View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Texas A&amp;M Repository

PRINCIPAL COMPONENTS ANALYSIS FOR BINARY DATA

A Dissertation

by
SEOKHO LEE

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2009

Major Subject: Statistics


https://core.ac.uk/display/4279372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PRINCIPAL COMPONENTS ANALYSIS FOR BINARY DATA

A Dissertation

by
SEOKHO LEE

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Co-Chairs of Committee, Jianhua Z. Huang
Raymond J. Carroll

Committee Members, Soumendra N. Lahiri
Alan Dabney
Ivan V. lvanov
Head of Department, Simon J. Sheather
May 2009

Major Subject: Statistics



ABSTRACT

Principal Components Analysis for Binary Data. (May 2009)
Seokho Lee, B.S., Seoul National University; M.S., Seouidel University

Co-Chairs of Advisory Committee: Dr. Jianhua Z. Huang
Dr. Raymond J. Carroll

Principal components analysis (PCA) has been widely usedséatistical tool for the di-
mension reduction of multivariate data in various appiaaareas and extensively studied
in the long history of statistics. One of the limitations @&/ machinery is that PCA can be
applied only to the continuous type variables. Recent atB&of information technology
in various applied areas have created numerous large didata sets with a high dimen-
sional feature space, including high dimensional binaa.dan spite of such great de-
mands, only a few methodologies tailored to such binarysddtaave been suggested. The
methodologies we developed are the model-based approaderfieralization to binary
data. We developed a statistical model for binary PCA anggsed two stable estimation
procedures using MM algorithm and variational method. Bysidering the regularization
technique, the selection of important variables is autaraby achieved. We also proposed
an efficient algorithm for model selection including the ideoof the number of principal

components and regularization parameter in this study.
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CHAPTER |

INTRODUCTION

Principal components analysis (PCA) is probably the oldest best known technique of
multivariate analysis. It was introduced by Pearson (19844 developed independently
by Hotelling (1933). The central idea of principal compotseanalysis is to reduce the di-
mensionality of a data set in which there are a large numbietefrelated variables, while
retaining as much as possible of the variation present iddte set (Jolliffe, 2004). Its ap-
plications include exploratory data analysis, visual@atdenoising and feature selections
(Hastie et al., 2001; Bishop, 2006).

Although PCA has a lot of possible applications, its compaoitaand interpretation
is tailored to only continuous type variables so that thera need to develop PCA-like
dimension reduction machinery for the other type varighleduding binary variables in
which we are interested in this study. Many attempts to gdizer PCA to other type
variables can be found in Jolliffe (2004). In our study, weiew and discuss the existing
generalization of PCA and we give further steps to answeiniportant and interesting
guestions in practice, arising from PCA with binary varedylfor example, the selection
of the number of principal components and the computatiodA@A in high-dimensional
situation.

Recently, there has been an increasing attention on thsigpartroduced PCA (Jol-
liffe et al., 2003; Zou et al., 2006; Shen and Huang, 2008 Jtandard PCA suffers from
the fact that the derived principal component is a linear lmoation of all the original

variables, so that it is often difficult to interpret the riésu The idea of sparse principal

The format and style follow that @iometrics



components analysis is to produce modified principal coraptswith sparse loadings.
In other words, sparse PCA seeks principal component Igadiith very few non-zero
elements. This will not only lead to the simple structure oh@pal components with an
easy interpretation, but also make the extraction of pp@atomponents more stable. The
existing sparse PCA methods are mostly suitable to contisitype variables and they are
not generally appropriate for other types such as binarponts. The goal of this study is
to develop a sparse principal component analysis methdulriary data.

To this end, first, we review the formulation of standard PGébtem and explore a

possible generalization of it to binary variables.

1.1 Formulations of Principal Components Analysis

There are two commonly adopted definitions of PCA that gige to the same result.
PCA can be defined as the orthogonal projection of the dataattw dimensional linear
subspace, known as the principal subspace, such that tiaae@iof the projected data is
maximized (Hotelling, 1933). Equivalently, PCA can be defiras the linear projection
that minimizes the mean squared distance between the dauts pod their projections
(Pearson, 1901). The process of orthogonal projectiorustibted in Figure 1. In the
following, we consider each of these definitions in turn. §&awvo definitions will shed a
light on the generalization of PCA to binary variables andvglthe relation between PCA

problem and regression problem.
1.1.1 Maximum variance formulation

The first formulation of standard PCA, which will be descdldeere, is due to Hotelling
(1933). Consider a data set ofobservations/,, - - - ,y, in R% In other words, the col-
lected data comprisebvariables all of which are continuous. The goal of PCA is mjct

the data onto a low-dimensional subspace while maximiziegvairiance of the projected



Figure 1: Principal components analysis seeks a space ef ldimensionality, known as
principal subspace and denoted by the green grid, suchiatthogonal projection of the
data points (black dots) onto this subspace maximizes thane of the projected points
(red dots). An alternative definition of PCA is based on miging the sum of squares of
the projection errors, indicated by the dashed black lines.

data. To begin with, consider the projection onto a one-dsimal space. We can define

the direction of this space usiagdimensional vecton;, which for convenience (and with-



out loss of generality) we shall choose to be a unit vectohatut! u;, = 1 because we are
only interested in the “direction” defined ly, not in the magnitude at; itself. Each data
pointy; is then projected onto a scalar valug = uf (y; —y) after subtracting the sample
meany = > | y;/n. The mean and variance of the projected datdi = 1, - - - , n) are,

then, given by
1 & 1 _
meana,;) = Eza“ = w Z(yi—y) =0
i=1 ]

1 & 1 _ _
var(oy) = - > af = - uf (yi —¥)(yi — ) w1 = u Sy
i=1

where

We now maximize the projected varianag€Su; with respect tay;. This is a constrained
maximization to prevenfu,|| — oco. The appropriate constraint comes from the normal-

ization conditionu?u; = 1. Therefore, the constrained maximizer becomes

T u’Su
u; = max u Su = max et
u:ulu=1 u u'u

To enforce this constraint, one may introduce a Lagrangéphal that we shall denote by

A1, and then make an unconstrained maximization of
ul Su; + A (1 —ulw).

By setting the derivative with respectiig equal to zero, we see that this quantity will have

a stationary point when
Su1 = )\11,11

which says thati; must be an eigenvector 8t Using the unity constraint, the variance is

given by

uiFSul = )\1



and so the variance will be maximized when wesgequal to the eigenvector having the
largest eigenvalue. This eigenvector is called as the finstipal component.

Additional principal components can be defined in an incraiadd¢ashion by choosing
each new direction to be that which maximizes the projectethmce among all possible
directions orthogonal to those already considered. Sdihgrincipal componeni; can

be found by solving

u = max u’'Su
wulu=1uTu,,=0

wherem = 1,---,1 — 1. Supposeu,---,u,_; are previously selected the firkt- 1

principal components. The Lagrangian of this constrainagimization is given by
w/ Sw; + N(1 —ufw) +rufuy + -+ mouf

by considering the unity constrainf u; = 1 and the orthogonal constraini$u,,, = 0 for

m =1,---,] — 1. Setting the derivative with respectipto zero leads to
28111 — 2)\1111 +71u + T = 0.

From the orthonormality constraints, we can easily seetthat O form =1,--- ,1 — 1.

So, this leads to
Slll = )\lul

and sou; must be an eigenvector 8fwith eigenvalue\;. The variance in the directiom,
is given byu! Su; = ); and so is maximized by choosing to be the eigenvector having
the largest eigenvalue among those are not previouslytedlec

Thus, if we consider the general case ofatimensional projection space, the optimal
linear projection for which the variance of the projectetbda maximized is now defined

by the k eigenvectorsy,, - - - , u;, of the data covariance matr& corresponding to thé



largest eigenvalues,, - - - , \,. Algorithms for finding eigenvectors and eigenvalues, as
well as additional theorems related to eigenvalue decoitiposcan be found in Golub
and van Loan (1996). Note that the computational cost of itpenealue decomposition

is O(a®). If we only need to project our data onto the fitsprincipal components, then
we just need to find the firgt eigenvalues and eigenvectors. This can be done with more
efficient techniques, such as the power method (Golub andean, 1996; Jolliffe, 2004),

that require®) (kd?).
1.1.2 Minimum error formulation

In this subsection, we discuss an alternative formulatfdA@A based on projection error
minimization (Pearson, 1901). To this end, consider cotepdethonormal basis vectors
uy, -+, uy that satisfyu’ u,, = d;,, wheredg,,,, is a Kronecker delta function which takes
the valuel if | = m and0 otherwise. Since this set of bases is complete, each daté poi

can be represented by a linear combination of the basisngecto

d
yi = ¥+ Zcilul (1.2)
=1

wherey, the sample mean, is a translation factor and the coeffgigmill be different for
different data points. Taking into account the orthonoityalve obtainc; = (y; — y) u,

and we can write

d

yi = Z{(YZ — ) w .

=1

Our objective is to approximate this data point using a regméation involving a restricted
numberk < d of variables corresponding to a projection onto a loweratisional sub-
space. The&-dimensional linear subspace can be represented by thé tissis vectors,

and so we approximate each data pginby

k
02‘ = S’+Zailul.
=1



We are free to choosg andq;; forl =1, - - , k so as to minimize the “loss” from trunca-
tion or reduction of dimensionality. As a measure of the lessmay use the average of the
squared distance between the original data pgimind its low dimensional representation

0;, so that our goal is to minimize

1 & ) 18 ) )

For the minimization with respect to the quantity, by setting the derivative with respect
to ; to zero and making use of the orthonormality, we obtajn= (y; — y) ;. If we
substitute fory; in (1.2) and make use of the expansion (1.1), we obtain
d
yi— 0 = Z {(vi —9) "Wy
I=k+1

from which we can see that the displacement frpnto 6; lies in the space orthogonal to
the k-dimensional principal subspace because it is a linear awatibn ofu, 1, - - - , uy,
as illustrated in Figure 1. This is to be expected becauserihjected point®; must lie
within the principal subspace, but we can move them freethiwithat subspace, and so
the minimum error is given by the orthogonal projection.

Therefore, the squared distanEédecomes the form of

n n d
B o= 3 - 0lP = 33 (- y)Tw?
1=1

=1 |=k+1
] — d d
= — T N AV A _ T
= 3 Y W m - - = Y ufsu
=1 I=k+1 I=k+1
The remaining task is to minimize with respecttay, forl = k+1, - - - , d, which must be

the constrained minimization otherwise we will get theidvesultu; = 0. Considering

the orthonormality condition, the corresponding Lagrangs

d

d
Z u/Su; — Z N(ufa; —1).



Thus, the stationary points should satisfy a set of equaBon = \ju; forl = k+1,--- ,d
so thatu; must be eigenvectors 8. The orthonormality condition gives the squared
distance by
d
E= ) X
I=k+1

which is simply the sum of eigenvalues of those eigenvectéos £ to be minimized, the
selected eigenvalues must be the k£ smallest eigenvalues angl's are the corresponding
eigenvectors. Therefore, two different formulations ofA?@aximum variance formu-
lation and minimum error formulation, are intrinsicallyudeplent and lead to the eigen
problem of the sample covariance mat$ix

Unlike maximum variance formulation, however, minimumoeriormulation has the
maximum likelihood estimation (MLE) interpretation. Thbjective function to be mini-
mized, E in (1.2), can be viewed as the negative log likelihood miikgbby the constant
factor2/n, ignoring the additive constant, when we consider Gaugdistribution on the
observationy;, with meand, and identity covariance. Note that Gaussian distributen a
sumption is adopted only for the computational convenienctfor representing the actual
data generating process. And, moreover, minimization.@) {&ith respect to the principal
componentsy; can be connected to the least square estimation as in regrésthe co-
efficientsa;; are given. These observations give us a cornerstone toagegelheneralize
the principal components analysis to binary variablesctvis discussed in the subsequent

section.

1.2 Generalization of Sparse Principal Components Analysisto Binary Variables

There are numerous attempts in the journey to the genetiahizaf the principal compo-
nents analysis for other type variables. The simple way t@ @oadopting the different

distribution assumption conforming to the observed vadesffor example, Bernoulli dis-



tribution for binary variables, Binomial or Poisson dibtrtion for counts, and gamma dis-
tribution for non-negative continuous variables. Thisraggh has been extensively studied
in the social science literature (Skrondal and Rabe-Hbsi&§04, and reference therein)
where the principal component scoreg are treated as latent variables. In this model,
the canonical parametefs, analogous to mean parameters in Gaussian model, have a
low-rank representation so th@f = p + a;1u; + - - - + o, With a shift or intercept

p. For example, the distribution of binary variahlg, conditional on the latent variable
a; = (a1, ,ay)T is assumed to be Bernoulli distribution with success proiatd; ;
which is thejth component of the canonical parameter ve@tor p+ a;yu; + - - -+ g ug

and the latent variables; are commonly assumed to have Gaussian distribution with zer
mean and identity or diagonal covariance. With this Gamsagsumption on the latent
variable, Tipping and Bishop (1999) prove that the maximikelihood estimation for the

k principal components leads to the fikseigenvectors of the covariance matrix.

This latent variable model for dimension reduction apphaacalled the generalized
latent trait models and this latent model approach is cjosehnected with factor analy-
sis (Bartholomew, 1984; Moustaki and Knott, 2000). Bartinoéw (1984) laid down the
foundation of factor analysis with a latent variable methadthe case that the observed
variables (or manifest variables in their terminology) birgary, count or ordinal variables.
Moustaki and Knott (2000) gave a general framework to pre@ddinified maximum like-
lihood method for estimating the parameters of the germmdliatent trait model. These
models assume that the theoretical concepts, often reyiegsiey the latent variables in the
model, are not observable directly and the observed respars treated as proxies for the
concepts of interest. Thus, the integration over the latanables is necessary to obtain
the marginal likelihood but the problem is that such intégrais infeasible in the case of
the non-Gaussian response variables. Therefore, nurhiatiegration techniques (such as

Gauss-Hermite quadrature) or Monte Carlo integration®#ien used to approximate the
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integration with a high cost of computational resourcesoriter to detour such difficul-
ties, Huber et al. (2004) suggest an approximation of thgmalklikelihood using Laplace
approximation. However, their estimating equations dogige closed-form solutions so
iterative method (e.g., quasi-Newton procedure or fixeitMpadgorithm) has to be used to
solve the implicit equations they proposed in every iterastep. In Chapter Ill, we use
variational method for the marginal likelihood approximat which was introduced by
Jaakkola and Jordan (1997) in a Bayesian logistic regnessariel.

Another approach which can avoid the intractable integrais to treat the principal
component scores;; (i = 1,---,n; I = 1,---,k) as fixed parameters in the model,
which was studied by several researchers. Collins et abl(Puggested a generalization
of principal components analysis to the exponential famtidgribution where the Bregman
loss function is minimized to obtain the low rank represgateof the canonical parameters
in the exponential family distribution. Schein et al. (2D@8posed a logistic PCA in the
similar way with Collins et al. (2001) but they maximized amx#iary function in order
to derive the alternating least square updates for modeinpeters. This approach was
also used for PCA of binary data in de Leeuw (2006) in the naihhagorization or MM
algorithm with more compact and rigorous treatments. Tpp@ach is studied in Chapter
Il.

