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ABSTRACT

Hypergeometric Functions over Finite Fields and Their Relations to

Algebraic Curves. (May 2009)

Maŕıa Valentina Vega Veglio, B.S., Universidad de la República, Uruguay;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Matthew Papanikolas

Classical hypergeometric functions and their relations to counting points on

curves over finite fields have been investigated by mathematicians since the begin-

nings of 1900. In the mid 1980s, John Greene developed the theory of hypergeometric

functions over finite fields. He explored the properties of these functions and found

that they satisfy many summation and transformation formulas analogous to those

satisfied by the classical functions. These similarities generated interest in finding

connections that hypergeometric functions over finite fields may have with other ob-

jects. In recent years, connections between these functions and elliptic curves and

other Calabi-Yau varieties have been investigated by mathematicians such as Ahlgren,

Frechette, Fuselier, Koike, Ono and Papanikolas. A survey of these results is given at

the beginning of this dissertation. We then introduce hypergeometric functions over

finite fields and some of their properties. Next, we focus our attention on a particular

family of curves and give an explicit relationship between the number of points on

this family over Fq and sums of values of certain hypergeometric functions over Fq.

Moreover, we show that these hypergeometric functions can be explicitly related to

the roots of the zeta function of the curve over Fq in some particular cases. Based

on numerical computations, we are able to state a conjecture relating these values

in a more general setting, and advances toward the proof of this result are shown in
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the last chapter of this dissertation. We finish by giving various avenues for future

study.



v

To Gabriel H. Tucci



vi

ACKNOWLEDGMENTS

There are a number of people whom I would like to thank for having contributed

to this dissertation in some way or another.

First and foremost, I would like to thank my advisor Dr. Matthew Papanikolas.

Thank you for having provided me with interesting problems to work on and for

letting me benefit from your mathematical knowledge and intuition. I am proud to

be one of your students.

Thanks also to the other members of my advisory committee, Dr. Daren Cline,

Dr. Paula Tretkoff and Dr. Matthew Young, for your time, comments, advice and

support.

I would also like to thank the numerous friends and colleagues who, over the

years, have inspired, encouraged and guided me. Special thanks goes to Andrea
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CHAPTER I

INTRODUCTION

A. General Introduction

Called “the queen of mathematics” by the legendary mathematician Carl Friedrich

Gauss, number theory is one of the oldest and largest branches of pure mathematics.

It encompasses topics from the study of integers to number fields to solutions of

Diophantine equations. In the past few decades, research in number theory has

progressed at a rapid rate on many fronts. Recently, important new results have

arisen from analytic, geometric, and p-adic methods. These advances had been used

to bring about breakthroughs, solve longstanding problems, and inspire questions.

In this dissertation we explore connections between values of hypergeometric

functions over finite fields and algebraic curves. In the remainder of this chapter

we give an introduction to the problems we are working on together with a brief

survey of recent results connecting the previous objects. The second chapter has the

purpose of introducing the necessary background material. In particular, in Chapter

II Section B we define hypergeometric functions over finite fields and state some

of their properties. In Chapter III we introduce a particular family of algebraic

curves and study connections that these curves have to hypergeometric functions

over Fq. More specifically, in Theorem A.2 we present an explicit relationship between

the number of points on these curves over Fq and values of certain hypergeometric

functions over Fq. In Chapter IV we focus on the particular hypergeometric functions

that appear in Theorem A.2 and present, in Section B, a conjecture relating values of

The journal model is IEEE Transactions on Automatic Control.
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each one of these hypergeometric functions over Fq with the roots of the zeta function

associated to the curve over Fq. In the remainder of Chapter IV we give proofs of the

conjecture in some particular cases and progress toward the proof of the conjecture

in the general case is shown in Chapter V. Finally, in Chapter VI, we summarize our

work and provide avenues for future study.

The problem of finding the number of solutions over a finite field of a polynomial

equation has been of interest to mathematicians for many years. A typical result in

this direction is the Hasse-Weil bound, which states that a smooth projective curve

of genus g defined over a finite field with q elements has between q + 1 − 2g
√
q and

q + 1 + 2g
√
q points. A natural question to ask is whether there are simple formulas

for counting points in terms of interesting mathematical objects.

Classical hypergeometric functions and their relations to counting points on

curves over finite fields have been investigated by mathematicians since the begin-

nings of 1900. Recall that for a1, . . . , ar, b1, . . . , bs, x ∈ C, the classical hypergeometric

series is defined by

rFs

a1, a2, . . . , ar

b1, b2, . . . , bs

∣∣∣∣∣x
 :=

∞∑
k=0

(a1)k(a2)k · · · (ar)k
(b1)k(b2)k · · · (bs)k

xk

k!
(1.1)

where (a)k := a(a+ 1) · · · (a+ k − 1) is the Pochhammer symbol.

Many connections between classical hypergeometric series, elliptic curves and

modular forms have been discovered. For example, if we consider the Legendre family

of elliptic curves given by y2 = x(x− 1)(x− t), t 6= 0, 1, and denote

2F1[a, b; c|t] := 2F1

a, b

c

∣∣∣∣∣t
 ,
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the specialization 2F1[
1
2
, 1

2
; 1|t] is a multiple of an elliptic integral which represents

a period of the lattice associated to the previous family, as Kummer showed. For

another examples, Beukers [4] related a period of y2 = x3 − x − t to the values

2F1[
1
12
, 5

12
; 1

2
|27

4
t2].

In the 1980’s, J. Greene [11, 12] initiated a study of finite field hypergeometric

functions. Let p be an odd prime, and let F̂×p denote the group of multiplicative

characters χ on F×p , extended to all of Fp by setting χ(0) = 0. If A,B ∈ F̂×p and J

denotes the Jacobi sum, then define
(
A
B

)
:= B(−1)

p
J(A,B). Greene defined hypergeo-

metric functions over Fp, for A0, A1, . . . , An, B1, B2, . . . , Bn ∈ F̂×p and x ∈ Fp by

n+1Fn

A0, A1, . . . , An

B1, . . . , Bn

∣∣∣∣∣x
 :=

p

p− 1

∑
χ∈cF×p

(
A0χ

χ

)(
A1χ

B1χ

)
. . .

(
Anχ

Bnχ

)
χ(x),

where n is a positive integer. (See Chapter II, Section B for more details.)

Greene explored the properties of these functions and found that they satisfy

many summation and transformation formulas analogous to those satisfied by the

classical functions. For example, classical hypergeometric series have the following

inductive integral representation [2]

n+1F1

a0, a1, . . . , an

b1, . . . , bn

∣∣∣∣∣x
 =

Γ(bn)

Γ(an)Γ(bn − an)

∫ 1

0
nFn−1

a0, a1, . . . , an−1

b1, . . . , bn−1

∣∣∣∣∣tx


· tan(1− t)bn−an
dt

t(1− t)
.

where Γ(x) denotes the Gamma function defined by

Γ(x) =

∫ ∞
0

txe−t
dt

t
.
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The analogous to this result in the finite field case is

Theorem A.1 ([12] Theorem 3.13). For characters A0, A1, . . . , An, B1, . . . , Bn of F×p

and x ∈ Fp,

n+1Fn

A0, A1, . . . , An

B1, . . . , Bn

∣∣∣∣∣x
 =

AnBn(−1)

p

∑
y∈Fp

nFn−1

A0, A1, . . . , An−1

B1, . . . , Bn−1

∣∣∣∣∣xy


· An(y)AnBn(1− y).

These similarities generated interest in finding connections that hypergeometric

functions over finite fields may have with other objects, for example elliptic curves. In

recent years, many results have been proved in this direction and as expected, certain

families of elliptic curves are closely related to particular hypergeometric functions

over finite fields.

Consider the two families of elliptic curves over Fp defined by

E1(t) : y2 = x(x− 1)(x− t), t 6= 0, 1

E2(t) : y2 = (x− 1)(x2 + t), t 6= 0,−1.

Then, define the traces of Frobenius on the above families by

a1(p, t) = p+ 1−#E1(t)(Fp)

a2(p, t) = p+ 1−#E2(t)(Fp)

where, for i=1,2

#Ei(t)(Fp) := #{(x, y) ∈ Ei(t) : x, y ∈ Fp} ∪ {P}
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denotes the number of points the curve Ei(t) has over the finite field Fp, with P =

[0 : 1 : 0] being the point at infinity. Denote by φ and ε the quadratic and trivial

characters on F×p respectively, i.e., for a ∈ F×p

φ(a) =


1 if x2 = a is solvable in Fp

−1 if x2 = a is not solvable in Fp

is the Legendre symbol, and

ε(a) = 1.

Then, the families of elliptic curves defined above are closely related to particular

hypergeometric functions over Fp. For example, 2F1[φ, φ; ε|t] arises in the formula for

Fourier coefficients of a modular form associated to E1(t) [15, 20]. Further, Koike

and Ono, respectively, gave the following explicit relationships:

Theorem A.2 ((1) Koike [15], (2) Ono [20]). Let p be an odd prime. Then

1. for t 6= 0, 1:

p 2F1

φ, φ

ε

∣∣∣∣∣t
 = −φ(−1)a1(p, t)

2. for t 6= 0,−1:

p2
3F2

φ, φ, φ

ε, ε

∣∣∣∣∣1 +
1

t

 = φ(−t)(a2(p, t)
2 − p).

In addition, Frechette, Ono, and Papanikolas [8] gave relations between counting

points on more general varieties over Fp and hypergeometric functions over finite

fields. For p and odd prime and k ≥ 4 even, define three sequences of varieties Uk,
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Vk, and Wk by

Uk : y2 =
k−2∏
i=1

(xi − 1)(x2
i + t),

Vk : y2 =
k−2∏
i=1

xi(xi − 1)(xi − t),

Wk : y2 =
k−2∏
i=1

xi(xi − 1)(xi − t2).

Then, the number of points in Uk(Fp), Vk(Fp) and Wk(Fp) are directly related to

values of certain hypergeometric functions over Fp. In fact, they are related to the

number of points in E1(Fp) and E2(Fp) which, by Theorem A.2, are related to the

hypergeometric functions. Specifically, they showed that:

#Uk(Fp) = pk−1 + 2 +

p−2∑
t=1

a2(p, t)
k−2,

#Vk(Fp) = pk−1 + 2 +

p−1∑
t=2

a1(p, t)
k−2,

#Wk(Fp) = pk−1 + 3 +

p−1∑
t=2

(1 + φ(t)) a1(p, t)
k−2.

