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ABSTRACT 

 

Designing Cost-Effective Coarse-Grained Reconfigurable Architecture. (May 2009) 

Yoonjin Kim, B.S., SungKyunKwan University; 

M.S., Seoul National University 

Chair of Advisory Committee: Dr. Rabi N. Mahapatra 

 

Application-specific optimization of embedded systems becomes inevitable to satisfy the 

market demand for designers to meet tighter constraints on cost, performance and power. 

On the other hand, the flexibility of a system is also important to accommodate the short 

time-to-market requirements for embedded systems. To compromise these incompatible 

demands, coarse-grained reconfigurable architecture (CGRA) has emerged as a suitable 

solution. A typical CGRA requires many processing elements (PEs) and a configuration 

cache for reconfiguration of its PE array. However, such a structure consumes signifi-

cant area and power. Therefore, designing cost-effective CGRA has been a serious con-

cern for reliability of CGRA-based embedded systems.  

As  an effort to   provide  such  cost-effective   design,   the first  half  of  this work 

focuses on reducing power in the configuration cache. For power saving in the configu-

ration cache, a low power reconfiguration technique is presented based on reusable con-

text pipelining achieved by merging the concept of context reuse into context pipelining. 

In addition, we propose dynamic context compression capable of supporting only re-

quired bits of the context words set to enable and the redundant bits set to disable. Fi-
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nally, we provide dynamic context management capable of reducing reduce power con-

sumption in configuration cache by controlling a read/write operation of the redundant 

context words 

In the second part of this dissertation, we focus on designing a cost-effective PE ar-

ray to reduce area and power. For area and power saving in a PE array, we devise a cost-

effective array fabric addresses novel rearrangement of processing elements and their 

interconnection designs to reduce area and power consumption. In addition, hierarchical 

reconfigurable computing arrays are proposed consisting of two reconfigurable comput-

ing blocks with two types of communication structure together. The two computing 

blocks have shared critical resources and such a sharing structure provides efficient 

communication interface between them with reducing overall area.  

Based on the proposed design approaches, a CGRA combining the multiple design 

schemes is shown to verify the synergy effect of the integrated approach. Experimental 

results show that the integrated approach reduces area by 23.07% and power by up to 

72% when compared with the conventional CGRA. 
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CHAPTER I 

INTRODUCTION 

 

With the growing demand for high quality multimedia, especially over portable media, 

there has been continuous development on more sophisticated algorithms for audio, 

video, and graphics processing. These algorithms have the characteristics of data-

intensive computation of high complexity. For such applications, we can consider two 

extreme approaches to implementation: software running on a general purpose processor 

and hardware in the form of ASIC. In the case of general purpose processor, it is flexible 

enough to support various applications but may not provide sufficient performance to 

cope with the complexity of the applications. In the case of ASIC, we can optimize best 

in terms of power and performance but only for a specific application. With a coarse-

grained reconfigurable architecture (CGRA), we can take advantage of the above two 

approaches. This architecture has higher performance level than general purpose proces-

sor and wider applicability than ASIC. 

As the market pressure of embedded systems compels the designer to meet tighter 

constraints on cost, performance, and power, the application specific optimization of a 

system becomes inevitable. On the other hand, the flexibility of a system is also impor-

tant to accommodate rapidly changing consumer needs. To compromise these incom-

patible demands, domain-specific design is focused on as a suitable solution for recent  

____________ 
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embedded systems. Coarse-grained reconfigurable architecture is the very domain-

specific design in that it can boost the performance by adopting specific hardware en-

gines while it can be reconfigured to adapt to ever-changing characteristics of the appli-

cations. 

In spite of the above advantages, the deployment of CGRA is prohibitive due to its 

significant area and power consumption. This is due to the fact that CGRA is composed 

of several memory components and the array of many processing elements including 

ALU, multiplier and divider, etc. Especially, processing element (PE) array occupies 

most of the area and consumes most of the power in the system to support flexibility and 

high performance. Therefore, reducing area and power consumption in the PE array has 

been a serious concern for the adoption of CGRA.  

A. Objective and Approach 

This dissertation explores the problem of reducing area and power in CGRA based on 

architecture optimization. To provide cost-effective CGRA design, the following ques-

tions are considered.  

• How to reduce area and power consumption in CGRA? For power saving in 

CGRA, We should obtain area and power breakdown data of CGRA to identify 

area and power-dominant components. Then the components may be optimized 

for area and power by removing redundancies of CGRA wasting area and power. 

Such redundancies may depend on the characteristics of computation model or 

applications.  

• How to design cost-effective CGRA with non-sacrificing or enhancing perform-
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ance? Ultimately, the goals of designing cost-effective CGRA is that proposed 

approaches do not cause performance degradation with saving area and power. It 

means that the proposed cost-effective CGRA keeps original functionality of 

CGRA intact and does not increase critical path delay. In addition, the perform-

ance may be enhanced by optimizing the performance bottleneck with keeping 

the area and power-efficient approaches.  

In this dissertation, these central questions are addressed for area/power-critical 

components of CGRA and we suggest new frameworks to achieve these goals. The vali-

dation of the proposed approaches is demonstrated through the use of real application 

benchmarks and gate level simulations. 

B. Contributions  

This work makes the following contributions: 
 

• Low power reconfiguration technique for CGRA. It presents a novel power-

conscious architectural technique called reusable context pipelining (RCP) for 

CGRA to close the power-performance gap between low power-oriented spatial 

mapping and high performance-oriented temporal mapping prevailing in existing 

CGRA architectures. A new configuration cache structure has been proposed to 

support reusable context pipelining with negligible overheads. The temporal 

mapping with RCP has been shown to be a universal approach in reducing power 

and enhancing performance for CGRA.  

• Dynamic context compression for low power CGRA. A new design flow for 
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CGRA design has been proposed to generate architecture specifications that are 

required for modifying configuration cache dynamically. Design methodology 

for dynamically compressible context architecture and a new cache structure to 

support the configurability are being presented to reduce the power consumption 

in configuration cache without performance degradation.  

• Dynamic context management for low power CGRA. It presents a novel control 

mechanism of configuration cache called dynamic context management to reduce 

the power consumption in configuration cache without performance degradation. 

A new configuration cache structure is proposed to support dynamic context 

management.  

• A new array fabric for CGRA. A novel array fabric design exploration method 

has been proposed to generate cost-effective reconfigurable array structure. 

Novel rearrangement of processing elements and their interconnection designs 

are introduced for CGRA to reduce area and power consumption without any 

performance degradation.  

• Hierarchical reconfigurable computing arrays for efficient CGRA-based em-

bedded systems. A new reconfigurable computing hierarchy has been proposed to 

design cost-effective CGRA-based embedded systems.  Efficient communication 

structure between processor and reconfigurable computing blocks is introduced 

to reduce performance bottleneck in the CGRA-based architecture. 
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C. Dissertation Organization 

The rest of the dissertation is organized as follows. In Chapter II, we describe back-

ground and related work of this dissertation. Chapter III presents base architecture im-

plementation and its cost breakdown. In Chapter IV, we propose low power reconfigura-

tion technique to reduce power in configuration cache. Chapters V and VI present dy-

namic context compression and dynamic context management capable of reducing power 

consumption in configuration cache. In Chapter VII, we device a cost-effective array 

fabric for CGRA to reduce area and power in PE array. Chapter VIII presents hierarchi-

cal reconfigurable computing array to reduce area and power with enhancing perform-

ance. Finally, we present integrated approach to merge the multiple design schemes and 

conclude this work in Chapters IX and X. 
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CHAPTER II 

BACKGROUND AND RELATED WORKS 

 

A.  Coarse-Grained Reconfigurable Architecture  

A recent trend in the architectural platforms for embedded systems is the adoption of 

reconfigurable computing elements for cost, performance, and flexibility issues [1]. 

Coarse-Grained Reconfigurable Architectures (CGRAs) [1] exploit both the flexibility 

and efficiency, and are shown to be a generally better solution for compute-intensive ap-

plications than fine-grained reconfigurable architectures. There are different styles of 

CGRAs, but many architectures are based on 2D array of ALU-like datapath blocks. 

These are particularly interesting due to the wide acceptance in recent reconfigurable 

processors as well as their expected high performance for many heavy-load applications 

in the domains of signal processing, multimedia, communication, security, and so on.  

Typically, a CGRA consists of a main processor, a Reconfigurable Array Architec-

ture (RAA), and their interface as Fig. 1. The RAA has identical processing elements 

(PEs) containing functional units and a few storage units such as ALU, multiplier, shifter 

and register file. The data buffer provides operand data to PE array through a high-

bandwidth data bus. The configuration cache (or context memory) stores the context 

words used for configuring the PE array elements. The context register between a PE 

and a cache element (CE) in configuration cache is used to keep the cache access path 

from being the critical path of the CGRA.  
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Fig. 1. Block diagram of general CGRA. 
 
 
 

Unlike FPGA (most typical of a fine-grained reconfigurable architecture), which 

are built with bit-level configurable logic blocks (CLBs), CGRA is built with PEs, which 

are word-level configurable functional blocks. By raising the granularity of operations 

from a bit to a word, CGRA can improve on the speed and the performance as well as 

the resource utilization for compute-intensive applications. Another consequence of this 

raised granularity is that whereas FPGA can be used for implementing any digital cir-

cuits, CGRA is targeted only for a limited set of applications, although different CGRAs 

may target different application domains. Still, CGRA retains the idea of “reprogramma-

ble hardware” in the reprogrammable interconnects as well as in the configurable func-

tional blocks (i.e., PEs). Moreover, since the amount of the configuration bit-stream is 

greatly reduced through the raised granularity, the configuration can be actually changed 

even at the runtime very fast. Most of the CGRAs feature single-cycle configuration 

change, fetching the configuration data from a distributed local cache. This unique com-
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bination of efficiency and flexibility, which in the main advantage of CGRA, explains an 

evaluation result [2] that under certain conditions CGRAs are actually more cost-

effective for wireless communication applications than alternatives such as FPGA im-

plementations as well as DSP architectures. It is worth mentioning that the improved ef-

ficiency of CGRAs in terms of the speed, performance, and area is a result of the archi-

tecture specialization for compute-intensive applications.  

B.  Related Works  

Many kinds of coarse-grained reconfigurable architecture have been proposed with the 

increasing interests in reconfigurable computing until 2001 [1]. These CGRAs can be 

classified into two cases: mesh-based reconfigurable array and linear reconfigurable ar-

ray. Mesh-based reconfigurable arrays arrange their processing elements (PEs) mainly as 

a rectangular 2-D array with horizontal and vertical connections, which support rich 

communication resources for efficient parallelism. In the case of linear reconfigurable 

arrays, they support pipelined execution for stream-based applications with static or dy-

namic reconfiguration. MorphoSys [3] and REMARC [4] are representations of mesh-

based architectures. MorphoSys consists of Tiny_RISC processor, RC (Reconfigurable 

Cell) array, frame buffer, context memory and DMA controller. RC array is an 8×8 array 

of ALUs that performs 16-bit operations based on SIMD programming model. RE-

MARC consists of a global control unit and an 8x8 array of nano processors. A nano 

processor consists of an ALU, a 16-entry data RAM, an 8-entry register file, data input 

registers and data output registers. The configuration for each nano processor is stored in 

the 32-entry instruction RAM to support MIMD execution model as well as SIMD 
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model. RaPiD [5] and PipeRench [6][7] have linear array structure. RaPiD provides dif-

ferent computing resources like ALUs, RAMs, multipliers and registers. These resources 

are irregularly distributed on one dimension and are mostly static reconfigured. However, 

PipeRench [6][7] relies on dynamic reconfiguration, allowing the reconfiguration of a 

processing element (PE) in each execution cycle. It consists of strips composed of inter-

connect and PEs with registers and ALUs. The reconfigurable fabric allows the configu-

ration of a pipeline stage in every cycle, while concurrently executing all other stages.  

Since then, many more new CGRAs [2][8][9][10][11][12][13][14] [15][16][17][18] 

[19] have been continuously proposed and evolved. Most of them comprise of a fixed set 

of specialized processing elements (PEs) and interconnection fabrics between them. The 

run-time control of the operation of each PE and the interconnection provides the recon-

figurability.  

However, such fixed architecture has limitations in optimizing the area cost and 

performance for various applications. For example, MorphoSys [3] consists of 8x8 array 

of Reconfigurable Cell coupled with Tiny_RISC processor through system bus. It shows 

good performance for regular code segments in computation intensive domains but re-

quires large amount of area and power consumption. XPP configurable system-on-chip 

architecture [10] is another example. XPP has 4 x 4 or 8 x 8 reconfigurable array and 

LEON processor with AMBA bus architecture. A processing element of XPP is com-

posed of an ALU and some registers. Since the processing elements do not include 

heavy resources, the total area cost is not high but the range of applicable domains is re-

stricted. In addition, XPP shows significant communication overhead between the proc-
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essor and RAA through the system bus. REMARC [4] is reconfigurable Multimedia Ar-

ray Coprocessor that consists of a global control unit and an 8x8 array of nano proces-

sors. The nano processors do not also include heavy resources like XPP but it also re-

stricts the range of applicable domains. However, the communication with main proces-

sor is faster than [3] or [20] because the processor can access the register-set by coproc-

essor data transfer instructions. However, limited size of the register-set causes heavy 

registers-array traffic restricting performance enhancement. ADRES [21] tightly couples 

a VLIW processor and a reconfigurable matrix through shared register file. The recon-

figurable matrix is used to accelerate the dataflow-like kernels in a highly parallel way, 

whereas the VLIW processor executes the non-kernel code by exploiting instruction-

level parallelism. Even though it also provides the fast communication speed between 

VLIW and the matrix but the entire structure is very dependent on VLIW processor ar-

chitecture and it require huge register file for the communication. Therefore, the per-

formance is limited by size of the register file. Most design space exploration techniques 

previously suggested are limited to the configuration of the internal structure of a PE and 

the interconnection scheme. Such configuration techniques are in general good at obtain-

ing high performance but require high hardware cost. This is mainly because even a 

primitive PE design should be equipped with basic functional resources to gain reason-

able performance. Moreover, adding a small functional block to a primitive PE design 

increases the total cost of the aggregate architecture a lot. In ADRES template [21], an 

XML-based architecture description language is used to define the overall topology, 

supported operation set, resource allocation, timing, and even internal organization of 
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each processing element. KressArray [20] also defines the exploration properties such as 

array size, interconnections, and functionality of certain processing elements. However, 

both templates do not support common resources shared among processing elements, 

thus some critical functional resources may have low utilization while occupying large 

area.  

The research on low power CGRA has three different aspects: architecture explora-

tion, code compilation & mapping and physical implementation. Although the architec-

ture exploration flows that have been suggested in [8][20][21] [22][23][24][25][26][27] 

[28] generate a good instance of CGRA considering area and performance, they do not 

deal with power consumption. Interconnect architecture explorations have been sug-

gested for low energy [21][29]. Because CGRA has complex interconnection for per-

formance and flexibility, power consumption due to interconnection is crucial. In [8][29] 

the authors have proposed energy-aware interconnection exploration to minimize energy 

by changing the topology between global register file and function units. However, this 

exploration only provides the trade-off between performance and energy. In [30] the au-

thors have suggested hierarchical generalized mesh structure exploration that continues 

to exploit locality while reducing the cost of long connections but it has been only evalu-

ated for specific reconfigurable DSPs. In the case of code compilation and mapping, 

loops are exploited mainly for performance [9][31][32][33][34][35][36][37][38][39][40] 

[43][44]. Many reconfigurable architectures have been implemented with various tech-

nologies [6][10][12][43][44][45][46]. Most of these researches have focused on efficient 

design with respect to small area and high performance. In [6][8], even though authors 



12 

have presented power estimation data of the implemented architectures, these are only 

accessorial results and they do not offer power/energy-aware implementation. In [2][14], 

authors have emphasized that the implemented architectures are power-efficient as com-

pared to fine-grained architectures such as FPGA running specific applications. These 

architectures are not general CGRA but specific for running some applications with low 

power consumption. In [6], the authors have fabricated PipeRench [7] in a 0.18 micron 

process. Their experimental results show that the power consumption is significantly 

high. Authors describe that the increase in power consumption is due to the dynamic re-

configuration requiring frequent configuration and state memory accesses. Hence, that 

power consumption by dynamic reconfiguration is a serious overhead as compared to 

other types of IP cores such as ASIC or ASIP. 
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CHAPTER III 

BASE CGRA IMPLEMENTATION 

 

We have first designed a conventional CGRA as the base architecture and implemented 

it at the RT-level. This conventional architecture will be used throughout this disserta-

tion as a reference for quantitative comparison with our cost-effective approaches. 

A.  Reconfigurable Array Architecture Coupling with Processor 

A typical coarse-grained reconfigurable architecture consists of a microprocessor, a Re-

configurable Array Architecture (RAA), and their interface. We can consider three ways 

of connecting the RAA to the processor [47]. First, the array can be connected to a bus 

as an ‘Attached IP’ shown in Fig. 2(a). Secondly, the array can be placed next to the 

processor as a ‘Coprocessor’ as shown in Fig. 2(b). In this case, the communication is 

done using a protocol similar to those used for floating point coprocessors. Finally, the 

array can be placed inside the processor like a ‘FU (Functional Unit)’ as shown in Fig. 

2(c). In this case, the instruction decoder issues special instructions to perform specific 

functions on the reconfigurable array as if it were one of the standard functional units of 

the processor.  
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Fig. 2. Basic types of reconfigurable array coupling. 
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Fig. 3. Block diagram of base CGRA. 
 
 
 

We have implemented the first type of reconfigurable architecture connecting the 

RAA as an Attached IP. In this case, the speed improvement using the RAA may have to 
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compensate for significant communication overhead. However, the main benefit of this 

type is the ease of constructing such a system using a standard processor and standard 

reconfigurable array without any modification. It consists of a RISC processor, a main 

memory block, a DMA controller, and an RAA. The RISC processor is a 32-bit proces-

sor which is small and simple with three pipeline stages and the communication bus is 

AMBA AHB [48], which couples the RISC processor and the DMA controller as master 

devices and the RAA as a slave device. The RISC processor executes control intensive, 

irregular code segments and the RAA executes data-intensive kernel code segments. The 

block diagram of the entire reconfigurable architecture is shown in Fig. 3. 

B.  Base Reconfigurable Array Architecture 

Base RAA is similar to MorphoSys [3], which is a very representative CGRA showing 

high performance and flexibility as well as physical implementation. The difference 

from MorphoSys is that the proposed architecture supports both SIMD and MIMD exe-

cution model whereas the memory structure (frame buffer and configuration cache) of 

MorphoSys supports only the SIMD model. The SIMD model is efficient for data paral-

lelism since it saves configurations and cache storage by sharing an instruction for mul-

tiple data. But its execution models are limited in that each individual PE cannot execute 

different instructions independently at the same time. Therefore, we take MIMD-style 

CGRA in which each PE can be configured separately to facilitate processing its own 

instructions. Since it allows more versatile configurations than their SIMD-style siblings, 

we adopt more general forms of loop pipelining [32] through simultaneous execution of 

multiple iterations of a loop in a pipeline.  
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Fig. 4. Processing element structure of base RAA.             

 
 
 

Base architecture specification is determined by our target application domain in-

cluding audio/video codec as well as various benchmark kernels. Detailed features of 

each component of the architecture are as follows. 

1.  Processing Element 

Each PE is a dynamically reconfigurable unit executing arithmetic and logical operations. 

The inner structure of a PE is shown in Fig. 4. A PE contains a 16-bit ALU, 16 x 16-bit 

array multiplier, shift logic, Arithmetic saturation (SAT_Logic), multiplexors and regis-

ters.  

2.  PE Array 

The PE array is an 8x8 reconfigurable array of PEs, which we think is big enough for 
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most of the applications considered in our experiments. We assume that computation 

model of the array is loop pipelining based on temporal mapping [32] for high perform-

ance - each iteration of application kernel (critical loop) is mapped onto each column of 
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Fig. 5. Interconnection structure of PE array. 

square array. Therefore, in this PE array, columns have more interconnection than rows. 

Fig. 5 shows interconnection structure of the PE array. The interconnection in rows is 

used mainly for the communication taking care of loop-carried dependencies. Columns 

and rows have nearest-neighbor and hopping interconnections for connectivity between 

two PEs in a half column and a half row. In addition, each column has pair-wise inter-

connections and two global buses for connectivity between two half columns. Each row 

shares two read-buses and one write-bus.  
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3.  Frame Buffer 

Frame buffer (FB) of MorphoSys does not support concurrency between the load of two 

operands and the store of result in a same column, since it is not needed in SIMD-style 

mapping. However, in the case of MIMD-style execution, concurrent load and store op-

erations can happen between different loop iterations. So our FB has two sets of buffers, 

each having three banks: one bank connected to the write bus and the other two banks  
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Fig. 6. Distributed configuration cache structure. 
 
 
 
connected to the read buses. However, any combination of one-to-one mapping between 

the three banks and the three buses is possible.  

4.  Configuration Cache 

The context memory of MorphoSys is designed for broadcasting configuration. So PEs 
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in the same row or column share the same context word for SIMD-style operation [3]. 

However, in the case of MIMD-style operation, each PE can be configured by different 

context word. Our configuration cache is composed of 64 Cache Elements (CEs) and a 

cache controller for controlling the CEs (Fig. 6). Each CE has 32 layers, each of which 

stores a context that configures the corresponding PE. The context register between a PE 

and a CE is used to keep the cache access path from being the critical path of the CGRA. 

5  Execution Controller 

Controlling the PE array execution directly from the main processor through AMBA 

AHB will cause high overhead in the main processor. In addition, the latency of the con-

trol will degrade the performance of the whole system, especially when dynamic recon-

figuration is used. So a separate control unit is necessary to control the execution of the 

PE array every cycle. The execution controller receives the encoded control data from 

the main processor. The control data contains read/write mode and addresses of frame 

buffer and cache for guaranteeing correct operations of the PE array. 

C.  Breakdown of Area, Delay, and Power Cost 

We have implemented the base architecture shown in Fig. 2 at the RT-level with VHDL. 

