
THE MODAL DISTRIBUTION METHOD: A NEW STATISTICAL

ALGORITHM FOR ANALYZING MEASURED RESPONSE

A Dissertation

by

MYOUNG KEUN CHOI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2009

Major Subject: Civil Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/4279359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


THE MODAL DISTRIBUTION METHOD: A NEW STATISTICAL

ALGORITHM FOR ANALYZING MEASURED RESPONSE

A Dissertation

by

MYOUNG KEUN CHOI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Bert Sweetman
Committee Members, Richard Mercier

Luciana Barroso
Ayal Anis

Head of Department, David Rosowsky

May 2009

Major Subject: Civil Engineering



iii

ABSTRACT

The Modal Distribution Method: A New Statistical Algorithm for Analyzing

Measured Response. (May 2009)

Myoung Keun Choi, B.S., Seoul National University;

M.S., Seoul National University

Chair of Advisory Committee: Dr. Bert Sweetman

A new statistical algorithm, the “modal distribution method”, is proposed to

statistically quantify the significance of changes in mean frequencies of individual

modal vibrations of measured structural response data. In this new method, a power

spectrum of measured structural response is interpreted as being a series of indepen-

dent modal responses, each of which is isolated over a frequency range and treated as

a statistical distribution. Pairs of corresponding individual modal distributions from

different segments are compared statistically.

The first version is the parametric MDM. This method is applicable to well-

separated modes having Gaussian shape. For application to situations in which the

signal is corrupted by noise, a new noise reduction methodology is developed and

implemented. Finally, a non-parametric version of the MDM based on the Central

Limit Theorem is proposed for application of MDM to general cases including closely

spaced peaks and high noise. Results from all three MDMs are compared through

application to simulated clean signals and the two extended MDMs are compared

through application to simulated noisy signals. As expected, the original paramet-

ric MDM is found to have the best performance if underlying requirements are met:

signals that are clean and have well-separated Gaussian mode shapes. In application

of nonparametric methods to Gaussian modes with high noise corruption, the noise
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reduction MDM is found to have lower probability of false alarms than the nonpara-

metric MDM, though the nonparametric is more efficient at detecting changes.

In closely related work, the Hermite moment model is extended to highly skewed

data. The aim is to enable transformation from non-Gaussian modes to Gaussian

modes, which would provide the possibility of applying parametric MDM to well-

separated non-Gaussian modes. A new methodology to combine statistical moments

using a histogram is also developed for reliable continuous monitoring by means of

MDM.

The MDM is a general statistical method. Because of its general nature, it may

find a broad variety of applications, but it seems particularly well suited to structural

health monitoring applications because only very limited knowledge of the excitation

is required, and significant changes in computed power spectra may indicate changes,

such as structural damage.
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CHAPTER I

INTRODUCTION

A new statistical method, called Modal Distribution Method (MDM), was developed

to compute the significance of changes in modal response frequencies, not the signif-

icance of structural damage. The present method monitors a global condition of the

system via various response time-histories, such as stress, strain, acceleration, and

displacement. The parametric MDM developed for well-separated Gaussian modal

distributions was extended for application to noise-corrupted modal distributions and

closely-spaced modes. A new noise reduction technique, a modified version of power

subtraction method, was implemented into the parametric MDM to detect changes

in modal frequencies corrupted by high noise levels, and the central limit theorem

was implemented to detect changes in severely corrupted modal distributions like

closely-spaced modes.

The application of the MDM to the non-Gaussian shape of modal distributions

requires transforming them into the Gaussian shape of modal distributions and using

a relatively powerful parametric statistical comparison. The Hermite moment model

was completed by overcoming its monotone limit to be used as the transformation.

In addition, the features representing all previous measurements can be combined

after those measurements have been determined to statistically be the same. The

MDM uses statistical moments of modal distributions as the features. The combined

statistical moments are believed to be more reliable features since they include more

data than the feature extracted from single measurement. More reliable continuous

monitoring is expected when the combined statistical moments are compared with

The journal model is IEEE Transactions on Automatic Control.
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the statistical moments of modal distributions extracted from the new measurement.

A new efficient statistical moment combination method applicable to the frequency

domain analysis was developed in the present study.

A. Background

All structures are designed to perform their functions while sustaining the applied

loads over a pre-established period. There are so many old structures operating

over their pre-established lifetime, because their inspection and maintenance costs

less than their demolition and reconstruction. The strength reduction due to the

fatigue accumulation by environmental and service loads increases the risk of struc-

tural destruction unless appropriate monitoring and maintenance are accomplished,

as learned from the case of the I-35W Mississippi River bridge collapse. In addi-

tion, modern structures are optimally designed by minimizing the structural weight

together with performing the required service and providing minimum protection

against failure. Consequently, the optimized structures can be seriously damaged

when the structures are exposed to unexpected severe loading conditions or deterio-

ration. In other words, optimal design of new structures can include vulnerability to

damage.

Unchecked structural damages in both old and new structures diminish their

capacities to perform intended functions and lead to structural failure, which can

cause economic and life losses. Thus, it is essential to continuously monitor the

structures for the purpose of maintaining adequate safety and detecting damages at

the initial stage, resulting in lower repair costs.

Rytter [1] summarizes various non-destructive inspection methods through sim-

ple explanation and comparison to detect damage and warn before structures fail.
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Conventional visual inspection can be used to detect only surface damage and re-

quires accessibility to that surface. Most other local methods such as acoustics, eddy

currents, magnetic fields and radiography also require access to the surface, and fre-

quently require a shut down of production or service. A global monitoring method

is necessary to specify the suspect sections, and identify failure modes of the struc-

ture since the local methods mentioned above are time-consuming and expensive to

inspect the entire structure, especially for a large structure.

The basic idea of global monitoring is to obtain information on the soundness of

a structure using the modal parameters extracted from the measured responses. A

new algorithm quantifies the significance of observed changes in the modal parameters

from the structural responses to either artificial or operational loads. The hypothesis

is that the changes in the modes of a structure are sensitive indicators of changes in its

physical properties. In other words, the damage will change the structural properties,

which leads to changes in the modal parameters such as natural frequency, damping

factors, and mode shapes.

However, changes in other conditions except structural properties can also con-

tribute to changes in the modal parameters. Thus, the new algorithm could eventually

be used as a part of a structural health monitoring system by discriminating between

the changes in modal frequencies by variation of structural properties and those by

variation of other conditions such as environmental loading or temperature. The

main advantage is that the measurements at one location are sufficient to perform an

assessment of the entire structure.
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B. Historical Review

Integrity monitoring was first developed in the oil and gas industry in the 1970’s.

Vandiver [2] [3] investigated the changes in resonant frequencies of an offshore light

station tower to identify damage based on numerical simulations. Begg et al. [4] de-

scribed that the severing of offshore structural members in model scale could produce

about 5% to 30% change in resonant frequencies. Kenley and Dodds [5] concluded

that 5% change in overall stiffness was required to detect changes in the resonant

frequencies, based on a decommissioned offshore platform. The resonant frequency

can be found within 1% change for a global mode, but the error increases to 2% to 3%

for local modes because the peaks in the power spectrum are not well defined. Whit-

tom and Dodds [6] monitored British Petroleum’s Alpha Forties platform over 2.5

years, and concluded that the changes in the resonant frequencies produced by dam-

age or foundation deterioration were greater than the observed variations in resonant

frequencies of the undamaged platform over time.

Research on integrity monitoring, started in the offshore industry, has continued

in the field of rotary machinery since the 1980’s. So called“Condition Monitoring”

has come from laboratory research topics, and it has been widely used in practical

applications. Mature integrity monitoring in the rotary machinery field encouraged

civil engineers to adapt the idea to a large civil structure. “Structural Health Moni-

toring” started being a new research area in the 1990’s. Doebling et al. [7] extensively

reviewed the research on structural health monitoring. In their review, the various

methods were categorized based on the types of measured data and the techniques

identifying the damage from the data. Many of the techniques were based on changes

in modal frequencies and mode shapes, which could be yielded by modal analysis.

One of the issues in structural health monitoring is environmental variability,
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which can contribute changes in an extracted feature. When modal parameters are

used, the changes in modal parameters by environmental variability should be dis-

criminated from those by structural damage for reliable and accurate monitoring. To

address the environmental variability, the necessity of a statistical algorithm has been

recognized. However, almost none of the studies summarized in Doebling et al. [7] [8]

make use of any statistical methods to assess if the changes in the selected features

are statistically significant. The MDM aims at being used as a part of the structural

health monitoring that uses a statistical method.

C. Motivation

The large amount of vibration data and the associated heavy computational loads

often require data compaction before analyzing. Modal parameters are generally used

as the compact feature representing dynamic characteristics of the structure. Some

derivatives or indices from the basic modal parameters might be more sensitive to

damage, but are also more sensitive to environmental conditions and measurement

noise. Natural frequencies are measured more accurately than mode shapes; typical

resolution for the natural frequencies of a lightly damped structure is 0.1% whereas

typical mode shape error is 10% or more [9]. The uncertainty of the extracted modal

parameters requires a statistical approach.

Information about the modal properties can be found in the frequency response

function resulting from the forced response measurements with controlled or measured

excitation. Many large structures such as bridges and offshore platforms, however,

are not easily excited by artificial loads, but are often excited by natural loads such as

wind and wave loads. Therefore, it is necessary to reduce the dependence on artificial

excitation mechanism in monitoring of structures. The ability to use the vibrations
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induced by environmental or operating loads for the assessment of structural integrity

has advantages: 1) testing is less time-consuming since the equipment for exciting the

structure is not needed, 2) testing does not interrupt the operation of structure, and

3) the measured response represents the real operating condition of the structure.

However, use of the vibrations induced by natural loads is more complicated since

there is usually no information about the loads [10]. Again a statistical approach is

imperative to account for variability in environmental and operational loads. Sohn et.

al [11] recommended the normalization of the measured responses by the measured

inputs when environmental or operating-condition variability is an issue.

Many of the proposed monitoring methods depend on prior analytic models or

prior test data to detect damage. Some methods need a detailed finite element model

of the structures being monitored while others use data sets measured from the un-

damaged structure. The dependence on this type of data should be reduced since

the lack of such data can make them impractical for application. Additionally, noise

corruption should be addressed since the measured modal properties are inevitably

corrupted with measurement noise no matter how precise the instrumentation [12].

Conventionally, modal parameters are extracted from the frequency response

functions obtained by measuring both excitation and response of the structure. The

relation is simple; the power spectral density of the response is a product of the square

of the frequency response function and the power spectral density of the excitation.

The MDM should extract the modal parameters without measuring the input force.

The input force is typically assumed as white noise. Under the white noise excitation

force, the power spectral density of a response becomes the product of the constant

white noise level and the square of the frequency response function. Thus, the modal

parameters can be extracted directly from the power spectral density of the response

of a structure. In the MDM , stationarity of the excitation is more important than the
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shape of the power spectral density of the excitation. If excitation is non-stationary,

the excitation would change the modal parameters. Changes in modal parameters

by the non-stationary excitation would be included in the MDM analysis unless the

changes are differentiated from those by structural damage or full information of the

non-stationary excitation is available.

D. Significance of Work

The objective of this work is to develop a new algorithm quantifying statistical signif-

icance of observed changes in modal frequencies with consideration of its uncertainty,

which could play a critical role in future structural health monitoring applications.

The new algorithm periodically measures the vibrations induced by natural loads

while the structure is in service; then, the modal frequencies are extracted from the

measurements, and are statistically compared with those from previous measure-

ments. Hence, a statistical comparison of modal frequencies is important in reliable

monitoring since the statistical comparison accounts for the variability of modal fre-

quencies.

The new statistical algorithm should quantify the significance of changes in modal

parameters using vibration responses induced by natural loads. Considering modal

frequency as a random variable, an individual modal distribution is interpreted as a

probability distribution of the modal frequency. This interpretation enables applica-

tion of a statistical comparison to address the uncertainty associated with the modal

frequency. The resulting P-value indicates the quantitative significance of changes in

the modal frequencies, and help to indicate whether the system has changed or not.

Implementation of this algorithm into structural health monitoring for automatic de-

tection requires differentiation of changes in a modal distribution caused by structural
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damage from those caused by environmental variability, which is outside the scope of

this work.

The new algorithm may detect small levels of change by monitoring the structure

over a long time period. Implementation of a newly proposed noise reduction method

and a nonparametric method can address the problem of white noise corruption and

unknown modal distribution shape, respectively.

E. Objective: The Modal Distribution Method

The main purpose of this work is to develop a new statistical method for continu-

ous monitoring called the “Modal Distribution Method.” In the Modal Distribution

Method (MDM), a power spectrum of measured structural response is interpreted

as a series of independent modal responses, and each of these responses is isolated

over a frequency range and treated as a statistical distribution. The MDM uses the

modal distributions of vibratory response generated by natural loads, and quantifies

the significance of observed changes in those modal distributions. The introduction

of a modal distribution representing the individual modal response enables statisti-

cal comparison. Rough estimates of modal frequencies from a previous analysis or

measurement are required to separate those modal distributions.

For example, the simplest system with a single modal response is considered.

The whole power spectrum of a measurement is then considered the “modal distri-

bution,” representing the single modal response, since there is only one mode. The

power spectrum is compared with the power spectrum of some other measurement.

A statistical hypothesis test is then applied to those two power spectra. In the case

of well-separated Gaussian modes, individual modal distributions from different mea-

surements can be compared by T-statistics. The resulting significance level indicates
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the likelihood that observed difference is caused by chance alone.

Real application of the MDM to complex structures needs to consider multiple

modes. Each modal distribution in the multi-modal spectrum exists inside the fre-

quency range between two troughs adjacent to its peak. Every trough is found by

a newly developed penalty method between rough guesses of two consecutive modal

frequencies. Rough guesses can be given by pre-analysis or simply by the selection

of peaks in a previous sample spectrum. The modes are separated at the trough

identified by the penalty method. The resulting individual modal distributions from

different measurements are compared by a statistical hypothesis test. The combined

statistic detects changes in an entire multi-modal spectrum, and is expected to be

more sensitive since it uses more data. Relative sensitivity of detection ability be-

tween the modal comparison and the spectral comparison using combined statistic is

investigated in this work. The MDM is intended to detect changes in measured struc-

tural response, which are believed to be indicative of changes in the structural con-

dition only if other conditions are constant. This method uses only output response

and separates the multi-modal spectrum into each modal distribution. If separated

modal distributions from different segments are Gaussian, two corresponding modal

distributions are compared statistically by a relatively powerful parametric test, the

T-test, which is commonly used to compare two Gaussian distributions. Comparison

of all individual modes are then combined in order to detect more subtle changes in

structural conditions.

In the case of high noise corruption, a noise reduction method is implemented

to enhance the signal. It is shown that a simple power subtraction method generally

underestimates the variance of the modal distribution. A modified noise reduction

method is newly developed and imbedded into the parametric MDM for application

to noisy measurements. This approach is verified by application to simulations based
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on field riser Vortex Induced Vibration (VIV) measurement. As two adjacent modes

become closer and closer, the original shapes of the modal distributions are not pre-

served, whether they are Gaussian or non-Gaussian. In this case, a distribution-free

statistical comparison is necessary. The MDM is generalized by removing the as-

sumption of modal distribution shape with aid of the central limit theorem. The

central limit theorem guarantees that the distribution of sample averages approaches

Gaussian regardless of underlying modal distribution shape [13].

A parametric comparison requires a distributionship, typically a Gaussian shape.

Even when the requirement is not met, transformation of the non-Gaussian distri-

bution to Gaussian and the use of a parametric comparison are more powerful than

nonparametric comparison [14]. Hence, the Hermite moment model, which is pop-

ular for transforming a Gaussian extreme to a non-Gaussian one, is extended to a

highly skewed distribution with kurtosis near three. When all statistical moments of

modal distributions in previous segments are combined and compared with those in

the next segment, the resulting power spectrum better represents the process. Con-

ventional methods of computing higher moments are available in the time domain. A

new efficient statistical moment combination method presented here uses a histogram

and is equally applicable in the frequency domain, which is necessary for the MDM.

The efficiency of computation and storage of the new method is verified in the time

domain.

F. Organization of Dissertation

This dissertation is organized into seven main chapters.

Chapter I contains the background, motivation, significance of work, and objec-

tives.
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Chapter II introduces a newly developed method for comparing measured time

histories statistically, coined the “Modal Distribution Method (MDM).” Modal dis-

tributions are assumed to have Gaussian shapes and to be well separated. Therefore,

a parametric hypothesis test is imbedded for a statistical comparison of two Gaussian

modal distributions.

Chapter III describes the extension of the original four moment Hermite moment

model into a highly skewed distribution with kurtosis near three and the application

of this development in time domain analysis.

Chapter IV proposes a new method using a histogram to combine statistical

moments. This new method is applied in the time domain, and is proven to take less

computational power and storage.

In Chapter V, noise reduction is addressed, and the method is imbedded within

the parametric MDM in order to extend the MDM application to noisy measurements.

Validation is presented by applying the method to noisy simulations based on the field

riser VIV measurement.

In Chapter VI, a modal distribution method independent of distribution shape is

described. The central limit theorem guarantees that sample averages of modal distri-

bution have Gaussian distribution regardless of modal distribution shape. Parametric

hypothesis test then compares distributions of a sample average.

Chapter VII presents the conclusion, contributions of this dissertation, and rec-

ommendations for future research.
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CHAPTER II

THE MODAL DISTRIBUTION METHOD FOR STATISTICAL ANALYSIS OF

MEASURED STRUCTURAL RESPONSE

The newly proposed modal distribution method statistically quantifies overall differ-

ences between measured time-histories. In this method, power spectra of measured

structural response are interpreted as collections of independent modal responses.

Each modal response is isolated, re-scaled, and interpreted as a statistical distri-

bution. Data-sets (windows in a measured time-history) are then compared using

standard statistical methods, resulting in a quantitative significance level of the dif-

ferences between power spectra. An example is presented to validate the new method

and to quantify how long a time-history is required for the new method to meet

confidence level requirements. The modal distribution method is found to be very

effective at detecting subtle changes of mean modal frequencies, which may be used

to infer changes in structural condition. The method is general and may find a broad

variety of applications, but seems particularly well suited for structural health moni-

toring because it can be used to infer changes in structural condition from measured

response data with only limited knowledge of the excitation.

A. Introduction

The use of sensors in structural applications has expanded dramatically in recent

years. The cost and complexity of data collection has decreased to the point that

sensor networks intended to detect structural failure are expected to eventually be-

come a part of every major new engineered structure. Acceleration remains the

preferred measurement because of low sensor cost and high reliability. Detecting

variations in structure response, making decisions, and taking appropriate action all
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rely on interpreting measured data, which is inherently a statistical problem. Simply

detecting that a measured quantity has changed is not sufficient for decision making:

a method to quantify the statistical significance of observed changes in measured data

is necessary.

The earliest work for damage detection through modal analysis was on offshore

structures. Early investigators e.g. [15, 16] concluded that changes in modal frequen-

cies due to member damage of offshore structures are detectable based on numerical

simulation and a scale model, respectively. Three North Sea platforms were monitored

for six to nine months and it was concluded that changes in the response spectrum

can be used to monitor structural integrity [17]. Since that time, numerous inves-

tigators have measured accelerations on various civil structures and used computed

power spectra to make inferences about the condition of these structures. Conven-

tional methods require detailed knowledge of both the excitation force and vibration

response [18, 19]. In a different approach, vibration signature analysis and advanced

statistical methods are applied to structural health monitoring [20], but in this work

detailed knowledge of the excitation is still required. White noise excitation is of-

ten assumed in practical applications in which the excitation force is unknown e.g.

[21, 22], but in some applications such an assumption may be unreasonable, especially

if there is known to be a dominant frequency of excitation.

A major state of the art review for structural health monitoring (SHM) conducted

as Sandia National Labs noted that little progress has been made in application

of statistical methods to SHM [23]. The work presented here addresses the need

for additional statistical methods for interpretation of power spectra computed from

measured accelerations in SHM applications.

The proposed method compares modal response characteristics computed for

separate segments of a measured time-history. The new method has important ad-
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vantages over more conventional analyses: 1) The only measured time-history required

as input is that of the response, 2) the acceleration data is separated into individual

vibrational modes of response, enabling detection of vibrational changes in individual

modes even if the overall response is relatively unaffected, 3) if there is a dominant

excitation frequency which varies over time, the mode containing that frequency can

be excluded from the analysis such that a shift in the excitation frequency is not

misinterpreted as a change in structural behavior, and 4) the result is a numerical

prediction of the confidence level that there has been some change in the response of

the structure. The method presented here is intended only to quantify the statisti-

cal significance of shifts in modal frequencies, and leaves the any inference regarding

structural parameters such as mass, stiffness, or damage to others.

B. Theory: The Modal Distribution Method

1. Overview

This section gives an overview from a conceptual standpoint; computational detail is

presented in Section C. In the newly proposed method, a measured acceleration time-

history is divided into a series of segments, or windows, which are to be sequentially

analyzed. Each segment is first converted into a power spectrum through use of the

FFT. As always, use of the power spectrum implies stationarity within any window of

the time-history, and use of the Fourier transform implies ergodicity. It is implicitly

assumed that the dynamic behavior of a structure in a given frequency range can be

considered as a set of individual modes of vibration and that these vibrational modes

can be considered to be independent. Accordingly, the power spectrum is divided into

a series of response frequency ranges, each of which includes a distribution of energy

around a single peak frequency. Hereafter, this distribution of energy around a single
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peak frequency is referred to as a modal distribution. The process of dividing the

modal distributions is based on using a penalty method to find local minima between

energy peaks (Section 1). After this initial division, each modal distribution is treated

individually. Any frequency ranges excepting those including a dominant frequency

of excitation are presumed to be modal responses; those ranges including dominant

frequencies of excitation can be explicitly excluded from the analysis.

Each remaining mode is mapped into a statistical distribution in which the ran-

dom variable is the modal frequency. The theory underlying this new methodology

is further discussed in Section 2. The overall goal is to quantify the statistical sig-

nificance of subtle changes in the state of a vibrating structure by comparing modal

frequency distributions representing two different segments of a measured response

time-history. The mean of each sequential modal distribution in the first window is

statistically compared with that of the second window, i.e, the mean of the first mode

of the first window is compared with the mean of the first mode of the second window,

as are each of the subsequent modal means. In the implementation presented here,

the T -statistic is applied to quantify the significance of observed differences. The

significance of each mean difference is computed independently, and then results are

weighted by the magnitude of the energy associated with that mode to compute an

overall combined T -statistic. Applicability of the T -statistic and computation of de-

gree of freedoms are further discussed in Section 3. The statistical significance of any

difference between individual modal means is reported, as well as a combined statistic

quantifying differences between all modal means. The entire procedure could be re-

peated over consecutive segments (windows) of a time-history to monitor for changes

in modal response.
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2. Interpretation of a Power Spectrum as a Statistical Distribution

The heart of the new method lies in interpretation of the vibrational response spec-

trum as a statistical distribution of modal frequencies. The individual frequency bars

making up the discrete power spectrum represent the energy occurring at that fre-

quency, so the discrete power spectrum can be considered as a discrete distribution in

which the abscissa is the frequency and the ordinate is the amount of energy at that

frequency. The region of the power spectrum associated with any single mode is then

normalized to unit area, such that each bar represents the fraction of total energy of

the individual mode. The resulting distribution has the same properties as a conven-

tional relative histogram, in which any bar commonly represents the fraction of total

occurrences. This interpretation of the power spectrum enables use of conventional

statistical tools to compute the significance of changes in mean modal frequencies.

Interpretation of power spectra as statistical distributions for use in statistical

inference is quite novel, but the inverse of this interpretation is commonly used in

simulation. An infinite time-history of a stationary process would result in a theo-

retically perfect (statistical) distribution of the energy of the response, typical of a

target power spectrum used in simulation. Mapping of a power spectrum into statis-

tical space is precisely the inverse of simulating a time series using a power spectrum

with random phase. In simulation, a time-history is commonly realized from a target

power spectrum as:

x(t) =
N∑

n=1

Hncos[2πf(n)t + θn] (2.1)

where x(t) is the time-history of the simulation. Hn is the amplitude of each frequency

component, the square of which is directly proportional to energy density at that

frequency, i.e., the height of an individual bar of the power spectrum. f(n) is the

n’th frequency (Hz), and θn is a random phase angle.
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The power spectrum is appropriate for interpretation as a statistical distribution,

rather than the Fourier amplitude spectrum, because the total area under the power

spectrum has physical interpretation as the variance of the process. Separate areas

under the power spectrum can be added directly. The combined area of two frequency

bars of the power spectrum represents the total power of the process at those two fre-

quencies, analogous to combining frequencies of occurrence in a traditional frequency

histogram; the combined area of two frequency bars of a Fourier spectrum has no

particular physical interpretation.

3. Comparison of Statistical Distributions

An infinite time-history would result in an ideal statistical distribution of energy,

but in practice a finite time-history is applied to approximate the true underlying

distribution. Various statistical methodologies have been developed to compare the

means of two data-sets including corrections for relatively small sample sizes. In the

response spectra considered here, the Gaussian distribution provides a reasonable fit

to the power spectra being compared, and so the T -statistic can be used for compar-

ison of the two distributions. The Gaussian assumption is strongly violated in cases

of very high noise or closely spaced peaks and so the T -statistic should not be used.

Other statistical tests including nonparametric methods could alternatively be used

in place of the T -test with no fundamental change to this underlying methodology.

Under the Gaussian assumption, the mean and mode of each distribution occur at the

same frequency. Use of the mean is preferred over the mode in this analysis because it

provides a more robust and stable estimation of the peaks of a raw power spectrum,

i.e., a power spectrum that has not been smoothed across frequency bars.

In a more typical application, the T -statistic is used with a histogram by first

selecting bin widths for the raw data, then binning the data into a frequency histogram
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to form a statistical distribution. The standard deviation of the raw data can be

closely estimated from the geometry of the resulting histogram. The purpose of

the T -statistic is to compensate for the effect of small sample size on the standard

deviation as compared with an ideal underlying Gaussian distribution.

Here, the frequency intervals implicit to the FFT are equivalent to the bin widths.

The energy associated with any frequency bar relates to the energy of each sinusoidal

cycle at that frequency. As in a more typical application, the standard deviation

of the distribution is closely estimated from its geometry; note, however, that this

standard deviation is not equivalent to the square root of the variance of the process,

but instead represents the distribution of energy about the mean frequency of an

individual modal response. The number of degrees of freedom must also be estimated

for use with the T -distribution. Here, the number of degrees of freedom is estimated

as the number of cycles over which the energy is averaged, which is approximated by

the mean frequency in Hertz times the duration of the time-history in seconds. This

procedure is equivalent to dividing the total duration by the peak period since the

mean and peak frequencies coincide under the Gaussian assumption.

C. Computational Details

1. Separation of Modal Distributions: The Penalty Method

The power spectrum is computed from the Fourier transform of a window of the mea-

sured time-history. Power spectra of measured data generally are not smooth, and

identifying the correct minima to use as dividing points between modal distributions

is non-trivial. The methodology presented here relies on an initial estimation of the

frequency of each mode of vibration for the structure. This initial value would be ex-

pected to come from structural analysis, though it could also come from visual inspec-
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tion of the power spectrum. This initial value need not be of high accuracy because

it is only used to specify the endpoints of a penalty method. The penalty method

searches for one local minimum between every two adjacent modal frequencies, plus

one additional minimum above the highest and one below the lowest specified fre-

quencies. The penalty method has been found to be robust in applications with high

noise or closely spaced frequencies: it always finds the local minimum, regardless of

the distance from zero on the spectral plot. The user is cautioned, however, that in

these applications the Gaussian assumption is strongly violated and the T -statistic

should not be applied. Basing the modal separation on local minima also provides

additional robustness against noise in the signal because the squaring inherent to the

calculation of the power from the Fourier spectrum amplifies maxima in the spectrum

more than minima.

