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ABSTRACT 

 

The Effect of Environmental Contaminants on Mating Dynamics and Population 

Viability in a Sex-Role Reversed Pipefish. (December 2009) 

Charlyn Gwen Partridge, B.S., Nicholls State University;  

M.S., University of South Alabama 

Chair of Advisory Committee: Dr. Adam G. Jones 

 

     Understanding how anthropogenic activity impacts the health and viability of wildlife 

populations is one of the most important tasks of environmental biology.  A key concern 

related to bi-products of human activity is the accumulation of environmental pollutants 

within aquatic environments.  Pollutants such as endocrine disruptors and heavy metals 

have the potential to impact both human and wildlife populations in contaminated areas.  

While much research has focused on how these compounds impact natural selection 

processes, such as viability and reproduction, their effect on sexual selection processes is 

not as clear.  The goal of this dissertation was to address how environmental 

contaminants impact sexual selection processes in a sex-role reversed pipefish and 

evaluate how these effects may impact long-term population viability.  Here we show 

that short periods of exposure to environmentally relevant concentrations of a synthetic 

estrogen result in male pipefish with female-like secondary sexual traits.  While these 

males are capable of reproduction, exposed males are discriminated against by females 

in mate choice tests.  In natural populations, this type of discrimination could reduce 
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male mating opportunities, potentially reducing their reproductive success.  In an 

additional component of this dissertation, it was discovered that pipefish populations 

around Mobile Bay, specifically Weeks Bay, are currently being exposed to significantly 

elevated levels of mercury.  These populations are genetically distinct from coastal 

populations but moderate levels of gene flow occur among sites, and gene flow between 

contaminated and non-contaminated population may be influencing how environmental 

contaminants are impacting genetic diversity and population viability.  In the case of 

endocrine disruptors, migration between contaminated and non-contaminated sites may 

negatively impact population viability.  Morphological traits induced with exposure to 

contaminants may be maintained for extended periods of time, therefore, the effect the 

exposed phenotype has on mating dynamics and sexual selection could be carried to 

non-contaminated sites if exposed individuals move to new populations.  On the other 

hand, immigration of individuals from non-contaminated sites into contaminated areas 

may help maintain genetic diversity within exposed populations.  In conclusion, the 

work presented in this dissertation shows that the presence of environmental toxins can 

significantly impact sexual selection processes, which in turn can have profound effects 

on the viability and future evolutionary trajectory of populations.   Future work in this 

area should not only address how these toxins impact individual fitness, but should also 

address how population structure may be influencing the severity of these compounds on 

natural populations.  
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CHAPTER I 
 

INTRODUCTION 
 

     Natural and sexual selection are the dominant forces driving evolution in natural 

populations.  Natural selection mechanisms consist of factors associated with an 

individual’s ability to compete for limited resources, thus impacting individual 

survivorship and reproductive ability (Darwin 1859).  Sexual selection mechanisms 

involve processes that influence an individual’s ability to compete for access to mates, 

thus impacting their reproductive fitness only (Darwin 1859, 1871).  Both natural and 

sexual selection mechanisms are influenced by various behaviors and traits that 

contribute to variance in fitness, the currency on which these selective forces act.  For 

example, naturally selected traits may consist of the ability to effectively forage, the 

ability to escape predation or disease resistance, while sexually selected traits may 

consist of individual attractiveness and preference or the ability to physically gain access 

to mates.  Understanding how and to what degree these traits contribute to the overall 

variance in relative fitness is vital to understanding how they contribute to species 

evolution.  In addition, when environmental disturbances, such as global warming or 

water pollution, interfere with an individual’s competitive ability by altering these 

selected traits, their relative fitness can be significantly affected.  The effects of these 

disturbances can also be observed on a population level if the impact is broad enough to 

affect a significant proportion of the individuals within the population.  

_______________ 
This dissertation follows the style of Behavioral Ecology and Sociobiology. 
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     One of the greatest concerns facing the environment is the impact of anthropogenic 

activity on the health of natural populations (Schwarzenbach et al. 2006).  One bi-

product of continued human activity is the accumulation of environmental contaminants, 

such as pesticides, heavy metals and endocrine disrupting compounds, which are 

released into the ecosystem.  These contaminants are typically synthetic exogenous 

compounds and can interfere with normal physiological or genetic mechanisms in 

wildlife and human populations (Jorgenson 2001; Neri et al. 2006; Hotchkiss et al. 2008; 

Crump and Trudeau 2009).  Many of these compounds are known to have deleterious 

effects on wildlife populations. Understanding how they affect reproductive fitness and 

population viability is essential to determining their impact on the ecosystem.  These 

contaminants can impact population viability on multiple levels by affecting both natural 

selection processes, through decreased survivorship and reproduction (Hayes et al. 2002, 

2003; Hill and Janz 2003; reviewed in Reish et al. 2006;  Menza et al. 2007; Kidd et al. 

2007; Maunder et al. 2007; Peters et al. 2007; Schäfers et al. 2007; Cevasco et al. 2008; 

Haeba et al. 2009; Haxton and Findlay 2008; Rippey et al. 2008; Brunelli et al. 2009; 

Guimaraes et al. 2009; Xu et al. 2009), and sexual selection processes, by impacting 

mating dynamics (Crews et al. 2007; Arellano-Aguilar and Garcia 2008; Coe et al. 2008; 

Saarisota et al. 2009).  While much effort is currently being placed on assessing the 

impact of environmental contaminants on aspects of natural selection processes, such as 

development and reproductive ability, the impact of these compounds on sexual 

selection processes are not as well documented.  However, because sexual selection is a 

major selective force driving evolution, factors that disrupt this mechanism can also have 
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long-term effects on evolutionary processes and population viability.   Thus, only by 

determining the extent which particular environmental contaminants affect both natural 

and sexual selection processes can we begin to fully comprehend their impact on natural 

ecosystems. 

     One class of environmental contaminants that has received a large amount of 

attention due to their persistence in the environment and because of the negative impact 

on aquatic populations is endocrine disruptors.  Endocrine disruptors are typically 

synthetic compounds that interfere with normal hormone function.  Many 

pharmaceuticals, such as 17α-ethinylestradiol (EE2), and industrial compounds, such as 

bisphenol A, have been shown to have adverse effects through disruption of the 

endocrine system in many organisms (reviewed in Lintelmann et al. 2003; reviewed in 

Hotchkiss et al. 2008; Cevasco et al. 2008; Schoenfuss et al. 2008; Vandenberg et al. 

2009).  Xenoestrogens, synthetic estrogen mimics, affect animals by binding to estrogen 

receptors and eliciting inappropriate estrogenic responses (Lutz and Kloas 1999).  Males 

inhabiting contaminated areas have been shown to have decreased sperm production, 

increased liver weights, and increased vitellogenin levels (Munkittrick et al 1994; 

Sumpter 1995; Sumpter and Jobling 1995; Folmar et al. 1996; Harries et al. 1997; Allen 

et al. 1999; Rangel 2000).  Also, female and male lab reared zebrafish exposed to 

xenoestrogens as larvae had delayed gonadal and behavioral development compared to 

unexposed larvae (Hill and Janz 2003). In addition to regulating gonadal development, 

sex hormones also regulate traits that influence mate selection (reviewed in Folstad and 
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Karter 1992; Andersson 1994; Parker et al. 2002; McGraw et al. 2006) and thus 

exposure to xenoestrogens may have an effect on sexual selection processes.  

     Sexual selection mechanisms often lead to the development of elaborate ornaments 

that are used by individuals to assess mate quality and expression of these traits is often 

correlated with mating success (reviewed in Andersson 1994).  Many of these secondary 

sexual traits are under the control of sex steroids, such as estrogen and testosterone, and 

expression is dependent on hormone concentration (reviewed in Folstad and Karter 

1992; Andersson 1994; Parker et al. 2002; McGraw et al. 2006).  Because secondary 

sexual trait expression varies with hormone levels more than that of primary sex traits 

(i.e., gonads), these secondary sex traits may be more sensitive to small levels of 

environmental pollution, particularly when these pollutants are endocrine disrupting 

compounds. Recent studies have shown that exposure of individuals to environmental 

contaminants, such as pesticides and synthetic hormones, can disrupt expression of these 

traits by either suppressing expression (Arellano-Aguilar and Garcia 2008) or inducing 

expression of the trait in the opposite sex (Ueda et al. 2005).   While current research has 

focused on the effects of endocrine disruptors on primary sexual organs (Hill and Janz 

2003; Moncaut et al. 2003; Toft and Baatrup 2003; Vandenbergh et al. 2003; Park and 

Kidd 2005; Xu et al. 2008), fewer studies have examined the impact of these compounds 

in regard to sexual signaling and selection (Bell 2001; Bjerselius et al. 2001; Oshima et 

al. 2003; Coe et al. 2008; Saarisota et al. 2009).  In this study, the impacts of exposure to 

a synthetic estrogen on multiple aspects of reproductive success in a sex-role reversed 

pipefish were evaluated.  This is currently the most comprehensive study to evaluate the 
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impact of an endocrine disruptor on factors that significantly affect reproductive success 

and the first study to evaluate how exposure affects reproduction in a sex-role reversed 

organism. 

     In addition to understanding how environmental contaminants affect an individuals’ 

relative fitness, it is also essential to understand how these effects translate into 

population viability.  The genetic structure of populations within and around 

contaminated areas may influence how strong of an effect environmental pollutants may 

have on genetic diversity and population health.  For example, environmental 

contaminants may have a significantly larger effect on smaller populations with little 

migration, because the negative effects of environmental contaminants on genetic 

diversity will be compounded by the populations’ susceptibility to inbreeding and 

genetic drift.  Euryhaline organisms are a particularly interesting group in which to 

address these types of questions.  Euryhaline fish can readily move between estuarine 

and coastal environments, with some species even inhabiting freshwater systems.  

Studies have shown that some sub-populations of euryhaline fish have become 

genetically distinct from their coastal counterparts even when a high potential for high 

gene flow exists (Beheregaray and Sunnucks 2001).  This “divergence-with-gene-flow” 

model suggests that local selection pressure between these distinct ecosystems allows for 

significant divergence between these populations.  Since environmental contaminants 

tend to be more concentrated in freshwater and estuarine environments because they are 

normally closer to the source of the contamination and they experience less dilution by 

non-contaminated water sources, isolated populations in these areas may be more 
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impacted by the presence of pollutants than if these populations maintained significant 

gene flow with their coastal counterparts.  This is because continued gene flow between 

the estuarine and coastal populations may help to offset the loss of genetic variation 

normally experienced in populations with high levels of environmental contamination.  

In this dissertation, the genetic structure of coastal, estuarine and freshwater populations 

of a euryhaline pipefish were addressed.  This information was then used to infer how 

environmental toxins may be impacting population viability in contaminated areas.   

 

Study Species 

     For this dissertation, I examine how exposure to a synthetic estrogen, 17α-

ethinylestradiol (EE2), impacts sexual selection processes in a sex-role reversed pipefish 

and I suggest how population structure may be influencing the affect of these 

environmental contaminants on long-term population viability.  Some of the sampling 

areas where these pipefish were collected are known to contain historically high levels of 

mercury, thus, I also assessed the total mercury concentration of multiple pipefish 

populations in these areas. 

     In order to determine how EE2 may be affecting sexual selection processes, the 

components of sexual selection that contribute most to the variance in relative fitness 

had to be established.  For this study, the broad-nosed pipefish, Syngnathus typhle, was 

used as the model system.  S. typhle has historically been one of the dominant model 

systems for understanding questions concerning sexual selection theory in sex-role 

reversed organisms.  Because of the amount of data that are currently available for S. 
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typhle in terms of mate choice mechanisms, this species was the most appropriate of the 

pipefish species for examining the degree to which pre - and post-copulatory selection 

mechanisms influence the opportunity for sexual selection.   

     Once the major factors influencing the opportunity for sexual selection were 

obtained, we utilized the Gulf pipefish, Syngnathus scovelli, as the model system for 

addressing questions concerning how environmental estrogens may be impacting sexual 

selection processes and how population structure may influence the affect of these 

contaminants.  S. scovelli was selected as the model species for these studies for multiple 

reasons.  First, S. scovelli, provides an excellent model for examining how endocrine 

disruptors impact mating dynamics because this species experiences very strong sexual 

selection on females (Jones et al. 2001) and the secondary sexual traits in females appear 

to be regulated by estrogen pathways (Ueda et al. 2005).  The mating system of this 

species is polyandrous and intraspecific competition occurs between females rather than 

males (Jones et al. 2001).  In S. scovelli, intraspecific competition and strong sexual 

selection have led to extreme sexual dimorphism compared to S. typhle, resulting in 

larger and more ornamented females.  Furthermore, genetic evidence has shown that 

mating is not random in Gulf pipefish populations and that mating females are larger and 

more ornamented than average females, suggesting that these characteristics are under 

sexual selection (Jones et al. 2001).  As previously stated, ornamentation of female 

pipefish appears to be regulated by estrogenic hormones and exposure of pipefish to EE2 

causes males to develop secondary sex traits normally only found in females (Ueda et al. 

2005).  This suggests that estrogen mimicking compounds may affect mating dynamics 
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by affecting the expression of secondary sex traits in these pipefish.  Second, the Gulf 

pipefish provides an excellent system to evaluate how population structure may 

influence the effect of environmental contaminants on population viability.  S. scovelli is 

a euryhaline pipefish and the most common pipefish found along the Gulf of Mexico.  

While most populations of S. scovelli are located either in marine or brackish 

environments, freshwater populations have been found in every state along the 

northeastern Gulf of Mexico (McLane 1955; Whatley 1969; Targett 1984; Viola 1992).  

Currently there are no data evaluating population structure of this species.  However, 

because of the presence of multiple populations across varied ecological habitats, it is 

possible that these groups may be genetically distinct.  Also, some groups within Mobile 

Bay are located near areas that have been historically known to contain high levels of 

mercury, a heavy metal pollutant (Novoveska, 2005).  Thus using this species allowed 

me to determine where pipefish populations are being impacted by environmental 

contaminants and how patterns of gene flow between pipefish populations may be 

influencing the effect of these contaminants.   

 

Dissertation Justification 

     The ultimate goal of this study was to understand how environmental contaminants 

may be affecting sexual selection processes and how these effects may impact long-term 

population viability.  The central hypothesis of this dissertation is that environmental 

contaminants may be affecting population viability by disrupting mating dynamics and 

that population structure may play a significant role in determining how severe this 



9 
 

impact is on natural populations.  In order to address this question I first determined 

which factors contribute most to the opportunity for sexual selection in pipefish.  

Second, I examined which behavioral and morphological factors contributed to male and 

female mate preference, since variation in mating success should strongly influence the 

opportunity for sexual selection in S. scovelli.  Third, I evaluated how exposure of a 

synthetic estrogen, EE2, affected multiple components of reproductive fitness, including 

mate choice, male mating success and male reproductive success.  In addition, I 

examined how exposure to EE2 affected the expression of secondary sexual traits in 

males and female courtship behavior.  Fourth, since population structure may impact 

how severely environmental contaminants affect population health, I evaluated the 

population structure of S. scovelli throughout the Gulf of Mexico and Mobile Bay.  

Lastly, I examined whether wild populations of Gulf pipefish around Mobile Bay were 

being impacted by the presence of environmental contaminants. 

 

Chapter Outline 

     In CHAPTER II, I examined the relative importance of pre-copulatory and post-

copulatory sexual selection processes in the broad-nosed pipefish, S. typhle, to determine 

if post-copulatory processes, particularly male cryptic choice, significantly affected 

offspring survivorship.  In addition, I assessed the relative importance of various pre- 

and post-copulatory processes on the opportunity for sexual selection. 

    In CHAPTER III, I explored how morphological and behavioral traits influenced 

mating preferences of male and female pipefish given that data from Chapter II 
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suggested that variance in female mating success contributes significantly to the 

opportunity for selection in pipefish.  

   In CHAPTER IV, I conducted a comprehensive study to examine how short term 

exposure to environmentally relevant concentrations of an endocrine disruptor, 17α-

ethinylestradiol (EE2), impacted multiple levels of reproductive fitness, including mate 

choice, male mating success and male reproductive success in S. scovelli. In addition, I 

examined how exposure to EE2 affected the development of secondary sexual traits in 

male pipefish.  Finally, I evaluated whether exposure of female pipefish to EE2 

significantly affected female behavioral traits that are associated with male preference.     

     In CHAPTER V, I evaluated patterns of gene flow of the Gulf pipefish throughout 

the Gulf of Mexico and Mobile Bay in order to determine whether estuarine and 

freshwater populations were genetically distinct from their coastal counterparts.        

     In CHAPTER VI, I surveyed populations of pipefish and other small planktivorous 

fish within Weeks Bay, Mobile Bay and Grand Bay, MS to determine if pipefish 

populations are being impacted by the presence of environmental contaminants.  For this 

study I concentrated mainly on the presence of mercury since specific locations within 

Weeks Bay have historically shown high levels of mercury. 

     In CHAPTER VII, I summarize the results from the previous chapters and relate how 

these components may impact long-term population viability and selection processes in 

populations located in areas contaminated by environmental pollutants. 
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CHAPTER II 
 

THE EFFECT OF PERCEIVED PARASITE LOAD ON POST-COPULATORY 

MATE CHOICE IN A SEX-ROLE REVERSED PIPEFISH* 

 

Introduction 

     Post-copulatory sexual selection has become a subject of considerable discussion in 

animal behaviour (Eberhard 1996; Birkhead and Møller 1998; Birkhead and Pizzari 

2002).  One area that has been much debated over the past few years is cryptic mate 

choice, a mechanism by which members of one sex (usually females) bias offspring 

parentage during or after mating in favour of mates with a preferred phenotype.  In 

organisms with conventional sex roles, cryptic choice can occur in a number of different 

ways, some of which include termination of copulation, prevention of sperm transfer, 

discarding sperm, sperm choice, reduction of offspring number, and differential 

allocation of resources (Eberhard 1996; Snook 2005).  Although many important studies 

during recent years have started to clarify some of these processes, many of them still 

are not well understood.   

     Particular studies of cryptic choice usually focus on one or a few possible cryptic 

choice mechanisms, and some of these mechanisms have been better documented than 

others.  For example, one of the least controversial mechanisms is differential allocation  

_____________________ 
*With kind permission from Springer Science+Business Media: Behavioral Ecology and 
Sociobiology, The effect of perceived female parasite load on post-copulatory male 
choice in a sex-role reversed pipefish, 63, 2009, 345-364, C Partridge, C Kvarnemo, I 
Ahnesjö, K Mobley, A Berglund and AG Jones, Figures 1-4.   
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(Cunningham and Russell 2000; Sheldon 2000; Kolm 2001), in which a female mated to  

a less preferred male may allocate fewer resources to those offspring in order to retain 

resources for future mating events, possibly with superior males.  Other types of cryptic 

female choice that are slightly more controversial than differential allocation, but are still 

reasonably well documented, include female influence on the number of sperm 

transferred by a male (Gronlund et al. 2002; Pilastro et al. 2002; Tallamy et al. 2002) and 

differential storage of sperm (Otronen 1990; Pizzari and Birkhead 2000, Bussière et al. 

2006).  The most controversial mechanism, sperm choice, results from a bias in the use 

of sperm by the female.  In this case, females preferentially choose sperm from more 

attractive males, and this choice can be independent of sperm number or quality.  Sperm 

choice is controversial for several reasons (Telford and Jennions 1998; Birkhead 2000; 

Eberhard 2000; Kempenaers et al. 2000; Pitnick and Brown 2000; Birkhead and Pizzari 

2002; Eberhard 2004, Bussière et al. 2006).  First, it is often difficult to disentangle 

female effects from male effects based upon the outcome of fertilization patterns.  

Second, sperm are extremely difficult to observe, so it can be difficult to determine 

whether patterns of paternity are a product of the number of sperm transferred by rival 

males or a consequence of choice by the female.  Third, for species in which physical 

sperm removal by the female does not occur, it can be difficult to envision mechanisms 

by which a female could choose among sperm once they are already in her reproductive 

tract.  

     Despite the opportunities that sex-role reversed taxa afford with respect to the study 

of sexual selection, they have been studied very little with respect to cryptic choice or 
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gamete competition.  The present study was motivated by the expectation that in sex-role 

reversed taxa with male brooding and strong sexual selection on females, cryptic male 

choice or some form of egg competition might evolve in such a way as to reinforce the 

operation of pre-copulatory choice.  As implied above, it can be difficult to conduct an 

experiment that provides definitive evidence for post-copulatory sexual selection and 

clearly distinguishes between male and female effects (Birkhead 2000; Eberhard 2000; 

Birkhead and Pizzari 2002).  However, Pitnick and Brown (2000) offered one solution 

when they suggested that manipulation of perceived mate quality could be used to 

delineate these effects.  Thus, the approach suggested by Pitnick and Brown (2000), 

while not a panacea, provides one solution to the challenge of disentangling male from 

female effects during post-copulatory sexual selection. 

     We take advantage of this approach in the broad-nosed pipefish, Syngnathus typhle, a 

sex-role reversed species that has been a useful model for the study of numerous topics 

in sexual selection (Berglund and Rosenqvist 2003; Wilson et al. 2003).  Organisms in 

which both males and females mate multiply have a high potential for sexual conflict 

and thus have the potential for cryptic choice to evolve (Gowaty 1997; Jones 2002). The 

broad-nosed pipefish is such a species.  In addition, like all other species in the family 

Syngnathidae, S. typhle exhibits male pregnancy (Dawson 1985; Wilson et al. 2001; 

Jones and Avise 2003; Stölting and Wilson 2007).  During copulation, females deposit 

eggs into the male’s brood pouch, where the eggs are fertilized, and males carry the 

embryos until parturition.  The brood pouch is a highly vascularized structure that 

provides aeration, protection and osmoregulation (Quast and Howe 1980; Watanabe et 
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al. 1999; Carcupino et al. 2002), and may serve as a site for nutrient transfer (Haresign 

and Shumway 1981; Berglund et al. 1986a) for the developing offspring.  In S. typhle, 

both males and females exhibit a high rate of multiple mating, with 90% of males 

obtaining multiple mates for a single brood, and sexual selection acts more strongly on 

females than on males (Berglund et al. 1988; Berglund et al. 1989; Vincent et al. 1992; 

Jones et al. 1999).   

     The phenomenon of male pregnancy makes the broad-nosed pipefish an exceptionally 

good model for studies of post-copulatory sexual selection for two important reasons.  

First, sexual selection acts more strongly on females, so the gametes of relevance to 

cryptic choice are eggs, which compared to sperm are large and easy to observe, an 

attribute that makes it possible to track the fate of each individual gamete throughout the 

male pregnancy.  Second, this species exhibits a significant level of brood reduction 

(Ahnesjö 1992a).  In other words, a substantial fraction of the eggs (approximately 30 

percent on average) transferred to the male fail to result in offspring.  There is some 

evidence that eggs from larger females are more likely to result in progeny at the end of 

the pregnancy than those from smaller females, suggesting that some sort of post-

copulatory sexual selection may be at work in this species (Ahnesjö 1996).  However, no 

experiment has yet addressed whether this maternity bias is based on male or female 

effects. 

