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ABSTRACT

Principal Components Analysis for Binary Data. (May 2009)

Seokho Lee, B.S., Seoul National University; M.S., Seoul National University

Co-Chairs of Advisory Committee: Dr. Jianhua Z. Huang
Dr. Raymond J. Carroll

Principal components analysis (PCA) has been widely used asa statistical tool for the di-

mension reduction of multivariate data in various application areas and extensively studied

in the long history of statistics. One of the limitations of PCA machinery is that PCA can be

applied only to the continuous type variables. Recent advances of information technology

in various applied areas have created numerous large diverse data sets with a high dimen-

sional feature space, including high dimensional binary data. In spite of such great de-

mands, only a few methodologies tailored to such binary dataset have been suggested. The

methodologies we developed are the model-based approach for generalization to binary

data. We developed a statistical model for binary PCA and proposed two stable estimation

procedures using MM algorithm and variational method. By considering the regularization

technique, the selection of important variables is automatically achieved. We also proposed

an efficient algorithm for model selection including the choice of the number of principal

components and regularization parameter in this study.
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CHAPTER I

INTRODUCTION

Principal components analysis (PCA) is probably the oldestand best known technique of

multivariate analysis. It was introduced by Pearson (1901), and developed independently

by Hotelling (1933). The central idea of principal components analysis is to reduce the di-

mensionality of a data set in which there are a large number ofinterrelated variables, while

retaining as much as possible of the variation present in thedata set (Jolliffe, 2004). Its ap-

plications include exploratory data analysis, visualization, denoising and feature selections

(Hastie et al., 2001; Bishop, 2006).

Although PCA has a lot of possible applications, its computation and interpretation

is tailored to only continuous type variables so that there is a need to develop PCA-like

dimension reduction machinery for the other type variables, including binary variables in

which we are interested in this study. Many attempts to generalize PCA to other type

variables can be found in Jolliffe (2004). In our study, we review and discuss the existing

generalization of PCA and we give further steps to answer theimportant and interesting

questions in practice, arising from PCA with binary variables, for example, the selection

of the number of principal components and the computation ofPCA in high-dimensional

situation.

Recently, there has been an increasing attention on the sparsity-introduced PCA (Jol-

liffe et al., 2003; Zou et al., 2006; Shen and Huang, 2008). The standard PCA suffers from

the fact that the derived principal component is a linear combination of all the original

variables, so that it is often difficult to interpret the results. The idea of sparse principal

The format and style follow that ofBiometrics.
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components analysis is to produce modified principal components with sparse loadings.

In other words, sparse PCA seeks principal component loadings with very few non-zero

elements. This will not only lead to the simple structure of principal components with an

easy interpretation, but also make the extraction of principal components more stable. The

existing sparse PCA methods are mostly suitable to continuous type variables and they are

not generally appropriate for other types such as binary or counts. The goal of this study is

to develop a sparse principal component analysis method forbinary data.

To this end, first, we review the formulation of standard PCA problem and explore a

possible generalization of it to binary variables.

1.1 Formulations of Principal Components Analysis

There are two commonly adopted definitions of PCA that give rise to the same result.

PCA can be defined as the orthogonal projection of the data onto a low dimensional linear

subspace, known as the principal subspace, such that the variance of the projected data is

maximized (Hotelling, 1933). Equivalently, PCA can be defined as the linear projection

that minimizes the mean squared distance between the data points and their projections

(Pearson, 1901). The process of orthogonal projection is illustrated in Figure 1. In the

following, we consider each of these definitions in turn. These two definitions will shed a

light on the generalization of PCA to binary variables and show the relation between PCA

problem and regression problem.

1.1.1 Maximum variance formulation

The first formulation of standard PCA, which will be described here, is due to Hotelling

(1933). Consider a data set ofn observationsy1, · · · ,yn in R
d. In other words, the col-

lected data comprisesd variables all of which are continuous. The goal of PCA is to project

the data onto a low-dimensional subspace while maximizing the variance of the projected
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u1

y i

è i

u2

Figure 1: Principal components analysis seeks a space of lower dimensionality, known as
principal subspace and denoted by the green grid, such that the orthogonal projection of the
data points (black dots) onto this subspace maximizes the variance of the projected points
(red dots). An alternative definition of PCA is based on minimizing the sum of squares of
the projection errors, indicated by the dashed black lines.

data. To begin with, consider the projection onto a one-dimensional space. We can define

the direction of this space usingd-dimensional vectoru1, which for convenience (and with-
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out loss of generality) we shall choose to be a unit vector so thatuT
1 u1 = 1 because we are

only interested in the “direction” defined byu1, not in the magnitude ofu1 itself. Each data

pointyi is then projected onto a scalar valueαi1 = uT
1 (yi− ȳ) after subtracting the sample

meanȳ =
∑n

i=1 yi/n. The mean and variance of the projected dataαi1 (i = 1, · · · , n) are,

then, given by

mean(α1) =
1

n

n∑

i=1

αi1 =
1

n
uT

1

n∑

i=1

(yi − ȳ) = 0

var(α1) =
1

n

n∑

i=1

α2
i1 =

1

n

n∑

i=1

uT
1 (yi − ȳ)(yi − ȳ)Tu1 = uT

1 Su1

where

S =
1

n

n∑

i=1

(yi − ȳ)(yi − ȳ)T .

We now maximize the projected varianceuT
1 Su1 with respect tou1. This is a constrained

maximization to prevent||u1|| → ∞. The appropriate constraint comes from the normal-

ization conditionuT
1 u1 = 1. Therefore, the constrained maximizer becomes

u1 = max
u:uT u=1

uTSu = max
u

uTSu

uTu
.

To enforce this constraint, one may introduce a Lagrange multiplier that we shall denote by

λ1, and then make an unconstrained maximization of

uT
1 Su1 + λ1(1− uT

1 u1).

By setting the derivative with respect tou1 equal to zero, we see that this quantity will have

a stationary point when

Su1 = λ1u1

which says thatu1 must be an eigenvector ofS. Using the unity constraint, the variance is

given by

uT
1 Su1 = λ1
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and so the variance will be maximized when we setu1 equal to the eigenvector having the

largest eigenvalue. This eigenvector is called as the first principal component.

Additional principal components can be defined in an incremental fashion by choosing

each new direction to be that which maximizes the projected variance among all possible

directions orthogonal to those already considered. So, thelth principal componentul can

be found by solving

ul = max
u:uT u=1,uT um=0

uTSu

wherem = 1, · · · , l − 1. Supposeu1, · · · ,ul−1 are previously selected the firstl − 1

principal components. The Lagrangian of this constrained maximization is given by

uT
l Sul + λl(1− uT

l ul) + τ1u
T
l u1 + · · ·+ τl−1u

T
l ul−1

by considering the unity constraintuT
l ul = 1 and the orthogonal constraintsuT

l um = 0 for

m = 1, · · · , l − 1. Setting the derivative with respect toul to zero leads to

2Sul − 2λlul + τ1u1 + · · · τl−1ul−1 = 0.

From the orthonormality constraints, we can easily see thatτm = 0 for m = 1, · · · , l − 1.

So, this leads to

Sul = λlul

and soul must be an eigenvector ofS with eigenvalueλl. The variance in the directionul

is given byuT
l Sul = λl and so is maximized by choosingul to be the eigenvector having

the largest eigenvalue among those are not previously selected.

Thus, if we consider the general case of ank-dimensional projection space, the optimal

linear projection for which the variance of the projected data is maximized is now defined

by thek eigenvectorsu1, · · · ,uk of the data covariance matrixS corresponding to thek
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largest eigenvaluesλ1, · · · , λk. Algorithms for finding eigenvectors and eigenvalues, as

well as additional theorems related to eigenvalue decomposition, can be found in Golub

and van Loan (1996). Note that the computational cost of the eigenvalue decomposition

is O(d3). If we only need to project our data onto the firstk principal components, then

we just need to find the firstk eigenvalues and eigenvectors. This can be done with more

efficient techniques, such as the power method (Golub and vanLoan, 1996; Jolliffe, 2004),

that requiresO(kd2).

1.1.2 Minimum error formulation

In this subsection, we discuss an alternative formulation of PCA based on projection error

minimization (Pearson, 1901). To this end, consider complete orthonormal basis vectors

u1, · · · ,ud that satisfyuT
l um = δlm whereδlm is a Kronecker delta function which takes

the value1 if l = m and0 otherwise. Since this set of bases is complete, each data point

can be represented by a linear combination of the basis vectors

yi = ȳ +
d∑

l=1

cilul (1.1)

whereȳ, the sample mean, is a translation factor and the coefficientscil will be different for

different data points. Taking into account the orthonormality, we obtaincil = (yi − ȳ)Tul,

and we can write

yi =

d∑

l=1

{(yi − ȳ)Tul}ul.

Our objective is to approximate this data point using a representation involving a restricted

numberk < d of variables corresponding to a projection onto a lower-dimensional sub-

space. Thek-dimensional linear subspace can be represented by the firstk basis vectors,

and so we approximate each data pointyi by

θi = ȳ +

k∑

l=1

αilul.
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We are free to chooseul andαil for l = 1, · · · , k so as to minimize the “loss” from trunca-

tion or reduction of dimensionality. As a measure of the loss, we may use the average of the

squared distance between the original data pointyi and its low dimensional representation

θi, so that our goal is to minimize

E =
1

n

n∑

i=1

||yi − θi||2 =
1

n

n∑

i=1

||yi − (ȳ + αi1u1 + · · ·+ αikuk)||2. (1.2)

For the minimization with respect to the quantityαil, by setting the derivative with respect

to αil to zero and making use of the orthonormality, we obtainαil = (yi − ȳ)Tul. If we

substitute forαil in (1.2) and make use of the expansion (1.1), we obtain

yi − θi =
d∑

l=k+1

{(yi − ȳ)Tul}ul

from which we can see that the displacement fromyi to θi lies in the space orthogonal to

thek-dimensional principal subspace because it is a linear combination ofuk+1, · · · ,ud,

as illustrated in Figure 1. This is to be expected because theprojected pointsθi must lie

within the principal subspace, but we can move them freely within that subspace, and so

the minimum error is given by the orthogonal projection.

Therefore, the squared distanceE becomes the form of

E =
1

n

n∑

i=1

||yi − θi||2 =
1

n

n∑

i=1

d∑

l=k+1

{(yi − ȳ)Tul}2

=
1

n

n∑

i=1

d∑

l=k+1

uT
l (yi − ȳ)(yi − ȳ)Tul =

d∑

l=k+1

uT
l Sul.

The remaining task is to minimizeE with respect toul for l = k+1, · · · , d, which must be

the constrained minimization otherwise we will get the trivial resultul = 0. Considering

the orthonormality condition, the corresponding Lagrangian is

d∑

l=k+1

uT
l Sul −

d∑

l=k+1

λl(u
T
l ul − 1).
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Thus, the stationary points should satisfy a set of equationsSul = λlul for l = k+1, · · · , d

so thatul must be eigenvectors ofS. The orthonormality condition gives the squared

distance by

E =

d∑

l=k+1

λl

which is simply the sum of eigenvalues of those eigenvectors. ForE to be minimized, the

selected eigenvalues must be thed− k smallest eigenvalues andul’s are the corresponding

eigenvectors. Therefore, two different formulations of PCA, maximum variance formu-

lation and minimum error formulation, are intrinsically equivalent and lead to the eigen

problem of the sample covariance matrixS.

Unlike maximum variance formulation, however, minimum error formulation has the

maximum likelihood estimation (MLE) interpretation. The objective function to be mini-

mized,E in (1.2), can be viewed as the negative log likelihood multiplied by the constant

factor2/n, ignoring the additive constant, when we consider Gaussiandistribution on the

observationsyi, with meanθi and identity covariance. Note that Gaussian distribution as-

sumption is adopted only for the computational convenience, not for representing the actual

data generating process. And, moreover, minimization of (1.2) with respect to the principal

componentsul can be connected to the least square estimation as in regression if the co-

efficientsαil are given. These observations give us a cornerstone to develop or generalize

the principal components analysis to binary variables, which is discussed in the subsequent

section.

1.2 Generalization of Sparse Principal Components Analysis to Binary Variables

There are numerous attempts in the journey to the generalization of the principal compo-

nents analysis for other type variables. The simple way to doit is adopting the different

distribution assumption conforming to the observed variables, for example, Bernoulli dis-
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tribution for binary variables, Binomial or Poisson distribution for counts, and gamma dis-

tribution for non-negative continuous variables. This approach has been extensively studied

in the social science literature (Skrondal and Rabe-Hesketh, 2004, and reference therein)

where the principal component scoresαil are treated as latent variables. In this model,

the canonical parametersθi, analogous to mean parameters in Gaussian model, have a

low-rank representation so thatθi = µ + αi1u1 + · · · + αikuk with a shift or intercept

µ. For example, the distribution of binary variableyij, conditional on the latent variable

αi = (αi1, · · · , αik)
T is assumed to be Bernoulli distribution with success probability θij

which is thejth component of the canonical parameter vectorθi = µ+αi1u1+ · · ·+αikuk

and the latent variablesαi are commonly assumed to have Gaussian distribution with zero

mean and identity or diagonal covariance. With this Gaussian assumption on the latent

variable, Tipping and Bishop (1999) prove that the maximum likelihood estimation for the

k principal components leads to the firstk eigenvectors of the covariance matrix.

This latent variable model for dimension reduction approach is called the generalized

latent trait models and this latent model approach is closely connected with factor analy-

sis (Bartholomew, 1984; Moustaki and Knott, 2000). Bartholomew (1984) laid down the

foundation of factor analysis with a latent variable methods in the case that the observed

variables (or manifest variables in their terminology) arebinary, count or ordinal variables.

Moustaki and Knott (2000) gave a general framework to provide a unified maximum like-

lihood method for estimating the parameters of the generalized latent trait model. These

models assume that the theoretical concepts, often represented by the latent variables in the

model, are not observable directly and the observed responses are treated as proxies for the

concepts of interest. Thus, the integration over the latentvariables is necessary to obtain

the marginal likelihood but the problem is that such integration is infeasible in the case of

the non-Gaussian response variables. Therefore, numerical integration techniques (such as

Gauss-Hermite quadrature) or Monte Carlo integrations areoften used to approximate the
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integration with a high cost of computational resources. Inorder to detour such difficul-

ties, Huber et al. (2004) suggest an approximation of the marginal likelihood using Laplace

approximation. However, their estimating equations do notgive closed-form solutions so

iterative method (e.g., quasi-Newton procedure or fixed-point algorithm) has to be used to

solve the implicit equations they proposed in every iteration step. In Chapter III, we use

variational method for the marginal likelihood approximation, which was introduced by

Jaakkola and Jordan (1997) in a Bayesian logistic regression model.

Another approach which can avoid the intractable integration is to treat the principal

component scoresαil (i = 1, · · · , n; l = 1, · · · , k) as fixed parameters in the model,

which was studied by several researchers. Collins et al. (2001) suggested a generalization

of principal components analysis to the exponential familydistribution where the Bregman

loss function is minimized to obtain the low rank representation of the canonical parameters

in the exponential family distribution. Schein et al. (2003) proposed a logistic PCA in the

similar way with Collins et al. (2001) but they maximized an auxiliary function in order

to derive the alternating least square updates for model parameters. This approach was

also used for PCA of binary data in de Leeuw (2006) in the name of Majorization or MM

algorithm with more compact and rigorous treatments. This approach is studied in Chapter

II.

Both of approaches, fixed or random principal component scores, binary principal

components analysis methods suffer from lots of non-zero principal component loadings

as the standard principal components analysis. since we seethat the minimization criterion

in (1.2) can be regarded as the maximum Gaussian likelihood estimation. This can be

also interpreted as the least square estimations when the principal component scores are

given. Thus, we may introduce the sparsity-inducing penalty, for instanceL1 penalty, on

the principal components, which leads to LASSO solution. This can be viewed as the

penalized likelihood estimation when we consider the minimization of the sum of squares



11

of reconstruction errors is equivalent to maximization of aGaussian likelihood.

In the following, we will review two bound optimization algorithms, called MM algo-

rithm and variational method, which will be extensively exploited in the whole study.

1.3 Review of Estimation Procedures

1.3.1 MM algorithm

In this section, we briefly review an optimization method which will be used in Chapter II,

called the MM algorithm. The MM algorithm relies on convexity arguments and is particu-

larly useful in high-dimensional problem such as image reconstruction (Lange et al., 2000;

Hunter and Lange, 2004). This acronym does double duty. In minimization problems,

the first M of MM stands for majorize and the second M for minimize. In maximization

problems, the first M stands for minimize and the second M for maximize. When it is

successful, the MM algorithm substitutes a simple optimization problem for a difficult op-

timization problem. In simplifying the original problem, we must pay the price of iteration

or iteration with a slower rate of convergence. The well-known EM algorithm is a special

case of the MM algorithm which does not necessarily involvesaround notions of missing

data.