Motivated by these types of results, we have explored more relations between

hypergeometric functions over finite fields and counting points on varieties over finite

fields.
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CHAPTER II

PRELIMINARIES

A. Multiplicative Characters

Let p be a prime and let Fq be a finite field with q elements, with q = pr for some

positive integer r. We will denote by F×q the multiplicative group of Fq, i.e., F×q =

Fq − {0}. Recall that F×q is a cyclic group of order q − 1. A multiplicative character

on F×q is a map χ : F×q → C× that satisfies χ(ab) = χ(a)χ(b) for all a, b ∈ F×q , in

other words, χ is a group homomorphism. It is often useful to extend the domain of

definition of a multiplicative character χ to all Fq, and we do this by defining χ(0) = 0.

Throughout, we let ε denote the trivial character defined by the relation ε(a) = 1 for

all a ∈ F×q . Also, recall that the multiplicative characters on F×q form a cyclic group

of order q− 1 which will be denoted by F̂×q . Now we state the orthogonality relations

for multiplicative characters, of which we will make use in Chapter III. For proofs of

these properties and more information on multiplicative characters see Chapter VIII

of [13].

Lemma A.1. Let χ be a multiplicative character on F×q . Then

(a)
∑
x∈Fq

χ(x) =


q − 1 if χ = ε

0 if χ 6= ε

(b)
∑
χ∈cF×q

χ(x) =


q − 1 if x = 1

0 if x 6= 1.
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B. Hypergeometric Functions over Fq

The theory of hypergeometric functions over finite fields was developed by Greene

[12] in the 1980s. As above, let p be an odd prime and and let Fq denote the finite

field with q elements where q = pr for some positive integer r.

Definition B.1 ([12] Defn. 2.4). For A, B ∈ F̂×q , let J(A,B) denote the Jacobi sum

J(A,B) =
∑

x∈Fq
A(x)B(1− x). Then define the binomial coefficient(
A

B

)
:=

B(−1)

q
J(A,B) =

B(−1)

q

∑
x∈Fq

A(x)B(1− x)

where χ is defined by χχ = ε for χ ∈ F̂×q .

Greene defined Gaussian hypergeometric functions over Fq in the following way:

Definition B.2 ([12] Defn. 3.5). For characters A,B,C ∈ F̂×q and x ∈ Fq

2F1

A, B

C

∣∣∣∣∣x
 := ε(x)

BC(−1)

q

∑
y∈Fq

B(y)BC(1− y)A(1− xy). (2.1)

More generally, Greene proved the following theorem which connects these func-

tions to Jacobi sums, and extended the previous definition to a higher number of

multiplicative characters.

Theorem B.3 ([12] Theorem 3.6). For characters A,B,C ∈ F̂×q and x ∈ Fq,

2F1

A, B

C

∣∣∣∣∣x
 =

q

q − 1

∑
χ∈cF×q

(
Aχ

χ

)(
Bχ

Cχ

)
χ(x).

This leads to the following definition.
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Definition B.4 ([12] Defn. 3.10). Let n be a positive integer. For x ∈ Fq and

characters A0, A1, . . . , An, B1, B2, . . . , Bn ∈ F̂×q , define the hypergeometric function

over Fq by

n+1Fn

A0, A1, . . . , An

B1, . . . , Bn

∣∣∣∣∣x
 :=

q

q − 1

∑
χ∈cF×q

(
A0χ

χ

)(
A1χ

B1χ

)
· · ·
(
Anχ

Bnχ

)
χ(x).

A comprehensive introduction to these functions can be found in Greene’s paper

[12], where he presented many properties and transformation identities they satisfy.

One transformation that is of interest to us is presented in the next theorem, and it

allows to replace the arguments A,B ∈ F̂×q by A,B respectively.

Theorem B.5 ([12] Theorem 4.4). If A,B,C ∈ F̂×q and x ∈ Fq, then

2F1

A, B

C

∣∣∣∣∣x
 = C(−1)C AB(1− x) 2F1

CA, CB

C

∣∣∣∣∣x


+ A(−1)

(
B

AC

)
δ(1− x) (2.2)

where δ(x) =


1 if x = 0

0 if x 6= 0.

In particular, when A and B are inverses of each other and C = ε we get the

following result.

Corollary B.6. Let A ∈ F̂×q and x ∈ Fq\{1}. Then

2F1

A, A

ε

∣∣∣∣∣x
 = 2F1

A, A

ε

∣∣∣∣∣x


Proof. Just notice that, since x 6= 1 then the last term in the right hand side of 2.2

vanishes, and AA(1− x) = 1.
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C. The Zeta Function of a Variety

In this section we introduce the Zeta function of a projective variety, which is a

generating function for the number of solutions of a set of polynomial equations

defined over a finite field Fq, in finite extension fields Fqn of Fq. In this way, we

collect all the information about counting points into a single object.

Again, let p be an odd prime and and let Fq denote the finite field with q elements

where q = pr for some positive integer r. Let V be a projective variety, so V is the

zero-set

f1(x0, . . . , xN) = · · · = fm(x0, . . . , xN) = 0

of a collection of homogeneous polynomials with coefficients in Fq. Denote by V(Fqn)

the set of points of V with coordinates in Fqn , where Fqn is the field extension of

degree n of Fq.

Definition C.1. The zeta function of V/Fq is the power series

Z(V/Fq;T ) := exp

(
∞∑
n=1

#V(Fqn)
T n

n

)
∈ Q[[T ]].

(Here if F (T ) ∈ Q[[T ]] is a power series with no constant term, then exp(F (T )) is

the power series
∑∞

i=0 F (T )i/i!). Thus, the zeta function Z(V/Fq;T ) associated to

V contains all the information concerning the number of points of V over each field

extension of Fq of finite degree. Notice that, once we know Z(V/Fq;T ), it is not hard

to recover the numbers #V(Fqn) by the formula

#V(Fqn) =
1

(n− 1)!

dn

dT n
logZ(V/Fq;T )


T=0

.

In 1949, André Weil [27] made a series of conjectures concerning the number of points

on varieties defined over finite fields. In what follows, we state Weil’s conjectures and
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apply them to algebraic curves.

Theorem C.2. (Weil Conjectures). Let Fq be the field with q elements and V/Fq a

smooth projective variety of dimension n.

1. Rationality

Z(V/Fq;T ) ∈ Q(T ).

2. Functional equation: There is an integer ε (the Euler characteristic of V) so

that

Z(V/Fq; 1/qnT ) = ± qnε/2T εZ(V/Fq;T ).

3. Riemann Hypothesis: There is a factorization

Z(V/Fq;T ) =
P1(T ) · · ·P2n−1(T )

P0(T )P2(T ) · · ·P2n(T )

with each Pi(T ) ∈ Z[T ]. Further, P0(T ) = 1 − T , P2n(T ) = 1 − qnT , and for

1 ≤ i ≤ 2n− 1, Pi(T ) factors over C as

Pi(T ) =
∏
j

(1− αijT ) with |αij| = qi/2.

The polynomial P (T ) :=
∏n

i=1 P2i−1(T ) is called the L-polynomial of V.

Weil proved these conjectures for curves and abelian varieties, and Dwork [7] in

1960 established the rationality of the zeta function in general. In 1973 Deligne [6]

proved the Riemann hypothesis.

Applying these conjectures to a smooth projective curve V of genus g defined

over Fq, we obtain that

Z(V/Fq;T ) =
(1− α1T )(1− α1T ) · · · (1− αgT )(1− αgT )

(1− T )(1− qT )
(2.3)
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where |αi| =
√
q for all i = 1, . . . , g. Notice that in this case we have a beautiful

formula for counting points on V over Fqn , namely

#V(Fqn) = qn + 1−
g∑
i=1

(αni + αi
n) (2.4)

We will make strong use of formulas (2.3) and (2.4) applied to a particular families

of curves to prove the results in Chapter III and IV.
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CHAPTER III

HYPERGEOMETRIC FUNCTIONS OVER FINITE FIELDS AND ALGEBRAIC

CURVES

A. Counting Points on Families of Curves over Finite Fields

We consider the problem of connecting the number of points that certain families

of curves have over finite fields to values of particular hypergeometric functions over

finite fields. Troughout, let Fq denote the finite field with q elements, where q is some

prime power. We start with a result that allows to count the number of solutions of

a particular equation by using multiplicative characters on Fq.

Lemma A.1. Let q be a prime and a ∈ Fq\{0}. If n|(q − 1) then

#{x ∈ Fq : xn = a} =
∑
χn=ε

χ(a)

where the sum runs over all characters χ ∈ F̂×q of order dividing n.

Proof. We start by seeing that there are exactly n characters of order dividing n. Let

χ : F×q → C× be a character such that χn = ε and let g ∈ F×q be a generator. Since

χn = ε, the value of χ(g) must be an nth root of unity, hence there are at most n

such characters. Consider χ ∈ F̂×q defined by χ(g) = e2πi/n (i.e. χ(gk) = e2πik/n). It

is easy to see that χ is a character and ε, χ, χ2, · · · , χn−1 are n distinct characters of

order dividing n. Therefore, there are exactly n characters of order dividing n.

Now let a 6= 0 and suppose that xn = a is solvable; i.e., there is an element b ∈ Fq

such that bn = a. Since χn = ε we have that χ(a) = χ(bn) = χ(b)n = 1. Thus

∑
χn=ε

χ(a) =
∑
χn=ε

1 = n
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Also notice that in this case, #{x ∈ Fq : xn = a} = n because if xn = a (mod q)

is solvable then there exist exactly gcd(n, ϕ(q)) solutions, where ϕ denotes the Euler

function. But since ϕ(q) = q − 1 and n|(q − 1) it follows that gcd(n, q − 1) = n (for

a proof of this result see [13] Proposition 4.2.1).