To find each local minimum, the method searches the region between two adjacent

modal frequency estimates by progressively seeking the minimum of increasingly fine

divisions of the region. First, the region is divided into three equal frequency intervals

as shown in the second frame of Figure 1. The area under the power spectrum within

each of the three intervals is then computed; every frequency in that interval having

the lowest average energy is assigned a penalty value of 1.0. Next, the number of

divisions between initial modal frequency guesses is increased to four. The same

penalty approach is applied: again, every frequency in the region having the smallest

average energy receives a penalty; on this second iteration the penalty is less than

1.0. The process is repeated with the number of divisions increasing by 1 and the

penalty decreasing linearly for each subsequent penalty assessment until the average

of each region includes not less than 25 of the original bars. Beyond four intervals

the method is modified: a penalty is applied to every frequency in each interval

having lower average energy (lower average bar height) than both of its contiguous
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Fig. 1. Separation of Modal Distributions: The Penalty Method

neighbor intervals. After the final iteration, the total penalty is calculated for each of

the frequencies between initial modal frequency estimates. The frequency having the

largest total penalty is concluded to be the local minimum between energy peaks and

is subsequently used as the dividing point. All energy between adjacent local minima

is assumed to be associated with a single vibrational mode. Once these modes have

been isolated and the peak associated with any dominant frequency in the excitation

(if any) has been removed, distribution parameters are calculated for each mode.

2. Modal Distributions and Statistical Distributions

The first step in calculating distribution parameters is normalizing each modal dis-

tribution to have unit energy such that it can be treated as a frequency histogram,

as outlined in section 2. Within each modal distribution, the fraction of energy asso-

ciated with each frequency bar is computed as:

Pi(en) =
an

Ai

(2.2)
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where an is the area of the n’th frequency bar and Ai is the total energy associated

with the i’th modal frequency (Figure 1), or the total area between relative minima:

Ai =
Ni∑

n=1

an =
Ni∑

n=1

S(n)df (2.3)

in which S(n) is the offset at the n’th frequency of the power spectrum, df is the fre-

quency spacing and Ni is the total number of bars within the i’th modal distribution.

The mean and variance are computed directly from the offsets of the power spectrum

using conventional definitions of moments and central moments, e.g. [24, 25].

µi,w =
mi

Ai

=
1

Ai

Ni∑

n=1

S(n)f(n)df (2.4)

s2
i,w =

θi

Ai

=
1

Ai

Ni∑

n=1

S(n)(f(n)− µi,w)2df (2.5)

where µi,w and s2
i,w are the mean frequency and sample variance of the modal distri-

bution, mi is the first geometric moment, θi is the second central geometric moment

and f(n) is the n’th frequency.

Two important sources of variations in the mean and variance are implicitly

considered. The first source is that the data-set being sampled is finite, so any

computed mean and variance are sample statistics and not necessarily those of the

underlying population; this source of variation is accounted for in the T -statistic. In

this application to random vibrations there is a second important source of variation

caused by non-ergodicity; it has been found here that the discontinuous ends of a

time-history can have a meaningful impact on computed statistical moments that is

not considered in the T -statistic. To minimize apparent differences between windows

caused by this non-ergodic effect, power spectra are averaged over successive data-

points. Specifically, for each window a power spectrum is computed 100 times, with

both the start and end points shifted two points forward in time; the resulting 100
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spectra are averaged and treated as a single representative spectrum for that window.

3. Comparison: Statistical Hypothesis Testing

Spectral peaks of field data generally appear as a cluster of energy around some

frequency. Here, mean frequencies of individual modes are treated as random variables

and observed clusters of energy are treated as statistical distributions. The benefit

is that rigorous statistical analysis can then be applied to assess the significance of

apparent differences between distributions.

The T -test is a conventional method to determine the statistical significance of

a difference between two sample means from populations sampled from underlying

Gaussian distributions. The test can be used when the number of samples is too

small for the central limit theorem to apply and where the true variances of the

underlying processes are not known to be equal. Use of the T -test in this application

is not strictly justified because the underlying distributions are not known to be

Gaussian, though in the example presented here the energy peaks are broadly spaced

and damping is sufficient to have “bell-shaped” modal peaks, so use of the T -test

may be reasonable. As noted in Section 3, for some cases the Gaussian assumptions

are strongly violated and use of the T -test is not appropriate. If the T -test is deemed

suitable, the T -statistic can be computed as e.g. [26]:

Ti =
∆µi

si

(2.6)

where

∆µi = µi,1 − µi,2 (2.7)

s2
i = s2

i,1/Ni,1 + s2
i,2/Ni,2 (2.8)

Ni,w = Dwµi,w (2.9)
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in which µi,w is the mean of the i’th mode of the w’th segment, s2
i,w is the sample vari-

ance, and the number of samples Ni,w is estimated as the number of cycles expected

at each modal frequency. Dw is the duration of the w’th data window.

Ti is distributed approximately as a Student’s T with the number of degrees of

freedom for the i’th mode equal to e.g. [26]:

DOFi =
(s2

i,1/Ni,1 + s2
i,2/Ni,2)

2

(s2
i,1/Ni,1)2/(Ni,1 − 1) + (s2

i,2/Ni,2)2/(Ni,2 − 1)
(2.10)

4. Overall Comparison of Response

Accurate assessment of the significance of changes in the observed vibrational re-

sponse requires consideration of all modes. Here, the ensemble of observed differences

between each pair of mean modal frequencies is treated as a set of repeated measure-

ments with differing uncertainties, i.e., observed differences between the first pair

of modal distributions are combined with observed differences between pairs of se-

quentially higher modes. An overall P -value is calculated by computing a combined

T -statistic, which weights differences between the means by the fraction of energy

represented for each individual mode. The fraction of energy associated with the i’th

mode for each of the two windows is:

Ei,w =
Ai,w∑I

i=1 Ai,w

(2.11)

where I is the total number of modes in the power spectrum and w is either 1 or 2,

denoting either the first or second window of the time-series. The overall T -statistic

is found using Equation 6.9, in which ∆µ and s2 are computed as averages weighted

by the fraction of energy associated with each of the I modes:

T =
∆µ

s
(2.12)

where
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∆µ =
I∑

i=1

0.5(Ei,1 + Ei,2)∆µi (2.13)

s2 =
I∑

i=1

0.5(Ei,1 + Ei,2)s
2
i (2.14)

The T -statistic resulting from Equation 6.9 represents the weighted average of differ-

ences between the means of each pair of modes. The number of degrees of freedom for

use with a standard T -distribution is estimated as the total number of vibration cy-

cles in all vibrational modes. This number is expected to be larger than the observed

number of peaks in the time-history because modal frequencies with small fractions of

the total energy will not contribute to the number of directly measurable peaks. The

total degrees of freedom to be used in conjunction with the T -statistic is estimated

as the sum of individual degrees of freedom:

DOF =
I∑

i=1

DOFi (2.15)

D. Type I and Type II Errors: Minimum Data Requirements

One significant issue that must be addressed prior to any practical implementation of

any data analysis technique is assessing how much data is required for the method to

be effective. There are exactly two ways a method can fail: 1) it could detect a dif-

ference between the two power spectra when there is in fact no underlying difference,

or 2) it could fail to detect a difference that does in fact exist. The null hypothesis

(H0) implicitly underlying use of the T -test is that there is no difference between the

two distributions, which makes category 1) a Type I error (reject H0 when it is true)

and category 2) a Type II error (fail to reject H0 when it is false).

For many practical applications, it is desirable to calculate how long a data-

set is required to detect a modal shift of a predetermined size with a pre-specified

confidence level while maintaining an acceptably low probability of false alarms. To
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compute the required length of the data-set, the P -value is itself treated as a random

variable. For any specific number of vibration cycles, a histogram of predicted P -

values could be created and normalized to a PDF. As part of this work, numerous

sets of P -values have been generated by application of the modal distribution method

to pairs of time-histories, each independently realized from a pair of target spectra

with known modal differences; the distribution of predicted P -values has been found

to be well described by a theoretical gamma distribution. The PDF and CDF (g and

G) can be expressed in terms of the gamma function e.g. [26]:

g(x; α, θ) =
xα−1e−

x
θ

Γ(α,∞)θα
(2.16)

G(x; α, θ) =
Γ(α, x

θ
)

Γ(α,∞)
(2.17)

in which Γ(α, y) denotes the gamma function: Γ(α, y) =
∫ y
0 tα−1e−tdt. The shape

parameter (α) and the scale parameter (θ) define the gamma distribution completely,

and can be calculated from the mean (µ) and sample variance (s2) of an ensemble of

P -values as α = µ2/s2 and θ = s2/µ.

The area under the gamma PDF below the pre-specified confidence level corre-

sponds to the probability that any future prediction of a P -value will be at or below

that confidence level, i.e., the probability that the method will detect changes in

modal frequencies with the required confidence level. The probability of a Type I

error equals this area if there is no actual difference between the underlying distribu-

tions; the probability of a Type II error can be computed as one minus this area if

there is a difference between distributions.

It is relatively straightforward to determine the minimum required time-history

for some new application using the gamma distribution. First, the mean and standard

deviation of the predicted P -values must be known. These values can be determined
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by simulation from target spectra with spectral shapes comparable to those expected

for the physical system to be studied and with modal frequency shifts equal to those

sought to be detected. The mean of the P -values is the expected value of future P -

value predictions; the standard deviation can be used in conjunction with the gamma

distribution to assign confidence intervals to this mean. A worked example of each

error type is provided.

E. Example: Minimum Data Requirements

This example quantifies the probability of both Type I and Type II errors, then

compares the results of this method with conventional tests of stationarity. The

example is based on simulated data for which the actual underlying target spectra

are precisely known so the effectiveness of the new method can be assessed. The

underlying spectra are based on physical data of practical importance, vortex induced

vibrations of marine drilling risers. Here, the riser is undamaged in all cases, and the

dominant response frequencies are not related to environmental excitation frequencies:

any change in modal response parameters is believed to be caused by hydrodynamic

interactions, in particular, to be caused by the mass of the water entrained with the

vibration.

Marine risers are the pipes transmitting fluids between the sea-floor and a float-

ing production platform. A riser, or any other slender structure subject to strong

flow across its axis, may interact with the current to create vortex induced vibrations

(VIV). Prediction of this complicated fluid-structure interaction has been a histori-

cally intractable problem, in part because two separate quantities are unknown: the

excitation force due to fluid-structure interaction and the effective mass of the riser

which is highly influenced by the mass of the water entrained with the riser motion,
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usually referred to as the “added mass.”

1. Underlying Spectra and Data Simulation

In order to quantify the effectiveness of the new method, it is tested against time-

histories simulated from ideal target spectra, which are precisely known. The initial

target power spectrum is generated from measured field data by first computing the

power spectrum from a measured time-history and then smoothing the first two modes

into the ideal target spectrum S (Figure 2). Known changes in modal properties are

then introduced to the smoothed spectrum (Figure 3). Time-histories needed for the

example are then simulated from these spectra using the conventional method as in

Equation 2.1. In this example, the simulation includes as many frequency components

as there are time-steps so the series does not repeat within a simulation. Finally, a

Gaussian white-noise signal is added to each time-history. The level of noise added

is 1.9 mg rms, which is typical of the noise level observed in the actual field data

underlying this example; noise inherent to a high-quality ±1 g accelerometer alone is

typically around 0.5 mg rms.

2. Application of the Method

To assess the minimum amount of data necessary, the new method is applied to each

pair of simulated time-histories for increasingly long data windows. The shorter time-

histories are the early parts of the longer histories, i.e., the 30 minute data window

test for target spectrum S1 is the first part of the time-history used in the 60 minute

test. Unless otherwise noted, all cases include the 1.9 mg Gaussian white noise and

all plots are generated by performing 25 independent tests and averaging the results.
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Fig. 2. Field Data Spectrum and Idealized Target Spectrum S

a. Type I Errors: No Change in True Underlying Spectra

To quantify the probability of having a Type I error, 50 realizations of the original

bimodal target spectrum, S, are simulated and the modal distribution method is

applied to the resulting 25 independent pairs of time-histories. Figure 4 shows the

average of the P -values from these tests, all of which are above 50%. These very high

P -values correspond to the fact that observed differences result from random chance

and not from differences in the underlying spectra. The error bars correspond to a

double-sided 90% confidence interval; there is almost no chance of a false-alarm when

at least 30 minutes of data is considered.
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Fig. 3. Original Spectrum (S) and Modified Spectrum (S1)

b. Type II Errors: Known Changes in Mean Modal Frequencies

In this part of the example, the mean of each mode is shifted to the left. Here, the

change to the mean of each mode (∆µi) is chosen such that each mean of each mode is

shifted an amount consistent with a constant Φ(z) of a standard normal distribution:

∆µi = zsi; Φ(z) =
∫ z

−∞
1√
2π

e−
1
2
u2

du (2.18)

For example, applying Equation 2.18 with Φ(z) = 5% of the area under a stan-

dard normal distribution yields ∆µ = -0.1257 si. Transforming this value to each

modal distribution of the original target spectrum, S, results in the new mean fre-

quencies shown in Table I. The resulting spectra S1, S2 and S3 are target spectra

with progressively greater shifts in mean-modal frequencies. In addition to this mean

change, the variance of each mode of each target spectrum is increased from the orig-
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inal by 10% while holding the total energy of the spectra constant. Figure 3 shows

the original target spectrum, S, with one of the modified spectra, S1. The resulting

magnitudes of each frequency shift is particulary convenient to illustrate calculation

of the amount of data required for the new method to attain a pre-determined level of

effectiveness. Specifically, to the extent the Gaussian assumption is not violated, the

resulting confidence levels should be a function of only the number of cycles, without

regard for vibrational mode with which these cycles are associated.

Table I. Target Spectra Parameters with Percent Change from Original Idealized Spec-

trum

Target 1st Mode

Spectrum Mean Change Variance Change

S 0.12500 N/A 0.00060 N/A

S1 0.12192 -2.46% 0.00066 10%

S2 0.12037 -3.70% 0.00066 10%

S3 0.11879 -4.96% 0.00066 10%

Target 2nd Mode

Spectrum Mean Change Variance Change

S 0.28500 N/A 0.00120 N/A

S1 0.28064 -1.53% 0.00132 10%

S2 0.27845 -2.30% 0.00132 10%

S3 0.27622 -3.05% 0.00132 10%

c. Minimum Required Time-history Duration

After the modified target spectrum has been developed, the new S1 and original S are

used to simulate a total of fifty sets of time-histories. The modal distribution method

is then applied to each resulting twenty-five pairs of time-histories to calculate a P -



31

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 30  45  60  75  90  105  120  135  150

P
-v

al
ue

 (
%

)

Window Time Duration (Minutes)

1st Mode Only
2nd Mode Only

All Available Data
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value for each. These results are averaged and presented as Figure 5. The monotonic

decrease shown in Figure 5 shows greater confidence levels (smaller P -values) are

associated with longer time-histories. Confidence levels of 95% (5% P -values) are

often considered to indicate statistical significance. The upper two lines on the figure

indicate confidence levels based on each of the first two modes. The lowest line on

the figure indicates the method’s capability to detect the change in the underlying

spectrum using all available data, which in this case means both modes. The very

subtle shift shown in Figure 3 can be detected with about 95% confidence (5% P -

value) using only 30 minutes of data.

Figure 6 shows the probability of failing to detect the known shift in modal

frequencies from Figure 3. These probabilities are calculated by treating the P -value

as a random variable (Equation 2.17). Using only 30 minutes of data, there is about

an 18% chance the method will not detect the change in the underlying spectrum with

a P -value of 5% or less. However, given 90 minutes of data, the method is almost

certain to detect even the very subtle change indicated in Figure 3.
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of Time-history Duration (Smaller P -values Indicates Greater Ability)

d. Minimum Required Number of Cycles

The main factor for determining the necessary data set length is in fact the number of

vibrational cycles rather than the temporal duration. Systems with higher frequencies

or with more vibrational modes have more cycles in a fixed duration. The data of

Figure 5 is again presented as Figure 7, but with the x-axis presented as cycles. The

number of cycles is estimated as the simulation duration times the sum of mean modal

frequencies. The fact that the P -value predictions based on the first mode, second

mode and combination nearly collapse to a single line when plotted against cycles is

a property of the relative shift of each of the modal frequencies corresponding to a

fixed percent of an ideal Gaussian distribution (Equation 2.18) and not of the method

itself.

Figure 7 shows that approximately 1,500 cycles are needed to obtain a statisti-

cally significant detection of the very subtle shift between the S and S1 power spectra.

The figure shows results both for an ideal noise-free signal and for a signal containing

a realistic 1.9 mg of white noise. The added noise has only minimal effect on the
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Fig. 8. Very High Noise Case (19 mg): Detection of Underlying Changes in the Target

Spectrum With Gaussian Assumption Strongly Violated

P -values predicted for each mode and the overall comparison. Results for each mode

and combined results all tend to collapse toward a single line as would be expected

for a Gaussian distribution. Inclusion of the noise creates only a slight change in com-

puted non-Gaussianity for each mode: average skewness for both modes is reduced

from 0.082 to 0.067 and average kurtosis is increased from 3.10 to 3.15, compared with

the ideal Gaussian values of 0 and 3. In Figure 8, however, results do not collapse

to a line, which qualitatively shows the effect of strong violations of the Gaussian

assumption. The level of noise included here is 19 mg, resulting in average skewness

of -0.52 and kurtosis of 4.51. The T -statistic is clearly not valid for this strong viola-

tion of the Gaussian assumption. Returning to the low-noise (1.9 mg) case, Figure 9

shows that at least 3,000 cycles are needed to obtain a 5% probability of failing to

detect such a shift, based on the gamma distribution. Similar results are expected

for predictions using three or more modes.

Thus far, the example has sought to detect extremely subtle shifts in the underly-

ing power spectra and detecting these shifts has required considerable time durations.
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Detecting larger changes between underlying spectra requires less data. Figure 10

shows the amount of data required to detect increasingly large shifts in modal fre-

quencies. All shifts are made to both modes in accordance with Equation 2.18; the

details of the underlying target spectra are shown in Table I. The curve correspond-

ing to shifts in mean modal frequencies corresponding to 5% of the area under the

standard normal is fit through the same data as presented in Figure 7. The very

subtle shift corresponding to 5% of the area under a normal distribution requires

around 1,400 cycles to detect at a 5% P -value; if the size of the modal shifts are

approximately doubled, the required number of cycles drops to around 400 cycles.

3. Comparison with Conventional Tests

The newly proposed method is compared with two conventional tests of statistical

stationarity: the reverse arrangements test and the runs test e.g. [27] and [28]. Nu-

merous pairs of 150 minute time-series were used to test these conventional methods.

These tests were made for both Type I and Type II errors using the same data as
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previously used to verify the new method. Neither of these conventional methods was

found to be able to meaningfully detect the change in the target spectrum

The reverse arrangements test never detected a statistical change in the time-

series, regardless of whether or not there is a change between underlying spectra.

Results from the runs test varied with the number of segments into which the time-

series was divided as part of the test, but in no case were the results useful. When 40

segments were used, the probability of a Type I error (false alarm) was found to be

24% and the probability of a Type II error 76%. Using 100 segments, the probability

of a Type I error was found to be 52% and probability of a Type II error 44%. Recall

that the new modal distribution method applied to these same time-series yielded a

probability of a Type I error and of a Type II error near zero (Figures 4 and 6).
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F. Conclusions

A newly proposed modal distribution method of quantifying the significance of subtle

changes in modal vibrations based on power spectra has been presented. The new

method is very effective at detecting changes in mean frequencies of individual modal

vibrations (Figure 5–10), even if the data is simulated from underlying target spectra

with only very subtle differences (Figure 3). The method is also very robust against

false-alarms. The amount of data required decreases considerably if larger changes in

underlying spectra are to be detected (Figure 10). The new method is considerably

more effective than the conventional runs and reverse arrangements tests.

The modal distribution method is based on transforming individual modes of a

power spectrum into a statistical distribution, which enables application of conven-

tional statistical tools. Response modes containing frequencies of dominant excitation

can be explicitly excluded from the analysis. After transformation into probability

space, each modal response is treated as an independent statistical distribution for

which the spectral moments are directly calculated from geometry. The mean and

variance are calculated independently for each individual mode of each of two seg-

ments of the time-history and then used in a statistical comparison. Combining

differences between the means of individual modal frequency pairs results in an over-

all quantitative significance level of the difference between power spectra. An example

is presented in which minimum data requirements for the new method investigated

in detail, and a method is outlined to determine minimum data requirements for new

applications.

The newly proposed modal distribution method is general and is applicable to

any number of modes of vibration. The development of the method presented here

makes use of the T -statistic, so this presentation is directly applicable to only well-
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separated modes with a generally Gaussian shape and relatively low levels of noise in

the signal. In concept, any distribution could be used in place of the Student-T . The

new method may find a broad variety of applications, though it seems particularly well

suited for structural health monitoring because detailed knowledge of the excitation

is not required as input.
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CHAPTER III

THE HERMITE MOMENT MODEL FOR HIGHLY SKEWED RESPONSE WITH

APPLICATION TO TENSION LEG PLATFORMS

A new addition to the statistical Hermite moment model of extremes is introduced

for use on processes with high skewness and near-Gaussian kurtosis. The monotone

limits of the existing model are expressed as ellipses in response moment space and

a new methodology is introduced that combines hardening and softening models to

overcome these limits. The result is that any fractile of a distribution described by

its first four statistical moments can be transformed to or from the Gaussian, subject

only to a theoretical orthogonality limit. An example application to a Tension Leg

Platform is presented.

A. Introduction

Many irregular time-series processes exhibit non-Gaussian behavior. In some specific

cases, response of systems subject to irregular excitation have been shown to be

well represented by a Gaussian random process. However, other structural systems

often have response processes with meaningfully larger or smaller extreme values than

would be predicted directly from Gaussian theory. This non-Gaussian behavior may

result from nonlinear structural response characteristics, nonlinear excitation loads, or

both. For such systems, direct use of Gaussian statistics is not appropriate. The most

rigorous alternative is to predict the characteristics of a non-Gaussian response using

numerical time stepping direct integration methods. These methods generally include

development of a full probability distribution for use in prediction of upcrossing rates,

extreme values and fatigue damage; unfortunately, these methods require extensive

data sets and heavy computation.
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Less computationally intensive alternatives to direct integration methods are also

available, including various approximation approaches such as equivalent linearization

techniques and series distribution methods. Equivalent linearization techniques [29,

30, 31] are only useful to estimate gross response statistics such as root mean square

levels. Series distribution methods [32, 33] can be used to transform known statistical

results such as mean upcrossing rates and extreme values of a Gaussian process into

those of a non-Gaussian process by finding a simple functional transformation of the

equivalent Gaussian statistics.

Full probability distributions of a non-Gaussian process can be estimated using

Gram-Charlier series, Edgeworth series, and Longuet-Higgins series from those of a

Gaussian process e.g. [34, 32, 35]. These series distribution methods have a common

weakness: they all tend to exhibit oscillating and negative tail behavior. Overcoming

this weakness, the Hermite moment model was developed and proven more flexible

over a wider range of skewness and kurtosis [36, 37]. This Hermite moment model

offers equivalent fractile mapping between Gaussian and non-Gaussian processes and

has been widely applied to a variety of areas: non-Gaussian excitation and structural

response estimation e.g. [38], extreme response estimation e.g. [39], non-Gaussian

wave kinematics estimation e.g. [40], and non-Gaussian simulation e.g. [41]. This

paper presents a review of the theory underlying the Hermite moment model with spe-

cial emphasis on two limitations. First, a theoretical limitation is imposed by the re-

quirement for orthogonality of individual terms of the Hermite polynomial expansion

underlying the model. Second, a computational limit arises for the transformation to

have a simple functional form, and this limit prevents use of the transformation on

processes with high skewness but near-Gaussian kurtosis.
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B. Background: The Four-moment Hermite Model

The four-moment Hermite model uses skewness and kurtosis to transform between

standardized Gaussian and equivalent non-Gaussian fractiles. This paper addresses

both forward and backward transformations: the forward transformation maps frac-

tiles of a Gaussian process to those of a non-Gaussian, and the backward transforma-

tion maps fractiles of a non-Gaussian process to Gaussian equivalents. Additionally,

any non-Gaussian processes can be softening, hardening, or a combination of the two.

The probability distribution of a softening process has thicker tails than a Gaussian

distribution. An example softening process would be the irregular dynamic response

of a spring-mass system to a Gaussian excitation if the spring is non-linear, with stiff-

ness that decreases for greater positive displacement (softens). Such a system would

have relatively greater maxima and smaller minima than would an equivalent system

with a linear spring. Conversely, the probability distribution of a hardening process

has thinner tails than the Gaussian distribution.

The four-moment Hermite model for transformation of a process that is rela-

tively thin-tailed to a process that is thicker-tailed over the entire fractile range is

a cubic polynomial. The polynomial applies to either forward transformation of a

softening process (from Gaussian to non-Gaussian) or backward transformation of a

hardening process (from non-Gaussian to Gaussian). Transformations from processes

with relatively thick-tailed distributions to thinner-tailed distributions require inver-

sion of the cubic polynomial. The model developed by Winterstein [36, 37] has two

limitations: 1) the orthogonality limit, which is innate to the underlying theory and

2) the monotone limit, which enables a simple inversion of the cubic polynomial over

the entire fractile range. This paper provides an alternative inversion methodology

that is not subject to the monotone limit.
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1. The Functional Form of Transformation

The Hermite moment model transforms any fractile between standardized Gaussian

and non-Gaussian processes, such that the cumulative density function (CDF) of a

standard non-Gaussian process matches that of the standard Gaussian. The model

for mapping a relatively thin-tailed process to a thicker-tailed process has a simple

form resulting from an infinite series polynomial expansion. The first few terms of

the expansion can be conveniently and appropriately applied to transform between

specific fractiles.

x = a0 + a1P1(u) + a2P2(u) + a3P3(u) + ... (3.1)

u = b0 + b1P1(x) + b2P2(x) + b3P3(x) + ... (3.2)

where x and u are values of random variables X and U . Standardized random vari-

ables are used throughout this paper: X = Y−µY

σY
and U = V−µV

σV
represent standard

non-Gaussian and standard Gaussian processes, respectively; argument t is omitted

for brevity. µY , σY , α3 and α4 are the mean, standard deviation, skewness and kur-

tosis of a non-Gaussian process Y . µV and σV are the mean and standard deviation

of a Gaussian process V .

Winterstein [36, 37] provides an infinite-series polynomial expansion and a repre-

sentation of the functional transformation with four terms, whose coefficients are di-

rectly related to the response moments of the non-Gaussian process. A non-Gaussian

softening process can be expressed by a Hermite polynomial series expansion of the

Gaussian process:

x = κ
{
u +

N=∞∑

n=3

hnHen−1(u)
}

(3.3)

' κ
{
u + h3(u

2 − 1
)

+ h4

(
u3 − 3u)

}
(3.4)
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where κ is a scale factor that ensures x has unit variance. Hen is the nth Hermite

polynomial: He1(ξ) = ξ, He2(ξ) = ξ2−1, He3(ξ) = ξ3−3ξ, etc., where ξ is any value.