Both of approaches, fixed or random principal componentes;doinary principal
components analysis methods suffer from lots of non-zerecipal component loadings
as the standard principal components analysis. since w@akeihe minimization criterion
in (1.2) can be regarded as the maximum Gaussian likelihgathation. This can be
also interpreted as the least square estimations when ith&gal component scores are
given. Thus, we may introduce the sparsity-inducing pgn#dt instancel; penalty, on
the principal components, which leads to LASSO solutionisTdan be viewed as the

penalized likelihood estimation when we consider the miration of the sum of squares
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of reconstruction errors is equivalent to maximization @aussian likelihood.
In the following, we will review two bound optimization algthms, called MM algo-

rithm and variational method, which will be extensively Bifed in the whole study.

1.3 Review of Estimation Procedures

1.3.1 MM algorithm

In this section, we briefly review an optimization method evhwill be used in Chapter II,
called the MM algorithm. The MM algorithm relies on convgxdrguments and is particu-
larly useful in high-dimensional problem such as image mstiction (Lange et al., 2000;
Hunter and Lange, 2004). This acronym does double duty. himization problems,
the first M of MM stands for majorize and the second M for mirgmi In maximization
problems, the first M stands for minimize and the second M faximize. When it is
successful, the MM algorithm substitutes a simple optitndraproblem for a difficult op-
timization problem. In simplifying the original problemaanust pay the price of iteration
or iteration with a slower rate of convergence. The wellskndEM algorithm is a special
case of the MM algorithm which does not necessarily involseaind notions of missing
data.

A function g(x|z™) is said to majorize a functiofi(z) at=(™ wheng satisfies

fa™) = g(a™at™) (1.3)

flz) < g(zlz™).

In other words, the function surface — g(z|z™) lies above the surfacg(z) and is

tangent to it at the point = 2. In the iterative algorithmg("™ represents the current

iterate in a search of the surfagér). Figure 2 provides a simple one-dimensional example.
In the minimization version of the MM algorithm, we minimitee surrogate majoriz-

ing functiong(x|z(™) rather than the actual functigfi{z). If z(™+Y) denotes the minimum
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of the surrogatg(z|z™), then we can show that the MM procedure for¢és) downhill.

Indeed, the inequality

P = o@D ) 4 falm ) = g D])
< gla™[at™) 4 fa™) ~ glat|a™)
= ™)

follows directly from the facty(z™*+9|2(™) < g(2(™|2(™)) and definition (1.3). Or such

driving force on the MM algorithm can be seen by looking at

(@™ V) — g(a™]a) = fa) — fa™)

which can be verified from (1.3) easily. In other words, angrdase in the value of
g(z|z(™)) guarantees a decrease in the value of the actual fungtion For implemen-
tation of the MM algorithm, therefore, finding a majorizingniction which is easy to be
optimized is a crucial step determining usefulness of the 8gbrithm.

In order to help understanding, consider a simple one-dsmeal example that finds
the median of datay,--- ,z,. It is well known that finding minimum of the function
flz) = Y0, | — ;| leads to median. However, minimizing(z) is not analytical to
solve because it is piecewise linear. This function is iltgd in Figure 2 with a small
dataset comprisint, 3, 4, 8 and10, which gives the median als Using the relation

,1'2 +y2
2ly|

|z <

the original functionf (x) has a quadratic majorizing function=t™ as

n

v — )2 4 (2 )2
floy < Yo Emmp T )

2|z(m) — ;|

9
=1

which is depicted in Figure 2 at the tangent paifft) = 6. This technique, finding

a quadratic majorizing function of the absolute value fiorgtwill be used in finding a
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guadratic upper bound df; penalty function in Chapter Il. For the binary principal com
ponents analysis, we will find a quadratic majorizing fuoctof the negative log of inverse

logit function in order to exploit the MM algorithm.

25
|

20

15

T T T T T T
0 2 4 6 8 10

Figure 2: The piecewise linear functigitz) = |x — 1|+ |z — 3|+ |z — 4| + |z — 8| + |z — 10|
is shown in red line and its quadratic majorizing functiontes tangent point™ = 6 is
drawn in blue.

1.3.2 Variational method

Variational methods have their origins in th&" century with the work of Euler, Lagrange,
and others on the calculus of variations. Standard calésitencerned with finding deriva-
tives of functions. They are a family of techniques for apioraating intractable integrals
arising in Bayesian statistics and machine learning. Tlaeybe used to find a lower bound
for the marginal likelihood of several models with a view trjprming model selection,
and often provide an analytical approximation to the patam@sterior probability which
is useful for prediction. It is an alternative to Monte Castampling methods for making

use of a posterior distribution that is difficult to samplerfr directly. There are huge lit-
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erature on this topic which can be found in Jordan (1999)h&is(2006) and references
therein.

Such variational methods find a ‘global’ solution in the setisat it directly seeks an
approximation to the full posterior distribution over aindom variables. In this study,
we use an alternative ‘local’ approach which involves figdbounds on functions over
individual variables or groups of variables within a modéte purpose of introducing the
bound is to simplify the resulting distribution.

Itis instructive to illustrate variational method congidg a simple example, the func-
tion f(z) = exp(—=x), which is a convex function af, and which is shown in the left penal
of Figure 3. Our goal is to approximaydz) by a simpler function, in particular a linear
function ofz. From Figure 3, we see that this linear function will be a lotveund onf ()
if it corresponds to a tangent. We can obtain the tangent/im¢ at a specific value aof,

sayx = £, by making a first order Taylor expansion

y(x) = )+ f(x—¢)

so thaty(z) < f(x) with equality whenr = £. For our example functiolfi(x) = exp(—xz),

we therefore obtain the tangent line in the form

y(r,§) = exp(—§) — exp(=§)(x — &)

which is a linear function parametrized By For consistency with subsequent discussion,

let us define\ = — exp(—¢) so that
y(x,\) = Az — A+ An(—=N).

Different values of\ correspond to different tangent lines, and because all lsue$
are lower bounds on the function, we halfe:) > y(x, \). Thus we can write the function

in the form

f(z) = m}z\ix{)\x — A+ Aln(=A\)}. (1.4)
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Figure 3: In the left panel, red curve shows the functiep(—z), and the blue line shows
the tangent at: = ¢ with ¢ = 1. This line has slope = f/'({) = —exp(—¢). Note that
any other tangent line, for example the ones shown in gredirhave a smaller value of
atz = £. The right panel shows the corresponding plot of the fumcti® — g(\) versus\
for ¢ = 1, in which the maximum correspondsito= — exp(—¢§) = —1/e.

We have succeeded in approximating the convex funcfian by a simpler, linear
functiony(z, A). The price we have to pay is that we have introduced a vanalioaram-
eter )\, and to obtain the tightest bound we must optimize with rese).

We can formulate this approach more generally using thedveork of convex duality
(Rockafella, 1972; Jordan et al., 1999). Consider thetilfti®n of a convex functiotf (x)
shown in he left panel in Figure 4. In this example, the fumttiz is a lower bound on
f(z) but it is not the best lower bound that can be achieved by adifnction having
slope)\, because the tightest bound is given by the tangent lineus etrite the equation
of the tangent line, having slopeasAz — g(\) where the (negative) intercept)) clearly

depends on the slopeof the tangent. To determine the intercept, we note thatittee |

must be moved vertically by an amount equal to the smallettaédistance between the
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line and the function, as shown in Figure 4. Thus,

9N = —min{f(x) - A}

= mjx{)\x — f(z)}. (1.5)

Now, instead of fixing\ and varyingz, we can consider a particularand then adjusk
until the tangent plane is tangent at that particulaBecause thg value of the tangent line

at a particular: is maximized when that value coincides with its contact pau@ have
f(z) = max{Az —g(N)}. (1.6)

We see that the functiofi(z) andg()) play a dual role, and are related through (1.5) and
(1.6).

Let us apply these duality relations to our example) = exp(—x). From (1.4) we
see that the maximizing value ofis given by¢ = —In(—2X), and back-substituting we

obtain the conjugate functiaf(\) in the form
g(A) = A= An(—X) (1.7)

as obtained previously. The functio§ — g(\) is shown, for¢ = 1 in the right panel
in Figure 3. As a check, we can substitute (1.7) into (1.6)ictvlyives the maximizing
value of \ = — exp(—=x), and back-substituting then recovers the original fumcfior) =
exp(—x).

If the function of interest is not convex, then we cannot ciseapply the method
above to obtain a bound. However, we can first seek invertrhlesformations either of
the function or of its argument which change it into a convaxri. We then calculate the
conjugate function and then transform back to the origiaaiables.

An important example, which arises in our study in Chaptkri$l the inverse logit

function defined by
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Figure 4: In the left panel the red curve shows a convex foncfiz), and the blue line
represents the linear functiow, which is a lower bound orf(z) becausef(z) > Az for

all z. For the given value of slopkthe contact point of the tangent line having the same
slope is found by minimizing with respect iahe discrepancy (shown by the green dashed
lines) given byf(xz) — Az. This defines the dual functiaf(\), which corresponds to the
(negative of the) intercept of the tangent line having sldpe

which will be used in latent variable model for binary pripai components analysis. We
can obtain a quadratic lower bound on it having the funclitoran of a normal distribution.

This was introduced and studied in Jaakkola and Jordan J2606t we consider

T

f(z) = logm(z) — 3.

Note that the functiorf (z) is a convex function in terms af, as can be verified by finding
the second derivative. This leads to a lower bound @r), which is a linear function of?

whose conjugate function is given by

g(\) = max{da® - f(Va?)}
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from (1.5). The stationary condition leads to

B dx d B 1 —27(x)
V= A-gmn/ W = A -

If we denote this value of, corresponding to the contact point of the tangent linetics t

particular value of\, by &, then we have

A§) = %g(g) (1.8)

Instead of thinking of\ as the variational parameter, we candetdlay this role since this

leads to simpler expressions for the conjugate functiomghvis then given by

g(n) = MOE - f(8).

Thus, from (1.6), the bound of{x) can be written as

fl@) > Aa® —g(N) = Aa® = A&+ f(6).

The lower bound of the inverse logit function, therefore, is

m(z) = m(&)exp{(z —§)/2+ \(E)(2* — %)} (1.9)

where\(¢) is defined in (1.8). This bound is illustrated in Figure 5. \We ¢hat the bound
has the form of the exponential of a quadratic function,ofvhich will prove useful when
we seek Gaussian representation of the conditional disioi defined through the inverse

logit function in Chapter III.

1.4 Overview of Dissertation

The goal of this study is to develop the generalization ofigggal components analysis
for binary data with special efforts paid on the simple dtte of principal components.
Especially, our method which will be described in next sewiis the model-based ap-

proach where we will propose two different formulations;leaf which is dealt separately
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Figure 5: This figure shows the inverse logit function in reddther with the Gaussian
lower bound (1.9) shown in blue. Here the paraméter 2.5, and the bound is exact at
x = ¢ andz = —¢, denoted by the dashed green lines.

in different section, as a sole article. In Chapter Il, wesprd the sparse binary princi-
pal components analysis by regarding principal componeaes as fixed parameters. A
stable estimation procedure is introduced by using MM atlgor. And we deal with the
principal component scores as random variables and wedeakie approximation of the
marginal likelihood and its estimation procedure by usiagational method, where we
also suggest a unified algorithm for principal componengsdyeis for the data comprising
disparate variables, including binomial and normal vdealas well as binary. In both of

two ways of generalization, we give a model selection praoeénd missing data treat-



ment coherently with the proposed algorithm.

20
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CHAPTER I

SPARSE PRINCIPAL COMPONENTS ANALYSIS FOR BINARY DATA

In this chapter, we develop a new PCA type dimension redactiethod for binary data.
Different from the standard PCA which is directly defined ba bbserved data, our new
PCA is defined indirectly on the logit scale of the succesbaldities of the binary ob-
servations. We also introduce sparsity to the principal monent (PC) loading vectors
for enhanced interpretability and more stable extractiothe principal components. Our
sparse PCA is formulated as solving an optimization probkgth a criterion function
motivated from penalized Bernoulli likelihood. We develmplajorization-Minimization
algorithm to efficiently solve the optimization problem. él'bffectiveness of our sparse

PCA method is illustrated using a simulation study and thee¢ data examples.

2.1 Introduction

Principal components analysis (PCA) is a widely used metbhodimensionality reduc-
tion, feature extraction and visualization of multivagiatata. Several sparse PCA methods
have recently been introduced to improve the standard P@A (lliffe et al., 2003; Zou

et al., 2006; Shen and Huang, 2008). By requiring the pral@pmponent loading vectors
to be sparse, sparse PCA methods yield PCs that are mongiatsipretable. Sparsity also
regularizes the extraction of PCs and thus makes the exinatiore stable. Such stability
is more beneficial when the dimension is high, especialljhendo-called high-dimension
low-sample-size settings. As extensions of the standal, R@wever, these sparse PCA
methods are mostly suitable to variables of continuous,tifEy are not generally appro-
priate for other data types such as binary data or counts. gbdhakof this chapter is to

develop a sparse PCA method for binary data.
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There are two commonly used definitions of PCA that give reséhe same result.
PCA can be defined as the orthogonal projection of the dataattw dimensional linear
subspace, known as the principal space, such that the gar@nthe projected data is
maximized (Hotelling, 1933). Equivalently, PCA can be defiras the linear projection
that minimizes the mean squared distance between the dais pod their projections
(Pearson, 1901). Shen and Huang (2008) developed thesesP&@A method following the
viewpoint of Pearson. For binary variables, one may follbese two directions selectively.
As along the Hotelling’s direction, the standard PCA is oftgpplied to the binary data
directly for the descriptive purpose. However, the dirgaplaecation of the standard PCA
to binary variables is not satisfactory nor desirable indbise that the covariance matrix
of the observed data has especial relevance for continypesviariables and the linear
functions of binary variables are less readily interpretaBome interesting variants of this
approach to binary variables can be found in Jolliffe (2004)

For Pearson’s approach, itis instructive to consider itwgtrical interpretation. Sup-
posey,,---,y, € R? are then data points and considerkadimensionalk < d) linear
manifold spanned by an orthogonal babgs - - , b, with a shift vectoru. According to

Pearson, the PCA minimizes the following reconstructionrer
> llyi — (1 + anby + -+ + aicby)[|% (2.1)
i=1

This is a least squares regressionm,jf's were known. In light of this connection to re-
gression and borrowing idea from LASSO (Tibshirani, 1988)en and Huang (2008) pro-
posed to add &, penalty|[b,||; + - - - + ||bx||: to the reconstruction error (2.1) to obtain
sparse loading vectoEa, cee by.. Since the reconstruction error (2.1) can be viewed as the
negative log likelihood up to a constant for the Gaussiatridigions with mean vectors

0; = p+ainby+- - +agbyg fori =1, - nand identity covariance, the method of Shen

and Huang (2008) can be interpreted as a penalized likadiapproach for sparse PCA.
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The key idea of the current chapter is to replace the Gauskg&lihood by the Bernoulli
likelihood. The relationship of the proposed sparse PCAbioary data to the sparse
PCA of Shen and Huang (2008) is analogous to the relatiorstipeen logistic and linear
LASSO regression. We thus will refer to the proposed PCA wrbts sparse logistic PCA.

