithm assigns an integer type ID at link time to each class. The type

ID assignment rules guarantee that at run time a simple modulo operation can reveal

the type information and check the validity of the cast. The requirements for the

heuristics assigning the type IDs are that:

(1) They must keep the size of the type ID to a small number of bits. A 64-bit type

ID should be sufficient for very large class hierarchies.

(2) Avoid conflicts and type ID assignments that create ambiguous or erroneous type

resolution at run time.
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(3) Handle virtual inheritance.

There are four heuristic schemes and a few possible optimizations suggested in [29].

However, none of those heuristics guarantee the best solution for every possible class

hierarchy. The quality of the type ID assignment heuristics has a critical importance

for the performance of the G&S scheme. With better heuristics, a smaller type ID

size would be sufficient to facilitate complex and large class hierarchies that would

need a significantly bigger type ID size with a poor assignment scheme. The main

contribution of this work is to present how the algorithm optimization problem en-

countered has been successfully automated and moreover that its automation has led

us to quick but significant improvements of the initial scheme.

In this chapter we present a co-simulation framework based on the SPIN model

checker [62] to simulate, evaluate, and formally verify the G&S fast dynamic casting

algorithm and its application in mission critical code such as the Data Management

Services [5] of the Mission Data System. We use the feedback from the model checker

to perform systematic analysis of the G&S scheme and look for improvements to the

heuristics for type ID assignment. SPIN is an on-the-fly, linear-time logic model-

checking tool that is designed for the formal verification of dynamic systems with

asynchronously executed processes. The most recent advances in the state space

reduction techniques have made it possible to validate large software applications.

Model-checking tools have been widely applied for the verification of a large vari-

ety of systems, including flight software [76], network protocols [84], and scheduling

algorithms [85]. We are unaware of work suggesting its use for the analysis and op-

timization of compiler heuristics. Compiler verification usually focuses on seeking

a proof on the preservation of the program semantics during the various compiler

passes [86]. Our work presents the application of a model-checking tool for the anal-
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ysis and refinement of the combinatorial optimization problem posed by the G&S

type ID assignment scheme. Our co-simulation framework consists of the following

components:

(1) An abstract model of the G&S type ID assignment heuristics.

(2) A procedure for exhaustive search of the state space discovering the best type ID

assignment.

The analysis of the heuristics simulation performed in SPIN provides us with ideas of

possible improvements to the G&S type ID assignment. We include and evaluate the

proposed improvements in the abstract model in order to seek refinement of the G&S

type ID assignment scheme. The experiments we have executed show that the G&S

priority assignment is not optimal with respect to the best possible type ID assignment

where non-virtual multiple inheritance is used. While potentially dangerous if not

constructed carefully, such hierarchies happen to be of significant practical importance

[4]. Based on our experiments, we suggest optimizations that lead to significant

improvement of the G&S heuristics performance. This chapter makes the following

contributions:

(1) Introduces the use of a co-simulation framework based on model-checking for the

analysis and improvement of a compiler-heuristics optimization problem.

(2) Verifies and analyzes the G&S C++ fast dynamic casting scheme and its appli-

cation in mission critical code such as the MDS Data Management Services.

(3) Implements optimizations to the G&S heuristics leading to the discovery of op-

timal type ID assignment in 85% of the class hierarchies, in contrast to 48% for

the original G&S algorithm.
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A. Fast Dynamic Casting Algorithm

The G&S fast constant-time implementation of the dynamic cast operator works as

follows: at link time, a static integer type ID number, preferably 32 or 64-bit long, is

assigned to each class. The ID numbers are selected so that the operation ida modulus

idb yields zero if and only if the class with ida is derived from the class with idb. This

is done by exploiting the uniqueness of factorization of integers into prime factors.

Each class is assigned a key prime number. The type ID of a class is calculated

by multiplying its key number with the key numbers of each of its base classes. In

the cases where a class contains more than a single copy of a base class, the type

ID is computed by taking the square of the corresponding base class ID. The only

constraint of the approach is the requirement to limit the ID size to fit the machine’s

built-in integer types. The key primes are not required to be unique and the same

prime key can be used for classes that belong to different groups (i.e. do not share

common descendants). Gibbs and Stroustrup suggest four approaches for assigning

the type IDs in a space-efficient manner. Each method is based on a preliminary

computation of the priority factor of each class. The priority reflects the class impact

on the growth of the type ID numbers in the hierarchy. Thus, classes with greater

number of descendants should receive higher priority and smaller key prime number

values respectively. The four possible schemes suggest that:

1 The priority of a class is the maximum number of ancestors that any of its descen-

dants has. This scheme was chosen for the initial implementation and testing of

the G&S algorithm and also closely followed in the implementation of the abstract

model used for our simulation.