A functiong(x|x(m)) is said to majorize a functionf(x) atx(m) wheng satisfies

f(x(m)) = g(x(m)|x(m)) (1.3)

f(x) ≤ g(x|x(m)).

In other words, the function surfacex 7→ g(x|x(m)) lies above the surfacef(x) and is

tangent to it at the pointx = x(m). In the iterative algorithm,x(m) represents the current

iterate in a search of the surfacef(x). Figure 2 provides a simple one-dimensional example.

In the minimization version of the MM algorithm, we minimizethe surrogate majoriz-

ing functiong(x|x(m)) rather than the actual functionf(x). If x(m+1) denotes the minimum
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of the surrogateg(x|x(m)), then we can show that the MM procedure forcesf(x) downhill.

Indeed, the inequality

f(x(m+1)) = g(x(m+1)|x(m)) + f(x(m+1))− g(x(m+1)|x(m))

≤ g(x(m)|x(m)) + f(x(m))− g(x(m)|x(m))

= f(x(m))

follows directly from the factg(x(m+1)|x(m)) ≤ g(x(m)|x(m)) and definition (1.3). Or such

driving force on the MM algorithm can be seen by looking at

g(x(m+1)|x(m))− g(x(m)|x(m)) ≥ f(x(m+1))− f(x(m))

which can be verified from (1.3) easily. In other words, any decrease in the value of

g(x|x(m)) guarantees a decrease in the value of the actual functionf(x). For implemen-

tation of the MM algorithm, therefore, finding a majorizing function which is easy to be

optimized is a crucial step determining usefulness of the MMalgorithm.

In order to help understanding, consider a simple one-dimensional example that finds

the median of datax1, · · · , xn. It is well known that finding minimum of the function

f(x) =
∑n

i=1 |x − xi| leads to median. However, minimizingf(x) is not analytical to

solve because it is piecewise linear. This function is illustrated in Figure 2 with a small

dataset comprising1, 3, 4, 8 and10, which gives the median as4. Using the relation

|x| ≤ x2 + y2

2|y| ,

the original functionf(x) has a quadratic majorizing function atx(m) as

f(x) ≤
n∑

i=1

(x− xi)
2 + (x(m) − xi)

2

2|x(m) − xi|
,

which is depicted in Figure 2 at the tangent pointx(m) = 6. This technique, finding

a quadratic majorizing function of the absolute value function, will be used in finding a
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quadratic upper bound ofL1 penalty function in Chapter II. For the binary principal com-

ponents analysis, we will find a quadratic majorizing function of the negative log of inverse

logit function in order to exploit the MM algorithm.

0 2 4 6 8 10

15
20

25

Figure 2: The piecewise linear functionf(x) = |x−1|+ |x−3|+ |x−4|+ |x−8|+ |x−10|
is shown in red line and its quadratic majorizing function atthe tangent pointx(m) = 6 is
drawn in blue.

1.3.2 Variational method

Variational methods have their origins in the18th century with the work of Euler, Lagrange,

and others on the calculus of variations. Standard calculusis concerned with finding deriva-

tives of functions. They are a family of techniques for approximating intractable integrals

arising in Bayesian statistics and machine learning. They can be used to find a lower bound

for the marginal likelihood of several models with a view to performing model selection,

and often provide an analytical approximation to the parameter posterior probability which

is useful for prediction. It is an alternative to Monte Carlosampling methods for making

use of a posterior distribution that is difficult to sample from directly. There are huge lit-
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erature on this topic which can be found in Jordan (1999), Bishop (2006) and references

therein.

Such variational methods find a ‘global’ solution in the sense that it directly seeks an

approximation to the full posterior distribution over all random variables. In this study,

we use an alternative ‘local’ approach which involves finding bounds on functions over

individual variables or groups of variables within a model.The purpose of introducing the

bound is to simplify the resulting distribution.

It is instructive to illustrate variational method considering a simple example, the func-

tion f(x) = exp(−x), which is a convex function ofx, and which is shown in the left penal

of Figure 3. Our goal is to approximatef(x) by a simpler function, in particular a linear

function ofx. From Figure 3, we see that this linear function will be a lower bound onf(x)

if it corresponds to a tangent. We can obtain the tangent liney(x) at a specific value ofx,

sayx = ξ, by making a first order Taylor expansion

y(x) = f(ξ) + f ′(ξ)(x− ξ)

so thaty(x) ≤ f(x) with equality whenx = ξ. For our example functionf(x) = exp(−x),

we therefore obtain the tangent line in the form

y(x, ξ) = exp(−ξ)− exp(−ξ)(x− ξ)

which is a linear function parametrized byξ. For consistency with subsequent discussion,

let us defineλ = − exp(−ξ) so that

y(x, λ) = λx− λ + λ ln(−λ).

Different values ofλ correspond to different tangent lines, and because all suchlines

are lower bounds on the function, we havef(x) ≥ y(x, λ). Thus we can write the function

in the form

f(x) = max
λ
{λx− λ + λ ln(−λ)}. (1.4)
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Figure 3: In the left panel, red curve shows the functionexp(−x), and the blue line shows
the tangent atx = ξ with ξ = 1. This line has slopeλ = f ′(ξ) = − exp(−ξ). Note that
any other tangent line, for example the ones shown in green, will have a smaller value ofy
atx = ξ. The right panel shows the corresponding plot of the function λξ − g(λ) versusλ
for ξ = 1, in which the maximum corresponds toλ = − exp(−ξ) = −1/e.

We have succeeded in approximating the convex functionf(x) by a simpler, linear

functiony(x, λ). The price we have to pay is that we have introduced a variational param-

eterλ, and to obtain the tightest bound we must optimize with respect toλ.

We can formulate this approach more generally using the framework of convex duality

(Rockafella, 1972; Jordan et al., 1999). Consider the illustration of a convex functionf(x)

shown in he left panel in Figure 4. In this example, the function λx is a lower bound on

f(x) but it is not the best lower bound that can be achieved by a linear function having

slopeλ, because the tightest bound is given by the tangent line. Letus write the equation

of the tangent line, having slopeλ asλx− g(λ) where the (negative) interceptg(λ) clearly

depends on the slopeλ of the tangent. To determine the intercept, we note that the line

must be moved vertically by an amount equal to the smallest vertical distance between the
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line and the function, as shown in Figure 4. Thus,

g(λ) = −min
x
{f(x)− λx}

= max
x
{λx− f(x)}. (1.5)

Now, instead of fixingλ and varyingx, we can consider a particularx and then adjustλ

until the tangent plane is tangent at that particularx. Because they value of the tangent line

at a particularx is maximized when that value coincides with its contact point, we have

f(x) = max
λ
{λx− g(λ)}. (1.6)

We see that the functionf(x) andg(λ) play a dual role, and are related through (1.5) and

(1.6).

Let us apply these duality relations to our examplef(x) = exp(−x). From (1.4) we

see that the maximizing value ofx is given byξ = − ln(−λ), and back-substituting we

obtain the conjugate functiong(λ) in the form

g(λ) = λ− λ ln(−λ) (1.7)

as obtained previously. The functionλξ − g(λ) is shown, forξ = 1 in the right panel

in Figure 3. As a check, we can substitute (1.7) into (1.6), which gives the maximizing

value ofλ = − exp(−x), and back-substituting then recovers the original function f(x) =

exp(−x).

If the function of interest is not convex, then we cannot directly apply the method

above to obtain a bound. However, we can first seek invertibletransformations either of

the function or of its argument which change it into a convex form. We then calculate the

conjugate function and then transform back to the original variables.

An important example, which arises in our study in Chapter III, is the inverse logit

function defined by

π(x) =
ex

1 + ex
=

1

1 + e−x
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Figure 4: In the left panel the red curve shows a convex function f(x), and the blue line
represents the linear functionλx, which is a lower bound onf(x) becausef(x) > λx for
all x. For the given value of slopeλ the contact point of the tangent line having the same
slope is found by minimizing with respect tox the discrepancy (shown by the green dashed
lines) given byf(x) − λx. This defines the dual functiong(λ), which corresponds to the
(negative of the) intercept of the tangent line having slopeλ.

which will be used in latent variable model for binary principal components analysis. We

can obtain a quadratic lower bound on it having the functional form of a normal distribution.

This was introduced and studied in Jaakkola and Jordan (2000). First we consider

f(x) = log π(x)− x

2
.

Note that the functionf(x) is a convex function in terms ofx2, as can be verified by finding

the second derivative. This leads to a lower bound onf(x), which is a linear function ofx2

whose conjugate function is given by

g(λ) = max
x2
{λx2 − f(

√
x2)}
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from (1.5). The stationary condition leads to

0 = λ− dx

dx2

d

dx
f(x) = λ− 1− 2π(x)

4x
.

If we denote this value ofx, corresponding to the contact point of the tangent line for this

particular value ofλ, by ξ, then we have

λ(ξ) =
1− 2π(ξ)

4ξ
. (1.8)

Instead of thinking ofλ as the variational parameter, we can letξ play this role since this

leads to simpler expressions for the conjugate function, which is then given by

g(λ) = λ(ξ)ξ2 − f(ξ).

Thus, from (1.6), the bound onf(x) can be written as

f(x) ≥ λx2 − g(λ) = λx2 − λξ2 + f(ξ).

The lower bound of the inverse logit function, therefore, is

π(x) ≥ π(ξ) exp{(x− ξ)/2 + λ(ξ)(x2 − ξ2)} (1.9)

whereλ(ξ) is defined in (1.8). This bound is illustrated in Figure 5. We see that the bound

has the form of the exponential of a quadratic function ofx, which will prove useful when

we seek Gaussian representation of the conditional distribution defined through the inverse

logit function in Chapter III.

1.4 Overview of Dissertation

The goal of this study is to develop the generalization of principal components analysis

for binary data with special efforts paid on the simple structure of principal components.

Especially, our method which will be described in next sections is the model-based ap-

proach where we will propose two different formulations, each of which is dealt separately
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Figure 5: This figure shows the inverse logit function in red together with the Gaussian
lower bound (1.9) shown in blue. Here the parameterξ = 2.5, and the bound is exact at
x = ξ andx = −ξ, denoted by the dashed green lines.

in different section, as a sole article. In Chapter II, we present the sparse binary princi-

pal components analysis by regarding principal component scores as fixed parameters. A

stable estimation procedure is introduced by using MM algorithm. And we deal with the

principal component scores as random variables and we provide the approximation of the

marginal likelihood and its estimation procedure by using variational method, where we

also suggest a unified algorithm for principal components analysis for the data comprising

disparate variables, including binomial and normal variables as well as binary. In both of

two ways of generalization, we give a model selection procedure and missing data treat-
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ment coherently with the proposed algorithm.
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CHAPTER II

SPARSE PRINCIPAL COMPONENTS ANALYSIS FOR BINARY DATA

In this chapter, we develop a new PCA type dimension reduction method for binary data.

Different from the standard PCA which is directly defined on the observed data, our new

PCA is defined indirectly on the logit scale of the success probabilities of the binary ob-

servations. We also introduce sparsity to the principal component (PC) loading vectors

for enhanced interpretability and more stable extraction of the principal components. Our

sparse PCA is formulated as solving an optimization problemwith a criterion function

motivated from penalized Bernoulli likelihood. We developa Majorization-Minimization

algorithm to efficiently solve the optimization problem. The effectiveness of our sparse

PCA method is illustrated using a simulation study and threereal data examples.

2.1 Introduction

Principal components analysis (PCA) is a widely used methodfor dimensionality reduc-

tion, feature extraction and visualization of multivariate data. Several sparse PCA methods

have recently been introduced to improve the standard PCA (e.g., Jolliffe et al., 2003; Zou

et al., 2006; Shen and Huang, 2008). By requiring the principal component loading vectors

to be sparse, sparse PCA methods yield PCs that are more easily interpretable. Sparsity also

regularizes the extraction of PCs and thus makes the extraction more stable. Such stability

is more beneficial when the dimension is high, especially in the so-called high-dimension

low-sample-size settings. As extensions of the standard PCA, however, these sparse PCA

methods are mostly suitable to variables of continuous type, they are not generally appro-

priate for other data types such as binary data or counts. Thegoal of this chapter is to

develop a sparse PCA method for binary data.
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There are two commonly used definitions of PCA that give rise to the same result.

PCA can be defined as the orthogonal projection of the data onto a low dimensional linear

subspace, known as the principal space, such that the variance of the projected data is

maximized (Hotelling, 1933). Equivalently, PCA can be defined as the linear projection

that minimizes the mean squared distance between the data points and their projections

(Pearson, 1901). Shen and Huang (2008) developed their sparse PCA method following the

viewpoint of Pearson. For binary variables, one may follow these two directions selectively.

As along the Hotelling’s direction, the standard PCA is often applied to the binary data

directly for the descriptive purpose. However, the direct application of the standard PCA

to binary variables is not satisfactory nor desirable in thesense that the covariance matrix

of the observed data has especial relevance for continuous type variables and the linear

functions of binary variables are less readily interpretable. Some interesting variants of this

approach to binary variables can be found in Jolliffe (2004).

For Pearson’s approach, it is instructive to consider its geometrical interpretation. Sup-

posey1, · · · ,yn ∈ R
d are then data points and consider ak-dimensional(k < d) linear

manifold spanned by an orthogonal basesb̃1, · · · , b̃k with a shift vectorµ. According to

Pearson, the PCA minimizes the following reconstruction error

n∑

i=1

||yi − (µ + ai1b̃1 + · · ·+ aiK b̃k)||2. (2.1)

This is a least squares regression ifaik’s were known. In light of this connection to re-

gression and borrowing idea from LASSO (Tibshirani, 1996),Shen and Huang (2008) pro-

posed to add aL1 penalty||b̃1||1 + · · ·+ ||b̃k||1 to the reconstruction error (2.1) to obtain

sparse loading vectors̃b1, · · · , b̃k. Since the reconstruction error (2.1) can be viewed as the

negative log likelihood up to a constant for the Gaussian distributions with mean vectors

θi = µ+ai1b̃1 + · · ·+aikb̃k for i = 1, · · · , n and identity covariance, the method of Shen

and Huang (2008) can be interpreted as a penalized likelihood approach for sparse PCA.
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The key idea of the current chapter is to replace the Gaussianlikelihood by the Bernoulli

likelihood. The relationship of the proposed sparse PCA forbinary data to the sparse

PCA of Shen and Huang (2008) is analogous to the relationshipbetween logistic and linear

LASSO regression. We thus will refer to the proposed PCA method as sparse logistic PCA.

We develop an iterative weighted least squares algorithm toperform the proposed

sparse logistic PCA. Since the log likelihood is not quadratic and the penalty function is

non-differentiable, the optimization problem for the sparse logistic PCA is not straightfor-

ward to solve. Our algorithm applies the general idea of optimization transfer or Majorization-

Minimization (MM) algorithm (Lange et al., 2000; Hunter andLange, 2004). By iteratively

replacing the complex objective function with suitably defined quadratic surrogates, each

step of our algorithm solves a weighted least squares problem and has closed form. The al-

gorithm is easy to implement and guaranteed at each iteration to improve the penalized PCA

log-likelihood. We show that the same MM algorithm is applicable when there are missing

data. We also develop a method for choosing the penalty parameters and for choosing the

number of important principal components. PCA of binary data using Bernoulli likelihood

has previously been studied by Collins et al. (2001), Scheinet al. (2003) and de Leeuw

(2006), but none of these works considered sparse loading vectors. As we demonstrate

using simulation and real data, sparsity can enhance interpretation of results and improve

the stability and accuracy of the extracted principal components.

Other approaches of sparse PCA are not as easily extendible to binary data. Jolliffe

et al. (2003) modified the defining maximum variance problem of the standard PCA by ap-

plying aL1-norm constraint on the PC loading vectors to obtain PCA withsparse loadings.

Its use of sample variance makes it unappealing for binary data. Zou et al. (2006) rewrote

PCA as a regression-type optimization problem and then applied the LASSO penalty (Tib-

shirani, 1996) to obtain sparse loadings. However, since the data appear both as regressors

and responses in their regression-type problem, the connection of their approach to penal-
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ized likelihood is not as natural as Shen and Huang (2008).

The rest of this chapter is organized as follows. In Section 2, we introduce the opti-

mization problem that yields the sparse PCA for binary data and also provide an efficient

Majorization-Minimization algorithm for computation. Section 3 addresses the important

issue of tuning parameter selection. Section 4 discusses how to handle missing data. The

proposed methodology is illustrated by using a simulation study in Section 5 and using

three real data sets in Section 6.

2.2 Sparse Logistic PCA with Penalized Likelihood

2.2.1 Model setup

Consider then × d binary data matrixY = (yij) each row of which represents a vector

of observations from binary variables. We assume that entries ofY are realizations of

mutually independent random variables and thatyij follows the Bernoulli distribution with

success probabilityπij . Let θij = log{πij/(1 − πij)} be the logit transformation ofπij .

Then the individual data generating probability becomes

Pr(Yij = yij) = π(θij)
yij{1− π(θij)}1−yij = π(qijθij)

with qij = 2yij−1 sinceπ(−θ) = 1−π(θ). This representation leads to the compact form

of the log likelihood as

ℓ =

n∑

i=1

d∑

j=1

log π(qijθij).