We develop an iterative weighted least squares algorithimetform the proposed
sparse logistic PCA. Since the log likelihood is not quadrahd the penalty function is
non-differentiable, the optimization problem for the smalogistic PCA is not straightfor-
ward to solve. Our algorithm applies the general idea ofogation transfer or Majorization-
Minimization (MM) algorithm (Lange et al., 2000; Hunter abhange, 2004). By iteratively
replacing the complex objective function with suitably defi quadratic surrogates, each
step of our algorithm solves a weighted least squares proafel has closed form. The al-
gorithm is easy to implement and guaranteed at each itarationprove the penalized PCA
log-likelihood. We show that the same MM algorithm is apabite when there are missing
data. We also develop a method for choosing the penalty gaessnand for choosing the
number of important principal components. PCA of binaryadaing Bernoulli likelihood
has previously been studied by Collins et al. (2001), Sckeial. (2003) and de Leeuw
(2006), but none of these works considered sparse loadicigprge As we demonstrate
using simulation and real data, sparsity can enhance netatpn of results and improve
the stability and accuracy of the extracted principal congos.

Other approaches of sparse PCA are not as easily extendibledry data. Jolliffe
et al. (2003) modified the defining maximum variance probléthe standard PCA by ap-
plying aL;-norm constraint on the PC loading vectors to obtain PCA gjiiéirse loadings.
Its use of sample variance makes it unappealing for binatg. d&ou et al. (2006) rewrote
PCA as a regression-type optimization problem and theriegppfiie LASSO penalty (Tib-
shirani, 1996) to obtain sparse loadings. However, sineel#ta appear both as regressors

and responses in their regression-type problem, the ctioneaf their approach to penal-
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ized likelihood is not as natural as Shen and Huang (2008).

The rest of this chapter is organized as follows. In Sectiowe introduce the opti-
mization problem that yields the sparse PCA for binary dathaso provide an efficient
Majorization-Minimization algorithm for computation. &en 3 addresses the important
issue of tuning parameter selection. Section 4 discussesdbandle missing data. The
proposed methodology is illustrated by using a simulatilys in Section 5 and using

three real data sets in Section 6.

2.2 SparselLogistic PCA with Penalized Likelihood

2.2.1 Model setup

Consider ther x d binary data matrixY’ = (y;;) each row of which represents a vector
of observations from binary variables. We assume thatentfY are realizations of
mutually independent random variables and thatollows the Bernoulli distribution with
success probability;;. Let6;; = log{m;;/(1 — m;)} be the logit transformation af;;.

Then the individual data generating probability becomes
Pr(Yy = yi;) = m(0y5)" {1 —n(6:;)}' 7 = m(qi0s)

with ¢;; = 2y,; — 1 sincer(—0) = 1 —x(#). This representation leads to the compact form

of the log likelihood as

n d

= Z Z log 7(g;;0:;)-

i=1 j=1
Note that the Bernoulli distributions are in the expondrfamily and 6;; are the corre-
sponding canonical parameters.
To build a probabilistic model for principal components lgss of binary data, the
d-dimensional canonical parameter vect@ys= (6;;,--- ,0;4)* are constrained to reside

in the low dimensional manifold dR¢ with the dimensionalitys. (The choice oft will
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be discussed later in Section 2.4.2.) Specifically, we asstmat, for some vectorg,

by, -+, by € RY the vector of canonical parameters satisfies= g1 +a;1b1+- - -+ a;be
fori = 1,...,n. We callby,--- by the principal component loading vectors and the
coefficientsa, = (a;1,--- ,a;)? the principal component scores (PC scores) forithe

observation. Geometrically, the vectors of canonical ipetersd; are projected onto the
k-dimensional manifold which is the affine subspace spanmyefl BC loading vectors
and translated by the intercept vecgor In matrix form, the canonical parameter matrix

© = (0ij)i=1,-mn = (01, -+ ,0,)" is represented as

j=1,--.,d
© =1,ou" +AB” (2.2)
where A = (aj,---,a,)’ is then x k principal component score matrix a8l =
(by,---,by) is thed x k principal component loading matrix. The notatiendenotes

the Kronecker product.

The factorization of the rank matrix®, = AB7 in (2.2) is not unique, since for any
k x k orthogonal matrixl, AB” = A*B*T for A* = AH andB* = BH. To make the
factorization unique, we perform the singular value decositipn®, = UDV T whereU
andV have orthonormal columns addl is diagonal, and then leA = U andB = VD.
This procedure makes the model unique up to the sign changiehwloes not have a
practical importance in the interpretation.

We target a method that can produce a sparse loading matogadang matrix with
many zero elements. A sparse loading matrix implies vagiablection in principal compo-
nents analysis, since each principal component only imgiliose variables corresponding
to the nonzero elements of the loading vector. Variablectele usingL; penalty has been
widely used for regression type of problems since the intctidn of LASSO by Tibshirani
(1996). Letb]T denote thegith row of B. Then (2.2) implies that;; = p; + al' b; wherey;
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is thejth element ofu. The log likelihood can be written as

d n
U, AB) = > “logm{gi;(n; +al'b))}. (2.3)

j=1 i=1

If a, were observable, (2.3) is the log likelihood tblogistic regressions
logit P(Yi; = 1) = p; + aj b;.

This connection with logistic regression suggests use efithpenalty to get a sparse
loading matrix, as in LASSO regression.

Specifically, consider the penalty

k d d
Pyx(B) = > _Mlbills = A )bl + -+ A Y [l
=1 j=1 Jj=1

where)\,; are regularization parameters whose selection will baudsed later. We generate

sparse principal components by maximizing the followingadzed log likelihood
f(p,A,B) = {(n,A,B) —nPy(B).
Equivalently, we minimize the following criterion functio
S(u, A,B) = —{(n, A, B) +nPy(B), (2.4)

where the negative log likelihood can be interpreted assflosction and the.; penalties
increase the loss for nonzero element8adiccording to their magnitude. This penalized
loss interpretation is also appealing in the sense thatnthepiendent Bernoulli trials as-
sumption for obtaining the likelihood (2.3) need not be diséa representation of actual
data generating process but rather a device for generasingedle loss function. We shall

focus on the minimization problem (2.4) for the rest of tHisgter.
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2.2.2 Majorization-Minimization algorithm

We develop a majorization-minimization (MM) algorithm forinimizing (2.4), which it-

eratively minimizes a suitably defined quadratic upper loboin(2.4). Instead of directly
dealing with the non-quadratic log likelihood and the naffiedentiable sparsity inducing
L, penalty, the MM algorithm sequentially optimizes a quadrsitirrogate objective func-

tion. A functiong(x|y) is said to majorize a functiofi(x) aty if

g(zly) > f(z) forallz and  g(yly) = f(y).

In the geometrical view, the function surfager|y) lies above the functioyi(x) and is tan-
gent to it at the poiny sog(x|y) becomes an upper bound fpfx). To minimize f(z), the
MM algorithm starts from an initial guess® of =, and iteratively minimizeg(z|z(™)
until convergence, where™) is the estimate of at themth iteration. The MM algo-
rithm decreases the objective function in each step andasagteed to converge to a local
minimum of f(x). In application of the MM-algorithm, the majorizing funeti g(z|y) is
chosen to be easier to minimize than the original objectivetion f(x). See Hunter and
Lange (2004) for an introductory description of the MM aligfom.

To find a suitable majorizing function of (2.4), we treat tbg likelihood term and the

penalty term separately. For the log likelihood term, nbt,tfor a given poiny,

—logm(z) < —logm(y) — {1 — 7(y)}(x — y) + ZL=(x — y)’ (2.5)
< —logm(y) — {1 —7(y)}(x —y) + §(z —y)*, (2.6)

and the equalities hold when= y (Jaakkola and Jordan, 2000; de Leeuw, 2006). These
inequalities provide quadratic upper bounds for the negdtig inverse logit function at
the tangent poing. We refer to the former bound as the tight bound, and the lattend as

the uniform bound since its curvature does not changeyviffo show the above inequality

relations, first we will prove the following lemmas:
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LeEmMMA 11.1. The functionr(z){1 — m(x)} is decreasing inc > 0 wherern(z) = {1 +
exp(—)} 1.

Proof. The first derivative ist’(x){1—7(x)} —7(z)n' () = 7' (x){1-27(z)} = w(z){1—

m(x)H{1 —2n(z)}. By observingl/2 < w(z) < 1onz > 0, the derivative is negative>

LEMMA |1.2. The function(z) = log 7(\/x) — \/x /2 is convex.

Proof. The second derivative of x) is given as

" _ 1 27?(\/5)_1
r (56’)—@ T—W(\/@{l—ﬁ(\/@} :

Note that{2(v/z) — 1}/2/z = {r(y/T) — n(~/2)}/2V/T = 7(€) = m(2){1 — 7(€)}
with ¢ € (—+/z, v/z) from the mean value theorem. Frgn< /= and Lemma Il.1, the

second derivative of(z) is positive, which completes the proof. O

Thus, from the convexity of function(z), we getr(z) > r(y) + r'(y)(z — y) at any

Yy, SO that
¥ ST 1= 2n(y)
log w(v/x) — 5 2 log m(v/y) — 5 7t T(l" =)
= —logn(vz) < —logn(\/y) — \/_; VY + QW(Z}/\E/}@_ 1(x —y)

and by changing variableg’z by x we obtain (2.5). The curvature of the tight bound
function becomes

2r(y) =1 w(y) —w(-y)  2yr'(y) 1 1
T 1 = T SO =7} = ¢

by the mean value theorem agd: (—y, y). This completes to prove the inequality (2.6).
At y = 0, the curvature of the tight bound is not defined properly.uchscase, it takes its
limit when y approaches zero. By L'hopital’'s theorem we get

TR C) e S ) B ) U1 ) S

y—0 4y y—0 4 y—0 2 8
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For the penalty term, the inequality

2 2
o] < ZY
2]y

y #0, (2.7)

gives an upper bound fdr:| and the equality holds when = y (Hunter and Li, 2005).
Application of (2.5), (2.6), and (2.7) yields a suitable orging function of (2.4) and an
MM algorithm, as stated below in Theorem Il.1.

To present details of the MM algorithm, we introduce someatiohs. Let®@™ be
the estimate 0® obtained in thenth step of the algorithm, with the entriésn) = u§m) +

al™"b\™. Define

p(m) _
PP (N for tight bound
MG SR 2.8)
95;”’ + 4qi;{1 — W(qijﬁi(?))} for uniform bound
and
(00— .
M for tight bound
(m) 4™
Wi (2.9)

% for uniform bound

In both definitions, the superscript indicates the dependence @1"™. For the tight

bound casez'™

) andw™ are not well defined whe#{” = 0 and will be replaced by the

limit of the corresponding quantities whéff”’ — 0. To be specific, applying

lim 27(0) — 1 1
6—0

we define
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Whenegn) = 0. The working variable’s in the uniform bound can be seen as the first-order
Taylor approximation to those of the standard iterativeaigivted least squares (IRLS)
algorithm for the generalized linear models (GLMs) with Baulli distribution. In such
case, the working variablehas the form of

1

J J ( J ]) 7Tij(1 _ Wij)
with m;; = 7(6;;). The last term is approximated By;;(1 — 7 (g;;60;;)) when we apply the

Taylor’s expansion to it at;; = 1/2.

Now, let
g(p, A, Bm(m) Am) B(m))
, (2.10)
—ZZ[ — (4 +alb,)}* + bTDY b, .
=1 j5=1 ’
WhereD(A are diagonal matrices with diagonal element/52|b | forl=1,--- k.

TueoreM I1.1. (i) Up to a constant that depends @™, A™), and B(™ but not
on u, A, and B, the functiong(u, A, B|u™), A™ B(™) defined in(2.10) majorizes
S(p, A,B) at (u(™, A BM),

(41) Let (u™, A™ BM™) m =1,2,..., be a sequence obtained by iteratively min-
imizing the majorizing function. Thesi(u(™, A(™ B(™)) increases withm and it con-

verges to a local minimum of(u, A, B) asm goes to infinity.

Proof. Applications of (2.5) and (2.6) yield the following majaing functions of the neg-
ative log likelihood—/¢(u, A, B):

m ZW(ZJB(W)
22[ log m(q;5601;") — ;{1 — 7(gi;05")}(0 — 65) + q—ww 0" >]

4q
i=1 j=1 *

for the tight bound, and

33 [ tomn(at) — it  wla 0~ 057) + 30 -5

i=1 j=1
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for the uniform bound. Note that

(27 (q0") — 13 /{4q;;00"} = {27 (0) — 1} /{46

for ¢;; = £1. By completing the squares and using the deflnltlons(ﬁf andw!™, these

Z] 1

majorlzmg functions can be rewritten as

— i, A, B, A BOM)

= _222{1 qz] Zj }2+Zzww ij — Ly ))2'

=1 j=1 i=1 j=1

On the other hand, application of (2.7) yields the followmgjorizing function ofPy (B):

d 32 (m)2 d 12
- b5, + b b +b
PABIB™) =AY T b ”k
7j=1 2|b]1 | 7j=1 2|b]k:

- Z b\ D“” ™ Z bTD
Since the majorization relation between functions is doseder the formation of sums,
—( + nPy(B|B™) majorizesS(p, A, B) at (u™, A™ B™). Noticing that—/ +
nPy (B/B™) equalgy(p, A, B|p™, At B(™)up to a constantindependent(pf, A, B),
we complete the proof of part (i). Part (ii) of the theorenidals from the general property

of the MM algorithm (Hunter and Lange, 2004). &

The majorizing function given in (2.10) is quadratic in eadh:, A, andB when the
other two are fixed and thus alternating minimization of Q2 Mith respect tq:, A, andB
has closed-form solutions. We now drop the superscrimg’% for notational convenience.
For fixedA andB, setz}; = x;; — al'b;, the optimali; is given by

,&j:argminzwij(xfj—ﬂjy:%a J=1...,d (2.11)

Kj i=1 i=

To updateA andB for fixed u, setr}; = x;; — p; or in matrix form,X* = (z};) =

X — 1, @ u. Denote theith row vector of X* asx; and letW,; = diagw;) where
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w; = (w, ..., wq)’. For fixedp and B, theith row of A is updated by solving the
following weighted least squares problem
minZwU (xfj — ainj)2 or min(x] — Bai)TWi (x; — Bay),

a;

which has a closed form solution
a=(B"WB) 'BTWx!, i=1,---,n (2.12)

The columns of updated can be made orthonormal by using the QR decomposition. De-
note thejth column vector oX* asx’ and Ieth = diagw,) With w; = (w1, ..., w,;)".

For fixed and A, the jth row of B is updated by solving the following weighted ridge
regression problem

rrll)i_n Zwij(x;kj_ Tb +nz ! b(m
7=

=1

or
min (X; — Ab;)' W, (X; — Ab;) + nb!Dy b;,

which has a closed form solution
b, = (ATW;A+nDy ) 'ATW;x,  j=1.d (2.13)

The MM algorithm will alternate between (2.11), (2.12), 48d.3) until convergence. The
details are summarized &lgorithm 1.