We have synthesized a gate-level circuit from the VHDL description and analyzed area, 

delay, and power cost. The synthesis has been done using Design Compiler [49] with 

0.18 ㎛ technology. We have used DesignWare [49] library for the multipliers (carry-

save array synthesis model) and dividers (restoring carry-look-ahead, 2-way overlapped 

synthesis model). SRAM Macro Cell library is used for the frame buffer and configura-

tion cache. ModelSim [50] and PrimePower [49] have been used for gate-level simula-
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tion and power estimation. 
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Fig. 7. Area cost breakdown for CGRA. 
 
 

1.  Area and Delay  

As shown in Fig. 7 (a), the RAA occupies as much as 90 % of the total area of the 

CGRA. Fig. 7 (b) shows more detailed area breakdown in the RAA. The PE array occu-

pies as much as 70.5 % of the total area of the RAA, which is mainly due to heavy com-
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putational resources such as ALU, multiplier, etc. in each PE. The critical path of the 

entire RAA is also in the PEs and its delay is given by 

TCritical path = TMultiplexor + TMultiplier  + TShift_logic+Tothers                        (1) 

(8.96ns   =  0.32ns    + 5.21ns + 1.42ns   + 1.78ns)  

From the area and delay cost breakdown of the RAA as shown in Figs. 7 and 8, we see 

that PE array design is crucial for cost-effective design. In the case of area, Fig. 8 (a) 

shows that multiplier occupies about 33.4% of the total area in a PE. In the case of delay, 

the multiplier again takes as much as 58.12 % (Fig. 8 (b)). Therefore, in our PE design, 

the multiplier is considered to be area-critical and delay-critical resource. 
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Fig. 8. Cost analysis for a PE. 
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Fig. 8. Continued. 
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Fig. 9. Continued. 
 
 
 

2.  Power   

To obtain power breakdown data, we have used 2D-FDCT as the kernel for simulation-

based power measurement. The simulation has been done under the typical operating 

condition of 100 MHz frequency, 1.8 V Vdd, and 27℃ temperature. As can be observed 

from Fig. 9 (a), the RAA spends about 92.09% of the total power consumed in CGRA.  

Fig. 9 (b) shows more detailed power breakdown in the RAA. The RAA spends about 

50.8% of its total power in the PE array, which consists of many components such as 

ALUs, multipliers, shifters and register files. The PE array consumes most of the power, 

which is natural because coarse-grained architecture aims to achieve high performance 

and flexibility with plenty of resources. The configuration cache spends about 45.3% of 

the overall power, which is the second largest. Even though the frame buffer uses the 

same kind of SRAM as the configuration cache, it consumes much less power (3.4%). 
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This is because the configuration cache performs read operations frequently to load the 

context words, one for each PE, whereas the frame buffer performs load/store operations 

less frequently to access data on row basis rather than for every PE.  
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CHAPTER IV 

LOW POWER RECONFIGURATION TECHNIQUE 

 

In this chapter, we suggest a novel power-conscious architectural technique called reus-

able context pipelining (RCP) to reduce power consumption in configuration cache [51]. 

RCP is a universal approach in reducing power and enhancing performance for CGRA 

because it can be achieved by closing the power-performance gap between low power-

oriented spatial mapping and high performance-oriented temporal mapping. Furthermore, 

we propose new configuration cache structure (called hybrid configuration cache) to 

support reusable context pipelining with reduced memory size. Experimental results 

show that the proposed approach saves much power even with reduced configuration 

cache size. Power reduction ratio in the configuration cache and the entire architecture 

are up to 86.33 % and 47.60 % respectively compared to the base architecture. 

A.  Motivation  

In this section, we present the motivation of our power-conscious approaches. The main 

motivation is due to the characteristics of loop pipelining (spatial mapping and temporal 

mapping) [32] based on MIMD-style execution model.  

1.  Loop Pipelining  

To represent the characteristics of loop pipelining [32], we examine the difference be-

tween SIMD and MIMD in the RAA with a simple example. We assume a mesh-based 

4x4 coarse-grained reconfigurable array of PEs, where a PE is a basic reconfigurable 
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Fig. 10. 4x4 reconfigurable array. 
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Fig. 10. Continued. 

 
 
 
 element composed of an ALU, an array multiplier, etc. and the configuration is con-

trolled by the words stored in the CE as shown in Fig. 10 (a). In addition, we assume that 

Frame Buffer has simply one set having three banks and two read-ports and one write-

port, supporting any combination of one-to-one mapping between the three banks and 

the three buses. Fig. 10 (b) shows such a Frame Buffer and data bus structure, where the 

PEs in each row of the array share two read buses and one write bus. The 4x4 array has 

nearest neighbor interconnections as shown in Fig. 10 (c) and each row or each column 

has a global bus as shown in Fig. 10 (d).  
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for (i = 0; i <= 3; i = i+1)
{ 

for (j = 0; j <= 3; j = j+1)
z[i] = (x[i][j]+y[i][j])*c[j] + z[i];

z[i] = K* z[i];
}

for (i = 0; i <= 3; i = i+1)        
{

t1 = x[i][0]+y[i][0] ;
t2 = x[i][1]+y[i][1] ; 
t3 = x[i][2]+y[i][2] ; 
t4 = x[i][3]+y[i][3] ;

t1 = t1*c[0];
t2 = t2*c[2];
t3 = t3*c[3];
t4 = t4*c[4]; 

tmp1 = t1+ t2 ; 
tmp2 = t3+ t4 ;

z[i] = tmp1+ tmp2 ;

z[i] = K*z[i]
}

LD/+

×

2+

1+ 

×/ST

 
 
(a) Before parallelization                                      (b) After parallelization 

 
Fig. 11. C-code of Eq. (2). 

 
 
 

Consider a square matrix X and Y, both of order N, and the computation of Z, an N 

element vector, given by 

∑
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N

j
jCjiYjiXKiZ                            (2) 

where i, j = 0,1,…,N-1, C( j ) is a constant vector, and K is a constant.  

Consider N = 4 for the mapping of the computation defined in Eq. (2) on our 4x4 PE ar-

ray and let the computation be given as a C-program (Fig. 11 (a)). It is assumed that the 

input matrix X, Y, constant vector C and output vector Z are stored in the arrays x[i][j], 

y[i][j], c[j] and z[i], and z[i] is initialized to zero. Fig. 11 (b) shows parallelized code for 

execution on the array as shown in Fig. 12, where we assume that matrix X and Y have 

been loaded into the Frame Buffer (FB) and all of the constants (C and K) have been al-

ready saved in a register file of each PE. Vector Z is stored in the FB after it has been 
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processed by the PE array as shown in Fig. 12 (a). 
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(a) Operand and result data in FB                             (b) Configuration broadcast 

 

LD/+ Data Load and Addition

NOP No Operation

LD/+ Data Load and Addition

NOP No Operation

Symbol MeaningSymbol Meaning

× Multiplication× Multiplication

1+, 2+ Addition1+, 2+ Addition

×/ST Multiplication and Store×/ST Multiplication and Store         

Broadcast Column Direction Row Direction Column Direction

Cycle Time 1 2 3 4 5 6 7 8 9 10 11

Column#1 LD/+ NOP NOP NOP × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ NOP NOP × 1+ 2+ NOP ×/ST NOP NOP

Column#3 LD/+ NOP × 1+ 2+ NOP NOP ×/ST NOP

Column#4 LD/+ × 1+ 2+ NOP NOP NOP ×/ST

Broadcast Column Direction Row Direction Column Direction

Cycle Time 1 2 3 4 5 6 7 8 9 10 11

Column#1 LD/+ NOP NOP NOP × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ NOP NOP × 1+ 2+ NOP ×/ST NOP NOP

Column#3 LD/+ NOP × 1+ 2+ NOP NOP ×/ST NOP

Column#4 LD/+ × 1+ 2+ NOP NOP NOP ×/ST  
 
(c) SIMD model 

 
Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ × 1+ 2+  ×/ST NOP NOP NOP

Column#2 LD/+ × 1+ 2+  ×/ST NOP NOP

Column#3 LD/+ × 1+ 2+ ×/ST NOP

Column#4 LD/+ × 1+ 2+  ×/ST

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ × 1+ 2+  ×/ST NOP NOP NOP

Column#2 LD/+ × 1+ 2+  ×/ST NOP NOP

Column#3 LD/+ × 1+ 2+ ×/ST NOP

Column#4 LD/+ × 1+ 2+  ×/ST  
 

(d) Loop pipelining schedule 
 

Fig. 12. Execution model for CGRA. 
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The SIMD-based scheduling enables parallel execution of multiple loop iterations 

as shown in Fig. 12 (c), whereas the MIMD-based scheduling enables loop pipelining as 

shown in Fig. 12 (d). The first row of Fig. 12 (c) represents the direction of configuration 

broadcast. The second row of Fig. 12 (c) and the first row of Fig. 12 (d) indicate the 

schedule time in cycles from the start of the loop. In the case of SIMD model, load and 

addition operations in PEs are executed on all columns till 4th cycle with broadcast in 

column direction.  Then the PEs in a row perform the same operation with broadcast in 

row direction. In the case of loop pipelining, PEs in the first column perform load and 

addition operations in the first cycle and then perform multiplications in the second cycle. 

In the next two cycles, the PEs in the first column perform summations, while the PEs in 

the next column perform multiplication and summation operations. When the first col-

umn performs the multiplication/store operation in the 5th cycle, the fourth column per-

forms multiplication. Comparing the latency, SIMD takes three more cycles.  

As shown in this example, SIMD model does not utilize PEs efficiently since all 

data should be loaded before the computations of the same type are performed synchro-

nously. On the other hand, since MIMD allows any type of computations at any moment, 

it does not need to wait for a specific data to be loaded but can process other data that is 

readily available. Loop pipelining is an effective way of exploiting this fact, thereby util-

izing PEs better. The loop pipelining in the example of Fig. 11 improves the perform-

ance by three cycles compared to the SIMD, but for loops with more frequent memory 

operations, it will have higher performance improvement. 
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2.  Spatial Mapping and Temporal Mapping  

When mapping kernels onto the reconfigurable architecture with loop pipelining, we can 

consider two mapping techniques [32]: spatial mapping and temporal mapping. Fig. 13 

shows the difference between the two techniques with the previous example. In the case 

of temporal mapping (Fig. 13 (a)), like the previous illustration of loop pipelining in Fig. 

12 (d), a PE executes multiple operations within a loop by changing the configuration 

dynamically. Therefore, complex loops having many operations with heavy data de-

pendencies can be mapped better in temporal fashion, provided that the configuration 

cache has sufficient layers to execute the whole loop body.   

In the case of spatial mapping, a loop body is spatially mapped onto the reconfigur-

able array implying that each PE executes a fixed operation with static configuration as 

shown in Fig. 13 (b). The advantage of spatial mapping is that it may not need recon-

figuration during execution of a loop. As can be seen from Fig. 13, spatial mapping 

needs only one or two cache layers whereas temporal mapping needs 4 cache layers. One 

disadvantage of spatial mapping is that spreading all the operations of the loop body 

over the limited reconfigurable array may require too many resources. Moreover, data 

dependencies between the operations should be taken care of by allocating interconnect 

resources to provide a path and inserting registers (or using PEs) in the path to synchro-

nize the arrival of operands. Therefore, if the loop is simple enough to map the loop 

body to the limited reconfigurable array and there is not much data dependency between 

the operations, then spatial mapping is the right choice. The effectiveness of the mapping 

strategies depends on the characteristics of the target architecture as well as the target 
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application. 
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(a) Temporal mapping                                           (b) Spatial mapping  

 
Fig. 13. Comparison between temporal mapping and spatial mapping. 

 
 
 

B. Individual Approaches to Reduce Power in Configuration Cache  

In this section, we suggest individual power-conscious approaches for two different exe-

cution models (spatial mapping and temporal mapping) and describe their limitations. 

These approaches achieve the goal by making use of the characteristics of spatial map-

ping and temporal mapping [52][53][54].  
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1. Spatial Mapping with Context Reuse 

Because most power consumption in the configuration cache is due to memory read-

operations, one of the most effective ways to achieve power reduction in the configurati- 
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Fig. 14. Configuration cache structure for context reuse. 
 
 
 

on cache is to reduce the frequency of read operations.  

Even though temporal mapping is more efficient in mapping complex loops onto 

the reconfigurable array, it requires many configuration data layers for each PE and per-

forms power consuming read-operations in every cycle. On the other hand, spatial map-

ping does not need to read a new context word from the cache every cycle because each 
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PE executes a fixed operation within a loop. As shown in Fig. 14, if a context register 

between a CE and a PE is implemented by a gated clock, one spatial cache1 read-

operation is enough in spatial mapping to configure PEs for static operations with fixed 

output of the context register caused by non-oscillated clock. In summary, spatial map-

ping with context reuse is more efficient than temporal mapping from the viewpoint of 

power consumption in configuration cache. However, all kinds of loops cannot be spa-

tially mapped because of the limitation of the spatial mapping. Moreover, if we consider 

performance alone, temporal mapping is a better choice for loops having long and com-

plex loop body. In the next subsection, we propose a new cache structure and mapping 

technique that reduce power consumption while retaining the merits of temporal map-

ping. 

2. Temporal Mapping with Context Pipelining 

As shown in Fig. 13 (a), in temporal mapping with loop pipelining, operations flow col-

umn by column from left to right. In Fig. 13 (a) for example, the first column executes 

'LD/+' in the first cycle and then in the second cycle, the second column executes 'LD/+' 

while the first column executes '×'. In temporal mapping, there is no need for a PE to 

have a CE. Instead, only PEs in the first column have CEs and the context word can be 

fetched from the left neighboring column. By organizing a pipelined cache structure as 

shown in Fig 15, we can propagate the context words column by column through the 

pipeline. In this way, we can remove most of the CEs from the array keeping temporal 

                                                 
1 We use the term ‘spatial cache’. Spatial cache is connected to context registers implemented by gated 

clock. ‘spatial’ means that such configuration cache is used for spatial mapping with context reuse. This 
naming is to differentiate spatial cache from general configuration cache. 
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cache2, thereby saving power consumption without any performance degradation. In 

summary, temporal mapping with context pipelining can efficiently support long and 

complex loops reducing power consumption in configuration cache. However, temporal 

mapping with context pipelining still needs cache-read operations for providing context 

words to the first column of PE array whereas spatial mapping with context reuse can 

remove cache-read operation after initial cache-read operation.  
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Fig. 15. Cache structure for context pipelining. 

 
 
 

3.  Limitation of Individual Approaches  

As mentioned in previous section, even though individual low power techniques provide 

                                                 
2 We use the term ‘temporal cache’. Temporal cache is composed of the cache elements connected to 

the PEs in the first column. ‘temporal’ means that such CEs are used for temporal mapping with context 
pipelining. This naming is to differentiate temporal cache from general configuration cache and spatial 
cache. 
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solution to reduce power consumption for spatial mapping and temporal mapping, each 

case has both advantage and disadvantage. Spatial mapping with context reuse only need 

one cache-read operation for initialization but it can not support the complex loops that 

cannot be spatially mapped. However, temporal mapping with context pipelining support 

such complex loops but cache-read operations still remain in context pipelining for the 

running time. Therefore we should consider the trade-off between performance and 

power while deploying these techniques.  

We can consider two ways to close the gap between spatial mapping and temporal 

mapping. One is to implement more complex architecture to support high performance 

spatial mapping by adding additional interconnections or global register files for data 

dependency. However, in this case the area cost and mapping complexities will increase. 

Another way is to implement low power temporal mapping taking advantage of spatial 

mapping with negligible over-head. However, the problem is how to implement this 

method. In the next section, we propose new technique to guarantee the advantage of 

spatial mapping and temporal mapping. This is achieved by merging the concept of con-

text reuse into context pipelining. 

C.  Integrated Approach to Reduce Power in Configuration Cache 

Filling the gap between two mappings means that context pipelining is executed by reus-

able context words. However, it means conjunction of two mappings that are contrary to 

each other. This is because spatial mapping with context reuse requires spatially static 

position of each context whereas temporal mapping with context pipelining is performed 

with temporally changed context words. To solve this contradiction, we propose to add 
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circular interconnection between the first PE and the last PE in the same row and suggest 

a reusable context pipelining using this interconnection. 

1.  Reusable Context Pipelining 

Reusable context pipelining (RCP) means that reusable context words in spatial cache 

are pipelined through context registers as context pipelining. Fig. 16 (a) depicts the pro-

posed configuration cache structure for RCP. Even though it is similar to the structure of 

Fig. 14 (spatial mapping with context reuse), the new one has two context registers (‘R1’ 

and ‘R2’) connected to each PE, circular interconnections and less cache layers whereas 

the original model had one context register and more cache layers.  
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Fig. 16. Proposed configuration cache structure. 
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(b)  Connection between a CE and a PE 
 

Fig. 16. Continued. 
 
 
 

The circular interconnections and the context registers are necessary for pipelining 

of reusable context words from spatial cache. Fig. 16 (b) shows the detailed structure 

between a CE and a PE for RCP. A multiplexer (‘MUX’) is added between context reg-

isters (‘REG1’ and ‘REG2’) and PE for selecting one of the context registers or ‘Zero’. 

Each context register is connected to each multiplexer (‘MUX 1’ or ‘MUX 2’) having 

two inputs: context word from left context register and context word from spatial cache. 

The input from spatial cache is for loading a reusable context word to the context regis-

ter and the input from left context register is for pipelining execution of the loaded con-
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text word in left context register. Each select signal (‘Select #1’ or ‘Select #2’) connects 

one from two inputs to the single output connected with right context registers. Each 

context register is implemented by gated clock for holding the output as well as reducing 

the wasteful power consumption. All of the select-signals of the multiplexers are gener-

ated by cache control unit. 

To present the detailed process of RCP, it is assumed that the matrix-vector multi-

plication given as Eq. (2) is mapped onto the proposed structure like the one in Fig. 17. 

Fig 17 (a) shows the context words stored in spatial cache for RCP and Fig. 17 (b) ~ (i) 

shows the RCP process from the first cycle to the eighth cycle. Before starting execution, 

the cont ext words of first layer in spatial cache are loaded into the first context registers 

(‘REG 1’). At the first cycle, the PEs in the first column performs ‘Load’ and the context 

word (‘Store’) in spatial cache is loaded to the ‘REG 2’ in the first column while other 

columns perform no operation (‘NOP’). At the second cycle, the first column performs 

‘Execute1’ from circular interconnection while PEs in the next column perform ‘Load’ 

from the first column. Then context words in the first registers are sequentially pipelined 

for two cycles (the third and forth cycle) and the first column perform ‘Store’ from the 

second register at the fifth cycle. Such a context pipelining is continually executed and 

finished at the eighth cycle. Therefore, if reusable context words are loaded into context 

registers in the circular order, the context words from spatial cache can be rotated for 

temporal mapping without temporal cache. It means that spatiality of the array structure 

and the added context registers can be utilized for low power in temporal mapping. 
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(b) Execution at the First Cycle 
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Fig. 17. Reusable context pipelining for Eq. (2). 
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Fig. 18. Reusable context pipelining with temporal cache. 
 
 
 

2.  Limitation of Reusable Context Pipelining  

If the loop given in Fig. 15 (b) is mapped onto the 4x4 PE array with added context reg-

isters like Fig. 16 (a), RCP cannot finish entire execution because the given architecture 

only supports a maximum number of 8 cycles (2 context registers and 4 columns) for an 

iteration of the loop whereas the loop has loop body taking 9 cycles. Therefore, in this 

case, temporal cache is necessary to support the entire execution as Fig. 18 - RCP is per-

formed for 4 cycles by register 1 and original context pipelining is performed for 5 cy-

cles by register 2. Hence, RCP guarantees reduction of 4 cache-read operations after 

execution of the first iteration. This example shows that power efficiency of reusable 

context pipelining can be varied according to the complexity of evaluated loops and ar-

chitecture specification. 
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(a) ith iteration in the case of loop body taking 9 cycles 
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(b) ) ith iteration in the case of loop body taking 8 cycles 

Fig. 19. Reusable context pipelining according to the execution time for one iteration (i 
> 1). 

 
 
 

Therefore, we can estimate how many cache-read operations occur after the first it-

eration under architecture constraints. This is given as follows:  

0                                if   Citer  ≤  m×Nctxt                                   (3) 
   NTcache_read =                             

Citer − m×(Nctxt − 1)   if   Citer > m×Nctxt                                     (4) 
where 

   NTcache_read   : cycle count of temporal cache-read operations after the first iteration 
   Citer                  : cycle count for an iteration of loop 
   m               : number of columns on reconfigurable array 
   Nctxt            : number of context registers for a PE 

 
Based on above formula, the optimal case is when the NTcache_read is zero - context regis-

ters are sufficient to support entire loop body without temporal cache read-operations 

after the first iteration. Fig. 19 shows two cases of temporal mapping with RCP after the 

first iteration. In the case of Fig. 19 (a), it shows the scheduling for previous example in 

Fig. 18 and it corresponds to Eq. (4). However, Fig. 19 (b) shows other case that execu-

tion time for an iteration is 8 cycles and it corresponds to Eq.  (3).   
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3.  Hybrid Configuration Cache Structure  

Based on modified interconnection structure as in Fig. 16 (b), we propose a power-

conscious configuration cache structure that supports reusable context pipelining - we 

call it hybrid configuration cache including two cache parts – spatial cache for reusable 

context pipelining and temporal cache to making up for the limitation of RCP.  Fig. 20 

shows the modified configuration cache structure to support the example given in Fig. 

18. It is composed of cache controller, spatial cache, temporal cache, multiplexer and de-

multiplexer. The cache controller supports the same functions as the previous controller 

and in addition it controls increased context registers as well as the selection between 

spatial cache and temporal cache. Therefore, the new cache controller is more complex 

than the base one but the cache controller supports reusable context pipelining with neg-

ligible area and power overheads. As compared to the distributed cache of base architec-

ture, both spatial cache and temporal cache have much less number of layers since spa-

tial mapping does not require many layers and RCP can save the layer of temporal cache 

by up to the number of columns using context registers - the number of spatial cache 

layers should be more than the number of context registers connected to a PE because 

spatial cache should be able to include context words of several applications. Therefore, 

the area cost overhead caused by added context registers offsets because temporal cache 

size can be reduced by same size of total added registers. As mentioned earlier, the ap-

proach does not incur any performance degradation and this hybrid structure saves cache 

area since we keep only one column with reduced number of temporal CEs and less lay-

ers of spatial CEs compared to distributed configuration cache that has much more layers 
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Fig. 20.  Hybrid configuration cache structure. 
 