2 ,3, 4. If a range of primes is assigned to every level with wider levels receiving

larger initial values, then each node could be assigned an additional value that is
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proportional to the logarithm of the (2. minimum, 3. mean, 4. maximum) prime

in its level. Priorities of hierarchy leaves are computed by taking the sum of these

additional values for the leaf itself and all of its ancestor classes.

After the priority of each class has been computed, the classes with the highest priority

get the smallest prime numbers. According to this scheme, prime numbers can be

reused only if there are two classes on the same level of the class hierarchy and only

if they do not share common descendants, they are not siblings, and also that none

of their parents share a common descendant. Given the class hierarchy on Figure 23,

Fig. 23. Fast Dynamic Cast, a Class Hierarchy with 11 Classes

we follow the ID assignment rules and establish that:

(1) idx = kx × (ka)
2 × ka1 × (kb)

2 × kb1 × kc,

(2) idy = ky × kc × kc1 × (kd)
2 × kd1 × kb,

(3) idz = kz × kd × kd1 × kc.

Given a set C with 11 classes in the hierarchy and the set of the first 11 prime numbers

P = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}, we must assign each class V a key kv ∈ P

such that, the maximum of the set idleaf = {idx, idy, idz}, the set consisting of the ID

numbers of all leaf nodes in C, is minimal. As we already know, prime numbers need

not be unique for each class and can be reused in same circumstances.
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B. A Co-simulation Framework

The goals of the co-simulation framework are to validate the main invariants of the

G&S heuristics, improve its performance, and establish its applicability in mission

critical systems. The co-simulation process in the framework (Figure 24) consists

of three consecutive stages: verification, evaluation, and analysis. The verification

phase is a straightforward application of model checking where an abstract descrip-

tion of the system’s behavior is checked against a set of invariants. In the evaluation

stage the simulation results from the probabilistic approach are contrasted to the

outcome of the deterministic approach. The aim of the analysis stage is to closely

examine the instances where the solutions yielded by the two implementations differ.

We identify patterns among the inconsistent results that reveal the weaknesses of the

probabilistic solution. The framework works by executing two independent models,

Fig. 24. A Co-Simulation Framework for G&S Improvement and Verification
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the G&S model and the exhaustive search model. The first input component to the

co-simulation framework (Figure 24) is an abstract model of the G&S fast dynamic

casting heuristics, implemented in Promela (SPIN’s input language) and the embed-

ded C primitives it allows. The G&S abstract model is subsequently used to verify

the main invariants of the G&S heuristics and at the same time provide us with a sim-

ulation testbed to examine the heuristics performance. The second component of the

framework is the exhaustive search model that simply looks into all possible type ID

assignments to discover the optimal solution for a given class hierarchy. We employ

SPIN’s search engine to perform the exhaustive search. In Algorithm 26 we present

the pseudocode of our co-simulation approach. The following sections elaborate in

more details on each of the stages of the framework.

1. Formal Verification

Every G&S implementation operates under the assumption that when a prime number

is reused, it is assigned to non-conflicting classes. In addition, the maximum type ID

must fit within the boundaries of a memory word. We check these invariants during

the program verification phase. Establishing the validity of the G&S invariants is

done by straightforward application of model-checking with SPIN. In SPIN the critical

system properties are expressed in the syntax of linear time logic. Based on the G&S

abstract specification, the model-checker performs a systematic exploration of all

possible states. In case of failure, SPIN provides a counterexample that demonstrates

a behavior that has led to an illegal state. In our model, the invariants are expressed

as a never claim [62], and are checked just before and after the execution of every

statement.
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2. Evaluation

SPIN has been previously employed to implement solutions of scheduling [87] and

discrete optimization [85] problems. The problem we face in the G&S heuristics is a

combinatorial optimization problem [88]. Given a finite set I, a collection F of sub-

sets of I, and a real-valued function w defined on I, a discrete optimization problem

could be defined as the task of finding a member S of F , such that:
∑
e∈S

w(e) is as

small (or as large) as possible.

Except for the simplest cases, a discrete optimization problem is difficult because its

design space is typically disjoint and nonconvex. Therefore, the optimization methods

applied to continuous optimization problems cannot be utilized in this case. In a small

discrete problem, it would be possible to exhaustively list all possible combinations.