Note that the Bernoulli distributions are in the exponential family and θij are the corre-

sponding canonical parameters.

To build a probabilistic model for principal components analysis of binary data, the

d-dimensional canonical parameter vectorsθi = (θi1, · · · , θid)
T are constrained to reside

in the low dimensional manifold ofRd with the dimensionalityk. (The choice ofk will
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be discussed later in Section 2.4.2.) Specifically, we assume that, for some vectorsµ,

b̃1, · · · , b̃k ∈ R
d, the vector of canonical parameters satisfiesθi = µ+ai1b̃1+· · ·+aikb̃k

for i = 1, . . . , n. We call b̃1, · · · , b̃k the principal component loading vectors and the

coefficientsai = (ai1, · · · , aik)
T the principal component scores (PC scores) for theith

observation. Geometrically, the vectors of canonical parametersθi are projected onto the

k-dimensional manifold which is the affine subspace spanned by k PC loading vectors

and translated by the intercept vectorµ. In matrix form, the canonical parameter matrix

Θ =
(
θij

)
i=1,··· ,n
j=1,··· ,d

= (θ1, · · · , θn)T is represented as

Θ = 1n ⊗ µT + ABT (2.2)

whereA = (a1, · · · , an)T is the n × k principal component score matrix andB =

(b̃1, · · · , b̃k) is thed × k principal component loading matrix. The notation⊗ denotes

the Kronecker product.

The factorization of the rankk matrixΘ0 , ABT in (2.2) is not unique, since for any

k × k orthogonal matrixH, ABT = A∗B∗T for A∗ = AH andB∗ = BH. To make the

factorization unique, we perform the singular value decompositionΘ0 = UDVT whereU

andV have orthonormal columns andD is diagonal, and then letA = U andB = VD.

This procedure makes the model unique up to the sign change, which does not have a

practical importance in the interpretation.

We target a method that can produce a sparse loading matrix, aloading matrix with

many zero elements. A sparse loading matrix implies variable selection in principal compo-

nents analysis, since each principal component only involves those variables corresponding

to the nonzero elements of the loading vector. Variable selection usingL1 penalty has been

widely used for regression type of problems since the introduction of LASSO by Tibshirani

(1996). LetbT
j denote thejth row ofB. Then (2.2) implies thatθij = µj + aT

i bj whereµj
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is thejth element ofµ. The log likelihood can be written as

ℓ(µ,A,B) =
d∑

j=1

n∑

i=1

log π{qij(µj + aT
i bj)}. (2.3)

If ai were observable, (2.3) is the log likelihood ford logistic regressions

logitP (Yij = 1) = µj + aT
i bj.

This connection with logistic regression suggests use of the L1 penalty to get a sparse

loading matrix, as in LASSO regression.

Specifically, consider the penalty

Pλ(B) =

k∑

l=1

λl||b̃l||1 = λ1

d∑

j=1

|bj1|+ · · ·+ λk

d∑

j=1

|bjk|,

whereλl are regularization parameters whose selection will be discussed later. We generate

sparse principal components by maximizing the following penalized log likelihood

f(µ,A,B) = ℓ(µ,A,B)− nPλ(B).

Equivalently, we minimize the following criterion function

S(µ,A,B) = −ℓ(µ,A,B) + nPλ(B), (2.4)

where the negative log likelihood can be interpreted as a loss function and theL1 penalties

increase the loss for nonzero elements ofB according to their magnitude. This penalized

loss interpretation is also appealing in the sense that the independent Bernoulli trials as-

sumption for obtaining the likelihood (2.3) need not be a realistic representation of actual

data generating process but rather a device for generating asuitable loss function. We shall

focus on the minimization problem (2.4) for the rest of this chapter.
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2.2.2 Majorization-Minimization algorithm

We develop a majorization-minimization (MM) algorithm forminimizing (2.4), which it-

eratively minimizes a suitably defined quadratic upper bound of (2.4). Instead of directly

dealing with the non-quadratic log likelihood and the non-differentiable sparsity inducing

L1 penalty, the MM algorithm sequentially optimizes a quadratic surrogate objective func-

tion. A functiong(x|y) is said to majorize a functionf(x) aty if

g(x|y) ≥ f(x) for all x and g(y|y) = f(y).

In the geometrical view, the function surfaceg(x|y) lies above the functionf(x) and is tan-

gent to it at the pointy sog(x|y) becomes an upper bound off(x). To minimizef(x), the

MM algorithm starts from an initial guessx(0) of x, and iteratively minimizesg(x|x(m))

until convergence, wherex(m) is the estimate ofx at themth iteration. The MM algo-

rithm decreases the objective function in each step and is guaranteed to converge to a local

minimum off(x). In application of the MM-algorithm, the majorizing function g(x|y) is

chosen to be easier to minimize than the original objective functionf(x). See Hunter and

Lange (2004) for an introductory description of the MM algorithm.

To find a suitable majorizing function of (2.4), we treat the log likelihood term and the

penalty term separately. For the log likelihood term, note that, for a given pointy,

− log π(x) ≤ − log π(y)− {1− π(y)}(x− y) + 2π(y)−1
4y

(x− y)2 (2.5)

≤ − log π(y)− {1− π(y)}(x− y) + 1
8
(x− y)2, (2.6)

and the equalities hold whenx = y (Jaakkola and Jordan, 2000; de Leeuw, 2006). These

inequalities provide quadratic upper bounds for the negative log inverse logit function at

the tangent pointy. We refer to the former bound as the tight bound, and the latter bound as

the uniform bound since its curvature does not change withy. To show the above inequality

relations, first we will prove the following lemmas:
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Lemma II.1. The functionπ(x){1 − π(x)} is decreasing inx ≥ 0 whereπ(x) = {1 +

exp(−x)}−1.

Proof. The first derivative isπ′(x){1−π(x)}−π(x)π′(x) = π′(x){1−2π(x)} = π(x){1−

π(x)}{1− 2π(x)}. By observing1/2 ≤ π(x) ≤ 1 onx ≥ 0, the derivative is negative.♦

Lemma II.2. The functionr(x) = log π(
√

x)−√x/2 is convex.

Proof. The second derivative ofr(x) is given as

r′′(x) =
1

4x

[
2π(
√

x)− 1

2
√

x
− π(
√

x){1− π(
√

x)}
]
.

Note that{2π(
√

x) − 1}/2
√

x = {π(
√

x) − π(−√x)}/2
√

x = π′(ξ) = π(x){1 − π(ξ)}

with ξ ∈ (−√x,
√

x) from the mean value theorem. Fromξ <
√

x and Lemma II.1, the

second derivative ofr(x) is positive, which completes the proof. ♦

Thus, from the convexity of functionr(x), we getr(x) ≥ r(y) + r′(y)(x− y) at any

y, so that

log π(
√

x)−
√

x

2
≥ log π(

√
y)−

√
y

2
+

1− 2π(
√

x)

4
√

y
(x− y)

⇒ − log π(
√

x) ≤ − log π(
√

y)−
√

x−√y

2
+

2π(
√

x)− 1

4
√

y
(x− y)

and by changing variables
√

x by x we obtain (2.5). The curvature of the tight bound

function becomes

2π(y)− 1

4y
=

π(y)− π(−y)

4y
=

2yπ′(y)

4y
=

1

2
π(ξ){1− π(ξ)} ≤ 1

8

by the mean value theorem andξ ∈ (−y, y). This completes to prove the inequality (2.6).

At y = 0, the curvature of the tight bound is not defined properly. In such case, it takes its

limit wheny approaches zero. By L’hopital’s theorem we get

lim
y→0

2π(y)− 1

4y
= lim

y→0

2π′(y)

4
= lim

y→0

π(y){1− π(y)}
2

=
1

8
.
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For the penalty term, the inequality

|x| ≤ x2 + y2

2|y| , y 6= 0, (2.7)

gives an upper bound for|x| and the equality holds whenx = y (Hunter and Li, 2005).

Application of (2.5), (2.6), and (2.7) yields a suitable majorizing function of (2.4) and an

MM algorithm, as stated below in Theorem II.1.

To present details of the MM algorithm, we introduce some notations. LetΘ(m) be

the estimate ofΘ obtained in themth step of the algorithm, with the entriesθ
(m)
ij = µ

(m)
j +

a
(m)T
i b

(m)
j . Define

x
(m)
ij =





θ
(m)
ij

2π(qijθ
(m)
ij

)−1
for tight bound,

θ
(m)
ij + 4qij{1− π(qijθ

(m)
ij )} for uniform bound,

(2.8)

and

w
(m)
ij =





2π(θ
(m)
ij

)−1

4θ
(m)
ij

for tight bound,

1
8

for uniform bound.

(2.9)

In both definitions, the superscriptm indicates the dependence onΘ(m). For the tight

bound case,x(m)
ij andw

(m)
ij are not well defined whenθ(m)

ij = 0 and will be replaced by the

limit of the corresponding quantities whenθ(m)
ij → 0. To be specific, applying

lim
θ→0

2π(θ)− 1

θ
=

1

2
,

we define

x
(m)
ij = lim

θ
(m)
ij

→0

θ
(m)
ij

2π(qijθ
(m)
ij )− 1

=
2

qij

,

w
(m)
ij = lim

θ
(m)
ij

→0

2π(θ
(m)
ij )− 1

4θ
(m)
ij

=
1

8
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whenθ
(m)
ij = 0. The working variablez’s in the uniform bound can be seen as the first-order

Taylor approximation to those of the standard iterative reweighted least squares (IRLS)

algorithm for the generalized linear models (GLMs) with Bernoulli distribution. In such

case, the working variablez has the form of

zij = θij + (yij − πij) ·
1

πij(1− πij)

with πij = π(θij). The last term is approximated by4qij(1− π(qijθij)) when we apply the

Taylor’s expansion to it atπij = 1/2.

Now, let

g(µ,A,B|µ(m),A(m),B(m))

=

n∑

i=1

d∑

j=1

[
w

(m)
ij

{
x

(m)
ij − (µj + aT

i bj)
}2

+ bT
j D

(m)

λ,j
bj

]
,

(2.10)

whereD(m)

λ,j
are diagonal matrices with diagonal elementsλl/2|b(m)

jl | for l = 1, · · · , k.

Theorem II.1. (i) Up to a constant that depends onµ(m), A(m), and B(m) but not

on µ, A, and B, the functiong(µ,A,B|µ(m),A(m),B(m)) defined in(2.10) majorizes

S(µ,A,B) at (µ(m),A(m),B(m)).

(ii) Let (µ(m),A(m),B(m)), m = 1, 2, . . . , be a sequence obtained by iteratively min-

imizing the majorizing function. ThenS(µ(m),A(m),B(m)) increases withm and it con-

verges to a local minimum ofS(µ,A,B) asm goes to infinity.

Proof. Applications of (2.5) and (2.6) yield the following majorizing functions of the neg-

ative log likelihood−ℓ(µ,A,B):

n∑

i=1

d∑

j=1

[
− log π(qijθ

(m)
ij )− qij{1− π(qijθ

(m)
ij )}(θ − θ

(m)
ij ) +

2π(qijθ
(m)
ij

)−1

4qijθ
(m)
ij

(θ − θ
(m)
ij )2

]

for the tight bound, and

n∑

i=1

d∑

j=1

[
− log π(qijθ

(m)
ij )− qij{1− π(qijθ

(m)
ij )}(θ − θ

(m)
ij ) + 1

8
(θ − θ

(m)
ij )2

]
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for the uniform bound. Note that

{2π(qijθ
(m)
ij )− 1}/{4qijθ

(m)
ij } = {2π(θ

(m)
ij )− 1}/{4θ(m)

ij }

for qij = ±1. By completing the squares and using the definitions ofx
(m)
ij andw

(m)
ij , these

majorizing functions can be rewritten as

− ℓ̃(µ,A,B|µ(m),A(m),B(m))

= −ℓ(Θ(m))− 2
n∑

i=1

d∑

j=1

{1− π(qijθ
(m)
ij )}2 +

n∑

i=1

d∑

j=1

w
(m)
ij (θij − x

(m)
ij )2.

On the other hand, application of (2.7) yields the followingmajorizing function ofPλ(B):

P̃λ(B|B(m)) = λ1

d∑

j=1

b2
j1 + b

(m)2
j1

2|b(m)
j1 |

+ · · ·+ λk

d∑

j=1

b2
jk + b

(m)2
jk

2|b(m)
jk |

=

d∑

j=1

b
(m)T
j D

(m)

λ,j
b

(m)
j +

d∑

j=1

bT
j D

(m)

λ,j
bj .

Since the majorization relation between functions is closed under the formation of sums,

−ℓ̃ + nP̃λ(B|B(m)) majorizesS(µ,A,B) at (µ(m),A(m),B(m)). Noticing that−ℓ̃ +

nP̃λ(B|B(m)) equalsg(µ,A,B|µ(m),A(m),B(m)) up to a constant independent of(µ,A,B),

we complete the proof of part (i). Part (ii) of the theorem follows from the general property

of the MM algorithm (Hunter and Lange, 2004). ♦

The majorizing function given in (2.10) is quadratic in eachof µ, A, andB when the

other two are fixed and thus alternating minimization of (2.10) with respect toµ, A, andB

has closed-form solutions. We now drop the superscript inx
(m)
ij for notational convenience.

For fixedA andB, setx⋆
ij = xij − aT

i bj , the optimal̂µj is given by

µ̂j = arg min
µj

n∑

i=1

wij

(
x⋆

ij − µj

)2
=

∑n
i=1 wijx

⋆
ij∑n

i=1 wij

, j = 1, . . . , d. (2.11)

To updateA andB for fixed µ, setx∗
ij = xij − µj or in matrix form,X∗ = (x∗

ij) =

X − 1n ⊗ µT . Denote theith row vector ofX∗ asx∗
i and letWi = diag(wi) where
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wi = (wi1, . . . , wid)
T . For fixedµ andB, the ith row of A is updated by solving the

following weighted least squares problem

min
ai

d∑

j=1

wij

(
x∗

ij − aT
i bj

)2
or min

ai

(
x∗

i −Bai

)T
Wi

(
x∗

i −Bai

)
,

which has a closed form solution

âi =
(
BTWiB

)−1
BTWix

∗
i , i = 1, · · · , n. (2.12)

The columns of updatedA can be made orthonormal by using the QR decomposition. De-

note thejth column vector ofX∗ asx̃∗
j and letW̃j = diag(w̃j) with w̃j = (w1j , . . . , wnj)

T .

For fixedµ andA, thejth row of B is updated by solving the following weighted ridge

regression problem

min
bj

n∑

i=1

wij

(
x∗

ij − aT
i bj

)2
+ n

k∑

l=1

λl

b2
jl

2|b(m)
jl |

or

min
bj

(
x̃∗

j −Abj

)T
W̃j

(
x̃∗

j −Abj

)
+ nbT

j Dλ,j
bj ,

which has a closed form solution

b̂j =
(
ATW̃jA + nDλ,j

)−1
ATW̃jx̃

∗
j j = 1, · · · , d. (2.13)

The MM algorithm will alternate between (2.11), (2.12), and(2.13) until convergence. The

details are summarized inAlgorithm 1.

When the uniform bound is used in the majorization of the negative log inverse logit

function, computation in the MM algorithm can be simplified,because the weight matrices

Wi andW̃j are equal to the identity matrix multiplied by a constant. The updating formula

(2.11) ofµ becomeŝµ = 1
n
X⋆T1n, which is obtained by taking the column means ofX⋆ =

(x⋆
ij). The updating formula (2.12) becomesâi =

(
BTB

)−1
BTx∗

i , i = 1, · · · , n, which

can be obtained by a single matrix calculationÂ = X∗B
(
BTB

)−1
. The updating formula
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Algorithm 1 Sparse Logistic PCA Algorithm I

1. Initializeµ, A = (a1, . . . , an)T andB = (b1, . . . ,bd)
T .

2. Computexij using (2.8) andwij using (2.9).

3. Setx⋆
ij = xij − aT

i bj. Updateµ = (µ1, . . . , µd)
T using

µj =

∑n
i=1 wijx

⋆
ij∑n

i=1 wij

, j = 1, · · · , d.

4. SetX∗ = (x∗
ij) = X− 1n ⊗ µT .

5. Denote theith row vector of X∗ as x∗
i . Set Wi = diag(wi) with wi =

(wi1, . . . , wid)
T . UpdateA = (a1, . . . , an)T using

ai =
(
BTWiB

)−1
BTWix

∗
i , i = 1, · · · , n.

Compute the QR decompositionA = QR and letA← Q.

6. Denote thejth column vector ofX∗ as x̃∗
j . Set W̃j = diag(w̃j) with w̃j =

(w1j, . . . , wnj)
T . ComputeDλ,j

as in (2.10). UpdateB = (b1, . . . ,bd)
T using

bj =
(
ATW̃jA + nDλ,j

)−1
ATW̃jx̃

∗
j , j = 1, · · · , d.

