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ABSTRACT 

 

Evaluation of Scale Issues in SWAT. (December 2009) 

Sivarajah Mylevaganam, B.Sc., University of Moratuwa; 

M.En., Asian Institute of Technology 

Chair of Advisory Committee: Dr. Raghavan Srinivasan 

 

In Soil and Water Assessment Tool (SWAT), oftentimes, Critical Source Area (CSA), 

the minimum upstream drainage area that is required to initiate a stream, is used to 

subdivide a watershed. In the current literature, CSA has been used as a trial and error 

process to define the subwatershed levels. On the other hand, the ongoing collaboration 

of the United States Environmental Protection Agency Office of Water and the United 

States Geological Survey has promoted a national level predefined catchments and 

flowlines called National Hydrography Dataset (NHD) Plus to ease watershed modeling 

in the United States. The introduction of NHDPlus can eliminate the uncertain nature in 

defining the number of subwatersheds required to model the hydrologic system. 

 

This study demonstrates an integrated modeling environment with SWAT and NHDPlus 

spatial datasets. A spatial tool that was developed in a Geographical Information System 

(GIS) environment to by-pass the default watershed delineation in ArcSWAT, the GIS 

interface to SWAT, with the introduction of NHDPlus catchments and flowlines, was 

used in this study. This study investigates the effect of the spatial size (catchment area) 
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of the NHDPlus and the input data resolution (cell/pixel size) within NHDPlus 

catchments on SWAT streamflow and sediment prediction. In addition, an entropy based 

watershed subdivision scheme is presented by using the landuse and soil spatial datasets 

with the conventional CSA approach to investigate if one of the CSAs can be considered 

to produce the best SWAT prediction on streamflow. 

 

Two watersheds (Kings Creek, Texas and Sugar Creek, Indiana) were used in this study. 

The study shows that there exists a subwatershed map that does not belong to one of the 

subwatershed maps produced through conventional CSA approach, to produce a better 

result on uncalibrated monthly SWAT streamflow prediction. Beyond the critical 

threshold, the CSA threshold which gives the best uncalibrated monthly streamflow 

prediction among a given set of CSAs, the SWAT performance can be improved further 

by subdividing some of the subwatersheds at this critical threshold. The study also 

shows that the input data resolution (within each NHDPlus catchments) does not have an 

influence on SWAT streamflow prediction for the selected watersheds. However, there 

is a change on streamflow prediction as the area of the NHDPlus catchment changes. 

Beyond a certain catchment size (8-9% of the watershed area), as the input data 

resolution becomes finer, the total sediment increases whereas the sediment prediction in 

high flow regime decreases. As the NHDPlus catchment size changes, the stream power 

has an influence on total sediment prediction. However, as the input data resolution 

changes, but keeping the NHDPlus catchment size constant, the Modified Universal Soil 

Loss Equation topographic factor has an influence on total sediment prediction. 
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CHAPTER I 

INTRODUCTION 

 

Advances in computer models over the past few decades combined with larger and more 

extensive data-monitoring efforts have allowed for the development and application of 

simulation models in hydrology to understanding the hydrological behavior of watershed 

and water resources systems. Such simulation models incorporate equations to describe 

hydrologic transport processes and to account for water balances through time. 

Hydrological models consist of a model structure and parameters. The same model 

structure can be used for a great variety of basins as only the parameters are given 

different values. This means that the model structure is general but not the parameters.  

 

The model inputs such as topography, soil, and landuse that affect model parameters 

and, consequently, hydrological processes have significant spatial variability. To capture 

this spatial variability, the watershed is subdivided into subwatersheds that are assumed 

to be homogenous. A user specified threshold level known as a critical source area 

(CSA), the minimum upstream drainage area that is required to initiate a stream, is used 

to define the subwatershed levels. In the current literature, CSA has been exercised as a 

trial and error process to define the subwatershed levels. With the CSA approach, it may 

not be feasible to evaluate the spatial heterogeneity even though the prime purpose of 

watershed subdivision is to capture the spatial variability.   

____________ 
This thesis follows the style of Journal of Hydrologic Engineering. 
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Furthermore, it is not clear if one of the CSAs can be considered to produce the best 

model outcome. The spatial size of subwatersheds (subwatershed area) and the 

distribution of the size is another dimension of the problem that prevails in capturing 

essential spatial variability.  The spatial resolution (i.e. cell/pixel size) of the input 

datasets such as Digital Elevation Model (DEM), landuse and soils that are used within 

each subwatershed, also has an effect on spatial variability of the subwatersheds. This 

implies that the scale at which model inputs and variables are aggregated and at which 

the algorithms of the model are implemented could have an impact on the accuracy of 

model simulations. Thus, the level of the spatial scales (which is obtained through 

subwatershed delineation, size of subwatersheds and the distribution of the size, and then 

the spatial resolution of the input dataset within each subwatershed) to be used to 

adequately represent the spatial heterogeneity of a watershed has been a subject of 

considerable interest in any contemporary hydrological models such as Soil and Water 

Assessment Tool (SWAT).  

 

The ongoing collaboration of the United States Environmental Protection Agency 

(USEPA) Office of Water and the United States Geological Survey (USGS) has 

promoted a national level predefined application-ready geospatial data products called 

National Hydrography Dataset (NHD) Plus to ease watershed modeling in the United 

States. The introduction of NHDPlus may eliminate the uncertain nature in defining the 

number of subwatersheds required to model the hydrologic system. However, the 

integration of NHDPlus spatial dataset and SWAT is not available.  
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Thus the objectives of the study are to: 

 

� Develop an entropy based watershed subdivision scheme with landuse and soil 

spatial dataset such that it considers all the given subwatersheds maps obtained at 

different CSAs.  

 

� Replace CSA based subwatershed delineation with predefined NHDPlus 

catchments in SWAT. 

 

� Investigate the impact of spatial size (catchment size) of aggregated NHDPlus 

spatial datasets on SWAT prediction. 

 

� Assess the impact of spatial resolution of the input data such as DEM, landuse 

and soil that are used within NHDPlus spatial datasets on SWAT prediction. 
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CHAPTER II 

REVIEW OF LITERATURE 

 

In recent decades mathematical models have taken over the most important tasks in 

problem solving in hydrology. Few of them have gained international acceptance as a 

robust interdisciplinary watershed modeling tool. Soil and Water Assessment Tool 

(SWAT) is one of them as evidenced by international conferences and hundreds of 

water-related papers presented at numerous scientific meetings (Gassman et al. 2007). 

The wide range of SWAT applications that have been described in the literature 

underscores that the model is a very flexible and robust tool that can be used to simulate 

a variety of watershed problems (van Griensven et al. 2006). 

 

In SWAT, specifically in ArcSWAT, the Geographical Information System (GIS) 

interface to SWAT, the watershed is schematized based on built in ArcGIS tools to 

delineate the watershed and subwatersheds if the digital spatial datasets of watershed and 

stream networks do not exist. SWAT supports as many subwatersheds as needed to 

model the hydrologic system. A user specified threshold level known as a critical source 

area (CSA) is used to subdivide a watershed. This has traditionally been accomplished 

by a trial and error process to define the subwatershed levels. This implies that model 

inputs and properties that are derived from topography, soils data, and landuse could 

vary from one level of discritization to another, and hence could result in different 

simulation results. Each subwatershed is assumed homogeneous, with parameters 
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representative of the entire subwatershed (Jha et al. 2004). However, the size of a 

subwatershed affects the homogeneity assumption, since larger subwatersheds are more 

likely to have variable conditions within the subwatershed. Reducing the size and 

increasing the number of the subwatersheds would be expected to affect the simulation 

results of runoff, water quality and sediment yield from the entire watershed. An 

increase in the number of subwatersheds also increases the input data preparation effort 

and the subsequent computational evaluation (Latif et al. 2003; Jha et al. 2004; Rosalia 

et al. 2008).  This has lead many researchers to study the optimum number of 

subwatersheds needed in SWAT environment as a trial and error process through CSA to 

enhance the SWAT predictability (Mamillapalli et al. 1996; Bingner et al. 1997; Tripathi 

et al. 2003; Jha et al. 2004; Arabi et al. 2006; Misgana et al. 2007).  

 

Mamillapalli et al. (1996) found an improved accuracy of monthly flow predictions with 

the SWAT model for the 4,297 km2 Bosque River Watershed in central Texas as the 

number of subwatersheds increased. However, they do not present any method for 

determining the optimal subwatershed configuration for a watershed. Bingner et al. 

(1997) suggest that sensitivity analyses should be conducted on landuse, overland slope, 

and slope length for different subdivisions to decide the appropriate number of 

subwatersheds required for flow and sediment prediction based on their study with 

SWAT for the 21.3 km2 Goodwin Creek Watershed in northern Mississippi. Tripathi et 

al. (2003) performed SWAT simulation in the Nagwan watershed in eastern India and 

they found a marked variation in the individual components of the water balance with 
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the number of subwatersheds. Based on this study, they concluded that watershed 

subdivision has a significant effect on the water balance components. Jha et al. (2004) 

suggest setting subwatershed areas ranging from 2% to 5% of the overall watershed area, 

depending on the output indicator of interest, to ensure accuracy of estimates. Arabi et 

al. (2006) found that an average subwatershed equal to about 4% of the overall 

watershed area was required to accurately account for the impacts of best management 

practices(BMPs) in the model. Misgana et al. (2007) found that the accuracy of the raw 

model output (streamflow and sediment) was very poor for all subwatershed 

delineations(CSA ranged from 50 ha to 500 ha) conducted on the Big Creek Watershed 

(133 km2), located in southern Illinois. 

