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ABSTRACT 

 

Labyrinth Seal Leakage Equation. 

(May 2009) 

Saikishan Suryanarayanan, B.E., Anna University, India 

Chair of Advisory Committee:  Dr. Gerald L. Morrison 

 

 A seal is a component used in a turbomachine to reduce internal leakage of the 

working fluid and to increase the machine’s efficiency. The stability of a turbomachine 

partially depends upon the rotodynamic coefficients of the seal. The integral control 

volume based rotodynamic coefficient prediction programs are no more accurate than 

the accuracy of the leakage mass flow rate estimation. Thus an accurate prediction of the 

mass flow rate through seals is extremely important, especially for rotodynamic analysis 

of turbomachinery.   

 For labyrinth seals, which are widely used, the energy dissipation is achieved by 

a series of constrictions and cavities. When the fluid flows through the constriction 

(under each tooth), a part of the pressure head is converted into kinetic energy, which is 

dissipated through small scale turbulence-viscosity interaction in the cavity that follows. 

Therefore, a leakage flow rate prediction equation can be developed by comparing the 

seal to a series of orifices and cavities. Using this analogy, the mass flow rate is modeled 

as a function of the flow coefficient under each tooth and the carry over coefficient, 

which accounts for the turbulent dissipation of kinetic energy in a cavity. 
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This work, based upon FLUENT CFD simulations, initially studies the influence 

of flow parameters, in addition to geometry, on the carry over coefficient of a cavity, 

developing a better model for the same. It is found that the Reynolds number and 

clearance to pitch ratios have a major influence and tooth width has a secondary 

influence on the carry over coefficient and models for the same were developed for a 

generic rectangular tooth on stator labyrinth seal. 

The discharge coefficient of the labyrinth seal tooth (with the preceding cavity) 

was found to be a function of the discharge coefficient of a single tooth (with no 

preceding cavity) and the carry over coefficient. The discharge coefficient of a single 

tooth is established as a function of the Reynolds number and width to clearance ratio of 

the tooth and a model for the same is developed. It is also verified that this model 

describes the discharge coefficient of the first tooth in the labyrinth seal. By comparing 

the coefficients of discharge of compressible flow to that of incompressible flow at the 

same Reynolds number, the expansion factor was found to depend only upon the 

pressure ratio and ratio of specific heats. A model for the same was developed. Thus 

using the developed models, it is possible to compute the leakage mass flow rate as well 

as the axial distribution of cavity pressure across the seal for known inlet and exit 

pressures. The model is validated against prior experimental data.  
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NOMENCLATURE 

A -  Clearance area, πDc 

c  -  Radial clearance, m 

C d
1tooth   - Discharge coefficient for seal with single tooth 

C d   - Discharge coefficient  for a given tooth of a multi tooth labyrinth seal 

D – Shaft diameter, m 

h – Tooth height, m 

k – Ratio of specific heats , Cp/Cv 

L 

 - Mass flow rate of leakage flow (kg/s) 

  -  Axial length of the seal, m 

mሶ

 – Seal inlet pressure, Pa P୧

 - Seal exit pressure, Pa Pୣ

୧ – Tooth inlet pressure, Pa p

pୣ - Tooth exit pressure, Pa 

Pr – Pressure ratio, pୣ/p୧  

Re – Reynolds number based on clearance, ୫ሶ
஠Dµ

 

s  -  Tooth pitch, m   

w -  Tooth width, m 

x  -   Axial distance along seal, m 

z  –  Ratio of discharge coefficient of  a tooth following a cavity to the discharge 

coefficient of a single tooth with same tooth width and clearance with no preceding 

cavity at the same Reynolds number 
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α - Flow coefficient 

 – Divergence angle of jet , radians β

γ - Kinetic energy carry over coefficient 

ε – Dissipation of tur

κ – Turbulent Kinetic energy 

bulent kinetic energy 

μ– Dynamic viscosity, Pa/s 

ρ

  – Fluid density at tooth inlet, kg/m3 

୧ – Fluid density at seal inlet, kg/m3 

ρ

 Percentage of kinetic energy carried over χ-

ψ - Expansion Factor 
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CHAPTER I 

INTRODUCTION 

A seal is a component used in a turbomachine to reduce internal leakage of the 

working fluid and increase the machine’s efficiency. The stability of a turbomachine 

partially depends upon the rotodynamic coefficients of the seal. The integral control 

volume based rotodynamic coefficient prediction programs are no more accurate than 

the accuracy of the leakage mass flow rate estimation. Thus an accurate prediction of the 

mass flow rate through seals is extremely important, especially for rotodynamic analysis 

of turbomachinery.  With recent advancements in turbomachinery increasing the need 

for more precise rotodynamic analyses, there is a necessity for more accurate prediction 

of leakage rate. 

The labyrinth seal is one of the popular seal designs and is widely used in a 

variety of turbomachinery. As for any seal, the purpose of the labyrinth seal is to reduce 

the internal fluid leakage by increasing the friction to fluid flow in the leakage path by 

dissipating as much of the kinetic energy of the leakage flow as possible. For labyrinth 

seals, the energy dissipation is achieved by a series of constrictions and cavities. When 

the fluid flows through the constriction (under each tooth), a part of the pressure head is 

converted into kinetic energy, which is dissipated through small scale turbulence-

viscosity interaction in the cavity that follows. This increases the resistance to flow 

compared to a smooth seal.  

____________ 
This thesis follows the style of Journal of Turbomachinery. 
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Figure 1.1.  Flow pattern within a labyrinth seal cavity. 

 

A straight through labyrinth seal is commonly used for turbines primarily due to 

ease of manufacture and assembly. This design, however, has a greater kinetic energy 

carry over compared to stepped or staggered designs. Hence it becomes extremely 
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important to study the carry over coefficient of straight through labyrinth seals in order 

to improve the accuracy of leakage prediction.   

Figure 1.1. shows the typical flow pattern within a labyrinth seal. It can be 

observed from the streamlines, a part of the jet goes under the next tooth, while the 

remaining portion recirculates within the cavity. The portion of the kinetic energy that is 

not dissipated in the cavity is indicated by the carry over coefficient which can be 

measured in terms of the angle β . 

The carry over coefficient accounts for the turbulent dissipation of kinetic energy 

occurring inside each individual cavity.  The relationship between the carry over 

coefficient, γ, and the percentage of kinetic energy carried over into the next cavity , ߯, 

 g en by  is iv

γଶ ൌ ଵ
ଵି஧

   [1]                                       (1.1) 

This relationship is illustrated in Figure 1.2.  When  ߛ ൌ 1 , ൌ 0 , indicating that 

all kinetic energy entering into the cavity is dissipated. The kinetic energy carry over 

increases with an increase in the carry over coefficient. In other words, a higher value of  

  .indicates that the cavity is less effective in dissipating kinetic energy ߛ



 4

Figure 1.2. Relationship between ࢽ and ࣑. 

 

 

This work, based on FLUENT CFD simulations, attempts to arrive at a more 

accurate leakage model for labyrinth seals by making extensive study of the parameters 

affecting the kinetic energy carry over as well as the discharge coefficient.  
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CHAPTER II 

PRIOR WORK AND REVIEW OF EXISTING LEAKAGE MODELS 

The prior work in labyrinth seals has been discussed in detail by Cogan [2] and 

Gamal [3]. Gamal’s dissertation also provides a detailed discussion on all the existing 

leakage models and evaluates them against experimental data. Hence only a concise 

account of the literature pertinent to the present study is presented in this section.  

A leakage flow rate prediction equation can be developed by considering the seal as a 

series of orifices and cavities. The mass flow rate is represented as a function of the 

discharge coefficient under each tooth and the carry over coefficient inside each cavity.  

Labyrinth seal leakage rate prediction equations have been of interest as early as 

1908 when Martin [4] presented a model. This simple equation models the leakage flow 

rate based on the work done to achieve the required pressure drop. He neglected the 

effect of kinetic energy carry over (assumed ߛ ൌ 1). This equation, which is applicable 

only to incompressible flows, was purely based on an analytical approach and did not 

compare its results to experimental data. Even though this model, shown in equation 2.1 

is not very accurate, it is widely used even today. It also forms the basis for several 

following models.  

mሶ ൌ A P౟
ඥRT౟

 ඩ
ଵି൬P౛P౟

൰
మ

୬ି୪୬൬P౛P౟
൰
              (2.1) 

Stoloda [5] was another early researcher of labyrinth seal leakage. He analyzed 

compressible flow and provided separate equations for subsonic and choked flows. He 
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mentioned that the mass flow rate is inversely proportional to the square root of the 

number of teeth. Like Martin, he neglected the effect of kinetic energy carry over.  

Gerke [6], in deriving the equation for labyrinth seal leakage, considered the 

effects of variable areas through the seal. But he also did not consider the kinetic energy 

carry over.  

  Egli [7] provided a rational theoretical treatment of the labyrinth problem based 

on the flow characteristics typical for a sharp edged orifice. He identified the need for a 

kinetic energy carry-over coefficient His description of the flow through the 

constrictions of a labyrinth seal  “as the steam flows through the labyrinth, a pressure 

drop occurs across each throttling. After each throttling, a small part of the kinetic 

energy of the steam jet will be reconverted into pressure energy, a second part will be 

destroyed and transferred into heat, and the remaining kinetic energy will enter the 

following throttling”. Egli modified the basic equation put forth by Martin by including 

an experimentally determined flow coefficient to account for the kinetic energy carry 

over. His model is shown in equation 2.2. Egli also reasoned that the carry over 

coefficient should increase with increase in clearance and decrease as the axial distance 

between blades (tooth pitch) increases. 

mሶ ൌ γୣ୫୮ୣ୰୧ୡୟ୪  
A P౟
ඥRT౟

 ඩ
ଵି൬P౛P౟

൰
మ

୬ି୪୬൬P౛P౟
൰
             (2.2) 

 

Hodkinson [8] modified Egli’s approach to provide a semi empirical relation that 

was based on assumptions of a gas jet’s geometry. His assumption was as follows. The 
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fluid jet expands conically from the tip of an upstream tooth at a small angle, ߚ. A part 

of the jet impinges on the downstream tooth to recirculate in the cavity, dissipating the 

kinetic energy associated with it, while a portion of the jet travels under the downstream 

tooth and carries over the kinetic energy to the next cavity. He assumed the angle ߚ to be 

only a function of seal geometry.  

He p esented the fo

mሶ ൌ A α ψ γ ඥρ୧ P୧

r  llowing relation for seal leakage  

             (2.3)

 Where the expansion coefficient, which accounts for compressibility effects, is 

defined as  

ψ ൌ ඩ
ଵି൬P౛P౟

൰
మ

୬ି୪୬൬P౛P౟
൰
               (2.4)

 The kinetic energy carry over coefficient,γ, is modeled as a function of seal 

geometry as  

γ ൌ  ඨ
ଵ

ଵି౤షభ౤  
ౙ
౩

ౙ
౩శబ.బమ

 
             (2.5) 

The last factor, α, is an experimentally determined flow coefficient, similar to a 

discharge coefficient.  

Vermes [9] developed an expression for the kinetic energy carry over based upon 

boundary layer theory to modify Martin’s equation which is shown in equation 2.6.  

γ ൌ  ට ଵ
ଵି஑ 

                (2.6) 
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W α, the relative amount of kinetic energy present upstream of tooth is given by  here, 

   α ൌ ଼.ହଶ
౩ష౭
ౙ ା ଻.ଶଷ

           (2.7) 

The model developed by Neumann [10], shown in equations 2.8-2.12 

incorporates a carry over coefficient, which is expressed as a function of radial clearance 

and tooth pitch. He used Chaplygin’s formula, as defined by Gurevich [11], as flow 

coefficient which also accounts for compressibility effects. Neumann treats each throttle 

individually and hence his model represents leakage as a function of upstream and 

downstream pressures of a tooth. Therefore, when this model is used, it does not provide 

the leakage in a single step, but results in a set of N equations which can be solved to 

obtain both leakage and the pressure distribution.  

mሶ ൌ Cfi γi A ට
୮౟
మି ୮౟శభ

మ

RT 
             (2.8) 

Cf୧ ൌ
π

πାଶିହβ౟ାଶβ౟
మ               (2.9) 

β୧ ൌ ൬ pi 

1
 pi൅
൰
ౡషభ
ౡ
െ 1                   (2.10) 

γ୧ ൌ  ට
N

N ሺଵିα౟ሻା α౟ 
             (2.11) 

α୧ ൌ 1 െ  ଵ

൬ଵାଵ଺.଺ ቀౙ౩ቁ൰
మ                      (2.12) 

Zimmerman and Wolf [12] took into account that the flow through the first tooth 

is different as there is no kinetic energy carry over. Hence they suggested using                  
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St. Venant’s equation [13] for the first constriction and Martin’s equation with a  carry 

over coefficient for the downstream teeth. Their model is shown in equation 2.13. 

mሶ ൌ A P౟
ඥ୩RT౟

 ඨଶ୩మ

୩ିଵ
ቆቀP౟శభ

P౟
ቁ
మ
ౡ െ ቀP౟శభ

P౟
ቁ
ౡశభ
ౡ  
ቇ    for i =1              (2.13) 

mሶ ൌ γ୧  
A P౟
ඥRT౟

 ඩ
ଵି൬

P౟శభ
P౟

൰
మ

୬ି୪୬൬
P౟శభ
P౟

൰
                            for i >1 

Scharrer’s model [14] was based on Neumann’s equation but used Vermes’ carry 

over coefficient. Esser and Kazakia [15] also used the Neumann’s equation, but used a 

constant flow coefficient of 0.716 instead of Chaplygin’s formula.  

Gamal [3] carried out an evaluation of leakage models by comparing the 

respective leakage predictions to experimental data. His analyses reveal that certain 

models perform well under high pressure ratios while others are more suited for low 

pressure labyrinth seals. Gamal also attempted to create hybrid models using different 

combinations of base equation, model for carry over coefficient and model for flow 

coefficient found in literature. 