     An additional key factor in the choice of S. typhle as the model for the present study 

is that the perceived quality of mates can be experimentally altered (Rosenqvist and 

Johansson 1995).  Pipefish and other fishes are intermediate hosts of the trematode 
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Cryptocotyle lingua.  This parasite penetrates the skin of the fish and encysts, resulting 

in small black dots produced by host pigment.  Pre-copulatory mate choice experiments 

have shown that males prefer to mate with females that have a lower parasite load 

(Rosenqvist and Johansson 1995; Mazzi 2004).  Furthermore, manipulation of perceived 

parasite load through the tattooing of females with small black dots produces the same 

preference effect (Rosenqvist and Johansson 1995).  This approach allows for an 

experimental alteration of female attractiveness without affecting any other aspect of 

actual female quality or condition.   

     The present study was inspired by an interest in gamete choice, but given the lack of 

data on cryptic choice in pipefish, we used an experimental design covering multiple 

mechanisms of cryptic choice, including male effects on the number of eggs transferred, 

differential fertilization of eggs, and some forms of differential allocation of resources to 

offspring.  Hence, this experiment had three objectives.  First, by experimentally 

manipulating the apparent parasite load of females, we aimed to address if and to what 

extent a male’s perception of female quality influences post-copulatory sexual selection 

via cryptic male choice.  Second, we wished to take advantage of variation in female 

quality to investigate the role of female quality and egg size on embryo survivorship.  

Finally, we compiled data from a number of S. typhle studies to quantify, for the first 

time, the various potential sources of variance in relative fitness in females during sexual 

selection. 
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Methods and Materials 

Field Sampling and Mating Experiment 

     Male and female S. typhle were collected in early May 2004, prior to their 

reproductive season, from the Gullmar Fjord on the Swedish west coast (58° 15' N, 11° 

28' E).  Pipefish were collected from shallow (1 – 6 m water depth) eelgrass (Zostera 

marina) beds using a beam trawl with a 2 mm mesh.  Adult individuals were segregated 

by sex and maintained in 225 litre barrels connected to a flow-through natural seawater 

system at Kristineberg Marine Research Station. 

     We chose pairs of size- and colour-matched females and tattooed each female to 

produce one experimental and one control female per pair.  The experimental female 

was tattooed with black dots using carbon-based tattoo ink (8-10 dots per side), and the 

control female was tattooed with the same number of colourless dots using deionized 

water, the solvent for the tattoo ink.  Tattooing was performed by hand with a fine tattoo 

needle on fish anaesthetized in 2-phenoxyethanol (50 µl/L).  A single male was allowed 

to mate with the two matched females (either a tattooed female followed by a control 

female or vice versa, Figure 2.1) one female at a time in a mating tank (40x25x70 cm).  

Each male thus represented a single replicate of the experiment, and we had two 

treatments that differed only with respect to the order of mating of tattooed versus 

control females (Figure 2.1).   

     All mating trials were observed, and the first female in each replicate was allowed to 

mate with the male until his brood pouch was approximately half full, at which time the 

female was removed from the tank.  Most females required multiple copulation events to  
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A BA B

 

Figure 2.1:  Experimental mating design.  Each focal male (represented by brood pouch 
diagrams) mated with a pair of females.  The experiment consisted of two treatments.  In 
the first treatment (A) the black-dot tattooed female, altered to look parasitized, mated 
first, filling the lower part of the male’s pouch with eggs, and the control female 
(tattooed with colorless dots) filled the remainder of the pouch.  In the second treatment 
(B) the control female filled the lower part of the male’s pouch and the black-tattooed 
female filled the remainder of the pouch. 
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fill their half of the male’s brood pouch and at no time did we physically interrupt a 

copulation event.  We recorded the number of copulations required to partially fill the 

male, which allowed us to calculate the number of eggs transferred per copulation, one 

potentially important factor in cryptic choice.   

     After a male’s pouch was approximately half-filled by the first female, we partially 

anaesthetized the male by submerging his head and trunk (but not his brood pouch) in 2- 

phenoxyethanol (50 µl/L) and counted the number of eggs transferred by the first female 

by gently lifting the pouch skin folds.  After the counting procedure, the male was placed 

in a tank with the second female and allowed to mate until the male's brood pouch was 

full.  We again observed all copulations to determine the number of eggs transferred per 

copulation event and counted the total number of eggs transferred by the females into the 

brood pouch.  At the end of each mating trial, we took caudal fin clips from females and 

preserved these tissue samples in 95% ethanol for genotyping.  Mature eggs 

(approximately 10) were gently pressed out of the ovaries of each female and dried 

(60ºC, 24 hrs) for egg dry-weight measurements.  Males were allowed to brood the 

embryos until well-defined eyespots were visible through the brood pouch.  Finally, 

pregnant males and embryos were sacrificed by using a lethal dose of 2-phenoxyethanol 

(2 ml/L), and they were preserved in 95% ethanol. 

 

Maternity Analysis 

     To determine the maternity of the offspring, we extracted DNA from all developing 

embryos using a 5% chelex/proteinase K digestion (Miller and Kapuschinski 1996).   
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Because eggs from individual females are positioned together within the brood pouch 

(Jones and Avise 1997a; Jones et al. 1999), it is not necessary to genotype every 

individual embryo to determine the position of the transition between embryos from the 

first and second female.  Hence, we genotyped every sixth developed embryo within the 

brood pouch by using three to four hypervariable microsatellite loci developed by Jones 

et al. (1999) for S. typhle.  Once we identified the approximate location of the spatial 

boundary between maternal genotypes within the brood pouch, we genotyped an 

additional 12 embryos around the boundary to determine the exact maternity of all 

embryos within the pouch.  All fragment analysis was performed on an ABI Prism® 

3730 DNA Analyzer (Applied Biosystems, Foster City, CA) and peaks were called using 

ABI Prism® GeneMapper™ software (Applied Biosystems, Foster City, CA).  The 

proportion of eggs that resulted in well-developed offspring was then calculated for each 

female by dividing the number of developed embryos that were genetically compatible 

with that female by the number of eggs initially transferred to the male by that female.  

In addition, the numbers of undeveloped and unfertilized eggs within the brood pouch 

were recorded, and their maternity was inferred by their spatial locations relative to 

genotyped embryos. 

 

Statistical Analysis 

     A total of 34 males completed the study; however, data from six males were removed 

due to documented errors in egg counts, resulting in a total of 28 males statistically 

analyzed.  Additionally, some analyses had sample sizes lower than 28 males due to 
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missing data.  Of the 28 males, 12 males (147.0 ± 7.2 mm, standard length ± SEM) 

mated with a colourless dot female first and a black dot female second; while the 

remaining 16 males (156.4 ± 8.1 mm) mated with black dot females first followed by 

colourless dot females.  We performed transformations on the data set to obtain 

normality prior to analysis.  Proportion of eggs surviving was exponentially transformed.  

We used natural log transformations on eggs transferred per copulation and the number 

of undeveloped eggs.  Prior to transforming the number of undeveloped eggs, these 

values were increased by one to allow for transformation of zeros.  The overall number 

of eggs accepted by the male per female was square root transformed.  All statistical 

analyses were performed with JMP IN statistical software (SAS Institute, Carysfor, NC). 

 

Results 

     Our results support the notion that brood reduction is an important phenomenon in 

this pipefish.  On average, only about 70 percent of the eggs transferred to the brood 

pouch resulted in well-developed embryos (Table 2.1).  This level of brood reduction is 

similar to what has been found in previous studies of this species (Ahnesjö 1992a). 

     The primary goal of the experiment was to look for cryptic male choice based on 

perceived female parasite load in S. typhle.  First, we asked whether or not the male’s 

perception of female parasite load affects the number of eggs a male receives per 

copulation.  A female typically requires several mating attempts to partially fill the 

brood pouch of a male.  Because we observed the mating trials and recorded all 

copulations, we were able to count the number of copulations required to transfer the  
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Table 2.1:  The effects of treatment and order on the proportion of embryos that 
survived, the number of undeveloped eggs, the total number of eggs deposited per 
female, the number of eggs transferred per copulation, female length and egg dry weight.  
The table shows untransformed means ± standard errors of the means, but the p-values 
are derived from a paired t-test on data that were transformed to obtain normality (see 
text). α = 0.05.  

 
     Treatment           Order 

   ------------------------------------------  ------------------------------------------
  Clear Black   No. t-test  First Second   No. t-test 

Variable  tattoo tattoo males p-value  female female males p-value
============================================================================
Proportion of    0.65  0.75   28  0.31   0.76  0.64   28  0.23 
eggs surviving  ±0.07 ±0.05    ±0.06 ±0.07 
 
Number of   4.5  5.8   26  0.83   4.8  5.5   26  0.74 
undeveloped eggs ±0.9 ±1.6    ±1.1 ±1.5 
 
Total number eggs  39.9  42.9   28  0.55   45.7  37.1   28  0.10 
transferred/female ±3.8 ±4.0    ±4.3 ±3.2 
 
Number of eggs   24.4  29.0   27  0.41   31.5  22.0   27  0.006 
per copulation  ±2.8 ±3.7    ±3.2 ±3.1 
 
Female length (mm)   169.5  168.2   26  0.58   166.5  171.3   26  0.03 
   ±5.0 ±5.4    ±4.9 ±5.4 
 
Egg mass (mg)    1.07  1.04   21  0.75   1.01  1.09   21  0.29 
   ±0.05 ±0.06    ±0.06 ±0.05 
===============================================================  
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eggs and calculate the number of eggs transferred per copulation.  If males were 

exercising cryptic choice at this stage, we would predict that they would receive more 

eggs per copulation from control females than from experimentally altered females, and 

no such pattern was evident (Table 2.1).    

     Second, cryptic male choice may operate through differential fertilization of eggs.  

Males appear to retain unfertilized eggs in their brood pouches until the end of the 

pregnancy, so this hypothesis predicts that we would find more undeveloped eggs from 

those transferred from the experimental females compared to that of the control females.  

Again, we saw no evidence for such a pattern (Table 2.1). 

     Finally, cryptic male choice could occur as a result of non-random embryo absorption 

by the male or by preferential allocation of resources to the embryos from control 

females.  Under this hypothesis we would predict that eggs from the “non-parasitized” 

control females would experience a greater probability of producing viable offspring 

than would eggs from tattooed females.  Once more, we found no evidence for cryptic 

male choice based on perceived female parasite load.  Eggs from control females were 

not more likely to produce viable offspring compared to eggs from females tattooed to 

look more parasitized (Table 2.1).  Thus, overall we detected no evidence for cryptic 

male choice based on perceived female quality. 

     Our study does not suggest that post-copulatory processes are completely 

unimportant in pipefish, however, as we do find evidence that some important post-

copulatory processes may be occurring.  Our data on number of eggs transferred per 

copulation show a first-female advantage in pipefish with respect to the number of eggs 
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 transferred per copulation.  Regardless of tattoo status of the female, there was a 

tendency for the first female that mated with a male to transfer more eggs per copulation 

than the second female (Table 2.1).  Note that the number of eggs per copulation is 

different than the total number of eggs transferred per female, because most females 

copulated several times during a given mating trial.  Thus, the total number of eggs 

transferred by a female to a male was artificially equalized between first and last females 

by the experimental design, but the number of eggs transferred per copulation was not 

similarly equalized.   

     Our study also shows some potential for interesting post-copulatory processes related 

to pipefish body size.  Males and females in our experiment exhibited enough variation 

with respect to total length that we were able to test for correlations between length and 

other variables of interest.  We tried to avoid pairings involving extreme size differences 

between males and females, thus causing male and female sizes to be positively 

correlated across mating pairings in our experiment (r = 0.80, n = 28, p < 0.001).  

Consequently, some of the effects that appear to be a result of female size could be a 

consequence of male size.  We pooled our data across treatments in the following 

analyses.  We found a significant positive relationship between female length and the 

proportion of embryos that survived in the brood pouch (r = 0.30, n = 54, p = 0.03, 

Figure 2.2).  However, it is possible that error in egg counts could be driving this 

significance (See Discussion).  Embryo survivorship was not, however, significantly 

correlated with male length (r = 0.28, n = 28, p = 0.15).  This suggests that if there was a 

correlation between female size and the proportion of embryos surviving holds true that 
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Figure 2.2:  Embryo survivorship was positively correlated with female length (r = 0.30, 
n = 54, p = 0.03).  Non-transformed data are shown.  Embryo survivorship was not, 
however, correlated with male length (r = 0.28, n = 28, p = 0.15), despite a positive 
correlation between male and female length in our experimental design (see text).  Points 
indicating survivorship greater than one are due to experimental error in egg counts.  
However, this error is expected to be random and should not produce a spuriously 
positive regression.  

 



25 
 

 this effect is due to some aspect of female quality, such as the tendency for larger males 

to produce larger eggs, as female length was positively correlated with egg dry weight (r 

= 0.30, n = 47, p = 0.04). 

     We also found that female length was positively correlated with her number of eggs 

transferred per copulation (r = 0.50, n = 53, p = 0.0003, Figure 2.3), indicating another 

possible mechanism of sexual selection. In this case, male standard length also was 

positively correlated with the average number of eggs transferred per copulation (r = 

0.57, n = 28, p = 0.002).  Thus, this suggests that larger mating pairs of pipefish transfer 

more eggs per copulation, but additional research will be necessary to determine whether 

this effect is due to male or female length. 

     One important question in this analysis is how large an effect of cryptic male choice 

based on perceived female quality would be consistent with our data.  To address this 

issue, we calculated the difference in survivorship between embryos originating from the 

control and treatment females for each male.  The mean difference in the proportion of 

eggs surviving is 0.10 (Table 2.1), so the point estimate actually indicates an effect in 

opposition to what would be expected if cryptic choice were occurring, and the 95 

percent confidence intervals range from -0.06 to 0.28.  Hence, the maximum average 

decrease in survivorship due to cryptic male choice consistent with our data is six 

percent.  We can put this figure into perspective by considering it relative to other 

sources of variance in fitness related to sexual selection in this pipefish.  Figure 2.4     

shows the variance in relative fitness that would be expected in a S. typhle population  



26 
 

 
Figure 2.3:  The significantly positive relationship between female length and number of 
eggs transferred per copulation (r = 0.50, n = 53, p = 0.0003; all females pooled).  Our 
experimental design resulted in a positive correlation between male and female length 
within mating pairs (see text), so the relationship shown in this figure indicates that 
larger mating pairs transferred more eggs per copulation.  The dashed line 
(corresponding to the circle) shows the least-squares regression for females mating first, 
and the solid line (triangles) shows the regression for females mating last.  Male length 
also was positively correlated with number of eggs transferred per copulation (r = 0.57, n 
= 28, p = 0.002).  Non-transformed data are shown. 



27 
 

 
Figure 2.4:  The sources of variance in relative fitness related to sexual selection in 
females of S. typhle.  Sexual selection on females, the sex experiencing the most intense 
sexual selection, could arise from several different sources, including number of mates 
per female, number of eggs transferred per copulation, differential fertilization of eggs, 
and embryo survivorship within the brood pouch.  This figure displays the amount of 
variance in relative fitness (i. e., the opportunity for selection, I), that would arise from 
each of these sources, holding variance from the other sources constant.  The left panel 
shows fitness variance resulting from mating success for an equal operational sex ratio 
and the right panel shows results for a 3:1 (female:male) sex ratio, which probably is 
more relevant to natural populations (Berglund and Rosenqvist 1993; Vincent et al. 
1994).  Data for number of eggs transferred and female mating success are from 
Berglund et al. (1986b) and Jones et al. (2005), respectively.  Data for differential egg 
fertilization and embryo survivorship are from the present study.  The increase in I due 
to cryptic male choice assumes the strongest possible cryptic male choice consistent with 
our data, thus using a six percent decrement in embryo survivorship in parasitized 
females.  Of course, our point estimate of the effects of cryptic choice actually indicates 
a result in opposition to expectations, suggesting that cryptic choice based on perceived 
quality of females does not occur in this system.  A similar exercise based on number of 
eggs transferred per copulation showed a negligible (less than 0.01) increase in I for this 
component of sexual selection. 
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when all other sources of variance in fitness are held constant.  For example, if pre- 

mating choice were the only source of variance in fitness, then the opportunity for 

selection (I, Wade and Arnold 1980; Arnold and Wade 1984) in pipefish would be 

0.44with an operational sex ratio of unity and 1.43 with a female-biased operational sex 

ratio as more typically is observed in nature (Berglund and Rosenqvist 1993; Vincent et 

al. 1994).  The operational sex ratio in the field is usually heavily female biased because 

most males are pregnant and unavailable to mate most of the time (Vincent et al. 1994).  

The variance in relative fitness in the absence of cryptic male choice (i.e., in our control 

females) due to embryo survivorship is 0.32.  If cryptic male choice of the maximum 

magnitude consistent with our data is included in the calculation, then the variance in 

relative fitness increases to 0.35, an increase in the opportunity for selection of 0.03.  

Thus, our data suggest that cryptic male choice based on perceived parasite load has the 

potential to make at most a very small contribution to the intensity of sexual selection.  

In contrast, other forms of post-copulatory sexual selection could be extremely 

important, because the number of eggs transferred per copulation and embryo 

survivorship make substantial contribution to the opportunity for selection at both 

operational sex ratios (Figure 2.4).   

 

Discussion 

     Our results show that a male’s perception of female parasite load does not detectably 

affect post-copulatory processes in males of S. typhle.  In principle, cryptic male choice 

of eggs or embryos could occur at several different phases of the reproductive cycle, 
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possibly acting through variation in the number of eggs transferred, differential 

fertilization, differential survivorship of embryos, and differential allocation (Eberhard 

1996; Eberhard 2000; Pilastro et al. 2004).  In our experiment, perceived female parasite 

load had no significant effect at any of these stages.  Our observations regarding the 

number of eggs transferred per copulation showed that the male’s perception of female 

parasite load did not affect the number of eggs transferred per copulation.  Secondly, 

differential fertilization did not occur since the number of unfertilized eggs within the 

brood pouch did not differ between females of different treatments.  Similarly, there was 

no significant difference in the proportion of embryos that survived between those eggs 

given by females experimentally altered to look parasitized and control females, 

indicating that differential embryonic survivorship based on perceived female parasite 

load is not occurring at a detectable level.  This latter result indicates there is no effect of 

perceived female parasite status on either male gamete choice or any forms of 

differential allocation by the male that influence offspring survivorship.  Hence, the 

overall outcome of this study is that manipulation of the perceived parasite load of 

females had no measurable effect on any aspect of post-copulatory egg or embryo 

success. 

     Of course, we could not address all aspects of egg competition and cryptic male 

choice in a single study, so several caveats are worth mentioning.  One feature of this 

study is that it does not cleanly distinguish between differential allocation and gamete 

choice.  If either gamete choice or differential allocation of resources (e.g., nutrients or 

oxygen) to offspring based on maternity were occurring in this system, we might predict 
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a decrease in offspring survivorship for the less preferred of the two females.  Thus, if 

we had found a significant effect of our tattooing treatment, such an effect could be due 

to either of these processes.  Since we did not find an effect, we can conclude that 

neither of these processes occurs at a sufficiently high rate to affect the probability that 

deposited eggs will result in viable embryos at a level that we could detect in our study.  

However, one mechanism of cryptic male choice that was not addressed in this paper is 

differential allocation at a level that changes offspring quality without affecting embryo 

survivorship.  The resolution of this question will await studies that consider traits of 

offspring, such as size and growth rates, that are potentially related to fitness (Ahnesjö 

1992b; Sandvik et al. 2000).  

     The other caveat in the present study is that perceived parasite load is not a secondary 

sexual trait, but rather it is a possible indicator of female quality.  Rosenqvist and 

Johansson (1995), for example, found that heavily parasitized females had reduced 

fecundity relative to non-parasitized females, suggesting that males gain direct benefits 

by avoiding parasitized mates.  The male’s perception of female parasite load does affect 

the male’s assessment of female attractiveness, in that males preferentially choose to 

mate with females they perceive to have lower parasite loads during pre-copulatory mate 

choice (Rosenqvist and Johansson 1995).  However, parasite load is merely one aspect 

of total female attractiveness, and other aspects of the female phenotype could 

conceivably result in larger effects. If males use post-copulatory mechanisms only to 

discern between females with larger ornaments, for example, then the results of our 

experiment may not provide a comprehensive description of the true nature of the 
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phenomenon.  Future studies manipulating other aspects of female quality would be 

welcome. 

     A third caveat is that the present study addressed only within-brood phenomena.  If 

males allocate resources or abort offspring at the level of whole broods based on whole-

brood value in order to conserve resources for the next brooding event, then we would 

not have detected such an effect in the present study.  For example, a male could allocate 

more resources to a brood mothered by all attractive females compared to one mothered 

(partially or wholly) by unattractive females.  Such a strategy would have been 

undetectable in our study.  

     Even though we found no evidence for cryptic male choice, we did see potential for 

some post-copulatory processes to be important in this pipefish.  Both the order in which 

females mated and the average size of mating pairs had a significant effect on the 

number of eggs transferred per copulation. Within our mating trials, female size was 

significantly correlated with male size, making interpretation of this latter pattern 

difficult, but other studies of S. typhle have also shown that larger females transfer more 

eggs per copulation, indicating that this pattern is probably a general feature of this 

species’ reproductive ecology (Berglund et al. 1986b).  The effect of order on the 

number of eggs transferred per copulation could be called “first-female advantage”, with 

first females transferring more eggs per copulation than second females.  This first-

female advantage probably stems from the fact that the first female to mate is depositing 

eggs into a completely empty pouch and is therefore less constrained by the amount of 

space remaining in the pouch than are subsequent females.  Thus, while the number of 
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eggs transferred does not affect the proportion of embryos surviving, females that are 

able to mate more often with empty males could increase their total fitness by depositing 

more eggs within the brood pouch than subsequent females. While the potential for this 

type of post-copulatory choice exists, whether this first female effect is mediated by 

males, by allowing the first female encountered to deposit more eggs than subsequent 

females, or whether it is mediated by females, with females differentially investing eggs 

depending on a male’s reproductive status, is unclear and should be evaluated further.     

     It is still unclear as to whether or not a significant correlation exists between female 

size and the proportion of embryos that survived through the brooding period. While our 

data did show a significant correlation between female size and the proportion of 

embryos that survived, it is possible that counting errors in the number of eggs 

transferred per female may be driving this significance.  If there was a bias in counting 

error, where the number of eggs transferred from larger females was underestimated 

more often than those of smaller females, than this bias could have led to the significant 

relationship observed.  However, if this error is random, than a significant relationship 

should truly exist between female size and the proportion of embryos that survived.   

Unfortunately, even if this significant relationship exists, it is extremely difficult to 

distinguish between male and female effects on survivorship as a consequence of egg 

size, as larger eggs could survive better as a consequence of their intrinsic quality or as a 

consequence of some form of cryptic male choice supporting larger eggs.  Interestingly, 

if males are cryptically choosing to allocate more resources to larger eggs, such a 

process could actually reinforce their pre-copulatory preferences, since males prefer to 
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mate with larger females and larger females produce larger eggs (Berglund et al. 1986b; 

Berglund and Rosenqvist 2003).  However, further work is necessary to determine 

whether or not cryptic choice based on female size is occurring in S. typhle.   

     Consideration of the potential sources of female fitness variation during the process 

of reproduction sheds some light on potential factors influencing sexual selection in sex-

role reversed pipefish (Figure 2.4).  Clearly, a large amount of the variance in relative 

fitness of females is due to differences among females in mating success, so this species 

exhibits a large potential for pre-copulatory sexual selection, mediated by dominance 

hierarchies or male choice.  However, broad-nosed pipefish exhibit high variance in 

embryo survivorship and number of eggs transferred per copulation, such that even in 

the absence of variation in mating success, differences among females in embryo 

survivorship and egg transfer ability could result in strong directional sexual selection.  