 

The foregoing set of citations has contributed to the understanding of how subwatershed 

delineation through CSA in SWAT modeling environment affects the hydrologic 

response of a watershed.  On the other hand, the ongoing collaboration of the United 

States Environmental Protection Agency (USEPA) Office of Water and the United 

States Geological Survey (USGS) has promoted a national level predefined digital 

spatial datasets of watershed and stream networks called National Hydrography Dataset 

(NHD) Plus to ease watershed modeling in the United States (NHDPlus Dataset Design 

Document 2009). 
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NHDPlus Repository 

The National Hydrography Dataset (NHD) has integrated elevation, the National 

Elevation Dataset (NED), and the National Watershed Boundary Dataset (NWBD) to 

provide a new, cohesive suite of application-ready geospatial data products called 

NHDPlus, which could vastly shorten the process of modeling watersheds. NHDPlus has 

eased large-scale water resource analysis in the United States by accessing public 

domain data that was previously unavailable in one location. NHDPlus includes over 2.4 

million elevation-derived catchments (on average 2-3 km2) produced using a drainage 

enforcement technique dubbed “The New-England Method” for the United States. An 

interdisciplinary team from the USGS, USEPA, and contractors, over the last few years 

has found this method to produce the best quality catchments (NHDPlus Dataset Design 

Document 2009). NHDPlus also includes a stream network based on the medium 

resolution NHD. The geospatial data sets included in NHDPlus are intended to support a 

variety of water-related applications. The linked datasets provide access to attributes 

such as land cover, flow direction and streamflow volume and velocity estimates. By 

using linked data, hydrologists can relate upstream and downstream watersheds. 

NHDPlus has been designed to accommodate many users’ needs for future water related 

applications. In this line, NHDPlus also provides the framework and tools necessary to 

customize the behavior of the network relationships as well as building upon the 

attribute database for which the user can assign its own data to the network (NHDPlus 

Dataset Design Document 2009).  
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However, an exertion to exploit the best features of NHDPlus spatial dataset in the 

SWAT environment to by-pass the uncertain nature in defining the number of 

subwatersheds required to model the hydrologic system is impending. Furthermore, it is 

emphasized that in SWAT the spatial heterogeneity is initially captured through 

subwatersheds and then through Hydrological Responsive Units (HRUs), unique 

combination of landuse management, soil characteristics and slope to capture the 

variability within each subwatershed. In other words, the first level of spatial 

heterogeneity is captured through subwatersheds. Thus, with the introduction of micro 

level NHDPlus catchments, there is a question whether it is necessary to capture the 

spatial variability within each NHDPlus catchments through HRUs if one exploits the 

best features of NHDPlus spatial dataset. If the NHDPlus catchments are such that they 

set off the spatial heterogeneity among themselves in an optimum manner then the 

heterogeneity level within each catchment may at a minimum. Thus, there is a need to 

research the potential of considering NHDPlus catchment itself as a HRU unit in the 

SWAT environment.  

 

Spatial Scale of NHDPlus Catchments in SWAT Environment 

The results of distributed watershed models such as SWAT could be sensitive to spatial 

scales (i.e. individual catchment size and its distribution) at which inputs and model 

parameters are aggregated (Bloschl and Sivapalan 1995; Haddeland et al. 2002). Thus, it 

is not clear whether it is necessary to have this many catchments. Having said this, there 

has not been an attempt to investigate the role of spatial scale of aggregated NHDPlus 
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spatial dataset in robust hydrological models like SWAT as the lack of integration 

between the NHDPlus and SWAT community prevails, even though the intention of 

USEPA Office of Water and the USGS is to promote a national level cohesive suite of 

application-ready geospatial data products called NHDPlus to accommodate many users’ 

needs for future water related applications. 

 

Impact of DEM, Landuse and Soil Resolution within NHDPlus  

The overall goal of distributed modeling is to capture the essential spatial variability of 

each model parameter affecting the hydrological process. The spatial resolution (i.e. 

cell/pixel size) of the input datasets such as Digital Elevation Model (DEM), landuse and 

soil that are used within each subwatershed has an effect on the ultimate outcome of a 

simulation model and computational evaluation (Bloschl and Sivapalan 1995; Miller et 

al. 1999). There have been many attempts to understand the impact of input data 

resolution in hydrological models (Zhang and Montgomery 1994; Bloschl and Sivapalan 

1995; Miller et al. 1999; Cotter et al. 2003; Bosch et al. 2004; Chaubey et al. 2005; Di 

Luzio et al. 2005; Chaplot 2005; Rosalia et al. 2008). The following paragraph 

summarizes the impact of input data resolution on SWAT prediction. 

 

Bosch et al. (2004) found that SWAT streamflow estimates for a 22.1 km2 subwatershed 

of the Little River watershed in Georgia were more accurate using high-resolution 

topographic, landuse, and soil data versus low-resolution data. Cotter et al. (2003) report 

that DEM resolution was the most critical input for a SWAT simulation of the 18.9 km2 
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Moores Creek watershed in Arkansas, and provide minimum DEM, landuse, and soil 

resolution recommendations to obtain accurate flow, sediment, nitrate, and total 

Phosphorous estimates. Di Luzio et al. (2005) also found that DEM resolution was the 

most critical for SWAT simulations of the 21.3 km2 Goodwin Creek watershed in 

Mississippi; landuse resolution effects were also significant, but the resolution of soil 

inputs was not. Chaplot (2005) found that SWAT surface runoff estimates were sensitive 

to DEM mesh size for the Walnut Creek watershed in central Iowa. The most accurate 

results did not occur for the finest DEM mesh sizes, contrary to previous findings. 

 

The shortcoming of these studies is that as the DEM resolution becomes coarser, total 

computed watershed area will also decrease. The modeled stream network will became 

consistently less accurate at coarser resolutions. The reason behind this is that these 

studies were based on watershed delineation through CSA at different DEM resolution. 

Consequently, the coarsest-input DEM may not able to correctly predict the watershed 

characteristics or stream network and the subsequent hydrological model prediction 

(Cotter et al. 2003; Chaubey et al. 2005; Chaplot 2005). Furthermore, as the DEM 

becomes coarser, the number of subwatersheds obtained may not be the same at a given 

CSA (Chaubey et al. 2005). Consequently, it is not feasible to evaluate the impact of 

input data resolution at a given catchment size. 

 

With the introduction of NHDPlus spatial dataset of watershed and stream network in 

SWAT environment, there is a potential to coarsen the input spatial datasets within each 
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NHDPlus catchment. The introduction of NHDPlus catchments ensures the coarser 

DEM data resolution does not result in decreased representation of watershed area. This 

ensures that the resolution of the DEM does not have an impact on the subwatershed 

which is the first level of discritization in assessing the spatial variability of a 

hydrological model like SWAT. Therefore, there is an unexplored research to examine 

the impact of varying the level of detail of DEM, land cover and soil data on the 

response of SWAT prediction within NHDPlus catchments. 

 

An Entropy Based Watershed Subdivision Scheme with Landuse and Soil Dataset 

As underscored in the literature (Mamillapalli et al. 1996; Bingner et al. 1997; Tripathi 

et al. 2003; Jha et al. 2004; Arabi et al. 2006; Misgana et al. 2007), to-date, the attempt 

has been to find the CSA that produces the best SWAT output. However, it is not clear if 

one of the CSAs can be considered as the one that produces the best model output. 

Furthermore, there exists subwatershed boundaries that cannot be produced through 

CSAs (Fig.1) and may produce a better result compared to any one of the CSAs.  
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Figure 1. An Example of Critical Source Area Approach 

10000 ha 

6000 ha 

5000 ha 

This subdivision may not have been 

produced through conventional CSA 

approach even though it is Digital 

Elevation Model (DEM) driven. 
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(2) 

(3) 
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As shown in Fig.1 (b), subwatershed#1 is subdivided into three subwatersheds as CSA is 

changed from 10000 ha to 6000 ha. The change from 6000 ha to 5000 ha results a 

subdivision in subwatershed#3(Fig.1(c)).However, the subwatershed boundary that’s 

shown in Fig.1 (d) cannot be obtained with the CSA approach even though its DEM 

driven. Added to this, with the CSA approach, it may not be feasible to evaluate the 

spatial heterogeneity even though the prime purpose of watershed subdivision is to 

capture the spatial variability on input datasets (landuse and soil).  Thus there is a need 

to define a spatial watershed subdivision scheme that could define the spatial variability 

along with conventional CSA approach and to generate a subwatershed map that makes 

use of all the subwatershed boundaries obtained at different CSAs. 
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CHAPTER III 

MATERIALS AND METHODS 

 

To integrate the NHDPlus into SWAT, there is a need for a platform to meet the model 

specific nature of input datasets. ArcObjects, Microsoft's Component Object Module 

(COM) based technology, allows developers to expand ArcGIS platforms and develop 

customized applications. With this technology and Structured Queried Language (SQL), 

a generic, spatial tool named “NHDPlus SWAT” (Mylevaganam and Srinivasan 2009) 

was developed in a GIS environment to extract and process the NHDPlus catchments 

and flowlines into SWAT required format. 