The above models have considered the carry over coefficient purely as a function 

of seal geometry and neglect the possibility of the effect of flow parameters.   

From Gamal’s analyses, it was observed that the models that perform well under 

certain flow conditions fail under other flow conditions. This perhaps reveals that the 

underlying assumption of flow independent carry over coefficient may not be correct. 

G.L. Morrison and Adnan Al- Ghasem [1] studied the leakage flow through windback 

seals. Under the suspicion that Hodkinson’s model for the carry over coefficient may not 
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be applicable for windback seals,  ߛ was obtained by CFD analysis of the flow pattern 

within the seal cavity. It was found that ߛ was not a constant for a given seal geometry as 

proposed by Hodkinson, but varied with pressure ratio.  This observation of the flow 

dependence of ߛ has been the primary motivation for the current study, as it was felt that 

 might be dependent upon flow parameters for labyrinth seals as well. This is in ߛ

contrast to the existing models that describe carry over coefficient purely based upon 

geometric parameters. If the flow dependence of the carry over coefficient can be 

analyzed and modeled, it will result in significantly improving the accuracy of the 

leakage flow rate predictions. Ultimately, using an improved seal leakage flow rate 

prediction equation, designers can improve turbomachinery efficiency and stability.   
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CHAPTER III 

RESEARCH  OBJECTIVES 

The objective of this project is to develop a simple empirical model for the 

leakage flow rate in straight through annular labyrinth seals with simple rectangular 

cavities. The model will allow designers of turbomachines to quickly estimate seal 

leakage allowing more design options to be considered compared to experimental 

methods or CFD simulations. This objective will be attained by the following:   

1. Perform simulations of leakage flow through a labyrinth seal cavity using 

FLUENT for a matrix of different geometry and flow conditions.  

2. Study the flow dependence of the carry over coefficient upon flow conditions and 

geometry to develop a model for the same.  

3. Analyze, at different flow conditions, the effect of geometric factors such as tooth 

width, cavity depth and shaft diameter in addition to clearance and pitch. 

Incorporate these results into the above developed model. 

4. Extend the above results obtained for a single generic cavity to a labyrinth seal 

with multiple cavities. 

5. Research the effect of various geometrical and flow parameters on the discharge 

coefficient for a tooth and develop a model for the same. This may be related to 

the discharge coefficient of a single tooth and the carry over coefficient.  
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6. Obtain a model for the expansion factor computed by comparing the discharge 

coefficients of incompressible and compressible flows of the same Reynolds 

number.  

7. Obtain an improved leakage flow rate prediction equation by utilizing the models 

that were developed for the discharge coefficient. Develop a model that can 

predict the mass flow rate and the pressure distribution across the different 

cavities of the seal for a given seal geometry, inlet and exit pressures.  

8. Evaluate the model against earlier experimental findings and compare the 

accuracy against existing leakage equations. 
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CHAPTER IV 

COMPUTATIONAL METHOD 

This study is based upon CFD simulations performed using the commercial CFD 

code FLUENT 6.3.26. The effects of flow and geometric parameters on the carry over 

and discharge coefficients are to be investigated for a generic rectangular cavity, tooth 

on stator, labyrinth seal, as depicted in Figure 1.1.  An extensive study, which is 

prohibitively expensive and time consuming if done experimentally, can be performed 

using CFD. 

The commercial code FLUENT 6.3.26 is used as the Navier Stokes solver for 

this work. It uses the finite volume method for discretization. Initially simulations are 

performed with water. The standard k – ߝ turbulence model has been proven to 

accurately simulate the flow through seals based on comparisons to experiments 

conducted by Morrison and Al-Ghasem [1].  The standard k – ߝ turbulence model and 

finite volume method are explained in FLUENT Manual [16]. Brief descriptions of the 

same are included in Appendix A for the convenience of the reader.  

A single cavity (two tooth) labyrinth seal was considered for the initial study. 

The geometry and initial mesh are created using GAMBIT 2.3.16. The geometry and 

flow are assumed to be axisymmetric and hence a two dimensional (axial – radial) 

simulation is utilized. The rotor is represented by the line along the bottom of the 

domain. The long entrance and exit regions before and after the seal are present to allow 
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the assumed inlet and exit conditions to equilibrate before the flow field enters the first 

cavity. A sample mesh (for case 1 in Appendix B) is shown in Figure 4.1. 

 

Figure 4.1. Seal geometry and mesh.  

  The computational mesh is much finer in the regions near the stator walls, in the 

seal clearance region, and near the rotor surface. Morrison and Al-Ghasem [1] showed 

that for seal analyses, the enhanced wall treatment (available in FLUENT) must be used 

to obtain accurate leakage prediction. It is also necessary to place nodes closest to the 

walls at Y+ values less than 5 in order to resolve the laminar sublayer.  
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Another reason for choosing standard k – ߝ turbulence model were the 

comparison of flow patterns obtained with different turbulence models with the 

experimental LDA data obtained by Johnson [17]. It is also noted that the standard k – ߝ 

model was the one that has been widely used for computational analysis of labyrinth 

seals in earlier studies [18-21].  
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Figure 4.2. Accuracy of mass flow rate prediction with number of nodes.   

A grid independence study was performed by observing the mass flow rates 

predicted for a given pressure ratio for various levels of grid refinement (shown in 

Figure 4.2). Initial work has found that the change in mass flow rate was less than 0.5% 

when more than 20000 nodes are employed. Adaptation based on pressure gradient, 

maximum set to 0.1 and Y+ set to 3 was employed to refine the grid.     
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CHAPTER V 

CARRY OVER COEFFICIENT 

CALCULATION OF CARRY OVER COEFFICIENT 

Following the definition presented by Hodkinson [8], ߛ is calculated as a 

function of the divergence angle, ߚ, measured from the streamline separating the fluid 

recirculating in the seal cavity and that passing under the tooth,  using the following 

relationships provided by Hodkinson   

γଶ ൌ ଵ
ଵି஧

            (5.1) 

and 

            tan β ൌ c ሺଵି஧ሻ
஧ ୱ

            (5.2)

 The divergence angle, ߚ, is the angle made between the line connecting the lip of 

the upstream tooth to the point of impingement of the jet onto the downstream tooth and 

a line parallel to the rotor surface. The latter is found by examining the position on the 

downstream tooth where the radial velocity is zero as indicated in Figure 5.1. Tecplot 

360 is used for this analysis.  

A number of simulations are performed for a fixed the seal geometry with 

varying flow conditions. The carry over coefficient is measured for each case. Thus, the 

effect of flow parameters such as Reynolds number and pressure ratio on kinetic energy 

carry over are isolated and studied.  Once the behavior of kinetic energy carry over 

based on flow parameters is studied, the seal geometry is varied (again, a single 

geometrical parameter is varied while others are fixed) and the model developed based 
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on flow parameters is modified to include the geometry effects. Effect of shaft rotation 

on the carry over coefficient is studied by respective simulations. The initial cases 

considered are for a single cavity (two teeth) seal. Multiple cavities will be considered 

later.   

 

Figure 5.1. Contour plots of radial velocity and measurement of β.  
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EFFECT OF FLOW PARAMETERS (FOR INCOMPRESSIBLE FLOW) 

The seal geometry is fixed so as to consider only the effect of flow parameters.  

The initial analysis utilizes water to eliminate compressibility effects and considers a 

stationary shaft. These results are compared with air flows operating under 

incompressible conditions.    

For a given seal geometry, the carry over coefficient, γ, was calculated for 

different mass flow rates.   The Reynolds number based on clearance, ୫
஠ D µ
ሶ , was found to 

be the dominant non-dimensional parameter. Figure 5.2 illustrates the variation of γ for 

air and water as a function of Reynolds number for the same geometric configuration 

(case 1 in Appendix B). It has to be noted that, for this analysis, the pressure ratios for 

air have been kept small enough to ensure incompressible flow. It can be seen that the 

variation of γ with Reynolds number collapses onto a single relationship. This is a very 

important finding in that the relationship is the same for fluids possessing very different 

densities and viscosities. It clearly indicates that the carry over coefficient is not only a 

function of seal geometry (as assumed by Hodkinson [8]) but also is Reynolds number 

dependent. At low Reynolds numbers, γ tends to nearly 1.0 which indicates that all of the 

kinetic energy is dissipated. As the Reynolds number increases, the carry over 

coefficient increases indicating ever increasing amounts of kinetic energy are not being 

dissipated in the seal cavity but convected out of the cavity. This indicates a reduced 

effectiveness of the seal with increasing Reynolds number. For comparison, the carry 

over coefficient for this seal geometry as predicted by Hodkinson’s model is 1.076, 

about mid-span of the values computed in this study.    
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The increase in γ with Reynolds number can be explained as follows. The 

Reynolds number based on clearance is the ratio of the inertia of the jet issuing from 

under a tooth to the viscous forces.  Therefore, at higher values of Reynolds number, 

higher inertia of the jet and lower viscous forces result in a smaller divergence of the jet, 

resulting in a larger portion of the jet’s kinetic energy traversing the seal cavity and 

passing under the downstream tooth without being dissipated by the turbulence viscosity 

interactions in the cavity. Hence a smaller portion of the kinetic energy is dissipated in 

the cavity leading to a larger carry over coefficient. These results are valid for both air 

and water, provided the flow is incompressible. 

Figure 5.2. γ vs. Re for water and air.  
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To examine the effects of pressure, the γ - Re relationship for different pressure 

ratios and seal exit pressures are compared ( for case 1 in Appendix B). Water is used as 

the fluid in this study to assure the flow is incompressible. As it can be observed from 

Figures 5.3 and 5.4,  changing the ratio of the seal inlet pressure to exit pressure ( Pr) or 

the seal exit pressure (pe) does not change the relationship between the carry over 

coefficient and Reynolds number for a given seal geometry for incompressible flow. 
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Figure 5.3. γ vs. Re for water at different exit pressures. 
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Figure 5.4. γ vs. Re for water operating under different pressure ratios.  

 

These data illustrate that an increase in the Reynolds number increases γ. The 

influence of the Reynolds number is effectively modeled using a power law curve fit as 

shown in Figure 5.3. The curve fit is of the form:  

2

2

1

1 1Re
C

cC Cγ
−⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠                        (5.3) 

Where C1 and C2 are possibly functions of seal geometry and other flow 

parameters yet to be determined. The presence of 
2

1

1
CC

−

 in the model ensures that γ 

becomes 1 when the Reynolds number is 0. This is essential as the minimum value of γ 

is 1. For this baseline geometry (case 1 in Appendix B), C1=0.923 and C2=0.0228.  
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EFFECT OF CLEARANCE  

It was found that clearance is one of the major geometric parameters that 

influences the carry over coefficient.  Hence the constants C1 and C2 in equation 5.3 

must depend upon clearance.  Since both γ and Re are dimensionless, C1 and C2 should 

depend on a dimensionless length parameter. In Hodkinson’s model [8], the clearance 

over pitch is used as the non dimensional parameter. Therefore the current study also 

adopts c/s as the non dimensional parameter describing seal geometry. Hence C1 and C2 

in equation 7 are assumed to be functions of the clearance to pitch ratio, provided all 

other geometric parameters are fixed. In order to assess the effect of c/s ratio, seals with 

four different clearances are simulated for a range of Reynolds numbers for a fixed pitch, 

which corresponded to cases 1- 4 presented in Appendix B. The variation of γ for each 

of the cases is calculated and the results are presented in Figure 5.5. The power law 

given by equation 5.3 is applied to each data series and constants   C1 and C2 are found 

for the best fit.  

Figure 5.5. shows a dramatic increase in the carry over coefficient as the 

clearance increases. Reducing the clearance to pitch ratio from 0.015 to 0.0075 (factor of 

two) reduces the values of γ by about 10% (percentage of carry over reduced from 30% 

to 17% at higher Reynolds numbers). Increasing the clearance by a factor of 2.5 

increases the carry over coefficient by 30 to 50 % depending upon the Reynolds number. 

It is also observed that the simulation results in a larger deviation from the curve fit at 

higher Reynolds numbers and clearances. 
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From the curve fits it is observed that C1 decreases with increasing c/s ratio while 

C2 increases with increasing c/s. The relationships are found to be linear and are shown 

in Figure 5.6.  It has to be noted that, in order to make physical sense, the carry over 

coefficient approaches 1 as Re approaches 0.   In order to satisfy this, C1 has to become 

1 and C2 should become zero at c/s = 0 (as zero clearance implies no flow and zero Re).  

Considering the above observation, C1 and C2 in equation 5.3 are expressed in the form   

1 11 cC k
s

⎛ ⎞= − ⎜ ⎟
⎝ ⎠              (5.4) 

2 2
cC k
s

⎛ ⎞= ⎜ ⎟
⎝ ⎠              (5.5) 

The constants k1 and k2 are determined as 6.5 and 2.454 for the least RMS of 

relative error. C1 represents the effect of Reynolds number on the carry over coefficient, 

in other words the deviation from Hodkinson’s model (in which C2 = 0 , as γ is assumed 

to be independent of Reynolds number). Therefore higher clearances imply a greater 

effect of Reynolds number on carry over coefficient.  

For a given Reynolds number, a higher value of c/s results in a higher carry over 

coefficient. The physics behind this observation follows Hodkinson’s theory. For a given 

divergence of the jet, more fluid flows under the tooth when the clearance is higher. 

Therefore an increase in c increases γ.  Also, for a given divergence angle, a higher value 

of pitch results in a higher impingement point of the jet, on the downstream tooth. Hence 

a smaller portion of the kinetic energy of the jet flows under the downstream tooth, 

reducing the carry over coefficient. Hence an increase in s decreases γ.      
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Figure 5.5. γ vs. Re for different c/s ratios.   
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Figure 5.6. Variation of C1 and C2  with c/s ratio.   