Thus, we would expect strong selection on traits in females that enhance egg transfer or 

embryo survivorship.  Results from the present experiment suggest that a male’s 

perception of female parasite load makes at most an extremely small contribution to 

post-copulatory fitness variation, however.  Overall, the high variances in embryo 

survivorship and eggs transferred per copulation indicate a very high potential for post-

copulatory sexual selection in pipefish, but if post-copulatory sexual selection is 

occurring, perceived parasite load plays a very small role. 

     In principle, cryptic choice has the potential to be an important mechanism of sexual 

selection allowing for directional selection that may profoundly influence the evolution 

of secondary sexual characteristics (Eberhard 1996; Birkhead and Pizzari 2002; Pilastro 
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et al. 2004).  If we interpret our results in terms of a male’s overall perception of female 

quality, it appears unlikely that male S. typhle use post-copulatory mechanisms to 

directly select for visible aspects of the adult female’s phenotype, such as perceived 

parasite load, ornamentation or body size.  However, we only addressed perceived 

female parasite, so this assertion is an extrapolation that should the subject of additional 

work.  These results lead to the conclusion that if cryptic male choice is occurring in 

pipefish, such choice most likely acts upon gamete characteristics rather than upon traits 

of the adult producing the gametes.  Such a situation also seems to hold in the guppy, 

Poecilia reticulata (Evans et al. 2003), in which artificially inseminated females were 

shown to bias offspring survival in favor of preferred males rather than non-preferred 

males without previous exposure to either male.  Choice in this case is due to 

characteristics of the gametes themselves, since it is unlikely that haploid sperm are able 

to express male attractiveness (Evans et al. 2003).   

     While many studies have suggested the presence of cryptic mate choice in a number 

of species (Edvardsson and Arnqvist, 2000; Ward, 2000; Pilastro et al., 2004), 

methodological limitations often make interpretation of patterns difficult.  As a 

consequence, some mechanisms of cryptic choice, such as differential allocation, are 

reasonably well supported, but others, such as gamete choice in the absence of 

inbreeding, remain controversial (Pizzari and Birkhead 2000; Bussière et al. 2006).  Our 

results contribute another example with no clear evidence of cryptic choice.  However, 

we are still in need of additional research regarding several critical potential mechanisms 
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of cryptic choice, and sex-role reversed taxa have the potential to contribute to this 

endeavour.   
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CHAPTER III 

MALE AND FEMALE MATE PREFERENCE IN THE GULF PIPEFISH, 

SYNGNATHUS SCOVELLI 

 

Introduction 

     Since Darwin first proposed the theory of sexual selection (Darwin 1859, 1871) 

researchers have been fascinated by the concept of mate choice.  Typically choice of 

mates is performed by females since large investments in offspring limit their potential 

reproductive rates compared to males (Trivers 1972).  In these cases, availability of 

females limits male reproductive success, resulting in males competing over access to a 

limited number of females, while females are selective when choosing potential mates.  

Researchers have long associated the evolution of many elaborate traits and behaviors in 

males with female choice mechanisms.  Some such examples include the elongated tail 

of the widowbird (Andersson 1982) and the elaborate bowers constructed by bower birds 

(reviewed in Frith and Frith 2004).  In many cases, the sole purpose of these elaborate 

ornaments is to increase mating success and potential reproductive fitness by attracting 

additional mates.  This is because mating and reproductive success are highly correlated 

for the sex experiencing strong sexual selection (Bateman 1948) and thus, any gain in 

mating success by individuals may pay-off in terms of increased relative reproductive 

fitness.   

     In most cases, female choice for particular male traits has led to the development of 

morphological and behavior differences between the two sexes (reviewed in Andersson 
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1994).  Of the morphological differences, body size is one of the most easily 

recognizable.  Selection for increased male body size has been attributed to both 

intrasexual competition, where larger male body size is beneficial during physical 

contests, and through female choice mechanisms (reviewed in Andersson 1994), where 

females may benefit by mating with larger males if they are able to gain access to better 

resources than smaller males. 

     Behavioral traits used in courtship rituals have also been shown to be related to 

mating success (reviewed in Andersson 1994; Boake and Hoikkala 1995; Kotiaho et al. 

1996; Hoikkala and Suvanto 1999; Wogel et al. 2005; Demary et al. 2006; Murai and 

Backwell 2006; Baird et al. 2007; Delaney et al. 2007). Many of these traits have been 

shown to be condition dependent in a number of different taxa (fish:  Nicoletto and 

Kodrick-Brown 1999; birds:  Borgia et al. 2004; insects: Ahtiainen et al. 2001; Kotiaho 

2002; amphibians: reviewed in Wells 2001; crustaceans:  Backwell et al. 1995) and thus 

provide an honest signal for females to assess male health and viability.  However, the 

benefit to females in selecting males with more intense courtship behavior is still 

debatable.  In some cases, females may receive direct benefits from these individuals if 

males in better condition are able to provide additional resources.  Yet, in instances 

where males only contribute gametes with no other form of provisioning, the benefit 

becomes less clear.   Many studies have suggested that by choosing these males, females 

may gain indirect benefits through an increase in the mating and reproductive success of 

offspring (reviewed in Andersson 1994).  Some of these models include the “good 

genes” models (Zahavi 1975) and the “sexy sons hypothesis” (Weatherhead and 
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Robertson 1979).  In these cases, the female’s relative fitness does not change; however, 

by providing her offspring with genes that may be more resistant to disease or parasites 

(good genes model) or with genes that insure her male offspring are attractive and have 

higher than average mating success (sexy sons), the female can increase her indirect 

fitness.  However, problems concerning many of the models still exist and the relative 

contribution of these models toward the evolution of female choice is debatable 

(reviewed in Jones and Ratterman 2009).  In addition, it is likely that multiple 

mechanisms are contributing to the evolution and maintenance of female mate choice.    

   While much of the research concerning mate choice has centered around organisms 

with traditional sex roles, mate choice mechanisms also exist in organisms that are sex-

role reversed.  In these situations, sexual selection acts more strongly on females than on 

males and the morphological and behavioral traits used to assess mate quality evolve in 

females (Clutton-Brock and Vincent 1991).  The reason for this reversal of sex roles 

could be due to a number of factors such as higher potential reproductive rates in 

females (Clutton-Brock and Vincent 1991; Clutton-Brock and Parker 1992; Ahnesjö et 

al. 2001), female-biased operational sex ratios (Emlen and Oring 1977; Kvarnemo and 

Ahnesjö 1996), higher investment in offspring care from males relative to females 

(Trivers 1972), or costs of breeding (Kokko and Monaghan 2001; Simmons and 

Kvarnemo 2006).  Regardless of the reason for this reversal, availability of males limits 

female reproductive fitness and thus leads to an increase in competition between females 

over access to males.  
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      Strong competition among females over access to males is particularly common in 

polyandrous bird systems.  In these cases, operational sex ratios tend to be skewed 

toward females since males can only mate with one female, while females are able to 

mate with multiple males.  However, intense female competition has also been observed 

in polygynadrous (Berglund et al. 1989; Jones et al 1999), monogamous (Kvarnemo et 

al. 2007; Sogabe and Yanagisawa 2007) and in some instances polygamous mating 

systems (Silk et al. 1981; Fedigan 1983; reviewed in Clutton-Brock 2007).  In some 

cases, this competition has lead to the development of female weapons, ornaments and 

behavioral traits that allow females to gain access to or gain the attention of perspective 

males (reviewed in Clutton-Brock 2007).  Similar to male secondary sex traits, 

expression of these traits in females has been shown to significantly impact female 

reproductive success through increased mating opportunities due to either male 

preference (Cumming 1994; Berglund et al. 1997; Amundsen and Forsgren 2001; LeBas 

and Marshall 2000; Berglund and Rosenqvist 2003; Torres and Velando 2005; Griggio 

et al. 2005), or increased competitive ability over rival females (Berglund and 

Rosenqvist, 2001).  Male preference for females may directly impact male reproductive 

success as well, since it has been shown that mating with preferred versus non-preferred 

females directly impacts offspring viability in house mice (Drickamer et al 2003; 

Gowaty et al. 2003).     

     In cases where the condition of both parents directly impacts offspring fitness it is 

possible for both sexes to show some form of preference for mates, even when sexual 

selection is stronger on one sex than the other (Kokko and Monaghan 2001; Kokko and 
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Johnstone 2002).  This type of mutual mate choice normally occurs when both sexes 

contribute significantly to offspring quality and can evolve in systems regardless of the 

mating system and/or direction of sexual selection (Kokko and Johnstone 2002).  For 

example, in organisms with male parental care, females should choose males who are 

best able to provide resources for the offspring, while males should choose females with 

high quality eggs, since egg quality and offspring viability tend to be correlated 

(Kjorsvik et al. 2003; Gagliano and McCormick 2007). In these cases, since both 

females and males invest in offspring quality, females by producing costly eggs and 

males by providing care to the offspring, both sexes may show some type of mate 

preference. Thus, while pressure to obtain mates may be stronger on one sex, it cannot 

be assumed that this competition robs them of any choice.  

    In this study, both male and female mate preferences were assessed in a polyandrous 

sex-role reversed pipefish. Pipefish are one of the most studied model systems for 

examining sexual selection theory in sex-role reversed organisms.  In addition, pipefish 

are one of the most interesting groups in which to examine not only mate choice 

mechanisms but also to evaluate how mating systems may influence choice since the 

mating system is extremely varied throughout this group (Wilson et al. 2003).  All 

pipefish species exhibit male parental care and in many cases males have developed a 

specialized pouch where the offspring develop.  During mating, female pipefish deposit 

eggs into the brood pouch of males where the eggs are fertilized and maintained during 

development.  Males provide oxygen (Hout 1902), osmoregulation (Leiner 1934; Linton 

and Soloff 1964; Quast and Howe 1980; Watanabe et al. 1999; Partridge et al. 2007) and 
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nutrients to the developing young (Haresign and Shumway 1981; Berglund et al. 1986a; 

Ripley and Foran 2009).  At birth, the juveniles are released into the environment where 

no other paternal care takes place.  The most commonly used pipefish for assessing mate 

choice mechanisms is the broad-nosed pipefish, Syngnathus typhle.  S. typhle is a 

polygynandrous species, where males and females both mate multiply within a breeding 

bout (Jones et al. 1999).   Some degree of dimorphism exists in this species in that 

females induce an ornament during courtship and intrasexual competition (Berglund et 

al. 2005).  In addition, this ornament appears to be an honest indicator of female quality 

since it has been shown that female fecundity is related to female ornamentation 

(Berglund et al. 1997).  Males can also temporarily display this ornament but to a lesser 

degree than females (Berglund et al. 2005).  Studies have shown that S. typhle shows 

some degree of mutual mate choice with individual size, ornamentation and dominance 

all contributing to both male and female preference (Berglund et al. 1986b; Berglund 

1995; Berglund and Rosenqvist 2001; Sandvik et al. 2000; Berglund et al. 2005).  

Choice of mates also has a direct influence on reproductive fitness in this species given 

that individuals who mate with chosen partners tend to produce higher quality offspring 

than individuals forced to mate with less preferred partners (Sandvik et al. 2000).   

     While S. typhle is the most studied of the pipefish species, the mating preferences of 

most of the other 200 species of pipefish are still relatively unknown.  One particularly 

interesting species in which to examine mate choice mechanisms is the Gulf pipefish, S. 

scovelli.  S. scovelli is strongly polyandrous and this species shows one of the largest 

discrepancies between the variance in male and female mating success of any 



42 
 

polyandrous species to date (Jones and Avise 1997b; Jones et al. 2001).  Because of the 

mating system of this species, theory would predict that female-female competition 

would be stronger and male choice would be more stringent in S. scovelli than in S. 

typhle.  As expected from their mating systems, S. scovelli is more sexually dimorphic 

than S. typhle.  Females are larger than males and have a deeply keeled abdomen with 

iridescent transverse stripes (Jones and Avise 1997b; Jones et al. 2001).  This 

dimorphism becomes even more distinct during courtship because females develop a 

striking breeding coloration that consists of alternating black and white stripes and the 

dorsal fin darkens and becomes erect.  In addition, females exhibit specific courtship 

behaviors that may be used by males to assess potential mating partners.  Similar to what 

has been observed for S. typhle, females of this species may also benefit by being 

selective in their choice of mate.  Since male pipefish are responsible for all parental 

care and additional nutrient provisioning (Berglund 1986a; Ripley and Foran 2009) and 

the number of eggs a female can deposit within the brood pouch of the male may limit 

her reproductive success, females may benefit by choosing larger, high quality males as 

mates.  Thus, because of the strong investment presented by males and females of this 

species, mutual mate choice may also be present in this system.  In this study, we focus 

on addressing the factors that influence male mating preference in this polyandrous sex-

role reversed pipefish, since factors influencing mate choice have yet to be addressed in 

this species; however, the influence of male size on female preference is also assessed 

since females may benefit from mating with larger males in terms of increase 

reproductive success.   
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Methods and Materials 

Pipefish Collection and Maintenance 

     Male and female S. scovelli pipefish were collected from a low salinity environment 

at Meaher State Park, Baldwin Co., AL (30°66624, 87°92731).  Pipefish were collected 

using a hand seine from shallow Vallisneria beds from August – November 2004 and 

again in July – September 2007.  Males and females were segregated upon return to the 

lab and maintained in separate 50 gallon barrels connected to a recirculating system.  

Water conditions within the laboratory were prepared and maintained so as to match the 

water conditions from their natural low salinity habitat (see Partridge et al. 2007).  

Pipefish were fed Artemia nauplii twice daily and diets were supplemented with 

copepods collected from a local pond.  Pipefish were acclimated to laboratory conditions 

for at least 3 days before taking part in a trial.  

 

Mate Preference Trials 

      All preference trials were performed in the morning 10 minutes after the beginning 

of the 12 hour daylight cycle.  Either a Cannon Optura 500 MiniDV or a Sony HDV 

1080i MiniDV video camera was used to videotape all mate choice trials for 1 hour.  

Behaviors were analyzed using JWatcher version 1.0 animal behavior software (2006, 

University of California Los Angeles, Los Angeles, CA: http://www.jwatcher.ucla.edu/). 

 

     Male Preference.  In order to determine if female size influenced male mate choice, a 

standard mate choice design was used in which focal males were allowed to 
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simultaneously assess both a small and large stimulus female.  Prior to the trials, the 

standard length (cm) and maximum body depth (cm) of female pipefish were obtained.  

Females were then paired based on size and color.  Female pairs consisted of one large 

female and one small female with large females being at least 5 mm larger than their 

small female partner.  Both the focal male and the stimulus females were placed into 

mate-choice tanks the night before the trial began.  The preference choice tests were 

conducted in 10 gallon tanks that were divided lengthwise by a transparent barrier and 

the back chamber was divided in half by an opaque divider that was orthogonal to the 

transparent divider.  The two stimulus females were placed in the tank with the small 

female in one small chamber (25W x 28H x 12.5D cm) and the large female in the other 

small chamber (25W x 28H x 12.5D cm).  Since the two smaller chambers were divided 

by an opaque barrier, stimulus females were not allowed to visually assess one another 

but they were allowed to observe the male.  The focal male was placed in the front 

longer compartment (50W x 28H x 12.5D cm), from which he could visually observe the 

females in the two small compartments (Figure 3.1).   

     For male choice trials, behaviors of both the focal male and each stimulus female 

were analyzed.  The proportion of time the focal male spent performing the following 

behaviors were examined:  1) swimming near the divider of each female (defined as 

when the males swims in a Z-like pattern up and down the transparent divider), and 2) 

dancing (defined as when a male performs an up and down bobbing motion).  In 

addition, the number of twitches (defined as abrupt shaking of the individual lasting for 

less than a second) that a male performed toward each females was recorded.  For a  
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Figure 3.1:  Diagram of mate choice tank.  For male choice trials (pictured above), the 
focal male was placed in the front compartment while stimulus females were each placed 
within the separate back compartments.  The focal male was separated from stimulus 
females by a clear perforated plexi-glass divider to allow for both visual and chemical 
cues to be detected.  Stimulus females were separated by an opaque plexi-glass divider 
to prevent visual contact between the individuals.  For female choice trials the mate 
choice design was similar except that the focal female was placed within the front 
compartment while the stimulus males were each placed in the separate back 
compartments. 
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quantitative measure of choice, we lumped the male behaviors of swimming near the 

divider and dancing into a more inclusive category termed “male response time”.  We 

also recorded the proportion of time each focal male spent on the same side of the tank 

with each female.  To define male preference, the stimulus female that the focal male 

spent the majority of the time responding to was designated as the preferred female, 

while the other female was deemed the non-preferred female.  Finally, we recorded and 

analyzed the behavior of each female in the trial (see below) to determine if female 

courtship behavior had an effect on male choice.   

 

Female Preference.  Similar to that described for the male preference test, this study also 

examined the influence of male size on female mate choice.  Prior to the trials the 

standard length (cm) and maximum body depth (cm) of each male was measured.  Males 

were then paired based on size and color.  The male pairs consisted of one large male 

and one small male, with large males being at least 5 mm larger than their small male 

partner.  The same experimental design was used as in the male-choice trials (see 

above), except the focal female was place in the front longer compartment, while the 

stimulus males were each placed in the separated back compartments (Figure 3.1).  

Stimulus males were separated from one another by an opaque barrier that inhibited 

visual contact between them.  The proportion of time the focal female spent performing 

the following behaviors toward each male was recorded:  1) color display (defined as the 

female displaying a darkened, erect dorsal fin and high contrast transverse stripes along 

the body), 2) posing (defined as the female moving sharply into a vertical position and 
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assuming a distinct posture with the abdomen protruding), and 3) dancing (defined 

above).  We also recorded the number of twitches the focal female performed toward 

each male.  In S. scovelli, the female color display appears to be a static mating behavior, 

possibly indicating female receptivity, as this behavior often occurs in the absence of 

males.  However, posing and dancing are behaviors that females actively perform toward 

males.  Thus, the proportion of time females spent posing and dancing were grouped to 

represent “active female courtship behavior”.  Finally, the proportion of time focal 

females spent on the same side of the tank with each male was recorded.   

 

Male and Female Interaction.  In many cases, when male and female behaviors are 

significantly correlated it is informative to determine which sex may be driving this 

interaction. Because all behaviors that were recorded in Jwatcher during the mate choice 

trials were time stamped, we were able to examine the number of times a change in 

female courtship behavior elicited a change in male response behavior and the 

proportion of time a change in male response behavior elicited a change in female 

courtship behavior.  For this component, we recorded the number of times a change in 

male response behavior (i.e., male changing from swimming to swimming near the 

divider) occurred within 10 seconds after a change in female courtship behavior (i.e., a 

female switched from posing to dancing).  Similarly, the number of times a change in 

female courtship behavior occurred within 10 seconds after a change in male response 

behavior was recorded. We then took the number of times a change in male response 

behavior followed a change in female courtship behavior and divided that by the total 
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number of changes in female courtship behavior to determine the proportion of time a 

change in female behavior elicits a change in male behavior.  The proportion of time a 

change in male response behavior elicited a change in female courtship behavior was 

determined by dividing the number of times a change in female courtship behavior 

followed a change in male response behavior by the total number of changes in male 

response behavior.   

 

Statistical Analysis 

     Prior to analysis, all data was appropriately transformed to achieve best approximate 

normality.  When normality was not achievable, appropriate non-parametric tests were 

employed.  Tests of the mean were used to determine if the proportion of total time focal 

males spent with each female, the relative proportion of time focal males spent 

responding to each female, the total proportion of time focal females spent with each 

male, the relative proportion of time focal females spent in color display in front of each 

male, and the relative proportion of time focal females actively courted each male 

differed from a random expectation of 0.5.  Paired t-tests were used to determine if the 

relative proportion of time females actively courted and the number of twitches females 

performed to males differed significantly between preferred and non-preferred females.  

A Wilcoxon two-sampled signed rank test was used to determine if the number of 

twitches focal males performed to each female, the number of twitches focal females 

performed to each male and the number of twitches stimulus females performed to focal 

males significantly differed.  In order to determine the factors that were most associated 
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with male mating preference a stepwise multiple regression analysis examining both 

female size and behavioral data was employed.  In these trials, since one male chose 

between two stimulus females, we evaluated whether the difference in the relative 

proportion of time males responded to the two stimulus females was correlated to the 

difference in size of the two stimulus females and the difference in the proportion of 

time stimulus females spent performing specific courtship behaviors. We also examined 

whether mating preference was based on size assortative mating in this species.  For this 

we ran a linear regression analysis to determine if the size of the focal individual was 

correlated with size of the individual most preferred.   In order to determine whether 

changes in female behavior were influenced by changes in male behavior or vice versa 

we examined the proportion of times a change in female courtship behavior induced a 

change in male response behavior and the number of times a change in male response 

behavior induced a change in female courtship behavior.  A paired t-test was then used 

to determine if the induced changes in behavior differed between males and females. 

 

Results 

     The results of this study suggest that female behavior may be the dominant factor 

influencing male choice; however female size may also be contributing to male 

preference.   The proportion of time males spent by females and the relative proportion 

of time males responded to females did not differ between large and small females; 

however, males did perform significantly more twitches to larger females than to smaller 

females (Table 3.1).  Larger stimulus females also spent significantly more time in their  
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Table 3.1:  The effect of female size on male mate choice and female courtship behavior.  
Transformation on the number of twitches by males and females was unable to satisfy 
the assumption of normality, so a Wilcoxon two-sampled paired signed rank test was 
performed.  All data are reported as mean ± S.E. of untransformed data. 
Male Behaviors Small Female Large Female N T‐Test P‐value

Prop. of Time w/ Female 0.50±0.06 0.50±0.06 17 |t|1,16 = 0.06 0.88

Rel. Prop. Time Responded to Female 0.42 ± 0.07 0.57 ± 0.067 17 |t|1,16 = 1.08 0.3

Number of Twitches to Female 2.1 ± 0.8 6.3 ± 1.4 17 |z|1,16 = 2.44 0.015

Female Behaviors Small Female Large Female N Paired Test P‐value

Rel. Prop. Time  in Color Display 0.32 ± 0.09 0.68 ± 0.09 16 |t|1,15 = 2.15 0.048

Rel. Prop. Time Actively Courting 0.34±0.09 0.66± 0.09 16 |t|1,15 = 1.87 0.081

Number of Female Twitches 4.2 ± 1.6 8.2 ± 1.9 17 |z|1,15 = 1.50 0.132
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color display than smaller stimulus females; yet, the relative proportion of time females 

spent actively courting and the number of twitches females performed did not differ 

between the two (Table 3.1).  While large females did spend more time in their color 

display than small females, this did not impact male response time since there was no 

significant correlation between male response time and the proportion of time females 

spent in color display (r2 = 0.10, n = 17, p = 0.25).   

     Data from female choice trials suggest that female preference is not significantly 

influenced by male size.  Male size did not influence the total proportion of time focal 

females spent in front of each male, the relative portion of time focal females spent in 

color display in front of each male, the relative proportion of time focal females spent 

actively courting each male or the number of twitches focal females preformed toward 

each male (Table 3.2).   