 

The tool requires users to specify a starting NHDPlus catchment/pour point. User request 

is in the form of “COMID” (a unique identifier for each NHDPlus catchment) or the 

potential user picks a catchment on a geographical view of NHDPlus catchment spatial 

data and lets the tool identify the COMID value of that catchment. This request outlines 

where to initiate the process. Based on the selected catchment, all the upstream 

NHDPlus catchments are selected and exported. Similarly, NHDPlus flowlines that fall 

within the study area/river basin are also extracted. During this process it is ensured that 

each catchment/subwatershed has only one flowline as required by SWAT. Subsequently 

spatial datasets are formatted in SWAT required format. 
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The processed catchments and flowlines are used to export all of the associated 

NHDPlus spatial datasets and stand alone tables, such as precipitation, temperature, 

landuse pattern and so on, to SWAT modeling environment. The tool will serve as one 

of the GIS-centered decision-making tools with the NHDPlus repository to enhance the 

application of NHDPlus datasets in various disciplines and to increase the efficacy of 

water management decisions through hydrological models such as SWAT. The Fig.2 

shows the inner detail of the NHDPlus SWAT. 

 

Dynamic NHDPlus Dataset (DND) 

A generic, spatial-aggregation tool (Mylevaganam et al. 2009) was developed in a GIS 

environment to query and to delineate larger catchments subsuming smaller ones based 

on decision makers’ criteria on catchment area. The aggregated watershed is used to 

refine all the associated spatial data such as flowline and stand alone data such as 

precipitation, temperature, landuse pattern and so on. The NHDPlus spatial-aggregation 

tool receives a definition of request to aggregate NHDPlus catchments based on area and 

to refine all the associated spatial data and standalone tables in a proper format to serve 

as an input to SWAT model. User request is in the form of “COMID” that outlines 

where to initiate the process. The request also includes the constrained value of the 

aggregated catchment area to be met while navigating upstream to aggregate the 

catchments. This ensures that the each aggregated catchment is of this areal extent on 

average. This generic, spatial-aggregation tool operates in Environmental Systems 

Research Institute (ESRI) environment linked with Relational Database Management 
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Systems (RDBMS). The Fig.3 shows the functionality of the service tool at its simplest 

view. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 2. Integration of NHDPlus Dataset in SWAT 
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Figure 3. Development of Dynamic NHDPlus Dataset (DND) 
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Impact of DEM, Landuse and Soil Resolution within NHDPlus  

In SWAT, by default, the resolution of the simulation is set to the resolution of the 

DEM. Therefore, to investigate the role of input data resolution within NHDPlus 

catchments, the land cover and soil generalization process was accomplished by using 

coarsened DEM through nearest-neighbor resampling schemes at 30, 60,90…etc meters. 

As shown in Fig.4, the NHDPlus polygons are retained for all the simulations only the 

input data resolution is changed. This ensures the coarser DEM data resolution does not 

result in decreased representation of watershed area for all the simulations. Fig.5 shows 

the simulated conditions. In Fig.5, Sim100km
2

, 30m   means the SWAT simulation with 

DND scale of 100 km2 and the input data resolution of 30 m within this DND.  

 

 

 

 

 

 

 

 

 

 

Figure 4. An Example of Input Data Resolution within a Subwatershed 
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Figure 5. SWAT Simulation at Different Input Data Resolutions within a DND  

 

 

An Entropy Based Watershed Subdivision Scheme with Landuse and Soil Dataset 

The DEM driven watershed delineation is performed at different CSAs and subsequently 

defined a subwatershed spatial dataset such that it considers all subwatershed spatial 

datasets generated at different CSAs by fusing the landuse and soil dataset. The required 

steps with the proposed watershed subdivision scheme are outlined below through an 

example. 

 

Step#1:  Generate the subwatershed spatial dataset for the largest possible CSA. For this 

example, a CSA of 10000 ha was considered as the largest possible CSA. At this 

threshold, there are three subwatersheds as shown in Fig.6. 
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Figure 6. An Example of Subwatershed Boundary at CSA of 10000 ha 

 
 

 

Step#2:  As shown in Fig.7, overlay the combined layer of landuse and soil dataset on 

each subwatershed at this threshold (CSA=10000 ha).  

 

 

 

 

 

 

 

 

 
 

Figure 7. An Example of Overlaid Landuse-Soil and Subwatershed Map at CSA of 
10000 ha 
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Step#3:  Compute the spatial heterogeneity level based on combined landuse and soil 

dataset for each subwatersheds at this threshold (CSA=10000 ha). The spatial 

heterogeneity of a subwatershed can be described and analyzed by entropy values of 

combined layer of landuse and soil dataset. The value of entropy is a measure of the 

heterogeneity of a certain characteristic within an area (Singh 1998). It can be computed 

from probabilities (pi) that the value of this characteristic at each point of this area 

belongs to one of “I” classes. Entropy theory has been exercised in many disciplines 

(Singh 1998). The formula for computing the entropy” H” of an area is: 

   

)
1

1
log(�

=
=

I

i ipipH                     (1) 

 
where “I” is the total number of classes. 

 

Although the choice of the base of the logarithm is arbitrary, log to the base “2” gives a 

result expressed in bits. If an area is homogeneous, pi is 1.0, and the entropy value is 

zero. If the area is heterogeneous, the probabilities pis are smaller than one, and thus 

entropy value increases. Assume that there are six types of unique landuse-soil 

combination in subwatershed#1 and their proportion as placed in Table 1.  
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Table 1. An Example of Unique Combination of Landuse and Soil 

Unique Combination of Landuse and Soil Number of Pixels 
#1(Forest Deciduous/Sand) 30 
#2(Range/Sand) 20 
#3(Hay/Sand) 10 
#4(Row Crops/Sand) 10 
#5(Forest Deciduous /Clay) 5 
#6(Hay/Clay) 5 
Total Number of Pixels 80 

 

 

Thus, the heterogeneity level of subwatershed#1 is given by Eq. (2). 
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where H can range from “0” to log (I). 

 

For the assumed example, the value of “H” is 2.28 bits. Similar computation can be 

carried out for the other subwatersheds at this threshold (CSA=10000 ha). 

 

Step#4:  Subdivide the subwatersheds that are above or equal a certain threshold on 

heterogeneity value (say x% of most/highest heterogeneity value observed with this 

subwatershed map). Assume that the heterogeneity values obtained in the previous step 

are 2.28, 1.98, and 1.76 bits for subwatershed#1, subwatershed#2 and subwatershed#3 

respectively. Thus, the highest heterogeneity value observed with this subwatershed map 

is 2.28 bits. As shown in the Fig.8, if the value of “x” is set to “100”, the 
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subwatershed#1 meets the given heterogeneity threshold, and thus it will be divided as 

per Fig.8 (b). 

 

 

 

 

 

 

 

 

 

 

Figure 8. An Example of Subdivision of Subwatershed#1 through CSA Approach 

 

 

Fig.9 (b) will be produced if subwatershed#2 has the highest heterogeneity measure 

among all three subwatersheds and the value of “x” is set to “100”. Similarly, Fig.10 (b) 

will be produced if the given criterion (say “x” is set “80”) is met with both 

subwatershed#1 and subwatershed#2. Subwatershed#3 will be subdivided if it satisfies 

the criterion. These subdivisions are based on one of the subwatershed boundaries 

obtained through next level of CSAs. However we move from coarser CSAs to the finer 

CSAs. 
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Figure 9. An Example of Subdivision of Subwatershed#2 through CSA Approach 
 
 
 

 
 

 

 

 

 

 

 

 

 

Figure 10. An Example of Subdivision of Subwatershed#1 and Subwatershed#2 through 

CSA Approach 
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Step#5: Using Eq. (1), again compute the level of heterogeneity for all the 

subwatersheds obtained from step#4. In this example, the subwatersheds map used for 

the computation of heterogeneity level will be either Fig.8 (b) or Fig.9 (b) or Fig.10 (b) 

or some other subwatershed maps. 

 

Step#6:  Again subdivide the subwatersheds that are above the given threshold on 

heterogeneity value (say x% of most heterogeneity value observed with this 

subwatershed map). If Fig.8 (b) was the above produced map, and the subwatershed “1-

1” meets the given criteria, then it will be subdivided into further.  

 

Step#7: Repeat this process until there is no subdivision possible as per DEM driven 

subwatershed maps. 

 

All the subwatersheds are DEM driven. Landuse and soil layers are used for decision 

making alone. The subwatershed map produced with the proposed method may or may 

not be similar to one of the maps produced with the CSAs. It is merely a combination of 

all the maps obtained through CSAs.  