To finish the proof we need to consider the case when xn = a is not solvable, in

which case #{x ∈ Fq : xn = a} = 0. Call T :=
∑

χn=ε χ(a). Since xn = a is not

solvable, there exist a character ρ such that ρn = ε and ρ(a) 6= 1 (take ρ(g) = e2πi/n

where < g >= F×q ). Since the characters of order dividing n form a group, it follows

that ρ(a)T = T . Then (ρ(a)− 1)T = 0 which implies that T = 0 since ρ(a) 6= 1.

Similar to the results given in Chapter I, the main theorem of this chapter pro-

vides an explicit relation between the number of points on certain family of curves

over finite fields and values of particular hypergeometric functions.

Theorem A.2. Let a = m/n and b = s/r be rational numbers such that 0 < a, b < 1,

and let z ∈ Fq, z 6= 0, 1. Consider the smooth projective algebraic curve with affine

equation given by

C(a,b)
z : yl = tl(1−b)(1− t)lb(1− zt)la

where l := lcm(n, r). If q ≡ 1 (mod l) then:

#C(a,b)
z (Fq) = q + 1 + q

l−1∑
i=1

ηilbq (−1) 2F1

 η
il(1−a)
q , η

il(1−b)
q

ε
z

 (3.1)

where ηq ∈ F̂×q is a character of order l, and #C(a,b)
z (Fq) denotes the number of points

that the curve C(a,b)
z has over Fq.

Proof. To simplify the notation, we will denote the curve C(a,b)
z = Cz. Since F̂×q is a

cyclic group of order q − 1 and l|(q − 1) there exists a character ηq ∈ F̂×q of order l.
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Recall that Cz is a projective curve, so adding the point at infinity we have

#Cz(Fq) = 1 +
∑
t∈Fq

#{y ∈ Fq : yl = tl(1−b)(1− t)lb(1− zt)la}

Breaking the sum and applying Lemma A.1 we see that:

#Cz(Fq) = 1 +
∑
t∈Fq

tl(1−b)(1−t)lb(1−zt)la 6=0

#{y ∈ Fq : yl = tl(1−b)(1− t)lb(1− zt)la}

+ #{t ∈ Fq : tl(1−b)(1− t)lb(1− zt)la = 0}

= 1 +
∑
t∈Fq

l−1∑
i=0

ηiq(t
l(1−b)(1− t)lb(1− zt)la) (Lemma A.1)

+ #{t ∈ Fq : tl(1−b)(1− t)lb(1− zt)la = 0}.

Now, by separating the sum according to whether i = 0, and collecting the second

and last terms into a single one we have

#Cz(Fq) = 1 +
∑
t∈Fq

ε(tl(1−b)(1− t)lb(1− zt)la) +
∑
t∈Fq

l−1∑
i=1

ηiq(t
l(1−b)(1− t)lb(1− zt)la)

+ #{t ∈ Fq : tl(1−b)(1− t)lb(1− zt)la = 0}

= 1 + q +
∑
t∈Fq

l−1∑
i=1

ηiq(t
l(1−b)(1− t)lb(1− zt)la)

= 1 + q +
l−1∑
i=1

∑
t∈Fq

ηil(1−b)q (t) ηilbq (1− t) ηlaq (1− zt). (3.2)

The last equality follows from the multiplicativity of ηq and switching the order of

summation.

On the other hand, by Definition B.2 in Chapter II, we have
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q 2F1

 ηil(1−a), ηil(1−b)

ε
z

 = ε(z)ηil(1−b)(−1)
∑
t∈Fq

ηil(1−b)(t) ηil(1−b)(1− t)ηil(1−a)(1− zt)

= ε(z)ηil(1−b)(−1)
∑
t∈Fq

ηil(1−b)(t) ηilb(1− t) ηila(1− zt).

(3.3)

Since z 6= 0, combining (3.2) and (3.3) we get the desired result.

In he proof of Theorem A.2 we applied Lemma A.1 which requires for q to be a

prime number in a particular congruence class modulo l. However, Theorem A.2 is

valid over any finite field extension Fqk of Fq as we see in the next Corollary.

Corollary A.3. With same notation as in Theorem A.2, we have that

#C(a,b)
z (Fqk) = qk + 1 + qk

l−1∑
i=1

ηilbqk (−1) 2F1

 η
il(1−a)
qk , η

il(1−b)
qk

ε
z


where ηqk ∈ F̂×

qk is a character of order l.

Proof. Again, denote the curve by Cz. First notice that F̂×
qk is a cyclic group of order

qk − 1. Then, if l|(q− 1) it also divides qk − 1, hence there exists ηqk ∈ F̂×
qk of order l.

Next, we show that Lemma A.1 is also true over Fqk for any positive integer k.

The proof is almost identical. We only need to check that if a ∈ F×
qk and xn = a is

solvable, then #{x ∈ Fqk : xn = a} = n. For this recall the following two statements,

one of which was already used in the proof of Lemma A.1 (for proofs of them see [13]

Propositions 4.2.1 and 4.2.3):

1. If (a, q) = 1, then xn ≡ a (mod q) is solvable ⇐⇒ aϕ(q)/d ≡ 1 (mod q),

where d := gcd(n, ϕ(q)). Moreover, if a solution exists then there are exactly d

solutions.
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2. Let q be an odd prime such that q - a and q - n. If xn ≡ a (mod q) is

solvable, then xn ≡ a (mod qk) is also solvable for all k ≥ 1. Moreover all these

congruence have the same number of solutions.

Then, for q prime and in the case xn = a is solvable we have

#{x ∈ Fqk : xn = a} = #{x ∈ Fq : xn = a} = gcd(n, ϕ(q)) = gcd(n, q − 1) = n

since n|(q − 1). Hence, Lemma A.1 generalizes over Fqk . The proof of the Corollary

now follows analogously to the proof of Theorem A.2.

As a consequence of Corollary A.3 we get the following result that relates the

number of points of certain curves over finite extensions of Fq.

Corollary A.4. Let l be a prime, m,m′, s, s′ be integers satisfying 1 ≤ m,m′, s, s′ < l

and m + s = m′ + s′ = l, and consider the curves with affine equations given by

C(m,s)
z : yl = tm(1− t)s(1− zt)m and C(m′,s′)

z : yl = tm
′
(1− t)s′(1− zt)m′ with z 6= 0, 1.

Then, for a prime q such that q ≡ 1 (mod l) we have

#C(m,s)
z (Fqk) = #C(m′,s′)

z (Fqk)

for all k ∈ N.

Proof. Again, we drop the dependency of the curves on the integers m,m′, s, s′ and

denote C(m,s)
z = Cz and C(m′,s′)

z = C ′z. Let ηqk ∈ F̂×
qk be a character of order l. If l = 2

then Cz = C ′z since (m, s) and (m′, s′) are both (1, 1). Therefore, there is nothing to

prove in this case.

Suppose now that l is an odd prime. Then, the order of ηqk is odd and so

ηqk(−1) = 1. Next, consider a := m/l, b := s/l and a′ := m′/l, b′ := s′/l in Theorem
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A.2. The curves defined by these values are exactly Cz and C ′z, hence by Corollary

A.3 and taking into account that m+ s = l and m′ + s′ = l, we have

#Cz(Fqk)− (qk + 1) = qk
l−1∑
i=1

2F1

 η
i(l−m)

qk , ηim
qk

ε
z

 (3.4)

#C ′z(Fqk)− (qk + 1) = qk
l−1∑
i=1

2F1

 η
i(l−m′)
qk , ηim

′

qk

ε
z

 (3.5)

As we can see, the exponents of the characters appearing in the hypergeometric

functions in (3.4) and (3.5) add up to 0 (mod l). Also notice that

• #{(r, t) : 1 ≤ r, t ≤ l − 1, r + t = l} = l − 1.

• i(l −m) ≡ j(l −m) (mod l) ⇐⇒ im ≡ jm (mod l) ⇐⇒ l|m(i − j). Since

l is prime and 0 < m < l, l must divide i − j. But 1 ≤ i, j ≤ l − 1, then

i(l −m) ≡ j(l −m) (mod l) ⇐⇒ i = j

By these two observations, we see that the terms appearing in the RHS of (3.4) are

the same ones appearing in the RHS of (3.5), therefore we conclude that

#Cz(Fqk) = #C ′z(Fqk)

It is not hard to see that the previous result can be generalized to the case when

l is an odd integer and (l,m) = (l,m′) = 1, and the argument is the same done above.

However, the result is not true in general if we just ask for m + s = m′ + s′, as we

can see in the following example for l = 5 and m+ s = 4:

• If (m, s) = (1, 3) then Z(C2|F11, T ) = (11T 2+3T+1)4

(1−T )(1−11T )
hence

|#C2(F11)− (11 + 1)| = 12
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• If (m′, s′) = (2, 2) then Z(C ′2|F11, T ) = (11T 2−2T+1)4

(1−T )(1−11T )
hence

|#C ′2(F11)− (11 + 1)| = 8
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CHAPTER IV

THE MAIN CONJECTURE

A. Introduction

In the previous chapter we proved that we can relate, in an explicit way, the number

of points on certain curves over finite fields and values of particular hypergeometric

functions. My next interest has been to find a closed formula for hypergeometric

functions over finite fields, and more specifically, I have been interested in relating

each particular term that appears in the right hand side of sum (3.1) to the curve Cz.

First, we recall some basic facts and the Riemann-Hurwitz genus formula, which is

extremely useful when trying to compute the genus of an algebraic curve.

Let K be a perfect field (i.e., every algebraic extension of K is separable). We

say that a non-constant map of curves ψ : C1 → C2 is separable if the extension of

function fields K(C1)|ψ∗(K(C2)) is a separable extension of fields. Also, ψ has a non-

zero degree n := deg(ψ) that can be defined as the number of points in a generic fiber

ψ−1(Q) for Q ∈ C2. Now, there is a finite set of points Q ∈ C2 for which the inverse

image ψ−1(Q) does not have size n, we call these points the ramification points of ψ,

and associated to them there is an integer called ramification index (for more details

see [9]).

Theorem A.1 (Riemann-Hurwitz genus formula). Let C1 and C2 be two smooth

curves defined over K of genus g1 and g2 respectively. Let ψ : C1 → C2 be a non-

constant and separable map. Then

2g1 − 2 ≥ deg(ψ)(2g2 − 2) +
∑
P∈C1

(eψ(P )− 1)
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where eψ(P ) is the ramification index of ψ at P . Moreover, there is equality if and

only if either char(K) = 0 or char(K) = p and p does not divide eψ(P ) for all P ∈ C1.