     Stepwise multiple regression analysis showed that female behavior significantly 

influenced male response time.  The factors that were significantly correlated with male 

response time were the relative proportion of time females actively courted and the 

interaction between female active courtship and the number of twitches a female 

performed (multiple regression: overall F7,16 = 4.42, r2 = 0.57, n = 17, p=0.001; relative 

proportion of time females actively courted: |t| = 3.63, p = 0.002; interaction between 

relative proportion of time females actively courted and number of twitches performed: 

|t| = 2.41, p = 0.03).  As would be expected, preferred females spent significantly more 

time actively courting focal males (Figure 3.2); however there was no significant  
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Table 3.2:  The effect of male size on female mate choice. Transformation of the number 
of twitches performed by females did not satisfy the assumption of normality, so a 
Wilcoxon two-sampled signed rank test was performed.  All data are reported as mean ± 
S.E. of untransformed data. 
Female Behavior Small Male Large Male N  T‐test P‐value

Prop of Time w/ Male 0.51 ± 0.08 0.49 ± 0.08 8 |t|1,7 = 0.27 0.79

Rel Prop of Time in Color Display 0.51 ± 0.10 0.49 ± 0.10 8 |t|1,7 = 0.09 0.93

Rel Prop of Time Actively Court Male 0.66 ± 0.13 0.34 ± 0.13 8 |t|1,7 = 1.44 0.19

Number of Twitches to Male 2.4 ± 1.3 3.8 ± 1.3 8 |z|1,7 = 0.76 0.45  
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Figure 3.2:  The relative proportion of time preferred and non-preferred females spent 
actively courting focal males were significantly different (|t|1,16 = 4.39, n = 16, p = 
0.0005).  The stimulus female that the focal male spent the majority of the time 
responding to was designated as the preferred female, while the other female was 
deemed the non-preferred female.  Error bars represent standard error of the mean. 
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difference in the number of twitches preformed by preferred and non-preferred females 

(Figure 3.3). 

     In seahorses, positive size assortative mating occurs and may have played an 

important role in driving speciation in this group (Jones et al. 2003).  However, this does 

not appear to be the case for S. scovelli.  Focal male size and the size of the preferred 

stimulus female were not significantly correlated (r2 = 0.05, n = 17, p = 0.38).  Similarly, 

female size and the size of the stimulus male of which she most actively courted were 

not correlated (r2 = 0.01, n = 8, p = 0.77), suggesting that assortative mating based on 

female preference does not occur. 

     Often when male and female behaviors are correlated, such as the interaction between 

male response time and female courtship behavior, it is important to determine which 

sex is driving the interaction.  In other words, does female courtship behavior drive male 

response behavior or are females responding to changes in male behavior.  Based on our 

data, we found that the interaction between male response time and female active 

courtship behavior appears to be driven most often by the female.  Changes in female 

active female courtship behavior elicited a change in male response behavior 

significantly more than a change in male response behavior elicited a change in female 

active courtship behavior (proportion of time a change in female courtship behavior 

elicited a change in male response behavior:  0.48±0.05 (mean ± S.E.), proportion of 

time a change in male response behavior elicited a change in female courtship behavior: 

0.30±0.04; n = 24, |z|1,23 = 3.04,  p = 0.002).   However, while female behavior may be 

driving male choice, changes in male behavior did elicit changes in female courtship  
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Figure 3.3:  The number of twitches preferred and non-preferred females performed 
toward focal males.  The stimulus female that the focal male spent the majority of the 
time responding to was designated as the preferred female, while the other female was 
deemed the non-preferred female.  While the number the number of twitches performed 
by preferred and non-preferred female was not significantly different (|z|1,14 = 1.85, n = 
15, p = 0.06), the interaction between the number of twitches performed and female 
active courtship behavior was significantly correlated to male response time (|t| = 2.41, n 
= 17, p = 0.03). Error bars represent standard error of the mean. 
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approximately 30% of the time, suggesting that both males and females may be helping 

to maintain this interaction. 

 

Discussion 

     The main goal of this study was to (1) determine the morphological and behavioral 

factors that may influence male preference and (2) determine if male size impacts female 

preference in the Gulf pipefish.  Based on our data, female behavior is most likely the 

dominant factor driving male preference.  Female active courtship behavior and the 

interaction between female active courtship behavior and the number of twitches females 

performed were significantly correlated with male response time.  However, female size 

may also contribute to male preference since males twitched significantly more toward 

large females than smaller females.  The fact that female size did not have more of an 

impact on male mate choice is surprising since data from Jones et al. (2001), which 

evaluated mating success of S. scovelli in natural populations, showed that larger, more 

ornamented females had increased mating success and size preferences have been 

observed in other Syngnathus species (S. typhle, Berglund et al. (1986b); S. abaster, 

Silva et al. (2007)).  One potential explanation for the discrepancy between our data and 

that of Jones et al. (2001) is that we did not allow for female-female competition in this 

study.  Stimulus females in the mate choice tanks were separated by an opaque divider to 

prevent both visual and physical contact, thus preventing the two females from 

interacting.  In natural populations this female-female interaction is likely to occur 

during matings and females have been observed to interrupt the mating attempts of other 
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females (personal observation).  In this case, female size could play an important role in 

determining mating success.  Interestingly, while the amount of time females spent in 

color display was not significantly correlated with male response time, larger females 

were able to maintain this coloration longer than smaller females.  This lack of an effect 

on male response may be because the color display serves as a general indicator of 

female receptivity, while more active behaviors, such as dancing and twitching, may 

provide a more honest signal of female condition if they are more energetically costly.  

However, the fact that larger females can display the color change longer than smaller 

females may allow these females to broadcast their willingness to mate longer, possibly 

providing them with more mating opportunities.    

     In many systems, traits that indicate female fecundity or condition are commonly 

those that influence male preference.  While no one has examined the energetic cost of 

the female behaviors that are associated with male choice in this species, such as posing, 

dancing and twitching, it is likely that female display rate and condition are correlated 

and indeed a similar relationship has been observed in S. typhle (Berglund et al. 1986b).  

Also, in S. scovelli a positive linear relationship between female body depth and female 

gonadal somatic index (GSI) exists, suggesting that female body depth may be an 

indicator of female fecundity (Bolland and Boettcher 2005).  However, we did not find 

an effect of female body:depth to length ratio on male response time, suggesting that 

female behavior may override most physical traits that could influence male preference.  

However, female size may still have some influence on male preference since males 

performed more twitches to larger females than to smaller females.        
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     While female size may have some effect on male preference, female preference was 

not influenced by male size.  This is again somewhat surprising considering that larger 

males may be able to accept more eggs from females, thus increasing female 

reproductive fitness values.  The lack of female size preference in S. scovelli may be the 

result of both strong female-female competition and the fact that limited access to males 

may restrict a female’s ability to fully assess male quality prior to mating.  The 

operational sex ratio of the population from which we sample is heavily skewed toward 

females (4 receptive females per non-pregnant male) (Bolland and Boettcher 2005).  

Thus, females may be forced to mate with any receptive male since the benefit of being 

choosy may not offset the risk of losing limited mating opportunities.   

     One major caveat to this study is that we were not able to fully assess stimulus male 

behavior during these trials, and thus do not know the impact of male behavior on 

female mate choice.  However, it does appear that females may be influenced by male 

behavior since changes in male behavior induced changes in female courtship behavior 

at least 30% of the time.  This suggests that while female courtship behavior may be 

driving more changes in male behavior than the reverse, male behavior is likely 

influencing female behavior as well.  Increased male response behavior may be 

providing positive reinforcement to courting females, thus allowing females to determine 

whether males are interested in mating.  If courtship behavior is costly to females, this 

type of positive feedback loop would allow females to conserve energy by reducing the 

amount of time they spend courting nonresponsive males.  Therefore, due to the strong 
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interaction between female and male behavior, future studies should take male behavior 

into account when assessing female preference.        

     Traditionally, S. typhle has been the model organism used to assess mate selection in 

sex-role reversed pipefish.  However, striking morphological and behavioral differences 

between S. typhle and S. scovelli exist, suggesting that factors contributing to mate 

preference may not be universal for all pipefish species.  S. scovelli and S. typhle differ 

significantly in the degree of sexual dimorphism that exists between the two species.  

This difference could easily be explained by the fact that sexual selection acts more 

strongly on female S. scovelli as compared to S. typhle, thus leading to more distinct 

secondary sexual traits in this species (Jones et al. 2001).  However, mate choice 

mechanisms may also influence the degree of variation in sexual dimorphism between 

species.   Mutual mate choice has been suggested to lead to a reduction in the degree of 

sexual dimorphism, potentially leading to the two sexes becoming monomorphic 

(Clutton-Brock 2007).  While this should continue to be tested, the difference in the 

presence of mutual mate choice between S. typhle, which shows some degree of mutual 

mate choice (Sandvik et al. 2000; Berglund et al. 2005), and S. scovelli, may also 

contribute to the differences in sexual dimorphism between the two species. In S. typhle 

both males and females display courtship ornaments, although the display of the male is 

significantly less than that of the female and both sexes show a preference for mates that 

display the ornament (Berglund et al. 2005).  Continued selection by both sexes for the 

same trait would eventually lead to a decreased sexual dimorphism in the group.  While 

size preference has been observed in both sexes of S. typhle, this does not appear to be 
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the case for S. scovelli.  In addition, while female S. typhle show a preference for more 

ornamented males, S. scovelli males show no sign of ornamentation during courtship and 

induction of female ornaments in males actually leads to female discrimination during 

choice trials (see Chapter IV).  Males do, however, exhibit some courtship behaviors that 

are similar to females, such as dancing and twitching, which may be used by females to 

assess male condition and may influence female preference.  Therefore, as stated 

previously, the effect these behaviors have on female mate preference should be further 

evaluated.  

     From this study we show that male mate choice is significantly influenced by female 

courtship behavior in a polyandrous sex-role reversed pipefish.  In addition, while other 

studies have shown that female size significantly impacts mating success (Jones et al. 

2001), we suggest that this size effect may be due to female-female competition and may 

only play a limited role in male mate choice. However, studies addressing the impact of 

female size on intra-sexual competition should be employed.  We found no affect of 

male size on female mate choice.  However, it is possible that females are using 

behavioral traits to assess male quality and we cannot absolutely rule out the possible of 

female mate choice in the species.  Finally, we show that changes in female courtship 

behavior can drive changes in male response behavior but that male behavior may also 

aid in reinforcing female courtship behavior.  Future work on this species should include 

determining the cost of female display behavior and further analysis in assessing how 

male behavior may be impacting female choice.  
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CHAPTER IV 

SHORT TERM EXPOSURE TO A SYNTHETIC ESTROGEN DISRUPTS 

MATING DYNAMICS IN A SEX-ROLE REVERSED PIPEFISH 

 

Introduction 

     Sexual selection is a major evolutionary mechanism that often results in the evolution 

of secondary sex traits, which play a significant role in competition for access to mates.  

Mate choice mechanisms often lead to the development of elaborate ornaments that are 

used by individuals to assess mate quality and experimental alterations of these traits can 

significantly impact male mating success.  While expression of a secondary sexual trait 

is usually limited to one sex, the genes influencing their development are usually present 

in the genomes of both sexes (Andersson 1994).  Sex-specific expression is often the 

result of the relevant genes being under the control of sex-steroid hormones, testosterone 

in males and estrogen in females (reviewed in Folstad and Karter 1992; Andersson 1994; 

Parker et al. 2002; McGraw et al. 2006).  Because secondary sexual trait expression 

varies with hormone levels more than that of reproductive ability, these traits may be 

more sensitive to small levels of environmental pollution, particularly when the 

pollutants are endocrine disrupting compounds, such as bisphenol A, polychlorinated 

biphenyls and synthetic hormone mimics.    

     Endocrine disruptors are compounds that interfere with normal hormone function and 

have been shown to greatly impact population viability by interfering with reproduction 

(Kidd et al. 2007).  In addition, studies have shown that exposure to environmental 
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pollutants can affect the development of secondary sexual traits, causing them to be 

suppressed (Arellano-Aguilar and Garcia 2008) or expressed in the opposite sex (Ueda 

et al. 2005; Larsen et al. 2008).   While most of the research concerning the impact of 

endocrine disruptors on population health has focused on their effects on primary sexual 

organs, particularly the gonads (Allen et al. 1999; Hill and Janz 2003; Moncaut et al. 

2003; Weber et al. 2003; Vandenbergh et al. 2003; Palace et al. 2006; Pettersson et al. 

2006; Brown et al. 2008) and reproductive ability (Hill and Janz 2003; Maunder et al. 

2007; Peters et al. 2007; Schäfers et al. 2007), the number of studies concerning the 

effect of these compounds on pre-copulatory mating behavior is generally increasing 

(Bell 2001; Bjerselius et al. 2001; Oshima et al. 2003; Robinson et al. 2003; Crews et al. 

2007; Saarisota et al. 2009).  However, very few studies have assessed how exposure to 

endocrine disruptors affect secondary sexual trait expression (Ueda et al. 2005; Larsen et 

al. 2008) and how that may in turn impact mate choice mechanisms (Arellano-Aguilar 

and Garcia 2008).  This situation is particularly surprising since the ability of individuals 

to maintain secondary sexual traits significantly influences mating dynamics and mating 

success. One potential reason for this gap in knowledge is that many of the model 

species used for the study of endocrine disruptors do not maintain obvious traits 

involved in mate choice.  However, mate choice and sexual selection are key 

components of reproduction and in turn population viability, so there is a critical need to 

understand the effects of endocrine disruptors on these evolutionary processes.  In this 

study, we examine how short-term exposure to environmentally relevant concentrations 

of a synthetic estrogen affects multiple aspects of reproductive fitness, including mating 



63 
 

opportunity, mating success and reproductive success, in a sex-role reversed pipefish 

characterized by strong mating preferences and sexual selection.  Our work provides one 

of the most comprehensive studies of the effects of an endocrine disrupting compound 

on reproductive behavior and the only investigation of the effects of such contaminants 

on a sex-role reversed organism. 

      One endocrine disruptor that has received a large amount of attention is 17α-

ethinylestradiol (EE2).  EE2 is a synthetic estrogen that is one of the major components 

of oral contraceptives. A high resistance of EE2 to degradation in the human body is one 

feature that makes it useful in contraceptives.  However, this characteristic also allows 

large amounts of EE2 to pass into the environment through domestic waste water (Hill 

and Janz 2003; Lintelmann et al. 2003), and high concentrations of EE2 have been found 

in rivers within the United States and Europe (Kolpin et al. 2002; Vajda et al. 2008). Of 

the vast array of potential endocrine disrupting chemicals, EE2 is one of the most 

troubling because it binds estrogen receptors with high affinity and is relatively stable in 

the environment.  The amount of EE2 in wastewater treatment plant effluent is variable 

depending upon season and effectiveness of water treatment but can range from 0.1 – 10 

ng/L (Kolpin et al. 2002; Clauzot et al. 2008; Vajda et al. 2008). Surface waters around 

treatment plants commonly show concentrations of EE2 of 0 – 5 ng/L (Clauzot et al. 

2008; Vajda et al. 2008).  However, a study by Koplin et al. (2002), which evaluated 

EE2 concentrations in 139 U.S. contaminated rivers, found maximum concentrations of 

EE2 to be 820 ng/L, and concentrations approaching 35 ng/L in Europe have been 

reported (Pojana et al. 2007).  These levels are of significant concern considering that 
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exposure to 0.1 ng/L EE2 can induce vitellogenin production in males of some species, 

and a whole-lake experiment showed that 5-6 ng/L EE2 caused a population of fathead 

minnows to collapse after only two seasons of exposure (Kidd et al. 2007).  This sort of 

population collapse could result from effects of EE2 on gonads or other primary sexual 

traits (Bell 2001; Bjerselius et al. 2001; Robinson et al. 2003; Balch et al. 2004; Larsen 

et al. 2008) or by disrupting mating patterns so severely that population viability is 

reduced.  Thus far, very few studies have evaluated how EE2 impacts mechanisms of 

sexual selection and mate choice, so our goal was to study EE2 exposure in a system 

characterized by ritualistic courtship behaviors, elaborately ornamented secondary 

sexual characters, and strong sexual selection.   

     The Gulf pipefish, Syngnathus scovelli, is characterized by reversed sex roles (Jones 

and Avise 1997b; Jones et al. 2001). Males possess a specialized pouch on their ventral 

surface for the brooding of offspring.  During mating, a female deposits unfertilized eggs 

into the male's brood pouch, the male fertilizes the eggs by releasing sperm into the 

pouch, and the male carries the developing embryos for about two weeks until they are 

born as independent juveniles.  Male Gulf pipefish typically receive eggs from one 

female per "male pregnancy", but females are capable of filling multiple pouches (Jones 

and Avise 1997b; Jones et al. 2001).  Consequently, males are a limiting resource for 

reproduction, and females compete for access to males.  The result is strong sexual 

selection on females and weak sexual selection on males (Jones and Avise 1997b; Jones 

et al. 2001), a reversal of the usual direction of sexual selection. As might be expected 

from the mating patterns, Gulf pipefish are sexually dimorphic. Females are larger than 



65 
 

males and possess a number of sex-specific characteristics, such as a deeply keeled 

abdomen, intense silvery-blue lateral stripes, a large dorsal fin, and striking temporary 

breeding coloration.  Ornamentation of female pipefish appears to be regulated by 

estrogenic hormones, as males exposed to high concentrations of EE2 (100 ng/L) 

develop iridescent stripes on the abdomen, a trait normally only expressed in females 

(Ueda et al. 2005). The questions we address in this study are: (1) Do environmentally 

relevant concentrations of EE2 produce males that are feminized with respect to 

secondary sexual traits? And (2) are these effects of sufficient magnitude to disrupt 

mating patterns and sexual selection?  These questions are addressed by examining the 

effects of EE2 in several different experiments, including a test of the effects of EE2 

exposure on male morphology, mate choice trials involving males and females choosing 

between exposed and unexposed individuals of the opposite sex, and measurement of the 

effects of EE2 exposure on the ability of males to mate and to carry their pregnancy to 

term. 

 

Methods and Materials 

Pipefish Collection and Maintenance 

     We used a hand seine to collect pipefish from submerged vegetation at the northern 

end of Mobile Bay in Meaher State Park, Baldwin County, AL (30º66624, 87º92731).  

Pipefish were collected between July and November in the years 2006 through 2008.  

Males and females were housed separately in 30 L aquaria connected to a recirculating 
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filtration system. Pipefish were fed a diet of Artemia nauplii twice daily and their diets 

were supplemented with live copepods biweekly. 

 

Mate Choice of Exposed versus Non-Exposed Individuals 

     Exposure.  Control and treatment tanks were maintained on separate recirculating 

systems.  The control system consisted of fifteen 30L aquaria, while the two treatment 

systems consisted of nine 30 L aquaria each.  All tanks were divided into two 15L 

compartments by a perforated barrier.   The control system was initially spiked with 510 

µL of 95% ethanol, the solvent for the EE2 solution, to account for the 450L of water 

within the tanks and a 60L sump for a total of 510L.   Treatment systems were initially 

spiked with 330 µL of either 1mg/L EE2 (for 1ng/L system) or 100 mg/L EE2 (for 100 

ng/L system) to account for the 270L of water within the tanks and 60L sumps for a total 

of 330L.  Same sex individuals were size and color matched and paired.  One of the 

individuals of the pair was placed into a 15L compartment in the control system, while 

the other individual was placed in a 15L compartment in either the 1 ng/L or 100 ng/L 

EE2 system.  All individuals were exposed for a total of 10 days. To maintain consistent 

concentrations of EE2 in all systems, we performed 2% water changes (including 

appropriate amounts of either 95% ethanol or EE2 in 95% ethanol for control and 

exposure tanks, respectively) and cleaned tanks daily.   

 

     Body Morphology.  Before exposure, we measured the standard length of each male.  

We also used a Nikon Coolpix 5000 digital camera to photograph each male in lateral 
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view against a size standard. From the photographs, we used the computer program 

Image J (NIH, Bethesda, MD, www.rsbweb.nih.gov/ij/) to measure maximum body 

depth. We then calculated the depth:length ratio by dividing the maximum body depth 

by the standard length.  We measured each individual a second time at the conclusion of 

each exposure period and mate choice trial. 

     In order to quantify the effects of EE2 on male coloration, the images taken of the 

lateral view of each male both prior to and after exposure (see above) were analyzed 

using Image J.  The red color was removed from all pictures in order to obtain images 

that provided the best color differentiation to detect changes in the banding pattern.  The 

maximum and mean color intensity was then obtained for an area approximately 1.3 cm 

long and 0.02 cm high along the lateral side of the male, where the iridescent stripes 

develop.  The maximum color intensity, defined as the value of the brightest pixel within 

that area, was then divided by the mean color intensity of the area.  Because the areas 

within the iridescent bands produce the highest color intensity, by evaluating the 

relationship between maximum color intensity and mean body color intensity along the 

area where these iridescent stripes develop, we can assess whether areas of iridescences 

develop in exposed males.  

 

     Mate Preference Trials.  All preference trials were performed in the morning 10 

minutes after the beginning of the 12 hour daylight cycle.  We used either a Cannon 

Optura 500 MiniDV or a Sony HDV 1080i MiniDV video camera to videotape all mate 

choice trials for 1 hour.  Behaviors were analyzed using JWatcher version 1.0 animal 



68 
 

behavior software (2006, University of California Los Angeles, Los Angeles, CA: 

http://www.jwatcher.ucla.edu/). 

 

     Male Preference.  The effect of each treatment on male preference was determined by 

using a mate-choice design in which the focal male had the ability to assess control and 

exposed females but the females could not interact with each other.  Each mate-choice 

tank was divided lengthwise by a transparent barrier.  One of the resulting long 

chambers was divided in half by an opaque divider orthogonal to the transparent barrier.  

Two females were placed in the tank, with an exposed female in one small chamber 

(25W X 28H X 12.5 D cm) and a control female in the other small chamber (25W X 

28H X 12.5 D cm).  The male was placed into the longer compartment (50W X 28H X 

12.5 D cm), from which he could see into the smaller compartments.  The females, 

separated by the opaque divider, could not see each other but they could observe the 

male.  The same behaviors described in CHAPTER III were used to assess male 

preference in this study.  Briefly, the proportion of time focal males spent swimming 

near the divider and dancing were recorded and lumped together to provide a 

quantitative measure of choice that was termed “male response time”.  In addition, the 

number of twitches focal males performed to each stimulus female and the proportion of 

time focal males spent on the same side of the tank with each female was recorded.  

Finally, we recorded and analyzed the behavior of each female (see CHAPTER III) to 

test for effects of exposure to EE2 on female courtship behavior.    
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     Female Preference.  The effect of each treatment on female mate choice was 

determined by evaluating the relative proportion of time females spent actively courting 

each male and the number of twitches females performed toward each male.  We used 

the same experimental set up as in the male-choice trials (see above).  Thus, each trial 

involved a focal female and two males, one of which had been exposed to EE2 and one 

of which was a control male.  The female was able to visually assess both males and 

males were able to assess the focal female; however, males were separated from one 

another by an opaque divider.  The female behaviors previously described in CHAPTER 

III were used to assess female choice.  Briefly, the proportion of time the focal female 

spent posing and dancing to each male were grouped together to represent female active 

courtship behavior.  In addition, the total proportion of time focal females spent on each 

side of the tank, the proportion of time focal females spent in color display, and the 

number of twitches focal female performed toward each male were also recorded.   