7. Repeat steps 2 and 6 until convergence.

(2.13) becomeŝbj = (Ik + 8nDλ,j
)−1AT x̃∗

j , j = 1, · · · , d. Here, since the matrices to be

inverted are diagonal matrices,b̂j can be obtained by component-wise shrinkage

b̂jl =
|b(m)

jl |
|b(m)

jl |+ 4nλl

ãT
l x̃∗

j , l = 1, · · · , k, j = 1, · · · , d,

whereãl is thelth column ofA. The simplified algorithm is summarized inAlgorithm 2.

Our experience is that the MM algorithm using the uniform bound takes more itera-

tions to converge, but because of the computational simplicity of each iteration, its actual

computing time is less than the MM algorithm using the tight bound. We used the MM

algorithm with the uniform bound (i.e.,Algorithm 2) to produce all numerical results to
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Algorithm 2 Sparse Logistic PCA Algorithm II

1. Initializeµ, A = (a1, . . . , an)T andB = (b1, . . . ,bd)
T .

2. Computexij using (2.8).

3. SetX⋆ = (X⋆
ij) with x⋆

ij = xij − aT
i bj . Updateµ = (µ1, . . . , µd)

T usingµ =
1
n
X⋆T1n.

4. SetX∗ = (x∗
ij) = X− 1n ⊗ µT .

5. UpdateA by A = X∗B
(
BTB

)−1
. Compute the QR decompositionA = QR and

let A← Q.

6. SetC = (cjl) = X∗TA. UpdateB = (bjl) using

bjl =
|b(m)

jl |
|b(m)

jl |+ 4nλl

cjl l = 1, · · · , k, j = 1, · · · , d,

7. Repeat steps 2 and 6 until convergence.

be reported later in this chapter.

2.3 Geometry of MM Algorithm for Sparse Solutions

In this section, we examine how the quadratic approximated penalty function can give a

sparse solution in MM algorithm, although it has a quadraticform. In order to obtain the

sparse solution of principal component loadings,L1 penalty function which is not differ-

entiable at zero is introduced here, as in many regression problems. Nondifferentiabilty at

zero is crucial for the sparse solution, which is addressed in many literature (Tibshirani,

1996; Fan and Li, 2001). Thus, it is instructive to mention how the ridge type penalty can

produce the sparse solution by the iteration procedure although it is quadratic and differen-

tiable at zero.

At the m + 1th iteration step, whenA is given by the previous estimate at themth
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step, the estimation procedure of the principal component loadingB in (2.10) becomes the

penalized weighted least square problem given as

min
b

(x̃−Ab)TW̃(x̃−Ab) + nbT Dλ,jb. (2.14)

Here we deliberately ignored the subscriptj since each row ofB is updated separately.

To make our arguments simple, we assume all ofλl’s are the same here. Then (2.14) is

equivalent to the weighted least square problem with the elliptical constraint, i.e.,

min
b

(x̃−Ab)TW̃(x̃−Ab) subject to
k∑

l=1

b2
l /|b(m)

l | ≤ τ (2.15)

whereτ is a constant depending on the regularization parameterλ. The constraint term

appears ask-dimensional ellipsoid centered at the origin whose axes are proportional to

the magnitude of the previous estimate ofbl. The artificial example ofk = 2 case is

depicted in Figure 6. The elliptical contours show the quadratic objective function in (2.15)

which is minimized. It is centered at the ordinary least square estimator which is obtained

without constraints. The constraint regions appear as shaded ellipsoids. The ellipsoid

with the dotted boundary stands for the constraint region ofthe optimization at the current

iteration step. The solution, which is marked as “cross”, occurs at the first point that the

contours touch the ellipse. In the next iteration step the constraint region is constructed

based on this new solution. Sinceb2 is estimated larger thanb1, the constraint region is

more shrunken along theb1 axis, which is shown as the ellipse with the dashed boundary.

At the next iteration, the solution occurs at “plus” mark. Ifb1 is estimated small enough,

the constraint region in the next step will collapse toward the origin along theb1 axis, which

is illustrated in the right panel of Figure 6. In that caseb1 has little chance to have large

values. This mechanism generally explains how to generate asparse solution even though

the majorizing penalty function is differentiable at zero.Note that Figure 6 describes the

regression situation with fixed covariates. In our PCA problem, the principal component
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score matrixA constantly changes depending on the previous estimates so the elliptical

contours are not the same at every iteration. However the main message from this figure

still holds in such case.

Figure 6: Estimation picture for MM algorithm. Left panel shows how the constraint region
changes adaptively based on the previous solution. Right panel illustrates the case that the
sparse solution is attained.

2.4 Implementation Issues

In this section we discuss the methods for selecting the tuning parameters in the sparse

logistic PCA algorithm. Sections 2.4.1 and 2.4.2 treat the usualn≫ d case. Section 2.4.3

handles the case whend≫ n or d is comparable ton.

2.4.1 Choosing the penalty parameters

In the situation ofn ≫ d, leave-row-out cross-validation (CV) can be used to choosethe

regularization parameterλ = (λ1, · · · , λk)
T . We propose to use the 5-fold version of the

cross-validation. To this end, we randomly divide the rows of the data matrix to form 5
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submatrices with approximately equal number of rows. Denote these submatrices asY(i),

i = 1, · · · , 5. Let Y(−i) denote the submatrix ofY after removingY(i). For eachi, we

useY(−i) as a training set and useY(i) as a test set. The training set is used for extraction

of the principal component loadings, the test set is projected to the loading vectors, and a

goodness-of-fit measured using the negative log likelihoodon the test set is calculated. The

sum of the five goodness-of-fit measures is used as the crossvalidation score. We select the

optimalλ which minimizes the crossvalidation score.

Alternatively, we can develop a GCV-type criterion based onthe regression like cal-

culation of the loading matrix. By (2.13) of Section 2.2.2, we see that thejth row ofB can

be obtained by a weighted ridge regression with the responses x̃∗
j and the predicted values

of the responses are given by

A
(
ATWjA + nDλ,j

)−1
ATWjx̃

∗
j = Rλ,j

x̃∗
j ,

whereRλ,j
= A

(
ATWjA + nDλ,j

)−1
ATWj is the hat matrix. Following the usual

development of GCV (Hastie and Tibshirani, 1990), we define the GCV score for sparse

logistic PCA as

GCV (λ) =
1

d

d∑

j=1

‖x̃∗
j −Rλ,j

x̃∗
j‖2

n{1− Tr(Rλ,j
)/n}2 .

Our simulation study, not presented here, shows that both CVand GCV work well

whenn ≫ d. But whend is larger than or even comparable ton we observed that CV

and GCV fail to find good regularization parameters. A new method is proposed in Sec-

tion 2.4.3 below to deal with this difficult case.

2.4.2 Determining the dimensionality of the subspace

In the standard PCA, the percentage of total variance explained by the principal components

can be defined and is frequently used for choosing the appropriate number of principal

components with the aid of a “screeplot”. Zou et al. (2006) and Shen and Huang (2008)
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extended this approach to sparse PCA by modifying the definition of variance explained

by the PCs. We propose to use a similar strategy for sparse logistic PCA but using the

Bernoulli likelihood instead of the variance to measure thegoodness-of-fit. Specifically,

we draw the plot of the negative log likelihood as a function of k. The plot usually starts

with a quick drop and after a “knee” or “ankle” point, the dropis much slower. The “k”

corresponding to this “knee” point is chosen as a suitable dimension to project the data for

logistic PCA. Another approach for selecting “k” is to use the model selection criteria such

as the AIC or BIC. Our simulation study (not shown) reveals that both approaches work

well whenn≫ d. However, whend≫ n, our experience shows that the screeplot method

and the AIC criterion tend to selectk conservatively (largek) and BIC tends to choose the

anti-conservativek (smallk). In the next subsection, we develop a method to determinek

for the case thatd≫ n or d is comparable ton.

2.4.3 High-dimensional low-sample-size settings

When the number of variablesd is large, we suggest to use a single regularization parameter

λ for all PC loadings to reduce the computation time, unless there is a need to consider the

different regularization. We use the following strategy todecide the two tuning parameters.

We first fix k at a reasonable large value and select a goodλ, then using thisλ we refine

the choice ofk.

Since the AIC criterion usually selects ak that is bigger than what is needed, we first

fix k at the AIC selected value when focusing on the selection ofλ. Note that a larger value

of λ will lead to a smaller number of nonzeros in the loading matrix B and reduced model

complexity, the reduced model complexity is usually associated with less good fit of the

model. To compromise the goodness-of-fit and model complexity, we use the corrected

BIC criterion defined by

CBIC(λ) = −2ℓ(µ,A,B) + log n×m(λ)
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wherem(λ) is the number of nonzero parameters. LetB(λ) denote the index set of the

nonzero loadings inB with the regularization parameterλ and| · | denote the cardinality

function of the set argument. Then|B(λ)| is the number of total nonzero loadings inB ob-

tained by the regularized logistic PCA atλ, and thusm(λ) = d+nk+|B(λ)|. The corrected

BIC is studied in Zou et al. (2007), where it is shown that the number of nonzero coeffi-

cients is an unbiased estimate for the degrees of freedom forthe LASSO regression. We

select the optimalλ which minimizes the corrected BIC criterion. Fixing the selectedλ we

choose the optimal “k” again by minimizing the corrected BIC. The screeplot as discussed

in the previous section can also be used to decide on the valueof “k”. The effectiveness of

the above selection procedure in the high dimensional scenario will be demonstrated in the

simulation study and the real data applications in the following sections.

2.5 Handling Missing Data

Missing data are commonly encountered in real applications. In this section, we extend our

sparse logistic PCA method to cases when missing data are present.

Let N = {(i, j)|yij is not observed} denote the index set for missing values. The

sparse logistic PCA minimizes the following criterion function

T (µ,A,B) = −ℓobs(µ,A,B) + nPλ(B), (2.16)

where

ℓobs(µ,A,B) =
∑∑

(i,j)/∈N

log π{qij(µj + aT
i bj)}

can be interpreted as the observed data log likelihood. Similar to the non-missing data

case, direct minimization of (2.16) is not straightforwardbecause the log likelihood term

is not quadratic and the penalty term is non-differentiable. Direct minimization of (2.16)

is also complicated by the fact that the summation in the definition of the observed data



40

log likelihood is not over a rectangular region. Again, we develop an MM algorithm to

iteratively solve the optimization problem.

Define the working variables

z
(m)
ij =





x
(m)
ij , (i, j) /∈ N

θ
(m)
ij = µ

(m)
j + a

(m)T
i b

(m)
j , (i, j) ∈ N .

wherex
(m)
ij is defined in (2.8). Let

h(µ,A,B|µ(m),A(m),B(m))

=

n∑

i=1

d∑

j=1

[
w

(m)
ij

{
z

(m)
ij − (µj + aT

i bj)
}2

+ bT
j D

(m)

λ,j
bj

]
,

(2.17)

whereD(m)

λ,j
are diagonal matrices with diagonal elementsλl/2|b(m)

jl | for l = 1, · · · , k. The

following result extends Theorem II.1 to the missing data case.

Theorem II.2. (i) Up to a constant that depends onµ(m), A(m), and B(m) but not

on µ, A, and B, the functionh(µ,A,B|µ(m),A(m),B(m)) defined in(2.17) majorizes

T (µ,A,B) at (µ(m),A(m),B(m)).

(ii) Let (µ(m),A(m),B(m)), m = 1, 2, . . . , be a sequence obtained by iteratively min-

imizing the majorizing function. ThenT (µ(m),A(m),B(m)) increases withm and it con-

verges to a local minimum ofT (µ,A,B) asm goes to infinity.

Proof. Note that the objective function to be minimized is the summation of two terms – the

log likelihood term and the penalty term. Because the majorization property is closed under

function summation, we deal with the two terms separately. We can find a majorization

function of the penalty term as in Theorem II.1. To find a majorization function of the log

likelihood term, we apply the argument in the standard EM algorithm for handling missing

data (Dempster et al., 1977). The complete data log likelihood is

ℓcom(µ,A,B) =
∑∑

(i,j)/∈N

log π(qijθij) +
∑ ∑

(i,j)∈N

log π(qijθij).
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Its conditional expectation given the observed data and thecurrent guess of the parameter

values is

Q(µ,A,B|µ(m),A(m),B(m))

=
∑ ∑

(i,j)/∈N

log π(qijθij)

+
∑ ∑

(i,j)∈N

E[log π(qijθij)|Yo, µ
(m),A(m),B(m)],

(2.18)

whereYo denote the observed data. By the standard EM theory,

− ℓ̃obs(µ,A,B)

= −Q(µ,A,B|µ(m),A(m),B(m))− ℓobs(µ
(m),A(m),B(m))

+ Q(µ(m),A(m),B(m)|µ(m),A(m),B(m))

(2.19)

majorizes−ℓobs(µ,A,B) at(µ(m),A(m),B(m)), that is,−ℓ̃obs(µ,A,B) ≥ −ℓobs(µ,A,B),

and the equality holds when(µ,A,B) = (µ(m),A(m),B(m)).

Now we find a quadratic majorizing function of−ℓ̃obs(µ,A,B), which in turn ma-

jorizes−ℓobs(µ,A,B) because of the transitivity of the majorization relation. We need

only to find a quadratic majorization function of−Q(µ,A,B|µ(m),A(m),B(m)) since it

is the only term in the definition (2.19) of−ℓ̃obs(µ,A,B) that depends on the unknown

parameters. According to (2.18),−Q(µ,A,B|µ(m),A(m),B(m)) can be decomposed into

two terms, one corresponding to observed data, the other corresponding to the missing

data. The former term can been treated as in the proof of Theorem II.1. When(i, j) /∈ N ,

− log π(qijθij) is majorized byw(m)
ij (θij − x

(m)
ij )2, up to a constant. To treat the latter term,

note that, when(i, j) ∈ N ,

E
[
log π(qijθij)|Yo, µ

(m),A(m),B(m)
]

= π(θ
(m)
ij ) log π(θij) + {1− π(θ

(m)
ij )} log{1− π(θij)}

=
∑

qij=±1

π(qijθ
(m)
ij ) log π(qijθij),
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using the fact that the missing data is independent of the observed data, and that1−π(θ) =

π(−θ). Then, by applying the inequalities (2.5) and (2.6) and using the definition ofw(m)
ij ,

we obtain that

− E
[
log π(qijθij)|Yo, µ

(m),A(m),B(m)
]

≤
∑

qij=±1

π(qijθ
(m)
ij )

[
− log π(θ

(m)
ij )

− {1− π(qijθ
(m)
ij )}{qij(θij − θ

(m)
ij )}+ w

(m)
ij {(θij − θ

(m)
ij )}2

]

≤ Cm + w
(m)
ij {(θij − θ

(m)
ij )}2,

whereCm is a constant independent ofµ, A, andB. Combining the above results, we

see that−Q(µ,A,B|µ(m),A(m),B(m)) is up to a constant majorized by
∑

ij w
(m)
ij {(θij −

z
(m)
ij )}2, wherez

(m)
ij equalsx(m)

ij if (i, j) /∈ N , andθ
(m)
ij if (i, j) ∈ N . The proof of Part

(i) is thus complete. Part (ii) of the theorem follows from the general result of the MM

algorithm. ♦

Note that the majorizing functions given in (2.17) have the same form as those given

in (2.10) except thatx(m)
ij in (2.10) is changed toz(m)

ij in (2.17). Thus the computation algo-

rithm developed in Section 2.2.2 is readily applicable in the missing data case with a simple

replacement ofx(m)
ij by z

(m)
ij . The working variablez(m)

ij in (2.17) is easily understood: It is

the same as the non-missing data case ifyi,j is observable; otherwise, it is an imputedθij

value based on the reduced rank model (2.2) and the current guess ofµ, A, andB.

2.6 Simulation Study

In this section we demonstrate our sparse logistic PCA method using a simulation study.

The method worked well in various settings that we tested, but here we only report results

in a challenging case that the number of variablesd is bigger than the sample sizen.
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2.6.1 The signal-to-noise ratio

We first introduce a notion of signal-to-noise ratio for logistic PCA. In our logistic PCA

model, the entries of then×d data matrix are independent Bernoulli random variables with

success probabilityπij = {1 + exp(−θij)}−1 for the (i, j) cell. The matrix of canonical

parametersΘ = (θij) has a reduced rank representationΘ = µ+ABT , whereA is an×k

matrix of PC scores andB is a sparsed × k PC loading matrix. In our simulation study,

each column ofA is generated from a zero-mean Gaussian distribution. The variances

of these Gaussian distributions measure the signal levels of the PCs. We set up these PC

variances relative to a suitably defined baseline noise level.

We define a baseline noise level as follows. First we generaten × d independent bi-

nary variables from Bernoulli distribution with the success probability1/2. These binary

variables are understood to come from the pure noise since they are generated without hav-

ing any structure on the success probabilities. Using thesebinary variables, we would like

to determine a noise level in the canonical parameter space.To this end, we conduct ak-

component logistic PCA without regularization and then compute the average of variances

for the obtainedk PC scores, which is denoted asσ2
b . This average variance can serve as

a measure of the baseline noise level. To get a more stable measure of the baseline noise

level, we generate a large number of (for example, 100) “purenoise” binary data matrices

and take the median ofσ2
b computed from these matrices as our baseline noise level. The

baseline noise level depends onn, d, andk.