Next, we apply the Riemann-Hurwitz formula to compute the genus of the

smooth projective curve Cz with affine equation

Cz : yl = tm(1− t)s(1− zt)m (4.1)

where l is prime and 1 ≤ m, s < l such that m+ s = l. For that, we consider the map

ψ : Cz → P1, [x : y : z] 7→ [x : z]

and notice that [0 : 1 : 0] 7→ [1 : 0]. Generically, every point in P1 has l preimages, so

the degree of this map is l. Now, the genus of P1 is 0 and ψ is ramified at 4 points,

namely P1 = [0 : 0 : 1], P2 = [1 : 0 : 1], P3 = [z−1 : 0 : 1] and P4 = [0 : 1 : 0] the

point at infinity, with ramification indices eψ(Pi) = l for all i = 1, . . . , 4. Denoting

g := genus(Cz), we obtain that 2g − 2 = −2l + 4(l − 1) = 2l − 4, hence g = l − 1.

Remark A.2. The fact that the curve Cz has genus l−1 can also be seen by noticing

that Cz is a hyperelliptic curve and has model Y 2 = F (X) with deg(F (X)) = 2l (see

Chapter V Theorem A.5). Hence, 2l = 2 genus(Cz) + 2, therefore, genus(Cz) = l − 1.

Now, applying Theorem A.2 in Chapter III to the curve (4.1), we see that the

upper limit in the sum is the genus of the curve. Also, as we mentioned in the

previous chapter, since l is prime and ηq ∈ F̂×q is a character of order l, we have that
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ηq(−1) = 1. Then,

#Cz(Fq) = q + 1 + q

g∑
i=1

2F1

 ηisq , ηimq

ε
z


= q + 1 + F1,q(z) + F2,q(z) + · · ·+ Fg,q(z) (4.2)

where Fi,q(z) = q 2F1

 ηisq , ηimq

ε
z

.

Notice the resemblance between formulas (2.4) and (4.2). With this similarity in

mind, we are now interested in finding relations between the terms in these formulas,

i.e., relations between the Fi,q(z) in formula (4.2) and the αi,q(z) + αi,q(z) in formula

(2.4).

B. The Main Conjecture

As we mentioned in the previous section, we want to relate the terms Fi,q(z) in formula

(4.2) to the αi,q(z) + αi,q(z) in formula (2.4). Denote ai,q(z) := αi,q(z) + αi,q(z). We

state next our main conjecture, and in the next sections we prove it in some particular

cases.

Conjecture B.1. Let l and q be odd primes such that q ≡ 1 (mod l) and let z ∈ Fq,

z 6= 0, 1. Consider the smooth projective curve with affine equation given by

C(m,s)
z : yl = tm(1− t)s(1− zt)m

where 1 ≤ m, s < l are integers such that m + s = l. Then, using the notation from

previous section and after rearranging terms if necessary

Fi,q(z) = −ai,q(z) for all 1 ≤ i ≤ g.
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The previous conjecture gives a closed formula for the values of some hypergeo-

metric functions over finite fields in terms of the traces of Frobenius of certain curves.

In the next two sections we prove the conjecture for particular values of the prime l.

C. Proof of Conjecture for l = 3

Throughout this section fix l = 3 and let q be a prime such that q ≡ 1 (mod 3). Let

z ∈ Fq, z 6= 0, 1, and consider the smooth projective curve with affine equation given

by

C(1,2)
z : y3 = t(1− t)2(1− zt) (4.3)

Denote C(1,2)
z = Cz. The idea will be to show that the L-polynomial of the curve Cz is

a perfect square, and from that and formulas (2.4) and (4.2) conclude that the values

of the traces of Frobenius must agree with the values of the hypergeometric functions,

up to a sign.

Recall that, by the Riemann-Hurwitz formula, Cz has genus 2. Now, every curve

of genus 2 defined over Fq is birationally equivalent over Fq to a curve of the form

C : Y 2 = F (X) (4.4)

where

F (X) = f0 + f1X + f2X
2 + · · ·+ f6X

6 ∈ Fq[X]

is of degree 6 and has no multiple factors (see [5]). This identification is unique up

to a fractional linear transformation of X, and associated transformation of Y ,

X → aX + b

cX + d
, Y → eY

(cX + d)3
(4.5)

where

a, b, c, d ∈ Fq, ad− bc 6= 0, e ∈ F×q .
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In our particular case we have

Lemma C.1. The curve Cz : y3 = t(1− t)2(1− zt) is birationally equivalent to

C : Y 2 = X6 + 2(1− 2z)X3 + 1. (4.6)

Proof. We begin by translating t → 1 − t, so the double point is now at the origin.

We get:

C(1) : y3 = (1− t)t2(1− z(1− t))

= (1− z)t2 + (2z − 1)t3 − zt4.

Since z 6= 0, multiply both sides by z−1 and define

G2(t, y) := (1− z−1)t2

G3(t, y) := z−1y3 − (2− z−1)t3

G4(t, y) := t4.

Then, each Gi is a homogeneous polynomial of degree i in Fq[t, y] and Cz is birationally

equivalent to

C(1) : G2(t, y) +G3(t, y) +G4(t, y) = 0.

Next, put y = tX and complete the square to get:

C(2) : 0 = t4 + (z−1X3 + z−1 − 2)t3 + (1− z−1)t2

=

(
t2 +

1

2
(z−1X3 + z−1 − 2)t

)2

− (z−1X3 + z−1 − 2)2

4
t2 + (1− z−1)t2

Multiply by 4 (char(Fq 6= 2)) and divide by t2 to get that Cz is birationally equivalent
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to

C : Y 2 = F (X)

where

Y = 2G4(1, X)t+G3(1, X)

F (X) = G3(1, X)2 − 4G2(1, X)G4(1, X)

By substituting G2, G3 and G4 in F (X), and rescaling Y → z−1Y we get the desired

result, i.e., Cz is birationally equivalent to

C : Y 2 = X6 + 2(1− 2z)X3 + 1.

In order to show that the L-polynomial of the curve Cz over Fq is a perfect square,

we will start by showing that the Jacobian of Cz, Jac(Cz), is isogenous to the product

of two elliptic curves, i.e., that the Jac(Cz) is reducible. To do that, it is convenient to

find a slightly different model for our curve as we can see in the next criterion. First,

we need to introduce the concept of equivalent curves.

Definition C.2. We say that two curves Y 2 = F (X) are equivalent if they are

taken into one another by a fractional linear transformation of X and the related

transformation of Y given by (4.5).

Theorem C.3 ([5] Theorem 14.1.1). The following properties of a curve C of genus

2 are equivalent:

1. It is equivalent to a curve

Y 2 = c3X
6 + c2X

4 + c1X
2 + c0 (4.7)

with no terms of odd degree in X.
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2. It is equivalent to a curve

Y 2 = G1(X)G2(X)G3(X) (4.8)

where the quadratics Gj(X) are linearly dependent.

3. It is equivalent to

Y 2 = X(X − 1)(X − a)(X − b)(X − ab) (4.9)

for some a, b.

If one (and so all) of the previous conditions is satisfied, the Jacobian of C is reducible.

There are two maps of (4.7) into elliptic curves

E1 : Y 2 = c3Z
3 + c2Z

2 + c1Z + c0 (4.10)

with Z = X2 and

E2 : V 2 = c0U
3 + c1U

2 + c2U + c3 (4.11)

with U = X−2, V = Y X−3. These maps extend to maps of the Jacobian, which is

therefore reducible (see [5]).

Hence, to apply Theorem C.3 we find a different model for Cz. In particular we

will put our curve in form (4.7).

Lemma C.4. The curve (4.6) is equivalent to the curve

Y 2 = (1− z)X6 + 3(2 + z)X4 + 3(3− z)X2 + z. (4.12)

Proof. Consider the fractional linear transformation given by

X → X + 1

X − 1
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Y → 2Y

(X − 1)3

Combining Lemma C.4 and the observation at the end of Theorem C.3, we find

two maps from (4.12) to the elliptic curves

E1,z : Y 2 : (1− z)Z3 + 3(2 + z)Z2 + 3(3− z)Z + z (4.13)

E2,z : V 2 = zU3 + 3(3− z)U2 + 3(2 + z)U + (1− z) (4.14)

Notice that E1,z and E2,z have discriminant 6912z(1 − z), which is non-zero since

z 6= 0, 1. Also, after rescaling, we can write

E1,z : Y 2 : Z3 + 3(2 + z)Z2 + 3(3− z)(1− z)Z + z(1− z)2 (4.15)

and

E2,z : V 2 = U3 + 3(3− z)U2 + 3(2 + z)zU + (1− z)z2 (4.16)

As we mentioned above, the existence of these two maps implies that Jac(Cz)

is isogenous to E1,z × E2,z. Next, we see that these elliptic curves are not totally

independent of each other. In fact, one is isogenous to a twist of the other as we see

in our next result.

Proposition C.5. The curve E1,z is isogenous to the twisted curve (E2,z)−3.

Proof. Consider the equation for the twisted curve (E2,z)−3:

(E2,z)−3 : V 2 = U3 − 9(3− z)U2 + 27(2 + z)zU − 27(1− z)z2 (4.17)
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Define ϕ : E1,z → (E2,z)−3 such that ϕ[0 : 1 : 0] = [0 : 1 : 0] and

ϕ[x : y : 1] =

[
x3 + Ax2 +Bx+ C

(x+ (z − 1))2
:

(x3 +Dx2 + Ex+ F )y

(x+ (z − 1))3
: 1

]
(4.18)

where



A = 9

B = 3(1− z)(z + 9)

C = (27− 2z)(z − 1)2

D = 3(z − 1)

E = 3(z + 15)(z − 1)

F = (z − 81)(z − 1)2.

One can check by hand or with Maple for example, that the map ϕ is well defined

and gives an isogeny between the two curves.