 
 

D.  Application Mapping Flow 

We have implemented automatic compilation flow to map applications onto the base ar-

chitecture for supporting temporal mapping [37]. The binary context words for reusable 

context pipelining are basically the same as the context words used for the temporal 

mapping but these context words should be rearranged for context pipelining with circu-

lar interconnection. Fig. 21 shows entire mapping flow for the base architecture and pro-

posed architecture. Binary context words are automatically generated from the compiler 

for temporal mapping. The timing and control information that is used to operate execu-

tion controller is manually optimized and the final encoded data is loaded onto registers 

of the execution controller. 
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Fig. 21.  Application mapping flow for base architecture and proposed architecture. 
 
 
 

1. Temporal Mapping Algorithm 

The temporal mapping algorithm minimizes the execution time of kernel codes on the 

PE array. This execution time is directly proportional to the number of cache layers in 

configuration array. The time, Tcritical is considered as a parameter to be minimized dur-

ing temporal mapping. We implement the temporal mapping in three sequential steps: 

covering, time assignment, and place assignment.  

a. Covering  

For compilation, the original kernel code is initially transformed into a DAG form, 

called the kernel DAG using common sub expression elimination technique [55]. One or 

more operation nodes in a kernel DAG are scheduled in a single configuration of a PE. 
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For this, we generate a configuration DAG (CDAG) by clustering the nodes in kernel 

DAG. A CDAG is used to find the minimum number of configurations for kernel code 

execution. To perform this task, we formulate it into a DAG covering problem where 

one has to find the minimal cost set of patterns that cover all the nodes in input CDAG. 

To efficiently solve our DAG covering problem, we implement our algorithm based on 

binate covering [56]. For example, Fig. 22 (a) shows CDAG generation from an input 

DAG.  
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(a) Covering            (b) Time assignment               (c) Place assignment 
 

Fig. 22. Temporal mapping steps. 
 
 
 
b. Time Assignment  

Each node in the CDAG is assigned to a cycle in which the node will be executed. In 

order to minimize Tcritical, we must fully exploit the parallel resources provided by the 

m×n PE array using modulo scheduling [57]. For example, Fig. 22 (b) shows assignment 

schedule obtained after applying modulo scheduling to the CDAG. Note that the cycle in 
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which a node in the CDAG is scheduled as part of a configuration in this phase, and it 

represents a layer location inside a configuration cache. 

c. Place Assignment  

In this phase, we assign all nodes in the CDAG to actual PEs by storing each of them as 

a configuration entity in the cache of a PE. We split the PEs in a column into two groups, 

called slots. In this phase, the CDAG nodes are first assigned to either slot with resorting 

to the ILP solver, and then within each slot, nodes are finally mapped onto actual PEs. 

Fig. 22 (c) shows the final mapping results after a place assignment is deployed. 

2.  Context Rearrangement 

 In the case of base architecture, the binary context words generated from the compiler 

can be loaded into configuration cache without any modification. However, in the case 

of proposed architecture the generated context words are rearranged and properly as-

signed to spatial and temporal cache. The address of each context word in hybrid con-

figuration cache can be represented by three-dimensional position as Fig. 23 (a). Fig. 23 

(b) shows pseudo code for context rearrangement algorithm that is easily implemented 

based on Eq. (3) and (4). Before explaining the algorithm in detail, we introduce the no-

tations used in the algorithm - NTcache_read , Citer, Nctxt and m are defined in subsection C.2.  

   n                : number of rows in reconfigurable array  
   k, l             : number of temporal cache layers, the number of spatial cache layers  
   Tctxt ,                : set of the context words having positions in temporal cache 
   Sctxt            : set of the context words having positions in spatial cache 
  Tctxt(x, y ,z) : context word corresponding the position (x, y, z) in temporal cache  
  Sctxt(x, y, z) : context word corresponding the position (x, y, z) in spatial cache  

(x : layer index, y :  row index, z : column index) 



48  

Layer k-1
Layer k-2

Layer k-3

Tctxt(k-3, 0)

Layer l-1

ctxt(k-3, 1)

Layer l-2
Layer l-3

Sctxt(l-3,0,0)

Sctxt(l, 1,0)

Sctxt(0, 2, 0)

Sctxt(0, n, 0)

Sctxt(l-3,0,1)

Sctxt(0, 1, 1)

Sctxt(0, 2, 1)

Sctxt(0, n, 1)

Sctxt(l-3,0,m-1)

Sctxt(0,gm-1)

Sctxt(0,  m-1)

Sctxt(0,  m-1)

Layer 2

Layer 1

Sctxt(0,0,0)

Sctxt(0,1,0)

Sctxt(0,2,0)

Sctxt(0,n-1,0)

Layer 0

Sctxt(0,0,1)

Sctxt(0,1,1)

Sctxt(0,2,1)

Sctxt(0,n-1,1)

Sctxt(0,0,m-1)

Sctxt(0,1,m-1)

Sctxt(0,2,m-1)

Sctxt(0,n-1,m-1)

Tctxt(k-2, 2)

Tctxt(k-2, n-1)

Layer 1

Layer 2

Layer 1

Tctxt(0,0,0)

Tctxt(0,1,0)

Tctxt(0,2,0)

Tctxt(0,n-1,0)

Layer 0

Spatial Cache Temporal Cache 

 

(a) positions of binary contexts in hybrid configuration cache 

       

CONTEXT REARRANGEMENT (Tctxt , m, n, k, Citer , Nctxt )

L1   Sctxt← Ø
L2 p← 0
L3 r← 0
L4 u← 0
L5 if Citer≤ m×Nctxt
L6 then for i ← 0 to k-1 
L7 do for j← 0 to n-1
L8 do Sctxt(p, j, r) ← Tctxt(i, j,0)
L9 if r = 0
L10 then r← m - 1
L11 else if  r > 1 
L12                                            then r← r – 1
L13 else r← 0, p← p + 1
L14 else u← m×(Nctxt-1)
L15 for i ← 0 to k-1  
L16 do if i ≤ u
L17 then for j← 0 to n-1
L18 do Sctxt(p, j, r) ← Tctxt(i, j,0)
L19 if r = 0
L20 then r← m - 1
L21 else if  r > 1 
L22                                                      then r← r – 1
L23 else r← 0, p← p + 1
L24                              else for j← 0 to n-1
L25 do Tctxt(i-u-1, j,0)  ← Tctxt(i, j,0)
L26 return Tctxt, Sctxt

 

(b) rearrangement algorithm. 
 

Fig. 23. Context rearrangement. 
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The code between L1 and L4 initialize temporary variables (p, r, u) and Sctxt. If Nctxt×m 

is sufficient to support entire loop body without temporal cache read-operations (L5), all 

of the context positions in temporal cache are remapped to the positions in spatial cache 

with rearrangement in the circular order (L6 ~ L13). Otherwise, the limited number of 

temporal cache layers which can be executed by reusable context pipelining is estimated 

(L14), all of the context positions within the limited temporal cache layers are remapped 

to the positions in spatial cache (L16 ~ L23) in the same manner as (L6 ~ L13). Then the 

layer indices of context positions remaining in temporal cache are updated to fill up the 

empty layers. 

E.  Experiments 

1. Experimental Setup 

For a fair comparison between the base model and the proposed one, we have imple-

mented two cases of reconfigurable architectures as given in Table I.  Base architecture 

is as specified in Chapter III. Proposed architecture is same as base architecture but also 

includes increased context registers and hybrid configuration cache to support reusable 

context pipelining. Two models have been designed at RT-level with VHDL and synthe-

sized using Design Compiler [49] with 0.18 µm technology. We have used SRAM 

Macro Cell library for the frame buffer and configuration cache. ModelSim [50] and 

PrimePower [49] have been used for gate- level simulation and power estimation respec-

tively. To estimate the power consumption overhead in the proposed model, the context 

registers and multiplexers in each case (previous model and proposed architecture) have 

been separated from the PE array and those have been included in the configuration 
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cache for each model while implementation. To obtain the power consumption data, we 

have used various kernels (Table II) for simulation with same simulation conditions as 

the previous one mentioned in Chapter III (subsection C.3) - operation frequency of 100 

MHz and typical case of 1.8 V Vdd and 27℃. We have implemented the context rear-

rangement algorithm (Fig. 23) in C++ and the application mapping flow as given in Fig. 

21 by adding the algorithm to the compiler for temporal mapping.  

2.  Results 

a.  Necessary Context Registers for Evaluated Kernels 

We have applied several kernels of Livermore loops benchmark [58], DSPstone [59] and 

representative loops in MPEG-4 AAC decoder, H.263 encoder and H.264 decoder to the 

base and proposed architectures. To determine necessary number of context registers to 

support reusable context pipelining for selected kernels, we have analyzed each case of 

selected kernels and Table II shows execution cycle count for an iteration and necessary 

number of context registers for each kernel. In the case of 2D-FDCT, it shows 11 execu-

tion cycles and the maximum number of context registers among selected kernels. It 

means that composing a PE having 2 context registers is necessary to support reusable 

context pipelining for all of the selected kernels. Therefore, each PE in the proposed ar-

chitecture has 2 context registers for reusable context pipelining while base architecture 

has one context register as shown in Table I.  
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Table I. Architecture Specification of Base and  Proposed Architecture 

Parameter Base architec-
ture 

Proposed architec-
ture 

Number of context registers for a 
PE 1 2 

Number of rows 8 8 
 
PE Array 

Number of columns 8 8 

Number of sets and banks  2 sets and 
3 banks 2 sets and 3 banks

Bit width  16-bit 16-bit Frame buffer  

Bank size  1 KB 1 KB 
Number of layers for a CE  32 16 
Number of Cache Elements (CEs) 64 72 

Configuration 
Cache  

Bit width of a CE 32-bit 32-bit 
 
 
 
 

Table II. Necessary Context Registers for Evaluated Kernels 

Kernels Execution cycle 
count for an iteration 

Necessary number of 
context registers 

aFirst_Diff 10 2 
aTri-Diagonal 4 1 
aHydro 7 2 
aICCG 5 1 
bDot_Product 5 1 
b24-Taps FIR 8 2 
Complex Multiplication in  
MPEG-4 AAC decoder 10 2 

ITRANS in H.264 decoder. 9 2 
2D-FDCT in H.263 encoder. 11 2 
SAD in H.263 encoder 5 1 
Matrix(10x8)-Vector(8x1) 
Multiplication(MVM) 5 1 
a Livermore loop benchmark suite. b DSPstone benchmark suite. 
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Table III. Size of Configuration Cache and Context Registers 
Architecture Size of memory elements

Base  Proposed 
Reduced(%) 

Context registers 256-Byte 512-Byte - 
Spatial cache 4096-Byte 
Temporal cache 8192-Byte 512-Byte 43.75 

Total amount 8448-Byte 5120-Byte 39.39 
 

b.  Configuration Cache Size  

Both temporal cache and spatial cache of the proposed architecture have 16 layers, 

which is half the size of the base architecture. Reducing cache size does not affect per-

formance degradation of evaluated kernels - the size is sufficient to perform the selected 

kernels with reusable context pipelining. Table III shows memory size evaluation be-

tween the base architecture and the proposed one. It shows that added context registers 

offsets by reduction of temporal cache layers. Compared to the base architecture, we 

have reduced the size of memory elements by up to 39.39%. This means that reconfigur-

able architecture with new configuration cache structure is more efficient than previous 

one in terms of memory size and power saving.  

c.  Performance Evaluation 

The execution cycle counts of the evaluated kernels on proposed architecture do not vary 

from the base architecture because the functionality of proposed architecture is same as 

the base model. It also indicates the reusable context pipelining does not cause perform-

ance degradation in terms of the execution cycle count. In addition, the synthesis results 

show that the critical path delay of the proposed architecture is same as the base model 

i.e. 8.96 ns. It indicates the proposed approach does not cause performance degradation 
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in terms of the critical path delay. 

d.  Power Evaluation  

To demonstrate the effectiveness of our power-conscious approach, we have evaluated 

the power consumption of only base architecture with temporal mapping and proposed 

architecture with reusable context pipelining on hybrid configuration cache.  

 
Table IV. Power Reduction Ratio by Reusable Context Pipelining 

Power(mW) Reduced(%) 
Cache Entire Kernels 

base proposed base proposed Cache Entire 

First_Diff 171.77 28.08 376.17 232.48 83.65 38.20 

Tri- Diagonal 174.18 31.58 400.19 257.59 81.87 35.63 

Dot_Product 117.84 29.87 328.54 240.57 74.65 26.78 

Complex_Mult  180.63 32.82 452.00 304.19 81.83 32.70 

Hydro 148.23 32.40 356.47 240.64 78.14 32.49 

ICCG 205.80 32.64 434.45 261.29 84.14 39.86 

24-Taps FIR 227.56 31.11 471.44 274.99 86.33 41.67 

MVM 227.57 34.45 405.70 212.58 84.86 47.60 

ITRANS  204.85 69.96 417.95 283.06 65.85 32.27 

2D-FDCT 190.03 37.59 417.33 264.89 80.22 36.53 

SAD 185.30 75.08 415.27 305.05 59.48 26.54 

 

Table IV shows comparison of power consumption between the two architectures. 

Selected kernels were executed with 100 iterations. Compared to the base architecture, 

we have saved up to 86.33% of the total power consumed in the configuration cache and 

47.60 % of that in the entire architecture using reusable context pipelining. These results 
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show that reusable context pipelining is a good solution for power saving in CGRA. 

ITRANS and SAD show less reduction in power compared to other kernels because they 

need additional spatial cache-read operations for data arrangement. In the case of 24-

Taps FIR showing the maximum reduction ratio, the total power consumption of pro-

posed architecture is much less than the result of PipeRench [6]. PipeRench has been 

fabricated in a 0.18 micron process and [6] shows power measurement with varying FIR 

filter tap sizes. The power consumption has been measured using a 33.3 MHz fabric 

clock and a 16.7 MHz IO clock. The power measurement shows that the power con-

sumption of 24-Taps FIR ranges from 600 mW to 700 mW.  
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CHAPTER V 

DYNAMIC CONTEXT COMPRESSION FOR LOW POWER CGRA 

 

In this chapter, we address the power reduction issues in CGRA and provide a frame-

work to achieve this. A new design flow and a new configuration cache structure are 

presented to reduce power consumption in configuration cache [60]. The power saving is 

achieved by dynamic context compression in the configuration cache – only required 

bits of the context words are set to enable and the redundant bits are set to disable. 

Therefore, the new design flow for CGRA has been proposed to generate architecture 

specifications that are required for supporting dynamically compressible context archi-

tecture without performance degradation. Experimental results show that the proposed 

approach saves up to 39.72% power in configuration cache with negligible area over-

head (2.16%). 

A.  Preliminary 

1. Context Architecture 

The configuration cache provides context words to the context register of each PE on a 

cycle by cycle basis. From the context register, these context words configure the PEs. 

Fig. 24 shows an example of PE structure and context architecture for MorphoSys [3]. 

32-bit context word specifies the function for the ALU-multiplier, the inputs to be se-

lected from MUX_A and MUX_B, the amount and direction of shift of the ALU output, 

and the register for storing the result as Fig. 24 (a). Context architecture means organiza-
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tion of context word with several fields to control resources in a PE as Fig. 24 (b). The  
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Fig. 24. PE structure and context architecture of MorphoSys. 
 
 
 

context architectures of other CGRAs such as [2][8][9][10][11][12][13][14] [15][16][17] 

[18] are similar to the case of MorphoSys although there is a wide variance in context-
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width and kind of fields used by different functionality. 

B.  Motivation 

1.  Power Consumption by Configuration Cache 

By loading the context words from the configuration cache into the array, we can dy-

namically change the configuration of the entire array within just one cycle. However, 

such dynamic reconfiguration of CGRA causes many SRAM-read operations in configu-

ration cache. In [6], the authors have fabricated a CGRA (PipeRench) in a 0.18 ㎛ proc-

ess. Their experimental results show that the power consumption is significant high due 

to the dynamic reconfiguration requiring frequent configuration memory access. In Fig. 

9, power break-down for the CGRA running 2D-FDCT is proposed with gate-level im-

plementation at 0.18 ㎛ technology based on MorphoSys architecture. It is shown that 

the configuration cache spends about 43% of the overall power, which is the second 

largest after the PE arrays consuming 48% of overall power budget. This is because the 

configuration cache performs SRAM-read operations to load the context words in every 

cycle at run time. In addition, [8][30] also shows power break-down for another CGRA 

(ADRES) running IDCT based on 90nm technology. In this case, the configuration 

memory spends about 37.22% of the overall power. Therefore, it is explicit that power 

consumption by configuration cache (memory) is serious overhead compared to other 

types of IP cores such as ASIC or ASIP.  

2.  Valid Bit-Width of Context Words 

When a kernel is mapped onto CGRA and application gets executed, the usable context 
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fields are limited to types of operations involved due to the kernel executed at run time. 
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Fig. 25. Valid bit-width of context words. 
 
 
 

Furthermore, operation types of an executed kernel on PE array are changed in every 

cycle. It means the valid bit-width of executed context word is frequently less than the 

full bit-width of a context word even though full bit-width can be less often used.  

For statistical evaluation of valid bit-width of contexts, we selected 32-bit context 

architecture of the base architecture (Fig. 4) and mapped several kernels onto its PE ar-
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ray in order to maximize the utilization of the context fields. Fig. 25 shows the results 

for various benchmark kernels and critical loops in real applications. In Fig. 25, average 

bit-width is the average value of valid bit-widths of all the executed context words at 

run-time and the maximum bit-width is the maximal valid bit-width among all the con-

text words considered at run-time. The statistical result shows that average bit-widths 

vary from 7 to 11 bits and the maximum bit-width is less than or equal to 18 bits 

whereas the full bit-width is 32-bit.  

3. Dynamic Context Compression for Low Power CGRA 

If the configuration cache can provide only required bits (valid bits) of the context words 

to PE array at run time, it is possible to reduce power consumption in configuration 

cache. The redundant bits of the context words can be set to disable and make those in-

valid at run time. That way, one can achieve low-power implementation of CGRA with-

out performance degradation while context architecture dynamically supports both the 

cases at run time: one case is uncompressed context word with full bit-width and another 

case is compressed context word with setting unused part of configuration cache dis-

abled. In order to support such a dynamic context compression, we propose a new con-

text architecture and configuration cache structure in this chapter. 

C.  Design Flow of Dynamically Compressible Context Architecture  

In order to design and evaluate dynamically compressible context architecture, we pro-

pose a new context architecture design flow. Entire design flow is shown in Fig. 26. This 

design starts from context architecture initialization, which is similar to the architecture 
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Fig. 26. Entire design flow. 
 
 

specification stage of general CGRA design flow given in [21][22][27][29]. Based on 

such architecture specifications, PE operations are determined and initial context archi-

tecture is defined. From the context initialization, fields are grouped by essentiality of 

PE operation and dependency with ALU operation to provide some criterions for context 

compression. A field sequence graph (FSG) is generated to show possible field combina-

tions for PE operation. Then field control signals are generated to make some field en-

able or disable when contexts are compressed. Based on former stages, the position of 

each field is defined and final context architecture is generated. Finally, one can deter-

mine whether the initially uncompressed contexts can be compressed or not by context 

evaluator. From subsection C.1 to subsection C.5, we describe more detailed process for 
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each stage in entire design flow. 
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 (b) Context architecture initialization 

Fig. 27. Context architecture initialization. 
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1.  Context Architecture Initialization 

Context rchitecture in CGRA design depends on architecture specification. In the proc-

ess of architecture specification, CGRA structure is evolved with PE array size, PE func-

tionalities and their interconnect scheme. The proposed approach starts from the conven-

tional context architecture selection and makes it dynamically compressible context ar-

chitecture through the proposed design flow. We have defined generic 32-bit context ar-

chitecture as an example to illustrate the design flow to support the kernels in Fig. 25. It 

is similar to the representative CGRAs such as MorphoSys [3], REMARC [4], ADRES 

[8] [22][30][43], PACT_XPP [9][10][31]. The PE structure and bit-width of each field 

are shown in Fig. 27. It supports various arithmetic and logical operations with two op-

erands (MUX_A and MUX_B), predicated execution (PRED), Arithmetic saturation 

(SAT_logic), shift operation (SHIFT) and saving temporal data with register file 

(REG_FILE). In Fig. 27 (a), all of the fields are classified by 'Control' of 2 cases - 'Proc-

essing element' and 'context register'. It means that each case is configured by the fields 

included in that case. Furthermore, Fig. 27 (b) shows the bit-width of each field and the 

component index to identify each component configured by each field.  

Even though each field can be positioned on context word under conventional de-

sign flow, this initialization stage does not define any field position. It means field posi-

tion for uncompressed case should be assigned by considering context compression. 

2.  Field Grouping 

All of the context fields are grouped into three sets - necessary set, optional set and un-

necessary set. Necessary set includes indispensable fields for all of the PE operations 
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and optional set includes optional fields for PE operations. Unnecessary set is composed 

of fields unrelated to PE operations. It means necessary fields should be included in con-

text words even if context words are compressed whereas optional and unnecessary 

fields can be excluded out of context words. In addition, we classify optional set into two 

subsets. One is a subset composed of fields dependent on the field of 'ALU_OP' and an-

other is a subset composed of fields independent of 'ALU_OP'. This classification is 

necessary for generating field control signals in subsection C.4. Fig. 28 shows field 

grouping based on the context initialization presented in subsection C.1.  
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Fig. 28. Field grouping.  
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Fig. 29. Field sequence graph.  
 
 
 

3.  Field Sequence Graph Generation 

Field sequence graph (FSG) is generated from context architecture initialization and 

field grouping. FSG is a directed graph composed of necessary and optional fields and it 

shows possible field combinations for PE operations based on PE structure. Each vertex 

of FSG corresponds to a necessary or optional field in field grouping and each edge of 

FSG shows a possible field combination between two fields. The possible field combina-

tions can be found by vertex tracing in the edge directions and the combinations should 

include all of the necessary fields. Furthermore, optional fields can be skipped out of 

vertex tracing to search possible field combinations. Fig. 29 shows an example of FSG 
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from Fig. 27 and Fig. 28. While searching possible field combinations, some times it is 

possible (for example, MUX_A, ALU_OP, SAT is possible) whereas (MUX_A, 

ALU_OP, SAT, PRED) is not possible. FSG is a useful data structure for field position-

ing as described in subsection C.5.  