On substitution of (5.4) and (5.5) into (5.3), we obtain a model for the carry over 

coefficient as 

γ ൌ ൬ 1 െ 6.5  ቀୡ
ୱ
ቁ൰ ൭Re ൅ ൬1 െ 6.5 ቀୡ

ୱ
ቁ൰

ି భ
మ.రఱరቀ ౙ౩ቁ൱

ଶ.ସହସ ቀౙ౩ቁ

                   (5.6) 
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EFFECT OF PITCH 

Pitch has been traditionally chosen as the geometric parameter to non-

dimensonalize clearance [7, 8]. Hence, this idea was adopted in arriving at equation 5.6. 

It was felt that a detailed verification whether the effect of changing pitch was the exact 

reverse of changing clearance was warranted. This would verify the selection of pitch as 

the non dimensionalizing variable used with clearance. 

The validity of this assumption was investigated by comparing the carry over 

coefficients of two thin teeth seal geometries with the second geometry having twice the 

clearance and twice the pitch of the first geometry so that c/s remains the same. The 

tooth height is also doubled so that (h/s) is identical for both cases, to avoid the effect of 

tooth height (if any). 

 

1

1.05

1.1

1.15

1.2

0 500 1000 1500 2000 2500 3000

γ

Re

c= 0.00006 m, s = 0.008 m, h = 0.008 m
c= 0.00003 m, s = 0.004 m, h =0.004 m

Figure 5.7. Effect of changing pitch when c/s is held fixed (cases 2 and 5 in 

Appendix B). 
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The results shown in Figure 5.7 illustrate that the kinetic energy carry over 

coefficient is the same for both geometries provided c/s is held constant even if the 

clearance and pitch are changed.  This validates the use of c/s as the non dimensional 

parameter.    

EFFECT OF TOOTH HEIGHT 

Another geometric parameter that could possibly affect kinetic energy carry over 

is the tooth height (or cavity depth). Changing the non dimensional tooth height (h/s) 

changes the aspect ratio of the cavity and hence the pattern of recirculation inside the 

seal cavity. Therefore it is possible that altering tooth height may have some effect on 

the kinetic energy carry over even though its effect is ignored by all earlier leakage 

models.  

The h/s ratio was varied from 0.75 to 4 (cases 2, 6, 7 and 8 in Appendix B). The 

simulation results for carry over coefficient are presented in Figure 5.8. It can be seen 

that the carry over coefficient is fairly independent of h/s for h/s > 0.75 except at very 

high Reynolds numbers where deep cavities show a small decrease in kinetic energy 

carry over. In other words, the assumption that tooth height has no effect on kinetic 

energy coefficient is reasonably valid when the aspect ratio of the cavity is close to or 

greater than unity.  
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Figure 5.8. Effect of tooth height on carry over coefficient.   

EFFECT OF TOOTH WIDTH 

In the earlier section, the effect of Reynolds number on carry over coefficient is 

studied for a seal with very thin teeth.  This was a first order approximation which 

involved considering the flow under the teeth similar to a flow through an orifice. 

However, any real world labyrinth seal has significantly larger tooth widths than used in 

that study.  Therefore, while the Reynolds number dependence of the carry over 

coefficient was presented, it becomes essential to extend those results to different tooth 

widths. In order to model the effect of tooth width, the relationship between γ and Re 

was studied for different tooth widths while fixing all other geometrical parameters. The 
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results for a fixed clearance to pitch ratio, c/s = 0.015 (cases 2, 11, 13, 14 in Appendix 

B), are presented in Figure 5.9.  

 

Figure 5.9. Relationship between carry over coefficient and Reynolds number for 

different tooth widths (for c/s = 0.015).  

  It can be observed that the functional relationship between the carry over 

coefficient and Reynolds number for different tooth widths retain the same 

characteristics whilst showing a small variation with tooth width. It can also be seen that 

the power law,  , which was used to describe the γ- Re relationship for 

the very thin tooth in the earlier section, can be used to model the relationship for the 

other tooth widths by altering the coefficients C1 and C2.  Figures 5.10 and 5.11 show the 

variation in C1 and C2 with respect to tooth width for c/s = 0.015 respectively.  Tooth 

( 2

1 Re C
oC Rγ = + )
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width is non-dimensionalized based on tooth pitch, as clearance is also non-

dimensionalized with tooth pitch.  

Figure 5.10. Variation of ࡯૚ with tooth width (for c/s = 0.015).  

 

Figure 5.11. Variation of ࡯૛ with tooth width (for c/s = 0.015).  
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This effect of tooth width can be incorporated into the earlier model as 

( ) 4 22.454
3 11 6.5 Re

c k f
s

o
c k f R
s

γ
⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞= − − +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠                        (5.7) 

with R = ቀ1 െ 6.5  ቀୡ
ୱ0 ቁ െ kଷ fଵቁ

ି   భ
ቀమ.రఱర ቀౙ౩ቁశౡర౜మቁ 

where ଵ݂ and ଶ݂ are functions of w/s.  ݇ଷ and ݇ସ are constants for a given c/s, but are 

possibly functions of c/s. In order to determine the effect of clearance on the dependence 

of  Cଵ and Cଶ on w/s, the above study was conducted for other values of c/s                 

(cases 15 - 18 in Appendix B).  

 

Figure 5.12 Variation of ࡯૚and ࡯૛ with tooth width for different values of c/s.  

It can be observed from Figure 5.12 that the effect of tooth width has a greater 

effect on the carry over coefficient at higher clearance to pitch ratios.  

Based on the above results, the earlier model for thin teeth is modified as 

γ ൌ ൬ 1 െ 6.5  ቀୡ
ୱ
ቁ െ Cଷ ቀ

ୡ
ୱ
ቁ
ୟ
ቀ୵
ୱ
ቁ
ୠ
൰ ሺ Re ൅ R0ሻ൬ଶ.ସହସ ቀ

ౙ
౩ቁାCరቀ

ౙ
౩ቁ
ౙ
ቀ౭౩ ቁ

ౚ
൰                    (5.8) 
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Analysis of various linear, polynomial, and power law fits showed that the power 

law function is still the best fit for these data.  The constants in eqn. 5.8 are determined 

as to reduce the RMS of relative error. The maximum value of w/s used in the data set is 

0.5, above which the CFD predictions deviate from the model. However w/s > 0.5 is 

generally not common in real world labyrinth seals and is not considered for this study.  

γ ൌ ൬ 1 െ 6.5  ቀୡ
ୱ
ቁ െ 8.638 ቀୡ

ୱ
ቁ ቀ୵

ୱ
ቁ൰ ሺRe ൅ R଴ሻ

ሺଶ.ସହସ ቀౙ౩ቁାଶ.ଶ଺଼ቀ
ౙ
౩ቁቀ

౭
౩ ቁ

భ.లళయ

  (5.9)  
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The RMS error of this model was 1.49 % from the CFD data. If the effect of 

tooth width is neglected and the earlier model for thin teeth is used for the same data set, 

the RMS error is 2.3 %.  The values of γ predicted by eqn. 5.6 and eqn. 5.9 are compared 

with those calculated directly from the CFD simulations are shown in Figure 5.13. 

 

Figure 5.13. Improvement in carry over coefficient prediction accuracy after 

considering effect of tooth width (case 17 in Appendix B: c/s = 0.0375, w/s = 0.25). 
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EFFECT OF SHAFT DIAMETER 

 
Figure 5.14. Effect of shaft diameter on carry over coefficient.   

All prior work neglect the effect of changing shaft diameter on carry over 

coefficient of the labyrinth seals [4, 7 - 10]. However, none of them present a 

verification of the assumption. It was felt that in order to develop a more accurate model 

for carry over coefficient, secondary effects (if any) should be addressed. Hence, a study 

into the effect of shaft diameter on kinetic energy carry over is conducted. Simulations 

are carried out on three cases with shaft diameters of 60 mm, 180 mm and 300 mm 

(cases 2, 19 and 20 in Appendix B), while all other geometric parameters are fixed. The 
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results of the analysis are shown in Figure 5.14. It can be seen that even for this wide 

variation in shaft diameter, the functional relationship between the carry over coefficient 

and the Reynolds number remains the same. Therefore this study validates the earlier 

assumption that carry over coefficient is independent of shaft diameter.  

EFFECT OF NUMBER OF TEETH 

All the studies in the previous sections have been carried out by analyzing flow 

through a labyrinth seal with two teeth. It is necessary to determine how the single cavity 

simulation may compare with a labyrinth seal with multiple cavities. To investigate the 

possible differences, the carry over coefficient in each cavity of a labyrinth seal with 8 

teeth operating over the same range of Reynolds number as an earlier case (case 21 in 

Appendix B) is compared to the single cavity (two teeth) results presented earlier.  

From the results presented in Figure 5.15, it can be observed that the carry over 

coefficient does not vary for the different cavities of a multiple cavity seal for a given 

Reynolds number. It can also be seen that the carry over coefficient observed in a 

multiple cavity labyrinth seal is nearly identical to that of the single cavity (two teeth) 

cases used throughout this study across all Reynolds numbers. Hence it can be 

concluded that the carry over coefficient results obtained for a single cavity are valid for 

multiple tooth labyrinth seal and is independent of the number of cavities (teeth) for 

incompressible flow.  
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Figure 5.15. Comparison of carry over coefficient across different cavities of a 

multiple cavity labyrinth seal with that of a single cavity labyrinth seal (case 21).   

 

 

Figure 5.16. Flow pattern within different cavities of a multiple cavity labyrinth 

seal (case 21 in Appendix B, Re = 2043). 
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Further inspection reveals that not only the carry over coefficient, but the entire 

flow pattern is independent of cavity as seen in Figure 5.16. This reasserts the earlier 

conclusion that for incompressible flow, the Reynolds number defined by ୫ሶ
஠ D µ

 is the only 

flow parameter that influences carry over coefficient, as it is the only parameter that 

remains constant across all the cavities. For deeper understanding, the pressure 

distribution across the seal is shown in Figure 5.17 for the same Reynolds number 

corresponding to the streamlines shown in Figure 5.16 . It can be seen that the pressure 

drop across each tooth remains constant except for the first tooth (Figure 5.18) where 

there is an entrance effect due to the flow upstream of the first tooth being different from 

the flow inside each cavity upstream of each subsequent tooth.  The pressure ratio 

decreases with each downstream tooth (Figure 5.19).  The last few teeth have 

significantly lower pressure ratios, however there is no deviation in the carry over 

coefficient across the different cavities. This result once again reasserts the earlier 

observation that the Reynolds number is the only flow parameter governing the kinetic 

energy carry over, when the flow is incompressible. 
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Figure 5.17. Axial pressure distribution (case 21 in Appendix B, Re = 2043).  

 

Figure 5.18 . Comparison of pressure drop across each tooth (case 21, Re = 2043). 
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Figure 5.19. Individual tooth pressure ratios  (case 21 in Appendix B, Re = 2043).   

 

EFFECT OF SHAFT ROTATION 

A rotating shaft may change the flow pattern within the seal as it introduces swirl 

velocity. Hence the speed of the shaft might influence the carry over coefficient.  To 

analyze this effect, simulations are performed for a given flow condition and seal 

geometry at different shaft speeds. The results, as seen from Figure 5.20, show that the 

carry over coefficient is independent of shaft speed. However, it has to be noted that this 

study deals teeth on stator seals. The results might differ for seals with teeth on rotor. 
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Figure 5.20. Variation of ࢽ  with shaft speed (for  case 2 in Appendix B,                   

Re = 1348.87). 
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CHAPTER VI 

DISCHARGE COEFFICIENT 

On obtaining an understanding of the influence of flow and geometry on the 

carry over coefficient and developing a model for the same, focus is shifted to the study 

of the discharge coefficient. Throughout this thesis, the term ‘discharge coefficient’ 

describes the total losses that occur as the fluid flows through the cavity and under the 

tooth. Thus it is the representation of the combined effects of the dissipation in the cavity 

and the frictional losses that occur at the tooth and is defined as 

 Cୢ ൌ
୫

A ඥଶ ஡ ሺ ୮ഠି୮౛ሻ
ሶ                             (6.1) 

Where  pi and pe are the inlet and exit pressures across a tooth. Hence if the discharge 

coefficients of all the teeth in a labyrinth seal are known, it is possible to calculate the  

leakage mass flow rate based on the overall pressure difference across the seal. It is also 

possible to calculate the pressure distribution across the seal using the same.  Thus, this 

work attempts to develop a labyrinth seal leakage equation by developing a model for 

the discharge coefficient.  

  The effect of geometry and flow parameters on discharge coefficient is to be 

studied in a similar manner to the carry over coefficient.  It is expected that the discharge 

coefficient for the first tooth will be different to that of the subsequent teeth and hence a 

separate model may need to be developed for the same.  
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DISCHARGE COEFFICIENT OF SEAL WITH A SINGLE TOOTH  

Many previous studies represent the discharge coefficient as a product of the 

carry over coefficient and a flow coefficient [3, 7]. The flow coefficient represents the 

loss under the tooth and is either an experimentally determined value or modeled in 

using an empirical relation.  

The current work follows a slightly different approach to modeling the discharge 

coefficient. Rather than representing the discharge coefficient of a cavity followed by a 

tooth as a product of the kinetic energy carry over coefficient (of the cavity) and the flow 

coefficient (of the tooth), this work attempts to model the discharge coefficient, which 

describes the net loss, as a function (not necessarily in form of a product) of the carry 

over coefficient.  

In order to obtain a better understanding of the effect of the kinetic energy carry 

over, it is desired to compare the discharge coefficient of a tooth following the cavity 

with that of a single tooth (with no preceding cavity).  Therefore simulations are 

performed on a seal with a single tooth. Sample geometry and mesh (corresponding to 

case 24 in Appendix B) are shown in Figure 6.1.  
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Figure 6.1.  Geometry and mesh for seal with single tooth.  
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EFFECT OF REYNOLDS NUMBER 

The variation of the discharge coefficient of a single tooth with Reynolds number 

is shown in Figure 6.2 for incompressible flow. The Reynolds number based on 

clearance is found to be the only flow parameter governing the discharge coefficient of 

the single tooth (when the flow in incompressible) .  
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Figure 6.2. Discharge coefficient of a seal with single tooth  (c = 0.00003 m,                  

w = 0.0006m, h = 0.004 m). 
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was chosen to fit the data. The curve fit is shown along with the CFD data in Figure 6.2. 