Denote by L(Cz/Fq, T ) the L-polynomial of Cz over Fq. Recall that we want to

show that, for q ≡ 1 (mod 3) we have L(Cz/Fq, T ) = (1 +aT + qT 2)2 for some a ∈ R.

So far, we have seen that

L(Cz/Fq, T ) = (1 + a1,q(z)T + qT 2)(1 + a2,q(z)T + qT 2)

where a1,q(z) and a2,q(z) are the traces of Frobenius on the curves E1,z and E2,z re-

spectively. Therefore, we need to show that a1,q(z) = a2,q(z), or equivalently, that

#E1,z(Fq) = #E2,z(Fq) for q ≡ 1 (mod 3). This is the statement of our next result.

Corollary C.6. Let q be a prime such that q ≡ 1 (mod 3). Then

#E1,z(Fq) = #E2,z(Fq).

Proof. Fix q in the conditions of the corollary. Let a1,q(z) and a2,q(z) be the traces
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of Frobenius on the elliptic curves E1,z and E2,z respectively, i.e.

#E1,z(Fq) = q + 1− a1,q(z)

#E2,z(Fq) = q + 1− a2,q(z)

Since (E2,z)−3 is a twist of E2,z we have

#(E2,z)−3(Fq) = 1 + q −
(
−3

q

)
a2,q(z)

where
(
·
q

)
is the Legendre symbol.

Now, by Proposition (C.5) we know that

#(E1,z)(Fq) = #(E2,z)−3(Fq)

hence

a2,q(z) =

(
−3

q

)
a1,q(z).

To finish the proof, it only remains to see that
(
−3
q

)
= 1 for all primes q ≡ 1 (mod 3).

Since the Legendre symbol is completely multiplicative on its top argument, we can

decompose
(
−3
q

)
=
(
−1
q

)(
3
q

)
. Also

(
−1

q

)
= (−1)(q−1)/2 =


1 if q ≡ 1 (mod 4)

−1 if q ≡ 3 (mod 4).

(4.19)

and (
3

q

)
= (−1)d(q+1)/6e =


1 if q ≡ 1, 11 (mod 12)

−1 if q ≡ 5, 7 (mod 12).

(4.20)

We will divide the analysis in cases. First notice that since q ≡ 1 (mod 3) then q

must be congruent to either 1 or 7 (mod 12).
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• Suppose q ≡ 1 (mod 12) and therefore
(

3
q

)
= 1 by (4.20). Also, since q ≡ 1

(mod 12), we have that q ≡ 1 (mod 4), hence
(
−1
q

)
= 1 by (4.19). Then(

−3
q

)
= 1 as desired.

• Suppose q ≡ 7 (mod 12), then
(

3
q

)
= −1. Also, in this case q ≡ 3 (mod 4),

and so
(
−1
q

)
= −1, giving that

(
−3
q

)
= 1 as desired.

Hence

#E1,z(Fq) = #E2,z(Fq) for all q ≡ 1 (mod 3).

We have now all the necessary tools to complete the proof of Conjecture B.1 for

the case when l = 3.

Theorem C.7. Conjecture B.1 is true for l = 3.

Proof. First notice that when l = 3 we have two different cases to consider, namely

the curves with (m, s) = (1, 2) and (m, s) = (2, 1). However, by Chapter III Corollary

A.4 these two curves have the same number of points over every finite field extension

of Fq, therefore they have the same zeta function over Fq. Also, the hypergeometric

functions that appear on the right hand side of equation (3.1) are the same for both

curves. Because of these, it is enough to prove that the conjecture is true for one of

these curves, say Cz : y3 = t(1 − t)2(1 − zt). As above, write the zeta function of Cz

as

Z(Cz/Fq;T ) =
(1− α1,q(z)T )(1− α1,q(z)T )(1− α2,q(z)T )(1− α2,q(z)T )

(1− T )(1− qT )

=
(1− a1,q(z)T + qT 2)(1− a2,q(z)T + qT 2)

(1− T )(1− qT )

where ai,q(z) = αi,q(z) + αi,q(z). Using the same notation as in equation (4.2), we
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have that

F1,q(z) + F2,q(z) = −(a1,q(z) + a2,q(z)) (4.21)

Recall that F1,q(z) = 2F1[η
2
q , ηq; ε|z] and F2,q(z) = 2F1[ηq, η

2
q ; ε|z], therefore, Corollary

B.6 in Chapter II implies that F1,q(z) = F2,q(z). Also, as we have seen in Corollary

C.6, a1,q(z) = a2,q(z), Hence, (4.21) becomes

2F1,q(z) = −2a1,q(z)

so a1,q(z) = −F1,q(z) and a2,q(z) = −F2,q(z), proving the conjecture for l = 3.

D. Proof of Conjecture for l = 5

Our next objective is to prove that Conjecture B.1 also holds when l = 5. The proof

has some ingredients in common with the previous case, however is not completely

analogous and requires some different techniques as we will see.

Consider the smooth projective curve with affine model

Cz : y5 = t(1− t)4(1− zt) (4.22)

over a finite field Fq with q prime, q ≡ 1 (mod 5) and z ∈ Fq\{0, 1}. Notice that, by

performing the same transformations done in Lemma C.1 and the fractional linear

transformation

X → X + 1

X − 1

Y → 2Y

(X − 1)5

on the curve (4.22) we get the following result.



32

Lemma D.1. The curve Cz : y5 = t(1− t)4(1− zt) is equivalent to the curve

C : Y 2 = (1−z)X10 +(20+5z)X8 +(110−10z)X6 +(100+10z)X4 +(25−5z)X2 +z.

(4.23)

Define the curves H1,z : y2 = f(x) and H2,z : y2 = g(x) where

f(x) = (1−z)x5 +(20+5z)x4 +(110−10z)x3 +(100+10z)x2 +(25−5z)x+z (4.24)

and

g(x) = zx5 +(25−5z)x4 +(100+10z)x3 +(110−10z)x2 +(20+5z)x+(1−z). (4.25)

Then, by the same argument in the previous section, we can find two maps from

C to H1,z and H2,z, and extending these maps to the Jacobians of the curves, we

conclude that Jac(C) is isogenous to Jac(H1,z)× Jac(H2,z). We start by showing that

the L-polynomial of Cz over Fq with q ≡ 1 (mod 5) is a perfect square. First, we

recall some results about abelian varieties.

Let k be a perfect field, which will eventually be finite. Recall that an abelian

variety over k is a subset of some projective n-space over k which

1. is defined by polynomial equations on the coordinates (with coefficients in k),

2. is connected, and

3. has a group law which is algebraic (i.e., the coordinates of the sum of two points

are rational functions of the coordinates of the factors).

We say that an abelian variety over k is simple if it has no nontrivial abelian subva-

rieties. We have the following result.
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Theorem D.2. (Poincaré-Weil) Every abelian variety over k is isogenous to a prod-

uct of powers of nonisogenous simple abelian varieties over k.

Consider Cz : y5 = t(1 − t)4(1 − zt) over the algebraically closed field Q and

let ζ := e2πi/5 be a fifth root of unity. Then the map [ζ] : Cz → Cz defined by

[ζ](t, y) = (t, ζy) defines an automorphism on the curve Cz. Denote Jz := Jac(Cz) and

Ji,z := Jac(Hi,z), for i = 1, 2. The automorphism [ζ] induces a map from Jz to itself,

hence

[ζ] ∈ End(Jz).

On the other hand, as we mentioned above, we can find an isogeny over Q

φ : J1,z × J2,z → Jz.

Applying φ we get

φ(J1,z) ⊆ Jz

where J1,z here denotes J1,z × {0}. Similarly

φ(J2,z) ⊆ Jz.

We also have

[ζ](φ(Ji,z)) ⊆ Jz

for i = 1, 2.

Consider now the curve y5 = t(1− t)4(1− zt) defined over Q(z). We can apply

to this curve the same argument we did before, and we can see that Ji,z are simple

abelian varieties over Q(z). Otherwise, if Ji,z is isogenous to the product of two elliptic

curves, then, for all z the L-polynomial would have two quadratic factors, which is

not the case. (See example in section E at the end of this chapter). Therefore,
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we have φ(J1,z) and [ζ](φ(J1,z)) two simple abelian varieties inside Jz. By Poincaré

complete reducibility theorem, we have that either φ(J1,z) ∩ [ζ](φ(J1,z)) is finite or

φ(J1,z) = [ζ](φ(J1,z)).

• Case 1: φ(J1,z) ∩ [ζ](φ(J1,z)) is finite.

In this case, by dimension count we have

[ζ](φ(J1,z)) + φ(J1,z) = Jz.

Then, since φ(J1,z) and φ(J2,z) are simple abelian varieties, the Poincaré -Weil

Theorem implies that

[ζ](φ(J1,z)) ≈ φ(J2,z)

over Q(ζ), where ≈ denotes isogeny. Notice that this isogeny will exist over

any field containing a fifth root of unity, therefore, finite fields Fq with q ≡ 1

(mod 5) are fine. Then, we get that [ζ](φ(J1,z)) is isogenous to φ(J2,z) over Fq

for q ≡ 1 (mod 5).

• Case 2: [ζ](φ(J1,z)) = φ(J1,z).

For this case, we recall first some facts about abelian varieties (for details see

[16] or [18]). Suppose A/k is a simple abelian variety of dimension g, and denote

∆ := Endk(A) ⊗Z Q. Then, Poincaré’s complete reducibility Theorem implies

that ∆ is a division algebra. Also, from the theory of division algebras we know

that the dimension of a division algebra over its center is a perfect square, hence,

if K = {x ∈ ∆ : xa = ax for all a ∈ ∆} is the center of ∆, we have [∆ : K] = d2

for some integer d. On the other hand, if [K : Q] = e then de|2g, moreover, in

characteristic zero, we have that d2e|2g.

Now that we have reviewed the results we need we can go back to case 2. In
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this case, let ∆ := End(φ(J1,z))⊗Z Q and K be its center. Applying the results

above, we can assume that [∆ : K] = d2 and [K : Q] = e, for some integers d

and e. Since the dimension of φ(J1,z) = 2 and char(Q(z)) = 0, we have that

d2e|4.

By assumption, we have that

[ζ] ∈ End(φ(J1,z)),

hence

Q(ζ) ⊆ End(φ(J1,z))⊗Z Q := ∆.