     

 Mating Success and Reproductive Success 

     Mating and reproductive success were evaluated two different ways.  For years 2006 

and 2007, after each mating trial, control and exposed males were placed individually in 

15L compartments to which a female that had not been involved in a mating trial was 

added.  We checked males each morning to determine whether or not they were 

pregnant.  Once impregnation occurred, we removed the female.  Pregnant males were 

allowed to brood their offspring, and we recorded the amount of time that elapsed from 

impregnation until birth.   
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     In 2008, we exposed ten non-pregnant males each to control (95% ethanol) water, 

1ng/L EE2 water, and 100 ng/L EE2 water.  After ten days, males were moved to clean 

tanks containing females.  Given that females can impregnate multiple males (Jones et 

al. 2001), we housed two females with five males in each tank. Males were checked 

twice daily for pregnancy.  Pregnant males were removed and maintained individually in 

15L aquarium compartments, where we monitored the progression of their pregnancies.  

After three days, females from each tank were rotated to ensure that any male's failure to 

become impregnated was not attributable to the females with which he was housed.  

Pregnant males nearing parturition, which occurs after 12-15 days of brooding, were 

moved to individual 2L birthing chambers.  For each male, we counted the number of 

offspring born as a measure of his reproductive success.   

 

Statistics 

     For our statistical analysis, we first transformed our data by using arcsine (square 

root) transformations on all proportion data and square-root transformations on the 

number of twitches females performed to each male, the number of twitches males 

performed to each female and the maximum/mean color intensity of males. We 

compared male body depth:length ratio and maximum/mean color intensity between 

exposed and unexposed males prior to and after exposure by using paired t-tests.  T-tests 

of the mean were used to determine if the proportion of time focal females spent with 

each male, the relative proportion of time focal females actively courted males, the 

proportion of time focal males spent with each female and the relative proportion of time 
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focal males responded to a female differed from a random expectation of 0.5.  In the 

male mate choice experiments (two females with one male per trial), we used paired t-

tests to compare control and experimental females with respect to: (1) number of 

twitches performed, (2) extent of color display, and (3) amount of active courtship.  A 

Wilcoxon two-sample paired signed ranks test was used to determine of the difference in 

number of twitches control and exposed females performed in male choice tests differed 

from 0.  A chi-square analysis of a 3 × 2 contingency table was used to examine whether 

or not a male's ability to become pregnant was dependent upon exposure.   Finally, we 

used an analysis of variance to compare the mean number of offspring produced by 

males subjected to different treatments. 

 

Results 

     With respect to morphology, we found that short-term exposure to EE2 had a 

significant effect on male phenotype.  After only 10 days of exposure, males from both 

low (1 ng/L EE2) and high (100 ng/L EE2) exposure treatments showed significant 

changes in body morphology, which resulted in males developing secondary sexual traits 

that are associated with female morphology.  Reproductively active female pipefish have 

a larger body depth than males due to the space needed for egg production and after 

exposure to EE2, the body depth: length ratio of exposed males was significantly greater 

than their control partners (Table 4.1).   

     In addition to body shape, exposure to EE2 also affected male body coloration.  

Exposure to 100 ng/L EE2 caused males to develop iridescent lateral stripes, which are  
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Table 4.1:  The effects of EE2 exposure on male body morphology.   

Control   
Male

1ng/L EE2  
Male N

Paired      
T-Test P-value

Control     
Male

100ng/L EE2  
Male N

Paired     
T-Test P-value

Pre BD:Length Ratio 0.039 ± 0.002 0.038 ± 0.002 9 |t|1,8 = 0.82 0.38 0.042 ± 0.001 0.042 ± 0.001 10 |t|1,9 = 0.189 0.85
Post BD:Length Ratio 0.038 ± 0.004 0.041 ± 0.003 9 |t|1,8 = 3.06 0.01 0.042 ± 0.001 0.050 ± 0.001 10 |t|1,9 = 28.28 0.0003
Pre Max/Mean CI 2.33 ± 0.14 2.37 ± 1.20 11 |t|1,10 = 0.13 0.9 2.56 ± 0.21 2.47 ± 0.24 10 |t|1,8 = 0.25 0.78
Post Max/Mean CI 2.01 ± 0.15 2.68 ± 0.35 11 |t|1,10 = 2.01 0.07 2.30 ± 0.19 3.28 ± 0.28 10 |t|1,8 = 2.88 0.02  
 
Body depth (BD):length was calculated by dividing maximum body depth by standard 
length.  Maximum/mean color intensity (CI) is the maximum color intensity divided by 
the mean color intensity of a 1.3 cm long X 0.2 cm high area along the lateral side of the 
males where the iridescent stripes develop.  Paired t-test were used to compare 
BD:length and maximum/mean CI between control and experimental males before (Pre) 
and after exposure (Post).  All data are reported as mean ± S.E of untransformed data.  
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normally only found in female pipefish (Figure 4.1).  Some of the 1 ng/L exposed males 

also developed these female-like iridescent stripes, although the expression was not as 

pronounced as in males exposed to the higher concentration of EE2 (Figure 4.1). In 

order to quantify these changes, we examined the maximum/mean color intensity (see 

methods) along the lateral side of control and exposed males, where the iridescent bands 

develop, both prior to and after exposure.  We found that the maximum/mean color 

intensity along the banding area was significantly different between control and males 

exposed to 100 ng/L EE2 after exposure (Table 4.1).  In addition, while no significant 

difference in maximum/mean color intensity was observed between control and 1ng/L 

males after exposure, we did observe a strong trend with 1ng/L exposed males tending to 

have areas within the banding area that were brighter than control males (Table 4.1).   

     Given that EE2 exposure affects male morphology, the next question was whether or 

not such changes potentially impact mating dynamics in this species.  Based upon our 

results it appears that male attractiveness is affected even by low doses of EE2, whereas 

female mating behavior and attractiveness is largely unaltered.  In the mate choice 

experiments with a focal female choosing between an exposed and an unexposed male, 

we found that focal females spent more time actively courting (posing and dancing; 

Table 4.2) and performed more twitches (Table 4.2) toward control males compared to 

males exposed to either 1ng/L or 100 ng/L of EE2.  Females did not differ in the 

proportion of time they spent in their color display between control and treatment males 

(Table 4.2).   However, female color display is likely a general indicator of female 

receptivity, and not indicative of choice, since females often invoke their color display  
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Figure 4.1:  Induction of secondary sexual traits in male pipefish after exposure to EE2.  
(A) Control male prior to exposure, (B) Control male after 10 days of exposure to 0 ng/L 
EE2, (C) Treatment male after 10 days of exposure to 1ng/L EE2, (D) Treatment male 
after 10 days of exposure to 100 ng/L EE2, (E) Non-exposed female.  The black arrows 
point to the iridescent stripes, a secondary sex trait normally confined to females.  The 
green bars at the ends of each photograph are separated from one another by 1.5 cm.  
This figure shows that exposure of males to EE2, especially the 100 ng/L concentration, 
induces the development of female-like secondary sexual traits.  Thus, EE2 feminizes 
the males with respect to external morphology. 
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Table 4.2:  Effects of EE2 exposure on female mate choice.   

Female Behavior
Control     

Male
1ng/L    
Male N Paired T-test P-value

Control    
Male

100ng/L   
Male N Paired T-Test P-value

Prop of Time w/ Male 0.58 ± 0.06 0.42 ± 0.06 11 |t|1,10 = 1.38 0.2 0.63 ± 0.06 0.365 ± 0.06 12 |t|1,11= 2.02 0.07
Rel Prop of Time in Color Display 0.57 ± 0.06  0.43 ± 0.06 11 |t|1,10 = 1.19 0.26 0.60 ± 0.08 0.40 ± 0.08 12 |t|1,11 = 1.38 0.2
Rel Prop of Time Active Court Male 0.65 ± 0.06 0.35 ± 0.06 11 |t|1,10 = 2.49 0.03 0.80 ± 0.05 0.20 ± 0..05 12 |t|1,11 = 5.04 0.0004
Number of Twitches to Males 12.1 ± 3.1 3.7 ± 1.2 11 |t|1,10 = 3.03 0.01 7.4 ± 1.7 1.3 ± 0.5 12 |t|1,11 = 4.46 0.001

Control vs 100 ng/L EE2 MaleControl vs 1 ng/L EE2 Male

 
 

The experiment consisted of a female choosing between two males, one of which 
had been exposed to EE2 and one of which had not.  Female behaviors included 
the proportion of time female spent on the same side of the tank as each male, 
relative proportion of time female was in color display in front of each male, 
relative proportion of time female actively courted each male and the number of 
twitches females performed to each male.  All data are reported as mean ± S.E. 
of untransformed data. 
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even in the absence of males.  Thus based upon these results, EE2 exposure clearly 

affects male mating opportunity by altering their attractiveness to females, as might be 

expected from the feminizing effects of this compound. 

     In contrast to our results for males, we found no detectable effects of EE2 exposure 

on female attractiveness.  Male pipefish did not significantly differ in their response 

between control females and EE2 exposed females from either the 1ng/L or 100 ng/L 

EE2 treatments (Table 4.3).  Likewise, female mating behavior did not differ 

significantly between the two treatments (Table 4.3).  In male mate choice tests with 

non-exposed females the factors that best predicted relative male response time were 

relative female active courtship and the interaction between female active courtship 

behavior and the number of twitches performed by a female (See Chapter III). Since 

female behavior appears to be the major factor influencing male response time, the lack 

of an effect of EE2 on female courtship behavior likely explains why exposure did not 

affect male mate preference. 

     In our final experiment, we addressed the question of whether or not exposure to EE2 

affects mating ability and male pregnancy.  When females were given no choice (see 

methods), they mated as successfully with males exposed to 1ng/L EE2 (N = 18; 

proportion impregnated = 0.50) as with control males (N = 33, proportion impregnated = 

0.58).  However, at some point exposure to EE2 limits the efficacy of mating, as we 

found that males exposed to 100 ng/L of EE2 were significantly less likely to become 

impregnated (N = 19; proportion impregnated = 0.21) than control males (for all three  

treatments, contingency-χ2 = 6.66; p = 0.04).  Of the 100 ng/L EE2 males that mated, 
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Table 4.3:  The effects of EE2 exposure on male mate choice and female courtship 
behavior.   

Male Behavior
Control    
Female

1 ng/L    
Female N Paired Test P-value

Control    
Female

100ng/L  
Female N Paired Test P-value

Prop of Time w/ Female 0.48 ± 0.12 0.52 ± 0.12 10 |t|1,9 = 0.27 0.8 0.40 ± 0.09 0.60 ± 0.09 9 |t|1,8 = 0.98 0.36
Rel Prop. of Time Respond to Female 0.51 ± 0.13 0.49 ± 0.13 10 |t|1,9 = 0.11 0.92 0.49 ± 0.14 0.51 ± 0.14 8 |t|1,7 = 0.03 0.98
Number of Twitches to Female 1.3 ± 0.6 4.3 ± 1.4 7 |t|1,7 = 1.36 0.22 6.1 ± 3.2 1.2 ± 0.7 6 |t|1,5 = 1.05 0.33
Female Behavior
Prop of Time in Color Display 0.22 ± 0.12 0.34 ± 0.12 8 |t|1,7 = 0.65 0.54 0.25 ± 0.09 0.11± 0.06 9 |t|1,8 = 1.04 0.33
Prop of Time Actively Courting 0.06 ± 0.09 0.15 ± 0.13 8 |t|1,7 = 1.20 0.27 0.05 ± .03 0.01± 0.009 9 |t|1,8 = 0.86 0.41
Number of Female Twitches 2.0 ± 1.4 6.2 ± 3.6 9 |z| = 0.841 0.4 6.6 ± 3.7 1.3 ± 1.2 9 |z| = 1.08 0.28

Control vs 1 ng/L EE2 Female Control vs 100 ng/L EE2 Female

 
 
These data are from an experiment in which a single focal male could choose between 
two females, one of which had been exposed to EE2 and one of which had not.  We 
measured both male and female behavior in these experiments.  Male behavior included 
the proportion of time males spent on the same side of the tank as female, the relative 
proportion of time males spent responding to each female and the number of twitches 
males preformed to each female.  Female courtship behaviors included the proportion of 
time females were in color display and the proportion of time females actively courted 
males. Transformation of the number of twitches performed by females was unable to 
satisfy the assumption of normality, so a Wilcoxon two-sampled paired signed rank test 
was performed.  All data are reported as mean ± S.E. of untransformed data.   
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these mating events did not occur until at least four days after removal from the exposure 

tanks, suggesting that there may be a lag time after removal from treated water during 

which males are not able to mate.  For those males that became pregnant, exposure to 

EE2 did not affect the number of offspring in their broods (Control: 13.9 ± 4.4 [mean ± 

S.E.], n = 8; 1ng/L:  16.2 ± 3.8, n =8; 100ng/L: 16.3 ± 5.2, n = 4, F2,19 = 0.10, p = 0.9).  

Development of the offspring also appeared to be unaffected, as males that mated within 

10 days after removal from treated water produced successful broods with completely 

developed juveniles, regardless of treatment.  It is important to note, however, that 

during the period of brood development all males were housed in EE2-free water.  

 

Discussion 

     Overall, our data clearly show that short-term exposure to even low levels of EE2 can 

significantly impact male reproductive fitness.  Male attractiveness was significantly 

undermined by exposure to 1ng/L EE2, even though these males could still become 

pregnant and successfully carry broods to term.  The results were even more pronounced 

when males were exposed to a higher dose of EE2.  For example, males exposed to 

100ng/L of EE2 were not only less attractive than control males, but they also 

experienced difficulty becoming pregnant.  These effects occurred after only a 10-day 

exposure to EE2, and some of the morphological changes persisted well after the males 

were removed from the contaminated water (at least 19 days, Figure 4.2).  In natural 

populations, exposure periods will typically be much longer, so the effects could be even  

greater than those we observed.  How these changes in mating behavior are likely to 
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Figure 4.2:  A male pipefish with iridescent stripes 19 days after removal from treated 
water.  The arrow indicates the iridescent stripes, and the space between the green bars 
on either end of the photograph is 1.5 cm.  This image shows that the feminization of 
males by EE2 persists after the males are moved to clean water.  These traits persist at 
least several weeks, as they were still present when the males were sacrificed at the end 
of the experiment (2-3 weeks post-exposure).  They may persist much longer, but this 
question was beyond the scope of our study.   
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impact natural populations calls for additional work, but it seems clear that the potential 

exists for some males to become sufficiently unattractive or female-like to be perceived 

as unacceptable for mating by some females, a situation that could impact short-term 

population viability.  In addition, the disruption of normal mating dynamics imposed by 

EE2 contamination has the potential to alter the dynamics of sexual selection in Gulf 

pipefish populations, potentially altering long-term evolutionary trajectories. 

     Why does EE2 decrease male attractiveness and reproductive potential?  One 

possible hypothesis is that changes in the body morphology of males may mimic female-

specific visual cues, causing females to incorrectly identify exposed males as other 

females.  Alternatively, EE2 exposure may cause males to release chemicals that contain 

components that typically are released only by females.  However, female pipefish do 

not readily discriminate between males and females based on chemical cues alone 

(Ratterman et al. 2009), suggesting that our results are more likely related to visual cues.  

Males exposed to high doses of EE2 could experience high mating failure rates for two 

main reasons.  First, as in the case of the males exposed to 1 ng/L EE2, females could be 

avoiding males exposed to 100 ng/L as mates.  This effect should be even more 

pronounced for the high EE2 exposure treatments, in which exposed males are 

morphologically very similar to females.  Second, exposure to high levels of EE2 also 

appears to affect the male’s brood pouch, where eggs are received, fertilized and 

develop.  Boisseau (1967) found that the brood pouch of male seahorses is under 

testicular control and that male castration significantly retards pouch development.  This 

effect can be reversed by testosterone injections.  The brood pouches of male Gulf 
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pipefish, which are close relatives of seahorses, are likely under similar hormonal 

regulation.  Males exposed to high concentrations of EE2 had brood pouches that 

appeared thin and resembled the pouches of non-reproductive males.  Since testosterone 

is known to be involved in maintaining the brood pouch, it is likely that EE2 exposure 

interferes with testosterone levels, preventing the male brood pouch from remaining in a 

reproductive state.  After the male is removed from treated water, it may take a few days 

to completely eliminate the EE2 from the body and allow the brood pouch to become 

functional again, possibly explaining why males in the high EE2 exposure treatment 

were unable to mate for four days after removal from the exposure treatment.  

     Our observations regarding the effects of a xenoestrogen on mating dynamics and 

reproduction at environmentally relevant concentrations, even after a short period of 

exposure, are significant with regard to the short- and long-term factors affecting 

populations.  With respect to short-term effects, the disruption of mating patterns in 

pipefish has the potential to reduce intrinsic population growth rates.  Even though the 

effects seem subtle at one level, as it seems likely at lower exposure concentrations that 

most males will eventually mate, reduced male attractiveness will be one among many 

factors negatively impacting populations at contaminated sites.  In addition, EE2-

affected males may experience reduced survivorship or reproductive success due to costs 

associated with increased time spent searching for mates, mating with suboptimal 

females or an inability to find any suitable mate.  In pipefish, most of the variance in 

relative fitness in female pipefish due to sexual selection is driven by differential mating 
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success (Partridge et al. 2009).  Thus, anything that substantially affects mating patterns 

has the potential to have a large impact on individual fitness.   

     One troubling implication of our observations is that the effects of this compound 

may not be restricted to contaminated sites.  Our study suggests that some of the female 

secondary sexual characteristics that are induced in males upon exposure are maintained 

for some time after removal from treated waters.  We found that males continue to 

express the iridescent bars that are normally found on females for at least 19 days after 

removal from treated water (Figure 4.2).  After this point males were sacrificed, so the 

amount of time exposed males continue to express altered traits is currently unknown.  

Thus, males migrating from contaminated sites to relatively pristine locales have the 

potential to carry the phenotypic effects, and presumably the effects on mating 

dynamics, of EE2 with them to the new site. 

     In addition to short-term effects on population health, our results suggest that 

endocrine disruptors may have long-term effects on important evolutionary processes. In 

the Gulf pipefish, males are the limiting sex, and sexual selection tends to act more 

strongly on females.  Any factor that has a major impact on mating patterns, as EE2 has 

the potential to do, could disrupt sexual selection mechanisms.  The exact effects are 

difficult to predict and would be worthy subjects of future research.  On the one hand, 

modest levels of EE2 contamination might increase the strength of sexual selection on 

females, because females would be competing for a smaller pool of males that would be 

perceived as potential mates.  In extreme cases, some males would be unable to mate 

altogether due to suppression of their pouches.  On the other hand, EE2 contamination 
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could decrease the strength of sexual selection, as males made artificially unattractive by 

EE2 exposure may be discriminated against by attractive females, forcing them to mate 

with less attractive females, which would normally be excluded from the mating pool 

due to strong female competition.  Regardless, changes in the intensity of sexual 

selection in some populations could affect a number of key evolutionary processes.  For 

example, increased competition for mates could reduce the effective population size, 

resulting in a loss of variation due to genetic drift.  A decrease in sexual selection 

intensity could result in reduced population viability, as EE2-affected males are forced to 

mate with sub-par females potentially resulting in fewer direct or indirect benefits of 

mate choice and reduced offspring fitness.  If populations differ with respect to levels of 

EE2 contamination, the differences in mating systems imposed by EE2 could even 

decrease population connectivity in the long term (Zeh and Zeh 2000).  The disruption of 

an evolutionary mechanism as important as sexual selection may have many other, 

unanticipated effects in addition to the ones we have mentioned here.  Overall, these 

considerations lead to the conclusion that the population-level effects of the EE2-

induced behavioral changes observed in the present study represent an area of critical 

need for future research. 

     Our study's call for additional research on population-level effects of anthropogenic 

contaminants that disrupt sexual selection is bolstered by other recent studies. For 

example, changes in reproductive hierarchies and sexual selection were observed by Coe 

et al. (2008) in zebrafish after exposure to EE2.  The proportion of offspring sired by 

males that were dominant in the hierarchy prior to exposure was significantly suppressed 
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after exposure to EE2, allowing subordinate males to increase their relative reproductive 

fitness.  A similar effect was observed in the sand goby, where exposure to EE2 

decreased the strength of sexual selection on male size, allowing smaller males to gain 

mating opportunities (Saarisota et al. 2009).  In addition, exposure of pregnant female 

amarillo fish to methyl parathion, an insecticide, suppressed the expression of secondary 

sexual traits in male offspring (Arellano-Aguilar and Garcia 2008).  Similar to our study, 

this effect resulted in the exposed male offspring being less preferred by females during 

choice trials.  These results, along with our study suggest that solely examining the 

effect of these compounds on reproductive output may not be enough to determine how 

they are affecting populations, especially considering that processes involved in pre-

copulatory sexual selection may be more sensitive to endocrine disruptors than general 

reproductive success.   Thus in order to understand how endocrine disruptors are 

affecting ecosystems, it is important to be aware that these compounds can impact these 

long-term selection processes. 

     In summary, we found that even low levels of exposure to the endocrine disruptor 

EE2 in Gulf pipefish are sufficient to disrupt mating dynamics.  Males exposed to EE2 

become more female-like with respect to external morphology and develop secondary 

sexual traits that normally appear only in females. In addition, these altered traits may 

persist for long periods of time post-exposure.  Females prefer non-exposed males 

compared to exposed males, and in some cases exposed males have a reduced capacity 

to become pregnant. Thus, EE2 exposure decreases male mating opportunities, 

potentially affecting population-level mating dynamics.  Overall, our study provides 
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evidence for a role of endocrine disruptors in disrupting social interactions in natural 

populations, a topic that has remained largely unstudied.  Our study clearly shows that 

the effects of endocrine disruptors on other aspects of reproductive fitness, especially 

pre-copulatory mate choice mechanisms, could have profound impacts on natural 

populations with respect to short-term population viability and long-term evolutionary 

processes.  The effects of these behavioral changes in populations occupying 

contaminated environments should be a major focus of future research. 
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CHAPTER V 

POPULATION STRUCTURE OF THE GULF PIPEFISH, SYNGNATHUS 

SCOVELLI, IN MOBILE BAY AND THE GULF OF MEXICO 

 

Introduction 

     Understanding and identifying the mechanisms leading to population divergence is 

one of the greatest challenges in evolutionary biology.  This challenge becomes even 

more complex when population divergence occurs in species where a high potential for 

gene flow between populations exists, such as between sympatric or parapatric 

populations.  One reason for genetic divergence between these populations is that they 

may inhabit different environmental niches or environments and local selection pressure 

may differ enough to drive speciation (Schluter 2000, 2001; reviewed in Rundle and 

Nosil 2005).  Speciation associated with populations inhabiting different ecological 

niches, termed ecological speciation, has been shown to be a major evolutionary factor 

and is one of the driving components in the adaptive radiation of a number of species, 

including African cichlids (Wagner and McCune 2009), Darwin’s finches (reviewed in 

Grant and Grant 2008) and Anolis lizards (reviewed in Losos 2009).   

       Recently it has been proposed that ecological speciation is likely one of the main 

driving forces causing population divergence between coastal and marine populations 

(Beheregaray and Sunnucks 2001).  One specific model, the “divergence-with-gene-flow 

model” of speciation suggests that populations with no barriers to gene flow can diverge 

when strong divergent selection acts on sub-populations that are separated 
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geographically (Endler 1977; Rice and Hostert 1993). In the case of most marine 

species, high levels of gene flow occur among populations.  These populations tend to be 

continuously distributed, maintain a large effective population size and, in the case of 

pelagic spawners, produce larvae that can disperse large geographic distances, all of 

which aid in suppressing genetic divergence.  However, when groups colonize new 

environments, such as estuarine habitats, differences in the selective pressure between 

marine and estuarine environments may drive speciation.  In support of this model, 

recent studies have shown that colonization of a marine species into an estuarine habitat 

has lead to genetic divergence in the marine silverside (Beheregaray and Sunnucks 

2001).  Physiological, behavioral and reproductive differences can also occur between 

these populations and it has been suggested that these colonized estuarine populations 

may actually be insipient species (Beheregaray and Sunnucks 2001).  Consequently, 

studying these recently established populations may provide information concerning 

factors that are influencing present day speciation events.    