As the number of parameters increase, the state explosion makes optimizations diffi-

cult. The two general strategies for approaching a discrete optimization problem can

be classified as deterministic and probabilistic. What we do for the G&S exploration

in SPIN could be described as applying a deterministic approach for the evaluation

of a set of proposed probabilistic methods. The Branch and Bound method [88] guar-

antees the discovery of the global optimum in the cases when the problem is linear

or convex and is the most frequently used discrete optimization method. It is based

on the sequential analysis of the discrete tree of each parameter. The branches that

can be estimated to reach invalid or unfeasible solutions are consequently eliminated.

This simple optimization could also be applied in some limited cases in the SPIN’s

Fast Dynamic Casting exhaustive search. Let us explore a class hierarchy with three

classes A, B, and C, where B is derived from A, and C is derived from both A and

B. In this case, we have C = {A, B, C}, P = {2, 3, 5}, and idleaf = {idc}. The

enumeration is given in Table 15. We assume that the computation starts at a state
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Table 15. Fast Dynamic Cast, Enumeration of All Solutions

idc = kc × kb × (ka)
2 ka kb kc

60 2 3 5

60 2 5 3

90 3 2 5

90 3 5 2

150 5 2 3

150 5 3 2

S0 where all three keys ka, kb, and kc are uninitialized. Then we assign possible values

from the set P to the key variables of the classes A, B, and C. The enumeration

shown above can be expressed as the computation shown on Figure 25. The graph

Fig. 25. Fast Dynamic Cast, Exhaustive Search Computation

shows only the valid states of the computation. There are a number of invalid states

that are not shown on the graph. For example, according to the rules defined in G&S,
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it is possible to reuse some of the prime numbers in P . Thus, we can try and add an

edge kb = 2 in state S1, however the reuse of 2 in this case is invalid since A and B

are conflicting classes.

The illustrated automation in Figure 25 provides a foundation for the construc-

tion of a Promela model for the deterministic solution. Each possible prime number

assignment to a given class key is represented by a separate state transition in the

exhaustive search model. SPIN initiates the optimum search at state S0 and visits

all possible states. At each end state the value of the minimum of the set of leaves,

in this case represented only by idc, is computed and compared to the current min-

imum. This approach is similar to the algorithm described by Ruys [85] and shown

in Algorithm 27. For such an application, we use the model checker in a somewhat

unusual fashion. In this scenario, the validation property checks whether the value

of idc is greater than the current minimum. Each time this condition is violated, the

current minimum is updated and the process is automatically repeated until SPIN

confirms that there are no routes violating the specification. Since the solution is de-

terministic, it is guaranteed to discover the global optimum for type ID assignment.

The performance of the G&S heuristics is measured by running a simulation of the

G&S model that has been used earlier for verification. Now we are left with only one

important task (not automated at this stage), the comparison of the results from the

probabilistic and deterministic solutions. Once we identify a set of inconsistent re-

sults, we try to find a pattern and refine the G&S heuristics. Then the refined scheme

is implemented in the probabilistic model and the evaluation process is reiterated.

3. Analysis

The simulation and enumeration models are continuously executed until, if possible,

a set of instances with inconsistent solutions can be identified. Thus, each instance
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in the Set of Inconsistent Solutions (SIS), represents a given class hierarchy for which

the deterministic and probabilistic approach have discovered different solutions. The

class hierarchies for each test could be guided or created in a random fashion. For

the generation of the test data in our experiments we implemented a pseudo random

class hierarchy generation algorithm, in a manner similar to the TGFF (Task-Graphs-

For-Free) method as described in [81]. We look for patterns among the collected

hierarchies in SIS and seek clues that can lead us to improvements of the G&S scheme.

Potential improvements are tested by adding them to the G&S model and evaluating

their effect with our co-simulation approach. Such scheme modifications are carefully

selected since it is possible that they might enhance a given G&S feature and at the

same time weaken another. Ideally, the improvements lead to a heuristic scheme that

provides the best solutions for a larger number of the test hierarchies and at the same

time has a time complexity equal to or less than the earlier heuristic scheme.

Despite the numerous advanced state space reduction techniques utilized by the

SPIN model checker, little can be done to further optimize the exhaustive search.

