

DESIGNING COST-EFFECTIVE COARSE-GRAINED

RECONFIGURABLE ARCHITECTURE

A Dissertation

by

YOONJIN KIM

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2009

Major Subject: Computer Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4279394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DESIGNING COST-EFFECTIVE COARSE-GRAINED

RECONFIGURABLE ARCHITECTURE

A Dissertation

by

YOONJIN KIM

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Rabi N. Mahapatra
Committee Members, Eun Jung Kim
 Duncan Henry M. Walker
 Gwan Choi
Head of Department, Valerie E. Taylor

May 2009

Major Subject: Computer Engineering

iii

ABSTRACT

Designing Cost-Effective Coarse-Grained Reconfigurable Architecture. (May 2009)

Yoonjin Kim, B.S., SungKyunKwan University;

M.S., Seoul National University

Chair of Advisory Committee: Dr. Rabi N. Mahapatra

Application-specific optimization of embedded systems becomes inevitable to satisfy the

market demand for designers to meet tighter constraints on cost, performance and power.

On the other hand, the flexibility of a system is also important to accommodate the short

time-to-market requirements for embedded systems. To compromise these incompatible

demands, coarse-grained reconfigurable architecture (CGRA) has emerged as a suitable

solution. A typical CGRA requires many processing elements (PEs) and a configuration

cache for reconfiguration of its PE array. However, such a structure consumes signifi-

cant area and power. Therefore, designing cost-effective CGRA has been a serious con-

cern for reliability of CGRA-based embedded systems.

As an effort to provide such cost-effective design, the first half of this work

focuses on reducing power in the configuration cache. For power saving in the configu-

ration cache, a low power reconfiguration technique is presented based on reusable con-

text pipelining achieved by merging the concept of context reuse into context pipelining.

In addition, we propose dynamic context compression capable of supporting only re-

quired bits of the context words set to enable and the redundant bits set to disable. Fi-

iv

nally, we provide dynamic context management capable of reducing reduce power con-

sumption in configuration cache by controlling a read/write operation of the redundant

context words

In the second part of this dissertation, we focus on designing a cost-effective PE ar-

ray to reduce area and power. For area and power saving in a PE array, we devise a cost-

effective array fabric addresses novel rearrangement of processing elements and their

interconnection designs to reduce area and power consumption. In addition, hierarchical

reconfigurable computing arrays are proposed consisting of two reconfigurable comput-

ing blocks with two types of communication structure together. The two computing

blocks have shared critical resources and such a sharing structure provides efficient

communication interface between them with reducing overall area.

Based on the proposed design approaches, a CGRA combining the multiple design

schemes is shown to verify the synergy effect of the integrated approach. Experimental

results show that the integrated approach reduces area by 23.07% and power by up to

72% when compared with the conventional CGRA.

v

DEDICATION

To my family and friends

vi

ACKNOWLEDGEMENTS

It has been my life-long dream to become a professional in the engineering/science field

and to infuse my passion into my research work. For this reason, this acknowledgement

is very meaningful for me. The completion a Ph.D. in computer engineering at Texas

A&M University has been the best way to accomplish my goals and achieve my dream.

First of all, I am sincerely grateful to my advisor Dr. Rabi N. Mahapatra for allow-

ing me to conduct research with him and for his guidance during my Ph.D. program. His

exceptional commitment to research and strong demand for excellence have guided me

this far. I am truly grateful to his insightful advice, encouragement, and constant motiva-

tion throughout this work. Many thanks also go to my previous advisor, Professor Kiy-

oung Choi of Seoul National University, for his encouragement and helpful discussions.

For two years of my master’s course, he taught me to appreciate that a successful gradu-

ate student must have an arduous and passionate attitude. I would also like to thank the

other members of my dissertation committees: Professors Eun Jung Kim, Duncan Henry

M. Walker, and Gwan Choi. Their insightful comments and constructive criticisms

helped me improve my research. Without their feedback, this dissertation would not

have been made in it present form. In addition, I am deeply grateful to Professor Jun-

dong Cho of SungKyunKwan University for his teaching and advice in my undergradu-

ate days.

Furthermore, I would like to thank my friends and fellow students at Texas A&M

University for numerous discussions about various issues related to research and life. I

vii

sincerely thank current and former members of Embedded Systems and Co-design

Group for being supportive of me during this work. I thank them all, including Woo-

Seok Hong, In-choon Yeo, Baik-Song Ahn, Ja-Ryeong Koo, Sun-Young Choi, Ju-

Young Jung, Young-Ah Kim, Moon-Jeong Kang and Young-Ho Koh, for being great

friends and always being available whenever I need their assistance and help. Members

of the Design Automation Lab in Seoul National University have helped me in various

ways during the years of my Ph.D. program. I thank them all, especially Yong-Jin Ahn,

Dong-Kwan Suh, Young-Chul Cho, Imyong Lee, Il-Hyun Park, Dong-Wook Lee, and

Man-Hwee Jo.

Last, but not least, I am especially grateful to my parents and my elder brother for

their incredible support and trust for me. Without their dedication and belief in me, I

couldn‘t have completed this work in due time.

viii

TABLE OF CONTENTS

Page

ABSTRACT.. iii

DEDICATION .. v

ACKNOWLEDGEMENTS .. vi

TABLE OF CONTENTS.. viii

LIST OF FIGURES... xiii

LIST OF TABLES .. xvii

CHAPTER

 I INTRODUCTION.. 1

 A. Objective and Approach.. 2
 B. Contributions ... 3
 C. Dissertation Organization .. 5

 II BACKGROUND AND RELATED WORKS 6

 A. Coarse-Grained Reconfigurable Architecture 6
 B. Related Works ... 8

 III BASE CGRA IMPLEMENTATION .. 13

 A. Reconfigurable Array Architecture Coupling with Processor 13
 B. Base Reconfigurable Array Architecture .. 15

1. Processing Element ... 16
2. PE Array.. 16
3. Frame Buffer ... 18
4. Configuration Cache ... 18
5. Execution Controller ... 19

 C. Breakdown of Area, Delay, and Power Cost................................... 19
1. Area and Delay.. 20
2. Power... 23

ix

CHAPTER Page

 IV LOW POWER RECONFIGURATION TECHNIQUE....................... 25

 A. Motivation ... 25

1. Loop Pipelining ... 25
2. Spatial Mapping and Temporal Mapping.................................. 31

 B. Individual Approaches to Reduce Power in Configuration Cache.. 32
1. Spatial Mapping with Context Reuse.. 33
2. Temporal Mapping with Context Pipelining............................. 34
3. Limitation of Individual Approaches .. 35

 C. Integrated Approach to Reduce Power in Configuration Cache 36
1. Reusable Context Pipelining ... 47
2. Limitation of Reusable Context Pipelining............................... 41
3. Hybrid Configuration Cache Structure 43

 D. Application Mapping Flow ... 44
1. Temporal Mapping Algorithm .. 45

a. Covering .. 45
b. Time Assignment .. 46
c. Place Assignment .. 47

2. Context Rearrangement... 47
 E. Experiments ... 49

1. Experimental Setup ... 49
2. Results ... 50

a. Necessary Context Registers for Evaluated Kernels 50
b. Configuration Cache Size.. 52
c. Performance Evaluation .. 52
d. Power Evaluation .. 53

 V DYNAMIC CONTEXT COMPRESSION FOR LOW POWER
CGRA... 55

 A. Preliminary .. 55
1. Context Architecture ... 55

 B. Motivation ... 57
1. Power Consumption by Configuration Cache........................... 57
2. Valid Bit-Width of Context Words ... 57
3. Dynamic Context Compression for Low Power CGRA 59

 C. Design Flow of Dynamically Compressible Context Architecture . 59
1. Context Architecture Initialization.. 62
2. Field Grouping .. 62
3. Field Sequence Graph Generation... 64
4. Generation of Field Control Signal ... 65

a. Control Signals for ALU-Dependent Fields...................... 66

x

CHAPTER Page

b. Control Signals for ALU-Independent Fields 66

5. Field Positioning ... 67
a. Field Positioning on Uncompressed Context Word 67
b. Field Positioning on Compressed Context Word.............. 69

6. Compressible Context Architecture .. 78
7. Context Evaluation.. 78

 D. Experiments... 78
1. Experimental Setup ... 78
2. Results ... 79

a. Area Cost Evaluation... 79
b. Performance Evaluation .. 80
c. Context Compression Ratio and Power Evaluation 81

 VI DYNAMIC CONTEXT MANAGEMENT FOR LOW POWER
CGRA... 82

 A. Motivation ... 82
1. Power Consumption by Configuration Cache........................... 82
2. Redundancy of Context Words ... 83

a. NOP Context Words.. 83
b. Consecutively Same Part in Context Words 85
c. Redundancy Ratio ... 86

 B. Dynamic Context Management ... 86
1. Context Partitioning .. 87
2. Context Management at Transfer Time 90
3. Context Management at Run Time ... 92

 C. Experiments ... 94
1. Experimental Setup ... 94
2. Results ... 94

a. Area Cost Evaluation... 94
b. Power Evaluation .. 95
c. Performance Evaluation .. 96

 VII COST-EFFECTIVE ARRAY FABRIC... 97

 A. Preliminary .. 97

1. Resource Sharing... 98
2. Resource Pipelining... 101

 B. Cost-Effective Reconfigurable Array Fabric................................... 103
1. Motivation ... 103

a. Characteristics of Computation-Intensive and Data-Parallel
 Application .. 103

xi

CHAPTER Page

b. Redundancy in Conventional Array Fabric....................... 104
2. New Cost Effective Data Flow-Oriented Array Structure 105

a. Derivation of Data Flow-Oriented Array Structure........... 105
b. Mitigation of Spatial Limitation in the Proposed Array

Structure .. 109
3. Data Flow-Oriented Array Design Flow................................... 110

a. Input Reconfigurable Array Fabric 112
b. New Array Fabric Specification-Phase I........................... 112
c. New Array Fabric Specification-Phase II.......................... 118
d. Connectivity Enhancement ... 122

4. Cost-Effective Array Fabric with Resource Sharing
and Pipelining.. 123

 C. Experiments ... 125
1. Experimental Setup ... 125

a. Evaluated Applications.. 125
b. Hardware Design and Power Estimation 126

2. Results ... 127
a. Area Evaluation ... 127
b. Performance Evaluation .. 127
c. Power Evaluation... 130

 VIII HIERARCHICAL RECONFIGURABLE COMPUTING ARRAYS . 131

 A. Motivation ... 131

1. Limitation of Existing Processor-RAA
Communication Structures.. 131

2. RAA-based Computing Hierarchy .. 133
 B. Computing Hierarchy in CGRA .. 134

1. Computing Hierarchy –Size and Speed 135
2. Resource Sharing in RCC and RAA ... 136
3. Computing Flow Optimization.. 140

 C. Experiments ... 142
1. Experimental Setup ... 142

a. Architecture Implementation... 142
b. Evaluated Applications ... 144

2. Results ... 144
a. Area Cost Evaluation... 144
b. Performance Evaluation .. 144
c. Power Evaluation... 146

IX INTEGRATED APPROACH TO OPTIMIZE CGRA 149

xii

CHAPTER Page

 A. Combination among the Cost-Effective CGRA Design Schemes .. 149
 B. Case Study for Integrated Approach .. 150

1. An CGRA Design Example Merging Three Design Schemes.. 150
2. Results ... 151

a. Area and Performance Evaluation..................................... 151
b. Power Evaluation .. 152

 C. Potential Combinations and Expected Outcomes 153

 X CONCLUSIONS.. 155

REFERENCES.. 158

VITA ... 168

xiii

LIST OF FIGURES

FIGURE Page

 1 Block diagram of general CGRA... 7

2 Basic types of reconfigurable array coupling... 14

 3 Block diagram of base CGRA.. 14

 4 Processing element structure of base RAA .. 16

 5 Interconnection structure of PE array... 17

 6 Distributed configuration cache structure .. 18

 7 Area cost breakdown for CGRA .. 20

 8 Cost analysis for a PE... 21

 9 Power cost breakdown for CGRA running 2D-FDCT............................... 22

 10 4x4 reconfigurable array .. 26

 11 C-code of Eq. (2).. 28

 12 Execution model for CGRA... 29

 13 Comparison between temporal mapping and spatial mapping................... 32

 14 Configuration cache structure for context reuse .. 33

 15 Cache structure for context pipelining ... 35

 16 Proposed configuration cache structure ... 37

 17 Reusable context pipelining for Eq. (2) ... 40

 18 Reusable context pipelining with temporal cache...................................... 41

19 Reusable context pipelining according to the execution time for one
iteration (i > 1) .. 42

xiv

FIGURE Page

 20 Hybrid configuration cache structure... 44

 21 Application mapping flow for base architecture and proposed architecture 45

 22 Temporal mapping steps .. 46

 23 Context rearrangement ... 48

 24 PE structure and context architecture of MorphoSys................................. 56

 25 Valid bit-width of context words ... 58

 26 Entire design flow .. 60

 27 Context architecture initialization .. 61

 28 Field grouping .. 63

 29 Field sequence graph.. 64

 30 Control signals for 'MUX_B' and 'PRED' .. 65

 31 Updated FSG from flag merging.. 67

 32 Default field positioning... 68

 33 Field concurrency graph... 69

 34 Examples of ‘Find_Interval’ .. 75

 35 Multiplexer port-mapping graph .. 76

 36 Compressible context architecture ... 77

 37 Consecutively same part in context words... 84

 38 Redundancy ratio of context words.. 85

 39 An example of PE and context architecture ... 87

 40 Context partitioning.. 88

xv

FIGURE Page

 41 Comparison between general CE and proposed CE................................... 89

 42 Context management when context words are transferred 89

 43 Context management at run time ... 92

 44 Snapshots of three mappings.. 98

 45 Eight multipliers shared by sixteen PEs... 99

 46 The connection between a PE and shared multipliers................................ 100

 47 Critical paths .. 101

 48 Loop pipelining with pipelined multipliers.. 102

 49 Subtask classification ... 104

 50 Data flow on square reconfigurable array .. 105

 51 Data flow-oriented array structure derived from three types of data flow. 106

 52 An example of data flow-oriented array .. 107

 53 Snapshots showing the maximum utilization of PEs 109

 54 Overall design flow .. 111

 55 Basic concept of local triangulation method ... 114

 56 Local triangulation method.. 115

 57 Interconnection derivation in Phase I... 116

 58 New array fabric example by Phase I... 117

 59 Global triangulation method when n = 2 (L2)... 120

 60 New array fabric example by Phase II ... 122

 61 New array fabric example by connectivity enhancement 123

xvi

FIGURE Page

 62 New array fabric with resource sharing and pipelining 124

 63 Mapping example on new array fabric... 125

 64 Analogy between Memory and RAA-computing hierarchy 134

 65 Computing hierarchy of CGRA ... 134

 66 CGRA configuration with RCC and RAA... 136

 67 Two cases of functional resource assignment .. 138

 68 Critical resource sharing and pipelining in L1 and L2 PE array................ 139

 69 Interconnection structure among RCC, shared critical resources and

L2 PE array.. 139

 70 Four cases of computing flow according to the input/output size of

application ... 141

 71 Performance comparison.. 145

 72 Power comparison .. 147

 73 Combination flow of the proposed design schemes................................... 150

 74 A combination example combining three design schemes 151

 75 Potential combination of multiple design schemes 154

xvii

LIST OF TABLES

TABLE Page

 I Architecture Specification of Base and Proposed Architecture 51

 II Necessary Context Registers for Evaluated Kernels................................ 51

 III Size of Configuration Cache and Context Registers 52

 IV Power Reduction Ratio by Reusable Context Pipelining 53

 V Notations for Port-Mapping Algorithm.. 71

 VI Area Overhead by Dynamic Context Compression 80

 VII Power Reduction Ratio by Dynamic Context Compression 80

 VIII Area Overhead by Dynamic Context Management 94

 IX Power Reduction Ratio by Dynamic Context Management 95

 X Area Reduction Ratio by RSPA and NAF .. 127

 XI Applications Characteristics and Performance Evaluation 128

 XII Power Reduction Ratio by RSP+NAF ... 129

 XIII Comparison of the Basic Coupling Types.. 133

 XIV Comparison of the Architecture Implementations 142

 XV Applications Characteristics... 143

 XVI Area Cost Comparison .. 144

XVII Area Reduction Ratio by Integrated RAA .. 152

 XVIII Entire Power Comparison... 153

1

CHAPTER I

INTRODUCTION

With the growing demand for high quality multimedia, especially over portable media,

there has been continuous development on more sophisticated algorithms for audio,

video, and graphics processing. These algorithms have the characteristics of data-

intensive computation of high complexity. For such applications, we can consider two

extreme approaches to implementation: software running on a general purpose processor

and hardware in the form of ASIC. In the case of general purpose processor, it is flexible

enough to support various applications but may not provide sufficient performance to

cope with the complexity of the applications. In the case of ASIC, we can optimize best

in terms of power and performance but only for a specific application. With a coarse-

grained reconfigurable architecture (CGRA), we can take advantage of the above two

approaches. This architecture has higher performance level than general purpose proces-

sor and wider applicability than ASIC.

As the market pressure of embedded systems compels the designer to meet tighter

constraints on cost, performance, and power, the application specific optimization of a

system becomes inevitable. On the other hand, the flexibility of a system is also impor-

tant to accommodate rapidly changing consumer needs. To compromise these incom-

patible demands, domain-specific design is focused on as a suitable solution for recent

The journal model is IEEE Transactions on Very Large Scale Integration Systems.

2

embedded systems. Coarse-grained reconfigurable architecture is the very domain-

specific design in that it can boost the performance by adopting specific hardware en-

gines while it can be reconfigured to adapt to ever-changing characteristics of the appli-

cations.

In spite of the above advantages, the deployment of CGRA is prohibitive due to its

significant area and power consumption. This is due to the fact that CGRA is composed

of several memory components and the array of many processing elements including

ALU, multiplier and divider, etc. Especially, processing element (PE) array occupies

most of the area and consumes most of the power in the system to support flexibility and

high performance. Therefore, reducing area and power consumption in the PE array has

been a serious concern for the adoption of CGRA.

A. Objective and Approach

This dissertation explores the problem of reducing area and power in CGRA based on

architecture optimization. To provide cost-effective CGRA design, the following ques-

tions are considered.

• How to reduce area and power consumption in CGRA? For power saving in

CGRA, We should obtain area and power breakdown data of CGRA to identify

area and power-dominant components. Then the components may be optimized

for area and power by removing redundancies of CGRA wasting area and power.

Such redundancies may depend on the characteristics of computation model or

applications.

• How to design cost-effective CGRA with non-sacrificing or enhancing perform-

3

ance? Ultimately, the goals of designing cost-effective CGRA is that proposed

approaches do not cause performance degradation with saving area and power. It

means that the proposed cost-effective CGRA keeps original functionality of

CGRA intact and does not increase critical path delay. In addition, the perform-

ance may be enhanced by optimizing the performance bottleneck with keeping

the area and power-efficient approaches.

In this dissertation, these central questions are addressed for area/power-critical

components of CGRA and we suggest new frameworks to achieve these goals. The vali-

dation of the proposed approaches is demonstrated through the use of real application

benchmarks and gate level simulations.

B. Contributions

This work makes the following contributions:

• Low power reconfiguration technique for CGRA. It presents a novel power-

conscious architectural technique called reusable context pipelining (RCP) for

CGRA to close the power-performance gap between low power-oriented spatial

mapping and high performance-oriented temporal mapping prevailing in existing

CGRA architectures. A new configuration cache structure has been proposed to

support reusable context pipelining with negligible overheads. The temporal

mapping with RCP has been shown to be a universal approach in reducing power

and enhancing performance for CGRA.

• Dynamic context compression for low power CGRA. A new design flow for

4

CGRA design has been proposed to generate architecture specifications that are

required for modifying configuration cache dynamically. Design methodology

for dynamically compressible context architecture and a new cache structure to

support the configurability are being presented to reduce the power consumption

in configuration cache without performance degradation.

• Dynamic context management for low power CGRA. It presents a novel control

mechanism of configuration cache called dynamic context management to reduce

the power consumption in configuration cache without performance degradation.

A new configuration cache structure is proposed to support dynamic context

management.

• A new array fabric for CGRA. A novel array fabric design exploration method

has been proposed to generate cost-effective reconfigurable array structure.

Novel rearrangement of processing elements and their interconnection designs

are introduced for CGRA to reduce area and power consumption without any

performance degradation.

• Hierarchical reconfigurable computing arrays for efficient CGRA-based em-

bedded systems. A new reconfigurable computing hierarchy has been proposed to

design cost-effective CGRA-based embedded systems. Efficient communication

structure between processor and reconfigurable computing blocks is introduced

to reduce performance bottleneck in the CGRA-based architecture.

5

C. Dissertation Organization

The rest of the dissertation is organized as follows. In Chapter II, we describe back-

ground and related work of this dissertation. Chapter III presents base architecture im-

plementation and its cost breakdown. In Chapter IV, we propose low power reconfigura-

tion technique to reduce power in configuration cache. Chapters V and VI present dy-

namic context compression and dynamic context management capable of reducing power

consumption in configuration cache. In Chapter VII, we device a cost-effective array

fabric for CGRA to reduce area and power in PE array. Chapter VIII presents hierarchi-

cal reconfigurable computing array to reduce area and power with enhancing perform-

ance. Finally, we present integrated approach to merge the multiple design schemes and

conclude this work in Chapters IX and X.

6

CHAPTER II

BACKGROUND AND RELATED WORKS

A. Coarse-Grained Reconfigurable Architecture

A recent trend in the architectural platforms for embedded systems is the adoption of

reconfigurable computing elements for cost, performance, and flexibility issues [1].

Coarse-Grained Reconfigurable Architectures (CGRAs) [1] exploit both the flexibility

and efficiency, and are shown to be a generally better solution for compute-intensive ap-

plications than fine-grained reconfigurable architectures. There are different styles of

CGRAs, but many architectures are based on 2D array of ALU-like datapath blocks.

These are particularly interesting due to the wide acceptance in recent reconfigurable

processors as well as their expected high performance for many heavy-load applications

in the domains of signal processing, multimedia, communication, security, and so on.

Typically, a CGRA consists of a main processor, a Reconfigurable Array Architec-

ture (RAA), and their interface as Fig. 1. The RAA has identical processing elements

(PEs) containing functional units and a few storage units such as ALU, multiplier, shifter

and register file. The data buffer provides operand data to PE array through a high-

bandwidth data bus. The configuration cache (or context memory) stores the context

words used for configuring the PE array elements. The context register between a PE

and a cache element (CE) in configuration cache is used to keep the cache access path

from being the critical path of the CGRA.

7

Processing
Element (PE)

Main
Processor

Main
memory data buffer

Context
registers

Reconfigurable Array Architecture (RAA)

Configuration
Cache

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

CE CE CE CE

CE CE CE CE

CE CE CE CE

CE CE CE CE

Fig. 1. Block diagram of general CGRA.

Unlike FPGA (most typical of a fine-grained reconfigurable architecture), which

are built with bit-level configurable logic blocks (CLBs), CGRA is built with PEs, which

are word-level configurable functional blocks. By raising the granularity of operations

from a bit to a word, CGRA can improve on the speed and the performance as well as

the resource utilization for compute-intensive applications. Another consequence of this

raised granularity is that whereas FPGA can be used for implementing any digital cir-

cuits, CGRA is targeted only for a limited set of applications, although different CGRAs

may target different application domains. Still, CGRA retains the idea of “reprogramma-

ble hardware” in the reprogrammable interconnects as well as in the configurable func-

tional blocks (i.e., PEs). Moreover, since the amount of the configuration bit-stream is

greatly reduced through the raised granularity, the configuration can be actually changed

even at the runtime very fast. Most of the CGRAs feature single-cycle configuration

change, fetching the configuration data from a distributed local cache. This unique com-

8

bination of efficiency and flexibility, which in the main advantage of CGRA, explains an

evaluation result [2] that under certain conditions CGRAs are actually more cost-

effective for wireless communication applications than alternatives such as FPGA im-

plementations as well as DSP architectures. It is worth mentioning that the improved ef-

ficiency of CGRAs in terms of the speed, performance, and area is a result of the archi-

tecture specialization for compute-intensive applications.

B. Related Works

Many kinds of coarse-grained reconfigurable architecture have been proposed with the

increasing interests in reconfigurable computing until 2001 [1]. These CGRAs can be

classified into two cases: mesh-based reconfigurable array and linear reconfigurable ar-

ray. Mesh-based reconfigurable arrays arrange their processing elements (PEs) mainly as

a rectangular 2-D array with horizontal and vertical connections, which support rich

communication resources for efficient parallelism. In the case of linear reconfigurable

arrays, they support pipelined execution for stream-based applications with static or dy-

namic reconfiguration. MorphoSys [3] and REMARC [4] are representations of mesh-

based architectures. MorphoSys consists of Tiny_RISC processor, RC (Reconfigurable

Cell) array, frame buffer, context memory and DMA controller. RC array is an 8×8 array

of ALUs that performs 16-bit operations based on SIMD programming model. RE-

MARC consists of a global control unit and an 8x8 array of nano processors. A nano

processor consists of an ALU, a 16-entry data RAM, an 8-entry register file, data input

registers and data output registers. The configuration for each nano processor is stored in

the 32-entry instruction RAM to support MIMD execution model as well as SIMD

9

model. RaPiD [5] and PipeRench [6][7] have linear array structure. RaPiD provides dif-

ferent computing resources like ALUs, RAMs, multipliers and registers. These resources

are irregularly distributed on one dimension and are mostly static reconfigured. However,

PipeRench [6][7] relies on dynamic reconfiguration, allowing the reconfiguration of a

processing element (PE) in each execution cycle. It consists of strips composed of inter-

connect and PEs with registers and ALUs. The reconfigurable fabric allows the configu-

ration of a pipeline stage in every cycle, while concurrently executing all other stages.

Since then, many more new CGRAs [2][8][9][10][11][12][13][14] [15][16][17][18]

[19] have been continuously proposed and evolved. Most of them comprise of a fixed set

of specialized processing elements (PEs) and interconnection fabrics between them. The

run-time control of the operation of each PE and the interconnection provides the recon-

figurability.

However, such fixed architecture has limitations in optimizing the area cost and

performance for various applications. For example, MorphoSys [3] consists of 8x8 array

of Reconfigurable Cell coupled with Tiny_RISC processor through system bus. It shows

good performance for regular code segments in computation intensive domains but re-

quires large amount of area and power consumption. XPP configurable system-on-chip

architecture [10] is another example. XPP has 4 x 4 or 8 x 8 reconfigurable array and

LEON processor with AMBA bus architecture. A processing element of XPP is com-

posed of an ALU and some registers. Since the processing elements do not include

heavy resources, the total area cost is not high but the range of applicable domains is re-

stricted. In addition, XPP shows significant communication overhead between the proc-

10

essor and RAA through the system bus. REMARC [4] is reconfigurable Multimedia Ar-

ray Coprocessor that consists of a global control unit and an 8x8 array of nano proces-

sors. The nano processors do not also include heavy resources like XPP but it also re-

stricts the range of applicable domains. However, the communication with main proces-

sor is faster than [3] or [20] because the processor can access the register-set by coproc-

essor data transfer instructions. However, limited size of the register-set causes heavy

registers-array traffic restricting performance enhancement. ADRES [21] tightly couples

a VLIW processor and a reconfigurable matrix through shared register file. The recon-

figurable matrix is used to accelerate the dataflow-like kernels in a highly parallel way,

whereas the VLIW processor executes the non-kernel code by exploiting instruction-

level parallelism. Even though it also provides the fast communication speed between

VLIW and the matrix but the entire structure is very dependent on VLIW processor ar-

chitecture and it require huge register file for the communication. Therefore, the per-

formance is limited by size of the register file. Most design space exploration techniques

previously suggested are limited to the configuration of the internal structure of a PE and

the interconnection scheme. Such configuration techniques are in general good at obtain-

ing high performance but require high hardware cost. This is mainly because even a

primitive PE design should be equipped with basic functional resources to gain reason-

able performance. Moreover, adding a small functional block to a primitive PE design

increases the total cost of the aggregate architecture a lot. In ADRES template [21], an

XML-based architecture description language is used to define the overall topology,

supported operation set, resource allocation, timing, and even internal organization of

11

each processing element. KressArray [20] also defines the exploration properties such as

array size, interconnections, and functionality of certain processing elements. However,

both templates do not support common resources shared among processing elements,

thus some critical functional resources may have low utilization while occupying large

area.

The research on low power CGRA has three different aspects: architecture explora-

tion, code compilation & mapping and physical implementation. Although the architec-

ture exploration flows that have been suggested in [8][20][21] [22][23][24][25][26][27]

[28] generate a good instance of CGRA considering area and performance, they do not

deal with power consumption. Interconnect architecture explorations have been sug-

gested for low energy [21][29]. Because CGRA has complex interconnection for per-

formance and flexibility, power consumption due to interconnection is crucial. In [8][29]

the authors have proposed energy-aware interconnection exploration to minimize energy

by changing the topology between global register file and function units. However, this

exploration only provides the trade-off between performance and energy. In [30] the au-

thors have suggested hierarchical generalized mesh structure exploration that continues

to exploit locality while reducing the cost of long connections but it has been only evalu-

ated for specific reconfigurable DSPs. In the case of code compilation and mapping,

loops are exploited mainly for performance [9][31][32][33][34][35][36][37][38][39][40]

[43][44]. Many reconfigurable architectures have been implemented with various tech-

nologies [6][10][12][43][44][45][46]. Most of these researches have focused on efficient

design with respect to small area and high performance. In [6][8], even though authors

12

have presented power estimation data of the implemented architectures, these are only

accessorial results and they do not offer power/energy-aware implementation. In [2][14],

authors have emphasized that the implemented architectures are power-efficient as com-

pared to fine-grained architectures such as FPGA running specific applications. These

architectures are not general CGRA but specific for running some applications with low

power consumption. In [6], the authors have fabricated PipeRench [7] in a 0.18 micron

process. Their experimental results show that the power consumption is significantly

high. Authors describe that the increase in power consumption is due to the dynamic re-

configuration requiring frequent configuration and state memory accesses. Hence, that

power consumption by dynamic reconfiguration is a serious overhead as compared to

other types of IP cores such as ASIC or ASIP.

13

CHAPTER III

BASE CGRA IMPLEMENTATION

We have first designed a conventional CGRA as the base architecture and implemented

it at the RT-level. This conventional architecture will be used throughout this disserta-

tion as a reference for quantitative comparison with our cost-effective approaches.

A. Reconfigurable Array Architecture Coupling with Processor

A typical coarse-grained reconfigurable architecture consists of a microprocessor, a Re-

configurable Array Architecture (RAA), and their interface. We can consider three ways

of connecting the RAA to the processor [47]. First, the array can be connected to a bus

as an ‘Attached IP’ shown in Fig. 2(a). Secondly, the array can be placed next to the

processor as a ‘Coprocessor’ as shown in Fig. 2(b). In this case, the communication is

done using a protocol similar to those used for floating point coprocessors. Finally, the

array can be placed inside the processor like a ‘FU (Functional Unit)’ as shown in Fig.

2(c). In this case, the instruction decoder issues special instructions to perform specific

functions on the reconfigurable array as if it were one of the standard functional units of

the processor.

14

System bus

Processor Memory

RAA

 System bus

Processor

Memory

RAA

Co‐processor
interface

MUX unit

(a) Attached IP (b) Coprocessor

Processor

RAA

System bus

Memory

(c) Functional unit

Fig. 2. Basic types of reconfigurable array coupling.