Coefficients h3 and h4 are directly calculated from the skewness and kurtosis of the

non-Gaussian process. Similarly, a Gaussian response can be expressed by a Hermite

polynomial series expansion of a hardening response process:

u = x−
∞∑

n=3

hnHen−1(x) (3.5)

' x− h3(x
2 − 1)− h4(x

3 − 3x) (3.6)

In both transformations, the Hermite polynomial coefficients hn give shape to

the resulting distributions. Taking only first-order terms of the expansion yields

direct relationships between the first n Hermite coefficients and the first n statistical

moments of the standardized non-Gaussian variable [36, 37].

h1 = h2 = 0, h3 =
α3

6
, h4 =

α4 − 3

24
(3.7)

Truncating the infinite expansion at the first four response moments makes the im-

plicit assumption that terms higher than h4 are negligible. In practice, use of response

moments higher than the kurtosis is difficult because of high variability in sampling

these higher moments. In addition to these first-order coefficients, Winterstein devel-

oped second-order coefficients for the forward softening case by taking all the first-

and second-order terms in the expansion [36, 37]. Other second-order representations

are proposed in [42, 43]. In later work, Winterstein and Lang [44, 45] proposed com-

putational methods to find optimized coefficients by minimizing the sum of squared

errors.
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2. Inversion

Equations 3.4 and 3.6 directly map thin- to thick-tailed distributions; mapping from

thick- to thin-tailed distributions requires inversion of the polynomial transformation.

Winterstein does not provide an inversion of Equation 3.6; he does provide an inver-

sion of Equation 3.4 which is applicable only inside the monotone limits (Section C):

u =

[√
ξ2(x) + c + ξ(x)

]1/3

−
[√

ξ2(x) + c− ξ(x)

]1/3

− a (3.8)

where ξ(x) = 1.5b

(
a +

x

κ

)
− a3

a =
h3

3h4

, b =
1

3h4

, c =
(
b− 1− a2

)3

In addition to the monotone limit, a square root in Equation 3.8 requires that ξ2(x)+c

be non-negative.

Figure 11 shows the various regions where each of the transformation pairs is

applicable. The curved lines are the orthogonality and monotone limits, which divide

space into various regions. In regions I and II the original polynomials are applicable

(Equations 3.4 and 3.6). The existing inversion was only applicable in region I (Equa-

tion 3.8). Here, a new inversion is offered for use in region II as is a new methodology

for use in regions III and IV. The new method is applicable to either forward or back-

ward transformations. Outside the orthogonality limit, use of the Hermite model is

not theoretically justified (IX , IIX , IIIX , and IVX).

3. Limitations of the Original Hermite Model of Extremes

The parabolic curve shown with a solid line on Figure 11 represents the orthogonality

limit.

α4 ≥ α2
3 + 1 (3.9)
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Outside the limit (all regions with subscript X), the transformations are generally

smooth and well-behaved, but the underlying theory is violated and use of the model

is on weak theoretical ground. The original development by Winterstein [36] includes

a cogent explanation, some of his most salient points are closely paraphrased here:

Various results of any random process Z(t) can be expressed as a sum of

n polynomials, Pn[Z(t)], that possess orthogonal properties:

E[Pn(Z)] = E[Pn(Z)Pm(Z)] = 0 (n 6= m; n,m > 0) (3.10)

The nth such polynomial can be constructed from the simple power law
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Zn(t) by removing its correlation with all lower order polynomials:

Pn(Z) = Zn −
n−1∑

k=0

cnkPk(Z); cnk =
E[ZnPk(Z)]

E[P 2
k (Z)]

(3.11)

If Z(t) has been standardized to have zero mean and unit variance, ap-

plying Equation 3.11 with P0(Z) = 1 leads to the polynomials

P1(Z) = Z; P2(Z) = Z2 − α3Z − 1; (3.12)

P3(Z) = Z3 − c32P2(Z)− α4Z − α3; ... (3.13)

in which c32 = E[Z3P2(Z)]/E[P 2
2 (Z)] = (α5 − α3 − α3α4)/(α4 − α2

3 − 1).

Noting that the E[P 2
2 (Z)] = α4 − α2

3 − 1 cannot be negative, the kurtosis

value, α4 cannot be less than α2
3 + 1.

Winterstein goes on to show that various generalizations of this model can be

formed from these orthogonal polynomials, including the ability to model a new

random process from only its first N moments; one such example is the Hermite

model of extremes. As the distribution of a non-Gaussian process approaches a

Gaussian through the infinite-series approximation, the orthogonality condition of

Equation 3.10 is used to ensure several important properties. Most importantly, 1)

it ensures that the polynomial moments are the central moments of the process and

2) that polynomials of order higher than N are equal to zero or at least negligible.

The orthogonality of the polynomials also guarantees uniqueness of the Hermite co-

efficients. Thus, the orthogonality limit (Equation 3.9) is a hard theoretical limit

imposed by use of the Hermite polynomial. In the next section, the monotone limits

are fully explained and represented geometrically as ellipses in moment space. Alter-

nate solutions are then offered that yield results identical to those of Winterstein in

the monotone regions, and also enable application of the model over the entire range
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within the orthogonality limit, i.e., the entire range for which the underlying theory

is valid.

C. Overcoming The Monotone Limitation

One of the principal contributions of this paper is an alternative implementation of the

Hermite polynomial that overcomes the monotone limitation. First, the monotone

limits are investigated numerically and represented geometrically, then the results

are used to develop a new inversion and a new alternative methodology to construct

monotonic transformations for non-monotone regions.

1. Understanding the Monotone Limits

Figure 12 is developed later in this section. The horizontal and vertical axes are

the coefficients of the Hermite polynomials: h3 = α3/6, and h4 = (α4 − 3)/24. The

Hermite polynomial transformation is shown to be monotone inside each ellipse and

non-monotone outside. The regions in Figure 11 depict the five possible cases:

I. The two coefficients, h3 and h4, are inside the upper ellipse (Ds ≤ 0), which

indicates the transformation for softening response increases monotonically.

II. The two coefficients are inside the lower ellipse (Dh ≤ 0), which indicates the

transformation for hardening response increases monotonically.

III. The two coefficients are outside the upper ellipse as well as above the horizontal

axis (h4 > 0 and Ds > 0). For this region, the transformation for softening re-

sponse increases continuously only for fractiles beyond either of the two critical

points (Equation 3.15) and decreases continuously between. The transforma-

tion for hardening response increases continuously for fractiles between the two

critical points (Equation 3.19) and decreases continuously beyond.
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IV. The two coefficients are outside the lower ellipse as well as below the horizontal

axis (h4 < 0 and Dh > 0). For this region, the transformation for hardening re-

sponse increases continuously only for fractiles beyond either of the two critical

points (Equation 3.19) and decreases continuously between. The transforma-

tion for softening response increases continuously for fractiles between the two

critical points (Equation 3.15) and decreases continuously beyond.

V. The coefficients lie on the line h4 = 0. The process is non-monotonic and

the hermite polynomial reduces to a quadratic. If h3 = 0 then the process is

Gaussian.

Three solutions for cases in regions I and II were developed in the original work by

Winterstein. A missing inversion for the monotone backward hardening Case (II) is

offered here, as are solutions for Cases III and IV (above the orthogonality limit but

outside the ovals).

a. The Monotone Limit for a Softening Response (Upper Ellipse)

In the model for softening response, the non-Gaussian variable is expressed as a cubic

function of the standard Gaussian variable. The slope of Equation 3.4 is

dx

du
= κ

{
3h4u

2 + 2h3u + (1− 3h4)
}

(3.14)

which is a quadratic function. The solutions of the quadratic equation dx
du

= 0, if any,

are the critical points of the cubic function, and play a key role in determining the

monotone range. The resulting critical points are

uc =
−2h3 ±

√
4h2

3 − 12h4(1− 3h4)

6h4

(3.15)

The existence of these solutions is determined by the discriminant, Ds for the softening
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case, which is equivalent to the equation inside square root in Equation 3.15.

Ds = 4
[
h2

3 − 3h4(1− 3h4)
]

(3.16)

A positive discriminant produces two solutions, which implies the curve is non-

monotonic, with transitions between the increasing and decreasing parts of the curve

at the critical points. Zero discriminant produces one solution (two identical solu-

tions), and a negative discriminant produces no real solution. Since no solution or

a single solution to the quadratic equation indicates no critical point in the cubic
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function, the resulting cubic function with non-positive discriminant is monotone if

h2
3 ≤ 3h4(1− 3h4) (3.17)

The zero discriminant case, Ds = 0, can be reorganized to represent the upper ellipse

in (h3, h4) plane of Figure 12.

h2
3

(1
2
)2

+
(h4 − 1

6
)2

(1
6
)2

= 1 (3.18)

b. The Monotone Limit for a Hardening Response (Lower Ellipse)

Similarly, the standard Gaussian variable can be expressed as a cubic function of a

standardized non-Gaussian variable in the model for hardening response. The same

procedure of softening response using Equation 3.6 results in two critical points, and

the discriminant and monotone limit for the hardening case:

xc =
−2h3 ±

√
4h2

3 + 12h4(1 + 3h4)

6h4

(3.19)

Dh = 4[h2
3 + 3h4(1 + 3h4)] (3.20)

h2
3 ≤ −3h4(1 + 3h4) (3.21)

Setting Dh = 0 in Equation 3.20 and reorganizing defines the lower ellipse in Figure

12.

h2
3

(1
2
)2

+
(h4 + 1

6
)2

(1
6
)2

= 1 (3.22)

Values of h4 < −1
8

are not possible in application of the model (Figure 12) because

kurtosis α4 is always non-negative in Equation 3.7.
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2. An Alternative Inversion of the Hermite Polynomial

Here, a new inversion methodology of the original Hermite polynomials (Equations 3.4

and 3.6) is offered to enable use of the Hermite model of extreme values in the Cases

III and IV, where the polynomial is orthogonal but non-monotone. The orthogonality

limit described by Winterstein (Equation 3.9) still remains. This new inversion has

an important advantage over the original: it enables inversion outside the monotone

limit, where multiple solutions are possible. Choosing between these solutions is

addressed in Section 3. To develop the alternate inversion, the forward transformation

for a softening response (Equation 3.4) is rearranged to a more convenient form:

κh4

(
u3 + a2u

2 + a1u + a0

)
= 0 (3.23)

where a0 = −x−κh3

κh4
, a1 = 1−3h4

h4
, a2 = h3

h4
and x is the value of a non-Gaussian response

to be transformed to the Gaussian. The Gaussian equivalent of the specified x is a

value of u solving the cubic equation. Among many existing solution approaches, the

most practical here is to find its real roots through use of a trigonometric identity

[46, 47]. In this solution, the real roots are selected based on computed parameters p

and C.

p =
3a1 − a2

2

3
; C =

q

2

(
3

|p|

) 3
2

(3.24)

where q = (9a1a2 − 27a0 − 2a3
2)/27.

(1) if p ≥ 0, the equation is monotone and this alternate inversion yields numerical

results identical to those of Winterstein (Equation 3.8), but without restric-

tions imposed by having a square root of a potentially negative quantity in the

solution.

u = −1

3
a2 + 2

√
p

3
sinh

(
1

3
sinh−1 C

)
(3.25)
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(2) if p < 0, the equation is non-monotone and the root selection depends on the

value of C.

u = −1

3
a2 + 2

√
|p|
3

cosh
(

1

3
cosh−1 C

)
for C ≥ 1 (3.26)

u = −1

3
a2 − 2

√
|p|
3

cosh
(

1

3
cosh−1 |C|

)
for C ≤ −1 (3.27)

u = −1

3
a2 + 2

√
|p|
3

cos
(

1

3
cos−1 C

)
for |C| < 1 (3.28)

If the kurtosis of a process is exactly 3, then Equation 3.4 reduces to a quadratic,

and h4 = 0, which creates a divide by zero in the cubic inversion. The inversion for

the quadratic is:

u =
−1±

√
1 + 4h3(h3 + x/κ)

2h3

(3.29)

which increases monotonically if (±) is taken as (+) for h3 > 0 and (−) for h3 < 0.

The inversions for the backward transformation for a hardening response is de-

veloped equivalently by rearranging Equation 3.6.

h4

(
x3 + a2x

2 + a1x + a0

)
= 0 (3.30)

where a0 = −u−h3

h4
, a1 = 1−3h4

h4
, and a2 = h3

h4
. Equation 3.30 is in exactly the same form

as Equation 3.23, so the same solution technique is applied to invert the backward

transformation of the hardening response, and the results are nearly identical.

(1) If p ≥ 0, then the transformation is monotone:

x = −1

3
a2 + 2

√
p

3
sinh

(
1

3
sinh−1 C

)
(3.31)

(2) if p < 0, the equation is non-monotone and the root selection depends on the
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value of C.

x = −1

3
a2 + 2

√
|p|
3

cosh
(

1

3
cosh−1 C

)
for C ≥ 1 (3.32)

x = −1

3
a2 − 2

√
|p|
3

cosh
(

1

3
cosh−1 |C|

)
for C ≤ −1 (3.33)

x = −1

3
a2 + 2

√
|p|
3

cos
(

1

3
cos−1 C

)
for |C| < 1 (3.34)

If the kurtosis is exactly 3, the quadratic inversion is:

x =
1±

√
1 + 4h3(u− h3)

2h3

(3.35)

which increases monotonically if (±) is taken as (−) for h3 > 0 and (+) for h3 < 0.

3. Piecewise Construction of a Monotone Transformation

In this section, a method is outlined to construct a monotonic transformation by

combining the results of non-monotonic hardening and softening transformations over

their individual regions of applicability. If two continuous CDF’s exist, then there

must also exist a final combined transformation that is monotonic at all fractiles,

because there must exist a one-to-one mapping between the two distributions such

that for any value of u there is exactly one equivalent value of x, and vice versa. The

polynomials are non-monotone in regions III and IV, so direct inversion would result

in multi-valued transformations at some fractiles. In the cumulative density function

(CDF), constant fractiles appear as horizontal lines; a transformation between the

Gaussian and non-Gaussian at a single fractile appears as a horizontal shift along

the constant fractile line. If the transformation is multi-valued, the implication is

that there exist multiple crossings of a single fractile of the CDF. The only way

multiple crossings can occur is if there is a downward slope in the CDF. By definition,

probabilities must be non-negative, so transformations must be monotonic.
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The transformation for monotone cases is either hardening or softening over the

entire distribution, and either the forward or backward transformation is a cubic

polynomial. Non-monotone cases, however, are hardening over some fractiles of the

distribution and softening over others. At extreme fractiles (very high or very low),

the cubic transformation is dominated by the kurtosis because that term is cubed

in Equations 3.4 and 3.6; for the transformation to be non-monotone, the skewness

term must dominate nearer to the body of the distribution. Such a distribution is

either hardening in the kurtosis-controlled extreme tails and softening in the skewness-

dominated fractiles nearer to the body of the distribution or vise-versa. Thus, any

fractile of a distribution that can be described by its first four statistical moments

can be transformed either to or from a Gaussian using a cubic polynomial because

that fractile must be dominated by either the skewness or kurtosis of the process.

A piecewise monotone transformation can be constructed over the entire fractile

range by determining the correct fractiles, or points in the x-u transformation space,

to transition between the hardening and softening models such that only regions of

each model with positive slope are used. The intersection of two non-monotonic cubic

polynomials is shown in Figure 13. For forward softening, x is a cubic function of

u and for backward hardening, u is a cubic function of x. There are in general as

many as nine points of intersection between the two polynomials. Optimal transition

points can be readily selected from a plot of the two non-monotone cubic polynomi-

als or these points can be selected numerically. For numerical selection, the forward

softening model (Equation 3.4) and the backward hardening model (Section 2) are

computed and the critical points for each model (Equations 3.15 and 3.19) are identi-

fied analytically. These critical points are used to detect a total of three segments on

the two curves in which both x and u are increasing, i.e, dx
du

and du
dx

are both positive.

The coefficients of the cubic terms in Equations 3.4 and 3.6 are opposite in sign,
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which guarantees for any α4 6= 3 that one of the models is increasing at extreme

fractiles and the other is decreasing, and non-monotone cubic behavior guarantees

opposite slope at more moderate fractiles. There are two overlapping regions of

the three increasing segments with an intersection between those segments in each

region; these increasing regions must overlap because their must exist a monotonic

transformation. Theoretically, the extended model consists of three parts: softening-

hardening-softening or hardening-softening-hardening, though quite frequently a two

part model is sufficient (softening-hardening or hardening-softening). In practice, a

very large but finite range of fractiles must be pre-specified for a numerical search, and

in the event a critical point is found to be outside the range, that point is replaced by

the end-point of the range. Also, the intersection between the hardening and softening
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models often creates a discontinuity in the CDF, which would create a jump in the

PDF. To avoid this unrealistic behavior, the combined monotonic transformation is

smoothed near the intersection. After a piecewise monotonic transformation has been

developed, it can be used both forwards and backwards.

In the unlikely event the kurtosis is exactly three, the cubic transformations re-

duce to quadratics, which are necessarily non-monotone. Monotonic transformations

can be easily constructed using the methodology presented here to combine monotonic

segments of Equations 3.29 and 3.6 or Equations 3.35 and 3.4.

D. Application of the Theoretical Developments

The strengths of the original development of the Hermite moment model that helped

lead to its widespread use in practical applications is that it is based on a solid

theoretical foundation and the resulting equations are extremely simple to implement.

The expanded methodology developed in this paper is also reasonably straightforward

to implement in a practical application, but not nearly as straightforward as the

original, mainly because of the need to identify the points of transition between

the hardening and softening models. The numerical scheme described in Section 3

has been implemented in Matlab and it is the intent of the authors to make the

source code generally available. Two typical applications of the Hermite model are

transformations between Gaussian and non-Gaussian equivalents.

1. Transformation of a Gaussian Fractile to Its Non-Gaussian Equivalent

In this application, the Hermite moment model is used to predict a pre-specified ex-

treme value of a non-Gaussian process. In such an application, the skewness and

kurtosis are calculated directly from the time-history and used to compute the co-
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efficients for the Hermite polynomials (Equations 3.7). Next, the process is checked

against the orthogonality limit (Equation 3.9) to confirm the process is within the

range of applicability. The kurtosis is checked to determine if the process is hard-

ening or softening, and the monotone limit is then checked (Equation 3.17 or 3.21).

If the process is monotone and hardening, Equation 3.31 is applicable to calculate

the non-Gaussian equivalent to the desired Gaussian fractile; if softening and either

monotone or non-monotone, Equation 3.4 is applicable. If non-monotone hardening,

a piecewise monotone transformation must be constructed as outlined in Section 3

using Equations 3.4 and 3.32–3.34. Once the transformation has been computed, it

can be applied to transform any Gaussian fractile (e.g., the 100-year event) to its

non-Gaussian equivalent. The model is valid at every point in the process or distri-

bution, and so can also be used to transform a Gaussian distribution into a general

reference shape CDF or PDF conforming to the first four statistical moments of the

process.

2. Transformation of a Non-Gaussian Response to Its Gaussian Equivalent

In this application, the Hermite moment model is used to map an equivalent fractile

of a process to enable use of traditional statistical tools such as the Student’s T-test to

compare means of the processes. In such an application, the skewness and kurtosis are

again calculated directly from the time-history and used to compute the coefficients

for the Hermite polynomials. The process is checked against the orthogonality limit

to confirm the Hermite model is applicable as in Section 1. The kurtosis is checked

to determine if the process is hardening or softening, and the monotone limit is then

checked (Equation 3.17 or 3.21). If the process is hardening and either monotone

or non-monotone, Equation 3.6 is applicable to calculate the Gaussian equivalent; if

monotone and softening, Equation 3.25 is applicable. If non-monotone softening, a
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piecewise monotone transformation must be constructed as outlined in Section 3 using

Equations 3.6 and 3.26–3.28. Once the transformation has been developed, it can be

applied to the complete distribution or to every point in the process to transform it

to the Gaussian equivalent such that conventional Gaussian statistical tools can be

used in place of typically less-powerful non-parametric techniques.

E. Example

The Hermite moment model is applied to simulated data resulting from a time-domain

solution of a simple numerical model of a Tension Leg Platform (TLP) subject to ir-

regular seas. A TLP is a compliant offshore structure used for production of oil

and gas in deep ocean waters that has highly non-Gaussian surge response (hori-

zontal translation in the direction of the environmental loading). The platform is

vertically moored by tendons at each of its corners (Figure 14). Surge response time-

histories have been simulated using a simplified 2-dimensional nonlinear numerical

model, which approximates the Snorre TLP in the Norweigian sector of the North

Sea. Environmental conditions were intentionally selected such that the simulated

response is very near the intersection of the monotone and non-monotone regions.

1. Numerical Model and Simulation of TLP Surge Response

In the numerical model, wave, wind and current forces are applied to a single degree

of freedom system including nonlinear restoring force and the equation of motion is

solved in the time domain. The two main sources of non-Gaussianity in the model

are 1) the non-linear mooring restoring force caused by the changing angles of the

tendons with increased offset and the increased buoyancy of the hull caused by being

pulled downward by the tendons, and 2) the non-Gaussian wave forcing caused by
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the highly nonlinear drag term in the Morison Equation e.g., [48].

2. Application of the Hermite Model to Simulation in the Time Domain

Simulations are for a significant wave height of 10.3 m with spectral peak period of

15.5 sec. Wind force and current velocity are held constant at 3×107 N and -0.1 m/s,

respectively. The time step of integration is 0.05 sec and total time duration for the

long time-histories is 90 minutes; in this environment, the natural period is around

72 seconds. Irregularity in the response is due to the random phasing in the wave

simulation from a JONSWAP spectrum e.g., [48]. The spectrum was decomposed into

a large number of frequency components and wave particle kinematics were computed

for each frequency component using Airy theory. Wave kinematics are combined with

current velocities at each time-step and hydrodynamic forces are then estimated using

the Morison Equation and a constant wind force is added. Finally, the nonlinear

equation of motion is solved by time-step integration (Newmark method) [49].

The first four statistical moments of the response (µY , σY , α3 and α4) have been

calculated for the beginning of the time-history up to specified cut-off times. The

first window is from time, t = 0 until t = 200 seconds; the next window is from t = 0

until t = 300 seconds, with each successive window using the entire previous window

plus an additional 100 seconds until the final time of 5,400 seconds (90 minutes).

The resulting statistical moments are then used with the Hermite model to predict

the 1.5-hour mean maximum. In this example, the kurtosis is estimated from the

first M points of the time-history using the correction for small samples (e.g., [50])

in which α4 ≈ [(M + 1)α̂4 − 3(M − 1)](M − 1)/[(M − 2)(M − 3)] + 3 where α̂4 =

1/(Mσ4
X)

∑M
m=1[X(m)− µX ]4.

Figure 15 shows prediction results for the 90 minute mean maxima as the process

shifts between solution cases compared with the equivalent maxima predicted using
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Gaussian theory only. Table II shows the skewness, kurtosis and the behavior of the

process. Variation in the moments causes the single time-history to shift between

the four different cases (Table II); the relatively consistent prediction of the 1.5-hour

maximum shown in Figure 15 indicates the consistency between four different solution

regions of the Hermite model. Prior to this work there was no Hermite transformation

available in the cubic non-monotone regions (Region III or IV in Figure 11).

Table II. Resulting Response Moments

Time(sec) Skewness Kurtosis Behavior∗

4400 -0.2651 3.0072 S-H-S

4700 -0.2402 2.9885 H-S-H

4900 -0.2417 2.9670 H

5000 -0.2859 3.1169 S
∗ S = Softening; H = Hardening

Figure 16 shows that the extended model gives consistent results near the kur-

tosis of 3.0, where the model changes between softening-hardening-softening (S-H-S,

4,400 sec) and hardening-softening-hardening (H-S-H, 4,700 sec,) and softening only

(S, 5,000 sec). Results from the three models cannot be differentiated by eye over the

entire PDF.

Figure 17 shows a histogram of probability density from a simulation case ending

at 4,400 seconds (TableII) compared with two theoretical PDF’s. The non-Gaussian

PDF is seen to have a much better fit than the Gaussian, especially in the extreme

tail, which is generally of highest importance for engineering applications. For this

case, the tail appears to be a good fit down to fractiles around 0.001.

Figure 18 compares Hermite model results with extreme value predictions of the

90 minute mean maxima with mean maxima based on Monte Carlo simulations. Each
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data point is a prediction of the 90 minute mean-maximum based on increasing sim-

ulation times, i.e., the point at 1,200 seconds shows a prediction of the 90 minute

maximum based on only 20 minutes of measured data. The irregular line with the

error bars is the predicted mean-maximum based on the response moments ± one

standard deviation. These bars are constructed by computing the statistical mo-

ments of each of the 20 realizations and applying the Hermite model to predict a

mean-maximum for each one. The two solid lines are the average of the twenty ob-

served 90-minute maxima ± one standard deviation. The error bars’ being mainly

between the horizontal lines indicates reduced variability in the predicted versus ob-

served maxima. The consistent over-prediction of the Gaussian results compared with
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Hermite and Monte Carlo results (about 0.5 meter) shows that using Gaussian results

is overconservative for this negatively skewed case. Finally, the relatively steady value

of the predicted mean maximum indicates that only a relatively small amount of data

is needed to compute the statistical moments with sufficient accuracy to predict the

expected maximum, and for these cases, only about five minutes of data is necessary

for reasonably accurate predictions.

F. Discussion and Conclusions

The Hermite moment model is widely used to transform extreme fractiles between

Gaussian and non-Gaussian processes. Historically, the model has been constrained

by two theoretical limits: the orthogonality limit and the monotone limit. Outside

the orthogonality limit (Equation 3.9) the Hermite polynomials are not guaranteed

to be orthogonal, which has significant theoretical implications. Here, the monotone

limit is investigated in detail and mathematically expressed as two ellipses in Hermite-

coefficient space (Figure 12). An alternate solution technique is offered that overcomes

the monotone limitations of the original Hermite moment model, along with one

additional monotone case. The work presented here completes the original Hermite

moment model for all values of skewness and kurtosis for which the underlying theory

is valid, and includes mapping between Gaussian and non-Gaussian processes in either

direction.

The major innovation offered in this paper is a new methodology by which the

Hermite model can be applied to highly skewed cases with near-Gaussian kurto-

sis, which are associated with non-monotone cubic polynomial transformations (Sec-

tion 3). In non-monotone regions, the new methodology combines monotonic seg-

ments of a cubic polynomial with monotonic segments of the inversion of another
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cubic polynomial to create one complete monotonic transformation over the entire

fractile range. For the forward model, the increasing parts of the cubic polyno-

mial (Equation 3.4) are combined with the increasing parts of the inversion (Equa-

tions 3.32–3.34). For the backward model, the increasing parts of Equation 3.6 are

combined with the increasing parts of Equations 3.26–3.28.

Additionally, a new inversion of the backward model is developed as a solution for

the forward hardening monotone case (Equation 3.31). This inversion was excluded

from the original work by Winterstein [36, 37]. For consistency, an equivalent inversion

is also proposed for monotone softening, which yields the same result as the original

formulation.