Now, we have

Q ⊆ Q(ζ) ⊆ ∆,

[Q(ζ) : Q] = 4

and

[∆ : Q]|4.

Therefore, 4 = 4[∆ : Q(ζ)], hence

Q(ζ) = ∆

i.e., End(φ(J1,z))⊗Z Q is a field of degree 4 over Q.

Recall the following definition.

Definition D.3. A totally imaginary quadratic extension of a totally real field

is called a CM field (Complex Multiplication).

Then, ∆ is a CM field, since it is equal to Q(ζ) and every cyclotomic field is a

CM field (Q ⊆ Q(ζ, ζ) ⊆ Q(ζ)).
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Theorem D.4 (Shimura [17]). Let k be a field of characteristic zero. Over k

there do not exist non-constant families of abelian varieties with full CM (i.e.,

the endomorphism ring has maximal dimension).

However, our family φ(J1,z) is non-constant, as it can be computationally checked

with Magma using Igusa invariants.

Therefore, only case 1 is possible, and we have

[ζ](φ(J1,z)) ≈ φ(J2,z).

We now state and prove our theorem.

Theorem D.5. Conjecture B.1 holds for l = 5 over Fq, for a prime q ≡ 1 (mod 5).

Proof of Theorem D.5. By the same argument done in the proof of Conjecture B.1

for l = 3, it is enough to prove the conjecture for the curve Cz : y5 = t(1− t)4(1− zt).

Also, by the previous argument, then the L-polynomial of Cz is a perfect square,

i.e., we can assume, after rearranging terms if necessary, that a1,q(z) = a4,q(z) and

a2,q(z) = a3,q(z). We can write then

Z(Cz/Fq;T ) =
(1− a1(z)T + qT 2)2(1− a2(z)T + qT 2)2

(1− T )(1− qT )

By Corollary B.6 in Chapter II, we know that F1,q(z) = F4,q(z) and F2,q(z) = F3,q(z).

At the end, we get that

−(a1,q(z) + a2,q(z)) = F1,q(z) + F2,q(z). (4.26)

We want to prove that −a1,q(z) = F1,q(z) and −a2,q(z) = F2,q(z). Recall, from (2.4)
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that

−(a1,q(z)2 − 2q + a2,q(z)2 − 2q) = F1,q2(z) + F2,q2(z). (4.27)

Also, keep in mind that for the hypergeometric functions F1,q and F2,q we are choosing

a character ηq ∈ F̂×q of order 5, and for the hypergeometric functions F1,q2 and F2,q2

the character we are choosing is in F̂×q2 , also of order 5.

Claim 1. It is enough to show that

Fi,q2(z) = −Fi,q(z)2 + 2q (4.28)

for i = 1, 2.

Proof of Claim. We will write ai,q := ai,q(z) and Fi,qk := Fi,qk(z) for i, k = 1, 2 . If

(4.28) is true, from (4.26) and (4.27) we get the system of equations in a1,q and a2,q
−a1,q − a2,q = F1,q + F2,q

a2
1,q + a2

2,q = F 2
1,q + F 2

2,q.

which is equivalent to 
−a1,q − a2,q = F1,q + F2,q

a1,qa2,q = F1,qF2,q.

hence, a1,q = −F1,q and a2,q = −F2,q.

Continuing with the proof of the conjecture for l = 5, it only remains to show that

(4.28) holds. For that, let’s start by writing explicitly the functions we have on the

left and right hand side of (4.28). We start with F1,q = F4,q = 11 2F1

 ηq, η4
q

ε
z

.

The other case will be the result of a similar argument.
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F 2
1,q =

∑
x,y∈Fq

η4
q (xy) ηq((1− x)(1− y)) η4

q ((1− zx)(1− zy))

=
∑
s∈F×q

η4
q (s)

∑
x∈F×q

ηq((1− x)(1− s/x)) η4
q ((1− zx)(1− zs/x)) (xy = s)

=
∑
s∈F×q

η4
q (s)

∑
x∈F×q

ηq(1− x− s/x+ s) η4
q (1− z(x+ s/x) + z2s).

On the other hand, define χ ∈ F̂×q2 such that χ := ηq ◦ N
Fq2

Fq
, i.e., for α ∈ Fq2 ,

χ(α) = ηq(N
Fq2

Fq
(α)) = ηq(α

q+1), where N
Fq2

Fq
denotes the norm from Fq2 down to Fq.

Since N
Fq2

Fq
(α) ∈ Fq for all α ∈ Fq2 then χ is well defined and it actually defines a

character of F×q2 (see [13] Chapter 11).. Moreover, since the order of ηq is 5 then

the order of χ must divide 5. But if x ∈ Fq then N
Fq2

Fq
(x) = xq+1 = x2, therefore

χ|Fq = η2
q 6= ε. Then χ ∈ F̂×q2 is a character of order 5. We choose this character for

our computations and we have

F1,q2 :=
∑
c∈Fq2

χ4(c)χ(1− c)χ4(1− zc)

=
∑
c∈Fq2

η4
q (c

q+1)ηq((1− c)q+1)η4
q ((1− zc)q+1)

=
∑
s∈F×q

η4
q (s)

∑
α∈F×

q2 , α
q+1=s

ηq(1− α− s/α + s)η4
q (1− z(α + s/α) + z2s)

where the last equality follows by putting cq+1 = s and noting that, since char(Fq) = q

and αq+1 = s then

(1−α)q+1 = (1−α)q(1−α) = (1−αq)(1−α) = 1−α−αq +αq+1 = 1−α− s/α+ s.
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A similar computation gives that

(1− zc)q+1 = 1− z(α + s/α) + z2s.

For s ∈ F×q define h : F×q2 → Fq2 such that h(t) = t + s/t and let f and g be the

restrictions of h to the sets F×q and N−1(s) := {α ∈ Fq2 : αq+1 = s} ⊂ F×q2 respectively,

i.e.,

f := h|F×q : F×q → Fq

g := h|N−1(s) : N−1(s)→ Fq

Notice that, if α ∈ N−1(s) then g(α) = α + s/α = α + αq = tr(α) ∈ Fq, hence

Im(g) ⊂ Fq. Making use of these functions, we can rewrite

F 2
1,q =

∑
s∈F×q

η4
q (s)

∑
b∈Im(f)⊂Fq

ηq(1− b+ s)η4
q (1− bz + z2s)

and

F1,q2 =
∑
s∈F×q

η4
q (s)

∑
b∈Im(g)⊂Fq

ηq(1− b+ s)η4
q (1− bz + z2s)

Combining both equations, we have

F 2
1,q + F1,q2 =

∑
s∈F×q

η4
q (s)

∑
some b∈Fq

ηq(1− b+ s)η4
q (1− bz + z2s). (4.29)

Our next and last step will be to describe over what elements are we summing in the

inner sum of (4.29). Fix s ∈ F×q . Note that h is generically a 2-to-1 map. To see this,

suppose b ∈ Im(h), therefore there exists t ∈ F×q2 such that t+s/t = b, or equivalently

t2 − bt + s = 0. Hence, h is 2-to-1 except when b2 − 4s = 0, i.e., except when s is a

perfect square in Fq.

• Case 1: s is not a perfect square in F×q .

By previous comment, we know that in this case h is 2-to-1 map. Also, is not
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too hard to show that h is surjective when restricted to the two domains F×q

and N−1(s). Therefore, in this case every element b ∈ F×q will appear exactly

twice in the inner sum of (4.29).

• Case 2: s is a perfect square in F×q .

In this case, let s = a2, then b = 2a or b = −2a. As in previous case, every

b ∈ Fq different from 2a and −2a will appear exactly twice in the inner sum

of (4.29). What about b = 2a and b = −2a? If s is a perfect square then

Im(f) ∩ Im(g) = {2a,−2a}, hence both 2a and −2a will also appear twice in

the sum, once as part of the sum for F 2
1,q and once as part of the sum for F1,q2 .

Summarizing we have

F 2
1,q + F1,q2 =

∑
s∈F×q

( s
q )=−1

η4
q (s)

∑
some b∈Fq

ηq(1− b+ s)η4
q (1− bz + z2s)

+
∑
s∈F×q
( s

q )=1

η4
q (s)

∑
some b∈Fq

ηq(1− b+ s)η4
q (1− bz + z2s)

= 2
∑
s∈F×q

( s
q )=−1

η4
q (s)

∑
b∈Fq

ηq(1− b+ s)η4
q (1− bz + z2s).

+ 2
∑
s∈F×q
( s

q )=1

η4
q (s)

∑
b∈Fq

ηq(1− b+ s)η4
q (1− bz + z2s)

= 2
∑
s∈F×q

η4
q (s)

∑
b∈Fq

ηq(1− b+ s)η4
q (1− bz + z2s).

To finish the proof we need to see that

∑
s∈F×q

η4
q (s)

∑
b∈Fq

ηq(1− b+ s)η4
q (1− bz + z2s) = q.

We begin by rewriting the inner sum in the above formula, but first recall that the
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action of GL2(Fq) on Fq given by a b

c d

 · w :=
aw + b

cw + d

defines an automorphism of P1(Fq). Now, since η5
q = ε and ηq(0) = 0 we get

∑
b∈Fq

ηq(1− b+ s)η4
q (1− bz + z2s) =

∑
b∈Fq

b 6=(z−1+zs)

ηq

(
1− b+ s

1− bz + z2s

)

=
∑
b∈Fq

b 6=(z−1+zs)

ηq(γ · b)

where γ :=

 −1 s+ 1

−z z2s+ 1

. Now, detγ = (z − 1)(1 − sz), therefore, since z 6= 1

we see that as long as s 6= z−1, γ defines an automorphism of P1(Fq). Then, by

separating the sums according to whether s = z−1 or not, we have:

∑
s∈F×q

η4
q (s)

∑
b∈Fq

b 6=(z−1+zs)

ηq(γ · b) =
∑
s∈F×q
s 6=z−1

η4
q (s)

∑
b∈Fq

b6=(z−1+zs)

ηq(γ · b)

+ η4
q (z
−1)

∑
b∈Fq

b 6=(z−1+1)

ηq

(
1− b+ z−1

1− bz + z

)

= A+B

where A and B are set to be the two sums appearing in the previous line. We now
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compute A and B. First we have

B =
∑
b∈Fq

b6=(z−1+1)

η4
q (z
−1)ηq

(
1− b+ z−1

1− bz + z

)

=
∑
b∈Fq

b6=(z−1+1)

ηq

(
z − bz + 1

1− bz + z

)
(η4
q (z
−1) = ηq(z))

=
∑
b∈Fq

b6=(z−1+1)

1

= q − 1.