It has to be understood that it is probable that the constants A1, A2 and A3 in equation 6.2 

could depend upon tooth geometry. 

EFFECT OF TOOTH WIDTH AND CLEARANCE 

To analyze the effects of flow geometry, simulations are performed for different 

tooth width, clearance, tooth height and shaft diameters for the range of Reynolds 

numbers (cases 22 – 34 in Appendix B). It can be concluded from Figure 6.3. that, for a 

given Reynolds number, the discharge coefficient of a single tooth does not change if the 

tooth width to clearance ratio is fixed when clearance and width are independently 

changed. It has to be noted that earlier study by Kearton and Keh [22] obtained 

experimental curves for the discharge coefficient of a single tooth for different tooth 

width to clearance ratios.  The CFD simulations of the current work attempt to reassert 

the theory that the only geometrical parameter that significantly affects the discharge 

coefficient of a single tooth (with no preceding cavity) is the tooth width to radial 

clearance ratio.   

Figure 6.3. shows that discharge coefficients of teeth with different clearance and 

width but with same w/c ratio (cases 22 and 23 in Appendix B) show the same 

functional relationship with Reynolds number thus verifying that w/c is the correct non-

dimensional geometrical parameter that influences the discharge coefficient of a single 

tooth. Since the data involves simulations with different back pressures (1 bar and 2 bar), 

Reynolds number based on clearance is the only flow parameter that is needed to 

determine the discharge coefficient of a seal with a single tooth for incompressible flow. 
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However after a certain value of Reynolds number, the discharge coefficient of a seal 

with a single tooth reaches an almost constant value and does not increase further with 

increases in Reynolds number. 

Figure 6.3. Discharge coefficient of seals with single tooth having same w/c ratio.   
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Figure 6.4. shows the relationship between the discharge coefficient and the 

Reynolds number for different tooth width to clearance ratios (cases 22-24, 28, 31 in 

Appendix B). It can been seen for smaller values of w/c (that is for thinner tooth and/or 

higher clearances), the discharge coefficient is higher for the entire range of Reynolds 

numbers. In a laminar flow through a channel, the pressure drop is proportional to the 

length of the channel (analogous to tooth width) to the channel width (analogous to 

radial clearance). While the problem in question involves a more complex geometry, is 
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axisymmetric, and involves turbulent flow, the finding that the discharge coefficient is 

directly proportional (though may not be linear) to width to clearance ratio can be 

understood along similar lines.   It can also be observed that the value of Reynolds 

number at which the discharge coefficient approaches a constant value increases with 

increased values of the w/c ratio. However in all of the cases, equation 6.2 can be used to 

model the discharge coefficient provided the constants A1, A2 and A3 are suitably varied.  
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Figure 6.4.  Discharge coefficient of a seal with single tooth with different w/c ratio. 
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EFFECT OF TOOTH HEIGHT 
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Figure 6.5. Effect of tooth height on discharge coefficient of seal with single tooth. 

In order to examine the effects of tooth height, simulations are performed for 3 

different tooth heights while holding the other geometric parameters constant. Ratios of 

h/s for the 3 cases are 0.75, 1 and 2 (cases 32, 23 and 33 in Appendix B). It has to be 

noted that the aspect ratio of cavities of most real world labyrinth seals is around 1 and 

rarely ever exceeds 2. Each case is simulated for the same range of Reynolds numbers. 

The results are shown in Figure 6.5. It can be observed that tooth height has almost no 

effect on the discharge coefficient of seal with single tooth for incompressible flow.  
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EFFECT OF SHAFT DIAMETER 
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Figure 6.6. Variation of discharge coefficient of seal with single tooth                           

(cases 23 and 34 in Appendix B, Re = 909) with shaft diameter.   

It can be observed from Figure 6.6 that the discharge coefficient of seal with a 

single tooth does not change, even after increasing the shaft diameter to 3 times the 

initial value. Hence it can be concluded that the shaft diameter does not influence the 

value of cd
1tooth. 

EFFECT OF SHAFT ROTATION 

Earlier studies [23] show that shaft rotation has a negligible effect on labyrinth 

seal leakage provided the axial Reynolds number is not very low. The CFD simulations 

using axisymmetric swirl are performed for case 22 in Appendix B for different shaft 

RPM and Reynolds numbers. The results are shown in Figure 6.7. It can be seen that the 
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discharge coefficient decreases with increase in RPM and the effect is maximum at low 

Reynolds numbers. There is a 4% reduction in the discharge coefficient at Reynolds 

number of at 20000 RPM for Reynolds number of 239. Since most flows encountered in 

turbomachinery have are at a much higher Reynolds numbers, the effect of shaft RPM is 

neglected and is not incorporated in the model. A detailed investigation of low Reynolds 

number- shaft speed interaction is considered to be beyond the scope of this thesis, but is 

recommended for future work if leakage predictions are required for applications that 

involve low Reynolds numbers and high shaft speeds.  
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Figure 6.7. Variation of Cd of seal with single tooth (c = 0.00003m, s = 0.004m, w 

=0.0002m) with shaft RPM.  

 

 



 50

EMPIRICAL MODEL  

Since this research ultimately aims to develop an equation that can predict flow 

rate, an empirical formula that represents the single tooth discharge coefficient based on 

Reynolds number and w/c ratio is sought. The same is achieved by exploring various 

curve fits on the computational data matrix using Table Curve and MS Excel. The 

equation of the form described in 6.2 is chosen. The constants in the equation have been 

optimized to best fit data across w/c ratios from 2.67 to 66.67 (cases 22-31, 34 in 

Appendix B). It has to be noted that for values of w/c less than 2.67, an equation of this 

form does not provide a good fit. But since most labyrinth seals have w/c ratios higher 

than this value, w/c lower than this limit is not considered for this study. The following 

formula is proposed to compute the discharge coefficient of a seal with a single tooth for 

incompressible flow. The only inputs required are the tooth width to radial clearance 

ratio and the Reynolds number based on clearance. 

cୢ  ଵ ୲୭୭୲୦ ൌ
൬଴.଻଻ହ଻ି଴.଴଴ଶ଴ହଵቀ౭ౙ ቁ൰

ቆଵା
రర.ఴలቀ౭ౙ ቁ

R౛ ቇ
బ.మభఱళ             (6.3) 

The equation has been developed from the CFD data of nearly 100 simulations 

with Reynolds number ranging from 254 to 26800.  The standard deviation of the fit is 

1.42% and the maximum error is 4.38%. The CFD data and model prediction for the 

entire data set is compared in Figure 6.8.  
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Figure 6.8.  Discharge coefficient of single tooth seals – CFD and model prediction 

(cases 22-31, 34 in Appendix B). 

DISCHARGE COEFFICIENT OF FIRST TOOTH 

It was felt that the discharge coefficient of the first tooth of a multiple tooth 

labyrinth seal would be the same as that of the seal with a single tooth, as it has no 

preceding cavity. However it might be possible that the downstream flow may affect the 

discharge coefficient. Figure 6.9 compares the streamlines of the flow through a seal 

with a single tooth with a labyrinth seal with 2 teeth in the vicinity of the first tooth.  



 52

 

Figure 6.9. Comparison of streamlines at entrance to seal with single tooth and to 

the first tooth of a multiple teeth labyrinth seal (cases 23 and 11, Re  = 909).  

The Reynolds number and the tooth dimensions of the two cases considered are 

identical. It can be observed that the flow pattern upstream of the single tooth and the 

flow pattern upstream of the first tooth of a multiple tooth labyrinth seal are very similar. 

Thus simulations were performed for labyrinth seals with two and four teeth that have 

the same tooth width and radial clearance (cases 13 and 37 in Appendix B). These 

simulations were also performed for the same set of Reynolds numbers. It was found that 

the Cd of the first tooth of the multiple tooth labyrinth seals is independent of the number 
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of downstream teeth and is very similar to those of the single tooth seals for any given 

Reynolds number for incompressible flow.  Figure 6.10 illustrates how the discharge 

coefficients of single tooth and first tooth of seal with two teeth for one specific 

geometry vary for different Reynolds numbers.  
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Figure 6.10. Comparison of discharge coefficients of single tooth seal and the first 

tooth of a labyrinth seal with two teeth (cases 11 and 23 in Appendix B). 

 Hence the model for the discharge coefficient of a single tooth seal developed in 

the earlier section (equation 6.3) has been verified to describe the Cd of the first tooth of 

a multiple tooth labyrinth seal.  
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DISCHARGE COEFFICIENT OF DOWNSTREAM TEETH 

It is expected that the discharge coefficients of the subsequent teeth may be 

different from that of the first tooth as the velocity profile at the inlet of the teeth 

following a cavity is different to that of the first tooth as seen in Figure 6.11. 

Incompressible simulations are performed on labyrinth seals with multiple teeth and the 

discharge coefficients of downstream teeth are calculated from the CFD predicted 

pressure distribution (cases 10 - 20, 35 - 40 in Appendix B). It can be seen from Figure 

6.12, that the Cd of a downstream tooth is a function of clearance, pitch, width and 

Reynolds number. Unlike the case of the first tooth, holding w/c as constant does not 

collapse the Cd – Re relationship to a single relation.  However, as seen in Figure 6.13., 

the influence of tooth height on the discharge coefficient of the second tooth is 

negligible for h/s > 0.75 as in case of the first tooth and carry over coefficient. The 

simulations also show that the discharge coefficient for all downstream teeth in a given 

seal for a given Reynolds number remains the same for incompressible flow. 

It becomes more difficult to directly model the discharge coefficient of the 

downstream tooth as it is a function of more than two variables. Physically, the 

discharge coefficient of the downstream tooth is determined by the combined effect of 

the kinetic energy carry over and the frictional losses that occur under the tooth. Hence it 

becomes essential to consider the carry over coefficient while modeling the discharge 

coefficient of subsequent teeth. 
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Figure 6.11. Comparison of velocity profiles upstream of first (top) and second 

tooth  (bottom) of incompressible flow ( Re = 909) through two tooth labyrinth seal             

(case 11 in Appendix B). 
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Figure 6.12. Influence of clearance, pitch and tooth width of discharge coefficient of 

second tooth (cases 10, 11, 13, 15-17 in Appendix B). 
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Figure 6.13. Influence of tooth height of discharge coefficient of second tooth           

(cases 11 and 38 in Appendix B).   
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Figure 6.14 compares the discharge coefficients of the first with the second tooth 

of a two tooth labyrinth seal (case 11 in Appendix B). It can be observed that the 

discharge coefficient of the second tooth is higher than the first due to the effects of the 

kinetic energy carry over. It can also be observed that the deviation in the discharge 

coefficient of the second tooth from that of the first tooth is higher at higher Reynolds 

number. The respective carry over coefficient is also shown in the same plot for 

comparison.  The deviation of the discharge coefficient appears to be related to the             

carry over coefficient.  
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Figure 6.14.  Discharge coefficients of first and second teeth of a two teeth labyrinth 

seal and respective carry over coefficient. 

Many of the existing leakage models [3, 7, 8, and 10] model this relationship of 

the discharge coefficient of the downstream teeth and the carry over coefficient by 

establishing a linear relationship between the mass flow rate and the carry over 
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coefficient. Based on the earlier literature, it was attempted to establish a linear 

relationship between the carry over coefficient and the discharge coefficient of the 

second tooth. The CFD simulations predict, as it can be seen from Figure 6.15, the 

discharge coefficient is not a linear function of the carry over coefficient. Further, the 

relationship between Cd and γ seems to be different for different tooth geometries.  

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.02 1.04 1.06 1.08 1.1 1.12

c d
 (
Se
co
nd

 T
oo

th
)

γ

c = 0.00003m, s=0.004m,w=0.0002m

c = 0.00003m, s=0.004m,w=0.0004m

Figure 6.15.  Relationship between discharge coefficient of second tooth of a two 

teeth labyrinth seal and respective carry over coefficient (cases 35 and 39). 

It has to be noted that this non-linearity and the dependence on geometry were 

addressed by some of the earlier investigators [7] by incorporating an experimentally 

determined flow coefficient, α (which also is to account for various other effects like the 

Cd of the first tooth being different from subsequent teeth).  It could be possible that this 

flow coefficient could be related to the discharge coefficient of the equivalent single 

tooth labyrinth seal (which is also the Cd of the first tooth). 
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The discharge coefficients of subsequent teeth seem to depend on both the 

respective first tooth discharge coefficient and the carry over coefficient. It is thus aimed 

to establish  

Cd = f ( Cd
first tooth , γ)                       (6.4) 

It was assumed that Cd of subsequent teeth should be linearly proportional to the 

Cd of the first tooth. Defining z as the ratio of the discharge coefficient of the second 

tooth to that of the first tooth (or discharge coefficient of equivalent seal with single 

), z shou unction of the carry over coefficient. tooth ld be a f

z ൌ Cౚ
Cౚ
f౟౨౩౪ ౪౥౥౪౞ ൌ f ሺγሻ                            (6.5) 

Hence z was calculated and its functional dependence upon γ was investigated.              

Figure 6.16 shows the dependence of z upon γ for different c/s ratios (when all other 

geometry is fixed) while Figure 6.17 considers how w/s changes the relationship. It can 

be concluded that the z - γ relationship is independent of geometry or flow.  
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Figure 6.16.  Relationship between z and γ for different c/s ratios (cases 13, 15-17).  
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MODEL FOR DISCHARGE COEFFICIENT FOR SUBSEQUENT TEETH  

When z is calculated for all incompressible data consisting of simulations of 

seals with different clearances, pitch, tooth width (all cases in Appendix B except 1-8, 

19-21 which have very thin teeth), tooth height, number of teeth (for each subsequent 

tooth) and shaft diameter and plotted as a function of the respective carry over 

coefficients in Figure 6.18, a very important relationship is evident.   

It is essential to note that the data set consists of different inlet and exit pressures, 

pressure ratios and Reynolds numbers.  It can be seen that there is a reasonable collapse 

of all the data onto a single relationship. The scatter that is observed at higher γ is 

possibly due to the characteristic scatter that was observed in carry over coefficient. 