The new technique is demonstrated through application to simulated irregular

motions of a tension leg platform (TLP). The simulated process is non-Gaussian

and the environmental conditions were selected such that variability of sample re-

sponse moments caused the response to shift between regions in which the mono-

tone, softening-hardening-softening and hardening-softening-hardening solutions ap-

ply. Results show that the model transitions smoothly between these regions. Pre-

dictions of extreme responses are shown to be more accurate than application of a

Gaussian model alone, and require less data and show less variability than averaging

the observed maxima of twenty simulations.
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CHAPTER IV

EFFICIENT CALCULATION OF STATISTICAL MOMENTS FOR

STRUCTURAL HEALTH MONITORING

Wireless networks of smart sensors with computations distributed over multiple sen-

sor packages have shown considerable promise in providing low-cost Structural Health

Monitoring (SHM). In these networks, microprocessors are typically embedded in in-

dividual smart sensor packages. The efficiency of embedded computational algorithms

is of critical importance because the size,cost, and power requirements of the sensor

arrays are central concerns. Here, very efficient methodologies are presented to com-

pute statistical moments of a measured response time-history. These moments: the

mean, standard deviation, skewness and kurtosis, are often used to characterize a

measured irregular response.

Two alternative approaches are presented, each of which can save substantial

computer memory requirements and CPU time in certain applications. The first

approach reconsiders the computational benefits of computing statistical moments

by separating the data into bins and then computing the moments from the geometry

of the resulting histogram. One benefit is that the statistical moment calculations

can be carried out to arbitrary accuracy such that the computations can be tuned

to the precision of the sensor hardware. The second approach is a new analytical

methodology to combine statistical moments from individual segments of a time-

history such that the resulting overall moments are those of the complete time-history.

The computed moments are the same as if the segments had been concatenated prior

to moment calculations.

A worked example is presented comparing two implementations of the new method-

ologies with conventional calculations in monitoring the global performance of an
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offshore Tension Leg Platform (TLP). Accuracy, efficiency and storage requirements

of the calculation methods are compared with those of conventional methods. The

results show that substantial CPU and memory savings can be attained with no loss

in accuracy and that more dramatic savings can be attained if a slight reduction in

accuracy is acceptable.

A. Introduction

Health monitoring of either old or new structures is desirable for both economic and

public safety concerns. The overall goal of these systems is to monitor structural

performance such that structural integrity can be regularly assessed to detect any

deficiencies before minor structural defects worsen and ultimately result in catas-

trophic failures. Conventional visual inspection techniques are labor intensive, time-

consuming, and costly. Networks of smart sensors that include embedded computers

and wireless connectivity have been proposed as a low-cost alternative inspection

methodology. Extensive reviews of Structural Health Monitoring (SHM) techniques

have been done by others, e.g. [8, 7, 51, 11].

A significant cost to field application of SHM systems on large civil structures

can be that of installing the cables; the cabling and its various termination points

may also present likely failure points for civil structures in harsh environments such

as offshore structures. Finally, some types of structures with rotating components,

such as the blades on wind turbines, cabling is nearly impossible. For these reasons

and others, active development is ongoing for wireless sensors, often including some

degree of distributed computing.

A major challenge for wireless structural monitoring systems is availability of

power to run the sensor network for extended periods of time. In most applications,
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wireless communication between sensors consumes more power than any other oper-

ation, which leads designers of these networks to process the raw data locally near

the sensor and wirelessly transmit only the results. For example, Lynch [52] em-

bedded damage identification algorithms into wireless sensing units to execute data

interrogation. In a sensor network with distributed computing, the wireless sensing

units include an embedded microcomputer and are responsible for acquiring sensor

measurements, analyzing the measured data, and transmitting the results to a cen-

tral server or to another sensor package in the network. The computational demands

on the embedded microcomputer for real-time local data interrogation can be quite

substantial. Employment of very efficient computational algorithms, such as those

presented here, will enable lower cost sensors due to reduced CPU time, data storage

and power requirements.

Similarly, in a field application of a significant SHM network, long-term storage of

actual time-histories may be cost-prohibitive because an enormous amount of data are

measured; statistical moments offer a compact way to characterize time-history data

for wireless transmission and future storage. The methodologies to combine statistical

moments from different segments of a time-history offer a mechanism to combine and

reanalyze data to, e.g., detect long-term trends in the underlying process. Sohn et

al [53] investigate novelty detection for non-Gaussian response to more accurately

assess tail behavior using known extreme-value distributions. Efficient calculation

of skewness and kurtosis could enable use of non-Gaussian distributions that more

precisely match the tail behavior of measured data, e.g. [37].

In general, statistical moments can be used to represent the characteristics of

any random data, e.g., [54, 55]. Statistical moments have found a broad range of

application including: blind decomposition [56], asymptotic probability of detection

criterion in the frequency domain [57, 58], non-Gaussian noise modeling [59], and
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condition monitoring and diagnosis of rolling element bearings. Dyer and Stewart

first proposed the use of the kurtosis for rolling element bearing defect detection

in 1978 [60], and use of statistical moments remains important in this area [61, 62].

These techniques have advantages over traditional time and frequency analysis: lower

sensitivity to the variations of load and speed, and easy and convenient analysis of

the results [62].

Conventionally, the statistical moments of a set of discrete data, xi, are computed

directly using a two-pass algorithm (e.g. [54, 55]):

µ =
1

I

I∑

i=1

xi = E[x] = m1 (4.1)

σ2 =
1

I

I∑

i=1

(xi − µ)2 = θ2 (4.2)

α3 =
1

Iσ3

I∑

i=1

(xi − µ)3 =
θ3

σ3
(4.3)

α4 =
1

Iσ4

I∑

i=1

(xi − µ)4 =
θ4

σ4
(4.4)

where I is the number of points in the sample; µ, σ2, α3, and α4 are the mean, variance,

skewness, and kurtosis of the data xi, and θ2, θ3 and θ4 are the central moments.

Such algorithms are called two-pass because the mean must first be computed and

that mean is subsequently used in the computation of the remaining moments, which

implies the entire dataset must be retained. The computational demands imposed by

calculation of these moments is a strong function of the number of times a quantity

is raised to a power. For example, in calculating the α4, the quantity (xi − µ) is

raised to a power of 4, I times: resulting in one power computation per data-point

per statistical moment. Here, computational efficiency of an alternative method to

compute statistical moments is re-investigated: the data are first binned to create a

histogram from which the desired moments can be calculated. In this method, the
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number of times a quantity must be raised to a power is a function of the number of

bins rather than the number of data points, and the width of each bin can be specified

as a function of the required accuracy. Setting the bin width to the precision of the

original sensed data yields exact results. The computational savings of this alternative

method can be substantial, but perhaps more importantly, dramatic memory savings

can also be realized if the raw data are binned real-time, and so the complete time-

history does not need to be retained. Avoiding the need to retain a the time-history

makes this new methodology competitive with existing one-pass algorithms for the

variance, except that here the statistical moments are not computed every time-step.

One-pass or on-line algorithms for the mean and variance have been known for some

time (e.g., [63]), and have been implemented on real-world hardware (e.g. [64]).

Methodologies for one-pass algorithms for the higher moments, however, are less

common. Terriberry [65] offers pairwise updating formulas for the skewness and kur-

tosis (without derivation). Pebay [66] explains how Terriberry’s updating formulae

could be implemented as a one-pass algorithm. The one-pass histogram-based algo-

rithm presented here is unique from earlier work in that it allows the user to specify

arbitrary accuracy, such that the accuracy of the calculations can be made equivalent

to that of the measurement equipment, enabling some savings in computational and

memory requirements. Computation of statistical moments from a histogram is gener-

ally well-established in the statistics community, but investigation of the methodology

as an efficient one-pass algorithm with arbitrarily specified accuracy is unique. As

such, this part of the paper is of little theoretical interest to the statistics community,

but may be of considerable practical interest to the structural health monitoring com-

munity. The technique presented here is less computationally intensive for very large

data sets than a true one-pass algorithm because here the data is binned real-time and

the moments are computed from the binned data, rather than computing an updated
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skewness and kurtosis every time-step. The Terriberry/Pebay one-pass algorithm is

derived as a special case of a pairwise updating algorithm, which is substantially

different than the derivation presented here.

In a related calculation, it is often convenient to use an updating algorithm to

combine statistical moments from individual segments of a data set. This combination

can be useful such that various segments of the data can be processed in parallel,

or such that segments of a time-history can be processed sequentially as they are

measured. In SHM problems, it can be useful to compute statistical moments of new

measured data for comparison with those of previously measured historic data. If no

differences are observed, then the new data are merged into the historic data to give

a more robust estimate of the true underlying moments. The most simple, though

inefficient, way to revise the historic statistical moments would be to concatenate the

new data onto the old, then compute the moments of the complete history. Here,

a new pairwise method is presented to combine the statistical moments computed

from individual segments of a time-history, without the need to recompute any of

these statistical moments. Using this technique, only five historic values need to be

retained: the first four statistical moments and the amount of data on which they are

based.

In addition to explaining the use of Terriberry’s [65] results as a one-pass al-

gorithm, Pebay [66] also notes that Terriberry’s results are special cases of Pebay’s

arbitrary-order update formulae. The implementation offered by Pebay is substan-

tially different from that suggested here, and the derivation offered by Pebay also

differs meaningfully from that offered here, though both derivations hinge on the

commutativity of summations over finite sets as applied to statistical moments. In

his report, Pebay echoes Terriberry’s thoughts, noting that: “To our knowledge, there

are currently no published formulas for parallel updates of higher-order moments.”
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An important capability of the updating formulae offered here compared with those

of Terriberry/Pebay is that this methodology can be readily applied to distributions

of data that are not specifically countable, such as the moments of a probability dis-

tribution estimated from e.g. a power spectrum (e.g., [67]). Also of potential interest

to the structural health monitoring community is that this new methodology is easily

modified to allow a user to assign different importance to specific segments of the

data, such as newer data being more important than older data, or one sensor being

more reliable or accurate than another. Finally, the Terriberry formulae apply to

combination of only two sets of higher-order moments, and would need to be used

recursively to combine multiple sets of moments. In contrast, the new methodology

presented here can be used to combine any number of sets of moments, which could

be relevant in the case of massively parallel computations.

B. Theory

Derivation of the new methodology requires some knowledge of moments, which is

presented here to ensure consistent notation. The background is followed by an

investigation of computing statistical moments of discrete data from a histogram, with

emphasis on the relative efficiency and accuracy compared with conventional methods.

Finally, the proposed method to combine statistical moments is derived and presented.

Throughout most of this text, the data set is referred to as an irregular time-history

because that is the most common application to structural health monitoring. In

general, the equations and techniques presented here are equally valid for any random

variable.
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1. Background

a. Calculation of Moments from Discrete Data

The moments of a random variable about zero and about its mean are referred to

as the raw and central moments, respectively. The nth moment of a discrete random

variable x(t) about value r with a finite range is defined as (e.g. [54, 55]):

Mn,r =
I∑

i=1

(
x(ti)− r

)n
∆ti (4.5)

which can be expressed as follows if the continuous distribution function, f(x), is

known:

Mn,r =
K∑

k=1

(xk − r)nf(xk)∆xk (4.6)

in which I represents the number of data points x(ti) and K represents the number

of base xk in its discrete distribution function f(xk), i.e., the number of bins in the

discrete distribution.

The nth raw moment of a discrete time-history (Equation (4.5) with r = 0) can

be normalized by the time duration, with the result equal to the expected value of

the nth power of x

m(t)
n =

1

T
Mn,0 =

∑I
i=1 x(ti)

n∆ti∑I
i=1 ∆ti

= E[xn] (4.7)

where T =
∑I

i=1 ∆ti is the time duration and the superscript (t) indicates moments are

calculated directly from the time-history. For constant ∆t, the duration is T = I∆t,

which enables Equation (4.7) to be simplified:

m(t)
n =

1

I

I∑

i=1

x(ti)
n (4.8)

The first normalized raw moment (n = 1) is the sample mean, which is often used to
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estimate the true mean of the process for normalization of other central moments.

θ(t)
n =

1

T
M

n,m
(t)
1

=

∑I
i=1

(
x(ti)−m

(t)
1

)n
∆ti

∑I
i=1 ∆ti

= E

[(
x−m

(t)
1

)n
]

(4.9)

which for constant time interval ∆t is:

θ(t)
n =

1

I

I∑

i=1

(
x(ti)−m

(t)
1

)n
(4.10)

The second normalized central moment (n = 2) is the sample variance (Equa-

tion (4.2)).

b. The Relationship Between Raw Moments and Central Moments

The first four raw moments and central moments have the following well-known math-

ematical relationships, e.g. [54, 55]:

m1 = E[x] = µ (4.11)

m2 = E[x2] = θ2 + m2
1 (4.12)

m3 = E[x3] = θ3 + 3m1θ2 + m3
1 (4.13)

m4 = E[x4] = θ4 + 4m1θ3 + 6m2
1θ2 + m4

1 (4.14)

θ2 = E[(x− µ)2] = m2 −m2
1 (4.15)

θ3 = E[(x− µ)3] = m3 − 3m1m2 + 2m3
1 (4.16)

θ4 = E[(x− µ)4] = m4 − 4m1m3 + 6m2
1m2 − 3m4

1 (4.17)

2. Calculation of Moments Using a Relative Histogram

A relative histogram of a random variable can be constructed in the conventional

way. The range of potential values is divided into bins and the number of occurrences

within each bin are counted and plotted such that the area of each rectangle equals
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the portion of the sample values within that bin (e.g. [54, 55]):

H(xk) =
h(xk)

A
(4.18)

where h(xk) and H(xk) represent the frequency and the relative frequency at bin xk,

and A =
∑K

k=1 h(xk) ∆xk is the total area of the histogram. After this normalization,

the n raw moments and central moments of x(t) can be calculated from the relative

histogram, similar to Equation (4.6):

m(h)
n =

K∑

k=1

xn
k H(xk)∆xk =

1

A

K∑

k=1

xn
k h(xk)∆xk (4.19)

θ(h)
n =

K∑

k=1

(
xk −m

(h)
1

)n
H(xk)∆xk =

1

A

K∑

k=1

(
xk −m

(h)
1

)n
h(xk)∆xk (4.20)

where the superscript (h) indicates the moments are calculated from the histogram.

For constant bin width ∆xk = ∆x these two expressions can be simplified with

A =
∑K

k=1 h(xk)∆x = I∆x:

m(h)
n =

1

I

K∑

k=1

xn
k h(xk) (4.21)

θ(h)
n =

1

I

K∑

k=1

(
xk −m

(h)
1

)n
h(xk) (4.22)

a. Precision of Moments Calculated from a Histogram

Calculation of sample moments directly from the time-history results in optimal accu-

racy since all data are used directly and there is virtually no opportunity for round-off

error. The histogram method also yields perfect accuracy if the bin width is equal to

the precision with which the data has been measured. If computational efficiency is

of greater importance than absolute precision, then the bins can be made arbitrar-

ily wider, trading a reduction in computational demands for reduced accuracy. The

resulting difference between moments calculated using a time-history and using its
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histogram represents the error:

m(h)
n −m(t)

n =
1

A

K∑

k=1

xn
k h(xk)∆xk − 1

T

I∑

i=1

x(ti)
n∆ti (4.23)

which for both constant time interval ∆t and constant bin width ∆x are:

m(h)
n −m(t)

n =
1

I

(
K∑

k=1

xn
k h(xk)−

I∑

i=1

x(ti)
n

)
(4.24)

The trade-off between precision and computational savings is investigated as part of

the example later in this paper.

3. Efficient Combination of Statistical Moments

Here, a new computational method is proposed to combine multiple sets of statistical

moments. An example application would be combining moments from several indi-

vidual segments of a long time-history, with each segment possibly being processed by

a separate processor. If sample statistical moments describing several separate seg-

ments of an irregular time-history have been computed from measured data, statistical

moments describing a single concatenated time-history of all data can be calculated

directly from the existing statistical moments. This proposed computational tech-

nique uses the first four statistical moments of each segment to compute the four raw

moments, which are then transformed into new variables (γn) that are easily com-

bined by addition. After combination, the new variables are inversely transformed

back to four raw moments now describing all the data, from which the statistical

moments are easily calculated.

a. Moment Addends, γn

New moment addend variables, γn, are introduced to enable straightforward combina-

tion of the statistical moments of multiple time-histories. For an irregular time-history
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x(t) with variable time interval ∆ti:

γn =
I∑

i=1

(x(ti))
n∆ti (4.25)

where γ0 is the duration of each time-history. For constant time interval ∆ti = ∆t:

γn = ∆t
I∑

i=1

(x(ti))
n (4.26)

The same values of γ for the histogram form of computing the moments can be

expressed in terms of the frequency of occurrence at the xk bin, h(xk), with variable

bin width ∆xk.

γn =
K∑

k=1

xn
kh(xk)∆xk (4.27)

yielding γ0 as the area of the histogram. For constant bin width ∆xk = ∆x:

γn = ∆x
K∑

k=1

xn
kh(xk) (4.28)

b. Combination of Statistical Moments

If Q sets of statistical moments are known: (γ0,q, µq, σ
2
q , α3,q, α4,q) for q = 1, 2, ..., Q,

then each γn can be expressed in terms of the equivalent n raw moments (Equa-

tions 4.7, 4.8, 4.19, and 4.21).

γn,q = mn,qγ0,q for n = 1, 2, 3, 4 and q = 1, 2, ..., Q (4.29)

where γ0,q is generally taken to be the duration of the qth time-history, or the number

of points if ∆t is constant. It is worth noting, however, that γ0,q is a weighting factor

only, and its interpretation can be flexible depending on the application. Importantly,

in this method the statistical moments are not required to be those of a quantity

that is countable: these moments could be computed directly from e.g., a probability
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distribution, in which case the value of γ0,q would represent the relative importance of

the moment estimate. There is no theoretical limitation on the maximum order of the

moments (the value of n), though higher-order equivalents to Equations (4.11–4.17)

would be needed in practical applications. The benefit of expressing the statistical

moments in terms of γ is that the Q sets can be combined by addition, and there is

no upper limit on the value of Q.

γn,c =
Q∑

q=1

γn,q for n = 0, 1, 2, 3, 4 (4.30)

where the subscript c represents the concatenated time-history or combined γ. These

combined values of γ can then be inversely transformed into raw moments representing

the concatenated time-history by inverting Equation (4.29).

mn,c =
γn,c

γ0,c

for n = 1, 2, 3, 4 (4.31)

The relationship between raw moments and central moments (Equations 4.15–4.17)

are then used to compute the central moments of the concatenated time-history. Fi-

nally, the statistical moments of the concatenated history are computed as in Equa-

tions (4.1–4.4)

µc = m1,c σ2
c = θ2,c α3,c =

θ3,c

σ3
c

α4,c =
θ4,c

σ4
c

(4.32)

C. Application

1. Estimation of Statistical Moments of a Concatenated Time-history

In general, sample moments approach the true moments of the underlying process as

the time-history increases in length. If very long time-histories are available, moments

of the true process can often be estimated by those of the long sample. However, if

individual segments of the long history are available, several possible approaches to
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finding moments of the concatenated history are available. Three of these possibilities

are presented in Figure 19. Each of these methods can be applied repeatedly to

compute statistics of a long time-history made up of any number of segments.

segment 1

segment 2

combined segment

   statistical moments
Conventional Approach

statistical moments
 New Approach 1

statistical moments
 New Approach 2

statistical moment set 1
 from time-history

statistical moment set 2
 from time-history

statistical moment set 1
 from histogram

statistical moment set 2
 from histogram

New Method New Method

Fig. 19. Three Approaches to Calculate Statistical Moments of a Concatenated

Time-history

The most conventional method is shown in the center of the figure: the first

segment and the second segment are concatenated and the statistical moments are

calculated directly from the resulting long time-history. This simple approach re-

quires considerable computational resources and substantial storage space to retain

the previous time-histories, both of which may be problematic in field applications

using micro-computers in distributed sensor arrays.
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Two alternative approaches are shown progressing down the left and right sides

of Figure 19. The principle benefit compared with the conventional approach is a

significant decrease in storage requirements since only the statistical moments need

to be retained, rather than the complete time-histories. In both cases, the methods

of Section b are applied to combine these moments. The two approaches differ only

in how the statistical moments for each segment are computed before concatenation.

The method on the left side of the figure is based on calculation of the statistical

moments of each time-history by the conventional method of Equations 4.1–4.4; the

approach shown on the right side of the figure is based on calculation of the statistical

moments through use of the histogram as in Section 3.

a. Calculation of Statistical Moments from a Histogram

One method to calculate the statistical moments is by calculation of the central mo-

ments from the histogram (Equations 4.20 or 4.22) and then converting these to the

central statistical moments through the relationships of (Equations 4.1–4.4). If the

bin width of the histogram is equivalent to the smallest decimal place of the measured

data, then the results will be identical to those calculated by conventional means. As

previously noted, for very long time-histories the histogram method will generally be

more efficient; for shorter time-histories the more conventional method will generally

be more efficient. However, the histogram method also offers an additional option to

reduce computational demands: the bin width can be made larger than the small-

est decimal place of the measured data. The effects of increased bin width versus

computational demands are investigated in a later example.
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b. Combination of Statistical Moments

Regardless of how the statistical moments of individual segments of a time-history

were calculated, these moments can be combined efficiently. The procedure is straight-

forward: First, the n = 4 statistical moments for each (q) of the Q segments to be

combined are transformed into the mean and three central moments by inverting the

definitions of the statistical moments (Equations 4.1–4.4) to m1,q = µq, θ2,q = σ2
q ,

θ3,q = α3,qσ
3
q , θ4,q = α4,qσ

4
q . Second, the resulting Q sets of three central moments

are transformed into Q sets of three raw moments using the well-known relationships

between raw and central moments (Equations 4.12–4.14). Third, the resulting 4Q raw

moments (including Q means) are then transformed into 4Q values of γn,q = mn,qγ0,q

(Equation (4.29)). Fourth, each of the 5 sets of Q values of γn,q are combined as in

Equation (4.30), γn,c =
∑Q

q=1 γn,q (n = 0 to 4). Finally, the transformation process is

reversed for the resulting 5 values of γn,c to produce the desired four central statistical

moments as in Equations 4.31–4.32.

D. Example

The new methodologies are applied to simulated data resulting from a time-domain

solution of a simple numerical model of a Tension Leg Platform subject to irregu-

lar seas. A TLP was selected for this example because of its highly non-Gaussian

surge response (horizontal translation in the direction of the environmental loading).

Three segments of a surge time-history, each having significantly different statistical

moments, are created without modifying the structural model, but only changing

the peak period of the incident waves, the current velocity and the wind force. Cal-

culation and combination of the resulting statistical moments are investigated and

compared.
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1. Numerical Simulations

A Tension Leg Platform (TLP) is a compliant offshore structure used for production

of oil and gas in deep ocean waters. The platform is vertically moored by tendons

at each of its corners (Figure 20). Surge response time-histories of the Snorre TLP,

which is located in the Norweigian sector of the North Sea, have been simulated by

a simplified 2-dimensional nonlinear numerical model.
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Fig. 20. Schematic View of Tension Leg Platform

The wave and current forces are non-linear and non-Gaussian. These forces are

applied to a single degree of freedom system including nonlinear restoring force. The

equation of motion is solved in the time domain using the Newmark Beta Method

(e.g., [49]). The time step of integration (∆t) is 0.01 sec and total time duration for

each of the three time-histories is one hour. The two main sources of non-Gaussianity

in the model are 1) the non-linear mooring restoring force caused by the changing
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angles of the tendons with increased offset and the increased buoyancy of the hull

caused by being pulled downward by the tendons, and 2) the non-Gaussian wave

forcing caused by the highly nonlinear drag term in the Morison Equation [48, 68].

2. Results

The statistical moments of each response time-history simulated under three environ-

mental conditions are summarized in Table III. Changing environmental conditions

result in substantial changes in the statistical moments of the simulated response.

Table III. Environmental Conditions and Associated Statistics of The Response

Condition Hs(m) Tp(sec) Uc(m/s) Fw(kN) µ σ2 α3 α4

1 14.5 15.5 1.5 -3000 -1.3833 0.2742 0.1236 2.9969

2 14.5 12.5 2.0 -5000 -2.2512 0.2447 0.1203 2.3685

3 14.5 18.5 1.0 -2000 -0.9154 0.2510 0.0411 2.1207

a. Calculation of Statistical Moments

Calculation of statistical moments by the conventional methods of Equations 4.1–4.4

are compared with application of the relative histogram (Section a) in Figure 21.

The vertical axis on the left compares the relative CPU time needed to compute all

four of the statistical moments, with the conventional methodology defined as 100%

CPU time. For this one-hour time-history (360,000 data points) with a measurement

precision of 0.001, the histogram method takes about 75% of the CPU time as the

conventional method if the bin width is set to the precision (zero error in binning

leading to exact sample statistical moments). CPU usage figures result from binning

and computations performed using MatLab.
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Progressing from left to right on the horizontal axis shows gradual increases in the

bin width, and the vertical axis on the right shows the associated error in the statistical

moments. The error is the difference between the exact and approximate statistical

moments divided by the exact statistical moments (calculated conventionally). The

plot shows that for this time-history, increasing the bin width to ten times as large as

the precision of the data has a savings of about half of the CPU time, with virtually

no noticeable increase in error in the statistical moments. The CPU time does not

drop by a factor of ten because the same 360,000 data points must be binned.

Calculation using a histogram with bin width of 0.001 yields results identical to

the conventional method (Table III), with using 74.7% of the CPU time and 2.78%

of the storage requirements. Calculation using a histogram with bin width of 0.01

results in statistical moments with error less than 0.1% using 33.9% CPU time and

0.25% storage space relative to conventional calculation. The dramatic savings in

storage space results from assuming the data are binned as they are collected such

that the time-history need not be saved. Computation of statistical moments by the

conventional two-pass method requires saving the complete time-history so the mean

can be computed in the first pass and applied to computation of the moments in the

second pass through the data.

b. Calculation of Statistical Moments of the Concatenated Time-history

Three approaches are compared for calculating the statistical moments of a con-

catenated time-history made up of the three independent time-histories described by

Table III.

Method A (Conventional): The conventional method of calculating the statistical

moments defines 100% CPU and 100% Storage requirements. This method is to store

both of two one-hour time-histories as they are collected, to compute the statistical
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Fig. 21. Effect of Bin Width on Calculation of Statistical Moments. Time Duration:

1 hour, ∆t: 0.01 sec, Data Precision: 0.001

moments using the conventional means of Equations 4.1–4.4, then to concatenate the

two histories, and then finally to compute the statistical moments of the concatenated

time-history.

Method B (Statistical Concatenation): In this application, it is assumed that

the first time-history is stored and conventional methods are applied to calculate the

statistical moments; the first time-history is then deleted and the second is stored

and its statistical moments are calculated. These two sets of statistical moments

are then combined using the methods of Section 1. The approximately 50% savings

in both CPU usage and memory requirements results from not having to save both

time-histories and recompute the moments for the concatenated history.

Method C (Histogram with Statistical Concatenation): The method applied here

is to calculate the moments using both the histogram method of Section a and the
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statistical method of Section 1 to combine moments. Results from Method (C) are

presented both for ∆x = 0.001, which yields exact results, and for ∆x = 0.01, which

introduces some error in return for greater CPU and storage savings. Method (C)

with adequate bin width for an exact solution requires only about 27% of the CPU

time and around 1.4% of the required memory. The dramatic memory savings result

from the assumption that the time-history will be binned on the smart sensor package

as the data are collected, such that no time-history ever needs to be stored. Greater

savings are also shown if the bin width is made ten times as large, though the resulting

moments are not exact.