 
ArcObjects, Microsoft's COM based technology, and SQL, were used to develop a 

generic, spatial tool in a GIS environment to generate the wastershed map with the 

proposed subdivision scheme in SWAT required format. 
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Soil and Water Assessment Tool 

SWAT is a river basin or watershed scale model developed by the United States 

Department of Agriculture-Agricultural Research Service (USDA-ARS) to predict the 

impact of land management practices on water, sediment and agricultural chemical 

yields in large complex watersheds with varying soils, landuse and management 

conditions over long periods of time (Gassman et al. 2007). SWAT operates on daily 

time step and predicts water quality and quantity at the subwatershed level. The 

watershed is defined by the main watershed outlet as chosen by the user. The watershed 

is then subdivided into subwatersheds. The modeler can define as many or as few 

subwatersheds as desired according to the CSA, which is reasonable.  Each 

subwatershed is then further divided into a number of hydrologic responsive units 

(HRU) based on unique combinations of landuse and land cover (LULC), soil types and 

slope within the subwatershed. To simplify the hydrological system further, HRU 

threshold is being applied to remove smaller HRUs. For example, if the threshold level 

for landuse is specified to be 5 percent, then the landuses that cover less than 5 percent 

of the subwatershed area will be eliminated. After the elimination process, the area of 

the remaining landuses is reapportioned so that 100 percent of the land area in the 

subwatershed is modeled. However, these HRUs are not spatially defined within the 

subwatershed; they are simply accounting categories which represent the total area of the 

unique LULC, soil type and slope they represent within a subwatershed. A subwatershed 

contains at least one HRU, a tributary channel and a main channel or reach. Loads from 

the subwatershed enter the channel network in the associated reach segment. HRU-scale 
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processes are simulated separately for each HRU and then aggregated up to the 

subwatershed scale and then routed through the stream system. The inner details of the 

SWAT are described by Gassman et al. (2007). 

 

Study Area 

Two river basins namely Sugar Creek, Indiana and Kings Creek, Texas were tested with 

the entropy based watershed subdivision scheme. Sugar Creek watershed was used to 

investigate the potential of NHDPlus catchments to by-pass the default watershed 

delineation in SWAT. Sugar Creek and Kings Creek watersheds were used to evaluate 

the impact of catchment size and the input data resolution within each catchment. 

 

Sugar Creek Watershed 

The Sugar Creek watershed in central Indiana (Fig.11) is a poorly drained agricultural 

watershed typical of many areas in the Midwestern USA. The Sugar Creek watershed is 

within the White River Basin, a river basin being studied as part of the United States 

Geological Survey National Water-Quality Assessment Program. The landuse in the 

watershed is primarily row-crop agriculture (75%). The soils in the watershed were 

mapped primarily in the Crosby-Brookston soil association. This association is 

characterized by poorly drained, nearly level, loamy soils developed on Wisconsin 

glacial till. Tile-drain systems have been installed in areas used for agriculture. Sugar 

Creek has a drainage area of 1213 km2. The average annual precipitation in the study 

area is 1079.8 mm. Its elevation ranges from 198 m to 335 m. 
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Figure 11. Location of Sugar Creek Watershed, Indiana, within NHDPlus Region#5 

 

 

Kings Creek Watershed 

Kings Creek is a tributary of the Cedar Creek watershed, which drains into Trinity River 

basin, Texas (Fig.12). It has a drainage area of 614 km2 as delineated from a USGS 

streamflow gaging station at 08062900 (32.513 N, 96.3286 W). Its elevation ranged 

from 107 m to 190 m and its landuse is mainly hay (34%), range (34.5%), and the 

remaining areas were composed of agricultural and deciduous -forest. The average 

annual precipitation in the study area is about 975 mm. The soils in the watershed were 

mapped primarily in the Houston-Black soil association. 
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Figure 12. Location of Kings Creek Watershed, Texas, within  NHDPlus Region#12 

 

 

SWAT Model Evaluation 

The Nash-Sutcliffe model efficiency (NSE) as defined in Eq. (3) is used to evaluate 

SWAT’s overall performance.  
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where, n is the number of time steps, Qobs,i is the observed streamflow at time i, and 

Qsim,i is the simulated streamflow at time i. 

Nash–Sutcliffe efficiencies can range from −� to 1. An efficiency of 1 (NSE = 1) 

corresponds to a perfect match of modeled prediction to the observed data. An efficiency 

of 0 (NSE = 0) indicates that the model predictions are as accurate as the mean of the 

observed data, whereas an efficiency less than zero (NSE < 0) occurs when the observed 

mean is a better predictor than the model. Essentially, the closer the model efficiency is 

to 1, the more accurate the model is. 

 

SWAT Model Setup 

SWAT model input data for topography was extracted from a digital elevation model 

(DEM). The 30 m DEM was taken from the NHDPlus repository. The observed daily 

streamflow data used in evaluating SWAT performance was obtained from the USGS 

National Water Information System (NWIS). The soil dataset was obtained from the 

USDA-Natural Resources Conservation Services (NRCS) State Soil Geographic Data 

Base (STATSGO). Digital landuse/land cover (LULC) data was obtained from the 

National Land Cover Dataset (NLCD-1992). Daily measured precipitation data was 
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obtained from National Climatic Data Center (NCDC). Weather stations located around 

the watersheds are as shown in Fig.11 and Fig.12.  

 

The study area was set up to run on a daily time step. Surface runoff was calculated 

using the SCS curve number method. The Penman-Monteith method was used to 

determine potential evapotranspiration. Channel water routing was performed using the 

Muskingum routing method. For Sugar Creek, tile drains were simulated in areas used 

for agriculture. Three input variables that control the functioning of tile drains namely 

the depth to the tile drain, the time to drain the soil profile and the time until water enters 

the channel network after entering the tiles were set to 800 mm, 24 hours and 48 hours 

respectively (Neitsch at al.  2002). 

 

For this analysis, eleven years period, from 01 January 1980 to 31 December 1990, 

meteorological and flow data were utilized for the Sugar Creek watershed, whereas 

period starting from 01 January 1963 to 31 December 1982, meteorological and flow 

data were utilized for Kings Creek watershed. SWAT performance was evaluated using 

the measured streamflow data at USGS gage station of 03362500 (39.360884 N, 

85.997492 W) and at USGS gage station of 08062900 (32.513 N, 96.3286 W) for the 

Sugar Creek and Kings Creek respectively. 

 

The specific model setup that was required for each of the objectives is organized as 

follows: 1) An entropy based watershed subdivision scheme; 2) SWAT model 
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performance with NHDPlus catchments; 3) The role of dynamic NHDPlus on SWAT 

prediction. 

 

An Entropy Based Watershed Subdivision Scheme  

Initially watersheds were delineated at different CSAs for the Sugar Creek and Kings 

Creek. The wastershed map with the proposed subdivision scheme was obtained by 

fusing the landuse and soil datasets for the Sugar Creek and Kings Creek watersheds. 

The subdivision with the proposed method was performed at different percentile of 

maximum/most heterogeneity value. 100%, 90%, 80%, 70% and 60% of maximum/most 

heterogeneity measures were considered to generate the watershed maps using the 

proposed method. It is emphasized that the proposed subdivision scheme is based on all 

the given watershed maps that were obtained through CSAs. 

 

Threshold level on HRU delineation was set to 0%-0%-0% for both the study areas. In 

other words, the exact system was retained without looking for a simplified hydrological 

system through HRU thresholds. This was to ensure that the HRU threshold does not 

mask the difference on model performance that could occur with different CSAs. The 

monthly uncalibrated SWAT prediction was compared for each CSA threshold and the 

proposed watershed subdivision for both the study areas. Comparison using uncalibrated 

models is useful to evaluate the differences in model predictions because calibration may 

mask the initial differences that may occur as a result of thresholding on CSA. 
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SWAT Model Performance with NHDPlus Catchments 

The subwatersheds/catchments and stream network were extracted and formatted 

through the NHDPlus SWAT toolset to by-pass the default watershed delineation that is 

based on critical source area.  

 

SWAT was run for a set of HRU thresholds, which is used to remove the smaller HRU’s 

in search of a simplified hydrological system, starting from 0% to 35% in step of 5%. 

The HRU threshold was obtained by considering equal threshold on landuse and soil 

dataset. In other words, 5% HRU threshold represents the 5% of landuse (the landuses 

that cover less than 5 percent of the subwatershed area were eliminated and 

reapportioned) and 5% of soil. For all the combinations, threshold on slope was set to 

0%.  The monthly uncalibrated SWAT prediction was compared for each HRU 

threshold. This was to ensure that calibration did not mask the differences that may 

occur as a result of the HRU thresholding.  

 

The Role of Dynamic NHDPlus on SWAT Prediction 

The Dynamic NHDPlus Datasets (DND) for the Sugar Creek was produced through the 

aggregation tool at 50 km2, 100 km2, 150 km2 and 200 km2 spatial scales on average. As 

the watershed area of Sugar Creek is approximately double the watershed area of Kings 

Creek, the DND for the Kings Creek was produced through the aggregation tool at 25 

km2, 50 km2, 75 km2 and 100 km2 spatial scales on average.   
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The uncalibrated SWAT prediction was compared for each DNDs. Comparison using 

uncalibrated models is useful to evaluate the differences in model predictions because 

calibration may mask the differences that may occur as a result of the DND spatial size. 

Added to this, 0% HRU threshold was selected to ensure that the HRU threshold does 

not mask the difference that may occur as a result of the DND spatial size. 

 

Flow Regime Analysis 

Flow Duration Curves (FDCs), the percentage of time a given streamflow was equaled 

or exceeded during a specified period of time, are useful to evaluate the model 

performance. The required steps with the flow regime analysis are outlined below 

through an example. 

 

Step#1: 

The FDC can be fitted based on the observed monthly streamflow for the period of 

analysis. Fig.13 shows the monthly non-log FDC. Monthly streamflow series Qi of n 

total observations, where i = 1,…, n, was employed. Observed streamflows were ranked, 

resulting in a series of order statistics Q(i),  

 

where i = 1,…, n, from the largest Q(1) to the smallest Q(n) streamflow. The rank-

ordered observations Q (i) were used to plot the flow against exceedance probability. 
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Figure 13. An Example of Flow Duration Curve 

 

 

Step#2: 

As shown in Table 2, identify the months of occurrence in between two exceedance 

probabilities based on the fitted FDC.  