4.  Generation of Field Control Signal 

When contexts are compressed, optional fields are relocated on compressed space and 

the positions of these fields may be overlapped with each other. Therefore, each optional 

field should be disabled when it is not being compressed in the context word. It means 

that compressed context should have control information for all of the optional fields in 

order to make unused fields disable. In this subsection, control signals generation for op-

tional fields has been described.  
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(a) logical operations                                 (b) control signals 

 
Fig. 30. Control signals for 'MUX_B' and 'PRED'. 
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a.  Control Signals for ALU-Dependent Fields 

 If the truth table of 'ALU_OP' is classified by the operation type, enable/disable signals 

for ALU-dependent fields can be generated from 'ALU_OP' with some combinational 

logic. Fig. 30 (a) shows the truth table manipulated by classifying operations for the ex-

ample given in subsection C.1. MSB (A4) of 'ALU_OP' is used for classifying opera-

tions according to the number of operands. For example, MSB =1 is used for the opera-

tions with two operands and MSB =0 is used for the operations with one operand. In ad-

dition, A3~A0 are used for classifying logical operations. Based on the truth table, we 

can generate control signals for two fields with some combinational logic as Fig. 30 (b).  

We define such a combinational logic as 'CTRL BLOCK'. 

b. Control Signals for ALU-Independent Fields   

In order to control ALU-independent fields when context words are compressed, the en-

able/disable flag bit on each of the ALU-independent field should be merged with a nec-

essary field. Fig. 31 (a) shows the process that 1-bit flags of ALU-independent fields are 

merged with 'ALU_OP'. After flag merging, the FSG should be updated because the bit-

widths of some of the fields are changed and 1-bit field such as 'WDB_EN' is no longer 

valid in FSG. Fig. 31 (b) shows an updated FSG with modified bit-widths of some of the 

fields. 



67  

REG_FILEREG_FILE

WDB_ENWDB_EN

3-bit3-bit

1-bit1-bit

SHIFTSHIFT6-bit6-bit

ALU_OPALU_OP5-bit5-bit

ALU_OPALU_OP9-bit9-bit

ALU_SFTALU_SFT5-bit5-bit

REG_FILEREG_FILE2-bit2-bit

SATSAT1-bit1-bit

SATSAT2-bit2-bit

Merging

1-bit enable/disable flag

                       

MUX AMUX B

ALU
SFT

PRED

REG
FILE

SAT

4 4

9

1 1

5

2

ALU_OP

 
(a) Flag merging                                               (b) Updated FSG 

Fig. 31. Updated FSG from flag merging. 

 

5.  Field Positioning 

The final stage of proposed design flow is positioning each field on the context word. 

Field positioning should be considered for two cases (uncompressed and compressed) 

modes to support dynamic compression.  

a.  Field Positioning on Uncompressed Context Word  

All the fields should have default positions for the case when contexts cannot be com-

pressed. First of all, the necessary fields are positioned to the part near to MSB and the 

unnecessary fields are positioned near the LSB as shown in Fig. 32. Then the optional 

fields are positioned on the available space between the already occupied context word. 

For optional field positioning, the bit-width of compressed context word should be de-

termined. Compressed bit width can be different according to the definition of the capac-

ity of compressed context word. The large capacity of compressed context word can 
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show high compression ratio but the amount of power reduction is limited by long bit-

width. However, the little capacity of compressed context word may cause low compres-

sion ratio but the power reduction ratio can be high in short bit-width. To prevent the 

extreme cases (much short or much long bit-width of compressed context word), we de-

termine compressed bit-width based on following criterions.   

i) Compressed context words should be able to support all of the ALU-dependent 

fields. 

ii) Compressed context words should be able to include at least an ALU-independent 

field. 
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Fig. 32. Default field positioning. 

 
To satisfy criterions, we determine the longest field combination showing the maxi-
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mum bit-width among i) and ii). The maximum width for satisfying i) and ii) is found to 

be 18-bit that consists of 'ALU_OP', 'MUX_A', 'MUX_B' and 'PRED'. Therefore, 18-bit 

is the compressed bit-width. Optional fields that are included in the longest field combi-

nation are preferentially positioned on the compressed zone near the MSB and other 

fields are positioned on uncompressed zone near the LSB as Fig. 32. 

After this, the positions of the necessary fields on FSG are firmly determined and 

the positions of the field control signals are also determined because they are included in 

'ALU_OP' as necessary field.  
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Fig. 33. Field concurrency graph. 

 
b.  Field Positioning on Compressed Context Word 

This stage is for positioning fields on compressed context word to guarantee that all the 

possible field combinations are not exceeding the compressed bit-width. Therefore, first 
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of all, all the possible field combinations should be found. This process can be achieved 

by searching them from FSG and then generating field concurrency graph (FCG) such as 

Fig. 33 (a). The FCG shows the concurrency between the optional fields. Therefore the 

FCG is used for preventing position that is overlapping between the concurrent optional 

fields. An edge between two fields means that the two fields are included in one of the 

possible field combinations. Even though this example does not show concurrency 

among more than 2 optional fields, such a case can be represented by adding a dummy 

field connected with the fields as Fig. 33 (b). 

Based on a given FCG, the next step is to position the optional fields on com-

pressed context word. The positioning means that some optional fields have additional 

positions as well as default positions on uncompressed context words. To select a posi-

tion among default and additional positions, multiplexers can be used that are composed 

of multiple position inputs and one feasible position output.  Therefore, in this step, the 

field positioning is a mapping among inputs, outputs and control signals for multiplexers 

connected with the optional fields. Thus, we propose a port-mapping algorithm for the 

multiplexers. Before we explain the procedure in detail, we introduce notations we use in 

the explanation as Table V.  
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Table V. Notations for Port-Mapping Algorithm 
Notation Meaning 

GFCG 
field concurrency graph, 
GFCG = (V, E): V is a set composed of the optional field set and E is a set 
composed of edges showing the concurrency between two fields. 

GMUX 
multiplexer port mapping graph 
GMUX = (VMUX, EMUX): VMUX is a set composed of input signals and control 
signals for multiplexers and EMUX is a set composed of weighted edges con-
necting input data  with control signal. 

defV 
subset of V, defV  is composed of the fields having their default positions on 
compressed context word 

ndefV 
subset of V,  ndefV  is composed of the fields not having their default posi-
tions on compressed context word 

ctxt[Ai, Aj] 
bit interval from index Ai to index Aj on the uncompressed context word,  
it is used for showing bit position of a field. 

width[v] bit-width of field v 
cmp_lsb LSB of compressed context word 
def_pos[field] default position of field such as interval type of ctxt[Ai, Aj] 
ctrl_pos[field] one bit position of control signal for field such as ctxt[Ai], ctrl_blk[Ai] 

field[i, j] component index corresponding to the interval that is from the ith bit posi-
tion  to the jth bit position on field 

cmp_ctrl one-bit signal from cache control unit. ‘1’ means executed context word 
compressed and ‘0’ means executed context word not compressed. 

pdone[field] ‘1’ means positioning firmly done and ‘0’ means positioning not finished. 
mux[field] mux (multiplexer) connected with field. 
data_in[mux] set composed of mux input data signals 
ctrl_in[mux] set composed of field control signals for mux 
data_out[mux] set composed of mux ouput data signals 

Adj[field] adjacency list of field on graph GFCG, if an adjacent field is dummy, it return adja-
cency list of the dummy field 
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end doL11

pdone[v] = 1L10

data_out[mux[v]] ← v[width[v]-1, 0]L9

Add an edge between [null] and ctrl_pos[v] with weight ‘0’ to EMUXL8

Add an edge between def_pos[v] and ctrl_pos[v] with weight ‘1’ to EMUXL7

Add data_in[mux[v]] and ctrl_in[mux[v]] to VMUXL6

ctrl_in[mux[v]] ← ctrl_in[mux[v]] ∪{ctrl_pos[v]}L5

data_in[mux[v]] ← data_in[mux[v]] ∪{def_pos[v]} ∪{[null]} L4

for each v∈ defV doL3

Add cmp_ctrl on VMUXL2

VMUX← Ø, EMUX← Ø, G MUX← (VMUX, EMUX)L1

Algorithm 1 Mux_Port Mapping (GFCG) - fields having default position

end doL11

pdone[v] = 1L10

data_out[mux[v]] ← v[width[v]-1, 0]L9

Add an edge between [null] and ctrl_pos[v] with weight ‘0’ to EMUXL8

Add an edge between def_pos[v] and ctrl_pos[v] with weight ‘1’ to EMUXL7

Add data_in[mux[v]] and ctrl_in[mux[v]] to VMUXL6

ctrl_in[mux[v]] ← ctrl_in[mux[v]] ∪{ctrl_pos[v]}L5

data_in[mux[v]] ← data_in[mux[v]] ∪{def_pos[v]} ∪{[null]} L4

for each v∈ defV doL3

Add cmp_ctrl on VMUXL2

VMUX← Ø, EMUX← Ø, G MUX← (VMUX, EMUX)L1

Algorithm 1 Mux_Port Mapping (GFCG) - fields having default position

 

The input to the port-mapping algorithm is FCG and the output is multiplexer port-

mapping graph (PMG) showing the relationship among field control signals and input 

data signals (field position). The algorithm is composed of two parts – The first part is 

for the optional fields having default position on compressed context word and the sec-

ond part is for the optional fields not having default position on compressed context 

word. The procedure of the first part is described in Algorithm 1. The algorithm starts 

with initialization step (L1 and L2). In this part, input data signals of multiplexers are 

only two cases - default field position and ‘zero’ selected when the field is not used. This 

is because the fields already have default positions on compressed context space. There-

fore the default field position, ‘zero’ and the field control signal of each field are mapped 

to the input of the multiplexer (L4~L6). Next process is to define the relationship be-

tween field control signal and a field position by adding a weighted edge between them 

(L7 and L8). Weight ‘1’ (or ‘0’) means the input signal is selected when the control sig-
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nal is ‘1’ (or ‘0’). Finally, the outputs of multiplexers are connected with the component 

index defined in subsection C.1 (L9) and positioning of the field is firmly done (L10). 

data_out[mux[v]] ← v[width[v]-1, 0]L15

end ifL14

tmp_interval← ctxt[(width[v]+cmp_lsb), cmp_lsb]L7

pdone[u] ← 1L16

end doL17

else Check_Adjacency(v)L13

Add an edge between tmp_interval and cmp_ctrl with weight ‘1’ to EMUXL12

Add an edge between tmp_interval and ctrl_pos[v] with weight ‘1’ to EMUXL11

Add data_in[mux[v]] and ctrl_in[mux[v]] to VMUXL10

ctrl_in[mux[v]] ← ctrl_in [mux[v]] ∪{ctrl_pos[v]}L9

data_in[mux[v]] ← data_in[mux[v]] ∪{tmp_interval}L8

if Adj[v] = Ø on GFCG thenL6

Add an edge between def_pos[v] and cmp_ctrl with weight ‘0’ on EMUXL5

Add def_pos[v] to VMUXL4

ctrl_in[mux[v]] ← ctrl_in[mux[v]] ∪{cmp_ctrl}L3

data_in[mux[v]] ← data_in[mux[v]] ∪ {def_pos[v]}L2

for each v∈ ndefV doL1

Algorithm 2 Mux_Port Mapping (GFCG) - fields not having default position 

data_out[mux[v]] ← v[width[v]-1, 0]L15

end ifL14

tmp_interval← ctxt[(width[v]+cmp_lsb), cmp_lsb]L7

pdone[u] ← 1L16

end doL17

else Check_Adjacency(v)L13

Add an edge between tmp_interval and cmp_ctrl with weight ‘1’ to EMUXL12

Add an edge between tmp_interval and ctrl_pos[v] with weight ‘1’ to EMUXL11

Add data_in[mux[v]] and ctrl_in[mux[v]] to VMUXL10

ctrl_in[mux[v]] ← ctrl_in [mux[v]] ∪{ctrl_pos[v]}L9

data_in[mux[v]] ← data_in[mux[v]] ∪{tmp_interval}L8

if Adj[v] = Ø on GFCG thenL6

Add an edge between def_pos[v] and cmp_ctrl with weight ‘0’ on EMUXL5

Add def_pos[v] to VMUXL4

ctrl_in[mux[v]] ← ctrl_in[mux[v]] ∪{cmp_ctrl}L3

data_in[mux[v]] ← data_in[mux[v]] ∪ {def_pos[v]}L2

for each v∈ ndefV doL1

Algorithm 2 Mux_Port Mapping (GFCG) - fields not having default position 

 

The procedure of the second part is described in Algorithm 2. The algorithm starts 

with mapping default field position and signal ‘cmp_ctrl’ to the input of the multiplexer 

for each field (L2 and L3). Signal ‘cmp_ctrl’ is one-bit signal from cache control unit 

and it gives information whether the context word is compressed (‘1’) or not (‘0’). Then 

the algorithm defines the relationship between signal ‘cmp_ctrl’ and a default position 

by adding a edge showing weight ‘0’ between them (L5). Next process is split into two 

cases – one is for the fields having no adjacent fields on FCG and another is for the 

fields having adjacent fields on FCG. The first case means the fields can be positioned to 
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any part of compressed zone except the positions of necessary fields whereas the second 

case means the fields should be positioned to the part not overlapped with the positions 

of their adjacent fields. In the first case (L6), the field is positioned to the part near to 

LSB of compressed context word (L7). Then new field position and field control signal 

are mapped to the input of the multiplexer (L8 and L9). Next process is to define the re-

lationship between field control signal (or ‘cmp_ctrl’) and new field position by adding a 

edge showing weight ‘1’ between them (L11 and L12).  

end doL17

end ifL16

Add an edge between ctxt[Ai, Aj] and ctrl with weight ‘0’ to EMUXL15

for each ctxt[Ai, Aj] ∈ position_set doL7

position_set and ctrl_set← Find_Interval (v, tmpV)L6

end doL18

if {ctxt[Ai, Aj]} ∩ data_in[mux[v]] =  Ø thenL8

end doL5

end ifL4

tmpV← tmpV ∪ {u}L3

if pdone[u] = 1 thenL2

data_in[mux[v]] ← data_in[mux[v]] ∪{ctxt[Ai, Aj] }L9

end ifL18

if ctrl overlapped with ctxt[Ai, Aj] thenL14

for each ctrl ∈ ctrl_set doL13

Add an edge between ctxt[Ai, Aj] and cmp_ctrl with weight ‘1’to EMUXL12

Add an edge between ctxt[Ai, Aj] and ctrl_pos[v] with weight ‘1’ to EMUXL11

Add data_in[mux[v]] and ctrl_in[mux[v]] to VMUXL10

ctrl_in[mux[v]] ← ctrl_in[mux[v]] ∪ {ctrl_pos[v]} ∪ ctrl_setL10

for each u∈ Adj[v] on GFCG doL1

Algorithm 3 Check_Adjacency ( field ) 

end doL17

end ifL16

Add an edge between ctxt[Ai, Aj] and ctrl with weight ‘0’ to EMUXL15

for each ctxt[Ai, Aj] ∈ position_set doL7

position_set and ctrl_set← Find_Interval (v, tmpV)L6

end doL18

if {ctxt[Ai, Aj]} ∩ data_in[mux[v]] =  Ø thenL8

end doL5

end ifL4

tmpV← tmpV ∪ {u}L3

if pdone[u] = 1 thenL2

data_in[mux[v]] ← data_in[mux[v]] ∪{ctxt[Ai, Aj] }L9

end ifL18

if ctrl overlapped with ctxt[Ai, Aj] thenL14

for each ctrl ∈ ctrl_set doL13

Add an edge between ctxt[Ai, Aj] and cmp_ctrl with weight ‘1’to EMUXL12

Add an edge between ctxt[Ai, Aj] and ctrl_pos[v] with weight ‘1’ to EMUXL11

Add data_in[mux[v]] and ctrl_in[mux[v]] to VMUXL10

ctrl_in[mux[v]] ← ctrl_in[mux[v]] ∪ {ctrl_pos[v]} ∪ ctrl_setL10

for each u∈ Adj[v] on GFCG doL1

Algorithm 3 Check_Adjacency ( field ) 
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not overlapped with adjacent 
fields 

Field 4 Field3Field1

(a)

(
Ai Aj

return ctxt[Ai, Aj] and 
ctrl_pos[Field1]

 
Field 4 Field3Field1

Bi Bj

return ctxt[Bi, Bj] 
and ctrl_pos[Field3]

 
(d) When target field (‘Field4’) overlapped with adjacent fields (‘Field1’or ‘Field3’). 
 

Field Field: field positioning firmly done : field positioning not done : overlapped part  
 

Fig. 34. Examples of ‘Find_Interval’. 
 
 
 

In the second case (L13), ‘Check_Adjancency’ function is used and it is described 

as algorithm 3. The algorithm start with gathering the adjacent fields firmly positioned. 

Then new position on compressed zone is assigned by ‘Find_Interval’ function (L6).  

Fig. 34 shows examples for this function with two cases -   (c) when new position of in-

put field is not overlapped with the adjacent field positions and (d) when new position of 

input field is overlapped with the adjacent field positions. ‘Find_Interval’ only returns a 

new position (ctxt[Ai, Aj]) in Fig. 34 (c) because of no confliction with the adjacent 

fields. However, it returns two positions (ctxt[Ai, Aj] and ctxt[Bi, Bj]) and field control 

signals from overlapped fields  in Fig. 34 (d). This is because the adjacent field control 
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signals are necessary to select proper a field position when multiple field positions exist 

on compressed zone. Such returned new position set and control signal set are mapped to 

the input of multiplexer for the input field (L9 and L10) and the relationship among field 

control signals and a new position is  made by adding  weighted edges among them 

(L11~L17). Finally, the outputs of multiplexers are connected with the component index 

(L15) and positioning of the field is firmly done (L16) in Algorithm 2. 
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Fig. 35. Multiplexer port-mapping graph. 

 
PMG example from the port-mapping algorithm is shown in the Fig. 35. Each ver-

tex of PMG corresponds to an input or control signal of multiplexer and each edge 

shows the relationship between control signal and a position that is selected by the 

weight of the edge from control signals such as 'SAT_EN', 'MUX_B_EN', etc. Then the 
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Fig. 36. Compressible context architecture. 
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multiplexers are connected with the component index defined in Fig. 27 (b). Therefore 

we can implement the multiplexers for the optional fields by the PMG. 

6.  Compressible Context Architecture 

After the field positioning, we have generated a specification of dynamically compressi-

ble context architecture like one in the Fig. 36. Fig. 36 (a) shows the final field layout of 

compressible context architecture. 'REG_FILE', 'SHIFT' and 'SAT' have double posi-

tions for compressed and uncompressed cases. Fig. 36 (b) shows a modified structure 

between a PE and a cache element (CE). New cache element is composed of CE1 and 

CE2 and cache control unit provides compression information from port 'CMP' whether 

executed contexts are compressed or not. CE1 is always selected but CE2 is not selected 

under compression ('CMP'=1) to remove power consumption in CE2. 

7.  Context Evaluation 

The context evaluator in Fig. 26 determines whether initially uncompressed contexts can 

be compressed or not. This evaluation process can be implemented by checking the fact 

that a given context word is compared with one of the possible field combinations not 

exceeding compressed bit-width. Using FCG, we can easily check this and generate 

compressed context words with using position information from PMG. 

D. Experiments 

1.  Experimental Setup 

We have implemented entire design flow in Fig. 26 with C++. We have initialized con-
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text architecture as the example described in Section C. The implemented design flow 

generated the specification of dynamically compressible context architecture. For quanti-

tative evaluation, we have designed two CGRAs based on the 8x8 reconfigurable array 

at RT-level with VHDL - one is conventional base CGRA and the other is the proposed 

CGRA supporting compressible features in context architecture. The architectures have 

been synthesized using Design Compiler [49] with 0.18 ㎛ technology. We have used 

SRAM Macro Cell library for the frame buffer and configuration cache. ModelSim [50] 

and PrimePower [49] tools have been used for gate- level simulation and power estima-

tion. To obtain the power consumption data, we have used the kernels (Fig. 25) for simu-

lation with operation frequency of 100 MHz and typical case of 1.8 V Vdd and 27℃. 

These kernels have been executed with 100 iterations while varying test vectors. 