It has to be noted that the predicted values of Cd for first tooth (based on equation 6.3) 

and γ (based on equation 5.9) are employed instead of the actual measured values.  This 

is done so that the errors associated with the respective prediction algorithms may be 

corrected/compensated while developing this final model for incompressible flow. 

The equation  

z = 0.925γ0.861            (6.6) 

is used to fit the data and is valid for all geometries and operating conditions (provided 

c/s < 0.05, h/s > 0.75, w/c > 2.67, w/s < 0.5, 250 < Re < 15000). The standard deviation 

is 1.93% and the maximum error is 5.7%.  

It has to be noted that these errors represent the net errors (including the errors in 

the prediction algorithms of carry over coefficient and discharge coefficient of 1st tooth) 

for the prediction of discharge coefficient for incompressible flow.  
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Figure 6.18. Relationship between Z and γ for entire incompressible dataset with 

employed curve fit. 

Thus, by employing the models developed for discharge coefficient and carry 

over coefficient, an algorithm can be developed to not only predict leakage for 

incompressible flow but also the pressure distribution across the seal provided the inlet 

and exit pressures are known. This model can also be used for gases, provided Pr > 0.7 

(as shown in the next chapter). For such cases, the density for each cavity is calculated 

based on the cavity pressure (using ideal gas equation) and the pressure and density of 

the fluid upstream of a tooth is used to calculate the pressure drops across the tooth. A 

program for such a case is also included.    
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The equations ar summari  

mሶ ൌ   Cୢ ౤Aඥ2ρ୬ ሺp୬ െ p୬ାଵሻ

e zed as: 

    ( 1 ൒ n ൒ Nሻ                 (6.7) 

For  0.0075< c/s < 0.0375, 0.0075 < w/s <  0.5, 2.67 < w/c < 66.67 and 0.75 < h/s < 4, 

250<Re<15000. 

 Where 

            Cୢ ౤ ൌ ሼ
Cୢଵ୲୭୭୲୦ for first constriction                              ሺn ൌ 1ሻ 
    Cୢଵ୲୭୭୲୦ሺ0.925 γ଴.଼଺ଵሻ for subsequent teeth ሺn ൐ 1ሻ    
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πDμ
ሶ   

When p1 and pN+1 are known, the above models result in a system N equations 

and N variables ( ሶ݉  , p2, p3,.. pN) . Even though the system is non-linear, it can be solved 

easily using MS Excel’s Solver or using the MATLAB code presented in Appendix C. 

The time required to compute the results is less than a second.  

The program solves the set of equations by Newton’s method of successive iteration. 

Martin’s equation is used to initialize the mass flow rate, based on which the Reynolds 

number, the carry over coefficient and discharge coefficient are computed. The pressures 

in the seal cavities are calculated. Then, the mass flow rate is recalculated based on the 
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discharge coefficient for the final constriction, since the exit pressure is known. This 

new mass flow rate is used to correct the one used in the previous iteration using a 

relaxation factor in order to increase the stability. The process is repeated until 

convergence. This algorithm is explained in the flowchart in Figure 6.19. The variables 

used in the program and the corresponding physical quantities and symbols used in the 

thesis text are listed in Table 6.1   
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Table. 6.1. List of variables used in program to compute leakage.  

VARIABLE 
NAME QUANTITY UNIT SYMBOL USED 

IN TEXT 

c Radial clearance m c 
s Tooth pitch m s 
w Tooth width m w 
D Shaft diameter m D 
Pi Seal inlet pressure Pa Pi 
Pe Seal exit pressure Pa Pe 
j Index for Tooth number   

p(j) Pressure upstream of jth tooth  Pa pj 
rho Density for liquids kg/m3 ρ 

rho(j) Density upstream of jth tooth (gases) kg/m3 ρj 
mdot Leakage mass flow rate kg/s ሶ݉  

    
i count for number of iterations   

Re Reynolds number based on clearance  Re 
gamma Carry over coefficient  γ 

cd1 
Discharge coefficient for equivalent 

seal with single tooth ( also discharge 
coefficient of first tooth) 

        Cd
1tooth 

tdc Discharge coefficient for subsequent 
tooth  Cd 

mdot1  kg/s  

Error Relative error between mdot 
computed between two iterations   

imax Maximum number of iterations 
(default value =10000)   

E Error to achieve Convergence 
(default value  = 0.0001)   

omg Relaxation factor 
(default value =  0.1)    
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         Start  

 
Input c, s, w , D , N,  Pi , Pe , mu , rho ( liquids) or R ,T(gases) 

 
 

Initialize mdot using Martin’s equation 
                                                                                      i = 1               mdot = 

                                                                                 mdot+omg*(mdot1-mdot) 
   
 

Compute Re =mdot/(3.142*D*mu)                                
Compute gamma, cd1 , tdc using eqns. 5.3, 6.3, 6.6 

p(1) = Pi , (rho1= rho for liquds; =p1/RT for gases), p(N+1) = Pe 
Compute p(2) using eqn. 6.7 with n = 1 and cd = cd1 

 
 

j = 1 
 
 

Compute p(j+1) using eqn. 6.7 with n = j and cdn = tdc 
(Compute rho(j+1) using p(j+1) for gases) 

j = j+1 
 
 

 
                                                                                      Is j=N                 No 

 
 

              Yes 
 

Calculate mdot1 for last tooth using eqn. 6.7 with n=N 
Error = abs((mdot1-mdot)/mdot) 

   i = i+1 
                                                                                                                         

 
                                                                                        Is                       

                                                                                No                          Is               No  
                                                                       Error< E                               i>imax 

 
                                                             Yes 

          Yes            
                                              Display “Not Converged” 

        Output mdot1, p(j) ;  j = 1 to N+1 
   

                                                                                        End 

Figure 6.19. Flow chart for leakage prediction for incompressible flow. 
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CHAPTER VII 

EFFECT OF COMPRESSIBILITY   

The earlier sections dealt with incompressible flow through labyrinth seals. A 

model for carry over coefficient was developed for incompressible flow and its effect on 

labyrinth seal leakage was analyzed and modeled. A complete equation for predicting 

leakage for incompressible flow was developed by using CFD simulations that use water 

as the working fluid.  

Labyrinth seals are used in all kinds of turbomachinery utilizing compressible 

fluids. Hence, there was a need to develop a model that provides accurate leakage 

prediction for compressible fluids. This section emphasizes using air as the working 

medium. As seen in Figure 7.1, the model developed in the earlier section, can be used 

to arrive at reasonably accurate estimation of leakage and pressure distribution for air as 

long as the individual tooth pressure ratios are greater than 0.7. However at lower 

pressure ratios, the incompressible model deviates from the CFD results. This is 

expected as at lower pressure ratios, effects of compressibility become marked and 

hence an expansion factor, ψ, needs to be incorporated into the model.  
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Figure 7.1. Comparison of discharge coefficients of incompressible and 

compressible flow (for the second tooth of two tooth labyrinth seal, case 13 in 

Appendix B).   

 

Martin’s equation [4], which has also formed the basis for models given by Egli 

[7] and Hodkinson [8] and Vermes [9] has the term ඩ
ቆଵି൬౦౛౦౟

൰
మ
ቇ

Nି୪୬൬౦౛౦౟
൰

 to compensate for 

compressibility effects.  
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EXPANSION FACTOR – DEFINITION 

This thesis defines the expansion factor, ψ, as the ratio of the discharge 

coefficient of a tooth (that includes effect of kinetic energy carry over) for compressible 

flow to that for incompressible flow through a seal with same geometry and at same 

Reynolds number. Further, this thesis compares the discharge coefficients computed 

from CFD simulations of compressible flow with the incompressible discharge 

  model presented in chapter VI.  coefficient predicted by the

mሶ ൌ  ψ cୢAඥ2ρ୧ሺp୧ െ pୣሻ           (7.1) 

 Where 

ୢ
୲୭୭୲୦   for first constriction. c ൌ cୢଵ   

cୢ ൌ   cୢଵ୲୭୭୲୦ሺ0.925 γ଴.଼଺ଵሻ     for subsequent teeth.  

cୢ  ଵ ୲୭୭୲୦ ൌ
൬଴.଻଻ହ଻ି଴.଴଴ଶ଴ହଵቀ౭ౙ ቁ൰

ቆଵା
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బ.మభఱళ     
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ୱ
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ୱ
ቁ ቀ୵

ୱ
ቁ൰ ሺRe ൅ R଴ሻ

ሺଶ.ସହସ ቀౙ౩ቁାଶ.ଶ଺଼ቀ
ౙ
౩ቁቀ

౭
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భ.లళయ

 , 

 R0 =  ቀ  1 െ 6.5  ቀୡ
ୱ
ቁ െ 8.638 ቀୡ

ୱ
ቁ
 
ቀ୵
ୱ
ቁ
 
ቁ
ቌି భ
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ౙ
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 Therefore it has to be noted that this ‘expansion factor’ accounts for the effects of 

compressibility on the kinetic energy carry over, discharge coefficient and also on the 

relationship between γ and Cd . Thus, in this study, the expansion factor, ψ, is evaluated 

by dividing the discharge coefficient obtained from the FLUENT CFD simulation with 
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air as working medium (ideal gas assumption) and by the discharge coefficient (of 

incompressible flow) predicted by equation 6.6 and 6.3. 

The effect of flow parameters, seal geometry, shaft RPM, the number and position of 

teeth on the expansion factor for air is analyzed and discussed in the following sections. 

Following this approach, the study of the effect of gas properties will be taken into 

account.  

EFFECT OF FLOW PARAMETERS ON EXPANSION FACTOR  
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Figure 7.2. ψ for second tooth of a single cavity labyrinth seal (case 13 in            

Appendix B) at different backpressures and Reynolds numbers.  

The effects of compressibility are generally quantified by pressure ratio. In Martin’s 

equation, the expansion factor is expressed as a function of overall pressure ratio and 
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number of teeth. In order to verify this idea of modeling expansion factor purely based 

on pressure ratio, CFD simulations are performed for different backpressures (1 bar,        

2 bar and 5 bar) and Reynolds numbers (ranging from 250 to 10500) for a labyrinth seal 

with two teeth with c = 0.00006 m , s = 0.004 m and w = 0.001 m. The expansion factor 

is evaluated for the second tooth in each case and is plotted against the respective tooth 

pressure ratio (in this case, the ratio of seal exit pressure to the mean pressure in the 

cavity) in Figure 7.2. It can be observed that regardless of exit pressure or Reynolds 

number, the ψ – Pr collapses into a single relationship. While there is a possibility that 

this relationship may depend upon geometric parameters (which will be analyzed in the 

forthcoming sections), it is clear from Figure 7.2 that pressure ratio across the tooth (not 

overall pressure ratio) is the only flow parameter that determines the expansion factor.  
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EXPANSION FACTOR FOR FIRST AND DOWNSTREAM TOOTH   

 

Figure 7.3. Comparison of ψ for first and second tooth of a single cavity labyrinth 

seal (case 13 in Appendix B).  

Since the Cd of the first tooth is different from the rest of the teeth due to the 

absence of a preceding cavity, there was a need to verify whether the expansion factor of 

the first tooth can be expressed by the same model as that of the subsequent teeth. It can 

be seen from Figure 7.3. that the expansion factor for the first tooth (evaluation based on 

ratio of the discharge coefficient of the first tooth for compressible flow to the cd
1tooth 

model developed for incompressible flow) does indeed bear the same relationship with 

pressure ratio as the expansion factor for the second tooth for the geometry and flow 

conditions considered in Figure 7.3.  
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EFFECT OF SEAL GEOMETRY ON EXPANSION FACTOR 

In order to investigate whether seal geometry influences expansion factor, 

simulations are performed on seals with different clearances and tooth widths. The 

results are plotted in Figure 7.4 (for cases 10, 13 and 16 in Appendix B; Re ranges from 

254 to 10437; back pressures of 1, 2 and 5 bar). It was found that ψ is fairly independent 

of seal geometry within the limits considered. It has to be noted that clearance may have 

a small effect upon ψ, as it can be observed that as there is an increase in clearance, there 

is as slight increase in ψ. However since the change in ψ is around 5% when clearance is 

increased by 50%, it is considered minimal and this effect was not incorporated into the 

model. 

 

Figure 7.4. Effect of seal geometry on expansion factor (cases 10, 13 and 16). 
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EFFECT OF POSITION AND NUMBER OF TEETH ON EXPANSION FACTOR  

 

ψ = 0.558 Pr + 0.442
R² = 0.9903
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Figure 7.5. Comparison of expansion factors for different teeth in a 4 tooth seal. 

The conclusions drawn in the above sections were based upon compressible 

simulations performed on labyrinth seal with a single cavity (two teeth). In order to 

extend the understanding to real world labyrinth seals which have multiple cavities, 

simulations are performed on a four tooth seal. The expansion factor is calculated for 

flow under each tooth. Figure 7.5 compares the expansion factor across different teeth of 

the multiple cavity seal (case 37 in Appendix B). It can be seen that the ψ – Pr 

relationship is independent of the position of the tooth. The data for the two tooth seal 

(case 13 in Appendix B) is also included in Figure 7.5. It can be seen that ψ across 
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different teeth in the four tooth seal follows the same relationship with pressure ratio as 

the two tooth seal. Hence it can be concluded that the expansion factor is independent of 

the number of teeth and only depends on the pressure ratio across a given tooth.  

It has to be noted that these results do not necessarily contradict earlier models which 

contain the information on the number of teeth, as they are based on overall pressure 

ratio across the seal. The current work models the expansion coefficient across a tooth 

based on the tooth pressure ratio using the linear relationship shown below. 

ψ = 0.558 Pr + 0.442                                    (7.2) 

It is interesting to note that the expansion factor for orifice flow meters behaves 

in a similar manner.  