 

 

Table 2. An Example of Months of Occurrence in FDC 

Exceedance Probability Months of Occurrence 

0.0-0.1 Month#1, Month#4,Month#7 

0.1-0.2 Month#5, Month#8,Month#27 

…  

 

 

Step#3: 

Compute the total “predicted” water quantity in between two exceedance probabilities. 
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Step#4: 

Plot the values of total predicted water quantity against exceedance probability. The 

value of total predicted water quantity at an exceedance probability is the value of total 

predicted water quantity obtained in between the exceedance probability in question and 

the previous exceedance probability. As an example, the reported value for the 

exceedance probability of 0.3 represents the predicted water quantity in between 

exceedance probability of 0.2 and 0.3. 

 

Step#5: 

Group into flow regimes as shown in Fig.14. The flow regime was divided into four 

regimes.  

 

 

 

 

 

 

 

 

 

 

Figure 14. The Number of Flow Regimes Used for the Analysis 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

The results and discussion section is organized as follows: 1) An entropy based 

watershed subdivision scheme with landuse and soil dataset; 2) SWAT model 

performance with NHDPlus catchments; 3) The role of dynamic NHDPlus on SWAT 

prediction.  

 

An Entropy Based Watershed Subdivision Scheme with Landuse and Soil Dataset 

The objective of this study is to investigate if there exists a subwatershed boundary, 

which does not belong to one of CSAs, to produce a better SWAT model output. The 

number of subwatersheds produced at each CSA is placed in Table 3.  

 

 

Table 3. Number of Subwatersheds with CSA Approach and Entropy Method 

Sugar Creek Kings Creek 

CSA 

(ha) 

Number of 

Subwatersheds 

Entropy 

Range(bits) 

CSA  

(ha) 

Number of 

Subwatersheds 

Entropy 

Range(bits) 

6000 9 0.55-1.19 5000 3 1.02-1.20 

5000 11 0.55-1.19 4000 7 0.90-1.18 

4000 17 0.54-1.19 3000 11 0.82-1.19 

2000 27 0.34-1.06 2000 19 0.69-1.20 

1500 37 0.29-1.06 1000 27 0.36-1.20 
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For the Sugar Creek watershed, the watershed map at the CSA of 3000 ha was not 

produced as the number of subwatersheds generated at this CSA is equal to the number 

of subwatersheds generated at the CSA of 4000 ha.  

 

Fig.15 shows the outcome of SWAT monthly streamflow performance along with 

heterogeneity measure. For both the study areas, the most heterogeneous subdivision 

yields the best model efficiency in terms of NSE compared to the rest. With this, the rest 

of the analysis and comparison are presented for the most heterogeneous subdivision 

scheme. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 15. Model Efficiency at Various Spatial Heterogeneity for Both Kings Creek and 
Sugar Creek Watersheds 
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As shown in Fig.16 and Fig.17, the values of Nash-Sutcliffe model efficiency (NSE) for 

uncalibrated monthly streamflow prediction is better with the most heterogeneous 

subdivision scheme compared to the conventional CSA based approach for both the 

study areas. The model performance at the coarsest CSA is low compared to the rest for 

both the study areas. Furthermore, it is observable that there exists a CSA beyond which 

model performance decreases with further finer. The model performance at the CSA of 

5000 ha and CSA of 3000 ha for the Sugar Creek and Kings Creek respectively 

substantiate this. This critical CSA is approximately 4% of the watershed area. These 

results are consistent with the results reported by Jha et al. (2004) and Arabi et al. (2006) 

in which the authors found that the critical threshold area is approximately 4% of the 

watershed area.  However, as this study shows, this critical CSA doesn’t give the best 

SWAT output in terms of NSE. 

 

 

 

 
 

 

 

 

 

 
 

Figure 16. Model Efficiency for the Sugar Creek Watershed at Various CSAs 

Entropy  
Method 
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Figure 17. Model Efficiency for the Kings Creek Watershed at Various CSAs 
 

 

 

The Fig.18 and Fig.19 show the streamflow prediction for the most heterogeneous 

subdivision scheme. The visual inspection shows that SWAT model predicted 

streamflow was better during low flow conditions compared to high flow conditions for 

the Sugar Creek. This indicates that the model predicted base flow for the Sugar Creek 

was better than surface runoff since base flow is dominant during low flow conditions 

and surface flow is dominant during high flow conditions. The difference in the peaks of 

the runoff rate has to associate with the curve number values used with the uncalibrated 

SWAT simulation.   

 

 

 

Entropy  
Method 
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Figure 18. Uncalibrated Prediction for the Sugar Creek with Entropy Method 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Uncalibrated Prediction for the Kings Creek with Entropy Method 
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The peak flow for the simulation period is placed in Fig.20 and Fig.21 for the Kings 

Creek and Sugar Creek respectively. The ability of the most heterogeneous subdivision 

scheme to attain the observed peak compared to the considered CSAs is pronounced. 

Furthermore, it is notable that among the considered CSAs, the coarsest one registers the 

highest peak flow even though it yields lowest NSE.  

 

The interesting fact that could be observed through the most heterogeneous subdivision 

scheme is that beyond the critical threshold (5000 ha for the Sugar Creek and 3000 ha 

for the Kings Creek) the model performance could be improved further by subdividing 

some of the subwatersheds at this threshold (Fig.22 and Fig.23). However, the 

subdivision of these subwatershds may or may not appear at the very next finer CSA. 

This could be observable from Fig.22 and Fig.23. 

 

 

 

 
 
 
 
 

 
 

 

 

Figure 20. Peak Flow for the Sugar Creek Watershed at Various CSAs 

Entropy  
Method 
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Figure 21. Peak Flow for the Kings Creek Watershed at Various CSAs 

Entropy  
Method 
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Figure 22. Watershed Delineation for the Kings Creek Watershed 

CSA= 4000 ha 

CSA= 1000 ha 

CSA= 5000 ha CSA = 3000 ha 

Most Heterogeneous Subdivision CSA= 2000 ha 
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Figure 23. Watershed Delineation for the Sugar Creek Watershed 

 

CSA=6000 ha CSA=5000 ha CSA=4000 ha 

CSA=2000 ha CSA=1500 ha Most Heterogeneous Subdivision 
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The Fig.24 and Fig.25 show why there was a better SWAT model output compared to 

the conventional CSA based approach. With the conventional CSA based approach, the 

river basin is set to one of the CSAs to delineate the watershed. However, the SWAT 

model prediction could be improved if the watershed is divided using a set of unequal 

CSAs. If the prime purpose of watershed subdivision is to capture the spatial variability 

then the concept of equal CSAs for the entire watershed does not justify as the different 

regions/sections of the watershed can have different heterogeneity level.  

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24. Conventional and Entropy Based Watershed Delineations for the Kings Creek 

Watershed 
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Figure 25. Conventional and Entropy Based Watershed Delineations for the Sugar Creek 

Watershed 
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Impact of Landuse and Soil Resolution on Watershed Subdivision  

The overall goal of distributed modeling is to capture the essential spatial variability. 

With the proposed watershed subdivision scheme, the spatial heterogeneity associated 

within each subwatershed was computed through entropy measure. The resolution of the 

landuse and soil data used for the analysis was 30 m which was the base resolution 

obtained. However, the spatial resolution of the landuse and soil that were used within 

each subwatershed has an effect on entropy measure at the subwatershed level and 

subsequently on proposed watershed subdivision scheme. Thus, the watershed map 

produced through the proposed scheme can change as the resolution of landuse and soil 

datasets changes. This aligns with the fact that as the resolution becomes changed, the 

level of heterogeneity changes and thus there is a need for different subwatershed 

boundaries to capture the spatial variability. 

 

Thus, the concern is to examine the impact of varying the level of detail of landuse and 

soil data on proposed watershed subdivision scheme and subsequently on SWAT 

prediction. As shown in Fig.26, the entropy measure at subwatersheds level was 

computed at different resolutions (60, 90,120 meters). The same procedure was followed 

as previously and found the watershed maps for each resolution.  
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Figure 26. An Example of Entropy Based Watershed Subdivision Scheme with Input 

Data Resolution 

 

 

For both study areas, as shown in Fig.27, it was found that the watershed map based on 

the most heterogeneous subdivision scheme was the same at each coarsened resolution 

(60, 90 and120 m). However, for Kings Creek, the watershed maps at the coarsened 

resolutions (60, 90 and120 m) and base resolution (30 m) were not the same. For Kings 

Creek, the watershed map at the coarsened resolutions was the same as at the CSA of 

3000 ha.  Fig.28 and Fig.29 show the NSE values obtained at each coarsened resolution 

along with CSA approach and most heterogeneous subdivision scheme. For both study 

areas, the most heterogeneous subdivision scheme has a better performance compared to 

the CSA approach.  
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Figure 27. Watershed Delineation with Entropy Based Method at Various Input Data 

Resolution (60, 90,120 m) 

 

 

For the Kings Creek, the highest NSE was registered at CSA of 3000 ha which is in fact 

the watershed map produced through the proposed scheme too. Thus, based on the NSE 

values obtained with the base resolution (30 m) and coarsened resolution, it is clear that 

watershed map that yields the best NSE can be at one of the CSAs or combination of 

CSAs. The reason is that, for the Kings Creek, at the base resolution the watershed map 

that gave the best NSE did not match with one of the CSAs. However, at the resolution 

Sugar Creek Kings Creek 
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of 60, 90 and 120 meters the watershed map that produced the best NSE coincides with 

one of the CSAs (3000 ha). 