Now we compute A. Since in this case the action of γ defines an automorphism of

P1(Fq), and since γ · b runs over Fq−{z−1} as b runs over Fq−{z−1 + sz} we see that

A =
∑
s∈F×q
s 6=z−1

η4
q (s)

∑
u∈Fq

u6=z−1

ηq(u)

= (−η4
q (z
−1))(−ηq(z−1)) (orthogonality relations for characters)

= 1 (η5
q = ε)

Therefore, combining our calculations for A and B we see that

F 2
1,q + F1,q2 = 2(A+B) = 2q (4.30)

finishing the proof.
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E. Example

In this section we illustrate with an example the result of the conjecture. Consider

the smooth projective curve with affine model given by

C3 : y5 = t2(1− t)3(1− 3t)2

over the finite field F11. C3 is a hyperelliptic curve of genus 4, and using Magma we

can compute its zeta function. We have that

Z(C3/F11, T ) =
(121T 4 + 66T 3 + 26T 2 + 6T + 1)2

(1− T )(1− 11T )
.

Therefore, after doing some algebra, we find the values of ai,11(3) for i = 1, . . . , 4.

Specifically, if ζ5 := e2πi/5 we have

a1,11(3) = a4,11(3) = −4− 2ζ2
5 − 2ζ3

5

a2,11(3) = a3,11(3) = −2 + 2ζ2
5 + 2ζ3

5 .

On the other hand, consider the multiplicative character η11 ∈ F̂×11 defined by η11(a) :=

ζ5, where a is a primitive element of F×11, i.e., a generates F×11, and recall that Fi,11(3) =

11 2F1[η
3i
11, η

2i
11; ε|3]. Using Magma we get

F1,11(3) = F4,11(3) = 4 + 2ζ2
5 + 2ζ3

5

F2,11(3) = F3,11(3) = 2− 2ζ2
5 − 2ζ3

5 .

Hence

Fi,11(3) = −ai,11(3) for all i = 1, 2, 3, 4.
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CHAPTER V

ADVANCES TOWARD THE GENERAL CASE

A. The Conjecture in Its Full Generality

Even though it is still work in progress to prove the conjecture in its full generality,

some advances have already been made toward it. To show these advances is the

purpose of this chapter.

Suppose now that l and q are odd primes, with q ≡ 1 (mod l), and let z ∈

Fq\{0, 1}. Recall that our conjecture relates values of certain hypergeometric func-

tions over Fq to counting points on certain curves over Fq. Recall also, that the curves

we are interested in are smooth projective curves of genus l − 1 with affine model

C(m,s)
z : yl = tm(1− t)s(1− zt)m

where 1 ≤ m, s < l are integers such that m + s = l. Now, as we mentioned in the

previous chapter, Corollary A.4 in Chapter III states that the curves C(m,s)
z have all

the same number of points over every finite extension of Fq as (m, s) varies over all

pairs of positive integers with m + s = l, hence they all have the same zeta function

over Fq. This, together with the fact that the hypergeometric functions that appear

on the right hand side of equation (3.1) are the same for all these curves imply that

it is enough to prove the conjecture for only one of them, say

C1,l−1
z : yl = t(1− t)l−1(1− zt). (5.1)

Throughout this chapter, we will denote this curve by Cz.

So, the question is: what results would be enough to know in order to prove the
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conjecture for all primes l and q with q ≡ 1 (mod l)? Recall that, by equations (2.4)

and (4.2) we have that

F1,qn(z) + F2,qn(z) + · · ·+ Fl−1,qn(z) = −
l−1∑
i=1

(αni,q(z) + αni,q(z)) (5.2)

where Fi,qn(z) = qn 2F1

 ηiqn , η
i(l−1)
qn

ε
z

 with ηqn ∈ F̂×qn a character of order l, and

αi,q(z) are the reciprocals of the roots of the zeta function of Cz over Fq, i.e.,

Z(Cz/Fq;T ) =
(1− α1,q(z)T )(1− α1,q(z)T ) · · · (1− αl−1,q(z)T )(1− αl−1,q(z)T )

(1− T )(1− qT )
.

From now on we will omit the dependency on z of the hypergeometric functions

and the roots of the zeta function, therefore, we will denote Fi,qn := Fi,qn(z) and

αi,q := αi,q(z). Also, as in the previous chapter, denote ai,q := αi,q + αi,q, for i =

1, · · · , l − 1. Since we want to relate the hypergeometric functions above with the

values ai,q, first we are going to express the values αni,q + αni,q in terms of ai,q and q.

We have the following theorem:

Lemma A.1. For α ∈ C such that |α| =
√
q denote α + α := a, and let n be a

non-negative integer. Then:

αn + αn =

bn
2
c∑

i=0

(−1)i T (n, i) qi an−2i (5.3)

where T (0, 0) := 2, T (n, 0) := 1 for n > 0 and

T (n, i) :=
n(n− i− 1)!

i!(n− 2i)!
, for n > 0, i ≥ 0.

Proof. We will prove the result by induction on n. For n = 0 and n = 1 is clear.

Now suppose the result is true for all k ≤ n. We want to show then that is also true
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for n+ 1. Notice that

(αn + αn)(α + α) = αn+1 + αn+1 + αnα + αnα

= αn+1 + αn+1 + αα(αn−1 + αn−1)

= αn+1 + αn+1 + q(αn−1 + αn−1) (αα = q)

Hence, since a = α + α, we have

αn+1 + αn+1 = (αn + αn) a− q (αn−1 + αn−1). (5.4)

Combining equation (5.4) and the inductive hypothesis we have

αn+1 + αn+1 =

bn
2
c∑

i=0

(−1)i T (n, i) qi an+1−2i −
bn−1

2
c∑

i=0

(−1)i T (n− 1, i) qi+1 an−1−2i

= an+1 +

bn
2
c∑

i=1

(−1)i T (n, i) qi an+1−2i

−
bn−1

2
c+1∑

j=1

(−1)j−1 T (n− 1, j − 1) qj an+1−2j (5.5)

after breaking apart the i = 0 contribution in the first sum, and making the change

of variables i+ 1 = j in the second sum.

Now we separate in two cases.

• Case 1: n is even.

Notice that, in this case we have that bn
2
c = bn−1

2
c + 1. Then, equation (5.5)

becomes

αn+1 + αn+1 = an+1 +

bn
2
c∑

i=1

(−1)i
(

n

i!(n− 2i)!
+

(n− 1)

(i− 1)!(n+ 1− 2i)!

)
· (n− 1− i)! qi an+1−2i
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= an+1 +

bn
2
c∑

i=1

(−1)i T (n+ 1, i) qi an+1−2i

=

bn+1
2
c∑

i=0

(−1)i T (n+ 1, i) qi an+1−2i

after replacing T (n, k) by its definition, doing some algebra, and noticing that,

if n is even then bn
2
c = bn+1

2
c. This proves the lemma for n even.

• Case 2: n is odd.

In this case we have bn
2
c = bn−1

2
c and bn+1

2
c = bn

2
c + 1. Combining these,

breaking apart the contribution of i = bn
2
c+ 1 in the second sum, and using the

previous computation, equation (5.5) becomes

αn+1 + αn+1 = an+1 +

bn+1
2
c−1∑

i=1

(−1)i T (n+ 1, i) qi an+1−2i

+ (−1)b
n+1

2
c (n− 1)(n− 1− bn+1

2
c)!

(bn+1
2
c)− 1)!(n+ 1− 2bn+1

2
c)!

qb
n+1

2
c an+1−2bn+1

2
c.

To finish the proof, we need to see that

(n− 1)(n− 1− bn+1
2
c)!

(bn+1
2
c)− 1)!(n+ 1− 2bn+1

2
c)!

= T (n+ 1, bn+ 1

2
c). (5.6)

This is not a hard computation. Write n = 2m + 1 for some m ∈ N, then

bn+1
2
c = m + 1. Substituting this in equation (5.6) we get 2 = 2 finishing the

proof for n odd.

Now, equation (5.2) and Lemma A.1 allow us to relate explicitly the hypergeo-

metric functions with the traces of Frobenius, giving

F1,qn + F2,qn + · · ·+ Fl−1,qn = −
l−1∑
i=1

bn
2
c∑

j=0

(−1)j T (n, j) qj an−2j
i,q . (5.7)
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Since in Conjecture B.1 we want to prove that Fi,q = −ai,q for all i = 1, . . . , l − 1,

then we have the following result.

Proposition A.2. If for all i, n = 1, . . . , l − 1 we have that

Fi,qn = (−1)n+1

bn
2
c∑

j=0

(−1)j T (n, j) qj F n−2j
i,q (5.8)

then Conjecture B.1 is true.

Proof. Assume equation (5.8) is true. Then, substituting into equation (5.7) for

n = 1, . . . , l − 1 we get a system of equations relating sums of the hypergeometric

functions Fi,q and their powers to sums of the traces of Frobenius ai,q and their powers.

After simplifying this system of equations, we get an equivalent one of the form



F1,q + F2,q + · · ·+ Fl−1,q = −(a1,q + a2,q + · · ·+ al−1,q)

F 2
1,q + F 2

2,q + · · ·+ F 2
l−1,q = a2

1,q + a2
2,q + · · ·+ a2

l−1,q

...

F n
1,q + F n

2,q + · · ·+ F n
l−1,q = (−1)n(an1,q + an2,q + · · ·+ anl−1,q)

...

F l−1
1,q + F l−1

2,q + · · ·+ F l−1
l−1,q = al−1

1,q + al−1
2,q + · · ·+ al−1

l−1,q.