With the notion of baseline noise level, we define the signal-to-noise ratio (SNR) for

a PC as

SNR =
variance of PC scores
baseline noise level

.

In our simulation study, we first compute the baseline noise level for a given combination

of n, d, andk, then use the above formula to specify the variances of PC scores based on
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the fixed values of SNR. Table 1 reports SNRs under some scenarios with the sample size

n = 100, which will be used for the following simulation study.

Table 1: Simulations on the baseline noise level with the sample sizen = 100 in the
standard deviation scale. The averages ofk PC score standard deviations are computed
over100 simulated datasets. Table shows median and MAD (median of absolute deviation)
of 100 averages. The squared value of them is used as the baseline noise level.

k d = 200 d = 500 d = 1000

1 36.63 (1.54) 55.89 (1.06) 77.87 (1.08)
2 37.37 (3.89) 56.73 (4.23) 78.73 (4.38)

10 47.30 (4.92) 67.30 (5.46) 90.17 (4.79)
20 54.65 (3.91) 75.20 (4.17) 99.16 (4.53)

100 14.08 (2.66) 22.31 (1.74) 90.17 (4.79)

2.6.2 Simulation setup

We set the intrinsic dimension to bek = 2 and the number of rows of the data matrix to

ben = 100. We vary the number of the variablesd and the signal-to-noise ratio SNR. We

construct two sparse PC loading vectors as follows: Letbj1 andbj2 denote correspondingly

the components of the first and the second PC loading vectors.We let bj1 = 1 for j =

1, · · · , 20, bj2 = 1 for j = 21, · · · , 40, and the rest ofbjl are all taken to be0. We consider

three choices ofd: d = 200, d = 500, andd = 1000. We consider two settings of SNR:

(3, 2) and(5, 3), and the SNRs are used to determine the variances of the PC scores. For

example, when the SNR is(3, 2), the variance of the first PC is 3 times the baseline noise

level and the variance of the second PC is 2 times the baselinenoise level. The mean vector

µ is set to be a vector of zeros.

2.6.3 Simulation results

Logistic PCA with and without sparsity-inducing regularization is conducted on 100 simu-

lated datasets for each setting. To measure the closeness ofthe estimated PC loading matrix
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Table 2: The results of logistic PCA with and without sparsity-inducing regularization,
based on 100 simulated data sets for each setting. The reported angle is the median angle.
The description of results is in the text.

k = 2 k = 30

d SNR angle correct incorrect angle correct incorrect
Regularization (◦) (%) (%) (◦) (%) (%)

200 SNR=(3, 2)
nonregularized 12.410 100 100 35.550 100 100

regularized 11.910 100 95.62 11.270 100 47.19

SNR=(5, 3)
nonregularized 11.770 100 100 36.230 100 100

regularized 11.060 100 95.62 11.060 100 44.38

500 SNR=(3, 2)
nonregularized 10.770 100 100 31.540 100 100

regularized 6.322 100 30.43 9.730 100 19.13

SNR=(5, 3)
nonregularized 10.240 100 100 31.490 100 100

regularized 6.202 100 28.59 9.642 100 18.91

1000 SNR=(3, 2)
nonregularized 11.630 100 100 35.810 100 100

regularized 5.218 88.12 8.85 12.950 100 15.99

SNR=(5, 3)
nonregularized 11.020 100 100 35.770 100 100

regularized 4.696 100 9.79 12.470 100 15.94

B̂ and the true loading matrixB, we use the principal angle between spaces spanned by

B̂ andB. The principal angle measures the maximum angle between anytwo vectors

on the spaces generated by the columns ofB̂ andB. More precisely, it is defined by

cos−1(ρ) × 180/π, whereρ is the minimum eigenvalue of the matrixQT
bB
QB, whereQbB

andQB are orthogonal basis matrices obtained by the QR decomposition of matricesB̂

andB, respectively (Golub and van Loan, 1996). The median principal angles for logistic

PCA with and without regularization are presented in Table 2. We usedk = 2 andk = 30

when running the logistic PCA algorithms. Since smaller principal angles indicate better

estimates of the PC loading matrix, the sparsity-inducing regularization has a clear benefit

— it can substantially reduce the principal angles. The benefit is even more profound when

the number of PCs used in the program (k = 30) is different from the true number that was
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used to generate the data (k = 2).

Table 2 also presents the percentage of the correctly and incorrectly identified nonzero

loadings. In most scenarios, using the sparse logistic PCA algorithm, there is no serious

risk that the true nonzeros are not selected since the percentage of the correctly selected

nonzeros are100% except for the case whend = 1000 and SNR=(3, 2) where it still

reports relatively large percentage. The percentage of theincorrectly selected nonzeros is

below 30% when the number of variables are500 and1000. This shows that regularization

can remove most zero loading variables in such cases.

Table 3: Frequencies of the selectedk using the corrected BIC.

selectedk

d SNR 1 2 3 4 5 6 7

200 (3, 2) 0 95 5 0 0 0 0
(5, 3) 0 96 4 0 0 0 0

500 (3, 2) 1 58 37 4 0 0 0
(5, 3) 0 60 36 3 1 0 0

1000 (3, 2) 3 34 36 15 10 1 1
(5, 3) 2 31 47 15 4 1 0

We then chose the number of PCsk of the sparse logistic PCA by using the corrected

BIC criterion which penalizes the model fit with the number ofnonzero parameters. Fre-

quencies of the selectedk from 100 simulation datasets in each settings of Table 2 are

shown in Table 3. Whend = 200, the corrected BIC finds well the true number2 but, as

d gets larger,k = 3 is more frequently selected. The performance for the larged cases is

considered as quite good, given that the sample size is only 100.

Figure 7 shows two PC loading vectors from one simulated dataset for d = 200

and SNR=(5, 3). While the sparse logistic PCA can recover the original loading vectors

well, the nonregularized logistic PCA gives more noisy results which are also subject to a

rotation to get close to the original vectors.
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Figure 7: A simulated data set withn = 100, d = 200, andk = 2. Top panels shows
the first and second PC loadings from the nonregularized PCA.The bottom panels are the
same case of the regularized PCA.

2.7 Real Data Applications

In this section we illustrate the proposed sparse logistic PCA method to three real datasets

where the dimension of data is comparable or larger than the sample size. The nonregular-

ized logistic PCA is used for comparison.

2.7.1 Advertisement data

The advertisement data was collected to predict whether or not images obtained on Internet

pages are advertisements based on a large number of their surrounding features. The feature

encodes phrases occurring in the URL, the image’s URL and alttext, the anchor text, and

words occurring near the anchor text. The dataset and its description are available from

the UCI machine learning repository (Asuncion and Newman, 2007). The dataset contains
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1,558 variables with 3 continuous and 1,555 binary variables, and 3,279 observations with

459 advertisements and 2,820 non-advertisements. We focused on the binary variables and

used the3279×1555 binary data matrix. One binary variable has missing values.Although

the objective of this data collection is the prediction of the advertisement webpages, we

applied the sparse logistic PCA to this dataset in order to see whether PCA is able to capture

the variability between two groups and also whether the sparsity-inducing regularization

helps to improve the group separability. Top panels of Figure 8 present the scatterplots of

the first two PC scores obtained from nonregularized and regularized logistic PCA. Clearly,

the sparsity inducing regularization improved the group separability. This improvement is

better seen in the boxplots of the first PC scores (bottom panels of Figure 8).

With the obtained PC scores, discrimination analysis was conducted using the linear

discrimination analysis (LDA) and support vector machine (SVM) with linear, polynomial

and radial kernels. To do this, we randomly select a third of data as the test set. We train

the decision boundary using the remaining data (training set) and apply it to the test set.

This was conducted50 times. The regularized logistic PCA outperforms the logistic PCA

without regularization especially when we use the small number of PC scores (Figure 9).

This demonstrates the regularization is greatly helpful when we study the high dimensional

data in the low dimensional space. It should be mentioned that advertisement dataset has

been frequently used for assessment of many supervised learning algorithms, for instance

C4.5 rules, yielding the high quality of prediction. However, the sparse binary PCA is the

unsupervised learning without using any group information.

2.7.2 Single nucleotide polymorphism data

Association studies based on high-throughput single nucleotide polymorphism (SNP) data

(Brooks, 1999; Kwok et al., 1996) have become a popular way todetect genomic re-

gions associated with human complex disease. A SNP is a single base pair position in



49

−100 −50 0 50 100

−
10

0
−

50
0

50

Nonregularized

PCscore 1

P
C

sc
or

e 
2

+
+

+
+
+ +

+
+ ++

+
+

++

+

+
+

+

++++
+

++
+

++

+
+ +++

+

+++

++ +
+

++

+
+

+

+
+

+ +
+

+
+

+
+

++

+

+

+
++

+++++

+

+
+++

+

++
+ +

+

+
++

+

+
++++

+
+

+
++++

+

+
++++
+

+

+
+

+
+

+++

++
+

+ +++
+

++++ ++

+

++
++

++ +

++
+

+
+

+

+

+

+

++
+

+

+
++

+
+

+ +++
+

+

+
+
++ ++

++

+

+
+

+
++ ++

+
+

+

+

+

+
+ +++++

++
+

+
+

+ ++

+

+++

+
+

+

++++++
+

+
+ +

+

+

+

++

+

++

+

+

++
++

+

+

+

+

+ ++
++++

+

+

+

++ +
+

+

+

++
++

+
++ +

+
++ +

+
+

+
+
+

+

+
+

+
++

++
+

++
+

+
+

+ ++ +

+

++++
+

+

+

+++

+

+++
+++

++
+

+
+

+
+

++
++
+

+

+

+
+

+

+

+

+

+ +

+
+

+

+
+

+

+
+

+
+

++
+ +

+
+

+
+

+ + +

+
+

++

+

+

+

+
+++

+++

+
+

+

+
+
+

+
+

+

+
+
+

+

+
+

+

+
+

++
+++

+

+

+
+
+

+

+++

+

+

+

+

+
+

++
+

++++

++
+

+

+
+

+ ++ +

+

+

++

++

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+ +
+

+

+

+

+

++

+

+++

+

+
+

+
++

+

+
++
+

+

+

+

++

+
+++

+

+

+
+++

+

+ +
+

+

+

+

−50 0 50

−
50

0
50

Regularized

PCscore 1

P
C

sc
or

e 
2

+

+

++
++

+

+
++

++++

++
+ ++ ++

+
++++++

+++++
+

++
+ ++++++

+

+ +

+
+

+
+

+
+

+

+ +

+
+

+
+

+
+
+

++++
+

++

++ +

+

+

++ +

+

+

+
+
+

+

+++

++

+
++

+

+ +

+

+

++
+

+
++

+++
+

+++
+

+
+

+
+++ +

+ +++
+

+
+

+

+

++

+++
+ ++++ +

+

+

+
++

+

+
+
+ +

++
+

+
++
+
+
+

++ +
++

+
+

+
++ +++++
+ ++ ++

++++++
+

++
+

+
+

+
+++ ++

+

++
+++++++

+

+ +

+

+

+

+
++

+

+

+

+

+
+

+

++
+

+

+

+

+

+
+

++++
++

+++ ++
+

+
+

+

+

+
+

+
+

+

+ +++++
+

+
+

+

+
+ +++++

+++++

+
+

+
+

+

+

+++
+ +

+

+

+++
+ ++

+++++++
+ +

+

+++++ ++

+

+
+

+

+

++
+ ++

+
++

+

+ ++
+

+++

+
+

+

+

+
+

+

+

+

+
+

++
+

+
+

+
+++

+++

++ +
+

+

+
+
+
+

++
+

+

+
+++ +
+

+ +++

+
+
+

++
+

++

+
+

+

+
++

+

+

+
+ +++

+
+

+
+

+

+

+

+

+

+

+
+ +++

+

++ ++
+

+

+

+

+

++
+ ++

+

+

+

+

+

+

+ +
+

+

+
+

+

+
+

+

++
+

+

++

+

+++

+

+

+

+
+

++ +++

+

+

+
+ +++++

+

+++

+

++
+

+

+

+

+
+

+

Ad NonAd

−
10

0
0

50
10

0

Nonregularized

Ad NonAd

−
50

0
50

Regularized

Figure 8: Advertisement data. Top panels: The scatterplotsof the first two PC scores from
the nonregularized (left) and regularized (right) logistic PCA. The red plus represents the
advertisement case and the black circle shows the nonadvertisement case. Bottom panels:
Boxplots of the first PC scores. The advertisement cases and nonadvertisement cases are
labeled as “Ad” and “NonAd” respectively.

genomic DNA at which the sequence (alleles) variation occurs between members of a

species, wherein the least frequent allele has an abundanceof 1% or greater. A crucial

issue in association studies is population stratification detection (Hao et al., 2004) which
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Figure 9: Discrimination analysis using LDA and SVM. Black circle and red rectangle
show the misclassification rates using the nonregularizes and regularized PC scores respec-
tively. Vertical bar stands margin of one standard deviation of 50 misclassification rates.

is to determine whether a population is homogeneous or has hidden structures within it.

With the presence of population stratification, the naive case-control approach not account-

ing for this factor would yield biased results (Ewens and Spielman, 1995) and, therefore,

draw inaccurate scientific conclusions. Also the additional analysis challenge arises from

high dimensionality of the SNP data. Liang and Kelemen (2008) discusses extensively the

statistical development and difficulties for SNP data analysis.
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The proposed sparse logistic PCA method can be used for population stratification

detection. For the purpose of demonstration, we use the SNP data set available in the

International HapMap project (The International HapMap Consortium, 2005). It consists

of 3 different ethnic populations of 90 Caucasians, 90 Africans and 90 Asians. Our task is to

detect this three-subpopulation structure using the SNP data on the 270 subjects. At many

SNP locations, heterozygosity distribution and allele frequency are known to be different

among populations and could confound the effect of the risk of disease. To account for this

factor, Serre et al. (2008) selected 1,536 SNPs with the similar heterozygosity distribution

and allele frequency. The locations of these SNPs cover all the chromosomes except for the

sex-determining chromosome. Among these 1,536 SNPs, 1,392are shared by three ethnic

groups, which are used in our analysis. Their distribution over chromosomes is presented

in Table 4. We coded 0 for the most prevalent homogeneous basepair (wild-type) and 1

for others (mutant), resulting in a270 × 1392 binary matrix. This data matrix has 2.37%

missing entries.

Table 4: 1,392 SNP distribution over 22 chromosomes.

chromosome 1 2 3 4 5 6 7 8 9 10 11

number of SNPs 152 49 63 46 92 129 100 63 106 20 35

chromosome 12 13 14 15 16 17 18 19 20 21 22

number of SNPs 34 39 13 67 31 102 42 45 23 54 88

Figure 10 provides the scatterplots of first 2 PC scores with and without regularization.

The clear splitting pattern among the three ethnic groups isshown in the regularized PCA

case but not in the nonregularized PCA case. In addition, theproposed sparse method

allows identifying directly the SNPs that contribute to this subpopulation pattern. The

selected model yields 816 and 685 nonzero variable loadings(representing the SNPs) on

the first 2 PC directions, among which 508 are commonly shared. Therefore, 993 SNPs
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in the first 2 PC directions are claimed to be associated with the ethnic group effect. It

suggests that the population stratification factor should be taken into consideration at these

993 SNP locations in the following study of the association between SNPs and the disease

phenotype to avoid biased conclusion.
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Figure 10: The scatterplots of the first two PC scores from thenonregularized (left) and
regularized (right) logistic PCA. Black circles, red rectangles and blue triangles represent
Caucasian, African and Asian population respectively.

2.7.3 Handwritten digits data

The handwritten digits data come from the ZIP code on envelopes from U.S. postal mail

(Hastie et al., 2001). Each image is a segment from a five digitZIP code, isolating a

single digit. The images are16 × 16 eight-bit grayscale maps. After deslanting and size-

normalizing,16 × 16 matrices of pixel intensities are obtained with scales ranging from

−1 to 1. To illustrate the logistic PCA methods, the pixel intensity values less than0 were

coded as1’s and otherwise as0’s. In the original dateset, there are 500∼1,200 images for

each of the 10 digits. For each digit, we randomly selected 100 images to get a dataset

whose sample size is smaller than the dimensiond = 16× 16 = 256. Both regularized and
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nonregularized logistic PCA were applied to these smaller datasets. We only present here

results for the digit “5”.

Figure 11: The first two panels from the left are the first 2 PC loadings from the nonregu-
larized logistic PCA. The right two panels are the first 2 PC loadings from the regularized
logistic PCA. The blue and red colors represent the positiveand negative loading. The
density of colors is proportional to their magnitude of loadings. Zero loadings are colored
by white.