RISC
Processor

External
RAM Interface

AHB

DMA
Controller

Cache
Controller

Configuration
Memory

Configuration
Cache

Data
Memory

Frame
Buffer

PE Array

Execution
Controller

Frame Buffer
Controller

Reconfigurable Array Architecture (RAA)

Fig. 3. Block diagram of base CGRA.

We have implemented the first type of reconfigurable architecture connecting the

RAA as an Attached IP. In this case, the speed improvement using the RAA may have to

15

compensate for significant communication overhead. However, the main benefit of this

type is the ease of constructing such a system using a standard processor and standard

reconfigurable array without any modification. It consists of a RISC processor, a main

memory block, a DMA controller, and an RAA. The RISC processor is a 32-bit proces-

sor which is small and simple with three pipeline stages and the communication bus is

AMBA AHB [48], which couples the RISC processor and the DMA controller as master

devices and the RAA as a slave device. The RISC processor executes control intensive,

irregular code segments and the RAA executes data-intensive kernel code segments. The

block diagram of the entire reconfigurable architecture is shown in Fig. 3.

B. Base Reconfigurable Array Architecture

Base RAA is similar to MorphoSys [3], which is a very representative CGRA showing

high performance and flexibility as well as physical implementation. The difference

from MorphoSys is that the proposed architecture supports both SIMD and MIMD exe-

cution model whereas the memory structure (frame buffer and configuration cache) of

MorphoSys supports only the SIMD model. The SIMD model is efficient for data paral-

lelism since it saves configurations and cache storage by sharing an instruction for mul-

tiple data. But its execution models are limited in that each individual PE cannot execute

different instructions independently at the same time. Therefore, we take MIMD-style

CGRA in which each PE can be configured separately to facilitate processing its own

instructions. Since it allows more versatile configurations than their SIMD-style siblings,

we adopt more general forms of loop pipelining [32] through simultaneous execution of

multiple iterations of a loop in a pipeline.

16

MUX A MUX B

To other PEs

DA DB

Register
File

From other PEs

17‐bit

17‐bit

From Cache
Element

R0 R1 R2 R3

32‐bit

16‐bit
32‐bit

REG

Shift Logic

16‐bit 16‐bit

D_OUT

16‐bit 16‐bit

16‐bit

Output
Register

32‐bit

Context Word

Data Signal

Control Signal

Data Signal

Control Signal

Symbol MeaningSymbol Meaning

DA, DB From Frame Buffer

D_OUT To Frame Buffer

DA, DB From Frame Buffer

D_OUT To Frame Buffer

SAT Logic

A L U, MULT

Fig. 4. Processing element structure of base RAA.

Base architecture specification is determined by our target application domain in-

cluding audio/video codec as well as various benchmark kernels. Detailed features of

each component of the architecture are as follows.

1. Processing Element

Each PE is a dynamically reconfigurable unit executing arithmetic and logical operations.

The inner structure of a PE is shown in Fig. 4. A PE contains a 16-bit ALU, 16 x 16-bit

array multiplier, shift logic, Arithmetic saturation (SAT_Logic), multiplexors and regis-

ters.

2. PE Array

The PE array is an 8x8 reconfigurable array of PEs, which we think is big enough for

17

most of the applications considered in our experiments. We assume that computation

model of the array is loop pipelining based on temporal mapping [32] for high perform-

ance - each iteration of application kernel (critical loop) is mapped onto each column of

Interconnection

in column direction

PE

PE

PE

PE

PE

PE

PE

PE
CE

PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

CE
PE
CECE

PE

PE PE PE PE PE PE PE PE

Interconnection in row direction

From Frame
Buffer

To Frame
Buffer

Global Bus

Pair‐Wise

Hopping

Fig. 5. Interconnection structure of PE array.

square array. Therefore, in this PE array, columns have more interconnection than rows.

Fig. 5 shows interconnection structure of the PE array. The interconnection in rows is

used mainly for the communication taking care of loop-carried dependencies. Columns

and rows have nearest-neighbor and hopping interconnections for connectivity between

two PEs in a half column and a half row. In addition, each column has pair-wise inter-

connections and two global buses for connectivity between two half columns. Each row

shares two read-buses and one write-bus.

18

3. Frame Buffer

Frame buffer (FB) of MorphoSys does not support concurrency between the load of two

operands and the store of result in a same column, since it is not needed in SIMD-style

mapping. However, in the case of MIMD-style execution, concurrent load and store op-

erations can happen between different loop iterations. So our FB has two sets of buffers,

each having three banks: one bank connected to the write bus and the other two banks

PE

8‐bit

Cache
Controller

CS signal
(8 x 8‐bit)

CECE CECE CECE

REG

PE

REG

PE

REG

PE

CECE CECE CECE

REG

PE

REG

PE

REG

PE

CECE CECE CECE

REG

PE

REG

PE

REG

8 Rows

Context RegisterContext RegisterREG

Cache Element

Processing
Element

Cache Element

Processing
Element

PE

CECE

Symbol MeaningSymbol Meaning

CECE CECE CECE

PE

REG

PE

REG

PE

REG

CECE CECE CECE

PE

REG

PE

REG

PE

REG

CECE CECE CECE

PE

REG

PE

REG

PE

REG

8 Columns

Fig. 6. Distributed configuration cache structure.

connected to the read buses. However, any combination of one-to-one mapping between

the three banks and the three buses is possible.

4. Configuration Cache

The context memory of MorphoSys is designed for broadcasting configuration. So PEs

19

in the same row or column share the same context word for SIMD-style operation [3].

However, in the case of MIMD-style operation, each PE can be configured by different

context word. Our configuration cache is composed of 64 Cache Elements (CEs) and a

cache controller for controlling the CEs (Fig. 6). Each CE has 32 layers, each of which

stores a context that configures the corresponding PE. The context register between a PE

and a CE is used to keep the cache access path from being the critical path of the CGRA.

5 Execution Controller

Controlling the PE array execution directly from the main processor through AMBA

AHB will cause high overhead in the main processor. In addition, the latency of the con-

trol will degrade the performance of the whole system, especially when dynamic recon-

figuration is used. So a separate control unit is necessary to control the execution of the

PE array every cycle. The execution controller receives the encoded control data from

the main processor. The control data contains read/write mode and addresses of frame

buffer and cache for guaranteeing correct operations of the PE array.

C. Breakdown of Area, Delay, and Power Cost

We have implemented the base architecture shown in Fig. 2 at the RT-level with VHDL.

We have synthesized a gate-level circuit from the VHDL description and analyzed area,

delay, and power cost. The synthesis has been done using Design Compiler [49] with

0.18 ㎛ technology. We have used DesignWare [49] library for the multipliers (carry-

save array synthesis model) and dividers (restoring carry-look-ahead, 2-way overlapped

synthesis model). SRAM Macro Cell library is used for the frame buffer and configura-

tion cache. ModelSim [50] and PrimePower [49] have been used for gate-level simula-

20

tion and power estimation.

DMA 1%

AMBA 1%

RISC 5%

RAA 90%

Interconnection 3%

RAA: 896318 GEs

RISC: 53670 GEs

AMBA: 37777 GEs

DMA: 8911 GEs

Interconnection : 31433 GEs

GEs : Gate Equivalents

(a) Entire CGRA

Frame Buffer
13%

Configuration
Cache
15%

PE Array
70%

Execution Controller
2%

Execution Controller: 4009 GEs

PE Array: 659635 GEs

Configuration Cache: 150012 GEs

Frame Buffer: 129086 GEs

GEs : Gate Equivalents

Frame Buffer
13%

Configuration
Cache
15%

PE Array
70%

Execution Controller
2%

Execution Controller: 4009 GEs

PE Array: 659635 GEs

Configuration Cache: 150012 GEs

Frame Buffer: 129086 GEs

GEs : Gate Equivalents

Frame Buffer
13%

Configuration
Cache
15%

PE Array
70%

Execution Controller
2%

Execution Controller: 4009 GEs

PE Array: 659635 GEs

Configuration Cache: 150012 GEs

Frame Buffer: 129086 GEs

GEs : Gate Equivalents

(b) RAA

Fig. 7. Area cost breakdown for CGRA.

1. Area and Delay

As shown in Fig. 7 (a), the RAA occupies as much as 90 % of the total area of the

CGRA. Fig. 7 (b) shows more detailed area breakdown in the RAA. The PE array occu-

pies as much as 70.5 % of the total area of the RAA, which is mainly due to heavy com-

21

putational resources such as ALU, multiplier, etc. in each PE. The critical path of the

entire RAA is also in the PEs and its delay is given by

TCritical path = TMultiplexor + TMultiplier + TShift_logic+Tothers (1)

(8.96ns = 0.32ns + 5.21ns + 1.42ns + 1.78ns)

From the area and delay cost breakdown of the RAA as shown in Figs. 7 and 8, we see

that PE array design is crucial for cost-effective design. In the case of area, Fig. 8 (a)

shows that multiplier occupies about 33.4% of the total area in a PE. In the case of delay,

the multiplier again takes as much as 58.12 % (Fig. 8 (b)). Therefore, in our PE design,

the multiplier is considered to be area-critical and delay-critical resource.

5.4%
3.7%

6.6%6.6%

33.4%

18.1%
20.6%

5.7%

0

500

1000

1500

2000

2500

3000

3500

4000

M
ul
tip
lex
or

AL
U

Sh
ift
 Lo
gic

M
ul
tip
ile
r

Re
gis
te
r F
ile

Co
nt
ex
t R
eg
ist
er

Ou
tp
ut
 R
eg
ist
er

In
te
rco
nn
ec
tio
n

Gate Equivalents

5.4%
3.7%

6.6%6.6%

33.4%

18.1%
20.6%

5.7%

0

500

1000

1500

2000

2500

3000

3500

4000

M
ul
tip
lex
or

AL
U

Sh
ift
 Lo
gic

M
ul
tip
ile
r

Re
gis
te
r F
ile

Co
nt
ex
t R
eg
ist
er

Ou
tp
ut
 R
eg
ist
er

In
te
rco
nn
ec
tio
n

Gate Equivalents

(a) Area

Fig. 8. Cost analysis for a PE.

22

3.46%5.69%6.47%

58.12%

14.84%

20.64%

5.80%

0

1

2

3

4

5

6

M
ul
tip
lex
or

AL
U

Sh
ift
 Lo
gic

M
ult
ip
ile
r

Re
gis
te
r F
ile

Co
nt
ex
t R
eg
ist
er

Ou
tp
ut
 R
eg
ist
er

Delay(ns)

(b) Delay

Fig. 8. Continued.

DMA 0.9%

RISC+AHB+Interconnection 7%

Reconfigurable Array

Architecture

92.09%

Reconfigurable Array
Architecture : 417.33 mW

DMA : 4.23 mW

RISC+AHB+Interconnection
: 31.64 mW

(a) Entire CGRA

Fig. 9. Power cost breakdown for CGRA running 2D-FDCT.

23

Execution
Controller 0.3%

Frame Buffer
3.4%

Configuration
Cache
45.3%

PE Array
50.8%

PE Array : 212.25mW

Configuration Cache : 190.03mW

Frame Buffer : 15.05mW

Execution Controller : 1.28mW

(b) RAA

Fig. 9. Continued.

2. Power

To obtain power breakdown data, we have used 2D-FDCT as the kernel for simulation-

based power measurement. The simulation has been done under the typical operating

condition of 100 MHz frequency, 1.8 V Vdd, and 27℃ temperature. As can be observed

from Fig. 9 (a), the RAA spends about 92.09% of the total power consumed in CGRA.

Fig. 9 (b) shows more detailed power breakdown in the RAA. The RAA spends about

50.8% of its total power in the PE array, which consists of many components such as

ALUs, multipliers, shifters and register files. The PE array consumes most of the power,

which is natural because coarse-grained architecture aims to achieve high performance

and flexibility with plenty of resources. The configuration cache spends about 45.3% of

the overall power, which is the second largest. Even though the frame buffer uses the

same kind of SRAM as the configuration cache, it consumes much less power (3.4%).

24

This is because the configuration cache performs read operations frequently to load the

context words, one for each PE, whereas the frame buffer performs load/store operations

less frequently to access data on row basis rather than for every PE.

25

CHAPTER IV

LOW POWER RECONFIGURATION TECHNIQUE

In this chapter, we suggest a novel power-conscious architectural technique called reus-

able context pipelining (RCP) to reduce power consumption in configuration cache [51].

RCP is a universal approach in reducing power and enhancing performance for CGRA

because it can be achieved by closing the power-performance gap between low power-

oriented spatial mapping and high performance-oriented temporal mapping. Furthermore,

we propose new configuration cache structure (called hybrid configuration cache) to

support reusable context pipelining with reduced memory size. Experimental results

show that the proposed approach saves much power even with reduced configuration

cache size. Power reduction ratio in the configuration cache and the entire architecture

are up to 86.33 % and 47.60 % respectively compared to the base architecture.

A. Motivation

In this section, we present the motivation of our power-conscious approaches. The main

motivation is due to the characteristics of loop pipelining (spatial mapping and temporal

mapping) [32] based on MIMD-style execution model.

1. Loop Pipelining

To represent the characteristics of loop pipelining [32], we examine the difference be-

tween SIMD and MIMD in the RAA with a simple example. We assume a mesh-based

4x4 coarse-grained reconfigurable array of PEs, where a PE is a basic reconfigurable

26

CECE CECE CECE CECE

PE PE PE PE

CECE CECE CECE CECE

CECE CECE CECE CECE

CECE CECE CECE CECE

PE PE PE PE

PE PE PE PE

PE PE PE PE

(a) Distributed cache structure

Bank A

Bank B

Bank C

D
E
M
U
X

Frame Buffer PE Array

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

M
U
X

MeaningSymbol

bus tap to tap off partial bits of a bus

MeaningSymbol

bus tap to tap off partial bits of a bus

n‐bit

4n‐bit

4n‐bit

4n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

4n‐bit

(b) Frame buffer and data bus

Fig. 10. 4x4 reconfigurable array.

27

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

(c) Nearest neighbor interconnection (d) Global bus interconnection

Fig. 10. Continued.

 element composed of an ALU, an array multiplier, etc. and the configuration is con-

trolled by the words stored in the CE as shown in Fig. 10 (a). In addition, we assume that

Frame Buffer has simply one set having three banks and two read-ports and one write-

port, supporting any combination of one-to-one mapping between the three banks and

the three buses. Fig. 10 (b) shows such a Frame Buffer and data bus structure, where the

PEs in each row of the array share two read buses and one write bus. The 4x4 array has

nearest neighbor interconnections as shown in Fig. 10 (c) and each row or each column

has a global bus as shown in Fig. 10 (d).

28

for (i = 0; i <= 3; i = i+1)
{

for (j = 0; j <= 3; j = j+1)
z[i] = (x[i][j]+y[i][j])*c[j] + z[i];

z[i] = K* z[i];
}

for (i = 0; i <= 3; i = i+1)
{

t1 = x[i][0]+y[i][0] ;
t2 = x[i][1]+y[i][1] ;
t3 = x[i][2]+y[i][2] ;
t4 = x[i][3]+y[i][3] ;

t1 = t1*c[0];
t2 = t2*c[2];
t3 = t3*c[3];
t4 = t4*c[4];

tmp1 = t1+ t2 ;
tmp2 = t3+ t4 ;

z[i] = tmp1+ tmp2 ;

z[i] = K*z[i]
}

LD/+

×

2+

1+

×/ST

(a) Before parallelization (b) After parallelization

Fig. 11. C-code of Eq. (2).

Consider a square matrix X and Y, both of order N, and the computation of Z, an N

element vector, given by

∑
−

=

×+×=
1

0
)}(),(),({()(

N

j
jCjiYjiXKiZ (2)

where i, j = 0,1,…,N-1, C(j) is a constant vector, and K is a constant.

Consider N = 4 for the mapping of the computation defined in Eq. (2) on our 4x4 PE ar-

ray and let the computation be given as a C-program (Fig. 11 (a)). It is assumed that the

input matrix X, Y, constant vector C and output vector Z are stored in the arrays x[i][j],

y[i][j], c[j] and z[i], and z[i] is initialized to zero. Fig. 11 (b) shows parallelized code for

execution on the array as shown in Fig. 12, where we assume that matrix X and Y have

been loaded into the Frame Buffer (FB) and all of the constants (C and K) have been al-

ready saved in a register file of each PE. Vector Z is stored in the FB after it has been

29

processed by the PE array as shown in Fig. 12 (a).

x[3][3]
x[3][2]
x[3][1]
x[3][0]

x[2][3]
x[2][2]
x[2][1]
x[2][0]

x[1][3]
x[1][2]
x[1][1]
x[1][0]

x[0][3]
x[0][2]
x[0][1]
x[0][0]

x[3][3]
x[3][2]
x[3][1]
x[3][0]

x[2][3]
x[2][2]
x[2][1]
x[2][0]

x[1][3]
x[1][2]
x[1][1]
x[1][0]

x[0][3]
x[0][2]
x[0][1]
x[0][0]

z[3]
z[2]
z[1]
z[0]

z[3]
z[2]
z[1]
z[0]

Bank A

Bank C

y[3][3]
y[3][2]
y[3][1]
y[3][0]

y[2][3]
y[2][2]
y[2][1]
y[2][0]

y[1][3]
y[1][2]
y[1][1]
y[1][0]

y[0][3]
y[0][2]
y[0][1]
y[0][0]

y[3][3]
y[3][2]
y[3][1]
y[3][0]

y[2][3]
y[2][2]
y[2][1]
y[2][0]

y[1][3]
y[1][2]
y[1][1]
y[1][0]

y[0][3]
y[0][2]
y[0][1]
y[0][0]

Bank A

CECE

CECE CECE CECE

PE PE PE PE

CECE

CECE

CECE

CECE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Column Direction

Row Direction

(a) Operand and result data in FB (b) Configuration broadcast

LD/+ Data Load and Addition

NOP No Operation

LD/+ Data Load and Addition

NOP No Operation

Symbol MeaningSymbol Meaning

× Multiplication× Multiplication

1+, 2+ Addition1+, 2+ Addition

×/ST Multiplication and Store×/ST Multiplication and Store

Broadcast Column Direction Row Direction Column Direction

Cycle Time 1 2 3 4 5 6 7 8 9 10 11

Column#1 LD/+ NOP NOP NOP × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ NOP NOP × 1+ 2+ NOP ×/ST NOP NOP

Column#3 LD/+ NOP × 1+ 2+ NOP NOP ×/ST NOP

Column#4 LD/+ × 1+ 2+ NOP NOP NOP ×/ST

Broadcast Column Direction Row Direction Column Direction

Cycle Time 1 2 3 4 5 6 7 8 9 10 11

Column#1 LD/+ NOP NOP NOP × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ NOP NOP × 1+ 2+ NOP ×/ST NOP NOP

Column#3 LD/+ NOP × 1+ 2+ NOP NOP ×/ST NOP

Column#4 LD/+ × 1+ 2+ NOP NOP NOP ×/ST

(c) SIMD model

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ × 1+ 2+ ×/ST NOP NOP

Column#3 LD/+ × 1+ 2+ ×/ST NOP

Column#4 LD/+ × 1+ 2+ ×/ST

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ × 1+ 2+ ×/ST NOP NOP

Column#3 LD/+ × 1+ 2+ ×/ST NOP

Column#4 LD/+ × 1+ 2+ ×/ST

(d) Loop pipelining schedule

Fig. 12. Execution model for CGRA.

30

The SIMD-based scheduling enables parallel execution of multiple loop iterations

as shown in Fig. 12 (c), whereas the MIMD-based scheduling enables loop pipelining as

shown in Fig. 12 (d). The first row of Fig. 12 (c) represents the direction of configuration

broadcast. The second row of Fig. 12 (c) and the first row of Fig. 12 (d) indicate the

schedule time in cycles from the start of the loop. In the case of SIMD model, load and

addition operations in PEs are executed on all columns till 4th cycle with broadcast in

column direction. Then the PEs in a row perform the same operation with broadcast in

row direction. In the case of loop pipelining, PEs in the first column perform load and

addition operations in the first cycle and then perform multiplications in the second cycle.

In the next two cycles, the PEs in the first column perform summations, while the PEs in

the next column perform multiplication and summation operations. When the first col-

umn performs the multiplication/store operation in the 5th cycle, the fourth column per-

forms multiplication. Comparing the latency, SIMD takes three more cycles.

As shown in this example, SIMD model does not utilize PEs efficiently since all

data should be loaded before the computations of the same type are performed synchro-

nously. On the other hand, since MIMD allows any type of computations at any moment,

it does not need to wait for a specific data to be loaded but can process other data that is

readily available. Loop pipelining is an effective way of exploiting this fact, thereby util-

izing PEs better. The loop pipelining in the example of Fig. 11 improves the perform-

ance by three cycles compared to the SIMD, but for loops with more frequent memory

operations, it will have higher performance improvement.

31

2. Spatial Mapping and Temporal Mapping

When mapping kernels onto the reconfigurable architecture with loop pipelining, we can

consider two mapping techniques [32]: spatial mapping and temporal mapping. Fig. 13

shows the difference between the two techniques with the previous example. In the case

of temporal mapping (Fig. 13 (a)), like the previous illustration of loop pipelining in Fig.

12 (d), a PE executes multiple operations within a loop by changing the configuration

dynamically. Therefore, complex loops having many operations with heavy data de-

pendencies can be mapped better in temporal fashion, provided that the configuration

cache has sufficient layers to execute the whole loop body.

In the case of spatial mapping, a loop body is spatially mapped onto the reconfigur-

able array implying that each PE executes a fixed operation with static configuration as

shown in Fig. 13 (b). The advantage of spatial mapping is that it may not need recon-

figuration during execution of a loop. As can be seen from Fig. 13, spatial mapping

needs only one or two cache layers whereas temporal mapping needs 4 cache layers. One

disadvantage of spatial mapping is that spreading all the operations of the loop body

over the limited reconfigurable array may require too many resources. Moreover, data

dependencies between the operations should be taken care of by allocating interconnect

resources to provide a path and inserting registers (or using PEs) in the path to synchro-

nize the arrival of operands. Therefore, if the loop is simple enough to map the loop

body to the limited reconfigurable array and there is not much data dependency between

the operations, then spatial mapping is the right choice. The effectiveness of the mapping

strategies depends on the characteristics of the target architecture as well as the target

32

application.

Distributed Cache with 1 or 2 layers

NOP

NOP

+

NOP

NOP

+

+

NOP

×

×

×

×

NOP

NOP

×ST

NOP

LD/+

1+
2+

LD/+

×

LD/+

×

×/ST

LD/+

2+
×/ST

Distributed Cache with 5 Layers

×/ST

Operation : Operation executed at the 5th cycle

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ × 1+ 2+ ×/ST NOP NOP

Column#3 LD/+ × 1+ 2+ ×/ST NOP

Column#4 LD/+ × 1+ 2+ ×/ST

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ × 1+ 2+ ×/ST NOP NOP

Column#3 LD/+ × 1+ 2+ ×/ST NOP

Column#4 LD/+ × 1+ 2+ ×/ST

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ LD/+ LD/+ LD/+ ×/ST ×/ST ×/ST ×/ST

Column#2 × × × × NOP NOP NOP

Column#3 1+ 1+ 1+ 1+ NOP NOP

Column#4 2+ 2+ 2+ 2+ NOP

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ LD/+ LD/+ LD/+ ×/ST ×/ST ×/ST ×/ST

Column#2 × × × × NOP NOP NOP

Column#3 1+ 1+ 1+ 1+ NOP NOP

Column#4 2+ 2+ 2+ 2+ NOP

×

×/ST
2+

1+
2+
1+ 1+

×

×/ST

LD/+

NOP

NOP

×/ST

NOP

*1+ 2+

NOP

+

+

NOP

NOP

NOP

+

NOP

×

×

×

×

×

(a) Temporal mapping (b) Spatial mapping

Fig. 13. Comparison between temporal mapping and spatial mapping.

B. Individual Approaches to Reduce Power in Configuration Cache

In this section, we suggest individual power-conscious approaches for two different exe-

cution models (spatial mapping and temporal mapping) and describe their limitations.

These approaches achieve the goal by making use of the characteristics of spatial map-

ping and temporal mapping [52][53][54].

33

1. Spatial Mapping with Context Reuse

Because most power consumption in the configuration cache is due to memory read-

operations, one of the most effective ways to achieve power reduction in the configurati-

CECE
R
E
G

PE CECE
R
E
G

PE

CECE
R
E
G

PE CECE
R
E
G

PE

CECE
R
E
G

PE CECE
R
E
G

PE

CECE
R
E
G

PE CECE
R
E
G

PE

CECE
R
E
G

PE

CECE
R
E
G

PE

CECE
R
E
G

PE

CECE
R
E
G

PE

CECE
R
E
G

PE

CECE
R
E
G

PE

CECE
R
E
G

PE

CECE
R
E
G

PE

Spatial Cache

REG Enable

R
E
G

P E
CECE

1-bit
CLK

Gated Clock

Fig. 14. Configuration cache structure for context reuse.

on cache is to reduce the frequency of read operations.

Even though temporal mapping is more efficient in mapping complex loops onto

the reconfigurable array, it requires many configuration data layers for each PE and per-

forms power consuming read-operations in every cycle. On the other hand, spatial map-

ping does not need to read a new context word from the cache every cycle because each

34

PE executes a fixed operation within a loop. As shown in Fig. 14, if a context register

between a CE and a PE is implemented by a gated clock, one spatial cache1 read-

operation is enough in spatial mapping to configure PEs for static operations with fixed

output of the context register caused by non-oscillated clock. In summary, spatial map-

ping with context reuse is more efficient than temporal mapping from the viewpoint of

power consumption in configuration cache. However, all kinds of loops cannot be spa-

tially mapped because of the limitation of the spatial mapping. Moreover, if we consider

performance alone, temporal mapping is a better choice for loops having long and com-

plex loop body. In the next subsection, we propose a new cache structure and mapping

technique that reduce power consumption while retaining the merits of temporal map-

ping.

2. Temporal Mapping with Context Pipelining

As shown in Fig. 13 (a), in temporal mapping with loop pipelining, operations flow col-

umn by column from left to right. In Fig. 13 (a) for example, the first column executes

'LD/+' in the first cycle and then in the second cycle, the second column executes 'LD/+'

while the first column executes '×'. In temporal mapping, there is no need for a PE to

have a CE. Instead, only PEs in the first column have CEs and the context word can be

fetched from the left neighboring column. By organizing a pipelined cache structure as

shown in Fig 15, we can propagate the context words column by column through the

pipeline. In this way, we can remove most of the CEs from the array keeping temporal

1 We use the term ‘spatial cache’. Spatial cache is connected to context registers implemented by gated

clock. ‘spatial’ means that such configuration cache is used for spatial mapping with context reuse. This
naming is to differentiate spatial cache from general configuration cache.

35

cache2, thereby saving power consumption without any performance degradation. In

summary, temporal mapping with context pipelining can efficiently support long and

complex loops reducing power consumption in configuration cache. However, temporal

mapping with context pipelining still needs cache-read operations for providing context

words to the first column of PE array whereas spatial mapping with context reuse can

remove cache-read operation after initial cache-read operation.

CE
PE PE PE PER

E
G

R
E
G

R
E
G

R
E
G

CE
PE PE PE PER

E
G

R
E
G

R
E
G

R
E
G

CE
PE PE PE PER

E
G

R
E
G

R
E
G

R
E
G

CE
PE PE PE PER

E
G

R
E
G

R
E
G

R
E
G

CECE
PE PE PE PER

E
G

R
E
G

R
E
G

R
E
G

CECE
PE PE PE PER

E
G

R
E
G

R
E
G

R
E
G

CECE
PE PE PE PER

E
G

R
E
G

R
E
G

R
E
G

CECE
PE PE PE PER

E
G

R
E
G

R
E
G

R
E
G

*

-

>>

Execute2

REG REG

*

+

-

LD

LD

LD

Execute1 Load

REG

>> * LD

Temporal Cache

>>

-

*

+

Execute3

REG

Store

Spatial Cache not used

Execute7

Execute5

Execute6

Load

Execute1

Execute2

Execute3

Execute4

LD

LD

LD

LD

OperationOperation : Operation executed in the current cycle

(a) Cache structure (b) Context pipelining

Fig. 15. Cache structure for context pipelining.

3. Limitation of Individual Approaches

As mentioned in previous section, even though individual low power techniques provide

2 We use the term ‘temporal cache’. Temporal cache is composed of the cache elements connected to

the PEs in the first column. ‘temporal’ means that such CEs are used for temporal mapping with context
pipelining. This naming is to differentiate temporal cache from general configuration cache and spatial
cache.

36

solution to reduce power consumption for spatial mapping and temporal mapping, each

case has both advantage and disadvantage. Spatial mapping with context reuse only need

one cache-read operation for initialization but it can not support the complex loops that

cannot be spatially mapped. However, temporal mapping with context pipelining support

such complex loops but cache-read operations still remain in context pipelining for the

running time. Therefore we should consider the trade-off between performance and

power while deploying these techniques.

We can consider two ways to close the gap between spatial mapping and temporal

mapping. One is to implement more complex architecture to support high performance

spatial mapping by adding additional interconnections or global register files for data

dependency. However, in this case the area cost and mapping complexities will increase.

Another way is to implement low power temporal mapping taking advantage of spatial

mapping with negligible over-head. However, the problem is how to implement this

method. In the next section, we propose new technique to guarantee the advantage of

spatial mapping and temporal mapping. This is achieved by merging the concept of con-

text reuse into context pipelining.

C. Integrated Approach to Reduce Power in Configuration Cache

Filling the gap between two mappings means that context pipelining is executed by reus-

able context words. However, it means conjunction of two mappings that are contrary to

each other. This is because spatial mapping with context reuse requires spatially static

position of each context whereas temporal mapping with context pipelining is performed

with temporally changed context words. To solve this contradiction, we propose to add

37

circular interconnection between the first PE and the last PE in the same row and suggest

a reusable context pipelining using this interconnection.

1. Reusable Context Pipelining

Reusable context pipelining (RCP) means that reusable context words in spatial cache

are pipelined through context registers as context pipelining. Fig. 16 (a) depicts the pro-

posed configuration cache structure for RCP. Even though it is similar to the structure of

Fig. 14 (spatial mapping with context reuse), the new one has two context registers (‘R1’

and ‘R2’) connected to each PE, circular interconnections and less cache layers whereas

the original model had one context register and more cache layers.

CE

R
1

R
2

PECE CE

R
1

R
2

PE PECEPE

R
1

R
2

R
1

R
2

Circular
Interconnection

Spatial Cache

CE

R
1

R
2

PECE CE

R
1

R
2

PE PECEPE

R
1

R
2

R
1

R
2

CE

R
1

R
2

PECE CE

R
1

R
2

PE PECEPE

R
1

R
2

R
1

R
2

CE

R
1

R
2

PECE CE

R
1

R
2

PE PECEPE

R
1

R
2

R
1

R
2

(a) Entire structure

Fig. 16. Proposed configuration cache structure.

38

P ECE

From left Context Register #1
or Circular Interconnection #1 To right Context Register #1

or Circular Interconnection #1

To right Context Register #2
or Circular Interconnection #2

R
E
G
1

M
U
X
2

M
U
X
1

CLK

1-bit
1-bit

1-bit

1-bit
1-bit

R
E
G
2

Gated CLK

From left Context Register #2
or Circular Interconnection #2

REG 1 Enable
REG 2 Enable
Register Select

Select #2
Select #1

From Cache Control Unit

From Cache Control Unit

REG

M
U
X

Zero

(b) Connection between a CE and a PE

Fig. 16. Continued.