Methods (D), (E) and (F) are equivalent, but the single concatenated segment

resulting from (A), (B) and (C) is now combined with the third segment.

E. Conclusions

Two methodologies have been presented and demonstrated through an example. The

first methodology is effectively a single-pass methodology for computation of higher

statistical moments through use of a histogram. This methodology is based on a sim-

ple combination of methods well-known in the statistical community and is therefore

of little theoretical interest. It may, however, be of considerable practical interest in

the field of structural health monitoring because it enables computation of the skew-

ness and kurtosis to arbitrarily selected accuracy, offering a means to effectively trade

computational intensity against accuracy. Generally, for very long time-histories with

low-precision data it is more efficient to use the histogram for statistical moment cal-

culation since the number of power calculations is smaller, but for relatively short

time-histories with high-precision data the more conventional method will require

less CPU time.
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The second methodology enables direct combination of the skewness and kurtosis

of any number of data sets. The method and its derivation are new, and may be of

theoretical interest. One unique aspect of this new methodology is that it can be used

to combine statistical moments of data that is not countable, e.g., moments extracted

directly from a probability density spectrum.

An example is presented in which both the histogram approach and the updating

methodology for the skewness and kurtosis are verified. The relative efficiency and

accuracy of the histogram approach are examined in some detail. In the example,

statistical moments for time-histories are computed using both the conventional ap-

proach and the histogram approach, including setting varying degrees of accuracy.

Setting the bin width equal to the precision of the measured data gives perfect ac-

curacy and potential computational savings. A noticeable decrease in computational

demands accompanied by some decrease in accuracy caused by increasing the bin

width is shown in Figure 21. In the example, CPU savings on the order of 75% of

that required for a conventional two-pass algorithm are realized with only a minor

decrease in accuracy. Savings in memory requirements can also be quite substan-

tial (Table IV). In the example, applying the histogram as a one-pass algorithm by

binning the data as it is collected and then computing the moments from the result-

ing histogram uses around 1% of the memory compared with a more conventional

two-pass algorithm.
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Table IV. Statistical Moments of Concatenated Irregular TLP Response Time-histo-

ries; Comparison of Calculation Methodologies

Method Segment µ σ2 α3 α4 CPU Storage

(%) (%)

Conv. (A) 1+2 -1.8173 0.4478 0.1180 2.5684 100.0 100.0

Statistical 1+2 -1.8173 0.4478 0.1180 2.5684 51.86 50.00

Concat. (B) Error(%) 0.0000 0.0000 0.0000 0.0000 - -

Histogram ∆x = 10−3 -1.8173 0.4478 0.1180 2.5684 26.58 1.39

with Error(%) 0.0000 0.0000 0.0000 0.0000 - -

Statistical ∆x = 10−2 -1.8177 0.4478 0.1183 2.5687 20.86 0.14

Concat. (C) Error(%) 0.0021 0.0054 0.0199 0.0034 - -

Conv. (D) 12+3 -1.5167 0.5629 -0.0917 2.3856 100.0 100.0

Statistical 12+3 -1.5167 0.5629 -0.0917 2.3856 34.99 33.33

Concat.(E) Error(%) 0.0000 0.0000 0.0000 0.0000 - -

Histogram ∆x = 10−3 -1.5167 0.5629 -0.0917 2.3856 15.63 0.93

with Error(%) 0.0000 0.0000 0.0000 0.0000 - -

Statistical ∆x = 10−2 -1.5171 0.5630 -0.0913 2.3856 11.82 0.09

Concat.(F) Error(%) 0.0279 0.0185 -0.3742 -0.0008 - -
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CHAPTER V

NOISE REDUCTION METHODOLOGY

A. Introduction

Vibration-based Structural Health Monitoring (SHM) systems use measured response

data that conveys information of structural properties. It is unavoidable that field

measurements of operational signals are distorted by noise from many sources in-

cluding the sensors themselves, electromagnetic interference, wiring problems, and

environmental conditions. Reducing this noise allows a more accurate assessment

of the original “clean” signal and improves analysis results. Noise reduction is the

process of extracting the original clean signal from a measured noisy signal, and is a

popular research topic in the areas of speech signal processing and image processing.

Numerous noise reduction strategies exist. Perhaps the simplest is to apply a series

of bandpass filters, which remove specific frequencies from the signal. This method

is obviously most effective if the noise occurs at a relatively narrow and well defined

range of frequencies. In case of a very broadband spectrum such as white noise, energy

is distributed over a wide range of frequencies and bandpass filtering is ineffective.

More complicated methods of noise reduction in power spectra have been widely

used in speech signal processing to estimate the Power Spectrum Density (PSD) of

the original pure signal which has been corrupted by broadband noise. Perhaps the

next most simple was proposed by Boll [69]. The spectral subtraction method is a

noise reduction technique that is popular due to its simple underlying concept and

its effectiveness for enhancement of a signal that had been degraded by additive

broadband noise. The underlying assumption is that the total (noisy) signal consists

of the clean signal plus a theoretical spectrum of white noise. The basic principle of
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the spectral subtraction method is to subtract a constant magnitude of noise, that

of a pure white-noise spectrum, from the total noisy signal. The noise is assumed

to be uncorrelated and additive to the signal. After substraction, any frequencies

having negative power are set to a floor value, which is generally zero. This zeroing

off of negative areas causes the method to be non-conservative: the energy of the

clean signal plus the energy of the noise is generally greater than the energy of the

measured signal.

Unfortunately, the non-conservative nature of this popular method makes it in-

appropriate for use with the modal distribution method (MDM). The incompatibility

stems from the fact that the MDM uses the power associated with each mode to

weight the relative importance of the individual modes in assessing the statistical

significance of observed changes in the PSD. Implementing the spectral subtraction

method to the MDM generally results in the noise-reduced modal distribution having

smaller energy (area) than the underlying modal distribution of the true (noiseless)

signal, and the reduction occurs in an absolute, rather than proportional way. Modes

having relatively small energy are reduced by about the same amount of energy as

more prevalent modes, rather than by the same fraction of energy. This absolute

subtraction can dramatically affect the statistical importance when combining the

contributions from individual modes. Problems can include having modes with very

small energies dominating results because all but a few frequencies have been ze-

roed off, or at the other extreme, eliminating small modes entirely. In this work,

a new methodology is introduced that enables a conservation of total energy. This

new method is a variation on the modal subtraction method. The main difference

is that here, any negative areas (bars with a height below zero) are not set to zero,

but instead the height of these bars is set to the absolute value of their height after

subtraction. This relatively simple modification allows conservation of total energy.
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The physical interpretation is that any negative heights in the power spectrum are

caused by phase differences.

Here, the original power spectrum subtraction method is explained in detail and

the proposed modifications to this original method are mathematically outlined. The

new method is then demonstrated with implementation to the modal distribution

method. In the MDM, the magnitude of the noise profile is estimated from the mag-

nitude of the PSD at frequencies higher than those expected to have any true signal

associated with structural vibrations. An example is presented that demonstrates the

effectiveness of this new noise reduction technique.

B. Review of Noise Reduction Methods for Speech Enhancement

Noise reduction methodologies are general in concept, and can be implemented to

nearly any measured signal that has been corrupted by noise. A variety of approaches

have been proposed to reduce noise for speech enhancement: Wiener filtering, dy-

namic comb filtering, short-time spectral modification techniques, and others [70, 71].

In this section, two of these techniques are reviewed that are popular in the field of

acoustics.

1. Signal with Uncorrelated Additive White Gaussian Noise

Suppose that a measured discrete time-history ym is composed of a clean, noiseless

signal xm, additively combined with noise nm:

ym = xm + nm (5.1)

This additive relationship is conserved in Discrete Fourier Transform (DFT) space.

Yk = Xk + Nk (5.2)
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where Yk, Xk and Nk are DFTs of ym, xm and nm, respectively. Subscripts m and

k will be omitted for convenience. These DFTs are complex, which are expressed in

terms of magnitude and phase:

|Y |eiθY = |X|eiθX + |N |eiθN (5.3)

Multiplying both sides of Equation 5.2 by their complex conjugates gives:

Y Y ∗ = XX∗ + NN∗ + XN∗ + NX∗ (5.4)

|Y |2 = |X|2 + |N |2 + |X||N |ei(θX−θN ) + |X||N |e−i(θX−θN ) (5.5)

Consequently, the power spectral density (PSD) of measured signal including additive

noise consists of the auto-spectrum and cross-spectrum of clean signal and noise:

SY = SX + SN + SXN + SNX (5.6)

The PSD of the clean signal SX can be recovered by approximating the last three

components in the Equation 5.6. If the noise is uncorrelated with the signal, which is

implied by its being independent, the cross spectra are theoretically zero: SXY = 0

and SY X = 0. Thus, if the signal and noise are stationary and independent, the power

spectrum of the noise-corrupted signal, SY , is simply the sum of the power spectra of

the signal and noise:

SY = SX + SN (5.7)

Many noise reduction methodologies are based on this simple equation.

2. Spectral Power Subtraction and Wiener Filtering

Among methods to reduce the effect of additive broadband noise, the spectral sub-

traction method is the most popular due to its robustness and simplicity. The PSD
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estimate of the clean signal is easily obtained by subtracting the power spectrum of

the noise from that of the total observed signal, which includes noise:

ŜX = SY − SN (5.8)

Though trivial in concept, this fundamental spectral power subtraction relation forms

the basis for many noise reduction methods.

Another powerful tool for reducing additive noise is the Wiener filter [72], which

has a fundamental relation to all past and modern noise reduction methods. It makes

use of classical linear estimation theory to estimate x; the estimation x̂ of x minimizes

the mean-squared error ‖x− x̂‖.

X̂ = HY (5.9)

where X̂ is the Fourier transform corresponding to the optimum x̂, Y is the Fourier

transform of y, and

H =
SX

SY

=
SX

SX + SN

(5.10)

is a form of the filter frequency response function derived by Norbert Wiener .

The Wiener filter can be used as a spectral modification method by combining

Equations 5.8-5.10. The least-mean-square estimate for Fourier transform of the

signal is acquired simply by applying the following frequency dependent gain function

to the spectrum of the noisy signal.

X̂ =
SY − SN

SY

Y (5.11)

This is a form of Wiener solution that utilizes a spectral subtraction operation.
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3. Stationary Signal

Using the principle of ensemble averaging for stationary signals, the power spectra

of signal and noise are given by the expected value of the squared-modulus of their

respective Fourier transforms.

SX = E{|X|2} (5.12)

SN = E{|N |2} (5.13)

Consequently, the observed noisy signal has the same relation, SY = E{|Y |2}. Com-

bining these ensemble averages with spectral power subtraction (Equation 5.8) and

the Wiener filter using spectral power subtraction (Equation 5.11) yields:

E{|X|2} = E{|Y |2} − E{|N |2} (5.14)

X̂ =
E{|Y |2} − E{|N |2}

E{|Y |2} Y (5.15)

When these ensemble averages are unknown, Fourier transforms of the observed sig-

nals can be used as sample estimates of the unknown ensemble averages, leading

to:

|X|2 = |Y |2 − |N |2 (5.16)

X̂ ' |Y |2 − |N |2
|Y |2 Y (5.17)

The Fourier transform is expressed in terms of its magnitude and phase components,

namely,

X = |X|eiθX (5.18)

The square root of Equation 5.16 provides an estimate of the magnitude of the signal

spectrum. It is reasonable to estimate the phase of the signal, θX , by the phase of
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the noisy signal, θY , if the signal-to-noise ratio is reasonably high.

X̂ =
√
|Y |2 − |N |2eiθY (5.19)

This is an alternative form of the spectral power subtraction method for a stationary

signal when the ensemble average is unknown.

C. Methodology

1. Review: Derivation of Spectral Power Subtraction Method

A firm theoretical understanding of the pre-existing spectral spectral subtraction

method is necessary to fully justify the newly proposed modifications to this well-

known method. There are two different ways to derive the power subtraction method.

In the first derivation, the imaginary part of Equation 5.3 results in trigonometric

functions, which are expressed as sine functions.

|Y | sin θY = |X| sin θX + |N | sin θN (5.20)

The phase differences, φY , between the noisy and clean signals caused by the noise

and the phase difference, φN , between the clean signal and the noise itself are defined

by:

θY = θX + φY (5.21)

θN = θX + φN (5.22)

A trigonometric identity enables expression of the magnitude of the noisy signal

(Equation 5.23), and the phase difference between the noisy signal and the clean

signal (Equation 5.24)
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|Y | =
√
|X|2 + |N |2 + 2|X||N | cos φN (5.23)

φY = arctan

( |N | sin φN

|X|+ |N | cos φN

)
(5.24)

The irregular phase difference between the noisy signal and the clean signal in each

frequency component can be any value between −π and π radians. If the distribution

of these differences is uniform, the best estimation for the squared magnitude and

the phase difference can be computed by averaging from −π to π. Integrating over

all possible values of the continuous random variable φN :

E{|Y |2} =
1

2π

∫ π

−π
|Y |2dφN

=
1

2π

∫ π

−π

{
|X|2 + |N |2 + 2|X||N | cos φN

}
dφN

= E{|X|2}+ E{|N |2} (5.25)

E{φY } =
1

2π

∫ π

−π
φY dφN = 0 (5.26)

This result is the same as the power subtraction method (Equation 5.19), in which

the square of the DFT magnitude is used in place of the power spectrum and the

noisy signal phase is used as the clean signal phase.

Alternatively, taking the real part of Equation 5.5 results in the following:

|Y |2 = |X|2 + |N |2 + 2|X||N | cos φN (5.27)

where φN = θX − θN . This equation is the same as the square of Equation 5.23.

Taking the expected value of both sides results in:

E
{
|Y |2

}
= E

{
|X|2

}
+ E

{
|N |2

}
+ E {2|X||N | cos φN}

= E
{
|X|2

}
+ E

{
|N |2

}
+ 2E {|X|}E {|N |}E {cos φN} (5.28)
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Three assumptions are implied by the transition from the first to the second line of

Equation 5.28: First, the magnitude of the spectral offsets of the noise and signal

are independent of each other, Second, the phase of the noise and the phase of the

signal are independent of each other, and Third, these phases are independent of the

associated magnitudes. If E {cos φN} = 0, the power subtraction method results in:

E
{
|Y |2

}
= E

{
|X|2

}
+ E

{
|N |2

}
(5.29)

|X|2 = |Y |2 + E{|N |2} (5.30)

Additionally, Equation 5.23 and 5.27 provide the maximum and minimum magnitude

of the clean signal, because the cosine function is bounded : −1 ≤ cos φN ≤ 1.

|X|min =





0, |Y |2 > |N |2 − 2|X||N |
√
|Y |2 − |N |2 + 2|X||N |, otherwise

(5.31)

|X|max =
√
|Y |2 − |N |2 + 2|X||N | (5.32)

Dividing the divisor and dividend in Equation 5.24 by |N |, the phase difference

between the noisy and clean signals can be expressed by the signal to noise ratio

(SNR = |X|2/|N |2).

φY = arctan

(
sin φN√

SNR + cos φN

)
(5.33)

2. Shortcomings of the Spectral Power Subtraction Method

The newly proposed method is proposed to overcome some specific shortcomings

of the well-known spectral power subtraction method. Application to the MDM of

speech enhancement methodologies based on spectral subtraction has two shortcom-

ings: First, it is based on the direct estimation of the short-term spectral magnitude,

which may be less accurate than a long-term spectral magnitude for a steady signal.
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This inaccuracy may introduce distortion and large variation to the estimate of the

enhanced spectrum. The second disadvantage of spectral subtraction is the possibil-

ity of negative estimates of power at specific frequencies in the enhanced spectrum.

In such cases, the negative spectral components are conventionally floored to some

values by linear or nonlinear methods. More complex methods to reduce the level of

residual noise have been devised for cases in which the noise spectrum has been over-

estimated (leading to negative areas under the power spectrum), including an early

implementation by Berouti et al. [73]. In these methods, the portion of noise that is

subtracted from the signal is adaptively adjusted according to the signal-to-noise ra-

tio. The adaptive floor is commonly computed for spectral magnitude of noisy signal

less than one of noise. Several implementations of this algorithm are presented in the

literature [73] [74].

In order to apply any algorithm for noise reduction, an estimate of the noise must

first be established. In speech signal processing, the noise can be well-approximated

by measurement of the signal at times when no voice is present. Unfortunately, in

structural health monitoring of civil structures, the system cannot be restrained to

a no-response condition such that the noise can be estimated. Instead, it is here

proposed that a white-noise power spectrum be applied and the level of the white

noise be approximated by the level detected outside the range of frequencies in which

any structural response is expected or observed. However the noise is estimated,

there is generally some difference between the true noise and the estimated noise in

both magnitude and phase. This difference can result in negative offsets in the power

spectrum. Since the offset of the power spectrum is computed as a real magnitude

squared, these negative offsets are not physical. Any spectral subtraction method that

is required to conserve energy must appropriately handle these negative densities.

The most simple, though non-conservative, solution is to set any negative values
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to zero:

SX =





SY − SN , SY > SN

0, otherwise
(5.34)

where SY is estimated from measured y and SN is approximated. Whenever SY is

less than SN or the resulting SX is less than zero, it is assumed that SY is equal to

SN or SX is zero.

The conventional spectral subtraction method (Equation 5.19) assumes that the

phase of the clean signal is the same as that of noise and of the noisy signal. If any

two of three phases (θY , θX , and θN) are the same, then Equations 5.21-5.22 imply

that all three are the same.

3. New Methodology

The new methodology presented here overcomes the main limitation of the spectral

subtraction method: conservation of energy. In practice, this quantity may or may not

be energy: it generally has the units of the measurement squared per frequency. These

techniques can be applied whether or not the specific units are those of energy density.

The theoretical modifications proposed here are based on physical interpretation: the

negative components that appear in a noise-reduced PSD are considered to have

been caused by phase differences between the signal and noise. If |X|2 is estimated

by ̂|X|2 = |Y |2 − |N |2, then the difference between actual spectrum and estimated

spectrum of the signal results from Equation 5.27:

̂|X|2 = |X|2 + 2|X||N | cos φN (5.35)

If the phase difference between the noise and clean signal φN causes the cosine to be

negative, it will cause the estimated magnitude of that frequency component of the
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the signal power spectrum to be smaller than actual (clean) magnitude. For a single

frequency with a relatively high noise component (|N |), the magnitude of ̂|X|2 can be

negative. The worst case happens when |N | is large and the phase difference between

the noise and signal is −π.

Any negative components can contribute to the total power (area under the

PSD) by taking its absolute value. An individual frequency component of the power

spectrum is in general directly proportional to the square of the Fourier amplitude

computed from the time-series. Computing the Fourier amplitude, therefore, from a

negative PSD component would seem to imply an imaginary Fourier amplitude. The

PSD component is of course computed as proportional to the square of the magnitude

of the Fourier amplitude, which would be equivalent to taking the absolute value of

any negative PSD component. Taking absolute values of areas under the power

spectrum is not completely novel: a single-sided power-spectrum is computing by

integrating over all frequencies, from negative to positive infinity, and the amplitude

of the spectral offsets of the double-sided is simply twice those of the single-sided

computed by integrating over only positive frequencies. This observation implies

taking absolute values of the negative areas (associated with negative frequencies) as

they are reflected about zero-frequency.

Expressing this absolute value process in equation form: the signal power spec-

trum estimated from the noisy spectrum is simply:

SX = |SY − SN | (5.36)

The resulting noise reduction function has the form:

X̂ =
|SY − SN |1/2

S
1/2
Y

Y (5.37)

This modification results in conservative total energy of the PSD of cleaned signal
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when it is separated from noise.

D. Example

In this section, the newly developed noise reduction methodology is implemented with

the parametric MDM for well-separated modes. Its application to a noisy signal is

compared with that of the original parametric MDM. In this example, the signal and

noise are simulated separately based on pre-specified target power spectra, with phase

randomly drawn from a uniform distribution. The resulting realizations of signal and

noise are added point-by-point in the time domain to construct a noisy signal. Here,

the noise level is detected from a region of the power spectrum above the frequency

range of the clean signal and that estimate is used to reduce the noise using this newly

proposed methodology.

1. Simulations

Target power spectra of of both the signal and noise are shown in Figure 22. The

target power spectrum of signal is bi-modal and has been estimated from real measure-

ments of vortex induced vibration of a marine riser. A white-noise power spectrum is

used to simulate noise for addition to the signal over the frequency range from 0.0 to

0.7 Hz, which is larger than the range of signal: 0.0 to 0.4 Hz. An alternative case

used to evaluate the effectiveness of the method for detection of a known frequency

shift is generated separately. The signal power spectrum is modified as if the stiffness

of the measured system has been decreased. Both modal frequencies are decreased

by 10% of the area under a normal probability density function. Applying Equa-

tion 6.13 with Φ(z) = 10% of the area under a standard normal distribution yields
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Fig. 22. Target Signal Spectra and Noise Spectrum

∆µ = -0.1257 si.

∆µi = zsi; Φ(z) =
∫ z

−∞
1√
2π

e−
1
2
u2

du (5.38)

Transforming this value to each modal distribution of the original target spectrum

(S) results in the new mean frequencies of the modified target spectrum, S3, shown in

Table I. In addition to this mean change, the variance of each mode of the modified

target spectrum is increased from the original by 10% while holding the total energy

of the spectra constant.

Four families of realizations based on the original target spectrum of the signal

or the modified spectrum of the signal are corrupted by realizations of the noise

spectrum with four different RMS values; 1, 10, 20, and 30 mg. Consequently, a
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Fig. 23. Sample Signal Spectra with 1, 20, and 30 mg RMS Noise

total of five cases are tested, including realizations of the clean signal. Each case

is statistically analyzed through 25 independent realizations and subsequent tests of

the noise reduction methodology coupled with the MDM. All realizations have a time

step of 0.2 sec. Sample power spectra of realization for signal corrupted by 1, 20, and

30 mg RMS noises are shown in Figure 23.

2. Application of MDM to Signal Corrupted by Noise

The original parametric MDM without noise reduction is applied to the simulated

signals. Later, these results are are compared with the results including application

of the new noise reduction methodology. The probability of Type I error (false alarm)

is also investigated.



104

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 600  1200  1800  2400

P
-v

al
ue

 (
%

)

Time (sec)

10mg Noise
20mg Noise
30mg Noise

Fig. 24. Mean and Standard Deviation of 25 Significance Levels Resulting from Para-

metric MDM Applied to Signals Whose Underlying Modal Distributions Are

Changed

Results of application of the original MDM without noise reduction are shown

in Figure 24. The development of the original parametric MDM is based on the

assumption of well-separated Gaussian modes. Increasing levels of noise challenge

both of these assumptions: the peaks become less well-separated and the distribution

becomes less Gaussian. As such, the original method would not be expected to be

appropriate for a signal corrupted by large amounts of noise. The sensitivity to noise

is investigated by application of the parametric MDM to the simulated noisy signals.

The Figure 24 shows that high noise corruptions (10 to 30 mg RMS) prevent the

parametric MDM from detecting the same changes in underlying modal distribution

of signal. There are almost no decrease or increase in the significance level with
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increasing time duration. In all the following figures, the symbols represent the mean

of 25 computed significance levels and the error bars indicate one standard deviation.

In very high noise cases, neither the significance level nor its uncertainty decreases

with time duration. This trend indicates the method will be ineffective regardless of

the amount of data available.
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Fig. 25. Mean and Standard Deviation of 25 Significance Levels Resulting From Para-

metric MDM Applied to Signals Whose Underlying Modal Distributions Are

the Same

In high noise situations, the individual modes resulting from the penalty method

process have very non-Gaussian shape because the would-be tails are trimmed verti-

cally at the separation point. Thus, the most possible explanation for the break-down

of the method with high noise is the underlying requirement of parametric test, the

Gaussian distribution, is increasingly violated, as shown in Figure 23.
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To test the robustness of the original MDM without noise reduction against

Type I errors (false alarms), an additional 25 realizations of the original, unmodified

target signal spectrum are generated and compared with the previous 25 realizations

of the target signal spectrum. A Type I error (false alarm) would be indicated if the

method detects a statistically significant change when in fact there is no real change

in the underlying modal distributions. The results of application of the MDM to these

statistically similar time-histories are shown in Figure 25. The resulting probability

of false alarms decreases as time duration increases. Considering both Figures 24 and

25, the noise corrupts the signal sufficiently that there is no appreciable difference in

P -value predicted for signals that do or do not have a frequency shift in the underlying

power spectra. The original MDM is clearly ineffective when applied to high-noise

signals.

3. Application of Noise Reduction Methodology

Noise reduction methodologies are applied to decrease the noise corruption shown in

Figure 23. The conventional and new noise reduction methods are applied to the same

sample noisy spectra, resulting in the cleaned spectra shown in Figures 26 and 27, re-

spectively. Both of the cleaned spectra appear very similar. One important difference

is that the spectra cleaned using the new method includes more energy preserved from

the original signal. The additional components present in results computed using the

new method enable accurate variance computations for each modal distribution. The

conventional methodology is known to underestimate the variance of each mode and

underestimation of this variance results in under-prediction of the P-value by the

T-statistic. However, this trend is not realistic: it can not be that the higher noise

(somehow) enables the better signal processing. The new method developed here has

the advantage that the area under the PSD is preserved, so the variance will not be



107

 0

 0.4

 0.8

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7
 

Conventionally Cleaned Spectrum ( 1mg Noise)

 0

 0.4

 0.8

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7P
ow

er
 (

m
2 /s

ec
3 )

Conventionally Cleaned Spectrum (20mg Noise)

 0
 0.4
 0.8
 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

 

Frequency (Hz)

Conventionally Cleaned Spectrum (30mg Noise)

Fig. 26. Sample Cleaned Spectra of Conventional Noise Reduction Method
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systematically underestimated. P -values resulting from application of the conven-

tional method are smaller in Figure 28. Additionally, underestimating the variance

increases the probability of Type I errors in the conventional method (Figure 29).
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Fig. 28. Comparison of Detection Ability of MDMs Using Conventional and New Noise

Reduction Methods

Now, the parametric MDM is again tested against the same noisy signals, but this

time the new noise reduction methods described in Sections C. 3 are implemented and

applied. The same time-histories are used, and results are available for comparison

with the original parametric MDM. Figure 30 shows the resulting P -values. Visually

comparing with Figure 24 shows that the noise reduction method markedly improves

the MDM results: the computed significance level and its uncertainty are both de-

creased for all noise levels. Similarly, both the significance and its uncertainty now
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decrease as time duration increase, with the implication that sufficient data might

enable statistical detection of this change despite the very high noise levels, and in

the case of 10 mg RMS noise, it has already been overcome with application of 2,400

seconds of data. Even with very high noise levels, there still remains an inverse pro-

portional relationship between significance level and time duration although longer

realizations or monitoring is required for detecting the same changes.

Figure 31 is used to investigate the probability of a Type I error being made by the

MDM on very high-noise signals, e.g., the likely-hood that a statistically significant

change is detected when in fact there is no change in the underlying target spectrum.