EFFECT OF RATIO OF SPECIFIC HEATS ON EXPANSION FACTOR  
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Figure 7.6. Effect of ratio of specific heats on expansion factor. 
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According to Martin’s formula, leakage is independent of k (ratio of specific 

heats). But from the actual derivation, it can be seen that one of the terms contains the 

expression 2/k, which is rounded off to 1. In Neumann’s model [10], the flow coefficient 

is a function of  ቆቀ ୮౟
୮౟శభ

ቁ
ౡషభ
ౡ െ 1ቇ. The effect of k on the expansion factor requires further 

investigation as k is a significant parameter in the study of compressible flow. Thus the 

leakage rate may have a weak dependence upon k, which this section investigates.    

The study carried out in the earlier section with air as working medium is extended for 

Carbon Dioxide and Helium, gases having extreme values of k. Carbon dioxide, being a 

triatomic molecule has k =1.3 , while Helium being a monatomic gas has k = 1.67.  Both 

Carbon dioxide and Helium may be encountered in real world labyrinth seals. The same 

geometric and flow conditions considered in Figure 7.3 are utilized for the Carbon 

Dioxide and Helium study. 

From the results plotted in Figure 7.6 (case 13 in Appendix B), it can be seen that 

the expansion factor (which incorporates all effects of K) for CO2 has a negligible 

deviation from that of air and hence this model may be used for leakage prediction of 

CO2 over the entire range of conditions considered. However, it must be noted that this 

study assumes ideal gas behavior and the real gas behavior of CO2 may deviate from the 

prediction significantly at elevated pressures. A study considering the effects of real gas 

models is beyond the scope of this thesis but is recommended for future work.  

The effects of k are more marked in case of Helium, whose expansion factor has 

a greater deviation from that of air. However, it can be observed that the effects of 
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compressibility for Helium can still be modeled as a linear function of the pressure ratio, 

albeit with a smaller slope.   

ALGORITHM FOR LEAKAGE PREDICTION FOR COMPRESSIBLE FLOW 

The algorithm for leakage prediction for incompressible flow presented in the 

last chapter is extended to predicting leakage for compressible flow by allowing for the 

variation of density based on pressure and ideal gas law and by incorporating the 

expansion factor. The model given by eqn. 7.2 is used to compute ψ for every tooth.    

ψ is initially set to 1 for all teeth. After the each iteration, ψ is calculated for every tooth 

based on the computed pressures and is used for the next iteration. The variable Y[n] is 

used to represent ψ of the nth tooth. 

The algorithm is explained in the flow chart shown in Figure 7.7 and the 

corresponding MATLAB code is included in APPENDIX C.  
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Start  
 

Input c, s, w , D , N,  Pi , Pe , mu , R ,T 
 

Initialize mdot using Martins equation 
                                                                                      I = 1               mdot = 

                                                                                 mdot+omg*(mdot1-mdot) 
   

Compute Re =mdot/(3.142*D*mu)                                
 

Compute gamma, cd1 , tdc using eqns. 5.9, 6.3,6.6  
 

p(1) = Pi , rho(1) = p1/RT , p(N+1) = Pe, Y(j)=1 for j = 1 to N 
 

Compute p(2) using eqn (6.7) with n=1 and cd = cd1 
Compute Y(1) using equation 7.2. 

 
j = 1 

 
 

Compute p(j+1) using eqn. 6.7 with n = j and cdn = tdc 
rho(j+1) = p(j+1)/(RT)  

Compute Y(j+1) using eqn. 7.2 
j = j+1 

 
 
                                                                                      Is j=N                 No 

 
 

                                                                                   Yes 
 

Calculate mdot1 using eqn. 6.7 with n=N 
Error = abs((mdot1-mdot)/mdot) 

   i = i+1 
                                                                                                                         

 
                                                                                        Is                       

                                                                                No                          Is             No  
                                                                       Error< E                               i>imax 

 
                                                             Yes 

     Yes            
                                              Display “Not Converged” 

        Output mdot1, p(j) ; j = 1 to N+1 
   

                                                                                        end 

Figure 7.7. Flow chart for leakage prediction incorporating model for ψ. 
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CHAPTER VIII 

VALIDATION 

In this chapter, the models developed in this thesis are evaluated against prior 

experiments conducted by other researchers. While the models themselves have been 

developed from CFD simulations which employ turbulence models and numerical 

schemes that have been validated against experiments for similar geometries, it was felt 

necessary to apply the model to independent experiments and carry out a direct 

comparison of the model predictions against the experimental results. This study will 

indicate the accuracy of the leakage prediction algorithm developed in this thesis and 

also indicate the range of geometries and flow conditions for which the model provides 

accurate prediction. The data for this section is taken from two sources, namely, Cogan’s 

thesis [2] and Gamal’s dissertation [3].  

Cogan did not perform experiments of his own, but developed a program to 

predict leakage for incompressible flow through labyrinth seals by interpolation of 

experimental data collected from published results. For all the experimental data he 

considered, Cogan, non-dimensionalized leakage in terms of flow coefficient as 

α ൌ ୫ሶ
ஓ A  ඩ

୬ି୪୬൬P౛P౟
൰

ଵି൬P౛P౟
൰
మ      , where γ is the carry over coefficient used by Hodkinson.  

Therefore α represents the ratio of mass flow rate to the mass flow rate predicted 

by Hodkinson’s equation. It has to be noted that the current study directly takes data 

from Cogan’s thesis as it is presented in a more usable table format.  
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VALIDATION AGAINST EXPERIMENTS PERFORMED BY YAMADA  

Yamada [24] in 1962 performed experiments with incompressible flow through 

labyrinth seals. His study involved a number of experiments where he determined the 

influence of various flow and geometrical parameters on leakage.  He expressed his 

results in terms of friction coefficient.  

The detailed geometry and test conditions of Yamada are included in Appendix 

D. Figures 8.1 – 8.4 compare the flow coefficient based on Yamada’s experiments and 

predictions obtained using program 1 in Appendix C, which is based on the leakage 

prediction algorithm of incompressible flow covered in Chapter VI. This algorithm was 

developed for 0.0075 < c/s < 0.0375, 0.0075 < w/s < 0.5, 2.67 < w/c < 66.67 and                

0.75 < h/s < 4.  

Figures 8.1 – 8.3 plot the flow coefficient against pressure ratio (essentially mass 

flow rate as a function of inlet pressure, as exit pressure is kept constant) for different 

clearance to pitch ratios (clearance is varied while pitch is fixed).  It can be observed that 

reasonably accurate predictions are obtained for c/s of 0.0433 (Figure 8.1). The RMS of 

the percentage error is 12.5% for this clearance to pitch ratio which is approximately 

20% more than the maximum c/s for which the algorithm has been developed.  This can 

be considered as a significant improvement over Hodkinson’s model, which when used 

without any experimentally determined ‘correction’, results in α = 1 in the plots, as mass 

flow rate is non-dimensionalized by Hodkinson’s predictions (resulting in RMS of 

49.7% for Figure 8.1). (It has to be noted that Hodkinson’s equation was developed for 

gases).  
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The model under predicts leakage by a larger percentage for higher clearances as 

seen in Figures 8.2 and 8.3. This is due to the model for γ, which has been developed for 

smaller c/s ratios. The RMS of % errors are 16.5% for c/s ratio of 0.062 and 40.2% for 

c/s of 0.0925, both of which are much larger than the maximum c/s of 0.0375 of the 

simulations from which the model was developed. Hence, the error encountered when 

increasing c/s above 0.0375 is not unexpected.   
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Figure 8.1. Comparison of predicted and Yamada’s experimentally determined 

flow coefficient for c/s = 0.0433 (w/s = 0.2487, Pe = 101320 Pa, N = 20). 
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Figure 8.2. Comparison of predicted and Yamada’s experimentally determined 

flow coefficient for c/s = 0.062 (w/s = 0.2487, Pe = 101320 Pa, N = 20). 
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Figure 8.3. Comparison of predicted and Yamada’s experimentally determined 

flow coefficient for c/s = 0.0925 (w/s = 0.2487, Pe = 101320 Pa, N = 20). 
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Figure 8.4. Comparison of predicted and Yamada’s experimentally determined 

flow coefficient for different w/s (c/s = 0.04574, Pi = 111341 Pa,  Pe = 101320 Pa).  

In Figure 8.4, the variation of Yamada’s experimental leakage rate with tooth 

width is compared to the values predicted by the model developed in this thesis. It can be 

seen that the predicted flow coefficients are very close to the experimental values (error 

< 10%) except for the first and last data points. The model over predicts the leakage by 

30% for the first data point (w/s = 0.05). This deviation is due to the fact the w/c ratio for 

this case is 1.165 which is below the lower limit of 2.67 for which the model for the 

Cd
1tooth (eqn. 6.3) term can be used. The model under predicts leakage by 32% for              

w/s = 0.752 which is outside the w/s range for the model for γ  (eqn. 5.9) where the 

maximum w/s is 0.5.  
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VALIDATION AGAINST EXPERIMENTS BY NIKITIN AND IPATOV 
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Figure 8.5. Comparison of model predicted flow coefficients with Nikitin and 

Ipatov’s experimental data for 2 throttles (Refer Appendix D for geometry and 

operating conditions). 

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 0.2 0.4 0.6 0.8 1

α

Pe/ Pi

Experiment

Saikishan-Morrison Model

Figure 8.6. Comparison of model predicted flow coefficients with Nikitin and 

Ipatov’s experimental data for 3 throttles.  
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Figure 8.7. Comparison of model predicted flow coefficients with Nikitin and 

Ipatov’s experimental data for 7 throttles.  

Figures 8.5, 8.6 and 8.7 compare the flow coefficients experimentally determined 

by Nikitin and Ipatov [25] and corresponding flow coefficients obtained by using the 

incompressible model developed in this thesis.  It can be seen that the model over 

predicts the leakage rate. This is perhaps due to the fact the h/s ratio used was 0.34 

which is well below the 0.75 limit imposed by the model for carry over coefficient.  This 

would indicate shallow cavities may be more efficient at reducing leakage. It is 

recommended that further studies are performed for shallow cavities.  

VALIDATION AGAINST GAMAL’S EXPERIMENTAL DATA 

Gamal conducted leakage tests on labyrinth seals with air as working medium. 

His data was organized into two sets A and B. ‘Set A’ consists of retrofitted seals which 

is not used for validation in this work.  
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The seal design for ‘Set B’ consisted of a seal holder, a set of blades, three sets of 

spacers, a set of cavity inserts, and a seal holder cap, allowing for a number of 

geometrical configurations. The matrix of data from his ‘Set B’ (included in Appendix 

D) consists of a number of seal geometries with different pitches, tooth widths and 

cavity depths tested for different inlet pressures. The leakage predictions based on 

algorithms developed in this work for compressible flow with and without the use of the 

expansion factor (allowing density change based on pressure but neglecting effect of 

compressibility on discharge coefficients) are compared to Gamal’s experimental data 

`for ‘Set B’ in Figures 8.8 – 8.18. The details of the dimensions for each seal case are 

provided in Appendix D.  

 

 

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0 200000 400000 600000 800000

L
ea

ka
ge

 m
as

s f
lo

w
 r

at
e,

 k
g/

s

Inlet Pressure , Pa

Gamal B1 

Figure 8.8. Comparison of predicted leakage rates with Gamal’s experimental data 

for seal B1 (c/s = 0.0064; w/s = 0.2013; h/s = 0.7987 ; N = 4). 
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Figure 8.9. Comparison of predicted leakage rates with Gamal’s experimental data 

for seal B3 (c/s = 0.0053; w/s = 0.3351; h/s = 0.6649; N = 4).     
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Figure 8.10. Comparison of predicted leakage rates with Gamal’s experimental 

data for seal B4 (c/s = 0.0080; w/s = 0.5; h/s = 0.99; N = 4).       
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Figure 8.11. Comparison of predicted leakage rates with Gamal’s experimental 

data for seal B5 (c/s = 0.0106; w/s = 0.6667; h/s = 1.3229; N = 4). 
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Figure 8.12. Comparison of predicted leakage rates with Gamal’s experimental 

data for seal B8 (c/s = 0.0064; w/s = 0.2013; h/s = 0.1572; N = 4). 
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Figure 8.13. Comparison of predicted leakage rates with Gamal’s experimental 

data for seal B9 (c/s = 0.0106; w/s = 0.3333; h/s = 0.2604; N = 4). 
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Figure 8.14. Comparison of predicted leakage rates with Gamal’s experimental 

data for seal B10 (c/s = 0.0064; w/s = 0.2013; h/s = 0.7987; N =6). 



 90

 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 200000 400000 600000 800000

L
ea

ka
ge

 m
as

s f
lo

w
 r

at
e,

 k
g/

s

Inlet Pressure , Pa

Gamal B11 

Figure 8.15. Comparison of predicted leakage rates with Gamal’s experimental 

data for seal B11 (c/s = 0.0106; w/s = 0.3333; h/s = 1.3229; N =6). 

 

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0 200000 400000 600000 800000

L
ea

ka
ge

 m
as

s f
lo

w
 r

at
e,

 k
g/

s

Inlet Pressure , Pa

Gamal B12 

Figure 8.16. Comparison of predicted leakage rates with Gamal’s experimental 

data for seal B12 (c/s = 0.0159; w/s = 0.5000; h/s = 1.9844; N =6). 
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Figure 8.17. Comparison of predicted leakage rates with Gamal’s experimental 

data for seal B13 (c/s = 0.0064; w/s = 0.2013; h/s = 0.1572; N =6). 
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Figure 8.18. Comparison of predicted leakage rates with Gamal’s experimental 

data for seal B14 (c/s = 0.0106; w/s = 0.3333; h/s = 0.2604; N =6). 
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These data fall within the operational range of the developed model, except for 

h/s ratios in a few cases. It can be observed from the above figures that the algorithm 

developed in this work has a higher accuracy of leakage prediction compared to the 

models given by Hodkinson and Vermes. However, the results show that the algorithm 

that does not incorporate the expansion factor (ψ = 1, but still allows for change in 

density with pressure), fits the experimental data better especially in case of the six tooth 

labyrinth seals (B10-B14). This could be due to the fact that the inlet pressures used 

were not high enough to cause sufficiently pressure ratios across individual teeth. It 

could also be an indication that the linear model for ψ is not accurate at pressure ratios 

close to 1 and hence it is recommended to use the model with ψ = 1 for higher pressure 

ratios.  