 

 

 

 

 

 

 

 

 

Figure 28. Model Efficiency with Data Resolution for the Kings Creek Watershed 

 

 

 

 

 

 

 

 

 

Figure 29. Model Efficiency with Data Resolution for the Sugar Creek Watershed 
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SWAT Model Performance with NHDPlus Catchments 

There were 154 NHDPlus catchments for the study area. As shown in Fig.30, the scale 

of those catchments varies from 0.02 km2 to 58 km2. However, almost 50% of the 

catchments fall below 6 km2. 

 

 

 

 

 

 

 

 

Figure 30. NHDPlus Catchment Area for the Sugar Creek Watershed 

 

 

The Table 4 presents the number of HRUs simulated for the study area for the selected 

HRU thresholds.  

 

Table 4. Number of HRUs for Sugar Creek with NHDPlus Catchments 
 

% HRU Number of HRU % HRU Number of HRU 
0 2042 20 268 
5 791 25 232 
10 453 30 206 
15 330 35 188 
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As shown in Fig.31, the streamflow prediction for uncalibrated model is very good. The 

values of Nash-Sutcliffe model efficiency (NSE) for the uncalibrated model show the 

potential of the NHDPlus catchments to capture the spatial variability within them for 

Sugar Creek. The SWAT model outcome is not significantly affected with the HRU 

threshold. In fact, the elimination of smaller HRUs increases the SWAT model 

performance on streamflow for the Sugar Creek with NHDPlus spatial datasets. The 

prime reason for the change on SWAT model performance on streamflow, with the 

elimination of smaller HRUs, is the modification on curve number. In SWAT, the initial 

value of curve number is based on soil type and landuse properties. Thus, the curve 

number is a function of HRU. The application of HRU threshold alters the distribution of 

the curve number and consequently affects the SWAT prediction. 

 

 

 

 

 

 

 

 

 

 

Figure 31. Uncalibrated SWAT Model Efficiency with NHDPlus Catchments 
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The Fig.32 shows the streamflow prediction for the best HRU threshold which is at 35%. 

The visual inspection shows that the SWAT model predicted streamflow was better 

during low flow conditions compared to high flow conditions. This indicates that the 

model predicted base flow was better than surface runoff since base flow is dominant 

during low flow conditions and surface flow is dominant during high flow conditions.  

 

 

 

Figure 32. Uncalibrated SWAT Model Prediction with NHDPlus Catchments 
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Impact of Landuse Threshold on SWAT Prediction 

Landuse characteristics and the generation of runoff are inextricably linked. Therefore, 

the role of landuse threshold alone on HRU definition was evaluated by retaining the 

original soil dataset by applying a 0% threshold on it. In other words, smaller soil types 

were not removed but only the smaller units on landuse dataset were removed in steps of 

5% starting from 0% to 35%. This gives an indication on the impact of landuse 

thresholding on SWAT prediction for Sugar Creek with NHDPlus catchments. 

 

The Fig.33 shows the impact of landuse threshold on SWAT prediction, uncalibrated. 

Even though the difference in Nash-Sutcliffe model efficiency is not significant, there is 

a declining trend with the increased threshold on landuse dataset alone.  

 

 

 

 

 

 

 

 

 

 

Figure 33. Impact of Landuse Threshold on Streamflow Prediction 
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Impact of Soil Threshold on SWAT Prediction 

The Fig.34 shows the impact of soil threshold on SWAT prediction, uncalibrated. The 

landuse dataset was retained as of original by applying 0% threshold on it. In other 

words, smaller landuse types were not removed but only the smaller units on soil dataset 

were removed in step of 5% starting from 0% to 35%. This gives an indication on the 

impact of soil thresholding on SWAT prediction.  

 

 

 

 

 

 

 

 

 

 

Figure 34. Impact of Soil Threshold on Streamflow Prediction 

 

 

In contrast to the impact of landuse threshold on SWAT prediction, the model 

performance increases with the increased threshold on soil dataset. Furthermore, the 

curve on number of HRUs simulated has flattened as the threshold on soil dataset alone 
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increases. This was not the case with the combined HRU threshold and the threshold on 

landuse alone as discussed previously. The reason is that in SWAT, the HRU 

thresholding is done in the order of landuse-soil. In other words, initially the landuse is 

screened and then soil is screened within a landuse. Thus by setting 0% threshold on 

landuse (none of the landuses were removed) and ranging the threshold on soil from 5% 

to 35% will not have a drastic change on number of HRUs.  

 

As shown in the Fig.35, the model performance increases with the threshold on both the 

datasets rather than considering threshold on one of the datasets even though the model 

performance with the threshold on landuse alone drops after 20%. 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. Impact of Threshold on Streamflow Prediction 
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NHDPlus Catchments as HRUs 

It is emphasized that in SWAT the spatial heterogeneity is initially captured through 

subwatersheds and then through HRUs to capture the variability within each 

subwatersheds. In other words, the first level of spatial heterogeneity is captured through 

subwatershed. As shown previously, the model performance is better even at the loss of 

information on landuse and soil datasets. This leaves a question whether it’s necessary to 

capture the spatial variability within each NHDPlus catchments through HRUs for Sugar 

Creek. If the NHDPlus catchments for the Sugar Creek are such that they set off the 

spatial heterogeneity among themselves in an optimum manner then the heterogeneity 

level within each catchment may be towards a minimum. It’s notable that the number of 

HRUs simulated (188 HRUs) at the threshold of 35% as shown previously in Table 4 is 

very close to the number of catchments (154 catchments) simulated. Thus, the 

simulation was performed to investigate the potential of considering NHDPlus 

catchment itself as a HRU unit. Only the most dominant HRU was simulated for each 

catchments and the NSE was found to be 0.791 which is better than what was reported 

with the best HRU threshold, 35%.  

 

The plot of percentile of Squared Error (SE) versus exceedance probability was 

developed as shown in Fig.36. The SE was defined as the squared deviation between the 

observed and predicted. Percentile of SE was computed as the sum of SE computed in 

between two exceedance probabilities divided by the total SE for the simulation period. 

The value reported for the exceedance probability of 0.3 represents the computed sum of 
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SE in between exceedance probabilities of 0.2 and 0.3, divided by the total SE for the 

simulation period. The rest follows the same. As shown in Fig.36, below the exceedance 

probability of 0.3, the Percentile of SE has slightly decreased with the NHDPlus 

catchments as HRUs. This is an indication that with the NHDPlus catchments as HRU 

units, the ability of the model to simulate the high flow conditions is better than at the 

best HRU scale. 

 

 

 

 

 

 

 

 

 

Figure 36. The Percentile of Squared Error at Each Exceedance Probability 

 

 

Previously (in Fig.32), it was mentioned that the SWAT model predicted streamflow 

was better during low flow conditions compared to high flow conditions .The Fig.36 can 

substantiate this. Beyond the exceedance probability of 0.8 (the lowest 20%), the 
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computed percentile of SE is lesser than 5%. However, below the exceedance 

probability of 0.2 (the highest 20%), the computed percentile of SE sums to almost 50%. 

 

The Role of Dynamic NHDPlus on SWAT Prediction 

Fig.37 shows the DND for the Sugar Creek. The Table 5 presents the number of HRUs 

simulated for the study area for the selected DND scales.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37. Dynamic NHDPlus Dataset for Sugar Creek  
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Table 5. Number of HRUs with Dynamic NHDPlus Dataset 

 NHDPlus DND  

50 km2 

DND 

 100 km2 

DND  

150 km2 

DND  

200 km2 

Number of HRUs 2042 663 432 280 225 

 

 

As expected, the total number of HRUs simulated for the Sugar Creek become less as 

DND scale increased. As mentioned previously, the unique combinations are determined 

at the subwatershed level and thus as the number of subwatershed decreased with 

increased DND scales, the number of HRUs decreased. As shown in Fig.38, the monthly 

streamflow prediction for the uncalibrated model is very good.  

 

 

 

 

 

 

 

 

 

 

Figure 38. NSE for Sugar Creek with DND 
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The values of Nash-Sutcliffe model efficiency for the uncalibrated model show the 

potential of the DNDs to capture the spatial variability within them for Sugar Creek. The 

reported NSE at DND scale of “0” represents the original NHDPlus datasets. The SWAT 

model outcome is not significantly changed with the DND scale. The aggregation of 

NHDPlus catchments at 50 km2 and 150 km2 slightly increases the SWAT model 

performance in terms of NSE on streamflow for the Sugar Creek. The Fig.39 shows the 

streamflow prediction for the best DND, which is at 50 km2, as per NSE. In general, the 

hydrograph is well aligned with the observed hydrograph for the period of analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. Uncalibrated SWAT Model Prediction for Sugar Creek with DND at 50 km2 
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As shown in Fig.40, SWAT over predicts on total water quantity with DNDs at the 

watershed outlet even though there is a slight under prediction at the DND scale of 100 

km2. 