The figure shows the probability is low and continues to drop with increasing amounts

of data.

a. Signal to Noise Ratios and Minimum Data Requirements

Signal to Noise Ratio (SNR) is a conventional measure of the amount of noise present

in a measured signal. This ratio is meaningful in an MDM analysis only if applied

to single modes. Table V shows the SNR for each mode, with the noise and signal

both considered only in the frequency range of the signal: 0.05 to 0.2 Hz for the

first mode and 0.2 to 0.39 Hz for the second mode (Figure 22). Figure 32 shows

the significance levels for the same noisy data, but this time each mode is considered

individually. The white noise assumption applies a constant noise level over a broad

range of frequencies. Since the second mode is smaller than the first, or has relatively

less signal, the SNR of the second mode is smaller and therefor the noise degradation

is comparatively worse. As expected from the smaller SNR, the significance level and

its uncertainty for the second mode are both larger than for the first.

Moreover, the figure indicates that both significance level and its uncertainty

(standard deviation) decrease as the time duration increases, except for the case of
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Fig. 30. Mean and Standard Deviation of 25 Significance Levels Resulting From Noise

Reduction Method Implemented and Applied with the Parametric MDM.
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Fig. 31. Mean and Standard Deviation of 25 Significance Levels Resulting From Noise

Reduction Method Implemented Parametric MDM Applied. No Change in

the Underlying Modal Distributions of the Clean Signals.

the second mode with 30 mg RMS noise, whose SNR is below one. This result implies

that the noise reduction method is ineffective regardless of time duration when the

energy of the noise is greater than that of the signal: the noise level is so high that it

corrupts signal beyond recovery.

Finally, Figure 33 shows the probability of false alarms. False alarms are not a

concern for any of the cases presented here if the time duration is longer than 1,200

seconds.

Figures 30 and 31 can be used to investigate minimum data requirements neces-

sary to obtain acceptable significance levels considering the possibility of both Type I

and Type II errors. Using the full predictive power of both modes and an ideally
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Table V. Signal to Noise Ratio of Each Mode

Mode 10 mg RMS 20 mg RMS 30 mg RMS

1st 13.69 3.56 1.06

2nd 5.51 1.43 0.43

clean signal results in a minimum monitoring time of 1,800 seconds. Relatively high

noises require longer monitoring time: 2,400 sec for a noise level of 10 mg RMS. For

noise levels higher than 10 mg, these methods would not be expected to yield useful

results and are not recommended unless more than 2,400 seconds of data is available.

E. Discussion

Undesirable noise in field measurements is unavoidable, though it should be reduced

as much as practical to minimize degradation of analysis results. Spectral subtraction

methods offer simple and effective methodologies to reduce additive white noise. The

new noise reduction methodology introduced here is a variation on these methods.

That difference is that negative energy density is interpreted as being caused by phase

differences and recognizes that the absolute value of that area is meaningful as energy

of the signal. This interpretation avoids possibility of unreasonable P -value due to

underestimation of variance in conventional method. Additionally, the noise level is

identified outside frequency range of signal in this methodology.

Without noise reduction, the original parametric MDM proved to be less effec-

tive in the presence of high noise. With very high noise, the significance level and its

uncertainty are not observed to decrease with increasing time duration (Figure 24),

which implies the method will not work on this noisy data regardless of the amount of

data available. Implementation of the new noise reduction methodology to the para-
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Fig. 32. Probability of Detecting a Known Shift in the Target Spectra. First and

Second Modes Considered Individually.

metric MDM meaningfully improves analysis results for noisy measurements. With

noise reduction applied, the desired inverse relationship between significance level and

time duration (Figure 30) is observed. Higher noise requires longer monitoring time,

but there remains a limit of maximum noise level, which is apparently around SNR of

one (Table V). Excessive noise not only reduces the probability of detecting a known

shift in the underlying power spectrum, but also is observed to increase the proba-

bility of false alarms (Figure 31). The method described in this chapter still requires

that the shape of the peaks after noise reduction be Gaussian. Unfortunately, that

requirement is increasingly poorly met as the noise level increases (Figure 27). An-

other methodology, the nonparametric MDM is introduced in the following chapter.

This alternative is intended for use on non-Gaussian distribution shapes.
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CHAPTER VI

NONPARAMETRIC MODAL DISTRIBUTION METHOD

In previous chapters, it is assumed that individual peaks in the power spectrum asso-

ciated with discrete vibrational modes are well-separated, whether these peaks have

a Gaussian or non-Gaussian shape. It has been shown that for well-separated peaks,

the statistical significance of observed changes to separated individual modal peaks

can be determined using the parametric statistical T -test, and that this parametric

method is more powerful than conventional non-parametric comparisons of the data.

In the event that the peaks do not have a Gaussian shape, the resulting non-Gaussian

modal distributions can be transformed into their Gaussian equivalents prior to use

of the T -test.

Unfortunately, for closely spaced modal frequencies the distance between modal

peaks is not adequate for including sufficient distribution tails. In these cases, para-

metric tests are less reliable than nonparametric tests because distributions being

compared are not Gaussian and cannot be readily transformed into Gaussian shapes.

In this chapter, an alternative implementation of the modal distribution method is

developed such that the parametric T-test is applied to the distribution of the means

of modal frequencies rather than to the underlying distribution associated with the

power spectrum itself; this modification enables the central limit theorem to be re-

alistically invoked. The resulting method is equally applicable to modal distribu-

tions with Gaussian or non-Gaussian shapes as well as to those with very closely

spaced peaks because the central limit theorem guarantees that the distribution of

mean modal frequencies approaches the Gaussian regardless of the modal distribution

shape.
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A. Introduction

In a typical statistical comparison of experimental results, data collected from a

treatment group is compared to that collected from a control group with the aim

of determining if the treatment produces “meaningfully” different results from the

control group. If the outcomes in the treatment group are not found to be significantly

different from those of the control group, then there is no statistical reason to believe

the treatment has had any effect. Similarly, MDM compares data measured at one

time with data measured at another time with the aim of detecting any system

changes. If the measurements are not significantly different, the state of the monitored

system is assumed to be unchanged.

The individual bars of a discrete power spectrum of field data generally appear

as a cluster of energy around a specific frequency. MDM treats the mean frequency of

an individual mode as a random variable and observed cluster of energy as statistical

distributions. The benefit to this interpretation is that rigorous statistical analysis

can be applied to assess the significance of apparent differences between modal distri-

butions. For underlying distributions having a Gaussian shape, the parametric T -test

is applicable and has been shown to be generally more powerful than non-parametric

tests (Section II). The T -test is a parametric statistical methodology that has been

developed to compare the means of two data-sets sampled from an underlying normal

distribution, and it includes a correction for small sample size.

Application of any parametric test, however, requires that the underlying distri-

bution of the data meets the requirement of the test, e.g., a normal distribution for

the Student T -test. Use of a parametric test on data not conforming to the appro-

priate underlying distribution is not appropriate and will generally result in either a

increase in the number of Type I or Type II errors. Nonparametric statistical tests
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provide a viable alternative. These tests can be applied directly to a non-Gaussian

modal distribution or one with very closely spaced peaks with no fundamental change

to the methodology because non-parametric tests are independent of the underlying

distribution shapes.

Here, the mean frequency of each mode is computed for sequential estimates of

the underlying power spectrum such that the requirements of the central limit theorem

are met and Gaussian statistics can then be applied to these collections of mean

values. Consequently, the T -statistic can be appropriately applied to compare the

distributions of sample averages to detect system changes. For rigorous application

of the central limit theorem, it is important that consistent frequency ranges be used

such that the mean of each mode is consistent, i.e., that it is a collection of mean

values of the energy detected between two fixed frequencies.

B. Review: Statistical Comparison

The overall objective of a statistical comparison is to determine whether or not two

sets of data are drawn from the same population or from different populations. In

statistical terms, the null hypothesis is that the two data sets are drawn from the

same population; the statistical tests are then applied to assess whether or not there

is adequate statistical reason to believe otherwise, i.e., whether or not the observed

statistical differences exceed some pre-specified level of statistical significance, or P -

value. Specifically, the P -value represents the probability that the observed differences

between the data sets are due to random chance alone. Small P -values indicate the

observed differences between the data-sets is very unlikely to have been caused by

random chance alone and it is therefore unlikely that the null-hypothesis is correct.
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1. Underlying Theory: Central Limit Theorem

The Central Limit Theorem (CLT) underlies most non-parametric statistical meth-

ods. Simply stated, the CLT shows that if a large enough number of sample sets is

drawn from a population, then the distribution of the sample averages approaches a

normal (Gaussian) with increasing sample size, regardless of the distribution of the

underlying populations [13]. Here, as in so many non-parametric methods, the CLT

is applied to allow use of a parametric test on non-parametric data. In the MDM,

the distribution of mean frequencies meets the requirement of the CLT because each

mean itself represents a sample average: here, the average of the energy surrounding

the modal mean. This observation enables appropriate application of the T -statistic

regardless of the normality of the shape of each modal distribution. For rigorous ap-

plication of CLT, it is important that consistent frequency ranges be used such that

the mean of each mode is consistent, i.e., that it is a collection of mean values of the

energy detected between two fixed frequencies.

2. Nonparametric Comparison of Two Histograms

Comparing two histograms is the same as comparing two distributions of grouped

data, or, in statistical terms, investigating the homogeneity of two samples of grouped

data. The most commonly described nonparametric statistic for comparing two dis-

tributions is Kolmogorov-Smirnov (or K-S) test. The test is applicable to data sets

where each data point can be associated with a single number. In such a case, the list

of data points can be converted to a cumulative distribution function estimator SN(x)

of the probability distribution from which it was drawn: If the N data points have

values xi, i = 1, ..., N , then SN(x) is the function giving the fraction of data points to

the left of a given value x. This function has step function shape. The K-S statistic is
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the maximum value of the absolute difference between two cumulative distributions.

The K-S static for comparing two cumulative distributions SN1(x) and SN2(x) is

D = max|SN1(x)− SN2(x)| (6.1)

The significance level of an observed value of D is given approximately by the formula

[75].

Probability(D > observed) = QKS

([√
Ne + 0.12 + 0.11/

√
Ne

]
D

)
(6.2)

QKS(y) = 2
∞∑

j=1

(−1)j−1e−2j2y2

(6.3)

with limiting values of QKS(0) = 1 and QKS(∞) = 0. The effective number of data

points is

Ne =
N1N2

N1 + N2

(6.4)

where N1 is the number of data points in the first distribution and N2 is the number

in the second.

Scholz and Stephens [76] proposed the Anderson-Darling statistic, which is a

modification of the K-S test. This modification gives more weight to the tails than

does the original K-S test. The Anderson-Darling test makes use of the specific

distribution in calculating critical values. The modification has the advantage of

allowing a more sensitive test, but has the disadvantage that critical values must be

calculated for each distribution. The two-sample version is as follows:

A2
mn =

mn

N

∫ ∞

−∞
(Fm(x)−Gn(x))

HN(x) (1−HN(x))
dHN(x) (6.5)

where Fm(x) and Gn(x) are the empirical cumulative distribution function of the first

sample and the second sample, respectively. HN(x) = (mFm(x) + nGn(x)) /N with
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N = m + n, is the empirical distribution function of the pooled sample. This can be

used to test the hypothesis that F = G without specifying the common continuous

distribution function.

Both the Anderson-Darling and K-S tests are based on cumulative density func-

tions and are appropriate for comparing two distributions of one variable (one mode

among possible multi-modes). The MDM, however, needs multi-modal comparison

requiring an equivalent to the combined T statistic; as far as the author is aware,

combined statistics for these CDF-based methods have not been developed. Further,

any CDF-based method will be extremely dependent on the precision of the division

between modes: inappropriately cutting or including even small amounts of energy

from the left tail could greatly affect the CDF. It has been found in the work on

the penalty method that very precise divisions between modes is either difficult or

impossible, so it seems unlikely that any CDF-based statistical comparison will prove

to be an effective part of the MDM.

3. Bootstrap Resampling

The Bootstrap is a popular alternative to parametric statistical inference for cases in

which the conditions necessary for parametric methods are in doubt. Briefly stated,

the bootstrap methodology assumes that the original sample represents the popula-

tion from which it was drawn. Thus, re-sampling from the original sample should

statistically represent what would be obtained if many samples were taken from the

original population. Key to the bootstrap method is that the re-sampled data is not

compared directly, instead, the means of groups of these samples are compared. This

subtlety enables invocation of the central limit theorem and the associated paramet-

ric statistical comparisons. The parametric bootstrap is the practice of estimating

properties of an estimator (such as its variance) by randomly sampling (with replace-
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ment) from an approximate distribution and using these samples to estimate the

desired parameter. In the case where a set of observations can be assumed to be from

an independent and identically distributed population, this can be implemented by

constructing a number of resamples of the observed dataset (and of equal size to the

observed dataset), each of which is obtained by random sampling with replacement

from the original dataset.

The advantage of bootstrapping over analytical methods is its great simplicity:

it is straightforward to apply the bootstrap to derive estimates of standard errors and

confidence intervals for complex estimators of complex parameters of the distribu-

tion, such as percentile points, proportions, odds ratio, and correlation coefficients.

The disadvantage of bootstrapping is that while (under some conditions) it is asymp-

totically consistent, it does not provide general finite-sample guarantees, and has

a tendency to be overly optimistic. The apparent simplicity may conceal the fact

that important assumptions are being made when undertaking the bootstrap anal-

ysis (e.g. independence of samples) where these would be more formally stated in

other approaches.

The details of the parametric bootstrap procedure are relatively straightforward:

A distribution is created based on random sampling of the the underlying population.

The method is termed parametric because a future re-sampling is based on this dis-

tribution, rather than on raw data. New (resampled) data sets are then created by

repeatedly sampling with replacement from this one distribution, and the resulting

data-sets are treated as if many sets had been sampled from the original population.

Sampling from the distribution with replacement means that after a sample is drawn

from the original sample set, it is put back before drawing the next sample. As a

result, any number can be drawn more than once, as if sampling from an infinite data

set.
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Application of the parametric bootstrap to the MDM would be a straightfor-

ward extension of a well-known statistical method to this unique methodology, and

how this implementation would be put into the MDM is described in detail in the

discussion section of this chapter, Section 2. However, it is here observed that the un-

derlying principle, the CLT, can be applied without re-sampling, and with the added

advantage of maximizing the use of “original” data. The observation goes back to

Chapter II and the implementation of the penalty method. In that section, it was

observed that accuracy could be increased by using a variation on Welch’s method of

spectral smoothing: many power spectra are computed and the bars corresponding to

equivalent frequencies are averaged. In the case of the penalty method, 100 separate

power spectra computations were found to be adequate. In the new non-parametric

method proposed here, these 100 spectra are treated as separate samples of the same

quantity, and the mean of each spectral peak is treated as an estimate of the mean

of the modal frequency. Since each estimate is itself a mean, the CLT can be invoked

and the T -statistic can be meaningfully applied regardless of noise or closeness of

the modal peaks. This new methodology has all the theoretical advantages of the

parametric bootstrap but does not include the difficulty, computational inefficiency

and inelegance of the re-sampling process.

C. Implementation to MDM

The central limit theorem implementation of the modal distribution method is a

non-parametric variation on the original implementation. This implementation still

divides a measured acceleration time-history into a series of segments; each segment

is converted into a power spectrum through use of the FFT, and the resulting power

spectrum is divided into a series of response frequency ranges by the same penalty
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method. At this stage is where the methods diverge. In order to apply the central

limit theorem, a collection of N mean values of samples of the same population is

necessary. To that end, each one of the N mean values is computed as the mean

(centroid) of the area under the power spectrum associated with an individual mode.

In this case, the process is assumed to be constant over a very short time duration,

for example, 200 data points, which in practice may be a few seconds depending on

application.

The mechanics of computing each of the N means are to first compute the power

spectrum of a segment of B points in the time-history, where B >> N . As in the

original MDM, the penalty method is applied to separate the modes. The separation

points between individual modes are recorded. Then the time-history is shifted two

points forward in time and a new power spectrum is computed. A second set of

separation points between modes is recorded and the process is repeated to develop

N sets of M + 1 separation points, where M is the number of modes. For each of the

(M +1) separation points, the N points are then averaged to find a single set of modal

divisions that will be used for all of the N power spectra. These averaged values are

then used as fixed frequency ranges for computation of the N mean frequencies, each

of which is computed by averaging the area under the power spectrum within the

upper and lower bounds found by averaging the modal separation points from the

N power spectra, each of which is computed from B data points. The resulting N

predictions of the mean modal frequency then constitute N estimates of the true

mean frequency, which is the random variable in this method.

The purpose of this process is to have a collection of mean values of essentially

the same population, thereby conforming to the central limit theorem. The resulting

distribution of sample averages approaches the Gaussian with increasing length of the

segment of the time-history, B. It is common to apply Gaussian statical methods to
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distributions resulting from the CLT with sample size as small as 30 regardless of the

distribution of the underlying data [26].

The overall goal of the method is to quantify the statistical significance of subtle

changes in the state of a vibrating structure by comparing sampling distributions

of sample average representing two different segments of a measured response time-

history. Application of the CLT guarantees a near-Gaussian distribution for suffi-

ciently large sample size, so the T -test can be rigorously applied regardless of mode

shape or modal spacing.

At this stage, the CLT implementation of the MDM returns to that of the origi-

nal. The sampling distribution of the sample averages in the first segment is compared

with that in the second segment to detect subtle change in mean modal frequency,

if any. The mean of each sequential sampling distribution in the first segment is

statistically compared with that of the second segment, i.e, the mean of sample av-

erage of the first mode in the first segment is compared with that of the first mode

in the second segment, as are each of the subsequent means of sample average. The

T -statistic is applied to quantify the significance of observed differences of means of

sample average. The significance of each mean difference between sample averages is

computed independently, and then each mean difference is weighted by the magnitude

of the energy associated with that mode to compute an overall combined T -statistic.

The statistical significance of any difference between means of sample average is re-

ported, as well as a combined statistic quantifying differences between all modal mean

frequencies. The entire procedure could be repeated over consecutive segments of a

time-history to monitor for changes in modal response.
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1. Statistical Comparison of Means: The T -test

At this stage, the CLT implementation of the modal distribution method reverts to

the original. A combined T -statistic is computed for comparison between separate

segments of the time-history. The T -statistic for modal comparisons is computed as

e.g. [26]:

Ti =
∆µi

si

(6.6)

where ∆µi = µi,1 − µi,2 and s2
i = s2

i,1/Ni,1 + s2
i,2/Ni,2. µi,w is the mean of sampling

distribution of sample average, s2
i,w is the sample variance of sampling distribution of

sample average, and Ni,w is the number of sample averages in the i’th mode of the

w’th segment. Ti is distributed approximately as a Student’s T with the number of

degrees of freedom for the i’th mode equal to e.g. [26]:

DOFi = Ni,1 + Ni,2 − 2 (6.7)

Accurate assessment of the significance of changes in the observed vibrational

response requires consideration of all modes. The ensemble of observed differences

for each pair of means (one mean for each mode from each of the two segments of the

time-history) is treated as a set of repeated measurements with differing uncertainties,

i.e., observed differences between the first pair of sampling distributions are combined

with observed differences between pairs of sequentially higher modes. An overall P -

value is calculated by computing a combined T -statistic, which weights differences

between the means by the fraction of energy represented for each individual mode.

The fraction of energy associated with the i’th mode for each of the two windows is:

Ei,w =
Ai,w∑I

i=1 Ai,w

(6.8)
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where I is the total number of modes in the power spectrum and w is either 1 or 2,

denoting either the first or second window of the time-series. The overall T -statistic

is found using Equation 6.9, in which ∆µ and s2 are computed as averages weighted

by the fraction of energy associated with each of the I modes:

T =
∆µ

s
(6.9)

where

∆µ =
I∑

i=1

0.5(Ei,1 + Ei,2)∆µi (6.10)

s2 =
I∑

i=1

0.5(Ei,1 + Ei,2)s
2
i (6.11)

The T -statistic resulting from Equation 6.9 represents the weighted average of dif-

ferences between the means of sampling distribution of sample average. The number

of degrees of freedom for use of a standard T -distribution is estimated as the total

number of sample averages. The total degrees of freedom to be used in conjunction

with the T -statistic is estimated as the sum of individual degrees of freedom:

DOF =
I∑

i=1

(Ni,1 + Ni,2)− 2 (6.12)

D. Example of Well-Separated Gaussian Modes with Noise

As noted earlier, the CLT implementation of the MDM is intended to be more general

than the original parametric MDM: specifically, it is applicable to closely spaced peaks

and to modes with non-Gaussian shape. However, for broadly spaced peaks and

power spectra having roughly Gaussian shape, the original parametric MDM would

be expected to offer superior performance. Here, the relative performance of the two

methodologies is investigated. Time-histories of both acceleration data and of noise

are simulated, and the three methodologies are applied to ascertain their effectiveness
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on noisy signals. The three competing methodologies are: non-parametric MDM (this

Chapter), noise reduction MDM (Chapter V), and parametric MDM (Chapter II).

1. Simulation

Target power spectra for both of the signal and of the noise are shown in Figure 34.

The target bi-modal power spectrum of signal has been estimated from real mea-

surements of vortex induced vibration of a marine riser. The power spectra of the

white noise being added to the signal are applied over the frequency range from 0.0

to 0.7 Hz, which is larger than the frequency range of signal: 0.0 to 0.4 Hz. For this

example, the signal corrupted by noise is generated as follows: a time-history of the

signal is simulated and stored; separately, a time-history of noise is simulated, and

the resulting time-series of signal and of noise are added together point-by-point in

the time-domain. In application of the MDM, the power spectrum is calculated from

the time-history of the combined signal. Five different RMS noise levels are used: 0,

1, 10, 20, and 30 mg, and each of these noise levels is applied to two different “clean”

power-spectra (an “original” and a “modified” target spectrum). All realizations have

time step of 0.2 sec. Sample power spectra of signal combined with 1 mg, 20 mg, and

30 mg RMS noises are shown in Figure 35. Note that same signal is used for all cases.

In the figure, underlying modal distribution shape is destroyed as the noise increases.

20 mg and 30 mg RMS noise changes modal distribution shapes, around both peaks

and tails.

The “modified” case used to evaluate the effectiveness of the method for detection

of a known frequency shift is generated using a slightly modified target spectrum.

The target power spectrum is modified as if the stiffness of the measured system

is decreased. Both modal frequencies are decreased by 10% of their area, based on

normal probability density function. Applying Equation 6.13 with Φ(z) = 10% of the
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Fig. 34. Target Signal Spectra and Various Levels of Noise Spectrum

area under a standard normal distribution yields ∆µ = -0.2533 si.

∆µi = zsi; Φ(z) =
∫ z

−∞
1√
2π

e−
1
2
u2

du (6.13)

Transforming this value to each modal distribution of the original target spectrum

(S) results in the new mean frequencies of the modified target spectrum (S3) shown

in Table VI of Chapter II. Some parts are repeated here for convenience.

2. Results of Comparison

The three variations in the method are exercised on various cases and results are

critically compared to assess the comparative effectiveness of each method. In each

comparison, the results shown are based on 25 realizations of each case to obtain
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Fig. 35. Sample Signal Spectrum Corrupted by Various Levels of Noise

statistically significant results. There are exactly two ways a statistical test can fail:

it can reject the null hypothesis when it is in fact true (Type I error), or it can fail to

reject the null hypothesis when it is in fact false (Type II error). The null hypothesis

underlying the statistical methods presented here is that there is no difference between

the two segments in the time history, so a Type II error is failing to detect a change

when in fact the underlying target spectrum has been changed, and a Type I error is

wrongly detecting a change when in fact there has been no change to the underlying

spectrum (a false alarm).



130

Table VI. Target Spectra Parameters with Percent Change from Original Idealized

Spectrum

Target 1st Mode

Spectrum Mean Change Variance Change

S 0.12500 N/A 0.00060 N/A

S3 0.11879 -4.96% 0.00066 10%

Target 2nd Mode

Spectrum Mean Change Variance Change

S 0.28500 N/A 0.00120 N/A

S3 0.27622 -3.05% 0.00132 10%

a. Non-parametric MDM vs Parametric without Noise Reduction - Low Noise

In this first comparison, the significance level of the non-parametric MDM is compared

with that of the original parametric MDM. This first comparison is a test of robustness

against Type II errors. Here, both methods are applied to a clean signal, or to one

with very low noise (1 mg). The noise level typical of a high-quality 1 g accelerometer

is around 0.5 mg RMS. Here, additional surrounding noise is assumed as 0.5 mg,

resulting in total of 1 mg RMS noise.

Figure 36 is used to compare the original (parametric) version of the MDM with

noise reduction (Chapter V) with the non-parametric MDM based on the CLT. For

the low-noise cases, the parametric version is seen to be more effective. This result is

not surprising because it follows the general observation that parametric statistics are

more effective if the data conforms to the requirements of the methodology. In this

example, the target spectrum was created with a near-Gaussian shape and widely

spaced peaks: exactly the situation for which the parametric method would be most
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effective. The non-parametric MDM requires longer than 1200 seconds monitoring

time to detect the known change with very high confidence (±1σ error bars fully

below 5% P -value), while the parametric MDM requires less than 1200 sec monitoring

time. Surprisingly, the non-parametric method is more effective with a 600 second

signal. One possible explanation may be that the power-spectrum computed from

such a short time-history does not have sufficient data to reconstruct the underlying

Gaussian modal distribution very well.

The probability of Type I error (a false alarm) is shown in Figure 37. The

probability of a false alarm is nearly the same for both methods and therefor does
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not affect required minimum monitoring time. All methods have the pleasing trend

of decreasing probability of a false alarm with increasing window size (number of

data-points).
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Fig. 37. Comparison of P-values Between Parametric MDM and Non-parametric

MDM When Underlying Modal Distribution of Signal is Not Changed. Bigger

Numbers Indicate Less Probability of a False Alarm.

b. Non-parametric MDM vs Parametric without Noise Reduction - High Noise

Very high levels of noise added to the clean signal cause the originally Gaussian

shape of the distribution predicted from the power spectrum to be corrupted to a

non-Gaussian. In the presence of such noise, the underlying assumptions inherent to

the original parametric MDM are strongly violated as shown in Figure 35. In this

example, the effects of this violation are investigated.
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Figures 38 and 39 show comparisons of the effectiveness of the two methods.

Figure 38 shows that parametric MDM is ineffective at detecting the change in the

original signal in the presence of high noise. The significance level found using the

parametric MDM is very high (generally around 50%) and there is no compelling

downward trend with increasing window size; further, there is not even a downward

trend in the size of the error bars, which represent the uncertainty. This is compelling

evidence that the original MDM is not robust against very high levels of noise in the

signal.

Compared with the parametric MDM, the nonparametric MDM remains reason-

ably effective at detecting the known change in the signal target spectrum in the

presence of high noise. With 10 mg RMS noise, 2,400 sec monitoring time results

in detection of given changes in underlying modal distributions. 20 mg RMS noise

corrupts signal to the point that detection of the changes requires a window longer

than 2,400 sec. Corrupting the signal with 30 mg RMS noise creates a signal which

may or may not be detectable, though there is a promising downward trend with

increasing window size.

In Figure 39, the probability of a false alarm is investigated. The presence of high

noise increases the likelihood that the nonparametric MDM will create a false alarm.