     Euryhaline species are one of the most appropriate groups in which to examine 

divergence-with-gene-flow models of speciation.  In many cases these groups can 

migrate between marine, estuarine and freshwater environments.  However, because of 

the difference in selective pressure among these ecosystems, populations inhabiting 

these three environments may diverge even though migration occurs. This is especially 

true if developmental constraints limit reproductive success when individuals migrate to 

new environments.  Acclimation to environmental salinity during development may 

impact the ability of euryhaline organisms to fully adjust to new environmental salinities 
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once adulthood is reached (Lee and Peterson 2003).  This limit on salinity tolerance due 

to developmental acclimation may aid in driving divergence between marine, euryhaline 

and freshwater populations.  For example, adults that developed in a freshwater 

environment may not be able to fully adapt to a marine system after migration, which 

may decrease their relative reproductive success.  This decrease in fitness of migratory 

individuals would strengthen genetic isolation between these two groups, because while 

migration may occur between populations, individuals migrating to environments that 

are significantly different from the one in which they developed would have lower 

relative fitness values compared to local individuals.  Thus, while some gene flow would 

be occurring between populations, migrant individuals may not contribute significantly 

to the gene pool of their new environment.       

     The Gulf pipefish, S. scovelli, is an excellent model system in which to examine how 

local habitats may be influencing population structure.  S. scovelli is a member of the 

family Syngnathidae, which includes seahorses and pipefish.  This family is 

characterized by male pregnancy, where females either glue eggs to the ventral surface 

of the male or deposit eggs into the brood pouches of males, depending upon the species 

(Wilson et al. 2001).  The males then brood the embryos until they are juveniles after 

which they are released into the environment and no other paternal care occurs.  S. 

scovelli is one of the most common pipefish in the Gulf of Mexico.  This species has a 

broad geographic range that extends from the Georgia coast to Central America (Amos 

and Amos 1985) and while this species is relatively abundant along the entire Gulf of 

Mexico coast, very little is known about its population structure.  Pipefish are found in 
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submerged aquatic vegetation beds, and they are thought to migrate little during the 

summer breeding season.  However, during the winter months, once the shallow-water 

vegetation dies, it is thought that they may move into deeper waters (Hamilton 1942; 

Lazzari and Able 1990; Franzoi et al. 1993; Teixeira 1995; Power and Attrill 2003; 

Bolland and Boettcher 2005), where individual groups that were segregated during the 

breeding period may intermix.  In addition, unlike other North American pipefish 

species, S. scovelli can regularly inhabit freshwater environments as well as brackish and 

marine habitats (Hoese and Moore 1977) and multiple freshwater populations have been 

observed along the southeastern United States (McLane 1955; Whatley 1969; Targett 

1984; Viola 1992).  Because juvenile dispersal in this species is probably limited and 

local selective pressures between coastal, estuarine and freshwater populations likely 

differ, populations may show some degree of genetic structure between environments.  

However, since it has been suggested that these individuals may intermix during the 

winter months and Sygnathus spp. are not known to exhibit any type of site fidelity 

(Vincent et al. 1995), it is possible that these populations may be panmictic. 

     The purpose of this study is two-fold.  First we used microsatellite data to assess the 

genetic structure of S. scovelli populations in and around Mobile Bay and the Gulf of 

Mexico.   Three of these populations were located in two freshwater rivers that run into 

Weeks Bay, a sub-estuary of Mobile Bay, one population was located in the mid-upper 

part of Mobile Bay, and three populations were located throughout the Gulf of Mexico. 

Second, we wanted to determine whether local habitat influenced genetic structure in 
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this species by determining whether coastal populations were genetically distinct from 

populations within Mobile Bay.   

 

Methods and Materials 
 

Population Structure 

     Pipefish Collection.  Male and female pipefish were collected using a seine net in 

shallow grass beds from a total of seven sites within Mobile Bay and throughout the 

Gulf of Mexico (Table 5.1).  Three of these sites were located in coastal areas along the 

Gulf of Mexico and included one within the Grand Bay National Estuary Research 

Reserve, MS (GB), one at St. Joseph Bay, FL (FL), and one at Aransas Pass, TX (TX) 

(Figure 5.1).  One site was located within the middle/upper part of Mobile Bay at 

Meaher State Park, AL (MP).  The remaining three sites were located within freshwater 

rivers that are part of the Weeks Bay watershed, a sub-estuary of Mobile Bay, two of 

which were located in Fish River (WBS1 and WBS2) and the third site was located in 

Magnolia River (WBS4) (Figure 5.2).  Sites were chosen to ensure a broad geographic 

distribution and to obtain individuals from differing ecological habitats.  After 

collection, pipefish were anesthetized using MS222 and sacrificed.  Individuals were 

preserved in 95% EtOH for genetic analysis.   

 

     DNA Extraction and Microsatellite Analysis.  Total DNA was extracted using a 

Gentra Puregene® Cell Tissue Kit (Quiagen, Valencia, CA).  Individuals were 

genotyped at six microsatellite markers.  These markers included previously described  
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Table 5.1:  Sites, site abbreviations (Abb), number of individuals collected (N) and GPS 
coordinates of Gulf pipefish, S. scovelli, sampling locations. 

Site Abb N GPS Coordinates (N, W)
Weeks Bay ‐ Turkey Branch, AL WBS1 30 30°42978, 87°32378
Weeks Bay ‐ Mouth of Barner, AL WBS2 39 30°45894, 87°80418
Weeks Bay ‐ Magnolia River, AL WBS4 15 30°45783, 87°80242

Meaher Park, AL MP 44 30°66624, 87°92731
Grand Bay, MS GB 32 30°36164, 88°39776

St. Joseph Bay, FL FL 24 29°4776', 85°1824'
Aransas Pass, TX TX 54 27°8806, 97°1019'
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Figure 5.1:  Location of S. scovelli collection sites within Mobile Bay and the Gulf of 
Mexico.  St. Joseph Bay, FL (FL); Weeks Bay watershed, AL (WB); Meaher Park, AL 
(MP); Grand Bay Research Reserve, MS (GB); Port Aransas, TX (TX). 
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Figure 5.2:  Google earth image of sample locations of sites throughout the Weeks Bay 
watershed.  Collection sites WBS1 and WBS2 are located in Fish River and collection 
site WBS4 is located in Magnolia River. 
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markers, Micro 11.1, Micro 22.3, Micro 25.1, and Micro 25.22 (Jones and Avise 1997b), 

and one newly  developed marker, SS07-25 (SS07-25 forward :  

TTGCAGAAAGGAAATTACTGAGG; SS07-25 reverse:  

GCAGTAGCAATCATGGAGAGG), all of which were developed for S. scovelli.  In 

addition, one previously described microsatellite developed for S. typhle, Typh12, was 

used (Jones et al. 1999).  Microsatellites were amplified using polymerase chain reaction 

(PCR).  The thermal cycling included an initial denaturation step of 2 min at 95ºC 

followed by 35 cycles of the following:  1 min at 95°C, 1 min at the annealing 

temperature (Micro 11.1: 50ºC, Micro 22.3: 58ºC, Micro 25.1: 57ºC, Micro 25.22: 58ºC, 

SS07-25: 53ºC, and Typh 12: 54ºC), and 1 min at 72ºC.   After cycling, an elongation 

step of 4 min at 72ºC was performed.  All fragment analysis was performed on an ABI 

Prism® 3730 DNA Analyzer (Applied Biosystems, Foster City, CA) and was analyzed 

using ABI Prism® PeakScanner™ software (Applied Biosystems, Foster City, CA).  All 

microsatellite loci were binned using the program Flexibin (Amos et al. 2007) and then 

manually checked for error.   

 

     Population Structure Analysis.  Population data from microsatellite loci were 

analyzed using GENEPOP version 4.0 (Rousset 2008).  The observed heterzoygosity 

(Ho), expected heterozygosity (He), mean number of alleles per locus (Na) and 

inbreeding coefficient (FIS) were calculated for each locus at each site.  All loci for each 

site were tested for deviations from Hardy-Weinberg equilibrium (HWE) using exact 

tests in GENEPOP.  SS07-25 was found to have an excess of homozygotes for four of 
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the seven populations, thus this locus was removed from further analysis.   In order to 

determine the genetic divergence among populations, global and population pair-wise 

FST and RST values were estimated and significant values were inferred based on a G 

based exact test (Goudet et al. 1996).  All significant levels were adjusted based on a 

Bonferroni correction when appropriate. 

      Pair-wise genetic identity and genetic distance values (Nei 1978) were calculated 

using POPGENE version 1.31 (Yeh et al. 1999).   Because previous studies have 

suggested that estuarine populations are distinct from coastal populations, we grouped 

populations into a coastal group (GB, TX and FL) and an estuarine/freshwater group 

(WBS1, WBS2, WBS4, and MP) and utilized an analysis of molecular variance 

(AMOVA) using the program ARLEQUIN version 2.0 (Schneider et al. 2000) to 

determine how genetic variability was partitioned within and among these groups.  A 

Bayesian clustering approach was used to estimate the number of populations (K) of the 

Gulf pipefish within the Gulf of Mexico and Mobile Bay using the program 

STRUCTURE version 2.3 (Pritchard et al. 2000).  A Markov chain Monte Carlo 

(MCMC) method was utilized and the simulation was run for 106 iterations after a burn-

in period of 105 iterations for 1-8 populations.  Each simulation was run 10 times and 

this model assumed an admixture ancestry, correlated allele frequencies and included a 

prior location information.  The most likely value of K was then determined using the 

method described by Evanno et al. (2005).   
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Results 

   All microsatellite loci were found to be highly polymorphic and the number of alleles 

per loci across all populations ranged from 29 (Micro 22.3) – 52 (Micro 25.1 and 

Typh12).  In general, loci satisfied the assumptions of HWE for most populations.  One 

exception to this was the SS07-25 locus which was found to be out of HWE for 4 out of 

7 of the populations analyzed and was removed from further analysis (Table 5.2).   

     Microsatellite data suggests that there is moderate genetic structure among some 

populations of S. scovelli within Mobile Bay and the Gulf of Mexico (global FST = 

0.025).  Pair-wise comparisons of populations from Texas, Florida, and Mississippi 

produced significant FST values (Table 5.3).  Also, all coastal populations were found to 

be genetically distinct from the population at Meaher Park and all populations within 

Weeks Bay.  However, pair-wise FST values were not significant between any of the 

populations within Weeks Bay, suggesting that there is no genetic difference between 

populations from the Fish (WBS1 and WBS2) and Magnolia Rivers (WBS4) within 

Weeks Bay (Table 5.3).  Interestingly, both populations within the Fish River (WBS1 

and WBS2) were found to be genetically distinct from the Meaher Park population; 

however, the Magnolia River (WBS4) population was not distinct from the population at 

Meaher Park. 

     Pair-wise comparisons of Nei’s genetic distance values showed that populations 

within Weeks Bay and Mobile Bay were the most closely related among the sampled  

populations (Table 5.4; Figure 5.3).   In addition, while most of the genetic variation was 

explained by within population effects, AMOVA showed a weak but significant pattern  
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Table 5.2:  Number of individuals (N), allele number (Na), expected and observed heterozygosity 
(He, Ho) and inbreeding coefficient (FIS) (Weir and Cockerham 1984) for microsatellite loci from 
7 populations of S. scovelli.  Bold values indicate loci that deviated significantly from Hardy-
Weinberg equilibrium. 

Locus
WBS1 WBS2 WBS4 MP GB FL TX

Micro 25.1
N 30 38 15 44 32 24 52
Na 28 30 12 34 24 23 40
H E 0.908 0.797 0.805 0.859 0.776 0.914 0.94
H O 0.933 0.842 0.733 0.795 0.719 0.833 0.865
F IS -0.0278 -0.0571 0.091 0.0744 0.0746 0.09 0.08

Micro 25.22
N 28 36 12 41 32 23 50
Na 16 18 12 26 20 20 32
H E 0.897 0.866 0.902 0.936 0.904 0.954 0.941
H O 0.964 0.861 1 0.951 0.813 0.957 0.96
F IS -0.076 0.006 -0.114 -0.0169 0.1029 -0.0031 -0.0202

Micro 11.1
N 29 37 12 36 27 23 51
Na 17 20 15 27 23 23 28
H E 0.8494 0.868 0.942 0.903 0.957 0.956 0.942
H O 0.9655 0.891 0.917 0.806 0.963 1 0.882
F IS -0.14 -0.0281 0.028 0.1096 -0.0067 -0.0476 0.064

Micro 22.3
N 29 33 15 39 28 23 51
Na 19 22 17 22 20 20 23
H E 0.935 0.953 0.947 0.938 0.944 0.942 0.937
H O 0.966 0.97 1 0.974 1 0.957 0.902
F IS -0.0329 -0.017 -0.058 -0.039 -0.0603 -0.0157 0.0383

SS07-25
N 29 37 15 33 25 23 53
Na 20 20 14 21 29 21 41
H E 0.945 0.9411 0.92 0.936 0.973 0.962 0.973
H O 0.897 0.8649 0.8 0.97 0.68 0.6087 0.811
F IS 0.0521 0.0821 0.134 -0.0364 0.3055 0.5988 0.1677

Typh 12
N 25 33 9 44 32 22 47
Na 20 22 8 27 30 27 38
H E 0.926 0.887 0.869 0.887 0.954 0.975 0.974
H O 0.8 0.879 0.889 0.812 0.938 1 0.851
F IS 0.138 0.0096 -0.024 0.078 0.0174 -0.0267 0.127

Samples
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Table 5.3: Pair-wise FST and RST values among population of S. scovelli in the Gulf of 
Mexico and Mobile Bay.  FST values are above the diagonal and RST values are below 
the diagonal.  Bold values indicate significant FST values after Bonferroni corrections.  

WBS1 WBS2 WBS4 MP FL GB TX
WBS1 0 0.0009 0.0016 0.0169 0.0305 0.0323 0.0292
WBS2 ‐0.0035 0 0.0013 0.0158 0.0389 0.0254 0.0375
WBS4 0.0167 ‐0.0028 0 0.0045 0.0238 0.019 0.0279
MP 0.0024 ‐0.002 ‐0.0085 0 0.0245 0.0174 0.0279
FL 0.0932 0.0518 0.0486 0.0174 0 0.0129 0.0138
GB 0.0673 0.0301 0.0168 0.0109 ‐0.0108 0 0.0302
TX 0.0713 0.1067 0.167 0.0948 0.198 0.182 0  
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Table 5.4:  Pair-wise estimates of Nei’s (1978) genetic identity and distance values 
among populations of S. scovelli.  Genetic identity values are above the diagonal and 
genetic distance values are below the diagonal. 

WBS1 WBS2 WBS3 MP FL GB TX
WBS1 0 0.9502 0.8905 0.7937 0.555 0.6468 0.6285
WBS2 0.0511 0 0.8941 0.8406 0.5744 0.7576 0.6349
WBS3 0.116 0.112 0 0.8521 0.6211 0.7271 0.5798
MP 0.2311 0.1736 0.1601 0 0.6229 0.7832 0.6298
FL 0.5887 0.5545 0.4763 0.4734 0 0.7577 0.5567
GB 0.4358 0.2776 0.3261 0.2444 0.2775 0 0.5713
TX 0.4644 0.4543 0.545 0.4623 0.5858 0.5598 0
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Figure 5.3:  UPGMA dendrogram based upon Nei’s (1978) genetic distance values 
showing the genetic relatedness of 7 pipefish populations throughout the Gulf of Mexico 
and Weeks Bay.  Sample locations include 3 populations within Weeks Bay watershed, 
two of which were located in the Fish River (WBS1 and WBS2) and the third located 
within the Magnolia River (WBS3), one population within Meaher State Park (MP), one 
population within the Grand Bay Estuarine Research Reserve (GB), a population from 
St. Joseph’s Bay, FL (FL) and a population from Port Aransas, TX (TX). 
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of genetic structure between the estuarine/freshwater group  (WBS1, WBS2, WBS4, 

MP) and the coastal group  (FL, GB, TX) (Table 5.5).   

     Bayesian cluster analysis estimated 2 parental populations (K=2) of Gulf pipefish 

within the Gulf of Mexico and Mobile Bay (Figure 5.4).  Texas and Florida populations 

showed little admixture with over 90% of individuals being assigned to Cluster 2 (Table 

5.6).  All other populations contained some degree of admixture with a proportion of 

individuals being placed into both clusters.  However, for all three Weeks Bay 

populations, the majority of individuals were assigned to Cluster 1, while the majority of 

individuals from Grand Bay, MS were assigned to Cluster 2.  Meaher Park contained 

approximately the same proportion of individuals assigned to Clusters 1 and 2 (Table 

5.6).  

 

Discussion 

     This study had two specific goals.  The first goal was to determine whether 

populations of Gulf pipefish within the Gulf of Mexico and Mobile Bay were genetically 

distinct.   Based on microsatellite data, we found that moderate levels of genetic 

structure occur in the Gulf of Mexico.  All coastal populations were genetically distinct 

from one another and from populations within Mobile and Weeks Bay.  Populations 

within Weeks Bay were not genetically distinct from one another and the Magnolia 

River population within Weeks Bay (WBS4) was not genetically distinct from the 

Meaher Park population, located in middle/upper Mobile Bay (Table 5.3).  However, 

pipefish populations within Fish River, which drains into Weeks Bay, were found to be  
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Table 5.5:  Analysis of molecular variance (AMOVA) among 7 populations of S.scovelli 
group into either an estuarine/freshwater group (WBS1, WBS2, WBS3 and MP) or a 
coastal group (FL, MS, and TX). 

Source of variation df Variance components % variation Fixation Indices P-value
Among groups 1 0.029 1.45 0.015 0.026
Among pops. within groups 5 0.021 1.06 0.011 <0.0001
Within populations 469 1.963 97.49 0.025 <0.0001
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Figure 5.4:  Results from Bayesian cluster analysis using the program STRUCTURE 
indicating the presence of 2 (K=2) population clusters of S. scovelli, a costal population 
(green) and a Weeks Bay populations (red).  Each line represents an individual within a 
population and populations are grouped together on the x-axis.  On the y-axis are 
probabilities of individual assignment to either cluster.   
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Table 5.6:  Proportion of individuals assigned to Cluster 1 (Weeks Bay cluster) and 
Cluster 2 (coastal cluster) after Bayesian cluster analysis using the program 
STRUCTURE. 
 

 

Population No. of individuals Cluster 1 Cluster 2
Weeks Bay Site 1 30 0.651 0.349
Weeks Bay Site 2 39 0.644 0.356
Weeks Bay Site 4 15 0.636 0.364
Meaher Park, AL 44 0.546 0.454
Grand Bay, MS 32 0.289 0.711
St. Joe Bay, FL 24 0.058 0.942
Port Aransas, TX 54 0.047 0.953  
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moderately distinct from the Meaher Park population (Table 5.3).  While significant 

genetic structure exists between many of the populations sampled, our data show that 

these populations probably maintain some level of gene flow, since FST values were 

relatively low.     

     Our second goal was to examine whether habitat may be contributing to genetic 

differentiation.  To examine if habitat differences are related to genetic structure, our 

freshwater and estuarine populations (WBS1, WBS2, WBS4 and MP) were grouped 

together to form an estuarine/freshwater group, while coastal populations (FL, MS and 

TX) were grouped together to form the coastal group.  We then examined the proportion 

of genetic variance explained by variation among groups, variation among populations 

within groups and variation within populations.  Much of the variation was explained by 

within population variance; however, a significant amount of variation was also 

explained by the variation among groups, suggesting that some genetic structure exists 

between estuarine/freshwater and coastal populations (Table 5.5). In addition, 

populations within groups showed significant genetic structure, which is not surprising 

since FST values indicated that all coastal populations were genetically distinct from one 

another (Table 5.3).    

     Another way in which to analyze this data set would be to separate out estuarine and 

freshwater populations and then examine the degree of genetic structure for all three 

ecosystems.  However, we felt that grouping the Meaher Park and Weeks Bay 

populations together for the estuarine/freshwater group was justified for at least two 

reasons.  First, no genetic structure was found between the Meaher Park population and 
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the population within the Magnolia River in Weeks Bay (WBS4).  Since the Magnolia 

River population is also connected to Fish River populations within Weeks Bay (WBS1 

and WBS2), we felt justified in grouping all four populations together.  Second, the 

physical environment at Meaher Park is very similar to that of a true freshwater 

environment.  Meaher Park is located within the middle-upper part of Mobile Bay and is 

heavily influenced by freshwater tributaries that enter into the Bay.  The salinity at this 

site normally ranges between 0-3 ppt and the submerged aquatic vegetation consists of 

freshwater plants (Bolland and Boettcher 2005).  In addition, most of the other fish 

collected at Meaher Park are freshwater species.  Because of the openness of Mobile Bay 

to the Gulf of Mexico, saltwater can encroach into this area, especially during drought 

conditions or storm events.  However, during most of the breeding season Meaher Park 

tends to resemble a freshwater system (Boettcher and Bolland 2005) and thus the 

selective pressure on this pipefish population most likely resembles the selection 

pressure observed in other freshwater systems. 

    The result that coastal Gulf pipefish populations are genetically distinct from one 

another is not too surprising considering similar results have been found for populations 

of the dusky pipefish, S. floridae, in which Texas and Florida populations were shown to 

have moderate levels of genetic structure (Mobley 2007).  As suggested for S. floridae, 

limited swimming ability of adults and lack of a pelagic larval stage limit gene flow 

between these populations and are likely to account for much of the genetic divergence 

(Mobley, 2007).  Although these coastal populations were genetically distinct, there also 

appears to be moderate levels of gene flow between them.  Pipefish migration has never 
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fully been assessed; however, it has been suggested that once submerged vegetative beds 

die during the winter, pipefish migrate to deeper waters where they may intermix with 

other populations (Hamilton 1942; Lazzari and Able 1990; Franzoi et al. 1993; Teixeira 

1995; Power and Attrill 2003; Bolland and Boettcher 2005).  Once waters begin to warm 

and the vegetation returns, pipefish then return to these shallow grass beds; however, 

whether pipefish display some form of site fidelity or whether they return to a different 

areas each season is unknown.  Site fidelity has only been studied in a handful of 

syngnathid species.  It has been shown that at least two species of pipefish, Nerophis 

lumbriciformis  (Monteiro et al. 2005) and Corythoichthys haematopterus (Matsumoto 

and Yanagisawa 2001), exhibit some site fidelity; however, this type of behavior has not 

been observed for any Syngnathus spp (Vincent et al. 1995).  While it is unlikely that 

pipefish move over long distances to new populations during this period, due to their 

limited swimming ability, they may move between neighboring populations.  Also, it has 

been suggested by Dawson (1982) and Mobley (2007) that while this Family does not 

have a pelagic larval phase, juvenile dispersal may occur between populations.  Juvenile 

pipefish are often found within floating aquatic vegetation, which can be transported by 

oceanic currents over several hundred kilometers to neighboring pipefish populations.  

This passive migration of juveniles would promote modest levels of gene flow between 

these populations.    