The circular interconnections and the context registers are necessary for pipelining

of reusable context words from spatial cache. Fig. 16 (b) shows the detailed structure

between a CE and a PE for RCP. A multiplexer (‘MUX’) is added between context reg-

isters (‘REG1’ and ‘REG2’) and PE for selecting one of the context registers or ‘Zero’.

Each context register is connected to each multiplexer (‘MUX 1’ or ‘MUX 2’) having

two inputs: context word from left context register and context word from spatial cache.

The input from spatial cache is for loading a reusable context word to the context regis-

ter and the input from left context register is for pipelining execution of the loaded con-

39

text word in left context register. Each select signal (‘Select #1’ or ‘Select #2’) connects

one from two inputs to the single output connected with right context registers. Each

context register is implemented by gated clock for holding the output as well as reducing

the wasteful power consumption. All of the select-signals of the multiplexers are gener-

ated by cache control unit.

To present the detailed process of RCP, it is assumed that the matrix-vector multi-

plication given as Eq. (2) is mapped onto the proposed structure like the one in Fig. 17.

Fig 17 (a) shows the context words stored in spatial cache for RCP and Fig. 17 (b) ~ (i)

shows the RCP process from the first cycle to the eighth cycle. Before starting execution,

the cont ext words of first layer in spatial cache are loaded into the first context registers

(‘REG 1’). At the first cycle, the PEs in the first column performs ‘Load’ and the context

word (‘Store’) in spatial cache is loaded to the ‘REG 2’ in the first column while other

columns perform no operation (‘NOP’). At the second cycle, the first column performs

‘Execute1’ from circular interconnection while PEs in the next column perform ‘Load’

from the first column. Then context words in the first registers are sequentially pipelined

for two cycles (the third and forth cycle) and the first column perform ‘Store’ from the

second register at the fifth cycle. Such a context pipelining is continually executed and

finished at the eighth cycle. Therefore, if reusable context words are loaded into context

registers in the circular order, the context words from spatial cache can be rotated for

temporal mapping without temporal cache. It means that spatiality of the array structure

and the added context registers can be utilized for low power in temporal mapping.

40

(b) Execution at the First Cycle

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

Execute3

REG 1REG 1REG 1

Execute1

REG 2
Store

Execute2

NOP

REG 1

REG 2 REG 2 REG 2

Ld

Ld

Ld

Ld

Load

REG 1

REG 2
Store

REG 2 REG 2 REG 2

REG 2
Store

REG 2 REG 2 REG 2REG 2
Store

REG 2 REG 2 REG 2

REG 2
Store

REG 2 REG 2 REG 2REG 2
Store

REG 2 REG 2 REG 2REG 2 REG 2 REG 2

REG 2
Store

REG 2 REG 2 REG 2

LD

LD

LD

REG1 REG1

NOP

NOP

NOP

NOP

NOP

NOP

REG1

LD NOP NOP

*

*

*

*

REG1

Execute3 Execute2Execute1 Load

*

*

*

REG1 REG1

LD

LD

LD

NOP

NOP

NOP

REG1

* LD NOP

+

+

NOP

NOP

REG1
Execute3Execute2 Execute1 Load

+

+

NOP

REG1 REG1

*

*

*

LD

LD

LD

REG1

NOP * LD

+

NOP

NOP

NOP

REG1
Execute3 Execute2 Execute1 Load

(c) Execution at the Second Cycle

(d) Execution at the Third Cycle (e) Execution at the Forth Cycle

(i) Execution at the Eighth Cycle (h) Execution at the Seventh Cycle (g) Execution at the Sixth Cycle

(f) Execution at the Fifth Cycle

+

NOP

NOP

REG1 REG1

+

+

NOP

*

*

*

REG1

NOP NOP *

St

NOP

NOP

NOP

REG1
Load Execute3 Execute2 Execute1

REG1 REG1

+

NOP

NOP

+

+

NOP

NOP NOP

NOP

NOP

NOP

NOP

REG1
Execute1 Execute3 Execute2

NOP

NOP

NOP

REG1 REG1

St

NOP

NOP

+

NOP

NOP

REG1

NOP NOP NOP

NOP

NOP

NOP

NOP

REG1
Execute2 Execute1 Load Execute 3

NOP

NOP

NOP

REG1 REG1

NOP

NOP

NOP

St

NOP

NOP

REG1

NOP NOP NOP

NOP

NOP

NOP

NOP

REG1
Execute3 Execute2 Execute1 Load

REG 2
Store

St

NOP

NOP

REG1

NOP

Load

OperationOperation : Operation executed in the current cycle

NOP
NOP

NOP

Ld

NOP
NOP

St

Ld

NOP
NOP

NOP

Ld

NOP
NOP

NOP

Ld

NOP
NOP

NOP

NOP

NOP
NOP

NOP

+

NOP
NOP

NOP

NOP

NOP
NOP

NOP
NOP

NOP
NOP

NOP

NOP

NOP
NOP

NOP

+

NOP
NOP

NOP

+
NOP

NOP
NOP

NOP

NOP
NOP

NOP

*
NOP

NOP
NOP

*

NOP
NOP

NOP

*
NOP

NOP
NOP

*

Load Execute 3 Execute 2 Execute 1

Spatial Cache

(a)

Fig. 17. Reusable context pipelining for Eq. (2).

41

Temporal
Cache

*

-

>>

REG1 REG1

*

+

-

LD

LD

LD

REG1

>> * LD

>>

-

*

+

REG1

Execute2 Execute1 LoadExecute3

REG2 REG2REG2REG2

Spatial Cache used for initialization of
reusable context pipelining

Execute5

Execute6

Execute7

Execute4

+

-

-

*

Store

Fig. 18. Reusable context pipelining with temporal cache.

2. Limitation of Reusable Context Pipelining

If the loop given in Fig. 15 (b) is mapped onto the 4x4 PE array with added context reg-

isters like Fig. 16 (a), RCP cannot finish entire execution because the given architecture

only supports a maximum number of 8 cycles (2 context registers and 4 columns) for an

iteration of the loop whereas the loop has loop body taking 9 cycles. Therefore, in this

case, temporal cache is necessary to support the entire execution as Fig. 18 - RCP is per-

formed for 4 cycles by register 1 and original context pipelining is performed for 5 cy-

cles by register 2. Hence, RCP guarantees reduction of 4 cache-read operations after

execution of the first iteration. This example shows that power efficiency of reusable

context pipelining can be varied according to the complexity of evaluated loops and ar-

chitecture specification.

42

Col#1
STEX7EX6EX5EX4EX3EX2EX1LDOperation

CacheCacheCacheCacheCacheREG1REG1REG1REG1Cache/REG

i+9i+8i+7i+6i+5i+4i+3i+2i+1Cycle

Col#1
STEX7EX6EX5EX4EX3EX2EX1LDOperation

CacheCacheCacheCacheCacheREG1REG1REG1REG1Cache/REG

i+9i+8i+7i+6i+5i+4i+3i+2i+1Cycle

(a) ith iteration in the case of loop body taking 9 cycles

Col#1
STEX6EX5EX4EX3EX2EX1LDOperation

REG2REG2REG2REG2REG1REG1REG1REG1Cache/REG

i+8i+7i+6i+5i+4i+3i+2i+1Cycle

Col#1
STEX6EX5EX4EX3EX2EX1LDOperation

REG2REG2REG2REG2REG1REG1REG1REG1Cache/REG

i+8i+7i+6i+5i+4i+3i+2i+1Cycle

(b)) ith iteration in the case of loop body taking 8 cycles

Fig. 19. Reusable context pipelining according to the execution time for one iteration (i
> 1).

Therefore, we can estimate how many cache-read operations occur after the first it-

eration under architecture constraints. This is given as follows:

0 if Citer ≤ m×Nctxt (3)
 NTcache_read =

Citer − m×(Nctxt − 1) if Citer > m×Nctxt (4)
where

 NTcache_read : cycle count of temporal cache-read operations after the first iteration
 Citer : cycle count for an iteration of loop
 m : number of columns on reconfigurable array
 Nctxt : number of context registers for a PE

Based on above formula, the optimal case is when the NTcache_read is zero - context regis-

ters are sufficient to support entire loop body without temporal cache read-operations

after the first iteration. Fig. 19 shows two cases of temporal mapping with RCP after the

first iteration. In the case of Fig. 19 (a), it shows the scheduling for previous example in

Fig. 18 and it corresponds to Eq. (4). However, Fig. 19 (b) shows other case that execu-

tion time for an iteration is 8 cycles and it corresponds to Eq. (3).

43

3. Hybrid Configuration Cache Structure

Based on modified interconnection structure as in Fig. 16 (b), we propose a power-

conscious configuration cache structure that supports reusable context pipelining - we

call it hybrid configuration cache including two cache parts – spatial cache for reusable

context pipelining and temporal cache to making up for the limitation of RCP. Fig. 20

shows the modified configuration cache structure to support the example given in Fig.

18. It is composed of cache controller, spatial cache, temporal cache, multiplexer and de-

multiplexer. The cache controller supports the same functions as the previous controller

and in addition it controls increased context registers as well as the selection between

spatial cache and temporal cache. Therefore, the new cache controller is more complex

than the base one but the cache controller supports reusable context pipelining with neg-

ligible area and power overheads. As compared to the distributed cache of base architec-

ture, both spatial cache and temporal cache have much less number of layers since spa-

tial mapping does not require many layers and RCP can save the layer of temporal cache

by up to the number of columns using context registers - the number of spatial cache

layers should be more than the number of context registers connected to a PE because

spatial cache should be able to include context words of several applications. Therefore,

the area cost overhead caused by added context registers offsets because temporal cache

size can be reduced by same size of total added registers. As mentioned earlier, the ap-

proach does not incur any performance degradation and this hybrid structure saves cache

area since we keep only one column with reduced number of temporal CEs and less lay-

ers of spatial CEs compared to distributed configuration cache that has much more layers

44

of CEs.

M
U
X

D
E
M
U
X

Context

Context

CTRL &
Data Signal

Temporal Cache
with few layers CE

CE

CE

CE

CE

CE

CE

CE

Ctrl &
Data Signal

CTRL & Data Signal

Register & Mux Select Signal

Spatial Cache with few layers

Cache
Control

Unit

Select Signal

CE

CE

CE

CE

CE

CE

CE

CE

CE

CE

CE

CE

Context

20-bit2-bit

PE
R
E
G
1

5-bit 5-bit 5-bit 5-bit

R
E
G
2

PE
R
E
G
1

R
E
G
2

PER
E
G
1

R
E
G
2

PE
R
E
G
1

R
E
G
2

PE
R
E
G
1

5-bit 5-bit 5-bit 5-bit

R
E
G
2

PE
R
E
G
1

R
E
G
2

PE
R
E
G
1

R
E
G
2

PE
R
E
G
1

R
E
G
2

PE
R
E
G
1

5-bit 5-bit 5-bit 5-bit

R
E
G
2

PE
R
E
G
1

R
E
G
2

PE
R
E
G
1

R
E
G
2

PE
R
E
G
1

R
E
G
2

5-bit 5-bit 5-bit 5-bit

PE
R
E
G
1

R
E
G
2

PE
R
E
G
1

R
E
G
2

PE
R
E
G
1

R
E
G
2

PE
R
E
G
1

R
E
G
2

20-bit

20-bit

20-bit

20-bit

MeaningSymbol

bus tap to tap off partial bits of a bus

MeaningSymbol

bus tap to tap off partial bits of a bus

Fig. 20. Hybrid configuration cache structure.

D. Application Mapping Flow

We have implemented automatic compilation flow to map applications onto the base ar-

chitecture for supporting temporal mapping [37]. The binary context words for reusable

context pipelining are basically the same as the context words used for the temporal

mapping but these context words should be rearranged for context pipelining with circu-

lar interconnection. Fig. 21 shows entire mapping flow for the base architecture and pro-

posed architecture. Binary context words are automatically generated from the compiler

for temporal mapping. The timing and control information that is used to operate execu-

tion controller is manually optimized and the final encoded data is loaded onto registers

of the execution controller.

45

Applications in C

Compiler for Temporal
Mapping

Spatial Cache Temporal Cache

Initial Context
Binary Context

Context
Rearrangement

Base Configuration
Cache

Hybrid Configuration Cache

Array size
No’ of cache layers
Cycle count for an iteration of loop

Parameters

No’ of context
registers

Timing & Control
Information

Manually Optimized

Execution Controller

Encoded DataEncoded Data
Encoded Data

Fig. 21. Application mapping flow for base architecture and proposed architecture.

1. Temporal Mapping Algorithm

The temporal mapping algorithm minimizes the execution time of kernel codes on the

PE array. This execution time is directly proportional to the number of cache layers in

configuration array. The time, Tcritical is considered as a parameter to be minimized dur-

ing temporal mapping. We implement the temporal mapping in three sequential steps:

covering, time assignment, and place assignment.

a. Covering

For compilation, the original kernel code is initially transformed into a DAG form,

called the kernel DAG using common sub expression elimination technique [55]. One or

more operation nodes in a kernel DAG are scheduled in a single configuration of a PE.

46

For this, we generate a configuration DAG (CDAG) by clustering the nodes in kernel

DAG. A CDAG is used to find the minimum number of configurations for kernel code

execution. To perform this task, we formulate it into a DAG covering problem where

one has to find the minimal cost set of patterns that cover all the nodes in input CDAG.

To efficiently solve our DAG covering problem, we implement our algorithm based on

binate covering [56]. For example, Fig. 22 (a) shows CDAG generation from an input

DAG.

Ld

Ld
-

Ld

Ld
-

Ld

Ld
+

Ld

Ld
+

Ld

Ld
+

Ld

Ld
-

*

*

-

*

+

+

*

*

+

-

+

*

-

+

*

-

*

St

St

St

St

St

St

*

-

+

(a) Covering (b) Time assignment (c) Place assignment

Fig. 22. Temporal mapping steps.

b. Time Assignment

Each node in the CDAG is assigned to a cycle in which the node will be executed. In

order to minimize Tcritical, we must fully exploit the parallel resources provided by the

m×n PE array using modulo scheduling [57]. For example, Fig. 22 (b) shows assignment

schedule obtained after applying modulo scheduling to the CDAG. Note that the cycle in

47

which a node in the CDAG is scheduled as part of a configuration in this phase, and it

represents a layer location inside a configuration cache.

c. Place Assignment

In this phase, we assign all nodes in the CDAG to actual PEs by storing each of them as

a configuration entity in the cache of a PE. We split the PEs in a column into two groups,

called slots. In this phase, the CDAG nodes are first assigned to either slot with resorting

to the ILP solver, and then within each slot, nodes are finally mapped onto actual PEs.

Fig. 22 (c) shows the final mapping results after a place assignment is deployed.

2. Context Rearrangement

 In the case of base architecture, the binary context words generated from the compiler

can be loaded into configuration cache without any modification. However, in the case

of proposed architecture the generated context words are rearranged and properly as-

signed to spatial and temporal cache. The address of each context word in hybrid con-

figuration cache can be represented by three-dimensional position as Fig. 23 (a). Fig. 23

(b) shows pseudo code for context rearrangement algorithm that is easily implemented

based on Eq. (3) and (4). Before explaining the algorithm in detail, we introduce the no-

tations used in the algorithm - NTcache_read , Citer, Nctxt and m are defined in subsection C.2.

 n : number of rows in reconfigurable array
 k, l : number of temporal cache layers, the number of spatial cache layers
 Tctxt , : set of the context words having positions in temporal cache
 Sctxt : set of the context words having positions in spatial cache
 Tctxt(x, y ,z) : context word corresponding the position (x, y, z) in temporal cache
 Sctxt(x, y, z) : context word corresponding the position (x, y, z) in spatial cache

(x : layer index, y : row index, z : column index)

48

Layer k-1
Layer k-2

Layer k-3

Tctxt(k-3, 0)

Layer l-1

ctxt(k-3, 1)

Layer l-2
Layer l-3

Sctxt(l-3,0,0)

Sctxt(l, 1,0)

Sctxt(0, 2, 0)

Sctxt(0, n, 0)

Sctxt(l-3,0,1)

Sctxt(0, 1, 1)

Sctxt(0, 2, 1)

Sctxt(0, n, 1)

Sctxt(l-3,0,m-1)

Sctxt(0,gm-1)

Sctxt(0, m-1)

Sctxt(0, m-1)

Layer 2

Layer 1

Sctxt(0,0,0)

Sctxt(0,1,0)

Sctxt(0,2,0)

Sctxt(0,n-1,0)

Layer 0

Sctxt(0,0,1)

Sctxt(0,1,1)

Sctxt(0,2,1)

Sctxt(0,n-1,1)

Sctxt(0,0,m-1)

Sctxt(0,1,m-1)

Sctxt(0,2,m-1)

Sctxt(0,n-1,m-1)

Tctxt(k-2, 2)

Tctxt(k-2, n-1)

Layer 1

Layer 2

Layer 1

Tctxt(0,0,0)

Tctxt(0,1,0)

Tctxt(0,2,0)

Tctxt(0,n-1,0)

Layer 0

Spatial Cache Temporal Cache

(a) positions of binary contexts in hybrid configuration cache

CONTEXT REARRANGEMENT (Tctxt , m, n, k, Citer , Nctxt)

L1 Sctxt← Ø
L2 p← 0
L3 r← 0
L4 u← 0
L5 if Citer≤ m×Nctxt
L6 then for i ← 0 to k-1
L7 do for j← 0 to n-1
L8 do Sctxt(p, j, r) ← Tctxt(i, j,0)
L9 if r = 0
L10 then r← m - 1
L11 else if r > 1
L12 then r← r – 1
L13 else r← 0, p← p + 1
L14 else u← m×(Nctxt-1)
L15 for i ← 0 to k-1
L16 do if i ≤ u
L17 then for j← 0 to n-1
L18 do Sctxt(p, j, r) ← Tctxt(i, j,0)
L19 if r = 0
L20 then r← m - 1
L21 else if r > 1
L22 then r← r – 1
L23 else r← 0, p← p + 1
L24 else for j← 0 to n-1
L25 do Tctxt(i-u-1, j,0) ← Tctxt(i, j,0)
L26 return Tctxt, Sctxt

(b) rearrangement algorithm.

Fig. 23. Context rearrangement.

49

The code between L1 and L4 initialize temporary variables (p, r, u) and Sctxt. If Nctxt×m

is sufficient to support entire loop body without temporal cache read-operations (L5), all

of the context positions in temporal cache are remapped to the positions in spatial cache

with rearrangement in the circular order (L6 ~ L13). Otherwise, the limited number of

temporal cache layers which can be executed by reusable context pipelining is estimated

(L14), all of the context positions within the limited temporal cache layers are remapped

to the positions in spatial cache (L16 ~ L23) in the same manner as (L6 ~ L13). Then the

layer indices of context positions remaining in temporal cache are updated to fill up the

empty layers.

E. Experiments

1. Experimental Setup

For a fair comparison between the base model and the proposed one, we have imple-

mented two cases of reconfigurable architectures as given in Table I. Base architecture

is as specified in Chapter III. Proposed architecture is same as base architecture but also

includes increased context registers and hybrid configuration cache to support reusable

context pipelining. Two models have been designed at RT-level with VHDL and synthe-

sized using Design Compiler [49] with 0.18 µm technology. We have used SRAM

Macro Cell library for the frame buffer and configuration cache. ModelSim [50] and

PrimePower [49] have been used for gate- level simulation and power estimation respec-

tively. To estimate the power consumption overhead in the proposed model, the context

registers and multiplexers in each case (previous model and proposed architecture) have

been separated from the PE array and those have been included in the configuration

50

cache for each model while implementation. To obtain the power consumption data, we

have used various kernels (Table II) for simulation with same simulation conditions as

the previous one mentioned in Chapter III (subsection C.3) - operation frequency of 100

MHz and typical case of 1.8 V Vdd and 27℃. We have implemented the context rear-

rangement algorithm (Fig. 23) in C++ and the application mapping flow as given in Fig.

21 by adding the algorithm to the compiler for temporal mapping.

2. Results

a. Necessary Context Registers for Evaluated Kernels

We have applied several kernels of Livermore loops benchmark [58], DSPstone [59] and

representative loops in MPEG-4 AAC decoder, H.263 encoder and H.264 decoder to the

base and proposed architectures. To determine necessary number of context registers to

support reusable context pipelining for selected kernels, we have analyzed each case of

selected kernels and Table II shows execution cycle count for an iteration and necessary

number of context registers for each kernel. In the case of 2D-FDCT, it shows 11 execu-

tion cycles and the maximum number of context registers among selected kernels. It

means that composing a PE having 2 context registers is necessary to support reusable

context pipelining for all of the selected kernels. Therefore, each PE in the proposed ar-

chitecture has 2 context registers for reusable context pipelining while base architecture

has one context register as shown in Table I.

51

Table I. Architecture Specification of Base and Proposed Architecture

Parameter Base architec-
ture

Proposed architec-
ture

Number of context registers for a
PE 1 2

Number of rows 8 8

PE Array

Number of columns 8 8

Number of sets and banks 2 sets and
3 banks 2 sets and 3 banks

Bit width 16-bit 16-bit Frame buffer

Bank size 1 KB 1 KB
Number of layers for a CE 32 16
Number of Cache Elements (CEs) 64 72

Configuration
Cache

Bit width of a CE 32-bit 32-bit

Table II. Necessary Context Registers for Evaluated Kernels

Kernels Execution cycle
count for an iteration

Necessary number of
context registers

aFirst_Diff 10 2
aTri-Diagonal 4 1
aHydro 7 2
aICCG 5 1
bDot_Product 5 1
b24-Taps FIR 8 2
Complex Multiplication in
MPEG-4 AAC decoder 10 2

ITRANS in H.264 decoder. 9 2
2D-FDCT in H.263 encoder. 11 2
SAD in H.263 encoder 5 1
Matrix(10x8)-Vector(8x1)
Multiplication(MVM) 5 1
a Livermore loop benchmark suite. b DSPstone benchmark suite.

52

Table III. Size of Configuration Cache and Context Registers
Architecture Size of memory elements

Base Proposed
Reduced(%)

Context registers 256-Byte 512-Byte -
Spatial cache 4096-Byte
Temporal cache 8192-Byte 512-Byte 43.75

Total amount 8448-Byte 5120-Byte 39.39

b. Configuration Cache Size

Both temporal cache and spatial cache of the proposed architecture have 16 layers,

which is half the size of the base architecture. Reducing cache size does not affect per-

formance degradation of evaluated kernels - the size is sufficient to perform the selected

kernels with reusable context pipelining. Table III shows memory size evaluation be-

tween the base architecture and the proposed one. It shows that added context registers

offsets by reduction of temporal cache layers. Compared to the base architecture, we

have reduced the size of memory elements by up to 39.39%. This means that reconfigur-

able architecture with new configuration cache structure is more efficient than previous

one in terms of memory size and power saving.

c. Performance Evaluation

The execution cycle counts of the evaluated kernels on proposed architecture do not vary

from the base architecture because the functionality of proposed architecture is same as

the base model. It also indicates the reusable context pipelining does not cause perform-

ance degradation in terms of the execution cycle count. In addition, the synthesis results

show that the critical path delay of the proposed architecture is same as the base model

i.e. 8.96 ns. It indicates the proposed approach does not cause performance degradation

53

in terms of the critical path delay.

d. Power Evaluation

To demonstrate the effectiveness of our power-conscious approach, we have evaluated

the power consumption of only base architecture with temporal mapping and proposed

architecture with reusable context pipelining on hybrid configuration cache.

Table IV. Power Reduction Ratio by Reusable Context Pipelining

Power(mW) Reduced(%)
Cache Entire Kernels

base proposed base proposed Cache Entire

First_Diff 171.77 28.08 376.17 232.48 83.65 38.20

Tri- Diagonal 174.18 31.58 400.19 257.59 81.87 35.63

Dot_Product 117.84 29.87 328.54 240.57 74.65 26.78

Complex_Mult 180.63 32.82 452.00 304.19 81.83 32.70

Hydro 148.23 32.40 356.47 240.64 78.14 32.49

ICCG 205.80 32.64 434.45 261.29 84.14 39.86

24-Taps FIR 227.56 31.11 471.44 274.99 86.33 41.67

MVM 227.57 34.45 405.70 212.58 84.86 47.60

ITRANS 204.85 69.96 417.95 283.06 65.85 32.27

2D-FDCT 190.03 37.59 417.33 264.89 80.22 36.53

SAD 185.30 75.08 415.27 305.05 59.48 26.54

Table IV shows comparison of power consumption between the two architectures.

Selected kernels were executed with 100 iterations. Compared to the base architecture,

we have saved up to 86.33% of the total power consumed in the configuration cache and

47.60 % of that in the entire architecture using reusable context pipelining. These results

54

show that reusable context pipelining is a good solution for power saving in CGRA.

ITRANS and SAD show less reduction in power compared to other kernels because they

need additional spatial cache-read operations for data arrangement. In the case of 24-

Taps FIR showing the maximum reduction ratio, the total power consumption of pro-

posed architecture is much less than the result of PipeRench [6]. PipeRench has been

fabricated in a 0.18 micron process and [6] shows power measurement with varying FIR

filter tap sizes. The power consumption has been measured using a 33.3 MHz fabric

clock and a 16.7 MHz IO clock. The power measurement shows that the power con-

sumption of 24-Taps FIR ranges from 600 mW to 700 mW.

55

CHAPTER V

DYNAMIC CONTEXT COMPRESSION FOR LOW POWER CGRA

In this chapter, we address the power reduction issues in CGRA and provide a frame-

work to achieve this. A new design flow and a new configuration cache structure are

presented to reduce power consumption in configuration cache [60]. The power saving is

achieved by dynamic context compression in the configuration cache – only required

bits of the context words are set to enable and the redundant bits are set to disable.

Therefore, the new design flow for CGRA has been proposed to generate architecture

specifications that are required for supporting dynamically compressible context archi-

tecture without performance degradation. Experimental results show that the proposed

approach saves up to 39.72% power in configuration cache with negligible area over-

head (2.16%).

A. Preliminary

1. Context Architecture

The configuration cache provides context words to the context register of each PE on a

cycle by cycle basis. From the context register, these context words configure the PEs.

Fig. 24 shows an example of PE structure and context architecture for MorphoSys [3].

32-bit context word specifies the function for the ALU-multiplier, the inputs to be se-

lected from MUX_A and MUX_B, the amount and direction of shift of the ALU output,

and the register for storing the result as Fig. 24 (a). Context architecture means organiza-

56

tion of context word with several fields to control resources in a PE as Fig. 24 (b). The

ALU+MULT

MUX_A MUX_B

SHIFT

C
o
n
t
e
x
t

R
e
g
i
s
t
e
r

R0 R1 R2 R3

I M T B XQ R0-R3

L R C VE HE U D L I

Constant

Register File

O/P REG

To data
bus

To HE To VE To other RCs

16 bit data

8

8

8

16

28

16

64
12

16

28

28

co
nt

ex
t

 w
or

d
 f

ro
m

co

nt
ex

t
 m

em
or

y

(a) PE structure

(b) Context architecture

Fig. 24. PE structure and context architecture of MorphoSys.

context architectures of other CGRAs such as [2][8][9][10][11][12][13][14] [15][16][17]

[18] are similar to the case of MorphoSys although there is a wide variance in context-

11…018…1622…1926…2331 30 29….28 15…1227 11…018…1622…1926…2331 30 29….28 15…1227

W
rite_EXPR

W
rite_R

F_En

R
EG

_FILE

R
S_LS

A
LU

_SFT

M
U

X_A

M
U

X_B

A
LU

_O
P

C
onstant

Em
pty

SU
B

_O
P

Context Word Fields

57

width and kind of fields used by different functionality.

B. Motivation

1. Power Consumption by Configuration Cache

By loading the context words from the configuration cache into the array, we can dy-

namically change the configuration of the entire array within just one cycle. However,

such dynamic reconfiguration of CGRA causes many SRAM-read operations in configu-

ration cache. In [6], the authors have fabricated a CGRA (PipeRench) in a 0.18 ㎛ proc-

ess. Their experimental results show that the power consumption is significant high due

to the dynamic reconfiguration requiring frequent configuration memory access. In Fig.

9, power break-down for the CGRA running 2D-FDCT is proposed with gate-level im-

plementation at 0.18 ㎛ technology based on MorphoSys architecture. It is shown that

the configuration cache spends about 43% of the overall power, which is the second

largest after the PE arrays consuming 48% of overall power budget. This is because the

configuration cache performs SRAM-read operations to load the context words in every

cycle at run time. In addition, [8][30] also shows power break-down for another CGRA

(ADRES) running IDCT based on 90nm technology. In this case, the configuration

memory spends about 37.22% of the overall power. Therefore, it is explicit that power

consumption by configuration cache (memory) is serious overhead compared to other

types of IP cores such as ASIC or ASIP.

2. Valid Bit-Width of Context Words

When a kernel is mapped onto CGRA and application gets executed, the usable context

58

fields are limited to types of operations involved due to the kernel executed at run time.

0 2 4 6 8 10 12 14 16 18 20

*First_Diff

*Tri- Diagonal

*State

*Hydro

*ICCG

**Inner Product

**24-Taps FIR

Matrix-vector multiplication

Mult loop in FFT

Complex_Mult in MPEG4 AAC dec'

ITRANS in H.264 dec'

2D-FDCT in H.263 enc'

2D-IDCT in H.23 enc'

SAD in H.263 enc'

Quantization in H.263 enc'

Dequantization in H.263 enc'

Bit-width

Kernel
average bit-width
Maximum bit-width

 *Livermore loops benchmark [58], **DSPstone [59]

Fig. 25. Valid bit-width of context words.

Furthermore, operation types of an executed kernel on PE array are changed in every

cycle. It means the valid bit-width of executed context word is frequently less than the

full bit-width of a context word even though full bit-width can be less often used.

For statistical evaluation of valid bit-width of contexts, we selected 32-bit context

architecture of the base architecture (Fig. 4) and mapped several kernels onto its PE ar-

59

ray in order to maximize the utilization of the context fields. Fig. 25 shows the results

for various benchmark kernels and critical loops in real applications. In Fig. 25, average

bit-width is the average value of valid bit-widths of all the executed context words at

run-time and the maximum bit-width is the maximal valid bit-width among all the con-

text words considered at run-time. The statistical result shows that average bit-widths

vary from 7 to 11 bits and the maximum bit-width is less than or equal to 18 bits

whereas the full bit-width is 32-bit.

3. Dynamic Context Compression for Low Power CGRA

If the configuration cache can provide only required bits (valid bits) of the context words

to PE array at run time, it is possible to reduce power consumption in configuration

cache. The redundant bits of the context words can be set to disable and make those in-

valid at run time. That way, one can achieve low-power implementation of CGRA with-

out performance degradation while context architecture dynamically supports both the

cases at run time: one case is uncompressed context word with full bit-width and another

case is compressed context word with setting unused part of configuration cache dis-

abled. In order to support such a dynamic context compression, we propose a new con-

text architecture and configuration cache structure in this chapter.

C. Design Flow of Dynamically Compressible Context Architecture

In order to design and evaluate dynamically compressible context architecture, we pro-

pose a new context architecture design flow. Entire design flow is shown in Fig. 26. This

design starts from context architecture initialization, which is similar to the architecture

60

Field-Sequence Graph
Generation

APP1 APP3APP2

Domain

Field Positioning

Context Architecture
Initialization

Compressible
Context Architecture

Can it be
compressed?