The observed P -values are much lower than those of the parametric or low-noise

scenarios, but the performance of the method may still be acceptable for practical

applications. The portion of the error bar below the 5% P -value is a rough indicator

of the probability of a false alarm, and that portion is relatively small for long time-

series: above about 1800 seconds the likelihood may be acceptable for even the 30 mg

case.
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c. Non-parametric MDM vs Parametric with Noise Reduction - High Noise

As in the last example, very high levels of noise added to the clean signal cause

the originally Gaussian shape of the distribution predicted from the power spectrum

to be corrupted to a non-Gaussian as shown in Figure 35. It was shown that the

non-parametric adaptation of the MDM is far more effective at handling these noisy

signals. Methods to remove the noise from a signal were investigated in Chapter V.

Thus, two of the methods that are available to handle noisy signals are the non-

parametric MDM or de-noising the signal and applying the parametric MDM. These

two possibilities are compared in Figures 40 and 41.

The results shown in Figure 40 show that the detection ability of the non-

parametric MDM is better than the parametric MDM even if noise removal is applied

to the signal. Parametric MDM with noise reduction assumes modal distribution after

noise reduction is not far from Gaussian but it is not. Unfortunately, Figure 41 shows

that there is also a lower probability of false alarms if the noise reduction is applied

rather than the non-parametric MDM. This example is therefor inconclusive as to

which method would be preferred: here, it would depend on the relative importance

of detection ability vs likeliness of false alarms.

E. Discussion

1. The Central Limit Theorem Implementation of the MDM

In this section and elsewhere in the thesis, it has been shown that if the requirements

of original parametric MDM is satisfied, most notably that the power spectrum com-

puted from the time-series is in fact Gaussian in shape, then the parametric MDM

is reliable to detect given changes in underlying modal distributions. However, when

that assumption is violated by high noise, the MDM modified to include application of
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the CLT provides a strong alternative. Indeed, the non-parametric MDM is observed

to be a versatile method because it does not have any specific requirements regarding

underlying distributions and in theory should be equally applicable to cases such as

closely-spaced modes, noise corruption, and non-Gaussian modal distributions.

When the requirements of parametric MDM are met, the parametric MDM is

recommended. For closely spaced peaks, the CLT MDM is expected to be the only

viable option at this time, though definitive testing remains underway. For applica-

tions with broadly-spaced peaks but very high noise, either the parametric MDM with

noise reduction or the CLT MDM provides a viable option. There is no general rec-
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ommendation that one of two methods is better than the other. The non-parametric

method is more effective at detection of actual changes in the underlying spectra, but

unfortunately also has a higher probability of a false alarm. Which of these two meth-

ods should be applied would depend on the application: the non-parametric MDM

for applications where detection of changes is more important and noise reduction

MDM for applications where false alarms are more serious.

Overall, the non-parametric MDM is preferred because it is more general, while

the noise reduction MDM is specific for signals where an underlying Gaussian shape

has been corrupted by noise. At some time in the future, applicability of the non-

parametric MDM to strongly non-Gaussian mode shapes or to closely-spaced modes
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will be investigated to verify the generality of the non-parametric MDM. It would

also be possible to combine those two methods.

2. MDM and a Semi-Parametric Bootstrap Hypothesis Test

The effectiveness of the CLT implementation to the MDM, particularly in the presence

of high noise, was found to be something of a pleasant surprise. Unfortunately, this

pleasant surprise was discovered well-into the Doctoral research process. The effec-

tiveness, relative ease of implementation, and theoretical robustness for unusual mode

shapes and high-noise situations strongly suggests non-parametric methods deserve

further investigation at some time in the future. One avenue that seems particularly

relevant is the Bootstrap re-sampling [77, 78]. One existing implementation of the

bootstrap is to sample data by simulation from an existing distribution, and then

using that data with conventional statistical tools. Here, the two distributions to

be compared would be the two power spectra computed from contiguous segments

of the time-history. This combination of the newly developing MDM and existing

bootstrap statistical theory is a very logical extension of the present work and would

be relatively easy to implement at some future time. The theory is outlined here, but

the concept was developed relatively late in the Doctoral studies and so no worked

example is included.

As in the other implementations, the bootstrap implementation of the modal

distribution method divides a measured acceleration time-history into a series of seg-

ments. Each segment is first converted into a power spectrum through use of the

FFT. After getting the first power spectrum, the next power spectrum is calculated

from data window shifted slightly forward in time. Power spectra from a large num-

ber of windows are then averaged, which has been found to reduce variability. As

noted in Chapter II, this reduction in variability is due to minimizing the effects of
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incomplete cycles in the time-history leading to excessive noise in the modal response.

The resulting averaged power spectrum is then divided into a series of response fre-

quency ranges by penalty method. Each separated modal distribution is mapped

into a statistical distribution in which the random variable is the modal frequency.

In the bootstrap application, the separated modal peaks are treated as individual

distributions. New data-sets are then sampled from these distributions as is typical

in a parametric bootstrap application.

The details of the data-sampling is as follows: A cumulative density function

(CDF) is constructed from each of the two modal peaks to be compared. The cu-

mulative density (the vertical axis of the CDF) is then assumed to be uniformly

distributed between zero and one. The CDF is then used to directly map the frac-

tiles of the uniform distribution to those of the target distribution based on the power

spectrum for each of the modal peaks. The result is a simulated data-set following the

distribution extracted directly from the power spectrum. At this stage two options

exist: collect a large number of sub-samples, e.g., 10,000 samples of six data points

each such that the T-statistic can be applied, or alternatively use other conventional

non-parametric tests directly on the simulated data-set.

Whichever method is selected, the overall goal is to quantify the statistical signif-

icance of subtle changes in the state of a vibrating structure by comparing simulated

distributions sampled from the distribution shape computed from the data as a power

spectrum.
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CHAPTER VII

SUMMARY

A. Conclusions

A new statistical method for continuous monitoring of measured vibration data, called

the Modal Distribution Method (MDM), has been developed. This new technique ap-

plies statistical methods in order to compare power spectra computed from measured

structural response and to quantitatively assess the significance of observed changes

in the power spectra. This new method differs from conventional methods since the

statistical significance of changes in the response is assessed directly without consid-

eration of the excitation; conventional methods typically either assume white-noise

excitation or measure excitation directly to compute a structural response function.

The benefit of using only the measured response is that there is no need to measure

the excitation or to make assumptions about its spectral shape.

The only requirement for the MDM to be useful is a stationary excitation process.

The shape of the excitation power spectrum is believed to be less critical than the

stationarity because it is reasonable to assume that any changes in the response

for stationary input are due to changes in structural parameters. However, some

knowledge of the excitation can be applied in the method: if the response at some

frequencies is known to be dominated by a narrow-banded excitation, which may

be non-stationary, then the associated response within that known frequency range

can easily be excluded from the MDM analysis. As part of the method, physical

modes of vibration observed in the response power spectrum are separated and treated

individually to assess the statistical significance of observed changes. Statistically

combining the results of multiple modes enhances the ability to detect known changes
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in the response, and wide-band excitation will enhance the participation of multiple

modes.

The MDM starts from the idea that the measured vibratory responses of a com-

plex structure include a series of modal responses, and each modal response has its

own peak in power spectrum. One global minimal point exists between two adjacent

peaks and a penalty method finds the global minimum point between the roughly

guessed two peaks. The frequency range between two adjacent global minimal points

found in the power spectrum is considered as a statistical distribution; the distribu-

tion is also called modal distribution, and it represents the individual modal response

including the peak inside the frequency range. Finally, two corresponding modal

distributions obtained from two measured responses are compared by a statistical

test. For instance, the modal distribution representing the first mode of the first

measurement is compared with the one representing the first mode of the second

measurement.

The resulting significance indicates whether or not the underlying modal distri-

bution has changed. Changes in the underlying modal distribution imply changes

in the system being monitored, such as changes in the structure or in the excita-

tion load. The statistic to combine the observed changes in all modal distributions

was introduced for a more sensitive detection. A parametric MDM was developed

to detect the changes in well-separated Gaussian modal distributions. This MDM

was extended to apply in cases of Gaussian modal distributions corrupted by noise, a

common occurrence in field measurement. To reduce the noise, a modified version of

the power subtraction method was newly introduced. Furthermore, a non-parametric

MDM does not require the assumptions on modal distribution shape so that the

method can theoretically be applied to any shapes of modal distribution.
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1. Parametric MDM

If the individual modal distributions separated by the global minimal points have

Gaussian shapes, a parametric statistical comparison like the T-test can compare

two corresponding Gaussian modal distributions obtained from two different mea-

surements. A parametric test is preferred to a non-parametric test since the first is

more powerful if the underlying distribution has Gaussian shape. In the results, the

MDM using a parametric test is the simplest and the most powerful in the special

case of well-separated Gaussian modal distributions. It was applied to simulations

of smoothed power spectra based on riser VIV field measurement. Moreover, this

method was extended to more complex modal distribution shapes such as modal

distributions corrupted by noise and closely spaced modal distributions.

2. Noise Reduction MDM

Noise is inevitable in field vibratory response measurement during operation, and

it may corrupt original modal distributions such that the parametric MDM cannot

detect subtle changes in the original underlying modal distributions. A modified ver-

sion of the popular spectral subtraction method was implemented into the parametric

MDM for detecting changes in the underlying Gaussian modal distributions, even

when they are corrupted by high level of noise. Various noise levels were simulated

separately and added to the simulations of signals in the time domain to generate

noisy signals. The noise reduction MDM was applied to the resulting simulated noisy

signals.
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3. Non-parametric MDM

Besides corruption by high levels of noise, other complications due to more complex

situations such as closely spaced peaks may prevent the parametric MDM from de-

tecting subtle changes in underlying modal distributions. Noise corruption can be

reduced while reducing the complication due to closely spaced modal distributions

is unfeasible. For a more general application of the MDM in such complicated sit-

uations, a non-parametric statistical test was introduced to the MDM which does

not require knowledge of the underlying modal distribution shape a priori. The cen-

tral limit theorem was imbedded where a parametric statistical test is applied to the

distribution of sample means, since the theorem guarantees distribution of sample

means approaches Gaussian. For verification purposes, the non-parametric MDM

was applied to both pure and noisy signals. The results from two applications were

compared with those obtained from the parametric MDM and the noise reduction

MDM, respectively.

4. Extension to Well-separated Non-Gaussian Modal Distributions

Even though the modal distributions are non-Gaussian, a parametric statistical test

is still recommended. However, application of a parametric test to non-Gaussian data

is unreliable, and transformation from non-Gaussian distributions to Gaussian ones

is required for reliable results. The Hermite moment model has been widely applied

to estimate extremes of a non-Gaussian process using extremes of the theoretically

well-developed Gaussian model. However, this model has two limits: orthogonality

and monotone limits. The Hermite moment model was extended to overcome the

monotone limit. The extended model was verified by comparing the extreme esti-

mations obtained from both the extended and the original model near the monotone
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limit in the time domain.

5. Extension to Continuous Monitoring for Well-separated Modal Distributions

When the resulting P-value is smaller than the predetermined significance level, the

underlying modal distributions of two measurements are statistically the same. The

MDM compares one of them and the next measurement for continuous monitor-

ing, while more reliable continuous monitoring compares the combined measurement

and the next one. However, concatenating the two measurements and calculating

the power spectrum of the concatenated longer measurement are time-consuming.

Therefore, a new method was developed to combine directly the statistical moments

representing modal distributions, and it is applied to time domain analysis for verifi-

cation of computational efficiency and storage save.

6. Comparison of Parametric MDM and Non-parametric MDM

First, both the parametric and the non-parametric MDM were applied to the signal

simulations whose modal distributions satisfy the requirements of the parametric

MDM; modal distributions are well separated Gaussian. As expected, the parametric

MDM is more powerful than the non-parametric MDM because the requirements of

the parametric MDM are fully met. Next, both methods were applied to the generated

noisy signals that did not meet the requirement of the parametric MDM. The non-

parametric MDM was able to detect the given changes while the parametric MDM

was not.

7. Comparison of Non-parametric MDM and Noise Reduction MDM

The non-parametric MDM was validated through application to the noisy signal and

comparison to the noise reduction MDM. Each method has its own advantages; the
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noise reduction MDM has a low probability of Type I error while the non-parametric

MDM has a low probability of Type II error. However, the noise reduction MDM

is limited to the signal corrupted by a high level of noise, while the non-parametric

MDM is applicable to other complicated situations including closely spaced peaks.

This applicability of the non-parametric MDM should be verified before using it.

8. Recommendation

Before the use of the Modal Distribution Method (MDM), measured structural vibra-

tion responses should be confirmed to have separate modal responses and stationary

excitation. Then the MDM uses only rough guesses of modal frequencies and mea-

sured responses to quantify the significance of observed changes in modal frequencies.

The simplest way to roughly guess modal frequencies is to select peaks with the

human eye in power spectrum of a measurement. The parametric MDM is highly

recommended only when all of the following four requirements are met:

• underlying modal distributions are known before monitoring,

• the modal distributions are Gaussian,

• they are well separated, and

• the noise levels are as low as a good commercial off-the-shelf sensor.

The noise reduction MDM overcomes the fourth requirement, but it still requires

responses to meet the remaining three requirements. The non-parametric MDM is

theoretically applicable to any case, even when any of the four requirements are not

met. The applicability of the non-parametric MDM to other complex situations needs

to be verified before use.
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B. Contribution

The original contributions of this dissertation work are the following:

• The modal distribution was introduced as a modal parameter representing

modal response of vibratory structural response. It is considered as a statistical

distribution after normalization, which makes the statistical method applicable.

Many conventional methods select the peaks of spectrum as the characteristics

of modal responses, while a Modal Distribution Method (MDM) uses spectral

densities between two frequencies. Use of the modal distribution is more reliable

than the single value of modal frequency since it uses more information.

• The application of a statistical test to modal distributions results in quantitative

P-values, which indicate that observed changes can be ascribed to chance alone.

P-values smaller than a given significance level imply that the observed changes

are due to changes in underlying modal distributions. Moreover, the combined

statistic including all observed changes in the modal distributions allows for a

more sensitive detection of changes in response spectrum.

• The MDM is general and can be applied to any time-history such as stress,

strain, motion, and acceleration if those have spectrums with separate modal

responses which are statistically independent.

• The newly developed penalty method can find a global minimum as a separation

point between roughly guessed two natural frequencies.

• A new modified version of the power subtraction method enables the MDM to

detect changes in underlying modal distributions under a high noise corruption,

while the original parametric MDM cannot detect them.
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• Non-parametric MDM using Central Limit Theorem (CLT) in Chapter VI is free

from underlying modal distribution shape. Theoretically, it can be applied to

any shape of modal distributions including signal corruption by closely spaced

modal peaks.

• The extension to the Hermite moment model enables transformation of non-

Gaussian distributions to Gaussian ones in a wider range of skewness and kur-

tosis. Its implementation into the MDM is expected to detect changes in well-

separated non-Gaussian modal distributions.

• The new, efficient algorithm that combines statistical moments can be imple-

mented into the MDM since it uses distribution or histogram.

C. Future Work

The non-parametric MDM will be applied to other complicated conditions such as

closely-spaced modes. The extended Hermite moment model will be implemented

to the parametric MDM in order to analyze well-separated non-Gaussian modes.

After the model transforms the isolated non-Gaussian modal distributions into the

equivalent Gaussian ones, the transformed Gaussian distributions can be compared

in the same way the parametric MDM does. The new efficient algorithm combines

statistical moments using histogram, and will be also implemented into the MDM for

a more reliable continuous monitoring.

In addition, other future researchers may apply the MDM to experimental or

numerical responses of a structure whose damages increase progressively. This appli-

cation can determine how much damage is necessary to be detected by the MDM.

The MDM is based on an auto-spectrum of single sensor measurement to detect a

global change of modal frequencies in a monitored system. In the future, the MDM
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approach may be applied by other researchers to detect local change between any two

sensors through a cross-spectrum between those two sensor measurements.



149

REFERENCES

[1] A. Rytter, “Vibration Based Inspection of Civil Engineering Structures,” Ph.D.

dissertation, Aalborg University, Denmark, 1993.

[2] J. K. Vandiver, “Detection of Structural Failure on Fixed Platforms by Measure-

ment of Dynamic Response,” in Proc. of the 7th Annual Offshore Technology

Conference, Dallas, 1975, vol. 2, pp. pp.243–252.

[3] J. K. Vandiver, “Detection of Structural Failure on Fixed Platforms by Mea-

surement of Dynamic Response,” Journal of Petroleum Technology, vol. XXIX,

pp. pp 305–310, 1977.

[4] R. D. Begg, A. C. Mackenzie, C. J. Dodds, and O. Loland, “Integrity Monitoirng

Using Digital Processing of Vibration Signals,” in Proc. of the 8th Annual

Offshore Technology Conference, 1976, pp. 305–311.

[5] R. M. Kenley and C. J. Dodds, “West Sole WE Platform: Detection of Damage

by Structural Response Measurements,” in Proc. of the 12th Annual Offshore

Technology Conference, 1980, pp. 111–118.

[6] T. R. Whittome and C. J. Dodds, “Monitoring Offshore Structures by Vibration

Techniques,” in Proc. of Design in Offshore Structures Conference, 1983, pp. 93–

100.

[7] S.W. Doebling, M.B. Farrar, M.B. Prime, and D.W. Shevitz, “Damage Iden-

tification and Health Monitoring of Struyctural and Mechanical Systems from

Changes in their Vibrational Characteristics: A Literature Review,” Tech. Rep.

LA–13070–MS, Los Alamos National Laboratory, 1996.



150

[8] S. Doebling, C. Farrar, and M. Prime, “A Summary Review of Vibration-Based

Damage Identification Methods,” The Shock and Vibration Digest, vol. 30, no.

2, pp. 91–105, 1998.

[9] M. Friswell and J. E. T. Penny, “The Practical Limits of Damage Detection and

Location Using Vibration Data,” in Proc. of the 11th VPI & SU Symposium on

Structural Dynamics and Control, 1997.

[10] C. R. Farrar and T. A. Duffey, “Vibration-Based Damage Detection in Rotat-

ing Machinery and Comparison to Civil Engineering Applications,” in Proc. of

Damage Assessment of Structures, 1999.

[11] H. Sohn, C. R. Farrar, F. M. Hemez, D. D. Shunk, D. W. Stinemates, and B. R.

Nadler, “A Review of Structural Health Monitoring Literature: 1996-2001,”

Tech. Rep. LA-13976-MS, Los Alamos National Laboratory, 2003.

[12] M. Sanayei, S. Wadia-Fascetti, B. Arya, and E. M. Santini, “Significance of

Modeling Error in Structural Parameter Estimation,” Computer Aided Civil

and Infrastructure Engineering, vol. 16, pp. 12–27, 2001.

[13] W. Feller, An Introduction to Probability Theory and Its Applications, vol. 2,

New York, Wiley, 3rd edition, 1971.

[14] J. L. Rasmussen and W. P. Dunlap, “Dealing with Nonnormal Data: Parametric

Analysis of Transformed Data vs Nonparametric Analysis,” Educational and

Psychological Measurement, vol. 51, pp. 809–820, 1991.

[15] J. K. Vandiver, “Detection of Structural Failure on Fixed Platforms by Measure-

ment of Dynamic Response,” in Proc. of the 7th Annual Offshore Technology

Conference, 1975, pp. 243–252.



151

[16] J. K. Vandiver, “Detection of Structural Failure on Fixed Platforms by Mea-

surement of Dynamic Response,” Journal of Petroleum Technology, pp. 305–310,

1977.

[17] O. Loland and J. C. Dodds, “Experience in Developing and Operating Integrity

Monitoring System in the North Sea,” in Proc. of the 8th Annual Offshore

Technology Conference, 1976, pp. 313–319.

[18] L. B. Crema and F. Mastroddi, “A Direct Approach for Updating and Dam-

age Detection by Using FRF Data,” in Proc. of ISMA23, Noise and Vibration

Engineering, Leuven, Belgium, 1998.

[19] C. M. Harris and C. E. Crede, Shock and Vibration Handbook, New York,

McGraw-Hill, 1995.

[20] A. W. Smyth, S. F. Masri, T. K. Caughey, and N. F. Hunter, “Surveillance

of Mechanical Systems on the Basis of Vibration Signature Analysis,” ASME

Journal of Applied Mechanics, vol. 67, pp. 540–551, 2000.

[21] L. S. Katafygiotis and H. F. Lam, “A Probabilistic Approach to Structural

Health Monitoring Using Dynamic Data,” in Proc. of Structural Health Monitor-

ing, Current Status and Perspectives, Stanford University, Palo Alto, California,

1997, pp. 152–163.

[22] M. Abe, Y. Fujino, M. Kajimura, M. Yanagihara, and M. Sato, “Monitoring of a

Long Span Suspension Bridge by Ambient Vibration Measurement,” in Proc. of

Structural Health Monitoring 2000, Stanford University, Palo Alto, California,

1999, pp. 400–407.

[23] H. Sohn, C. R. Farrar, F. M. Hemez, D. D. Shunk, D. W. Stinemates, and B. R.



152

Nadler, “A Review of Strucutural Health Monitoring Literature,” Tech. Rep.

LA–13976–MS, Los Alamos National Laboratory, 2003.

[24] R. M. Bethea, Statistical Methods for Engineers and Scientists, New York,

Marcel Decker Inc., 1984.

[25] S. Brandt, Statistical and Computational Methods in Data Analysis, Amster-

dam, North-Holland Pub. Co., 1970.

[26] W. Navidi, Statistics for Engineers and Scientists, New York, McGraw-Hill

Higher Education, 2006.

[27] D. E. Newland, An Introduction to Random Vibrations, Spectral & Wavelet

Analysis, New York, Dover Publications, third edition, 2005.

[28] J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement

Procesures, New York, John Wiley & Sons, 1991.

[29] T. K. Caughey, “Equivalent Linearization Techniques,” Journal of the Acousti-

cal Society of America, vol. 35, no. 11, pp. 1706–1711, 1963.

[30] T. S. Atalik and S. Utku, “Stochastic Linearization of Multi-degree-of-freedom

Nonlinear Systems,” Earthquake Engineering & Structural Dynamics, vol. 4, no.

4, pp. 411–420, 1976.

[31] P. Spanos, “Stochastic Linearization in Structural Dynamics,” Applied Mechan-

ics Review, vol. 34, no. 1, pp. 1–8, 1981.

[32] M.K. Ochi, “Non-Gaussian Random Processes in Ocean Engineering,” Proba-

bilistic Engineering Mechanics, vol. 1, no. 1, pp. 28–39, 1986.



153

[33] M. Grigoriu, “Crossings of Non-Gaussian Translation Processes,” Journal of

Engineering Mechanics, vol. 110, no. 4, pp. 610–620, 1984.

[34] Y. Murotsu, H. Okada, M. Kishi, M. Yonezawa, and K. Niwa, “Fourth Order

Moment Approximation to Reliability of Non-linear Structure,” in Proc. of the

6th International Conference on Structural Mechanics in Reactor Technology,

Paris, France, 1981, number M12.

[35] C. Soize, “Gust Loading Factors with Nonlinear Pressure Terms,” Journal of

the Structural Division, ASCE, vol. 104, pp. 991–1007, 1978, No. ST6.

[36] S. R. Winterstein, “Moment-based Hermite Models of Random Vibration,”

Tech. Rep. 219, Department of Structural Engineering, Technical University of

Denmark, March 1987.

[37] S. R. Winterstein, “Nonlinear Vibration Models for Extremes and Fatigue,”

Journal of Engineering Mechanics, vol. 114, no. 10, pp. 1772–1790, 1988.

[38] J. J. Jensen, “Dynamic Amplification of Offshore Steel Platform Responses due

to Non-Gaussian Wave Loads,” Marine Structures, vol. 7, pp. 91–105, 1994.

[39] J. M. Peeringa, “Extrapolation of Extreme Responses of a Multi Megawatt

Wind Turbine,” Tech. Rep. ECN-C–03-131, Energy Research Centre of The

Netherlands, 2003.

[40] M. R. Moarefzadeha and R. E. Melchers, “Nonlinear Wave Theory in Reliability

Analysis of Offshore Structures,” Probabilistic Engineering Mechanics, vol. 21,

no. 2, pp. 99–111, 2006.

[41] B. Puig and J. Akian, “Non-Gaussian Simulation Using Hermite Polynomials



154

Expansion and Maximum Entropy Principle,” Probabilistic Engineering Me-

chanics, vol. 19, pp. 293–305, 2004.

[42] S. R. Winterstein, T. C. Ude, and G. Kleiven, “Springing and Slow-drift Re-

sponses: Predicted Extremes and Fatigue vs. Simulation,” in Proc. of The Inter-

national Conference: Behaviour of Off-Shore Structures 1994, MIT, Cambridge,

USA, 1994, vol. 3, pp. 1–15.

[43] A. E. Mansour and J. J. Jensen, “Slightly Non-linear Extreme Loads and Load

Combinations,” Journal of Ship Research, vol. 39, no. 2, pp. 139–149, 1995.

[44] S. R. Winterstein and C. H. Lange, “Moment-Based Probability Models for

Wind Engineering Applications,” in Proc. of the 10th Engineering Mechanics

Speciality Conference, ASCE, 1995, vol. 1, pp. 159–162.

[45] C. H. Lange, “Probabilistic Fatigue Methodology and Wind Turbine Reliability,”

Ph.D. dissertation, Stanford University, 1996.

[46] L. E. Dickson, Elementary Theory of Equations, New York, Wiley, 1914.

[47] G. Birkhoff and S. MacLane, A Survey of Modern Algebra, New York, Macmil-

lan, 5 th edition, 1996.

[48] T. Sarpkaya and M. Issacson, Mechanics of Wave Forces on Offshore Structures,

New York, Van Nostrand Reinhold, 1981.

[49] A. K. Chopra, Dynamics of Structures: Theory and Applications to Earthquake

Engineering, Englewood Cliffs, NJ, Prentice Hall, 2001.

[50] D. N. Joanes and C. A. Gill, “Comparing Measures of Sample Skewness and

Kurtosis,” Journal of Royal Statistical Society, vol. 47, pp. 183–189, 1988.



155

[51] H. Sohn, C. Farrar, N. Hunter, and K. Worden, “Structural Health Monitoring

Using Statistical Pattern Recognition Techniques,” Journal of Dynamic Systems,

Measurement, and Control, vol. 123, pp. 706–711, 2001.

[52] J. P. Lynch, A. Sundararajan, K. H. Law, A. S. Kiremidjian, and E. Carryer,

“Embedding Damage Detection Algorithms in a Wireless Sensing Unit for Oper-

ational Power Efficiency,” Smart Materials and Structures, vol. 13, pp. 800–810,

2004.

[53] H. W. Park and H. Sohn, “Parameter Estimation of the Generalized Extreme

Value Distribution for Structural Health Monitoring,” Probabilistic Engineering

Mechanics, vol. 21, pp. 366–376, 2006.

[54] S. Ehrenfeld and S. B. Littauer, Introduction to Statistical Method, New York,

McGraw-Hill, 1964.

[55] C. Mack, Essentials of Statistics for Scientists and Technologists, New York,

Plenum Press, 1967.

[56] J. A. Cadzow and X. Li, “Blind Decomposition,” Digital Signal Processing, vol.

5, pp. 3–20, 1995.

[57] R. F. Dwyer, “Use of The Kurtosis Statistics in The Frequency Domain as an

Aid in Detecting Random Signals,” IEEE Journal of Oceanic Engineering, vol.

9, pp. 85–92, 1984.