2. Results 

a. Area Cost Evaluation  

Table VI shows the synthesis results from Design Compiler [49] of proposed architec-

ture and base architecture. It shows that area cost of new configuration cache including 

cache control unit, added interconnects and multiplexers has increased by 10.35% but 

the overall area-overhead is only 1.62 %. Thus, the new configuration cache structure 

can support dynamic context compression with negligible overheads.  
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Table VI. Area Overhead by Dynamic Context Compression 
Area Cost (gate equivalent) Component 

Base Architecture Proposed Architecture 
Overhead (%)

Configuration Cache 150012 165538 10.35 
Entire RAA 942742 958268 1.62 

Overhead (%): {(Proposed/Base) – 1}×100 
 
 
 

Table VII. Power Reduction Ratio by  Dynamic Context Compression 
Configuration Cache Power(mW) 

Kernels Compression 
Ratio (%) Base  

Architecture
Proposed  

Architecture 
Reduced (%) 

First_Diff 100 171.77 104.97 38.89 
Tri- Diagonal 100 174.18 105.00 39.72 
State 100 161.23 99.38 38.36 
Hydro 100 148.23 91.50 38.27 
ICCG 100 205.80 125.68 38.93 
Inner Product 100 117.84 72.60 38.39 
24-Taps FIR 100 227.56 139.56 38.67 
MVM 100 227.57 140.43 38.29 
Mult in FFT 100 175.48 107.08 38.98 
Comlex Mult 100 180.63 110.18 39.00 
ITRANS 100 204.85 125.27 38.85 
2D-FDCT 95.53 190.03 119.87 36.92 
2D-IDCT 95.49 188.47 118.98 36.87 
SAD 100 185.30 113.07 38.98 
Quant 95.12 185.23 117.51 36.56 
Dequant 95.23 187.78 118.77 36.75 
Compression Ratio (%): number of compressed context words/ number of entire context words)×100,  
Reduced (%): {1-(Proposed/Base)}×100, Execution Cycle Count : cycle count for an iteration. 
 

b. Performance Evaluation 

 In addition, the synthesis results show that the critical path delay of the proposed archi-

tecture is same as the base model i.e. 8.96 ns. It indicates the dynamic context compres-

sion does not cause performance degradation in terms of the critical path delay. In addi-

tion, we have applied several kernels in Fig. 25 to the new and base architectures. The 

execution cycle count of each kernel on proposed architecture does not vary from the 
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base architecture because the functionality of proposed architecture is same as the base 

model. It also indicates the dynamic context compression does not cause performance 

degradation in terms of the execution cycle count. 

c. Context Compression Ratio and Power Evaluation 

Table VII shows context compression ratio for the evaluated kernels. Compression ratio 

means how many context words can be compressed among entire context words. The 

execution cycle count of each kernel on proposed architecture does not vary from the 

base architecture because the functionality of proposed architecture is same as the base 

model. It also indicates the dynamic context compression does not cause performance 

degradation in terms of the execution cycle count. All of the kernels show high compres-

sion ratio to be more than 95 %. Furthermore, the comparison of power consumption is 

shown in Table VII. Compared to the base architecture, it has shown to save up to 

39.72% of the power. 4 kernels (2D-FDCT, 2D-IDCT, Quant and Dequant) show less 

reduction in power compared to other kernels. This is because all of the context words 

for 4 kernels are not fully compressed - the compression ratios are in the range of 95.12 

~ 95.53.   
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CHAPTER VI 

DYNAMIC CONTEXT MANAGEMENT FOR LOW POWER CGRA 

 

In this chapter, we present a novel control mechanism of configuration cache called dy-

namic context management to reduce the power consumption in configuration cache 

without performance degradation [61]. In addition, a new configuration cache structure 

is proposed to support such a dynamic context management. Experimental results show 

that the proposed approach saves 38.24%/38.15% of the power in write/read-operation 

of configuration cache with negligible area overhead compared to the base design. 

A.  Motivation 

1.  Power Consumption by Configuration Cache 

By loading the context words from the configuration cache into the array, we can dy-

namically change the configuration of the entire array within just one cycle. However, 

such dynamic reconfiguration of CGRA causes many SRAM-read operations in configu-

ration cache. In [6], the authors have fabricated a CGRA (PipeRench) in a 0.18 ㎛ proc-

ess. Their experimental results show that the power consumption is significant high due 

to the dynamic reconfiguration requiring frequent configuration memory access. In Fig. 

9, power break-down for the CGRA running 2D-FDCT is proposed with gate-level im-

plementation at 0.18 ㎛ technology based on MorphoSys architecture. It is shown that 

the configuration cache spends about 43% of the overall power, which is the second 

largest after the PE arrays consuming 48% of overall power budget. This is because the 
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configuration cache performs SRAM-read operations to load the context words in every 

cycle at run time. In addition, [8][30] also shows power break-down for another CGRA 

(ADRES) running IDCT based on 90nm technology. In this case, the configuration 

memory spends about 37.22% of the overall power. Therefore, it is explicit that power 

consumption by configuration cache (memory) is serious overhead compared to other 

types of IP cores such as ASIC or ASIP.  

2.  Redundancy of Context Words 

Context words are saved in configuration cache and they show redundancies at runtime. 

We describe two cases for redundancy of context words in following subsections.  

a.  NOP Context Words 

Most coarse-grained reconfigurable arrays arrange their processing elements (PEs) as a 

square or rectangular 2-D array with horizontal and vertical connections, which support 

rich communication resources for efficient parallelism. However, such PE arrays have 

many redundant or unutilized PEs during the executions of applications onto the array.   

Most of subtasks in DSP applications shows lots of redundant PEs that are not used. 

The redundant PEs should be configured by NOP (no operation) context words to avoid 

malfunction and unnecessary waste of power by the PEs. It means that configuration 

cache performs some redundant read-operations for NOP.  
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(c) Consecutive store operations 

Fig. 37. Consecutively same part in context words. 
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Fig. 38. Redundancy ratio of context words.  

 
 
 

b.  Consecutively Same Part in Context Words 

When a kernel is mapped onto CGRA and application gets executed, the consecutively 

changed context fields are limited to types of operations involved due to the kernel exe-

cuted at run time. Fig. 37 shows 3 cases for consecutively-same part in context words at 

run time. In the case of Fig. 37 (a), PEs perform continuous ‘Load’ operations with fixed 
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‘ALU Operation’ and ‘Operands’ whereas operand data are saved in different register in 

every cycle. The Fig. 37 (b) and (c) shows consecutive shift operations and store opera-

tions with different ‘Operand’ while keeping same ‘Other Operations’ in every cycle. It 

means that the context words shows consecutively same part and they are repetitively 

read from configuration cache without changing values.  

c.  Redundancy Ratio 

For statistical evaluation of redundant context words, we selected 32-bit context archi-

tecture of the base architecture (Fig. 4) and mapped several kernels onto its PE array in 

order to maximize the utilization of the context fields. Fig. 38 shows the results for vari-

ous benchmark kernels and critical loops in real applications. Each kernel shows three 

cases of redundancy ratios – ‘NOP’, ‘Consecutively Same’ and Total. Total redundancy 

ratio varies from 31% to 75%.  

B.  Dynamic Context Management 

If the configuration cache does not perform read/write operation for redundant part of 

context words, it is possible to reduce power consumption in configuration cache. That 

way, one can achieve low-power implementation of CGRA without performance degra-

dation while managing context words in both cases at transfer time and runtime: one 

case is no read/write operation for NOP and another case is one read/write-operation for 

consecutively same part in context words. In order to support such a dynamic context 

management, we propose a new configuration cache structure and efficient control 

mechanism in this chapter. 
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Fig. 39. An example of PE and context architecture.  
 
 
 

1.  Context Partitioning 

Context partitioning is to split context architecture into two parts feasible to dynamic 

context management. As mentioned in subsection A.2.b, the context words shows con-

secutively same part and they are repetitively read from configuration cache without 

changing values. Therefore, if a CE is divided into two parts (CE#1 and CE#2) by con-

text partitioning, one part of CE including continuously same part can be disabled for 

power saving while keeping consecutive read/write-operation of another part of CE. The 

partitioning starts from grouping context field for ALU operation and some context 

fields dependent to ALU operation. This is because ALU have the most dependency 

with other component and they are highly probable to be consecutively changed or un-

changed together. Therefore context partitioning positions such fields on one part of con-

text architecture and other fields on another part of context architecture. We have de-
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fined generic PE structure and 32-bit context architecture like Fig. 39 as an example to 

illustrate context partitioning. It can support the kernels in Fig. 38. It is similar to the 

representative CGRAs such as MorphoSys [3], REMARC [4], ADRES [8][30] or-

PACT_XPP [10]. Bit-width and initial bit-position of each field are shown in Fig. 39. It 

supports various arithmetic and logical operations (ALU_OP) with two operands 

(MUX_A and MUX_B), predicated execution (PRED), Arithmetic saturation 

(SAT_logic), shift operation (SHIFT) and saving temporal data with register file 

(REG_FILE). Fig. 40 shows context partitioning of Fig. 39. Field ‘ALU_OP’ and the 

fields dependent to ‘ALU_OP’ are positioned to the part near to MSB and other fields 

are positioned near to LSB. 

WDB

A15A31…A27 A26…A23 A22…A19 A18 A17,  A16 A14…A9 A8 …A6 A5…A0

ALU_OP MUX_A MUX_B PRED SAT SHIFT REG_FILE CTXT_CTRLWDB

A15A31…A27 A26…A23 A22…A19 A18 A17,  A16 A14…A9 A8 …A6 A5…A0

ALU_OP MUX_A MUX_B PRED SAT SHIFT REG_FILE CTXT_CTRL

ALU_OP and  ALU_OP-dependent Fields  : 14-bit

MSB LSB

ALU_OP-independent Fields  : 18-bit
 

Fig. 40. Context partitioning.  
 
 
 

After context partitioning, we can know the bit-widths of CE #1 and CE#2 and con-

text register is also can be split into two parts with same bit-widths. Fig. 41 shows com-

parison between general CE and proposed CE. The proposed CE is composed of CE#1 

(14-bit) and CE#2 (18-bit) whereas the general CE is a unified one (32-bit). In subsec-

tion B.2 and B.3, we describe more detailed control mechanism for dynamic context 

management based on the proposed CE structure. 
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(a) General CE                                        (b) Proposed CE 

Fig. 41. Comparison between general CE and proposed CE.  
 
 
 

DMA
Controller

Cache
Controller

Main 
Memory

Configuration 
Memory

(SRAM)

RF

Register File

Context Word

Context Word

Context Word

Management
CE CE CE CE

CE CE CE CE

CE CE CE CE

CE CE CE CE

R R R R
R R R R
R R R R
R R R R

SRAM block
Width : 32‐bit

Depth: 8
2‐bit 

register

CE#2

CE#1

 

Fig. 42. Context management when context words are transferred. 
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2.  Context Management at Transfer Time 

Context management at transfer time is to remove redundant cache-write operations by 

using additional hardware detecting redundancy of context words. Fig. 42 shows transfer 

flow of context words from main memory to configuration cache in the case of 4x4 CEs. 

For checking the redundancy, hardware block of ‘Management’ is added to general 

cache controller. ‘Management’ block checks transferred context words whether it has 

redundancy or not. Then it controls cache-write operation as Algorithm 4. In addition, 

Fig. 42 shows register file connected with ‘Management’ block – it has same address-

ability as CE but bit-width is 2.  The register file store 2-bit redundancy information – 

the saved information in register file are used for context management at run time.  

Algorithm 4     Context Management at Transfer Time

L1 begin

L2 if cur_ctxt = NOP then

L3 reg_file[ctxt_addr] ← “01”

L4 cs1 ← ‘0’, cs2 ← ‘0’

L5 else if cur_ctxt[cw-1, cw-w+1] = prev_ctxt[cw-1, cw-w+1] then

L6 reg_file[ctxt_addr] ← “10”

L7 cs1 ← ‘0’, cs2 ← ‘1’

L8 CE#2[ctxt_addr] ← cur_ctxt[cw-w, 0]

L9 else if cur_ctxt[cw-w, 0] = prev_ctxt[cw-w, 0] then

L10 reg_file[ctxt_addr] ← “11”

L11 cs1 ← ‘1’, cs2 ← ‘0’

L12 CE#1[ctxt_addr] ← cur_ctxt[cw-1, cw-w+1]

L13 else 

L14 cs1 ← ‘1’, cs2 ← ‘1’

L15 CE#1[ctxt_addr] ← cur_ctxt[cw-1, cw-w+1]

L16 CE#2[ctxt_addr] ← cur_ctxt[cw-w, 0]

L17 end if     

L18 prev_ctxt← cur_ctxt

L19 end 

Algorithm 4     Context Management at Transfer Time

L1 begin

L2 if cur_ctxt = NOP then

L3 reg_file[ctxt_addr] ← “01”

L4 cs1 ← ‘0’, cs2 ← ‘0’

L5 else if cur_ctxt[cw-1, cw-w+1] = prev_ctxt[cw-1, cw-w+1] then

L6 reg_file[ctxt_addr] ← “10”

L7 cs1 ← ‘0’, cs2 ← ‘1’

L8 CE#2[ctxt_addr] ← cur_ctxt[cw-w, 0]

L9 else if cur_ctxt[cw-w, 0] = prev_ctxt[cw-w, 0] then

L10 reg_file[ctxt_addr] ← “11”

L11 cs1 ← ‘1’, cs2 ← ‘0’

L12 CE#1[ctxt_addr] ← cur_ctxt[cw-1, cw-w+1]

L13 else 

L14 cs1 ← ‘1’, cs2 ← ‘1’

L15 CE#1[ctxt_addr] ← cur_ctxt[cw-1, cw-w+1]

L16 CE#2[ctxt_addr] ← cur_ctxt[cw-w, 0]

L17 end if     

L18 prev_ctxt← cur_ctxt

L19 end  
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Algorithm 4 shows this management process for a CE. Before we explain this man-

agement in detail, we introduce notations we use in Algorithm 4.  

 cw: bit-width of context word 

 w: bit-width of field group (ALU_OP and ALU_OP-dependent fields) 

 cur_ctxt: context word currently transferred to configuration cache 

 prev_ctxt: context word previously transferred to configuration cache  

 ctxt_addr: address of current context word in configuration cache 

 reg_file: register file, CE#1 and CE#2: Cache Element 

 out_ctxt: context word currently provided to context register 

 cs1 and cs2: chip select signal of CE1 and CE2 

The algorithm starts with checking whether current context word is NOP or not (L2). If 

the context word is NOP, 2-bit information (“01”) is stored in register file and both 

CE#1 and CE#2 are disabled (L4). If it’s not NOP, next process is to check whether the 

upper part (near to MSB) of context word is the consecutively identical to one of previ-

ous context word. If it is the same part as the previous one, information (“10”) is stored 

in the register file (L6) and only CE#2 is enabled (L7) for cache write-operation (L8). 

Checking the lower part (near to LSB) of current context word (L9~L12) shows the 

same manner as previous process but CE#1 is enabled instead of CE#2. Finally, if cur-

rent context word does not correspond to any case of previous checking processes, both 

CE#1 and CE#2 are enabled (L14) and full context word is stored in configuration cache 

(L15, L16). Finally, previous context word is updated by current context word (L18).  
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3.  Context Management at Run Time 

Context management at run time is to remove redundant cache-read operations by 

checking redundancy information stored in the register file. Fig. 43 shows structure be-

tween configuration cache and PE array for the context management. The hardware 

block of ‘Management’ controls all of CEs and a context register between a CE and a PE 

is implemented by a gated clock using chip select signals (CS1 and CS2). Gated clock 

implementation is to configure PE with fixed output of the context register caused by 

non-oscillated clock. Therefore, PEs can be configured without cache-read operation in 

the case of consecutively same context words. 
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Fig. 43. Context management at run time. 
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Algorithm 5     Context Management at Run Time
L1 begin
L2 if reg_file[ctxt_addr]  = “01” then
L3 cs1 ← ‘0’, cs2 ← ‘0’
L4 else if reg_file[ctxt_addr] = “10” then
L5 cs1 ← ‘0’, cs2 ← ‘1’
L6 out_ctxt[cw-w, 0] ← CE#2[ctxt_addr] 
L7 else if reg_file[ctxt_addr]  = “11” then
L8 cs1 ← ‘1’, cs2 ← ‘0’
L9 out_ctxt[cw-1, cw-w+1] ← CE#1[ctxt_addr] 
L10 else 
L11 cs1 ← ‘1’, cs2 ← ‘1’
L12 out_ctxt[cw-1, cw-w+1] ← CE#1[ctxt_addr]
L13 out_ctxt[cw-w, 0] ← CE#2[ctxt_addr]
L14 end if     
L15 end 

Algorithm 5     Context Management at Run Time
L1 begin
L2 if reg_file[ctxt_addr]  = “01” then
L3 cs1 ← ‘0’, cs2 ← ‘0’
L4 else if reg_file[ctxt_addr] = “10” then
L5 cs1 ← ‘0’, cs2 ← ‘1’
L6 out_ctxt[cw-w, 0] ← CE#2[ctxt_addr] 
L7 else if reg_file[ctxt_addr]  = “11” then
L8 cs1 ← ‘1’, cs2 ← ‘0’
L9 out_ctxt[cw-1, cw-w+1] ← CE#1[ctxt_addr] 
L10 else 
L11 cs1 ← ‘1’, cs2 ← ‘1’
L12 out_ctxt[cw-1, cw-w+1] ← CE#1[ctxt_addr]
L13 out_ctxt[cw-w, 0] ← CE#2[ctxt_addr]
L14 end if     
L15 end  

Algorithm 5 shows this management process for a CE. The defined notations in Al-

gorithm 4 are used in Algorithm 5. The algorithm starts with checking whether the in-

formation (stored in the register file) identified by current address is NOP or not (L2). If 

the information is NOP (“01”), both CE#1 and CE#2 are disabled (L3). If it’s not NOP, 

next process is to check whether the information corresponds to the case (“10”) of con-

secutively same part (near to MSB) or not (L4).  If it is “10”, only CE#2 is enabled (L5) 

for cache read-operation (L6). Next process is to check whether the information corre-

sponds to the case (“10”) of consecutively same part (near to MSB) or not (L7). It shows 

the same manner as previous process but CE#1 is enabled for read-operation instead of 

CE#2. Finally, if the information does not correspond to any case of previous checking 

processes, both CE#1 and CE#2 are enabled (L11) and a full context word is read from 

configuration cache (L12, L13).  
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C. Experiments 

1.  Experimental Setup 

For quantitative evaluation, we have designed two CGRAs based on the 8x5 reconfigur-

able array at RT-level with VHDL – one is conventional base CGRA and the other is the 

proposed CGRA supporting dynamic context management. The architectures have been 

synthesized using Design Compiler [49] with 0.18 ㎛ technology. We have used SRAM 

Macro Cell library for the frame buffer and configuration cache. ModelSim [50] and 

PrimePower [49] tools have been used for gate- level simulation and power estimation. 

To obtain the power consumption data, we have used the kernels (Fig. 38) for simulation 

with operation frequency of 100 MHz and typical case of 1.8 V Vdd and 27℃. 

 
Table VIII. Area Overhead by Dynamic Context Management 

Area cost (gate equivalent) Component Base Proposed 
Overhead 

(%) 
Config’cache 150012 162538 8.35 

RAA 942742 955268 1.33 
Base: base architecture, Proposed: proposed architecture,  
Overhead(%) : {(Proposed/Base) – 1}×100 
 

2.  Results 

a.  Area Cost Evaluation 

Table VIII shows the synthesis results from Design Compiler [49] of proposed architec-

ture and base architecture. It shows that area cost of new configuration cache including 

cache control unit, hardware block of “Management” and register file increased by 

8.35% but the overall area-overhead is only 1.33 %. Thus, the new configuration cache 

structure can support dynamic context management with negligible overheads.  
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Table IX. Power Reduction Ratio by Dynamic Context Management 
Configuration cache Power (mW) 

Write-operation Read-operation 
Reduction 
Ratio (%) Kernels 

Base Proposed Base Proposed Write Read
Tri- Diagonal 14.98 6.89 171.77 79.03 54.00 53.99
First_Diff 13.34 8.25 174.18 104.51 38.12 40.00
State 15.23 9.37 161.23 93.87 38.45 41.78
Hydro 11.22 7.17 148.23 96.14 36.14 35.14
ICCG 15.39 7.56 205.80 103.35 50.87 49.78
Dot Product 12.11 7.28 117.84 72.51 39.88 38.47
24-Taps FIR 19.20 11.63 227.56 138.90 39.41 38.96
MVM 14.23 8.68 227.57 138.54 38.99 39.12
Mult in FFT 12.12 7.62 175.48 105.88 37.14 39.66
Comlex Mult 11.57 7.86 180.63 123.59 32.12 31.58
ITRANS 14.22 10.17 204.85 148.64 28.47 27.44
2D-FDCT 16.23 11.69 190.03 140.30 27.96 26.17
2D-IDCT 17.34 13.16 188.47 139.88 24.13 25.78
SAD 14.30 4.45 185.30 55.87 68.89 69.85
Quant 12.12 8.73 185.23 134.94 27.99 27.15
Dequant 15.33 11.05 187.78 137.10 27.89 26.99

Average 38.24 38.15
Base: base architecture, Proposed: proposed architecture, Reduced: {1-(Proposed/Base)}×100  
Write/Read: reduction ratio in the case of write/read operation 

 
b.  Power Evaluation 

To demonstrate the effectiveness of the proposed approach, we have applied several ker-

nels in Fig. 38 to the proposed and base architectures. These kernels were executed with 

100 iterations. Table IX shows power evaluation of configuration cache for two cases – 

read operation and write-operation. The power consumptions of write-operations are less 

than the cases of read-operations. This is because a CE performs write-operation at 

transfer time whereas all of CEs perform read-operation at run time. Compared to the 

base architecture, it has shown to save up to 68.89%/69.85% of the power in write/read-

operation. 5 kernels (ITRANS, 2D-FDCT, 2D-IDCT, Quant and Dequant) show less re-

duction in power compared to other kernels. This is because they show less redundancy 
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ratios of context words compared with other kernels– Fig. 38 shows that the redundancy 

ratios of these kernels are in the range of 31.22% ~ 33.79%. Average power reduction 

ratios in write-operation and read-operation are 38.24% and 38.15%. 

c.  Performance Evaluation 

The synthesis results show that the critical path delay of the proposed architecture is 

same as the base model i.e. 8.96 ns. It indicates the dynamic context management does 

not cause performance degradation in terms of the critical path delay. In addition, the 

execution cycle count of each kernel on proposed architecture does not vary from the 

base architecture because the functionality of proposed architecture is same as the base 

model. It also indicates the dynamic context management does not cause performance 

degradation in terms of the execution cycle count.  
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CHAPTER VII 

COST-EFFECTIVE ARRAY FABRIC 

 

In this chapter, we propose a new domain-specific array fabric design space exploration 

method to generate a cost-effective reconfigurable array structure [62]. The exploration 

flow efficiently rearranges PEs with reducing array size and change interconnection 

scheme to achieve much reduction in power and area while maintaining the same per-

formance as the original architecture. In addition, the proposed array fabric splits the 

computational resources into two groups (primitive resources and critical resources). 

Critical resources can be area-critical and/or delay-critical. Primitive resources are repli-

cated for each processing element of the reconfigurable array, whereas area-critical re-

sources are shared among multiple basic PEs in order to reduce more area of CGRA. De-

lay-critical resources can be pipelined to curtail the overall critical path so as to increase 

the system clock frequency. Experimental results show that for multimedia applications, 

the proposed approach reduces area by up to 36.75%, execution time by up to 42.86 and 

power by up to 35.45.% when compared with the base CGRA architecture. 

A.  Preliminary 

In this section, we present preliminary concepts of our cost-effective design [44]. They 

come from the characteristics of loop pipelining based on MIMD-style execution model. 