VALIDATION AGAINST PICARDO’S EXPERIMENTAL DATA 

Picardo [26] conducted leakage tests on labyrinth seals with air at high pressure. 

His experiments were performed on two seals which had different clearances. Their 

respective c/s ratios were 0.0439 and 0.022 (detailed geometry provided in Appendix D). 

The inlet pressure for all the tests were 70 bar while overall pressure ratios ranged from 

0.1 to 0.5. The Reynolds number range for seal A was 62500-69500, while that of seal B 

was 31700 – 36400, well outside the maximum Reynolds number used to develop the 

current model.  

  Gamal [3] performed a detailed evaluation of a number of existing leakage 

equations by comparing their prediction to Picardo’s experimentally measured mass 

flow rate.  
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This section extends Gamal’s analysis by adding the model developed in this 

thesis. Figure 8.19 compares the prediction error of various leakage equations for each of 

the different tests conducted by Picardo.  
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Figure 8.19. Comparison of accuracy of leakage prediction of different models for 

Picardo’s experimental data [26]. 

It can be seen that the prediction of the model presented in this thesis is within 

25% of the experimental value. While it is outperformed by some models like the 

Vermes’ model and Gamal’s Mod 4 for this specific set of conditions, it is more accurate 

than many of the other leakage models.  It has to be noted that w/c is 1.27 for A1, A2 
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and A3 and 2.54 for B1, B2 and B3. This is less than 2.67, which is the minimum of the 

range for which this model has been developed. The c/s for A1, A2 and A3 is 0.0439, 

which is also marginally outside the desired range for this model. The Reynolds numbers 

encountered in this data are also much higher than the maximum Reynolds number used 

in the simulations.    
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CHAPTER IX 

SUMMARY AND RECOMMENDED FUTURE STUDY 

The following section summarizes the motivation, methodology and findings of 

this Thesis 

MOTIVATION 

Accurate determination of leakage rate through labyrinth seals is essential for 

performance and rotodynamic study of turbomachinery. An earlier study conducted by 

Morrison and Adnan Al-Ghasem [1] on windback seals showed a possibility of flow 

dependence of  kinetic energy carry over. This finding led to the question whether the 

kinetic energy coefficient for labyrinth seals is a function of flow conditions.  This 

question is the motivation behind this research, as none of the widely used leakage 

models accounted for this effect.  The inability of the existing models to provide 

accurate leakage prediction for all operating conditions and the expense of running a 

CFD code for leakage prediction for every geometry and flow condition necessitates a 

model that can provide accurate leakage prediction which this study attempts to develop.  

METHODOLOGY 

Simulations performed using the commercial CFD code FLUENT were used to 

generate data for this study. The Standard k-ε model with enhanced wall function was 

employed in accordance with evaluations performed by earlier studies. A number of 

simulations were performed on flow through rectangular cavities (representing tooth on 
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stator straight through labyrinth seals with flat teeth) by changing geometry and 

operating conditions. Tecplot 360 was used to analyze the flow field within the cavity.  

FINDINGS 

CARRY OVER COEFFICIENT 

The carry over coefficient based on the jet divergence angle was found to change 

with flow parameters, when seal geometry was fixed, contradicting earlier models, 

which express the carry over coefficient purely as a function of seal geometry. It was 

found that, for incompressible flow, the Reynolds number based on clearance was the 

only flow parameter that influenced the carry over coefficient. γ was found to remain 

constant with respect to changes in operating pressures, density or viscosity of the fluid 

as long as the Reynolds number was fixed. Based on the simulations for various seal 

geometries and operating conditions, it was found that the γ-Re relationship was mainly 

a function of clearance to pitch ratio of the seal and a model was developed using a 

power law curve fit.  Tooth height (provided the cavity depth is greater than three-

fourths of the tooth pitch), shaft diameter, number of teeth and shaft rotation had no 

influence on the γ-Re relationship, while tooth width had a secondary effect which was 

incorporated into the model.  

DISCHARGE COEFFICIENT 

The discharge coefficient for incompressible flow through a seal with single 

tooth (no cavity), Cd
1tooth, was found to depend only on Reynolds number (based on 

clearance) and tooth width to clearance ratio and a model for the same was developed. 



 97

The discharge coefficient of the first tooth in a multiple tooth labyrinth seal was found to 

be identical to the discharge coefficient of a seal with single tooth implying that flow 

downstream had negligible effect on the discharge coefficient. While the discharge 

coefficients of subsequent teeth were identical to each other, they were found to be 

different to that of the first tooth as they were affected by the kinetic energy carry over. 

It was found that, Cd, the discharge coefficient of a downstream tooth, can be expressed 

as a function of only the carry over coefficient of the preceding cavity and the discharge 

coefficient of the equivalent seal with single tooth.  Expressing Cd/Cd
1tooth as a function 

of γ, collapses the data into a single relationship for all geometry and flow conditions.  

This is perhaps the most significant finding of this research. Using the models developed 

for γ and Cd, an algorithm and a MATLAB code based on the same for leakage 

prediction for incompressible flow through straight through labyrinth seals with flat 

tooth was developed.  

EFFECT OF COMPRESSIBILITY 

The expansion factor, ψ, which is the ratio of the discharge coefficient of flow of 

an ideal gas to the discharge coefficient for an incompressible fluid for the same tooth at 

the same Reynolds number, was found to be a linear function of pressure ratio across the 

tooth. Further, the expansion factor was found to be independent of Reynolds number, 

seal dimensions, inlet and exit pressures for a given ideal gas and for a given pressure 

ratio across the tooth. The expansion factor had a mild dependence on the ratio of 

specific heats, k. While the ψ- Pr relationship for CO2 (k = 1.3) was very similar to that 
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of air (k = 1.4), a slight deviation in the slope was observed for He (k = 1.67). However 

this effect is not included in the model. By incorporating the model for ψ, a leakage 

prediction algorithm for compressible flows and a MATLAB code for the same were 

developed. 

VALIDATION 

The algorithm for leakage prediction was validated against prior experimental 

data. The incompressible model was used to predict the mass flow rates for experiments 

conducted by Yamada [24] as well as for the leakage tests performed by Nikitin and 

Ipatov [25]. The model performed reasonably well within its limits of c/s, w/s, w/c and 

h/s ratios. 

The compressible algorithms, with and without the model for ψ, were compared 

with data from Gamal’s experiments [3] which contain a matrix of pitches, tooth widths, 

heights and inlet pressures. It was found that the algorithm without the expansion factor 

performs better than the one with ψ, mainly due to the low tooth pressure ratios. The 

model is significantly more accurate than the models proposed by Hodkinson [8] and 

Vermes [9].  The model predicted the leakage for Picardo’s seals [26] with maximum 

deviation within 25%. The geometries in this case were marginally outside the range of 

geometries used in the simulation from which the model was developed, while the 

Reynolds numbers exceeded the model’s maximum value by factors of two and three.  
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RECOMMENDED FUTURE WORK 

1. There are certain limits of dimensions for which the model developed in this 

thesis can provide accurate prediction. The major limits are: c/s ratio should be 

less than 0.05 and h/s ratio should be close to or greater than 1. While these 

limits apply to most labyrinth seals used today, seals used for some large 

turbomachinery have a higher operating clearance and this model is not 

applicable to such cases. Developing a new model or modifying the model 

developed in this work to accommodate larger clearances and shallower cavities 

would require many more simulations and was considered beyond the scope of 

the current study. The same can be said about higher Reynolds numbers. 

However, this could be a probable future work.   

2. The ideal gas model used in this work for the study of effects of compressibility 

might not be valid at high operating pressures. In certain applications, like CO2 

compressors, labyrinth seals are subjected to such high operating pressures. 

Therefore it is recommended to study the validity of, and if required modification 

of the current model, using a real gas equation of state and at high pressures.  

3. This model is limited to tooth on stator, straight through labyrinth seals with 

rectangular cavities and unbeveled teeth. It is recommended to study the effects 

of cavity shapes, beveled teeth, staggered and tooth on rotor designs using a 

similar approach as presented in this thesis. 
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4.  This model has been validated against some of the experimental data with 

reasonably good results. However more experimental studies and exhaustive 

validation is recommended. 
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APPENDIX A  

STANDARD k – ε TURBULENCE MODEL 

A detailed discussion on fundamentals of turbulent flows and turbulence 

modeling can be found in many standard textbooks [27]. Turbulent flows have 

fluctuating velocity fields. Transition of laminar flow to turbulence occurs when the 

Reynolds number, which is a bifurcation parameter, exceeds a critical value (which 

depends on geometry). The non-linearity of the Navier Stokes equations, which describe 

fluid flow, causes the disturbances in the flow field to grow, when the Reynolds number 

exceeds the critical value. This can be understood from the Orr- Sommerfeld equation 

and the stability diagram. The instability results in chaos, which is physically 

represented by fluctuating fields of velocity, pressure and temperature.    

One of the ways of dealing with the issue of simulating turbulent flows is to 

consider the Reynolds Averaged Navier Stokes (RANS), which separate the velocity 

field into ‘mean’ and ‘fluctuating’ components, as Direct Numerical Simulation (DNS), 

in which all length and time scales are resolved, is too expensive for solving any 

practical problem with today’s computational resources. The RANS equation (when the 

mean flow is steady) is shown in Cartesian index notation in equation A.1. U ഥ and u ᇱ 

resent the mean and fluctuating part of velocity.  rep

U୩തതതത
ப஡Uഠതതതതത

ப୶ౡ
ൌ  െ பPഥ

ப୶౟
൅ µ  பమUഠതതത

ப୶ౡ ப୶ౡ
െ ப ሺ஡୳ഠ′୳ౡ

′തതതതതതതതሻ 
ப୶ౡ

                     (A.1) 

The mean flow equations can be solved, provided the influence of the fluctuating 

component on the mean flow can be modeled. The Reynolds ‘stress’ tensor, expressed 
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by ρuనᇱu୩ᇱതതതതതതത , is a term that appears in the mean flow equations due to the effect of 

fluctuations and originates from the convective term. The mean flow of the turbulent 

flow behaves in a similar manner to the laminar flow of a fluid with a strain dependent 

viscosity. Hence the Reynolds ‘stresses’ can be modeled using a ‘turbulent viscosity’ , µ୲ 

 to a at e i  A .  , as rrive quat on .2

U୩തതതത
பρUഠതതതതത

ப୶ౡ
ൌ  െ பPഥ

ப୶౟
൅ ሺμ൅ μ୲ሻ  

பమUഠതതത

ப୶ౡ ப୶ౡ
                     (A.2) 

The k-ε model is a two equation model in which the turbulent viscosity is 

expressed as a function of the turbulent kinetic energy, κ and dissipation, ε  

μ୲ ൌ ρCμ
κమ

ε
                        (A.3) 

Where the turbulent kinetic energy and dissipation are statistics of the fluctuating 

co ponent of the velocity and are defined as   m

κ ൌ ଵ
ଶ
 uన′uన′തതതതത   

ε ൌ μ

                     (A.4) 

ρ
ቀப୳ഠ

′

ப୶ౡ
  ப୳ഠ

′

ப୶ౡ
ቁ

തതതതതതതതതതതത
                       (A.5) 

and Cµ is a constant with a standard value of 0.09. 

But since the exact closure equations for κ and ε are not known, the standard k-

ε model utilizes the following model transport equations. The model for κ (A.6) is based 

on the exact equation, while the model for ε (Α.7) is purely empirical. While, it is 

possible to derive the exact equation for dissipation, it is not considered useful as 

explained by  Pope [27].  
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பሺρκሻ
ப୲

൅ பሺρκ୳ౠሻ
ப୶ౠ

ൌ   ப
ப୶ౠ
൤ ቀμ൅ μ౪

σౡ
ቁ பκ 
ப୶ౠ
൨ ൅ G୩ ൅ Gୠ െ ρε െ YM ൅ S୩                  (A.6) 

பሺρεሻ
ப୲

൅ பሺρε୳ౠሻ
ப୶ౠ

ൌ   ப
ப୶ౠ
൤ ቀμ൅ μ౪

σε
ቁ பε 
ப୶ౠ
൨ ൅ Cଵε

ε
୩
ሺG୩ ൅ CଷεGୠሻ െ Cଶε ρ

εమ

୩
 ൅ Sε                (A.7) 

Where  

G୩  is the production of κ and is modeled as 2μ୲
பUഠതതത 
ப୶ౠ

பUഠതതത 
ப୶ౠ

. 

G

M represents compressibility effects on turbulence and is modeled as 2ρε κ
୩RT

ୠ represents generation of κ due to buoyancy. 

Y . 

S୩ and Sε are user defined source terms.   

σ୩ and σε are the turbulent Prandtl numbers for κ and ε , and have default 

lues o 1.0 and 1.3 respectively.  va f 

Cଵε and Cଶε are constants with default values of 1.44 and 1.92.  

In this thesis, the default values are used.  

The k-ε can be used only for modeling turbulence away from the wall. Hence to 

model wall bounded turbulent flows as in the case of simulating labyrinth seals, wall 

functions must be employed near the wall.  
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FINITE VOLUME METHOD 

The Finite Volume Method is a numerical technique for solving partial differential 

equations. As with other discretization techniques like finite difference and finite 

element methods, it reduces partial differential equations with a set of boundary 

conditions into a system of algebraic equations that can be solved by a computer to 

provide an approximate solution. It works by dividing the computational domain into a 

number of finite control volumes and by solving the conservation equations for each 

control volume. The control volumes are constructed around each node point in the grid. 