The main goal of our experiments is to reach quick and effective optimization of the

G&S scheme, thus the class hierarchies considered were not the largest and most

complex that our models can handle. The models developed for our experiments are

capable of handling class hierarchies of double or triple the size of the ones presented

in the paper, and even larger number of classes can be facilitated with increased

computational power. In the framework, the exhaustive search is used to identify

flaws in the G&S type ID assignment scheme, thus, there is no need to create and

simulate much larger hierarchies. In this work our goal is to demonstrate that the

current size of the class hierarchies is sufficient to discover significant flaws of the

original heuristics.
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C. Application in Mission-Critical Software

Modern space mission systems have evolved from simple embedded devices into com-

plex computing platforms with high autonomy and an exceptionally large demand for

human-computer interaction. Consequently, such systems require reliable and flexible

data systems managing the collection, storage, and transportation of data. MDS pro-

vides the building blocks for the implementation of embedded platforms based on the

concepts of state estimation and control. The Data Management Services (DMS) is

the MDS component responsible for the production, storage, processing, and transfer

of control and scientific data. Wagner [5] defines the challenges of data management

in MDS as the problems of producing and storing data and converting the data to var-

ious formats as needed by its consumers. In addition, DMS needs to ensure the secure

and lossless transport of the data with limited resources and through unreliable phys-

ical medium. To design and relate the data system entities, DMS employs concepts

from high-level ISO C++ including templates, object-oriented class encapsulation,

and dynamic casting necessary for the conversion of the data formats.

The actual telemetry data objects in MDS communicate with each other via

byte streams produced by the transport protocol (e.g. spacecraft to ground commu-

nication). The receiver of the telemetry data needs to recreate the data object from

the byte stream and thus invoke type casting in numerous occasions. Constant-time

dynamic cast is also needed by the MDS Goal Network in the case when a controller

or estimator [5] passes a goal via the Coordinating Goal Network (CGN), typically a

large dynamic data structure. In CGN the goal is propagated using only its abstract

attributes (start and end time, and the associated state variable). The achiever object

who eventually picks up the goal needs to reconstruct the data object via dynamic

downcasting to the specific type that conveys the state-specific achievement criteria.



142

The application of the common compiler implementation of dynamic cast has proved

to be unacceptable due to poor performance and the lack of the timing guarantees.

The G&S scheme was devised as a solution to a real industrial problem related

to C++ use for hard real-time code. Inquiries in the C++ community revealed that

the problem was fundamental and common, rather than isolated: developers simulate

dynamic casting with other language features, leading to type-unsafe special-purpose

code or the avoidance of best object-oriented practices. Naturally, such workaround

code slows down development, complicates maintenance, and increases the need for

testing.

D. Results

We applied the co-simulation process described in the previous section to a large num-

ber of class hierarchies. The tested hierarchies are not built into our models. Instead,

we have followed a pseudo random generation methodology similar to TGFF task

graph generation as described in [81] to automatically generate hundreds of possible

test cases. For illustration, we show the results from a set of seven pseudo random

class hierarchies. The results of the G&S heuristics model and the exhaustive search

are shown in Table 16. A brief comparison of the results indicates that the G&S

heuristics do not give optimal performance for class hierarchies with non-virtual mul-

tiple inheritance. A closer look at the algorithm reveals that the priority calculation

routine takes into account only the number of descendants that each class has. Let us

consider the class hierarchy from test case 7. We notice that according to the current

scheme, the base classes 0, 1, and 2 all get the same priority rank since they all share

the descendant 6. Class 6 is at the lowest level of the hierarchy and has the largest

number of ancestors. If we would like to optimize the heuristics, we must find a way
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to increase the priority of base class 2. Our reasoning is derived from the fact that

Class 2 is ambiguous and the leaf Class 6 contains two copies of it. Similarly, let us

have a closer look at test case 1. In the optimal solution, Class 5 takes the lower

prime number (11) compared to Class 4, despite the fact that its only descendant

has less ancestors compared to Class 4. The reason for this result is the fact that

the derived Class 3 contains two ambiguous bases while Class 4 contains only one

ambiguous base. As a result of our analysis we conclude that higher priority should

be given to derived classes and their ancestors who contain more ambiguous base

classes. To fix these weaknesses, we extend the G&S heuristics by adding two simple

rules:

(1) We count every ambiguous ancestor twice when we determine the number of

ancestors to each class.

(2) For each base class, we count the number of derived classes that include more

than one copy of it, and add that number directly to its priority.