Yes No

Context Evaluator

Compressed

ConstraintsField- Control Signal
Generation

Initial ContextUncompressed
Context

Uncompressed

Field-Grouping

Fig. 26. Entire design flow.

specification stage of general CGRA design flow given in [21][22][27][29]. Based on

such architecture specifications, PE operations are determined and initial context archi-

tecture is defined. From the context initialization, fields are grouped by essentiality of

PE operation and dependency with ALU operation to provide some criterions for context

compression. A field sequence graph (FSG) is generated to show possible field combina-

tions for PE operation. Then field control signals are generated to make some field en-

able or disable when contexts are compressed. Based on former stages, the position of

each field is defined and final context architecture is generated. Finally, one can deter-

mine whether the initially uncompressed contexts can be compressed or not by context

evaluator. From subsection C.1 to subsection C.5, we describe more detailed process for

61

each stage in entire design flow.

MUX A MUX B

To data buffer or neighbor PEs

Register fileShifter

A L U

To pred’ bus

REG_FILEREG_FILE3-bit3-bit

from data buffer, neighbor PEs or regisiter file

Reg #0
Reg #1

Reg #3

Register

SAT_logic

Reg #2

from pred’ bus

MUX_AMUX_A4-bit4-bit

MUX_BMUX_B4-bit4-bit

ALU_OPALU_OP5-bit5-bit

SATSAT2-bit2-bit

SHIFTSHIFT6-bit6-bit

WDB_ENWDB_EN1-bit1-bit

PREDPRED1-bit1-bit

[0~2][0~2]

[3~6][3~6]

[7~10][7~10]

[11~15][11~15]

[16~17][16~17]

[18~23][18~23]

[24][24]

[25][25]

bit-width

Field name

component index

(a) PE structure

[7,8,9,10]4-bitMUX_B

[16,17]2-bitSAT

[0,1,2]3-bitREG_FILE

[3,4,5,6]4-bitMUX_A

Context register-6-bit

[25]1-bitPRED

[24]1-bitWDB_EN

CTXT_CTRL

[11,12,13,14,15]5-bitALU_OP

Processing
Element

[18,19,20,21,22,23]6-bitSHIFT

ControlComponent indexBit-widthField name

[7,8,9,10]4-bitMUX_B

[16,17]2-bitSAT

[0,1,2]3-bitREG_FILE

[3,4,5,6]4-bitMUX_A

Context register-6-bit

[25]1-bitPRED

[24]1-bitWDB_EN

CTXT_CTRL

[11,12,13,14,15]5-bitALU_OP

Processing
Element

[18,19,20,21,22,23]6-bitSHIFT

ControlComponent indexBit-widthField name

 (b) Context architecture initialization

Fig. 27. Context architecture initialization.

62

1. Context Architecture Initialization

Context rchitecture in CGRA design depends on architecture specification. In the proc-

ess of architecture specification, CGRA structure is evolved with PE array size, PE func-

tionalities and their interconnect scheme. The proposed approach starts from the conven-

tional context architecture selection and makes it dynamically compressible context ar-

chitecture through the proposed design flow. We have defined generic 32-bit context ar-

chitecture as an example to illustrate the design flow to support the kernels in Fig. 25. It

is similar to the representative CGRAs such as MorphoSys [3], REMARC [4], ADRES

[8] [22][30][43], PACT_XPP [9][10][31]. The PE structure and bit-width of each field

are shown in Fig. 27. It supports various arithmetic and logical operations with two op-

erands (MUX_A and MUX_B), predicated execution (PRED), Arithmetic saturation

(SAT_logic), shift operation (SHIFT) and saving temporal data with register file

(REG_FILE). In Fig. 27 (a), all of the fields are classified by 'Control' of 2 cases - 'Proc-

essing element' and 'context register'. It means that each case is configured by the fields

included in that case. Furthermore, Fig. 27 (b) shows the bit-width of each field and the

component index to identify each component configured by each field.

Even though each field can be positioned on context word under conventional de-

sign flow, this initialization stage does not define any field position. It means field posi-

tion for uncompressed case should be assigned by considering context compression.

2. Field Grouping

All of the context fields are grouped into three sets - necessary set, optional set and un-

necessary set. Necessary set includes indispensable fields for all of the PE operations

63

and optional set includes optional fields for PE operations. Unnecessary set is composed

of fields unrelated to PE operations. It means necessary fields should be included in con-

text words even if context words are compressed whereas optional and unnecessary

fields can be excluded out of context words. In addition, we classify optional set into two

subsets. One is a subset composed of fields dependent on the field of 'ALU_OP' and an-

other is a subset composed of fields independent of 'ALU_OP'. This classification is

necessary for generating field control signals in subsection C.4. Fig. 28 shows field

grouping based on the context initialization presented in subsection C.1.

Field1Field1 Field2Field2 Field3Field3

Field-Set

Necessary for
PE operation

Unnecessary for
PE operation

Optional for
PE operation

MUX_AMUX_A

ALU_OPALU_OP

4-bit4-bit

9-bit9-bit
CTXT_CTRLCTXT_CTRL6-bit6-bit

SHIFTSHIFT

PREDPRED

SATSAT

5-bit5-bit

1-bit1-bit

1-bit1-bit

REG_FILEREG_FILE2-bit2-bit

MUX_BMUX_B4-bit4-bit

ALU-OP
dependent

ALU-OP
independent

PREDPRED1-bit1-bit

MUX_BMUX_B4-bit4-bit

SHIFTSHIFT

WDB_ENWDB_EN

6-bit6-bit

1-bit1-bit

REG_FILEREG_FILE3-bit3-bit

SATSAT2-bit2-bit

Fig. 28. Field grouping.

64

ALU-independent fieldALU-independent fieldField

Necessary fieldNecessary fieldField

MUX A MUX B

To data buffer or neighbor PEs

Register fileShifter

A L U

To pred’ bus

REG_FILEREG_FILE3-bit3-bit

from data buffer, neighbor PEs or regisiter file

Reg #0
Reg #1

Reg #3

Register

SAT_logic

Reg #2

from pred’ bus

MUX_AMUX_A4-bit4-bit

MUX_BMUX_B4-bit4-bit

ALU_OPALU_OP5-bit5-bit

SATSAT2-bit2-bit

SHIFTSHIFT6-bit6-bit

WDB_ENWDB_EN1-bit1-bit

PREDPRED1-bit1-bit

[0~2][0~2]

[3~6][3~6]

[7~10][7~10]

[11~15][11~15]

[16~17][16~17]

[18~23][18~23]

[24][24]

[25][25]

bit-width

Field name

component index

ALU_OP

MUX AMUX B

ALU
SFT

PRED

WDB
EN

REG
FILE

SAT

4 4

5

2 1

6

3 1

ALU-dependent fieldALU-dependent fieldField

n : Bit-width of fieldn : Bit-width of fieldField
n

Fig. 29. Field sequence graph.

3. Field Sequence Graph Generation

Field sequence graph (FSG) is generated from context architecture initialization and

field grouping. FSG is a directed graph composed of necessary and optional fields and it

shows possible field combinations for PE operations based on PE structure. Each vertex

of FSG corresponds to a necessary or optional field in field grouping and each edge of

FSG shows a possible field combination between two fields. The possible field combina-

tions can be found by vertex tracing in the edge directions and the combinations should

include all of the necessary fields. Furthermore, optional fields can be skipped out of

vertex tracing to search possible field combinations. Fig. 29 shows an example of FSG

65

from Fig. 27 and Fig. 28. While searching possible field combinations, some times it is

possible (for example, MUX_A, ALU_OP, SAT is possible) whereas (MUX_A,

ALU_OP, SAT, PRED) is not possible. FSG is a useful data structure for field position-

ing as described in subsection C.5.

4. Generation of Field Control Signal

When contexts are compressed, optional fields are relocated on compressed space and

the positions of these fields may be overlapped with each other. Therefore, each optional

field should be disabled when it is not being compressed in the context word. It means

that compressed context should have control information for all of the optional fields in

order to make unused fields disable. In this subsection, control signals generation for op-

tional fields has been described.

ALU_OP [5-bit]

1

1

1

0

0

A1

1

1

1

1

1

A2

1

1

1

1

1

A3

0

1

1

1

1

A4

1A ≤ B

1A!

0A < B

1A || B

0A && B

A0

Logical
Operation

ALU_OP [5-bit]

1

1

1

0

0

A1

1

1

1

1

1

A2

1

1

1

1

1

A3

0

1

1

1

1

A4

1A ≤ B

1A!

0A < B

1A || B

0A && B

A0

Logical
Operation

ALU_OP [5-bit]

A0A1A2A3A4

ALU_OP [5-bit]

A0A1A2A3A4

PRED_ENPRED_ENMUX_B_ENMUX_B_EN

OR

AND AND

CTRL BLOCK

(a) logical operations (b) control signals

Fig. 30. Control signals for 'MUX_B' and 'PRED'.

66

a. Control Signals for ALU-Dependent Fields

 If the truth table of 'ALU_OP' is classified by the operation type, enable/disable signals

for ALU-dependent fields can be generated from 'ALU_OP' with some combinational

logic. Fig. 30 (a) shows the truth table manipulated by classifying operations for the ex-

ample given in subsection C.1. MSB (A4) of 'ALU_OP' is used for classifying opera-

tions according to the number of operands. For example, MSB =1 is used for the opera-

tions with two operands and MSB =0 is used for the operations with one operand. In ad-

dition, A3~A0 are used for classifying logical operations. Based on the truth table, we

can generate control signals for two fields with some combinational logic as Fig. 30 (b).

We define such a combinational logic as 'CTRL BLOCK'.

b. Control Signals for ALU-Independent Fields

In order to control ALU-independent fields when context words are compressed, the en-

able/disable flag bit on each of the ALU-independent field should be merged with a nec-

essary field. Fig. 31 (a) shows the process that 1-bit flags of ALU-independent fields are

merged with 'ALU_OP'. After flag merging, the FSG should be updated because the bit-

widths of some of the fields are changed and 1-bit field such as 'WDB_EN' is no longer

valid in FSG. Fig. 31 (b) shows an updated FSG with modified bit-widths of some of the

fields.

67

REG_FILEREG_FILE

WDB_ENWDB_EN

3-bit3-bit

1-bit1-bit

SHIFTSHIFT6-bit6-bit

ALU_OPALU_OP5-bit5-bit

ALU_OPALU_OP9-bit9-bit

ALU_SFTALU_SFT5-bit5-bit

REG_FILEREG_FILE2-bit2-bit

SATSAT1-bit1-bit

SATSAT2-bit2-bit

Merging

1-bit enable/disable flag

MUX AMUX B

ALU
SFT

PRED

REG
FILE

SAT

4 4

9

1 1

5

2

ALU_OP

(a) Flag merging (b) Updated FSG

Fig. 31. Updated FSG from flag merging.

5. Field Positioning

The final stage of proposed design flow is positioning each field on the context word.

Field positioning should be considered for two cases (uncompressed and compressed)

modes to support dynamic compression.

a. Field Positioning on Uncompressed Context Word

All the fields should have default positions for the case when contexts cannot be com-

pressed. First of all, the necessary fields are positioned to the part near to MSB and the

unnecessary fields are positioned near the LSB as shown in Fig. 32. Then the optional

fields are positioned on the available space between the already occupied context word.

For optional field positioning, the bit-width of compressed context word should be de-

termined. Compressed bit width can be different according to the definition of the capac-

ity of compressed context word. The large capacity of compressed context word can

68

show high compression ratio but the amount of power reduction is limited by long bit-

width. However, the little capacity of compressed context word may cause low compres-

sion ratio but the power reduction ratio can be high in short bit-width. To prevent the

extreme cases (much short or much long bit-width of compressed context word), we de-

termine compressed bit-width based on following criterions.

i) Compressed context words should be able to support all of the ALU-dependent

fields.

ii) Compressed context words should be able to include at least an ALU-independent

field.

REG_FILE
A7, A6

SHIFT
A12…A8

SAT
A13

ALU_OP
A31…A23

MUX_A
A22…A19

MUX_B
A18…A15

CTXT_CTRL
A5…A0

PRED
A14

REG_FILE
A7, A6

SHIFT
A12…A8

SAT
A13

ALU_OP
A31…A23

MUX_A
A22…A19

MUX_B
A18…A15

CTXT_CTRL
A5…A0

PRED
A14

Longest Field Combination others
Compressed width : 18-bit

Uncompressed width : 32-bit

MSB LSB

Field1Field1 Field2Field2 Field3Field3

Field-Set

Necessary for
PE operation

Unnecessary for
PE operation

Optional for
PE operation

MUX_AMUX_A

ALU_OPALU_OP

4-bit4-bit

9-bit9-bit
CTXT_CTRLCTXT_CTRL6-bit6-bit

SHIFTSHIFT

PREDPRED

SATSAT

5-bit5-bit

1-bit1-bit

1-bit1-bit

REG_FILEREG_FILE2-bit2-bit

MUX_BMUX_B4-bit4-bit

Fig. 32. Default field positioning.

To satisfy criterions, we determine the longest field combination showing the maxi-

69

mum bit-width among i) and ii). The maximum width for satisfying i) and ii) is found to

be 18-bit that consists of 'ALU_OP', 'MUX_A', 'MUX_B' and 'PRED'. Therefore, 18-bit

is the compressed bit-width. Optional fields that are included in the longest field combi-

nation are preferentially positioned on the compressed zone near the MSB and other

fields are positioned on uncompressed zone near the LSB as Fig. 32.

After this, the positions of the necessary fields on FSG are firmly determined and

the positions of the field control signals are also determined because they are included in

'ALU_OP' as necessary field.

MUX B

SHIFT

PRED

REG_
FILE

SAT

4

1 1

5

2

Field sequence graph Field concurrency graph

MUX AMUX B

ALU
SFT

PRED

REG
FILE

SAT

4 4

9

1 1

5

2

ALU_OP

Field#1

Field#3

Field#2Dummy

(a) FCG from FSG (b) FCG with dummy vertex

Fig. 33. Field concurrency graph.

b. Field Positioning on Compressed Context Word

This stage is for positioning fields on compressed context word to guarantee that all the

possible field combinations are not exceeding the compressed bit-width. Therefore, first

70

of all, all the possible field combinations should be found. This process can be achieved

by searching them from FSG and then generating field concurrency graph (FCG) such as

Fig. 33 (a). The FCG shows the concurrency between the optional fields. Therefore the

FCG is used for preventing position that is overlapping between the concurrent optional

fields. An edge between two fields means that the two fields are included in one of the

possible field combinations. Even though this example does not show concurrency

among more than 2 optional fields, such a case can be represented by adding a dummy

field connected with the fields as Fig. 33 (b).

Based on a given FCG, the next step is to position the optional fields on com-

pressed context word. The positioning means that some optional fields have additional

positions as well as default positions on uncompressed context words. To select a posi-

tion among default and additional positions, multiplexers can be used that are composed

of multiple position inputs and one feasible position output. Therefore, in this step, the

field positioning is a mapping among inputs, outputs and control signals for multiplexers

connected with the optional fields. Thus, we propose a port-mapping algorithm for the

multiplexers. Before we explain the procedure in detail, we introduce notations we use in

the explanation as Table V.

71

Table V. Notations for Port-Mapping Algorithm
Notation Meaning

GFCG
field concurrency graph,
GFCG = (V, E): V is a set composed of the optional field set and E is a set
composed of edges showing the concurrency between two fields.

GMUX
multiplexer port mapping graph
GMUX = (VMUX, EMUX): VMUX is a set composed of input signals and control
signals for multiplexers and EMUX is a set composed of weighted edges con-
necting input data with control signal.

defV
subset of V, defV is composed of the fields having their default positions on
compressed context word

ndefV
subset of V, ndefV is composed of the fields not having their default posi-
tions on compressed context word

ctxt[Ai, Aj]
bit interval from index Ai to index Aj on the uncompressed context word,
it is used for showing bit position of a field.

width[v] bit-width of field v
cmp_lsb LSB of compressed context word
def_pos[field] default position of field such as interval type of ctxt[Ai, Aj]
ctrl_pos[field] one bit position of control signal for field such as ctxt[Ai], ctrl_blk[Ai]

field[i, j] component index corresponding to the interval that is from the ith bit posi-
tion to the jth bit position on field

cmp_ctrl one-bit signal from cache control unit. ‘1’ means executed context word
compressed and ‘0’ means executed context word not compressed.

pdone[field] ‘1’ means positioning firmly done and ‘0’ means positioning not finished.
mux[field] mux (multiplexer) connected with field.
data_in[mux] set composed of mux input data signals
ctrl_in[mux] set composed of field control signals for mux
data_out[mux] set composed of mux ouput data signals

Adj[field] adjacency list of field on graph GFCG, if an adjacent field is dummy, it return adja-
cency list of the dummy field

72

end doL11

pdone[v] = 1L10

data_out[mux[v]] ← v[width[v]-1, 0]L9

Add an edge between [null] and ctrl_pos[v] with weight ‘0’ to EMUXL8

Add an edge between def_pos[v] and ctrl_pos[v] with weight ‘1’ to EMUXL7

Add data_in[mux[v]] and ctrl_in[mux[v]] to VMUXL6

ctrl_in[mux[v]] ← ctrl_in[mux[v]] ∪{ctrl_pos[v]}L5

data_in[mux[v]] ← data_in[mux[v]] ∪{def_pos[v]} ∪{[null]} L4

for each v∈ defV doL3

Add cmp_ctrl on VMUXL2

VMUX← Ø, EMUX← Ø, G MUX← (VMUX, EMUX)L1

Algorithm 1 Mux_Port Mapping (GFCG) - fields having default position

end doL11

pdone[v] = 1L10

data_out[mux[v]] ← v[width[v]-1, 0]L9

Add an edge between [null] and ctrl_pos[v] with weight ‘0’ to EMUXL8

Add an edge between def_pos[v] and ctrl_pos[v] with weight ‘1’ to EMUXL7

Add data_in[mux[v]] and ctrl_in[mux[v]] to VMUXL6

ctrl_in[mux[v]] ← ctrl_in[mux[v]] ∪{ctrl_pos[v]}L5

data_in[mux[v]] ← data_in[mux[v]] ∪{def_pos[v]} ∪{[null]} L4

for each v∈ defV doL3

Add cmp_ctrl on VMUXL2

VMUX← Ø, EMUX← Ø, G MUX← (VMUX, EMUX)L1

Algorithm 1 Mux_Port Mapping (GFCG) - fields having default position

The input to the port-mapping algorithm is FCG and the output is multiplexer port-

mapping graph (PMG) showing the relationship among field control signals and input

data signals (field position). The algorithm is composed of two parts – The first part is

for the optional fields having default position on compressed context word and the sec-

ond part is for the optional fields not having default position on compressed context

word. The procedure of the first part is described in Algorithm 1. The algorithm starts

with initialization step (L1 and L2). In this part, input data signals of multiplexers are

only two cases - default field position and ‘zero’ selected when the field is not used. This

is because the fields already have default positions on compressed context space. There-

fore the default field position, ‘zero’ and the field control signal of each field are mapped

to the input of the multiplexer (L4~L6). Next process is to define the relationship be-

tween field control signal and a field position by adding a weighted edge between them

(L7 and L8). Weight ‘1’ (or ‘0’) means the input signal is selected when the control sig-

73

nal is ‘1’ (or ‘0’). Finally, the outputs of multiplexers are connected with the component

index defined in subsection C.1 (L9) and positioning of the field is firmly done (L10).

data_out[mux[v]] ← v[width[v]-1, 0]L15

end ifL14

tmp_interval← ctxt[(width[v]+cmp_lsb), cmp_lsb]L7

pdone[u] ← 1L16

end doL17

else Check_Adjacency(v)L13

Add an edge between tmp_interval and cmp_ctrl with weight ‘1’ to EMUXL12

Add an edge between tmp_interval and ctrl_pos[v] with weight ‘1’ to EMUXL11

Add data_in[mux[v]] and ctrl_in[mux[v]] to VMUXL10

ctrl_in[mux[v]] ← ctrl_in [mux[v]] ∪{ctrl_pos[v]}L9

data_in[mux[v]] ← data_in[mux[v]] ∪{tmp_interval}L8

if Adj[v] = Ø on GFCG thenL6

Add an edge between def_pos[v] and cmp_ctrl with weight ‘0’ on EMUXL5

Add def_pos[v] to VMUXL4

ctrl_in[mux[v]] ← ctrl_in[mux[v]] ∪{cmp_ctrl}L3

data_in[mux[v]] ← data_in[mux[v]] ∪ {def_pos[v]}L2

for each v∈ ndefV doL1

Algorithm 2 Mux_Port Mapping (GFCG) - fields not having default position

data_out[mux[v]] ← v[width[v]-1, 0]L15

end ifL14

tmp_interval← ctxt[(width[v]+cmp_lsb), cmp_lsb]L7

pdone[u] ← 1L16

end doL17

else Check_Adjacency(v)L13

Add an edge between tmp_interval and cmp_ctrl with weight ‘1’ to EMUXL12

Add an edge between tmp_interval and ctrl_pos[v] with weight ‘1’ to EMUXL11

Add data_in[mux[v]] and ctrl_in[mux[v]] to VMUXL10

ctrl_in[mux[v]] ← ctrl_in [mux[v]] ∪{ctrl_pos[v]}L9

data_in[mux[v]] ← data_in[mux[v]] ∪{tmp_interval}L8

if Adj[v] = Ø on GFCG thenL6

Add an edge between def_pos[v] and cmp_ctrl with weight ‘0’ on EMUXL5

Add def_pos[v] to VMUXL4

ctrl_in[mux[v]] ← ctrl_in[mux[v]] ∪{cmp_ctrl}L3

data_in[mux[v]] ← data_in[mux[v]] ∪ {def_pos[v]}L2

for each v∈ ndefV doL1

Algorithm 2 Mux_Port Mapping (GFCG) - fields not having default position

The procedure of the second part is described in Algorithm 2. The algorithm starts

with mapping default field position and signal ‘cmp_ctrl’ to the input of the multiplexer

for each field (L2 and L3). Signal ‘cmp_ctrl’ is one-bit signal from cache control unit

and it gives information whether the context word is compressed (‘1’) or not (‘0’). Then

the algorithm defines the relationship between signal ‘cmp_ctrl’ and a default position

by adding a edge showing weight ‘0’ between them (L5). Next process is split into two

cases – one is for the fields having no adjacent fields on FCG and another is for the

fields having adjacent fields on FCG. The first case means the fields can be positioned to

74

any part of compressed zone except the positions of necessary fields whereas the second

case means the fields should be positioned to the part not overlapped with the positions

of their adjacent fields. In the first case (L6), the field is positioned to the part near to

LSB of compressed context word (L7). Then new field position and field control signal

are mapped to the input of the multiplexer (L8 and L9). Next process is to define the re-

lationship between field control signal (or ‘cmp_ctrl’) and new field position by adding a

edge showing weight ‘1’ between them (L11 and L12).

end doL17

end ifL16

Add an edge between ctxt[Ai, Aj] and ctrl with weight ‘0’ to EMUXL15

for each ctxt[Ai, Aj] ∈ position_set doL7

position_set and ctrl_set← Find_Interval (v, tmpV)L6

end doL18

if {ctxt[Ai, Aj]} ∩ data_in[mux[v]] = Ø thenL8

end doL5

end ifL4

tmpV← tmpV ∪ {u}L3

if pdone[u] = 1 thenL2

data_in[mux[v]] ← data_in[mux[v]] ∪{ctxt[Ai, Aj] }L9

end ifL18

if ctrl overlapped with ctxt[Ai, Aj] thenL14

for each ctrl ∈ ctrl_set doL13

Add an edge between ctxt[Ai, Aj] and cmp_ctrl with weight ‘1’to EMUXL12

Add an edge between ctxt[Ai, Aj] and ctrl_pos[v] with weight ‘1’ to EMUXL11

Add data_in[mux[v]] and ctrl_in[mux[v]] to VMUXL10

ctrl_in[mux[v]] ← ctrl_in[mux[v]] ∪ {ctrl_pos[v]} ∪ ctrl_setL10

for each u∈ Adj[v] on GFCG doL1

Algorithm 3 Check_Adjacency (field)

end doL17

end ifL16

Add an edge between ctxt[Ai, Aj] and ctrl with weight ‘0’ to EMUXL15

for each ctxt[Ai, Aj] ∈ position_set doL7

position_set and ctrl_set← Find_Interval (v, tmpV)L6

end doL18

if {ctxt[Ai, Aj]} ∩ data_in[mux[v]] = Ø thenL8

end doL5

end ifL4

tmpV← tmpV ∪ {u}L3

if pdone[u] = 1 thenL2

data_in[mux[v]] ← data_in[mux[v]] ∪{ctxt[Ai, Aj] }L9

end ifL18

if ctrl overlapped with ctxt[Ai, Aj] thenL14

for each ctrl ∈ ctrl_set doL13

Add an edge between ctxt[Ai, Aj] and cmp_ctrl with weight ‘1’to EMUXL12

Add an edge between ctxt[Ai, Aj] and ctrl_pos[v] with weight ‘1’ to EMUXL11

Add data_in[mux[v]] and ctrl_in[mux[v]] to VMUXL10

ctrl_in[mux[v]] ← ctrl_in[mux[v]] ∪ {ctrl_pos[v]} ∪ ctrl_setL10

for each u∈ Adj[v] on GFCG doL1

Algorithm 3 Check_Adjacency (field)

75

Field1

Field3

Field2
available space Field3Field1

Field3Field1 Field 2

Field4

Field 2

Field 4
Ai Aj

return ctxt[Ai, Aj]

Input field

(a) FCG (b) Available space on compressed zone (c) When target field (‘Field2’)

not overlapped with adjacent
fields

Field 4 Field3Field1

(a)

(
Ai Aj

return ctxt[Ai, Aj] and
ctrl_pos[Field1]

Field 4 Field3Field1

Bi Bj

return ctxt[Bi, Bj]
and ctrl_pos[Field3]

(d) When target field (‘Field4’) overlapped with adjacent fields (‘Field1’or ‘Field3’).

Field Field: field positioning firmly done : field positioning not done : overlapped part

Fig. 34. Examples of ‘Find_Interval’.

In the second case (L13), ‘Check_Adjancency’ function is used and it is described

as algorithm 3. The algorithm start with gathering the adjacent fields firmly positioned.

Then new position on compressed zone is assigned by ‘Find_Interval’ function (L6).

Fig. 34 shows examples for this function with two cases - (c) when new position of in-

put field is not overlapped with the adjacent field positions and (d) when new position of

input field is overlapped with the adjacent field positions. ‘Find_Interval’ only returns a

new position (ctxt[Ai, Aj]) in Fig. 34 (c) because of no confliction with the adjacent

fields. However, it returns two positions (ctxt[Ai, Aj] and ctxt[Bi, Bj]) and field control

signals from overlapped fields in Fig. 34 (d). This is because the adjacent field control

76

signals are necessary to select proper a field position when multiple field positions exist

on compressed zone. Such returned new position set and control signal set are mapped to

the input of multiplexer for the input field (L9 and L10) and the relationship among field

control signals and a new position is made by adding weighted edges among them

(L11~L17). Finally, the outputs of multiplexers are connected with the component index

(L15) and positioning of the field is firmly done (L16) in Algorithm 2.

REG_
FILE0

REG_
FILE1

SAT1

PREDZERO

SHIFT0

ZERO

SAT0

SHIFT1

MUX_B

PRED_
_EN

SAT_
EN

MUX_B
_EN

SHIFT_
EN

CMP_
EN

1

0

1

1

1

1

1

1

0

00

1

ZERO
MUX_B

MUX_B_EN

ZERO
PRED

PRED_EN

REG_
FILE_EN

0

SAT0
SAT1

SAT_EN

CMP_EN

SHIFT0
SHIFT1

SHIFT_EN

CMP_EN

REG_FILE0
REG_FILE1

REG_FILE_EN

CMP_EN

MUX_B[3, 0]

SAT[0]

SHIFT[4, 0]

REG_FILE[1, 0]

PRED[0]

Fig. 35. Multiplexer port-mapping graph.

PMG example from the port-mapping algorithm is shown in the Fig. 35. Each ver-

tex of PMG corresponds to an input or control signal of multiplexer and each edge

shows the relationship between control signal and a position that is selected by the

weight of the edge from control signals such as 'SAT_EN', 'MUX_B_EN', etc. Then the

77

outputs of

MUX A MUX B

To data buffer or neighbor PEs

Register file

Shifter

A L U

To pred’ bus

from data buffer, neighbor PEs or regisiter file

Reg #0
Reg #1

Reg #3

Register

SAT_logic

Reg #2

from pred’ busC
O
N
T
E
X
T

R
E
G
I
S
T
E
R

`

Others

SFT_EN
REG_EN
WDB_EN

SAT_EN

1

23

31

CTXT_CTRL

REG_FILE0

SHIFT0

SAT0
PRED_EN

MUX_B

MUX_A

ALU_
OP

3

2

8

9

10

11

0

4

5

6

7

12

13

14

15

16

17

18

19

20

21

22

24

25

26

27

28

29

30

Others

SFT_EN
REG_EN
WDB_EN

SAT_EN

1

23

31

CTXT_CTRL

REG_FILE0

SHIFT0

SAT0
PRED_EN

MUX_B

MUX_A

ALU_
OP

3

2

8

9

10

11

0

4

5

6

7

12

13

14

15

16

17

18

19

20

21

22

24

25

26

27

28

29

30

PRED_EN

MUX_B_EN

zero

zero

CTRL
BLK

REG

Cache CTRL Unit

SEL
CMP

SEL

SEL

CE #1

CE#2

New Cache Element

(a) Field layout of compressible context architecture

SHIFT1
A18… A14

SHIFT1
A18… A14

REG_
FILE1

A18, A17

REG_
FILE1

A18, A17

REG_
FILE0

A7, A6

SHIFT0

A12…A8

SAT0

A13

ALU_OP

A31…A23

MUX_A

A22…A19

MUX_B

A18…A15

CTXT_CTRL

A5…A0

PRED

A14

REG_
FILE0

A7, A6

SHIFT0

A12…A8

SAT0

A13

ALU_OP

A31…A23

MUX_A

A22…A19

MUX_B

A18…A15

CTXT_CTRL

A5…A0

PRED

A14

compressed width : 18-bit

entire width : 32-bit

SAT1
A14

SAT1
A14

(b) Modified structure between a PE and a CE

Fig. 36. Compressible context architecture.

78

multiplexers are connected with the component index defined in Fig. 27 (b). Therefore

we can implement the multiplexers for the optional fields by the PMG.

6. Compressible Context Architecture

After the field positioning, we have generated a specification of dynamically compressi-

ble context architecture like one in the Fig. 36. Fig. 36 (a) shows the final field layout of

compressible context architecture. 'REG_FILE', 'SHIFT' and 'SAT' have double posi-

tions for compressed and uncompressed cases. Fig. 36 (b) shows a modified structure

between a PE and a cache element (CE). New cache element is composed of CE1 and

CE2 and cache control unit provides compression information from port 'CMP' whether

executed contexts are compressed or not. CE1 is always selected but CE2 is not selected

under compression ('CMP'=1) to remove power consumption in CE2.

7. Context Evaluation

The context evaluator in Fig. 26 determines whether initially uncompressed contexts can

be compressed or not. This evaluation process can be implemented by checking the fact

that a given context word is compared with one of the possible field combinations not

exceeding compressed bit-width. Using FCG, we can easily check this and generate

compressed context words with using position information from PMG.

D. Experiments

1. Experimental Setup

We have implemented entire design flow in Fig. 26 with C++. We have initialized con-

79

text architecture as the example described in Section C. The implemented design flow

generated the specification of dynamically compressible context architecture. For quanti-

tative evaluation, we have designed two CGRAs based on the 8x8 reconfigurable array

at RT-level with VHDL - one is conventional base CGRA and the other is the proposed

CGRA supporting compressible features in context architecture. The architectures have

been synthesized using Design Compiler [49] with 0.18 ㎛ technology. We have used

SRAM Macro Cell library for the frame buffer and configuration cache. ModelSim [50]

and PrimePower [49] tools have been used for gate- level simulation and power estima-

tion. To obtain the power consumption data, we have used the kernels (Fig. 25) for simu-

lation with operation frequency of 100 MHz and typical case of 1.8 V Vdd and 27℃.