When the uniform bound is used in the majorization of the tiegdog inverse logit
function, computation in the MM algorithm can be simplifibécause the weight matrices
W; ande are equal to the identity matrix multiplied by a constante Tipdating formula
(2.11) of u becomegi = %X*Tln, which is obtained by taking the column meanXof=
(z3;). The updating formula (2.12) becomas = (BTB)_lBTx;f, i=1,---,n, which

can be obtained by a single matrix calculatibn= X*B(BTB)_I. The updating formula
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Algorithm 1 Sparse Logistic PCA Algorithm |

1. Initializepu, A = (ay,...,a,)T andB = (by, ..., by)7.
2. Computer;; using (2.8) andv;; using (2.9).

3. Setr}; = z;; — a] b;. Updatep = (u1, ..., pa)” using

D i) WiT
i=1 WijLij;

My = ——=n ]Zlvvd
’ D ey Wij
4. SetX* = (77;) =X -1, ® ut.
5. Denote theith row vector of X* as x;. SetW, = diagw;) with w; =
(wit, . .., wiq)T. UpdateA = (ay, ..., a,)" using

a = (BTW,B) 'BTW,x;, i=1,---,n.
Compute the QR decompositidh= QR and letA — Q.

6. Denote thejth column vector ofX* as x}. Seth = diagw;) with w; =
(wij, ..y waj) T ComputeD y . as in (2.10). Updat® = (b, .. ., by)T using

b, = (ATW;A +nDy ) 'ATW,;x;,  j=1--.d

7. Repeat steps 2 and 6 until convergence.

(2.13) becomeﬁj = (Ix + 8nD>\j)—1AT>’”<;,j =1,---,d. Here, since the matrices to be

inverted are diagonal matricdﬁj can be obtained by component-wise shrinkage

) 5|

51 éTi* lzl?”'aka j:17”'7d7

T a7

wherea, is thelth column ofA. The simplified algorithm is summarized Aligorithm 2.
Our experience is that the MM algorithm using the uniform tdtakes more itera-

tions to converge, but because of the computational sityb€ each iteration, its actual

computing time is less than the MM algorithm using the tigbtibd. We used the MM

algorithm with the uniform bound (i.eAlgorithm 2) to produce all numerical results to
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Algorithm 2 Sparse Logistic PCA Algorithm Il

1. Initializepu, A = (ay,...,a,)T andB = (by, ..., by)7.
2. Computer;; using (2.8).

3. SetX* = (X}5) with z}; = z;; — al'b;. Updatepu = (u1,. .., pa)" usingu =
Lx+Ty, .
4. SetX* = (21,) =X — 1, ® puT.

ij

5. UpdateA by A = X*B(BTB)_l. Compute the QR decompositioh = QR and
let A — Q.
6. SetC = (¢;;) = X*TA. UpdateB = (b;;) using
b
S b [
T dn

7. Repeat steps 2 and 6 until convergence.

be reported later in this chapter.

2.3 Geometry of MM Algorithm for Spar se Solutions

In this section, we examine how the quadratic approximagsthlty function can give a
sparse solution in MM algorithm, although it has a quadraticn. In order to obtain the
sparse solution of principal component loadings,penalty function which is not differ-
entiable at zero is introduced here, as in many regressarigms. Nondifferentiabilty at
zero is crucial for the sparse solution, which is addressadany literature (Tibshirani,
1996; Fan and Li, 2001). Thus, it is instructive to mentiowtibe ridge type penalty can
produce the sparse solution by the iteration procedurewadthit is quadratic and differen-
tiable at zero.

At the m + 1th iteration step, whet is given by the previous estimate at theh
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step, the estimation procedure of the principal comporwatihgB in (2.10) becomes the

penalized weighted least square problem given as
min(% — Ab)"W(x — Ab) + nb"Djy b. (2.14)

Here we deliberately ignored the subscrjpsince each row oB is updated separately.
To make our arguments simple, we assume al\,&f are the same here. Then (2.14) is
equivalent to the weighted least square problem with thgtieglal constraint, i.e.,
k
min(X - Ab)"W(x — Ab) subjectto > /o™ <7 (2.15)
=1

wherer is a constant depending on the regularization parametérhe constraint term
appears ag-dimensional ellipsoid centered at the origin whose axespaoportional to
the magnitude of the previous estimatelgf The artificial example ok = 2 case is
depicted in Figure 6. The elliptical contours show the gatidiobjective function in (2.15)
which is minimized. It is centered at the ordinary least squstimator which is obtained
without constraints. The constraint regions appear aseshatlipsoids. The ellipsoid
with the dotted boundary stands for the constraint regicth@fbptimization at the current
iteration step. The solution, which is marked as “crosstuss at the first point that the
contours touch the ellipse. In the next iteration step thestraint region is constructed
based on this new solution. Sinéeis estimated larger thai, the constraint region is
more shrunken along thg axis, which is shown as the ellipse with the dashed boundary.
At the next iteration, the solution occurs at “plus” mark.b{fis estimated small enough,
the constraint region in the next step will collapse towaeldrigin along thé, axis, which
is illustrated in the right panel of Figure 6. In that caséhas little chance to have large
values. This mechanism generally explains how to genergpaise solution even though
the majorizing penalty function is differentiable at zeidote that Figure 6 describes the

regression situation with fixed covariates. In our PCA peahl the principal component
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score matrixA constantly changes depending on the previous estimatdseselliptical
contours are not the same at every iteration. However tha massage from this figure

still holds in such case.

Figure 6: Estimation picture for MM algorithm. Left panelsts how the constraint region
changes adaptively based on the previous solution. Rigtdlpléustrates the case that the
sparse solution is attained.

24 Implementation | ssues

In this section we discuss the methods for selecting thentuparameters in the sparse
logistic PCA algorithm. Sections 2.4.1 and 2.4.2 treat thealin > d case. Section 2.4.3

handles the case wheit> n or d is comparable ta.
2.4.1 Choosing the penalty parameters

In the situation ofn > d, leave-row-out cross-validation (CV) can be used to chalose
regularization parametex = (\y,---, \x)T. We propose to use the 5-fold version of the

cross-validation. To this end, we randomly divide the rowshe data matrix to form 5
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submatrices with approximately equal number of rows. Detiotse submatrices a5;),
i =1,---,5. LetY,; denote the submatrix &f after removingY . For eachi, we
useY _; as atraining set and ud&;) as a test set. The training set is used for extraction
of the principal component loadings, the test set is preptd the loading vectors, and a
goodness-of-fit measured using the negative log likeliraothe test set is calculated. The
sum of the five goodness-of-fit measures is used as the chiolsdian score. We select the
optimal A which minimizes the crossvalidation score.

Alternatively, we can develop a GCV-type criterion basedlmregression like cal-
culation of the loading matrix. By (2.13) of Section 2.2.2 gee that thg¢th row of B can
be obtained by a weighted ridge regression with the resjgotjsend the predicted values

of the responses are given by
A(ATW,A +nD)y ) ATW,X, = Ry X,

whereR) . = A(A"W;A + nDAj)_lATW]— is the hat matrix. Following the usual
development of GCV (Hastie and Tibshirani, 1990), we defireGCV score for sparse

logistic PCA as

L% - Ry X

GCVA) = dzn{l—Tr Ry, )/n}?

Our simulation study, not presented here, shows that bota@/GCV work well
whenn > d. But whend is larger than or even comparablertove observed that CV
and GCV fail to find good regularization parameters. A newldtis proposed in Sec-

tion 2.4.3 below to deal with this difficult case.
2.4.2 Determining the dimensionality of the subspace

Inthe standard PCA, the percentage of total variance exgailddy the principal components
can be defined and is frequently used for choosing the apptepnumber of principal

components with the aid of a “screeplot”. Zou et al. (2006) &men and Huang (2008)
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extended this approach to sparse PCA by modifying the deindf variance explained
by the PCs. We propose to use a similar strategy for sparsgtib@CA but using the
Bernoulli likelihood instead of the variance to measuredbedness-of-fit. Specifically,
we draw the plot of the negative log likelihood as a functiérko The plot usually starts
with a quick drop and after a “knee” or “ankle” point, the drispmuch slower. Thek”
corresponding to this “knee” point is chosen as a suitalteedsion to project the data for
logistic PCA. Another approach for selectinkj‘is to use the model selection criteria such
as the AIC or BIC. Our simulation study (not shown) reveaht thoth approaches work
well whenn > d. However, whenl > n, our experience shows that the screeplot method
and the AIC criterion tend to selektconservatively (largé) and BIC tends to choose the
anti-conservativé (smallk). In the next subsection, we develop a method to determine

for the case thal > n or d is comparable ta.
2.4.3 High-dimensional low-sample-size settings

When the number of variable@ds large, we suggest to use a single regularization paramete
A for all PC loadings to reduce the computation time, unleseetis a need to consider the
different regularization. We use the following strategyéexide the two tuning parameters.
We first fix & at a reasonable large value and select a ggdtien using this\ we refine
the choice of.

Since the AIC criterion usually selectscahat is bigger than what is needed, we first
fix k£ at the AIC selected value when focusing on the selection dfote that a larger value
of A will lead to a smaller number of nonzeros in the loading md&iand reduced model
complexity, the reduced model complexity is usually assteci with less good fit of the
model. To compromise the goodness-of-fit and model complexie use the corrected

BIC criterion defined by

CBIC(\) = —2((p, A, B) + logn x m(\)
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wherem(\) is the number of nonzero parameters. B¢R) denote the index set of the
nonzero loadings il with the regularization parametarand| - | denote the cardinality
function of the set argument. ThéB())| is the number of total nonzero loadingsBnob-
tained by the regularized logistic PCAgtand thusn(\) = d+nk+|B()\)|. The corrected
BIC is studied in Zou et al. (2007), where it is shown that thenber of nonzero coeffi-
cients is an unbiased estimate for the degrees of freedothédtASSO regression. We
select the optimal which minimizes the corrected BIC criterion. Fixing theessged)\ we
choose the optimalt” again by minimizing the corrected BIC. The screeplot asuassed
in the previous section can also be used to decide on the o&fué. The effectiveness of
the above selection procedure in the high dimensional sicewdl be demonstrated in the

simulation study and the real data applications in the Yalg sections.

2.5 Handling Missing Data

Missing data are commonly encountered in real applicationthis section, we extend our
sparse logistic PCA method to cases when missing data aserire
Let V' = {(7,7)|v:; is not observel denote the index set for missing values. The

sparse logistic PCA minimizes the following criterion ftion
T(p, A, B) = —Llops(p, A, B) +nPy(B), (2.16)

where

Cobs (1, A, B) = > > “log m{qi;(n; + a/ b;)}
(65N

can be interpreted as the observed data log likelihood. I&ino the non-missing data
case, direct minimization of (2.16) is not straightforwéetause the log likelihood term
is not quadratic and the penalty term is non-differentiald@ect minimization of (2.16)

is also complicated by the fact that the summation in the dieimof the observed data
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log likelihood is not over a rectangular region. Again, werglep an MM algorithm to
iteratively solve the optimization problem.

Define the working variables
zy”, (i.§) ¢ N
Where:cf.;”) is defined in (2.8). Let

h(pw, A, B|M(m) A(m) B(m))

_ZZ[ w257 = (u; +alb;)}” +b/DY’ b]

=1 j=1

(2.17)

whereD(A are diagonal matrices with diagonal element/52|b | forl=1,--- k. The

following result extends Theorem 1.1 to the missing datseca

TuEOREM 11.2. (i) Up to a constant that depends @ri™, A(™), and B(™ but not
on u, A, and B, the functionh(u, A, B|u™, A™ B(™) defined in(2.17) majorizes
T(, A, B) at (u™, A™ BM),

(43) Let (u™, A(™ B m = 1,2, ..., be a sequence obtained by iteratively min-
imizing the majorizing function. TheR(u(™, A B(™) increases withn and it con-

verges to a local minimum @f(u, A, B) asm goes to infinity.

Proof. Note that the objective function to be minimized is the surtomeof two terms — the
log likelihood term and the penalty term. Because the mzgdion property is closed under
function summation, we deal with the two terms separatelg dah find a majorization
function of the penalty term as in Theorem Il.1. To find a m&gron function of the log
likelihood term, we apply the argument in the standard EMalgm for handling missing

data (Dempster et al., 1977). The complete data log likelihe

fcom M,A B Zzlogﬂ- qU 1] —|—ZZIOg7T qU zg

(,5)¢N (i,5)EN
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Its conditional expectation given the observed data anduhent guess of the parameter

values is

Q(M,A,Bm(m),A(m),B(m))

= 2 log(asby) (2.18)

(1,9)¢EN

+ 0 Ellogm(gi;0i)| Yo, u™, AU B,
(i,5)EN

whereY , denote the observed data. By the standard EM theory,
— lops(12, A, B)
—Q(u,,A,Bm(m),A(m),B(m)) — &bs(u(m),A(m),B(m)) (2.19)
+ Q(,u,(m),A(m),B(m)m(m),A(m),B(m))
majorizes—{o, (1, A, B) at(p™, A" B™) thatis,—lo (i, A, B) > —lys(p, A, B),
and the equality holds wheip, A, B) = (u(™), A B™),

Now we find a quadratic majorizing function ef/,,(x, A, B), which in turn ma-
jorizes —{ (e, A, B) because of the transitivity of the majorization relatione Weed
only to find a quadratic majorization function efQ(u, A, B|u™), A B(™) since it
is the only term in the definition (2.19) e#@obs(u, A, B) that depends on the unknown
parameters. According to (2.18}Q(u, A, B|u™, A™ B(™) can be decomposed into
two terms, one corresponding to observed data, the otheespmnding to the missing
data. The former term can been treated as in the proof of €hedrl. When(i, j) ¢ N,

(

— log 7(q;;0,;) is majorized bywi(?) (6;; — m;”))z, up to a constant. To treat the latter term,

)

note that, wherti, j) € N,
E [log 71-(qijeij) |Y07 M(m)> A(m)7 B(m)}
= 7(0.") log w(6i;) + {1 — m(67)} log{1 — 7 (6;)}

= Z (Q’ljez] )1Og7r(q7/]97/])

qij=%1
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using the fact that the missing data is independent of therobd data, and that— (0) =
7(—0). Then, by applying the inequalities (2.5) and (2.6) and gilire definition ofwg”),

we obtain that

-k [log ﬂ-(quelj) |Y07 l'l'(m)7 A(m)7 B(m)]

< Z qw —log W(@fjm))

qij=%1

— {1 — m(q05) Haig (055 — 0} +wl{(035 — 657))?)]

<Cpn+ wi;n){(eij - 92(?))}27

where (), is a constant independent pf A, andB. Combining the above results, we

see that-Q(u, A B\p,(m) A, B™) is up to a constant majorized By .. wg”){(ﬁij —
)12, wherez\" equalsz!!"” if (i,j) ¢ N, and6." if (i, j) € N. The proof of Part

(|) is thus complete. Part (ii) of the theorem follows frometbeneral result of the MM

algorithm. &

Note that the majorizing functions given in (2.17) have tams form as those given
in (2.10) except thatgy"b) in (2.10) is changed tq.j’.”) in (2.17). Thus the computation algo-
rithm developed in Section 2.2.2 is readily applicable mittissing data case with a simple
replacement ofgn) by zfjm) The working variableg.”) in (2.17) is easily understood: It is
the same as the non-missing data cagg jifis observable; otherwise, it is an imputég

value based on the reduced rank model (2.2) and the curress @i, A, andB.