 

 

 

 

 

 

 

 

 

Figure 40. Predicted Total Water Quantity for Sugar Creek with DND 

 

 

An investigation was made to find out the reasons for the above observation. SWAT 

uses runoff curve numbers to estimate volume of surface runoff. SWAT automatically 

updates the curve number daily based on changes in soil moisture. The initial value is 

based on soil type and landuse properties. As shown in Fig.41, the plot of composite 

average annual curve number justifies the observed trend on total water quantity. Even 

though the variation on composite curve number is marginal, the slight drop at the DND 

scale of 100 km2 is observable. Lower composite curve numbers correspond to higher 
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abstraction and thus lower runoff potential. This could be one of the reasons for the 

observed change on total water quantity along with DND scale.  

 

 

 

 

 

 

 

 

 
Figure 41. The Plot of Composite Curve Number against DND Scale 

 

 

As the values of NSE were not much influenced with the DND scales, to further 

understand the impact of DND scale on SWAT prediction, water quantity against 

exceedance probability was fitted to evaluate the model performance in each flow 

regime with DND scales. The Fig.42 shows the plot of water quantity against 

exceedance probability. The value reported for the exceedance probability of 0.3 

represents the predicted water quantity in between exceedance probabilities of 0.2 and 

0.3. The rest follows the same. Even though SWAT over predicts on total water quantity 

with DNDs at the watershed outlet, it is notable that the water quantity in the flow 

regime#1 is under predicted. However, water quantity in the flow regime#3 and flow 
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regime#4 is over predicted. In general, it is observable that as the DND scale becomes 

coarser, the predicted water quantity is close to the observed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42. Observed and Predicted Water Quantity at Each Exceedance Probability  

 

Flow Regime#1 (0.1-0.2) Flow Regime#2 (0.3-05) 

Flow Regime#3 (0.6-0.8) Flow Regime#4 (0.9-1.0) 
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As shown in Fig.43, a distribution of the average annual curve number was fitted for the 

considered DNDs.   The distribution of the average annual curve number was expressed 

in terms of percent of the total area for a particular curve number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43. Curve Number Distribution with DNDs 

 

 

During the high flow conditions, surface flow is dominant. The higher the curve number, 

the more surface flow. As shown in Fig.43, the occurrence of higher curve numbers 

(beyond the curve number value of 85) which primarily drive the surface flow increases 
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as the DND scale becomes coarser. As an example, at the DND scale of 200 km2 the 

occurrence (probability) of curve number value of 95 is higher than the occurrence of 

curve number value of 95 at the DND scale of 150 km2 . Consequently, the contribution 

of the higher curve numbers on runoff potential increases as DND becomes coarser. 

Even though, the difference on the probability is not appreciable, this could be one of the 

reasons on increased water quantity in flow regime#1 with coarser DNDs. The same 

reasoning can be used to describe the deviated behavior of DND scale of 100 km2. 

 

Prediction on Sediment with DNDs 

As the actual measured sediment data is not available to evaluate the model performance 

on sediment prediction with DNDs, the model performance was gauged through the plot 

of percentile of total sediment against exceedance probability.  The Fig.44 shows the 

percentile of total sediment during the simulation period at each exceedance probability. 

Almost 50% of the sediment prediction for the simulation period at the outlet is observed 

in high flow regime within exceedance probability of less than 25%. Furthermore, at a 

given DND scale, the percentile of predicted sediment yield at each exceedance 

probability has increased as the exceedance probability decreased (i.e. 1.0 to 0.1). An 

investigation was performed to understand this observation. 

 

The total sediment load predicted by SWAT for a watershed is affected by both the 

Modified Universal Soil Loss Equation (MUSLE), which is used for estimating 

subwatershed loadings, and also the sediment transport via channels that is based on the 
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stream power. The MUSLE equation has an implicit delivery ratio built into it that is a 

function of the peak runoff rate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44. Predicted Sediment at Each Exceedance Probability  

 

Flow Regime#1 (0.1-0.2) Flow Regime#2 (0.3-0.5) 

Flow Regime#3 (0.6-0.8) Flow Regime#4(0.9-1.0) 
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The channel sediment transport is calculated using the Eq. (4). 

baVS =                 (4) 

 

where S, is the transport capacity (ton/m3); V, is flow velocity (m/s); and a and b, are 

constants. Depending on whether the amount of sediment being carried is above or 

below transport capacity, SWAT either deposits excess sediment or re-entrains sediment 

through channel erosion.  

 
Flow velocity is computed as:  
 
 

dw
Q

V
*

=                 (5) 

 
 
where Q, is the flow volume (m3/s); w, is channel width (m); and d, is depth of flow (m). 
 

As shown in Fig.42, at a given DND scale, as the exceedence probability decreases (i.e. 

1.0 to 0.1), the flow volume increases. This could be the reasons for the predicted 

sediment, at a given DND scale, to increase as the exceedence probability decreases.  

 

It is admitted that the sediment transport is also a function of channel length and other 

channel dimensions that are affected by the subwatershed size. Furthermore, Slope and 

length of slope (LS-factor) parameters used in the calculation of the MUSLE 

topographic factor are sensitive factors that can greatly affect the SWAT sediment yield 
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predictions. However, the values of these parameters will not have an influence as the 

comparison is made for a particular DND scale. 

 

As the DND scale becomes coarser, the sediment prediction increases in high flow 

regime. However, the prediction at the DND scale of 50 km2 is higher than the prediction 

at the DND scale of 100 km2. This observation is similar to what Fig.42 shows. Even 

though flow volume could be one of the reasons, an attempt was made to investigate if 

the average LS-factor parameter used in the calculation of the MUSLE topographic 

factor has an effect as DND scale changes. As shown in Fig.45, the influence of LS-

factor is not justifiable. The average LS-factor is constant for all the DNDs. 

 

 

 

 

 

 

 

 

 

 

Figure 45. Average LS Factor against DND  
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Added to this, it is worthy to note that in low flow regime the model prediction follows 

the reverse pattern. In other words, as the DND scale becomes coarser, the sediment 

prediction decreases in low flow regime.  Again, this observation is similar to what 

Fig.42 shows. Thus, the reason made for high flow regime can justify this observation as 

well. 

 

Impact of DND with Coarser Data Resolution 

It was shown how SWAT prediction changes as the scale of DND changes at the base 

input data resolution which is at 30m. In this section, the impact of input data resolution 

within each DND is presented. The Table 6 and Table 7 present the number of HRUs 

simulated for the selected DND scales and input data resolutions.  

 

 

Table 6. Number of HRUs with DND and Data Resolution for Sugar Creek 

 DND 50 km2 DND 100 km2 DND 150 km2 DND 200 km2 

30m 663 432 280 225 

60m 648 425 275 221 

90m 623 403 262 212 

120m 588 383 252 204 

150m 568 373 244 198 
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Table 7. Number of HRUs with DND and Data Resolution for Kings Creek 

 DND 25 km2 DND 50 km2 DND 75 km2 DND 100 km2 

30m 551 411 282 256 

60m 542 406 280 252 

90m 524 396 270 245 

120m 512 385 262 239 

150m 487 367 252 228 

 

 

 

The Fig.46 and Fig.47 show the NSE for uncalibrated monthly streamflow prediction for 

Sugar Creek and Kings Creek respectively for the selected input data resolution within 

each DND. Fig.48 and Fig.49 show the predicted total water quantity. It is notable that 

the influence of input resolution within each DND is very negligible. However, the 

influence of DND is observable even though the significance is not appreciable.  
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Figure 46. NSE for Sugar Creek with DND and Input Data Resolution 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 47. NSE for Kings Creek with DND and Input Data Resolution 
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Figure 48. Total Water Quantity for Sugar Creek with DND and Input Data Resolution 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 49. Total Water Quantity for Kings Creek with DND and Input Data Resolution 
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In SWAT, the main factor affecting streamflow is the characteristics of the HRUs which 

in turn determine the curve number. Surface and subsurface runoff are generated at the 

HRU level. Thus, HRU modifications that affect the distribution of simulated landuse, 

soils, and landscape characteristics will have the greatest impact on the predicted 

streamflow rates. By referring to Fig.50, it is observable that the change in number of 

HRUs simulated decreases drastically (66% for Sugar Creek and 54% for Kings Creek) 

as DND scale changes but keeping the input data resolution constant.  

 

 

 

 

 DND 50 km2 DND 100 km2 DND 150 km2 DND 200 km2 

30m 663 432 280 225 

60m 648  

90m 623 

120m 588 

150m 568 

 

 DND 50 km2 DND 100 km2 DND 150 km2 DND 200 km2 

30m 551 411 282 256 

60m 542  

90m 524 

120m 512 

150m 487 

 

 

Figure 50. Percentile Change on Number of HRUs with DND and Data Resolution 

(663-225)/663*100=66% 

(663-568)/663*100=14% 

(551-256)/551*100=54% 

(551-487)/551*100=12% 

Sugar Creek 

Kings Creek 
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Whereas the change in number of HRUs simulated decreases at a lesser rate (14% for 

Sugar Creek and 12% for Kings Creek) as the input data resolution changes but keeping 

the DND scale constant. This could be the reason for having a slight change in SWAT 

streamflow prediction as DND scale changes where as no change as input data resolution 

changes within a DND.  The Fig.51 and Fig.52 show the predicted total sediment at the 

watershed outlet with DND and input data resolution for Sugar Creek and Kings Creek 

respectively. In contrast to flow, the input data resolution has an influence on the total 

predicted sediment at the outlet. Beyond the DND scale of 100 km2 and 50 km2 for the 

Sugar Creek and Kings Creek watersheds respectively, the sediment prediction increases 

as input data resolution becomes finer.  