     Our data also suggests that moderate levels of gene flow are occurring between 

coastal populations and those within Mobile and Weeks Bay.  Similar to coastal 

populations, gene flow between these two areas could be the result of migrants moving 



108 
 

 

between the Bay and the Gulf of Mexico or due to passive migration of juveniles 

floating in aquatic vegetation out of the Bay.  Additionally, the Gulf Coast region is 

known to be prone to severe weather, such as tropical depressions, tropical storms and 

hurricanes.  When these events occur within the Gulf of Mexico, storm surges can push 

large amounts of saltwater from the Gulf of Mexico into Mobile Bay and surrounding 

areas.  In 2004 and 2005, Hurricanes Ivan and Katrina produced storm surges of up to 

10-12 feet around Mobile Bay, pushing with it not only large amount of saltwater but 

also marine aquatic life.  In addition, water influx from the Gulf of Mexico is not solely 

limited to major hurricane events as smaller tropical systems can also push modest levels 

of saltwater from the Gulf into the Bay.  In Meaher Park, saltwater pipefish, such as 

Syngnathus floridae, can commonly be found after this type of event.  In addition, 

depending upon the location of the storm, winds can also transport water out of the Bay 

into the Gulf of Mexico, thus carrying estuarine and freshwater species into the Gulf.  

While freshwater fish would not tolerate the change in salinity, most euryhaline 

organisms would be able to acclimate and thus be moved to coastal populations.  It is 

therefore likely that these storm events are at least in part contributing to gene flow 

between the coastal populations and populations within Mobile and Weeks Bay.   

     According to Bayesian cluster analysis, two “parental” populations of Gulf pipefish 

occur within the Gulf of Mexico and Mobile Bay.  One population appears to include the 

majority of coastal individuals (Coastal cluster), while the other population appears to 

consist mainly of those within Weeks Bay (Weeks Bay cluster).  However, the 

individuals from Meaher Park were assigned in almost even proportions to both clusters.  
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These observations, along with AMOVA data, suggest that populations along coastal 

areas are distinct from some populations within the Bay, particularly those located in 

Weeks Bay.  This distinction between populations within Mobile Bay and the Gulf of 

Mexico has also been found in other estuarine fish.  Populations of the Gulf killifish 

within Mobile Bay form a unique genetic cluster that is genetically distinct from two 

other population clusters within the Gulf of Mexico (Williams et al. 2008).  

Interestingly, all populations sampled contained individuals that were assigned to the 

predominantly coastal cluster (Cluster 2), while only 5-6% of individuals from the Texas 

and Florida populations were assigned to the predominantly Weeks Bay cluster (Cluster 

1).  Meaher Park and Grand Bay populations contained moderate proportions of 

individuals assigned to both the coastal and Weeks Bay cluster.  This suggests that 

coastal individuals are migrating, either due to normal migration patterns or due to storm 

events, into Mobile and Weeks Bay.  However, there is little contribution from the 

Weeks Bay cluster to Texas and Florida population.  Individuals from Grand Bay were 

mostly assigned to the coastal cluster, but 30% of these individuals were assigned to the 

Weeks Bay cluster.  This indicates that some individuals from the Weeks Bay cluster 

were able to enter the Gulf and become established in coastal populations that are 

located close to the Bay.   

       With moderate levels of gene flow and the likelihood of coastal individuals being 

pushed into the Bay during tropical events, which normally occur annually, the question 

then becomes, what is maintaining the significant genetic structure between coastal 

populations and populations within Mobile and Weeks Bay?  First, migration rates 
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between these populations may not be large enough to limit genetic differentiation.  This 

is especially true for the river systems within Weeks Bay.  Weeks Bay proper has limited 

submerged aquatic vegetation and in order for pipefish populations to migrate out of the 

river systems and into Mobile Bay they would have to traverse this open area.  In this 

case, potential predation within Weeks Bay proper may be high enough to limit the 

number of migrants that move in and out of Weeks Bay.  The potential for migration 

between Meaher Park and coastal populations is higher due to the openness of the Bay 

and continued submerged aquatic vegetation beds along the shores.  However, as with 

the coastal populations, limited swimming ability and no larval dispersal may limit 

migration between these areas.  Second, it has been suggested that divergent selective 

pressure between these environments may be driving population divergence even when 

the potential for gene flow exists (Beheregaray and Sunnucks 2001).  As has been 

suggested for other euryhaline organisms, development acclimation may negatively 

impact individuals migrating between areas where salinity significantly differs (Lee and 

Peterson 2003).  Currently, there are no data assessing the effects of developmental 

acclimation on pipefish performance or offspring quality.  However, if these migrants 

are more stressed relative to local individuals, then this may limit their ability to compete 

over access to resources or mates and thus limit the amount they contribute to the gene 

pool.  In addition, during embryonic development, the osmotic environment of the brood 

pouch, where offspring develop, is maintained by the male.  Structural differences of 

mitochondria-rich cells, which aid in osmoregulation, within the brood pouch occur 

between males from low salinity and saltwater environments (Partridge et al. 2007).  
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Whether these structural differences are plastic and can change when migrants enter 

environments with significantly different salinities is not known.  However, if migration 

to areas of differing environmental salinities constrains their ability to utilize the pouch 

as an osmoregulatory organ, then this may affect offspring viability.  Thus, offspring 

produced from native individuals would be more viable relative to those produced from 

migrants.   

     Our study suggests that coastal and estuarine/freshwater populations are genetically 

distinct even though moderate levels of gene flow occur between these populations.  The 

presence of individuals within Weeks Bay that were assigned to the coastal cluster 

suggests that contemporary gene flow of coastal individuals into the Bay is occurring.  

Additionally, gene flow out of Weeks Bay to coastal regions also appears to occur since 

moderate numbers of individuals from Grand Bay were assigned to this cluster; 

however, these individuals do not appear to significantly contribute to populations 

within Florida and Texas.  Weeks Bay is approximately 6,000 years old and throughout 

this time has consistently been connected to Mobile Bay.  Therefore, past geographic 

isolation with secondary contact between these estuarine/freshwater and costal 

populations is unlikely to explain this pattern of genetic differentiation.  We therefore 

suggest that the differentiation between these populations most resembles the 

divergence-with-gene-flow models.  Whether this pattern is mainly due to limited 

migration between pipefish populations from Weeks Bay to the Gulf of Mexico, or 

whether selective pressures between these two populations are contributing significantly 

to this divergence should continue to be assessed.  There has been little research 
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partitioning out the relative contribution of various selective process on the genetic 

differentiation of coastal and estuarine populations.  However, this should be an active 

area of research since it will provide vital information concerning how selective 

mechanisms promote genetic differentiation when gene flow still occurs between 

populations.         
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CHAPTER VI 

DISTRIBUTION OF MERCURY AMONG PIPEFISH POPULATIONS WITHIN 

THE WEEKS BAY WATERSHED, AL 

 

Introduction 

     Population and genetic diversity have long been associated with environmental 

health. Loss of genetic diversity can be a natural process due to inbreeding or genetic 

drift, particularly in small populations.  However, it has also been suggested that levels 

of genetic diversity may be influenced by anthropogenic stressors, such as pollutants 

(Strittholt et al. 1988; Foré et al. 1995a; Foré et al. 1995b; Gillespie and Guttman 1993; 

Benton et al. 2002).  Until recently, it has been largely assumed that exposure to toxic 

compounds leads to a decrease in the genetic diversity of natural populations due to 

population bottlenecks or contamination-induced selection (Theodorakis 2003).  

However, recent studies suggest that populations in contaminated areas may be just as 

diverse, if not more so, than those in areas that are not impacted by pollution (Eeva et al. 

2006; Theodorakis et al. 2006).  In contaminated areas, initial exposure to mutagenic 

toxins may cause a loss of genetic diversity due to selective mortality of maladapted 

individuals (Guttman 1994; Theodorakis 2003).  However, due to the high mutation 

rates that contaminated populations incur, studies are now showing that the diversity of 

these populations can be greater than that of non-contaminated populations (Thedorakis 

et al. 2006).  However, this increase in genetic diversity does not necessarily translate 

into increased population health, since accumulation of deleterious mutations could 
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affect the average fitness of the population, potentially leading to extinction due to 

mutational meltdown (Gabriel and Bürger 1994; Theodorakis 2003).   

     One of the most concerning environment pollutants is mercury.   Mercury is a 

naturally occurring heavy metal that is commonly found in natural ecosystems at low 

concentrations (Bargagli 2000).  However, the burning of coal, waste incineration and 

other industrial processes can produce large amounts of mercury, which are deposited 

into the ecosystem through particulate aerial deposition or precipitation (Lovett et al. 

2009).  Mercury is particularly concerning for a number of reasons.  First, once it enters 

freshwater environments it can become methylated, which aids in its ability to 

bioaccumulate up aquatic food webs (Kidd et al. 1995).  This is significant considering 

most commercially important species for human consumption are predatory fish and 

would contain the highest levels of mercury.  Second, the health effects of mercury 

exposure in humans are numerous.  This compound most commonly affects neurological 

and renal systems (reviewed in Florea and Büsselberg 2006).  Specifically, the lipid 

solubility of mercury allows it to be easily transported to the brain where it can affect 

neuromotor, behavior and cognitive function (Ratcliffe et al. 1996; Sanfeliu et al. 2003; 

reviewed in Florea and Büsselberg 2006).  Mercury has also been shown to be a 

genotoxin and can severely damage DNA (Sarafian 1999; Grotto et al. 2009).  In 

addition to its negative effects on humans, mercury can significantly impact natural 

wildlife populations.  Exposure to mercury has been shown to disrupt organismal 

development, gonadal development, reproduction and some neurological functions, such 

as predator avoidance behaviors (Webber and Haines 2003; reviewed in Lovett et al. 
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2009) for a number of different systems.  Because of the deleterious effects 

environmental exposure to mercury can induce, in both human and wildlife populations, 

identifying areas of potential contamination and understanding how these compounds 

impact population viability is vital.   

     Studies evaluating the effects of heavy metal contamination on genetic diversity in 

natural populations have been mixed.  Some studies have shown genetic diversity 

decreases with heavy metal exposure (Ross et al. 2002), while others have shown the 

exact opposite effect (Theodorakis et al. 2006).  Decreases in genetic variation can be 

the result of selective mortality (Guttman 1994; Theodorakis 2003), by either limiting 

the reproductive success or increasing the mortality rates of more susceptible individuals 

(Guttman 1994).  On the other hand, mercury has one of the highest genotoxic potentials 

of the heavy metals and in marine mussels, it has been shown to cause more single-

strand breaks in DNA than either copper or cadmium (Bolognesi et al. 1999).  In 

addition, mercury exposure can inhibit DNA repair systems within cells, allowing 

damaged DNA to be maintained within the genome (Christie et al. 1985; Au et al. 2003; 

Cebulska-Wasilewska et al. 2005). These two factors together would likely increase 

mutation rates within affected populations.  While the effect of this compound on 

genetic diversity is still unclear, either the loss of genetic variation or an increase in 

deleterious mutations can be detrimental to population viability.  

        The level of gene flow that occurs between populations can influence how severely 

environmental contaminants impact genetic diversity and population viability.  If 

populations exposed to environmental contaminants are small and isolated, then the 
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effect of these pollutants may be extremely detrimental because the negative effects of 

environmental contaminants on genetic diversity will be compounded by the 

populations’ susceptibility to inbreeding and genetic drift.  However, if these populations 

maintain moderate levels of gene flow with non-contaminated populations, then genetic 

diversity could be reconstituted through the influx of migrants.  Euryhaline migratory 

fish provide excellent models to examine how migration rates may influence genetic 

diversity in contaminated areas.  Euryhaline fish can migrate between marine, estuarine 

and freshwater environments.  However, differing selective pressures among these 

ecosystems has been shown to cause estuarine populations to diverge from their coastal 

counterparts (Beheregaray and Sunnucks 2001; Pampoulie et al 2004).  If these 

populations are distinct, the effect of environmental contamination on these smaller 

estuarine populations may be more detrimental than previously assumed.  Therefore, in 

order to gain a better understanding as to how environmental contaminants are impacting 

genetic diversity and population viability, the genetic structure of populations in and 

around contaminated areas should be examined.  

     One area where mercury contamination is particularly concerning is the Weeks Bay 

watershed.  Weeks Bay is a sub-estuary within Mobile Bay, AL and is a key breeding 

ground for many important commercial species along the Gulf coast.  Weeks Bay 

watershed encompasses two main river systems, the Fish River and the Magnolia River, 

which feed into Weeks Bay proper.  Portions of Fish River have historically shown 

elevated levels of mercury contamination (Novoveska 2005) and the Fish River is 

currently listed as an impaired water source according to guidelines established by the 
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Clean Water Act due to presence of elevated mercury concentrations (ADEM 2008).  

The Magnolia River has never been extensively assayed for mercury; however, there is a 

concern that populations within this system are also being impacted.   

     In order to examine whether mercury is present within Week Bay and infer how these 

compounds may be impacting the genetic diversity of exposed populations, we used the 

Gulf pipefish as a model system.  The Gulf pipefish, Syngnathus scovelli, is the most 

common pipefish found within the Gulf of Mexico and Mobile Bay.   It is a euryhaline 

pipefish and the only North American pipefish that can inhabit freshwater.  Populations 

within Weeks Bay are genetically distinct from population within the Gulf of Mexico; 

however they maintain some level of gene flow with their coastal counterparts (see 

Chapter V).   By comparing populations from potentially contaminated areas within 

Weeks Bay to non-exposed populations, we can begin to (1) assess the level of 

contamination within Weeks Bay and (2) assess the effect of mercury on the genetic 

diversity of exposed populations.  In addition, since the genetic structure of these 

populations is known, we can begin to understand how this structure may be influencing 

the effect of mercury exposure on these populations.   

 

Methods and Materials 

Mercury Analysis 

Water and Sediment Analysis.  Water samples were collected from a total of 7 sites in 

and around Mobile Bay (Table 6.1).  Water was collected from just below the surface at 

5 sites within Weeks Bay (Figure 6.1).  Three of these sites are located within Fish River  
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Table 6.1:  Sites, site abbreviations (Abb), number of individuals collected (N) and GPS 
coordinates of Gulf pipefish, S. scovelli, sampling locations. 
 

Site Abb GPS Coordinates (N, W)
Weeks Bay ‐ Turkey Branch, AL WBS1 30°42978, 87°32378
Weeks Bay ‐ Mouth of Barner, AL WBS2 30°45894, 87°80418
Weeks Bay ‐ Barner Branch, AL WBS3 30°45783, 87°80242
Weeks Bay ‐ Magnolia River, AL WBS4 30°45783, 87°80242
Weeks Bay ‐ Magnolia River, AL WBS5 30°39642, 87°78063

Meaher Park, AL MP 30°66624, 87°92731
Grand Bay, MS GB 30°36164, 88°39776
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Figure 6.1:  Google earth image of sample locations of sites throughout the Weeks Bay 
watershed.  Three of these sites were located within the Fish River (WBS1, WBS2 and 
WBS3), while two sites were located within the Magnolia River (WBS4 and WBS5).  
Water samples were taken from all five sites.  Fish were only sampled from WBS1, 
WBS2 and WBS4 because no fish were found at WBS3 or WBS5 during the collection 
period. 
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(WBS1, WBS2, and WBS3) and the remaining two are located within the Magnolia 

River (WBS4 and WBS5).  Water samples were also collected from Meaher State Park 

(MP), located within the middle/upper part of Mobile Bay, and from one site along the 

coast of Mississippi within the Grand Bay Estuarine Research Reserve, MS (GB) (Figure 

5.1).  Water samples were collected in cleaned brown amber bottles using the protocol 

for “Ultra-Clean Collection of Water and Wastewater Samples for the Analysis of Low 

Level Mercury” (modified form of EPA method 1669).  Samples were stored on ice until 

returned to the lab.  Once in the lab, water was filtered through a 0.8µm nitrocellulose 

filter and preserved with concentrated HCl.   

     In December 2007, two sediment samples were collected from two sites within Fish 

River (WBS2 and WBS3).  These two sites were chosen because WBS3 has historically 

been shown to contain high mercury levels, which was not observed in our water data, 

and WBS2 contains a pipefish population just downstream from WBS3.  Samples from 

the upper 2 cm of the sediment substrate were taken from these two sites and 

individually stored in zip-lock bags.  Samples were immediately placed on ice and then 

frozen upon return to the laboratory until analysis.   

     Mercury analysis for both water and sediment were performed by cold vapor 

generation and sector field inductively coupled plasma mass spectrometry (CV-ICP-MS) 

by the Trace Elements Analysis Core Facility at Dartmouth College.  The detection limit 

of this method for total mercury was 1.0 ng/L. 
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Fish Collection.  Fish were collected using a hand seine from shallow grass beds from a 

total of five sites.  Three sites were located within Weeks Bay watershed, of which two 

of these sites were located within Fish River (WBS1 and WBS2) and the third site was 

located within Magnolia River (WBS4).  During the sampling periods, no fish were 

found at WBS3 within Fish River or at WBS5 within the Magnolia River.  In addition, 

fish were also collected from Meaher State Park, AL (MP) and Grand Bay National 

Estuarine Research Reserve, MS (GB).  Fish were returned to the lab, anesthetized using 

MS222 and sacrificed.  Tail tissue samples from pipefish were then preserved in 95% 

ethanol for genetic analysis.  The remaining tissue was frozen for mercury analysis.  In 

addition to pipefish, representatives of other fish species were collected from each site 

during the sampling period.  These individuals were separately stored in zip-lock bags 

and frozen prior to mercury analysis. 

 

Fish Mercury Tissue Analysis.  Total mercury concentrations in fish tissue were assessed 

using cold vapor atomic absorption spectrophotometry as outlined in “Guidelines for 

Assessing Chemical Contaminant Data for Use in Fish Advisories” (EPA 823-B-00-

007).  All fish were sent to and processed by David Evans at the NOAA laboratory in 

North Carolina for total mercury analysis.  Data for mercury concentrations are reported 

as parts per million (ppm) dry weight.  Significant differences in mercury levels between 

populations were determined using a Kruskal-Wallis one-way analysis of variance.  Pair-

wise differences were assessed using Tukey’s post hoc test. 
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Population Structure Analysis.   As described in Chapter V, population data from 5 

microsatellite loci were analyzed using GENEPOP version 4.0 (Rousset 2008).  In order 

to determine the genetic divergence among populations, population pair-wise FST  and 

RST values were estimated and significant values were inferred based on a G based exact 

test (Goudet et al. 1996).  All significance levels were adjusted based on a Bonferroni 

correction when appropriate.  The program ARLEQUIN version 2.2 (Pritchard et al. 

2000) was used to carry out an analysis of molecular variance (AMOVA) to estimate the 

levels of population divergence between exposed populations and non-contaminated 

populations.  In addition, the average genetic diversity of each population was assessed.   

 
 

Results 
 

Mercury Analysis 

Water and Sediment.  Surface water samples from all sites contained mercury levels well 

within background levels (Table 6.2).  Sediment from WBS3, located within Barner 

Branch of Fish River, contained total mercury levels between the probable effects level 

(PEL) and upper effects threshold (UET) (509.2 ppb). However, sediment from WBS2, 

which is located where Barner Branch joins the Fish River, showed mercury levels 

within background levels (11.2 ppb).   

 

Fish Tissue.  Pipefish and other species of fish collected at WBS2 in the Fish River and 

at WBS4 in Magnolia River, the two main rivers that feed into Weeks Bay proper, 

contained fish with significantly higher concentrations of mercury than fish collected 
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Table 6.2:  Total mercury levels of surface water from sites within 
the Weeks Bay watershed, Meaher State Park, AL and Grand Bay 
Research Reserve, MS. 

Collection Site 
Month of 
Collection 

Total Mercury 
(ng/L) 

Grand Bay  July 0.92 
Meaher Park July 1.77 
Weeks Bay- WBS1 July 1.31 
Weeks Bay –WBS2 July 0.93 
Weeks Bay – WBS4 July 1.94 
Weeks Bay – WBS1 September 1.92 
Weeks Bay – WBS2 September 3.26 
Weeks Bay – WBS3 September 4.78 
Weeks Bay – WBS4 September 2.3 
Weeks Bay – WBS5 September 2.18 
Weeks Bay – WBS1 December 4.3 
Weeks Bay – WBS2 December 2.56 
Weeks Bay – WBS3 December 5.56 
Weeks Bay – WBS4 December 4.32 
Weeks Bay – WBS5 December 5.03 
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 from all other sites (Figure 6.2 and 6.3). The appendix contains a list of all species of 

fish collected, sample sizes and their mean total mercury concentrations.  

 

Population Genetic and Genetic Diversity 

     As reported for Chapter V, populations within Weeks Bay were not significantly 

distinct from one another (Table 6.3).  Populations within Fish River (WBS1 and WBS2) 

were genetically distinct from the population at Meaher Park, while the population 

within Magnolia River (WBS4) was not.  All populations within Weeks Bay and the 

population at Meaher Park were genetically distinct from the Grand Bay population 

(Table 6.3).   

      Exposed groups (WBS2 and WBS4) and non-contaminated groups (WBS1, MP and 

GB) were not genetically distinct from one another and most of the genetic variation 

found within this data set was explained by the variation within populations and among 

populations (Table 6.4).   Additionally, levels of genetic diversity were similar between 

all populations sampled, regardless of the mercury levels found within these populations 

(Table 6.5).  

 
Discussion 

 
     Our data from this study suggest that sites within the main rivers that feed into Weeks 

Bay contain significant levels of mercury contamination.  While mercury concentrations 

of surface waters from these rivers were within background levels, total mercury within 

the sediment of Barner Branch (WBS3) in the Fish River showed levels that were within 
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Figure 6.2:  Average total mercury concentration of S. scovelli from Grand Bay, MS 
(GB), Meaher Park, AL (MP) and three sites within the Weeks Bay watershed, two of 
which were from Fish River (WBS1 and WBS2) and one within the Magnolia River 
(WBS3).  Vertical bars on means indicate standard error.  Treatment results with the 
same letter above error bar are not significantly different at p < 0.05. 
  



126 
 

 

Collection Site

GB MP WB-S1 WB-S2 WB-S4To
ta

l M
er

cu
ry

 C
on

ce
nt

ra
tio

n 
(p

pm
 d

ry
 w

ei
gh

t)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

a a
a

b

c

 
 
Figure 6.3:  Average total mercury concentration of other fish species collected from 
Grand Bay, MS (GB), Meaher Park, AL (MP) and from three sites within the Weeks 
Bay watershed, two of which were from Fish River (WBS1 and WBS2) and one within 
Magnolia River (WBS3).  Vertical bars on means indicate standard error.  Treatment 
results with the same letter above error bar are not significantly different at p < 0.05. 
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Table 6.3: FST and RST values among population of S. scovelli in Weeks Bay, Mobile 
Bay and Grand Bay, MS.  FST values are above the diagonal and RST values are below 
the diagonal.  Bold values indicate significant FST values after Bonferroni corrections. 
    