2.6 Simulation Study

In this section we demonstrate our sparse logistic PCA naetising a simulation study.
The method worked well in various settings that we testetlhbte we only report results

in a challenging case that the number of variaklésbigger than the sample size
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2.6.1 The signal-to-noise ratio

We first introduce a notion of signal-to-noise ratio for lstig PCA. In our logistic PCA
model, the entries of the x d data matrix are independent Bernoulli random variablel wit
success probability;; = {1 + exp(—6;;)}~* for the (i, j) cell. The matrix of canonical
parameter® = (0;;) has a reduced rank representa®®n= .+ AB”, whereA is an x k
matrix of PC scores anB is a sparsel x k PC loading matrix. In our simulation study,
each column ofA is generated from a zero-mean Gaussian distribution. Thanees
of these Gaussian distributions measure the signal le¥eleedCs. We set up these PC
variances relative to a suitably defined baseline noisé.leve

We define a baseline noise level as follows. First we generatel independent bi-
nary variables from Bernoulli distribution with the sucsgsobabilityl/2. These binary
variables are understood to come from the pure noise siegeatie generated without hav-
ing any structure on the success probabilities. Using thesey variables, we would like
to determine a noise level in the canonical parameter spacthis end, we conduct &
component logistic PCA without regularization and then pate the average of variances
for the obtained: PC scores, which is denoted @& This average variance can serve as
a measure of the baseline noise level. To get a more stablguneeaf the baseline noise
level, we generate a large number of (for example, 100) “poise” binary data matrices
and take the median eff computed from these matrices as our baseline noise level. Th
baseline noise level dependsond, andk.

With the notion of baseline noise level, we define the sigaatoise ratio (SNR) for

aPCas
variance of PC scores
baseline noise level

SNR =

In our simulation study, we first compute the baseline nasellfor a given combination

of n, d, andk, then use the above formula to specify the variances of Pfesdmased on
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the fixed values of SNR. Table 1 reports SNRs under some sosmeth the sample size

n = 100, which will be used for the following simulation study.

Table 1: Simulations on the baseline noise level with the@arsizen = 100 in the
standard deviation scale. The average# ¢fC score standard deviations are computed
over100 simulated datasets. Table shows median and MAD (mediansolatie deviation)

of 100 averages. The squared value of them is used as the basebedewe!.

k d = 200 d = 500 d = 1000
1 36.63(1.54)  55.80(1.06)  77.87 (1.08)
2 37.37(3.89)  56.73(4.23)  78.73 (4.38)
10 47.30(4.92)  67.30(5.46)  90.17 (4.79)
20 54.65(3.91)  75.20 (4.17)  99.16 (4.53)
100 14.08(2.66)  22.31(1.74)  90.17 (4.79)

2.6.2 Simulation setup

We set the intrinsic dimension to ke= 2 and the number of rows of the data matrix to
ben = 100. We vary the number of the variablésand the signal-to-noise ratio SNR. We
construct two sparse PC loading vectors as follows:bl.eandb;, denote correspondingly
the components of the first and the second PC loading vecWesletb;; = 1 for j =
1,---,20,bj =1forj=21,---,40, and the rest of;; are all taken to bé. We consider
three choices ofi: d = 200, d = 500, andd = 1000. We consider two settings of SNR:
(3,2) and (5, 3), and the SNRs are used to determine the variances of the P€ssdwmr
example, when the SNR {8, 2), the variance of the first PC is 3 times the baseline noise
level and the variance of the second PC is 2 times the bas®lise level. The mean vector

u is set to be a vector of zeros.
2.6.3 Simulation results

Logistic PCA with and without sparsity-inducing regulation is conducted on 100 simu-

lated datasets for each setting. To measure the closenissadtimated PC loading matrix
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Table 2: The results of logistic PCA with and without sparsitducing regularization,
based on 100 simulated data sets for each setting. The edpangle is the median angle.
The description of results is in the text.

k=2 k=30
d SNR angle correct incorrect angle correct incorrect
Regularization 0 (%) (%) ©) (%) (%)
200 SNR=(3,2)
nonregularized  12.410 100 100 35.550 100 100
regularized 11.910 100 95.62 11.270 100 47.19
SNR=(5, 3)
nonregularized  11.770 100 100 36.230 100 100

regularized  11.060 100  95.62  11.060 100  44.38
500 SNR=(3,2)

nonregularized  10.770 100 100 31.540 100 100
regularized 6.322 100 30.43 9.730 100 19.13
SNR=(5, 3)
nonregularized  10.240 100 100 31.490 100 100
regularized 6.202 100 28.59 9.642 100 18.91
1000 SNR=(3,2)
nonregularized  11.630 100 100 35.810 100 100
regularized 5.218  88.12 8.85 12.950 100 15.99
SNR=(5, 3)
nonregularized  11.020 100 100 35.770 100 100
regularized 4.696 100 9.79 12.470 100 15.94

B and the true loading matriB, we use the principal angle between spaces spanned by
B andB. The principal angle measures the maximum angle betweerivamyectors

on the spaces generated by the columnBadind B. More precisely, it is defined by
cos™1(p) x 180/, wherep is the minimum eigenvalue of the matrQ%QB, whereQg

and Qg are orthogonal basis matrices obtained by the QR deconmosit matricesB
andB, respectively (Golub and van Loan, 1996). The median grad@ngles for logistic
PCA with and without regularization are presented in Tablé/2 used: = 2 andk = 30

when running the logistic PCA algorithms. Since smallengipal angles indicate better
estimates of the PC loading matrix, the sparsity-inducegytarization has a clear benefit
— it can substantially reduce the principal angles. The fieiseven more profound when

the number of PCs used in the prograim= 30) is different from the true number that was
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used to generate the data= 2).

Table 2 also presents the percentage of the correctly and-eutly identified nonzero
loadings. In most scenarios, using the sparse logistic Pi§érithm, there is no serious
risk that the true nonzeros are not selected since the gageenf the correctly selected
nonzeros ard00% except for the case wheh = 1000 and SNR%3, 2) where it still
reports relatively large percentage. The percentage ahttwerectly selected nonzeros is
below 30% when the number of variables &0 and1000. This shows that regularization

can remove most zero loading variables in such cases.

Table 3: Frequencies of the selectedsing the corrected BIC.

selected:
d SNR 1 2 3 4 5 6 7
200 (3,2) 0 95 5 0 0 0 O
(5,3) 0 9 4 0 0 0 O
500 (3,2) 1 58 37 4 0 0 O
(5,3) 0 60 36 3 1 0 O
1000 (3,2) 3 34 36 15 10 1 1
(5,3) 2 31 47 15 4 1 0

We then chose the number of PEsf the sparse logistic PCA by using the corrected
BIC criterion which penalizes the model fit with the numbemnohzero parameters. Fre-
quencies of the selectddfrom 100 simulation datasets in each settings of Table 2 are
shown in Table 3. When = 200, the corrected BIC finds well the true numiebut, as
d gets largerk = 3 is more frequently selected. The performance for the ldrgases is
considered as quite good, given that the sample size is @fly 1

Figure 7 shows two PC loading vectors from one simulated datdord = 200
and SNR%5, 3). While the sparse logistic PCA can recover the original ingd/ectors
well, the nonregularized logistic PCA gives more noisy tsswhich are also subject to a

rotation to get close to the original vectors.
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Figure 7: A simulated data set with = 100, d = 200, andk = 2. Top panels shows
the first and second PC loadings from the nonregularized HGA bottom panels are the
same case of the regularized PCA.

2.7 Real Data Applications

In this section we illustrate the proposed sparse logisiié mhethod to three real datasets
where the dimension of data is comparable or larger thanaimpke size. The nonregular-

ized logistic PCA is used for comparison.
2.7.1 Advertisement data

The advertisement data was collected to predict whethestamages obtained on Internet
pages are advertisements based on a large number of themsding features. The feature
encodes phrases occurring in the URL, the image’s URL an@xltthe anchor text, and
words occurring near the anchor text. The dataset and itgidéen are available from

the UCI machine learning repository (Asuncion and Newm@&0,72. The dataset contains
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1,558 variables with 3 continuous and 1,555 binary varglded 3,279 observations with
459 advertisements and 2,820 non-advertisements. Weddaursthe binary variables and
used the3279 x 1555 binary data matrix. One binary variable has missing valAétough
the objective of this data collection is the prediction of #dvertisement webpages, we
applied the sparse logistic PCA to this dataset in orderéadeether PCA is able to capture
the variability between two groups and also whether thessfyainducing regularization
helps to improve the group separability. Top panels of Fedipresent the scatterplots of
the first two PC scores obtained from nonregularized andaegad logistic PCA. Clearly,
the sparsity inducing regularization improved the groymesability. This improvement is
better seen in the boxplots of the first PC scores (bottomlpané&igure 8).

With the obtained PC scores, discrimination analysis waslgoted using the linear
discrimination analysis (LDA) and support vector machi8¥ ) with linear, polynomial
and radial kernels. To do this, we randomly select a thirdat&ds the test set. We train
the decision boundary using the remaining data (traininpgasel apply it to the test set.
This was conducted) times. The regularized logistic PCA outperforms the IagiBICA
without regularization especially when we use the small beinof PC scores (Figure 9).
This demonstrates the regularization is greatly helpfiemwve study the high dimensional
data in the low dimensional space. It should be mentionethitidertisement dataset has
been frequently used for assessment of many supervisedrngalgorithms, for instance
C4.5 rules, yielding the high quality of prediction. Howeuwhe sparse binary PCA is the

unsupervised learning without using any group information
2.7.2 Single nucleotide polymorphism data

Association studies based on high-throughput single wtidie polymorphism (SNP) data
(Brooks, 1999; Kwok et al., 1996) have become a popular waglettect genomic re-

gions associated with human complex disease. A SNP is aesbage pair position in
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Figure 8: Advertisement data. Top panels: The scatterpldtse first two PC scores from
the nonregularized (left) and regularized (right) logig%CA. The red plus represents the
advertisement case and the black circle shows the non&bregnt case. Bottom panels:
Boxplots of the first PC scores. The advertisement cases @madmertisement cases are
labeled as “Ad” and “NonAd” respectively.

genomic DNA at which the sequence (alleles) variation cchetween members of a
species, wherein the least frequent allele has an abunddirid or greater. A crucial

issue in association studies is population stratificatietection (Hao et al., 2004) which
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Figure 9: Discrimination analysis using LDA and SVM. Blacdkcte and red rectangle
show the misclassification rates using the nonregularizésegularized PC scores respec-
tively. Vertical bar stands margin of one standard deviatib50 misclassification rates.

is to determine whether a population is homogeneous or liakehistructures within it.
With the presence of population stratification, the naivaeeeontrol approach not account-
ing for this factor would yield biased results (Ewens ande$pan, 1995) and, therefore,
draw inaccurate scientific conclusions. Also the additi@malysis challenge arises from
high dimensionality of the SNP data. Liang and Kelemen (208 usses extensively the

statistical development and difficulties for SNP data asialy
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The proposed sparse logistic PCA method can be used for gtoguistratification
detection. For the purpose of demonstration, we use the SitH° st available in the
International HapMap project (The International HapMam&wrtium, 2005). It consists
of 3 different ethnic populations of 90 Caucasians, 90 Afnand 90 Asians. Our task is to
detect this three-subpopulation structure using the SN alathe 270 subjects. At many
SNP locations, heterozygosity distribution and allelejfrency are known to be different
among populations and could confound the effect of the rigsksease. To account for this
factor, Serre et al. (2008) selected 1,536 SNPs with thdaimméterozygosity distribution
and allele frequency. The locations of these SNPs coveralthiromosomes except for the
sex-determining chromosome. Among these 1,536 SNPs, &y@hared by three ethnic
groups, which are used in our analysis. Their distributieerachromosomes is presented
in Table 4. We coded 0 for the most prevalent homogeneousgsséwild-type) and 1
for others (mutant), resulting in2r0 x 1392 binary matrix. This data matrix has 2.37%

missing entries.

Table 4: 1,392 SNP distribution over 22 chromosomes.

chromosome 1 2 3 4 5 6 7 8 9 10 11
number of SNPs 152 49 63 46 92 129 100 63 106 20 35
chromosome 12 13 14 15 16 17 18 19 20 21 22

number of SNPs 34 39 13 67 31 102 42 45 23 54 88

Figure 10 provides the scatterplots of first 2 PC scores withvathout regularization.
The clear splitting pattern among the three ethnic grouphasvn in the regularized PCA
case but not in the nonregularized PCA case. In additionptbposed sparse method
allows identifying directly the SNPs that contribute tostlsubpopulation pattern. The
selected model yields 816 and 685 nonzero variable loadmegsesenting the SNPs) on

the first 2 PC directions, among which 508 are commonly shaféerefore, 993 SNPs
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in the first 2 PC directions are claimed to be associated wighethnic group effect. It
suggests that the population stratification factor shoalthken into consideration at these
993 SNP locations in the following study of the associatietween SNPs and the disease

phenotype to avoid biased conclusion.
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Figure 10: The scatterplots of the first two PC scores fromnibreregularized (left) and
regularized (right) logistic PCA. Black circles, red reagées and blue triangles represent
Caucasian, African and Asian population respectively.

2.7.3 Handwritten digits data

The handwritten digits data come from the ZIP code on enesddpm U.S. postal mail
(Hastie et al., 2001). Each image is a segment from a five digitcode, isolating a
single digit. The images ar x 16 eight-bit grayscale maps. After deslanting and size-
normalizing,16 x 16 matrices of pixel intensities are obtained with scales irapdrom
—1to 1. To illustrate the logistic PCA methods, the pixel intepsialues less thah were
coded ad’s and otherwise a8's. In the original dateset, there are 500,200 images for
each of the 10 digits. For each digit, we randomly selectddliftfages to get a dataset

whose sample size is smaller than the dimengien16 x 16 = 256. Both regularized and
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nonregularized logistic PCA were applied to these smabgaskts. We only present here

results for the digit “5”.

Figure 11: The first two panels from the left are the first 2 P&llogs from the nonregu-
larized logistic PCA. The right two panels are the first 2 Padiags from the regularized
logistic PCA. The blue and red colors represent the posaive negative loading. The
density of colors is proportional to their magnitude of lvey$. Zero loadings are colored
by white.