Then we propose two techniques to make an RAA cost-effective in terms of area and 

delay. One is resource sharing and the other is resource pipelining.  
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Col#1 Col#2 Col#3 Col#4Broadcast Column Direction Row Direction Column Direction

Cycle Time 1 2 3 4 5 6 7 8 9 10 11

Column#1 LD/+ NOP NOP NOP × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ NOP NOP × 1+ 2+ NOP ×/ST NOP NOP

Column#3 LD/+ NOP × 1+ 2+ NOP NOP ×/ST NOP

Column#4 LD/+ × 1+ 2+ NOP NOP NOP ×/ST

Broadcast Column Direction Row Direction Column Direction

Cycle Time 1 2 3 4 5 6 7 8 9 10 11

Column#1 LD/+ NOP NOP NOP × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ NOP NOP × 1+ 2+ NOP ×/ST NOP NOP

Column#3 LD/+ NOP × 1+ 2+ NOP NOP ×/ST NOP

Column#4 LD/+ × 1+ 2+ NOP NOP NOP ×/ST

  
(a) SIMD 

 

+

+

+

×

×

×

×

Col#1 Col#2 Col#3 Col#4
Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ × 1+ 2+  ×/ST NOP NOP NOP

Column#2 LD/+ × 1+ 2+  ×/ST NOP NOP

Column#3 LD/+ × 1+ 2+ ×/ST NOP

Column#4 LD/+ × 1+ 2+  ×/ST

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ × 1+ 2+  ×/ST NOP NOP NOP

Column#2 LD/+ × 1+ 2+  ×/ST NOP NOP

Column#3 LD/+ × 1+ 2+ ×/ST NOP

Column#4 LD/+ × 1+ 2+  ×/ST

×/ST

 
(b) Temporal mapping 

 

×/ST

×

×

×

×

+

+ +

Col#1 Col#2 Col#3 Col#4Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ LD/+ LD/+ LD/+ ×/ST  ×/ST ×/ST ×/ST

Column#2 × × × × NOP NOP NOP

Column#3 1+ 1+ 1+ 1+ NOP NOP

Column#4 2+ 2+ 2+ 2+ NOP

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ LD/+ LD/+ LD/+ ×/ST  ×/ST ×/ST ×/ST

Column#2 × × × × NOP NOP NOP

Column#3 1+ 1+ 1+ 1+ NOP NOP

Column#4 2+ 2+ 2+ 2+ NOP

 
(c) Spatial mapping 

 
Fig. 44.  Snapshots of three mappings. 

 
 
 

1.  Resource Sharing 

Fig. 44 shows the snapshot taken at the 5th cycle of execution of the previous example 

shown in Fig. 12 for three cases: (a) SIMD and two cases of loop pipelining - (b) tempo-

ral mapping and (c) spatial mapping. The operations in the 5th cycle for (a), (b) and (c) 

include multiplication and therefore the multipliers in the PE array are to be used. In the 
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case of SIMD, all PEs perform multiplication requiring all of them to have multipliers, 

thereby increasing the area cost of the PE array. However, in the case of temporal map-

ping, only PEs in the 1st column and the 4th column perform multiplication while PEs in 

the 2nd and 3rd columns perform addition. In the spatial mapping, only PEs in the 1st and 
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(a) Temporal mapping  

 

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ LD/+ LD/+ LD/+ ×/ST ×/ST ×/ST ×/ST

Column#2 × × × × NOP NOP  NOP

Column#3 1+ 1+ 1+ 1+ NOP NOP
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Cycle Time 1 2 3 4 5 6 7 8
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(b) Spatial mapping 

 
Fig. 45.  Eight multipliers shared by sixteen PEs. 

 
 
 
2nd columns perform multiplication. As can be observed, in the temporal mapping and 

spatial mapping, there is no need for all PEs to have the same functional resources at the 
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same time. This allows the PEs in the same column or in the same row to share area-

critical resources. Fig. 45 shows four PEs in a row sharing two multipliers3 at the 5th cy-

cle in temporal mapping and spatial mapping. We depict only the connections related to 

resource sharing. 

Fig. 46 depicts the detailed connections for multiplier sharing. The two n-bit oper-

ands of a PE are connected to the bus switch. The dynamic mapping of a multiplier to a 

PE is determined at compile time and the information is encoded into the configuration 

word. At run-time, the mapping control signal from the configuration word is fed to the 

bus switch and the bus switch decides where to route the operands. After the multiplica-

tion, the 2n-bit output is transferred from the multiplier to the original issuing PE via the 

bus switch.  
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ctrl
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2n‐bit
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Bus 
switch

PE

CECE

n‐bit

n‐bit
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Fig. 46.  The connection between a PE and shared multipliers. 

 
 
 

                                                 
3 Since multipliers take much more area than other resources, we classify them as critical resources. 
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2.  Resource Pipelining 

If there is a critical functional resource with long latency in a PE, the functional resource 

can be pipelined to curtail the critical path. Resource pipelining has clear advantage in 

loop pipelining execution because heterogeneous functional units with different delays 

can run at the same time. In the traditional design (Fig. 47 (a)), the latency of a PE is 

fixed but in our pipelined PE design (Fig. 47 (b)), we allow multi-cycle operations and 

so the latency can vary depending on the operation. This helps increase the system clock 

frequency.  

 

Critical
Resource 

Output Reg’

Front

End

Neighbor PE Neighbor PE

Two cycles operation One cycle operation

Output Reg’

Critical path

Reg

Critical path is 
seperated into two

Output Reg’

Output Reg’

One cycle operation  
 
(a) General PE                            (b) Pipelined PE 

 
 Fig. 47.  Critical paths. 
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Cycle Time 1 2 3 4 5 6 7 8 9 10

Column#1 LD/+ 1× 2× 1+ 2+  1× 2×/ST NOP NOP NOP

Column#2 LD/+ 1× 2× 1+ 2+  1× 2×/ST NOP NOP

Column#3 LD/+ 1× 2× 1+ 2+  1× 2×/ST NOP

Column#4 LD/+ 1× 2× 1+ 2+  1× 2×/ST

Cycle Time 1 2 3 4 5 6 7 8 9 10

Column#1 LD/+ 1× 2× 1+ 2+  1× 2×/ST NOP NOP NOP

Column#2 LD/+ 1× 2× 1+ 2+  1× 2×/ST NOP NOP

Column#3 LD/+ 1× 2× 1+ 2+  1× 2×/ST NOP

Column#4 LD/+ 1× 2× 1+ 2+  1× 2×/ST
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(a) Temporal mapping  

Cycle Time 1 2 3 4 5 6 7 8 9 10

Column#1 LD/+ LD/+ LD/+ LD/+ NOP 1×
2×/ST
/1×

2×/ST
/1×

2×/ST
/1×

2×/ST

Column#2 1×
2×/1
×

2×/1
×

2×/1
×

2× NOP NOP NOP NOP

Column#3 1+ 1+ 1+ 1+ NOP NOP NOP

Column#4 2+ 2+ 2+ 2+ NOP NOP

Cycle Time 1 2 3 4 5 6 7 8 9 10

Column#1 LD/+ LD/+ LD/+ LD/+ NOP 1×
2×/ST
/1×

2×/ST
/1×

2×/ST
/1×

2×/ST

Column#2 1×
2×/1
×

2×/1
×

2×/1
×

2× NOP NOP NOP NOP

Column#3 1+ 1+ 1+ 1+ NOP NOP NOP

Column#4 2+ 2+ 2+ 2+ NOP NOP

1×

SW

SW

SW

SW

2×

2×

2×

2×

SW

SW

SW

SW

+

+

SW

SW

SW

SW

+

SW

SW

SW

SW

Col#1 Col#2 Col#3 Col#4

MULTMULT

MULTMULT

MULTMULT

MULTMULT

 
(b) Spatial mapping  

 
1×: First pipeline stage on multiplication, 2×: Second pipeline stage on multiplication  

 
Fig. 48.  Loop pipelining with pipelined multipliers. 

 
 
 

If a critical functional resource such as a multiplier has both large area and long la-

tency, the resource sharing and resource pipelining can be applied at the same time in 

such a way that the shared resource executes multiple operations at the same time in dif-

ferent pipeline stages. With this technique, the conditions for resource sharing are re-

laxed and so the critical resources are utilized more efficiently. Fig. 48 shows this situa-

tion. Through the pipelining, we can reduce the number of multipliers from 8 to 4 to per-

form the execution without any stall. This is because two PEs sharing one pipelined mul-

tiplier can perform two multiplications at the same time using different pipeline stages.  
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B.  Cost-Effective Reconfigurable Array Fabric 

In this section, we propose an array fabric design space exploration method to generate a 

cost-effective reconfigurable array structure in terms of area and power. It is mainly mo-

tivated by the characteristics of typical computation-intensive and data-parallel applica-

tions.  

1. Motivation 

a. Characteristics of Computation-Intensive and Data-Parallel Applications 

Most of the CGRAs have been designed to satisfy the performance requirement of a 

range of applications in a particular domain. Especially, they have been designed for ap-

plications that exhibit computation-intensive and data-parallel characteristics. Common 

examples for such applications are digital signal processing (DSP) applications like au-

dio signal processing, image processing, video signal processing, speech signal process-

ing, speech recognition, and digital communications. Such applications have many sub-

tasks such as trigonometric functions, filters and matrix/vector operations that can be 

mapped onto coarse-grained reconfigurable array.  We have classified such subtasks into 

four types as shown by the data flow graphs in Fig. 49. Type (a) shows merge operation 

in which outputs from multiple operations in the previous stage are used as inputs to an 

operation in the next stage. Type (b) shows butterfly operation where output data from 

multiple operations in the previous stage are fed as input data to the same number of 

next stage operations. Finally, type (c) and (d) show the combinations of (a) and (b). 
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OPi : operation  

Fig. 49. Subtask classification. 
 
 
 

b. Redundancy in Conventional Array Fabric 

 Most coarse-grained reconfigurable arrays arrange their processing elements (PEs) in a 

square or rectangular 2-D array with rich set of horizontal and vertical connections for 

effective exploitation of parallelism. However, such square/rectangular array structures 

have many redundant or unutilized PEs during the executions of applications on them.  

Fig. 50 shows an example of three types of data flow (Fig. 49 (a), (c), and (d)) mapped 

onto 8x8 square reconfigurable arrays in the two cases of loop pipelining – temporal 

mapping and spatial mapping. The upper part of Fig. 50 shows the scheduling for a col-

umn of PEs based on temporal mapping and also shows how the utilization of the PEs 

changes for the 8 cycles of schedule. As can be seen from the figure, Some PEs have 

very low utilization. The lower part of Fig. 50 shows the spatial mapping of the 8x8 ar-

ray, where some PEs are not used at all. All the three types of implementations show lots 

of redundant PEs that are not used.   
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Fig. 50. Data flow on square reconfigurable array. 

 
 
 

From these observations, we see that the existing square/rectangular array fabric 

cannot efficiently utilize the PEs in the array and therefore waste large area and power. 

In order to overcome such wastages in square/rectangular array fabric, we propose a new 

cost effective array fabric in the next subsection. 

2. New Cost Effective Data Flow-Oriented Array Structure 

a. Derivation of Data Flow-Oriented Array Structure 

To reduce the redundancy in the conventional square/rectangular array, first of all, we 

can consider a specific array shape that fits well with the applications’ common data 

flows. Fig. 51 shows such a data flow-oriented array structure derived from three types 
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of data flow. In Fig. 51 (a), a triangular-shaped array and uni-directional interconnec-

tions among PEs can be derived from the first data flow (merge). Then the interconnec-

tions can be made bi-directional to support the merge—butterfly data flow as shown in 

Fig. 51 (b). Finally, in Fig. 51 (c), the entire array becomes a diamond-shaped structure 

to reflect the butterfly-merge data flow. In this case, the butterfly operations are spatially 

spread on both sides of the array. Then intermediate data merge takes place at the end of 

both sides or they can merge at the center of the array.  

 

Data Flow

Array Shape and direction 
of interconnections

: Input data
: Intermediate data   

(a) Merge        (b) Merge-butterfly         (c) Butterfly-merge 
 

Fig. 51. Data flow-oriented array structure derived from three types of data flow. 
 
 
 

To represent how the data-flow oriented array structure can efficiently utilize PEs, 

we examine the difference between the conventional square-shaped array and the pro-

posed data flow-oriented array with a simple example. We assume a diamond-shaped 

reconfigurable array composed of 12 PEs as shown in Fig. 52 (a) – this is a counterpart 

of the 4x4 PE array shown in Fig. 10. In addition, we assume a Frame Buffer similar to 

the one in Fig. 10 (b) is connected to the array, where the PEs in each row of the array 



107  

share two read buses and the PEs in two neighboring rows share one write bus as shown 

in Fig. 52 (b). The array has nearest neighbor and global bus interconnections in diago-

nal and horizontal directions as shown in Fig. 52 (c) and (d).  
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Fig. 52. An example of data flow-oriented array. 
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(c) Nearest neighbor interconnection                       (d) Global bus interconnection 
 

Fig. 52. Continued. 
 
 
 

Consider mapping of Eq. (2) in Chapter IV with N = 4 on the proposed array in the 

same way as we did for the 4x4 square-shaped PE array in Chapter IV.  Fig. 53 shows 

the snapshots taken at the time of maximum utilization of PEs for three cases: (a) tempo-

ral mapping on the square-shaped array (4x4 PEs), (b) spatial mapping on the square-

shaped array (4x4 PEs) and (c) spatial mapping on the data flow-oriented array (12 PEs). 

In the case of (a) and (b), five PEs are not used because the merging addition does not fit 

well with the square-shape. However, in the case of (c), the array efficiently utilizes all 

of the PEs without delayed operation. As can be observed, this example shows that the 

propose array structure can avoid the area and power wastages of the square-shaped ar-

ray without performance degradation. 
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 (c) Spatial mapping on the data-flow oriented PE array 
 

Fig. 53. Snapshots showing the maximum utilization of PEs. 
 
 
 
b. Mitigation of Spatial Limitation in the Proposed Array Structure 

As shown in Fig. 53 (c), we spread the operations in the data flows (mostly loop bod-

ies) over the array space, instead of spreading the operations over time for each column 

to implement temporal loop pipelining as shown in Fig. 53 (a). This implies that spatial 

loop pipelining is most suitable to the new array fabric. However, as mentioned in 
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Chapter IV (see subsection A.2), spatial mapping is not feasible for complex loops be-

cause of two reasons. One is that a large loop body may not fit in the limited recon-

figurable array and the other is that data dependencies between the operations typically 

require allocating lots of interconnect resources. In order to mitigate such a limitation, 

the new array fabric should have rich interconnections to provide more flexible and 

multi-directional data communication and the PEs should be arranged in such a way to 

utilize such an interconnection structure efficiently. As a solution to this problem, we 

propose a design flow that generates a data-flow oriented array structure by determin-

ing the topology of PEs and their interconnections. 

3.  Data Flow-Oriented Array Design Flow 

The generation of a data-flow oriented array starts from a square-shaped array fabric, 

considering that the original square-shaped array fabric is very well designed. We gener-

ate the new data-flow oriented array such that it can efficiently implement any applica-

tion that can be implemented on the square-shaped array fabric. In the example of Fig. 

52 (a), since the data-flow has a diamond-shape, we can generate a diamond-shaped ar-

ray with 
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Fig. 54. Overall design flow. 

 
less number of PEs but without any performance degradation, which is just like garment 

cutting. Since we want to cover the applications that can be implemented through tempo-

ral mapping on the square-shaped array fabric as well, we do not just cut the fabric but 

we compose the new array by transforming the temporal interconnection structure to a 

spatial interconnection structure.  

In the temporal mapping, each loop iteration of an application kernel (critical loop) 

is mapped onto a column of the square-shaped array. Therefore, it is good enough to 

analyze the interconnection fabric only within a column to derive the new array structure. 

Fig. 54 shows the entire design flow. This flow starts from analysis of intra-half 

column and inter-half column connectivity of general square array fabric. Intra-half col-
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umn connectivity means nearest neighbor or hopping interconnection between PEs in a 

half column and inter-half column connectivity means pair-wise interconnection or 

global bus between PEs – one PE in a half column and another PE in the other half col-

umn. New array fabric is partially derived by analyzing intra-half column connectivity of 

square fabric in Phase I. Then Phase II elaborates new array fabric by analyzing inter-

half column connectivity of square fabric. Finally, the connectivity of new array fabric is 

enhanced by adding vertical and horizontal global bus. In the remainder of this subsec-

tion -- from a through d below -- we describe more detailed process for each stage of the 

entire exploration flow. 

a. Input Reconfigurable Array Fabric 

The 8x8 array given in Fig. 5 is used for the input array fabric to illustrate the proposed 

design flow. 

b. New Array Fabric Specification – Phase I 

In this phase, an initial version of the new array fabric is constructed by analyzing intra-

half column connectivity of the input square array. Algorithm 6 shows this procedure. 

Before we explain the procedure in detail, we describe the notations used in it.  

 (L1) base column denotes a half column in the n x n reconfigurable array. 

 (L3) new_array_space denotes 2-dimentional space of the constructed reconfigurable 

array.  

 (L5) source_column_group denotes a group of PEs composed of one or two columns 

in the new_array_space. It is used as a source for deriving the new array fabric. 

 (L12) |source_column_group| denotes the number of PEs in source_column_group. 
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 (L6) CHECK_INTERCONNECT is a function to identify nearest neighbor or hop-

ping interconnections of PEs in source_column_group by analyzing the base column. If 

there is such an interconnection that has not been processed yet, then it returns true. 

 (L8) LOC_TRI is a function that implements the local triangulation method, which 

adds PEs, assigns them new positions in new_array_space, and connects them with the 

PEs already existing in the source_column_group.  

Algorithm 6 New Array Fabric Specification – Phase I
L1 base ← a half column of n x n reconfigurable array 
L2 m ← number of memory-read buses of n x n reconfigurable array 
L3 new_array_space← Ø
L4 begin
L5 source_column_group← Add a column composed of n/2 PEs

in new_array_space

L6 while CHECK_INTERCONNECT(source_column_group, base)
L7 do           
L8 LOC_TRI(source_column_group)
L9 end do
L10 source _column_group← Ø
L11 source _column_group← next two columns on the both sides

in new_array_space
L12 if |source-column_group| > 2 then
L13 goto L6
L14 end if
L15 Add nearest-neighbor interconnections 
L16 Add m memory-read buses  
L17 Connect the read buses with the added PEs in the same row
L18 Copy the constructed fabric on vertically symmetric position
L19 end       

Algorithm 6 New Array Fabric Specification – Phase I
L1 base ← a half column of n x n reconfigurable array 
L2 m ← number of memory-read buses of n x n reconfigurable array 
L3 new_array_space← Ø
L4 begin
L5 source_column_group← Add a column composed of n/2 PEs

in new_array_space

L6 while CHECK_INTERCONNECT(source_column_group, base)
L7 do           
L8 LOC_TRI(source_column_group)
L9 end do
L10 source _column_group← Ø
L11 source _column_group← next two columns on the both sides

in new_array_space
L12 if |source-column_group| > 2 then
L13 goto L6
L14 end if
L15 Add nearest-neighbor interconnections 
L16 Add m memory-read buses  
L17 Connect the read buses with the added PEs in the same row
L18 Copy the constructed fabric on vertically symmetric position
L19 end        

The algorithm starts with the initialization step (L1~L3). Then a half column is added 

into new_array_space, which is the initial source_column_group (L5). The next proc-

ess is to check the nearest neighbor or hopping connectivity between two PEs (L6) in 

the same column included in source_column_group. This checking process (L6) con-
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tinues until no more interconnection is found. The first checking process is performed 

by simply identifying interconnections of the base column. If an interconnection is 

found, two PEs are added into new_array_space and their interconnections and posi-

tions are assigned by local triangulation method (L8). This method is to reflect intra-

half column connectivity with making the data flow oriented array structure as shown in 

Fig. 52.  

 

A2

PE2

A1

PE1

A2

PE2

A1

PE1

A2A1

A1+A2

PE1

A1‐A2

PE1

 
(a) An operation fully utilizing interconnections between two PEs 

 

                       

A1+A2

A1‐A2A2

A1

                                       

: data ‘Ai’ saved in PEiAi

PEi

: Interconnection 

: Data flow
 

 (b) Butterfly operation example 
 

A2

PE2

A1

PE1

PE4 PE3
A2

PE2

A1

PE1

PE4 PE3

A1

A2

A1

A2
A2

PE2

A1

PE1

A1‐A2

PE4
A1+A2

PE3
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Fig. 55. Basic concept of local triangulation method. 

 
 
 

We illustrate the basic concept of local triangulation method in Fig. 55. Consider a 

base column including 2 PEs and let the operation fully utilizing their interconnections 

as shown in Fig. 55 (a) – data (A1 and A2) saved in two PEs (PE1 and PE2) are ex-
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changed with each other through the bidirectional interconnection, and then addition 

and subtraction are performed in PE1 and PE2. This is a kind of butterfly operation and 

Fig. 55 (b) shows an equivalent data flow graph for the butterfly operation. If we con-

sider a triangular structure composed of four PEs reflecting the shape of the data flow 

graph, the example can be mapped on the PEs as shown in Fig. 55 (c) – Two PEs (PE3 

and PE4) on both sides receive the data (A1 and A2) from the PEs (PE1 and PE2), and 

then addition and subtraction are performed in PE3 and PE4. In such a manner, local tri-

angulation method is to make a data flow-oriented array structure reflecting the intra-

half column connectivity.  
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PE

PE                           

PE

PE

PE

PE PEPE

 
(a) Nearest-neighbor                                                  (b) Hopping 

PE PE PE: PE in base column : PE in source_column_group : Added PE   
 

Fig. 56. Local triangulation method. 

 
Fig. 56 shows two cases of the method.  In the first case (a), two PEs in the base 

column have nearest-neighbor interconnection, which means maximum two PEs can be 

used for butterfly operation. Therefore, local triangulation method adds two PEs into 

new_array_space and assigns each PE the nearest-neighbor position on each side of the 

source column and the positions are vertices of a triangle. Then the method assigns near-

est-neighbor interconnection between added PEs and the PEs in the 



116  

source_column_group. The second case (b) shows that two PEs in the base column have 

a bidirectional hopping interconnection. Local triangulation method is also applied to 

this case with the hopping interconnections instead of the nearest neighbor interconnec-

tions for the first case. Even though one-way interconnections are sufficient to perform 

butterfly operation in two cases of Fig. 56, the added interconnections are bidirectional. 