These kernels have been executed with 100 iterations while varying test vectors.

2. Results

a. Area Cost Evaluation

Table VI shows the synthesis results from Design Compiler [49] of proposed architec-

ture and base architecture. It shows that area cost of new configuration cache including

cache control unit, added interconnects and multiplexers has increased by 10.35% but

the overall area-overhead is only 1.62 %. Thus, the new configuration cache structure

can support dynamic context compression with negligible overheads.

80

Table VI. Area Overhead by Dynamic Context Compression
Area Cost (gate equivalent) Component

Base Architecture Proposed Architecture
Overhead (%)

Configuration Cache 150012 165538 10.35
Entire RAA 942742 958268 1.62

Overhead (%): {(Proposed/Base) – 1}×100

Table VII. Power Reduction Ratio by Dynamic Context Compression
Configuration Cache Power(mW)

Kernels Compression
Ratio (%) Base

Architecture
Proposed

Architecture
Reduced (%)

First_Diff 100 171.77 104.97 38.89
Tri- Diagonal 100 174.18 105.00 39.72
State 100 161.23 99.38 38.36
Hydro 100 148.23 91.50 38.27
ICCG 100 205.80 125.68 38.93
Inner Product 100 117.84 72.60 38.39
24-Taps FIR 100 227.56 139.56 38.67
MVM 100 227.57 140.43 38.29
Mult in FFT 100 175.48 107.08 38.98
Comlex Mult 100 180.63 110.18 39.00
ITRANS 100 204.85 125.27 38.85
2D-FDCT 95.53 190.03 119.87 36.92
2D-IDCT 95.49 188.47 118.98 36.87
SAD 100 185.30 113.07 38.98
Quant 95.12 185.23 117.51 36.56
Dequant 95.23 187.78 118.77 36.75
Compression Ratio (%): number of compressed context words/ number of entire context words)×100,
Reduced (%): {1-(Proposed/Base)}×100, Execution Cycle Count : cycle count for an iteration.

b. Performance Evaluation

 In addition, the synthesis results show that the critical path delay of the proposed archi-

tecture is same as the base model i.e. 8.96 ns. It indicates the dynamic context compres-

sion does not cause performance degradation in terms of the critical path delay. In addi-

tion, we have applied several kernels in Fig. 25 to the new and base architectures. The

execution cycle count of each kernel on proposed architecture does not vary from the

81

base architecture because the functionality of proposed architecture is same as the base

model. It also indicates the dynamic context compression does not cause performance

degradation in terms of the execution cycle count.

c. Context Compression Ratio and Power Evaluation

Table VII shows context compression ratio for the evaluated kernels. Compression ratio

means how many context words can be compressed among entire context words. The

execution cycle count of each kernel on proposed architecture does not vary from the

base architecture because the functionality of proposed architecture is same as the base

model. It also indicates the dynamic context compression does not cause performance

degradation in terms of the execution cycle count. All of the kernels show high compres-

sion ratio to be more than 95 %. Furthermore, the comparison of power consumption is

shown in Table VII. Compared to the base architecture, it has shown to save up to

39.72% of the power. 4 kernels (2D-FDCT, 2D-IDCT, Quant and Dequant) show less

reduction in power compared to other kernels. This is because all of the context words

for 4 kernels are not fully compressed - the compression ratios are in the range of 95.12

~ 95.53.

82

CHAPTER VI

DYNAMIC CONTEXT MANAGEMENT FOR LOW POWER CGRA

In this chapter, we present a novel control mechanism of configuration cache called dy-

namic context management to reduce the power consumption in configuration cache

without performance degradation [61]. In addition, a new configuration cache structure

is proposed to support such a dynamic context management. Experimental results show

that the proposed approach saves 38.24%/38.15% of the power in write/read-operation

of configuration cache with negligible area overhead compared to the base design.

A. Motivation

1. Power Consumption by Configuration Cache

By loading the context words from the configuration cache into the array, we can dy-

namically change the configuration of the entire array within just one cycle. However,

such dynamic reconfiguration of CGRA causes many SRAM-read operations in configu-

ration cache. In [6], the authors have fabricated a CGRA (PipeRench) in a 0.18 ㎛ proc-

ess. Their experimental results show that the power consumption is significant high due

to the dynamic reconfiguration requiring frequent configuration memory access. In Fig.

9, power break-down for the CGRA running 2D-FDCT is proposed with gate-level im-

plementation at 0.18 ㎛ technology based on MorphoSys architecture. It is shown that

the configuration cache spends about 43% of the overall power, which is the second

largest after the PE arrays consuming 48% of overall power budget. This is because the

83

configuration cache performs SRAM-read operations to load the context words in every

cycle at run time. In addition, [8][30] also shows power break-down for another CGRA

(ADRES) running IDCT based on 90nm technology. In this case, the configuration

memory spends about 37.22% of the overall power. Therefore, it is explicit that power

consumption by configuration cache (memory) is serious overhead compared to other

types of IP cores such as ASIC or ASIP.

2. Redundancy of Context Words

Context words are saved in configuration cache and they show redundancies at runtime.

We describe two cases for redundancy of context words in following subsections.

a. NOP Context Words

Most coarse-grained reconfigurable arrays arrange their processing elements (PEs) as a

square or rectangular 2-D array with horizontal and vertical connections, which support

rich communication resources for efficient parallelism. However, such PE arrays have

many redundant or unutilized PEs during the executions of applications onto the array.

Most of subtasks in DSP applications shows lots of redundant PEs that are not used.

The redundant PEs should be configured by NOP (no operation) context words to avoid

malfunction and unnecessary waste of power by the PEs. It means that configuration

cache performs some redundant read-operations for NOP.

84

Context Word
Cycle time

ALU Operation Operands Other Operations

1

ALU_OUT <= A A<= Data bus

R0 <= ALU_OUT

2 R1 <= ALU_OUT

3 R2 <= ALU_OUT

4 R3 <= ALU_OUT

Context Word
Cycle time

ALU Operation Operands Other Operations

1

ALU_OUT <= A A<= Data bus

R0 <= ALU_OUT

2 R1 <= ALU_OUT

3 R2 <= ALU_OUT

4 R3 <= ALU_OUT

R0~R3: registers of register file

(a) Consecutive load operations

ALU_OUT <= A+B

ALU_OUT <= A‐B

ALU_OUT <= A+B

Cycle time
Context Word

ALU Operation Operands Other Operations

1 ALU_OUT <= AXB A <= T, B<= L

SHIFT(ALU_OUT)
2 A <=BT, B <= R

3 A <= R1, B<= R2

4 A <= TALU_OUT <= A+B

ALU_OUT <= A‐B

ALU_OUT <= A+B

Cycle time
Context Word

ALU Operation Operands Other Operations

1 ALU_OUT <= AXB A <= T, B<= L

SHIFT(ALU_OUT)
2 A <=BT, B <= R

3 A <= R1, B<= R2

4 A <= T
T, L, R and BT: output from Top PE, Left PE, Right PE and Bottom PE

(b) Consecutive shift operations

Context Word

4

3

2

1

Cycle time

ALU_OUT <= A

ALU Operation

A <= R3

A <= R2

A <= R1

A <= R0

Operands Other Operations

Data bus <= ALU_OUT

Context Word

4

3

2

1

Cycle time

ALU_OUT <= A

ALU Operation

A <= R3

A <= R2

A <= R1

A <= R0

Operands Other Operations

Data bus <= ALU_OUT

(c) Consecutive store operations

Fig. 37. Consecutively same part in context words.

85

0 10 20 30 40 50 60 70 80 90

*First_Diff

*Tri‐ Diagonal

*State

*Hydro

*ICCG

**Dot Product

**24‐Taps FIR

Matrix‐vector multiplication

Mult loop in FFT

Complex_Mult in MPEG4 AAC dec'

ITRANS in H.264 dec'

2D‐FDCT in H.263 enc'

2D‐IDCT in H.23 enc'

SAD in H.263 enc'

Quantization in H.263 enc'

Dequantization in H.263 enc'

Kernels

Ratio(%)

Total
Consecutively Same
NOP

*Livermore loops benchmark [58], **DSPstone [59]

Consecutively Same (%) = 100 × (consecutively same part [bits]/total context words [bits]), NOP (%) =
100 × (NOP context words [bits] / total context words [bits]), Total (%) = NOP + Consecutively Same

Fig. 38. Redundancy ratio of context words.

b. Consecutively Same Part in Context Words

When a kernel is mapped onto CGRA and application gets executed, the consecutively

changed context fields are limited to types of operations involved due to the kernel exe-

cuted at run time. Fig. 37 shows 3 cases for consecutively-same part in context words at

run time. In the case of Fig. 37 (a), PEs perform continuous ‘Load’ operations with fixed

86

‘ALU Operation’ and ‘Operands’ whereas operand data are saved in different register in

every cycle. The Fig. 37 (b) and (c) shows consecutive shift operations and store opera-

tions with different ‘Operand’ while keeping same ‘Other Operations’ in every cycle. It

means that the context words shows consecutively same part and they are repetitively

read from configuration cache without changing values.

c. Redundancy Ratio

For statistical evaluation of redundant context words, we selected 32-bit context archi-

tecture of the base architecture (Fig. 4) and mapped several kernels onto its PE array in

order to maximize the utilization of the context fields. Fig. 38 shows the results for vari-

ous benchmark kernels and critical loops in real applications. Each kernel shows three

cases of redundancy ratios – ‘NOP’, ‘Consecutively Same’ and Total. Total redundancy

ratio varies from 31% to 75%.

B. Dynamic Context Management

If the configuration cache does not perform read/write operation for redundant part of

context words, it is possible to reduce power consumption in configuration cache. That

way, one can achieve low-power implementation of CGRA without performance degra-

dation while managing context words in both cases at transfer time and runtime: one

case is no read/write operation for NOP and another case is one read/write-operation for

consecutively same part in context words. In order to support such a dynamic context

management, we propose a new configuration cache structure and efficient control

mechanism in this chapter.

87

MUX A MUX B

To data buffer or neighbor PEs

Register fileShifter

A L U

To pred’ bus

from data buffer, neighbor PEs or regisiter file

Reg #0
Reg #1

Reg #3

Register

SAT_logic

Reg #2

from pred’ bus

Field name
Bit‐
width

Bit‐position

REG_FILE 3‐bit A31…A29

MUX_A 4‐bit A28…A25

MUX_B 4‐bit A24…A21

ALU_OP 5‐bit A20…A16

SAT 2‐bit A15, A14

SHIFT 6‐bit A13…A8

WDB 1‐bit A7

PRED 1‐bit A6

CTXT_CTRL 6‐bit A5…A0

Field name
Bit‐
width

Bit‐position

REG_FILE 3‐bit A31…A29

MUX_A 4‐bit A28…A25

MUX_B 4‐bit A24…A21

ALU_OP 5‐bit A20…A16

SAT 2‐bit A15, A14

SHIFT 6‐bit A13…A8

WDB 1‐bit A7

PRED 1‐bit A6

CTXT_CTRL 6‐bit A5…A0

Fig. 39. An example of PE and context architecture.

1. Context Partitioning

Context partitioning is to split context architecture into two parts feasible to dynamic

context management. As mentioned in subsection A.2.b, the context words shows con-

secutively same part and they are repetitively read from configuration cache without

changing values. Therefore, if a CE is divided into two parts (CE#1 and CE#2) by con-

text partitioning, one part of CE including continuously same part can be disabled for

power saving while keeping consecutive read/write-operation of another part of CE. The

partitioning starts from grouping context field for ALU operation and some context

fields dependent to ALU operation. This is because ALU have the most dependency

with other component and they are highly probable to be consecutively changed or un-

changed together. Therefore context partitioning positions such fields on one part of con-

text architecture and other fields on another part of context architecture. We have de-

88

fined generic PE structure and 32-bit context architecture like Fig. 39 as an example to

illustrate context partitioning. It can support the kernels in Fig. 38. It is similar to the

representative CGRAs such as MorphoSys [3], REMARC [4], ADRES [8][30] or-

PACT_XPP [10]. Bit-width and initial bit-position of each field are shown in Fig. 39. It

supports various arithmetic and logical operations (ALU_OP) with two operands

(MUX_A and MUX_B), predicated execution (PRED), Arithmetic saturation

(SAT_logic), shift operation (SHIFT) and saving temporal data with register file

(REG_FILE). Fig. 40 shows context partitioning of Fig. 39. Field ‘ALU_OP’ and the

fields dependent to ‘ALU_OP’ are positioned to the part near to MSB and other fields

are positioned near to LSB.

WDB

A15A31…A27 A26…A23 A22…A19 A18 A17, A16 A14…A9 A8 …A6 A5…A0

ALU_OP MUX_A MUX_B PRED SAT SHIFT REG_FILE CTXT_CTRLWDB

A15A31…A27 A26…A23 A22…A19 A18 A17, A16 A14…A9 A8 …A6 A5…A0

ALU_OP MUX_A MUX_B PRED SAT SHIFT REG_FILE CTXT_CTRL

ALU_OP and ALU_OP-dependent Fields : 14-bit

MSB LSB

ALU_OP-independent Fields : 18-bit

Fig. 40. Context partitioning.

After context partitioning, we can know the bit-widths of CE #1 and CE#2 and con-

text register is also can be split into two parts with same bit-widths. Fig. 41 shows com-

parison between general CE and proposed CE. The proposed CE is composed of CE#1

(14-bit) and CE#2 (18-bit) whereas the general CE is a unified one (32-bit). In subsec-

tion B.2 and B.3, we describe more detailed control mechanism for dynamic context

management based on the proposed CE structure.

89

Configuration
Cache #1

PE Array
Configuration

Cache #2

PE

PE

PE

PE

PE PE PE

PE

PE

PE PE PE

PE

PE

Configuration
Cache PE Array

Cache
Element

MUX A MUX B

To data buffer or neighbor PEs

Register file
Shifter

A L U

To pred’ bus

from data buffer, neighbor PEs or regisiterfile

Reg #0

Reg #1

Reg #3

Register

SAT_logic

Reg #2

from pred’ bus

To pred’ bus

from data buffer, neighbor PEs or regisiterfile

Reg #0

Reg #1

Reg #3

Register

SAT_logic

Reg #2

from pred’ bus

SAT_logic

Reg #2

from pred’ bus

Always ON

PE

PE

PE

PE

PE PE PE

PE PE

PE

PE

PE

PE

PE

C
T
X
T
R
E
G

CE #1
14‐bit

CE #2
18‐bit

MUX A MUX B

To data buffer or neighbor PEs

Register file
Shifter

A L U

To pred’ bus

from data buffer, neighbor PEs or regisiterfile

Reg #0

Reg #1

Reg #3

Register

SAT_logic

Reg #2

from pred’ bus

To pred’ bus

from data buffer, neighbor PEs or regisiterfile

Reg #0

Reg #1

Reg #3

Register

SAT_logic

Reg #2

from pred’ bus

SAT_logic

Reg #2

from pred’ bus

32‐bit

R
E
G
1

R
E
G
1

ON/OFF

ON/OFF

32‐bit32‐bit

(a) General CE (b) Proposed CE

Fig. 41. Comparison between general CE and proposed CE.

DMA
Controller

Cache
Controller

Main
Memory

Configuration
Memory

(SRAM)

RF

Register File

Context Word

Context Word

Context Word

Management
CE CE CE CE

CE CE CE CE

CE CE CE CE

CE CE CE CE

R R R R
R R R R
R R R R
R R R R

SRAM block
Width : 32‐bit

Depth: 8
2‐bit

register

CE#2

CE#1

Fig. 42. Context management when context words are transferred.

90

2. Context Management at Transfer Time

Context management at transfer time is to remove redundant cache-write operations by

using additional hardware detecting redundancy of context words. Fig. 42 shows transfer

flow of context words from main memory to configuration cache in the case of 4x4 CEs.

For checking the redundancy, hardware block of ‘Management’ is added to general

cache controller. ‘Management’ block checks transferred context words whether it has

redundancy or not. Then it controls cache-write operation as Algorithm 4. In addition,

Fig. 42 shows register file connected with ‘Management’ block – it has same address-

ability as CE but bit-width is 2. The register file store 2-bit redundancy information –

the saved information in register file are used for context management at run time.

Algorithm 4 Context Management at Transfer Time

L1 begin

L2 if cur_ctxt = NOP then

L3 reg_file[ctxt_addr] ← “01”

L4 cs1 ← ‘0’, cs2 ← ‘0’

L5 else if cur_ctxt[cw-1, cw-w+1] = prev_ctxt[cw-1, cw-w+1] then

L6 reg_file[ctxt_addr] ← “10”

L7 cs1 ← ‘0’, cs2 ← ‘1’

L8 CE#2[ctxt_addr] ← cur_ctxt[cw-w, 0]

L9 else if cur_ctxt[cw-w, 0] = prev_ctxt[cw-w, 0] then

L10 reg_file[ctxt_addr] ← “11”

L11 cs1 ← ‘1’, cs2 ← ‘0’

L12 CE#1[ctxt_addr] ← cur_ctxt[cw-1, cw-w+1]

L13 else

L14 cs1 ← ‘1’, cs2 ← ‘1’

L15 CE#1[ctxt_addr] ← cur_ctxt[cw-1, cw-w+1]

L16 CE#2[ctxt_addr] ← cur_ctxt[cw-w, 0]

L17 end if

L18 prev_ctxt← cur_ctxt

L19 end

Algorithm 4 Context Management at Transfer Time

L1 begin

L2 if cur_ctxt = NOP then

L3 reg_file[ctxt_addr] ← “01”

L4 cs1 ← ‘0’, cs2 ← ‘0’

L5 else if cur_ctxt[cw-1, cw-w+1] = prev_ctxt[cw-1, cw-w+1] then

L6 reg_file[ctxt_addr] ← “10”

L7 cs1 ← ‘0’, cs2 ← ‘1’

L8 CE#2[ctxt_addr] ← cur_ctxt[cw-w, 0]

L9 else if cur_ctxt[cw-w, 0] = prev_ctxt[cw-w, 0] then

L10 reg_file[ctxt_addr] ← “11”

L11 cs1 ← ‘1’, cs2 ← ‘0’

L12 CE#1[ctxt_addr] ← cur_ctxt[cw-1, cw-w+1]

L13 else

L14 cs1 ← ‘1’, cs2 ← ‘1’

L15 CE#1[ctxt_addr] ← cur_ctxt[cw-1, cw-w+1]

L16 CE#2[ctxt_addr] ← cur_ctxt[cw-w, 0]

L17 end if

L18 prev_ctxt← cur_ctxt

L19 end

91

Algorithm 4 shows this management process for a CE. Before we explain this man-

agement in detail, we introduce notations we use in Algorithm 4.

 cw: bit-width of context word

 w: bit-width of field group (ALU_OP and ALU_OP-dependent fields)

 cur_ctxt: context word currently transferred to configuration cache

 prev_ctxt: context word previously transferred to configuration cache

 ctxt_addr: address of current context word in configuration cache

 reg_file: register file, CE#1 and CE#2: Cache Element

 out_ctxt: context word currently provided to context register

 cs1 and cs2: chip select signal of CE1 and CE2

The algorithm starts with checking whether current context word is NOP or not (L2). If

the context word is NOP, 2-bit information (“01”) is stored in register file and both

CE#1 and CE#2 are disabled (L4). If it’s not NOP, next process is to check whether the

upper part (near to MSB) of context word is the consecutively identical to one of previ-

ous context word. If it is the same part as the previous one, information (“10”) is stored

in the register file (L6) and only CE#2 is enabled (L7) for cache write-operation (L8).

Checking the lower part (near to LSB) of current context word (L9~L12) shows the

same manner as previous process but CE#1 is enabled instead of CE#2. Finally, if cur-

rent context word does not correspond to any case of previous checking processes, both

CE#1 and CE#2 are enabled (L14) and full context word is stored in configuration cache

(L15, L16). Finally, previous context word is updated by current context word (L18).

92

3. Context Management at Run Time

Context management at run time is to remove redundant cache-read operations by

checking redundancy information stored in the register file. Fig. 43 shows structure be-

tween configuration cache and PE array for the context management. The hardware

block of ‘Management’ controls all of CEs and a context register between a CE and a PE

is implemented by a gated clock using chip select signals (CS1 and CS2). Gated clock

implementation is to configure PE with fixed output of the context register caused by

non-oscillated clock. Therefore, PEs can be configured without cache-read operation in

the case of consecutively same context words.

CS1

R1

P E

CE1CE1

1‐bit

CLK
Gated Clock

R

CS2

R2CE2CE2

1‐bit

CLK

R

8‐bit

Cache
Controller

Context RegisterContext Register

Cache Element

Processing
Element

Cache Element

Processing
ElementPE

Symbol MeaningSymbol Meaning

32‐bit

2‐bit

2‐bit

PE

RF

Management

CS (Chip Select)
signals for each CE

1‐bit Register1‐bit RegisterR

CE1CE1

R1

CE1CE1 CE2CE2

R2

PE

R1

CE1CE1 CE2CE2

R2

2‐bit

PE

R1

CE1CE1 CE2CE2

R2

2‐bit

PE

R1

CE1CE1 CE2CE2

R2

PE

R1

CE1CE1 CE2CE2

R2

PE

R1

CE1CE1 CE2CE2

R2

PE

R1

CE1CE1 CE2CE2

R2

PE

R1

CE1CE1 CE2CE2

R2

PE

R1

CE1CE1 CE2CE2

R2

PE

R1

CE1CE1 CE2CE2

R2

PE

R1

CE1CE1 CE2CE2

R2

PE

R1

CE1CE1 CE2CE2

R2

PE

R1

CE1CE1 CE2CE2

R2

PE

R1

CE1CE1 CE2CE2

R2

PE

R1

CE1CE1 CE2CE2

R2

PE

R1

CE1CE1 CE2CE2

R2 R1 R2

CE2CE2

Fig. 43. Context management at run time.

93

Algorithm 5 Context Management at Run Time
L1 begin
L2 if reg_file[ctxt_addr] = “01” then
L3 cs1 ← ‘0’, cs2 ← ‘0’
L4 else if reg_file[ctxt_addr] = “10” then
L5 cs1 ← ‘0’, cs2 ← ‘1’
L6 out_ctxt[cw-w, 0] ← CE#2[ctxt_addr]
L7 else if reg_file[ctxt_addr] = “11” then
L8 cs1 ← ‘1’, cs2 ← ‘0’
L9 out_ctxt[cw-1, cw-w+1] ← CE#1[ctxt_addr]
L10 else
L11 cs1 ← ‘1’, cs2 ← ‘1’
L12 out_ctxt[cw-1, cw-w+1] ← CE#1[ctxt_addr]
L13 out_ctxt[cw-w, 0] ← CE#2[ctxt_addr]
L14 end if
L15 end

Algorithm 5 Context Management at Run Time
L1 begin
L2 if reg_file[ctxt_addr] = “01” then
L3 cs1 ← ‘0’, cs2 ← ‘0’
L4 else if reg_file[ctxt_addr] = “10” then
L5 cs1 ← ‘0’, cs2 ← ‘1’
L6 out_ctxt[cw-w, 0] ← CE#2[ctxt_addr]
L7 else if reg_file[ctxt_addr] = “11” then
L8 cs1 ← ‘1’, cs2 ← ‘0’
L9 out_ctxt[cw-1, cw-w+1] ← CE#1[ctxt_addr]
L10 else
L11 cs1 ← ‘1’, cs2 ← ‘1’
L12 out_ctxt[cw-1, cw-w+1] ← CE#1[ctxt_addr]
L13 out_ctxt[cw-w, 0] ← CE#2[ctxt_addr]
L14 end if
L15 end

Algorithm 5 shows this management process for a CE. The defined notations in Al-

gorithm 4 are used in Algorithm 5. The algorithm starts with checking whether the in-

formation (stored in the register file) identified by current address is NOP or not (L2). If

the information is NOP (“01”), both CE#1 and CE#2 are disabled (L3). If it’s not NOP,

next process is to check whether the information corresponds to the case (“10”) of con-

secutively same part (near to MSB) or not (L4). If it is “10”, only CE#2 is enabled (L5)

for cache read-operation (L6). Next process is to check whether the information corre-

sponds to the case (“10”) of consecutively same part (near to MSB) or not (L7). It shows

the same manner as previous process but CE#1 is enabled for read-operation instead of

CE#2. Finally, if the information does not correspond to any case of previous checking

processes, both CE#1 and CE#2 are enabled (L11) and a full context word is read from

configuration cache (L12, L13).

94

C. Experiments

1. Experimental Setup

For quantitative evaluation, we have designed two CGRAs based on the 8x5 reconfigur-

able array at RT-level with VHDL – one is conventional base CGRA and the other is the

proposed CGRA supporting dynamic context management. The architectures have been

synthesized using Design Compiler [49] with 0.18 ㎛ technology. We have used SRAM

Macro Cell library for the frame buffer and configuration cache. ModelSim [50] and

PrimePower [49] tools have been used for gate- level simulation and power estimation.

To obtain the power consumption data, we have used the kernels (Fig. 38) for simulation

with operation frequency of 100 MHz and typical case of 1.8 V Vdd and 27℃.

Table VIII. Area Overhead by Dynamic Context Management

Area cost (gate equivalent) Component Base Proposed
Overhead

(%)
Config’cache 150012 162538 8.35

RAA 942742 955268 1.33
Base: base architecture, Proposed: proposed architecture,
Overhead(%) : {(Proposed/Base) – 1}×100

2. Results

a. Area Cost Evaluation

Table VIII shows the synthesis results from Design Compiler [49] of proposed architec-

ture and base architecture. It shows that area cost of new configuration cache including

cache control unit, hardware block of “Management” and register file increased by

8.35% but the overall area-overhead is only 1.33 %. Thus, the new configuration cache

structure can support dynamic context management with negligible overheads.

95

Table IX. Power Reduction Ratio by Dynamic Context Management
Configuration cache Power (mW)

Write-operation Read-operation
Reduction
Ratio (%) Kernels

Base Proposed Base Proposed Write Read
Tri- Diagonal 14.98 6.89 171.77 79.03 54.00 53.99
First_Diff 13.34 8.25 174.18 104.51 38.12 40.00
State 15.23 9.37 161.23 93.87 38.45 41.78
Hydro 11.22 7.17 148.23 96.14 36.14 35.14
ICCG 15.39 7.56 205.80 103.35 50.87 49.78
Dot Product 12.11 7.28 117.84 72.51 39.88 38.47
24-Taps FIR 19.20 11.63 227.56 138.90 39.41 38.96
MVM 14.23 8.68 227.57 138.54 38.99 39.12
Mult in FFT 12.12 7.62 175.48 105.88 37.14 39.66
Comlex Mult 11.57 7.86 180.63 123.59 32.12 31.58
ITRANS 14.22 10.17 204.85 148.64 28.47 27.44
2D-FDCT 16.23 11.69 190.03 140.30 27.96 26.17
2D-IDCT 17.34 13.16 188.47 139.88 24.13 25.78
SAD 14.30 4.45 185.30 55.87 68.89 69.85
Quant 12.12 8.73 185.23 134.94 27.99 27.15
Dequant 15.33 11.05 187.78 137.10 27.89 26.99

Average 38.24 38.15
Base: base architecture, Proposed: proposed architecture, Reduced: {1-(Proposed/Base)}×100
Write/Read: reduction ratio in the case of write/read operation

b. Power Evaluation

To demonstrate the effectiveness of the proposed approach, we have applied several ker-

nels in Fig. 38 to the proposed and base architectures. These kernels were executed with

100 iterations. Table IX shows power evaluation of configuration cache for two cases –

read operation and write-operation. The power consumptions of write-operations are less

than the cases of read-operations. This is because a CE performs write-operation at

transfer time whereas all of CEs perform read-operation at run time. Compared to the

base architecture, it has shown to save up to 68.89%/69.85% of the power in write/read-

operation. 5 kernels (ITRANS, 2D-FDCT, 2D-IDCT, Quant and Dequant) show less re-

duction in power compared to other kernels. This is because they show less redundancy

96

ratios of context words compared with other kernels– Fig. 38 shows that the redundancy

ratios of these kernels are in the range of 31.22% ~ 33.79%. Average power reduction

ratios in write-operation and read-operation are 38.24% and 38.15%.

c. Performance Evaluation

The synthesis results show that the critical path delay of the proposed architecture is

same as the base model i.e. 8.96 ns. It indicates the dynamic context management does

not cause performance degradation in terms of the critical path delay. In addition, the

execution cycle count of each kernel on proposed architecture does not vary from the

base architecture because the functionality of proposed architecture is same as the base

model. It also indicates the dynamic context management does not cause performance

degradation in terms of the execution cycle count.

97

CHAPTER VII

COST-EFFECTIVE ARRAY FABRIC

In this chapter, we propose a new domain-specific array fabric design space exploration

method to generate a cost-effective reconfigurable array structure [62]. The exploration

flow efficiently rearranges PEs with reducing array size and change interconnection

scheme to achieve much reduction in power and area while maintaining the same per-

formance as the original architecture. In addition, the proposed array fabric splits the

computational resources into two groups (primitive resources and critical resources).

Critical resources can be area-critical and/or delay-critical. Primitive resources are repli-

cated for each processing element of the reconfigurable array, whereas area-critical re-

sources are shared among multiple basic PEs in order to reduce more area of CGRA. De-

lay-critical resources can be pipelined to curtail the overall critical path so as to increase

the system clock frequency. Experimental results show that for multimedia applications,

the proposed approach reduces area by up to 36.75%, execution time by up to 42.86 and

power by up to 35.45.% when compared with the base CGRA architecture.

A. Preliminary

In this section, we present preliminary concepts of our cost-effective design [44]. They

come from the characteristics of loop pipelining based on MIMD-style execution model.

Then we propose two techniques to make an RAA cost-effective in terms of area and

delay. One is resource sharing and the other is resource pipelining.

98

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

Col#1 Col#2 Col#3 Col#4Broadcast Column Direction Row Direction Column Direction

Cycle Time 1 2 3 4 5 6 7 8 9 10 11

Column#1 LD/+ NOP NOP NOP × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ NOP NOP × 1+ 2+ NOP ×/ST NOP NOP

Column#3 LD/+ NOP × 1+ 2+ NOP NOP ×/ST NOP

Column#4 LD/+ × 1+ 2+ NOP NOP NOP ×/ST

Broadcast Column Direction Row Direction Column Direction

Cycle Time 1 2 3 4 5 6 7 8 9 10 11

Column#1 LD/+ NOP NOP NOP × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ NOP NOP × 1+ 2+ NOP ×/ST NOP NOP

Column#3 LD/+ NOP × 1+ 2+ NOP NOP ×/ST NOP

Column#4 LD/+ × 1+ 2+ NOP NOP NOP ×/ST

(a) SIMD

+

+

+

×

×

×

×

Col#1 Col#2 Col#3 Col#4
Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ × 1+ 2+ ×/ST NOP NOP

Column#3 LD/+ × 1+ 2+ ×/ST NOP

Column#4 LD/+ × 1+ 2+ ×/ST

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ × 1+ 2+ ×/ST NOP NOP NOP

Column#2 LD/+ × 1+ 2+ ×/ST NOP NOP

Column#3 LD/+ × 1+ 2+ ×/ST NOP

Column#4 LD/+ × 1+ 2+ ×/ST

×/ST

(b) Temporal mapping

×/ST

×

×

×

×

+

+ +

Col#1 Col#2 Col#3 Col#4Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ LD/+ LD/+ LD/+ ×/ST ×/ST ×/ST ×/ST

Column#2 × × × × NOP NOP NOP

Column#3 1+ 1+ 1+ 1+ NOP NOP

Column#4 2+ 2+ 2+ 2+ NOP

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ LD/+ LD/+ LD/+ ×/ST ×/ST ×/ST ×/ST

Column#2 × × × × NOP NOP NOP

Column#3 1+ 1+ 1+ 1+ NOP NOP

Column#4 2+ 2+ 2+ 2+ NOP

(c) Spatial mapping

Fig. 44. Snapshots of three mappings.