We call this enhanced G&S heuristics Fast Dynamic Casting Plus (FDC+). As Ta-

ble 16 shows, for the initial set of test cases, FDC+ performance is 100% equivalent

to the performance of the deterministic approach. In the performed tests, we have

generated 127 pseudo random class hierarchies and applied G&S, FDC+, and the ex-

haustive search to each one of them. Figures 27, 28, 29 and 30 show seven examples

of our test scenarios. The experimental results showed that FDC+ was able to yield

the best type ID assignment in 85% of the class hierarchies compared to 48% for the

G&S heuristics. The time performance of the three schemes is shown in Figure 26.

While the time performances of the G&S and FDC+ algorithms are equal and both

run in a very low constant-time (the function at 00:01 min on Figure 26), logically the

time performance of the exhaustive search increases exponentially with the increase
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Table 16. Fast Dynamic Cast, Co-simulation of the Seven Cases
Case No G&S Exhaustive search FDC+

Case 1 (keys) (2, 3, 5, 7, 11, 13, 17) (3, 2, 5, 7, 13, 11, 17) (3, 2, 5, 7, 13, 11, 17)
Case 1(ids of all leaves) (16380, 16830) (13860, 13260) (13860, 13260)
Case 2 (keys) (2, 13, 3, 5, 17, 7, 11) (2, 13, 3, 5, 17, 7, 11) (2, 13, 3, 5, 17, 7, 11)
Case 2 (ids of all leaves) (1326, 2310) (1326, 2310) (1326, 2310)
Case 3 (keys) (2, 3, 13, 5, 7, 17, 11) (2, 3, 13, 5, 7, 17, 11) (2, 3, 13, 5, 7, 17, 11)
Case 3 (ids of all leaves) (26, 51, 2310) (26, 51, 2310) (26, 51, 2310)
Case 4 (keys) (2, 3, 5, 7, 11, 13, 17) (2, 3, 5, 7, 11, 13, 17) (2, 3, 5, 7, 11, 13, 17)
Case 4 (ids of all leaves) (2310, 1547) (2310, 1547) (2310, 1547)
Case 5 (keys) (2, 3, 5, 7, 11, 7, 11) (2, 3, 5, 7, 11, 7, 11) ( 2, 3, 5, 7, 11, 7, 11)
Case 5 (ids of all leaves) (42, 66, 70, 110) (42, 66, 70, 110) (42, 66, 70, 110)
Case 6 (keys) (2, 3, 5, 11, 13, 7, 17) (2, 3, 5, 11, 13, 7, 17) (2, 3, 5, 11, 13, 7, 17)
Case 6 (ids of all leaves) (66, 78, 420, 170) (66, 78, 420, 170) (66, 78, 420, 170)
Case 7 (keys) (2, 3, 5, 7, 11, 13, 17) (3, 5, 2, 7, 11, 13, 17) (3, 5, 2, 7, 11, 13, 17)
Case 7 (ids of all leaves) (2552550) (1021020) (1021020)

of the number of classes nodes in a given class hierarchy. The analysis of the test

results indicates that FDC+ finds a better type ID compared to the G&S approach in

39% of the test scenarios. For the greater part of the test cases, FDC+ matched the

optimal type ID assignment computed by the exhaustive search. This efficiency boost

is due to the optimized performance of FDC+ in the cases where multiple non-virtual

inheritance is present in the class hierarchy. We have also observed that the imple-

mentation of these optimizations does not lead to efficiency loss in other scenarios

and the performance of FDC+ is always at least as good as the performance of G&S.

Our experimental results have indicated that the introduced optimizations in FDC+

have fixed a weakness of the original G&S approach and have improved the success

rate in finding the best type ID assignment. The G&S scheme requires a key of a

memory size that is a function of the size and shape of a class hierarchy. Thus, the

improved heuristics almost double the size of class hierarchies that can be handled by

a given key size. Since the scheme gets significantly slower when a key gets too large

for a machine word, the improvements to the heuristics address the main limitation

of the G&S scheme.
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Fig. 26. Fast Dyanmic Cast, Search Time for Type ID Assignment

In this chapter we applied co-simulation of the deterministic and probabilistic

solutions to the combinatorial optimization problem posed by the G&S type ID as-

signment scheme. Our framework proved successful in verifying and refining the

existing G&S heuristics. We demonstrated how we use the simulation results to de-

vise improvements to the G&S algorithm and evaluate them. The results from our

experiments indicate that the improved G&S heuristics (FDC+) provide the optimal

type ID assignment in 85% of the class hierarchies, compared to 48% for the regular

G&S algorithm. The efficiency of the type ID assignment scheme has significant im-

portance for the performance of the fast dynamic casting by Gibbs and Stroustrup

[29]. This paper presented a practical approach of how to discover improvements to

the type ID assignment scheme in a simple and effective manner. The main advan-

tage of the presented approach is the ease and simplicity of the discovery and testing

for potential improvements. The improved heuristics that we have described in this
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work almost doubles the size of class hierarchies that can be handled by a given key

size. A more extensive simulation might suggest further improvements to the type

ID assignment scheme. Our main goal in this work has been to demonstrate how an

algorithm optimization problem has been successfully automated and moreover that

its automation has led us to quick but significant improvements of the initial scheme.