Figure 11 presents PC loadings from the nonregularized and regularized logistic PCA.

The sparse PCA generates many spots with zero loadings and thus enhances the inter-

pretability of the extracted PCs. For example, the first PC loading reflects the contrast

between the strong “head” and “tail”, while the second PC loading explains the variability

coming from the “width” of digits. The similar interpretation may be given for PC load-

ings obtained from the nonregularized logistic PCA, but themessage is much less apparent

because of many nonzero loadings. The enhanced interpretation by sparsity can be more

easily appreciated by examining the images having the highest and lowest PC scores as

shown in Figure 12. In particular, the five images with the highest first PC loading by

the sparse PCA all have big round tail part and weak head whilethe five with the lowest

first PC loadings show the opposite pattern (third row of Figure 12); the images with high

and low second PC loadings show strong contrast in the size ofthe width (fourth row of

Figure 12). As comparison, no clear patterns appeared usingnonregularized logistic PCA.

This example illustrates that regularization can help find interesting features or structures

in binary data sets.
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Figure 12: The sample images with the five highest (left) and lowest (right) PC scores. The
first and second rows correspond to the first and second PCs of the nonregularized logistic
PCA. The third and fourth rows correspond to the first and second PCs of the regularized
logistic PCA.
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CHAPTER III

LATENT VARIABLE MODEL FOR BINARY PRINCIPAL COMPONENTS

ANALYSIS

In this chapter, we develop principal components analysis for binary variable data with

latent variable models. The sparse solutions of principal component loadings are sought

with the regularized maximum marginal likelihood estimation. The benefit from the reg-

ularization method in binary principal components analysis is that the derived principal

component loadings have an easy interpretation and lead to better feature extraction. Since

the EM formulation of latent variable model is intractable,we develop its variational ap-

proximation. Possible missing cases are considered and we provide their treatment. We

also incorporate the situation where binomial and normal variables appear simultaneously

with binary variables in the data and provide the unified algorithm in such case. The per-

formance of regularization is tested using synthetic and a real-world dataset and compared

with results without regularization.

3.1 Introduction

Principal components analysis is the best known and widely used technique for multivariate

analysis. The central idea of principal components analysis is to reduce the dimensionality

of a dataset in which there are a large number of interrelatedvariables, while retaining as

much as possible of the variation present in the dataset (Jolliffe, 2004). Its applications

include exploratory data analysis, visualization, denoising and feature selections (Hastie

et al., 2001; Bishop, 2006).

In the real-valued variables, the derivations and properties of principal components

are based on the eigen-structure of the covariance matrix. Principal components are com-
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monly defined asxi = WT (yi − µ) whereW = (w̃1, · · · , w̃k) hask columns as the

first k eigenvectors of the covariance matrix, called principal component loadings or di-

rections, andµ is mean vector as an intercept term. If we use the firstk eigenvectors for

W, then the new expressionθi = µ + Wxi = µ + xi1w̃1 + · · · + xikw̃k can be viewed

as the orthogonal projection ofyi onto thek-dimensional subspace in which the projected

points retain the maximal variability of the data points in the original space. This implies

that variabilities along the orthogonal direction to this subspace are minimized. Therefore,

such principal subspace can be found, without relying on theeigen-structure of covariance

matrix, by directly looking for the subspace spanned byW and translated by the intercept

µ. ComponentsW andµ may be derived by minimizing
∑n

i=1 ||yi− (µ + Wxi)||2. Such

minimization criterion is equivalent to maximizing Gaussian likelihood with an isotropic

covariance (identity covariance matrix) and meanθi lying on thek-dimensional subspace.

This probabilistic interpretation motivates the model-based principal components analy-

sis (Bishop and Tipping, 1998; Tipping and Bishop, 1999). This model-based approach

for PCA, however, has a limitation. While estimate ofW from the maximum Gaussian

likelihood correctly find the principal subspace, its columns are not identical to the first

k eigenvectors of covariance matrix because the estimate is subject to a rotation, as com-

monly appeared in factor analysis.

This model-based approach of PCA can be generalized to special types of data other

than real-valued variables. Considering data types, we candeploy the distribution conform-

ing such variables. For example, one may use Bernoulli distribution for binary variables

and binomial or Poisson for count data. Generally, any exponential family distribution can

be substituted instead of Gaussian distribution, and corresponding canonical parameters,

mean parameters in Gaussian distribution case, are assumedto reside in thek-dimensional

subspace embedded in the originald-dimensional space. Collins et al. (2001) studied a gen-

eralization of PCA to the exponential distribution in this direction and, in their approach,
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principal components are treated as a fixed parameters as well as principal component load-

ings. This approach has a drawback that the number of parameters to be estimated becomes

large so the parameter estimation suffers from over-fittingin the modeling sense.

In this chapter, we develop PCA for binary variables in the latent variable model

approach using Bernoulli distribution. In order to reduce the number of parameters we

treat the principal components as random variables, serving latent variables in the model.

Therefore, the intercept term and principal component loadings are estimated as unknown

parameters, and principal component scores are predicted as the conditional expectation

given binary variable data. The resulting model becomes a generalized linear mixed effect

model, which has been widely studied in statistics. It is well known that the marginal like-

lihood, by integrating out the latent variables, does not have a closed-form expression in a

generalized linear mixed effect model, so the approximation technique is necessary for its

implementation. We employ the variational method to approximate the marginal likelihood

in which the estimation procedure gives a closed-form solution in EM framework and its

resulting form becomes a weighted least squares solution.

Although our interest is mainly on binary data, we also consider other types of vari-

ables, binomial and normal variables, in the PCA model and weprovide a unified estima-

tion procedure in the case where binary, binomial and normalvariables appear together in

a single dataset. Incorporating various type variables in the latent variable model has been

studied in generalized latent trait models (Moustaki and Knott, 2000; Huber et al., 2004).

However, existing methodologies to estimate parameters are not satisfactory when we ana-

lyze a high dimensional dataset because their techniques toapproximating likelihood func-

tion are not computationally feasible in the high dimensional situation. Comparing such

methodologies, our proposed algorithm using variational method can be successfully ap-

plied to analyzing high dimensional dataset.

While principal components analysis has been proved to be useful in many appli-
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cations, its interpretation of principal component loadings is often difficult since lots of

nonzero loadings are involved. So we deployL1 regularization to force negligible nonzero

loadings to be zero so that the derived principal component loadings have simple struc-

ture. It is well known that bias introduced by the regularization will reduce the variance of

estimates so that the performance of prediction is improvedand estimates becomes more

stable. A model-based approach is not free from the model identifiability due to loading

rotation, as in the model-based standard PCA and factor model. Another benefit fromL1

regularization is that the model does not suffer from loading rotation so that the estimated

principal component loadings are close to the true principal component loadings, as will be

shown in simulation study.

3.2 PCA Model for Binary Variables with Regularization

3.2.1 Latent variable model

Suppose we haved-dimensional binary response vectory = (y1, · · · , yd)
T . Natural distri-

bution assumption of binary variables is Bernoulli distribution with success probabilities,

πj (j = 1, . . . , d). We modelπjs in the logit scale, which are often called canonical param-

eters, denoted by thed-dimensional vectorθ = (θ1, . . . , θd)
T with θj = log{πj/(1− πj)}.

This canonical parameterθ is modeled as a linear combination of basis vectors,w̃1, . . . , w̃k

and the intercept termµ, giving

θ = µ + x1w̃1 + · · ·+ xkw̃k = µ + Wx (3.1)

with x = (x1, . . . , xk)
T andW = (w̃1, . . . , w̃k). A set ofk basis vectors̃w1, . . . , w̃k are

called principal components. These basis vectors are commonly assumed to be orthogonal

in standard principal components analysis, however, we will relax the orthogonal constraint

later since regularization on principal component loadings makes the orthogonal constraint
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inappropriate. The coefficientsx1, . . . , xk in the model (3.1) are called principal compo-

nent scores, which are treated as random variables in this model. The latent variablex is

assumed to be normally distributed with the zero mean and theidentity covariance matrix,

as in probabilistic principal components analysis for continuous variables (Tipping and

Bishop, 1999). Therefore, variabilities of binary variable y are modeled in the canonical

parameter space andk principal components represent the mode of variabilities.With the

Gaussianity assumption onx, the model (3.1) is known as generalized linear mixed effect

model, which is widely considered and extensively studied in statistics area (McCulloch

and Searle, 2001).

Tipping (1999) used the same probabilistic model for visualization of binary data only

in the 2-dimensional representation for visualization purpose. In this study we generalize it

tok-component representation and discuss the selection of thenumber of components in the

subsequent arguments. Most model-based approaches for principal components analysis

have a limitation that the proposed model is not identifiabledue to the rotation of principal

component loading matrixW and, thus, resulting solution under the model suffers from

such rotational indeterminacy. In order to look at this aspect, consider any orthogonal or

rotation matrixH satisfyingHTH = HHT = Ik. Then from model (3.1),

µ + Wx = µ + WHTHx = µ + W∗x∗

with W∗ = WHT andx∗ = Hx. From the assumptionx ∼ N(0, Ik), it follows thatx∗ =

Hx ∼ N(0, Ik). Therefore, two different model parametersW andW∗ lead to the same

model so the proposed model (3.1) is not identifiable. The same problem also commonly

appears in factor model. In order to make the model identifiable, it is necessary to impose

some restriction on the form of estimate ofW. For the principal components analysis, the

orthogonality constraint on principal components is desirable. In factor analysis, the “best”

of these rotated solutions is chosen according to some particular criterion, such as varimax
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or oblique rotation. These selection procedures are usually conducted after parameters

are estimated. In this sense, orthogonalization and factorrotation form a post-processing,

which is done outside the estimation procedure. Later, we introduceL1 regularization in the

estimation procedure and it turns out that the estimate of parameters is uniquely determined

up to sign change during the estimation step.

Since the given model involves the latent variables, log likelihood is obtained by inte-

grating out the joint distribution over the latent variables. Suppose we haven independent

d-dimensional binary vectors,y1, . . . ,yn. The log likelihood is written as

ℓ(Θ) =
n∑

i=1

log

∫
P (yi,xi; µ,W)dxi

=
n∑

i=1

log

∫ d∏

j=1

P (yij|xi; µ,W)P (xi)dxi

(3.2)

whereΘ denotes all parameters,µ andW, collectively,P (yij|xi; µ,W) is the probability

mass function of Bernoulli distribution with the success probability exp(µ + Wxi)/{1 +

exp(µ + Wxi)} andP (xi) is the density ofk-variate standard Gaussian distribution. This

log likelihood does not have a closed-form expression, which motivates to use the approx-

imation techniques for estimation procedure.

3.2.2 L1 regularization

The interpretation of principal component loadings is not an easy task because there are

usually lots of nonzero loadings involved. In the standard principal components analysis,

there have been several attempts to make the principal component loadings have the sparse

structure by regularization for the simple interpretation(Jolliffe et al., 2003; Zou et al.,

2006; Shen and Huang, 2008). To this end, for binary data we propose to imposeL1

penalty on the principal component loading estimation.L1 regularization technique has

been widely studied and used, especially in regression-type problems, not only for the

simple structure of parameter estimation, also for better prediction by reducing the variance
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of estimates. In binary PCA model,L1 penalty is employed to the log likelihood function,

whose form is

P (W) = η1||w̃1||1 + · · ·+ ηk||w̃k||1

= η1

d∑

j=1

|wj1|+ · · ·+ ηk

d∑

j=1

|wjk| (3.3)

where positive valuesη1, . . . , ηk are the regularization parameters controlling the model

complexity.L1 penalty is applied to columns ofW, principal components, one by one. If

regularization parameter gets larger the model becomes simpler by giving the small number

of nonzero loadings, while fit to the data becomes worse due tothe bias from the rigid

model structure. If regularization parameter is set to zero, parameter estimates are in a free

form so that the typical maximum likelihood estimators are retained.

SinceL1 penalty applies to each principal component loading, we should optimize all

regularization parametersη1, . . . , ηk for model selection. This is an unattractive aspect in

implementation because the grid search requires considerable computing time. Instead of

considering separate regularization parameters, we propose to use a single regularization

parameterη1 = · · · = ηk = η for the computational efficiency. Therefore,k principal com-

ponent loadings are regulated by a single parameterη. Beside the computational economy,

another benefit from using a single regularization parameter is that this lenders an auto-

matic procedure to select the number of principal components. Since the same amount of

penalization is applied to all principal component loadings, all loading values of negligible

principal component are shut down to zero but important component still remain to have

nonzero loadings.

By invoking L1 regularization, therefore, the objective function to be maximized is

the penalized log likelihood function given as

ℓp(Θ) = ℓ(Θ)− nP (W). (3.4)
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Therefore maximum penalized likelihood estimates will be derived under the balance be-

tween the maximal model fit to data and the simple structure onprincipal component load-

ings.

Another important feature ofL1 regularization is that the penalty function (3.3) is not

invariant under rotation. In other words,P (WHT ) 6= P (W) for any rotation matrixH

except for a permutation matrix. This explains the solutionof the model (3.1) withL1

regularization is unique without indeterminacy from the rotation. The penalty function

(3.3) can be rearranged as

P (W) = η
k∑

m=1

|w1m|+ · · ·+ η
k∑

m=1

|wdm|

using a single regularization parameter. Each component
∑k

m=1 |wjm| in the right-hand

side is the sum of the absolute values ofk principal component loadings of thejth vari-

able, which is corresponding to thejth row ofW. In geometrical sense, whenk principal

component loadings for thejth variable is depicted as a point in thek dimensional space,

this can be interpreted a sum of the distances ofk axes from that point. Since, among many

rotated candidates,L1 regularization prefers one that gives the minimum distances from

axes, lots of loadings of such solution are close to axes and small number of loadings have

large values, as illustrated in Figure 13. This is the similar strategy as varimax rotation

criterion in factor analysis (Kaiser, 1958). Varimax rotation chooses a principal component

loading matrixW which maximizes

Q =
k∑

m=1

[ d∑

j=1

w4
jm −

1

d

( d∑

j=1

w2
jm

)2]
. (3.5)

This provides axes with a few large loadings and as many near-zero loadings as possi-

ble. Although varimax uses a different criterion that the solution is chosen to maximize

the sum of variances of squared loadings for each rotated factor, its effect is similar with

minimizing L1 penalty. Therefore, we expect thatL1 regularization leads to the estimate
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similar to that of varimax criterion. However, contrast to varimax criterion, the solution

from L1 penalization has lots of exact zero loadings. And, moreover, L1 penalized solution

is automatically sought during the estimation procedure, not in post-processing step after

finishing the estimation. OnceW is estimated by maximizing the penalized log likelihood,

we reorder columns ofW by their magnitudes. This will determine the estimate of prin-

cipal component loadings uniquely up to only sign change, which do not have a practical

importance.
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Figure 13: Illustrative example for principal component rotation. PC loadings appearing
in the left panel shows the smallerL1 penalty than those in the right panel. One of two
principal component loadings can be derived by rotating theother, so that the likelihoods
from two principal component loadings are the same.
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3.3 Variational Learning Algorithm

In this section, we formulate the variational learning algorithm for the latent variable model

for the binary principal components analysis.

3.3.1 Classical EM formulation

Since the model includes latent variables and marginal log likelihood is computationally

intractable, the EM algorithm may be useful for parameter estimation. Regarding latent

variablesxi as missing variables, the complete log likelihood becomes

ℓc(Θ) =
n∑

i=1

log P (yi,xi;Θ) =
n∑

i=1

{ d∑

j=1

log P (yij|xi; µ,W) + log P (xi)
}

Maximizing the conditional expectation of the complete loglikelihood,

Q(Θ|Θ0) = E[ℓc(Θ)|Y;Θ0], increases log likelihood function sequentially. Here thecon-

ditional expectation is conducted over the latent variablesxi conditionally on the observed

dataY with the previous estimateΘ0. Therefore, the maximum penalized likelihood esti-

mator is attained by maximizing the surrogate function

Qp(Θ|Θ0) = Q(Θ|Θ0)− nP (W)

sequentially.

Main difficulty in applying the EM algorithm is that the configuration of the condi-

tional distribution ofxi given the datayi is computationally infeasible, so the conditional

expectationQ(Θ|Θ0) is not available. To approximate the E-step, some numericalapproxi-

mation techniques, such as Gauss-Hermite quadrature or Monte-Carlo EM, have been used

in similar latent variable models (Samel et al., 1997; Moustaki and Knott, 2000). Such

approximation approaches are computationally infeasiblein the high dimensional setup.

Instead we propose to use the variational method to approximate the marginal likelihood,

which enables us to enjoy the closed-form expression in the EM algorithm.



65

3.3.2 Variational lower bound to the marginal likelihood

The motivation of the variational method is to substitute convenient surrogate for com-

plicated marginal likelihood. Such surrogate function maynot be precise, but its form is

computationally convenient. Jaakkola and Jordan (1997, 2000) introduced a variational

method to approximate the predictive distribution in a Bayesian logistic regression model

and Tipping (1999) applied it to approximate the marginal distribution in the visualization

of binary data.