1. Resource Sharing

Fig. 44 shows the snapshot taken at the 5th cycle of execution of the previous example

shown in Fig. 12 for three cases: (a) SIMD and two cases of loop pipelining - (b) tempo-

ral mapping and (c) spatial mapping. The operations in the 5th cycle for (a), (b) and (c)

include multiplication and therefore the multipliers in the PE array are to be used. In the

99

case of SIMD, all PEs perform multiplication requiring all of them to have multipliers,

thereby increasing the area cost of the PE array. However, in the case of temporal map-

ping, only PEs in the 1st column and the 4th column perform multiplication while PEs in

the 2nd and 3rd columns perform addition. In the spatial mapping, only PEs in the 1st and

Col#1 Col#2 Col#3 Col#4

×/ST×/ST

SW

SW

SW

SW

+

SW

SW

SW

SW

+

+

SW

SW

SW

SW

×

×

×

×

MULTMULT SW

SW

SW

SW

MULTMULT

MULTMULT

MULTMULT

MULTMULT

MULTMULT

MULTMULT

MULTMULT

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ × 1+ 2+ × /ST NOP NOP NOP

Column#2 LD/+ × 1+ 2+ × /ST NOP NOP

Column#3 LD/+ × 1+ 2+ × /ST NOP

Column#4 LD/+ × 1+ 2+ × /ST

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ × 1+ 2+ × /ST NOP NOP NOP

Column#2 LD/+ × 1+ 2+ × /ST NOP NOP

Column#3 LD/+ × 1+ 2+ × /ST NOP

Column#4 LD/+ × 1+ 2+ × /ST

(a) Temporal mapping

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ LD/+ LD/+ LD/+ ×/ST ×/ST ×/ST ×/ST

Column#2 × × × × NOP NOP NOP

Column#3 1+ 1+ 1+ 1+ NOP NOP

Column#4 2+ 2+ 2+ 2+ NOP

Cycle Time 1 2 3 4 5 6 7 8

Column#1 LD/+ LD/+ LD/+ LD/+ ×/ST ×/ST ×/ST ×/ST

Column#2 × × × × NOP NOP NOP

Column#3 1+ 1+ 1+ 1+ NOP NOP

Column#4 2+ 2+ 2+ 2+ NOP
×/ST

SW

SW

SW

SW

×

×

×

×

SW

SW

SW

SW

+

+

SW

SW

SW

SW

+

MULTMULT SW

SW

SW

SW

Col#1 Col#2 Col#3 Col#4

MULTMULT

MULTMULT

MULTMULT

MULTMULT

MULTMULT

MULTMULT

MULTMULT

(b) Spatial mapping

Fig. 45. Eight multipliers shared by sixteen PEs.

2nd columns perform multiplication. As can be observed, in the temporal mapping and

spatial mapping, there is no need for all PEs to have the same functional resources at the

100

same time. This allows the PEs in the same column or in the same row to share area-

critical resources. Fig. 45 shows four PEs in a row sharing two multipliers3 at the 5th cy-

cle in temporal mapping and spatial mapping. We depict only the connections related to

resource sharing.

Fig. 46 depicts the detailed connections for multiplier sharing. The two n-bit oper-

ands of a PE are connected to the bus switch. The dynamic mapping of a multiplier to a

PE is determined at compile time and the information is encoded into the configuration

word. At run-time, the mapping control signal from the configuration word is fed to the

bus switch and the bus switch decides where to route the operands. After the multiplica-

tion, the 2n-bit output is transferred from the multiplier to the original issuing PE via the

bus switch.

MULTMULT

ctrl

MULTMULT

2n‐bit

n‐bit

2n‐bit

Bus
switch

PE

CECE

n‐bit

n‐bit

2n‐bit

Fig. 46. The connection between a PE and shared multipliers.

3 Since multipliers take much more area than other resources, we classify them as critical resources.

101

2. Resource Pipelining

If there is a critical functional resource with long latency in a PE, the functional resource

can be pipelined to curtail the critical path. Resource pipelining has clear advantage in

loop pipelining execution because heterogeneous functional units with different delays

can run at the same time. In the traditional design (Fig. 47 (a)), the latency of a PE is

fixed but in our pipelined PE design (Fig. 47 (b)), we allow multi-cycle operations and

so the latency can vary depending on the operation. This helps increase the system clock

frequency.

Critical
Resource

Output Reg’

Front

End

Neighbor PE Neighbor PE

Two cycles operation One cycle operation

Output Reg’

Critical path

Reg

Critical path is
seperated into two

Output Reg’

Output Reg’

One cycle operation

(a) General PE (b) Pipelined PE

 Fig. 47. Critical paths.

102

Cycle Time 1 2 3 4 5 6 7 8 9 10

Column#1 LD/+ 1× 2× 1+ 2+ 1× 2×/ST NOP NOP NOP

Column#2 LD/+ 1× 2× 1+ 2+ 1× 2×/ST NOP NOP

Column#3 LD/+ 1× 2× 1+ 2+ 1× 2×/ST NOP

Column#4 LD/+ 1× 2× 1+ 2+ 1× 2×/ST

Cycle Time 1 2 3 4 5 6 7 8 9 10

Column#1 LD/+ 1× 2× 1+ 2+ 1× 2×/ST NOP NOP NOP

Column#2 LD/+ 1× 2× 1+ 2+ 1× 2×/ST NOP NOP

Column#3 LD/+ 1× 2× 1+ 2+ 1× 2×/ST NOP

Column#4 LD/+ 1× 2× 1+ 2+ 1× 2×/ST

Col#1 Col#2 Col#3 Col#4

1×

SW

SW

SW

SW

+

SW

SW

SW

SW

+

+

SW

SW

SW

SW

2×

2×

2×

2×

SW

SW

SW

SW

MULTMULT

MULTMULT

MULTMULT

MULTMULT

(a) Temporal mapping

Cycle Time 1 2 3 4 5 6 7 8 9 10

Column#1 LD/+ LD/+ LD/+ LD/+ NOP 1×
2×/ST
/1×

2×/ST
/1×

2×/ST
/1×

2×/ST

Column#2 1×
2×/1
×

2×/1
×

2×/1
×

2× NOP NOP NOP NOP

Column#3 1+ 1+ 1+ 1+ NOP NOP NOP

Column#4 2+ 2+ 2+ 2+ NOP NOP

Cycle Time 1 2 3 4 5 6 7 8 9 10

Column#1 LD/+ LD/+ LD/+ LD/+ NOP 1×
2×/ST
/1×

2×/ST
/1×

2×/ST
/1×

2×/ST

Column#2 1×
2×/1
×

2×/1
×

2×/1
×

2× NOP NOP NOP NOP

Column#3 1+ 1+ 1+ 1+ NOP NOP NOP

Column#4 2+ 2+ 2+ 2+ NOP NOP

1×

SW

SW

SW

SW

2×

2×

2×

2×

SW

SW

SW

SW

+

+

SW

SW

SW

SW

+

SW

SW

SW

SW

Col#1 Col#2 Col#3 Col#4

MULTMULT

MULTMULT

MULTMULT

MULTMULT

(b) Spatial mapping

1×: First pipeline stage on multiplication, 2×: Second pipeline stage on multiplication

Fig. 48. Loop pipelining with pipelined multipliers.

If a critical functional resource such as a multiplier has both large area and long la-

tency, the resource sharing and resource pipelining can be applied at the same time in

such a way that the shared resource executes multiple operations at the same time in dif-

ferent pipeline stages. With this technique, the conditions for resource sharing are re-

laxed and so the critical resources are utilized more efficiently. Fig. 48 shows this situa-

tion. Through the pipelining, we can reduce the number of multipliers from 8 to 4 to per-

form the execution without any stall. This is because two PEs sharing one pipelined mul-

tiplier can perform two multiplications at the same time using different pipeline stages.

103

B. Cost-Effective Reconfigurable Array Fabric

In this section, we propose an array fabric design space exploration method to generate a

cost-effective reconfigurable array structure in terms of area and power. It is mainly mo-

tivated by the characteristics of typical computation-intensive and data-parallel applica-

tions.

1. Motivation

a. Characteristics of Computation-Intensive and Data-Parallel Applications

Most of the CGRAs have been designed to satisfy the performance requirement of a

range of applications in a particular domain. Especially, they have been designed for ap-

plications that exhibit computation-intensive and data-parallel characteristics. Common

examples for such applications are digital signal processing (DSP) applications like au-

dio signal processing, image processing, video signal processing, speech signal process-

ing, speech recognition, and digital communications. Such applications have many sub-

tasks such as trigonometric functions, filters and matrix/vector operations that can be

mapped onto coarse-grained reconfigurable array. We have classified such subtasks into

four types as shown by the data flow graphs in Fig. 49. Type (a) shows merge operation

in which outputs from multiple operations in the previous stage are used as inputs to an

operation in the next stage. Type (b) shows butterfly operation where output data from

multiple operations in the previous stage are fed as input data to the same number of

next stage operations. Finally, type (c) and (d) show the combinations of (a) and (b).

104

OP1

OP3

OP4OP2

OP1

OP2

OP4

OP5

OP3 OP6

OP1

OP2

OP4

OP5
OP3

OP6

OP6

OP7

OP1

OP2

OP4

OP5

OP3 OP6

OP7

(a) Merge (b) Butterfly (c) Merge-butterfly (d) Butterfly-merge
OPi : operation

Fig. 49. Subtask classification.

b. Redundancy in Conventional Array Fabric

 Most coarse-grained reconfigurable arrays arrange their processing elements (PEs) in a

square or rectangular 2-D array with rich set of horizontal and vertical connections for

effective exploitation of parallelism. However, such square/rectangular array structures

have many redundant or unutilized PEs during the executions of applications on them.

Fig. 50 shows an example of three types of data flow (Fig. 49 (a), (c), and (d)) mapped

onto 8x8 square reconfigurable arrays in the two cases of loop pipelining – temporal

mapping and spatial mapping. The upper part of Fig. 50 shows the scheduling for a col-

umn of PEs based on temporal mapping and also shows how the utilization of the PEs

changes for the 8 cycles of schedule. As can be seen from the figure, Some PEs have

very low utilization. The lower part of Fig. 50 shows the spatial mapping of the 8x8 ar-

ray, where some PEs are not used at all. All the three types of implementations show lots

of redundant PEs that are not used.

105

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

1 2 3 4 5 6 7 8
Cycle Time

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

6 7 8

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

3 4 5
Cycle Time

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

1 2 1

Cycle Time

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

2

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

5 6 7 8

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

3 4

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

Col#1

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

Col#2 Col#3 Col#4 Col#5 Col#6 Col#7 Col#8

Column Number

Col#1 Col#2 Col#3 Col#4 Col#5 Col#6 Col#7 Col#8

Column Number

Col#1 Col#2 Col#3 Col#4 Col#5 Col#6 Col#7 Col#8

Column Number

Temporal
Mapping

Spatial
Mapping

(a) Merge (b) Merge-butterfly (c) Butterfly-merge

PE : used processing element PE : unused processing element

Fig. 50. Data flow on square reconfigurable array.

From these observations, we see that the existing square/rectangular array fabric

cannot efficiently utilize the PEs in the array and therefore waste large area and power.

In order to overcome such wastages in square/rectangular array fabric, we propose a new

cost effective array fabric in the next subsection.

2. New Cost Effective Data Flow-Oriented Array Structure

a. Derivation of Data Flow-Oriented Array Structure

To reduce the redundancy in the conventional square/rectangular array, first of all, we

can consider a specific array shape that fits well with the applications’ common data

flows. Fig. 51 shows such a data flow-oriented array structure derived from three types

106

of data flow. In Fig. 51 (a), a triangular-shaped array and uni-directional interconnec-

tions among PEs can be derived from the first data flow (merge). Then the interconnec-

tions can be made bi-directional to support the merge—butterfly data flow as shown in

Fig. 51 (b). Finally, in Fig. 51 (c), the entire array becomes a diamond-shaped structure

to reflect the butterfly-merge data flow. In this case, the butterfly operations are spatially

spread on both sides of the array. Then intermediate data merge takes place at the end of

both sides or they can merge at the center of the array.

Data Flow

Array Shape and direction
of interconnections

: Input data
: Intermediate data

(a) Merge (b) Merge-butterfly (c) Butterfly-merge

Fig. 51. Data flow-oriented array structure derived from three types of data flow.

To represent how the data-flow oriented array structure can efficiently utilize PEs,

we examine the difference between the conventional square-shaped array and the pro-

posed data flow-oriented array with a simple example. We assume a diamond-shaped

reconfigurable array composed of 12 PEs as shown in Fig. 52 (a) – this is a counterpart

of the 4x4 PE array shown in Fig. 10. In addition, we assume a Frame Buffer similar to

the one in Fig. 10 (b) is connected to the array, where the PEs in each row of the array

107

share two read buses and the PEs in two neighboring rows share one write bus as shown

in Fig. 52 (b). The array has nearest neighbor and global bus interconnections in diago-

nal and horizontal directions as shown in Fig. 52 (c) and (d).

CECE

CECECECE CECE

CECE CECE CECE CECE

CECE CECE CECE

CECE

PE

PEPE

PE

PE

PE

PE PEPE

PE

PE PE

(a) Distributed cache structure

Bank A

Bank B

Bank C

D
E
M
U
X

Frame Buffer

M
U
X

n‐bit

4n‐bit

4n‐bit

4n‐bit

PE

PEPE

PE

PE

PE

PE PEPE

PE

PE PE

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

n‐bit

PE Array

MeaningSymbol

bus tap to tap off partial bits of a bus

MeaningSymbol

bus tap to tap off partial bits of a bus

4n‐bit

(b) Frame buffer and data bus

Fig. 52. An example of data flow-oriented array.

108

PE

PEPE

PE

PE

PE

PE PEPE

PE

PE PE

PE

PEPE

PE

PE

PE

PE PEPE

PE

PE PE

(c) Nearest neighbor interconnection (d) Global bus interconnection

Fig. 52. Continued.

Consider mapping of Eq. (2) in Chapter IV with N = 4 on the proposed array in the

same way as we did for the 4x4 square-shaped PE array in Chapter IV. Fig. 53 shows

the snapshots taken at the time of maximum utilization of PEs for three cases: (a) tempo-

ral mapping on the square-shaped array (4x4 PEs), (b) spatial mapping on the square-

shaped array (4x4 PEs) and (c) spatial mapping on the data flow-oriented array (12 PEs).

In the case of (a) and (b), five PEs are not used because the merging addition does not fit

well with the square-shape. However, in the case of (c), the array efficiently utilizes all

of the PEs without delayed operation. As can be observed, this example shows that the

propose array structure can avoid the area and power wastages of the square-shaped ar-

ray without performance degradation.

109

LD/+

LD/+

LD/+

LD/+

NOP

+

NOP

NOP

NOP

+

NOP

×

×

×

×

+

: from register file : Feedback: from register file : Feedback

LD/+

LD/+

LD/+

LD/+

NOP

+

NOP

NOP

NOP

+

NOP

×

×

×

×

+

(a) Temporal mapping on 4x4 PE array (b) Spatial mapping on the 4x4 PE array

LD/+

LD/+

LD/+

LD/+

×/ST

××

××

+ ++

 (c) Spatial mapping on the data-flow oriented PE array

Fig. 53. Snapshots showing the maximum utilization of PEs.

b. Mitigation of Spatial Limitation in the Proposed Array Structure

As shown in Fig. 53 (c), we spread the operations in the data flows (mostly loop bod-

ies) over the array space, instead of spreading the operations over time for each column

to implement temporal loop pipelining as shown in Fig. 53 (a). This implies that spatial

loop pipelining is most suitable to the new array fabric. However, as mentioned in

110

Chapter IV (see subsection A.2), spatial mapping is not feasible for complex loops be-

cause of two reasons. One is that a large loop body may not fit in the limited recon-

figurable array and the other is that data dependencies between the operations typically

require allocating lots of interconnect resources. In order to mitigate such a limitation,

the new array fabric should have rich interconnections to provide more flexible and

multi-directional data communication and the PEs should be arranged in such a way to

utilize such an interconnection structure efficiently. As a solution to this problem, we

propose a design flow that generates a data-flow oriented array structure by determin-

ing the topology of PEs and their interconnections.

3. Data Flow-Oriented Array Design Flow

The generation of a data-flow oriented array starts from a square-shaped array fabric,

considering that the original square-shaped array fabric is very well designed. We gener-

ate the new data-flow oriented array such that it can efficiently implement any applica-

tion that can be implemented on the square-shaped array fabric. In the example of Fig.

52 (a), since the data-flow has a diamond-shape, we can generate a diamond-shaped ar-

ray with

111

Analysis of Inter-Half
Column Connectivity

Square Array Fabric feasible to
Temporal Loop Pipelining

Cost-Effective Reconfigurable
Array Fabric

Connectivity Enhancement

Analysis of Intra-Half
Column Connectivity

New Array Fabric Specification – Phase II

New Array Fabric Specification – Phase I

Fig. 54. Overall design flow.

less number of PEs but without any performance degradation, which is just like garment

cutting. Since we want to cover the applications that can be implemented through tempo-

ral mapping on the square-shaped array fabric as well, we do not just cut the fabric but

we compose the new array by transforming the temporal interconnection structure to a

spatial interconnection structure.

In the temporal mapping, each loop iteration of an application kernel (critical loop)

is mapped onto a column of the square-shaped array. Therefore, it is good enough to

analyze the interconnection fabric only within a column to derive the new array structure.

Fig. 54 shows the entire design flow. This flow starts from analysis of intra-half

column and inter-half column connectivity of general square array fabric. Intra-half col-

112

umn connectivity means nearest neighbor or hopping interconnection between PEs in a

half column and inter-half column connectivity means pair-wise interconnection or

global bus between PEs – one PE in a half column and another PE in the other half col-

umn. New array fabric is partially derived by analyzing intra-half column connectivity of

square fabric in Phase I. Then Phase II elaborates new array fabric by analyzing inter-

half column connectivity of square fabric. Finally, the connectivity of new array fabric is

enhanced by adding vertical and horizontal global bus. In the remainder of this subsec-

tion -- from a through d below -- we describe more detailed process for each stage of the

entire exploration flow.

a. Input Reconfigurable Array Fabric

The 8x8 array given in Fig. 5 is used for the input array fabric to illustrate the proposed

design flow.

b. New Array Fabric Specification – Phase I

In this phase, an initial version of the new array fabric is constructed by analyzing intra-

half column connectivity of the input square array. Algorithm 6 shows this procedure.

Before we explain the procedure in detail, we describe the notations used in it.

 (L1) base column denotes a half column in the n x n reconfigurable array.

 (L3) new_array_space denotes 2-dimentional space of the constructed reconfigurable

array.

 (L5) source_column_group denotes a group of PEs composed of one or two columns

in the new_array_space. It is used as a source for deriving the new array fabric.

 (L12) |source_column_group| denotes the number of PEs in source_column_group.

113

 (L6) CHECK_INTERCONNECT is a function to identify nearest neighbor or hop-

ping interconnections of PEs in source_column_group by analyzing the base column. If

there is such an interconnection that has not been processed yet, then it returns true.

 (L8) LOC_TRI is a function that implements the local triangulation method, which

adds PEs, assigns them new positions in new_array_space, and connects them with the

PEs already existing in the source_column_group.

Algorithm 6 New Array Fabric Specification – Phase I
L1 base ← a half column of n x n reconfigurable array
L2 m ← number of memory-read buses of n x n reconfigurable array
L3 new_array_space← Ø
L4 begin
L5 source_column_group← Add a column composed of n/2 PEs

in new_array_space

L6 while CHECK_INTERCONNECT(source_column_group, base)
L7 do
L8 LOC_TRI(source_column_group)
L9 end do
L10 source _column_group← Ø
L11 source _column_group← next two columns on the both sides

in new_array_space
L12 if |source-column_group| > 2 then
L13 goto L6
L14 end if
L15 Add nearest-neighbor interconnections
L16 Add m memory-read buses
L17 Connect the read buses with the added PEs in the same row
L18 Copy the constructed fabric on vertically symmetric position
L19 end

Algorithm 6 New Array Fabric Specification – Phase I
L1 base ← a half column of n x n reconfigurable array
L2 m ← number of memory-read buses of n x n reconfigurable array
L3 new_array_space← Ø
L4 begin
L5 source_column_group← Add a column composed of n/2 PEs

in new_array_space

L6 while CHECK_INTERCONNECT(source_column_group, base)
L7 do
L8 LOC_TRI(source_column_group)
L9 end do
L10 source _column_group← Ø
L11 source _column_group← next two columns on the both sides

in new_array_space
L12 if |source-column_group| > 2 then
L13 goto L6
L14 end if
L15 Add nearest-neighbor interconnections
L16 Add m memory-read buses
L17 Connect the read buses with the added PEs in the same row
L18 Copy the constructed fabric on vertically symmetric position
L19 end

The algorithm starts with the initialization step (L1~L3). Then a half column is added

into new_array_space, which is the initial source_column_group (L5). The next proc-

ess is to check the nearest neighbor or hopping connectivity between two PEs (L6) in

the same column included in source_column_group. This checking process (L6) con-

114

tinues until no more interconnection is found. The first checking process is performed

by simply identifying interconnections of the base column. If an interconnection is

found, two PEs are added into new_array_space and their interconnections and posi-

tions are assigned by local triangulation method (L8). This method is to reflect intra-

half column connectivity with making the data flow oriented array structure as shown in

Fig. 52.

A2

PE2

A1

PE1

A2

PE2

A1

PE1

A2A1

A1+A2

PE1

A1‐A2

PE1

(a) An operation fully utilizing interconnections between two PEs

A1+A2

A1‐A2A2

A1

: data ‘Ai’ saved in PEiAi

PEi

: Interconnection

: Data flow

 (b) Butterfly operation example

A2

PE2

A1

PE1

PE4 PE3
A2

PE2

A1

PE1

PE4 PE3

A1

A2

A1

A2
A2

PE2

A1

PE1

A1‐A2

PE4
A1+A2

PE3

 (c) Butterfly operation executed on a triangle structure including four PEs

Fig. 55. Basic concept of local triangulation method.

We illustrate the basic concept of local triangulation method in Fig. 55. Consider a

base column including 2 PEs and let the operation fully utilizing their interconnections

as shown in Fig. 55 (a) – data (A1 and A2) saved in two PEs (PE1 and PE2) are ex-

115

changed with each other through the bidirectional interconnection, and then addition

and subtraction are performed in PE1 and PE2. This is a kind of butterfly operation and

Fig. 55 (b) shows an equivalent data flow graph for the butterfly operation. If we con-

sider a triangular structure composed of four PEs reflecting the shape of the data flow

graph, the example can be mapped on the PEs as shown in Fig. 55 (c) – Two PEs (PE3

and PE4) on both sides receive the data (A1 and A2) from the PEs (PE1 and PE2), and

then addition and subtraction are performed in PE3 and PE4. In such a manner, local tri-

angulation method is to make a data flow-oriented array structure reflecting the intra-

half column connectivity.

PE

PE PEPE

PE

PE

PE

PE

PE

PE PEPE

(a) Nearest-neighbor (b) Hopping

PE PE PE: PE in base column : PE in source_column_group : Added PE

Fig. 56. Local triangulation method.

Fig. 56 shows two cases of the method. In the first case (a), two PEs in the base

column have nearest-neighbor interconnection, which means maximum two PEs can be

used for butterfly operation. Therefore, local triangulation method adds two PEs into

new_array_space and assigns each PE the nearest-neighbor position on each side of the

source column and the positions are vertices of a triangle. Then the method assigns near-

est-neighbor interconnection between added PEs and the PEs in the

116

source_column_group. The second case (b) shows that two PEs in the base column have

a bidirectional hopping interconnection. Local triangulation method is also applied to

this case with the hopping interconnections instead of the nearest neighbor interconnec-

tions for the first case. Even though one-way interconnections are sufficient to perform

butterfly operation in two cases of Fig. 56, the added interconnections are bidirectional.

This is because it aims to keep the basic characteristics of the data flow-oriented array

structure derived in Fig. 52.

PE

PE

PE

: PE in base column

: PE in source_column_group

: Added PE

PE : preoccupied PE in new array space

: Added interconnection

: already connected

PE0

PE1 PE4

PE2 PE5 PE

PE0

PE1

PE2

PE7

PE8PE

PE3 PE3PE9PE PEPE6
 (a) Nearest-neighbor

PE0

PE1 PE4

PE2 PE5 PE

PE0

PE1

PE2

PE7

PE8PE

PE3 PE3PE9 PE6 PEPE

 (b) Hopping

Fig. 57. Interconnection derivation in Phase I.

From the second checking process, preoccupied columns are included in

source_column_group. Fig. 57 shows two examples on how to find connectivity on the

source columns. In the case of (a), no interconnection between ‘PE4’ and ‘PE6’ (or

117

‘PE7’ and ‘PE9’) is added because there is no hopping connectivity between ‘PE0’ and

‘PE2’ (or ‘PE0 (or PE1)’ and ‘PE3’) in the base column. However, in the case (b), the

base column has interconnection between ‘PE0’ and ‘PE2’. Therefore PEs and intercon-

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE PE PEPEPE

PE PEPE

PE

PE PE PE PEPEPE

PE

PEPE

PE

PE

PE PEPEPE

PE PE PE PEPEPEPE

(a) Base column (b) Nearest-neighbor interconnection

PE

PEPE

PE

PE

PE PEPEPE

PE PE PE PEPEPEPE

PE PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE PE PEPEPE

PE PEPE

PE

PE PE PE PEPEPE

PE

PEPE

PE

PE

PE PEPEPE

PE PE PE PEPEPEPEFrame
Buffer

 (c) Hopping interconnection (d) Memory read-buses

Fig. 58. New array fabric example by Phase I.

nections between ‘PE4’ and ‘PE6’ (or ‘PE7’ and ‘PE9’) are added by local triangulation

method. After the iteration of adding PEs and interconnections (L5~L14) is finished,

nearest-neighbor interconnections are added between two nearest-neighbor PEs that are

118

not connected with each other (L15). It is to guarantee the minimum data-mobility for

data rearrangement. Finally, memory-read buses are added4 (L16, L17) and the derived

array is copied to the vertically symmetric position (L18).

Fig. 58 shows the result of the phase I procedure for the example of 8x8 reconfigur-

able array as shown in Fig. 5.

c. New Array Fabric Specification – Phase II

In this phase, new PEs and interconnections are added for reflecting intra-half column

connectivity of the input square fabric. Phase II analyzes two kinds of interconnections –

pair-wise and global bus. We propose another procedure as Algorithm 7. Before we ex-

plain the procedure in detail, we introduce notations we use in the explanation.

 (L5) CHECK_INTERCONNECT is a function to identify bus-connectivity between

two PEs in the source column by analyzing the base column.

 (L6) GB_RHT_TRI means global triangulation method that is a function used to add

global buses and PEs.

The algorithm starts with initialization step (L1, L2). Then central column in

new_array_space is initial source_column_group. Next process is to check the pair-wise

or global bus connectivity between two PEs (L5) - two PEs in the same column included

in source column group. If an interconnection is found, global buses and PEs are added

4 Memory write-buses are added in the step of connectivity enhancement in subsection VI.B.5). This is because some PEs can be

added in phase II and they should be connected to memory-write buses.

119

Add nearest-neighbor interconnections L13

Algorithm 7 New Array Fabric Specification - Phase II

L1 base ← a column of n x n reconfigurable array
L2 n ← number of global buses
L3 begin
L4 source_column_group← central column in new_array_space
L5 while CHECK_INTERCONNECT(source_column_group, base) do
L6 GB__TRI (source_column)
L7 end do
L8 source _column_group← Ø
L9 source _column_group← next two columns on the both sides

in new_array_space
L10 if |source-column_group| > 2 then
L11 goto L5
L12 end if

L14 end

Add nearest-neighbor interconnections L13

Algorithm 7 New Array Fabric Specification - Phase II

L1 base ← a column of n x n reconfigurable array
L2 n ← number of global buses
L3 begin
L4 source_column_group← central column in new_array_space
L5 while CHECK_INTERCONNECT(source_column_group, base) do
L6 GB__TRI (source_column)
L7 end do
L8 source _column_group← Ø
L9 source _column_group← next two columns on the both sides

in new_array_space
L10 if |source-column_group| > 2 then
L11 goto L5
L12 end if

L14 end

 in new_array_space and their interconnections and positions are assigned by global

triangulation method (L6). Global triangulation method has the same basic concept of

local triangulation method in that the method is also to make a triangular-shaped array

fabric suitable spatial mapping with guaranteeing the maximum inter-half column con-

nectivity of the base column.

Fig. 59 shows three cases of global triangulation method when the base column has

a bidirectional pair-wise interconnection and two global buses. In the first case (a), the

bidirectional pair-wise interconnection means maximum two PEs can be used for butter-

fly operation. Therefore, global triangulation method adds two PEs in new array space

and assigns each PE the intersection point of two diagonal lines from two PEs in source

column. The positions are vertices of a triangle. Then the method assigns four global

buses between added PEs and the PEs in the source_column_group. Fig. 59 (b) and (c)

show the method when the base column has two global buses. In the case of (b), two di-

120

agonal lines from two PEs in source column intersect on already existing PE called ‘des-

tination PE’. Therefore, four global buses are added and they connect destination PEs

with PEs in the source column. However, in the case of (c), no destination PE exists on

intersection point of four diagonal lines. Therefore, new PEs called global PE (GPE) as

well as global buses are added on new_array_space.

PE

PEPE

PE

PE PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PEPE

PE

PE

PE

PE

PE

PE

PE PE

PE

PE

PE

PEPE

PE

PE

PE

PE

PE

 (a) When pair-wise interconnection exists in base column

PE

PE

PE

PE

PE

PE

PE

PEPE

PE

PE

PE PEPEPE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PEPE

PE

PE

PE

PE

PE

 (b) When destination PE exists

Fig. 59. Global triangulation method when n = 2 (L2).

121

PE

PE

PE

PE

PE

PE

PE

PE PEPE

PE PEPE

PE

PE PEPEPEPE

PE

PE

PE

PE

?

PE

PE

PE

PE

PE

PE

PE

PE

PE

?

GPEGPE

PE

PE

PE

PE

PE

PE

PE

PE

(c) When GPE is added

PE

PE

PE

: PE in base column

: PE in source_column_group

: Added PE

PE : preoccupied PE in new array space

: added grobal bus

: connection between PE and bus

? : destination PE does not exists

GPE : added Global PE

Fig. 59. Continued.

122

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE PEPEPE

PE PE PEPEPE

PE PEPE

PE PE PEPEPE PE

PE

PEPE

PE

PE

PE PE

PE

GPEGPE

GPE GPE

Fig. 60. New array fabric example by Phase II.

This checking process (L5) continues until no more connectivity is found. Then

nearest-neighbor interconnections are added between two PEs not connected with each

other. This is to guarantee the minimum data-mobility for data rearrangement.