In the future we intend to utilize a static analysis tool for automatic class hierarchy

analysis and extraction.

Fig. 27. Fast Dynamic Cast, Test Cases 1 and 2

Fig. 28. Fast Dynamic Cast, Test Cases 3 and 4
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Fig. 29. Fast Dynamic Cast, Test Cases 5 and 6

Fig. 30. Fast Dynamic Cast, Test Case 7
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Algorithm 26 Pseudocode of the co-simulation approach.

1: const int MAX NUMBER TESTS

2: VERIFY:

3: repeat

4: Formal Verification (G&S Model) → error report

5: if (no errors) then

6: goto EVALUATE

7: else

8: study counter example

9: correct G&S

10: until TRUE

11: EVALUATE:

12: count=0

13: for (count < MAX NUMBER TESTS) do

14: Simulation(G&S Model) → G&S solution

15: Enumeration(Exhaustive Search Model) → best solution

16: if (G&S solution 6= best solution) then

17: add instance to SIS

18: count++

19: ANALYZE:

20: for all i ∈ SIS do

21: look for a pattern

22: modify G&S

23: goto EVALUATE



149

Algorithm 27 Finding the global minimum in the state space

1: intput: Promela model M

2: output: the optimal minimum for the problem M

3: min=(worst case) maximum value for id

4: repeat

5: use SPIN to check M with condition (idc >min)

6: if (error found) then

7: min = idc

8: until (error found)
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CHAPTER X

CONCLUSION

In this dissertation we explored the problem of how to design, implement, and validate

safe and efficient software for the highly complex, embedded, and autonomous com-

puting platforms of the future robotic spacecraft. Our approach is centered on the idea

of semantic enhancement of the highly efficient C++ computing model. The notions

of time and concurrency are critical to the design of autonomous space software. We

have reached our goals of delivering reliable and efficient concurrent synchronization

by introducing and implementing the concept of Semantically Enhanced Containers.

We have presented and utilized innovative nonblocking programming techniques to

avoid the hazards of deadlock, livelock, convoying, and priority inversion. To elim-

inate the fundamental ABA problem, we defined and applied a generic condition

for ABA-free nonblocking designs, called the λδ approach. The experimental data

from a number of tests demonstrate that our SEC approach is fast, scalable, and ef-

ficient. Our lock-free design outperforms under contention the alternative lock-based

approaches by a factor of 10 or more. In a scenario with less contention and a lack

of shared cache memory, our lock-free SEC containers offer performance compara-

ble to that of the most optimal lock-based techniques. Compared to the application

of the popular Software Transactional Memory approach, our SEC design showed

high scalability and superior performance, outperforming the STM-based container

by a significant factor. Our generic strategy for ABA avoidance, the λδ approach,

offers a solution to the ABA problem without the need to rely on the application

of a complex atomic primitive, and offers performance comparable to the use of the

architecture-specific CAS2 instruction. To enable the application of dynamic cast

in the MDS object-oriented designs, we applied our model-based semantic enhance-
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ment framework in order to validate and improve a methodology for implementing a

constant-time dynamic cast operation that is safe for hard real-time software. Our

SEC approach allowed us to design a framework for validation and automatic seman-

tic parallelization of the MDS Goal Networks, a critical component of the MDS goal

and state based architecture.

At the present moment of time the notions of time and concurrency lack first

class representation in the popular general purpose programming languages. Our SEC

approach offers an alternative that allows the use of the advanced C++ tool-chain

while at the same time providing explicit support for safe concurrent interactions.

The modern hardware architectures and programming languages’ memory models do

not explicitly support the concept of nonblocking synchronization. As a result, non-

blocking algorithms are notoriously difficult to design and the software designers need

to exploit a set of low level programming ”hacks” for their effective implementation.

In the future, we are interested to explore the problem of offering hardware support

for lock-free synchronization. In addition, we intend to look into the possibilities of

extending the ISO C++ memory model for the explicit support of effective and safe

concurrent multi-core programming techniques that are also suitable for real-time

embedded applications.
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