This is because it aims to keep the basic characteristics of the data flow-oriented array 

structure derived in Fig. 52.  
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Fig. 57. Interconnection derivation in Phase I. 

 

From the second checking process, preoccupied columns are included in 

source_column_group. Fig. 57 shows two examples on how to find connectivity on the 

source columns. In the case of (a), no interconnection between ‘PE4’ and ‘PE6’ (or 
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‘PE7’ and ‘PE9’) is added because there is no hopping connectivity between ‘PE0’ and 

‘PE2’ (or ‘PE0 (or PE1)’ and ‘PE3’) in the base column. However, in the case (b), the 

base column has interconnection between ‘PE0’ and ‘PE2’. Therefore PEs and intercon- 
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            (c) Hopping interconnection                             (d) Memory read-buses 

 
Fig. 58. New array fabric example by Phase I. 

 

nections between ‘PE4’ and ‘PE6’ (or ‘PE7’ and ‘PE9’) are added by local triangulation 

method. After the iteration of adding PEs and interconnections (L5~L14) is finished, 

nearest-neighbor interconnections are added between two nearest-neighbor PEs that are 
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not connected with each other (L15). It is to guarantee the minimum data-mobility for 

data rearrangement. Finally, memory-read buses are added4 (L16, L17) and the derived 

array is copied to the vertically symmetric position (L18). 

Fig. 58 shows the result of the phase I procedure for the example of 8x8 reconfigur-

able array as shown in Fig. 5. 

c. New Array Fabric Specification – Phase II 

In this phase, new PEs and interconnections are added for reflecting intra-half column 

connectivity of the input square fabric. Phase II analyzes two kinds of interconnections – 

pair-wise and global bus.  We propose another procedure as Algorithm 7. Before we ex-

plain the procedure in detail, we introduce notations we use in the explanation.  

 (L5) CHECK_INTERCONNECT is a function to identify bus-connectivity between 

two PEs in the source column by analyzing the base column.  

 (L6) GB_RHT_TRI means global triangulation method that is a function used to add 

global buses and PEs.  

The algorithm starts with initialization step (L1, L2). Then central column in 

new_array_space is initial source_column_group. Next process is to check the pair-wise 

or global bus connectivity between two PEs (L5) - two PEs in the same column included 

in source column group. If an interconnection is found, global buses and PEs are added 

                                                 
4 Memory write-buses are added in the step of connectivity enhancement in subsection VI.B.5). This is because some PEs can be 

added in phase II and they should be connected to memory-write buses.  
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Add nearest-neighbor interconnections L13

Algorithm 7 New Array Fabric Specification  - Phase II

L1 base ← a column of n x n reconfigurable array 
L2 n  ← number of global buses 
L3 begin
L4 source_column_group← central column in new_array_space
L5 while CHECK_INTERCONNECT(source_column_group, base) do
L6 GB__TRI (source_column)
L7 end do
L8 source _column_group← Ø
L9 source _column_group← next two columns on the both sides

in new_array_space
L10 if |source-column_group| > 2 then
L11 goto L5
L12 end if

L14 end       

Add nearest-neighbor interconnections L13

Algorithm 7 New Array Fabric Specification  - Phase II

L1 base ← a column of n x n reconfigurable array 
L2 n  ← number of global buses 
L3 begin
L4 source_column_group← central column in new_array_space
L5 while CHECK_INTERCONNECT(source_column_group, base) do
L6 GB__TRI (source_column)
L7 end do
L8 source _column_group← Ø
L9 source _column_group← next two columns on the both sides

in new_array_space
L10 if |source-column_group| > 2 then
L11 goto L5
L12 end if

L14 end        

 in new_array_space and their interconnections and positions are assigned by global 

triangulation method (L6). Global triangulation method has the same basic concept of 

local triangulation method in that the method is also to make a triangular-shaped array 

fabric suitable spatial mapping with guaranteeing the maximum inter-half column con-

nectivity of the base column.  

Fig. 59 shows three cases of global triangulation method when the base column has 

a bidirectional pair-wise interconnection and two global buses. In the first case (a), the 

bidirectional pair-wise interconnection means maximum two PEs can be used for butter-

fly operation. Therefore, global triangulation method adds two PEs in new array space 

and assigns each PE the intersection point of two diagonal lines from two PEs in source 

column. The positions are vertices of a triangle. Then the method assigns four global 

buses between added PEs and the PEs in the source_column_group. Fig. 59 (b) and (c) 

show the method when the base column has two global buses. In the case of (b), two di-
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agonal lines from two PEs in source column intersect on already existing PE called ‘des-

tination PE’. Therefore, four global buses are added and they connect destination PEs 

with PEs in the source column. However, in the case of (c), no destination PE exists on 

intersection point of four diagonal lines. Therefore, new PEs called global PE (GPE) as 

well as global buses are added on new_array_space.  
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Fig. 59. Global triangulation method when n = 2 (L2). 
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Fig. 59. Continued. 
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Fig. 60. New array fabric example by Phase II. 
 
 
 

This checking process (L5) continues until no more connectivity is found. Then 

nearest-neighbor interconnections are added between two PEs not connected with each 

other. This is to guarantee the minimum data-mobility for data rearrangement.  

Fig. 60 shows the result of the phase II procedure for the example of 8x8 recon-

figurable arrays. 

d.  Connectivity Enhancement 

Finally, vertical and horizontal bus can be added to enhance connectivity of new recon-

figurable array. This is because new array fabric from phase I and II only has nearest 

neighbor or hopping interconnection in vertical and horizontal direction whereas it sup-

ports sufficient diagonal connectivity. Added horizontal bus is used as memory-write 

bus connected with frame buffer as well as used for data-transfer between PEs. 
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Fig. 61 shows the result of the connectivity enhancement for the example of 8x8 re-

configurable array. Each bus is shared by two PEs in both the sides. 
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Fig. 61. New array fabric example by connectivity enhancement. 

 
4. Cost-Effective Array Fabric with Resource Sharing and Pipelining 

The resource sharing and pipelining mentioned in Section A can be applied to the pro-

posed new array fabric because the computation model for the proposed fabric is spatial 

loop pipelining – spatial mapping spreads the entire loop body on the PE array, there is 

no need for all PEs to have the same functional resources at the same  time. Fig. 62 

shows the PEs in the same row share two pipelined multipliers.    
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Fig. 63 shows an application mapping on new array fabric example generated from 

the exploration flow - consider N = 8 for the mapping of the computation defined in Eq. 

(2) in Chapter IV on the new array fabric as shown in Fig. 53.  Load and addition opera-

tions in PEs are executed on the central column in the first cycle. Then the next multipli-

cations and summations are spatially spread on both sides of the array till 6th cycle. Fi-

nally, in next two cycles, a PE in the central row performs multiplication/store opera-

tions. The architecture including 16 multipliers supports the mapping example without 

stall caused by  
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Fig. 62. New array fabric with resource sharing and pipelining. 
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Fig. 63. Mapping example on new array fabric. 

 
 
 

multiplier lack. In this example, nearest-neighbor interconnections and global buses are 

efficiently used for multi-directional data-transfer and the new array has the same per-

formance (number of execution cycles) compared with the square array. 

C. Experiments 

1. Experimental Setup 

a. Evaluated Applications 

The target application-domain is composed of representative kernels in MPEG-4 AAC 

decoder, H.263 encoder, H.264 decoder, and 3D-graphics. In addition, to demonstrate 

the effectiveness of our approaches for benchmark domains, we have applied several 

kernels of Livermore loops benchmark [58] and DSPstone [59].  
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b. Hardware Design and Power Estimation  

To demonstrate the effectiveness of Resource Sharing and Pipelining (RSP), we have 

applied RSP techniques to the base RAA (BASE) defined in Chapter III (see Section B) 

and implemented the RSP architecture (RSPA) at the RT-level with VHDL. In Chapter 

III (see Section C), we have confirmed that multiplier is both area-critical and delay-

critical resources. Therefore we have taken the multiplier out of the PE design and ar-

ranged them to be shared and pipelined resources. From the analysis of our target appli-

cations, we have determined the sharing architecture – two pipelined multipliers shared 

by 8 PEs in each row. Therefore, the RSP architecture including 16 multipliers supports 

all of the target applications without stall caused by multiplier lack. In addition, we have 

implemented entire exploration flow in Fig. 54 with C++. The implemented exploration 

flow has generated the specification of new reconfigurable array fabric. The base RAA 

(Chapter III) has been used for input of the exploration flow. For quantitative evaluation, 

we have designed two cases of PE array based on the generated specification at the RT-

level with VHDL – only new array fabric (NAF) and NAF with RSP (RSP+NAF) - 18 

multipliers are shared by PEs in both row and column directions and this architecture 

also supports all of the target applications without stall caused by multiplier lack. The 

architectures have been synthesized using Design Compiler [49] with 0.18 ㎛ technol-

ogy. ModelSim [50] and PrimePower [49] are used for gate-level simulation and power 

estimation. Simulation has been done for the typical case under the condition of 100 

MHz operation frequency, 1.8 V Vdd, and  27℃ temperature. 
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2.  Results 

a.  Area Evaluation 

Table X shows area cost evaluation for the four cases. In RSPA, the area cost of PE ar-

ray is reduced by 22.11% because it has less multipliers than BASE. In the case of NAF, 

the area reduction ratio (25.58%) has relatively increased compared to RSPA. This is 

because the number of PEs is reduced than RSPA. Finally, the area reduction ratio 

(36.75%) in RSP+NAF has also relatively increased compared to NAF because of re-

duced multipliers. However, the interconnect area of the RSPA (or RSP+NAF) has in-

creased compared to the BASE( or NAF). This is because several buses are added to 

connect the shared multipliers with PEs. 

 
Table X. Area Reduction Ratio by RSPA and NAF 

Gate Equivalent PE Array 
Structure 

Number 
of PEs 

Number of 
Multipli-

ers Interconnecta Logicb Totalc 

Reduction Ratio 
(%) compared 

with BASE 
BASE 64 64 164908 494726 659635 - 
RSPA 64 16 170008 343781 513789 22.11 
NAF 44 44 156163 334737 490900 25.58 
RSP+NAF 44 18 164414 252805 417219 36.75 
Interconnect a: net interconnect area, Logicb: total cell area, Totalc : Interconnecta + Logicb 

 

 

b. Performance Evaluation 

The synthesis results show that RSPA has reduced critical path delay (5.12 ns) compared 

to BASE (8.96 ns). This is because RSP technique excludes the combinational logic path 

of the multiplier from the original set of critical paths. The critical path of RSPA and its 

delay is given by 
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 TCritical path = TMultiplexor + TALU  + TShift_logic+Tothers                          (3) 

(5.12 ns   =  0.32 ns   + 2.22 ns + 1.42 ns   + 1.16 ns) 

 
Table XI shows that BASE and NAF (or RSPA and RSP+NAF) have same critical 

path delay. It indicates NAF does not cause performance degradation in terms of the 

critical path delay. In addition, the execution cycle count of each kernel on NAF (or 

RSP+NAF)  

 
Table XI. Applications Characteristics and Performance Evaluation 

PE Array Structure  
BASE and NAF  

(8.96 ns)d 
RSPA and RSP+NAF   

(5.12 ns) d Kenels Operationsc 
Cycle 
count 

eET(ns) Cycle 
count 

eET(ns) 
fReduced 

(%) 
aFirst_Diff sub 15 134.40 15 76.80 42.86 
aTri- Diagonal sub, mult 17 152.32 18 92.16 39.50 
aState add, mult 20 179.20 23 117.76 34.29 
aHydro add, mult 15 134.40 19 97.28 27.62 
aICCG sub, mult 18 161.28 19 97.28 39.68 
bInner Product add, mult 21 188.16 22 112.64 40.14 
b24-Taps FIR add, mult 20 179.2 21 107.52 40.00 
Matrix-vector multi-

plication add, mult 19 170.24 20 102.4 39.85 
Mult in FFT add, sub, mult 23 206.08 27 138.24 32.92 
Comlex Mult in AAC 

decoder add, sub, mult 16 143.36 17 87.04 39.29 
ITRANS in H.264 
Decoder add, sub, shift 18 161.28 18 92.16 42.86 

DCT in H.263 encoder add, sub, shift, 
mult 32 286.72 40 204.80 28.57 

IDCT in H.263 
encoder 

add, sub, shift, 
mult 34 304.64 42 215.04 29.41 

SAD in H.263 encoder add, abs 39 349.44 39 199.68 42.86 
Quant in H.263 
encoder 

add, sub, shift, 
mult 39 349.44 45 230.40 34.07 

Dequant in H.263 
encoder 

add, sub, shift, 
mult 41 367.36 57 240.64 34.49 

aLivermore loop benchmark suite. bDSPstone benchmark suite. cAcronym of operations, add:addition, 
sub: subtraction, shift: bit-shift, mult: multiplication, dCritical path delay, eExecution time = cycle × criti-
cal path delay(ns), fReduction ratio of execution time compared with BASE. 
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does not vary from BASE (or RSPA) because the functionality of NAF is same as the 

base model. It also indicates NAF does not come by performance degradation in terms of 

the execution cycle count. 

We have applied application kernels to the implemented architectures to obtain the 

results in Table XI. The amount of performance improvement depends on the application. 

For example, compared to DCT and hydro having multiplication, we achieve much more 

performance improvement with RSPA and RSP+NAF for First_Diff, SAD, and ITRANS 

which have no multiplication. This is because the clock frequency has been increased by 

pipelining the multipliers whereas the execution cycle count does not vary from BASE 

and NAF.     

 
Table XII. Power Reduction Ratio by RSP+NAF 

PE Array Structure 
BASE RSP+NAF Kenels 

Power (mW) Power (mW) Reduction Ratio (%) 
compared with BASE

First_Diff 201.07 129.79 35.45 
Tri- Diagonal 190.75 130.89 31.38 
State 198.37 138.62 30.12 
Hydro 190.86 129.35 32.23 
ICCG 164.42 112.92 31.32 
Inner Product 200.09 139.30 30.38 
24-Taps FIR 174.38 116.40 33.25 
Matrix-vector multiplication 163.25 113.48 30.49 
Mult in FFT 187.68 125.30 33.24 
Comlex Mult in AAC de-
coder 222.14 148.55 33.13 
ITRANS in H.264 decoder 198.32 137.89 30.47 
DCT in H.263 encoder 212.25 147.90 30.32 
IDCT in H.263 encoder 208.99 143.58 31.30 
SAD in H.263 encoder 181.22 123.23 32.00 
Quant in H.263 encoder 199.38 137.33 31.12 
Dequant in H.263 encoder 196.97 131.28 33.35 
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c. Power Evaluation  

Table XII shows the comparison of power consumptions between the two reconfigurable 

arrays: BASE and RSP+NAF. The two arrays have been implemented without any low 

power technique to evaluate their power savings. It is shown that compared to BASE, 

RSP+NAF could save up to 35.45% of the power. It has been possible to reduce power 

consumption in RSP+NAF by using less number of PEs and multipliers to do the same 

job compared to the base reconfigurable array. For larger array sizes, the power saving 

will further increase due to significant reduction in unutilized PEs. 
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CHAPTER VIII 

HIERARCHICAL RECONFIGURABLE COMPUTING ARRAYS 

 

In this chapter, we propose a new computing hierarchy consisting of two reconfigurable 

computing blocks with two types of communication structure together [63]. In addition, 

the two computing blocks have shared critical resources. Such a sharing structure pro-

vides efficient communication interface between them with reducing overall area. Based 

on the proposed architecture, optimized computing flows have been implemented ac-

cording to the varying applications for low power and high performance. Experimental 

results show that the proposed approach reduces on-chip area by 22%, execution time by 

up to 72% and reduces power consumption by up to 55% when compared with the con-

ventional CGRA-based architectures. 

A. Motivation 

1. Limitation of Existing Processor-RAA Communication Structures 

A typical coarse-grained reconfigurable architecture consists of a microprocessor, a Re-

configurable Array Architecture (RAA), and their interface. We can consider three types 

of organizations in connecting RAA to the processor. First, the array can be connected to 

the processor through a system bus as an ‘Attached IP’ [3] [10][12][15][19][64] shown 

in Fig. 2 (a). In this case, the main benefit of this organization is the ease of constructing 

such a system using a standard processor without modifying the processor and its com-

piler. In addition, large data buffer of RAA can be used to support applications having 
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large inputs/outputs. However, the speed improvement using the RAA may have to 

compensate for significant communication overhead between the processor and RAA 

through system bus as well as SRAM-based large data buffer in RAA consumes much 

power. Second type of organization involves the array connected with the processor as a 

‘Coprocessor’[4][65][66] shown in Fig. 2 (b). In this case, the standard processor does 

not change and the communication is faster than ‘Attached IP’ type interconnects be-

cause the coprocessor register-set is used as data buffer of the RAA and the processor 

can access the register-set by coprocessor data transfer instructions. In addition, the reg-

ister-set consumes less power than the data buffer of ‘Attached IP’. Since the size of the 

register-set is fixed by the processor ISA, it creates performance bottleneck for registers-

PE array traffic due to applications having large inputs/outputs run on the RAA. In the 

third type of organization, the array is placed inside the processor like a ‘FU (Functional 

Unit)’ [2][16][22][67][68] as shown in Fig. 2 (c). In this case, the instruction decoder 

issues special instructions to perform specific functions on the RAA as if it were one of 

the standard functional units of the processor. In this case, the communication speed is 

faster than ‘Coprocessor’ and power consumption of the data storage is less than ‘At-

tached IP’ because the processor register-set is used as data buffer of the RAA and the 

processor can directly access the register-set by the processor instructions. However, 

standard processor needs to be modified for due to integration with RAA and its com-

piler should be also changed. The performance bottleneck is caused by limited size of 

the processor registers as in the case of ‘Coprocessor’ type organization. Table XIII 

shows a summary about advantage and disadvantage of three coupling types.  
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Table XIII.  Comparison of the Basic Coupling Types 

Coupling type 
*Comm’ 
power 

**Comm’
speed 

Performance 
Bottleneck 

Application 
feasibility 

Attached IP high slow communication through 
system bus 

large size of  in-
put/output 

Coprocessor low fast limited size of coproc-
essor register-set 

small size of in-
put/output 

Functional unit low very fast limited size of processor 
registers 

small size of in-
put/output 

*Comm’ power: power consumption by data-storage (data buffer or registers)  
**Comm’ speed: Communication speed between processor and RAA 
 
 
 

2. RAA-based Computing Hierarchy 

As mentioned in the previous subsection, basic three types of RAA organizations show 

advantage and disadvantage according the input/output size of the applications. It shows 

the existing coupling structure with a conventional RAA cannot be flexible to support 

various applications with sacrificing performance. In addition, such an RAA structure 

cannot efficiently utilize PE arrays and data buffers leading to high power consumption.  

We hypothesize that if CGRA can maintain a computing hierarchy of its RAAs 

having difference size and communication speed as shown in Fig. 64 (b), the CGRA-

based embedded system can be optimized for its performance and power. It is because 

such a hierarchical arrangement of the RAA can optimize the communication latency 

and efficiently utilize functional resources of PE array in various applications. In this 

chapter, we propose a new CGRA-based architecture that supports such a RAA-based 

computing hierarchy.  



134  

Processor

Memory

Memory

Speed Size

Fastest

Slowest

Smallest

Largest
               

Processor

RAA

RAA

Speed

Fastest

Slowest

Size

Smallest

Largest
 

(a) Memory                                                    (b) RAA 

Fig. 64. Analogy between Memory and RAA-computing hierarchy. 
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Fig. 65. Computing hierarchy of CGRA. 

 
B.  Computing Hierarchy in CGRA 

In order to implement efficient CGRA-based embedded systems, we propose a new 

computing hierarchy consisting of two computing blocks using two types of coupling 
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structures together – ‘Attached IP’ and ‘Coprocessor’. In this organization, a general 

RAA having large size PE array is connected to a system bus and another is a small 

RAA composed of small PE array coupled with a processor through coprocessor inter-

face. We call the small RAA reconfigurable computing cache (RCC) because it plays 

important role in enhancing performance and power of the entire CGRA like data cache. 

The RCC and the RAA share critical resources and such a sharing structure provides ef-

ficient communication interface between two computing blocks. The propose approach 

ensures that the RCC and the RAA are efficiently utilized to support variable size of in-

puts and outputs for variety of applications. In subsection B.1 and B.2, we describe 

computing hierarchy and resource sharing in RCC and RAA in detail. Then we show 

how to optimize computing flow based on reconfigurable computing cache according to 

the applications in subsection B.3. 

1.   Computing Hierarchy – Size and Speed  

A CGRA-based computing hierarchy is formed by splitting a conventional computing 

RAA block into two computing blocks – RCC with small PE array and RAA having 

large PE array as shown in Fig. 65 (a). The RCC is coupled with coprocessor interface 

and the RAA is attached to a system bus as shown in Fig. 65 (b). The RCC provides fast 

communication with the processor and offers low power consumption by using coproc-

essor register-set and small array size. Therefore the RCC can enhance performance and 

reduce power consumption when small applications run on CGRA. If RCC is not suffi-

cient to support computing requirements of in applications, intermediate data from the 
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RCC can be moved to the RAA through the interconnections as shown in Fig. 66. Such 

interconnections between the two blocks offer 
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Fig. 66. CGRA configuration with RCC and RAA. 

 
flexibility in migrating computing demands from one to another. Such computing flow 

may help to optimize performance and power for the applications having various sizes of 

inputs /outputs whereas the existing models show performance bottlenecks caused by the 

communication overheads or their limited sized data-storage as shown in Table XIII. We 

have described the computing flow optimization in detail in subsection B.3. 

2.  Resource Sharing in RCC and RAA 

We have so far presented two factors (speed and size) in building computing hierarchy 

for CGRAs similar to memory hierarchy. It seems a small portion of RAA has been de-

tached from large CGRA block and placed as the fast RCC block adjacent to the proces-



137  

sor coupled with coprocessor interface. However, only considering two factors is not 

sufficient to design compact RCC for power and area benefits. This is because comput-

ing blocks can have diverse functionality which affects the system capabilities. The 

functionality of computing blocks is specified by functional resources of its PE such as 

adder, multiplier, shifter, logic operations etc. Therefore, it is necessary to examine how 

to select the functionalities of RCC and RAA. This leads to further studies on resource 

assignment/sharing between RCC and RAA.  