Figure 11 presents PC loadings from the nonregularizedemdarized logistic PCA.
The sparse PCA generates many spots with zero loadings ascetthances the inter-
pretability of the extracted PCs. For example, the first P&tling reflects the contrast
between the strong “head” and “tail”, while the second P@iog explains the variability
coming from the “width” of digits. The similar interpretati may be given for PC load-
ings obtained from the nonregularized logistic PCA, butrtfessage is much less apparent
because of many nonzero loadings. The enhanced inteipretat sparsity can be more
easily appreciated by examining the images having the bigined lowest PC scores as
shown in Figure 12. In particular, the five images with thehleigt first PC loading by
the sparse PCA all have big round tail part and weak head \lnéld¢ive with the lowest
first PC loadings show the opposite pattern (third row of FeglR); the images with high
and low second PC loadings show strong contrast in the sigteeofvidth (fourth row of
Figure 12). As comparison, no clear patterns appeared asingegularized logistic PCA.
This example illustrates that regularization can help fiméresting features or structures

in binary data sets.
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Figure 12: The sample images with the five highest (left) amdekt (right) PC scores. The
first and second rows correspond to the first and second P@s abnregularized logistic

PCA. The third and fourth rows correspond to the first and is@dCs of the regularized
logistic PCA.
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CHAPTER III

LATENT VARIABLE MODEL FOR BINARY PRINCIPAL COMPONENTS
ANALYSIS

In this chapter, we develop principal components analysmibinary variable data with
latent variable models. The sparse solutions of principatmonent loadings are sought
with the regularized maximum marginal likelihood estimati The benefit from the reg-
ularization method in binary principal components analysithat the derived principal
component loadings have an easy interpretation and leagttier lhleature extraction. Since
the EM formulation of latent variable model is intractable develop its variational ap-
proximation. Possible missing cases are considered andavép their treatment. We
also incorporate the situation where binomial and normehtes appear simultaneously
with binary variables in the data and provide the unified atgm in such case. The per-
formance of regularization is tested using synthetic areh&world dataset and compared

with results without regularization.

3.1 Introduction

Principal components analysis is the best known and widsgg technique for multivariate
analysis. The central idea of principal components analggb reduce the dimensionality
of a dataset in which there are a large number of interrele€edbles, while retaining as
much as possible of the variation present in the datasdifigoR004). Its applications
include exploratory data analysis, visualization, deingiand feature selections (Hastie
et al., 2001; Bishop, 2006).

In the real-valued variables, the derivations and progerif principal components

are based on the eigen-structure of the covariance matrixcipal components are com-
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monly defined ax; = W (y; — u) whereW = (wy,---,W;) hask columns as the
first k& eigenvectors of the covariance matrix, called principahponent loadings or di-
rections, angu is mean vector as an intercept term. If we use the firsigenvectors for
W, then the new expressidh) = u + Wx; = p + 1wy + - - - + x5, Wy can be viewed
as the orthogonal projection ¢f onto thek-dimensional subspace in which the projected
points retain the maximal variability of the data pointshe riginal space. This implies
that variabilities along the orthogonal direction to thidspace are minimized. Therefore,
such principal subspace can be found, without relying oreipen-structure of covariance
matrix, by directly looking for the subspace spannedMdyand translated by the intercept
. ComponentdV andu may be derived by minimiziny~" | ||y: — (#+ Wx;)||?. Such
minimization criterion is equivalent to maximizing Gawssilikelihood with an isotropic
covariance (identity covariance matrix) and méatying on thek-dimensional subspace.
This probabilistic interpretation motivates the mode$dxd principal components analy-
sis (Bishop and Tipping, 1998; Tipping and Bishop, 1999)isThodel-based approach
for PCA, however, has a limitation. While estimate W from the maximum Gaussian
likelihood correctly find the principal subspace, its cohsrare not identical to the first
k eigenvectors of covariance matrix because the estimatéjed to a rotation, as com-
monly appeared in factor analysis.

This model-based approach of PCA can be generalized toadggoes of data other
than real-valued variables. Considering data types, weleploy the distribution conform-
ing such variables. For example, one may use Bernoulliidigton for binary variables
and binomial or Poisson for count data. Generally, any egptal family distribution can
be substituted instead of Gaussian distribution, and sporeding canonical parameters,
mean parameters in Gaussian distribution case, are assameside in theé-dimensional
subspace embedded in the origidalimensional space. Collins et al. (2001) studied a gen-

eralization of PCA to the exponential distribution in thisedtion and, in their approach,
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principal components are treated as a fixed parameters basyincipal component load-
ings. This approach has a drawback that the number of pagesrietbe estimated becomes
large so the parameter estimation suffers from over-fiititge modeling sense.

In this chapter, we develop PCA for binary variables in thena variable model
approach using Bernoulli distribution. In order to redube humber of parameters we
treat the principal components as random variables, sgtabent variables in the model.
Therefore, the intercept term and principal componentifagggare estimated as unknown
parameters, and principal component scores are predistéteaconditional expectation
given binary variable data. The resulting model becomesargdized linear mixed effect
model, which has been widely studied in statistics. It islwebwn that the marginal like-
lihood, by integrating out the latent variables, does nethaclosed-form expression in a
generalized linear mixed effect model, so the approximmaigehnique is necessary for its
implementation. We employ the variational method to appnate the marginal likelihood
in which the estimation procedure gives a closed-form gwiuh EM framework and its
resulting form becomes a weighted least squares solution.

Although our interest is mainly on binary data, we also cdesother types of vari-
ables, binomial and normal variables, in the PCA model anghnegide a unified estima-
tion procedure in the case where binary, binomial and nowauables appear together in
a single dataset. Incorporating various type variableberdtent variable model has been
studied in generalized latent trait models (Moustaki an@tKr2000; Huber et al., 2004).
However, existing methodologies to estimate parameteraatrsatisfactory when we ana-
lyze a high dimensional dataset because their techniguaspi@ximating likelihood func-
tion are not computationally feasible in the high dimenalmituation. Comparing such
methodologies, our proposed algorithm using variationaihmd can be successfully ap-
plied to analyzing high dimensional dataset.

While principal components analysis has been proved to b&ilus many appli-
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cations, its interpretation of principal component loagins often difficult since lots of
nonzero loadings are involved. So we deplgyregularization to force negligible nonzero
loadings to be zero so that the derived principal comporsadihgs have simple struc-
ture. It is well known that bias introduced by the regulai@awill reduce the variance of
estimates so that the performance of prediction is impraretlestimates becomes more
stable. A model-based approach is not free from the modaltiicbility due to loading
rotation, as in the model-based standard PCA and factor mAdether benefit from.;
regularization is that the model does not suffer from logditation so that the estimated
principal component loadings are close to the true prinapaponent loadings, as will be

shown in simulation study.

3.2 PCA Modd for Binary Variableswith Regularization

3.2.1 Latent variable model

Suppose we hawé-dimensional binary response vectoe= (yy, - - - ,yq)?. Natural distri-
bution assumption of binary variables is Bernoulli dissitibn with success probabilities,
7 (j =1,...,d). We modelr;s in the logit scale, which are often called canonical param-
eters, denoted by theédimensional vectof = (6, ...,0,;)" with §; = log{r;/(1 — m;)}.
This canonical paramet@ris modeled as a linear combination of basis vecwts, . ., wy

and the intercept term, giving

with x = (z1,...,2:)T andW = (Wy,...,Wy). A set ofk basis vectorsv,, ..., w; are
called principal components. These basis vectors are caoyrassumed to be orthogonal
in standard principal components analysis, however, wWeaeldx the orthogonal constraint

later since regularization on principal component loadimgkes the orthogonal constraint
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inappropriate. The coefficients, ..., z; in the model (3.1) are called principal compo-
nent scores, which are treated as random variables in thileim®he latent variable is
assumed to be normally distributed with the zero mean andi#@mgity covariance matrix,
as in probabilistic principal components analysis for camus variables (Tipping and
Bishop, 1999). Therefore, variabilities of binary varelpl are modeled in the canonical
parameter space armdprincipal components represent the mode of variabiliti¥gh the
Gaussianity assumption o the model (3.1) is known as generalized linear mixed effect
model, which is widely considered and extensively studredtatistics area (McCulloch
and Searle, 2001).

Tipping (1999) used the same probabilistic model for vieaion of binary data only
in the 2-dimensional representation for visualizatiorpmse. In this study we generalize it
to k-component representation and discuss the selection ntithber of components in the
subsequent arguments. Most model-based approaches rioipati components analysis
have a limitation that the proposed model is not identifiahie to the rotation of principal
component loading matriXV and, thus, resulting solution under the model suffers from
such rotational indeterminacy. In order to look at this aspeonsider any orthogonal or

rotation matrixH satisfyingH”H = HH” = I,. Then from model (3.1),
p+Wx = p+WH'Hx = p+ W'x*

with W* = WHT andx* = Hx. From the assumption ~ N(0,1;), it follows thatx* =
Hx ~ N(0,1;). Therefore, two different model paramet&h and W* lead to the same
model so the proposed model (3.1) is not identifiable. Theesarmblem also commonly
appears in factor model. In order to make the model identdjabis necessary to impose
some restriction on the form of estimateWf. For the principal components analysis, the
orthogonality constraint on principal components is ddde. In factor analysis, the “best”

of these rotated solutions is chosen according to somephaticriterion, such as varimax
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or oblique rotation. These selection procedures are ysuoatiducted after parameters
are estimated. In this sense, orthogonalization and factation form a post-processing,
which is done outside the estimation procedure. Later, wednicel, regularization in the
estimation procedure and it turns out that the estimaterafpeters is uniquely determined
up to sign change during the estimation step.

Since the given model involves the latent variables, logliifood is obtained by inte-
grating out the joint distribution over the latent variabl&uppose we haveindependent

d-dimensional binary vectors;, . .., y,. The log likelihood is written as

0©) = > log [ Py Wi,
=1

- ] (3.2)

=3 tog [ T] Pl s W P
i=1 j=1

where® denotes all parameterg,andW, collectively, P(y;;|x;; i, W) is the probability
mass function of Bernoulli distribution with the successhbility exp(p + Wx;) /{1 +
exp(p + Wx;)} andP(x;) is the density of-variate standard Gaussian distribution. This
log likelihood does not have a closed-form expression, whiotivates to use the approx-

imation techniques for estimation procedure.
3.2.2 L, regularization

The interpretation of principal component loadings is notasy task because there are
usually lots of nonzero loadings involved. In the standatdqipal components analysis,
there have been several attempts to make the principal coenp&oadings have the sparse
structure by regularization for the simple interpretat{daolliffe et al., 2003; Zou et al.,
2006; Shen and Huang, 2008). To this end, for binary data wpgse to imposd,,
penalty on the principal component loading estimatidn. regularization technique has
been widely studied and used, especially in regressio@-pypblems, not only for the

simple structure of parameter estimation, also for betdiption by reducing the variance
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of estimates. In binary PCA modédl; penalty is employed to the log likelihood function,

whose form is

P(W) = ml|willi + -+ me|[We|[x

d d
= m Y lwal+- e > wl (3.3)
j=1 j=1
where positive values, ..., 7, are the regularization parameters controlling the model

complexity. L; penalty is applied to columns &V, principal components, one by one. If
regularization parameter gets larger the model becomgaesitmy giving the small number
of nonzero loadings, while fit to the data becomes worse dubddias from the rigid
model structure. If regularization parameter is set to zeaoameter estimates are in a free
form so that the typical maximum likelihood estimators a&imed.

SinceL; penalty applies to each principal component loading, welkhaptimize all
regularization parameters, . . ., 7, for model selection. This is an unattractive aspect in
implementation because the grid search requires conbigetamputing time. Instead of
considering separate regularization parameters, we peofmouse a single regularization
parameter); = --- = n, = n for the computational efficiency. Thereforeprincipal com-
ponent loadings are regulated by a single paramgtBeside the computational economy,
another benefit from using a single regularization paramstthat this lenders an auto-
matic procedure to select the number of principal compaedince the same amount of
penalization is applied to all principal component loadirgl loading values of negligible
principal component are shut down to zero but important camept still remain to have
nonzero loadings.

By invoking L, regularization, therefore, the objective function to beximazed is

the penalized log likelihood function given as

0,(©) = () — nP(W). (3.4)



62

Therefore maximum penalized likelihood estimates will leeved under the balance be-
tween the maximal model fit to data and the simple structungrimcipal component load-
ings.

Another important feature af, regularization is that the penalty function (3.3) is not
invariant under rotation. In other word®(WH?) # P(W) for any rotation matrixt
except for a permutation matrix. This explains the solubbrthe model (3.1) withZ,
regularization is unique without indeterminacy from théatmn. The penalty function

(3.3) can be rearranged as
k k
P(W) =) [wim|+ 410 |wan|
m=1 m=1

using a single regularization parameter. Each compo@ﬁggl |w;n,| in the right-hand
side is the sum of the absolute valueskgbrincipal component loadings of thh vari-
able, which is corresponding to thgh row of W. In geometrical sense, whérprincipal
component loadings for thgh variable is depicted as a point in thelimensional space,
this can be interpreted a sum of the distancésafes from that point. Since, among many
rotated candidated,; regularization prefers one that gives the minimum distarioam
axes, lots of loadings of such solution are close to axes iewadl aumber of loadings have
large values, as illustrated in Figure 13. This is the sinmslaategy as varimax rotation
criterion in factor analysis (Kaiser, 1958). Varimax ratatchooses a principal component
loading matrixW which maximizes
k d d 2
Q=3 [Z wh é(z w;m) } | (3.5)
m=1Lj=1 j=1

This provides axes with a few large loadings and as many zevar{oadings as possi-
ble. Although varimax uses a different criterion that th&ugon is chosen to maximize
the sum of variances of squared loadings for each rotateédrfats effect is similar with

minimizing L, penalty. Therefore, we expect thif regularization leads to the estimate
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similar to that of varimax criterion. However, contrast tarimax criterion, the solution
from L, penalization has lots of exact zero loadings. And, moredvepenalized solution
is automatically sought during the estimation proceduog,impost-processing step after
finishing the estimation. Onc¥ is estimated by maximizing the penalized log likelihood,
we reorder columns oW by their magnitudes. This will determine the estimate ofpri
cipal component loadings uniquely up to only sign change¢lwbdo not have a practical

importance.
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Figure 13: lllustrative example for principal componentatmn. PC loadings appearing
in the left panel shows the smalléx penalty than those in the right panel. One of two
principal component loadings can be derived by rotatingotiher, so that the likelihoods
from two principal component loadings are the same.
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3.3 Variational Learning Algorithm

In this section, we formulate the variational learning aitpon for the latent variable model

for the binary principal components analysis.
3.3.1 Classical EM formulation

Since the model includes latent variables and marginaliladithood is computationally
intractable, the EM algorithm may be useful for parametéimegion. Regarding latent

variablesx; as missing variables, the complete log likelihood becomes

n

l(©) = Zlogp(}’iaxﬁ@) = Z{Zlogp(yiﬂxz‘;liaw)+103P(Xi)}

i=1 =1 j=1

Maximizing the conditional expectation of the complete lizglihood,

Q(®|8") = E[(,(©)|Y;®"], increases log likelihood function sequentially. Heredbe-
ditional expectation is conducted over the latent variskjeconditionally on the observed
dataY with the previous estimat®’. Therefore, the maximum penalized likelihood esti-

mator is attained by maximizing the surrogate function
Q,(8]8") = Q(©]|0") - nP(W)

sequentially.