WBS1 WBS2 WBS4 MP GB
WBS1 0 0.0009 0.0016 0.0169 0.0323
WBS2 ‐0.0035 0 0.0013 0.0158 0.0254
WBS4 0.0167 ‐0.0028 0 0.0045 0.019
MP 0.0024 ‐0.002 ‐0.0085 0 0.0174
GB 0.0673 0.0301 0.0168 0.0109 0  
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Table 6.4:  AMOVA of 5 populations of S. scovelli that were grouped into contaminated 
(Weeks Bay-S2 and Weeks Bay-S4) and non-contaminated (Weeks Bay-S1, Meaher 
Park, and Grand Bay) groups. 
Source of variation df Variance components % variation Fixation Indices P-value
Among groups 1 -0.011 -0.57 -0.006 0.912
Among pops. within groups 3 0.238 1.24 0.0123 <0.001
Within populations 315 1.903 99.32 0.007 <0.0001  
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Table 6.5:  Average genetic diversity of exposed populations (Weeks Bay-S2 and Weeks 
Bay-S4) and non-contaminated populations (Weeks Bay-S1, Meaher Park and Grand 
Bay) of the Gulf pipefish, S. scovelli. 
 
Sample location No. of individuals No. of gene copies Avg. genetic diversity
Weeks Bay Site 1 30 60 0.799 ± 0.449
Weeks Bay Site 2 39 78 0.718 ± 0.408
Weeks Bay Site 4 15 30 0.646 ± 0.381
Meaher Park 44 88 0.779 ± 0.467
Grand Bay, MS 32 64 0.807± 0.452  
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the probable to upper effects level.  Additionally, all fish collected from WBS2 within 

the Fish River and WBS4 within the Magnolia River showed mercury levels that were 

significantly higher than those outside of the Weeks Bay watershed (Figure 6.3 and 6.4).  

One major concern from this study is that most of the fish caught from these sites were 

small, <1g, low-level planktivores.  Because mercury bioaccumulates up the food web, 

this suggests that larger predatory fish, notably those fish most often caught for human 

consumption within Weeks Bay, would be expected to contain even higher levels of 

mercury.   

     The other major concern that this study identified is that single parameter 

measurements, such as sampling only water or sediment, do not accurately describe what 

is occurring within the system.  While fish and sediment samples from sites within the 

Weeks Bay watershed contained elevated levels of mercury, surface waters for all sites 

were consistently within background levels (Table 6.2).  Barner Branch (WBS3) is 

particularly concerning because of the high levels of mercury found in the sediment.  

However, mercury levels of sediment from the area where Barner Branch joins the Fish 

River (WBS2) were within background levels, while fish at this site showed significantly 

elevated levels.  One possible reason for the difference in mercury concentrations 

between these two sites is the difference in their substrate.  The substrate of Barner 

Branch (WBS3) is mainly composed of mud and silt, while downstream from Barner 

Branch, where it connects to the Fish River (WBS2), the substrate is mainly composed 

of sand.  Because clay particles readily bind mercury, it is likely that much of the 

mercury within the watershed may be sequestered within the substrate.  However, since 
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fish collected directly down-stream from Barner Branch (WBS2) contain significantly 

higher levels of mercury than any other site sampled, it appears that not all of the 

mercury is sequestered and some of it is entering the trophic system.  Based upon these 

observations, we feel that it is imperative that future work evaluates both sediment and 

biological samples in order to assess the level of mercury contamination within this 

system. 

     Interestingly, while pipefish collected from the three sites within Weeks Bay are not 

genetically distinct from one another, mercury levels in pipefish at these sites differed 

significantly.  Fish collected from both WBS2, within the Fish River, and WBS4, within 

the Magnolia River, contained mercury levels that were significantly higher than those 

of fish from WBS1, Meaher State Park and Grand Bay Research Reserve.  It is also 

interesting that fish within WBS1 did not show significantly elevated levels of mercury, 

especially considering the close proximity of this site to WBS2 and the fact that 

populations within Weeks Bay are not genetically distinct, which suggests significant 

levels of migration between these groups.  Mercury accumulates over time and while the 

reports concerning the retention rate of mercury vary, it is generally considered to be 

maintained in the body for at least 2-3 months (van Walleghem et al. 2007).  The lack of 

individuals with significantly elevated levels of mercury at WBS1 suggests that 

migration among these sites may be limited during the breeding months.  If high rates of 

migration were continuously occurring, individuals from WBS1 would likely contain 

moderate levels of mercury since they would be receiving individuals from WBS2 and 

WBS4.  More than likely, the lack of genetic structure observed among populations 
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within Weeks Bay is due to pipefish from both river systems intermixing once 

individuals move to other locations during the winter and, since site fidelity has not been 

observed in any Syngnathus sp. (Vincent et al. 1995), these individuals are likely to 

move to different grass beds within the Bay each breeding season.  Also, if individuals 

move to non-contaminated areas between breeding seasons, the amount of time spent at 

these new locations may be such that exposed individuals can eliminate most of the 

mercury from their system prior to the next breeding season.  This could potentially 

explain why the mercury levels of individuals from WBS1 were significantly lower than 

other sites within Weeks Bay, yet no significant genetic structure was detected among 

these populations.   

     While mercury levels have never been addressed for fish within the Magnolia River, 

our data suggests that it may also contain a mercury source.  The presence of fish with 

higher levels of mercury within the Magnolia River can be explained by three different 

hypotheses.  First, it is possible that the Magnolia River also contains high levels of 

mercury, similar to those of Fish River.  Second, it is possible that fish exposed to 

mercury from the Fish River are migrating to the Magnolia River.  However, as 

explained above, because fish migrating between WBS2 and WBS4 would have to pass 

through WBS1 in order to enter the Magnolia River, we would expect pipefish from 

WBS1 to have mercury levels that were intermediate or not significantly different from 

fish collected from the other sites.  Additionally, it is not likely that mercury levels are 

lower at WBS1 because of the presence of new non-exposed migrants from Mobile Bay, 

since the population within the Magnolia River (WBS4) was the only population not 
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genetically distinct from the Mobile Bay population (MP).  Third, it is possible that the 

location where pipefish move during the winter months may be a site of contamination.  

If this is the case, all pipefish populations would initially have higher levels of mercury 

during the beginning of the breeding season and those that bred in areas that are not 

contaminated would eventually eliminate mercury over the course of the breeding 

season.  However, this is not the case since mercury levels of pipefish within WBS4 did 

not significantly change between our July and September sampling period (July:  0.394 

± 0.05 (mean ± S.E.), n = 17; September: 0.394 ± 0.022, n = 13; Mann-Whitney U test: 

χ2
0.05,1 = 1.738, p = 0.187).  This all suggests that pipefish with high levels of mercury 

within the Magnolia River are not recent migrants from contaminated sites within the 

Fish River but it is likely there is another mercury source within the Magnolia River. 

     While, studies have shown that exposure to environmental contaminants can 

significantly affect genetic diversity, we found no difference among populations that 

were exposed and those with no known history of contamination.  Exposed groups and 

non-contaminated groups were not genetically distinct from one another.  In addition, 

the amount of genetic diversity within populations that contained individuals with high 

mercury levels appear similar to populations with no history of mercury contamination, 

such the population from Grand Bay National Research Reserve, MS (GB).  Thus, 

mercury exposure has not affected levels of genetic diversity within these populations.   

     Traditionally, it would be assumed that mercury exposure did not impact levels of 

genetic diversity of exposed populations for one of three reasons: (1) Selective mortality 

is not occurring within these exposed populations; (2) Mutation rates are not 
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significantly higher in exposed populations, or (3) Selective mortality and increased 

levels of mutation are balancing each other.  However, another reason could be that 

migrant influxes from non-contaminated populations could be helping to reestablish 

genetic loss in exposed populations.  In Weeks Bay, individuals at contaminated areas 

may be affected, but since migrants from non-contaminated sites immigrate at least 

every breeding season, the effects of exposure on overall population viability not be as 

severe.  However, if the majority of this immigration is coming solely from populations 

within Weeks Bay, then this may not be the case.  Since both of the main river systems 

that feed into Weeks Bay contained fish with significantly elevated levels of mercury, it 

is possible that much of this system is contaminated.  Therefore, if most of the migration 

is solely occurring from other populations within Weeks Bay, it is likely that a 

significant number of these migrants have been previously exposed at some point and 

therefore their general health may already be affected.  

     The moderate level of gene flow from non-contaminated areas outside of Weeks Bay 

may also be influencing the effect of mercury exposure on population viability.  Since 

coastal and estuarine migrants are likely to enter Weeks Bay, due to normal migration 

patterns or storm events, it is possible that any potential decrease in genetic diversity 

caused by mercury exposure may be counteracted by these migrants.  In addition, since 

there is gene flow between coastal populations, the amount of genetic diversity that is 

reestablished through coastal migrants with each storm event may be enough to 

counteract the effect of mercury exposure on genetic variability and help maintain 

populations within Weeks Bay.   
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     Overall, our data show that mercury contamination is a cause of concern within the 

Weeks Bay watershed.  Pipefish within the Fish and Magnolia River, the main rivers that 

feed into Weeks Bay, contained levels of mercury that were significantly higher than 

pipefish from other populations.   In addition, all other fish collected showed patterns of 

contamination similar to that of our pipefish samples.  As stated previously, these results 

are particularly concerning because all fish sampled were low level planktivores and 

mercury tends to bioaccumulate up the food web.  This suggests that larger predatory 

fish within the Bay, which are typically caught for human consumption, may be a health 

concern.  This study also shows that a variety of monitoring tools, including water, 

sediment and biological, are needed to establish the full extent of mercury contamination 

within this area.  Finally we show that levels of genetic diversity were not different 

between exposed population and non-contaminated populations of pipefish and suggest 

that moderate levels of gene flow from non-contaminated sites may be a factor in 

maintaining genetic diversity.  
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CHAPTER VII 

CONCLUSIONS 

 

     Sexual selection is a powerful mechanism that has led to the evolution of some of the 

most elaborate traits in nature (reviewed in Andersson 1994) and can aid in driving 

population divergence (Lande 1981; Nagel and Schluter 1998; Jones et al. 2003; Boake 

2005).  Understanding the factors that contribute and influence sexual selection is an 

important step in understanding how this process contributes to evolutionary change.  

Disrupting sexual selection mechanisms can have long-term effects on population fitness 

and viability and recent studies have shown that environmental disturbances are 

impacting both natural selection and sexual selection processes (Hayes 2002, 2003; Hill 

and Janz 2003; reviewed in Reish et al. 2006; Arellano-Aguilar and Garcia 2008; Coe et 

al. 2008, Saarisota et al. 2009).   Of these disturbances, one of the most disruptive may 

be the impact of environmental contaminates on natural populations (Schwarzenbach et 

al. 2006).  Comprising mainly of synthetic compounds, pollutants have been shown to 

disrupt development, reproduction, risk associated behavior, mating behavior, mating 

dynamics and increase morality rates (Hayes et al. 2002, 2003; Hill and Janz 2003; 

reviewed in Reish et al. 2006; Menza et al. 2007; Kidd et al. 2007; Maunder et al. 2007; 

Peters et al. 2007, Schäfers et al. 2007, Arellano-Aguilar and Garcia 2008; Cevasco et al. 

2008; Coe et al. 2008; Haxton and Findlay 2008, Rippey et al. 2008; Brunelli et al. 2009; 

Guimaraes et al. 2009, Haeba et al. 2009; Saarisota et al. 2009; Xu et al. 2009).  While 

much of the research has focused on the effects these compounds have on survivorship 
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and reproduction, how these compounds influence sexual selection processes is still 

vague and should be explored further.  The purpose of this dissertation was to examine 

how environmental contaminants impact sexual selection processes is a sex-role 

reversed pipefish and address how population structure may influence the impact of 

these contaminants on population viability.     

     Before assessing the impact of environmental contaminants on sexual selection 

processes, factors that contribute to the opportunity for sexual selection in pipefish were 

determined.  CHAPTER II evaluated the influence of post-copulatory choice 

mechanisms, particularly male cryptic choice, on offspring survival and examined how 

both pre- and post-copulatory behaviors contribute to the opportunity for selection in the 

broad-nosed pipefish, S. typhle.  It was determined that male cryptic choice based on 

perceived parasite load contributed very little to offspring survivorship.  However, other 

post-copulatory processes appear to be important.  First, females mating with empty 

males appear to have an advantage over females mating with males that have partially 

filled brood pouches since these females were able to deposit significantly more eggs per 

copulation.  This difference in the number of eggs that first females are able to 

contribute suggests that a “first female advantage” may exist in this system.  Also, the 

data suggest that female size and/or egg size may play an important role in offspring 

survivorship, since female size and the proportion of offspring surviving were 

significantly correlated.  Variance in relative fitness values for females was also found to 

be influenced by both pre- and post-copulatory mechanisms.  Behaviors contributing the 

most to the variance in relative female fitness were female mating success, the number 
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of eggs transferred per copulation and egg survivorship, suggesting these factors can 

significantly influence the direction of sexual selection. 

     Most of the recent research on sexual selection in pipefish has been addressed using 

S. typhle as the model species, while these processes in many other syngnathid species 

are relatively unexplored.  One particularly interesting species is the Gulf pipefish, 

Syngnathus scovelli.  S. scovelli is a polyandrous pipefish and this species shows one of 

the largest discrepancies between the variance in male and female mating success of any 

polyandrous species to date (Jones et al. 2001).  In this species, variance in female 

mating success is likely to be one of the main factors impacting the opportunity for 

selection.  While the influence of the number of eggs transferred per copulation did 

contribute to the variance in relative female fitness in S. typhle, this factor may 

contribute to a much less degree in S. scovelli since most females will completely fill a 

male during one mating attempt (personal observation).  As a result, variance in mating 

success among females is probably much larger than the variance in the number of eggs 

transferred per copulation.  Thus, because of the strong contribution mating success has 

toward relative fitness and sexual selection, CHAPTER III identified the physical and 

behavioral traits that influence mate choice in both male and female Gulf pipefish, S. 

scovelli.   In order to assess the traits that influence male and female mating preference, 

we evaluated the proportion of time focal males responded to stimulus females of 

differing sizes and the proportion of time focal females actively courted stimulus males 

of differing sizes.  The behavior of the stimulus females was also examined in order to 

determine how female behavior influenced male choice.  The amount of time males 



139 
 

 

responded to females was most significantly influenced by female behavior.  However, 

female size may also contribute to male preference.  On the other hand, female mate 

preference was not found to be influenced by male size, yet the influence of male 

behavior on female choice should continued to be addressed.  I also determined that the 

interaction between female courtship behavior and male response time was primarily 

driven by changes in female behavior, but that male behavior may be providing a form 

of positive reinforcement for females.  

     CHAPTER IV examined whether exposure to a synthetic estrogen impacted mating 

dynamics in S. scovelli.   The expression of secondary sexual traits in many organisms 

can be directly related to mating success (reviewed in Andersson 1994).  These traits are 

normally under the control of sex steroids and it has been suggested that exposure to 

endocrine disrupting compounds may affect their expression (Ueda et al. 2005).  In this 

chapter, two specific questions were addressed: (1) Does exposure to 17α-

ethinylestradiol (EE2), a synthetic estrogen, affect the expression of secondary sex traits 

in males, and (2) What effect do changes in male trait expression have on mating 

dynamics and sexual selection processes in a sex-role reversed pipefish.  To assess these 

questions, male and female S. scovelli were paired based on size and sex.  One 

individual of the pair was exposed to a control, while the other individual was exposed 

to either 1ng/L or 100ng/L EE2 for 10 days and the effect on body morphology, mate 

choice, female courtship behavior, male mating success and male reproductive success 

were addressed.  Exposure to EE2 did not significantly impact female mating 

opportunity given that males did not discriminate against exposed females in choice 
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trials.  The reason for this lack of an effect may be because neither concentration of EE2 

significantly impacted female courtship behavior, which was shown in Chapter III to be 

the major factor influencing male response.  However, exposure to as little as 1ng/L EE2 

for only 10 days significantly affected both male body morphology and mating 

opportunity.  Exposed males had significantly larger body depth to length ratios than 

their control partners and exposure to 100 ng/L EE2 induced the expression of iridescent 

lateral body stripes, a trait normally only found in females.  Additionally, exposure to 

both concentrations caused exposed males to be discriminated against in female choice 

tests.  Exposure to 100 ng/L EE2 also significantly decreased male mating success; 

although, if males became impregnated, previous exposure did not impact male 

reproductive success.   

     Once it is known whether environmental contaminants significantly impact individual 

fitness, the next question becomes how these effects translate into population health.  

One important component that can contribute to the way environmental pollutants affect 

population viability is how exposed populations are connected to non-contaminated 

populations (Theodorakis 2003).  In the case of endocrine disruptors, populations in 

freshwater and estuarine habitats are more likely to be exposed to these compounds than 

coastal populations due to their location near wastewater treatment plants or due to 

agricultural run-off into these systems.   If these exposed populations are genetically 

isolated from other populations, the impact of these compounds could be particularly 

detrimental since the effects of the pollutants are confounded by inbreeding and genetic 

drift.  However, if these populations maintain high levels of gene flow with non-
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contaminanted populations, it may be able to counteract these affects.   Thus, by 

understanding how populations within and around contaminated areas are genetically 

structured, the impact of environmental contaminants on genetic diversity and 

population health can be more accurately assessed.  In CHAPTER V, the population 

structure of the Gulf pipefish throughout the Gulf of Mexico and within Mobile Bay was 

addressed using microsatellite data.   Coastal populations throughout the Gulf of Mexico 

(Texas, Mississippi and Florida) were found to be genetically distinct from one another 

and from populations within Mobile Bay.  Bayesian cluster analysis also suggested that 

pipefish populations within the Gulf of Mexico and Mobile Bay are derived from two 

parental populations, one coastal population and one estuarine/freshwater population.  

However, moderate levels of gene flow appear to be maintained among all populations 

sampled.      

     Many of the pipefish collected for this dissertation were collected from areas in and 

around Mobile Bay, AL.  Because this area is heavily involved in the fishing industry 

one environmental pollutant that is particularly concerning for this region is mercury.  

Mercury is a heavy metal that has been shown to impact the health of both human and 

wildlife populations (Webber and Haines 2003; reviewed in Florea & Büsselberg 2006; 

reviewed in Lovett et al. 2009).  Once mercury becomes methylated, it can 

bioaccumulate up the aquatic food chain, where it becomes concentrated in larger 

predatory fish that are most commonly used for human consumption (Kidd et al. 1995).  

Within the Weeks Bay watershed, a sub-estuary of Mobile Bay, mercury levels in fish 

have been shown to be above the limits deemed safe by the U.S. Food and Drug 
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Administration (ADEM 2001).  In CHAPTER VI, the level of mercury contamination 

within the Weeks Bay watershed was examined.  In order to assess these levels, water 

samples and fish were collected from locations inside the Weeks Bay watershed, in the 

middle/upper part of Mobile Bay, and within the Grand Bay Research Reserve, MS and 

assayed for total mercury.  In addition, the effect of mercury exposure on the genetic 

diversity of exposed populations was examined.  Populations within both of the main 

rivers that feed into Weeks Bay proper were found to contain significantly elevated 

levels of mercury when compared to pristine sites, such as the Grand Bay Estuarine 

Research Reserve.   However, exposure did not significantly impact the genetic diversity 

of these populations as they were found to be just as diverse as non-contaminated 

populations.  It is possible that moderate levels of gene flow between exposed and non-

contaminated populations may be helping to maintain genetic diversity of these 

populations.  However, whether this influx of migrants can sustain these populations 

should be addressed further.   

     The ultimate goal of this research was to understand how environmental 

contaminants may be affecting sexual selection processes and examine how these effects 

may impact long-term population viability.  Overall, these data show that environmental 

contaminants, particularly endocrine disruptors, can significantly impact mating 

dynamics and sexual selection processes by impacting mating opportunity, one of the 

main factors contributing to the opportunity for sexual selection in pipefish.   In the case 

of endocrine disruptors, not only do these effects impact individual fitness, they could 

also impact long-term evolutionary processes and population viability.  If males that are 
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sensitive to exposure are not able to obtain mates due to female discrimination, then this 

could limit the effective population size and lead to decreased genetic diversity.  On the 

other hand, if exposure decreases the strength of sexual selection, by allowing non-

preferred females the opportunity to increase their reproductive fitness by mating with 

exposed males, then this could lead to a decrease in overall population fitness.  Also, if 

the induction of female secondary sex traits in males is long-term, the moderate levels of 

gene flow that occur between pipefish populations would allow exposed males to carry 

this phenotype, and its likely impacts on mating dynamics and sexual selection 

processes, to non-exposed populations.  While the movement of exposed individuals to 

new populations may negatively impact non-contaminated populations, migrants moving 

from non-contaminated populations to exposed population may have the reverse effect.   

In the case of mercury, exposed populations within Weeks Bay may be able to maintain 

genetic diversity through the influx of migrants from non-contaminated populations 

outside of Weeks Bay.  However, if mercury levels begin to impact individual health to 

the point that mortality rates in these populations became higher than immigration rates 

into these sites, then it is likely that these areas would simply become population sinks 

for migrant individuals.  Overall, this study provides significant insight as to how 

environmental contaminants can affect sexual selection mechanism and suggests how 

population structure may play a role in determining the impact of these compounds on 

population health and viability.  
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APPENDIX 
 
 

Total mercury concentration of fish collection from Grand Bay, MS, Meaher Park, AL 
and three sites within the Weeks Bay watershed.  Data is reported as ppm dry weight 

Collection Site Species
Total Mercury        
(mean ± S.E.) n

Grand Bay 1 Chilomycterus atringa 0.059 ± 0.005 2
Grand Bay 1 Cynoscion nebulosus 0.044 ± 0.007 3
Grand Bay 1 Lagodon rhomboides 0.069 ± 0.004 7
Grand Bay 1 Lucania parva 0.164 ± 0.080 3
Grand Bay 1 Menidia peninsulae 0.069 ± 0.001 3
Grand Bay 1 Oligoplites saurus 0.093 1
Grand Bay 1 Sphoeroides parvus 0.085 1
Grand Bay 1 Sygnathus scovelli 0.037 ± 0.004 5

Meaher Park Archosargus probatocephalus 0.047 ± 0.001 2
Meaher Park Cynoscion nebulosus 0.061 ± 0.006 2
Meaher Park Drum ? 0.050 ± 0.003 3
Meaher Park Lagodon rhomboides 0.069 ± 0.011 3
Meaher Park Menidia peninsulae 0.085 ± 0.023 3
Meaher Park Micropterus salmoides 0.065 ± 0.005 3
Meaher Park Syngnathus scovelli Not processed  29

Weeks Bay 1‐Fish River Archosargus probatocephalus 0.106 1
Weeks Bay 1‐Fish River Lagodon rhomboides 0.108 ± 0.017 5
Weeks Bay 1‐Fish River Menidia peninsulae Not processed  5
Weeks Bay 1‐Fish River Sygnathus scovelli Not processed  30

Weeks Bay 2‐Fish River Lepomis macrochirus 0.585 ± 0.085 2
Weeks Bay 2‐Fish River Lepomis sp. 0.359 ± 0.049 2
Weeks Bay 2‐Fish River Lucania parva 0.504 ± 0.074 7
Weeks Bay 2‐Fish River Menidia peninsulae 0.501 ± 0.067 2
Weeks Bay 2‐Fish River Micropterus salmoides 0.690 ± 0.034 2
Weeks Bay 2‐Fish River Sygnathus scovelli 0.422 ± 0.034 10

Weeks Bay 4‐Magnolia Rive Lagodon rhomboides 0.280 ± 0.017 4
Weeks Bay 4‐Magnolia Rive Lucania parva 0.302 ± 0.023 4
Weeks Bay 4‐Magnolia Rive Micropterus salmoides 0.360 1
Weeks Bay 4‐Magnolia Rive Sygnathus scovelli 0.332 ± 0.030 20  
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