First of all, we can classify the functional resources into two groups: primitive re-

sources and critical resources. Primitive resources are basic functional units such as ad-

der/subtractor and logical operators. Critical resources are area/delay-critical ones such 

as multiplier and divider. Based on the classification, let us consider two cases of the 

functional resource configurations as shown in Fig. 67. Fig. 67 (a) shows hierarchical 

functionality that indicates L1 PE array has primitive resources and L2 PE array includes 

critical resources as well as primitive resources. The Fig. 67 (b) shows identical func-

tionalities both in the L1 and L2 PE arrays. In the case of (a), the RCC with L1 PE array 

is relatively lightweight computing block compared to the RAA with L2 PE array. 

Therefore, the RCC can perform small applications having only primitive operations 

with low power consumption. However, it causes ‘lack of resource’ problem when ap-

plications demand critical operations. In (b) L1 and L2 PE arrays have identical func-

tionality with area and power overheads. 

To prevent such extreme cases, we propose resource sharing for the RCC and the 

RAA based on [44]. L1 and L2 PE array have the same primitive resources and shared 
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the pipelined critical resources as shown in Fig. 68. Here the RCC and the RAA basi-

cally perform the primitive operations and their functionality will include the critical op-

erations using the shared resources. Fig. 69 shows interconnection structure with shared 

critical resources along with RCC and RAA. PEs in the same row of the L1 and L2 array 

share the pipelined critical resources in the same manner as [44]. Such a structure avoids 

the ‘lack of resource’ problem in Fig. 67 (a) and this structure is more area and power-

efficient than Fig. 67 (b) because the number of critical resources is reduced and the 

critical resources taken out of L1 and L2 PE array are not affected by unnecessary 

switching activity caused by other resources. In addition, interconnections for resource 

sharing can be also utilized for communication interface between the RCC and the RAA 

by adding multiplexer and de-multiplexer between front and end of the critical resources 

as shown in Fig. 69 (b).  
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Fig. 67. Two cases of functional resource assignment. 
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3.  Computing Flow Optimization  

Based on the proposed CGRA structure, we can classify four cases of optimized comput-

ing flow to achieve low power and high performance. Fig. 70 shows such four comput-

ing flows on the proposed CGRA according to variance of input and output size of ap-

plications – Subsection C.1.a shows that we can select the optimal case among the pro-

posed computing flows for several applications with variance in their input/output size. 

All of the cases show that shared critical resources are used as needed because they are 

only utilized when applications have the operations requiring the critical resources. 

Fig. 70 (a) shows computing flow when application has the smallest inputs and out-

puts. In this case, only RCC functional units are used to execute the application while the 

RAA is disabled to reduce power consumption. However, if the application has larger 

inputs and outputs than (a), the computing flow can be extended to L2 PE array as 

shown in Fig. 70 (b). Even though L2 PE array is used for this case, data buffer of the 

RAA is not used because the coprocessor register-set (CREG) is sufficient to save the all 

of the inputs or outputs. The next case is that when RAA is used with RCC because of 

large inputs and small outputs as shown in Fig. 70 (c). In this case, data buffer of the 

RAA receives inputs using DMA which is more efficient for overall performance than 

CREG. This is because insufficient CREG resource for large inputs causes performance 

bottleneck with heavy registers-PE array traffic. Therefore, the L2 PE array may be used 

first for running such application and the L1 PE array can be utilized for enhancing par-

allelized execution as needed. However, the outputs are stored on CREG because their 
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Fig. 70. Four cases of computing flow according to the input/output size of application. 
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size is small. Finally, Fig. 70 (d) shows a case of RAA used with L1 PE array with large 

inputs and outputs. To avoid heavy registers-PE array traffic by the large input/output 

size, the data buffer with DMA is used and L1 PE array can be optionally utilized for 

enhancing parallelized execution.  

In summary, the computing flow on the proposed CGRA can be adapted according 

to the input/output size of applications. It is more power-efficient than using a conven-

tional CGRA by separated computing blocks with sharing critical resources. This way is 

only necessary computing blocks are utilized. In addition, computing flow with support-

ing two communication interfaces reduces power and enhances performance.  

C.  Experiments 

1.  Experimental Setup 

a. Architecture Implementation  

To demonstrate the effectiveness of the proposed RCC-based CGRA, we have designed 

three different organizations of CGRA with RT-level implementation using VHDL as 

shown in Table XIV.   

 
Table XIV.  Comparison of the Architecture Implementations 

CGRA PE array Data storage 
Attached IP 8x8 PE array 6KB data buffer 
Coprocessor 8x8 PE array 512-byte coprocessor register-set 
Proposed 
RCC-based 

8x2 L1 PE array and
8x6 L2 PE array 

4KB data butter and 512-byte  
coprocessor register set 

 (ARM7-compatible 32-bit RISC processor is used as main processor) 
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In addition, for resource sharing of RCC-based CGRA, two pipelined multipliers and 

two shifters are shared by PEs in the same row of L1 and L2 PE array whereas conven-

tional two types of CGRA do not support such a resource sharing and pipelining.  

The architectures have been synthesized using Design Compiler [49] with 0.18 ㎛ 

technology. PrimePower [49] has been used for gate-level simulation and power estima-

tion. To obtain the power consumption data, we have used the applications in Table XV 

for simulation with operation frequency of 100 MHz and typical case of 1.8 V Vdd and 

27 . ℃  

 

Table XV. Applications Characteristics 

Real Applications SHR Computing
Flow Benchmarks SHR Computing 

Flow 
(H.263) 8x8 DCT  SIO *256-point FFT  LISO 
(H.263) 8x8 IDCT  SIO *256-tap FIR  LISO 
(H.263)8x8 QUANT  SIO *Complex Mult  LISO 
(H.263) 8x8 DEQUANT  SIO **State  STIO 
(H.263) SAD - LISO **Hydro  STIO 
(H.264) 4x4 ITRANS  STIO **Tri-Diagonal  LIO 
(H.264) MSE  LISO **First-Diff - STIO 
(H.264) MAE - LISO **ICCG  STIO 
(H.264) 16x16 DCT  LISO **Inner Product  LIO 
8x8*8x1 Matrix-Vector 
Multiplication  SIO 

16x16*16x1Matrix-
Vector Multiplication 

 LISO 

8x8 Matrix Multiplication  SIO 

16x16 Matrix Multiplica-
tion 

 LISO 

*: DSPstone benchmarks [71] 
**: Livermore loop benchmarks [70] 
SHR:‘ ’means critical resources are 

used for the application. 
STIO: smallest inputs and outputs 
SIO: small inputs and outputs 
LISO: large inputs and small outputs 
LIO: large inputs and outputs 
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b. Evaluated Applications  

Evaluated applications are composed of real multimedia applications and benchmarks. 

We have analyzed the input/output size and operation-types in the applications to iden-

tify specific computing flow in Fig. 70. Table XV shows the selected applications and 

the optimal computing flows for them.  

 
Table XVI.  Area Cost Comparison 

Gate Equivalent PE 
Array 

No’ of 
PEs 

No’ of 
MULTs

No’ of 
SHTs Interconnect Logic Total 

Reduc-
tion (%)

Base 8x8 64 64 64 164908 494726 659635 - 
Proposed 64 16 16 175434 334595 510029 22.68 

 

2.  Results 

a.  Area Cost Evaluation  

Table XVI shows area cost evaluation for the two cases. ‘Base 8x8’ means 8x8 PE array 

included in ‘Attached IP’ and ‘Coprocessor’ type CGRA. ‘Proposed’ means L1 and L2 

PE array included in the proposed RCC-based CGRA. Even though interconnection area 

of the proposed model increases because of resource sharing structure, entire area of the 

proposed one is reduced by 22.68% because it has less critical resources than base 8x8 

PE array.  

b. Performance Evaluation 

The synthesis results show that the proposed PE array has reduced critical path delay 

(5.12 ns) compared to the base PE array   (8.96 ns). This is because pipelined multipliers 

are excluded from the original set of critical paths. Based on the synthesis results, we 
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execution time ratio compared with IP-Type.   
 

Fig. 71. Performance comparison. 
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evaluate execution times of the selected applications on three cases of CGRA as shown 

in Fig. 71. The execution times include communication time between memory/processor 

and the RAA or RCC. Each application is executed on the RCC-based CGRA in the 

manner of selected computing flow as shown in Table XV – all of the applications are 

classified under 4 cases of computing flow (STIO, SIO, LISO and LIO). In the case of 

STIO and SIO, performance improvement compared with ‘Coprocesssor’ type is rela-

tively less (30.31%~37.03%) than LIO and LISO (60.94%~72.92%). This is because the 

improvements of STIO and SIO are achieved by only reduced critical path delay 

whereas the improvements of LIO or LISO are achieved by avoiding heavy coprocessor 

registers-PE array traffic as well as reduced critical path delay. However, compared with 

‘Attached-IP’ type, STIO and SIO achieve much more performance improvement 

(56.60%~67.90%) whereas LISO and LIO show the improvement of (42.05%~59.85%). 

This is because STIO and SIO do not use data buffer of the RAA causing communica-

tion overhead on system bus.  

c. Power Evaluation  

Fig. 72 shows the comparison of power consumptions in three different organizations of 

CGRA. First of all, the proposed L1 and L2 PE array is more power-efficient than the 

base PE array because of the reduced critical resources. With such a power-efficient PE 

array, the amount of power saving depends on the selected computing flow for the appli-

cation. The most power-efficient computing flow is STIO that shows relatively much 

power saving (40.44%~55.55%) compared to other cases (7.93%~29.67%) because the 

STIO does not use the RAA - specially, ‘First_Diff’ shows the highest power saving  
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Fig. 72. Power comparison. 
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ratio of 51.71%/55.55% because of not using the shared critical resources. The next 

power-efficient model is SIO showing power saving (23.67%~29.67%). This is because 

the SIO computing flow does not use data buffer of the RAA whereas LISO 

(7.93%~26.03%) and LIO (17.13%~22.91%) utilizes the data buffer for input data or 

output data. Finally, power saving of LISO and LIO is mostly achieved by reduced criti-

cal resources and by not activating L1 PE array.  
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CHAPTER IX 

INTEGRATED APPROACH TO OPTIMIZE CGRA 

 

In this chapter, we present integrated approach to merge the multiple design schemes 

presented in the previous chapters. A case study is shown to verify the synergy effect of 

combining the multiple design schemes. Experimental results show that the integrated 

approach reduces area by 23.07% of entire RAA and power by up to 72% when com-

pared with the conventional RAA. In addition, we discuss potential combinations among 

the proposed design schemes and their expected outcomes.  

A. Combination among the Cost-Effective CGRA Design Schemes 

From Chapter VI to Chapter VIII, we have proposed the cost-effective CGRA design 

schemes and such schemes can be combined with each other to optimize CGRA in terms 

of area, power and performance. Fig. 73 shows combination flow of the proposed design 

schemes. The flow shows possible scheme combinations for CGRA design. Each arrow 

of the flow shows a possible integration between two design schemes. The possible 

scheme combinations can be found by tracing in the arrow directions. The combination 

flow can be classified into two cases according to the computation model of CGRA. In 

the case of temporal mapping, low power reconfiguration technique by reusable context 

pipelining (Chapter IV) can be selected whereas cost-effective array fabric (Chapter VII) 

is applicable to the spatial mapping. This is because two design schemes have been de-

vised while keeping the characteristics of spatial mapping and temporal mapping - we 
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spatially spread the operations in the data flows over the array space in the design 

scheme of the cost-effective array fabric whereas reusable context pipelining spread the 

operations over time for each column to implement temporal loop pipelining. Therefore, 

even though two design schemes cannot be merged, any combination of a design scheme 

in Chapter IV or VII with the remaining three schemes is possible.  

 

Chapter IV. Low Power 
Reconfiguration Technique

Temporal   Mapping

Chapter VII. Cost‐Effective  
Array Fabric

Spatial   Mapping

Chapter V. Dynamic 
context compression

Chapter VIII. Hierarchical 
reconfigurable Computing arrays 

Chapter VI. Dynamic 
context management 

 

Fig. 73. Combination flow of the proposed design schemes. 

 

B.  Case Study for Integrated Approach 

1. An CGRA Design Example Merging Three Design Schemes 

To demonstrate the effectiveness of the integrated approach, we have designed a RAA 

combining three design schemes as shown in Fig. 74 with RT-level implementation us-

ing VHDL. The architectures have been synthesized using Design Compiler [49] with 
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0.18 ㎛ technology. PrimePower [49] has been used for gate-level simulation and power 

estimation. To obtain the power consumption data, we have used the same the applica-

tions shown in the previous Chapters for simulation with operation frequency of 100 

MHz and typical case of 1.8 V Vdd and 27℃.  

 
Dynamic context 
compression

Hierarchical reconfigurable 
Computing arrays 

Low Power   
Reconfiguration Technique  

Fig. 74. A combination example combining three design schemes. 

 
2.  Results 

a.  Area and Performance Evaluation  

Table XVII shows area cost evaluation of each component for the base RAA as specified 

in Chapter III and the integrated RAA combining three design schemes. In the case of 

configuration cache, area is reduced by 16.79% - even though dynamic context compres-

sion increases area as shown in Chapter V, low power reconfiguration technique offsets 

the increased area with reduced size of the configuration cache. Area of the PE array and 

frame buffer are also reduced by 17.27%/30% because hierarchical reconfigurable com-

puting arrays supports critical resource sharing with the reduced size of the frame buffer. 

Therefore, the area reduction ratio of the entire RAA is 23.07% compared to the base 

RAA.  

The synthesis results show that the integrated RAA has reduced critical path delay 

(5.12 ns) compared to the base RAA (8.96 ns). This is because dynamic context man-

agement and low power reconfiguration technique don’t affect the original critical path 
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delay and pipelined multipliers are excluded from the original set of critical paths by hi-

erarchical reconfigurable computing arrays. In addition, execution time evaluation of 

the applications shows the same results in Chapter VIII – performance enhancement of 

42.05%~67.90% compared with the IP-type base RAA.  

 
Table XVII. Area Reduction Ratio by Integrated RAA 

Gate Equivalent Component 
Base Integrated 

Reduction (%) 

Configuration Cache 150012 124824 16.79 
PE Array 659635 510029 22.68 
Frame Buffer 129086 90329 30.00 
Entire RAA 942742 760869 23.07 

 

 
b. Power Evaluation  

To verify the synergy effect of the integrated approach, we have evaluated power con-

sumption for the five cases:  

a. Base RAA 

b. RAA with low power reconfiguration technique 

c. RAA with dynamic context compression  

d. RAA with hierarchical reconfigurable computing array 

e. integrated RAA.  

Table XVIII shows entire power comparison among the five cases. Each design scheme 

(b, c and d) does not reduce much power of entire RAA – 26.54%~47.6% in b, 

13.77%~21.48% in c and 11.09%~30.19% in d. However, the integrated RAA save 

much power (44.65% ~ 71.29%) because each component of the RAA is optimized by 
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the individual design scheme.  

 
Table XVIII.  Entire Power Comparison 

aBase 
bLow Power 
Reconfig’ 

cDynamic context
compression 

dHierarchical 
Reconfig’ Array 

eIntegrated 
kernels 

fP(mW) fP(mW) gR(%) fP(mW) gR(%) fP(mW) gR(%) fP(mW) gR(%) 
First_Diff 376.17 232.48 38.2 309.37 17.76 262.62 30.19 108.01 71.29 
Tri- Diagonal 400.19 257.59 35.63 331.01 17.29 355.79 11.09 200.65 49.86 
State 356.08 228.45 35.84 294.23 17.37 266.23 25.23 125.71 64.7 
Hydro 356.47 240.64 32.49 299.74 15.91 261.64 26.6 133.41 62.57 
ICCG 434.45 261.29 39.86 354.33 18.44 323.39 25.56 137.52 68.35 
Inner Product 328.54 240.57 26.78 283.3 13.77 281.27 14.39 181.83 44.65 
24-Taps FIR 471.44 274.99 41.67 383.44 18.67 408.98 13.25 200.5 57.47 
Matrix-vector 
multiplication 405.7 212.58 47.6 318.56 21.48 356.56 12.11 150.25 62.97 

Mult in FFT 423.59 287.67 32.09 355.19 16.15 360.12 14.98 208.78 50.71 
Comlex Mult in 
AAC decoder 452 304.19 32.7 381.55 15.59 381.38 15.62 220.77 51.16 
ITRANS in 
H.264 decoder 417.95 283.06 32.27 338.37 19.04 318.49 23.8 156.42 62.57 
DCT in H.263 
encoder 417.33 264.89 36.53 347.17 16.81 356 14.7 189.68 54.55 
IDCT in H.263 
encoder 412.91 263.45 36.2 343.42 16.83 352.55 14.62 188.71 54.3 
SAD in H.263 
encoder 415.27 305.05 26.54 343.04 17.39 362.12 12.8 222.63 46.39 
Quant in H.263 
encoder 401.35 255.77 36.27 333.63 16.87 341.22 14.98 181.14 54.87 
Dequant in 
H.263 encoder 401.64 252.3 37.18 332.63 17.18 341.85 14.89 178.38 55.59 
aBase RAA (configuration cache + frame buffer + PE array), bRAA with low power reconfiguration tech-
nique, cRAA with dynamic context compression , dRAA with hierarchical reconfigurable computing array, 
eRAA combining three scheme,  f Power Consumption of RAA, g Power reduction ratio of entire RAA 
compared with BASE. 
 
 

C. Potential Combinations and Expected Outcomes 

As mentioned in Section A, any combination of a design scheme limited by the compu-

tation model with the remaining four schemes is possible and we can consider two cases 

of the maximum combinations – one is the maximum power optimization for the con-
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figuration cache and another is area/power optimization of the PE array. Fig. 75 shows 

such two cases of combinations. In the case of Fig. 75 (a), all of the design schemes re-

ducing power in configuration cache are merged with hierarchical reconfigurable com-

puting arrays. Therefore, power saving of the configuration cache can be optimized 

based on the computation model of the temporal mapping. The second case is 

area/power optimization of the PE array as shown in Fig. 75 (b). Compared with (a), in-

stead of low power reconfiguration technique, the design scheme of cost-effective array 

fabric is combined with other design schemes. In this case, the area/power of the PE ar-

ray can be optimized by reducing the number of PEs (cost-effective array fabric) and 

sharing critical-resource (hierarchical reconfigurable computing arrays).   

 

Dynamic context 
compression

Dynamic context 
management 

Hierarchical reconfigurable 
Computing arrays 

Low Power Reconfiguration 
Technique

                            

Dynamic context 
compression

Dynamic context 
management 

Hierarchical reconfigurable 
Computing arrays 

Cost‐Effective  
Array Fabric

                    

(a) Power optimization for           (b) Area/power optimization of the PE array 
the configuration cache  

 
Fig. 75. Potential combination of multiple design schemes. 
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CHAPTER X 

CONCLUSIONS 

 

In this chapter, we summarize the major results of this dissertation.  

In Chapter IV, we propose reusable context pipelining for low power reconfigura-

tion and hybrid configuration cache structure supporting this technique. Our architecture 

can be used to achieve power-savings in a reconfigurable architecture while maintaining 

performance same as general CGRA. In addition, new configuration cache structure is 

more efficient than previous one in terms of memory size. In the experiments, we show 

that the proposed approach saves power even with reduced configuration cache size. 

Power reduction ratios in the configuration cache and the entire architecture are up to 

86.33% and 47.60% respectively compared to the base architecture. 

In Chapter V, we introduce new context architecture (dynamically compressible 

context architecture) with its design flow and configuration cache structure to support it. 

The proposed dynamically compressible context architecture can save power in configu-

ration cache without performance degradation. Experimental results show that our ap-

proach saves much power compared to conventional base model with negligible area 

overhead. We have reduced the power by up to 39.72% in configuration cache. 

In Chapter VI, we propose novel dynamic context management for low power 

CGRA and new configuration cache structure supporting this technique. Te proposed 

management method can be used to achieve power-savings in configuration ache while 

maintaining performance same as general CGRA. In the experiments, we show that our 
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approach saves much power compared to conventional base model with negligible area 

overhead. We have reduced the power by 38.24%/38/15% in write/read operation of 

configuration cache. 

In Chapter VII, we propose a novel reconfigurable array fabric optimized for com-

putation-intensive and data-parallel applications. It has been shown the new array fabric 

is derived from a standard square-array using the proposed exploration flow. The explo-

ration flow efficiently rearranges PEs with reducing array size and change interconnec-

tion scheme to save area and power. In addition, we suggest the new array fabric which 

splits the computational resources into two groups (primitive resources and critical re-

sources). Critical resources can be area-critical and/or delay-critical. Primitive resources 

are replicated for each processing element of the reconfigurable array, whereas area-

critical resources are shared among multiple basic PEs. Delay-critical resources can be 

pipelined to curtail the overall critical path so as to increase the system clock frequency. 

Experimental results show that the proposed approaches saves significant area and 

power compared to conventional base model with enhancing performance. Implementa-

tion of sixteen kernels on the new array structure demonstrates consistent results. The 

area reduction up to 36.75%, the performance enhancement up to 42.86% and the power 

savings up to 35.45% are evident when compared with the conventional array architec-

ture. 

In Chapter VIII, we propose hierarchical reconfigurable computing array architec-

ture to reduce power/area and enhance performance in configurable embedded system. 

The CGRA-based embedded systems that consist of hierarchical configurable computing 
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arrays with varying size and communication speed were examined for multimedia and 

other applications. Experimental results show that the proposed approach reduces on-

chip area by 22%, execution time by up to 72% and reduces power consumption by up to 

55% when compared with the conventional CGRA-based architectures. 

In Chapter IX, we present integrated approach to merge the multiple design 

schemes. A case study is shown to verify the synergy effect of combining the multiple 

design schemes. Experimental results show that the integrated approach reduces area by 

23.07% of entire RAA and power by up to 72% when compared with the conventional 

RAA.  
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