Main difficulty in applying the EM algorithm is that the configation of the condi-
tional distribution ofx; given the datay; is computationally infeasible, so the conditional
expectatior)(®|@") is not available. To approximate the E-step, some numeajiaioxi-
mation techniques, such as Gauss-Hermite quadrature aieMzarlo EM, have been used
in similar latent variable models (Samel et al., 1997; Maksaind Knott, 2000). Such
approximation approaches are computationally infeasibiae high dimensional setup.
Instead we propose to use the variational method to appeigithe marginal likelihood,

which enables us to enjoy the closed-form expression in Malgorithm.
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3.3.2 \Variational lower bound to the marginal likelihood

The motivation of the variational method is to substitutevamient surrogate for com-
plicated marginal likelihood. Such surrogate function may be precise, but its form is
computationally convenient. Jaakkola and Jordan (199@0RMhtroduced a variational
method to approximate the predictive distribution in a Bage logistic regression model
and Tipping (1999) applied it to approximate the marginatrébution in the visualization
of binary data.

From (1.9) in Section I, the conditional distributiongf givenx;, P(y;;|x; pn, W),

can be approximated by

Plyijlxisp, W, &) = m(&y) exp|{(2ys; — D)y — &51/2 — M&H) (05 — €)((3.6)

whered;; = pu; +wfxi is thejth component 08; = p+ Wx; andw; is thejth row of W,
and\(z) = {n(x) — 1/2}/2x (Jaakkola and Jordan, 1997, 2000; Tipping, 1999). Extra
parameters; ;s are called variational parameters. This approximatio6)(8erves as a
lower bound of the conditional distribution so tHRty;;|x;; 1, W) > P(y;|xi; 1, W, &;).

This bound is exact whef); = (2y;; — 1)6,;. When we put this variational lower bound of
the conditional distribution in the likelihood, we have avkr bound for the log likelihood

(3.2) by
0©,§) = Zlog/HP(%HXi;M,W,&'j)P(Xz)dXi, (3.7)
i=1 j=1

satisfying/(®) > /(©, ¢). Since the exponential in (3.6) is quadraticxip the integral
in (3.7), then, can be computed in the closed form. This ssiggée surrogate function
maximization in the iterative manner. To do this, first weimize £ to achieve the closest

approximation of(©) by /(©, £), then we maximizé(®, £) over model paramete®.
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3.3.3 \Variational approximation to the conditional digtation ofx; giveny;

The maximization of (3.7) is still difficult since the maximaition is not in the convex opti-
mization. To relax such complexity, the EM algorithm can ppleed to the maximization
of (3.7), which requires to compute the conditional expateof (3.7) given the observed
dataY. This conditional expectation @f denoted by) here, involves only first two mo-
ment ofx;|y;. However, their exact computations are complicated, soppecximate the
conditional distribution ofx; giveny; by using (3.6). It should be noted that the lower
bound (3.6) is not a proper distribution since it is not ndieeal. After normalization, the
lower bound becomes a Gaussian distribution which we call/éiriational approximated
conditional distribution of;; givenx;.

From (3.6), the log of the variational approximated coruditil distribution ofy;;|x; is

(2ys; — 1)y + Wix,) — &
2

MEDHS — 20w X + X[ Wywix; — €5}

logp(yij\xi;fz‘j) = logm(&;) +

By using the conditional independence assumption, we get

d
log P(yilxi; &) = > log Pyslxi; &;)

j=1
d d
= ——XT{QZ )\ &j W;w f}xi + Z{yij - 1/2 - 2ﬂj)‘(€ij)}w;fxi
j=1 Jj=1
d

# 3 flogte) + B D28 e )i

j=1
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Thus, the log of the joint distribution gf; andx; is given by
log P(y;, x;;€;) = log P(yilx;; €;) + log P(x;)

1
- {2 s Sl =12 26

Mg

k
+) (i — 1/2)p; + Z{logw §j) = &ii/2 = M&) (15 — &)} — 5 log 27
7j=1
1 1 d
=—5(xi - m;)"Ci (x; — my) + imfsflmi +> (g —1/2)

j=1

d
k
+ > {log (&) — &i3/2 — M&ij) (15 — &)} — 5 log 2.
j=1
Therefore, with this variational approximation and Bayede, the approximation aP(x;|y;)
is a Gaussian distribution with mean; and covarianc€; where

d -1

j=1
d 1
m; = G [Z{yij 5 2)‘(§ij)ﬂj}wj}
j=1
Using the above, we can compute the first two moments of thdittonal distribution of
Xz|y2 as
(xi) = E(xily;) = m;
(3.8)
(x;x!) = E(xx!|ly;) = C; + mym
which will be used in the E-step of the EM algorithm.

3.3.4 \Variational approximation to the penalty function

While L; regularization has good properties discussed in the ps\section, its penalty
function is non-differentiable so the optimization is sevhat computationally challeng-

ing. Tibshirani (1996) proposed to use quadratic programgyrm the seminal paper aby
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regularization. And LARS algorithm is known to sol¥g regularization problem in the
regression setting (Efron et al., 2004). In this study, wegppse an analytic algorithm for
L, penalty function, which is compatible with the variationathod.

From the inequality|z| < (z* + y?)/2|y|, the penalty function (3.3) has a quadratic

upper bound as

d k d
_ wam + Gim _ T T
where2; = diagn/2|(jm|)m=1,..k- Here additional parametets,, are variational pa-
rameters and the upper bound is exact wfgn= w;,,. This quadratic upper bound for
penalty function can be combined nicely with the maximi@atof (3.7) in the estimation

procedure.
3.3.5 Estimation algorithm

Using variational quadratic bounds given in (3.7) and (3193 variational lower bound of

the penalized log likelihood (3.4) becomes

0,(©,€,¢) = (©,8) —nP(W,{).

This is maximized by employing the EM algorithm. In the Egstihe conditional expecta-
tion of /,(©, ¢, ¢) becomes
@y(©]8°) = E[((6,£)Y,0°] —nP(W,()

_ Z {Z{logﬁ(&j) I (2yi5 — 1)(Wj <2Xz> + ) — &ij

i=1 Lj=1

k 1
(&) (W] (ol Yo+ 2003) T+ 2 = €2) | — 3 log 27 — - (I x)

d

—n > {wIw; +¢T ¢, | (3.10)

J=1
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Before optimizing model parameters, we first optimize \@oiel parameterg§ and to
make the bound tight. Taking the derivative@,f with respect ta;; and setting it to zero

leads to

8~ ' j 1 /
agj _o7 ((ggj)) —5 A (&) (W (xax] YW + 20 (%) W + 12 — &) + 2M(E5)E5

= _)‘/(gw)( <Xz >WJ + 2u; <XZ> W+ N? - 5223)

= 0

where we used’(S;;) = (&) {1 — (&)} andA(&;;) = {7 (&) — 1/2}/26;;. SinceA(:)
is symmetric about zero and is monotonically decreasing theepositive domain)’(&;;)

cannot be zero in the positive domain, so the maximum is oétbat

§ij = \/W;"F<XiXZ-T>Wj + 20, (%) W+ 4.

Similarly, for another variational parametg,,,

8@1) o U'ng’(ij) 2 _
8ij B 2 gzm ( o wjm) =0

which giveséjm = |Wjp. OnCEEij and fjm are optimized, we compute conditional ex-
pectationgx;) and(x;x7 ) using the formulae in (3.8) with the previous estimates &ed t
optimized variational parameters. Then, we update thenpetexs by maximizinggp. This
gives update formulae as

b = Z{zym A(Ei) (%) WJ}/ZA@]

=1

W, - [Zw xxt) 4| -Z{%—l—w&j)}m-

=1
Estimation details are almost the same as in Tipping (1¥3@gpt that the solutiow; in-
cludes the ridge-type penalty term inside the matrix irgei$us, non-differentiable prob-

lem of L, regularization turns into an analytic regularization with variational method.
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3.4 Implementation | ssues

3.4.1 Model selection

In the proposed model, model selection procedure involwesselection problems. One
is the selection of the subspace dimensiondlignd the other is the selection of the reg-
ularization parametey. As a usual model selection, typical model selection gatesuch
as AIC or BIC, may be used by adding the penalty to the negative log likelihood. In
binary variables, however, the exact evaluation of logliliiad is not readily available.
We would approximate the log likelihood by Monte-Carlo séingpapproximation as

N B d

la(©) = > 1og{é S T Pwiilx, ae, W)}

i=1 b=1 j=1
wherex,, b = 1,---, B, are samples from the-variate standard Gaussian distribution.
We usedB = 1000 in the following simulation studies and real data analyBisth of AIC
and BIC work well in large sample situation, but we obsenred their performance is not
satisfactory when the dimension is larger than or comparabthe sample size.

For the selection af in high dimensional dataset, thus, we propose to use theated

BIC defined as
BIC(n) = —2((®) +logn x |B(n)|

where|B(n)| is the number of nonzeros in whole parameter set. Therefegechoose
the optimaly which achieves the minimum d87C(n). For the selection of the subspace
dimensionality, we first set a tentatively largso that important principal components are
not lost. One may use standard AIC for this since it usuallyosles a conservative one.
But the extra AIC procedure only for a tentatikes not very attractive computationally,
SO we suggest to use ~ d/5 but it depends on specific situation. With this tentative
k, we choose) using the corrected BIC. If a small number of principal comgats are

important and remaining are negligible, all loadings agged with negligible principal
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components will be forced to be zeros so that the number obitapt components will
be automatically chosen by giving the number of principahponents having nonzero

loadings. This heuristic approach has been successfuiyeprin the simulation study.
3.4.2 Missing treatment

For missing values, we can still use the EM algorithm for imigsmputation. Suppose
(i, 7)th binary variabley;;, is missing or unobservable. The conditional expectatith®
penalized complete log likelihood (3.10) given the obsdmyataY with current estimates
O, then, involvesE|y;;|y;, ©®] wherey; is the observed variables for thith individual

removing unobserved variables, singeare assumed to be independent. Then it follows

<yij> = E[yij‘y;kag] = E[E[yij\xi,y:7®]‘y:7®}

= E[Ely;lx:, 0lly;,0] = Elx(0;)|y;, O]

[ exp(0;;)
1+ exp(6;5)

Yis 9] (3.11)

wheref;; = pi; + w] x;, and the third equality comes from the fact that all compasieh

binary vectory; are independent conditionally o. Since (3.11) is not in a closed-form

expression, we may approximate it by the method introdugdddickay (1992).
Suppos&); is the index set that contains thie corresponding the observed dgfa

Then, using Bayes’ theorem, the variational approximatediitional distribution ok;|y

is Gaussian with meam; and covarianc€’ as

-1
o - [Iwz 3 A<gm>ijﬂ

Jje0;

m; = C; {Z {yij - % — 2>\(§z’j)/~éj}wj}

j€0;
Thus,0;; = p; + w] x; is distributed normally with mean;; = 41; + w; m; and variance

vi; = w; Ciw;. Mackay (1992) used the approximation thap(6;;) /{1 + exp(6;;)} ~
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®(6;; x y/7/8) where®(-) is the cumulative standard Gaussian distribution function
Therefore the expression (3.11) can be approximated by

E|: exp(@ij)
1 + eXp(QU)

; T'm*
vio| = Blow, iy 6] = o L m )
JWICiw; +8/m

3.5 Simulation Study

In this section, we evaluate binary PCA with latent variahtedel and its variational learn-
ing algorithm on two synthetic data sets constructed ustent variable model. The ad-
vantage of simulation study is that the true model as welhadrue principal component

loadings are known.
3.5.1 Simulation 1 : Synthetic binary images

The binary image datasets used in this experiment are gedelog the latent variable
model with4 components. Each principal component loading patterrsisaated with an
8 x 8 image pattern shown in (a) of Figure 14. All nonzero loadiagsgiven by valué, so
that the magnitude of principal component is proportionahte number of nonzero spots.
Using these componentK)0 binary images are created using the latent variable modkel an
used in analysis. Some examples of binary image data arerptegkin Figure 14(b).

In order to assess the performance of the regularizatiorrongare the results from
the PCA with regularization and those without regularmati Since we know the true
number of components we set the dimensionality of the sulesphy 4, the true subspace
dimensionality, in this simulation.

Figure 15 shows the principal component loadings derivethbyroposed algorithm
with/without regularization. It is clear that the regulaiion greatly helps to construct
loading patterns almost correctly. The derived principaldings without regularization

seem to also capture the original loading patterns but akpetterns tend to appear to-
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(@) (b)

Figure 14: Model reconstruction experiment 1. (a) Pattexgsociated with 4 principal
component loadings used in the simulation. Red pixels @emohzero loadings (b) Some
binary images generated by the latent variable model withrponents corresponding to
patterns in (a) with zero background (white) and one foregdo(red).

gether in a single principal component. This illustratesdktimated principal components

suffer from the rotation indeterminacy. Comparing to theegmilarized learning, it is ap-

parent that each original loading pattern appears soleysingle principal component.
3.5.2 Simulation 2

In this experiment, we conduct the comparison in more syatieal manner between PCA
results with and without regularization00 binary data sets are generated from the latent
variable models witll principal components in two different scenarios,d) = (200, 50)

and (100, 200), each of which mimics the large and low sample size situatidre orig-
inal principal components are constructed in the sparsetsite. Each principal com-
ponent has all zero loadings except for the firgtvariables so that the first principal
component has the same sized nonzero loading for thelfirgariables, and the second
principal component has nonzero loading for the nexiwariables, and so on. There-

fore, all loadingw,,, are set to be zero except fof, m) = (1,1),---,(1,10), (2,11),
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(@) (b)
Figure 15: The derived principal component loading pati€a) without regularization and
(b) with regularization. Red and blue pixels stand for theifie and negative loadings
respectively, and intensities are proportional to the ntage of loadings. Zero loading is
coded by white color.
-+ ,(2,20),(3,21), -+, (3,30),(4,31), -- -, (4,40). Each column oW, principal com-
ponent, has the same-sized nonzero loadings and the magoitd principal components
is set by(40, 30, 20, 10) for (n, d) = (200, 50) and (80, 60, 40, 20) for (n, d) = (100, 200)
considering relative sample sizes. Therefore, when thedsiond = 50, the first40(=
80%) variables are effective to give the variability of binaryiadbles and 0(= 20%) vari-
ables do not affect the data variability. Anddnr= 200 case,160(= 75%) of 200 variables
are unnecessary in explaining the variability. The intpta# shift parametep is set by
zero in this simulation.

In the real world, the original subspace dimensionaliig mostly unknown. So we
conduct the model selection procedure to findutomatically as well as we present the
result whenk is known. And we also apply the proposed method to the samelaied
data set withl 0% randomly selected missing variables.

To assess the performance of the proposed methods, we eamaupresent the prin-

cipal angle between spaces spanned by the original princgmaponents and their esti-
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Table 5: The results of binary PCA using 100 binary datasetsisting of100 samples.
Medians over 100 quantities are presented for each casaleBeeption of this result is in
the text.

k is known k is unknown
(n,d) Missing angle correct incorrect angle correct incorrect
Regularization 0 (%) (%) ©) (%) (%)

(200, 50) missing=0%
nonregularized 14.01 100.00 100.00 13.30  100.00 100.00

regularized 6.31 100.00 90.00 6.66 100.00 86.67
missing=0%
nonregularized 16.18 100.00 100.00 15.39 100.00 100.00
regularized 6.12  100.00 90.00 7.22 100.00 80.00

(100, 200) missing9%
nonregularized 19.82  100.00 100.00 29.58 100.00 100.00

regularized 4.28 100.00 29.38 4.01 100.00 15.00
missing=0%
nonregularized  25.92 100.00 100.00 29.43 100.00 100.00
regularized 5.20 100.00 32.50 5.58 100.00 8.75

mates. This principal angle is computed &y~ (p) x 180/7 wherep is the minimum
eigenvalue of matriQ’ Q, with orthogonal matrice§); andQ, from the QR decomposi-
tion of the original principal component loading matMX and its estimataV respectively.
This quantity measures the maximum angle between any twongeen column spaces of
W and W (Golub and van Loan, 1996). Results are summarized in Talple$enting
median value froni00 simulations.