Discretization using the finite volume method can be illustrated by considering the 

unsteady 2-D transport equation for a scalar quantity, ߶ 

                (A.8) 
 

where      

 

= density 

 

= velocity vector  

 

= surface area vector 

 

= diffusion coefficient for ߶ 

 

= gradient of ߶ 

 

= source of per unit volume of ߶ 
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               (A.9)

 
 

where      

 

= number of faces enclosing cell 

 

= value of ߶ convected through face f 

= mass flux through the face f 

 

= area of face f 

 

= gradient of ߶ at face f 

 

= cell volume 
 

Equation A.9 is applied to every face in the computational domain and is solved 

iteratively.  
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APPENDIX B 

Table.B.1. Seal geometries used for simulation 

Case # No. of 
Teeth 

Clearance 
(mm) 

Pitch 
(mm) 

Tooth 
Width 
(mm) 

Tooth 
Height 
(mm) 

Shaft 
Diameter 

(mm) 
1 2 0.03 4 0.03 4 60 
2 2 0.06 4 0.03 4 60 
3 2 0.09 4 0.03 4 60 
4 2 0.15 4 0.03 4 60 
5 2 0.06 8 0.03 8 60 
6 2 0.06 4 0.03 3 60 
7 2 0.06 4 0.03 8 60 
8 2 0.06 4 0.03 16 60 
10 2 0.06 4 0.2 4 60 
11 2 0.06 4 0.4 4 60 
12 2 0.06 4 0.6 4 60 
13 2 0.06 4 1 4 60 
14 2 0.06 4 2 4 60 
15 2 0.03 4 1 4 60 
16 2 0.09 4 1 4 60 
17 2 0.15 4 1 4 60 
18 2 0.15 4 2 4 60 
19 2 0.06 4 0.03 4 180 
20 2 0.06 4 0.03 4 300 
21 8 0.06 4 0.03 4 60 
22 1 0.03 - 0.2 4 60 
23 1 0.06 - 0.4 4 60 
24 1 0.09 - 0.6 4 60 
25 1 0.15 - 1 4 60 
26 1 0.03 - 0.4 4 60 
27 1 0.15 - 2 4 60 
28 1 0.03 - 0.6 4 60 
29 1 0.03 - 1 4 60 
30 1 0.06 - 2 4 60 
31 1 0.03 - 2 4 60 
32 1 0.06 - 0.4 3 60 
33 1 0.06 - 0.4 8 60 
34 1 0.06 - 0.4 4 180 
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Case # No. of 
Teeth 

Clearance 
(mm) 

Pitch 
(mm) 

Tooth 
Width 
(mm) 

Tooth 
Height 
(mm) 

Shaft 
Diameter 

(mm) 
35 2 0.03 4 0.2 4 60 
36 2 0.09 4 0.6 4 60 
37 4 0.06 4 1 4 60 
38 2 0.06 4 0.4 8 60 
39 2 0.03 4 0.4 4 60 
40 2 0.06 4 0.4 4 180 
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APPENDIX C 

MATLAB CODE FOR LEAKAGE PREDICTION (for incompressible flow) 

c = input('Enter radial clearance in m : '); 
s = input('Enter tooth pitch in m: '); 
w = input('Enter tooth width in m: '); 
R = input('Enter shaft radius in m: '); 
N = input('Enter number of teeth : '); 
Pi = input('Enter seal inlet pressure in Pa: '); 
Pe = input('Enter seal exit pressure in Pa: '); 
rho= input('Enter density in kg/m^3 : '); 
mu = input('Enter dynamic viscosity in PaS : ');;  
A = 2*3.142*R*c; 
p = ones(1,N+1); p(1) = Pi; p(N+1) = Pe;  
mdot = 0.1*A*sqrt((Pi-Pe)*rho); 
error=1; 
for i=1:10000 
    Re = mdot/(3.142*2*R*mu); 
    gamma =((1-6.5*(c/s))- 8.638*(c/s) *(w/s))*(Re+((1-6.5*(c/s))- 8.638*(c/s) *(w/s))^(-
1/(2.454*(c/s)+2.258*(c/s)*(w/s)^1.673)))^(2.454*(c/s)+2.258*(c/s)*(w/s)^1.673); 
    cd1  =(1.097-0.0029*w/c)*(1+(44.86*w/c)/Re)^(-0.2157)/sqrt(2); 
    tdc  =cd1*0.925*gamma^.861; 
    p(2) = p(1)-(mdot/A)^2/(2*cd1^2*rho); 
    
        for j = 2:N-1 
        p(j+1) =p(j)-(mdot/A)^2/(2*tdc^2*rho); 
        end 
    mdot1 = A* tdc*sqrt(2*(rho*(p(N)-p(N+1)))); 
    error = abs((mdot1-mdot)/mdot); 
    mdot=(mdot1-mdot)*0.1+mdot; 
    if(error<0.0001) 
        break; 
    end 
end 
display('leakage rate in kg/s is : '); 
mdot 
display('The pressure distribution is (in Pa) : '); 
p 
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MATLAB CODE FOR LEAKAGE PREDICTION (for air; without ψ) 

c = input('Enter radial clearance in m : '); 
s = input('Enter tooth pitch in m: '); 
w = input('Enter tooth width in m: '); 
R = input('Enter shaft radius in m: '); 
N = input('Enter number of teeth : '); 
Pi = input('Enter seal inlet pressure in Pa: '); 
Pe = input('Enter seal exit pressure in Pa: '); 
T= input('Enter exit temperature in K : '); 
mu =0.0000179; Rg=287;  
A = 2*3.142*R*c; 
p = ones(1,N+1); p(1) = Pi; p(N+1) = Pe; rho(1)=p(1)/(Rg*T); 
mdot = 0.1*A*sqrt((Pi-Pe)*rho(1)); 
error=1; 
for i=1:10000 
    Re = mdot/(3.142*2*R*mu); 
    gamma =((1-6.5*(c/s))- 8.638*(c/s) *(w/s))*(Re+((1-6.5*(c/s))- 8.638*(c/s) *(w/s))^(-
1/(2.454*(c/s)+2.258*(c/s)*(w/s)^1.673)))^(2.454*(c/s)+2.258*(c/s)*(w/s)^1.673); 
    cd1  =(1.097-0.0029*w/c)*(1+(44.86*w/c)/Re)^(-0.2157)/sqrt(2); 
    tdc  =cd1*0.925*gamma^.861; 
    p(2) = p(1)-(mdot/A)^2/(2*cd1^2*rho(1)); 
    rho(2)=p(2)/(Rg*T); 
    for j = 2:N-1 
        p(j+1) =p(j)-(mdot/A)^2/(2*tdc^2*rho(j)); 
        rho(j+1)=p(j+1)/(Rg*T); 
    end 
    mdot1 = A*tdc*sqrt(2*(rho(N)*(p(N)-p(N+1)))); 
    error = abs((mdot1-mdot)/mdot); 
    mdot=(mdot1-mdot)*0.1+mdot; 
    if(error<0.0001) 
        break; 
    end 
end 
display('leakage rate in kg/s is : '); 
mdot 
display('The pressure distribution is (in Pa) : '); 
p 
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MATLAB CODE FOR LEAKAGE PREDICTION (for air) 

c = input('Enter radial clearance in m : '); 
s = input('Enter tooth pitch in m: '); 
w = input('Enter tooth width in m: '); 
R = input('Enter shaft radius in m: '); 
N = input('Enter number of teeth : '); 
Pi = input('Enter seal inlet pressure in Pa: '); 
Pe = input('Enter seal exit pressure in Pa: '); 
T= input('Enter exit temperature in K : '); 
mu =0.0000179; Rg=287;  
A = 2*3.142*R*c; 
p = ones(1,N+1); p(1) = Pi; p(N+1) = Pe; rho(1)=p(1)/(Rg*T); 
mdot = 0.1*A*sqrt((Pi-Pe)*rho(1)); 
error=1; 
Y=ones(1,N); 
for i=1:10000 
    Re = mdot/(3.142*2*R*mu); 
    gamma =((1-6.5*(c/s))- 8.638*(c/s) *(w/s))*(Re+((1-6.5*(c/s))- 8.638*(c/s) *(w/s))^(-
1/(2.454*(c/s)+2.258*(c/s)*(w/s)^1.673)))^(2.454*(c/s)+2.258*(c/s)*(w/s)^1.673); 
    cd1  =(1.097-0.0029*w/c)*(1+(44.86*w/c)/Re)^(-0.2157)/sqrt(2); 
    tdc  =cd1*0.925*gamma^.861; 
    p(2) = p(1)-(mdot/A)^2/(2*Y(1)^2*cd1^2*rho(1)); 
    Y(1)=0.558+0.442*(p(2)/p(1)); 
    rho(2)=p(2)/(Rg*T); 
    for j = 2:N-1 
        p(j+1) =p(j)-(mdot/A)^2/(2*Y(j)^2*tdc^2*rho(j)); 
        rho(j+1)=p(j+1)/(Rg*T); 
        Y(j)= 0.558+0.442*(p(j+1)/p(j)); 
    end 
    Y(N)= 0.558+0.442*(p(N+1)/p(N)); 
    mdot1 = A*Y(N)*tdc*sqrt(2*(rho(N)*(p(N)-p(N+1)))); 
    error = abs((mdot1-mdot)/mdot); 
    mdot=(mdot1-mdot)*0.1+mdot; 
    if(error<0.0001) 
        break; 
    end 
end 
display('leakage rate in kg/s is : '); 
mdot 
display('The pressure distribution is (in Pa) : '); 
p 
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MATLAB CODE FOR LEAKAGE PREDICTION (for any ideal gas with k ~ 1.4) 

c = input('Enter radial clearance in m : '); 
s = input('Enter tooth pitch in m: '); 
w = input('Enter tooth width in m: '); 
R = input('Enter shaft radius in m: '); 
N = input('Enter number of teeth : '); 
Pi = input('Enter seal inlet pressure in Pa: '); 
Pe = input('Enter seal exit pressure in Pa: '); 
T= input('Enter exit temperature in K : '); 
mu =0.0000179; Rg=287;  
A = 2*3.142*R*c; 
p = ones(1,N+1); p(1) = Pi; p(N+1) = Pe; rho(1)=p(1)/(Rg*T); 
mdot = 0.1*A*sqrt((Pi-Pe)*rho(1)); 
error=1; 
Y=ones(1,N); 
for i=1:10000 
    Re = mdot/(3.142*2*R*mu); 
    gamma =((1-6.5*(c/s))- 8.638*(c/s) *(w/s))*(Re+((1-6.5*(c/s))- 8.638*(c/s) *(w/s))^(-
1/(2.454*(c/s)+2.258*(c/s)*(w/s)^1.673)))^(2.454*(c/s)+2.258*(c/s)*(w/s)^1.673); 
    cd1  =(1.097-0.0029*w/c)*(1+(44.86*w/c)/Re)^(-0.2157)/sqrt(2); 
    tdc  =cd1*0.925*gamma^.861; 
    p(2) = p(1)-(mdot/A)^2/(2*Y(1)^2*cd1^2*rho(1)); 
    Y(1)=0.558+0.442*(p(2)/p(1)); 
    rho(2)=p(2)/(Rg*T); 
    for j = 2:N-1 
        p(j+1) =p(j)-(mdot/A)^2/(2*Y(j)^2*tdc^2*rho(j)); 
        rho(j+1)=p(j+1)/(Rg*T); 
        Y(j)= 0.558+0.442*(p(j+1)/p(j)); 
    end 
    Y(N)= 0.558+0.442*(p(N+1)/p(N)); 
    mdot1 = A*Y(N)*tdc*sqrt(2*(rho(N)*(p(N)-p(N+1)))); 
    error = abs((mdot1-mdot)/mdot); 
    mdot=(mdot1-mdot)*0.1+mdot; 
    if(error<0.0001) 
        break; 
    end 
end 
display('leakage rate in kg/s is : '); 
mdot 
display('The pressure distribution is (in Pa) : ');                                                                          
p 
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APPENDIX D 

Table D.1. Seal geometries used by Yamada [24] 

Case # No. of 
Teeth 

Clearance 
(mm) 

Pitch 
(mm) 

Tooth 
Width 
(mm) 

Tooth 
Height 
(mm) 

1 20 0.433 10 2.49 5 
2 20 0.62 10 2.49 5 
3 20 0.926 10 2.49 5 
4 10 0.9144 20 15.03723 5 
5 10 0.9144 20 10.05111 5 
6 10 0.9144 20 5.066555 5 
7 10 0.9144 20 2.563032 5 
8 10 0.9144 20 1.066134 5 

 

Table.D.2. Seal geometries used by Nikitin and Ipatov [25] 

Case # No. of 
Teeth 

Clearance 
(mm) 

Pitch 
(mm) 

Tooth 
Width 
(mm) 

Tooth 
Height 
(mm) 

1 2 0.045 1.46 1 0.5 
2 3 0.045 1.46 1 0.5 
3 7 0.045 1.46 1 0.5 
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Table.D.3. Seal geometries used by Gamal [3] 

Case # No. of 
Teeth 

Clearance 
(mm) 

Pitch 
(mm) 

Tooth 
width 
(mm) 

Tooth 
height 
(mm) 

Shaft 
diameter 

(mm) 
B1 4 0.102 15.9 3.2 12.7 102 
B3 4 0.102 19.1 6.4 12.7 102 
B4 4 0.102 12.8 6.4 12.7 102 
B5 4 0.102 9.6 6.4 12.7 102 
B8 4 0.102 15.9 3.2 2.5 102 
B9 4 0.102 9.6 3.2 2.5 102 
B10 6 0.102 15.9 3.2 12.7 102 
B11 6 0.102 9.6 3.2 12.7 102 
B12 6 0.102 6.4 3.2 12.7 102 
B13 6 0.102 15.9 3.2 2.5 102 
B14 6 0.102 9.6 3.2 2.5 102 

 

Table.D.4. Seal geometries used by Picardo [26] 

Case # No. of 
Teeth 

Clearance 
(mm) 

Pitch 
(mm) 

Tooth 
Width 
(mm) 

Tooth 
Height 
(mm) 

Shaft 
Diameter 

(mm) 
A1 – A3 18 0.1 4.55 0.254 4.3 115 
B1- B3 18 0.2 4.55 0.254 4.3 115 
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