Fig. 60 shows the result of the phase II procedure for the example of 8x8 recon-

figurable arrays.

d. Connectivity Enhancement

Finally, vertical and horizontal bus can be added to enhance connectivity of new recon-

figurable array. This is because new array fabric from phase I and II only has nearest

neighbor or hopping interconnection in vertical and horizontal direction whereas it sup-

ports sufficient diagonal connectivity. Added horizontal bus is used as memory-write

bus connected with frame buffer as well as used for data-transfer between PEs.

123

Fig. 61 shows the result of the connectivity enhancement for the example of 8x8 re-

configurable array. Each bus is shared by two PEs in both the sides.

.

PE

PE

PE

PE

PE

PE

PE

PE

PE PE

PE PE

PEPE

PE

GPE

GPE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

GPE

GPE

PE

PE

PE

PE
Frame
Buffer

Fig. 61. New array fabric example by connectivity enhancement.

4. Cost-Effective Array Fabric with Resource Sharing and Pipelining

The resource sharing and pipelining mentioned in Section A can be applied to the pro-

posed new array fabric because the computation model for the proposed fabric is spatial

loop pipelining – spatial mapping spreads the entire loop body on the PE array, there is

no need for all PEs to have the same functional resources at the same time. Fig. 62

shows the PEs in the same row share two pipelined multipliers.

124

Fig. 63 shows an application mapping on new array fabric example generated from

the exploration flow - consider N = 8 for the mapping of the computation defined in Eq.

(2) in Chapter IV on the new array fabric as shown in Fig. 53. Load and addition opera-

tions in PEs are executed on the central column in the first cycle. Then the next multipli-

cations and summations are spatially spread on both sides of the array till 6th cycle. Fi-

nally, in next two cycles, a PE in the central row performs multiplication/store opera-

tions. The architecture including 16 multipliers supports the mapping example without

stall caused by

PEPE

PE

PEPE

PE

MULTMULT

MULTMULT

MULTMULT

PE
SW

PE
SW

PE
SW

GPE
SW SW

GPE

SWSWSWSWMULTMULT MULTMULTSW

MULTMULT

PE
SW

PE
SW

PE
SW

PE
SW

PE
SW

PE
SW

PE
SW

MULTMULT MULTMULT

PE
SW

PE
SW

PE
SW

PE
SWSW

PE
SW

PE
SW

PE

MULTMULT
MULTMULT

PE
SW

PE
SW

PE
SWSW

PE
SW

MULTMULTSW SWSWSW SW

PEPE GPEGPE

PE

MULTMULT

MULTMULT

MULTMULTSWSW SW SW SW

PEPE PE PEPEPE PE PE
SWSWSW

MULTMULT PE

PE MULTMULT

SWMULTMULT : 2-tage pipelined multiplier : bus switch

Fig. 62. New array fabric with resource sharing and pipelining.

125

NOP

: Data load and addition

: No operation, unused PE

: Data flow on global bus

:

: Consecutive pipeline multiplication

: Summation

op : operation executed at ith cycle
i

: Data flow on nearest neighbor
interconnection

5

LD/+

1×/
2×

SUM

1X/2×
/ST

LD/+

LD/+

LD/+

LD/+

LD/+

LD/+

1

1

1

1

1

1

NOP

1×/
2×

NOP

2, 3

NOP

SUM1

4

NOP

5

1×/
2×

2, 3

2, 3

1×/
2×

2, 3

NOP

1×/
2×

NOP

SUM1

4

NOP

NOP

NOP

NOP

1×/
2×

2, 3

LD/+

1

1×/
2×

2, 3
1×/
2×

2, 3

1×/
2×

2, 3

NOP

7, 8
1X/2×
/ST

LD/+

1

SUM2

5

NOP

SUM1

4

SUM1

4

SUM3

NOP

6

NOP

NOP

NOP

SUM2
Consecutive pipeline multiplication,
then store

Fig. 63. Mapping example on new array fabric.

multiplier lack. In this example, nearest-neighbor interconnections and global buses are

efficiently used for multi-directional data-transfer and the new array has the same per-

formance (number of execution cycles) compared with the square array.

C. Experiments

1. Experimental Setup

a. Evaluated Applications

The target application-domain is composed of representative kernels in MPEG-4 AAC

decoder, H.263 encoder, H.264 decoder, and 3D-graphics. In addition, to demonstrate

the effectiveness of our approaches for benchmark domains, we have applied several

kernels of Livermore loops benchmark [58] and DSPstone [59].

126

b. Hardware Design and Power Estimation

To demonstrate the effectiveness of Resource Sharing and Pipelining (RSP), we have

applied RSP techniques to the base RAA (BASE) defined in Chapter III (see Section B)

and implemented the RSP architecture (RSPA) at the RT-level with VHDL. In Chapter

III (see Section C), we have confirmed that multiplier is both area-critical and delay-

critical resources. Therefore we have taken the multiplier out of the PE design and ar-

ranged them to be shared and pipelined resources. From the analysis of our target appli-

cations, we have determined the sharing architecture – two pipelined multipliers shared

by 8 PEs in each row. Therefore, the RSP architecture including 16 multipliers supports

all of the target applications without stall caused by multiplier lack. In addition, we have

implemented entire exploration flow in Fig. 54 with C++. The implemented exploration

flow has generated the specification of new reconfigurable array fabric. The base RAA

(Chapter III) has been used for input of the exploration flow. For quantitative evaluation,

we have designed two cases of PE array based on the generated specification at the RT-

level with VHDL – only new array fabric (NAF) and NAF with RSP (RSP+NAF) - 18

multipliers are shared by PEs in both row and column directions and this architecture

also supports all of the target applications without stall caused by multiplier lack. The

architectures have been synthesized using Design Compiler [49] with 0.18 ㎛ technol-

ogy. ModelSim [50] and PrimePower [49] are used for gate-level simulation and power

estimation. Simulation has been done for the typical case under the condition of 100

MHz operation frequency, 1.8 V Vdd, and 27℃ temperature.

127

2. Results

a. Area Evaluation

Table X shows area cost evaluation for the four cases. In RSPA, the area cost of PE ar-

ray is reduced by 22.11% because it has less multipliers than BASE. In the case of NAF,

the area reduction ratio (25.58%) has relatively increased compared to RSPA. This is

because the number of PEs is reduced than RSPA. Finally, the area reduction ratio

(36.75%) in RSP+NAF has also relatively increased compared to NAF because of re-

duced multipliers. However, the interconnect area of the RSPA (or RSP+NAF) has in-

creased compared to the BASE(or NAF). This is because several buses are added to

connect the shared multipliers with PEs.

Table X. Area Reduction Ratio by RSPA and NAF

Gate Equivalent PE Array
Structure

Number
of PEs

Number of
Multipli-

ers Interconnecta Logicb Totalc

Reduction Ratio
(%) compared

with BASE
BASE 64 64 164908 494726 659635 -
RSPA 64 16 170008 343781 513789 22.11
NAF 44 44 156163 334737 490900 25.58
RSP+NAF 44 18 164414 252805 417219 36.75
Interconnect a: net interconnect area, Logicb: total cell area, Totalc : Interconnecta + Logicb

b. Performance Evaluation

The synthesis results show that RSPA has reduced critical path delay (5.12 ns) compared

to BASE (8.96 ns). This is because RSP technique excludes the combinational logic path

of the multiplier from the original set of critical paths. The critical path of RSPA and its

delay is given by

128

 TCritical path = TMultiplexor + TALU + TShift_logic+Tothers (3)

(5.12 ns = 0.32 ns + 2.22 ns + 1.42 ns + 1.16 ns)

Table XI shows that BASE and NAF (or RSPA and RSP+NAF) have same critical

path delay. It indicates NAF does not cause performance degradation in terms of the

critical path delay. In addition, the execution cycle count of each kernel on NAF (or

RSP+NAF)

Table XI. Applications Characteristics and Performance Evaluation

PE Array Structure
BASE and NAF

(8.96 ns)d
RSPA and RSP+NAF

(5.12 ns) d Kenels Operationsc
Cycle
count

eET(ns) Cycle
count

eET(ns)
fReduced

(%)
aFirst_Diff sub 15 134.40 15 76.80 42.86
aTri- Diagonal sub, mult 17 152.32 18 92.16 39.50
aState add, mult 20 179.20 23 117.76 34.29
aHydro add, mult 15 134.40 19 97.28 27.62
aICCG sub, mult 18 161.28 19 97.28 39.68
bInner Product add, mult 21 188.16 22 112.64 40.14
b24-Taps FIR add, mult 20 179.2 21 107.52 40.00
Matrix-vector multi-

plication add, mult 19 170.24 20 102.4 39.85
Mult in FFT add, sub, mult 23 206.08 27 138.24 32.92
Comlex Mult in AAC

decoder add, sub, mult 16 143.36 17 87.04 39.29
ITRANS in H.264
Decoder add, sub, shift 18 161.28 18 92.16 42.86

DCT in H.263 encoder add, sub, shift,
mult 32 286.72 40 204.80 28.57

IDCT in H.263
encoder

add, sub, shift,
mult 34 304.64 42 215.04 29.41

SAD in H.263 encoder add, abs 39 349.44 39 199.68 42.86
Quant in H.263
encoder

add, sub, shift,
mult 39 349.44 45 230.40 34.07

Dequant in H.263
encoder

add, sub, shift,
mult 41 367.36 57 240.64 34.49

aLivermore loop benchmark suite. bDSPstone benchmark suite. cAcronym of operations, add:addition,
sub: subtraction, shift: bit-shift, mult: multiplication, dCritical path delay, eExecution time = cycle × criti-
cal path delay(ns), fReduction ratio of execution time compared with BASE.

129

does not vary from BASE (or RSPA) because the functionality of NAF is same as the

base model. It also indicates NAF does not come by performance degradation in terms of

the execution cycle count.

We have applied application kernels to the implemented architectures to obtain the

results in Table XI. The amount of performance improvement depends on the application.

For example, compared to DCT and hydro having multiplication, we achieve much more

performance improvement with RSPA and RSP+NAF for First_Diff, SAD, and ITRANS

which have no multiplication. This is because the clock frequency has been increased by

pipelining the multipliers whereas the execution cycle count does not vary from BASE

and NAF.

Table XII. Power Reduction Ratio by RSP+NAF

PE Array Structure
BASE RSP+NAF Kenels

Power (mW) Power (mW) Reduction Ratio (%)
compared with BASE

First_Diff 201.07 129.79 35.45
Tri- Diagonal 190.75 130.89 31.38
State 198.37 138.62 30.12
Hydro 190.86 129.35 32.23
ICCG 164.42 112.92 31.32
Inner Product 200.09 139.30 30.38
24-Taps FIR 174.38 116.40 33.25
Matrix-vector multiplication 163.25 113.48 30.49
Mult in FFT 187.68 125.30 33.24
Comlex Mult in AAC de-
coder 222.14 148.55 33.13
ITRANS in H.264 decoder 198.32 137.89 30.47
DCT in H.263 encoder 212.25 147.90 30.32
IDCT in H.263 encoder 208.99 143.58 31.30
SAD in H.263 encoder 181.22 123.23 32.00
Quant in H.263 encoder 199.38 137.33 31.12
Dequant in H.263 encoder 196.97 131.28 33.35

130

c. Power Evaluation

Table XII shows the comparison of power consumptions between the two reconfigurable

arrays: BASE and RSP+NAF. The two arrays have been implemented without any low

power technique to evaluate their power savings. It is shown that compared to BASE,

RSP+NAF could save up to 35.45% of the power. It has been possible to reduce power

consumption in RSP+NAF by using less number of PEs and multipliers to do the same

job compared to the base reconfigurable array. For larger array sizes, the power saving

will further increase due to significant reduction in unutilized PEs.

131

CHAPTER VIII

HIERARCHICAL RECONFIGURABLE COMPUTING ARRAYS

In this chapter, we propose a new computing hierarchy consisting of two reconfigurable

computing blocks with two types of communication structure together [63]. In addition,

the two computing blocks have shared critical resources. Such a sharing structure pro-

vides efficient communication interface between them with reducing overall area. Based

on the proposed architecture, optimized computing flows have been implemented ac-

cording to the varying applications for low power and high performance. Experimental

results show that the proposed approach reduces on-chip area by 22%, execution time by

up to 72% and reduces power consumption by up to 55% when compared with the con-

ventional CGRA-based architectures.

A. Motivation

1. Limitation of Existing Processor-RAA Communication Structures

A typical coarse-grained reconfigurable architecture consists of a microprocessor, a Re-

configurable Array Architecture (RAA), and their interface. We can consider three types

of organizations in connecting RAA to the processor. First, the array can be connected to

the processor through a system bus as an ‘Attached IP’ [3] [10][12][15][19][64] shown

in Fig. 2 (a). In this case, the main benefit of this organization is the ease of constructing

such a system using a standard processor without modifying the processor and its com-

piler. In addition, large data buffer of RAA can be used to support applications having

132

large inputs/outputs. However, the speed improvement using the RAA may have to

compensate for significant communication overhead between the processor and RAA

through system bus as well as SRAM-based large data buffer in RAA consumes much

power. Second type of organization involves the array connected with the processor as a

‘Coprocessor’[4][65][66] shown in Fig. 2 (b). In this case, the standard processor does

not change and the communication is faster than ‘Attached IP’ type interconnects be-

cause the coprocessor register-set is used as data buffer of the RAA and the processor

can access the register-set by coprocessor data transfer instructions. In addition, the reg-

ister-set consumes less power than the data buffer of ‘Attached IP’. Since the size of the

register-set is fixed by the processor ISA, it creates performance bottleneck for registers-

PE array traffic due to applications having large inputs/outputs run on the RAA. In the

third type of organization, the array is placed inside the processor like a ‘FU (Functional

Unit)’ [2][16][22][67][68] as shown in Fig. 2 (c). In this case, the instruction decoder

issues special instructions to perform specific functions on the RAA as if it were one of

the standard functional units of the processor. In this case, the communication speed is

faster than ‘Coprocessor’ and power consumption of the data storage is less than ‘At-

tached IP’ because the processor register-set is used as data buffer of the RAA and the

processor can directly access the register-set by the processor instructions. However,

standard processor needs to be modified for due to integration with RAA and its com-

piler should be also changed. The performance bottleneck is caused by limited size of

the processor registers as in the case of ‘Coprocessor’ type organization. Table XIII

shows a summary about advantage and disadvantage of three coupling types.

133

Table XIII. Comparison of the Basic Coupling Types

Coupling type
*Comm’
power

**Comm’
speed

Performance
Bottleneck

Application
feasibility

Attached IP high slow communication through
system bus

large size of in-
put/output

Coprocessor low fast limited size of coproc-
essor register-set

small size of in-
put/output

Functional unit low very fast limited size of processor
registers

small size of in-
put/output

*Comm’ power: power consumption by data-storage (data buffer or registers)
**Comm’ speed: Communication speed between processor and RAA

2. RAA-based Computing Hierarchy

As mentioned in the previous subsection, basic three types of RAA organizations show

advantage and disadvantage according the input/output size of the applications. It shows

the existing coupling structure with a conventional RAA cannot be flexible to support

various applications with sacrificing performance. In addition, such an RAA structure

cannot efficiently utilize PE arrays and data buffers leading to high power consumption.

We hypothesize that if CGRA can maintain a computing hierarchy of its RAAs

having difference size and communication speed as shown in Fig. 64 (b), the CGRA-

based embedded system can be optimized for its performance and power. It is because

such a hierarchical arrangement of the RAA can optimize the communication latency

and efficiently utilize functional resources of PE array in various applications. In this

chapter, we propose a new CGRA-based architecture that supports such a RAA-based

computing hierarchy.

134

Processor

Memory

Memory

Speed Size

Fastest

Slowest

Smallest

Largest

Processor

RAA

RAA

Speed

Fastest

Slowest

Size

Smallest

Largest

(a) Memory (b) RAA

Fig. 64. Analogy between Memory and RAA-computing hierarchy.

nxn PE Array

L1
nxm
PE

Array

L2 nx(n‐m)
PE Array

Processor

RCC

RAA

System Bus

Co‐proc’
InterfaceData

Buffer
Config’
Cache

Data
Buffer

Con‐
Fig’
Cac‐
he

CREG

Reconfigurable Computing
Cache RAA

Conventional RAA

Config’
Cache

Coprocessor
Registers

(a) Size (b) Speed

Fig. 65. Computing hierarchy of CGRA.

B. Computing Hierarchy in CGRA

In order to implement efficient CGRA-based embedded systems, we propose a new

computing hierarchy consisting of two computing blocks using two types of coupling

135

structures together – ‘Attached IP’ and ‘Coprocessor’. In this organization, a general

RAA having large size PE array is connected to a system bus and another is a small

RAA composed of small PE array coupled with a processor through coprocessor inter-

face. We call the small RAA reconfigurable computing cache (RCC) because it plays

important role in enhancing performance and power of the entire CGRA like data cache.

The RCC and the RAA share critical resources and such a sharing structure provides ef-

ficient communication interface between two computing blocks. The propose approach

ensures that the RCC and the RAA are efficiently utilized to support variable size of in-

puts and outputs for variety of applications. In subsection B.1 and B.2, we describe

computing hierarchy and resource sharing in RCC and RAA in detail. Then we show

how to optimize computing flow based on reconfigurable computing cache according to

the applications in subsection B.3.

1. Computing Hierarchy – Size and Speed

A CGRA-based computing hierarchy is formed by splitting a conventional computing

RAA block into two computing blocks – RCC with small PE array and RAA having

large PE array as shown in Fig. 65 (a). The RCC is coupled with coprocessor interface

and the RAA is attached to a system bus as shown in Fig. 65 (b). The RCC provides fast

communication with the processor and offers low power consumption by using coproc-

essor register-set and small array size. Therefore the RCC can enhance performance and

reduce power consumption when small applications run on CGRA. If RCC is not suffi-

cient to support computing requirements of in applications, intermediate data from the

136

RCC can be moved to the RAA through the interconnections as shown in Fig. 66. Such

interconnections between the two blocks offer

On‐chip bus

Processor MemoryCREG

MUX unit

DMA

Data
Buffer

Reconfigurable
Computing cache

L2 PE Array

L1
PE

Array

Config’
Cache

RAA

Config’
Cache

Coprocessor
Registers

Fig. 66. CGRA configuration with RCC and RAA.

flexibility in migrating computing demands from one to another. Such computing flow

may help to optimize performance and power for the applications having various sizes of

inputs /outputs whereas the existing models show performance bottlenecks caused by the

communication overheads or their limited sized data-storage as shown in Table XIII. We

have described the computing flow optimization in detail in subsection B.3.

2. Resource Sharing in RCC and RAA

We have so far presented two factors (speed and size) in building computing hierarchy

for CGRAs similar to memory hierarchy. It seems a small portion of RAA has been de-

tached from large CGRA block and placed as the fast RCC block adjacent to the proces-

137

sor coupled with coprocessor interface. However, only considering two factors is not

sufficient to design compact RCC for power and area benefits. This is because comput-

ing blocks can have diverse functionality which affects the system capabilities. The

functionality of computing blocks is specified by functional resources of its PE such as

adder, multiplier, shifter, logic operations etc. Therefore, it is necessary to examine how

to select the functionalities of RCC and RAA. This leads to further studies on resource

assignment/sharing between RCC and RAA.

First of all, we can classify the functional resources into two groups: primitive re-

sources and critical resources. Primitive resources are basic functional units such as ad-

der/subtractor and logical operators. Critical resources are area/delay-critical ones such

as multiplier and divider. Based on the classification, let us consider two cases of the

functional resource configurations as shown in Fig. 67. Fig. 67 (a) shows hierarchical

functionality that indicates L1 PE array has primitive resources and L2 PE array includes

critical resources as well as primitive resources. The Fig. 67 (b) shows identical func-

tionalities both in the L1 and L2 PE arrays. In the case of (a), the RCC with L1 PE array

is relatively lightweight computing block compared to the RAA with L2 PE array.

Therefore, the RCC can perform small applications having only primitive operations

with low power consumption. However, it causes ‘lack of resource’ problem when ap-

plications demand critical operations. In (b) L1 and L2 PE arrays have identical func-

tionality with area and power overheads.

To prevent such extreme cases, we propose resource sharing for the RCC and the

RAA based on [44]. L1 and L2 PE array have the same primitive resources and shared

138

the pipelined critical resources as shown in Fig. 68. Here the RCC and the RAA basi-

cally perform the primitive operations and their functionality will include the critical op-

erations using the shared resources. Fig. 69 shows interconnection structure with shared

critical resources along with RCC and RAA. PEs in the same row of the L1 and L2 array

share the pipelined critical resources in the same manner as [44]. Such a structure avoids

the ‘lack of resource’ problem in Fig. 67 (a) and this structure is more area and power-

efficient than Fig. 67 (b) because the number of critical resources is reduced and the

critical resources taken out of L1 and L2 PE array are not affected by unnecessary

switching activity caused by other resources. In addition, interconnections for resource

sharing can be also utilized for communication interface between the RCC and the RAA

by adding multiplexer and de-multiplexer between front and end of the critical resources

as shown in Fig. 69 (b).

L1 PE Array L2 PE Array

PE

PE

PE

ADD, SUB, AND, OR, XOR

L1 PE Array

ADD, SUB, AND, OR, XOR,
MULT, SHIFT

L2 PE Array

ADD, SUB, AND, OR, XOR,
MULT, SHIFT

ADD, SUB, AND, OR, XOR,
MULT, SHIFT

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR
PE

CRCR : critical resource

(a) Hierarchical functionality (b) Identical functionality

Fig. 67. Two cases of functional resource assignment.

139

PE

PE

PE

ADD, SUB,
AND, OR,

XOR

L1 PE Array L2 PE Array

CRCR

CRCR

CRCR

PE

PE

PE PE

PE PE

PE PE PE

MULT,
SHIFT

ADD, SUB,
AND, OR,

XOR

Shared Critical
Resources

CRCR : pipelined critical resource

Fig. 68. Critical resource sharing and pipelining in L1 and L2 PE array.

PE

L1 PE Array

Demux
Mux

PE

PEPE

PEPE

PEPE

L2 PE Array

CRCR

Interconnect for
Communication

between L1 and L2
PE Array

On‐chip bus

Processor MemoryCREG

MUX unit

DMA

Data
Buffer L2 PE Array

L1
PE

Array

Config’
Cache

RAA

Config’
Cache

Shared
critical
resources

RCC

(a) Entire structure (b) Interconnection structure

Fig. 69. Interconnection structure among RCC, shared critical resources and L2 PE array.

140

3. Computing Flow Optimization

Based on the proposed CGRA structure, we can classify four cases of optimized comput-

ing flow to achieve low power and high performance. Fig. 70 shows such four comput-

ing flows on the proposed CGRA according to variance of input and output size of ap-

plications – Subsection C.1.a shows that we can select the optimal case among the pro-

posed computing flows for several applications with variance in their input/output size.

All of the cases show that shared critical resources are used as needed because they are

only utilized when applications have the operations requiring the critical resources.

Fig. 70 (a) shows computing flow when application has the smallest inputs and out-

puts. In this case, only RCC functional units are used to execute the application while the

RAA is disabled to reduce power consumption. However, if the application has larger

inputs and outputs than (a), the computing flow can be extended to L2 PE array as

shown in Fig. 70 (b). Even though L2 PE array is used for this case, data buffer of the

RAA is not used because the coprocessor register-set (CREG) is sufficient to save the all

of the inputs or outputs. The next case is that when RAA is used with RCC because of

large inputs and small outputs as shown in Fig. 70 (c). In this case, data buffer of the

RAA receives inputs using DMA which is more efficient for overall performance than

CREG. This is because insufficient CREG resource for large inputs causes performance

bottleneck with heavy registers-PE array traffic. Therefore, the L2 PE array may be used

first for running such application and the L1 PE array can be utilized for enhancing par-

allelized execution as needed. However, the outputs are stored on CREG because their

141

CREG L1 PE
Array

CREGInput
Data

Input
Data

Output
Data

Output
Data

Shared critical
resources

(a) Smallest inputs and outputs (STIO)

CREG L1 PE
Array

Input
Data

Input
Data

Input
Data

Input
Data

CREG
Input
Data

Input
Data

Input
Data

Output
Data

Shared critical
resources L2 PE Array

(b) Small inputs and outputs (SIO)

L1 PE
Array

L2 PE Array
Data
Buffer

Input
Data

Input
Data

Input
Data

Input
DataInput

Data
Input
Data

Input
Data

CREG
Input
Data

Input
Data

Input
Data

Output
Data

Shared critical
resources

DMA

(c) Large inputs and small outputs (LISO)

L1 PE
Array

L2 PE Array
Data
Buffer

Input
Data

Input
Data

Input
Data

Input
DataInput

Data
Input
Data

Input
Data

Shared critical
resources

DMA
Data
Buffer

Input
Data

Input
Data

Input
Data

Input
DataInput

Data
Input
Data

Output
Data

DMA

(d) Large inputs and outputs (LIO)

: Optional block

Fig. 70. Four cases of computing flow according to the input/output size of application.

142

size is small. Finally, Fig. 70 (d) shows a case of RAA used with L1 PE array with large

inputs and outputs. To avoid heavy registers-PE array traffic by the large input/output

size, the data buffer with DMA is used and L1 PE array can be optionally utilized for

enhancing parallelized execution.

In summary, the computing flow on the proposed CGRA can be adapted according

to the input/output size of applications. It is more power-efficient than using a conven-

tional CGRA by separated computing blocks with sharing critical resources. This way is

only necessary computing blocks are utilized. In addition, computing flow with support-

ing two communication interfaces reduces power and enhances performance.

C. Experiments

1. Experimental Setup

a. Architecture Implementation

To demonstrate the effectiveness of the proposed RCC-based CGRA, we have designed

three different organizations of CGRA with RT-level implementation using VHDL as

shown in Table XIV.

Table XIV. Comparison of the Architecture Implementations

CGRA PE array Data storage
Attached IP 8x8 PE array 6KB data buffer
Coprocessor 8x8 PE array 512-byte coprocessor register-set
Proposed
RCC-based

8x2 L1 PE array and
8x6 L2 PE array

4KB data butter and 512-byte
coprocessor register set

 (ARM7-compatible 32-bit RISC processor is used as main processor)

143

In addition, for resource sharing of RCC-based CGRA, two pipelined multipliers and

two shifters are shared by PEs in the same row of L1 and L2 PE array whereas conven-

tional two types of CGRA do not support such a resource sharing and pipelining.

The architectures have been synthesized using Design Compiler [49] with 0.18 ㎛

technology. PrimePower [49] has been used for gate-level simulation and power estima-

tion. To obtain the power consumption data, we have used the applications in Table XV

for simulation with operation frequency of 100 MHz and typical case of 1.8 V Vdd and

27 . ℃

Table XV. Applications Characteristics

Real Applications SHR Computing
Flow Benchmarks SHR Computing

Flow
(H.263) 8x8 DCT SIO *256-point FFT LISO
(H.263) 8x8 IDCT SIO *256-tap FIR LISO
(H.263)8x8 QUANT SIO *Complex Mult LISO
(H.263) 8x8 DEQUANT SIO **State STIO
(H.263) SAD - LISO **Hydro STIO
(H.264) 4x4 ITRANS STIO **Tri-Diagonal LIO
(H.264) MSE LISO **First-Diff - STIO
(H.264) MAE - LISO **ICCG STIO
(H.264) 16x16 DCT LISO **Inner Product LIO
8x8*8x1 Matrix-Vector
Multiplication SIO

16x16*16x1Matrix-
Vector Multiplication

 LISO

8x8 Matrix Multiplication SIO

16x16 Matrix Multiplica-
tion

 LISO

*: DSPstone benchmarks [71]
**: Livermore loop benchmarks [70]
SHR:‘ ’means critical resources are

used for the application.
STIO: smallest inputs and outputs
SIO: small inputs and outputs
LISO: large inputs and small outputs
LIO: large inputs and outputs

144

b. Evaluated Applications

Evaluated applications are composed of real multimedia applications and benchmarks.

We have analyzed the input/output size and operation-types in the applications to iden-

tify specific computing flow in Fig. 70. Table XV shows the selected applications and

the optimal computing flows for them.

Table XVI. Area Cost Comparison

Gate Equivalent PE
Array

No’ of
PEs

No’ of
MULTs

No’ of
SHTs Interconnect Logic Total

Reduc-
tion (%)

Base 8x8 64 64 64 164908 494726 659635 -
Proposed 64 16 16 175434 334595 510029 22.68

2. Results

a. Area Cost Evaluation

Table XVI shows area cost evaluation for the two cases. ‘Base 8x8’ means 8x8 PE array

included in ‘Attached IP’ and ‘Coprocessor’ type CGRA. ‘Proposed’ means L1 and L2

PE array included in the proposed RCC-based CGRA. Even though interconnection area

of the proposed model increases because of resource sharing structure, entire area of the

proposed one is reduced by 22.68% because it has less critical resources than base 8x8

PE array.

b. Performance Evaluation

The synthesis results show that the proposed PE array has reduced critical path delay

(5.12 ns) compared to the base PE array (8.96 ns). This is because pipelined multipliers

are excluded from the original set of critical paths. Based on the synthesis results, we

145

72.92%
/49.46%

36.48%
/56.60%

61.50%
51.78%/

36.88%
/62.30%

61.85%
/50.45%65.15%

/57.06%

32.47%
/66.84%

64.93%
/58.92%

36.26%
/63.01%

38.53%
/64.41%

36.51%
/63.05%

37.03%
/62.22%

65.08%
/57.43%

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

(H
.26
3)
8X
8 D
CT

(H
.26
3)
8X
8 I
DC
T

(H
.26
3)
8X
8 Q
UA
NT

(H
.26
3)
8X
8 D
EQ
UA
NT

(H
.26
3)
SA
D

(H
.26
4)
4X
4 I
TR
AN
S

(H
.26
4)
M
SE

(H
.26
4)
M
AE

(H
.26
4)
 16
X1
6 D
CT

8X
8*
8X
1_
M
VM

16
X1
6*
16
X1
_M
VM

8x
8 M

M

16
x1
6 M

M

Execution Time (ns) Proposed

Coproc‐Type

IP‐Type

(a) Real applications

60.94%
/52.59%

63.37%
/59.85% 61.76%/

52.61%

64.68%
/42.05% 63.23%

/42.09%

30.31%
/67.90%

34.86%
/66.42%

33.13%
/65.84%

35.96%
/66.23%

0

2000

4000

6000

8000

10000

12000

14000

25
6‐
po
in
t F
FT

25
6‐
ta
p
FIR

Co
m
ple
x M

ult
St
at
e

Hy
dr
o

Tr
i‐D
iag
on
al

Fir
st‐
Di
ff

IC
CG

In
ne
r P
ro
du
ct

Execution Time (ns)

Proposed

Coproc‐Type

IP‐Type

LISO

LISO LISO

STIO

LIO

STIO
STIO

STIO

LIO

(b) Benchmarks

A%/B%: A% means reduced execution time ratio compared with Coproc-Type and B% means reduced
execution time ratio compared with IP-Type.

Fig. 71. Performance comparison.

146

evaluate execution times of the selected applications on three cases of CGRA as shown

in Fig. 71. The execution times include communication time between memory/processor

and the RAA or RCC. Each application is executed on the RCC-based CGRA in the

manner of selected computing flow as shown in Table XV – all of the applications are

classified under 4 cases of computing flow (STIO, SIO, LISO and LIO). In the case of

STIO and SIO, performance improvement compared with ‘Coprocesssor’ type is rela-

tively less (30.31%~37.03%) than LIO and LISO (60.94%~72.92%). This is because the

improvements of STIO and SIO are achieved by only reduced critical path delay

whereas the improvements of LIO or LISO are achieved by avoiding heavy coprocessor

registers-PE array traffic as well as reduced critical path delay. However, compared with

‘Attached-IP’ type, STIO and SIO achieve much more performance improvement

(56.60%~67.90%) whereas LISO and LIO show the improvement of (42.05%~59.85%).