[58] R. F. Dwyer, “Asymptotic Detection Performance of Discrete Power and Higher-

order Spectra Estimates,” IEEE Journal of Oceanic Engineering, vol. 10, pp. 303

– 315, 1985.



156

[59] A. Tesei and C. S. Regazzoni, “Signal Detection in Non-Gaussian Noise by a

Kurtosis-based Probability Density Function Model,” in IEEE Workshop on

HOS, 1995, pp. 16216–5.

[60] D. Dyer and R. M. Stewart, “Detection of Rolling Element Bearing Damage by

Statistical Analysis,” ASME Journal of Mechanical Design, vol. 100, pp. 229235,

1978.

[61] R. B. W. Heng and M. J. M. Nor, “Statistical Analysis of Sound and Vibration

Signals for Monitoring Rolling Element Bearing Condition,” Applied Acoustics,

vol. 53, pp. 211–226, 1998.

[62] H. R. Martin and F. Honarvar, “Application of Statistical Moments to Bearing

Failure Detection,” Applied Acoustics, vol. 44, no. 1, pp. 67–77, 1995.

[63] T. F. Chan, G. H. Golube, and R. J. LeVeque, “Updating Formulae and a

Pairwise Algorithm for Computing Sample Variances,” Tech. Rep. STAN-CS-

79-773, Department of Computer Science, Stanford University, 1979.

[64] N. A. Tanner, J. R. Wait, C. R. Farrar, and H. Sohn, “Structural Health Moni-

toring Using Modular Wireless Sensors,” Journal of Intelligent Material Systems

and Structures, vol. 14, pp. 43–56, 2003.

[65] “Computing Higher-Order Moments Online,” 2008, [online]

http://people.xiph.org/ tterribe/notes/homs.html.

[66] P. Pebay, “Formulas for Robust, One-pass Parallel Computation of Covariances

and Arbitrary-Order Statistical Moments,” Tech. Rep. SAND2008-6212, Liver-

more, CA, Sandia National Laboratories, 2008.



157

[67] B. Sweetman and M. Choi, “The Modal Distribution Method: A New Statis-

tical Algorithm for Analyzing Measured Data,” in Proc. of SPIE, San Diego,

California, February-March 2006, vol. 6174.

[68] J. F. Wilson, Ed., Dynamics of Offshore Structures, New York, John Wiley &

Sons, 2002.

[69] S. Boll, “Suppression of Acoustic Noise in Speech Using Spectral Subtraction,”

in IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 27, pp.

113–120. 1979.

[70] S. H. Godsill and P. J. Rayner, Digital Audio Restoration: A Statistical Model

Based Approach, Secaucus, NJ, USA, Springer-Verlag Inc., 1998.

[71] P. C. Loizou, Speech Enhancement: Theory and Practice, Boca Raton, FL,

CRC Press, 2007.

[72] N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time

Series, Cambridge, MA, The MIT Press, 1964.

[73] M. Berouti, R. Schwartz, and J. Makhoul, “Enhancement of Speech Corrupted

by Acoustic Noise,” in Proc. of IEEE International Conference on Acoustics,

Speech, and Signal Processing, 1979, vol. 4, pp. 208–211.

[74] V. Schless and F. Class, “SNR-dependent Flooring and Noise Overestimation

for Joint Application of Spectral Subtraction and Model Combination,” in Proc.

of the 5th International Conference on Spoken Language Processing, 1998.

[75] R. V. Mises, Mathematical Theory of Probability and Statistics, New York:

Academic Press, 1964.



158

[76] F. W. Scholz and M. A. Stephens, “K-Sample Anderson-Darling Tests,” Journal

of the American Statistical Association, vol. 82, pp. 918–924, 1987.

[77] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap, New York,

Chapman & Hall, 1993.

[78] D. S. Moore and G. P. McCabe., Introduction to the Practice of Statistics, New

York, W.H. Freeman and Company, 2006.



159

APPENDIX: EFFICIENT CALCULATION OF HIGHER-ORDER STATISTICAL

MOMENTS

Efficient methodologies to compute skewness and kurtosis are developed and pre-

sented. First, a new methodology is developed for combination of the statistical

moments of individual segments of a data-set into those of the complete set. Next,

a one-pass methodology is presented for calculation of higher moments based on the

properties of a histogram, which allows computations to be carried out to accuracy

matching the precision of measured data. An example is presented in which the his-

togram method is shown to require meaningfully less CPU time than existing on-line

algorithms

A. Introduction

Statistical moments can be used to represent the characteristics of any irregular data,

e.g., [54, 55]. Statistical moments have found a broad range of application including:

blind decomposition [56], asymptotic probability of detection criterion in the fre-

quency domain [57, 58], non-Gaussian noise modeling [59], and use of non-Gaussian

distributions that more precisely match the tail behavior of measured data, e.g. [37].

Conventionally, the statistical moments of a set of discrete data, xi, are computed

directly using a two-pass algorithm (e.g. [54, 55]):

µ =
1

I

I∑

i=1

xi = E[x] = m1 (A-1)

σ2 =
1

I

I∑

i=1

(xi − µ)2 = θ2 (A-2)

α3 =
1

Iσ3

I∑

i=1

(xi − µ)3 =
θ3

σ3
(A-3)
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α4 =
1

Iσ4

I∑

i=1

(xi − µ)4 =
θ4

σ4
(A-4)

where I is the number of points in the sample; µ, σ2, α3, and α4 are the mean, variance,

skewness, and kurtosis of the data xi, and θ2, θ3 and θ4 are the central moments. Such

algorithms are called “two-pass” because the mean must first be computed and that

mean is subsequently used in the computation of the remaining moments, which

implies the entire data-set must be retained. Computational methodologies requiring

retention of the entire data-set are termed “off-line” methods because the statistical

moments can not be computed real-time; methodologies that enable computation

of the moments at each successive data-point with only one pass through the data

are termed “on-line” methods. These on-line methods have the obvious advantage

that the data-set need not be stored. One-pass on-line algorithms for the mean and

variance have been known for some time (e.g., [63]), and have been implemented on

real-world hardware (e.g. [64]), but one-pass algorithms for higher moments are less

common.

Combination of the statistical moments from various segments of a data-set into

overall statistical moments shares the same complication as the off-line methods: the

individual segments do not in general share a common mean. Methodologies to com-

bine these statistical moments are sometimes referred to as updating methodologies

because known statistical moments of earlier segments are “updated” by the statisti-

cal moments of an additional segment of the data-set. Terriberry [65] offers pairwise

updating formulas for the skewness and kurtosis (without derivation) and Pebay [66]

explains how Terriberry’s updating formulae could be implemented as a one-pass al-

gorithm by applying the update formulae to only one additional point at a time, and

also notes that Terriberry’s results are special cases of Pebay’s arbitrary-order update

formulae. The Terriberry/Pebay updating formula for the third and fourth central
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moments are:

M3 = M3,A + M3,B + nAnB(nA − nB)
δ3

n2
+ 3(nAM2,B − nBM2,A)

δ

n
(A-5)

M4 = M4,A + M4,B + nAnB(n2
A − nAnB + n2

B)
δ4

n3
+

6(n2
AM2,B + n2

BM2,A)
δ2

n2
+ 4(nAM3,B − nBM3,A)

δ

n
(A-6)

in which n represents the number of data points in the set made up of segments A

and B having number of points nA and nB respectively; M3,∗ and M4,∗ are the third

and fourth central moments, and δ is the difference between means: δ = µB − µA.

These updating formula are readily specialized into a one-pass online algorithm by

setting nA or nB equal to one, and thereby become the only pre-existing one-pass

algorithms for skewness and kurtosis known to the authors.

Here, alternatives to the Terriberry/Pebay skewness and kurtosis update formu-

lae are derived and presented and then a less theoretically complex alternative to

the Terriberry/Pebay on-line methodology is investigated. The implementation of-

fered by Pebay is substantially different from that suggested here, and the derivation

offered by Pebay also differs meaningfully, though both derivations hinge on the com-

mutativity of summations over finite sets as applied to statistical moments. In his

report, Pebay echoes Terriberry’s thoughts, noting that: “To our knowledge, there are

currently no published formulas for parallel updates of higher-order moments.” The

authors of this paper agree with that assessment, and developed the methodologies

presented here because they had use for these methodologies in ongoing work in the

engineering field of structural health monitoring.

The methods presented here have specific advantages over those of Terriberry/Pebay.

First, the Terriberry/Pebay formulae apply to combination of only two sets of mo-
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ments, and would need to be used recursively to combine multiple sets. In contrast,

the new methodology presented here can be used to combine any number of sets

of moments, which could be relevant in the case of massively parallel computations.

Second, an important capability of the updating formulae offered here compared with

those of Terriberry/Pebay is that this methodology can be readily applied to distribu-

tions of data that are not specifically countable, such as the moments of a probability

density function estimated from a power spectrum (e.g., [67]). Third, an important

capability for practical applications is that this new methodology is easily modified

to allow a user to assign different importance to specific segments of the data, such as

newer data being more important than older data, or one sensor being more reliable

or accurate than another.

Finally, this paper offers a one-pass algorithm to compute statistical moments of

a data set. This method is shown in an example to be more computationally efficient

than the one-pass method offered by Terriberry/Pebay. In the proposed method,

the data are first binned to create a histogram from which the desired moments can

be calculated; the width of each bin can be specified as a function of the required

accuracy. Setting the bin width to the precision of the original data yields exact

results. The computational savings of this alternative method can be substantial,

and significant memory savings can also be realized if the raw data are binned real-

time so the complete time-history need not be retained. This new methodology is

competitive with existing one-pass algorithms for the statistical moments in that the

raw data need only be passed through one time, but it is not technically an on-line

algorithm because the data is only binned real-time and the statistical moments are

not computed every time-step. Computation of statistical moments from a histogram

is generally well-established in the statistics community, but investigation of this

methodology as an efficient one-pass algorithm with arbitrarily specified accuracy
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is unique. As such, the latter part of the paper is of mainly practical rather than

theoretical interest, whereas the updating methodologies are derived directly from

theory.

B. Theory

Derivation of the new updating methodology requires some knowledge of moments,

which is presented here to ensure consistent notation. This background information

is followed by the derivation of the proposed method to combine statistical moments,

and then an investigation of computing statistical moments of discrete data from a

histogram. The derivation and example refer to data collected as a function of time,

but the methods are generally applicable to any type of data.

1. Background

a. Calculation of Moments from Discrete Data

The moments of a random variable about zero and about its mean are referred to

as the raw and central moments, respectively. The nth moment of a discrete random

variable x(t) about value r with a finite range is defined as (e.g. [54, 55]):

Mn,r =
I∑

i=1

(
x(ti)− r

)n
∆ti (A-7)

which can be expressed as follows if the continuous distribution function, f(x), is

known:

Mn,r =
K∑

k=1

(xk − r)nf(xk)∆xk (A-8)

in which I represents the number of data points x(ti) and K represents the number

of base xk in its discrete distribution function f(xk), i.e., the number of bins in the
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discrete distribution.

The nth raw moment of a discrete time-history (Equation (A-7) with r = 0) can

be normalized by the time duration, the result if which is the expected value of the

nth power of x

m(t)
n =

1

T
Mn,0 =

∑I
i=1 x(ti)

n∆ti∑I
i=1 ∆ti

= E[xn] (A-9)

where T =
∑I

i=1 ∆ti is the time duration and the superscript (t) indicates moments are

calculated directly from the time-history. For constant ∆t, the duration is T = I∆t,

which enables Equation (A-9) to be simplified:

m(t)
n =

1

I

I∑

i=1

x(ti)
n (A-10)

The first normalized raw moment (n = 1) is the sample mean, which is often used to

estimate the true mean of the process for normalization of other central moments.

θ(t)
n =

1

T
M

n,m
(t)
1

=

∑I
i=1

(
x(ti)−m

(t)
1

)n
∆ti

∑I
i=1 ∆ti

= E

[(
x−m

(t)
1

)n
]

(A-11)

which for constant time interval ∆t is:

θ(t)
n =

1

I

I∑

i=1

(
x(ti)−m

(t)
1

)n
(A-12)

The second normalized central moment (n = 2) is the sample variance (Equation (A-

2)).

b. The Relationship Between Raw Moments and Central Moments

The first four raw moments and central moments have the following well-known math-

ematical relationships, e.g. [54, 55]:

m1 = E[x] = µ (A-13)
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m2 = E[x2] = θ2 + m2
1 (A-14)

m3 = E[x3] = θ3 + 3m1θ2 + m3
1 (A-15)

m4 = E[x4] = θ4 + 4m1θ3 + 6m2
1θ2 + m4

1 (A-16)

θ2 = E[(x− µ)2] = m2 −m2
1 (A-17)

θ3 = E[(x− µ)3] = m3 − 3m1m2 + 2m3
1 (A-18)

θ4 = E[(x− µ)4] = m4 − 4m1m3 + 6m2
1m2 − 3m4

1 (A-19)

2. Updating Formulae for Statistical Moments

Here, a new computational method is proposed to combine multiple sets of statistical

moments, each representing a segment a time-history, into a single set describing a

single concatenated time history. An example application might be combining mo-

ments from several individual segments of a long time-history, perhaps with the mo-

ments of each segment having been computed on a separate processor. This proposed

computational technique uses the first four statistical moments of each segment to

compute four raw moments, which are then transformed into new variables (γn) that

are easily combined by addition. After combination, the new variables are inversely

transformed back to four raw moments now describing all the data, from which the

statistical moments are easily calculated.

a. Moment Addends, γn

New moment addend variables, γn, are introduced to enable straightforward combina-

tion of the statistical moments of multiple time-histories. For an irregular time-history

x(t) with variable time interval ∆ti:

γn =
I∑

i=1

(x(ti))
n∆ti (A-20)
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where γ0 is the duration of each time-history. For constant time interval ∆ti = ∆t:

γn = ∆t
I∑

i=1

(x(ti))
n (A-21)

The same values of γ for the histogram form of computing the moments can be

expressed in terms of the frequency of occurrence at the xk bin, h(xk), with variable

bin width ∆xk.

γn =
K∑

k=1

xn
kh(xk)∆xk (A-22)

yielding γ0 as the area of the histogram. For constant bin width ∆xk = ∆x:

γn = ∆x
K∑

k=1

xn
kh(xk) (A-23)

b. Combination of Statistical Moments

If Q sets of statistical moments are known: γ0,q, µq, σ
2
q , α3,q, α4,q for q = 1, 2, ..., Q, then

each γn can be expressed in terms of the equivalent n raw moments (Equations 4.7,

4.8, 4.19, and 4.21).

γn,q = mn,qγ0,q for n = 1, 2, 3, 4 and q = 1, 2, ..., Q (A-24)

where γ0,q is generally taken to be the duration of the qth time-history, or the number

of points if ∆t is constant. It is worth noting, however, that γ0,q is a weighting factor

only, and its interpretation can be flexible depending on the application. Importantly,

in this method the statistical moments are not required to be those of a quantity that

is countable: these moments could be computed directly from e.g., a probability

distribution, in which case the value of γ0,q would represent the relative importance

of the moment estimate. There is no theoretical limitation on the maximum order of

the moments (the value of n), though higher-order equivalents to Equations 4.11–4.17
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would be needed. The benefit of expressing the statistical moments in terms of γ is

that the Q sets can be combined by addition, and there is no upper limit on the value

of Q.

γn,c =
Q∑

q=1

γn,q for n = 0, 1, 2, 3, 4 (A-25)

where the subscript c represents the concatenated time-history or combined γ. These

combined values of γ can then be inversely transformed into raw moments representing

the concatenated time-history by inverting Equation (4.29).

mn,c =
γn,c

γ0,c

for n = 1, 2, 3, 4 (A-26)

The relationship between raw moments and central moments (Equations A-17–A-

19) are then used to compute the central moments of the concatenated time-history.

Finally, the statistical moments of the concatenated history are computed as in Equa-

tions (A-1–A-4)

µc = m1,c σ2
c = θ2,c α3,c =

θ3,c

σ3
c

α4,c =
θ4,c

σ4
c

(A-27)

3. One-pass Calculation of Statistical Moments

One-pass algorithms can be developed from updating formulae, but it is here pro-

posed that it is theoretically simpler and in practice more computationally efficient

to compute these moments directly from a histogram. In this method, a relative his-

togram of the random variable is first constructed in the conventional way: the range

of potential values is divided into bins and the number of occurrences within each

bin are counted and plotted such that the area of each rectangle equals the portion

of the sample values within that bin (e.g. [54, 55]):

H(xk) =
h(xk)

A
(A-28)



168

where h(xk) and H(xk) represent the frequency and the relative frequency in bin

xk, and A =
∑K

k=1 h(xk) ∆xk is the total area of the histogram. If the bin-width

is pre-specified but the data-range is not known a-priori, it is straightforward to

program a binning methodology in which bins are added dynamically as required by

the data. After the normalization by A in Equation A-28, the n raw moments and

central moments of x(t) can be calculated from the relative histogram, similar to

Equation (A-8):

m(h)
n =

K∑

k=1

xn
k H(xk)∆xk =

1

A

K∑

k=1

xn
k h(xk)∆xk (A-29)

θ(h)
n =

K∑

k=1

(
xk −m

(h)
1

)n
H(xk)∆xk =

1

A

K∑

k=1

(
xk −m

(h)
1

)n
h(xk)∆xk (A-30)

where the superscript (h) indicates the moments are calculated from the histogram.

For constant bin width, ∆xk = ∆x, these two expressions can be simplified with

A =
∑K

k=1 h(xk)∆x = I∆x:

m(h)
n =

1

I

K∑

k=1

xn
k h(xk) (A-31)

θ(h)
n =

1

I

K∑

k=1

(
xk −m

(h)
1

)n
h(xk) (A-32)

C. Example

The new methodologies are applied to data resulting from a time-domain solution of a

simple numerical model of a floating offshore oil production platform subject to irreg-

ular seas. In the first part of the example, the statistical moments of the response are

combined, and in the second part the histogram methodology of computing statisti-

cal moments is critically compared with one- and two-pass algorithms. The response

selected for the example is surge motion (horizontal translation in the direction of the
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Table A-1. Environmental Conditions

Condition Hs(m) Tp(sec) Uc(m/s) Fw(kN)

1 14.5 15.5 1.5 -3000

2 14.5 12.5 2.0 -5000

3 14.5 18.5 1.0 -2000

waves) of a tension leg platform (TLP), which is known to be highly non-Gaussian.

Three segments of a surge time-history, each having significantly different statistical

moments, are created without modifying the structural model, but only changing the

peak period of the incident waves, Tp, the current velocity, Uc, and the wind force,

Fw. In the example, the wave time-histories are simulated from a JONSWAP sea

spectrum (e.g., [48]) with a 14.5 m significant wave height, Hs. Environmental forc-

ing is computed using Airy wave theory and Morison’s equation (e.g., [48, 68]. The

three environmental conditions used in the dynamic simulation are summarized in

Table A-1. The one-dimensional dynamic equation of motion is solved in the time

domain using the Newmark Beta Method (e.g., [49]). The time step of integration

(∆t) is 0.01 sec and the total time duration for each of the three time-histories is one

hour. The resulting time-histories and associated statistical moments are used here

to investigate the new methodology and to compare with existing methodologies.

1. Combination of Statistical Moments

In this first part of the example, statistical moments are first calculated using the

conventional two-pass method (Equations A-1–A-4). Results are shown on the first

three lines of Table A-2. The fourth and fifth lines of the table show a statistical

summary of a combination of the first two segments. The results on the fourth line

were computed by concatenating the two complete one-hour time-histories and then
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applying the conventional two-pass method to compute the summary statistics. The

fifth line was computed using the new methodology derived in Section 2. The specific

steps to compute these values are as follows: First, the n = 4 statistical moments

for each (q) of the Q = 2 segments to be combined are transformed into the mean

and three central moments by inverting the definitions of the statistical moments

(Equations A-1–A-4) to m1,q = µq, θ2,q = σ2
q , θ3,q = α3,qσ

3
q , θ4,q = α4,qσ

4
q . Second, the

resulting Q = 2 sets of three central moments are transformed into Q = 2 sets of three

raw moments using the well-known relationships between raw and central moments

(Equations A-14–A-16). Third, the resulting 4Q raw moments (including Q = 2

means) are then transformed into 4Q values of γn,q = mn,qγ0,q (Equation (A-24)).

Fourth, each of the 5 sets of Q = 2 values of γn,q are combined as in Equation (A-25),

γn,c =
∑Q

q=1 γn,q (n = 0 to 4). Finally, the transformation process is reversed for the

resulting 5 values of γn,c to produce the desired four central statistical moments as

in Equations A-26–A-27. The sixth and seventh lines are the equivalent to the forth

and fifth, excepting that three segments are combined (Q = 3). As can be seen in

the table, combining the statistical moments using the newly proposed methodology

yields results identical to those computed directly from a concatenated time-series

using the conventional two-pass method.

2. Calculation of Statistical Moments

In this second part of the example, the relative efficiency of calculating statistical

moments from time-series data is investigated through comparison of three differ-

ent computational methodologies. First, calculations are performed using the con-

ventional two-pass method (Equations A-1–A-4). Next, equivalent calculations are

performed using the methods of Terriberry/Pebay (Equations A-5–A-6). Finally, a

third set of equivalent calculations are performed by binning the data and computing
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Table A-2. Summary Statistics of Response

Condition Method µ σ2 α3 α4

1 Two-Pass -1.3833 0.2742 0.1236 2.9969

2 Two-Pass -2.2512 0.2447 0.1203 2.3685

3 Two-Pass -0.9154 0.2510 0.0411 2.1207

1+2 Two-Pass -1.8173 0.4478 0.1180 2.5684

1+2 Updating -1.8173 0.4478 0.1180 2.5684

1+2+3 Two-Pass -1.5167 0.5629 -0.0917 2.3856

1+2+3 Updating -1.5167 0.5629 -0.0917 2.3856

the statistical moments from the resulting histogram as outlined in Section 3. The

amount of CPU time and computer memory requirements are presented and com-

pared in Figures A-1 and A-2. In both comparisons, the baseline for comparison is

the conventional two-pass method, which defines the 100% CPU and the 100% mem-

ory conditions. In all comparisons, CPU requirements result from computations and

binning performed using MatLab; memory usage is based on computing how many

floating-point numbers must be stored. The reader is cautioned that the relative ef-

ficiencies presented in the example are not general, and different lengths and ranges

of data-sets may meaningfully affect these comparisons.

First considering Figure A-1, the vertical axis on the left compares the relative

CPU time needed to compute all four of the statistical moments. Application of the

online method of Terriberry/Pebay to this one-hour time-history (360000 data points)

with a measurement precision of 0.001, requires about 70% more CPU time than the

conventional two-pass methodology, though it has the obvious advantage that the data

need not be stored as part of the calculation process. The histogram method with

the bin width set to the precision of the data (zero error in binning leading to exact
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Fig. A-1. Effect of Bin Width on CPU Time Required for Calculation of Statistical

Moments. Conventional Two-pass Algorithm Defines 100%. Time Duration:

1 hour, ∆t: 0.01 sec, Data Precision: 0.001

sample statistical moments) takes about 64% of the CPU time as the conventional

method which is about 38% of the CPU time required for the Terriberry/Pebay on-line

method. Progressing from left to right on the horizontal axis shows gradual increases

in the bin width, and the vertical axis on the right shows the associated error in the

statistical moments. The error is computed as the difference between the exact and

approximate statistical moments divided by the exact statistical moments. The plot

shows that for this time-history, increasing the bin width to ten times as large as the

precision of the data reduces the CPU time to 34% of the conventional methodology,

with virtually no noticeable increase in error in the statistical moments.
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Fig. A-2. Effect of Bin Width on Computer Memory Required for Calculation of Sta-

tistical Moments. Conventional Two-pass Algorithm Defines 100%. Time

Duration: 1 hour, ∆t: 0.01 sec, Data Precision: 0.001

Next, considering Figure A-2, the vertical axis represents the amount of mem-

ory required to compute the statistical moments, with 100% being defined by the

two-pass method in which the entire time-history must be stored. Only the mem-

ory requirements for the histogram method is shown because of the extreme scale

differences: the two-pass method requires about 36 times as much storage, and the

method of Terriberry/Pebay requires only about 0.0033% of that required for the

two-pass method, or 0.12% of that required for the histogram. The dramatic savings

in memory available to the true one-pass algorithm results from having no need to

store or bin any raw data.
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D. Conclusions

Two methodologies have been presented and demonstrated through an example. The

first methodology is an updating algorithm for computing the skewness and kurtosis

of segmented data sets. This methodology has some advantages over the existing

methods: First, it enables direct combination of the skewness and kurtosis of any

number of data sets, rather than combining only two at a time. Second, this new

methodology can be used to combine statistical moments of data that is not countable,

e.g., moments extracted directly from a probability density function, and third, the

new methodology can be easily modified to assign different weightings to specific

segments of the data if the user believes some of the data is of greater importance to

estimating the statistical moments.

The second methodology is a one-pass algorithm for computation of higher sta-

tistical moments through use of a histogram. While it is a one-pass algorithm in that

the data is only passed through once, it is not technically an on-line algorithm be-

cause the moments are not computed every time-step. The method investigated also

has distinct advantages over other methods: First, it uses significantly less CPU time

than conventional two-pass algorithms or an existing one-pass algorithm. Second,

it uses significantly less computer memory than a two-pass algorithm, though much

more than an existing on-line algorithm. Third, the method can be implemented to

arbitrary accuracy, such that computations can be performed to the same accuracy as

the measured data, or to effectively trade required accuracy against CPU and mem-

ory requirements. The proposed methodology is of more practical than theoretical

interest because computation of moments from a histogram is generally well-known

in the statistics community, but it is here investigated as a viable alternative to true

on-line methods.
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An example is presented in which both the updating methodology for the skew-

ness and kurtosis and the histogram approach are verified. The relative efficiency

and accuracy of the histogram approach are compared with existing two-pass and on-

line methods, and the savings in CPU time and memory requirements are quantified

(Figures A-1 and A-2).



176

VITA

NAME: Myoung Keun Choi

ADDRESS: Zachry Department of Civil Engineering

Texas A& M University

College Station, TX 77843

EMAIL: mkchoi@tamu.edu

EDUCATION: B.S., Naval Architecture and Ocean Engineering,

Seoul National University, South Korea, 1997

M.S., Naval Architecture and Ocean Engineering,

Seoul National University, South Korea, 1999

Ph.D., Civil Engineering,

Texas A&M University, USA 2009

RELEVANT PUBLICATIONS:

[1] B. Sweeetman and M. Choi, “The Modal Distribution Method for Statistical

Analysis of Measured Structural Response”, Journal of Probabilistic

Engineering Mechanics, Accepted with Revision, April 2009

[2] M. Choi and B. Sweeetman, “Efficient Calculation of Statistical Moments for

Structural Health Monitoring”, An International Journal of Structural Health

Monitoring, Submitted for Review, November 2008

[3] M .Choi and B. Sweeetman, “The Hermite Moment Model for Highly Skewed

Response with Application to Tension Leg Platforms”, Journal of Offshore

Mechanics and Arctic Engineering, Submitted for Review, August 2008

[4] B. Sweeetman and M .Choi, “The Modal Distribution Method: A New

Statistical Algorithm for Analyzing Measured Acceleration Data”, in Proc. of

Smart Structures and Materials NDE for Health Monitoring and Diagnostics,

San Diego, California, February 2006