 

 

 

 

 

 

 

 

 

 

Figure 51. Total Predicted Sediment for Sugar Creek with DND and Input Data 

Resolution 
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Furthermore, the total predicted sediment at the lower DND can achieve high value with 

the coarser input resolution. The reported values at the DND scale of 50 km2 and 25 km2 

for the Sugar Creek and Kings Creek watersheds respectively can substantiate this.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 52. Total Predicted Sediment for Kings Creek with DND and Input Data 

Resolution 

 

 

The overland slope and slope length, sensitive factors in MUSLE, delineated for a 

subwatershed can change as the size of the subwatershed and input data resolution 

change. Thus further investigation was carried out in an attempt to understand the reason 

for the change in sediment prediction as input data resolution changes within a 
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DND.Fig.53 and Fig.54 show the average LS-factor at each input data resolution within 

DNDs for the Sugar Creek and Kings Creek watersheds respectively. Interestingly, the 

values of LS-factor decreases as input data resolution becomes coarser. This could be the 

reason for the increased sediment prediction beyond the DND scale of 100 km2 and 50 

km2 for the Sugar Creek and Kings Creek watersheds respectively, as input data 

resolution becomes finer. Furthermore, it is observable that there is no change on LS-

factor as the DND scale changes. Probably, this is an indication that the parameters that 

influence the sediment prediction as DND scale changes may be different to that of 

parameters that influence the sediment prediction as input data resolution changes within 

a DND. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 53. LS Factor for Sugar Creek with DND and Input Data Resolution 



 79

 

 

 

 

 

 

 

 

 

 

Figure 54. LS Factor for Kings Creek with DND and Input Data Resolution 

 

 

However, as shown in Fig.55 and Fig.56, beyond the DND scale of 100 km2 and 50 km2 

for the Sugar Creek and Kings Creek watersheds respectively, the percentile of total 

sediment in high flow regime that is at the exceedance probability of 0.1 has an 

increasing trend as the input data resolution become coarser. 
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Figure 55. Predicted Sediment for Sugar Creek in High Flow Regime (P=0.0-0.1) 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 56. Predicted Sediment for Kings Creek in High Flow Regime (P=0.0-0.1) 
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What implies from these findings is that the input data resolution for the total sediment 

and the input data resolution for the percentile of total sediment during the high flow 

regime are on the reverse sides. In other words, the input data resolution at which the 

total sediment is high gives low sediment prediction in high flow regime beyond the 

DND scale of 100 km2 and 50 km2 for the Sugar Creek and Kings Creek watersheds 

respectively. 

 

Fig.57 and Fig.58 show the predicted sediment for the Kings Creek and Sugar Creek 

watersheds respectively with DND and data resolution in low flow regime that is at the 

probability of exceedance of 1.0, which represents the predicted sediment with DND and 

data resolution in between the exceedance probabilities of 0.9 and 1.0. It is observable 

that beyond the DND scale of 100 km2 and 50 km2 for the Sugar Creek and Kings Creek 

watersheds respectively, the input data resolution does not have an influence on 

sediment prediction in low flow regime. Thus, based on the above findings, it seems 

there exists a certain threshold on DND scale (100 km2 and 50 km2 for the Sugar Creek 

and Kings Creek watersheds respectively) that clusters the behavior of sediment 

prediction along with input data resolution. The conversion of these critical DND scales 

into percentile of respective watershed area shows that this critical threshold can be in 

the range of 8-9% of the watershed area for the selected study areas. 
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Figure 57. Predicted Sediment for Kings Creek in Low Flow Regime (P=0.9-1.0) 

 

 

 

 

 

 

 

 

 

 

Figure 58. Predicted Sediment for Sugar Creek in Low Flow Regime (P=0.9-1.0) 
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CHAPTER V 

CONCLUSIONS 

 

An Entropy Based Watershed Subdivision Scheme with Landuse and Soil Dataset 

This study presents an entropy based watershed subdivision scheme by using the landuse 

and soil spatial datasets with the conventional CSA, the minimum upstream drainage 

area that is required to initiate a stream,  approach to make use of all subwatershed maps 

obtained at different CSAs. The study shows that there exists a subwatershed map that 

does not belong to one of the subwatershed maps obtained through conventional CSA 

approach, to produce a better result on monthly uncalibrated SWAT streamflow 

prediction. Beyond the critical threshold, the CSA threshold which gives the best 

uncalibrated monthly prediction among a given set of CSAs, the SWAT prediction can 

be improved further by subdividing some of the subwatersheds at this critical threshold. 

However, the subdivision of these subwatersheds does not appear at the very next finer 

CSA. Furthermore, the subwatershed map that produces the best SWAT streamflow 

prediction can change as the resolution of landuse and soil dataset changes. In other 

words, as the level of heterogeneity is changed by coarsening the input data resolution, 

the subwatershed map that produces the best SWAT streamflow prediction too changes. 

This finding raises a question if the conventional HRU thresholding, which is applied 

after watershed delineation to remove the small HRUs, has to be considered before the 

watershed is delineated. The reason is that as the HRU thresholding is applied, the 
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heterogeneity level is changed. Thus, there has to be a subwatershed map that can 

capture the altered heterogeneity level at the best. 

 

Furthermore, this study was able to show that there exists a subwatershed map that does 

not belong to one of the subwatershed maps produced through conventional CSA 

approach. However, there is a need for a statistical criterion that can lead to find the best 

subwatershed map that makes use of all the given CSAs without running the model. 

 

Predictive Analysis of SWAT Using NHDPlus Dataset 

This study shows an integrated modeling environment with SWAT and NHDPlus spatial 

datasets, an integrated suite of application-ready geospatial data products envisioned by 

the US Environmental Protection Agency to by-pass the default CSA based watershed 

delineation in SWAT. The monthly uncalibrated SWAT streamflow prediction with 

NHDPlus spatial dataset was very good to show the potential of the NHDPlus 

catchments to capture the spatial variability for the Sugar Creek watershed in Indiana. 

Added to this, the NHDPlus catchments for the Sugar Creek are such that they set off the 

spatial heterogeneity among themselves in an optimum manner (i.e. at minimum) as the 

model performance on streamflow prediction was even better by considering NHDPlus 

catchments as HRUs. Thus, with the introduction of NHDPlus catchments in SWAT 

environment, the application of time consuming simulation of SWAT may not be 

required with trial and error process on critical source area. 
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The Role of Dynamic NHDPlus Dataset (DND) on SWAT Prediction 

This study shows the role of spatial size (catchment area) of NHDPlus catchment and the 

impact of varying the level of detail of DEM, landuse and soil within each NHDPlus 

catchments on SWAT streamflow and sediment prediction.  

 

The input data resolution (within each NHDPlus catchments) does not have an influence 

on SWAT streamflow prediction. However, there is a change on streamflow prediction 

as the area of the NHDPlus catchment changes. This was due to the change in number of 

HRUs simulated. The change in number of HRUs simulated decreases drastically (66% 

for Sugar Creek and 54% for Kings Creek) as area of the NHDPlus catchment changes 

but keeping the input data resolution constant. Whereas the change in number of number 

of HRUs simulated decreases at a lesser rate (14% for Sugar Creek and 12% for Kings 

Creek) as the input data resolution changes but keeping the DND scale constant. 

 

For the Sugar Creek, SWAT over predicts on total water quantity as the area of the 

NHDPlus catchment changes (DND scale changes) at the watershed outlet. However, the 

water quantity in high flow regime (the highest 20%) is under predicted with DNDs. The 

water quantity in low flow regime (the lowest 20%) is over predicted with DNDs. 

Furthermore, as the DND scale becomes coarser, the predicted water quantity is close to 

the observed.  
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For the Sugar Creek, at a given DND scale, the percentile of predicted sediment yield at 

each exceedance probability has increased as the exceedance probability decreased (i.e. 

1.0 to 0.1). As the DND scale becomes coarser, the sediment prediction increases in high 

flow regime and decreases in low flow regime.  Beyond a certain catchment size (8-9% 

of the watershed area for the selected study sites), as the input data resolution becomes 

finer, the total sediment increases whereas the percentile of sediment prediction in high 

flow regime decreases. However, the input data resolution does not have an influence on 

sediment prediction in low flow regime. Beyond a certain catchment size (8-9% of the 

watershed area), the SWAT parameter that influences the sediment prediction as 

NHDPlus catchment size changes is different to that of parameter that influence the 

sediment prediction as input data resolution changes within a NHDPlus catchment. The 

sediment load predicted by SWAT for a watershed is affected by both the MUSLE, 

which is used for estimating subwatershed loadings, and also the sediment transport via 

channels that is based on the stream power. As the NHDPlus catchment size changes, the 

stream power has an influence on SWAT sediment prediction. However, as the input 

data resolution changes, but keeping the NHDPlus catchment size constant, the MUSLE 

LS-factor has an influence on SWAT sediment prediction. In this study the resolution 

was changed from 30 m to 150 m within a subwatershed. The same resolution was kept 

for all the subwatersheds. However, the level of heterogeneity can change from one 

subwatershed to another. Thus, there is a need to investigate further how SWAT 

prediction changes as different resolution is applied for different subwatersheds.  
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