This is because STIO and SIO do not use data buffer of the RAA causing communica-

tion overhead on system bus.

c. Power Evaluation

Fig. 72 shows the comparison of power consumptions in three different organizations of

CGRA. First of all, the proposed L1 and L2 PE array is more power-efficient than the

base PE array because of the reduced critical resources. With such a power-efficient PE

array, the amount of power saving depends on the selected computing flow for the appli-

cation. The most power-efficient computing flow is STIO that shows relatively much

power saving (40.44%~55.55%) compared to other cases (7.93%~29.67%) because the

STIO does not use the RAA - specially, ‘First_Diff’ shows the highest power saving

147

17.22%
/28.90%

23.67%
/29.67%

14.72%
/25.70%24.04%

/27.59%

21.39%
/25.72%

10.62%
/23.52%

7.93%
/20.51%

43.99%
/46.67%

10.16%
/23.11%

24.22%
/27.82%

24.15%
/26.89%

24.23%
/26.98%

0

50

100

150

200

250

300

(H
.26
3)
8X
8 D
CT

(H
.26
3)
8X
8 I
DC
T

(H
.26
3)
8X
8 Q

UA
NT

(H
.26
3)
8X
8 D
EQ
UA
NT

(H
.26
3)
SA
D

(H
.26
4)
4X
4 I
TR
AN
S

(H
.26
4)
M
SE

(H
.26
4)
M
AE

(H
.26
4)
 16
X1
6 D
CT

8X
8*
8X
1_
M
VM

16
X1
6*
16
X1
_M
VM

8x
8 M

M

16
x1
6 M

M

Power (mW)

Proposed

Coproc‐Type

IP‐Type

24.22%
/27.96%

SIO SIO SIO SIO
SIO

LISO
LISO LISO LISO

LISO

LISO SIO
STIO

(a) Real applications

15.55%
/25.58%

15%
/25.61%

12.09%
/26.03%

43.11%
/46.11%

40.44%
/45.54%

17.13%
/19.65% 51.71%

/55.55%

44.74%/
48.57% 22.91%

/22.43%

0

50

100

150

200

250

300

256‐point
FFT

256‐tap
FIR

Complex
Mult

State Hydro Tri‐
Diagonal

First‐Diff ICCG Inner
Product

Power(mW)

Proposed

Coproc‐Type

IP‐Type
LISOLISO

LISO

STIO

LIO
STIO STIO STIO LIO

(b) Benchmarks

A%/B%: A% means power saving ratio compared with Coproc-Type, and B% means power saving ratio
compared with IP-Type.

Fig. 72. Power comparison.

148

ratio of 51.71%/55.55% because of not using the shared critical resources. The next

power-efficient model is SIO showing power saving (23.67%~29.67%). This is because

the SIO computing flow does not use data buffer of the RAA whereas LISO

(7.93%~26.03%) and LIO (17.13%~22.91%) utilizes the data buffer for input data or

output data. Finally, power saving of LISO and LIO is mostly achieved by reduced criti-

cal resources and by not activating L1 PE array.

149

CHAPTER IX

INTEGRATED APPROACH TO OPTIMIZE CGRA

In this chapter, we present integrated approach to merge the multiple design schemes

presented in the previous chapters. A case study is shown to verify the synergy effect of

combining the multiple design schemes. Experimental results show that the integrated

approach reduces area by 23.07% of entire RAA and power by up to 72% when com-

pared with the conventional RAA. In addition, we discuss potential combinations among

the proposed design schemes and their expected outcomes.

A. Combination among the Cost-Effective CGRA Design Schemes

From Chapter VI to Chapter VIII, we have proposed the cost-effective CGRA design

schemes and such schemes can be combined with each other to optimize CGRA in terms

of area, power and performance. Fig. 73 shows combination flow of the proposed design

schemes. The flow shows possible scheme combinations for CGRA design. Each arrow

of the flow shows a possible integration between two design schemes. The possible

scheme combinations can be found by tracing in the arrow directions. The combination

flow can be classified into two cases according to the computation model of CGRA. In

the case of temporal mapping, low power reconfiguration technique by reusable context

pipelining (Chapter IV) can be selected whereas cost-effective array fabric (Chapter VII)

is applicable to the spatial mapping. This is because two design schemes have been de-

vised while keeping the characteristics of spatial mapping and temporal mapping - we

150

spatially spread the operations in the data flows over the array space in the design

scheme of the cost-effective array fabric whereas reusable context pipelining spread the

operations over time for each column to implement temporal loop pipelining. Therefore,

even though two design schemes cannot be merged, any combination of a design scheme

in Chapter IV or VII with the remaining three schemes is possible.

Chapter IV. Low Power
Reconfiguration Technique

Temporal Mapping

Chapter VII. Cost‐Effective
Array Fabric

Spatial Mapping

Chapter V. Dynamic
context compression

Chapter VIII. Hierarchical
reconfigurable Computing arrays

Chapter VI. Dynamic
context management

Fig. 73. Combination flow of the proposed design schemes.

B. Case Study for Integrated Approach

1. An CGRA Design Example Merging Three Design Schemes

To demonstrate the effectiveness of the integrated approach, we have designed a RAA

combining three design schemes as shown in Fig. 74 with RT-level implementation us-

ing VHDL. The architectures have been synthesized using Design Compiler [49] with

151

0.18 ㎛ technology. PrimePower [49] has been used for gate-level simulation and power

estimation. To obtain the power consumption data, we have used the same the applica-

tions shown in the previous Chapters for simulation with operation frequency of 100

MHz and typical case of 1.8 V Vdd and 27℃.

Dynamic context
compression

Hierarchical reconfigurable
Computing arrays

Low Power
Reconfiguration Technique

Fig. 74. A combination example combining three design schemes.

2. Results

a. Area and Performance Evaluation

Table XVII shows area cost evaluation of each component for the base RAA as specified

in Chapter III and the integrated RAA combining three design schemes. In the case of

configuration cache, area is reduced by 16.79% - even though dynamic context compres-

sion increases area as shown in Chapter V, low power reconfiguration technique offsets

the increased area with reduced size of the configuration cache. Area of the PE array and

frame buffer are also reduced by 17.27%/30% because hierarchical reconfigurable com-

puting arrays supports critical resource sharing with the reduced size of the frame buffer.

Therefore, the area reduction ratio of the entire RAA is 23.07% compared to the base

RAA.

The synthesis results show that the integrated RAA has reduced critical path delay

(5.12 ns) compared to the base RAA (8.96 ns). This is because dynamic context man-

agement and low power reconfiguration technique don’t affect the original critical path

152

delay and pipelined multipliers are excluded from the original set of critical paths by hi-

erarchical reconfigurable computing arrays. In addition, execution time evaluation of

the applications shows the same results in Chapter VIII – performance enhancement of

42.05%~67.90% compared with the IP-type base RAA.

Table XVII. Area Reduction Ratio by Integrated RAA

Gate Equivalent Component
Base Integrated

Reduction (%)

Configuration Cache 150012 124824 16.79
PE Array 659635 510029 22.68
Frame Buffer 129086 90329 30.00
Entire RAA 942742 760869 23.07

b. Power Evaluation

To verify the synergy effect of the integrated approach, we have evaluated power con-

sumption for the five cases:

a. Base RAA

b. RAA with low power reconfiguration technique

c. RAA with dynamic context compression

d. RAA with hierarchical reconfigurable computing array

e. integrated RAA.

Table XVIII shows entire power comparison among the five cases. Each design scheme

(b, c and d) does not reduce much power of entire RAA – 26.54%~47.6% in b,

13.77%~21.48% in c and 11.09%~30.19% in d. However, the integrated RAA save

much power (44.65% ~ 71.29%) because each component of the RAA is optimized by

153

the individual design scheme.

Table XVIII. Entire Power Comparison

aBase
bLow Power
Reconfig’

cDynamic context
compression

dHierarchical
Reconfig’ Array

eIntegrated
kernels

fP(mW) fP(mW) gR(%) fP(mW) gR(%) fP(mW) gR(%) fP(mW) gR(%)
First_Diff 376.17 232.48 38.2 309.37 17.76 262.62 30.19 108.01 71.29
Tri- Diagonal 400.19 257.59 35.63 331.01 17.29 355.79 11.09 200.65 49.86
State 356.08 228.45 35.84 294.23 17.37 266.23 25.23 125.71 64.7
Hydro 356.47 240.64 32.49 299.74 15.91 261.64 26.6 133.41 62.57
ICCG 434.45 261.29 39.86 354.33 18.44 323.39 25.56 137.52 68.35
Inner Product 328.54 240.57 26.78 283.3 13.77 281.27 14.39 181.83 44.65
24-Taps FIR 471.44 274.99 41.67 383.44 18.67 408.98 13.25 200.5 57.47
Matrix-vector
multiplication 405.7 212.58 47.6 318.56 21.48 356.56 12.11 150.25 62.97

Mult in FFT 423.59 287.67 32.09 355.19 16.15 360.12 14.98 208.78 50.71
Comlex Mult in
AAC decoder 452 304.19 32.7 381.55 15.59 381.38 15.62 220.77 51.16
ITRANS in
H.264 decoder 417.95 283.06 32.27 338.37 19.04 318.49 23.8 156.42 62.57
DCT in H.263
encoder 417.33 264.89 36.53 347.17 16.81 356 14.7 189.68 54.55
IDCT in H.263
encoder 412.91 263.45 36.2 343.42 16.83 352.55 14.62 188.71 54.3
SAD in H.263
encoder 415.27 305.05 26.54 343.04 17.39 362.12 12.8 222.63 46.39
Quant in H.263
encoder 401.35 255.77 36.27 333.63 16.87 341.22 14.98 181.14 54.87
Dequant in
H.263 encoder 401.64 252.3 37.18 332.63 17.18 341.85 14.89 178.38 55.59
aBase RAA (configuration cache + frame buffer + PE array), bRAA with low power reconfiguration tech-
nique, cRAA with dynamic context compression , dRAA with hierarchical reconfigurable computing array,
eRAA combining three scheme, f Power Consumption of RAA, g Power reduction ratio of entire RAA
compared with BASE.

C. Potential Combinations and Expected Outcomes

As mentioned in Section A, any combination of a design scheme limited by the compu-

tation model with the remaining four schemes is possible and we can consider two cases

of the maximum combinations – one is the maximum power optimization for the con-

154

figuration cache and another is area/power optimization of the PE array. Fig. 75 shows

such two cases of combinations. In the case of Fig. 75 (a), all of the design schemes re-

ducing power in configuration cache are merged with hierarchical reconfigurable com-

puting arrays. Therefore, power saving of the configuration cache can be optimized

based on the computation model of the temporal mapping. The second case is

area/power optimization of the PE array as shown in Fig. 75 (b). Compared with (a), in-

stead of low power reconfiguration technique, the design scheme of cost-effective array

fabric is combined with other design schemes. In this case, the area/power of the PE ar-

ray can be optimized by reducing the number of PEs (cost-effective array fabric) and

sharing critical-resource (hierarchical reconfigurable computing arrays).

Dynamic context
compression

Dynamic context
management

Hierarchical reconfigurable
Computing arrays

Low Power Reconfiguration
Technique

Dynamic context
compression

Dynamic context
management

Hierarchical reconfigurable
Computing arrays

Cost‐Effective
Array Fabric

(a) Power optimization for (b) Area/power optimization of the PE array
the configuration cache

Fig. 75. Potential combination of multiple design schemes.

155

CHAPTER X

CONCLUSIONS

In this chapter, we summarize the major results of this dissertation.

In Chapter IV, we propose reusable context pipelining for low power reconfigura-

tion and hybrid configuration cache structure supporting this technique. Our architecture

can be used to achieve power-savings in a reconfigurable architecture while maintaining

performance same as general CGRA. In addition, new configuration cache structure is

more efficient than previous one in terms of memory size. In the experiments, we show

that the proposed approach saves power even with reduced configuration cache size.

Power reduction ratios in the configuration cache and the entire architecture are up to

86.33% and 47.60% respectively compared to the base architecture.

In Chapter V, we introduce new context architecture (dynamically compressible

context architecture) with its design flow and configuration cache structure to support it.

The proposed dynamically compressible context architecture can save power in configu-

ration cache without performance degradation. Experimental results show that our ap-

proach saves much power compared to conventional base model with negligible area

overhead. We have reduced the power by up to 39.72% in configuration cache.

In Chapter VI, we propose novel dynamic context management for low power

CGRA and new configuration cache structure supporting this technique. Te proposed

management method can be used to achieve power-savings in configuration ache while

maintaining performance same as general CGRA. In the experiments, we show that our

156

approach saves much power compared to conventional base model with negligible area

overhead. We have reduced the power by 38.24%/38/15% in write/read operation of

configuration cache.

In Chapter VII, we propose a novel reconfigurable array fabric optimized for com-

putation-intensive and data-parallel applications. It has been shown the new array fabric

is derived from a standard square-array using the proposed exploration flow. The explo-

ration flow efficiently rearranges PEs with reducing array size and change interconnec-

tion scheme to save area and power. In addition, we suggest the new array fabric which

splits the computational resources into two groups (primitive resources and critical re-

sources). Critical resources can be area-critical and/or delay-critical. Primitive resources

are replicated for each processing element of the reconfigurable array, whereas area-

critical resources are shared among multiple basic PEs. Delay-critical resources can be

pipelined to curtail the overall critical path so as to increase the system clock frequency.

Experimental results show that the proposed approaches saves significant area and

power compared to conventional base model with enhancing performance. Implementa-

tion of sixteen kernels on the new array structure demonstrates consistent results. The

area reduction up to 36.75%, the performance enhancement up to 42.86% and the power

savings up to 35.45% are evident when compared with the conventional array architec-

ture.

In Chapter VIII, we propose hierarchical reconfigurable computing array architec-

ture to reduce power/area and enhance performance in configurable embedded system.

The CGRA-based embedded systems that consist of hierarchical configurable computing

157

arrays with varying size and communication speed were examined for multimedia and

other applications. Experimental results show that the proposed approach reduces on-

chip area by 22%, execution time by up to 72% and reduces power consumption by up to

55% when compared with the conventional CGRA-based architectures.

In Chapter IX, we present integrated approach to merge the multiple design

schemes. A case study is shown to verify the synergy effect of combining the multiple

design schemes. Experimental results show that the integrated approach reduces area by

23.07% of entire RAA and power by up to 72% when compared with the conventional

RAA.

158

REFERENCES

[1] R. Hartenstein, “A decade of reconfigurable computing: a visionary retrospective,”

in Proc. of Design Automation and Test in Europe Conf., pp. 642-649, March 2001.

[2] F. Barat, M. Jayapala, T. Vander A. Corporaal, G. Deconinck, and R. Lauwereins,

“Low power coarse-grained reconfigurable instruction set processor,” in Proc. of Int.

Conf. on Field Programmable Logic and Applications, pp. 230-239, September 2003.

[3] H. Singh, M. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and E. Filho, “MorphoSys:

An integrated reconfigurable system for data-parallel and computation-intensive ap-

plications,” IEEE Trans. on Computers, vol. 49, no. 5, pp. 465-481, May 2000.

[4] T. Miyamori and K. Olukotun, “A quantitative analysis of reconfigurable coproces-

sors for multimedia applications,” in Proc. of IEEE Symp. on FPGAs for Custom

Computing Machines, pp 15-17, April 1998.

[5] C. Ebeling, D. Cronquist, and P. Franklin, “Configurable computing: The catalyst for

high-performance architectures,” in Proc. of IEEE Int. Conf. Appl.-Specific Syst.,

Arch., Process., pp. 364–372, July 1997.

[6] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. Taylor, "PipeRench: A

virtualized programmable datapath in 0.18 micron technology," in Proc. of IEEE

Custom Integrated Circuits Conf., pp 63 –66, May 2002.

[7] Y. Chou, P. Pillai, H. Schmit, and J. Shen, "PipeRench implementation of the in-

struction path coprocessor," in Proc. of Annual IEEE/ACM Int. Symp. on Microar-

chitecture, pp 147-158, December 2000.

159

[8] F. Bouwens, M. Berekovic, A. Kanstein and G. Gaydadjiev, "Architectural explora-

tion of the ADRES coarse-grained reconfigurable array," in Proc. of Int.Workshop

on Applied Reconfigurable Computing, pp. 1-13, March 2007.

[9] F. Hanning, H. Dutta, and J. Teich, “Regular mapping for coarse-grained reconfigur-

able architectures,” IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, pp.

57-60, May 2004.

[10] J. Becker and M. Vorbach, “Architecture, memory and interface technology inte-

gration of an indutrial/academic configurable system-on-chip (CSoC),” in Proc. of

IEEE Computer Society Annual Symp. on VLSI, pp. 107-112, February 2003.

[11] Y. Kim, J. Lee, J. Junng, S. Kang, and K. Choi, "Design of coarse-grained recon-

figurable hardware," in Proc. of IEEK SoC Design Conf., pp. 312-317, April 2004.

[12] Y. Kim, C. Park, S. Kang, H. Song, J. Jung, and K. Choi, “Design and evaluation

of coarse-grained reconfigurable architecture,” in Proc. of Int. SoC Design Conf., pp.

227-230, October 2004.

[13] N. Suzuki, S. Kurotaki, M. Suzuki, N. Kaneko, Y. Yamada, K. Deguchi, Y. Ha-

segawa, H. Amano, K. Anjo, M. Motomura, K. Wakabayashi, T. Toi, and T. Awa-

shima, “Implementing and evaluating stream applications on the dynamically recon-

figurable processor,” in Proc. of Field-Programmable Custom Computing Machines,

pp. 328-329, April 2004.

[14] S. Khawam, T. Arslan, and F. Westall, “Synthesizable reconfigurable array tar-

geting distributed arithmetic for system-on-chip applications,” in Proc. of IEEE Int.

Parallel & Distributed Processing Symp., pp. 150-157, April 2004.

160

[15] A. Deledda, C. Mucci, A.Vitkovski, M. Kuehnle, F. Ries, M. Huebner, J. Becker,

P. Bonnot, A. Grasset, P. Millet, M. Coppola, L. Pieralisi, R. Locatelli, and G. Ma-

ruccia,, “Design of a HW/SW communication infrastructure for a heterogeneous re-

configurable processor,” in Proc. of Design, Automation, and Test in Europe Conf.,

pp.1352-1357, March 2008.

[16] M. Galanis and C. Goutis, “Speedups from extending embedded processors with

a high-performance coarse-grained reconfigurable data-path,” Journal of Systems

Architecture - Embedded Systems Design, vol. 50, no. 2, pp. 479-490, February,

2008

[17] G. Rauwerda, P. Heysters, and G. Smit, “Towards software defined radios using

coarse-grained reconfigurable hardware,” IEEE Trans. on Very Large Scale Integra-

tion Systems, vol. 16, no. 1, pp. 3-13, January 2008.

[18] M. Myjak, and J. Delgado-Frias, “A medium-grain reconfigurable architecture

for DSP: VLSI design, benchmark mapping, and performance,” IEEE Trans. on Very

Large Scale Integration Systems, vol. 16, no. 1, pp. 14-23, January 2008.

[19] A. Poon, “An energy-efficient reconfigurable baseband processor for wireless

communications,” IEEE Trans. on Very Large Scale Integration Systems, vol. 15, no.

3, pp. 319-327, March 2007.

[20] R. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinger, “KressArray

Xplorer: a new CAD environment to optimize reconfigurable datapath array archi-

tectures,” in Proc. of Asia and South Pacific Design Automation Conf., pp. 163-168,

January 2000.

161

[21] B. Mei, S. Vernalde, D. Verkest, and R. Lauwereins, “Design methodology for a

tightly coupled VLIW/reconfigurable matrix architecture: a case study,” in Proc. of

Design Automation and Test in Europe Conf., pp. 1224-1229, March 2004.

[22] N. Bansal, S. Gupta, N. Dutt, and A. Nicolau, “Analysis of the performance of

coarse-grain reconfigurable architectures with different processing element configu-

rations,” presented at the Workshop on Application Specific Processors, San Diego,

CA, December 2003.

[23] N. Bansal, S. Gupta, N. Dutt, A. Nicolau, and R. Gupta, “Interconnect-aware

mapping of applications to coarse-grain reconfigurable architectures,” in Proc. of Int.

Conf. on Field Programmable Logic and Applications, pp. 891-899, August 2004.

[24] N. Bansal, S. Gupta, N. Dutt, A. Nicolau, and R. Gupta, “Network topology ex-

ploration of mesh-based coarse-grain reconfigurable architectures,” in Proc. of De-

sign Automation and Test in Europe Conf., pp. 474-479, February 2004.

[25] J. Lee, K. Choi, and N. Dutt, "Evaluating memory architectures for media appli-

cations on coarse-grained reconfigurable architectures," in Proc, of IEEE Int. Conf.

on Application-Specific Systems, Architectures, and Processors, pp.166-176, June

2003.

[26] J. Lee, K. Choi, and N. Dutt, "Design space exploration of reconfigurable ALU

array (RAA) architectures," in Proc. of IEEE SOC Design Conf. pp. 302-307, No-

vember 2003.

162

[27] J. Lee, K. Choi, and N. Dutt, "Evaluating memory architectures for media appli-

cations on coarse-grained reconfigurable architectures," Int. Journal of Embedded

Systems, vol. 3 no. 3, pp.119-127, October 2008.

[28] Y. Kim, M. Kiemb, and K. Choi, "Efficient design space exploration for domain-

specific optimization of coarse-grained reconfigurable architecture," in Proc. of

IEEK SoC Design Conf., pp. 19-24, May 2005.

[29] A. Lambrechts, P. Raghavan, and M. Jayapala, “Energy-aware interconnect-

exploration of coarse-grained reconfigurable processors,” presented at the Workshop

on Application Specific Processors, New York, September 2005.

[30] H. Zhang, M. Wan, V. George, and J. Rabaey, “Interconnect architecture explo-

ration for low-energy reconfigurable single-chip DSPs,” in Proc. of VLSI’ 99, April

1999.

[31] F. Hannig, H. Dutta, and J. Teich, “Mapping of regular nested loop programs to

coarse-grained reconfigurable arrays – Constraints and methodology,” in Proc. of

EEE Int. Parallel & Distributed Processing Symp., pp. 148-155, April 2004.

[32] J. Lee, K. Choi, and N. Dutt, “Mapping loops on coarse-grained reconfigurable

architectures using memory operation sharing,” Center for Embedded Computer Sys-

tems (CECS), University of California, Irvine, Tech. Rep. 02-34, 2002.

[33] J. Lee, K. Choi, N. Dutt, "Compilation approach for coarse-grained reconfigur-

able architectures," IEEE Design & Test of Computers, vol. 20 no. 1, pp.26-33, Janu-

ary 2003.

163

[34] J. Lee, K. Choi, and N. Dutt, "An algorithm for mapping loops onto coarse-

grained reconfigurable architectures", in Proc. of ACM Workshop on Languages,

Compilers, Tools for Embedded Systems, pp.183-188, June 2003

[35] J. Lee, K. Choi, and N. Dutt, "An algorithm for mapping loops onto coarse-

grained reconfigurable architectures," ACM Sigplan Notices, vol. 38 no. 7 pp.183-

188, July. 2003

[36] M. Ahn, J. Yoon, Y. Paek, Y. Kim, M. Kiemb, and K. Choi, “A spatial mapping

algorithm for heterogeneous coarse-grained reconfigurable architectures,” in Proc.

of Design Automation and Test in Europe Conf., pp. 262-268, March 2006.

[37] J. Yoon, Y. Kim, M. Ahn, Y. Paek, and K. Choi, "Temporal mapping for loop

pipelining on a MIMD style coarse-grained reconfigurable architecture," presented at

the IEEE Int. SoC Design Conf., Seoul, Korea, October 2006.

[38] G. Lee, S. Lee, and K. Choi, "Automatic mapping of application to coarse-

grained reconfigurable architecture based on high-level synthesis techniques," in

Proc. of IEEE Int. SoC Design Conf., pp.395-398, September 2008.

[39] J. Yoon, A. Shrivastava, S. Park, M. Ahn, R. Jeyapaul, and Y. Paek, “SPKM : A

novel graph drawing based algorithm for application mapping onto coarse-grained

reconfigurable architectures,” in Proc. of Asia and South Pacific Design Automation

Conf., pp. 776-782, March 2008.

[40] H. Park, K. Fan, M. Kudlur, and S. Mahlke, “Modulo graph embedding: Map-

ping applications onto coarse-grained reconfigurable architectures,” in Proc. of Int.

164

Conf. on Compilers, Architecture, and Synthesis for Embedded Systems, pp. 136-146,

October 2006.

[41] H. Park, K. Fan, S. Mahlke, T. Oh, H. Kim, and H. Kim, “Edge-centric modulo

scheduling for coarse-grained reconfigurable architectures,” in Proc. of 17th Intl.

Conf. on Parallel Architectures and Compilation Techniques, pp. 166-176, October

2008.

[42] G. Dimitroulakos, N. Kostaras, M. Galanis, and C. Goutis, “Compiler assisted

architectural exploration for coarse grained reconfigurable arrays,” in Proc. of Great

Lakes Symp. on VLSI, pp.164-167, March 2007.

[43] F. Vererdas, M. Scheppler, W. Moffat, and B. Mei, "Custom implementation of

the coarse-grained reconfigurable ADRES architecture for multimedia purposes,” in

Proc. of Int. Conf. on Field Programmable Logic and Applications, pp. 106-111,

August 2005.

[44] Y. Kim, M. Kiemb, C. Park, J. Jung, and K. Choi, “Resource sharing and pipelin-

ing in coarse-grained reconfigurable architecture for domain-specific optimization,”

in Proc. of Design Automation and Test in Europe Conf., pp. 12-17, March 2005.

[45] C. Park, Y. Kim, and K. Choi, "Domain-specific optimization of reconfigurable

array architecture," presented at the US-Korea Conference on Science, Technology,

& Entrepreneurship, Irvine, CA, August 2005.

[46] M. Lanuzza, M. Margala, and P. Corsonello, “Cost-effective low-power proces-

sor-in-memory-based reconfigurable datapath for multimedia applications,” in Proc.

of Int. Symp. on Low Power Electronics and Design, pp. 161-166, August 2005.

165

[47] F. Barat and R.Lauwereins, “Reconfigurable instruction set processors: A sur-

vey,” in Proc. of Int. Workshop on Rapid System Prototyping, pp. 168-173, April

2000.

[48] ARM Corp., Cambridge, U.K., “ARM Corp. home page,” 2002. [Online]. Avail-

able: http://www.arm.com/arm/AMBA

[49] Synopsys Corp., Mountain View, CA, “Synopsys Corp. home page,” 2005.

[Online]. Available: http://www.synopsys.com

[50] Model Technology Corp., Wilsonville, OR, “Model Technology Corp. home

page,” 2005. [Online]. Available: http://www.model.com

[51] Y. Kim and R. Mahapatra, “Reusable context pipelining for low power coarse-

grained reconfigurable architecture,” in Proc. of Int. Parallel & Distributed Process-

ing Symp., pp. 1-8, April, 2008.

[52] Y. Kim, I. Park, K. Choi, and Y. Paek, "Power-conscious configuration cache

structure and code mapping for coarse-grained reconfigurable architecture," in Proc.

of Int. Symp. on Low Power Electronics and Design, pp. 310-315, October 2006.

[53] I. Park, Y. Kim, C. Park, J. Son, M. Jo, and K. Choi, "Chip implementation of a

coarse-grained reconfigurable architecture," in Proc. of IEEE Int. SoC Design Conf.,

pp. 628-629, October 2006.

[54] I. Park, Y. Kim, M. Jo, and K. Choi, "Chip implementation of power conscious

configuration cache for coarse-grained reconfigurable architecture," in Proc. of the

15th Korean Conf. on Semiconductors, pp.527-528, February 2008.

166

[55] J. Cocke, “Global common sub expression elimination,” in Proc. of Symposium

on Compiler Construction, ACM SIGPLAN Notices 5, pp 850-856, July 1970.

[56] S. Keutzer, S. Tjiang, and S. Devadas, “A new viewpoint on code generation for

directed acyclic graphs,” ACM Transactions on Design Automation of Electronic

Systems vol. 3, no. 1, pp 51-75, January 1998.

[57] R. Rau, “Iterative modulo scheduling,” Technical Report, Hewlett-Packard Lab:

HPL-94-115, 1995.

[58] Netlib Repository at the Oak Ridge National Laboratory, Oak Ridge, TN.

[Online]. Available: http://www.netlib.org/benchmark/livermorec

[59] Institute for Integrated Signal Processing Systems, Aachen, Germany. [Online].

Available: http://www.ert.rwth-aachen.de/Projekte/Tools/DSPSTONE

[60] Y. Kim and R. Mahapatra, “Dynamically compressible context architecture for

low power coarse-grained reconfigurable array,” in Proc. of Int. Conf. on Computer

Design, pp. 295-400, October 2007.

[61] Y. Kim and R. Mahapatra, “Dynamic context management for low power coarse-

grained reconfigurable architecture,” presented at the ACM Great Lake Symp. on

VLSI, Boston, MA, May 2009.

[62] Y. Kim and R. Mahapatra, “A new array fabric for coarse-grained reconfigurable

architecture,” in Proc. of EuroMicro Conf. on Digital System Design, pp. 584-591,

September 2008.

167

[63] Y. Kim, and R. Mahapatra, “Hierarchical reconfigurable computing arrays for

efficient CGRA-based embedded systems,” presented at the Design Automation

Conf., San Francisco, CA, July 2009.

[64] M. Jo, V. Arava, H. Yang, and K. Choi, "Implementation of floating-point opera-

tions for 3D graphics on a coarse-grained reconfigurable architecture, " in Proc. of

IEEE Int. SoC Conf., pp.127-130, September 2007.

[65] M. Galanis, G. Dimitroulakos, S. Tragoudas, and C. Goutis, “Speedups in em-

bedded systems with a high-performance coprocessor datapath,” ACM Transactions

on Design Automation of Electronic Systems, vol.12, no 35, pp. 1-22, August 2007.

[66] T. Callahan, J. Hauser, and J. Wawrzynek, “The Garp architecture and C com-

piler”, IEEE Computer, vol. 33, no. 4, pp. 62-69, April 2000.

[67] C. Arbelo1, A. Kanstein, S. López1, J.F. López1, M. Berekovic, R. Sarmiento1

and J.-Y. Mignolet, “Mapping control-intensive video kernels onto a coarse-grain re-

configurable architecture: the H.264/AVC deblocking filter,” in Design Automation

and Test in Europe Conf., pp. 642-649, March 2007.

[68] M. Galanis, G. Dimitroulakos, and C. Goutis, “Speedups and energy savings of

microprocessor platforms with a coarse-grained reconfigurable data-path,” in Proc.

of Int. Parallel & Distributed Processing Symp., pp. 1-8, March, 2007.

168

VITA

Yoonjin Kim received the B.S. degree in information and communication engi-

neering from SungKyunKwan University, Suwon, Korea, in 2003, and the M.S. degree

in electrical engineering and computer science from Seoul National University, Seoul,

Korea, in 2005. He graduated with the Ph.D. in computer engineering at Texas A&M

University May 2009. His research interests are system-on-chip design, embedded sys-

tems, and reconfigurable computing. He may be contacted at:

Yoonjin Kim

Department of Computer Science and Engineering

Texas A&M University

TAMU 3112

College Station, TX 77843-3112

U.S.A.