From (1.9) in Section I, the conditional distribution ofyij givenxi, P (yij|xi; µ,W),

can be approximated by

P̃ (yij|xi; µ,W, ξij) = π(ξij) exp
[
{(2yij − 1)θij − ξij}/2− λ(ξij)(θ

2
ij − ξ2

ij)
]
(3.6)

whereθij = µj +wT
j xi is thejth component ofθi = µ+Wxi andwj is thejth row ofW,

andλ(x) = {π(x) − 1/2}/2x (Jaakkola and Jordan, 1997, 2000; Tipping, 1999). Extra

parametersξijs are called variational parameters. This approximation (3.6) serves as a

lower bound of the conditional distribution so thatP (yij|xi; µ,W) ≥ P̃ (yij|xi; µ,W, ξij).

This bound is exact whenξij = (2yij − 1)θij. When we put this variational lower bound of

the conditional distribution in the likelihood, we have a lower bound for the log likelihood

(3.2) by

ℓ̃(Θ, ξ) =

n∑

i=1

log

∫ d∏

j=1

P̃ (yij|xi; µ,W, ξij)P (xi)dxi, (3.7)

satisfyingℓ(Θ) ≥ ℓ̃(Θ, ξ). Since the exponential in (3.6) is quadratic inxi, the integral

in (3.7), then, can be computed in the closed form. This suggests the surrogate function

maximization in the iterative manner. To do this, first we optimizeξ to achieve the closest

approximation ofℓ(Θ) by ℓ̃(Θ, ξ̂), then we maximizẽℓ(Θ, ξ̂) over model parametersΘ.
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3.3.3 Variational approximation to the conditional distribution ofxi givenyi

The maximization of (3.7) is still difficult since the maximization is not in the convex opti-

mization. To relax such complexity, the EM algorithm can be applied to the maximization

of (3.7), which requires to compute the conditional expectation of (3.7) given the observed

dataY. This conditional expectation of̃ℓ, denoted byQ̃ here, involves only first two mo-

ment ofxi|yi. However, their exact computations are complicated, so we approximate the

conditional distribution ofxi given yi by using (3.6). It should be noted that the lower

bound (3.6) is not a proper distribution since it is not normalized. After normalization, the

lower bound becomes a Gaussian distribution which we call the variational approximated

conditional distribution ofyij givenxi.

From (3.6), the log of the variational approximated conditional distribution ofyij|xi is

log P̃ (yij|xi; ξij) = log π(ξij) +
(2yij − 1)(µj + wT

j xi)− ξij

2

−λ(ξij)
{
µ2

j − 2µjw
T
j xi + xT

i wjw
T
j xi − ξ2

ij

}
.

By using the conditional independence assumption, we get

log P̃ (yi|xi; ξi) =

d∑

j=1

log P̃ (yij|xi; ξij)

= −1

2
xT

i

{
2

d∑

j=1

λ(ξij)wjw
T
j

}
xi +

d∑

j=1

{
yij − 1/2− 2µjλ(ξij)

}
wT

j xi

+

d∑

j=1

{
log π(ξij) +

(2yij − 1)− ξij

2
− λ(ξij)(µ

2
j0ξ

2
ij)

}
.
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Thus, the log of the joint distribution ofyi andxi is given by

log P̃ (yi,xi; ξi) = log P̃ (yi|xi; ξi) + log P (xi)

= −1

2
xT

i

{
Ik + 2

d∑

j=1

λ(ξij)wjw
T
j

}
xi +

d∑

j=1

{
yij − 1/2− 2µjλ(ξij)

}
wT

j xi

+

d∑

j=1

(yij − 1/2)µj +

d∑

j=1

{
log π(ξij)− ξij/2− λ(ξij)(µ

2
j − ξ2

ij)
}
− k

2
log 2π

= −1

2
(xi −mi)

TC−1
i (xi −mi) +

1

2
mT

i S−1
i mi +

d∑

j=1

(yij − 1/2)µj

+

d∑

j=1

{
log π(ξij)− ξij/2− λ(ξij)(µ

2
j − ξ2

ij)
}
− k

2
log 2π.

Therefore, with this variational approximation and Bayes’rule, the approximation ofP (xi|yi)

is a Gaussian distribution with meanmi and covarianceCi where

Ci =

[
Ik + 2

d∑

j=1

λ(ξij)wjw
T
j

]−1

mi = Ci

[ d∑

j=1

{
yij −

1

2
− 2λ(ξij)µj

}
wj

]
.

Using the above, we can compute the first two moments of the conditional distribution of

xi|yi as

〈xi〉 = E(xi|yi) = mi

〈xix
T
i 〉 = E(xix

T
i |yi) = Ci + mim

T
i

(3.8)

which will be used in the E-step of the EM algorithm.

3.3.4 Variational approximation to the penalty function

While L1 regularization has good properties discussed in the previous section, its penalty

function is non-differentiable so the optimization is somewhat computationally challeng-

ing. Tibshirani (1996) proposed to use quadratic programming in the seminal paper onL1
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regularization. And LARS algorithm is known to solveL1 regularization problem in the

regression setting (Efron et al., 2004). In this study, we propose an analytic algorithm for

L1 penalty function, which is compatible with the variationalmethod.

From the inequality,|x| ≤ (x2 + y2)/2|y|, the penalty function (3.3) has a quadratic

upper bound as

P̃ (W, ζ) = η
d∑

j=1

k∑

m=1

w2
jm + ζ2

jm

2|ζjm|
=

d∑

j=1

(
wT

j Ωjwj + ζT
j Ωjζj

)
(3.9)

whereΩj = diag(η/2|ζjm|)m=1,...,k. Here additional parametersζjm are variational pa-

rameters and the upper bound is exact whenζjm = wjm. This quadratic upper bound for

penalty function can be combined nicely with the maximization of (3.7) in the estimation

procedure.

3.3.5 Estimation algorithm

Using variational quadratic bounds given in (3.7) and (3.9), the variational lower bound of

the penalized log likelihood (3.4) becomes

ℓ̃p(Θ, ξ, ζ) = ℓ̃(Θ, ξ)− nP̃ (W, ζ).

This is maximized by employing the EM algorithm. In the E-step, the conditional expecta-

tion of ℓ̃p(Θ, ξ, ζ) becomes

Q̃p(Θ|Θ0) = E
[
ℓ̃(Θ, ξ)|Y,Θ0

]
− nP̃ (W, ζ)

=
n∑

i=1

[ d∑

j=1

{
log π(ξij) +

(2yij − 1)(wT
j 〈xi〉+ µj)− ξij

2

−λ(ξij)(w
T
j 〈xix

T
i 〉wj + 2µj〈xi〉Twj + µ2

j − ξ2
ij)

}
− k

2
log 2π − 1

2
〈xT

i xi〉
]

−n
d∑

j=1

{
wT

j Ωjwj + ζT
j Ωjζj

}
. (3.10)
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Before optimizing model parameters, we first optimize variational parametersξ andζ to

make the bound tight. Taking the derivative ofQ̃p with respect toξij and setting it to zero

leads to

∂Q̃p

∂ξij

=
π′(ξij)

π(ξij)
− 1

2
− λ′(ξij)

(
wT

j 〈xix
T
i 〉wj + 2µj〈xi〉Twj + µ2

j − ξ2
ij

)
+ 2λ(ξij)ξij

= −λ′(ξij)
(
wT

j 〈xix
T
i 〉wj + 2µj〈xi〉Twj + µ2

j − ξ2
ij

)

= 0

where we usedπ′(ξij) = π(ξij){1− π(ξij)} andλ(ξij) = {π(ξij)− 1/2}/2ξij. Sinceλ(·)

is symmetric about zero and is monotonically decreasing over the positive domain,λ′(ξij)

cannot be zero in the positive domain, so the maximum is obtained at

ξ̂ij =
√

wT
j 〈xix

T
i 〉wj + 2µj〈xi〉Twj + µ2

j .

Similarly, for another variational parameterηjm,

∂Q̃p

∂ζjm
=

η · sgn(ζjm)

2ζ2
jm

(
ζ2
im − w2

jm

)
= 0

which givesζ̂jm = |wjm|. Onceξ̂ij and ζ̂jm are optimized, we compute conditional ex-

pectations〈xi〉 and〈xix
T
i 〉 using the formulae in (3.8) with the previous estimates and the

optimized variational parameters. Then, we update the parameters by maximizing̃Qp. This

gives update formulae as

µ̂j =
n∑

i=1

{
2yij − 1

4
− λ(ξij)〈xi〉Twj

}/ n∑

i=1

λ(ξij),

ŵj =

[ n∑

i=1

λ(ξij)〈xix
T
i 〉+ nΩj

]−1

·
n∑

i=1

{
2yij − 1

4
− µjλ(ξij)

}
〈xi〉.

Estimation details are almost the same as in Tipping (1999),except that the solution̂wj in-

cludes the ridge-type penalty term inside the matrix inverse. Thus, non-differentiable prob-

lem ofL1 regularization turns into an analyticL2 regularization with variational method.
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3.4 Implementation Issues

3.4.1 Model selection

In the proposed model, model selection procedure involves two selection problems. One

is the selection of the subspace dimensionalityk and the other is the selection of the reg-

ularization parameterη. As a usual model selection, typical model selection criteria, such

as AIC or BIC, may be used by adding the penalty to the negativetwice log likelihood. In

binary variables, however, the exact evaluation of log likelihood is not readily available.

We would approximate the log likelihood by Monte-Carlo sampling approximation as

ℓa(Θ) =
N∑

i=1

log

{
1

B

B∑

b=1

d∏

j=1

P (yij|xb, µ,W)

}

wherexb, b = 1, · · · , B, are samples from thek-variate standard Gaussian distribution.

We usedB = 1000 in the following simulation studies and real data analysis.Both of AIC

and BIC work well in large sample situation, but we observed that their performance is not

satisfactory when the dimension is larger than or comparable to the sample size.

For the selection ofη in high dimensional dataset, thus, we propose to use the corrected

BIC defined as

BIC(η) = −2ℓ(Θ) + log n× |B(η)|

where |B(η)| is the number of nonzeros in whole parameter set. Therefore,we choose

the optimalη which achieves the minimum ofBIC(η). For the selection of the subspace

dimensionality, we first set a tentatively largek so that important principal components are

not lost. One may use standard AIC for this since it usually chooses a conservative one.

But the extra AIC procedure only for a tentativek is not very attractive computationally,

so we suggest to usek ≈ d/5 but it depends on specific situation. With this tentative

k, we chooseη using the corrected BIC. If a small number of principal components are

important and remaining are negligible, all loadings associated with negligible principal
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components will be forced to be zeros so that the number of important components will

be automatically chosen by giving the number of principal components having nonzero

loadings. This heuristic approach has been successfully proven in the simulation study.

3.4.2 Missing treatment

For missing values, we can still use the EM algorithm for missing imputation. Suppose

(i, j)th binary variable,yij, is missing or unobservable. The conditional expectation of the

penalized complete log likelihood (3.10) given the observed dataY with current estimates

Θ, then, involvesE[yij|y∗
i ,Θ] wherey∗

i is the observed variables for theith individual

removing unobserved variables, sinceyi are assumed to be independent. Then it follows

〈yij〉 = E[yij|y∗
i ,Θ] = E

[
E[yij |xi,y

∗
i ,Θ]|y∗

i ,Θ
]

= E
[
E[yij |xi,Θ]|y∗

i ,Θ
]

= E[π(θij)|y∗
i ,Θ]

= E

[
exp(θij)

1 + exp(θij)

∣∣∣∣y
∗
i ,Θ

]
(3.11)

whereθij = µj + wT
j xi, and the third equality comes from the fact that all components of

binary vectoryi are independent conditionally onxi. Since (3.11) is not in a closed-form

expression, we may approximate it by the method introduced by Mackay (1992).

SupposeOi is the index set that contains thejs corresponding the observed datay∗
i .

Then, using Bayes’ theorem, the variational approximated conditional distribution ofxi|y∗
i

is Gaussian with meanm∗
i and covarianceC∗

i as

C∗
i =

[
Ik + 2

∑

j∈Oi

λ(ξij)wjw
T
j

]−1

m∗
i = C∗

i

[∑

j∈Oi

{
yij −

1

2
− 2λ(ξij)µj

}
wj

]
.

Thus,θij = µj + wT
j xi is distributed normally with meanνij = µj + wT

j m∗
i and variance

γij = wT
j C∗

i wj. Mackay (1992) used the approximation thatexp(θij)/{1 + exp(θij)} ≈
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Φ(θij ×
√

π/8) whereΦ(·) is the cumulative standard Gaussian distribution function.

Therefore the expression (3.11) can be approximated by

E

[
exp(θij)

1 + exp(θij)

∣∣∣∣y
∗
i ,Θ

]
≈ E

[
Φ(θij

√
π/8)|y∗

i ,Θ
]

= Φ

(
µj + wT

j m∗
i√

wT
j C∗

i wj + 8/π

)
.

3.5 Simulation Study

In this section, we evaluate binary PCA with latent variablemodel and its variational learn-

ing algorithm on two synthetic data sets constructed using latent variable model. The ad-

vantage of simulation study is that the true model as well as the true principal component

loadings are known.

3.5.1 Simulation 1 : Synthetic binary images

The binary image datasets used in this experiment are generated by the latent variable

model with4 components. Each principal component loading pattern is associated with an

8×8 image pattern shown in (a) of Figure 14. All nonzero loadingsare given by value1, so

that the magnitude of principal component is proportional to the number of nonzero spots.

Using these components,100 binary images are created using the latent variable model and

used in analysis. Some examples of binary image data are presented in Figure 14(b).

In order to assess the performance of the regularization, wecompare the results from

the PCA with regularization and those without regularization. Since we know the true

number of components we set the dimensionality of the subspacek by 4, the true subspace

dimensionality, in this simulation.

Figure 15 shows the principal component loadings derived bythe proposed algorithm

with/without regularization. It is clear that the regularization greatly helps to construct

loading patterns almost correctly. The derived principal loadings without regularization

seem to also capture the original loading patterns but several patterns tend to appear to-



73

(a) (b)

Figure 14: Model reconstruction experiment 1. (a) Patternsassociated with 4 principal
component loadings used in the simulation. Red pixels denote nonzero loadings (b) Some
binary images generated by the latent variable model with 4 components corresponding to
patterns in (a) with zero background (white) and one foreground (red).

gether in a single principal component. This illustrates the estimated principal components

suffer from the rotation indeterminacy. Comparing to the unregularized learning, it is ap-

parent that each original loading pattern appears solely ina single principal component.

3.5.2 Simulation 2

In this experiment, we conduct the comparison in more systematical manner between PCA

results with and without regularization.100 binary data sets are generated from the latent

variable models with4 principal components in two different scenarios,(n, d) = (200, 50)

and(100, 200), each of which mimics the large and low sample size situation. The orig-

inal principal components are constructed in the sparse structure. Each principal com-

ponent has all zero loadings except for the first10 variables so that the first principal

component has the same sized nonzero loading for the first10 variables, and the second

principal component has nonzero loading for the next10 variables, and so on. There-

fore, all loadingwjm are set to be zero except for(j, m) = (1, 1), · · · , (1, 10), (2, 11),
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(a) (b)

Figure 15: The derived principal component loading patterns (a) without regularization and
(b) with regularization. Red and blue pixels stand for the positive and negative loadings
respectively, and intensities are proportional to the magnitude of loadings. Zero loading is
coded by white color.

· · · , (2, 20), (3, 21), · · · , (3, 30), (4, 31), · · · , (4, 40). Each column ofW, principal com-

ponent, has the same-sized nonzero loadings and the magnitude of4 principal components

is set by(40, 30, 20, 10) for (n, d) = (200, 50) and(80, 60, 40, 20) for (n, d) = (100, 200)

considering relative sample sizes. Therefore, when the dimensiond = 50, the first40(=

80%) variables are effective to give the variability of binary variables and10(= 20%) vari-

ables do not affect the data variability. And ind = 200 case,160(= 75%) of 200 variables

are unnecessary in explaining the variability. The intercept or shift parameterµ is set by

zero in this simulation.

In the real world, the original subspace dimensionalityk is mostly unknown. So we

conduct the model selection procedure to findk automatically as well as we present the

result whenk is known. And we also apply the proposed method to the same simulated

data set with10% randomly selected missing variables.

To assess the performance of the proposed methods, we compute and present the prin-

cipal angle between spaces spanned by the original principal components and their esti-
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Table 5: The results of binary PCA using 100 binary datasets consisting of100 samples.
Medians over 100 quantities are presented for each case. Thedescription of this result is in
the text.

k is known k is unknown

(n, d) Missing angle correct incorrect angle correct incorrect

Regularization (◦) (%) (%) (◦) (%) (%)

(200, 50) missing=0%
nonregularized 14.01 100.00 100.00 13.30 100.00 100.00

regularized 6.31 100.00 90.00 6.66 100.00 86.67

missing=10%
nonregularized 16.18 100.00 100.00 15.39 100.00 100.00

regularized 6.12 100.00 90.00 7.22 100.00 80.00

(100, 200) missing=0%
nonregularized 19.82 100.00 100.00 29.58 100.00 100.00

regularized 4.28 100.00 29.38 4.01 100.00 15.00

missing=10%
nonregularized 25.92 100.00 100.00 29.43 100.00 100.00

regularized 5.20 100.00 32.50 5.58 100.00 8.75

mates. This principal angle is computed bycos−1(ρ) × 180/π whereρ is the minimum

eigenvalue of matrixQT
1 Q2 with orthogonal matricesQ1 andQ2 from the QR decomposi-

tion of the original principal component loading matrixW and its estimatêW respectively.