It is apparent that the regularization greatly improves eledsessment by finding the
model that is much closer to the original model in all scemafihis result is expected be-
cause true zero loadings are usually estimated as nonzéhmatwegularization so that the
subspace spanned by the derived non-sparse principal cangsobecomes disturbed by
such falsely detected nonzero variables. This disturbasiltdisappear when the original
nonzero loadings are set to be zero correctly, as shown irethdt with regularization. It
is also interesting to note that the model with regular@ashows the quite similar perfor-

mances regardless of knowing the original subspace dimmeal#ly. However, the model
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assessment without regularization performs differendgehding on whethekr is known

in advance or not, especially when the dimension is larger the sample size. This illus-
trates that the regularized binary PCA model gives stalsl@lt®even when we are not able
to guess the true subspace dimensionalipyiori.

We also present the percentage of the correctly and indtyridentified nonzero load-
ings selected from the learning in Table 5. Without regakion, all loadings are estimated
as nonzero, so that all true nonzero loadings are selectedraero correctly but also all
zero loading variables are falsely detected as nonzeroulR&gation, however, tends to
force negligible loadings to zero while true nonzero vdealyemain in the model assess-
ment. This aspect becomes remarkably apparent in high gioread situation as presented
in Table 5. And the performance of the proposed model angiisiation is still the same
even in the situation wher®% binary variables are missing at random.

Table 6 shows the frequencies of the selected subspace slonatity x among100
simulation data sets when the origirkais not known in advance. Most cases tend to find
the original subspace dimensionality correctly, but itoticed that some simulations select
smallerk when(n,d) = (100, 200) with 10% missingness. This phenomena may be ex-
plained that some missing binary variables associatedmaitizero loading may seriously
affect the model assessment so that corresponding imp@rianipal components become

less important in the learning result.

Table 6: The frequencies of the selected subspace dimenmm 100 simulation data
sets.

Selected dimension

(n,d) Missing rate 3 4 5
(200, 50) 0% 0 98 2
10% 0 100 0

(100, 200) 0% 1 99 0
10% 14 86 0
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3.6 Handwritten Digits Data Application

Our real-world example to which we apply the proposed PCA ehexlthe handwritten
digits data that come from the ZIP code on envelopes from BoStal mail. Each image
is a segment from a five digit ZIP code, isolating a singletdibine original scanned digits
are binary and of different size and orientations. Afterlaietsng and size-normalizeing,
16 x 16 images are obtained with gray scales ranging freinto 1 (Hastie et al., 2001).
However, in order to get binary data, the values less thsncoded byl and others by)

in this analysis. The dataset consist$@f ~ 1, 200 images for each digit frori to 9, but

in this analysis we usg56 images of digits. Therefore the sample sizesis= 556 and
the dimension il = 16 x 16 = 256. We apply the proposed algorithm to this dataset to
identify the variabilities among binary images.

Figure 16 presents the firdtprincipal components derived from the latent variable
model for binary principal components analysis with anchatiit regularization. To ease
the interpretation and visualization, we depict the detil@adings in the original image
format with color codings as blue and red representing tisitige and negative loadings
respectively and zero loadings are coded by white colorirTimensities of color are pro-
portional to the magnitude of loadings. Apparently, pnpaticomponents from learning
with regularization show that lots of pixels (or loadings} astimated as zero. This is con-
trasted to the estimated principal components withoutleggation, all of whose loading
values are estimated nonzero. More importantly, each casmgdrom regularized PCA
clearly represents a specific mode of variabilities amongtyiimages. For example, the
first component explains the variability of “roundednesktail part of digit so that obser-
vations with large value of the first principal componentrsawill have “thin” tails and on
the other hand observations with small value of it will shawuhd” tails. This is clearly

observed in Figure 17(ab) where images viithrgest and smallest values of the first prin-
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cipal component score are presented. In the similar maotiger components may be
easily interpreted. The second component explains thahiéity in the “head” part of
digits, the third component presents the contrast of “Gifttails, and the fourth component
reflects the variability from “height” of digits. Such modafsvariabilities may be observed
in the estimated principal components from the model withegularization, but disparate
variabilities seem to simultaneously appear in the singlemonent so that interpretation is
less clear than in the regularized version. We cannot find apparent contrasts when we
look at the images with large and small principal componeates from Figure 18. This
example illustrates how the regularization technique &p to improve the interpretability

of estimates from learning and detect intrinsic featuresragbinary data.

(@) (b) (€) (d)

(€) (f) (9) (h)

Figure 16: The derived PC loadings from handwritten digétsad (a)-(d) are the firgt PC
loadings estimated from the latent variable model for ppalbccomponent analysis without
regularization. (e)-(h) are those with regularization.
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Figure 17: Binary digitimages of digit (a) and (b) are images that have the firkrgest
and smallest value of the first principal component sconafitee regularized binary PCA.

Similarly, (c) and (d) corresponds for the second, (e) ahéb(fthe third, and (g) and (h)
for the fourth principal component score.

3.7 Combining Other-Type Data

In this section, we discuss the possibility that other typadincluding normal and bino-
mial variables, can be combined with binary variables imgipal components analysis.
Such attempts to combine disparate variables have beensasdly investigated in psy-
chometrics area (Moustaki and Knott, 2000; Huber et al. 4200e show normal and
binomial variables can be put together coherently into thiied estimation procedure

using the variational method.
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Figure 18: A counterpart of Figure 17 without regularizati®etails are in Figure 17

3.7.1 Binomial variables

Supposey;; has binomial distribution with the number of binomial ts&;; and the success
probabilityr;; = m(6;;). Here, the canonical parametg, is defined as a logit of;;, as in
binary case, and is assumed to be a linear form of the lateiablex; ast;; = p; + wfxz-
wherex; is also assumed to be normally distributed with zero meandendity covariance
as usual.

Then, the log of the probability mass function gf given the latent variable; is

written as
log P(ysjlxi) = wijlogm(0;) + (Nij — yij) log{1 — m(6;)} + log (37),

whered;; = i, + w]x;. Similarly in (3.6), usingr(—6;;) = 1 — =(6;;) and the variational
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lower bound

0ij — &ij
i e - €.
§ij — 0ij

logm(—bti;) > logm(—&y) + = A=&;) (07, = €2),

logm(0;;) > logm(&;) +

we get the variational lower bound f(y;;|x;) as

Pyijlxi, &;) = <y )W(&j)y”ﬂ(—&j)% s

ij
X exp [(2% — Nij) (05 — &) /2 — NigA(&5) (05 — &2]-)]-
Here we used\(—z) = A(z). This will reduce to binomial distributiod(V;;, w(6;;))
when¢;; = 6;;. Itis interesting to note that (3.6) becomes a special citbedower bound
for binomial likelihood withN;; = 1, ignoring the constant term. Now using the above and
Bayes’ theorem, the conditional distributionxafy; becomes a Gaussian distribution with
meanm,; and covarianc€; as

d -1

j=1

d
m, = C; [Z {yij - % - 2Nz’j)\(€ij),uj}wj}‘

j=1
Therefore the conditional expectatiofys) and(x;x? ) can be computed using (3.8) in the
same manner. With these expression, the conditional exp@tbf the penalized complete

log likelihood becomes

Q,(©|0°%) = Z[Z{yiﬂogﬂ(&j)ﬂ%Nij—yz’j)logﬂ(—&j)

i=1 Lj=1
—|—(2yij — Nij) ((xi)Twj + pj — &)

2
N M) (W w200 T, 4+ i g;-)}

d

k 1 T
_5 log27r — 5(}(?}(&} — HZ{W;‘FQ]W] + Cj chj}

j=1
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Taking the derivative o@p with respect tc;; and setting to zero gives

£ = \/Wf<xixf)wj + 20 (xi) T'w; + 13
which is the same as in binary case. And the update formula®dation and principal
component parameters are given as

N & 2yi'_N
R L Yoot h

i=1

W [ZNZM £ ix >+nﬂ}_l-z{%_%— N E) b,

i=1
Wheny;; is unobserved, we can address a similar missing treatmerg thee same
approximation to the inverse logit by the probit functionitiadopting the same notations
as in Section 3.4.2, the conditional expectatipty;, © is given by

|: exp(@ij

R * == : = )
(i) = Elyalyi, O] = NigEln(65)lys, ) = Ny B =700

4+ w!im?
sz(I)( Hj j )7
\/ijc;rwj +8/m

y?,@}

Q

WhereC;k = [Ik + QEjEOi NZJ)\(SZ])WJW]T} ! and m;k = C;k [Ejéoi{yij — N”/Q —

2NN (&)1 yw].
3.7.2 Normal variables

The standard principal components analysis for continiygoes variables or normal vari-
ables is modeled by the Gaussian distribution by TippingBistop (1999) in the name of
the probabilistic principal components analysis. Whgrare normally distributed condi-
tionally onx;, e.9.,y:|x; ~ N(u+ Wx;, 0*1,), the conditional distribution of;; givenx;

is quadratic in exponential, so that variational approxiorais not needed. Using Bayes’

rule, the conditional distribution of;|y; becomes Gaussian with mean and covariance
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C, as
1 d -1
_ }: T
CZ' = [Ik+§.1Wjo}
j:

d
m; = C; ) (g — py)w;/o”.
j=1

These are used, again, for computatiar) and(x;x’) as (3.8). In the E-step, the condi-

tional expectation of the penalized complete log likeliidollows

n d
1
Qy(©|8°%) = 53 {Z Z{WJ‘T<Xz‘XiT>Wj = 2(yij — 1) (%) "W + (yi — Mj)z}}
i=1 j—1
I, 7 n(d+k) nd 5
5 ;@9 X;) — log 27 - log o
d
—n S {wiw; + T, |
j=1

Contrast to binary case, there are no extra variationalnpetexs, but we have another

parameter? instead. The update formulae for parameters are given as
. 1
0% = — ) (yimp= W) (yi —p = Wixi)),

i=1
n

f; = Z(yij - <Xz‘>TWj)/”a
A Lt IR
I D ST BRI S UML)

1=1

n

This derivation is exactly the same as the probabilistic @endadr principal components

analysis in Tipping and Bishop (1999). For the missing \&#&g,;, it follows that

(yis) = Elyiyly;, 0] = E[E[yij|xia@]

yi, O]
= Elu;+w,x]y;, 0] = p; +w, m},

and similarly,

<y12j> = /J? + QWJTm;-k + Tr(CF + mim;T)

7

* -1 *
whereC? = [Ik + Zjeoi WjoT/O'Z] andm; = C; Zjeoi(yij - uj)wj/02.
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3.7.3 Composite case

Now we considey consisting of binary, binomial and normal variables simnéously in
the same dataset. For a simple representation we define saat®ns in order to combine

three different types of variables. Let

1 Binary or Binomial
5 Normal

p

(2y;; —1)/4 Binary

tij = 4 (2yi;; — Nij)/4 Binomial (3.13)

Yij Normal

and

(

A(&ij) Binary

Aij = 4 NyA(&;) Binomial (3.14)

1 Normal

Then, the update formulae fpr andw; turns into the unified forms:

n

pio= Y (ty;— )\z’j<xi>TWj)/Z Aij (3.15)

i=1 =

w; = (Aj+an)_1zj (3.16)
where
Aj = 9 ) Nlxix)),
=1

n

zZ; = ¢jZ(tij_)\ij:uj)<Xi>‘

i=1
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And mean and covariance of the conditional distributiosg§; can be written as
d -1
j=1

m, = C; {2 Zd:{tij - Az’jﬂj}‘bjwj}

j=1
and the first two moments for the E-step of the EM algorithmlmaeasily obtained using
them.

Now consider the case in that some elements of compositervectare missing.
Supposey;; is unobserved and it can be any type of binary, binomial omabr Denote
the missing index set gfs in theith individual by ©O; as in the previous arguments. Then
the conditional distribution of; |y}, ® becomes a Gaussian distribution with meahand
covarianceC; given as

-1

J€0;

m; = G, [2 > {tij - )\ijuy’}sﬁjwa} :

J€0;
And using them, the missing valug is imputed by the conditional expectation as

p

(2(yi) — 1)/4 Binary

{tiz) = { (2(ys;) — N;;)/4 Binomial (3.17)

(Yij) Normal

where the corresponding;;) for each variable type is given in the previous sections.
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CHAPTER IV

SUMMARY

In this dissertation, we develop principal componentsysisffor binary data and study its
performance with various scenarios, including simulatiatasets and real data examples.
Especially we pay an attention on the automatic variabkecsieln in the high-dimensional
situation. To this end, we focus on the minimum error forrtiataof principal components
analysis for the normal variables and observe that minimgithe sum of errors between the
data points and their projections is equivalent to maxingzhe Gaussian log likelihood.
This observation is generalized to the binary dataset waim8ulli distribution. Bernoulli
likelihood is maximized in the low dimensional subspaceafanical parameter space. In
order to capture the features among high-dimensionalbl@sawe introducd.; penalty
on principal components so that only small portion of noozariable loadings appear
in resulting principal components. This regularization turns out to improve in picking
out the meaningful variabilities among high dimensionalatales throughout simulations
studies and real data applications, including binary indade, web advertisement data and
single nucleotide polymorphsm data.

In the estimation perspective, we approach maximizatiamblem of the penalized
Bernoulli likelihood in two directions. In Chapter Il, pgipal component scores are re-
garded as fixed parameters as in standard PCA problem. Thienomaxpenalized likeli-
hood estimator is obtained by maximizing its surrogate fionciteratively. Specifically,
this surrogate function is a quadratic lower bound whichasyeto be optimized and gives
stable estimation procedure removing possible compunatimstabilities such as over-
shooting problem. This approach is known as MajorizatioMbdt algorithm. In Chapter

II, we demonstratd.; penalty can also be cast into quadratic lower bound maxiiniza
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as well as log likelihood. And we prove the missing value tireant we propose here
can be viewed as another layer of majorization step. As anatpproach, Chapter llI
deals with principal component scores as latent varialide® of nice features of this for-
mulation is that the number of parameters to be estimatednbes considerably smaller
than the approach in Chaper Il. Latent variable model oftegs EM algorithm for pa-
rameter estimation due to its latent variable nature. Rrolk that E step is not in the
closed-form so numerical approximations is indispensdbleexample, Gauss-Hermite
quadrature, Laplace approximation or Monte-Carlo EM, &ilvbich are computationally
infeasible in high-dimensional binary data. Instead ofhsapproximations for marginal
log likelihood, we propose to use variational method whigreg quadratic lower bound
for the marginal log likelihood and stable algorithm for gaweter estimation. Since the
negativel; penalty also has quadratic lower bound, two formulatioeseasily combined

in the algorithm.
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