(5.9)

This fact can be seen by induction. For n = 1 there is nothing to prove. Suppose

now that F k
1,q +F k

2,q + · · ·+F k
l−1,q = (−1)k(ak1,q +ak2,q + . . .+akl−1,q) for all k < n. Now,
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by equation (5.8) we have

F1,qn + · · ·+ Fl−1,qn = (−1)n+1

bn
2
c∑

j=0

(−1)j T (n, j) qj
(
F n−2j

1,q + · · ·+ F n−2j
l−1,q

)
= (−1)n+1(F n

1,q + · · ·+ F n
l−1,q)

+ (−1)n+1

bn
2
c∑

j=1

(−1)j T (n, j) qj
(
F n−2j

1,q + · · ·+ F n−2j
l−1,q

)
= (−1)n+1(F n

1,q + · · ·+ F n
l−1,q)

+ (−1)n+1

bn
2
c∑

j=1

(−1)n−j T (n, j) qj
(
an−2j

1,q + · · ·+ an−2j
l−1,q

)
(5.10)

where the last equality follows from the inductive hypothesis.

On the other hand, by breaking apart the contribution of j = 0 in equation (5.7) we

have

F1,qn + · · ·+ Fl−1,qn = −(an1,q + . . .+ anl−1,q) +

bn
2
c∑

j=1

(−1)j+1 T (n, j) qj (an−2j
1,q + . . .+ an−2j

l−1,q).

(5.11)

Therefore, combining equations (5.10) and (5.11) and noticing that (−1)2n+1−j =

(−1)j+1 we get

F n
1,q + · · ·+ F n

l−1,q = (−1)n
(
an1,q + . . .+ anl−1,q

)
as desired.

Next, by using the Newton-Girard formulas, which give relations between elementary

symmetric polynomials and power sums, we see that the system (5.9) is equivalent
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to 

F1,q + · · ·+ Fl−1,q = −(a1,q + a2,q + · · ·+ al−1,q)∑
1≤i<j≤l−1 Fi,qFj,q =

∑
1≤i<j≤l−1 ai,qaj,q

...

F1,q . . . Fl−1,q = a1,q . . . al−1,q

i.e., the elementary symmetric polynomials in the variables F1,q, . . . , Fl−1,q equal (up

to a sign) the elementary symmetric polynomials in a1,q, . . . , al−1,q. Then, we can think

of these values as being roots of the same polynomial, therefore, after rearranging

terms, we have that

Fi,q = −ai,q for all i = 1, . . . , l − 1

and Conjecture B.1 follows.

Remark A.3. Notice that it is enough to prove equation (5.8) only for prime powers

of q, i.e., only for 1 ≤ n ≤ l − 1 with n prime. Otherwise, if n = mr then Fqn|Fqm|Fq

is a tower of extensions, and we can use the relation for these extensions of lower

degree.

As we have seen above, proving equation (5.8) for prime powers of q would be

enough to prove Conjecture B.1 in the general case. However, equation (5.8) gets

complicated as n grows, so it would be helpful if this equation is needed for even

fewer values of n in order to prove the conjecture. This might be possible; in fact,

this is what we did to prove cases l = 3 and l = 5 in Chapter IV. Hence, looking at

the proofs in previous chapter, we see that

Proposition A.4. If the L-polynomial of the smooth projective curve of genus l − 1

with affine model Cz : yl = t(1 − t)l−1(1 − zt) is a perfect square, and equation (5.8)
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is verified for all primes n such that 1 ≤ n ≤ (l − 1)/2, then Conjecture B.1 holds..

Proof. Recall that

L(Cz/Fq;T ) =
l−1∏
i=1

(1− ai,qT + qT 2).

Hence, if the proposition is true, we would have

L(Cz/Fq;T ) =

(l−1)/2∏
i=1

(1− ai,qT + qT 2)2

therefore, after rearranging terms, we have ai,q = al−i,q, for all i = 1, · · · , l − 1.

On the other hand, recall that by Corollary B.6 in Chapter II the hypergeometric

functions Fi,q come in pairs, i.e., Fi,q = Fl−i,q for i = 1, · · · , l − 1. Hence, system

(5.9) gets reduced to half of it, having only (l − 1)/2 unknowns. Then, it is enough

to prove relation (5.8) only for primes n up to (l− 1)/2 in order to prove Conjecture

B.1.

Now, the question is how can we determine if the L-polynomial of Cz over Fq is

a perfect square. One possible way is to do an argument similar to the one done for

the cases l = 3 and l = 5. First, notice that we have the following result, analogous

to Lemma C.1.

Theorem A.5. The curve Cz : yl = t(1− t)l−1(1− zt) is birationally equivalent to

C : Y 2 = X2l + 2(1− 2z)X l + 1. (5.12)

Proof. The proof is analogous to the proof of Lemma C.1.

Also, analogous to Lemma C.4, by considering the fractional linear transforma-

tion

X → X + 1

X − 1

Y → Y

(X − 1)l
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we see that the curve (5.12) is equivalent to a curve of the form

Y 2 = clX
2l + cl−1X

2(l−1) + · · ·+ c1X
2 + c0

with no terms of odd degree in X, where the coefficients ci are polynomial equations in

z. Then, as in previous chapter, we can conclude that the jacobian of Cz is isogenous

to the product of the jacobians of two curves of genus (l − 1)/2, call them H1,z and

H2,z. Therefore, by Proposition A.4, we have

Theorem A.6. Let q ≡ 1 (mod l). If #H1,z(Fqi) = #H2,z(Fqi) for all i = 1, . . . , (l−

1)/2, and equation (5.8) holds for all primes n such that 1 ≤ n ≤ (l − 1)/2, then

Conjecture B.1 holds.

Proof. Notice that the fact that #H1,z(Fqi) = #H2,z(Fqi) for all i = 1, . . . , (l − 1)/2

implies that the curves H1,z and H1,z have the same L-polynomial over Fq, then, as

we mentioned above, the system (5.9) gets reduced to half of it, having only (l− 1)/2

unknowns. The rest of the proof follows from Proposition A.4.

Remark A.7. Notice that, if Proposition A.2 holds (i.e. Conjecture B.1 is true over

Fq), using Lemma A.1 we can get a result similar to Conjecture B.1 over Fqn , for

n ∈ N.
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

The main objective of this dissertation is to find connections hypergeometric functions

over finite fields have to algebraic curves. In particular, we focused our attention to

a specific family of curves. For a = m/n and b = s/r rational numbers such that

0 < a, b < 1, and z ∈ Fq, z 6= 0, 1 we considered the smooth projective algebraic curve

with affine equation

C(a,b)
z : yl = tl(1−b)(1− t)lb(1− zt)la

where l := lcm(n, r). If q is prime and q ≡ 1 (mod l), we showed in Chapter III

Theorem A.2, an explicit formula for the number of points on C(a,b)
z over Fq in terms

of sums of hypergeometric functions 2F1

 η
il(1−a)
q , η

il(1−b)
q

ε
z

, where ηq ∈ F̂×q is a

character of order l. Moreover, we showed that this result can be extended to any

finite extension Fqk of Fq. Next, we restricted our attention to the family of curves

C(a,b)
z where a = m/l and b = s/l with l a prime and m+s = l, and showed, in Chapter

III Corollary A.4 that, if q ≡ 1 (mod l) and C(a,b)
z , C(a′,b′)

z are two such curves, then

#C(a,b)
z (Fqk) = #C(a′,b′)

z (Fqk)

for all k ∈ N.

Then, in Chapter IV, we were interested in relating each particular hypergeo-

metric function 2F1

 η
il(1−a)
q , η

il(1−b)
q

ε
z

 to the curve C(a,b)
z . We proved that we

can relate explicitly each one of these hypergeometric functions to the roots of the

zeta function of C(a,b)
z over Fq for q ≡ 1 (mod l) when l = 3, and in many cases when
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l = 5. The proof of these results involved studying properties of the Jacobian variety

associated to the curve together with relations between hypergeometric functions over

finite fields and their extensions. Based on numerical computations, we conjectured

that the previous relations between the hypergeometric functions and the roots of the

zeta function of the curve over Fq hold for all prime l, and q ≡ 1 (mod l), and this is

the statement of Conjecture B.1 in Chapter IV. We are currently working on proving

Conjecture B.1 in its full generality and some progress has already been made in this

direction. These advances toward the general case are the content of Chapter V.

We plan to continue the work of the previous chapters to future research. Another

project is to study what kind of relations, maybe similar to the ones presented in this

dissertation, can be found in the case when m+ s is not a prime l. We have already

started to investigate in this direction, and have collected some data that suggests

there might be some relation between the values in this more general setting. For

example, over F11, consider the curve with affine equation

Cz : y5 = t2(1− t)3(1− zt).

Notice that in this case we are considering l = 5 and (m, s) = (1, 3) in Theorem A.2

of Chapter III, so m+ s 6= l.

• In the case that z = 2 we obtain ai,11(2) = −3 and Fi,11(2) = 3 for all 1 ≤ i ≤ 4.

This might mislead to think that the hypothesis of m + s = l is not needed

in Conjecture B.1. However, one more computation shows that this is not the

case, as we see next.

• When z = 6, for ζ5 := e2πi/5 a fifth root of unity, we obtain that
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a1,11(6) = 5 + ζ5 + ζ4
5 , a2,11(6) = 5 + ζ2

5 + ζ3
5 ,

a3,11(6) = −5 + ζ2
5 + ζ3

5 , a4,11(6) = −5 + ζ5 + ζ4
5 .

On the other hand, we get that

F1,11(6) = 1 + ζ5 + ζ3
5 , F2,11(6) = 1 + ζ5 + ζ2

5 ,

F3,11(6) = 1 + ζ3
5 + ζ4

5 , F4,11(6) = 1 + ζ2
5 + ζ4

5 .

Manipulating these values we can have

F1,11(6) = −ζ3
5 (a1,11 − 5) , F2,11(6) = −ζ5(a2,11 − 5),

F3,11(6) = −ζ4
5 (a3,11 + 5) , F4,11(6) = −ζ2

5 (a4,11 + 5).

As we can see in this example, the data suggests that some connection can be made

between these values. However, it is more subtle than the case m+ s = l.

In addition to these previous ongoing projects, the problem can be generalized

even more, to finding relations when l in Chapter III Theorem A.2 is any composite

number, and not necessarily a prime.
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