This quantity measures the maximum angle between any two vectors on column spaces of

W andŴ (Golub and van Loan, 1996). Results are summarized in Table 5presenting

median value from100 simulations.

It is apparent that the regularization greatly improves model assessment by finding the

model that is much closer to the original model in all scenario. This result is expected be-

cause true zero loadings are usually estimated as nonzeros without regularization so that the

subspace spanned by the derived non-sparse principal components becomes disturbed by

such falsely detected nonzero variables. This disturbancewill disappear when the original

nonzero loadings are set to be zero correctly, as shown in theresult with regularization. It

is also interesting to note that the model with regularization shows the quite similar perfor-

mances regardless of knowing the original subspace dimensionality. However, the model
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assessment without regularization performs differently depending on whetherk is known

in advance or not, especially when the dimension is larger than the sample size. This illus-

trates that the regularized binary PCA model gives stable results even when we are not able

to guess the true subspace dimensionalitya priori.

We also present the percentage of the correctly and incorrectly identified nonzero load-

ings selected from the learning in Table 5. Without regularization, all loadings are estimated

as nonzero, so that all true nonzero loadings are selected asnonzero correctly but also all

zero loading variables are falsely detected as nonzero. Regularization, however, tends to

force negligible loadings to zero while true nonzero variables remain in the model assess-

ment. This aspect becomes remarkably apparent in high dimensional situation as presented

in Table 5. And the performance of the proposed model and its estimation is still the same

even in the situation where10% binary variables are missing at random.

Table 6 shows the frequencies of the selected subspace dimensionalityk among100

simulation data sets when the originalk is not known in advance. Most cases tend to find

the original subspace dimensionality correctly, but it is noticed that some simulations select

smallerk when(n, d) = (100, 200) with 10% missingness. This phenomena may be ex-

plained that some missing binary variables associated withnonzero loading may seriously

affect the model assessment so that corresponding important principal components become

less important in the learning result.

Table 6: The frequencies of the selected subspace dimensions from 100 simulation data
sets.

Selected dimension

(n, d) Missing rate 3 4 5

(200, 50) 0% 0 98 2
10% 0 100 0

(100, 200) 0% 1 99 0
10% 14 86 0
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3.6 Handwritten Digits Data Application

Our real-world example to which we apply the proposed PCA model is the handwritten

digits data that come from the ZIP code on envelopes from U.S.Postal mail. Each image

is a segment from a five digit ZIP code, isolating a single digit. The original scanned digits

are binary and of different size and orientations. After deslanting and size-normalizeing,

16 × 16 images are obtained with gray scales ranging from−1 to 1 (Hastie et al., 2001).

However, in order to get binary data, the values less than0 is coded by1 and others by0

in this analysis. The dataset consists of500 ∼ 1, 200 images for each digit from0 to 9, but

in this analysis we use556 images of digit5. Therefore the sample size isn = 556 and

the dimension isd = 16 × 16 = 256. We apply the proposed algorithm to this dataset to

identify the variabilities among binary images.

Figure 16 presents the first4 principal components derived from the latent variable

model for binary principal components analysis with and without regularization. To ease

the interpretation and visualization, we depict the derived loadings in the original image

format with color codings as blue and red representing the positive and negative loadings

respectively and zero loadings are coded by white color. Their intensities of color are pro-

portional to the magnitude of loadings. Apparently, principal components from learning

with regularization show that lots of pixels (or loadings) are estimated as zero. This is con-

trasted to the estimated principal components without regularization, all of whose loading

values are estimated nonzero. More importantly, each component from regularized PCA

clearly represents a specific mode of variabilities among binary images. For example, the

first component explains the variability of “roundedness” of tail part of digit so that obser-

vations with large value of the first principal component score will have “thin” tails and on

the other hand observations with small value of it will show “round” tails. This is clearly

observed in Figure 17(ab) where images with5 largest and smallest values of the first prin-
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cipal component score are presented. In the similar manner,other components may be

easily interpreted. The second component explains the variability in the “head” part of

digits, the third component presents the contrast of “tilt”of tails, and the fourth component

reflects the variability from “height” of digits. Such modesof variabilities may be observed

in the estimated principal components from the model without regularization, but disparate

variabilities seem to simultaneously appear in the single component so that interpretation is

less clear than in the regularized version. We cannot find such apparent contrasts when we

look at the images with large and small principal component scores from Figure 18. This

example illustrates how the regularization technique can help to improve the interpretability

of estimates from learning and detect intrinsic features among binary data.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 16: The derived PC loadings from handwritten digits data. (a)-(d) are the first4 PC
loadings estimated from the latent variable model for principal component analysis without
regularization. (e)-(h) are those with regularization.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 17: Binary digit images of digit5. (a) and (b) are images that have the first5 largest
and smallest value of the first principal component score from the regularized binary PCA.
Similarly, (c) and (d) corresponds for the second, (e) and (f) for the third, and (g) and (h)
for the fourth principal component score.

3.7 Combining Other-Type Data

In this section, we discuss the possibility that other type data, including normal and bino-

mial variables, can be combined with binary variables in principal components analysis.

Such attempts to combine disparate variables have been extensively investigated in psy-

chometrics area (Moustaki and Knott, 2000; Huber et al., 2004). We show normal and

binomial variables can be put together coherently into the unified estimation procedure

using the variational method.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 18: A counterpart of Figure 17 without regularization. Details are in Figure 17

3.7.1 Binomial variables

Supposeyij has binomial distribution with the number of binomial trialsNij and the success

probabilityπij = π(θij). Here, the canonical parameter,θij , is defined as a logit ofπij , as in

binary case, and is assumed to be a linear form of the latent variablexi asθij = µj +wT
j xi

wherexi is also assumed to be normally distributed with zero mean andidentity covariance

as usual.

Then, the log of the probability mass function ofyij given the latent variablexi is

written as

log P (yij|xi) = yij log π(θij) + (Nij − yij) log{1− π(θij)}+ log
(

Nij

yij

)
,

whereθij = µj + wT
j xi. Similarly in (3.6), usingπ(−θij) = 1− π(θij) and the variational
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lower bound

log π(θij) ≥ log π(ξij) +
θij − ξij

2
− λ(ξij)(θ

2
ij − ξ2

ij),

log π(−θij) ≥ log π(−ξij) +
ξij − θij

2
− λ(−ξij)(θ

2
ij − ξ2

ij),

we get the variational lower bound toP (yij|xi) as

P̃ (yij|xi, ξij) =

(
Nij

yij

)
π(ξij)

yijπ(−ξij)
Nij−yij

× exp
[
(2yij −Nij)(θij − ξij)/2−Nijλ(ξij)(θ

2
ij − ξ2

ij)
]
.

Here we usedλ(−x) = λ(x). This will reduce to binomial distributionB(Nij , π(θij))

whenξij = θij . It is interesting to note that (3.6) becomes a special case of the lower bound

for binomial likelihood withNij = 1, ignoring the constant term. Now using the above and

Bayes’ theorem, the conditional distribution ofxi|yi becomes a Gaussian distribution with

meanmi and covarianceCi as

Ci =

[
Ik + 2

d∑

j=1

Nijλ(ξij)wjw
T
j

]−1

mi = Ci

[ d∑

j=1

{
yij −

Nij

2
− 2Nijλ(ξij)µj

}
wj

]
.

Therefore the conditional expectations〈xi〉 and〈xix
T
i 〉 can be computed using (3.8) in the

same manner. With these expression, the conditional expectation of the penalized complete

log likelihood becomes

Q̃p(Θ|Θ0) =
n∑

i=1

[ d∑

j=1

{
yij log π(ξij) + (Nij − yij) log π(−ξij)

+
(2yij −Nij)(〈xi〉Twj + µj − ξij)

2

−Nijλ(ξij)(w
T
j 〈xix

T
i 〉wj + 2µj〈xi〉Twj + µ2

j − ξ2
ij)

}

−k

2
log 2π − 1

2
〈xT

i xi〉
]
− n

d∑

j=1

{
wT

j Ωjwj + ζT
j Ωiζj

}
.
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Taking the derivative of̃Qp with respect toξij and setting to zero gives

ξ̂ij =
√

wT
j 〈xix

T
i 〉wj + 2µj〈xi〉Twj + µ2

j

which is the same as in binary case. And the update formulae for location and principal

component parameters are given as

µ̂j =

n∑

i=1

{
2yij −Nij

4
−Nijλ(ξij)〈xi〉Twj

}/ n∑

i=1

Nijλ(ξij),

ŵj =

[ n∑

i=1

Nijλ(ξij)〈xix
T
i 〉+ nΩj

]−1

·
n∑

i=1

{
2yij −Nij

4
−Nijµjλ(ξij)

}
〈xi〉.

Whenyij is unobserved, we can address a similar missing treatment using the same

approximation to the inverse logit by the probit function. With adopting the same notations

as in Section 3.4.2, the conditional expectationyij|y∗
i ,Θ is given by

〈yij〉 = E[yij|y∗
i ,Θ] = NijE[π(θij)|y∗

i ,Θ] = NijE

[
exp(θij)

1 + exp(θij)

∣∣∣∣y
∗
i ,Θ

]

≈ NijΦ

(
µj + wT

j m∗
i√

wT
j C∗

i wj + 8/π

)
,

whereC∗
i =

[
Ik + 2

∑
j∈Oi

Nijλ(ξij)wjw
T
j

]−1
and m∗

i = C∗
i

[∑
j∈Oi

{
yij − Nij/2 −

2Nijλ(ξij)µj

}
wj

]
.

3.7.2 Normal variables

The standard principal components analysis for continuoustype variables or normal vari-

ables is modeled by the Gaussian distribution by Tipping andBishop (1999) in the name of

the probabilistic principal components analysis. Whenyij are normally distributed condi-

tionally onxi, e.g.,yi|xi ∼ N(µ +Wxi, σ
2Id), the conditional distribution ofyij givenxi

is quadratic in exponential, so that variational approximation is not needed. Using Bayes’

rule, the conditional distribution ofxi|yi becomes Gaussian with meanmi and covariance
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Ci as

Ci =

[
Ik +

1

σ2

d∑

j=1

wjw
T
j

]−1

mi = Ci

d∑

j=1

(yij − µj)wj/σ
2.

These are used, again, for computation〈xi〉 and〈xix
T
i 〉 as (3.8). In the E-step, the condi-

tional expectation of the penalized complete log likelihood follows

Qp(Θ|Θ0) = − 1

2σ2

[ n∑

i=1

d∑

j=1

{
wT

j 〈xix
T
i 〉wj − 2(yij − µj)〈xi〉Twj + (yij − µj)

2
}]

−1

2

n∑

i=1

〈xT
i xi〉 −

n(d + k)

2
log 2π − nd

2
log σ2

−n
d∑

j=1

{
wT

j Ωjwj + ζT
j Ωjζj

}
.

Contrast to binary case, there are no extra variational parameters, but we have another

parameterσ2 instead. The update formulae for parameters are given as

σ̂2 =
1

nd

n∑

i=1

(yi − µ−W〈xi〉)T (yi − µ−W〈xi〉),

µ̂j =
n∑

i=1

(yij − 〈xi〉Twj)/n,

ŵj =

[
1

2σ2

n∑

i=1

〈xix
T
i 〉+ nΩj

]−1

· 1

2σ2

n∑

i=1

(yij − µj)〈xi〉.

This derivation is exactly the same as the probabilistic model for principal components

analysis in Tipping and Bishop (1999). For the missing variableyij, it follows that

〈yij〉 = E[yij|y∗
i ,Θ] = E

[
E[yij|xi,Θ]

∣∣y∗
i ,Θ

]

= E[µj + wT
j xi|y∗

i ,Θ] = µj + wT
j m∗

i ,

and similarly,

〈y2
ij〉 = µ2

j + 2wT
j m∗

i + Tr(C∗
i + m∗

i m
∗T
i )

whereC∗
i =

[
Ik +

∑
j∈Oi

wjw
T
j /σ2

]−1
andm∗

i = Ci

∑
j∈Oi

(yij − µj)wj/σ
2.
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3.7.3 Composite case

Now we considery consisting of binary, binomial and normal variables simultaneously in

the same dataset. For a simple representation we define some notations in order to combine

three different types of variables. Let

φj =





1 Binary or Binomial

1
2σ2 Normal,

(3.12)

tij =





(2yij − 1)/4 Binary

(2yij −Nij)/4 Binomial

yij Normal

(3.13)

and

λij =





λ(ξij) Binary

Nijλ(ξij) Binomial

1 Normal.

(3.14)

Then, the update formulae forµj andwj turns into the unified forms:

µj =

n∑

i=1

(
tij − λij〈xi〉Twj

)/ n∑

i=1

λij (3.15)

wj =
(
Aj + nΩj

)−1
zj (3.16)

where

Aj = φj

n∑

i=1

λij〈xix
T
i 〉,

zj = φj

n∑

i=1

(
tij − λijµj

)
〈xi〉.
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And mean and covariance of the conditional distribution ofxi|yi can be written as

Ci =

[
Ik + 2

d∑

j=1

φjλijwjw
T
j

]−1

mi = Ci

[
2

d∑

j=1

{
tij − λijµj

}
φjwj

]

and the first two moments for the E-step of the EM algorithm canbe easily obtained using

them.

Now consider the case in that some elements of composite vector yi are missing.

Supposeyij is unobserved and it can be any type of binary, binomial or normal. Denote

the missing index set ofjs in theith individual byOi as in the previous arguments. Then

the conditional distribution ofxi|y∗
i ,Θ becomes a Gaussian distribution with meanm∗

i and

covarianceC∗
i given as

C∗
i =

[
Ik + 2

∑

j∈Oi

φjλijwjw
T
j

]−1

m∗
i = Ci

[
2

∑

j∈Oi

{
tij − λijµj

}
φjwj

]
.

And using them, the missing valuetij is imputed by the conditional expectation as

〈tij〉 =





(2〈yij〉 − 1)/4 Binary

(2〈yij〉 −Nij)/4 Binomial

〈yij〉 Normal

(3.17)

where the corresponding〈yij〉 for each variable type is given in the previous sections.
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CHAPTER IV

SUMMARY

In this dissertation, we develop principal components analysis for binary data and study its

performance with various scenarios, including simulationdatasets and real data examples.

Especially we pay an attention on the automatic variable selection in the high-dimensional

situation. To this end, we focus on the minimum error formulation of principal components

analysis for the normal variables and observe that minimizing the sum of errors between the

data points and their projections is equivalent to maximizing the Gaussian log likelihood.

This observation is generalized to the binary dataset with Bernoulli distribution. Bernoulli

likelihood is maximized in the low dimensional subspace of canonical parameter space. In

order to capture the features among high-dimensional variables, we introduceL1 penalty

on principal components so that only small portion of nonzero variable loadings appear

in resulting principal components. ThisL1 regularization turns out to improve in picking

out the meaningful variabilities among high dimensional variables throughout simulations

studies and real data applications, including binary imagedata, web advertisement data and

single nucleotide polymorphsm data.

In the estimation perspective, we approach maximization problem of the penalized

Bernoulli likelihood in two directions. In Chapter II, principal component scores are re-

garded as fixed parameters as in standard PCA problem. The maximum penalized likeli-

hood estimator is obtained by maximizing its surrogate function iteratively. Specifically,

this surrogate function is a quadratic lower bound which is easy to be optimized and gives

stable estimation procedure removing possible computational instabilities such as over-

shooting problem. This approach is known as Majorization orMM algorithm. In Chapter

II, we demonstrateL1 penalty can also be cast into quadratic lower bound maximization
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as well as log likelihood. And we prove the missing value treatment we propose here

can be viewed as another layer of majorization step. As another approach, Chapter III

deals with principal component scores as latent variables.One of nice features of this for-

mulation is that the number of parameters to be estimated becomes considerably smaller

than the approach in Chaper II. Latent variable model often uses EM algorithm for pa-

rameter estimation due to its latent variable nature. Problem is that E step is not in the

closed-form so numerical approximations is indispensable, for example, Gauss-Hermite

quadrature, Laplace approximation or Monte-Carlo EM, all of which are computationally

infeasible in high-dimensional binary data. Instead of such approximations for marginal

log likelihood, we propose to use variational method which gives quadratic lower bound

for the marginal log likelihood and stable algorithm for parameter estimation. Since the

negativeL1 penalty also has quadratic lower bound, two formulations are easily combined

in the algorithm.
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